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Abstract
Random Forest (RF) is a widely used machine learning algorithm for crop type mapping. RF’s variable importance aids in
dimension reduction and identifying relevant multisource hyperspectral data. In this study, we examined spatial effects in
a sequential backward feature elimination setting using RF variable importance in the example of a large-scale irrigation
system in Punjab, Pakistan. We generated a reference classification with RF applied to 122 SAR and optical features
from time series data of Sentinel-1 and Sentinel-2, respectively. We ranked features based on variable importance and
iteratively repeated the classification by excluding the least important feature, assessing its agreement with the reference
classification. McNemar’s test identified the critical point where feature reduction significantly affected the RF model’s
predictions. Additionally, spatial assessment metrics were monitored at the pixel level, including spatial confidence (number
of classifications agreeing with the reference map) and spatial instability (number of classes occurring during feature
reduction). This process was repeated 10 times with ten distinct stratified random sampling splits, which showed similar
variable rankings and critical points. In particular, VH SAR data was selected when cloud-free optical observations were
unavailable. Omitting 80% of the features resulted in an insignificant loss of only 2% overall accuracy, while spatial
confidence decreased by 5%. Moreover, the crop map at the critical point exhibited an increase in spatial instability from
a single crop to 1.28. McNemar’s test and the spatial assessment metrics are recommended for optimized feature reduction
benchmarks and identifying areas requiring additional ground data to improve the results.
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1 Introduction

Remote sensing can contribute substantially to providing
timely and accurate information on agricultural activities
with high revisit frequency and spatial resolution (centime-
ter-scale) (Sishodia et al. 2020). For instance, crop type
classifications allow estimation of crop area, crop diver-
sity, and the spatial distribution of cropping patterns in an
area (Ibrahim et al. 2021). These data, in turn, are needed
for environmental modeling, e.g., monitoring crop growth
(Lemoine and Léo 2015), assessment of crop water require-
ments (Conrad et al. 2013) and the forecasting of crop pro-
duction to anticipate production shortfalls and food security
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(Nosratabadi et al. 2021). Despite notable improvements in
recent decades, the classification process, particularly the
composition of the feature space and the classification al-
gorithm, still require further investigation. For instance, it
is important to consider spatially clustered patterns, such as
those found in the heterogeneous cropping zones of Punjab,
Pakistan (Yang et al. 2020; Yin et al. 2020).

Spectral and temporal features play an important role
in distinguishing crop types (e.g., Conrad et al. 2014; Hu
et al. 2019). In this context, the increasing amount of ac-
cessible optical and microwave remote sensing data and
new algorithms have provided unprecedented opportunities
for accurate crop-type mapping (Orynbaikyzy et al. 2019).
Despite numerous advantages, such as improved differen-
tiation of spectrally similar crop types (e.g., Forkuor et al.
2014) and minor crop types (e.g., Orynbaikyzy et al. 2020),
the constriction of extensive feature spaces, including e.g.
topographymetrics, and crop planting information (Foerster
et al. 2012), has further improved the ability to discriminate
between different crop types, leading to more accurate re-
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sults (Mazzia et al. 2020). However, this data-rich situation
has greatly extended the computation time required to build
a classification model, making the generation of large-scale
crop-type maps in heterogeneous landscapes time-consum-
ing (Löw et al. 2013).

Feature selection improves the comprehensibility and
processing time of classification models and has been used
in machine learning for decades (Vergara and Estévez
2014). Numerous approaches including filter, embedded,
and wrapper methods have been tested (Saeys et al. 2007).
Effective feature selection methods also eliminate features
that may impede the classification process and simulta-
neously enhance classification accuracy (Hamzeh et al.
2016). Given the extensive research on feature selection
over the years (Guyon and Andr’e Elisseeff 2003), but the
limited focus on its spatial effects, this study further inves-
tigates the sequential backward feature reduction process,
in particular its spatial effects, i.e. the spatial variations in
mapping accuracy over extensive cropland.

The assessment of features suitable for accurate classifi-
cation requires comparisons of accuracy measures. In fea-
ture selection approaches common accuracy metrics that
analyze the confusion matrix such as overall, producer’s,
and user’s accuracies (Olofsson et al. 2014), have been fre-
quently applied. In addition, numerous authors (Löw et al.
2015a; Kumar et al. 2017; Sitokonstantinou et al. 2018;
Bueno et al. 2020) have utilized McNemar’s test (McNemar
1947) on the confusion matrix derived from the classified
validation samples to assess and compare different classi-
fication algorithms and feature sets. However, to the best
of our knowledge, it has never been applied for supporting
optimized feature selection, e.g. to identify significant de-
viations from the reference crop type pattern received from
all input features.

Additionally, investigations on the spatial agreement of
thematic maps produced by different algorithms, feature
sets, or sample sets are rare, despite their potential to pro-
vide valuable insights into mapping quality in terms of reli-
ability and stability (Heupel et al. 2018). For example, Van
Tricht et al. (2018) used spatial confidence derived from
a random forest (RF) classifier to investigate the impact of
adding SAR data to optical data for crop classification in
Belgium. Heupel et al. (2018) derived spatial reliability and
stability for pixel consistency in progressive crop type clas-
sification. No known research has analyzed indicators of
spatial agreement between the predicted maps during fea-
ture reduction. We hypothesize that utilizing such indicators
can further optimize the feature reduction process concern-
ing the resulting crop type maps and spatial crop distri-
butions. This step helps practitioners better understand the
randomness of classification decisions introduced by fea-
ture reduction and identify relevant temporal windows in
which satellite data are important for classification (e.g.,

Conrad et al. 2014; Yi et al. 2020). This approach may
also help map producers increase classification accuracy in
distinct cropping zones (Conrad et al. 2016).

This study aims at optimized feature selection and inves-
tigates ways to decrease the dimension of the feature space
without compromising classification accuracy and spatial
consistency. The latter refers to the spatial distribution of
crop types in the resulting map in comparison to the map re-
turned from a classification based on all features. Addition-
ally, the important features and their temporal acquisition
windows are analyzed. Minor goals included (1) a better de-
scription of reduced features and their location in the tem-
poral course of the vegetation period and (2) the observation
of the effects caused by feature reduction in different crop-
ping zones. The investigations were carried out based on the
RF algorithm (Breiman 2001), with the example of sequen-
tial backward elimination of unimportant features utilizing
based on RF variable importance rankings. In addition to
the standard accuracy metrics, McNemar’s statistical test
was applied to compare the results with the reference clas-
sification. Furthermore, a monitoring of spatial assessment
metrics, including spatial confidence and spatial instability
between class decisions in the map of all features and the
reduced features map, was implemented. This study was ap-
plied in a large-scale irrigated agricultural region of Punjab,
Pakistan, using satellite data from 2017, i.e., Sentinel-1 time
series data combined with multitemporal Sentinel-2 data.

2 Materials andMethods

2.1 Study Area

2.1.1 Irrigation System, Cropping Pattern and Climate

The lower Chenab Canal (LCC) command area is one of the
largest human-controlled irrigation areas within the Indus
Basin Irrigation System (IBIS). It is located within Rechna
Doab region which encompasses the land between the Ravi
and Chenab Rivers. The LCC originates from the Khanki
headworks on the Chenab River and irrigates approximately
12,400km2 of cultivated land on the eastern and western
sides Fig. 1. The climate of the study area is arid to semi-
arid, with large seasonal fluctuations in temperature and
rainfall. The summer season is from April to September,
with daily temperatures ranging from 21–49°C. The winter
season ranges from December to February, with tempera-
tures ranging from 5–27°C. The mean annual rainfall fol-
lows a gradient from 290–1050mm from south to north in
Rechna Doab (Usman et al. 2015). Most of the rainfall, ap-
proximately 70%, occurs during the monsoon season, i.e.,
in July August (Mujtaba et al. 2022).
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Fig. 1 The geographical location of the study area (Lower Chenab Canal command area) (a) in Pakistan and irrigated Indus Basin irrigation systems
(IBIS); (b) in Rechna doab; (c) spatial distribution of elevation in the study area (source: Shuttle Radar Topography Mission); (d) three cropping
zones in the study area—orange: continuous homogenous zone (CHZ), violet: continuous mixed cropping zone (CMZ), gray: discontinuous mixed
cropping zone (DMZ); (e) daily temperature and precipitation at climate stations during 2017 (source: Pakistan Meteorological Department);
(f) ground-truth data (field polygons) collected during a field visit in 2017 (Table 2)

The area has two major cropping seasons, one in the
summer, known locally as the Kharif season, and another
in the winter, referred to as the Rabi season. Rice and cotton
are the main crop types during the Kharif season, whereas
wheat is the major crop type during the Rabi season. Sugar-
cane is an annual crop that is cultivated mainly in Septem-
ber and February and is considered the third major crop in
the region (Usman et al. 2015). Other prominent crop types
include fodder, maize, and vegetables. For this study veg-
etables and fodder are treated as single crops due to their
similar phenologies and occurrence in scattered small-scale
farming systems.

Table 1 Cropping calendar in the Lower Chenab Canal command area for the summer (Kharif) season

Summer
Crops

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Rice – – Sowing Transplanting Growth Harvest –

Cotton – Sowing Growth Harvest –

Sugarcane Harvest Sowing Initial Growth Maturity

Maize – Sowning Growth Harvest – – –

Fodder Kharif – Start Multi Cut
Growth

End –

The current research focuses on crop type classification
during the Kharif season due to increased cropping hetero-
geneity, whereas wheat is the single dominant crop during
the Rabi season. Moreover, varying cropping patterns and
the influence of monsoons season present additional tech-
nical challenges for accurate crop mapping. To investigate
the impact of cropping practices on crop mapping accuracy
and feature reduction in the study area, three cropping zones
were identified and are displayed in Fig. 1. These cropping
zones are described in Sect. 2.1.2. The cropping calendar
for the Kharif season being followed in the region is given
in Table 1.
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2.1.2 Cropping Zones with Different Heterogeneity

In LCC, prior crop mapping efforts conducted by Awan and
Ismaeel (2020) and Usman et al. (2015) relied on medium-
resolution data from MODIS. Different crops are grown
in various regions of the area due to varying environmen-
tal (e.g., soil type, climate, rainfall), water requirement,
and availability (canal, groundwater and rainfall) factors.
Specifically, rice and cotton, two major crops in the region,
have distinct growth requirements and are cultivated in dif-
ferent zones (Usman et al. 2015).

To investigate the spatial effects of feature reduction un-
der different spatial configurations of an agricultural land-
scape, the study area was divided into distinct cropping
zones, based on the prevailing cropping practices. These
zones are as follows: continuous homogenous zone (CHZ),
continuous mixed cropping zone (CMZ), and discontinu-
ous mixed cropping zone (DMZ) (Fig. 1). These zones are
also in accordance with the distribution of cropping areas in
Punjab, Pakistan, as derived from MODIS time series data
by Usman et al. (2018). CHZ is dominated by rice crops,
with fodder, maize, and sugarcane present in patches. The
CMZ zone includes all the crops in the study area. Sug-
arcane is the dominant crop and exceeds the area share of
other crops. In this zone, cotton, fodder, and maize are cul-
tivated mostly on small scale. The spectral mixing of fodder
and maize due to similar phenologies and the smaller scale
of cultivation makes cropping in this zone more complex
in comparison to the CHZ. Most of the middle part of the
DMZ is barren but interspersed with forests and orchards.
The southern (right and left) of this zone is cultivated with
Rice, sugarcane, and cotton.

2.2 Data

2.2.1 Reference Data

Ground truth data on crop types were collected during
a field campaign in October 2017. The geographical loca-
tions of the 894 crop fields were collected via a GPS device.
The distribution of the samples followed the proportion of
each crop-type present in the region. Objects representing
the landscape surrounding the cropland, i.e., forest/orchard
areas, and water bodies, including canal networks, settle-
ments, and bare soil, were sampled from high-resolution
Google Earth images. The high-resolution remote sensing
data in Google Earth can be very useful for visual interpre-
tation of such general land cover classes (Miyazaki et al.
2011). The details of the ground truth data are presented in
Table 2.

A total of 894 crop-type polygons were collected. Of
these, 626 (70%) were used for training, while the remain-
ing 268 (30%) were used for validation purposes. A strati-

Table 2 Number of crop-type polygons used for training and valida-
tion

Total Fields/
Polygons

Training Validation

Crop Type Classes

Rice 274 (30.6%) 192 82

Cotton 84 (9.4%) 59 25

Sugarcane 287 (32.1%) 201 86

Maize 135 (15.1%) 95 41

Fodder 114 (12.8%) 80 34

Other Land Cover Classes

Orchard/Forest 134 94 40

Urban/Bare 135 95 41

Water Bodies 115 81 35

The percentage next to each crop-type polygon indicates its share rela-
tive to the total crop-type data collected

fied random sampling design was used to split the reference
data into two sets (i.e., training and validation). A strati-
fied random split was used to maintain a 70:30 proportion
of each crop type in the training and validation datasets.
The number of validation samples in three cropping zones
is provided in Table 3. Due to an insufficient number of
samples, spatial and accuracy comparisons for cotton from
the CHZ and fodder and maize from the DMZ were not
included. In addition, these crops are cultivated in small
patches in these zones and are difficult to find in the area.

Irrigation from different sources, including canals,
groundwater, and rainfall, combined with traditional meth-
ods of seeding and fertilization, may not be used uniformly
leading to spectral variability among fields of the same crop
type (Aduvukha et al. 2021). Thus, instead of using a point
directly, a polygon of the surrounding field was drawn to
consider the within-field variability of the sample. The field
boundaries were also extracted from Google Earth. How-
ever, despite other studies successfully utilizing aggregated
field information as feature values for classification (Con-
rad et al. 2014; Ghazaryan et al. 2018), we observed that
the average values of pixels inside individual field polygons
for training the classifier can increase the confusion among
crops with similar spectral behavior. Hence, we applied the
classification at the pixel level, which is also per current
practices (e.g., Orynbaikyzy et al. 2020). To reduce spatial
autocorrelation and to maintain manageable computational
effort, we extracted a small subset of random points. This
subset is taken following the field size, as given in Table 3.
The table also shows the resulting training and validation
points in each cropping zone.

These points were generated after splitting the initial
ground data (Table 2), ensuring that the random points in-
side the training crop polygon/fields should remain in train-
ing and vice versa. The resulting number of training and
validation samples for the crop classes was 2250.
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Table 3 Criteria for random points in the field/polygons and the resulting number of training and validation points in each cropping zone

No. Of pixels in
polygon

No. Of random
points inside poly-
gon

Classes CHZ CMZ DMZ

1–2 1 – T.P V.P T.P V.P T.P V.P

3–5 2 Rice 330 149 121 46 93 38

6–8 3 Cotton 0 0 77 37 83 32

9–15 4 Sugarcane 41 15 355 160 105 41

16–20 5 Maize 33 16 117 69 1 4

>20 6 Fodder 44 22 161 46 12 2

T.P training points, V.P validation points

2.2.2 Satellite Data Preprocessing

The optical data from the Multi-Spectral Imager (MSI) on-
board Sentinel-2A and B (S-2) and the C-band synthetic
aperture radar (SAR) data from Sentinel-1A (S-1) were ob-
tained via the Copernicus open access hub (https://scihub.
copernicus.eu/). The acquisition dates are listed in Table 4.
Cloud-free S-2 data was obtained on six distinct days dur-
ing the observation period from May-October 2017 (Kharif
season). The level-1C top-of-atmosphere reflectance data
were converted to surface reflectance using Sen2Cor in
the Sentinel Application Platform (SNAP) environment.
Bands 1 (coastal), 9 (water vapor), and 10 (cirrus clouds)
were excluded because of their irrelevance to crop mapping.
The S-2 bands used in this study include 2, 3, and 4 (visi-
ble), 5, 6, 7 (red-edge), 8 and 8A (near-infrared; NIR), and
11 and 12 (SWIR), which lie in the visible to infrared win-
dow of the electromagnetic spectrum and are very important
for studying land and vegetation processes (Gascon et al.
2017). In addition, the normalized difference vegetation in-
dex (NDVI) was calculated using band 8 and band 4 of S-2
using Eq. 1. The original spatial resolution of the S-2 bands
used was 20m, except for bands 2, 3, 4, and 8, which are
at 10meters. Previous studies (Immitzer et al. 2016; Oryn-
baikyzy et al. 2020) have highlighted the importance of
the red edge and SWIR bands for crop separability; thus,
all layers were resampled to 20m for spatial consistency
among different bands. Furthermore, the 20m resolution is
a significant improvement over previous crop mapping ef-
forts in the study area (e.g., Cheema and Bastiaanssen 2010;
Usman et al. 2015; Awan and Ismaeel 2020).

NDVI =
Band8 − Band4

Band8 + Band4
(1)

C-band level 1 ground range detected (GRD) data in
interferometric wide (IW) swath acquisition mode from S-1
were downloaded in 14-day time steps fromMay to October
2017 in the same orbit (107) and orientation (descending).
The preprocessing of the data for the retrieval of backscatter
values (σ0) in VV and VH polarizations included thermal

noise removal, radiometric calibration, speckle filtering, and
terrain correction using digital elevation model from the
Shuttle Radar Topography Mission (SRTM).

The resulting σ0 values were converted to decibels. To
reduce the effect caused by variations in the incidence angle
on backscatter values, the incidence angle was normalized
using double cosine correction provided by Ulaby et al.
(1982) according to Eq. 2. For normalization, the mean
incidence angle in the area was 400 (θref).

�0
ref =

�0
� cos

2
�
�ref

�

cos2 .�/
(2)

where θ is the incidence angle and σ0ref is normalized the
backscatter under θref.

The gray-level co-occurrence matrix (GLCM), as devel-
oped by Haralick et al. (1973), is a widely applied method
for the calculation of texture features in remote sensing
data. Up to seven GLCM textural features can be derived
from the GLCM matrix, including contrast dissimilarity,
regular second moment, entropy, homogeneity variance and

Table 4 Acquisition dates of the optical and SAR data used in this
study

Sentinel-1A Sentinel-2 (A&B)

1 20170506 1 20170506

2 20170518

3 20170530 2 20170526

4 20170611 3 20170615

5 20170623

6 20170705

7 20170717

8 20170729

9 20170810 4 20170809

10 20170903

11 20170915 5 20170918

12 20170927

13 20171009 6 20171008

14 20171021

Date Format: YYYYMMDD
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GLCM mean (Shi et al. 2022). In this study, the GLCM
mean texture feature was used as it was found to be the
most suitable for classification of SAR image (Chen et al.
2018), improving the accuracy in separating crop types in
comparison to other GLCM features (Treitz et al. 2014).
GLCM mean texture measures the average gray-level value
of the pixel pairs that constitute the GLCM matrix. We
used SNAP to derive GLCM mean textures from σ0 images
in both polarizations (VV and VH) with a 9× 9 moving
window in all four directions (00, 450, 900, and 1350). The
GLCM mean texture was calculated using Eq. 3.

� =
XN−1

i;j=0
i

�
Pi;j

�
(3)

Pi,j is a normalized gray tone spatial dependence matrix
with and as the row and column indices of the GLCM,
respectively. The mean texture is represented by μ, and the
number of distinct gray levels in the GLCM is denoted
by N.

2.3 Methodology

2.3.1 Feature Selection, Classification, and Variable
Importance Algorithms

The sequential backward feature elimination method em-
ployed in this study belongs to the category of wrapper
methods, that use classifier results as part of the feature
evaluation process (Guyon and Elisseeff 2003). Backward
feature elimination starts with all available features and iter-
atively eliminates the features. In contrast, e.g. the forward
selection method starts from a single feature, progressively
increasing the number of features. Notably, both techniques
suffer from a nesting effect, i.e., a feature once added in
forward selection cannot be removed again, and a feature
removed in backward elimination cannot be added again
(Vergara and Estévez 2014).

A hierarchal classification approach was employed (e.g.,
Forkuor et al. 2014). First, the cropland class was masked
out against urban, water, and tree-covered areas using all
features. Afterward, the cropland class was disaggregated
into crop types, i.e., rice, cotton, sugarcane, fodder, and
maize. The analytical focus was set on this second step, i.e.,
crop type mapping based on existing cropland boundaries,
as applied by Heupel et al. (2018).

For classification, we used the RF classifier, which has
not only demonstrated competitive results but also greater
interpretability than other machine learning algorithms
(Sheykhmousa et al. 2020). It has been increasingly used
for classification purposes because of its accurate results,
ability to handle high-dimensional and multicollinear data,
and relative robustness against overfitting (Belgiu and

Drăgu 2016). In recent years, there has been a notable
increase in interest in the use of RF-based variable impor-
tance, due to successfully application of RF in the ranking
of high-dimensional feature sets (Immitzer et al. 2012;
Belgiu and Drăgu 2016). Hence, the use of RF variable
importance with backward and forward feature elimination
approaches for the identification of relevant features is
a widely used practice to reduce the amount of input data
as well as the computation time and effort (Speiser et al.
2019; de Moraes and Gradvohl 2021).

It is a nonparametric algorithm that builds and analyses
ensembles of decision trees established using bootstrapped
sampling. Each decision tree predicts a target class for each
training sample, and the class with the highest number of
votes is selected. We used fast implementation of RF in
the statistical software R, provided in the package “ranger”
(Wright and Ziegler 2017).

The algorithm has two hyperparameters, the number of
trees (ntree) and the number of predictors (mtry), which are
randomly selected for each decision tree in the RF. The de-
fault values for ntree and mtry are 500 and the square root
of the input features, respectively. The majority of studies
reviewed by Belgiu and Drăgu (2016) have reported that
error stabilization before reaching 500 trees and increas-
ing the mtry value, results in increased computational time
(Gislason et al. 2006). Accordingly, ntree was maintained
at 500, and mtry was adjusted based on the square root of
the number of features during each feature elimination step.

Backward feature elimination requires a ranking of vari-
ables and builds on the idea that removing unimportant
features from the classification does not affect the classi-
fication accuracy (Vergara and Estévez 2014; de Moraes
and Gradvohl 2021). We used impurity-based feature im-
portance, called Gini importance (also known as the mean
decrease in impurity), from the RF for feature ranking. The
Gini importance of a feature is defined as the total reduction
in node impurity achieved by using that feature to split the
data, averaged over all trees (Breiman et al. 1984). A high
Gini importance score of a feature means that this specific
feature is more important for classification and vice versa.

2.3.2 Error Matrix

The accuracy metrics applied in this study include the over-
all accuracy (OA) and the kappa coefficient (K) (Congalton
and Green 2008). The OA is the ratio of the correctly classi-
fied pixels to the total number of pixels. The K value further
indicates whether the classification was significantly better
than the random classification (Cohen 1960). The K value
ranges from 0–1, where a 0 corresponds to a total ran-
dom classification, whereas 1 indicates perfect agreement
between the reference data and classification. McNemar’s
statistical test was used to test the differences between the
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two classifications for significance (McNemar 1947). Mc-
Nemar’s test compares each predicted sample between two
classifications and provides the opportunity to compare the
statistical similarity of confusion matrices. The McNemar
test is a standardized normal chi-square (X2) statistic com-
puted from a 2× 2 matrix of correctly and incorrectly clas-
sified samples in two classifications, calculated using Eq. 4.

X2 =
.f 12 − f 21/2

.f 12 + f 21/
(4)

where f12 represents the pixels correctly classified by the
1st classification but incorrectly classified by the 2nd clas-
sification and f21 represents the pixels correctly classified
by the 2nd classification and incorrectly classified by the
1st classification. A value of X2 greater than 3.84 indicates
that the two classifications are significantly different from
one another at 95% confidence interval (Kumar et al. 2017).

For class-wise comparison of the accuracies, the error
matrix was further analyzed using the Fscore (Inglada et al.
2017). This measure combines both the user (UA) and pro-
ducer (PA) accuracies from the error matrix for each class
according to the relationship given in Eq. 5. The Fscore
range from 0–1, where 1 is considered the optimal result
for a particular class.

Fscore = 2� UA�PA

UA + PA
(5)

2.3.3 Spatial AssessmentMetrics

Spatial confidence and spatial instability were calculated
to investigate the spatial impacts of the feature selection
process on the resulting crop type map. These two metrics
are interconnected and can be used to identify hotspots of
unclear classification decisions, which in turn require more
attention for better accuracy, e.g., by increased sampling.

Fig. 2 Example calculation of
spatial confidence and instabil-
ity after reducing two features,
comparing the reference classifi-
cation with classifications based
on the reduced feature set

At each feature reduction step, spatial confidence was
averaged over validation samples in the backward feature
elimination process by comparing all sequential classifica-
tions starting from the reference classification (Sect. 3.1).
In other words, after reducing n features, n+ 1 layers were
integrated to calculate spatial confidence. It is defined as
the ratio between the number of classifications that have
the same class at corresponding pixels to the total number
of maps computed at each step. High values of spatial con-
fidence correspond to more reliable classification and vice
versa.

Spatial instability was assessed by counting the number
of unique crops/classes occurring at each pixel and aver-
aging over all the validation samples during the feature re-
duction process. A spatial instability value of one indicates
that a pixel does not change during the feature reduction
process, indicating a single crop. A higher value indicates
more variability and randomness in the classification deci-
sion. For example, an average value of 2 for spatial instabil-
ity means that a pixel was classified into two distinct classes
during the feature reduction process. Spatial instability was
used to identify the randomness of classification decisions
in space. The more frequently different crop types appear
in a pixel during the feature reduction process, the more
random the resulting classification.

Figure 2 presents an example demonstrating the calcu-
lation of spatial confidence and instability between a refer-
ence classification (with n features) and a reduced feature
classification (with n-2 features), resulting in three con-
secutive classifications at this step. Shaded pixels indicate
changes in classification output during the feature reduc-
tion process, resulting in reduced spatial confidence and
increased spatial instability. Specifically, pixels shaded in
green represent the most inconsistent classifications, exhi-
biting the lowest spatial confidence value (0) and highest
spatial instability (3) as defined above and illustrated in the
figure below. The average values (spatial confidence: 0.90;
spatial instability:1.25) are derived by calculating the mean
across all pixels.
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Fig. 3 Schematic view of the workflow for the assessment of backward feature elimination used in this study

2.4 AnalysisWorkflow

The analytical workflow of the study is illustrated in Fig. 3.
The workflow includes two primary steps, i.e., the main
process and a subsequent analysis phase involving statis-
tical and accuracy comparisons between reference and re-
duced feature classifications. The main process starts with
the classification of the entire feature set with RF to ob-
tain the reference map. Based on the variable importance
analysis, the least important feature is removed (reduced
feature set), and the RF is applied again, which results in
a reduced feature classification. Afterward, in the second
step, the error matrices of the reference and reduced fea-
ture classifications were analyzed, and the McNemar test
and the error matrix were applied (Sect. 2.3.2), and the
results were entered into the accuracy metrics table that al-
lows for tracing the accuracy development in the feature
reduction procedure. The process was repeated until only
one feature, i.e., the most important feature, remained. Af-
ter applying the spatial assessment metrics, two uncertainty
measures (Sect. 2.3.3) are derived from the reduced feature
classifications. The reference data (Table 2) was split into
two sets (i.e., training and validation) as explained in the
Sect. 2.2.1.

To investigate the effect of the samples on the RF models
and variable importance and hence to increase the reliability
and robustness of the process as suggested by Stehman and
Foody (2019), the entire procedure was repeated 10 times
by randomly splitting the ground samples in the training
and validation datasets. Ten different sampling splits were
further repeated 10 times with a backward feature reduc-
tion process, which resulted in 100 elimination instances
(rankings) of each feature across 10 sampling splits. These
ranking eliminations across 10 different sampling splits
were compared through the Kruskal–Wallis test (Kruskal
and Wallis 1952). The Kruskal–Wallis test is a widely used

statistical test for comparing the machine learning algo-
rithms (da Silva et al. 2022). It is a nonparametric test used
for data that is not normally distributed, where t-tests may
not be appropriate. The Kruskal–Wallis test was performed
to assess the difference in the ranking distribution of se-
lected features during the backward feature reduction pro-
cess across 10 distinct sampling splits. The null hypothesis
(H0) of the Kruskal–Wallis test is that all sampling splits re-
sult in equivalent rankings. The null hypothesis is rejected
when the p-value associated with the Kruskal–Wallis test
statistic is smaller than the chosen significance level (α),
which is set at 0.05.

The Results section is structured as follows: Sects. 3.1
and 3.2 describe the outcomes of 10 repetitions from sin-
gle-sampling splits with RF variable importance and a back-
ward feature reduction process along with the calculation of
McNemar’s critical point. Section 3.3 presents the results
of the feature ranking analysis from single splits during
10 repetitions, as well as the effect of 10 different sampling
splits on those rankings. Section 3.4 provides a crop-type
map based on the final selected features, and an overall and
class-wise accuracy analysis across the entire study area.
The accuracy analysis (spatial accuracy and error matrix)
is detailed in Sects. 3.5 and 3.6 for each cropping zone and
crop type.

2.4.1 Generation of Reference Map

We set the crop type classification based on the complete
feature set as the reference map of our experiment for two
reasons. First, using all features is usually close to the op-
timum (e.g., Löw et al. 2013; Yin et al. 2020; Conrad et al.
2014), and second, a systematic experiment requires a clear
reference map (Stehman and Foody 2019).
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2.4.2 Generation and Evaluation of Reduced Feature Maps

Starting from the reference map, backward feature elimi-
nation was applied. It is an iterative procedure in which
each step reduces the feature set by dropping out the least
important feature received from the variable importance as-
sessment. From each resulting reduced feature map (Fig. 5),
OA, and K, were calculated. Furthermore, McNemar’s test,
in addition to spatial confidence and instability, was calcu-
lated by comparing the reduced feature maps at each stage
with the reference map and entered into a table. The entire
process, with the application of RF variable importance,
backward elimination of features, and comparison with the
reference map, was repeated 10 times because the repetition
of the accuracy assessment protocol increases the reliability
of the process (Stehman and Foody 2019).

2.4.3 Detection of Optimal Feature Set and Analysis of
Spatial Effects

One set of features should supply both reduced computa-
tional costs and high accuracy, comparable to the reference
map, in terms of OA and spatial distribution of crop types
(Hu et al. 2019). The latter is urgently needed to increase
the acceptance of crop-type maps in practice. Therefore,
a compromise for the accuracy metrics was suggested by
identifying a critical point. This critical point is achieved
when McNemar’s statistics constantly indicate significant
differences between the reference crop type map and the
reduced feature crop type map. Constantly means that at
least two consecutive McNemar’s test values exceed 3.84
during feature reduction.

a b

Fig. 4 Overall accuracy (OA), Kappa coefficient (K), and their means during 10 repetitions of classifying all features (reference classifications);
(b) McNemar’s test between reference classifications in 10 repeated runs; comparisons resulting in McNemar’s test value ≥3.84 are significantly
different (blue shades)

To trace the spatial effects of the feature reduction pro-
cess, spatial confidence, and instability measures were ap-
plied in each feature reduction step, and uncertainty mea-
sures were produced and analyzed. The zones in which
the LCC was categorized (Sect. 2.1.2) further helped us to
identify configurations in the agricultural system that are
affected by the feature reduction process and require at-
tention. Thus, for further analysis, the accuracy measures
were also computed for the three spatial zones during each
instance of the feature reduction and compared with the
results of accuracy metrics derived for the entire LCC.

3 Results

3.1 Reference Classification

The accuracy metrics of the reference classification using
all features varied only slightly among the 10 applied rep-
etitions (Fig. 4a). The results obtained from repetitions 6
and 10 were found to be similar to the average of all 10 rep-
etitions. This indicates that these two repetitions were less
prone to variations and would likely be easier to reproduce.

Except for four comparisons (3 and 5; 5 and 7; 7 and 8;
7 and 9), all McNemar’s X2 between the reference clas-
sifications in 10 repetitions show insignificant differences
(Fig. 4b). McNemar’s X2 value between paired data indi-
cates the difference between two classifications; a higher
value indicates a greater difference, and vice versa. The
reference classification, obtained from repetition 6 showed
the closest statistically similarity to the other repetitions,
with the highest X2 value of 1.50, which was still lower
than the highest values observed in the other repetitions.
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Fig. 5 Overall accuracy (brown), kappa (light blue), and McNemar’s test critical points (black vertical dotted line) obtained during the 10 repeti-
tions. McNemar’s test value at each feature elimination step is also represented using a bar plot

Therefore, repetition 6 was selected as a reference map for
further analysis despite minor randomness indicating some
classification uncertainty in the crop maps.

3.2 AccuracyMetrics and Critical Points

The iterative process of backward feature selection was re-
peated 10 times. Figure 5 shows the OA and K after the least
important features was eliminated the at each step for all
10 repetitions. The pink (not significant) and purple (signif-
icant) bars highlight the results of McNemar’s test between
the reference map and the reduced feature maps at each
step, representing the significance of the eliminated feature

Table 5 McNemar’s critical points and number of important features
across the 10 repetitions in backward feature elimination workflow

Repetition Critical Point Important Features

1 96 26

2 80 42

3 96 26

4 76 46

5 7 115

6 98 24

7 95 27

8 90 32

9 76 46

10 82 40

at each step of feature reduction. The vertical black dotted
line shows the critical point based on McNemar’s test cri-
teria (Sect. 2.4.3). Apart from repetition, five critical points
occurred in a range of 76–98 reduced features (Table 5).
Repetition 5 shows two consecutive McNemar’s X2 values
greater than 3.84 at feature reduction step 7 and then be-
haves similarly to other repetitions. The OA ranged from
0.42–0.82 as the classification was performed using all 122
features down to a single feature. The maximum standard
deviations of OA and K across all reduction steps observed
were 2.1% and 2.9%, respectively, during the 10 repetitions.

The reduction in features also harmed the spatial assess-
ment metrics presented in Fig. 6. This effect was less pro-
nounced for spatial confidence than for spatial instability.
Using fewer than 10 features (x-axis 111-121) remarkably
increases the probability of varying class decisions. How-
ever, a sharp increase in spatial instability occurred in all
10 repetitions beyond the critical point, as indicated by the
McNemar test. The maximum standard deviations for spa-
tial confidence and spatial instability received during the
10 repetitions were 3.4% and 3.9%, respectively.

3.3 Variable Ranking Analysis

This section analyses the order in which the features were
removed during the 10 repetitions with a particular focus
on the 6th repetition, as explained in Sect. 3.1. The order
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Fig. 6 Spatial confidence (brown; y-axis) and spatial instability (light blue; secondary y-axis), 10 times along with the critical points

of feature elimination during all 10 repetitions is explicitly
given in Fig. 13. The Annex also labels the feature to the
sensor (S-2-optical or S-1 SAR) and presents the modal
value (i.e., the most frequently occurring rank position at
which a feature is removed) and maximal distance (to this
modal value) of each feature. Figure 7 shows the results
of feature ranking from the 6th repetition run, with the
x-axis positions reflecting the elimination order during this
specific run. The points represent the modal values of the
feature elimination positions, with red indicating the optical
and light blue representing the SAR feature. These values
were calculated from ten repetitions. The distance from the
1:1 line indicates deviations observed from the common
ranking observed in repetition six. The size of the bars in
Fig. 7 (distance) indicates the absolute difference between
the modal value and the maximum value of the elimination
instance of each feature from 10 repetitions. It is evident
from the figure that features after the critical point were
more consist in elimination during the process. The colors
indicate the data source, i.e., optical or SAR.

Low (high) distance values show consistent (inconsis-
tent) elimination positions of the features across the 10 rep-
etitions. Among the 24 non-eliminated (after the critical
point) features, 20 exhibit a maximum distance of three
or less, which also strengthens the argument that impor-
tant features are more likely to be eliminated at a similar
instance. Most of the features (86 out of 122) show a con-
sistent position at which they are eliminated during the clas-

sification process, with a maximum distance of nine or less.
However, five features exhibit highly inconsistent behavior,
with a maximum distance of 20 or more. This may be be-
cause these features have a greater degree of correlation
with one another, which in turn leads to variations in their
elimination position across different repetitions.

Figure 8 underpins this assumption of high correla-
tion among these features, except for optical features.
For instance, S-2 bands 8A (“20170506. B8A”) and 3
(“20170615. B3”), recorded on May 6 and June 15 respec-
tively, are exceptions to this trend.

Figure 9a presents the variability in elimination instances
of the features, which may depend on the specific training
dataset used in the model run as well as the resulting vari-
able importance. It displays the distribution of 100 elimina-
tion instances of each feature resulting from 10 repetitions
of 10 different sampling splits with a backward feature re-
duction process, using individual box plots for all 122 fea-
tures. The variation in the box plot is visible from the spread
of the data, with higher plot indicating a greater degree of
variation and vice versa. The features after McNemar’s crit-
ical point exhibit less variation than the features before the
critical point. This indicate that these features are important
regardless of the samples used, suggesting that the selected
features were not selected by chance.

The effect of the training samples used for RF and vari-
able importance on features that remained after McNemar’s
critical point (selected or important features) during back-
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Fig. 7 Modal values (y-axis) of
feature ranking during 10 rep-
etitions ordered by the ranking
positions achieved in repetition 6
(Fig. 13: x-axis); bars show the
maximal distance to the modal
value (secondary y-axis), the
black dotted line shows McNe-
mar’s critical point during 6th
repetition (Table 5), and the blue
diagonal dotted line represents
the 1:1 line

Fig. 8 Correlation coefficient between features with a maximal dis-
tance of 20 or more

ward feature reduction were further analyzed through the
Kruskal–Wallis test. The modal ranking values of selected
features from 10 repetitions across 10 different sampling
splits were used for comparison among the sampling splits.
Kruskal–Wallis test p values of pairwise comparisons of
ten different sampling splits are presented in Fig. 9b. The

color gradient (from brown to blue) represents associated
p-p-values obtained through the Kruskal–Wallis test among
ten different sampling splits, from lowest to highest. The
Kruskal–Wallis test showed that there was no significant
difference between sampling splits (p>α), as presented in
Fig. 9b. Therefore, we fail to reject H0 among the compar-
isons between distinct sampling splits, indicating that the
samples used to train the models do not have a significant
impact on the outcome of the selected features.

3.4 Crop Type Map Based On the Optimal Feature
Set

Table 6 list the variables according to the order of elimina-
tion, and the features highlighted in bold font are the final
selected features of repetition run six (Fig. 5) based on vari-
able importance. The features that range above 98 (critical
points) are important features that still produce a classifica-
tion statistically similar to the reference classification. The
24 features used for final crop mapping included 18 optical
features and 6 SAR features. It is evident (Fig. 7) that on
average, optical features (S-2) are removed later than SAR
features (S-1).

The important features after the critical point that pro-
duced accuracy statistically similar to that of the complete
feature set included the SWIR (B11, B12), red edge (B05),
red (B04), and NDVI from S-2. Notably, these important
features from S-2 span all months of the Kharif growing
season from May–September, except for July, when S-2
data is unavailable due to cloud cover during the monsoon.
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a b

Fig. 9 Analysis of selected features across ten distinct sampling splits. (a) Variability in elimination instances of features across ten different sam-
pling splits (feature rank corresponds to feature elimination instances during 6th repetition (Fig. 13)). (b) Kruskal–Wallis test p-value comparing
mode values of important features across ten repetitions of ten different sampling splits

All six important S-1 features were derived from VH
polarization. Five out of the six important SAR features
were from the monsoon season (July), during which S-2
data is unavailable. Among these six features, four were
mean GLCM texture features, derived from VH polariza-
tion backscatter. Additionally, almost half (10 out of 22)
of the selected features are from July and the early phase
of August, when most of the crops in the study area are at
their full development stage.

A direct comparison between the reference and the se-
lected reduced feature classification revealed a decrease in
OA from 0.81 to 0.79, which represent a 2% loss in accu-
racy with an almost 80% reduction in the number of features
according to McNemar’s critical point criterion (Table 7).
The K and Fscore decreased by approximately 4% dur-
ing this process. The spatial confidence decreased to 0.95,
and the spatial instability increased to an average of 1.28
crops per pixel from a single crop during the feature reduc-
tion process from the reference classification to the critical
point classification. Table 7 also indicates that rice is least
affected by the feature reduction process and achieved max-
imum Fscore of 0.93 and 0.92 for all features and important
features, respectively. The Fscores of sugarcane and maize
decreased by 2% during the feature reduction process. Cot-
ton and fodder were more susceptible to feature reduction,
with 7% and 5% decline of accuracy, respectively.

3.5 Spatial Uncertainty Assessment Per Cropping
Zone

The resulting crop type map (Fig. 10) shows the three zones
mentioned in Sect. 2.1.2, i.e., the northern part of the study

area, which is dominated by rice (CHZ); the middle part,
which is an intensively used mixed cropping zone (CMZ)
with a patchy cultivation pattern (Fig. 10e); and the south-
ern part (DMZ), which features sparse agricultural areas
interspersed with widespread forest/orchard, urban, and bar-
ren patches. The OA levels in these zones resembled each
other during feature reduction but at two different levels.
Although the accuracy levels in the CHZ and the DMZ ex-
ceeded 0.80 in all reduction steps until the critical point,
this value could not be achieved in the CMZ. The OA in
the CMZ decreased to 0.76 until reaching the critical point,
which was 0.84 and 0.82 for the CHZ and DMZ zones, re-
spectively. This observation may be caused by an increased
likelihood of mixed pixels in mixed cropping areas, which
always leads to decreases in classification accuracy (Löw
and Duveiller 2014).

Figure 10b–d also depicts OA and spatial assessment
metrics (as defined in Sect. 2.3.3) during backward feature
reduction in each of these three zones. The graphs show the
mean values derived from the validation samples in each
zone at each feature reduction step. Zone-wise OA analy-
sis revealed distinct differences between the CHZ and the
CMZ together with the DMZ. OA demonstrated a decline,
reaching 0.80 and 0.76 in the DMZ and CMZ, respectively,
compared to the value of 0.84 observed in the CHZ. The
spatial confidence between the classification results based
on the reduced feature sets declines sharply in the CMZ
after a few features. In the same zone, the probability of
a pixel being classified into a class differing from the ref-
erence map is always greater than that in the two more
homogenous zones. The CHZ and DMZ had spatial insta-
bility values of 1.21 and 1.26 and spatial confidence values

K



186 PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (2025) 93:173–196

Ta
bl
e
6

O
rd
er

of
el
im

in
at
io
n
of

fe
at
ur
es

us
ed

in
th
is

st
ud
y,

e.
g.
,
12
2
sh
ow

s
th
e
m
os
t
im

po
rt
an
t
fe
at
ur
e
or

fe
at
ur
e
th
at

re
m
ai
ne
d
in

th
e
la
st

cl
as
si
fic
at
io
n
w
he
n
al
l
ot
he
r
fe
at
ur
es

w
er
e
re
m
ov
ed

se
qu
en
ti
al
ly

(S
-1
=
Se
nt
in
el
-1

SA
R
da
ta
,a
nd

S-
2
=
Se
nt
in
el
-2

op
ti
ca
ld

at
a)

D
at
as
et
s

06
.

M
ay

18
.

M
ay

26
.

M
ay

30
.

M
ay

11
.

Ju
n

15
.

Ju
n

23
.

Ju
n

05
.

Ju
l

17
.

Ju
l

29
.

Ju
l

09
.

A
ug

10
.

A
ug

03
.

Se
p

15
.

Se
p

18
.

Se
p

27
.

Se
p

08
.

O
ct

09
.

O
ct

21
.

O
ct

σ0
V
H

76
91

–
39

1
–

68
52

11
4

11
0

–
60

61
35

–
34

–
29

24

σ0
V
V

26
3

11
17

7
21

47
19

95
65

44
41

22
40

G
L
C
M

V
H

72
10
5

75
4

92
10
1

11
7

11
9

50
67

51
32

30
25

G
L
C
M

V
V

14
12

15
5

10
23

48
31

85
59

37
80

27
45

N
D
V
I

11
5

–
12
0

–
–

11
6

–
–

96
–

–
–

10
0

–
37

–
–

B
02

70
87

89
97

98
97

B
03

38
83

69
99

10
9

73

B
04

28
10
6

10
7

90
11
1

10
0

B
05

20
79

93
11
2

10
4

13

B
06

9
54

42
77

86
74

B
07

6
74

88
73

57
58

B
08

2
62

63
84

46
43

B
08
A

13
71

78
10
2

55
24

B
11

8
49

64
12
1

12
2

17

B
12

36
10
3

94
11
8

11
3

53

E
li
m
in
at
io
n
ra
nk
s
of

im
po
rt
an
t/
se
le
ct
ed

fe
at
ur
es

ar
e
hi
gh
li
gh
te
d
in

bo
ld

fo
nt

K



PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (2025) 93:173–196 187

Table 7 Overall accuracy, kappa coefficient, spatial confidence, spatial
instability and class-wise Fscore comparison between reference and
reduced feature classifications

Fscore

Reference Classifi-
cation

Important Features
Classification

Rice 0.93 0.92

Cotton 0.82 0.75

Sugarcane 0.85 0.83

Maize 0.64 0.62

Fodder 0.51 0.46

Overall Accuracy 0.81 0.79

Kappa 0.75 0.71

Spatial Confidence 1 0.95

Spatial Instability 1 1.28

of 0.96 and 0.95, respectively, indicating that on average,
96% and 95% of the 98 removed features did not affect the
final classification of the CHZ and DMZ, respectively. The
spatial instability increased to 1.37, while the spatial confi-
dence dropped to 0.94 up to the critical point in the CMZ.
The visual illustration of spatial comparison between the

a

e

b c

d

Fig. 10 (a) Final crop type map based on important features remaining after the critical point; (b) zone-wise overall accuracy; (c) zone-wise spatial
confidence; (d) spatial instability; (e) close-in view (black rectangle in Fig. 10a) showing crop distribution in the continuous mixed cropping zone
(CMZ)

reference and important feature maps in the three cropping
zones is provided in Fig. 11.

Figure 11 presents a close-in view between the reference
map and the important feature map across the three crop-
ping zones. Pixels other than the crop classes were masked
for better visual interpretation and understanding. The over-
all results indicate notable similarities between the refer-
ence and important feature classifications across all three
zones. Nevertheless, a slight increase in class mixing is ob-
served in the CMZ when compared to the CHZ and DMZ.
These observations support the results provided above that
feature reduction, which indicate that feature reduction has
a more pronounced impact on the CMZ.

3.6 Class-Wise Assessments Per Cropping Zone

Figure 12 shows the Fscore, spatial confidence and spa-
tial instability of the final selected classification per crop
type within each zone. Due to the absence of and very few
ground truth points for cotton in the CHZ and fodder and
maize in the CMZ (Table 3), the results of these crop types
were excluded from these zones. In terms of Fscore, rice
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a b c

d e f

Fig. 11 Close-in-view comparison between reference and important feature maps across three cropping zones. a, d CHZ: continuous homogenous
zone; b, e CMZ: continuous mixed cropping zone; c, f DMZ: discontinuous mixed cropping zone (Red, purple, and black rectangles indicate
the zoomed locations in the CHZ, CMZ and DMZ, respectively. Pink circles highlight the mixing of different classes in important features
classification)
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a b

c

Fig. 12 Class-wise (a) Fscore, (b) spatial confidence and (c) spatial instability for each cropping zone in LCC with an important feature set
(CHZ continuous homogenous zone, CMZ continuous mixed cropping zone, DMZ discontinuous mixed cropping zone)

outperformed the other crops in all cropping zones. It was
followed by sugarcane, which achieved a higher Fscore in
the CHZ and CMZ zones compared to other crops, while
cotton had a better accuracy in the DMZ (Fscore: 0.86).
However, accuracy of fodder and maize was found to be
lower than that of the other crops in both zones (CHZ and
CMZ).

Similar to Fscore, the most spatially confident and least
spatially instable classification was achieved for rice during
the feature reduction process (Fig. 12b,c). Rice had the low-
est average spatial instability and the highest spatial confi-
dence in each zone with a reduced number of features. The
lowest confidence and highest instability were achieved for
fodder, with a spatial confidence of 85% and an average in-
stability of 1.8 crops per pixel during the feature reduction
process in the DMZ.

4 Discussion

In the example, the LCC command area effects of fea-
ture reduction for random forest (RF) classifications of
Sentinel-1 (S-1) and Sentinel-2 (S-2) data were investigated
to optimize both the classification accuracy and processing

time. Accuracy metrics indicate only a 2% loss of OA,
with more than 80% reductions in features allowing predic-
tions that are only insignificantly differ from a classification
based on the full set of features. In contrast to previous stud-
ies (e.g., Löw et al. 2015b; Cui et al. 2020), reduced number
of features did not significantly exceed the classification ac-
curacy when using all features. However, comparable OA
levels from zero to 80% feature reduction indicate redun-
dancy and correlation among the features, as also observed
by Hu et al. (2019).

The reference classification achieved an accuracy 2%
higher in comparison to the reduced features with greater
computational time. However, this difference in accuracy
is statistically insignificant based on McNemar’s test. This
aligns with McNemar’s test criteria established in previous
studies (Kumar et al. 2017; Sitokonstantinou et al. 2018;
Bueno et al. 2020) for concluding the performance of clas-
sification algorithms and datasets. Additionally, Gilbertson
and van Niekerk (2017) reported that it is not necessary for
feature reduction to increase the crop classification accu-
racy. Moreover, with a statistical benchmark, we identified
the areas and crops that suffer most from feature reduc-
tion and require further consideration and optimization in
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the feature reduction process (e.g., spatial accuracy assess-
ment).

Our findings indicate that McNemar’s test can identify
a crucial point during the stepwise feature reduction pro-
cess, which separates the important and unimportant fea-
tures, beyond which the deviation of the reduced feature
map and the reference map based on all features becomes
continuously significant. The approach offers another per-
spective on feature reduction because even if OA and K
indicate acceptable values, e.g., sufficient to select an op-
timum feature set (He et al. 2022; Htitiou et al. 2022), the
reproductivity of the reduced feature map and the reference
map may not be given. Especially in practical applications,
it would be difficult to first offer a mapping result to a user
and then a significantly different update with the same OA,
possibly for a larger area, but with fewer features. The user
would find that many classification decisions are different
between the maps. Additionally, the area statistics differ
with significantly varying error matrices, which in turn may
affect land management decisions. The users may therefore
ask which of the classifications is correct and possibly ques-
tion the complete product.

The difference of 2% in overall accuracy between clas-
sifications based on all features and reduced features was
accompanied by a decrease of spatial confidence by 5% and
an increase in classification randomness. Monitoring spa-
tial assessment metrics indicate the impacts of the feature
reduction process on the mapped cropping pattern. For in-
stance, regions characterized by high heterogeneity in crop
types (such as CMZ and DMZ in our study area), and spec-
trally similar classes (e.g., cotton, fodder, and maize) exhibit
lower reliability and greater instability than areas with uni-
form cropping and easily distinguishable crops (Fig. 12c).
This is, e.g., in line with the findings reported by Heupel
et al. (2018), and van Oort et al. (2004). For practitioners,
the proposed monitoring method locates the randomness
of classification, i.e., areas with mixed pixels or areas that
have spectral-temporal properties but were not explicitly
sampled.

4.1 Selected Features and Separability of Crop
Types

Ten repetitions of 10 different sample compositions and
runs showed, with few exceptions, relatively high congru-
ence in the order of feature reduction, i.e., most features
were eliminated in a certain position range of the reduction
process. Interestingly, the remaining ca. 20 features were
more likely to be eliminated at a similar position in the fea-
ture reduction process during all 10 repetition runs. The fact
that important features covered the entire growing season
from the start to the end underpinned previous observations
that higher temporal resolution of satellite data during grow-

ing season is important for distinguishing different crops
(Meng et al. 2020). This finding partially contradicts previ-
ous statements that satellite images representing important
phenological stages are more important than the number of
images in a year (Foerster et al. 2012; Conrad et al. 2014),
but may be attributed to differences in the study region.

The variable importance rank and results in this study
showed the high importance of optical features compared
to SAR. These results are confirmed by some previous stud-
ies, where optical data also turns out to be more relevant
for crop mapping than SAR data (Van Tricht et al. 2018;
Demarez et al. 2019). The important features spanned the
entire growing season with the highest number of features
occurring in July and early August. This period corresponds
to the phenological development phase in the study area,
and Orynbaikyzy et al. (2020) also highlighted the impor-
tance of features during this period for crop type mapping.
The selected features related to optical data are mainly from
the SWIR, red and red-edge, which are very helpful for crop
classification, as previously discussed, e.g., by Immitzer
et al. (2012) or Orynbaikyzy et al. (2020). Additionally,
the study confirmed the importance of the NDVI for crop
mapping, which has been well documented by various re-
searchers (Georganos et al. 2018; Orynbaikyzy et al. 2020),
as four out of six available NDVI features were present in
the final important feature set (Table 6).

The results showed that SAR features were more likely
to be eliminated early (avg. S-1 Modal value: 47; avg. S-2
Modal value: 74) and showed increased variability in the
feature reduction process (avg. S-1 Maximal distance: 7.8;
avg. S-2 Maximal distance: 6.3) compared to optical fea-
tures (Fig. 7). This observation could be attributed to their
strong correlation, which was also reported by Holtgrave
et al. (2020). The features (σ0 and GLCM) from the VH
polarization of the S-1 SAR data were superior to those
from the VV polarization, given that all six of the se-
lected S-1 features were derived from the VH polarization
(Table 6). This is in accordance with the findings of (Chen
et al. 2020), who also reported that the VH polarization
outperformed VV polarization for crop mapping purposes.
They also reported that GLCM texture features derived from
VH backscatter performed better compared to those derived
from VV backscatter.

The results of this study showed that incorporating SAR
data in addition to optical data was beneficial, as was ev-
ident in the final selected features (Table 6). The presence
of SAR data in selected features highlights the advantage
of using both types of data, as it provides a more complete
understanding of the plant structure (Veloso et al. 2017).
Moreover, Forkuor et al. (2014) demonstrated that the use
of SAR data reduces confusion between cotton and maize
crops. In this research, a case study on crop type mapping
in LCC showed a high overall accuracy, which is better than
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the results of previous studies by Cheema and Bastiaanssen
(2010) and Usman et al. (2015), which were based solely
on optical data. In addition, optical data from S-2 were not
available in July due to the monsoon season (Table 6), and
having data during this time could improve the ability to
distinguish between different crop types (Steinhausen et al.
2018). This is consistent with findings from previous stud-
ies (Forkuor et al. 2014; Muthukumarasamy et al. 2019),
which also showed that SAR data (S-1) can compensate for
the absence of optical data during these periods.

4.2 Spatial Effects of the Feature Selection Process
and Implications for Field Sampling

Our results supports previous observations that mapping
accuracy in heterogeneous regions and among crops with
similar growth patterns is more challenging compared to the
homogenous area and crops that are easily separable (Adu-
vukha et al. 2021). In the present study, rice exhibited high-
est accuracy compared to other crops due to flooding and
transplanting in the early stages. This led to unique water
influence signal in the satellite data, which underpinned the
observations made by Yin et al. (2020). Maize and fodder
(e.g., sorghum and millet) are scattered throughout the LCC
and follow similar growth patterns, which causes mixed
pixels and affects the accuracy of crop mapping (Cheema
and Bastiaanssen 2010). Hence, because of the small field
size in comparison to moderate-resolution sensors, previ-
ous studies on crop mapping in LCC, e.g., Cheema and
Bastiaanssen (2010) and Usman et al. (2015), merged these
phenologically similar crop classes into a single class. Sim-
ilarly, the homogeneity caused by monocropping (mainly
rice) resulted in the accuracy in the CHZ being better that
in the CMZ and DMZ (Fig. 10).

The observations in this study suggest that the increased
mapping uncertainties, in addition to the similar phenolog-
ical behaviors of these crops or pixel heterogeneities, can
also be attributed to the utilized ground data, as previously
discussed by Löw et al. (2015a). The varying class accura-
cies among the detected cropping zones of LCC indicated
that an increased number of training and validation samples
of minor classes may have been useful but were difficult
to realize under the time and financial constraints of field
sampling, which coincides with the constraints observed in
similar studies of extensive cropping (Ibrahim et al. 2021;
Burke and Lobell 2017). For instance, the Fscore for both
fodder and maize in the CMZ exceeded that in the CHZ
(Fig. 12a). This is attributed to the better ground data cov-
erage in the CMZ, highlighting that, particularly for mixed
cropping regions, the use of large training datasets are desir-
able for improving classifier accuracy (Heydari and Moun-
trakis 2018). Monitoring spatial assessment metrics, spatial
instability and confidence can help to determine those ar-

eas where additional ground data are needed to improve the
results.

In contrast, our results indicated that the CMZ exhibited
lower spatial confidence and higher spatial instability com-
pared to the DMZ (Fig. 10d), despite having more ground
truth points. This could be due to the complexity of mixed
pixels in the area and the fact that simply having a larger
number of samples may not be adequate for resolving this
issue. It remains important to consider the quality of the
ground truth data and, in particular, the representativeness
and effectiveness of the applied classification model, as
demonstrated by Foody and Mathur (2004) in their work
on support vector machines.

4.3 Research Perspective

Further steps could involve implementing a wider range
of RF-based feature selection techniques (Speiser et al.
2019) with the inclusion of spatial assessment metrics to
assess their spatial effects. Additionally, the phenology-
based feature reduction method may address correlated fea-
tures more effectively than the RF-based feature reduction
process (Hariharan et al. 2018). By diversifying feature re-
duction methods and integrating spatial assessment metrics,
different aspects of feature importance and interactions can
be highlighted, leading to a more comprehensive identifi-
cation of relevant features.

The ground data used in this study was particularly lim-
ited for minor crops such as fodder and maize due to in-
sufficient resources and the strategic challenges in obtain-
ing data for these crops. This limitation can introduce sys-
tematic uncertainties and biases (Foody 2010). While the
reproducibility of results related to accuracy and feature
rankings demonstrates the reliability of the methods used
and results presented, this may still impact the model’s per-
formance and its ability to accurately assess variable impor-
tance, potentially leading to a biased or incomplete repre-
sentation of the key features relevant to the study (Millard
and Richardson 2015). Therefore, a well-designed and sys-
tematic sampling method that includes spatially distributed
samples across the study area, with an adequate number
of observations across different strata, leads to improved
accuracy and smaller standard errors (Stehman and Foody
2019). Additionally, advanced technologies provide access
to various high-resolution images with sufficient temporal
representation, allowing the selection of large sample sizes
for improved accuracy in assessing large geographic ar-
eas with heterogeneous or mixed classes (Wu et al. 2017;
Ramezan et al. 2019).

We utilized 10 distinct stratified random sampling splits
to assess the RF variable importance based on backward
feature reduction, to evaluate the stability and effectiveness
of the selected features across different data partitions.
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Although this approach demonstrated reliability through
reproducibility, incorporating additional methods such as
leave-one-out (LOO) cross-validation or k-fold cross-val-
idation could further enhance its robustness (Ramezan
et al. 2019). Known for its superior performance over other
sampling techniques, k-fold cross-validation can reduce
the variability in feature importance and performance es-
timates caused by random data partitioning (Basha and
Rajput 2018). Additionally, integrating an entropy-based
measure to assess the stability of feature selection methods
concerning perturbations in the data (Křížek et al. 2007)
could provide further insights into the reliability of the
feature selection process.

The accuracy of a model usually refers to the area and
the year in which it was trained. Spatial or temporal trans-
ferability is usually limited by seasonal variability, crop
management practices, weather conditions, and phenolog-
ical development. Additionally, technical aspects such as
image acquisition dates or overfitting of the models must
also be considered (e.g., Meyer et al. 2019; Orynbaikyzy
et al. 2022). Thus, although the analysis of the feature selec-
tion process can support the generation of accurate models
for reduced feature sets, the spatial and temporal transfer
of the classification model remains an open task.

5 Conclusions

With a growing amount of optical and SAR data, increasing
possibilities for integrating multispectral and spatial satel-
lite data, and improved machine learning algorithms, the
need to use feature selection processes has become very im-
portant in remote sensing classification applications. With
a focus on crop mapping, we proposed a feature selection
process that involves the machine learning algorithm RF
and a statistical analysis at the example of the LCC com-
mand area in Pakistan. The RF variable importance coupled
with McNemar’s statistical test was used for backward fea-
ture elimination of unimportant features. Furthermore, we
monitored spatial consistency and instability during and af-
ter the feature reduction process to better understand its
effects on the mapping results. This was achieved by incor-
porating spatial accuracy analysis along with error matrix.
The study has pointed out the following conclusions.

1. The proposed feature reduction process indicates consis-
tency during repetition runs, and the use of McNemar’s
test can be recommended to identify critical points be-
yond which standard metrics such as overall accuracy
may be high, but the resulting maps significantly differ
from a map based on all features.

2. In addition to achieving reduced loss in overall accu-
racy, the feature selection process can strongly impact

the spatial confidence of the produced maps and increase
the randomness of a classification, particularly in mixed
cropping zones or parts of the study area with reduced
quantity or quality of ground reference data.

3. The spatial accuracy metrics between classifications pro-
duced using all available features and important features
provided additional insight for the selection of important
features based on an existing reference dataset, particu-
larly when looking at different configurations of cropping
zones, i.e., field sizes, compactness and crop composi-
tion.

4. The use of spatial accuracy metrics can provide better
information on which crops and cropping zones require
more attention for planning ground data collection.

5. At least in the large-scale study area in Pakistan, consis-
tent temporal data available during the cropping season
are very important for accurate crop mapping. The opti-
cal data proved to be more important than the SAR data;
however, adding SAR data during the monsoon period,
when optical data was unavailable, improved the overall
accuracy of crop mapping in the study area.
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6 Appendix

Name of Features 1 2 3 4 5 6 7 8 9 10 Modal Value Maximal Distance Source
20170611.σ0_VH 4 1 4 1 1 1 2 1 3 1 1 3 SAR

20170506.B8 5 6 10 9 9 2 3 8 5 10 5 5 Optical

20170518.σ0_VV 11 8 2 4 2 3 12 9 15 17 2 15 SAR

20170611.GLCM_σ0_VH 2 2 6 2 5 4 1 4 1 5 2 4 SAR

20170611.GLCM_σ0_VV 13 19 1 10 18 5 11 11 13 9 13 6 SAR

20170506.B7 3 11 7 5 6 6 10 6 6 2 6 5 Optical

20170623.σ0_VV 24 18 21 11 7 7 17 18 11 7 7 17 SAR

20170506.B11 6 3 8 15 4 8 6 5 7 3 6 9 Optical

20170506.B6 1 5 5 13 10 9 4 2 2 4 5 8 Optical

20170623.GLCM_σ0_VV 10 16 11 7 20 10 15 10 10 8 10 10 SAR

20170530.σ0_VV 9 14 15 8 12 11 5 14 12 15 14 1 SAR

20170518.GLCM_σ0_VV 7 9 3 6 11 12 8 3 14 6 3 11 SAR

20170506.B8A 14 4 23 3 3 13 7 7 8 11 3 20 Optical

20170506.GLCM_σ0_VV 21 21 20 12 8 14 14 13 9 22 21 1 SAR

20170530.GLCM_σ0_VV 8 12 17 21 13 15 13 15 4 12 12 9 SAR

20171008.B2 18 13 27 19 24 16 24 24 17 23 24 3 Optical

20170611.σ0_VV 17 20 13 18 19 17 16 16 27 19 17 10 SAR

20171008.B4 16 10 34 20 15 18 19 19 16 21 16 18 Optical

20170729.σ0_VV 27 27 24 30 26 19 21 25 21 25 27 3 SAR

20170506.B5 26 7 9 14 16 20 9 20 20 16 20 6 Optical

20170705.σ0_VV 25 22 16 27 25 21 27 21 23 14 25 2 SAR

20171009.σ0_VV 23 17 12 22 14 22 20 12 18 18 12 11 SAR

20170705.GLCM_σ0_VV 15 23 22 24 22 23 23 22 19 29 23 6 SAR

20171021.σ0_VH 20 24 19 28 27 24 25 23 26 26 24 4 SAR

20171021.GLCM_σ0_VH 19 28 28 25 23 25 30 28 28 20 28 2 SAR

20170506.σ0_VV 12 15 14 17 17 26 26 27 30 13 17 13 SAR

20171009.GLCM_σ0_VV 22 25 25 16 21 27 18 17 25 24 25 2 SAR

20170506.B4 36 31 41 34 32 28 34 41 33 34 34 7 Optical

20171009.σ0_VH 31 39 31 33 33 29 32 35 24 31 31 8 SAR

20171009.GLCM_σ0_VH 30 29 26 26 35 30 31 29 36 27 30 6 SAR

20170729.GLCM_σ0_VV 29 32 29 32 31 31 35 26 31 28 31 4 SAR

20170927.GLCM_σ0_VH 34 26 32 29 29 32 33 33 32 33 32 2 SAR

20171008.ndvi 35 36 33 35 28 33 22 31 40 30 35 5 Optical

20170927.σ0_VH 28 30 30 31 30 34 36 37 29 36 30 7 SAR

20170915.σ0_VH 43 38 40 43 36 35 37 38 43 43 43 0 SAR

20170506.B12 33 34 18 23 34 36 28 30 22 32 34 2 Optical

20170915.GLCM_σ0_VV 51 47 59 56 55 37 48 53 34 55 55 4 SAR

20170506.B3 55 44 47 55 49 38 49 44 45 46 55 0 Optical

20170530.σ0_VH 53 41 39 39 63 39 43 51 60 57 39 24 SAR

20171021.σ0_VV 39 33 35 40 43 40 40 36 41 35 40 3 SAR

20170927.σ0_VV 42 51 37 41 40 41 47 40 42 37 42 9 SAR

20170615.B6 45 54 54 45 46 42 45 55 49 50 45 10 Optical

20171008.B3 32 35 44 36 37 43 29 32 35 39 32 12 Optical

20170915.σ0_VV 47 48 52 37 51 44 53 43 53 48 48 5 SAR

20171021.GLCM_σ0_VV 59 56 45 49 48 45 38 49 39 49 49 10 SAR

20170918.B8 40 45 43 38 41 46 39 42 37 44 40 6 Optical

20170717.σ0_VV 38 37 42 48 44 47 42 39 38 51 38 13 SAR

20170717.GLCM_σ0_VV 56 43 46 47 38 48 41 45 52 42 56 0 SAR

20170526.B11 54 42 38 63 45 49 46 46 50 58 46 17 Optical

20170810.GLCM_σ0_VH 52 58 49 50 61 50 58 61 48 45 58 3 SAR

20170915.GLCM_σ0_VH 61 57 51 51 52 51 56 48 66 47 51 15 SAR

20170705.σ0_VH 48 66 63 52 39 52 64 67 62 74 52 22 SAR

20171008.B8 50 67 62 61 54 53 61 63 58 52 61 6 Optical

20170526.B6 49 49 57 65 60 54 66 59 57 56 49 17 Optical

20170918.B8A 57 52 55 53 50 55 62 50 47 53 55 7 Optical

20171008.B8A 60 65 66 54 64 56 57 71 59 60 60 11 Optical

20170918.B7 41 55 36 58 42 57 50 57 46 41 41 17 Optical

20171008.B7 63 62 61 44 66 58 52 56 61 62 62 4 Optical

20170903.GLCM_σ0_VV 44 46 56 46 57 59 44 47 51 38 44 15 SAR

20170810.σ0_VH 37 40 50 42 53 60 55 34 44 40 40 20 SAR

20170903.σ0_VH 58 60 60 57 58 61 51 52 55 63 58 5 SAR

20170526.B8 75 64 69 62 70 62 59 70 56 66 62 13 Optical

20170615.B8 81 59 73 73 72 63 73 65 78 79 73 8 Optical

20170615.B11 66 72 71 70 80 64 60 82 70 72 72 10 Optical

Repetitions 20170903.σ0_VV 62 50 53 59 65 65 54 58 54 59 59 6 SAR

20171008.B6 65 68 64 66 62 66 65 54 64 61 65 3 Optical

20170903.GLCM_σ0_VH 76 74 79 80 82 67 79 77 82 91 79 12 SAR

20170623.σ0_VH 70 73 78 64 77 68 75 72 86 67 70 16 SAR

20170615.B3 83 84 75 82 91 69 71 85 67 71 71 20 Optical

20170506.B2 73 76 65 71 75 70 68 62 79 65 65 14 Optical

20170526.B8A 68 63 48 68 47 71 67 64 63 54 68 3 Optical

20170506.GLCM_σ0_VH 80 82 72 83 78 72 83 86 72 68 72 14 SAR

20170809.B7 67 70 68 67 59 73 77 68 68 70 68 9 Optical

20170526.B7 77 61 74 74 74 74 76 73 75 86 74 12 Optical

20170530.GLCM_σ0_VH 64 53 77 60 79 75 63 81 65 69 64 17 SAR

20170506.σ0_VH 46 71 58 78 71 76 70 60 69 64 71 7 SAR

20170809.B6 82 85 76 72 89 77 80 83 73 83 83 6 Optical

20170615.B8A 93 79 83 85 85 78 88 75 81 75 85 8 Optical

20170526.B5 79 86 87 92 90 79 89 87 89 87 87 5 Optical

20170927.GLCM_σ0_VV 69 69 80 69 76 80 69 69 77 78 69 11 SAR

20171008.B5 90 89 93 90 94 81 94 90 84 93 90 4 Optical

20171008.B12 89 80 67 81 67 82 78 74 87 89 89 0 Optical

20170526.B3 87 88 88 88 81 83 93 66 74 90 88 5 Optical

20170809.B8 74 83 86 86 68 84 82 79 76 81 86 0 Optical

20170810.GLCM_σ0_VV 72 81 82 77 69 85 74 80 80 85 85 0 SAR

20170918.B6 85 77 81 76 73 86 86 92 88 80 86 6 Optical

20170526.B2 99 75 98 93 100 87 99 99 94 96 99 1 Optical

20170615.B7 84 91 96 79 84 88 84 89 85 73 84 12 Optical

20170615.B2 86 95 85 94 97 89 85 84 83 77 85 12 Optical

20170809.B4 96 92 89 87 86 90 95 88 95 97 95 2 Optical

20170518.σ0_VH 71 87 70 75 56 91 72 76 71 76 71 20 SAR

20170623.GLCM_σ0_VH 78 93 90 84 83 92 81 78 90 84 78 15 SAR

20170615.B5 102 105 99 102 99 93 104 101 101 98 102 3 Optical

20170615.B12 95 78 84 89 87 94 90 93 99 82 95 4 Optical

20170810.σ0_VV 98 94 91 98 92 95 96 95 96 95 95 3 SAR

20170809.ndvi 88 90 95 95 96 96 91 94 97 94 95 2 Optical

20170809.B2 100 97 100 99 98 97 101 98 92 105 100 5 Optical

20170918.B2 91 99 92 96 88 98 97 97 91 92 91 8 Optical

20170809.B3 92 96 94 91 93 99 87 91 93 88 91 8 Optical

20170918.ndvi 97 101 103 103 95 100 92 102 98 101 101 2 Optical

20170705.GLCM_σ0_VH 104 98 97 100 104 101 102 96 102 102 102 2 SAR

20170809.B8A 101 100 102 97 101 102 100 103 103 103 103 0 Optical

20170526.B12 94 103 104 107 103 103 103 104 104 104 103 4 Optical

20170918.B5 103 104 105 101 102 104 98 105 100 100 104 1 Optical

20170518.GLCM_σ0_VH 107 102 101 106 105 105 105 100 105 99 105 2 SAR

20170526.B4 108 108 108 105 108 106 108 107 107 106 108 0 Optical

20170615.B4 106 106 107 104 107 107 107 108 108 107 107 1 Optical

20171008.B11 109 110 112 109 109 108 109 114 110 110 109 5 Optical

20170918.B3 105 107 106 108 106 109 106 106 106 108 106 3 Optical

20170729.σ0_VH 110 109 109 111 113 110 110 110 109 109 110 3 SAR

20170918.B4 113 112 111 112 116 111 118 109 111 112 112 6 Optical

20170809.B5 111 113 113 114 115 112 111 112 112 111 111 4 Optical

20170918.B12 112 114 110 110 112 113 112 111 113 114 112 2 Optical

20170717.σ0_VH 114 111 116 115 110 114 113 113 114 113 114 2 SAR

20170506.ndvi 115 116 114 113 111 115 114 115 115 115 115 1 Optical

20170615.ndvi 116 117 115 118 118 116 115 116 117 116 116 2 Optical

20170717.GLCM_σ0_VH 119 120 119 120 119 117 116 120 116 118 119 1 SAR

20170809.B12 118 115 117 117 117 118 119 117 118 117 117 2 Optical

20170729.GLCM_σ0_VH 120 119 120 119 120 119 120 119 120 120 120 0 SAR

20170526.ndvi 117 118 118 116 114 120 117 118 119 119 118 2 Optical

20170809.B11 121 121 121 121 121 121 121 121 121 121 121 0 Optical

20170918.B11 122 122 122 122 122 122 122 122 122 122 122 0 Optical

Maximal Distance Un-Important Features

0-2 Important Features

3-5

6-9

> 9

Fig. 13 Rank of features in the ten implemented repetitions of backward feature reduction (Final selected Repetition order removed (6th Repeti-
tion)), Format: YYYYMMDD.Featurename
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