
Otto-von-Guericke University Magdeburg

Faculty of Computer Science

Dissertation

Self-tuning for Cloud Database
Clusters

Author:

M.Sc. Siba Mohammad

April 22, 2016

Supervisor:

Prof. Dr. rer. nat. habil. Gunter Saake

Department of Technical and Business Information Systems

Mohammad, Siba:
Self-tuning for Cloud Database Clusters
Dissertation, Otto-von-Guericke University Magdeburg, 2016.

iv

Abstract

The well known approaches of tuning and self-tuning of data management systems are
essential in the context of the Cloud environment, which promises self management
properties, such as elasticity, scalability, and fault tolerance. Moreover, the intricate
Cloud storage systems criteria, such as their modular, distributed, and multi-layered
architecture, add to the complexity of the tuning process and necessity of the self-tuning
process.

Furthermore, if we have one or more applications with one or more workloads with
contradicting and possibly changing optimization goals, we are faced with the question
of how to tune the underlying storage system cluster to best achieve the optimization
goals of all workloads. Based on that, we define the tuning problem as finding the cluster
configuration out of a set of possible configurations that would minimize the aggregated
cost value for all workloads while still fulfilling their performance thresholds.

In order to solve such a problem, we investigate the design and implementation of
a Cloud storage system agnostic (self-)tuning framework. This framework consists
of components to observe, and model different performance criteria of the underlying
Cloud storage system. It also includes a decision model to configure tuning parameters
based on applications requirements. To model the performance of the underlying Cloud
storage system, we use statistical machine learning techniques. The statistical data that
is needed to model the performance can be generated in a training phase. For that we
designed a training component that generates workloads and automates the testing
process with different cluster configurations.

As part of our evaluation, we address the essential problem of tuning the cluster size
of the Cloud storage system while minimizing the latency for the targeted workloads.
In order to do that, we model the latency in relation to cluster size and workload
characteristics. The predictive models can then be used by the decision component to
search for the optimal allocation of nodes to workloads.

We also evaluate different alternatives for the search algorithms as part of the deci-
sion component implementation. These alternatives include brute-force, and genetic
algorithm approaches.

Zusammenfassung

Die bekannten Ansätze zum Tuning und Self-Tuning von Datenverwaltungssystemen
sind in Cloud-Umgebungen, welche Selbstverwaltungseigenschaften wie Elastizität, Ska-
lierbarkeit und Ausfallsicherheit versprechen, von essentieller Bedeutung. Darüber
hinaus erhöhen die komplexen Eigenschaften von Cloud Storage-Systemen, wie zum
Beispiel ihre modulare, verteilte und mehrschichtigen Architektur, die Unübersichtlich-
keit des Tuning-Vorgangs und damit die Notwendigkeit eines Self-Tuning-Prozesses.

Weiterhin stellt sich durch verschiedene Anwendungen mit unterschiedlichen Work-
loads und sich widersprechenden und womöglich veränderlichen Optimierungszielen
die Frage, wie der gemeinsame Cloud Storage Cluster eingerichtet werden kann, um
die Optimierungsziele aller Workloads zu erreichen. Ausgehend von dieser Fragestel-
lung definieren wir das vorliegende Tuning-Problem als die Suche nach einer Cluster-
Konfiguration aus einer Menge möglicher Konfigurationen, welche die aggregierten
Kosten aller Workloads minimiert und dabei ihre Leistungsanforderungen erfüllt.

Um dieses Problem zu lösen, untersuchen wir die Möglichkeiten zum Entwurf und
zur Implementierung eines Self-tuning Frameworks, welches unabhängig vom konkret
verwendeten Cloud Storage System ist. Dieses Framework besteht aus Komponen-
ten zur Überwachung und Modellierung verschiedener Performance-Kriterien des Cloud
Storage-Systemen. Es beinhaltet ebenfalls ein Entscheidungsmodell, mit dem Tuning-
Parameter basierend auf Anwendungsanforderungen konfiguriert werden können. Zur
Modellierung der Performance des Cloud Storage-Systemen verwenden wir Techniken
des maschinellen aschinellen Lernens. Die statistischen Daten, welche zur Ableitung des
Performance-Modells notwendig sind, können in einer Trainingsphase generiert werden.
Hierzu haben wir eine Trainingskomponente entwickelt, welche verschiedene Workloads
generiert und den Test mit verschiedenen Cluster-Konfigurationen automatisiert.

Als Teil unserer Evaluation untersuchen wir das grundlegende Problem des Konfiguio-
erens der Cluster-Größe zur Miminierung der Latenz der auszuführenden Workloads.
Um dies zu erreichen, modellieren wir die Latenz in Abhängigkeit von der Cluster-Größe
und spezifischen Workload-Eigenschaften. Die Vorhersagemodelle können dann von der
Entscheidungskomponente genutzt werden, um die optimale Allokation von Knoten zu
Workloads zu ermitteln. Wir evaluieren ebenfalls verschiedene Alternativen für Suchal-
gorithmen als Teil der Entscheidungskomponente. Die Alternativen sind hierbei eine
Brute-Force-Methode sowie ein genetischer Algorithmus.

Acknowledgments

This work would not have been possible without the support of many people. First,
I would like to thank my supervisor Prof. Gunter Saake for giving me the chance to
write this thesis as a member of the DBSE group. Prof. Saake gave me the freedom
to pursue my research direction, and provided me guidance and support. Even with
his busy schedule, he manages to find time, whenever one approaches him for advice or
discussion.

Many thanks to my colleague Dr.-Ing Eike Schallehn. He helped me start at the DBSE
group, and supported me during the different phases of my work. While we shared the
same office, I have learnt a lot from him as an academic and a person. Thanks for the
many brainstorming sessions, helpful feedback, and motivation.

I would like to thank my family for showing me unconditional love and support. I want
to thank my mother for being an example of hard working career woman and devoted
parent. I want to thank my father for handing me books, as answers to my questions,
since I was a little girl. The “Yes, you can!” attitude from both of them lead me to
where I am today. I would like to thank my little sister and her husband for always
being by my side, bringing positive vibes and humor through tough times.

Special thanks to Annette and Elmar Dahmen-Eisenberg. Thank you for the love,
kindness, and parental attitude that you showed me since I came to Germany. Thanks
for making me feel home.

I would like to thank my dear friends Diana Nikolaus, Kirsten Bröcker, Hala Ismael,
Saade Saad, Naoum Jamous, Razan Issa, Lugain Khalifa, and Muhannad Ali. They
helped me cope with deadlines stress, rejected papers, and failed experiments. When
things got better and my papers were accepted, they made sure that I celebrate to the
maximum. Thank you guys for recharging my battery, so I could continue. Thank you
for dragging me out of the office and providing much needed distraction. Thank you
for being with me through the years, and making life such an interesting journey.

Last but not least, I would like to thank the current and former members of the DBSE
group. I have learnt a lot during my work as a member in such a competitive, and
diverse research group. Thank you all for your friendly attitude, and many teaching
moments.

Contents

List of Figures xiv

List of Tables xv

List of Code Listings xvii

1 Introduction 1
1.1 Goal of the Thesis . 2
1.2 Outline . 3

2 Background and Related Work 5
2.1 Cloud Data Management . 5

2.1.1 Cloud Environment . 5
2.1.2 Cloud Requirements for Storage System 7
2.1.3 Relational Database Management Systems as a Service 8
2.1.4 Not only SQL Storage Systems 9

2.2 Database Tuning and Self-tuning . 18
2.2.1 The General Process of System Tuning 18
2.2.2 Database Tuning . 19
2.2.3 Database Self-tuning . 21
2.2.4 (Self-)Tuning Cloud Data Management Systems 23
2.2.5 Related Work . 25

2.3 Performance Modeling . 26
2.3.1 Performance Modeling Approaches for Database Systems 27
2.3.2 Data-driven Modeling Approach 28
2.3.3 Related Work . 29

2.4 Summary . 34

3 (Self-)Tuning Cloud Storage Clusters 37
3.1 Overview and Scope . 37
3.2 A Framework for Self-tuning Cloud Storage Clusters 41

3.2.1 General Problem Statement . 41
3.2.2 Clustering the Cloud . 42
3.2.3 Framework Design . 43
3.2.4 Training Component . 45

xii Contents

3.2.5 Cost Estimation Component . 51
3.2.6 Decision Component . 53
3.2.7 Monitoring and Refinement Component 55

3.3 Framework Usage . 55
3.3.1 Static/Offline Tuning during System Cluster Design 56
3.3.2 Dynamic/Online Tuning during System Cluster Deployment . . 57
3.3.3 Offline-Online Tuning Process 58

3.4 Summary . 60

4 Prototype Implementation 63
4.1 Required Technologies . 63

4.1.1 Implementation Environment 63
4.1.2 Cloud Storage System . 64

4.2 Implementation . 66
4.2.1 Deployment of the Storage Cluster 66
4.2.2 Workload Generation . 73
4.2.3 Data Analysis and Modeling . 75
4.2.4 Decision and Search Algorithm 80

4.3 Summary . 83

5 Experimental Setup and Evaluation 85
5.1 Experimental Setup . 85

5.1.1 Infrastructure . 85
5.1.2 Cassandra Deployment . 86

5.2 Experiments . 87
5.2.1 Experiment Design . 87
5.2.2 Database . 88
5.2.3 Training Workloads . 89

5.3 Experimental Results . 89
5.3.1 Training Data and Model Generation 89
5.3.2 The Search Algorithm Alternatives 93
5.3.3 Use Case Example . 95

5.4 Summary . 96

6 Conclusion and Future Work 99
6.1 Summary of the Dissertation . 99
6.2 Future Work . 101

A Appendix 105

Bibliography 111

List of Figures

2.1 The Cloud Deployment Architecture, adapted from [ZCB10] 6

2.2 Relational DBMSs in the Cloud . 9

2.3 Modular Architecture of Cloud Storage Systems 10

2.4 Historical Overview of the Family Diagram of Cloud Storage Systems . 12

2.5 Map/Reduce Computation Work-flow 16

2.6 CAP Theorem and Cloud Storage Systems 18

2.7 Tuning as a Continuous Process, adapted from [Sch12] 19

2.8 Database Tuning Reference Architecture 20

2.9 Self-tuning Cycle MAPE, adapted from [The05] 23

2.10 Examples of Analytical Models, adapted from [OK12] 27

2.11 Empirical Modeling Approach, adapted from [SSA08] 28

3.1 (Self-)Tuning Reference Architecture for Cloud Storage Systems 38

3.2 Illustration of the Complexity of Self-tuning Multi-layered Cloud Storage
Systems . 40

3.3 Divide and Tune . 43

3.4 Self-Tuning Framework for Cloud Data Management Systems 44

3.5 Training Component Architecture . 47

3.6 The XML schema for the Training Component Settings 49

3.7 The Performance of Underloaded Cassandra Cluster 50

3.8 Offline Mode of the Framework . 56

3.9 Online Mode of the Framework . 57

3.10 Offline-Online Mode of the Framework 59

xiv List of Figures

4.1 Cassandra Ring, adapted from [Nee15] 65

4.2 Cassandra Column Family . 65

4.3 Core Classes for the Training Component’s Storage System Deployment 67

4.4 Sequence Diagram of the TrainingComponentManager’s Main Loop . . 72

4.5 Sequence Diagram of the stopCluster Method 74

4.6 Core Classes for the Training Component’s Workload Generation . . . 76

4.7 Sequence Diagram of the startLoad Method 77

5.1 Infrastructure used for the Prototype Deployment 86

5.2 Training Data: Latency of the Cassandra Cluster with Different Workloads 90

5.3 Latency of the Cassandra Cluster in Relation to the Number of Nodes
& Write/Read Ratio . 91

5.4 Input Measurements vs. Regression Analysis Result 92

5.5 Measurements vs. Prediction of Different Regression Techniques 92

5.6 Runtime for the Decision Component using Brute-force 93

5.7 Genetic Algorithm Result . 94

5.8 Optimal Allocation of Nodes for Three Workloads 95

5.9 Framework Suggestion vs. Optimal Latency 96

List of Tables

2.1 Comparison of Related Work on Benchmarking Cloud Storage Systems 34

3.1 Training Data as Input for the Modeling Process 52

4.1 Comparison of Algorithms Considered for the Decision Component . . 81

List of Code Listings

4.1 Excerpt of the Cassandra Configuration File 69

4.2 Minimal Java Code for Creating Cassandra Key-space and Column Family 71

4.3 Excerpt of the Training Component Settings: Defining Database 71

4.4 Excerpt of the Training Component Settings: Defining Workload 75

4.5 Minimal Java Code for Write Operation 78

4.6 Excerpt Java Code for Using R with Java in our Framework 79

A.1 Schema Definition of the Training Component Settings 106

A.2 Training Component Settings . 108

xviii List of Code Listings

1. Introduction

The Cloud technology has been a trend in the IT world for many years. The Cloud
is defined as “a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources that can be rapidly provisioned
and released with minimal management effort or service provider interaction.” [MG11].
In other words, Cloud service providers support companies and individuals with elastic
IT resources and services, such as servers, storage, and applications in pay-as-you-go
model.

As the Cloud grew in popularity, large number of applications and services were provided
solely on the Internet. Internet companies and Cloud service providers such as Google,
Amazon and Yahoo! faced the problem of serving a rapidly increasing number of users.
The traditional relational Database Management Systemss (DBMSs) could not scale
to such workloads, making them unsuitable for many Cloud applications [ADEA12].
This lead to a new breed of data management and data processing systems [GGL03,
CDG+08], called the Not only SQL (NoSQL) systems.

These systems are significantly different from conventional databases by focusing on
providing scalability and availability to meet requirements of Cloud applications while
disregarding typical DBMS features, such as complex query interfaces, transactional
consistency management and stringent data models. Examples of these systems are
Google’s Bigtable [CDG+08], Yahoo!’s PNUTS [CRS+08], Apache’s Hadoop Distributed
File System (HDFS) [SKRC10], and Amazon’s Dynamo [DHJ+07], etc. As more com-
panies outsourced their data to the Cloud, relational storage on Cloud virtualized en-
vironment was supported, such as Amazon’s Relational Database Service (RDS) and
Microsoft’s Cloud SQL Server [BCD+11]

Compared to the (self-)tuning of conventional database systems, which is intensively
researched by industry and academia, the (self-)tuning of the Cloud NoSQL systems is
still at its beginnings. Throughout the thesis, we focus on the (self-)tuning for Cloud
clusters of NoSQL database systems serving online workloads.

2 1. Introduction

In the following sections, we summarize the goal of the thesis and its contributions in
the area of Cloud storage systems (self-)tuning. Then we provide an outline of the
following chapters.

1.1 Goal of the Thesis

Though Cloud storage systems were developed to be self-managing regarding many
aspects, such as load balancing, dynamically adding and removing nodes, there are many
knobs that are left to be tuned according to applications’ requirements. Examples of
these knobs include: cluster size, replication factor, consistency level, data partitioning,
and data placement strategies, etc. Furthermore, the distributed environment and the
multi-layered architecture makes self-tuning for Cloud storage systems an even more
complicated task. Moreover, if we have one Cloud database cluster serving one or more
applications, which are serving several workloads with different optimization goals, the
question is how to tune the database cluster to best achieve the optimization goals of
all workloads. To answer this question, we define the goal of the thesis as:

To design, implement and evaluate an approach for self-tuning Cloud storage
cluster serving different workloads. The framework should be database system
agnostic, platform independent, extendable, and should allow online
refinement.

To achieve this goal, we made the following contributions:

• As a precondition for the proposed framework, we relate tasks of (self-)tuning to
layers and sub-clusters within typical Cloud storage architecture. We define a
guideline for typical Cloud storage system (self-)tuning processes.

• We build a training component that automates the process of testing and mon-
itoring a Cloud storage cluster with different configurations and different work-
loads. This component generates training data needed to model the performance
of Cloud storage cluster and can be used as a benchmark.

• We build a cost estimation component to predict performance metrics based on
the empirical data-driven approach. Our results on modeling the performance
characterized by latency in relation to write/read ratio and cluster size shows
that typical regression techniques provide good predictive models for this case.

• Based on measured and/or modeled performance of applications, we design a
decision component and evaluate two search algorithms; brute-force and genetic
algorithm. Our evaluation shows that though the brute-force provides the optimal
solution, its cost grows proportionally with the search space. Our genetic algo-
rithm based approach provides near optimal solution with a smaller cost compared
to the brute force approach.

1.2. Outline 3

• We address the essential problem of tuning the size of (sub-)clusters of the targeted
workload/workloads. Our framework supports creating an optimal setup of sub-
clusters for all workloads, indicated by a global minimum of latency, and within
resources restrictions.

1.2 Outline

In the following chapters, we provide details about the design, implementation, and
evaluation of our framework. The chapters are structured as the following:

Chapter 2: This chapter introduces the foundations, which are necessary to under-
stand the research problems and approaches investigated in the thesis. It includes
details about Cloud data management, database self-tuning, and performance
modeling. It also includes an overview of related work.

Chapter 3: In this chapter, we motivate the self-tuning problem in the context of
Cloud data management. Then, we introduce an architecture of a self-tuning
framework for Cloud storage systems clusters. This chapter includes discussions
about design decisions of different components of the framework architecture.

Chapter 4: This chapter reveals implementation details for our framework. It includes
details about the used technologies and systems. It also discusses the alternatives
for implementing the framework components.

Chapter 5: In this chapter, we present the evaluation results of our framework. This
chapter provides an outline of the conducted experiments and their goals. At the
end, we provide a use case scenario of the framework and discuss the results.

Chapter 6: This chapter summarizes the thesis, outlines the contributions, and pro-
vides an insight into future research directions.

4 1. Introduction

2. Background and Related Work

This chapter shares material with paper “Cloud Data Management: a Short
Overview and Comparison of Current Approaches” [MBS12]

In this chapter, we provide the background concepts necessary to understand the do-
main of Self-tuning for Cloud storage systems. Furthermore, we present definitions and
principles of the used techniques to achieve self-tuning in our framework.

First, we provide a literature review of Cloud data storage systems. Then, we provide
basic concepts of (self-)tuning, and performance modeling for storage systems.

2.1 Cloud Data Management

In this section, we provide an overview of Cloud data management. We start by pre-
senting an overview of the Cloud computing environment and its application needs.
Then, we provide an overview of the current state of the art for Cloud storage systems.

2.1.1 Cloud Environment

The Cloud technology has been a trend in the IT world for many years. Cloud providers
aim to free companies from worrying about their IT resources just like the electrical grid
freed companies from generating their own electricity[FZRL08]. The Cloud is defined as
a shared pool of computing resources that can be provisioned and released with minimal
effort or service provider interaction [MG11]. This pool of computing resources is offered
in a pay-as-you-go network access. This means for both companies and individuals, the
ability to get resources whether storage space, computational power, or Software over
the Internet.

6 2. Background and Related Work

The Cloud model is deployed in several layers. The first one is Infrastructure as
a Service layer. This layer is responsible for managing physical resources and cre-
ating a pool of storage and computing power by means of virtualization techniques.
The second layer is the Platform as a Service, which consists of operating systems
and application’s platforms. This layer minimizes the burden of deployment onto the
virtual machines containers of the underlying layer. The final layer is the Software
as a Service layer, which consists of actual Cloud applications. Different from tradi-
tional applications, they can leverage the Cloud features to achieve better performance,
availability and lower operating costs [ZCB10]. The Cloud deployment architecture is
illustrated in Figure 2.1.

J Internet Serv Appl (2010) 1: 7–18 9

virtualized resources for high-level applications. A virtual-
ized server is commonly called a virtual machine (VM). Vir-
tualization forms the foundation of cloud computing, as it
provides the capability of pooling computing resources from
clusters of servers and dynamically assigning or reassigning
virtual resources to applications on-demand.

Autonomic Computing: Originally coined by IBM in
2001, autonomic computing aims at building computing sys-
tems capable of self-management, i.e. reacting to internal
and external observations without human intervention. The
goal of autonomic computing is to overcome the manage-
ment complexity of today’s computer systems. Although
cloud computing exhibits certain autonomic features such
as automatic resource provisioning, its objective is to lower
the resource cost rather than to reduce system complexity.

In summary, cloud computing leverages virtualization
technology to achieve the goal of providing computing re-
sources as a utility. It shares certain aspects with grid com-
puting and autonomic computing but differs from them in
other aspects. Therefore, it offers unique benefits and im-
poses distinctive challenges to meet its requirements.

3 Cloud computing architecture

This section describes the architectural, business and various
operation models of cloud computing.

3.1 A layered model of cloud computing

Generally speaking, the architecture of a cloud comput-
ing environment can be divided into 4 layers: the hard-
ware/datacenter layer, the infrastructure layer, the platform
layer and the application layer, as shown in Fig. 1. We de-
scribe each of them in detail:

The hardware layer: This layer is responsible for man-
aging the physical resources of the cloud, including phys-
ical servers, routers, switches, power and cooling systems.
In practice, the hardware layer is typically implemented
in data centers. A data center usually contains thousands
of servers that are organized in racks and interconnected
through switches, routers or other fabrics. Typical issues
at hardware layer include hardware configuration, fault-
tolerance, traffic management, power and cooling resource
management.

The infrastructure layer: Also known as the virtualiza-
tion layer, the infrastructure layer creates a pool of storage
and computing resources by partitioning the physical re-
sources using virtualization technologies such as Xen [55],
KVM [30] and VMware [52]. The infrastructure layer is an
essential component of cloud computing, since many key
features, such as dynamic resource assignment, are only
made available through virtualization technologies.

The platform layer: Built on top of the infrastructure
layer, the platform layer consists of operating systems and
application frameworks. The purpose of the platform layer
is to minimize the burden of deploying applications directly
into VM containers. For example, Google App Engine oper-
ates at the platform layer to provide API support for imple-
menting storage, database and business logic of typical web
applications.

The application layer: At the highest level of the hierar-
chy, the application layer consists of the actual cloud appli-
cations. Different from traditional applications, cloud appli-
cations can leverage the automatic-scaling feature to achieve
better performance, availability and lower operating cost.

Compared to traditional service hosting environments
such as dedicated server farms, the architecture of cloud
computing is more modular. Each layer is loosely coupled
with the layers above and below, allowing each layer to
evolve separately. This is similar to the design of the OSI

Fig. 1 Cloud computing
architecture

Figure 2.1: The Cloud Deployment Architecture, adapted from [ZCB10]

Cloud computing has several characteristics summarized in the following points [SLMBA11,
ZCB10]:

Multi-tenancy and Shared-resources Pooling : Multi tenancy means sharing re-
sources among several tenants i.e. applications or users. Multi tenancy in the
Cloud is provided on different levels of abstraction and isolation models. An
example of multi tenancy is a physical server hosting several virtual machines
belonging to different users.

On-demand Broad Network Access: A Cloud customer can provision resources
without requiring human interaction with each service provider. The access and
provisioning of resources is available through network access by means of standard
mechanisms available through the heterogeneous thin and thick client platforms
starting by mobile phones and tablets to laptops and mainframes.

2.1. Cloud Data Management 7

Dynamic Resource Provisioning : Resources can be elastically assigned and re-
leased with minimal effect on performance or availability of the services using
them during the assignment/release process.

Geo Distribution: Cloud providers typically use a distributed network of resources
over several data centers and possibly in different continents. A service provider
can leverage geographical distribution to achieve maximum service utility.

2.1.2 Cloud Requirements for Storage System

As the Cloud grew in popularity, large number of applications and services were pro-
vided solely on the Internet. Internet companies and Cloud service providers such as
Google, Amazon and Yahoo! faced the problem of serving a rapidly increasing number
of users. For the storage purposes, traditional relational DBMSs could not scale to such
workloads, making them unsuitable for hosting many Cloud applications [ADEA12].
Google pioneered Cloud storage systems by creating Google File System [GGL03] and
Bigtable [CDG+08] as the storage back-end for over 60 services and products, such as
Google Finance, Google earth, and Google Analytics, etc. Design decisions regarding
architecture, functional and non-functional requirements were made based on analyz-
ing the environment in which the storage system works and the targeted applications’
workloads that it serves. More storage systems were designed in the same manner by
companies, such as Yahoo!, Amazon, Facebook and Apache.

Next we provide an overview of the application requirements of Cloud storage systems.
We derive these requirements by reviewing different Cloud storage systems [CRS+08,
DHJ+07, CDG+08, SKRC10, The15c, Hel07, SLMBA11]. Each of these systems have
special application requirements, however, they share the following:

Scalability and Elasticity : The workload of the targeted applications and services
can witness seasonal, unpredictable, or planned heavy processing. In all cases, the
storage system must be able to scale with minimal operational effort and minimal
impact on its performance or the performance of any service that is using it. It
also should support scaling down, in a similar manner.

Fault Tolerance and High Availability : The storage system will run on a cluster
of hundreds or even thousands of inexpensive hardware components. Having a
failure in one or many components is the normal case that the storage system
will face rather than the exception. Therefore, failure detection, and recovery
should be incorporated in the architectural design of the Cloud storage system.
Operations should continue with minimal or no interruption.

Response Time and Geographic Scope: The storage system will be used inter-
nally by other services of the Cloud provider, which are requested by users in a
wide range of geographical space. It should meet the Service Level Agreement
(SLA) of response time and respond to all users with low latency.

8 2. Background and Related Work

Data Volume and Scalability : The storage system, whether it is a file system or
a structured storage system, will deal with large sizes of data that is constantly
growing. Single file size can grow to multi megabytes of data; for this the design
parameters down to the level of Input/Output (I/O) operations and block sizes
must be adapted.

Load and Tenant Balancing : This requirement is essential to achieve effective re-
source utilization and cost optimization for a storage system that is working on a
network of distributed computing nodes.

Evolving Schema : The data model of the storage system should provide applications
with flexibility and freedom to evolve how information is structured and should
allow and support schema evolution.

Security and Privacy : Outsourcing data to the Cloud raises concerns for compa-
nies and individuals regarding data security and privacy. Cloud storage systems
should provide secure storage that allows storing and querying encrypted data
when needed. The Cloud also raises concerns regarding data compliance, which
specifies data ownership and protection. Data compliance becomes complicated
when the data of an organization is stored in a different country that applies
different privacy laws; such as an EU company storing its data in the US.

As the Cloud grew in popularity, more companies started outsourcing their data storage
and processing. However, the needs of some of these companies regarding transaction
support and data consistency required the use of the more mature and ACID-compliant
relational storage systems. The Cloud storage landscape evolved to include relational
DBMSs as service. A number of research efforts were directed toward breeding both
approaches into a hybrid system such as HadoopDB [ABPA+09].

In the following subsections, we provide an overview of both newly designed and tradi-
tional DBMSs in the Cloud.

2.1.3 Relational Database Management Systems as a Service

In this approach, each customer gets an own instance or instances of a DBMS that runs
on virtual machines of the Cloud service provider. Systems in this approach support
full Atomicity, Consistency, Isolation, Durability (ACID) requirements with the disad-
vantage of limited scalability. This means, if the application requires more resources
than the provided classes of instances, the customer must implement partitioning on
the application level, then use different instances for each partition. An example of
such systems are the Amazon RDS which provides MySQL, Oracle, and PostgreSQL.

Compared to relational DBMSs deployed on premise, relational DBMSs as a service
have several advantages and drawbacks. On the one hand, the Cloud supports pay-
as-you-go business models, which means low up-front cost and on demand scalability.
The Cloud provides relational DBMS as a managed service where many of the database

2.1. Cloud Data Management 9

Users/Applications

Relational Cloud Storage Service

Relational DBMS

Vodafone, Netflix

Oracle,

MySql,

PostgreSQL

Amazon RDS,

Microsoft Azure,

Figure 2.2: Relational DBMSs in the Cloud

administration tasks, such as patch management and backups are responsibility of the
service provider, which leads to lower staff cost. From the technical side, relational
DBMSs as a service support different availability zones and read only replicas to increase
availability. On the other hand, issues, such as data security and protection, service
outages and data loss raise big concerns for companies considering outsourcing their
data to the Cloud.

Compared to their NoSQL counterparts, relational DBMSs have the advantage of fa-
miliar tools and programming models, which is important for companies with legacy
architecture. Besides these features, well-established relational DBMSs qualities such
as query optimization, built-in tuning, and transaction support are essential for many
applications. However, current relational DBMSs are considered not Cloud-friendly be-
cause of their limitation in scalability support [ADEA12]. When it comes to handling
the growing scale of data and the number of requests, current relational DBMSs fail to
provide adequate tools and guidance.

2.1.4 Not only SQL Storage Systems

Properties of the Cloud environment such as multi-tenancy and components failure,
etc. and the needs of its application such as scalability, availability, and fault tolerance,
etc. resulted in a new breed of data storage systems. These systems were primarily
developed for internal use by companies such as Google (Bigtable) , Amazon (Dynamo),
Facebook (Cassandra), etc. In the following subsections, we provide a detailed overview
of the Cloud NoSQL storage systems.

2.1.4.1 Modular Layered Architecture

For the implementation of traditional DBMSs, developers and researchers suggested
multiple-layered architectures. Among the most referenced to, in literature, are the
ANSI SPARC architecture, and the five level architecture. More details on each can
be found in [SSH08, Här87]. Such a reference architecture for Cloud data management
systems does not exists. As a result from a survey [MBS12] that we conducted on Cloud
storage systems, we present the architecture in Figure 2.3.

10 2. Background and Related Work

 Users / Applications

Query Language

Distributed Processing System

Structured Data System

Distributed Storage System

Facebook, Spotify, GMail

Google MapReduce,

Hadoop MapReduce

HiveQL, CQL, HBql, JAQL

BigTable, HBase, Cassandra,

SimpleDB, PNUTS

GFS, HDFS, S3, Dynamo

Figure 2.3: Modular Architecture of Cloud Storage Systems

We group NoSQL storage systems and services in a modular architecture made of four
layers on top of which lays the application layer. In deployment, a combination of these
interconnected systems and services can be formed according to application needs.

1. Distributed File System:

The essential layer of this architecture is a distributed file system. Systems of
this layer were developed for internal use by cloud providers and are typically not
delivered as a public service. It is responsible for providing availability, scalability,
fault tolerance, and high performance data access. We divide systems of this layer
into three categories:

• Distributed file system, such as Google File System (GFS) [GGL03] and
HDFS [SKRC10], etc.

• Cloud-based file services, such as Amazon’s Simple Storage Service (S3) [The15a].

• Peer to peer file system, such as Amazon’s Dynamo [DHJ+07].

2. Structured Data System:

The second layer consists of structured data systems. Systems of this layer pro-
vide simple data models, such as key-value pairs and support various Application
Program Interfaces (APIs) for data access and different protocols, such as Sim-
ple Object Access Protocol (SOAP) and Hypertext Transfer Protocol (HTTP).
Examples of systems of this layer include Google’s Bigtable [CDG+08], Cassan-
dra [LM10], and SimpleDB [The15b].

2.1. Cloud Data Management 11

3. Distributed Processing System:

The third layer includes distributed processing systems, which are responsible
for more complex data processing, e.g., analytical processing, mass data trans-
formation and DBMS-style operations, such as joins and aggregations. Google
pioneered systems developed for this layer by introducing their Map/Reduce
Framework [DG08], which became the dominant processing paradigm for such
operations in Cloud and Big data management.

4. Query Language:

The fourth layer includes the language support. Since the underlying systems do
not support the relational model, Structured Query Language (SQL) is not sup-
ported. However, developers of these languages tried to mimic SQL syntax for sim-
plicity providing languages, such as Cassandra Query Language (CQL) [The15d].
More recently developed systems or languages, such as Hive Query Language
(HQL) [TSJ+09], support joins and aggregations. However, these operations are
internally translated into Map/Reduce operations [TSJ+09, LLH+11].

Compared to their relational counterparts, many NoSQL systems are not off-the-shelf
systems. Their deployment requires extensive knowledge of internals, tuning knobs
and performance trade-offs. Moreover, these systems complement each other and work
together to provide different sets of functionalities. In the following section, we provide
an overview of the connections between the systems of the different layers and their
possible combinations.

2.1.4.2 The Cloud Data Management Systems Family Diagram

The purpose of this subsection is to provide an overview of how NoSQL developed and
the dependencies between the different component systems and services. The develop-
ment of NoSQL systems was heavily driven by industry. Google pioneered this devel-
opment by introducing their distributed file system [GGL03] and Bigtable [CDG+08].
Later on, developers at Google provided the Map/Reduce Framework [DG08] for paral-
lel processing over big data. In Figure 2.4, we visualize historical development of Cloud
storage systems and services until 2010. The aim of the figure is not to provide an
extensive view of all Cloud storage systems, rather provide an overall view and depict
the connections among the different systems. We use a dotted arrow to illustrate that
a system uses one or more concepts from another system, such as data model or pro-
cessing paradigm. Example of this is Cassandra using the Bigtable’s data model. A
solid arrow refers to one system using another one, such as Hive using HDFS.

This family diagram starts at the left side with distributed file systems. Then we
have structured storage systems with API. Then comes systems that support simple
query language, such as SimpleDB. Next, we have the structured storage systems with
support of Map/Reduce and query language, such as Cassandra and HBase. Finally,
we have systems with sophisticated query language and Map/Reduce support, such as

12 2. Background and Related Work

GFS

Bigtable

CouchDB

HDFS
Dynamo

S3

SimpleDB

RDS Cassandra

HBase

Hive

HadoopDB

PNUTS

 uses
 implements concept

File system DBMS

Google MapReduce

Figure 2.4: Historical Overview of the Family Diagram of Cloud Storage Systems

2.1. Cloud Data Management 13

Hive [TSJ+09], and HadoopDB [ABPA+09]. Along this spectrum of Cloud storage that
starts with file system functionalities and ends with fully-fledged data management, the
different storage systems share the following features:

• Run on a cluster of commodity hardware where node failure is the normal.

• Data is partitioned to achieve scalability.

• Data is replicated to achieve availability.

• Non relational key-value store is the dominant data model.

• CAP theorem tradeoffs leads to a spectrum of consistency models.

These features affect performance and govern tuning trade-offs. In the following sec-
tions, we provide an overview of each of them.

2.1.4.3 Cluster Management

Cloud storage systems are expected to run on a cluster of commodity hardware where
component failure is the normal rather than the exception. As a basic functionality,
cluster management should support failure detection and recovery. In alignment with
the Cloud elasticity, it should also support adding and removing nodes with minimal
effort. Another important function for cluster management is load balancing which
allows resource utilization. Though the different Cloud storage systems use different
strategies to achieve the previous functions, their cluster management approaches fall
under the two basic approaches:

Master-slave Approach : In master-slave configuration, a single master maintains
system’s meta-data and controls system-wide activities. This approach is used in
Bigtable, HBase.

Peer to Peer Approach : In peer to peer configuration, cluster nodes are architec-
turally identical. This approach is used in Dynamo, Cassandra.

2.1.4.4 Partitioning

Partitioning or data sharding is used by Cloud storage systems to achieve scalability.
There is a variety of partitioning schemes on different levels. Some systems partition
data on the file level while others horizontally partition data on the key space or table
level. Examples of systems that partition data on the file level are systems of the dis-
tributed file system layer, which partition each file into fixed sized chunks of data. The
second class of systems, which partition key space or tables, use schemes, such as list,
range, and hash partitioning [SFKS10, Cyr02]: Partitioning or data sharding is used by
Cloud storage systems to achieve scalability. There is a variety of partitioning schemes
on different levels. Some systems partition data on the file level while others horizontally

14 2. Background and Related Work

partition data on the key space or table level. Examples of systems that partition data
on the file level are systems of the distributed file system layer, which partition each file
into fixed sized chunks of data. The second class of systems, which partition key space
or tables use schemes, such as list, range, and hash partitioning [SFKS10, Cyr02]:

List Partitioning : A partition is assigned a list of discrete values. If the key of the
inserted tuple has one of these values, the specified partition is selected. Example
of a Cloud data management system using list as the partitioning scheme is Hive.

Range Partitioning : The range of values belonging to one key is divided into inter-
vals. Each partition is assigned one interval. A partition is selected if the key
value of the inserted tuple is inside a certain range. Example of a system using
range partitioning is HBase.

Hash Partitioning : A hash function is applied on key values to determine their
partition. The output of the hash function is assigned to different partitions.
Example of a system using hash as the partitioning scheme is PNUTS [CRS+08].

Some of the Cloud storage systems use a composite partitioning technique. An example
of such systems is Dynamo [DHJ+07], which uses a composite approach of hash and
list partitioning. Some systems support partitioning data several times using a different
partitioning scheme each time. Example of such systems is Hive [TSJ+09], which allows
two levels of partitioning. After horizontally partitioning the table based on column
values, each partition can be hash partitioned into buckets for storage in the underlying
HDFS.

Choosing an order preserving partitioning scheme has an impact on performance. Ex-
amples of systems using order preserving techniques are Bigtable and Cassandra. An
important issue regarding partitioning is the assignment of data partitions to nodes.
Most systems use random assignment. However, depending on the data, this can raise
bottleneck problems. Several approaches are used by different systems to overcome this
problem. Dynamo focuses on achieving uniform distribution of keys among the storing
nodes [DHJ+07]. Cassandra provides a load balancer that analyzes load information to
lighten the burden on heavily loaded nodes [LM10].

2.1.4.5 Replication

Replication is used by Cloud storage systems to improve availability. Replicas of data
are stored on more than one node and probably more than one data center depending on
the application needs and the used replica placement strategies. Cloud storage systems
use the following replica placement strategies [Hew10]:

Rack Unaware Strategy : Also known as the Simple Strategy. It places replicas
within one data center without configuring replica placement on certain racks.

2.1. Cloud Data Management 15

Rack Aware Strategy : Also known as the Old Network Topology Strategy. It places
replicas on different racks within one data center.

Data Center Aware Strategy : Also known as the New Network Topology Strategy.
It places data across different data centers, allowing clients to specify in their
applications how replicas are placed cross the different data centers.

The replication factor, that determines how many replicas are made of data items, is
handled in different ways. Some systems do not reveal it to users, e.g., Amazon S3
and SimpleDB. Most systems allow users to set the replication factor. One example is
HDFS [SKRC10], which allows clients to set the replication factor on the file level.

Replication improves system robustness against node failures. When a node fails, the
system (transparently to the user) reads data from other replicas. Another gain of
replication is increasing read performance with the help of a load balancer that directs
requests to a data center close to the user. Replication has a down side when it comes
to updating data. The system has to update all replicas. This leads to very important
design considerations that impact the availability and consistency of data. The first
one is whether to make replicas available during updates or to lock them until data
is consistent across all of them. Most systems in the Cloud choose availability over
consistency. We will discuss this trade-off and related consistency models, in more
details, in Section 2.1.4.8. The second design consideration is when to perform replica
conflicts resolution i.e. during writes or reads. If conflict resolution is done during write
operations, writes could be rejected if the system can not reach all replicas or a specified
number of them within a specific time. Example of that is the WRITE ALL operation
in Cassandra [Nee15], where the write fails if the system could not reach all replicas
of data. However, some systems in the Cloud choose to be always writeable and push
conflict resolution to read operations. An Example of that is Dynamo [DHJ+07], which
is used by many Amazon services, such as the shopping cart service where customer
updates should not be rejected.

2.1.4.6 Data Models and Data Access

Just as different requirements of the Cloud applications and its environment led to
the previously described architectural and implementation decisions, they also led to
different data models. The main data models used by Cloud systems are divided into
two categories. The first one is the relational data model. The second category is the
key-value stores, under which comes the following sub-categories:

Row Oriented : Data is organized as containers of rows that represent objects with
different attributes. Access control lists are applied on the object or container
(set of rows) levels.

Document Oriented : Data is organized as collection of self described JSON doc-
uments. Documents are the unit of access control. Example of systems using
Document oriented data model as a data model is CouchDB [CLS10].

16 2. Background and Related Work

Wide Column: In this model, attributes are grouped together to form a column
family. The schema for this model is typically extensible even after creation and
insertion of data. Example of systems supporting such model are Cassandra and
HBase.

Data querying capabilities in Cloud storage systems vary in accordance with the differ-
ent data models. Some systems provide querying option on a single data object, such
as in Amazon’s S3. Other systems provide querying capabilities on a single container
of objects (or table of records), such as SimpleDB, HBase and PNUTS. At the end
of the Cloud storage systems’ spectrum, sophisticated operations, such as joins and
aggregations are supported. These operations are internally transformed and executed
by parallel processing paradigms such as Map/Reduce. More details about the parallel
processing paradigms for Cloud storage are provided in the coming section.

2.1.4.7 Parallel Data Processing in the Cloud

Mapping Process

Shuffle

Mapping Process

Reducing Process Reducing Process

node1 node2

node1 node2

Figure 2.5: Map/Reduce Computation Work-flow

Large volumes of data are being produced in different fields from scientific experiments,
and sensor data to Internet and mobile phone-data. Before the Cloud era, several
DBMSs were implemented to support geographically-distributed data storage and large-
scale processing (the parallel and distributed relational DBMSs). However, the largest
part of data growth is with data in unstructured form that is why new processing
paradigms with flexible data models were needed [FE10, GR13].

2.1. Cloud Data Management 17

A similar paradigm to the Cloud, grid computing, is primarily used in scientific en-
vironment for big data processing [FE10]. In the Cloud, the Map/Reduce framework
represents the state of the art for big data processing. As already mentioned, the
Google Map/Reduce [DG08] pioneered Cloud parallel processing frameworks. It gained
popularity, and was open sourced by Hadoop in 2006.

Map/Reduce is a programming paradigm that is used for distributed computations on
data sets of key value pairs. The Map/Reduce framework maximizes the utilization of
the Cloud environment computing nodes by enabling parallel execution of user defined
Map/Reduce jobs. A single Map/Reduce job is executed in two stages. The interme-
diate output from the first stage is shuffled and assigned to reducers. The work-flow of
Map/Reduce jobs is illustrated in Figure 2.5.

The Map/Reduce framework is independent of the the underlying storage layers and
can work with different layers. It is also fault tolerant, which means that the process
of Map/Reduce does not fail in the case of Map/Reduce jobs failure. The re-execution
of the failed tasks takes place automatically and quickly [CDG+08].

2.1.4.8 CAP Theorem and Consistency Levels

Tightly related to key features of Cloud data management are discussions on the Consis-
tency, Availability, Partition Tolerance (CAP) theorem [FGC+97]. The CAP theorem
states that consistency, availability, and partition tolerance are systematic requirements
for designing and deploying distributed systems. If the system needs to be scalable, one
of the three properties must be sacrificed. In the context of Cloud data management,
the CAP theorem leads to design decisions regarding the consistency and availability
resulting in relaxed and flexible consistency models. Based on this, the following consis-
tency models, as illustrated with examples in Figure 2.6, are provided by Cloud storage
systems:

Atomicity, Consistency, Isolation, Durability (ACID): With ACID, users have
consistent overview of data before and after transactions. A transaction is Atomic,
i.e., when one part fails, the whole transaction fails and the state of data is un-
changed. Once a transaction is committed, it is protected against crashes and
errors. Data is locked while being modified by a transaction. When another
transaction tries to access locked data, it has to wait until data is unlocked. Sys-
tems that support ACID are used by applications that require strong consistency
and can tolerate losing availability. However, providers of Cloud data manage-
ment systems (e.g. Amazons RDS) support options for enhancing availability,
such as read replicas and multi-zones availability.

Basically Available Soft state Eventual consistency (BASE): The storage sys-
tem does not guarantee that all users see the same version of data item but guar-
antees that all of the users get response from the system even if it means getting
a stale version. BASE is used by applications, which can tolerate weak consis-
tency to have higher availability. Examples of such systems are SimpleDB and
CouchDB.

18 2. Background and Related Work

C

A P

RDS HBase

 Hive

 Bigtable

CouchDB

SimpleDB

Dynamo

S3

Cassandra

PNUTS

BASE
Tunable

Consistency

Figure 2.6: CAP Theorem and Cloud Storage Systems

Strongly Consistent Loosely Available (SCLA): The storage system, in this case,
provides better availability than ACID and stronger consistency than BASE. It
is used by applications that choose higher consistency to sacrifice availability
to an extent. Examples of systems supporting SCLA are HBase [The15f] and
Bigtable [CDG+08]

Tunable Consistency: The storage system allows configuring the consistency level.
For each read or write request, the consistency is configured by setting the number
of replicas or storage-nodes the request touches. This allows the system to work
in high consistency or high availability and other degrees in between. An example
of a system supporting tunable consistency is Cassandra [LM10].

2.2 Database Tuning and Self-tuning

Tuning and self-tuning are parts of every-day processes in IT frameworks. The tuning
and self-tuning for database systems are a well established research field which has been
heavily studied by both academia and industry. In the coming subsections, we provide
an overview of system tuning in general and database tuning in more details.

2.2.1 The General Process of System Tuning

System tuning starts by identifying problems in the performance of the systems. Un-
fulfilled thresholds regarding response time, latency, or consumed computing resources
are typical problems for computing systems that could initiate the tuning process.

2.2. Database Tuning and Self-tuning 19

Self-tuning Principle

Monitor system

behavior & Identify

cause

Identify

Problem
Apply changes

to solve problem

Problem

Solved

Figure 2.7: Tuning as a Continuous Process, adapted from [Sch12]

The next step in the tuning process is observing the system performance and mea-
suring relevant quantities e.g., time spent in memory or hard disk look-ups, I/O, and
network communication. This also includes identifying the part of the system causing
the problem and assessing different possibilities for a solution.

The final step includes applying changes, such as adjusting system parameters, adding
resources, etc.

The different steps of a system tuning process are depicted in Figure 2.7. In the next
section, we provide an overview of the tuning process in the context of database systems.

2.2.2 Database Tuning

According to [SB02], database tuning is “the process of making database application
run more quickly. More quickly usually means higher throughput though it may mean
lower response time for some applications.” Database tuning evolved to include resource
consumption, e.g., Central Processing Unit (CPU), memory, disk, and energy, etc. The
database tuning problem is driven by observed or expected workloads and optimization
goals and results in tackling knobs in different parts of the IT infrastructure. In the
following, we describe the basic principles for tuning database systems and the reference
architecture for the tuning process.

2.2.2.1 Database Tuning Principles

The following tuning principles are guidelines for the overall database tuning process
as suggested by [SB02]:

• Think globally, fix locally.

• Partitioning breaks bottlenecks.

• Start-up costs are high, running costs are low.

• Resource-aware task assignment between the DBMS and applications.

• Be prepared for trade-offs.

Besides these general principles, the literature for database tuning includes rule of
thumbs and tuning guides specific to certain DBMS or application scenario.

20 2. Background and Related Work

2.2.2.2 The Reference Architecture for Database Tuning

Database tuning requires working with different components of a database management
systems. In addition to that, it requires handling both the application layer and the
underlying operating systems and hardware layers. Based on the five level database
architecture [SSH08, Här87], the reference architecture of database systems tuning is
illustrated in Figure 2.8. Examples of possible tuning knobs in each layer are given in
the right side of the figure.

JVM Heap_size, OS page cache,

Swapping

#CPU cores, Ram size, Disk size, I/O

Users/Applications

Operating System

Hardware

Data System

Access System

Storage System

Buffer Management

Schema tuning, TXN tuning

Access and integrity control, Access

path selection

Perfecting strategy, Page replacement

TXN locking, Index implementation

Partitioning , Index tuning

Figure 2.8: Database Tuning Reference Architecture

Efficient database tuning involves a good knowledge about the application layer
to identify how the database is used and what the optimization goals/performance
thresholds are. Possible tuning knobs in this layer includes:

• Transaction tuning: e.g., changing isolation levels, partitioning transaction.

• Query tuning: e.g., rewriting semantically equivalent queries.

• Schema tuning: e.g., de-normalization, partitioning.

2.2. Database Tuning and Self-tuning 21

It also involves a good knowledge about architecture and features of the used
DBMS to identify the tuning possibilities. Traditional DBMS components tuning
includes the following:

• Data system tuning: e.g., query translation, optimization, access path selection.

• Access system tuning: e.g., index tuning, table partitioning.

• Storage system tuning: e.g., page and file size tuning, deadlock handling.

• Buffer management tuning: e.g., page pre-fetching strategies, memory usage.

Database tuning process continues in the operating system layer and involves op-
erations, such as threads tuning and driver configuration. The last part, involved in
this process, is the hardware layer. Though this could be the first layer that compa-
nies would work on by applying the kill-it-with-iron principle. This principle improves
the database performance only in a linear factor and contradicts possible energy saving
and green initiatives goals. Tuning possibilities include changing hardware components,
configuring disk arrays, processor utilization, etc.

2.2.3 Database Self-tuning

Automating the database tuning process means delegating the tuning tasks to the
database system itself or to a software layer that connects to the applications and
the DBMS. The self-tuning shift for database applications was motivated by several
reasons [CW06]:

• The increasing complexity of multi-tenant monolithic applications and services.

• The increasing complexity of DBMSs administration and tuning which provides
hundreds of tuning knobs.

• The increasing Total Cost of Ownership (TCO) for DBMS-based IT solution with
the cost for hiring experts in system tuning and management being the dominant.

The self-tuning principles, which we use for building our framework follow the rules de-
fined in the coming sections. First, we provide an overview of the self-tuning principles,
then the IBM initiative on autonomic computing process and the self-tuning paradigms.
After that, we provide an overview of (self-)tuning for Cloud storage systems.

22 2. Background and Related Work

2.2.3.1 Self-Tuning Principles

Based on [CW06, CW09a, Sch12], the self-tuning principles are the following points.

Static vs. Online Self-tuning : The difference between the two approaches is in
three areas. The first one is regarding the frequency of the tuning process. The
static tuning is performed once and initiated by the system administrator. The
online self-tuning is performed continuously. The second difference is regarding
the architecture. Where the static self-tuning is decoupled from the DBMS to
a large degree and is more likely to be provided by a separate tool (framework
or Software layer), the online self-tuning is more coupled to the DBMS. The
third difference is regarding the scope of the tuning process. Where the static
tuning covers slowly changing or stable properties of the database system, such
as physical configuration, the online self-tuning covers more frequently changed
parameters, such as memory buffer allocation.

Self-Tuning Feedback Loop: This loop is based on the continuous process principle
of system tuning; described in Section 2.2.1. IBM published a blueprint in an
attempt to standardize the different step of this loop. In the next subsection, we
will provide detailed description of this cycle.

Trade-off Elimination: The self-tuning system should be able to cope with trade-
offs that arise depending on the workload or application scenario. Trade-off elim-
ination is transformed into parameter tuning. In Section 2.2.4.2, we provide an
overview of Cloud storage systems trade-offs.

Self-tuning Overhead : Additional processing power is required to make the tuning
decision and additional space is required to store information needed and resulted
from the self-tuning process. The two additional costs cause an overhead for
the system. This overhead must be smaller compared to the benefit from the
self-tuning process.

2.2.3.2 Self-tuning MAPE Cycle

IBM provided a blueprint for the self-tuning process known as Monitor, Analyze, Plan,
Execute (MAPE) cycle. This blueprint defines the tasks involved in a self-tuning frame-
work and not its architectural components and can have different implementations in
different IT-Infrastructures [The05]. The MAPE cycle as illustrated in Figure 2.9 in-
cludes the following parts that share a common knowledge-base:

The Monitor Function: This function provides mechanisms to collect information
from the managed resources. Managed resources can be software or hardware
components. Collected information include details about resources configuration,
status, throughput, etc. The monitor function performs further operation on the
collected information, such as filtering and aggregation, etc.

2.2. Database Tuning and Self-tuning 23

Knowledge

Monitoring

Analysis Planning

Execution

Automatic

Manager

Single

Resource

Managed

System

Heterogeneous

Group

Homogeneous

Group

Business

Systems

Sensors Effectors

Identify

 Parameters

Figure 2.9: Self-tuning Cycle MAPE, adapted from [The05]

The Analyze Function: This function provides the mechanism to observe and an-
alyze current system situation to decide if action must be made. This means
correlating and modeling complex situation, which allows predicting performance-
related measures based of given parameters.

The Plan Function: This function provides the mechanism to create and select the
procedure that will achieve the desired change in the managed system’s behavior.
The change plan is passed to the execute function.

The Execute Function: This function provides the mechanism to schedule and per-
form the change plan. This is represented by effectors point in the Figure 2.9.
Part of this function could be updating the knowledge-base.

Knowledge-base: Shares the knowledge across the different steps of the process.

2.2.4 (Self-)Tuning Cloud Data Management Systems

The Cloud environment by definition promises self management, which emphasizes the
need for tuning and self-tuning solutions. Despite the fact that Cloud storage systems
already cover aspects of the tuning process (e.g. load balancing among different nodes),
many other issues regarding tuning for different optimization goals remain to be solved.

In the next subsections, we provide an overview of different tradeoffs and optimization
goals within the context of Cloud storage systems.

24 2. Background and Related Work

2.2.4.1 Optimization Goals/Opportunities

Optimization goals have the largest impact on system configuration starting from the
application layer and ending with the underlying infrastructure. In this section, we
provide an overview of the fundamental optimization goals in the context of Cloud
storage systems:

Performance: Measured by latency and throughput, performance is crucial for
Cloud storage systems. It is affected by several aspects, such as geographical
distribution of data, replication, consistency and durability requirements. Over-
head caused by events, such as data compaction and scaling the database cluster,
also impacts the overall performance of the Cloud data management system. For
several applications high latency is considered the same as unavailability and thus
minimizing latency, in such case, is a priority.

Availability & Fault Tolerance: In Cloud environment, systems work on clus-
ters of nodes where failure is the normal case, not the exception. Most Cloud
storage systems support fault tolerance and recovery. However, even with the
promised 99.9% availability, leading Cloud storage providers, such as Amazon,
Salesforce.com, and Rackspace, had several outages in the last years causing ma-
jor websites and businesses to be out of service. Outages result not only in services
time-outs but also unrecoverable data losses [DMT11]. In the Amazon’s outage of
April 2011, data estimated to be 0.07% of the data stored in the US East Region
was not recovered.

Consistency Level : For Cloud storage systems, consistency is not a matter of yes
or no question. There are several levels of consistency and one can tune it even on
the granularity of a single query or data object. Depending on data type, strict
consistency is not always a requirement. Since decisions about the level of consis-
tency affect the system performance and availability, it is important to determine
the highest achievable level of consistency for specific performance requirements.
Trade-offs related to consistency will be discussed in the next subsection.

Minimum Resource Consumption: This goal can be addressed from two perspec-
tives. The first one is regarding monetary costs. It is very important to minimize
resource consumption, but within specified performance thresholds. The second
perspective is energy efficiency. Energy consumption of data centers, whether it
is for cooling or operating machines, is high and is estimated to increase by 18%
every year [ZCB10]. Besides that, up to 35% of this energy consumption is caused
by the storage subsystems. Hence, minimizing energy consumption for database
clusters is getting more important [BMB12, GLN+12].

2.2.4.2 Tuning Trade-offs

Trade-offs influence the choice of system components of the storage layer, and their
configuration. Next, we summarize the tradeoffs for Cloud storage systems. Some of
which are typical for any storage system, and some are specific to Cloud storage systems:

2.2. Database Tuning and Self-tuning 25

Read Performance versus Write Performance: The problem of tuning storage
systems for reads versus writes is not specific to Cloud storage systems. However,
in the Cloud, challenges related to data replication and distribution add to the
problem [SMZ+10].

Latency versus Durability: To store data persistently, it has to be written to
disk. However, this results in a high latency. Therefore, many Cloud data storage
systems choose to write to memory and synchronize to disk later. This approach
lowers latency but could result in data loss in the case of failure.

Security versus Performance: Existing models for supporting security of Cloud
data depend mainly on encryption. This affects the performance of the sys-
tem [WWRL10, Aba09] since it leads to overhead in reading and writing data
and increases the overall latency.

CAP Trade-off Consistency & Availability: When a Cloud data management
system is optimized for consistency and availability, this implies that no request
will work on partial data. In the case of network or partition failure, a request
will wait until partitions heal. In this case, the system latency is increased.

CAP Trade-off Consistency & Partition Tolerance: When a Cloud data man-
agement system is optimized for consistency and partition tolerance, this means
that some requests will work on partial data. Some requests will be refused. In
this case, the latency of the system is reduced but its availability as well.

CAP Trade-off Availability & Partition Tolerance: When a Cloud data man-
agement system is optimized for availability and partition tolerance, this means
that all requests will be answered in all cases. Requests may return inaccurate or
stale version of data. In this case, the latency of the system is reduced and its
availability is higher.

To tune a Cloud storage system for the previously mentioned optimization goals and
trade-offs, the database administrator is faced with a modular system architecture and
a distributed environment. The Cloud storage systems’ architecture, environment, and
requirements put more emphasize on the support of the (self-)tuning process. In the
following section, we provide an overview of related work on the (self-)tuning approaches
for Cloud storage systems.

2.2.5 Related Work

In this section, we investigate and compare related work on (self-)tuning approaches
and frameworks for Cloud storage systems. Related work in this area falls in two parts:

The first one includes tuning Cloud database clusters for specific workloads, optimiza-
tion goals, or execution environments. Examples of such efforts include the work
of [GLN+12], which aims to reduce energy consumption and thus the cooling costs

26 2. Background and Related Work

by applying resource aware data placement and migration strategy. A part of work in
this category falls under scheduling. Chi et al. [CMH11] perform cost aware schedul-
ing of queries based on service level agreements whereas Polo et al. [PCC+11] perform
Map/Reduce jobs scheduling to maximize resource utilization.

The second part of the (self-)tuning approaches for Cloud storage systems is external
to the database system and includes tuning the underlying resources to achieve the op-
timization goals of the database workload. An example of this is the work of [ASS+09],
which focuses on partitioning the CPU capacity of physical machines among different
database appliances. A more general example is the work of Xiong et al. [XCZ+11]
where they perform cost aware resource management.

The self-tuning frameworks for Cloud storage clusters, include the work of Herodotou
et al. [HLL+11]. They developed a framework called Starfish, for self-tuning big data
analytics systems and focus on cluster sizing problem. Starfish is build on and designed
to work with Hadoop Map/Reduce framework. In other words, it is system dependent.

Reviewing the current state of the art on (self-)tuning Cloud storage systems reveals
that there are several diverse solutions for a variety of specific self-tuning issues that
fall short of being generalized for other storage systems or tuning goals. There is lack
of support for self-tuning frameworks and approaches that are oblivious to the under-
lying Cloud storage system and that allow tuning for the overall system rather than
being specific to certain mechanism e.g. data placement/migration strategy, execution
environment or optimization goal.

An essential technique that enables (self-)tuning process is performance modeling. Per-
formance modeling allows predicting systems performance with difference settings and
is typically used in what-if analysis to configure tuning knobs. In the coming section,
we provide an overview of the performance modeling techniques for database systems.

2.3 Performance Modeling

Performance modeling is defined as: “the process that aims to capture and analyze the
dynamic behavior of computer and communication systems” [Hil05]. System’s behavior
is expressed by measured performance criteria (such as response time, and throughput),
or consumed resources (such as CPU, memory, and energy) in relation to workload or
application criteria (such as data size, read and write ratio). Performance models are
used to evaluate design options and configuration knobs of the underlying systems for
actual or anticipated workload. Such evaluation allows to discover bottlenecks, provision
resources, and tune different knobs. In the coming subsections, we will provide an
overview of performance modeling for database systems and provide more details about
the empirical data-driven approach.

2.3. Performance Modeling 27

2.3.1 Performance Modeling Approaches for Database Sys-
tems

There are basically two approaches for modeling the performance of database systems.
We introduce both of them shortly in the coming paragraphs and explain our decision
of choosing the second approach.

Analytical Architecture-Level Approach

This approach is based on understanding and analyzing the data storage and
retrieval processes [OK12]. To estimate a performance metric of a certain process,
the model includes estimation of this performance metrics in the different stages
(i.e., different architectural levels of the system), which are required to perform the
process. The performance metric of interest is estimated in relation to workload
and system parameters. Examples of such parameters are the hit ratio of the
database buffer, the probability of lock conflict, the probability that a request is
served from disk/memory, etc. [Tho00, YKGS12]. Figure 2.10 includes examples
of query processing model based on which a performance model can be built.474 R. Osman, W.J. Knottenbelt / Performance Evaluation 69 (2012) 471–493

Fig. 1. An illustration of (a) the black box model and (b) the transaction processing model.

2.1. The black box model

For the black box model, the database D is represented as a single queueing service centre. The internal design of the
transaction is not represented in the queueing network model, as the goal of the performance evaluation is to represent the
workload of the transactions at the system level. Each transaction class Ti accessing D has an arrival rate λi and a service
demand µi on the queueing node D as shown in Fig. 1(a). A centralized database is represented as a single queueing node.
A distributed database can be represented as a single queueing node with multiple servers, where each server represents
a distributed database site, or as multiple queueing nodes, where each node represents a distributed database site. Both
approaches have been adopted in the literature, as discussed below.

It is common in analytical models for replicated and distributed databases tomodel the database site as a single queueing
service centre and each type of transaction as a workload class in the system [28]. Coffman et al. [32,33] study the effect
of file replication policies on system performance by representing a distributed DB as an M/M/m/FCFS queue to model m
replicas with preemptive service interruptions for updates. Them servers process read requests until interrupted by update
requests which arrive concurrently at allm servers according to a Poisson process. Nelson and Iyer [34] use the samemodel
to study nonpreemptive processing of updates to compare parallel and sequential updating of replicated databases. While
the assumption of nonpreemptive processing of updates is more realistic, it leads to a less tractable model. It has been
noted that modelling distributed and replicated databases as a single service centre withm servers neglects aspects that are
inherent to these architectures, e.g. inter-site communication and distributed arrivals into the system [28].

Ciciani et al. [35,36] study the effect of distributed concurrency control protocols on replicated distributed databases
by modelling each local database site as an M/M/1 queue. Hwang et al. [37] study different data replication schemes by
modelling each local database site as an M/G/1/RR queueing node. A drawback of these studies, (including [32–34]) is the
unrealistic assumption that all transaction classes have the same service demand.

Nicola and Jarke [28] propose a comprehensive model for a replicated distributed database that balances between the
quality of replication, inter-site communication and uniformity of replica access. The replicated distributed database has
m identical sites; each site is an M/Hn/1 queueing node. Each of the m sites has an identical transaction arrival stream,
T = {T1, T2, . . . , Tn}, with arrival rate λ and is composed of n different transaction classes. Each transaction class Ti arrives
with probability pi and hence the arrival rate of Ti at a site is λi = pi·λ. The service time for Ti at a site is exponentially
distributed, thus the service time for the combined arrival process, T , follows an n-phase hyper-exponential distribution.
Gallersdorfer and Nicola [38] use a similar model form distributed sites as M/H2/1/FCFS queueing nodes, with two classes
of transactions representing read-only and update transactions. Both of these models allow for the differentiated service
demands for transaction classes, modelling of inter-site communication and differing degrees of replication.

Urgaonkar et al. [39] model multi-tiered Internet applications with backend databases as a queueing network model in
which each tier, including the database tier, is represented as a processor sharing queue. Relationships between different
tiers are captured by allowing transitions from each tier (queue) to its predecessor. This naturally models caching; a cache
hit will return the request to the previous tier (queue) without any processing. In addition, the model accounts for inter-
tier processing, multi-class session-based workloads, concurrency limits and replication of tiers. The model assumes that
requests have the same service times, which is an appropriate simplification for read-dominated e-commerce workloads.

2.2. The transaction processing model

For the transaction processing model, the database D is represented by the underlying hardware architecture using the
central server model [59] or its variations. The central server model represents the hardware components of a centralized
database or a site in a distributed database. Each transaction class Ti accessing D is defined by its service demand on

Figure 2.10: Examples of Analytical Models, adapted from [OK12]

Empirical Data-Driven Approach

Empirical driven approach needs experiments to generate data that is used to
train a predictive model. Experiments used to generate the data should be repre-
sentative of the target workload or application scenario for which the system will
be tuned later. The work flow of the empirical model is illustrated in Figure 2.11

28 2. Background and Related Work
General Approach to Modeling

Process to be

Modeled

Input data

Model

Training aims to

minimize model error

between

observed & predicted

values

Observed output variable

Predicted output variable

Figure 2.11: Empirical Modeling Approach, adapted from [SSA08]

There are also approaches that merge the two techniques together in what is called
semi-analytical performance modeling.

Our choice of predictive modeling approach is driven by our goal of building a database-
agnostic framework, thus we avoid using database-dependent knowledge. Sine the ana-
lytical approach is tightly coupled with the implementation of the database management
system and requires expert knowledge of its internals, we decided to use the empirical
model.

We provide more details about the empirical data-driven modeling in the next section.

2.3.2 Data-driven Modeling Approach

A Data-driven modeling approach is composed of two basic steps. The first one is
generating statistical data about the performance of the system. The second step is
analyzing this statistical data to generate a model.

2.3.2.1 Training Data Generation

Generating statistical data needed for the modeling process involves two things: gener-
ating the workloads and collecting performance measurements. There are many tools
for monitoring different performance aspects of database systems. The more inter-
esting aspect, in this step, is generating the database workload. We classify existing
approaches for generating workloads for database systems’ testing purposes into the
following:

Benchmarks: Offer a range of workloads which are designed to match different appli-
cation scenarios e.g., Transaction Processing Performance Council (TPC) bench-
marks. Benchmarks are typically DBMS-independent, and support investigating
several aspects of the system performance.

2.3. Performance Modeling 29

Stress Tools and Load Testing : Designed by many database system vendors and
bundled with their systems e.g., Cassandra stress tool [The15e]. Because they are
system-specific and narrower in scope than benchmarks, they are typically not
used for the modeling process.

The system can be monitored continuously and the model could be iteratively refined
during the systems runtime to allow self-tuning behavior.

2.3.2.2 Predictive Modeling

A model is defined, in [HMS11], as an abstract high-level global representation of a
real-world process. Predictive models are models that allow us to predict the unknown
value of a variable of interest, given values of other variables. The aim of the predictive
modeling is to find a model (a mapping or a function) that can predict the value of the
variable of interest (dependent variable) in relation to a vector of independent variables.

There are several techniques for predictive data-driven modeling that fall under ma-
chine learning techniques. Regression analysis is considered the simplest one. It relies
on statistical analysis to find a formula or mathematical model to represent the rela-
tionship between the dependent and independent variables. Other machine learning
techniques include clustering, tree-based, genetic evolutionary algorithms and neural
networks [MF10]. These are usually more complicated and costly but more precise
than the group of regression techniques.

As stated by [Kee11], there is an infinite number of models that fit an infinite set of
data equally well. We will discuss in later chapters our choice of modeling techniques
and the resulted models. The next section is dedicated to present a review of existing
research on performance modeling for Cloud storage systems.

2.3.3 Related Work

In this section, we provide an overview of related work on performance modeling for
Cloud storage systems. Since generating the training data is en essential part for the
empirical performance modeling approach, we also provide an overview and a classifi-
cation of existing Cloud storage systems’ benchmarks.

2.3.3.1 Performance Modeling for Cloud Storage Systems

In literature, we could find extensive research on database systems performance mod-
eling [OK12, SMA+08], which is targeted at conventional database systems. There is
also large part of work on Cloud applications performance modeling that is not storage
system related [CRB+11a, XP09, CRB11b]. Our focus is on the area of Cloud storage
systems’ performance modeling. In the following we report the related work that falls
under this area:

30 2. Background and Related Work

[YKGS12]: This work uses the analytical architecture-level approach for performance
modeling. In this work, Yanggratoke et al. present an analytical model of a dis-
tributed key-value storage system that is part of the Spotify storage architecture.
The response time of the storage system is modeled as a function of the storage
system configuration, the load, and model parameters that is measured on the
storage servers. The model is evaluated in a test environment and in an opera-
tional Spotify storage system. Their tests show high accuracy for lightly loaded
storage systems. Based on that, they restrict the applicability of their model to
systems containing at most one storage element on average.

As already mentioned this work uses the analytical performance modeling ap-
proach, which is storage system specific. A basic need for our framework is the
use of storage-system-agnostic performance modeling approach.

[GGK+14]: This work uses the analytical architecture-level approach for performance
modeling. In this work, Gandini et al. focus on modeling the performance with
regards to the number of nodes and the replication factor. They present two
high level queuing network models representing single node and multi-node ar-
chitectures. In their work, they study the performance of the Yahoo! bench-
mark [CST+10] with three systems Cassandra, Hbase, and mongoDB. Though
they tried to capture the performance of the three systems in two models, the
different architectural and design decisions of the three systems lead to different
results. The created models capture the throughput and response time (for read
and write) of Cassandra and mongoDB with acceptable error rate. However, they
have large error rates for Hbase throughput. In their work, they argue that the
complexity of the Hbase system makes it impossible to capture its performance
in a simple model and get acceptable results.

An overview of related work on performance modeling of Cloud storage systems shows
that existing approaches [YKGS12, GGK+14] are analytical and system- architecture
dependent. The current state of the art lacks support for system-independent data-
driven performance modeling approach, which is important because of its extendability
and re-useability.

Generating the training data is essential step for the data-driven performance modeling.
In the following section, we provide an overview and classification of existing approaches
on benchmarking systems for Cloud storage systems.

2.3.3.2 Benchmarking Cloud Storage Systems

From the early stages of Cloud storage systems, it was argued that the traditional
benchmarks (TPC benchmarks) are not sufficient for Cloud storage systems [BKKL09,
CST+10]. Traditional benchmarks do not cover Cloud storage systems’ properties such
as scalability, elasticity, availability, and fail-over. This lead to the development of new
benchmarks that are suited for Cloud stoarge systems. We classify related work on
Cloud storage benchmarks in three classes: general purpose benchmarks, infrastructure
based benchmarks, and feature testing benchmarks.

2.3. Performance Modeling 31

1. General Purpose Benchmarks:

General purpose benchmarks include benchmarks, which measure latency for dif-
ferent systems and focus on providing details about selecting workloads and bench-
mark architecture that corresponds to the Cloud environment and its applications.
Such benchmarks are often used as bases for feature testing and infrastructure
based benchmarks. Notable work on general purpose benchmarks for Cloud stor-
age systems include the following:

Bigtable Benchmark [CDG+08]: The Bigtable benchmark was designed to
measure the performance and scalability of Google’s Bigtable while chang-
ing the number of serving nodes. As a performance metric, the benchmark
measured the number of written/read values per second. The defined work-
loads include: sequential write, sequential read, scan, and random read.
Though the aim of this work was not to provide a reusable framework and
thus was not open-sourced, it is beneficial in defining metrics and means of
benchmarking Cloud storage systems.

Yahoo! Benchmark [CST+10]: This benchmark was developed by Yahoo! re-
searchers to measure the performance criteria of PNUTS [CRS+08] and was
extended for other online storage systems (supporting SQL-like queries).
This benchmark provides tiers for measuring latency and scalability of the
system under test. Workloads are defined by read/write mixes, data size,
and request distribution.

The Yahoo! benchmark gained popularity, and was used and extended by
several other benchmarks as we show in the following sections. The reason
for its popularity is that it contains a data generator, a workload genera-
tor, and drivers for several Cloud storage systems [RGVS+12]. The Yahoo!
benchmark was even used to benchmark relational databases [DPCCM13].

BigBench [GRH+13]: This benchmark is targeted at DBMSs and Map/Re-
duce systems that promise big data analysis. It reports the response time
of the system under test, while testing several workloads. The benchmark
workloads are based on the business model of products’ retailer. Data and
workload generators are developed as part of it. The data generator uses the
Parallel Data Generation Framework (PDGF) [FPR12]. The generated data
contains structured, semi-structured and unstructured data. The structured
concept builds on TPC-DS1. The semi-structured and unstructured parts of
data capture retailer’s website related data, such as users’ clicks and products
reviews.

2. Infrastructure Based Benchmarks:

Another group of benchmarks focus on how a system performance changes with
different technical, or platform choices. Research efforts that fall under this cate-
gory include:

1Details available at: http://www.tpc.org/tpcds/

http://www.tpc.org/tpcds/

32 2. Background and Related Work

[RGVS+12]: Rabl et al. use the Yahoo! benchmark [CST+10] to measure the
performance of 6 open-source storage systems of different architectures in-
cluding: Hbase, Cassandra, Voldemort, Redis, VoltDB, and MySQL. They
test the performance with two different hardware setups: memory-bound
cluster and disk-bound cluster. In this benchmark, the latency and through-
put of the systems under test are measured. The workloads that the bench-
mark includes are synthetically generated using the Yahoo! benchmark and
include a variety of read, write and scan mixes. In the test, the number of
requests per workload was scaled along scaling the number of nodes in the
serving cluster.

[Apl13]: This benchmark focuses on analyzing the performance of Cassan-
dra on two platforms using HDD or Flash memory. In this benchmark,
Aplin et al. present two workloads. The first one they call data ingestion
workload. In this workload, data is inserted into Cassandra and then they
measure the rate at which data is ingested. The second one, they call data
analysis workload. In this workload, data inserted from the first workload
is queried. This benchmark includes workloads generated by the Yahoo!
benchmark [CST+10] as well. The performance criteria that is covered in
this benchmark include latency and throughput.

[BLL+14]: The aim of this benchmark is to compare the performance of Online
Transactional Processing (OLTP) application on public Cloud platforms and
investigate the effect of CPU performance on response time and total cost of
virtual machines. Based on WordPress2 blogging software, the benchmark
introduces an open source workload generator. Workloads are defined based
on predefined WordPress tasks such as searching for a keyword, publishing
a post, uploading photos. The performance is measured by average response
time and total virtual machine cost. In this benchmark, Borhani et al. evalu-
ate different instance types on three Cloud storage platforms: Amazon EC2,
Microsoft Azure and Rackspace Cloud.

3. Feature Testing Benchmarks:

The last group of benchmarks examine Cloud-related properties of storage sys-
tems, such as scalability, elasticity, replication, and consistency levels. Research
efforts that fall under this category include the following:

[DMRT11]: In addition to performance measured by latency, this benchmark
provides measures for elasticity and scalability. This benchmark’s workloads
and data are based on the Wikipedia use case. Workloads represent users
asking, in parallel, to read and update articles. The data set used is based on
Wikipedia dump. In this benchmark, the performance is defined by the time
needed to complete a given number of requests. The measurements are not
focused on the average response time but on total time needed to complete a

2WordPress available at: https://wordpress.com/

https://wordpress.com/

2.3. Performance Modeling 33

number of requests. The scalability is defined as the change in performance
when nodes are added and fully integrated in the cluster. The elasticity is
measured by two metrics. The first one is the time needed for the cluster to
stabilize. The second is the impact on performance when nodes are added
or removed. The benchmark reports results on three Cloud storage systems,
namely: Cassandra, HBase, mongoDB.

[SMZ+10]: The aim of this benchmark is to measure scalability, speedup, and
fault tolerance of Cloud storage systems. This benchmark is based on [CDG+08,
PPR+09]. In their work, Shi et al. design experiments to measure scala-
bility and speedup of Cloud storage systems including Hbase, Cassandra,
HadoopDB, and Hive. The workloads and tasks are derived from Google’s
Bigtable benchmark [CDG+08] and [PPR+09]. They divide their work into
two benchmark tiers. The first one is a read and write benchmark, which
includes workloads of sequential and random read, write, and scan mixes.
The second tier is structured query benchmark tier. In this tier, they define
workloads that include aggregate operations. The scalability is characterized
by the change in throughput when increasing the number of nodes. Shi et
al. introduce a base time as the elapsed time of a system with cluster size 5.
Then, they define speedup measure as the ratio between the elapsed time of
a task with cluster size k, and the base time.

[WLZZ14]: The purpose of this benchmark is to monitor how performance
changes when changing the replication factor and the consistency level. Sev-
eral benchmarks that differ in data size and purpose are defined. The work-
loads in these benchmarks are based on the Yahoo! benchmark [CST+10]
and are defined as the following: read mostly, read latest, read and update,
read-modify-write, scan short range. This benchmark reports results on two
systems: Cassandra and Hbase.

[KKR14]: Based on the Yahoo! benchmark [CST+10] and the work [RGVS+12]
by Rabl et al. In this benchmark, Kuhlenkamp et al. measure scalability
and elasticity of two Cloud storage systems, namely Cassandra and Hbase.
In their work, scalability is measured by how much performance changes
when resource capacity is changed. Elasticity is measured by how efficient
the system can scale at runtime in terms of the scaling speed and its impact
on performance. In this work, Kuhlenkamp et al. discuss the reproducibility
of benchmarking result on physical and virtual infrastructure. They extend
the work of Rabl et al. [RGVS+12] by benchmarking Cassandra on variety of
Amazon’s Elastic Compute Cloud (EC2) setups with different instance types
and storage setups. They investigate the concepts of vertical and horizontal
scaling. In horizontal scaling, they add/remove nodes of the same instance
type. In the case of vertical scaling, they stop an instance, increase its
allocated resources by changing its type, and restart the instance again. The
workloads that are used in this benchmark are generated using the Yahoo!
benchmark.

34 2. Background and Related Work

[PS15]: In this work, Pokluda et al. benchmark fail-over characteristics of large
scale data storage systems. They use the Yahoo! benchmark [CST+10]
to generate workloads. Performance measurements focus on throughput,
latency, and the number of reported errors while simulating node failures. A
node failure is performed in this benchmark by stopping a cluster node and
bringing it online again after a specified time.

In Table 2.1, we provide a comparison of the surveyed Cloud benchmarking systems.
For the systems that use another work to generate their workloads and data, we use “-”
for the extendability field, since they are an extension of another work.

The existing benchmarks are designed for comparing the performance of several database
systems for certain workloads or checking the performance of one database systems with
different workloads. They also include measures for different Cloud-properties. Gener-
ating the training data for performance modeling requires automating the testing of the
system with different workloads and different configurations. The existing benchmarks
can not be used as a training component without further modifications. Later in the
thesis, we illustrate our design of a training component that can be used as a Cloud
storage systems benchmark and automates the testing process with different cluster
configurations and different workloads.

Benchmark Focus Workload Data Extendable

[CDG+08] general synthetic synthetic no
[CST+10] general synthetic synthetic yes
[GRH+13] general product retailer synthetic yes
[RGVS+12] different infra. uses [CST+10] synthetic -
[Apl13] different infra. synthetic,

[CST+10]
synthetic no

[BLL+14] different infra. Wordpress Wordpress yes
[DMRT11] Cloud feature Wikipedia Wikipedia yes
[SMZ+10] Cloud feature based on

[CDG+08]
synthetic yes

[WLZZ14] Cloud feature uses [CST+10] synthetic -
[KKR14] Cloud feature uses [RGVS+12,

CST+10]
synthetic -

[PS15] Cloud feature uses [CST+10] synthetic -

Table 2.1: Comparison of Related Work on Benchmarking Cloud Storage Systems

2.4 Summary
In the previous sections, we described the properties of the Cloud environment and its
storage requirements. These properties enticed many companies to host their applica-
tions and services solely on the internet. The storage requirements of Cloud applications

2.4. Summary 35

could not be fulfilled with traditional DBMSs. These requirements, such as scalability,
elasticity, fault tolerance, high availability, and evolving schema lead to the design of
new breed of storage systems and services. We classified these systems into two basic
categories. The first one is relational DBMSs as a service, which include services such as
Amazon RDS and Microsoft Azure. The second category includes NoSQL storage sys-
tems. There is a wide range of storage systems and services that fall under the NoSQL
category and vary between distributed file systems and fully-fledged data management
systems. We provided a classification of these systems based on different aspects: ar-
chitecture, cluster management, data partitioning, data replication, data models, data
access, CAP theorem, and consistency level.

Then, we presented the tuning reference architecture for database systems. This ar-
chitecture defines the different layers and tuning possibilities that are fundamental for
a successful database tuning process. The self-tuning of database systems is described
by the IBM’s MAPE paradigm. After providing an overview of different steps of the
MAPE cycle, we surveyed fundamental optimization goals and tradeoffs in the context
of (self-)tuning of Cloud storage systems. We also provided an overview of related work
on (self-)tuning approaches and frameworks for Cloud storage systems. This overview
shows that there is a lack of support for self-tuning frameworks and approaches that
are independent of the underlying Cloud storage system and that allow tuning for the
overall system rather than being specific to certain mechanism, goal, or workload.

Last, we presented performance modeling for database systems. Database performance
modeling includes two basic approaches. The first one is the analytical architectural-
level approach, which is system-specific. The second is the empirical data-driven ap-
proach, which is system-agnostic. Related work on performance modeling for Cloud
storage systems lacks support for the system-agnostic, re-useable and extendable em-
pirical approach. At the end, we provided an overview and classification of extincting
benchmarking systems for Cloud storage systems and explained our decision of building
a training component as part of a (self-)tuning framework as we present in the following
chapter.

36 2. Background and Related Work

3. (Self-)Tuning Cloud Storage
Clusters

This chapter shares material with CLOSER13 paper “Clustering the Cloud:
A Model for (Self-)Tuning of Cloud Data Management Systems” [MSB13]
and the ADBIS15 paper “A Self-Tuning Framework for Cloud Storage
Clusters” [MSS15]

The goal of this thesis is to provide a database-agnostic, platform-independent, and
extendable self-tuning framework that can be used as an adviser for tuning Cloud
database clusters, serving one or several applications with divergent and possibly com-
peting workloads. In this chapter, we present the design and basic concepts of our
approach in building this framework.

At first, we provide an overview of the concepts for database (self-)tuning in the context
of the Cloud. Then, we present a formal definition of the tuning-problem in our scenario.
Afterwards, we introduce the basic architecture of our self-tuning framework. Then, we
discuss the mechanism and concepts of its components. At the end of this chapter, we
discuss the different modes for operating the framework and their differences.

3.1 Overview and Scope

A fully efficient and successful (self-)tuning process requires knowledge about different
system components, applications and working platforms. While (self-)tuning in each of
these involves fixing local problems, it also involves global coordination between them.
As a reference for the (self-)tuning process in Cloud storage clusters, we provide the
following concepts:

38 3. (Self-)Tuning Cloud Storage Clusters

Distributed Storage System

Structured Data System

Distributed Processing System

Query Language

Users / Applications

Operating System

 Hardware

Query language system tuning

MapReduce tasks, # Input streams

Replica placement, Conflict

resolution, Partitioning, (Key,

Row) caching, Compaction

Read ahead buffer, Compression,

#(Nnode, Dnode) per RPC call

JVM Heap, OS page cache,

Swapping

#CPU cores , RAM size, Disk I/O

Schema tuning

Figure 3.1: (Self-)Tuning Reference Architecture for Cloud Storage Systems

(Self-)Tuning Reference Architecture

Based on the Cloud storage system modular architecture in Section 2.1.4.1 on
page 9 and the database tuning reference architecture in Section 2.2.2.2 on page 20,
we present the (self-)tuning reference architecture for Cloud storage systems. This
architecture provides the blueprint for the (self-)tuning process, and elevates the
delivery of a re-useable and extendable self-tuning solutions.

We illustrate the (self-)tuning reference architecture in Figure 3.1. This figure
presents the different layers that a system administrator or a tuning framework
should take into consideration during the tuning process. Examples of possible
tuning knobs, in each layer, are given on the right side of the figure. We discuss
them, in details, in the following.

As already mentioned, the tuning process starts with a deep understanding of ap-
plication requirements to identify thresholds and optimization goals. Important
requirements regarding Cloud applications include elasticity (scaling up and down),
consistency (strong to weak), high availability, throughput, and latency. These require-
ment translate to tuning knobs on the different layers. Possible tuning knobs in the
application layer include:

• CAP tuning: e.g., increasing and decreasing the consistency level.

3.1. Overview and Scope 39

• Query tuning: e.g., rewriting queries.

• Schema tuning: e.g., key-space merging or partitioning.

The tuning process also requires a deep knowledge of the storage systems’ archi-
tecture and features. In the Cloud, the storage system architecture itself is flexible
and can have different components combinations. Based on our proposed Cloud storage
systems architecture, the tuning of Cloud storage systems includes the following:

• Query language system: e.g., among several systems that support SQL-like query
languages, options like using in-memory processing and data pipe-lining can be
tuned.

• Distributed processing system: e.g., tuning the number of Map/Reduce tasks, or
input streams.

• Structured storage system: e.g., tuning the replica placement strategy, conflict
resolution, and partitioning technique.

• Distributed storage system: e.g., tuning the number of data and name nodes, read
ahead buffer, compression techniques.

Furthermore, the tuning process involves the operating system and hardware lay-
ers. When deploying the storage system on an in-house or a private Cloud that is
dedicated for one specific application, tuning operating system and hardware layers is
very much similar to those when working with traditional data storage. It deals with
concepts, such as Java Virtual Machine (JVM) settings, page caching and swapping,
CPU cores, storage and memory size, etc.
However, when the database is out-sourced to a public Cloud environment, these dif-
ferent hardware and software settings are packaged under different instance types and
sizes set by the Cloud service provider. This results in an alternative scheme or arrange-
ment of tuning and optimization alternatives, such as Amazon’s micro, small, medium,
large, and xlarge instances optimized for general purpose, storage, and computation,
etc. The tuning decision, in such case, is abstracted to changing instance type and size,
etc. In this case, and because of Cloud environment characteristics of virtualization
and multi-tenancy new problems, such as noisy neighbor syndrome, which we discuss
later in this chapter, arise.

Based on this reference architecture, application requirements are mapped to different
tuning knobs to achieve its optimization goals. In the multi-layered, modular archi-
tecture and distributed environment, these requirements can now be handled on two
dimensions as illustrated in Figure 3.2 on the next page.

40 3. (Self-)Tuning Cloud Storage Clusters
Motivation

node

n

Local and horizontal (self-)tuning for tier m

. . .

Local and horizontal (self-)tuning for tier m-1

. . .

Application

 node

1

Application Application Application

Workload Workload Workload Workload Requirements

. . .

V
er

ti
ca

l
(s

el
f-

)t
u
n

in
g

Figure 3.2: Illustration of the Complexity of Self-tuning Multi-layered Cloud Storage
Systems

Horizontal (Self-)Tuning

Horizontal (self-)tuning takes place within one layer and across distributed cluster
nodes. It includes aspects such as partitioning, load balancing, replication, update
strategies, and automatic scaling, etc. Problems in this dimension are better sup-
ported, in contrast to the second dimension, because of the homogeneous processes
of typically one component type within one layer. However, real-life scenarios im-
pose heterogeneous nodes/components within one layer, which leads to further
complications.

Vertical (Self-)Tuning

Vertical (self-)tuning is carried out across layers. It includes the mapping of appli-
cation requirements expressed as optimization goals, service levels, and thresholds,
etc. to specific tuning knobs on each level of the storage architecture. Decisions
made on a layer affects the space of tuning knobs and decisions made on the other
layers.

Because of the typical shared nothing architectures with data partitioning and replica-
tion, some performance aspects can be easily addressed for the overall system. Never-
theless, the typical multi-layered distributed architecture of several component systems
adds complexity to the tuning tasks. Moreover, if there are several applications with
different and possibly changing requirements, using the same data storage cluster, there
is little chance to tune for a specific application. Within the aforementioned scenario,
we define the tuning-problem in the following section.

3.2. A Framework for Self-tuning Cloud Storage Clusters 41

3.2 A Framework for Self-tuning Cloud Storage Clus-

ters

In this section, we formalize the problem of (self-)tuning for a Cloud storage cluster
serving one application with divergent workloads or several applications with differ-
ent workloads and thus optimization goals. Then, we go into details describing the
framework architecture.

3.2.1 General Problem Statement

For our framework, we define the general optimization approach as follows: the opti-
mization goal opt is to find a Cloud storage system cluster configuration c out of a set of
possible configurations CC that minimizes (assuming a standard form of the problem)
the aggregated costs for all workloads w of a set of workloads WL that need to be
supported by the overall cluster while still fulfilling their performance thresholds.

opt = minimize
c∈CC

Γ
w∈WL

cost(w, cw)

Here, Gamma Γ represents an aggregation function suitable to the given cost compo-
nents and the considered optimization goals, e.g., average or maximum for response
time, sum for energy consumption or latency, such as:

opt = minimize
c∈CC

∑
w∈WL

latency(w, cw)

Constraints regarding fulfilling performance thresholds can be expressed explicitly or
derived from service level agreement and are used to define the cluster configuration
search space as discussed later in Section 3.2.6.1. In the following we categorize and
provide details of the variables that can be included in the model:

Cluster Configurations in CC: These independent variables are controlled variables
and represent the actual tuning knobs that can be used to achieve the optimiza-
tion goal. Typical configuration aspects are for instance the cluster size, hardware
being used, replication factor and other database parameters, etc. Formally, c can
be described as an n-tuple that holds relevant parameters as components, e.g.,
c1 = {clusterSize = 10, replicationFactor = 3} for a data storage cluster de-
ployed on infrastructure of 10 computing nodes and using data replication factor
of 3.

Workload characteristics in WL: These independent variables describe the appli-
cation, but are not controlled by the systems’ administrators or developers, i.e.
though they may be highly dynamic, they can not be changed deliberately to
achieve an optimization goal. These workload characteristics include criteria,

42 3. (Self-)Tuning Cloud Storage Clusters

such as access frequencies, user numbers, data volume and schema, etc., which,
again, can be modeled as an n-tuple, e.g., w1 = {readPer = 90, writePer =
10, dataSize = 10, CFNum = 5} for a workload having 90% read operations
performing on a 10GB database of 5 column families.

Optimization Goal opt: The dependent variables used in prediction models for sys-
tem optimization are typically those, for which an optimal value should be achieved.
For Cloud storage, these may include variables, such as throughput, latency, en-
ergy consumption, resource utilization, and consistency, etc. The optimization
task may be multi-objective, and in some cases the objectives could be contra-
dicting. An example of such case is optimizing the system for minimal latency
and minimal monetary cost (or used resources). In this case, it is possible to
assign different weights to the objectives making one of higher priority than the
other.

Not all of the possible parameters describing a workload or a cluster configuration may
be relevant or desirable to consider in a given application scenario. While we discuss
techniques to create a performance model, here it is not our intention to investigate the
complex space of variables and their dependencies in its entirety, but rather focus on
– in our opinion – a most relevant subspace , namely finding the optimal size of sub-
clusters for a given set of workloads. This will be the focus of our implementation in
later chapter. In the coming section, we discuss the relevance of the cluster size problem
and present the optimization problem for clustering the Cloud, in that context.

3.2.2 Clustering the Cloud

In the case when several applications are competing on resources in one cluster as could
be in Figure 3.2 on page 40, it is not possible to make decision for the tuning process
when these applications have different workload characteristics and thus different opti-
mization goals and performance thresholds. Identifying workload characteristics is an
established research field [CS93, CMT00] and in recent years, some Cloud-specific re-
search was done [KYTA12, MHCD10]. In our work, we will concentrate on the tuning
process assuming input as different sets of identified workload characteristics, where
each set contains one or more workload with the same optimization goal.

The essential and first step in the tuning process is then to identify sub-clusters size to
be able to move from Figure 3.2 on page 40 to Figure 3.3 on the facing page and tune
the cluster for the common optimization goal. To achieve this, we express the relation
between performance metrics of a workload w with cluster configuration parameter
namely cluster size nw as a cost function; where N is the total number of nodes in the
infrastructure:

opt =
∑

w∈WL

cost(w, nw)→ min

subject to constrain

3.2. A Framework for Self-tuning Cloud Storage Clusters 43

Divide and Tune

node

k

Horizontal (self-)tuning

Horizontal (self-)tuning

V
er

ti
ca

l
(s

el
f-

)t
u

n
in

g

Application

node

1

Application

Workload Workload Requirements

. . .

node

n

Horizontal (self-)tuning

Horizontal (self-)tuning

V
er

ti
ca

l
(s

el
f-

)t
u

n
in

g

Application

node

k+1

Application

Workload Workload

. . .

Figure 3.3: Divide and Tune

∑
w∈WL

nw ≤ N

The goal is to partition N nodes among set of workloads WL. The cluster size directly
affects the data size and the request throughput that the storage cluster can handle;
where more nodes does not necessarily achieve a better performance since increasing
the cluster size has a counter effect on the performance of storage system because of
data distribution and replication. This will be discussed later in this chapter. Based on
the previous assumption our approach applies the concept of Divide and Conquer by
creating dedicated sub-clusters for single applications/workloads or groups of workloads
with similar requirements as shown Figure 3.3.

3.2.3 Framework Design

We design the architecture for our framework based on the General Process of System
Tuning in Section 2.2.1 on page 18 and the Database Self-tuning MAPE Cycle [The05]
in Section 2.2.3.2 on page 22. First, we start by defining the input for the framework,
based on the constrains defined in the General Problem Statement in Section 3.2.1 on
page 41, as the following:

• Workload characteristics WL.

• Optimization goals opt and thresholds.

The output of the framework is pairs of workload and the cluster configuration that
achieves workload’s requirements <WL, cw>. Cluster configuration set CC includes:

44 3. (Self-)Tuning Cloud Storage Clusters

Self-tuning Framework (concept)

Cost Est. function

Training

 Component

Decision

Component

Database (schema, size), Workloads WL,

Constraints/ thresholds, Optimization goals

(WL, config)

Actual execution cost

M
o

n
ito

rin
g
/R

efin
em

en
t C

o
m

p
o

n
en

t

Cost Estimation

 Component

Knowledge

base

Figure 3.4: Self-Tuning Framework for Cloud Data Management Systems

• Infrastructure configuration (both hardware and software).

• Database system configuration.

More details about input and output parameters are delivered in the coming sections
along with corresponding components.

Identifying a suitable configuration is a combinatorial optimization problem in which
the measure for evaluating the“goodness”of different alternatives depends on predicting
the performance of the data storage cluster. For performance prediction we depend on
analyzing historical performance measurement, which can be extracted from monitoring
the database system cluster during a training phase or during runtime application. To
complete the MAPE cycle, we use a feedback loop that allows continuous refinement of
the prediction model.

Based on the previous, we designed our framework from the following components,
which are illustrated in Figure 3.4:

Training Component: The purpose of this component is to generate the training
data, which is needed to model the performance of data storage cluster for a
certain workload with different cluster sizes or possibly different configurations.

3.2. A Framework for Self-tuning Cloud Storage Clusters 45

Cost Estimation Component. This component uses statistical-based data-driven
modeling to build performance models as mathematical functions. These func-
tions are derived by regression techniques done on statistical data gathered from
the training phase.

Decision Component: Tuning knobs are expressed as different independent variables
during the modeling process. Based on conditions derived from workload thresh-
olds, this component performs a filtering process on the value-space of the inde-
pendent variables. Then, it solves the optimization problem of the cost models,
based on the optimization goals of different workloads, to find preferable values
of the tuning knobs.

Monitoring/Refinement Component: This component is responsible for adding
measurement to the knowledge-base and initiating a re-modeling process when
the prediction model fails to provide the required accuracy.

Knowledge-base: Stores information for re-use by the framework components. Infor-
mation includes workloads description (i.e. schema and data access pattern), cost
models, and performance measurements .

The monitor function of the MAPE cycle is fulfilled by the framework’s training com-
ponent in the offline phase. During the online phase, this function is fulfilled by the
framework’s monitoring/refinement component. MAPE’s next function, analyze, is ful-
filled by the cost estimation component, which analyzes the collected data from the
monitor function to generate cost estimation models. Whereas, the plan/execute func-
tions are fulfilled by the decision component based on the generated models.

3.2.4 Training Component

The purpose of our training component is to generate data (i.e. statistics regarding sys-
tems performance with different workloads and different configurations), that is needed
to model the performance of a Cloud’s storage cluster. The training component is es-
sential to enable the framework’s offline phase. Since our general goal is to find the
cluster configuration that best achieves the optimization goals of different workloads,
the training component should consider different aspects of the cluster’s performance
with different configurations and different workloads. The training phase starts by gen-
erating the workloads. Existing tools, which are typically used for generating workloads
for test purposes include stress-tools and benchmarks.

Stress-tools are bundled with data management systems so they can not be used as a
building block for a framework that needs to be data management system agnostic.

A variety of benchmarks for Cloud storage systems were developed [CST+10, VKJ14,
KKR14, WLZZ14]. We provided a survey and a classification of these systems in Sec-
tion 2.3.3.2. As already discussed, existing systems do not support the automation of

46 3. (Self-)Tuning Cloud Storage Clusters

testing Cloud storage systems with different infrastructure/workload settings. For this
reason, we decided to build our own training component.

Our training component should support the typical requirements of a benchmark, such
as allowing workload configuration: read/write ratio, data size, throughput, etc. It
should also automate the testing process with different cluster configuration. As al-
ready stated, the testing for an increasing number of database system cluster size is an
important aspect and should be automatically supported by the training component.

Though our training component is designed with different goals than a benchmark,
it can be used as a benchmark. In our implementation in Chapter 4, we measure
only latency. Compared to the classification provided in Section 2.3.3.2, our training
component falls under both general purpose and infrastructure-based benchmarks.

The means for measuring consumed resources and performance metrics, differs from
one cost to another. In the case of latency, response time and CPU cores or memory,
it is straightforward. Operating system and DBMS commands for monitoring such
performance metrics are widely available. Other costs, such as monetary costs or energy
consumption require additional equipments or additional information from the Cloud
storage service provider.

Supporting monetary cost estimation model, requires additional information from the
Cloud storage service provider. The Cloud storage providers introduce different price
plans and different granularities of the pricing, which requires additional work to intro-
duce a unified comparable pricing. In the case of an open source data storage system
installed on private clusters in-house, this requires more effort from the framework user,
setting up a price per storage-unit list for her/his storage infrastructure.

For electricity consumption model, special equipments, such as wattsup1 for measuring
energy consumption of the computing nodes under workload, are typically used. The
generation of electricity consumption estimation model depends on the availability of
such tools.

In our implementation, which we present in next chapter, we focus on latency, though
other aspects, such as throughput, can easily be considered.

3.2.4.1 Training Component Architecture

We provide an overview of the training component architecture in Figure 3.5 on the
facing page. The essential part of the this architecture is the training component
manager, which is responsible for starting the training component instances. It also
works as database cluster controller, performing operations of:

1Information about wattsup can be found in: https://www.wattsupmeters.com/secure/products.
php?pn=19

https://www.wattsupmeters.com/secure/products.php?pn=19
https://www.wattsupmeters.com/secure/products.php?pn=19

3.2. A Framework for Self-tuning Cloud Storage Clusters 47

Training Component Manager

C
lo

u
d

 D
atab

ase C
lu

ster

T
C

 In
stan

ce

Client-thread

Client-thread

T
C

 In
stan

ce

Client-thread

Client-thread

T
C

 In
stan

ce

Client-thread

Client-thread

Client-thread Client-thread

Client-thread Client-thread

Client-thread Client-thread

T
C

S
ettin

g

S
to

rag
e n

o
d

es

Figure 3.5: Training Component Architecture

48 3. (Self-)Tuning Cloud Storage Clusters

• Setting up the database system : This involves starting the database system
cluster with different configurations. Configuration includes DBMS settings, such
as replication factor and replica placement strategy. It also includes the underlying
infrastructure soft- and hard- configuration, such as the JVM heap size and the
number of nodes in the cluster.

• Preparing the database system for the training workloads: This involves
creating the database schema. Loading training data, or generating and loading
data before the actual training workload, if needed.

• Clearing caches in the case of a cold run : This is achieved by rebooting
database and operating system to flush the file system caches, main memory and
CPU caches.

The settings for the training component controller are provided by the framework user in
an Extensible Markup Language (XML) file beforehand and include the training work-
loads characteristics as well. Depending on information about the expected/targeted
workloads and available resources, the framework user sets the training component set-
tings. The schema for the training phase settings file is illustrated in Figure 3.6 on the
next page and Listing A.1 on page 106. The training component manager starts a num-
ber of training component instances. The training component instances are responsible
for starting the training workloads and collecting measurements of performance. We
designed the training component to allow specifying the following workload character-
istics:

• Cluster and node settings: storage path, nodes Internet Protocol (IP) address list,
data placement strategy, etc.

• Database schema (tables, number of columns), record size and replication factor,
etc.

• Data access specifications: read and write ratio, number of rows to be read or
written, throughput (number of concurrent access), etc.

• Training component instance configuration such as the number of clients and
threads, etc.

3.2. A Framework for Self-tuning Cloud Storage Clusters 49

clusterSettings

Database

TISettings

attributes

cName

totalNodesNum

attributes

DPstrategy

keySpace

replicationFactor
attributes

tName

ColumNum

rowNum table TCSettings

attributes

IPAddress

dataFolderPath

node

sizeMB

node

attributes

clientNum

threadsPerClient

IPAddress

column
attributes

name

dataType

attributes

repeat

resultFolderPath

readPercentage

writePercentage

requestNum

TrainingWorkloads

Figure 3.6: The XML schema for the Training Component Settings

50 3. (Self-)Tuning Cloud Storage Clusters

0

100000

200000

300000

400000

500000

600000

700000

800000

3 4 5 6 7 8 9 10 11

L
a

te
n

cy
 m

s

Number of Nodes

workload1

workload2

Figure 3.7: The Performance of Underloaded Cassandra Cluster

3.2.4.2 The Training Phase

As specified in the training component settings file Listing A.2 on page 108 and based
on the available infrastructure, several phases of the training process are performed.
Each phase is defined by an iteration of the training component settings with different
values for the configuration parameters that need to be modeled. The value space of
each parameter is created based on database systems settings and available infrastruc-
ture/physical resources.

A training phase starts by building the data storage cluster on the available infras-
tructure. In each phase, multiple remote training component instances are started by
the training component manager using SSH (Secure Socket Shell). Each training com-
ponent instance starts multiple client-threads depending on the number of the CPU
cores and the memory size of the host machine. The client-threads generate data access
requests achieving the targeted workload. After the workload ends, statistical data de-
scribing the performance are retrieved from all client-generator machines and combined
in one output file. Within one phase, the training component automatically repeats the
experiment a number of times defined by the user and the average measurement is used
for the modeling process. After the experiment is done for the current configuration,
the training starts again for next iteration of the training component settings.

• Deployment on Virtualized Infrastructure: Like many other systems deployed on
multi-tenant visualized architectures, Cloud storage systems face the noisy neigh-
bor problem. This problem was reported on several Cloud hosting platforms (e.g.
noisy neighbor problem is considered one of the top five performance problems on
as Amazon AWS). Degradation in performance happens when other tenants steal
physical server resources, such as CPU or network bandwidth. This results in
fluctuations and unpredictability of the performance on such platforms, making
it unideal for benchmarking or performance modeling. However, a case can be
made if the real deployment will be made on the virtual environment as well. The

3.2. A Framework for Self-tuning Cloud Storage Clusters 51

effect of noisy neighbors can be minimized by repeating the experiments in the
case of benchmarking.

• Workloads Causing Under-load Condition (throughput and data size): Cloud stor-
age systems were made to serve hundreds of thousands of requests concurrently.
Unless the generated workload reaches high concurrency, the performance of a
Cloud storage system will look poor compared to conventional centralized DBMSs.
Moreover, the performance of the system will not improve when increasing the
number of serving nodes as meant to be with Cloud database clusters. Figure 3.7
on the facing page illustrates the result of several experiments we conducted on
a Cassandra cluster(more about it will be explained in the next chapters). We
display the average latency of Cassandra with two different workloads each of
which with different cluster sizes. Even with increasing the cluster size, we notice
that the performance gets worse and slightly improves at few points. This is due
to the fact that with small workload, the overhead of distributing and replicating
data to new nodes is more than the gain in performance. This should be part
of the model to identify the point when increasing the number of nodes in the
underlying cluster does not improve the performance and has a counter effect.

3.2.5 Cost Estimation Component

We use cost in our work to refer to consumed resources or performance metrics whose
minimization and maximization can be used as an optimization goal to lead the tuning
process. Here, the cost can be memory footprint, energy consumption, or monetary
cost. Most likely it is response time, latency, and throughput. We refer to a model that
enables the prediction of a performance metric as a cost estimation model. The cost
estimation component is responsible for generating such a model from historical data,
which can be generated by the training component and/or the monitoring/refinement
component. The needs of our framework lead to the following requirements that must
be fulfilled by the cost estimation component:

• Integrate different costs, which allows for multi-objective optimization. For exam-
ple, a workload optimization goal is minimum energy consumption with maximum
latency.

• Allow continuous cost model refinement: this is enabled by the monitoring com-
ponent, which collects new measurements that are used to update the model.

As a method for generating models we use statistical-based data-driven modeling tech-
niques [SSA08] in developing mathematical functions that represent the relationship
between performance metrics on the one side as dependent variables and the workload
characteristics and configuration knobs as independent variables on the other side. We
define the input for the cost estimation component as the following:

52 3. (Self-)Tuning Cloud Storage Clusters

• Measurements: This includes performance metrics from running test on the cur-
rent infrastructure including the Cloud storage system. This data is generated by
the training component and define the dependent variables.

• Workload Characteristics: This information is input from the system administra-
tor or tuner and includes criteria, such as the type of workload identified by the
read and write ratio, data size, etc. It defines the independent variables.

• Cluster Configuration: This includes infrastructure characteristics that will be
used as tuning knobs, such as the number of computing nodes (cluster size).
Other criteria, such as database management system configuration can also be
used, here.

For each performance metric, an estimation model is generated. It is possible to use
several models for different performance metrics for a certain workload depending on
the tuning goals of that workload. Based on [SMK+11], since generated models are
refined online, a model would then be able to correct itself if the initial training models
are not representative of the running workload.

3.2.5.1 Model Generation

To build a model that fits the data that is generated in the training phase, we propose
the use of machine learning techniques [HMS11]. In the implementation chapter, we list
the considered techniques, discuss and evaluate our choice of using regression analysis.

The data we use as input for the modeling process is of the form in Table 3.1. 90% of
this data is used as training set to generate models. The measurement field contains
values of e.g., latency, throughput. The workload characteristics contain values for:
percentage of the write requests in the workload wr, percentage of read requests r
(random reads, sequential reads(scan), single-row write, batch write, update, etc.. can
be used), s is for data size and nc is for the number of tables (column families). Whereas
the cluster configuration contains values for cluster size cs, and data replication factor
rf , etc.

Measurement Workload Characteristics Cluster Configuration
value w1 =< wr, r, s, nc, ..> c1 =< cs, rf, ..>
value w1 =< wr, r, s, nc, ..> c2 =< cs, rf, ..>
value w2 =< wr, r, s, nc, ..> c1 =< cs, rf, ..>
....

Table 3.1: Training Data as Input for the Modeling Process

The framework can be extended by deploying different machine learning techniques.
Depending on the number of dependent variables and the size of the training data set,
one of the techniques will yield the best model (among the other generated by the
framework) each time. In the next section, we introduce how the framework chooses a
model among the multiple ones generated in the modeling process.

3.2. A Framework for Self-tuning Cloud Storage Clusters 53

3.2.5.2 Model Selection

To perform model selection, we use the remaining part of the data set (10%) as a test
set. After generating the models, the framework chooses one based on the accuracy of
their prediction against the test set.

For our framework, we examine the prediction power of the generated models against the
test data set. For that we use the Mean Absolute Percentage Deviation (MAPD) [APB15],
also known as the Mean Absolute Percentage Error (MAPE). MAPD is a measure of the
prediction accuracy that is typically used for evaluating forecasting estimation methods.
It expresses the accuracy as a percentage, and is defined by the formula:

MAPD =
1

m

m∑
i=1

∣∣∣∣Actuali − Predictedi
Actuali

∣∣∣∣
where m is the size of the test data set.

The model selection step can be avoided by using symbolic regression analysis [Koz92],
which claims to find the best model, from the perspective of simplicity and accuracy,
that fits a data set. Using such a method requires a larger data set than the one
generated in our experiment.

3.2.6 Decision Component

After we described how our framework predicts the performance of an underlying Cloud
database cluster, we explain the defining concepts for the decision component.

Now that we have the different cost models as output from the estimation component,
the task is to find the values of the independent variables that minimize or maximize
the dependent variable. This is a typical combinatorial optimization problem. In other
words, the decision component handles the tuning problem as a combinatorial search
over a set of system configurations to find a configuration that best achieves the op-
timization goals of different workloads. Thus, three things must be identified to build
the decision component: the search space, the metric for evaluating different options,
and the search algorithm.

The metric for evaluating the “goodness” of possible configurations in the search space
is measured by calculating the estimated cost and defined based on the optimization
goals. Details regarding the search space and algorithm are introduced in the following.

3.2.6.1 Search Space and Candidate Selection

The search space for our tuning problem starts with a space of real continuous values
that is defined based on the variable itself. In most cases the value space is changed
to discrete positive integers, such as the set of positive integers as a space value for the
number of nodes that will be used as a serving infrastructure for the database system. In

54 3. (Self-)Tuning Cloud Storage Clusters

the case that the value space is contentious, the search space for the decision algorithm
will grow exponentially.

Then an initial step before performing the search algorithm is search space pruning.
The value space for each of the variables, which are considered in the configuration, is
pruned based on the following:

• Based on infrastructure/physical resources.

• Based on application/workload thresholds.

So, to go on with our example, i.e. the number of nodes for the database system
cluster, the value space becomes the integer values between the replication factor and
the maximum number of available nodes in the infrastructure or the maximum number
of nodes that would be assigned to a workload. If we have an n number of available
nodes that we will divide on a set of workloads of size m, where the data replication
factor is k , then the number of nodes for a workload will vary between k and n-(m*k)
making the search space for the number of nodes [k, n-(m*k)]. The search space is also
pruned based on the workloads’ performance thresholds, which can be derived from
service level agreement or expressed explicitly. An example of such a threshold is a
minimum throughput, which is used to prune the search space to start from a minimal
number l of nodes that would achieve the specified throughput value and thus service
level. The next steps are finding the candidate-solution-space from combinations of the
pruned variable sets and then quantitatively comparing different candidate solutions to
find an optimal using the search algorithm.

3.2.6.2 Decision Component Algorithm

Algorithm 1: Decision Component Search Algorithm

Data:
WL ={w1, .., wi} Set of Workloads
wi =< wr, r, s, nc, ..> Tuple of Workload Characteristics
C ={cs, rf, ..} Set of Cluster Configuration Knobs
Result: Pairs of <wli, c> that achieve the optimization goal of all WL

1 Perform threshold-based search space pruning
2 Perform infrastructure-based search space pruning
3 Find candidate solutions space S
4 for each candidate solution do
5 Generate cost function value
6 end
7 Perform Combinatorial Search
8 Check objective function value

Given a set of workloads and configurations knobs, the aim of the search algorithm
is to efficiently find configuration knobs values that minimizes or maximizes the value

3.3. Framework Usage 55

of the goodness metric. For the search algorithm, we are able to use any standard
combinatorial search algorithm. In the case of discrete search space, methods such as
dynamic programming are well suited. For many contentious search space scenarios,
discretizing the search space allows good solutions, for other cases, genetic algorithms
can be used to find a solution.

In Algorithm 1, we illustrate the general approach for the decision component without
going into detail of the search step 8. Several options exist for performing the search
as already mentioned. In Chapter 4 and Chapter 5, we discuss and evaluate the use of
brute-force and genetic algorithms.

3.2.7 Monitoring and Refinement Component

After the Cloud storage system deployment, this component starts monitoring and
collecting information about the system’s performance. In the case that the difference
between the model-based predicted value and the monitored value of a performance
metric is bigger than a certain threshold defined by the framework user:

|Actuali − Predictioni| ≥ threshold

this component should trigger a re-modeling process, which includes:

• Adding the new measurement and removing stale ones.

• Invoking the cost estimation component.

3.3 Framework Usage

After describing the architecture of our framework, we go on explaining the different
modes for operating it, based on the Self-Tuning Principles in Section 2.2.3.1 on
page 22, we introduce three modes: Offline, Online, and Offline-Online. These modes
differ in the following points:

• Frequency: the modes differ in when and how often the tuning, and modeling
processes are performed.

• Scope: the modes differ in what is tuned and if the workload changes are coped
with or not.

• Training Data: the modes differ in the training data, which is used for the mod-
eling process.

56 3. (Self-)Tuning Cloud Storage Clusters
Tuning Process Workflow

offline Training

Workloads

Performance

+ Cluster Info Cluster

Configuration

Production

Workloads

Performance Modeling

1

3

Decision Algorithm 2

Model

3

4 Workload Characteristics

Optimization Goals

Thresholds

Figure 3.8: Offline Mode of the Framework

3.3.1 Static/Offline Tuning during System Cluster Design

Our first proposal is to run the modeling process when the system is offline during
the design phase (i.e. before the system is available to application). Offline perfor-
mance modeling allows informed configuration decisions and leads to better resource
provisioning. The monitoring/refinement component, in this mode, is disabled.

The tuning process, in this case, starts by generating training workloads. We assume
that information about the targeted application scenario are available to the framework
user. It is then up to her/him to specify training workloads, which resemble the targeted
application scenario. The training component deploys the database cluster, generates
the workloads and collects information about the performance.

After the training phase, gathered data is analyzed in the cost estimation component
to generate a predictive cost/performance estimation model. This model can be used
to predict the performance of the database cluster for the targeted workload/workloads
with different configurations. Next phase takes place in the decision component.

3.3. Framework Usage 57

Using information that includes database cluster settings, production workloads’ op-
timization goals and performance thresholds, the decision component performs search
space pruning. The final step in this mode is then to find the cluster configuration.
The decision component uses model-based performance predictions to evaluate the
“goodness” of possible configurations. It deploys a decision algorithms to find a cluster
configuration that best achieves the optimization goal while fulfilling the performance
thresholds.

The work-flow of the offline mode of the framework is illustrated in Figure 3.8. We use
numbers in this figure to represent the sequence of operations.

3.3.2 Dynamic/Online Tuning during System Cluster Deploy-
ment

Tuning Process Workflow

online

Cluster

Configuration

Production

Workloads

Runtime

Performance

Measurements

Model update

1

1

2

4

Workload Characteristics

Optimization Goals

Thresholds

Performance Model

Model

2

Decision Algorithm 1

Performance

+ Cluster Info

4

3

Figure 3.9: Online Mode of the Framework

58 3. (Self-)Tuning Cloud Storage Clusters

The second mode for running the framework is the online mode. In this mode, the
training component is disabled and no training workloads are run. A model is built
only after the database system deployment leaving the initial configuration decision to
the system administrator. However, this mode allows the framework to be reactive to
changes in workloads and optimization goals and refine the predictive cost estimation
models.

The framework monitors the performance of the database system under production
workloads and collects statistical data. A change in workload characteristic or goals
typically requires changing the cluster configuration. This is initiated by the moni-
toring/refinement component, which triggers the modeling process once the difference
between the workload requirements (i.e. optimization goals and performance thresh-
olds) and the monitored (measured) values is larger than a predefined threshold. An
initial prediction model is then built by the cost estimation component. The cost esti-
mation model tests the prediction power of the generated models before using them by
the decision component.

The next step is tuning the cluster configuration. Using information that includes the
required workload performance, and the database cluster settings, the decision compo-
nent performs search space pruning. The decision component then uses model-predicted
performance values to find the cluster configuration that achieves the optimization goal
while fulfilling the performance thresholds of the targeted workloads.

The database system is monitored and information about the performance is collected
by the framework. Once the difference between a model-predicted and measured cost
values is larger than the predefined threshold, a re-modeling process is triggered and
the model is refined.

The online tuning process continues throughout the lifetime of the system. This means
that the performance is always monitored and hints regarding the configuration are
given.

The work-flow of online mode of the framework is illustrated in Figure 3.9 on the
previous page. We use numbers in this figure to represent the sequence of operations.

3.3.3 Offline-Online Tuning Process

Operating the framework, in this mode, allows capturing the benefits of both online
and offline modes by enabling the training and the monitoring/refinement components.
The framework, in this case, can be used for initial cluster configuration and to react to
changes in workloads’ characteristics, optimization goals, and performance thresholds.

In this case, the framework starts in the design phase of the database cluster deployment.
The training component collects information about the performance of the database
cluster with synthetic workloads. As already mentioned, it is up to the framework user
to choose training workloads that resemble the targeted application scenario.

3.3. Framework Usage 59Tuning Process Workflow

offline online Training

Workloads

Cluster

Configuration

Production

Workloads

Runtime

Performance

Measurements

Model update

1

3

6

Performance Model

Decision Algorithm 2

Performance

+ Cluster Info

Model

3

4

5

5 6

7
Workload Characteristics

Optimization Goals

Thresholds

Figure 3.10: Offline-Online Mode of the Framework

After the training phase ends, collected information is analyzed by the cost estimation
component in order to create performance models. The models that are generated can
then be used by the decision component to advise the database cluster deployment.

The decision component uses the information about the database cluster settings, work-
loads’ optimization goals and performance threshold to perform search space pruning.
After that, cluster configuration is found by the decision component’s search algorithm.
This algorithm depends on model-predicted performance values to validate the possible
configurations.

After deployment, the monitoring/refinement component collects information about the
performance of the system with production workloads. The collected information is used

60 3. (Self-)Tuning Cloud Storage Clusters

to trigger a re-modeling process. This process happens only when the current models
fail to provide the required prediction accuracy. This is evaluated by the framework
based on predefined thresholds.

The re-modeling process takes place in the cost estimation component. This compo-
nent analyzes the information containing runtime performance measurements. Using
machine learning techniques, it updates and evaluates the cost estimation models. Up-
dating the models during the life time of the system and based on production workloads
allows more accurate predictions.

The tuning process continues during the life time of the database system. A change
in workloads’ characteristics, optimization goals, or performance thresholds typically
requires a change in the configuration. Once the difference between the targeted perfor-
mance metric and its measured value is larger than a predefined threshold, the decision
component deploys its search algorithm to find the optimal cluster configuration. The
framework user can initiate this process beforehand, when workload change is planned
or expected.

The work-flow of the framework, in this mode, is as illustrated in Figure 3.10 on the
preceding page. Numbers in this figure represent the sequence of operations.

3.4 Summary

Cloud storage systems’ multi-layered modular architecture adds complexity to the tun-
ing process. Moreover, when we have several workloads with different optimization
goals being served by one Cloud data storage cluster, the question is how to tune this
cluster to best achieve the optimization goals of all workloads. Within this scenario, we
defined the tuning problem as:

To find a Cloud storage system cluster configuration c out of a set of possible configu-
rations CC that minimizes (assuming a standard form of the problem) the aggregated
costs for all workloads w of a set of workloads WL that need to be supported by the
overall cluster while still fulfilling their performance thresholds.

In order to solve this problem, we presented a (self-)tuning framework. We defined
the input of this framework as workload characteristics, infrastructure description, and
optimization goals. The output was defined as pairs of workloads and cluster configu-
rations. From the architecture point of view, the framework design consists of: training
component, cost estimation component, decision component, monitoring/refinement
component, and a knowledge-base.

The purpose of the training component is to generate statistical data about the per-
formance of the system under test with different workloads and different cluster con-
figurations. This data is then analyzed by the cost estimation component to generate
a performance prediction model. The decision component uses the model to search for
the best cluster configuration out of the set of possible configuration. The “goodness”
of a candidate solution is measured by the model-based estimated performance value.

3.4. Summary 61

After the storage system deployment, the monitoring/refinement component collects
information about the system performance. We define the model refinement process to
be triggered when the difference between observed and predicted performance metrics
is larger than a user-defined threshold.

Additionally, we presented different modes for operating the framework based on the
frequency and the scope of the tuning process, and the source of the training data. In
the next chapter, we present our implementation of the framework for the offline mode.

62 3. (Self-)Tuning Cloud Storage Clusters

4. Prototype Implementation

This chapter shares material with CLOSER13 paper “Clustering the Cloud:
A Model for (Self-)Tuning of Cloud Data Management Systems” [MSB13]
and the ADBIS15 paper “A Self-Tuning Framework for Cloud Storage
Clusters” [MSS15]

In this chapter, we report on our implementation of the self-tuning framework, in the
offline mode Section 3.3.1. The purpose of this chapter is to provide a overview for
people interested in our approach and discuss the alternatives, which we went through
to reach the current implementation.

In our implementation, we focus on modeling the performance characterized by the
latency of the Cloud storage system. Latency is modeled in relation to two character-
istics: the read/write ratio, and the number of nodes in the underlying cluster, i.e., the
cluster size. Later on, the decision component finds the optimal nodes allocation for a
set of input workloads while minimizing the sum of latency values for all workloads.

4.1 Required Technologies

In this section, we provide an overview of the technologies and systems, which we used
in order to implement the platform and later, conduct the experimental evaluation.
These technologies are divided in two parts. The first part considers the programming-
related requirements. The second one considers the required underlying infrastructure,
which includes software (Cloud storage system) and hardware (cluster of nodes) parts.

4.1.1 Implementation Environment

The prototype for our framework is implemented using Java version 1.7.0 67 for its
popularity and cross-platform portability. Most Cloud storage systems provide one or

64 4. Prototype Implementation

more Java-based APIs. We exploit its native support of multi-threading for simulating
concurrent users [Bre10]. As means of forwarding control commands from the training
component manager to the serving nodes, we exploit OpenVPN1 and Secure Shell (SSH)
to forward commands, such as booting/rebooting the storage system and/or operating
system from the training component machine (manager) to the storage cluster machines
(serving nodes).

In the following section, we provide a short overview of Cassandra’s [LM10] basic prop-
erties, which are necessary to understand the implementation details of the storage
system deployment introduced later in Section 4.2.1.

4.1.2 Cloud Storage System

We designed our framework to work with any Cloud storage system that operates on
a cluster of nodes. Examples of such system, are Hive [TSJ+09], Cassandra [LM10],
HBase [The15f], Bigtable [CDG+08]. For our implementation, we chose Cassandra as an
example of the mentioned systems based of several reasons. On the one hand, it is open
source and has the typical properties of NoSQL Cloud storage systems of scalability
(running on cluster of nodes, and data partitioning), availability (replication), and
partition tolerance. On the other hand, it is popular and has a large user community,
which allows good support and maintenance of libraries and bug-fixes.

However, though the performance analysis and modeling, in our design, do not depend
on specific storage-system architectural or internal details, the training component im-
plementation does. Our implementation can be extended to support the other systems.

Cassandra was designed for internal use by Facebook messaging system and was later
adopted by Apache. Large clusters of Cassandra are currently being used by Apple,
Netflix, Spotify [KN10], SoundCloud, and eBay2, etc.

From the architectural point of view, Cassandra is a peer to peer distributed storage
system. Cassandra partitions and distributes the data among nodes in the cluster. It
uses a ring representation of the cluster as illustrated in Figure 4.1. The ring repre-
sentation includes nodes, which map to virtual/physical machines and token values,
which are hashed values of row keys. Each node in the cluster is assigned a token value
that determines the key range and thus the data for which the corresponding node is
responsible.

Balancing the cluster is necessary to avoid bottlenecks and is an important step before
running the training workloads by our framework. A Cassandra cluster is balanced by
dividing the token-range values equally among the nodes. This requires generating token
values, assigning them to nodes, and re-balancing the cluster. This task is performed
by our framework as part of the training component manager’s tasks. If we assume a
partitioner that generates token values range between 0 and 127 and a cluster of four

1Information about OpenVPN can be found in: https://openvpn.net/
2Details of Use-cases for Cassandra are found on http://planetcassandra.org and

http://www.datastax.com/customers

https://openvpn.net/

4.1. Required Technologies 65

Cassandra Ring

32

64

96

0

Owns tokens 33 to 64

Owns tokens 65 to 96

Owns tokens 97 to 127

and 0

Token range 1 to 32 Owns tokens 1 to 32

Figure 4.1: Cassandra Ring, adapted from [Nee15]

nodes, the token ownership and distribution among nodes in a balanced cluster can be
illustrated as in Figure 4.1.

From the data structure point of view, Cassandra stores data in column families, which
can be mapped to tables in the relational world. A column family contains columns of re-
lated data where column families that belong to one application are typically organized
in one key-space. The schema in Cassandra is flexible, allowing rows with incomplete
thus different list of columns as illustrated in Figure 4.2. Cassandra replicates data on
the row level. Each replica is stored on a different node and –if applicable– different
data center. This is defined by setting the data placement strategy when creating a
key-space.

Row key1

Row key2

value

column1

value

column2

value

column3

value

column1

value

column4

Figure 4.2: Cassandra Column Family

From the data access point of view, Cassandra supports several APIs, a SQL-like query
language (CQL)3, and parallel processing frameworks such as Map/Reduce [DG08],
and Spark [ZCD+12]. CQL is typically used for OLTP-like workloads, where as the
Map/Reduce framework is used for Online Analytical Processing (OLAP)-like work-
loads [DG08, ABPA+09]. For the workloads in our framework, we use the Cassandra
query language CQL. The modeling and tuning of the parallel processing workloads

3http://docs.datastax.com/en/cql/3.0/cql/aboutCQL.html

http://docs.datastax.com/en/cql/3.0/cql/aboutCQL.html

66 4. Prototype Implementation

is already a distinct research area, which has different problems, and scope [PCC+11,
JCR11, ZKJ+08].

As means to interact with Cassandra from our framework, we use the DataStax4 Java
library, which is recommended by Apache. Many other Java-based APIs5 exist, e.g.,
Hactor6, Kundera7, Achilles8, Astyanax9, etc., with different support for functionalities,
such as connection pooling, load balancing, auto node discovery, connection-retry, etc.

4.2 Implementation

After we introduced the technologies, which we need to build our framework and run
the evaluation, we go on to provide an overview of our implementation. As already
mentioned in the introduction of this chapter, our implementation is targeted at the
offline mode Section 3.3.1 of the framework. In this mode, the framework runs in the
design phase of a system which means that the monitoring/refinement component is
disabled. The following sections are organized by the consecutive stages of the offline
mode and provide implementation details of the involved framework components.

The general process for the framework’s offline mode, as illustrated in Figure 3.8, starts
by a training phase. A training phase is specified by training workloads settings and
based on the replication factor and the maximum number of nodes intended for the
database cluster. Several training phases are performed to collect training data. Since
we want to model the performance in relation to the the number of nodes, each phase
is defined by the number of nodes in the cluster (cluster size). The cluster size is varied
between the data replication factor and the maximum number of nodes available. After
the training is done for the current number of nodes, it starts again for the next number
of nodes. After the training phase ends, data is analyzed to generate the models using
an external application. The generated models are used by the decision component to
find an optimal allocation of nodes.

4.2.1 Deployment of the Storage Cluster

In this section, we explain the implementation details of the parts responsible for setting
up the Cloud storage system cluster and preparing it for the training workloads. This
part of the framework is storage system specific, which means that for every Cloud
storage system that the framework supports, this part should be extended. The basic
classes responsible for setting up a Cloud storage cluster in our framework are illustrated
in a Unified Modeling Language (UML) diagram in Figure 4.3 on the next page.

4Available for download with other drivers at: https://wiki.apache.org/cassandra/ClientOptions
5A list of Cassandra client Java drivers is maintained at: http://www.planetcassandra.org/

client-drivers-tools/#Java
6Hector available at: http://hector-client.github.io/hector/build/html/index.html#
7Kundera available at: https://github.com/impetus-opensource/Kundera/wiki/
8Achilles available at: http://doanduyhai.github.io/Achilles/
9Astyanax available at: https://github.com/Netflix/astyanax/wiki

https://wiki.apache.org/cassandra/ClientOptions
http://www.planetcassandra.org/client-drivers-tools/#Java
http://www.planetcassandra.org/client-drivers-tools/#Java
http://hector-client.github.io/hector/build/html/index.html#
https://github.com/impetus-opensource/Kundera/wiki/
http://doanduyhai.github.io/Achilles/
https://github.com/Netflix/astyanax/wiki

4.2. Implementation 67

+DBSysCluster()

+reBootVM()

+dbmsSettings()

+stopDBMSonNodes()

+startDBMSonNodes()

+endCluster()

+stopCleanVM()

+initCluster()

-nodesNum : int

-nodes: Node[*]

-nodeIPList: String[*]

-dataPathFolder : string

DBSysCluster

+Node()

+setNodeIP()

+getNodeIP()

+setNodeAlias()

+getNodeAlias()

+reBoot()

+stopDBMS()

+deleteDataFolder()

+dbmsSettings()

+main()

-nodeAlias : string(idl)

-nodeIP : string(idl)

-dataFolderPath : string(idl)

Node

1

*

+Connection()

+connect()

+getSession()

+createSchema()

+createTable()

+dropScheam()

+close()

-cluster: Cluster

-session: Session

Connection

1

1

Figure 4.3: Core Classes for the Training Component’s Storage System Deployment

68 4. Prototype Implementation

Information about the underlying infrastructure that is needed for setting up the storage
cluster are extracted from the settings file (e.g., Listing A.2). The cluster size must be
changed by the framework for each training phase. We had two choices to implement
that:

• Using the Cloud storage system utility of scaling up or down.

• Shutting down the current cluster and starting a new cluster with the new number
of nodes.

Neither of these choices changes the evaluation results. However, since the system needs
time to stabilize after adding or removing nodes [CST+10], the choice between the two
was made in favor of starting a new cluster. The operation of cleaning the cluster for
the next iteration of the training phase is explained later in Section 4.2.1.3.

In the following section, we go into important details of Cassandra cluster deployment
with predefined configurations as part of the training phase.

4.2.1.1 Cassandra Cluster Configuration

Figure 4.4 illustrates the sequence diagram of the training component manager. The
method initCluster() is responsible for starting the storage system cluster on the nodes
with predefined configuration. This method is database system specific and should be
implemented for each storage system when the framework is extended. In our init-
Cluster() implementation for Cassandra, we perform a yaml file (excerpt illustrated
in Listing 4.1) configuration, which includes setting the values for the following param-
eters:

• cluster name : Determines the logical cluster that the nodes belong to. It is
mainly used to ensure that every machine knows its cluster and prevents it from
joining other clusters.

• initial token : Determines the range of token values that the nodes control and
thus determines the data, for which a node is responsible. In the case that virtual
nodes approach is used, this value is not set.

• num tokens: Defines the number of tokens randomly assigned to nodes in the
cluster. Assuming the nodes are homogenous and have the same physical re-
sources, they should have the same token values (typically 256). In the case that
virtual nodes approach is used, this value is enabled.

• partitioner : Determines how rows are distributed across the nodes in the clus-
ter. The one we used is: org.apache.cassandra.dht.Murmur3 partitioner, which is
recommended by Cassandra.

org.apache.cassandra.dht.Murmur3

4.2. Implementation 69

Cassandra storage config YAML

NOTE:

See http://wiki.apache.org/cassandra/StorageConfiguration for

full explanations of configuration directives

/NOTE

The name of the cluster. This is mainly used to prevent machines

in

one logical cluster from joining another.

cluster_name: ’ClusterOne’
.

.

initial_token: 4192441834933989000

.

See http://wiki.apache.org/cassandra/Operations for more on

partitioners and token selection.

partitioner: org.apache.cassandra.dht.Murmur3Partitioner

Directories where Cassandra should store data on disk. Cassandra

will spread data evenly across them, subject to the granularity

of

the configured compaction strategy.

data_file_directories:

- /home/student3/cassandra/data

commit log

commitlog_directory: /home/student3/cassandra/commitlog

.

.

seed_provider:

Addresses of hosts that are deemed contact points.

Cassandra nodes use this list of hosts to find each other

and learn

the topology of the ring. You must change this if you are

running

multiple nodes!

- class_name: org.apache.cassandra.locator.SimpleSeedProvider

parameters:

seeds is actually a comma-delimited list of addresses.

Ex: ”<ip1>,<ip2>,<ip3>”
- seeds: ”192.168.144.11,192.168.144.12,192.168.144.13”

.

.

Listing 4.1: Excerpt of the Cassandra Configuration File

70 4. Prototype Implementation

• data file directories: Determines the directory path where tables’ data will be
stored.

• commitlog directory : Determines the directory path where log data will be
stored. It is preferable to have it on different disk partition or different physical
device –when applicable– from where table data is stored.

• seeds: IP address list of other nodes in the cluster. This list is used by the gossip
protocol to bootstrap a newly added node. It should include the IP address of a
node from each data center if applicable. It is also recommended to have more
than one node from each data center for fault tolerance.

• listen address, rpc address: Both are set to the value of the IP address of the
corresponding node. The first one determines the address or host name that other
nodes in the ring can use to communicate with this node. The later determines
the listen address for client requests.

• rpc port : Determines the port for data access client connections. Typical value
for this port is set to 9160.

• endpoint snitch : Determines the network topology, which Cassandra uses for
request routing and replica distribution. Cassandra supports multiple topologies.
The one that is suitable for our implementation, since we have only one data
center, is SimpleSnitch10.

After the yaml file is configured correctly on all the nodes that should belong to the
cluster, Cassandra is started using the ssh command that is triggered from the training
component manager to the serving nodes. The next step of the process would be
creating the database schema that will be used by the training workloads. In the
coming section, we illustrate general activities involved in this step.

4.2.1.2 Schema and Data Generation

The schema is provided by the framework user in the XML configuration file Listing A.2.
For Cassandra, the schema definition includes key-space, column families (tables), repli-
cation factor, and the data placement strategy. Depending on what the framework user
needs, the framework allows table definition as:

• Number of columns of string values.

• Complete schema definition.

10Cassandra SimpleSnitch: https://docs.datastax.com/en/cassandra/1.2/cassandra/architecture/
architectureSnitchesAbout c.html

https://docs.datastax.com/en/cassandra/1.2/cassandra/architecture/architectureSnitchesAbout_c.html
https://docs.datastax.com/en/cassandra/1.2/cassandra/architecture/architectureSnitchesAbout_c.html

4.2. Implementation 71

For simple and general workloads, the training step deploys tables defined by number of
columns of string values. The Listing 4.2 illustrates the minimal code for creating key-
space and column family in the initCluster() method. In this example, which we used
for creating the column families for our evaluation, a column family having columnNum
as the number of columns and text as data type, is created.

1 Session session= connect(nodeIp);
2 session.execute("CREATE KEYSPACE "+ keyspace +" WITH r e p l i c a t i o n "+"= { ’

c l a s s ’ : ’ "+strategy+" ’ , ’ r e p l i c a t i o n _factor ’ : "
3 +replicationFactor+" } ; ");
4 String query="CREATE TABLE "+keyspace+" . "+tableName+

" ("+" id i n t PRIMARY KEY" ;
5 for (int i = 1; i < columnNum; i++) {
6 query=query+" , "+"column"+i+" text ";
7 }
8 query=query+ ") ; ";
9 session.execute(query);

Listing 4.2: Minimal Java Code for Creating Cassandra Key-space and Column Family

For a specific training workload, the framework user can set detailed schema. Example
of this is illustrated in Listing 4.3.

<Database DPStrategy=”SimpleStrategy” keySpace=”sibaKS”
replicationFactor=”3”>

<table tName=”users”>
<column name=”id” dataType=”uuid”/>
<column name=”user name” dataType=”ascii”/>
<column name=”password” dataType=”ascii”/>
<column name=”email” dataType=”ascii”/>
<column name=”gender” dataType=”text”/>
<column name=”phoneNum” dataType=”text”/>
<column name=”country” dataType=”text”/>
<column name=”birthY” dataType=”bigint”/>

</table>
</Database>

Listing 4.3: Excerpt of the Training Component Settings: Defining Database

The schema is created at the end of the cluster initiation phase as shown in the training
component work-flow in Figure 4.4 on the next page. The initCluster() method performs
key-space and column family creation by passing CQL statements using the Datastax
Java-API to the Cassandra cluster.

72 4. Prototype Implementation

Loop: repeatExperiment

Loop: NumOfNodes

TrainingComponentManager

initCluster()

DBSysCluster

DBSysCluster

Connection

new Connection()

createSchema()

TComponentInstance()

connect(IP)

stopCluster()

dbmsSettings

startDBMSonNodes

Figure 4.4: Sequence Diagram of the TrainingComponentManager’s Main Loop

4.2. Implementation 73

4.2.1.3 Cleaning the Cluster

One of the important tasks of the training component is to clean the infrastructure
and system for the next iteration of the training phase. In our implementation, this is
achieved through the method stopCluster(). This method involves three steps:

• Shutting down the storage system on every node involved in the cluster. This
method is storage system specific and must be adapted for other storage systems
when the framework is extended.

• Deleting the data folders on the all nodes.

• Rebooting the nodes (virtual machines in our case) to clear any caches that could
affect the performance.

The sequence diagram for the stopCleanVMSeq() is presented in Figure 4.5 on the
following page.

4.2.2 Workload Generation

In this section, we provide an overview of the implementation of the parts responsible
for generating the workloads for the training phase. The core classes responsible for
workload generation are illustrated in Figure 4.6 on page 76.

Based on the application scenario for which the tuning is planned, the user can define
a training workload. Though in the relational database systems’ world, there is an
enormous number of performance benchmarks that define tasks and data sets derived
from and representative of real use case scenarios [Raa93, Ser91, Nel91]. To the best
of our knowledge such a standardization for Cloud storage systems does not exist until
now. Multiple performance benchmarks use synthetic workloads, such as the widely
used Yahoo! benchmark [CST+10] and the Bigtable benchmark [CDG+08]. Thus, our
training component does not include out of the box training workloads that map to a
real scenario, rather allows the framework user to define them based on the expected
application. Workloads are defined by the framework user in the XML framework
settings file Listing A.2 and are designed to be a mix of the following operations:

• Sequential write (bulk write), such as in backup and extract. Writes rows into a
table (column family) under sequential row keys.

• Sequential read (scan), such as in import operations. Reads rows under sequential
row keys.

• Random write (point write), such as in batch update. Writes rows into an table
(column family) under random row keys.

• Random read (point selection, i.e., one row is returned for each call to the DB).
Reads rows under random row keys

74 4. Prototype Implementation

 Loop: NumOfNodes

 Loop:NumOfNodes

DBSystemCluster myCluster:DBSysCluster

currentNode:Node

currentNode:Node

Node()

SetNodeIP()

stopDBMS()

stopCassandraOnNodes()

Node()

SetNodeIP()

deleteDataFolder()

reBootVM()

Figure 4.5: Sequence Diagram of the stopCluster Method

4.2. Implementation 75

The implementation can be extended to include other operations, such as update, read
latest, range selection. The workload can have different percentages of operations in
the mix, different request number, different parallelism degrees. Besides configuring
the database schema and queries, the training workloads are characterized by opera-
tion throughput. For that, we allow setting the number of the training components
instance (which would start a new Java client for each instance on the training compo-
nent instances machines) and the number of concurrent threads (each training compo-
nent instance would start a number of concurrent threads). An example of workload
definition is illustrated in Listing 4.4.

<TrainingWorkload repeat=”20” seqWritePercentage=”100”
requestNum=”520000”
measurementFolderPath=”/home/training/measurement”/>

<TISettings>
<node IPAdress=”192.168.144.24” clientNum=”3”

threadsPerClient=”5”/>
<node IPAdress=”192.168.144.25” clientNum=”3”

threadsPerClient=”5”/>
<node IPAdress=”192.168.144.26” clientNum=”3”

threadsPerClient=”5”/>
</TISettings>

Listing 4.4: Excerpt of the Training Component Settings: Defining Workload

The minimal code, for creating the CQL statement for write queries, is illustrated
in Listing 4.5. We use SequenceGenerator to generate sequential numbers to be used a
key value. We also use RandomStringGenerator to create random string values for the
insert operation. Both generators are defined in the training component.

In our implementation, the performance is characterized by measuring the time required
to finish the whole workload (a number of requests with a level of parallelization) and
not for single operations. For that the time is measured before and after the workload.
Each training workload is repeated several times and the average latency is calculated.
The sequence diagram for starting a training workload is illustrated in Figure 4.7.

4.2.3 Data Analysis and Modeling

After the training phase, the cost estimation component starts the process of model
learning from the training data as defined in Section 3.2.5. The first step is preparing
the data for the learning process. This involves extracting and aggregating the relevant
data from the training measurement files. The metric, that we consider through out
the thesis, is the average latency value. For implementing the model learning step, we
consider the following alternatives:

• Regression analysis [APB15].

76 4. Prototype Implementation

+TrainingComponentManager()

+startWLonRemoteVM()

+run()

+start()

+main()

TrainingComponentManager

-threadsPerClient : int

-clusterSizeCurrent : int

-rowNum : int

-statisticsFilePath : int

-repeatExperiment : int

-keySpace : string

-tableName : string

-partionStrategy : string

-replicationFactor : int

-columnNum : int

-stringLength : int

-totalNumNodes : int

-ipListClientNodes: String[*]

-readPercentage : int

+TrainingComponentInstances()

+startLoad()

+run()

+start()

TariningComponentInstances

-keySpace : string

-tablename : string

-rowNum : int

-columnNum : int

-stringLength : int

-nodeIP : string

-session: Session

-readPercentage : int

Figure 4.6: Core Classes for the Training Component’s Workload Generation

• Symbolic regression [KSV08].

The advantage of using the regression analysis is that it is simple and straight forward
with little or no requirements for pre-configuration. The other option is using symbolic
regression technique, which by using genetic programming considers and evaluates larger
number of models compared to the first option. It allows model-complexity control by
allowing the configuration of the model’s mathematical operations. The disadvantage
of using symbolic regression is its higher overhead. The search space can be explicitly
restricted by limiting the mathematical operations that can be used in generating the
model and by explicitly setting the genetic algorithm to stop after a specific time. This
leads us to the second disadvantage of the symbolic regression technique: its complexity
regarding the large number of parameters that should be pre-configured and have a
direct effect on the form and validity of the generated model.

Both considered alternatives for the learning step have the following implementation
options:

• Libraries implemented in Java, such as the Apache Commons Mathematics library11.

11Apache mathematics library available at: https://commons.apache.org/proper/commons-math/

https://commons.apache.org/proper/commons-math/

4.2. Implementation 77

 Loop:numOfThreads

a:TrainingComponentInstance

wlClient:TraingingComponentIns

tance

new [numOfThreads]

con:Connection
new Connection()

connect(IP)

getSession()

wlClient[i]:TrainingComponentI

nstance

TrainingComponentInstance()

close()

Figure 4.7: Sequence Diagram of the startLoad Method

78 4. Prototype Implementation

1 SequenceGenerator sequence=new SequenceGenerator();
2 for (int i = 1; i < rowNum; i++) {
3 //create id value
4 long idValue=sequence.getnext();
5 String query="INSERT INTO "+keyspace+" . "+tableName+" (id ";
6 for (int j = 1; j < columnNum; j++) {
7 query=query+" , "+"column"+j;
8 }
9 query=query+") VALUES ("+idValue;

10 for (int j = 1; j < columnNum; j++) {
11 query=query+" , ’ "+RandomStringGenerator.

generateRandomString(stringLength,
RandomStringGenerator.Mode.ALPHANUMERIC)+" ’ "}

12 } //for end
13 querym=query+ ") ; ";
14 session.execute(querym);

Listing 4.5: Minimal Java Code for Write Operation

• External tools, such as Matlab12, Maple13, and R14.

In the first option, there are several statistical mathematical libraries with different
ranges of supported regression techniques. Using this option allows centralized control
of framework functionalities and redundancy free representation of models and data.
However it provides less options than external tools.

The use of an external tool enables accessibility to a wide range of machine learning
techniques. It is also possible to perform the prediction step in the external tool and then
retrieve the result to the framework. To integrate an external tool with our framework,
the following steps are performed:

• Initiating an external tool engine for the current session.

• Preparing and exporting data.

• Calling data analysis methods of the external tool and retrieving the result.

For our implementation, we deploy regression analysis techniques in an external tool.
Many tools provide libraries to connect to Java such as Maple OpenMaple library15 and
R rJava library16. We choose R since it is open source, popular, and supports a wide
variety of machine learning techniques. An excerpt example code for operating R from
Java is illustrated in Listing 4.6.

12Matlab available at: http://de.mathworks.com/products/matlab/
13Maple available at: http://www.maplesoft.com/compare/mathematica analysis/
14R available at: https://www.r-project.org/
15OpenMaple library available at: http://www.maplesoft.com/support/help/Maple/view.aspx?

path=OpenMaple/Java/API
16rJava available at: https://cran.r-project.org/web/packages/rJava/index.html

http://de.mathworks.com/products/matlab/
http://www.maplesoft.com/compare/mathematica_analysis/
https://www.r-project.org/
http://www.maplesoft.com/support/help/Maple/view.aspx?path=OpenMaple/Java/API
http://www.maplesoft.com/support/help/Maple/view.aspx?path=OpenMaple/Java/API
https://cran.r-project.org/web/packages/rJava/index.html

4.2. Implementation 79

1 public class R {
2 public static JRIEngine rEngine;
3 public R() throws REngineException{
4 // Start R session
5 Rengine re = new Rengine (new String [] {"−−v a n i l l a "},

false, null);
6 // Check if the session is working.
7 if (!re.waitForR()) {
8 return;
9 }

10 this.rEngine=new JRIEngine(re);
11 }
12
13 public JRIEngine getR(){
14 return this.rEngine;
15 }
16
17 public static void main(String[] args) throws REngineException,

REXPMismatchException {
18 R r = new R();
19 Rengine rEngine = r.getR();
20 //Preparing and Inserting Data to R
21 rEngine.assign("Latency", prepareLatencyAvgArray(trainingDataFile);
22 rEngine.assign("writeRead", preparewRArray(trainingDataFile));
23 rEngine.assign(" c l u s t e r S i z e ", prepareClusterArray(trainingDataFile));
24 //Preparing Dataframe
25 String cmde=
26 R.makeRstmtDataframe(" df ","writeRead"," c l u s t e r S i z e ","Latency");
27 rEngine.parseAndEval(cmde);
28 //Performing Regression
29 REXP result=
30 r.rEngine.parseAndEval(lm(Latency ~ writeRead + clusterSize),df);

Listing 4.6: Excerpt Java Code for Using R with Java in our Framework

Other than the mentioned advantages and disadvantages, we will discuss, in the next
chapter, the validity of this option and its limitations with regards to our use case.

The generated performance models are used by the decision component to find the op-
timal cluster configuration that achieves the workloads’s optimization goals and fulfills
their performance thresholds. In the following section, we provide details about the
search algorithms deployed in our decision component.

80 4. Prototype Implementation

4.2.4 Decision and Search Algorithm

As a basic step for the tuning process, we focus on finding the optimal allocation of
nodes for each workload while minimizing the sum of latency values for all workloads.
In order to achieve that, we modeled the latency in relation to workload characteristic:
write/read ratio and cluster configuration: number of nodes.

Algorithm 2: The Search Approach using Brute-Force

Data: WL ={w1, .., wi} Set of Workloads
wi =< wr, r> Tuple of Workload Characteristics
C ={cs} Set of Cluster Configuration Knobs
Result: Pairs of <wli, ni> that achieve minimum latency

1 Perform threshold-based search space pruning
2 Perform infrastructure-based search space pruning
3 Find candidate solutions space S
4 for each candidate in S do
5 for each workload in candidate do
6 Calculate latency value based on the model
7 end
8 Assign minimum latency
9 Assign sum of latency as candidate latency

10 if candidate latency<minimum then
11 Assign Candidate as solution
12 Assign new minimum latency

13 else
14 if candidate latency=minimum then
15 Choose one with minimal number of nodes
16 Assign Candidate as solution

17 end

18 end

19 end

Based on that, the concrete problem that our implementation solves, is a specialization
of the problem defined in Section 3.2.1 on page 41, and is defined as follows:

For each workload w ∈ WL, find the number of nodes nw that achieves:

∑
w∈WL

latency(w, nw)→ min

subject to

∑
w∈WL

nw ∈

[∑
w∈WL

kw, .., N

]

4.2. Implementation 81

where kw is the data replication factor for workload w, and N is the total number of
nodes in the infrastructure.

The input for the decision component is workloads’ characteristics represented by read-
/write ratio, cluster configuration represented by its size, and the model generated from
data analysis and modeling step.

To perform the search for an optimal solution, we consider two options:

• Brute-force [HDBD09].

• Genetic algorithms [Mit96, HDBD09].

Based on which, we modify our initial Algorithm 1, presented in Section 3.2.6. The
outline for both algorithms is illustrated in Algorithm 2 on the preceding page and
Algorithm 3 on the following page, in consecutive order.

These two algorithms are a specialization (regarding optimization goal) and an extension
(regarding steps 4,..,8) of Algorithm 1. Compared to Algorithm 1, the cost function is
represented here by the latency value of the storage system. Consequently, the objective
function is calculated by the sum of latency for all workloads and should be minimized.

Brute-force Approach Genetic Algorithm Approach

Deterministic yes no
Overhead proportional to search space configurable
Solution optimal depends on num of generations

Table 4.1: Comparison of Algorithms Considered for the Decision Component

In the brute-force based approach, Algorithm 2, the first step is search space prun-
ing. In our implementation, the search space pruning is based on available infrastruc-
ture and workloads’ performance thresholds as already defined in Section 3.2.6.1. The
search space for the number of nodes starts by the sum of data replication factor of all
workloads and ends with the maximum number of nodes available in the infrastructure.

After the search space is defined, the brute force algorithm iterates over model-based
predicted values of latency to identify the number of nodes that would achieve the
minimal sum of latency for all workloads. In the case of multiple options achieving the
minimal latency, the solution with minimum sum of assigned nodes is given advantage.
The brute-force algorithm is easy to implement and will always find the solution for
this use case. However, its cost is proportional to the number of candidate solutions.

In the genetic algorithm based approach, Algorithm 3, the framework starts by an
initial candidate solution, which is generated by an even distribution of nodes onto

82 4. Prototype Implementation

workloads. For a specified number of generations, mutations on the initial candidate
are generated by random increase/decrease of the number of nodes assigned to each
workload. For each candidate solution in the candidates’ pool of a generation, the nodes
number should adhere to the conditions of individual workload’s replication factor and
the global sum that should be less than N .

The fitness of a candidate is calculated based on model-predicted latency values. Just
like the previous approach, a candidate with the minimum sum of nodes is given ad-
vantage. The genetic algorithm terminates after a configurable number of generations.
It can also be set to stop after a certain amount of time. The overhead of this approach
can be configured by the number of generations and the pool size for each generations.
This approach does not guarantee an optimal solution. However, its cost is typically
small compared to the brute-force approach. Table 4.1 includes comparison of the two
approaches. In the next chapter, we provide more insight into this comparison.

Algorithm 3: The Search Approach using Genetic Algorithm

Data: WL ={w1, .., wi} Set of Workloads
wi =< wr, r> Tuple of Workload Characteristics
C ={cs} Set of Cluster Configuration Knobs
Number of generations, Pool size
Result: Pairs of <wli, ni> that achieve minimum latency

1 Create an initial candidate solution with even distribution of nodes
2 for each workload in candidate do
3 Calculate latency value based on the model
4 end
5 Assign sum of latency as candidate-Latency
6 Assign candidate latency as minimum
7 for each generation do
8 Create candidates pool: mutations on nodes number assigned for workloads
9 for each candidate in the pool do

10 Calculate candidate latency
11 if candidate latency<minimum then
12 Assign Candidate as solution
13 Assign new minimum latency

14 else
15 if candidate latency=minimum then
16 Choose one with minimal number of nodes
17 Assign Candidate as solution

18 end

19 end

20 end

21 end

4.3. Summary 83

4.3 Summary

In the previous sections, we reported on the prototype implementation of our framework.
First, we provided an overview of technologies and systems, which were used in order
to implement the framework and later conduct the evaluation. The framework was
implemented in Java, where Cassandra was used as example of the underlying Cloud
storage system.

As a basic step for the tuning process, our implementation focused on modeling the
performance of the underlying storage system characterized by latency in relation to
workloads’ and cluster configuration criteria. For that purpose, we implemented the
training component to perform several training phases that include different workloads
and different cluster configurations. Then we provided details about the steps involved
in the training phase, which include: preparing the storage system cluster, creating the
database, generating workloads, and collecting performance metrics.

After that, we discussed different alternative for the data analysis and modeling step.
For our implementation, we deployed regression analysis techniques in an external tool.

Last, we presented two alternative algorithms for the decision component: the brute-
force algorithm and the genetic algorithm. We discussed both algorithms and their
differences. In the next chapter, we evaluate the validity of both algorithms based on
experimental results.

84 4. Prototype Implementation

5. Experimental Setup and
Evaluation

This chapter shares material with the ADBIS15 paper “A Self-Tuning
Framework for Cloud Storage Clusters” [MSS15]

In this chapter, we present the evaluation of our framework in the offline mode. We
start by giving an overview of the experimental setup. This includes the underlying
infrastructure, and the settings for the storage system cluster. After that, we introduce
the training workloads, training data, and the result from the modeling process. At the
end, we discuss alternatives of the search algorithm for the decision component.

5.1 Experimental Setup

In this section, we introduce the hardware and software configuration of the infrastruc-
ture and the storage system, which are used to conduct the experiments.

5.1.1 Infrastructure

First, we provide an overview of the needed infrastructure. To conduct our experiments,
we require a network of machines (computers). For that, we create a network of 15
virtual machines using VMware ESXi1, which is a bare-metal hypervisor. VMware runs
directly on the hardware without a host operating system. The settings of the virtual
machines and the used infrastructure are listed in 5.1b on the next page and 5.1c on
the following page consecutively.

Since the aim is to model the storage system performance, it is best to run the framework
on machines different from the ones that are used for the storage system deployment.

1VMware available at: https://www.vmware.com/products/vsphere/features.html

https://www.vmware.com/products/vsphere/features.html

86 5. Experimental Setup and Evaluation

Nodes running Training

Component Instances

Training Component

Manager

Workload Operations

Nodes running

Cassandra Cluster

Configuration Operation

.

.

.

(a) Deployment on Network of Virtual Machines

OS Ubuntu: 13.04 kernel Version: Linux 3.8.0-35-generic-pae
CPU: Intel(R) Xeon(R) E5-2650 2.00GHz 2 Cores Cache size: 20480 KB
Disk: 90.18 GB 7200RPM Memory: 8 GB
Network: 100 MBits Java Version: 1.7.0 25
Cassandra Version 1.2.13 Virtual machines for generating workload: 3
Replication factor: 3 Virtual machines for cluster deployment: 11

(b) Software and Hardware Configuration of the Virtual Machines

CPU: Intel(R) Xeon(R) E5-2650 2.00GHz 8 Cores Cache size: 20480 KB
Total number of physical machines: 8 Memory: 34 GB
Network: 100 MBits VMware Version: 5.5.0

(c) Hardware Configuration of the Physical Machines

Figure 5.1: Infrastructure used for the Prototype Deployment

A number of the virtual machines is used for the framework deployment. The training
component manager is installed on one machine and it controls the initiation of the
training component instances on other machines. The number of machines that are
used for the training component instances varies from one workload to the other and
depends on the required throughput. The remaining and larger part of the network is
used for the deployment of the storage system cluster. The framework deployment on
infrastructure is illustrated in 5.1a.

5.1.2 Cassandra Deployment

In our experiment, we use Cassandra version 1.2.13. The framework manager deploys
Cassandra automatically before each training phase according to the specified configura-
tion. We installed Cassandra on each of the nodes, which will participate in the training
phase. The framework manager starts a configuration operation which includes:

5.2. Experiments 87

• Manipulating the Cassandra yaml file, changing the values of the parameters
discussed in Section 4.2.1.1 on all the nodes that will participate in the cluster at
the corresponding training phase.

• Start up of a Cassandra instance, using shell script .\bin\cassandra.

Other Cassandra settings are left to the default values. At this stage, our goal is not to
tune Cassandra performance for a certain workload, but rather model its performance
with different parameters and different workloads. Such parameters will be varied and
the performance of the Cassandra cluster will be observed then with different workloads
to be able to generate a useful model.

5.2 Experiments

The workloads and data, which we used in our evaluation are synthetic. As already
mentioned in the implementation chapter, Cloud storage systems developers such as
Google and Yahoo! introduced such synthetic workloads to test the performance of
their systems [CST+10, CDG+08]. In the following sections, we introduce the results
of evaluating different aspects of the framework. The goals of the experimental and
evaluation phase are the following:

• Model the performance of the storage cluster.

• Evaluate the alternative regression techniques used for modeling.

• Evaluate the prediction power of the models.

• Evaluate the algorithms presented in Chapter 4: brute-force-based Algorithm 2,
and genetic-based Algorithm 3 as the search algorithm for the decision component.

• Evaluate the decision made by the framework.

5.2.1 Experiment Design

With the goal of modeling the performance of the database cluster with different cluster
sizes and different workloads, we designed the following experiments:

Varying the Number of Nodes

The number of nodes is the cluster configuration parameter, which will be one
of the independent variables in our model. Depending on the maximum number
of nodes that we have in our infrastructure 11, and the replication factor 3, the
framework varies the number of nodes in the cluster between 3 and 11. Each
training phase increases the number of nodes by one. In the case that the available
infrastructure allows larger number of nodes in the serving cluster, it is possible to
minimize the number of iterations of the training phase by increasing the number
of nodes between iterations by more than one.

88 5. Experimental Setup and Evaluation

Varying the Write/Read Percentage

The write/read percentage is the workload characteristic parameter, which will be
one of the independent variables in our model. In this case, the framework gen-
erates in each training phase a workload with a certain percentage of write/read
operations in each. Since we only use two kinds of operations in the workloads,
i.e. random read and random writes, the percentages is identified by the write
percentage and varies between 0 and 100. However, in our implementation we
support sequential read and writes so other workload mixes are possible.

Other workload criteria, such as the schema, consistency level, row size (which deter-
mines, together with request numbers, the data volume of the workload), and goal
throughput (concurrent accesses) are kept the same. As a performance metric, which
will be used as a dependent variable in our case, we monitored the latency of the system.
We consider the latency of the system for a whole workload.

Now that we have the outline for the experiments, which we are going to conduct, let
us take a look at the details of the generated training workloads and database.

5.2.2 Database

For our tests, we create a key-space with a replication factor of 3 (the typical replication
factor). This choice of replication factor leads to a minimum of 3 nodes for cluster size.
The other criteria that should be specified when creating the key-space is the placement
strategy of data replicas. In our case, since we are working on nodes within one data
center, we use the SimpleStrategy. If the deployment is going to take place in more than
one data center, the NetworkTopologyStrategy should be used as the data placement
strategy. The following statement is used to create the Cassandra key-space:

CREATE KEYSPACE TWkeyspace WITH replication={’class’ : ’SimpleStrategy’,

’replication_factor’ : 3}

The training component created a column family for each workload. We defined each
column family to be made of 20 columns, one of which is a key. The remaining columns
are defined as string values. The following statement was used to define the column
family:

CREATE TABLE TWkeyspace.TWtable (id int PRIMARY KEY, column1 TEXT,

column2 TEXT,..., column19 TEXT)

After creating the key-space and column family, the Cassandra cluster is ready for the
training workload.

5.3. Experimental Results 89

5.2.3 Training Workloads

We defined training workloads in our experiment as mix of random read and random
write operations. The write workload starts with an empty column family each time.
Randomly generated string values are inserted into the fields using the statement:

INSERT INTO TWkeyspace.TWtable(id,column2,.. ,column19)

VALUES(key,value1,..,value19)

For the read operations, we allow the specification of the data that should be written
before the actual workload. We generate data in the same manner used for the write
workload. For the read requests, we use select point queries that retrieve one row by
matching the key value. The following statement was used:

SELECT * FROM TWkeyspace.TWtable WHERE id=value

The search values, which are used in this query are generated using the same random
generator, which was used for generating the data in the write operation. The latency
of the Cassandra cluster is measured for a whole workload. That is, the time needed to
answer all the requests of the workload is calculated and reported to a file. We varied
the percentage of the write/read operations in the workloads. Our experiment included
the following mixes: W10/R90, W30/R70, W40/R60, W50/R50, W70/R30, W90/R10,
W100/R0, W0/R100.

The training component ran on dedicated machines in the same network as the machines
used for the data storage system installation. One machine ran the training component
manager, whereas 3 machines were used to run the training component instances. We
set the training component manager to start 5 Java clients on each of the 3 virtual
machines. Each of these Java clients started 10 threads. The performance of the
storage system is then measured by latency for the whole workload. The number of
requests was 525k per workload. 90% of the generated data was used to create the
prediction model, whereas the remaining 10% was used to validate prediction accuracy.
Data generated from the training phase is presented and analyzed in the coming section.

5.3 Experimental Results

In this section, we provide the result from the training phase. Then we list the used
modeling techniques and the result from the modeling phase. At the end, we illustrate
how the framework can be used in a use case example.

5.3.1 Training Data and Model Generation

90% of the data that resulted from the training phase is the input for the analytical
regression step. The data is of the form represented in the table 5.2b, which includes val-
ues of the measured latency. Figure 5.3 visualizes the change of latency of a Cassandra

90 5. Experimental Setup and Evaluation

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

3 4 5 6 7 8 9 10 11

L
a

te
n

cy
 m

s

Number of Nodes

W10R90

W50R50

W90R10

W70R30

W30R70

W100R0

W0R100

(a) Latency of the Cassandra Cluster in Relation to Nodes Number

Nodes 3 4 5 6 7 8 9 10 11

W10R90 32075 29090 26037 23866 423242 21523 20862 20531 20043
W50R50 28881 26450 22429 19909 19382 19417 18936 19099 19144
W90R10 24080 20403 19316 19471 19479 19969 19474 19675 20024
W70R30 25179 24035 19946 19794 19462 19134 19118 19154 19007
W30R70 29662 28559 25328 23511 20678 21070 20108 19675 19080
W100R0 25968 26178 22759 22008 19295 19396 19273 19091 19265
W0R100 33271 29415 27927 24777 23004 20576 20237 19501 19314

(b) Training Data for the Regression Process

Figure 5.2: Training Data: Latency of the Cassandra Cluster with Different Workloads

cluster with different cluster sizes and different workloads identified by the write/read
percentage. Cassandra was optimized by design for write operations [LM10], which ex-
plains why latency decreases for workloads with higher percentage of write operations
compared to those with higher percentage of read operations. Of course, other factors
affect the performance, such as the size of the cluster and the operations’ throughput.

Two things should be taken into consideration when analyzing training data in order
to generate a prediction model. The first one is that: “there is an infinite number of
models, which will perfectly fit a finite data set” [KSV08, Kee11]. The second one is
that: “All models are wrong, some are useful” [Box78, Box86]. What this means for
us is that there are definitely several models that would fit the training data set. The
question is then how to choose one that is, from one side, useful to guide the tuning
process and easily created, on the other side.

5.3. Experimental Results 91

Figure 5.3: Latency of the Cassandra Cluster in Relation to the Number of Nodes &
Write/Read Ratio

Consequently, we used a number of techniques to generate models that fit the training
data. The choice among the models then was made based on finding the one that
produces minimal prediction error [APB15]. The following regression techniques were
used in the regression process:

• Simple Regression.

• Polynomial Regression with several degrees.

• Exponential Regression.

As a result from the regression process using the cubic regression gives the best residual
standard deviation (i.e. difference between predicted and observed values) among the
tested techniques, with a slight difference from the quadratic regression. In Figure 5.4,
we illustrate the surface representing the resulted cubic model versus the data points
representing the input measurements.

To validate the result from the regression process, we test the models’ prediction power
against the 10% of the training data, which was not used in its generation, and calculate
the mean absolute error percentage. The cubic model gives high prediction accuracy
of 96.4%. In Figure 5.5, we illustrate how the different considered models act. In this
figure, we visualize for a workload with a write/read percentage W40/R60, as an exam-
ple, the result from prediction and measurements. The curves represent the behavior
as predicted using different models. The data points represent the real measurement
of the Cassandra cluster latency when applying the workload. Both polynomial and

92 5. Experimental Setup and Evaluation

Figure 5.4: Input Measurements vs. Regression Analysis Result

(a) Simple Regression (b) Polynomial Regression Quadratic

(c) Polynomial Regression Cubic (d) Exponential Regression

Figure 5.5: Measurements vs. Prediction of Different Regression Techniques

5.3. Experimental Results 93

exponential regression techniques model the performance within the tested range of
cluster size.

The result from our experiment and evaluation shows that simple regression techniques
are successful to provide a model, which characterizes the performance with high pre-
diction accuracy. Such a model (even with the low number of independent parameters)
can be beneficial to avoid allocating resources from which insignificant benefit is gained
on the database cluster performance. Our training component allows specifying several
workloads parameters, which allows extending the models. This would mean expand-
ing the training phase to iterate (vary) the values of any new parameter that would be
included.

5.3.2 The Search Algorithm Alternatives

For our evaluation, we want to search for the optimal alignment of sub-clusters that
achieves minimal latency for workloads. In other words, the search algorithm is used
to find the optimal cluster size that should be allocated to each workload, achieving a
minimal latency for all.

In this section, we discuss the brute-force-based Algorithm 2, and the genetic Algo-
rithm 3 validity as a search approach for the decision component. To evaluate both
algorithms, we generate data representing the latency value for up to 5 workloads with
cluster size that varies from 3 to 100 nodes. This data is used as input for both algo-
rithms, which are evaluated with respect to accuracy and overhead.

Brute-force

1

10

100

1000

10000

100000

1000000

10000000

100000000

30 40 50 60 70 80 90 100

R
u

n
 T

im
e

m
s

Number of Nodes

3 Workloads

4 Workloads

5 Workloads

Figure 5.6: Runtime for the Decision Component using Brute-force

94 5. Experimental Setup and Evaluation

We use the brute-force algorithm to iterate over generated values of latency for
considered workload/workloads with the different possibilities of cluster size. The
brute-force algorithm is implemented in Java and run on a Windows 7 PC with
4GB memory, and 3GHz Intel CPU. Each run, was repeated 20 times and the av-
erage run time was considered. In Figure 5.6, we show the runtime of the decision
component with different numbers of nodes and different number of workloads. As
the measured runtime suggests, the search problem is polynomial to the number
of nodes and exponential to the number of workloads. In the case of 5 workloads
and 80 nodes, it takes the brute-force, to come up with the solution, 45 minutes.
For a larger number of workloads, the run time exceeds an hour.

Genetic Algorithm

For the genetic algorithm, we start with an even distribution of nodes on work-
loads. While keeping the minimum number of nodes assigned to a workload not
less than its replication factor, and the sum of nodes assigned to all workloads not
more than all nodes, we randomly change the number of nodes. The execution
time of the genetic algorithm is controlled by specifying the number of genera-
tions. For that reason, we focus on evaluating the quality of result of our approach
while varying the number of generations. In Figure 5.7, we illustrate the result
from running the genetic algorithm on 5 workloads with 100 nodes. We varied
the number of generations from 10 to 100 and observed the value that resulted
from the genetic algorithm compared to its initial value, and the optimal value.
With 100 generations, we get a near optimal solution with an average runtime
that does not exceed tens of ms.

The brute-force approach is straight forward and easy to implement. It always finds the
optimal model-based solution. However, the disadvantage with brute-force is its cost,

50

60

70

80

90

100

110

120

10 20 30 40 50 60 70 80 90 100

L
a

te
n

cy
 s

Number of Generations

Latency with Even Distribution

Latency with Genetic Algorithm

Latecny with Brute-force

Figure 5.7: Genetic Algorithm Result

5.3. Experimental Results 95

15

17

19

21

23

25

27

29

31

33

3 4 5 6 7 8 9 10 11

L
a

te
n

cy
 S

ec

Number of Nodes

W10R90

W50R50

W90R10

(a) Measured Latency Characteristics for Different Workloads

Number of Nodes 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Nodes for W10R90 3 3 4 3 4 5 5 6 6 8 8 9 9 10 11
Nodes for W50R50 3 3 3 5 5 5 6 6 6 6 6 6 7 7 7
Nodes for W90R10 3 4 4 4 4 4 4 4 5 4 5 5 5 5 5

Sum of Latency sec 85 81.4 78.3 74.9 71.9 68.9 66.3 64.2 63.1 61.8 60.8 60.1 59.6 59.2 58.7

(b) Optimal Allocation of Nodes to Workloads

Figure 5.8: Optimal Allocation of Nodes for Three Workloads

which is proportional to the search space. In our scenario, the search space is likely
to grow especially when the models are extended with other workload, cluster, and
storage system characteristics. Brute-force approach can be enhanced with dynamic
programming. Dynamic programming approach saves processing time at the cost of
more memory/storage space consumption [LM07].

The genetic algorithm approach that we used, finds a near optimal model-based so-
lution in a small runtime compared to the brute-force. However, the algorithm that
we used involves only the cluster size problem and needs extension to include other
characteristics of an optimal cluster configuration.

5.3.3 Use Case Example

As a use case, we consider three workloads: read-heavy: 10% write and 90% read
(W10R90), equally-mixed: 50% write and 50% read (W50R50), and write-heavy 90%
write and 10% read (W90R10). Each workload involves 1.2 million request and works
on a column family of 20 columns of type string.

The optimization decisions that can be made using our framework are:

• Finding the optimal cluster size for a single workload, indicated by minimum of
latency.

96 5. Experimental Setup and Evaluation

55

60

65

70

75

80

85

90

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

L
a

te
n

c
y

 S
ec

Number of Nodes

Latency Based on Framework Suggestions

Optimal Latency

Figure 5.9: Framework Suggestion vs. Optimal Latency

• Creating an optimal setup of sub-clusters for all workloads, indicated by a global
minimum of latency, and within resources restrictions.

We consider the second optimization task of using the framework to guide the process
of finding the optimal allocation of nodes for the three workloads while achieving a
minimal latency for all.

For a maximum of 23 nodes that we can allocate for the three workloads, the framework
takes an average of less than 20 millisecond to find the solution of: 11 nodes for the first
workload, 7 nodes for the second workload, and 5 for the third workload. Table 5.8b
on the preceding page illustrates examples of the of optimal sub-cluster allocation for
different maximum number of nodes. The sum of the overall latency was used as an op-
timization goal, though different aggregation functions are conceivable. For illustration
purposes, the latency of the the three workloads is visualized in 5.8a on the previous
page.

To evaluate the quality of the framework decision of optimal allocation of nodes, we
run the workloads and measured the latency with the different cluster sizes. The sum
of latency of workloads based on the framework suggestions compared to the optimal
possible sum of latency is illustrated in Figure 5.9. As the figure show, the framework
provides a near optimal decision of nodes allocation for the three workloads.

5.4 Summary

In the previous sections, we provided an overview of the used infrastructure and the
Cassandra deployment for our experiments. A cluster of 11 virtual machines was ded-

5.4. Summary 97

icated for Cassandra deployment. Another 4 machines were used for the framework
deployment and workloads generation.

To generate the training data, training workloads with varied percentages of write/read
operations were generated while monitoring the latency of Cassandra for a whole work-
load. In each training phase the size of the dedicated cluster for the Cassandra deploy-
ment was varied between a minimum of 3 (the replication factor) and a maximum of 11
(the available nodes). 90% of the collected data was analyzed using different regression
analysis techniques. The prediction power of the models was then measured using the
remaining 10% of the data. The result from this phase shows that simple regression
techniques are successful to provide a model which characterizes the performance with
high accuracy.

Additionally, we evaluated the brute-force and the genetic-based algorithms as alterna-
tives for the decision component. For that we generated data representing the latency
value for up to 5 workloads with cluster size that varies from 3 to 100 nodes. This
data was used as input for both algorithms, which we evaluated regarding result value
and overhead. Though the brute force algorithm always finds the optimal solution,
its overhead grows proportionally with the search space. The genetic algorithm based
approach allows minimizing the overhead. However, the accuracy of the result depends
on the number of generations.

Last, we provided a use case example for our framework. In this example, we applied
Cassandra and used the framework for the problem of assigning an optimal number
of nodes to various workloads running on sub-clusters to achieve the minimum overall
latency.

98 5. Experimental Setup and Evaluation

6. Conclusion and Future Work

With the design and implementation of our framework, we improved the state of the
art of (self-)tuning for Cloud data storage clusters. We demonstrated the benefit of
the proposed framework in an experimental evaluation. Nevertheless there are still
many aspects that can be improved for the overall framework and within the presented
approaches.

In this chapter, we provide a summary of the previous chapters and outline the contri-
bution of the thesis. Then, we introduce possibilities of future work.

6.1 Summary of the Dissertation

Cloud storage systems are increasing in popularity and complexity. Though these sys-
tems are designed to support self-management properties, such as elasticity, and avail-
ability, there is still a number of decisions to be made to actually fit the requirements
of given applications to provide suitable performance. Because of the typical shared
nothing architectures with data partitioning and replication, some performance aspects
are addressed for the overall system. Nevertheless, the typical multi-layered distributed
architecture of several component systems adds complexity to the tuning tasks. More-
over, if there are several applications with different and possibly changing workloads,
using the same data storage cluster, there is little chance to tune for a specific ap-
plication. Within the aforementioned scenario, we defined the tuning-problem as the
following:

To find a Cloud storage system cluster configuration c out of a set of possible configu-
rations CC that minimizes (assuming a standard form of the problem) the aggregated
costs for all workloads w of a set of workloads WL that need to be supported by the
overall cluster while still fulfilling their performance thresholds.

opt = minimize
c∈CC

Γ
w∈WL

cost(w, cw)

100 6. Conclusion and Future Work

Gamma Γ represents an aggregation function suitable to the given cost components and
the considered optimization goals, such as average, and sum.

To solve this problem, we introduced a self-tuning framework. This framework depends
on predicting the performance of the underlying storage system in order to choose the
cluster configuration that would achieve the optimization goals of all workloads.

We defined the input of the framework to be workload characteristics, infrastructure
information, and optimization goals. The output is then defined as pairs of workload
and storage cluster configuration. In order to predict the performance, we design the
framework to build predictive models of performance in relation to infrastructure and
workload characteristics. To achieve that, we chose the empirical data-driven approach
for building predictive models.

From the architectural point of view, our framework consists of the following compo-
nents:

• Training component: responsible for generating statistical data about the storage
systems performance with different workloads and different cluster configurations.

• Cost estimation component: responsible for analyzing the training data using
machine learning techniques in order to build a predictive model.

• Decision component: responsible for finding the cluster configuration that would
achieve the optimization goals of the workloads based on model predicted values.

• Monitoring/refinement component: responsible for monitoring the performance
and triggers a remolding process when the prediction model fails to provide the
required accuracy.

• Knowledge-base: responsible for storing information for re-use by the framework.

The framework prototype is implemented and evaluated in the offline mode. Offline
tuning mode allows informed configuration decisions and leads to better resource provi-
sioning. The monitoring/refinement component, in this mode, is disabled. The tuning
process, in this case, starts by a training phase that generates statistical data for cre-
ating the cost/performance models.

In our implementation, the training component is designed to run different training
phases based on user-defined XML settings file. The current implementation supports
the automatic generation of workloads containing mixes of random/sequential read, and
write operations. After the training phase, gathered data is aggregated and analyzed
to create the cost estimation models.

For the data analysis and modeling step, our implementation supports several regression
analytics techniques. Generated models are evaluated based on their prediction power
and the model with the lowest error rate is chosen.

6.2. Future Work 101

Later on, the decision component finds the optimal nodes allocation for a set of input
workloads while minimizing the sum of latency values for all workloads. In order to
search for the optimal workload configuration, we discussed two approaches: brute-force
based approach, and genetic-algorithm based approach.

For the evaluation of our framework, we performed several training phases where the
cluster configuration and workload criteria were varied. We varied the number of nodes
in Cloud storage cluster between the data replication factor and the maximum number
of nodes in the available infrastructure. The workload and data that we used was
syntactically generated by our framework and include varied mixes of random write
and read operations.

We summarize the contribution of the thesis in the following:

• As a precondition for the proposed framework, we relate tasks of (self-)tuning to
layers and sub-clusters within typical Cloud storage architecture. We define a
guideline for typical Cloud storage system (self-)tuning processes.

• We build a training component that automates the process of testing and mon-
itoring a Cloud storage cluster with different configurations and different work-
loads. This component generates training data needed to model the performance
of Cloud storage cluster and can be used as a benchmark.

• We build a cost estimation component to predict performance metrics based on
the statistical data driven approach. Our results show that typical regression
analytic techniques provide good results.

• Based on measured and/or modeled performance of applications, we designed
a decision component and evaluated two search algorithms; brute-force and ge-
netic algorithm. Though the brute-force provides the optimal solution, its cost
grows proportionally with the search space. Our genetic algorithm based approach
provided near optimal solution with a smaller cost compared to the brute force
approach.

• We address the essential problem of tuning the size of (sub-)clusters of the targeted
workloads. Our framework supports creating an optimal setup of sub-clusters for
all workloads, indicated by a global minimum of latency, and within resources
restrictions.

6.2 Future Work

As more application exhibit unpredictable workloads, especially for Cloud-based data
services, the (self-)tuning of storage systems is dramatically gaining importance [BCW09].
Moreover, the database systems and workloads have become so complex that tuning
tools and self-management capabilities are not only desirable but necessary [CW09b].

102 6. Conclusion and Future Work

During our work on a self-tuning framework for Cloud storage clusters, we came across
many opportunities to extend the research in further directions. However, because of
limited resources and time, we focused on the described area of the wide spectrum of
possibilities. In this section, we provide an outline of possible future research directions
in the following points:

Online refinement: our current implementation supports the framework offline mode.
An important future direction is to implement the monitoring/refinement com-
ponent to enable the model refinement and allow the framework to be reactive to
workload changes.

Further performance metrics: in our implementation, we focused on minimizing
the average latency of the system for a whole workload. We plan to extend our
framework to support further performance metrics. A discussion of the require-
ments and possibilities of integrating other metrics (electricity consumption, and
monetary costs) was presented earlier in the thesis.

Support multi-objective tuning process: this allows finding the optimal cluster
configuration in the existence of tradeoff between contradicting goals, such as
minimizing the cost e.g., energy consumption, while maximizing performance e.g.,
throughput. This requires extending the decision component with multi-objective
optimization techniques.

Extend the model with further tuning knobs: our framework, by design, sup-
ports extending the model with several tuning knobs. This would lead to further
research on different points. First, the modeling process should be revisited to
verify if the used regression analysis techniques are sufficient. Second, the gener-
ated models should be analyzed to predict bottlenecks and identify tuning knobs,
whose increase/decrease would optimally enhance the performance and minimize
the costs.

Investigate the correlation between the tuning knobs: in our implementation,
we treat tuning knobs as independent variables. However, the decisions made for
one tuning knob can affect the possibilities and decisions that are made on other
tuning knob. Thus, we find systematic research study on the correlations between
the tuning knobs is required.

Extend the decision component and the search algorithm: as a result from ex-
tending the prediction model with further tuning knobs, the search space for the
decision component grows. Thus, any brute-force approach would cause unaccept-
able overhead. The genetic algorithm approach presented in our work, provides a
starting point for further extension.

Workload characterization: workload characteristics are assumed to be input for
the framework in the design phase before deployment. However, workload char-
acteristics are likely to change over time. We plan to investigate the area of

6.2. Future Work 103

automatic identification and prediction of workload changes and adapting the
underlying storage cluster according to the new needs.

Support for heterogeneous cluster nodes: our framework was designed with the
assumption that nodes in the underlying cluster/infrastructure are homogenous
with no difference in capabilities. This assumption is reasonable when using the
framework in the design phase of a deployment cluster. However, as systems
evolve, nodes with different computing/storage power are typically added. An
interesting extension of our work is to expand the performance models to take
nodes’ heterogeneity into consideration.

104 6. Conclusion and Future Work

A. Appendix

106 A. Appendix

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:vc=”http://www.w3.org/2007/XMLSchema−versioning”
elementFormDefault=”qualified” attributeFormDefault=”unqualified”
vc:minVersion=”1.1”>

<xs:element name=”TCSettings”>
<xs:complexType>
<xs:sequence>
<xs:element name=”ClusterSetting”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Node” maxOccurs=”unbounded”>
<xs:complexType>
<xs:attribute name=”IPAdress”/>
<xs:attribute name=”dataFolderPath”/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name=”cName”/>
<xs:attribute name=”totalNodesNum” type=”xs:integer”/>
</xs:complexType>
</xs:element>
<xs:element name=”Database”>
<xs:complexType>
<xs:sequence>
<xs:element name=”table” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”column”>
<xs:complexType>
<xs:attribute name=”name”/>
<xs:attribute name=”dataType”/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name=”tName”/>
<xs:attribute name=”columnNum” type=”xs:integer”/>
<xs:attribute name=”rowNum” type=”xs:integer”/>
<xs:attribute name=”sizeMB” type=”xs:integer”/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name=”DPStrategy” type=”xs:string”/>
<xs:attribute name=”keySpace” type=”xs:string”/>

107

<xs:attribute name=”replicationFactor” type=”xs:integer”/>
</xs:complexType>
</xs:element>
<xs:element name=”TrainingWorkload”>
<xs:complexType>
<xs:attribute name=”repeat” type=”xs:integer”/>
<xs:attribute name=”measurementFolderPath” type=”xs:string”/>
<xs:attribute name=”randomReadPercentage” type=”xs:integer”/>
<xs:attribute name=”seqReadPercentage” type=”xs:integer”/>
<xs:attribute name=”randomWritePercentage” type=”xs:integer”/>
<xs:attribute name=”seqWritePercentage” type=”xs:integer”/>
<xs:attribute name=”requestNum”/>
</xs:complexType>
</xs:element>
<xs:element name=”TISettings”>
<xs:complexType>
<xs:sequence>
<xs:element name=”node” maxOccurs=”unbounded”>
<xs:complexType>
<xs:attribute name=”IPAdress” type=”xs:string”/>
<xs:attribute name=”clientNum”/>
<xs:attribute name=”threadsPerClient”/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Listing A.1: Schema Definition of the Training Component Settings

108 A. Appendix

<?xml version="1.0" encoding="UTF-8"?>

<TCSettings xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi:noNamespaceSchemaLocation=”bmSettingsSchema.xsd”>

<ClusterSetting cName=”ClusterOne” totalNodesNum=”11”>
<Node IPAdress=”192.168.144.11”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.12”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.13”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.14”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.15”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.16”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.17”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.18”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.21”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.22”

dataFolderPath=”/home/training/cassandra”/>
<Node IPAdress=”192.168.144.23”

dataFolderPath=”/home/training/cassandra”/>
</ClusterSetting>
<Database DPStrategy=”SimpleStrategy” keySpace=”sibaKS”

replicationFactor=”3”>
<table tName=”users”>

<column name=”id” dataType=”uuid”/>
<column name=”user name” dataType=”ascii”/>
<column name=”password” dataType=”ascii”/>
<column name=”email” dataType=”ascii”/>
<column name=”gender” dataType=”text”/>
<column name=”phoneNum” dataType=”text”/>
<column name=”country” dataType=”text”/>
<column name=”birthY” dataType=”bigint”/>
</table>

</Database>
<TrainingWorkload repeat=”20” seqWritePercentage=”100”

requestNum=”520000”
measurementFolderPath=”/home/training/measurement”/>

<TISettings>

109

<node IPAdress=”192.168.144.24” clientNum=”3”
threadsPerClient=”5”/>

<node IPAdress=”192.168.144.25” clientNum=”3”
threadsPerClient=”5”/>

<node IPAdress=”192.168.144.26” clientNum=”3”
threadsPerClient=”5”/>

</TISettings>
</TCSettings>

Listing A.2: Training Component Settings

110 A. Appendix

Bibliography

[Aba09] Daniel Abadi. Data Management in the Cloud: Limitations and Oppor-
tunities. Data Engineering Bulletin, 32(1):3–12, 2009. (cited on Page 25)

[ABPA+09] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silber-
schatz, and Alexander Rasin. HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical Workloads. In In Pro-
ceedings of Conference on Very Large Databases VLDB, pages 922–933.
VLDB Endowment, August 2009. (cited on Page 8, 13, and 65)

[ADEA12] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Data Manage-
ment in the Cloud Challenges and Opportunities. Morgan and Claypool
Publishers, 2012. (cited on Page 1, 7, and 9)

[APB15] Anestis Antoniadis, Jean-Michel Poggi, and Xavier Brossat. Modeling and
Stochastic Learning for Forecasting in High Dimensions. Springer, 2015.
(cited on Page 53, 75, and 91)

[Apl13] P. Aplin. Benchmarking Cassandra on Violin. Technical Report 1.0, Lo-
comatix inc, 2013. (cited on Page 32 and 34)

[ASS+09] Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar Farooq Min-
has, Peter Kokosielis, and Sunil Kamath. Deploying Database Appliances
in the Cloud. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 32(1):13–20, 2009. (cited on Page 26)

[BCD+11] Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan,
Gopal Kakivaya, David B. Lomet, Ramesh Manne, Lev Novik, and Tomas
Talius. Adapting Microsoft SQL Server for Cloud Computing. In Proceed-
ings of the 27th International Conference on Data Engineering (ICDE),
number 1255–1263, pages 1255–1263. IEEE, April 2011. (cited on Page 1)

[BCW09] Nicolas Bruno, Surajit Chaudhuri, and Gerhard Weikum. Encyclopedia
of Database Systems, chapter Database Tuning using Online Algorithms,
pages 741–744. Springer US, 2009. (cited on Page 101)

112 Bibliography

[BKKL09] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How
is the Weather Tomorrow?: Towards a Benchmark for the Cloud. In
Proceedings of the Second International Workshop on Testing Database
Systems, pages 9:1–9:6. ACM, June 2009. (cited on Page 30)

[BLL+14] Amir Hossein Borhani, Philipp Leitner, Bu-Sung Lee, Xiaorong Li, and
Terence Hung. WPress: An Application-Driven Performance Benchmark
for Cloud-Based Virtual Machines. In the 18th International Enterprise
Distributed Object Computing Conference (EDOC), pages 101–109. IEEE,
Sept 2014. (cited on Page 32 and 34)

[BMB12] Tom Bostoen, Sape Mullender, and Yolande Berbers. Analysis of Disk
Power Management for Data-Center Storage Systems. In Procedings of the
3rd International Conference on Future Energy Systems: Where Energy,
Computing and Communication Meet (e-Energy), pages 1–10. IEEE, May
2012. (cited on Page 24)

[Box78] George E. P. Box. Robustness in the Strategy of Scientific Model Building.
In the Proceedings of Robustness in Statistics Workshop, pages 201–236,
April 1978. (cited on Page 90)

[Box86] George E. P. Box. Empirical Model-Building and Response Surfaces. John
Wiey & Sons, 1986. (cited on Page 90)

[Bre10] Spell T. Brett. Pro Java Programming. Apress, 2010. (cited on Page 64)

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E
Gruber. Bigtable: A Distributed Storage System for Structured Data.
Transactions on Computer Systems, 26(2):4:1–4:26, 2008. (cited on Page 1,

7, 10, 11, 17, 18, 31, 33, 34, 64, 73, and 87)

[CLS10] Anderson J. Chris, Jan Lehnardt, and Noah Slater. CouchDB: The Defini-
tive Guide. O’Reilly Media, Inc., 2010. (cited on Page 15)

[CMH11] Yun Chi, Hyun Jin Moon, and Hakan Hacigümüş. iCBS: Incremental
Cost-based Scheduling Under Piecewise Linear SLAs. In Proceedings of
the VLDB Endowment, pages 563–574. VLDB Endowment, June 2011.
(cited on Page 26)

[CMT00] Maria Calzarossa, Luisa Massari, and Daniele Tessera. Workload Charac-
terization Issues and Methodologies. In Performance Evaluation: Origins
and Directions, pages 459–481. Springer, June 2000. (cited on Page 42)

[CRB+11a] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,
and Rajkumar Buyya. CloudSim: a Toolkit for Modeling and Simulation

Bibliography 113

of Cloud Computing Environments and Evaluation of Resource Provision-
ing Algorithms. Software: Practice and Experience, 41(1):23–50, 2011.
(cited on Page 29)

[CRB11b] Rodrigo N. Calheiros, Rajiv Ranjan, and Rajkumar Buyya. Virtual Ma-
chine Provisioning Based on Analytical Performance and QoS in Cloud
Computing Environments. In the International Conference on Parallel
Processing (ICPP), pages 295–304. IEEE, September 2011. (cited on

Page 29)

[CRS+08] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. PNUTS: Yahoo!’s Hosted Data Serving Platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008. (cited on

Page 1, 7, 14, and 31)

[CS93] Maria Calzarossa and Giuseppe Serazzi. Workload Characterization: a
Survey. Proceedings of the IEEE, 81(1136–1150):8, 1993. (cited on Page 42)

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing, pages 143–
154. ACM, June 2010. (cited on Page 30, 31, 32, 33, 34, 45, 68, 73, and 87)

[CW06] Surajit Chaudhuri and Gerhard Weikum. Foundations of Automated
Database Tuning. Online, April 2006. Published in ICDE 2006; Avail-
able online at http://icde06.ewi.utwente.nl/cwicde06.pdf; visited on June
24th,2015. (cited on Page 21 and 22)

[CW09a] Surajit Chaudhuri and Gerhard Weikum. Encyclopedia of Database Sys-
tems, chapter Database Tuning using Trade-off Elimination, pages 744–
748. Springer US, 2009. (cited on Page 22)

[CW09b] Surajit Chaudhuri and Gerhard Weikum. Encyclopedia of Database Sys-
tems, chapter Self-Management Technology in Databases, pages 2550–
2555. Springer US, 2009. (cited on Page 101)

[Cyr02] Michele Cyran. Oracle9i Database Concepts. Oracle Corporation, 2002.
(cited on Page 13 and 14)

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the ACM, 51(1):107–113,
2008. (cited on Page 11, 17, and 65)

http://icde06.ewi.utwente.nl/cwicde06.pdf

114 Bibliography

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. Symposium on Operating Systems Principles,
41(6):205–220, 2007. (cited on Page 1, 7, 10, 14, and 15)

[DMRT11] Thibault Dory, Boris Mej́ıas, Peter Van Roy, and Nam Luc Tran. Com-
parative Elasticity and Scalability Measurements of Cloud Databases. In
Proceedings of the Second Symposium on Cloud Computing SOCC. ACM,
October 2011. (cited on Page 32 and 34)

[DMT11] Kamal Dahbur, Bassil Mohammad, and Ahmad Bisher Tarakji. A Survey
of Risks, Threats and Vulnerabilities in Cloud Computing. In Proceedings
of the International Conference on Intelligent Semantic Web-Services and
Applications, pages 12:1–12:6. ACM, April 2011. (cited on Page 24)

[DPCCM13] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-
tional Databases. Proceedings of the VLDB Endowment, 7(4):277–288,
2013. (cited on Page 31)

[FE10] Borko Furht and Armando Escalante. Handbook of Cloud Computing.
Springer, 2010. (cited on Page 16 and 17)

[FGC+97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and
Paul Gauthier. Cluster-based Scalable Network Services. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles, pages 78–91.
ACM, Oct 1997. (cited on Page 17)

[FPR12] Michael Frank, Meikel Poess, and Tilmann Rabl. Efficient Update Data
Generation for DBMS Benchmarks. In Proceedings of the 3rd Interna-
tional Conference on Performance Engineering, pages 169–180. ACM,
April 2012. (cited on Page 31)

[FZRL08] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud Computing and
Grid Computing 360-Degree Compared. In Grid Computing Environments
Workshop, GCE 08, pages 1–10. IEEE, November 2008. (cited on Page 5)

[GGK+14] Andrea Gandini, Marco Gribaudo, WilliamJ. Knottenbelt, Rasha Osman,
and Pietro Piazzolla. Performance Evaluation of NoSQL Databases. In
Computer Performance Engineering. Springer, 2014. (cited on Page 30)

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
File System. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 29–43. ACM, Oct 2003. (cited on Page 1, 7, 10,

and 11)

Bibliography 115

[GLN+12] Íñigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and
Ricardo Bianchini. GreenHadoop: Leveraging Green Energy in Data-
processing Frameworks. In Proceedings of the 7th ACM European Con-
ference on Computer Systems, pages 57–70. ACM, April 2012. (cited on

Page 24 and 25)

[GR13] John Gantz and David Reinse. The Digital Universe in 2020: Big Data,
Bigger Digital Shadows, and the Biggest Growth in the Far East. In IDC,
February 2013. (cited on Page 16)

[GRH+13] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess,
Alain Crolotte, and Hans-Arno Jacobsen. BigBench: Towards an Industry
Standard Benchmark for Big Data Analytics. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, pages
1197–1208. ACM, June 2013. (cited on Page 31 and 34)

[Här87] Theo Härder. Realisierung von operationalen Schnittstellen. In Datenbank
Handbuch, pages 163–335. Springer, 1987. (cited on Page 9 and 20)

[HDBD09] Parag H. Dave and Himanshu B. Dave. Design and Analysis of Algorithms.
Pearson Education India, 2009. (cited on Page 81)

[Hel07] Pat Helland. Life beyond Distributed Transactions: an Apostate’s Opin-
ion. In Proceedings of the 3rd Biennial Conference on Innovative Data
Systems Research (CIDR), pages 132–142. ACM, Jan 2007. (cited on

Page 7)

[Hew10] Eben Hewitt. Cassandra: The Definitive Guide. O’ Reilly Media, 2010.
(cited on Page 14)

[Hil05] Jane Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 2005. (cited on Page 26)

[HLL+11] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma B. Cetin, and Shivnath Babu. Starfish: A Self-tuning System
for Big Data Analytics. In Proceedings of the 5th Biennial Conference on
Innovative Data Systems Research (CIDR), pages 261–272, January 2011.
(cited on Page 26)

[HMS11] David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data
Mining. MIT Press, 2011. (cited on Page 29 and 52)

[JCR11] Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic
Optimization for MapReduce Programs. Proceedings of the VLDB En-
dowment, 4(6):385–396, 2011. (cited on Page 66)

[Kee11] Karel J. Keesman. System Identification: An Introduction. Springer, 2011.
(cited on Page 29 and 90)

116 Bibliography

[KKR14] Jörn Kuhlenkamp, Markus Klems, and Oliver Röss. Benchmarking Scala-
bility and Elasticity of Distributed Database Systems. Proceedings of the
VLDB Endowment, 7(12):1219–1230, 2014. (cited on Page 33, 34, and 45)

[KN10] Gunnar Kreitz and Fredrik Niemela. Spotify – Large Scale, Low Latency,
P2P Music-on-Demand Streaming. In International Conference on Peer-
to-Peer Computing (P2P), pages 1–10. IEEE, Aug 2010. (cited on Page 64)

[Koz92] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992. (cited on Page 53)

[KSV08] Mark Kotanchek, Guido Smits, and Ekaterina Vladislavleva. Trustable
Symbolic Regression Models: Using Ensembles, Interval Arithmetic and
Pareto Fronts to Develop Robust and Trust-aware Models. In Genetic
Programming Theory and Practice V, Genetic and Evolutionary Compu-
tation Series, pages 201–220. Springer, 2008. (cited on Page 76 and 90)

[KYTA12] A. Khan, X. Yan, Shu Tao, and N. Anerousis. Workload Characterization
and Prediction in the Cloud: A Multiple Time Series Approach. In Net-
work Operations and Management Symposium (NOMS), pages 1287–1294.
IEEE, April 2012. (cited on Page 42)

[LLH+11] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He, and Xi-
aodong Zhang. YSmart: Yet Another SQL-to-MapReduce Translator. In
Proceedings of the 31st International Conference on Distributed Comput-
ing Systems, pages 25–36. IEEE, Jun 2011. (cited on Page 11)

[LM07] Art Lew and Holger Mauch. Dynamic Programming: A Computational
Tool. Springer, 2007. (cited on Page 95)

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized
Structured Storage System. Operating Systems Review, 44(2):35–40, 2010.
(cited on Page 10, 14, 18, 64, and 90)

[MBS12] Siba Mohammad, Sebastian Breß, and Eike Schallehn. Cloud Data Man-
agement: A Short Overview and Comparison of Current Approaches. In
In Proceedings of the 24th Workshop Grundlagen von Datenbanken, pages
41–46. CEUR-WS, May 2012. (cited on Page 5 and 9)

[MF10] Andréa Matsunaga and José A. B. Fortes. On the Use of Machine Learn-
ing to Predict the Time and Resources Consumed by Applications. In
Proceedings of the 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pages 495–504. IEEE, May 2010. (cited on

Page 29)

Bibliography 117

[MG11] Peter Mell and Timothy Granc. The NIST Definition of Cloud Computing
Recommendation of the National Institute of Standard and Technology.
online, September 2011. (cited on Page 1 and 5)

[MHCD10] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R.
Das. Towards Characterizing Cloud Backend Workloads: Insights from
Google Compute Clusters. SIGMETRICS Performance Evaluation Re-
view, 37(4):34–41, 2010. (cited on Page 42)

[Mit96] Melanie Mitchell. Computer Algorithms : Introduction to Design and
Analysis. MIT Press, 1996. (cited on Page 81)

[MSB13] Siba Mohammad, Eike Schallehn, and Sebastian Breß. Clustering the
Cloud: A Model for (Self-)Tuning of Cloud Data Management Systems.
In Proceedings of the 3rd International Conference on Cloud Computing
and Services Science (CLOSER), pages 520–524. SciTePress Science and
Technology Publications, May 2013. (cited on Page 37 and 63)

[MSS15] Siba Mohammad, Eike Schallehn, and Gunter Saake. A Self-Tuning
Framework for Cloud Storage Clusters. In 19th East-European Confer-
ence on Advances in Databases and Information Systems (ADBIS), pages
351–364. Springer, Sep 2015. (cited on Page 37, 63, and 85)

[Nee15] Nishant Neeraj. Mastering Apache Cassandra. Packt Publishing Ltd,
2015. (cited on Page xiv, 15, and 65)

[Nel91] Neal Nelson. A Benchmark Based on the Realities of Business. In The
Benchmark Handbook. Morgan Kaufmann, 1991. (cited on Page 73)

[OK12] Rasha Osman and William J. Knottenbelt. Database System Performance
Evaluation Models: A Survey. Performance Evaluation, 69(10):0166–
5316, 2012. (cited on Page xiii, 27, and 29)

[PCC+11] Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra, Ian Whalley,
Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé. Resource-aware
Adaptive Scheduling for Mapreduce Clusters. In Proceedings of the 12th
International Conference on Middleware, pages 187–207. Springer, De-
cember 2011. (cited on Page 26 and 66)

[PPR+09] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. A Comparison of
Approaches to Large-scale Data Analysis. In Proceedings of the SIGMOD
International Conference on Management of Data, pages 165–178. ACM,
July 2009. (cited on Page 33)

[PS15] Alexander Pokluda and Wei Sun. Benchmarking Failover Char-
acteristics of Large Scale Data Storage Applications: Cassandra

118 Bibliography

and Voldemort. Website, November 2015. Available online at
http://www.alexanderpokluda.ca/coursework/cs848/CS848%20Project%
20Report%20-%20Alexander%20Pokluda%20and%20Wei%20Sun.pdf.
(cited on Page 34)

[Raa93] Francois Raab. TPC-C - The Standard Benchmark for Online transac-
tion Processing (OLTP). In The Benchmark handbook for Database and
transaction Systems (2nd Edition). Morgan Kaufmann, 1993. (cited on

Page 73)

[RGVS+12] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor
Muntés-Mulero, Hans-Arno Jacobsen, and Serge Mankovskii. Solving Big
Data Challenges for Enterprise Application Performance Management.
Proceedings of the VLDB Endowment, 5(12):1724–1735, 2012. (cited on

Page 31, 32, 33, and 34)

[SB02] Dennis Shasha and Philippe Bonnet. Database Tuning: Principles, Exper-
iments, and Troubleshooting Techniques. Morgan Kaufmann, 2002. (cited

on Page 19)

[Sch12] Eike Schallehn. Database Tuning and Self-Tuing. Online, 2012. Lec-
ture Notes, available online at http://wwwiti.cs.uni-magdeburg.de/iti db/
lehre/advdb/SoSe2012/tuning.pdf; visited on June 24th, 2015. (cited on

Page xiii, 19, and 22)

[Ser91] Omri Serlin. The History of DebitCredit and the TPC. In The Benchmark
Handbook. Morgan Kaufmann, 1991. (cited on Page 73)

[SFKS10] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, 2010. (cited on Page 13 and 14)

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proceedings of the
26th IEEE Symposium on Mass Storage Systems and Technologies, pages
1–10. IEEE, May 2010. (cited on Page 1, 7, 10, and 15)

[SLMBA11] Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari. A
Survey of Large Scale Data Management Approaches in Cloud Environ-
ments. Communications Surveys & Tutorials, 13(3):311–336, 2011. (cited

on Page 6 and 7)

[SMA+08] Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth
Salem, Peter Kokosielis, and Sunil Kamath. Automatic Virtual Machine
Configuration for Database Workloads. Transactions on Database Systems
(TODS), 35(1):7:1–7:47, 2008. (cited on Page 29)

http://www.alexanderpokluda.ca/coursework/cs848/CS848%20Project%20Report%20-%20Alexander%20Pokluda%20and%20Wei%20Sun.pdf
http://www.alexanderpokluda.ca/coursework/cs848/CS848%20Project%20Report%20-%20Alexander%20Pokluda%20and%20Wei%20Sun.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/advdb/SoSe2012/tuning.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/advdb/SoSe2012/tuning.pdf

Bibliography 119

[SMK+11] Muhammad Bilal Sheikh, Umar Farooq Minhas, Omar Zia Khan, Ashraf
Aboulnaga, Pascal Poupart, and David J. Taylor. A Bayesian Approach
to Online Performance Modeling for Database Appliances Using Gaussian
Models. In Proceedings of the 8th ACM International Conference on Au-
tonomic Computing, pages 121–130. ACM, June 2011. (cited on Page 52)

[SMZ+10] Yingjie Shi, Xiaofeng Meng, Jing Zhao, Xiangmei Hu, Bingbing Liu, and
Haiping Wang. Benchmarking Cloud-based Data Management Systems.
In Proceedings of the Second International Workshop on Cloud Data Man-
agement, pages 47–54. ACM, Oct 2010. (cited on Page 25, 33, and 34)

[SSA08] Dimitri P. Solomatine, Linda M. See, and Robert J. Abrahart. Data-
Driven Modelling: Concepts, Approaches and Experiences. Practical Hy-
droinformatics, 68:17–30, 2008. (cited on Page xiii, 28, and 51)

[SSH08] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken
Konzepte und Sprachen. Mitp-Verlag, 2008. (cited on Page 9 and 20)

[The05] The IBM Development Team. An Architectural Blue Print for Au-
tonomic Computing. Online, June 2005. Available online at http://
www-03.ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV7.pdf; Vis-
ited on June 24th, 2015. . (cited on Page xiii, 22, 23, and 43)

[The15a] The Amazon Development Team. Amazon S3. Website, Apr 2015. Avail-
able online at http://aws.amazon.com/s3/; Visited on April 23rd, 2015.
(cited on Page 10)

[The15b] The Amazon Development Team. Amazon SimpleDB. Website, Apr 2015.
Available online at http://aws.amazon.com/simpledb/; Visited on April
23rd, 2015. (cited on Page 10)

[The15c] The Amazon S3 Development Team. Amazon S3 Design Requirements and
Principles. Website, June 2015. Available online at http://www.amazon.
com/gp/node/index.html?ie=UTF8&merchant=&node=16427261; Vis-
ited in June 4th, 2015. (cited on Page 7)

[The15d] The Cassandra Development Team. Cassandra Query Language. Web-
site, Apr 2015. Available online at https://cassandra.apache.org/doc/
cql3/CQL.html; Visited on April 23rd, 2015. (cited on Page 11)

[The15e] The Datastax Development Team. Cassandra Stress Tool. Website, May
2015. Available online at http://docs.datastax.com/en/cassandra/1.2/
cassandra/tools/toolsCStress t.html; Visited on May 13th, 2015. (cited

on Page 29)

http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
http://aws.amazon.com/s3/
http://aws.amazon.com/simpledb/
http://www.amazon.com/gp/node/index.html?ie=UTF8&merchant=&node=16427261
http://www.amazon.com/gp/node/index.html?ie=UTF8&merchant=&node=16427261
https://cassandra.apache.org/doc/cql3/CQL.html
https://cassandra.apache.org/doc/cql3/CQL.html
http://docs.datastax.com/en/cassandra/1.2/cassandra/tools/toolsCStress_t.html
http://docs.datastax.com/en/cassandra/1.2/cassandra/tools/toolsCStress_t.html

120 Bibliography

[The15f] The HBase Development Team. Apache HBase. Website, Apr 2015.
Available online at http://hbase.apache.org/; Visited on April 23rd, 2015.
(cited on Page 18 and 64)

[Tho00] Alexander Thomasian. Performance Analysis of Database Systems.
In Performance Evaluation: Origins and Directions, pages 305–327.
Springer, 2000. (cited on Page 27)

[TSJ+09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: A Warehousing Solution over a Map-reduce Framework.
Proceedings of the VLDB Endowment, 2(2):1626–1629, 2009. (cited on

Page 11, 13, 14, and 64)

[VKJ14] Carlos Vazquez, Ram Krishnan, and Eugene John. Cloud Computing
Benchmarking: A Survey. In Proceedings of the International Conference
on Grid Computing and Applications (GCA), pages 1–6. Springer, July
2014. (cited on Page 45)

[WLZZ14] Huajin Wang, Jianhui Li, Haiming Zhang, and Yuanchun Zhou.
Benchmarking Replication and Consistency Strategies in Cloud Serving
Databases: HBase and Cassandra. In Big Data Benchmarks, Performance
Optimization, and Emerging Hardware. Springer, 2014. (cited on Page 33,

34, and 45)

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Computing. In In
the Proceedings of INFOCOM, pages 1–9. IEEE, March 2010. (cited on

Page 25)

[XCZ+11] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu,
and Hakan Hacigümüş. Intelligent Management of Virtualized Resources
for Database Systems in Cloud Environment. In Proceedings of the 27th
International Conference on Data Engineering, pages 87–98. IEEE, April
2011. (cited on Page 26)

[XP09] Kaiqi Xiong and Harry Perros. Service Performance and Analysis in Cloud
Computing. In the World Conference on Services - I, pages 693 – 700.
IEEE, July 2009. (cited on Page 29)

[YKGS12] Rerngvit Yanggratoke, Gunnar Kreitz, Mikael Goldmann, and Rolf
Stadler. Predicting Response Times for the Spotify Backend. In Proceed-
ings of the 8th International Conference on Network and Service Man-
agement, pages 117–125. IEEE, October 2012. (cited on Page 27 and 30)

http://hbase.apache.org/

Bibliography 121

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State of
the Art and Research Challenges. Journal of Internet Services and Appli-
cations, 1(1):7–18, 2010. (cited on Page xiii, 6, and 24)

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, pages 15–28.
USENIX Association, April 2012. (cited on Page 65)

[ZKJ+08] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and
Ion Stoica. Improving MapReduce Performance in Heterogeneous Envi-
ronments. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, pages 29–42. USENIX Association,
December 2008. (cited on Page 66)

122 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den April 22, 2016

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 Goal of the Thesis
	1.2 Outline

	2 Background and Related Work
	2.1 Cloud Data Management
	2.1.1 Cloud Environment
	2.1.2 Cloud Requirements for Storage System
	2.1.3 Relational Database Management Systems as a Service
	2.1.4 Not only SQL Storage Systems

	2.2 Database Tuning and Self-tuning
	2.2.1 The General Process of System Tuning
	2.2.2 Database Tuning
	2.2.3 Database Self-tuning
	2.2.4 (Self-)Tuning Cloud Data Management Systems
	2.2.5 Related Work

	2.3 Performance Modeling
	2.3.1 Performance Modeling Approaches for Database Systems
	2.3.2 Data-driven Modeling Approach
	2.3.3 Related Work

	2.4 Summary

	3 (Self-)Tuning Cloud Storage Clusters
	3.1 Overview and Scope
	3.2 A Framework for Self-tuning Cloud Storage Clusters
	3.2.1 General Problem Statement
	3.2.2 Clustering the Cloud
	3.2.3 Framework Design
	3.2.4 Training Component
	3.2.5 Cost Estimation Component
	3.2.6 Decision Component
	3.2.7 Monitoring and Refinement Component

	3.3 Framework Usage
	3.3.1 Static/Offline Tuning during System Cluster Design
	3.3.2 Dynamic/Online Tuning during System Cluster Deployment
	3.3.3 Offline-Online Tuning Process

	3.4 Summary

	4 Prototype Implementation
	4.1 Required Technologies
	4.1.1 Implementation Environment
	4.1.2 Cloud Storage System

	4.2 Implementation
	4.2.1 Deployment of the Storage Cluster
	4.2.2 Workload Generation
	4.2.3 Data Analysis and Modeling
	4.2.4 Decision and Search Algorithm

	4.3 Summary

	5 Experimental Setup and Evaluation
	5.1 Experimental Setup
	5.1.1 Infrastructure
	5.1.2 Cassandra Deployment

	5.2 Experiments
	5.2.1 Experiment Design
	5.2.2 Database
	5.2.3 Training Workloads

	5.3 Experimental Results
	5.3.1 Training Data and Model Generation
	5.3.2 The Search Algorithm Alternatives
	5.3.3 Use Case Example

	5.4 Summary

	6 Conclusion and Future Work
	6.1 Summary of the Dissertation
	6.2 Future Work

	A Appendix
	Bibliography

