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Abstract

Machine learning, particularly deep learning, is a key driver of advancements in
various research fields and industrial applications, including medical imaging.
Its capability to abstract and manipulate complex data patterns holds signifi-
cant potential, especially in X-ray image formation. In this process, acquired
detector signals must be transformed into human-interpretable images to accu-
rately depict the patient’s anatomy and identify potential pathologies. Despite
their potential, integrating deep learning models into clinical practice entails
distinct challenges. Reliability is essential, as corrupted information may result
in incorrect diagnoses. Moreover, traditional image quality metrics often fail
to adequately quantify a model’s impact on diagnostic accuracy, necessitating
more advanced evaluation techniques. Furthermore, the carcinogenic nature of
ionizing radiation ethically precludes obtaining X-ray images solely for training
purposes. In combination with strict privacy requirements for patient data, this
limits the availability of comprehensive datasets. Recognizing both the poten-
tial and challenges of integrating deep learning into clinical practice, this work
explores how to leverage its capabilities to optimize the conversion of recorded
X-ray detector signals into human-readable X-ray images, thereby refining the
visibility of diagnostic information. Moreover, by addressing the aforementioned
challenges, it aims to facilitate the implementation of the proposed methods
in clinical settings. Specifically, this work focuses on the investigation of the
following key aspects in X-ray image processing: the removal and supression of
artifacts in the X-ray detector signal, namely collimation shadows and noise, and
the quantification and adjustment of differences in X-ray image impressions.

Noise in X-ray images is inversely proportional to the radiation dose and can ob-
scure diagnostic information. Consequently, X-ray acquisitions must balance the
trade-off between ionizing radiation dose and image quality. To further reduce
patient radiation exposure, collimation is employed to exclude non-essential
regions. However, shadows from the collimator can decrease the space available
for visualizing crucial anatomy and often interfere with subsequent processing
steps. Thus, this work proposes deep learning-based methods for denoising and
collimator shadow segmentation in X-ray images. To overcome data scarcity and
enable supervised training, we propose a physics-based simulation framework to
generate matching training pairs. This framework allows for the alteration of the
initial acquisition parameters of X-ray images, such as radiation dose, scatter, and
collimator shadow patterns. This work demonstrates that models for collimator
segmentation and denoising, trained on the simulation framework, generalize
well to real-world data. Moreover, to enhance the generalization of the colli-
mation segmentation in clinical practice, this works incorporate the geometric
constraint of straight edges into the network architecture, via a differentiable
Hough Transform. Additionally, to enable denoising in clinical practice, it must
be ensured that tiny details are not mistaken for noise and removed. For this
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reason, this work proposes a novel loss function that regularizes the network to
prevent overestimation of noise, thus minimizing information loss. Moreover, a
differentiated evaluation across different patient types to investigate potential bi-
ases in the model’s performance is conducted. The combination of a specifically
designed loss function and thorough evaluation contributes to the application of
the proposed method in clinical settings.

After collimation removal and noise supression, the recored X-ray signal must be
compressed into a visible range. Due to the ambiguity caused by overlapping tis-
sues in X-ray images, there is no single optimal solution to this task. Consequently,
various X-ray image impressions, also referred to as styles, have emerged to which
radiologists have become accustomed due to their experience. Additionally, due
to the lack of objective quantification of differences between X-ray image styles
from different acquisitions and the absence of reliable, automatically adjustable
X-ray image processing algorithms, the styles must be manually adjusted to cater
to individual radiologists’ needs. Morevoer, the automatic adjustment of X-ray
image styles requires special sensitivity to preserving diagnostic information, as
converting the recorded X-ray detector signal into a visible image significantly
alters the signal. To address these challenges, this work proposes a novel, auto-
matic, reliable, and interpretable algorithm based on the Local Laplacian Filter
(LLF) to generate and adjust X-ray image styles. This algorithm converts recorded
X-ray detector signals into human-readable X-ray images, allowing for the au-
tomatic adjustment of parameters through Stochastic Gradient Descent (SGD)
to accommodate the adaptation to different X-ray image styles. Due to the in-
herent properties of the LLF, the optimized algorithm can be verified to ensure
that no diagnostic information is lost. Furthermore, due to the lower number of
parameters compared to traditional deep learning models, the algorithm can be
optimized on small datasets. To address the absence of objective quantification
of differences between X-ray image styles from different acquisitions, we propose
a novel deep learning-based metric. This metric uses an encoder trained through
Simple Siamese learning to generate X-ray image style representations without
requiring labeled style distances. The encoder produces style representations
independent of the anatomical structures in the X-ray images. Experiments using
t-SNE analysis illustrate that the distances between these style representations
correlate with the degree of style difference. Consequently, the encoder, in com-
bination with a distance measurement between the style representations, can
quantify style differences between X-ray images from different acquisitions.

The proposed methods aim to refine the visibility of diagnostic information
in X-ray images by addressing the challenges of data scarcity, model reliability,
and the quantification of differences in X-ray image styles. By leveraging deep
learning capabilities, this work aims to facilitate the integration of advanced
image processing methods into clinical practice, thereby improving diagnostic
accuracy and patient care.
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Zusammenfassung

Maschinelles Lernen, insbesondere deep learning (DL), treibt Fortschritte in
verschiedenen Forschungsbereichen und industriellen Anwendungen, ein-
schließlich der medizinischen Bildgebung, voran. Die Fähigkeit, komplexe
Datenmuster zu abstrahieren und zu manipulieren, birgt erhebliches Potenzial,
insbesondere bei der Röntgenbilderstellung. In diesem Prozess müssen erfasste
Detektorsignale in für Menschen interpretierbare Bilder umgewandelt werden,
um die Anatomie des Patienten genau darzustellen und mögliche Pathologien
zu identifizieren. Trotz ihres Potenzials bringt die Integration von DL-Modellen
in die klinische Praxis spezifische Herausforderungen mit sich. Zuverlässigkeit
ist von entscheidender Bedeutung, da fehlerhafte Informationen zu falschen
Diagnosen führen können. Darüber hinaus versagen traditionelle Metriken
für die Bildqualität oft darin, den Einfluss eines Modells auf die diagnostische
Genauigkeit angemessen zu quantifizieren, was fortschrittlichere Bewertung-
stechniken erforderlich macht. Zudem schließt die krebserzeugende Natur
ionisierender Strahlung ethisch aus, Röntgenbilder ausschließlich zu Train-
ingszwecken zu erhalten. In Kombination mit strengen Datenschutzanforderun-
gen für Patientendaten schränkt dies die Verfügbarkeit umfassender Datensätze
ein. In Anbetracht des Potenzials und der Herausforderungen bei der Integration
von DL in die klinische Praxis untersucht diese Arbeit, wie dessen Fähigkeiten
genutzt werden können, um die Umwandlung von aufgezeichneten Röntgende-
tektorsignalen in menschenlesbare Röntgenbilder zu optimieren und dadurch
die Sichtbarkeit diagnostischer Informationen zu verfeinern. Darüber hinaus
zielt sie, durch die Überwindung der oben genannten Herausforderungen, darauf
ab, die Umsetzung der vorgeschlagenen Methoden in klinischen Umgebungen zu
ermöglichen. Insbesondere konzentriert sich diese Arbeit auf die Untersuchung
der folgenden Schlüsselaspekte bei der Verarbeitung von Röntgenbildern: die
Entfernung und Unterdrückung von Artefakten im Röntgendetektorsignal, ins-
besondere Kollimationsschatten und Rauschen, sowie die Quantifizierung und
Anpassung von Unterschieden im Eindruck von Röntgenbildern.

Rauschen in Röntgenbildern ist umgekehrt proportional zur Strahlendosis und
kann diagnostische Informationen verdecken. Folglich müssen Röntgenaufnah-
men den Kompromiss zwischen ionisierender Strahlendosis und Bildqualität aus-
balancieren. Um die Strahlenexposition des Patienten weiter zu reduzieren, wird
die Kollimation auf die Interessensregion angewendet. Allerdings können Schat-
ten vom Kollimator den verfügbaren Raum zur Visualisierung entscheidender
Anatomien verringern und oft nachfolgende Verarbeitungsschritte stören. Daher
schlägt diese Arbeit auf Deep Learning basierende Methoden zur Entrauschung
und zur Segmentierung von Kollimatorschatten in Röntgenbildern vor. Um
Datenknappheit zu überwinden und überwachte Trainingsmöglichkeiten zu
schaffen, schlagen wir ein physikbasiertes Simulationsframework zur Gener-
ierung passender Trainingspaare vor. Dieses Framework ermöglicht die Änderung
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der ursprünglichen Aufnahmeparameter von Röntgenbildern, wie Strahlendosis,
Streustrahlung und Kollimatorschattenmuster. Diese Arbeit zeigt, dass Modelle
zur Kollimatorsegmentierung und Entrauschung, die auf dem Simulationsframe-
work trainiert wurden, sich gut auf reale Daten übertragen lassen. Darüber hinaus
wird zur Verbesserung der Generalisierung der Kollimationssegmentierung in der
klinischen Praxis die geometrische Einschränkung der geraden Kanten über eine
differenzierbare Hough-Transformation in die Netzwerkarchitektur integriert.
Zusätzlich muss zur Ermöglichung der Entrauschung in der klinischen Praxis
sichergestellt werden, dass winzige Details nicht fälschlicherweise als Rauschen
erkannt und entfernt werden. Aus diesem Grund wird in dieser Arbeit eine
neuartige Verlustfunktion vorgeschlagen, die das Netzwerk reguliert, um eine
Überschätzung des Rauschens zu verhindern und somit den Informationsverlust
zu minimieren. Zudem wird eine differenzierte Bewertung über verschiedene
Patiententypen hinweg durchgeführt, um potenzielle Verzerrungen in der Leis-
tungsfähigkeit des Modells zu untersuchen. Die Kombination aus einer speziell
entwickelten Verlustfunktion und gründlicher Bewertung trägt zur Anwendung
der vorgeschlagenen Methode in klinischen Umgebungen bei.

Nach der Entfernung von Kollimation und Rauschunterdrückung muss das
aufgezeichnete Röntgensignal in einen sichtbaren Bereich komprimiert werden.
Aufgrund der Uneindeutigkeit, die durch sich überlappende Gewebestrukturen
in Röntgenbildern entsteht, existiert keine einzige optimale Lösung für dieses
Problem. Daher haben sich verschiedene Röntgenbilddarstellungen, auch als
Stile bezeichnet, entwickelt, an die sich Radiologen aufgrund ihrer Erfahrung
gewöhnt haben. Zudem erfordert der Mangel an objektiver Quantifizierung von
Unterschieden zwischen Röntgenbildstilen aus verschiedenen Aufnahmen und
das Fehlen zuverlässiger, automatisch anpassbarer Röntgenbildverarbeitungsal-
gorithmen eine manuelle Anpassung der Stile an die individuellen Bedürfnisse
der Radiologen. Weiterhin erfordert die automatisierte Anpassung von Röntgen-
bildstilen besondere Sensibilität zur Erhaltung diagnostischer Informationen,
da die Umwandlung des aufgezeichneten Signals des Röntgendetektors in ein
sichtbares Bild das Signal erheblich verändert.

Zur Bewältigung dieser Herausforderungen wird in dieser Arbeit ein neuartiger,
automatisierter, zuverlässiger und interpretierbarer Algorithmus vorgestellt, der
auf dem LLF basiert, um Röntgenbildstile zu erzeugen und anzupassen. Dieser
Algorithmus transformiert aufgezeichnete Röntgendetektorsignale in sichtbar
darstellbare Röntgenbilder und erlaubt die automatische Anpassung von Pa-
rametern mithilfe von SGD, um sich flexibel verschiedenen Röntgenbildstilen
anzupassen. Dank der inhärenten Eigenschaften des LLF kann der optimierte
Algorithmus überprüft werden, um die vollständige Erhaltung diagnostischer
Informationen zu gewährleisten. Des Weiteren ermöglicht die geringere An-
zahl von Parametern im Vergleich zu traditionellen Deep-Learning-Modellen
eine Optimierung des Algorithmus auf kleinen Datensätzen. Um den Mangel
an objektiver Quantifizierung von Unterschieden zwischen Röntgenbildstilen
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aus verschiedenen Aufnahmen zu überwinden, wird in dieser Arbeit eine inno-
vative, Deep-Learning-basierte Metrik eingeführt. Dieser Ansatz nutzt einen
Encoder, der durch Simple-Siamese-Lernen trainiert wird, um Röntgenbildstil-
Repräsentationen ohne die Notwendigkeit gelabelter Stilabstände zu generieren.
Der Encoder erstellt Stilrepräsentationen, die unabhängig von den anatomis-
chen Strukturen in den Röntgenbildern sind. Experimente mittels t-SNE-Analyse
zeigen, dass die Distanzen zwischen diesen Stilrepräsentationen mit dem Stilun-
terschied korrelieren. Folglich kann der Encoder in Kombination mit einer Dis-
tanzmessung zwischen den Stilrepräsentationen die Unterschiede der Stile zwis-
chen Röntgenbildern aus verschiedenen Aufnahmen quantifizieren.

Die vorgeschlagenen Methoden verbessern die Sichtbarkeit diagnostischer Infor-
mationen in Röntgenbildern, indem sie die Herausforderungen der Datenknap-
pheit, Modellzuverlässigkeit und der Quantifizierung von Unterschieden in
Röntgenbilddarstellungen adressieren. Durch den Einsatz von Deep-Learning-
Techniken zielt diese Arbeit darauf ab, die Integration fortschrittlicher Bild-
verarbeitungsmethoden in die klinische Praxis zu erleichtern, um sowohl die
diagnostische Genauigkeit als auch die Patientenversorgung zu verbessern.





1
Introduction

On December 22, 1895, the first-ever image depicting human anatomy was
recorded. The hand of Berta Röntgen was subjected to X-ray radiation for a
duration of 20 minutes by the physicist Wilhelm Conrad Röntgen. This exposure
revealed not only the bones of her hand but also the ring she was wearing on her
finger. This discovery quickly revolutionized the field of medicine, as it became
evident that X-rays could be utilized for diagnostic purposes [217, 207]. By direct-
ing X-rays towards a patient, the differential attenuation of these rays by various
tissues can be leveraged to capture an image of the patient’s internal anatomy on
a photographic film. This marked the advent of X-ray imaging, a technique that
provided unprecedented, non-invasive insight into the internal structure of the
human body. However, the euphoria surrounding this discovery was soon tem-
pered by the realization of its potential harm. As early as 1897, merely two years
post Röntgen’s discovery, instances of skin and tissue damage due to interaction
with X-rays began to surface [236, 51]. By 1911, the first case of leukemia was
linked to this radiation. This association was further substantiated by a pivotal
study in 1944 by March [154], which provided compelling evidence of cancer
being a potential consequence of X-ray exposure. Today, it is well-established
that X-rays can induce DNA damage, leading to mutations that may result in
cancer [22, 32]. Despite significant advancements in technology, a fundamental
challenge in radiography persists: balancing the need for high-quality diagnostic
images with the imperative to minimize radiation exposure [235]. In the wake
of these challenges, the field of radiography has witnessed remarkable techno-
logical advancements. A significant leap forward has been the development of
digital detectors [126]. These devices have transformed the way X-ray images
are captured and processed, replacing traditional photographic film with digital
means. Digital detectors capture X-ray images in a digital format, which opens
up a plethora of possibilities for image processing. With the aid of sophisticated
algorithms and computational power, these digital images can be enhanced, ma-
nipulated, and analyzed in ways that were previously unimaginable. This digital
revolution has made diagnostic features enhanced visible and discernible [126].

1
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Moreover, digitalization has facilitated the integration of machine learning and
especially deep learning algorithms in radiography. These algorithms, which can
be trained to recognize patterns in images or manipulate image features [211],
have been revolutionizing the field of photographic image processing over the
past decade. We posit that the immense potential of machine learning algorithms
for enhancing X-ray images remains largely untapped.

1.1 Motivation & Research Objectives

In this work, we explore the potential of machine learning to enhance diagnostic
accuracy without necessitating an increase in radiation dosage. From the acqui-
sition of X-ray images to the presentation of processed images to radiologists,
various stages are crucial to ensure optimal diagnostic accuracy. For this rea-
son, we have identified four distinct research objectives aimed at improving this
process:

1. Investigate machine learning’s ability to detect collimation shadows, aiming
to enhance the field of view of the X-ray images and establish a basis for further
post-processing algorithms.

2. Explore the feasibility of reducing noise levels in X-ray images without compro-
mising diagnostic information, focusing particularly on denoising projections in
Digital Breast Tomosynthesis (DBT), where noise is prevalent and radiologist face
the especially challenging task of detecting carcinomas (cancer tissue) [119].

3. Optimize an X-ray image processing pipeline using machine learning, with
the goal of aligning more closely with the preferred X-ray image appearance of
individual radiologists to reduce the effort required to adjust to varying image
impressions.

4. Utilize deep learning to quantify differences in X-ray image appearances, with
the aim of developing a metric to quantify the challenges radiologists face due to
varying image appearances.

1.1.1 Collimator Shadow Detection

Collimation is a technique frequently used in X-ray imaging to minimize unnec-
essary exposure to non-target areas of the body. However, when present in the
final X-ray image, they limit the available space for displaying relevant diagnostic
information. Furthermore, despite their lack of diagnostic relevance, shadows
from collimation can interfere with processing algorithms. Therefore, the detec-
tion and removal of these shadows is vital for facilitating accurate diagnoses and
further processing of a X-ray image [142].
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The task of detecting collimated areas, however, is significantly challenging due
to the phenomenon of scattered radiation. This scattered radiation can reach the
detector located behind the collimator, resulting in a brighter collimator shadow
[204]. As a result, the collimator shadow can closely mimic the region of interest,
posing a challenge for analytical algorithms to differentiate between the two.

Given their proven effectiveness in image processing tasks [128], Artificial Neural
Networks (ANNs) hold potential as a valuable solution for collimator shadow
detection. Therefore, we investigate the potential of training ANNs to detect
and eliminate collimation artifacts from X-ray images. This is achieved by in-
corporating prior knowledge about the possible geometric manifestations of
collimator shadows by utilizing a differentiable Hough Transform (HT) in the
network architecture.

Additionally, we explore the possibility of developing a simulation pipeline based
on the physical principles underlying collimator shadow formation. This pipeline
aims to augment clinical data with collimation shadows, addressing the scarcity
of data, particularly labeled data, in medical imaging.

The findings of this study, a collaborative effort between Benjamin El-Zein and
the author of this thesis, were showcased in a conference proceeding at Workshop
on Data Augmentation Labeling and Imperfections (DALI) as part of the Medical
Image Computing and Computer Assisted Intervention (MICCAI) 2023, where
they were honored with the best paper award. The publication details are as
follows:

[252] Benjamin El-Zein & Dominik Eckert et al. “A Realistic Colli-
mated X-Ray Image Simulation Pipeline”. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Interven-
tion. Springer. 2023, pp. 137–145.

1.1.2 Denoising Digital Breast Tomosynthesis Projections

In the intricate field of X-ray imaging, Full Field Digital Mammography (FFDM)
stands out as a critical tool in the early detection and diagnosis of breast cancer
[7]. However, interpreting these images presents several challenges. First, the sim-
ilar X-ray attenuation properties between normal and cancerous breast tissues
make it difficult to recognize potential malignancies [69]. Second, microcalcifi-
cations, which are minute calcium deposits in the breast and key indicators of
breast cancer [17], can be easily obscured by noise due to their small size. Third,
the Cancer Detection Rate (CDR) is influenced by different breast types; dense
breast tissues can mask the presence of microcalcifications and carcinomas, dis-
advantaging patients with dense breasts [58]. This issue is further compounded
by the fact that dense breast tissue is a risk factor for breast cancer [155].
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The complexity of breast imaging has spurred the development of DBT [36], a
technique that captures multiple images, or projections, of the breast from differ-
ent angles. This provides a quasi three-dimensional view, addressing challenges
inherent to FFDM, such as overlapping tissues and anatomical clutter [94, 58].
Moreover, DBT substantially improves the CDR in dense breast screens compared
to low-density screens [135, 50].

Building upon the progress in DBT, a novel development, Synthetic Mammo-
grams (SMs), has been introduced. These are quasi-2D FFDM images processed
from the DBT projections. The introduction of SMs marks a significant stride in
the evolution of breast imaging, combining the benefits of both approaches. It
consolidates information acquired from various DBT projections into a single
2D image. This has the potential to eliminate the need for a separate FFDM
acquisition in a routine DBT procedure [220, 249].

While DBT and SM have brought significant advancements in breast imaging,
they also introduce a major challenge. To ensure that the total radiation dose re-
mains within the same range as FFDM, each projection in DBT must be acquired
with a significantly lower dose. Consequently, the noise level in each projection is
higher than in FFDMs, potentially obscuring fine details like microcalcifications,
which are critical for accurate diagnosis [15].

This increase in noise motivates the second part of this work, which explores the
potential of deep learning in noise removal from DBT projections. The devel-
opment follows the premise of not compromising diagnostic information and
ensuring reliable operation across all patient groups, given the potentially fatal
consequences of missing a cancer diagnosis.

Enhancing image quality in DBT projections can facilitate superior reconstruc-
tion of the 3D volume, thereby improving the detection of breast cancer [228].

The necessity of training data for denoising is indisputable. However, the non-
existence of pairs of low and high dose images, e.g. due to ethical considerations
of not exposing patients to unnecessary radiation merely for data generation,
poses a challenge. Similar to the collimation detection, we investigate the pos-
sibility of generating physically plausible noise patterns in FFDM images to
simulate the noise level in DBT projections. We subsequently investigate deep-
learning methodologies, with a particular emphasis on loss functions, to ensure
the preservation of diagnostically relevant information.

Lastly, we investigate the performance of the developed deep learning models
across various patient groups to ascertain the reliability and enable possible
applicability in real world clinical settings.
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The findings of this research have been presented at three conferences and pub-
lished in one academic journal. Notably, the work received the best poster award
at the SPIE Medical Imaging 2022 conference. The publications are as follows:

[64] Dominik Eckert et al. “Deep learning-based denoising of mammo-
graphic images using physics-driven data augmentation”. In: Bildver-
arbeitung für die Medizin 2020: Algorithmen–Systeme–Anwendungen.
Proceedings des Workshops vom 15. bis 17. März 2020 in Berlin.
Springer. 2020, pp. 94–100.

[62] Dominik Eckert et al. “Deep learning based denoising of mam-
mographic x-ray images: an investigation of loss functions and their
detail-preserving properties”. In: Medical Imaging 2022: Physics of
Medical Imaging. Vol. 12031. SPIE. 2022, pp. 455–462.

[65] Dominik Eckert et al. “Guidance to Noise Simulation in X-ray
Imaging”. In: Bildverarbeitung für die Medizin 2024: Proceedings,
German Conference on Medical Image Computing, Erlangen, March
10-12, 2024. Springer-Verlag. 2024, p. 184.

[63] Dominik Eckert et al. “Deep learning based tomosynthesis denois-
ing: a bias investigation across different breast types”. In: Journal of
Medical Imaging 10.6 (2023), pp. 064003–064003.

The following publication, primarily based on the research of Magdalena Herbst,
serves as a supplement to the proposed denoising methods. It aims to ensure the
reliability of the suggested deep learning method in practical applications:

[90] Magdalena Herbst et al. “Noise gate: a physics-driven control
method for deep learning denoising in x-ray imaging”. In: Medical
Imaging 2024: Physics of Medical Imaging. Vol. 12925. SPIE. 2024, pp.
736–739.

The proposed denoising research contributes to the development of the next-
generation DBT system, MAMMOMAT B.brilliant, by Siemens Healthineers. In
this system, AI-based denoising is employed to provide a more natural image
background for the corresponding Insight 2D image mode.

[88] Daan Hellingman et al. "Fast, high-resolution wide-angle digital
breast tomosynthesis with MAMMOMAT B.brilliant."

1.1.3 X-ray Image Impression and Appearance

Besides the removal of artifacts in the image, the presentation of the X-ray image
itself is crucial for the diagnostic process. The human eye is unable to simultane-
ously perceive the entire spectrum of signals acquired by the X-ray detector. Con-
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sequently, the signal must be compressed in to a visible range of approximately
500-1000 shades of gray [18]. Inevitably, information is lost in this compression.
At the same time crucial diagnostic information is often contained in subtle
changes [33]. Hence, the processing of the signal into a visual range is a complex
and ambiguous process. Over time, various processing algorithms have emerged,
each yielding unique X-ray image impressions. These impressions, often referred
to as ’styles’, carry their own set of advantages. Besides the actual presentation,
the capability of the radiologists to extract the relevant diagnostic information
depends on the training, personal preferences and neuro-physilogical processes
[33, 117]. Therefore, radiologists have preferred X-ray image styles. Moreover
errors, which arise when radiologists fail to recognize the diagnostic information
available in the image, account for 60-80% of all diagnostic errors [234]. Conse-
quently, alterations in the style, that is, the presentation of diagnostically relevant
information, can influence the diagnostic accuracy of radiologists. Nonetheless,
radiologists encounter variations in X-ray machines, equipment modifications,
and improvements in image processing pipelines, continuously.

Quantifying these stylistic changes presents a challenge, particularly when com-
paring images with non-matching content, that is, two X-ray images from differ-
ent acquisitions. Moreover, these differences significantly influence the process
of reading X-ray images. Vendors aim to tailor the image processing pipeline
to the radiologist’s preferred style, using a set of example images from previous
acquisitions. This customization seeks to align with the radiologist’s preferred
X-ray image style, thereby minimizing the effort required to adjust to varying
image impressions. However, this manual process is not only time-consuming
and error-prone, but also highly subjective due to the absence of a metric for
measuring the style distance between two different X-rays. In this work, we ad-
dress these issues in two ways. First, we explore the automation of the X-ray
image processing algorithm adaptation. Second, we explore the potential of deep
learning metrics to abstract high-level features, with the aim of developing a
deep-learning-based style metric to quantify differences in the appearance of
non-matching X-ray images.

Automatic Adaption of X-ray Image Processing Pipelines

Modern X-ray image processing pipelines primarily depend on the weighting of
different frequency bands, a method that has been superseded in photographic
image processing [232, 163]. We initially investigate the potential of using the LLF
[174], recognized as the state-of-the-art in photographic image processing [54], to
enhance the visibility of diagnostic information in X-ray imaging. Following this,
we focus on the automatic adaptation of the X-ray image processing pipeline. To
do so, we explore the potential of optimizing the parameters of LLF with gradient
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descent to automatically match a desired image impression. Furthermore, we
investigate its limitations and examine potential improvements, particularly to
its remapping function.

The findings of this research have been accepted for presentation at the Interna-
tional Symposium on Biomedical Imaging (ISBI) 2025 conference:

[61] Dominik Eckert et al. “An Interpretable X-ray Style Transfer via
Trainable Local Laplacian Filter”. In: arXiv preprint arXiv:2411.07072
(2024).

Quantifying X-ray Image Style Differences

Our investigation into quantifying stylistic differences between X-ray images in-
volves multiple stages. Initially, we focus on generating varied image impressions
using a transparent linear analysis pipeline. Owing to its linearity, the differences
between the generated styles can be traced back to the processing steps. This
facilitates the creation of a robust training and test dataset. Moreover, due to its
transparency, the pipeline ensures the reproducibility of our research. Secondly,
we aim to overcome the non-existence of style distance labels. To this end, we
investigate the application of unsupervised training methods to extract high-level
X-ray image style features. Thirdly, we explore the feasibility of constructing a
style metric based on the trained deep learning model. Lastly, we assess the
practical applicability of this metric on clinically relevant image impressions,
constructed with a confidential vendor pipeline.

The findings regarding style quantification are in submission to the academic
journal Transactions on Medical Imaging (TMI):

[66] Dominik Eckert et al. “StyleX: A Trainable Metric for X-ray Style
Distances”. In: arXiv preprint arXiv:2405.14718 (2024)

1.2 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides an overview of the theoretical background, discussing the
essential concepts and methods necessary for understanding the research ob-
jectives, as well as the inspiration behind this work. It covers a range of topics
from the physical principles underlying X-ray imaging and the peculiarities of
mammographic imaging, to key concepts in analytical X-ray image processing,
and concludes with a focus on machine learning concepts, specifically deep
learning methods.
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Chapter 3 discusses the development of a noise simulation pipeline. This
pipeline is utilized both as part of the collimation simulation and for the genera-
tion of noise patterns in DBT projections.

Chapter 4 presents our research on detecting collimation shadows. It discusses
the development of the collimation simulation pipeline as well as the deep learn-
ing methodologies investigated for detecting the shadows.

Chapter 5 discusses our research on denoising DBT projections, with a focus
on the impact of different loss functions and the development of a novel loss
function tailored for mammographic images. It also covers our investigation
into the applicability of the developed deep learning models across different
patient groups and breast densities, to ensure their reliability in real-world clinical
settings.

Chapter 6 details our research on the automatic adaptation of X-ray image pro-
cessing pipelines to provide a desired image appearance. It is built around the LLF
and its gradient-based optimization. The chapter also discusses improvements
to its remapping function.

Chapter 7 presents our research on quantifying variations in X-ray image ap-
pearances using a deep learning-based style metric. It discusses the creation of
diverse image styles, the unsupervised training methods used, and the evaluation
of the developed metric on clinically relevant image styles.

Chapter 8 concludes the thesis by summarizing the insights gained by our re-
search and discussing the potential implications of our work on the field of radio-
graphy. It also outlines possible future research directions and the limitations of
our work.



2
Background

Serving as the foundation for this thesis, this chapter provides the essential
concepts and techniques upon which the work is predicated. It is divided into
four distinct sections.

The first part offers an overview of the X-ray imaging domain, clarifying the
physical principles that underpin it.

Furthermore, given the thesis’s specific focus on mammography, the second
section investigates the epidemiological and diagnostic aspects of this technique,
addressing how these aspects impact the challenges related to image quality.

The third section presents the analytical image processing techniques employed
in this research, including the Anscombe transformation, the Hough transform,
and Image Pyramids.

Considering the investigation of deep learning techniques in X-ray image process-
ing in this work, the final section establishes the foundation for deep learning. It
specifically highlights those techniques that have either inspired or been applied
in this research.

2.1 Physics of X-ray Imaging

X-rays, a category of electromagnetic radiation, have wavelengths ranging be-
tween 10−8 m and 10−13 m. This range is significantly shorter compared to the
wavelengths of visible light, which approximate 10−6 m [5]. Their quantum nature
allows them to be described both as particles, known as photons, and as waves, a
concept encapsulated in the wave-particle duality principle [79, 180]. The energy
(E) of the photon is related to its wavelength (ν) as per the equation:

E = hc

ν
(2.1)

9
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Figure 2.1: Figure (a) depicts an X-ray imaging system, comprising its three main
components: the X-ray source, the patient, and the detector. Figure (b) illustrates
the detailed components of the source. The process involves a cathode emitting
electrons, which are then accelerated by a high voltage towards a target anode,
resulting in their conversion to photons.

where h is Planck’s constant (6.626×10−34 Js) [79] and c is the speed of light in a
vacuum (3×108 m/s) [35].

Compared to visible light, which has a wavelength of approximately 10−6 m, X-
rays have higher energy and shorter wavelengths. This characteristic allows them
to penetrate biological tissues, a property that is utilized in X-ray imaging. In this
technique, X-rays are produced and directed towards the body. The degree to
which these photons are absorbed or pass through varies depending on the tissue
type. The attenuated X-ray beam, representing the differential absorption, is
subsequently captured by a detector. This detector then converts the transmitted
photons into digital signals, enabling the formation of an image [148]. This
process is exemplified in Fig. 2.1a.

2.1.1 X-ray Generation

X-rays for medical imaging are typically generated in a specialized vacuum tube
known as an X-ray tube. This tube consists of two electrodes: the cathode and
the anode, as depicted in Fig. 2.1b. The cathode, negatively charged, houses a
filament that, when heated, emits electrons through thermionic emission. This
process, driven by an electric current, enables the filament’s outer electrons to
overcome their binding energy, creating a free electron cloud or space charge. As
the heat corresponds to the tube current, a higher current results in more emitted
electrons [148]. Simultaneously, a high voltage applied between the cathode
and anode charges the anode positively, driving the free electrons towards it.
Therefore, the electrons’ kinetic energy is proportional to the tube voltage. The
anode, usually composed of high atomic number material such as tungsten,
serves as the target for these accelerated electrons [148, 195].
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Upon collision of the high-speed electrons with the anode in the X-ray tube, the
kinitic energy of the electrons is converted into electromagnetic radiation due to
two mechanisms:

Characteristic radiation occurs when a high-speed electron displaces an inner-
shell electron in the anode’s target atom, leaving a vacancy. An outer shell electron
fills this vacancy, and its transition to a lower energy level emits energy in the
form of an X-ray photon. The energy of this photon corresponds to the energy
difference between the two shells, yielding a characteristic X-ray spectrum unique
to the anode material [35].

Bremsstrahlung, is the main X-ray source in an X-ray tube. It occurs when a
high-speed electron is deflected by the electric field of the nucleus of a target
atom in the anode, leading to energy loss emitted as an X-ray photon. Unlike
characteristic radiation, the photon’s energy in Bremsstrahlung radiation can
vary, resulting in a continuous X-ray spectrum [148].

Due to the physical principle of energy conservation [43], the maximum energy
of the generated X-ray photons (Emax) is directly related to the tube voltage (U )
by the equation:

Emax = e ·U (2.2)

where e is the electron charge (1.602×10−19 coulombs) [35].

However, only a minor fraction of about 1% of the electron energy is converted
into X-ray photons. The majority of the energy is dissipated as heat, necessitating
cooling mechanisms in the X-ray tube to avoid overheating [148].

Thus while the tube current determines the number of X-ray photons produced,
the tube voltage influences the amount energy of these photons.

2.1.2 X-Ray Attenuation

As X-ray photons traverse a patient’s body, they undergo attenuation due to inter-
actions with body tissues. This attenuation primarily results from the following
effects:

Photoelectric Absorption: This phenomenon occurs when an X-ray photon with
sufficient energy interacts with an inner shell electron of an atom. The photon
transfers all its energy to the electron, causing its ejection, a process known as
ionization. The energy of the photon must exceed the electron’s binding energy
to the atom. Any excess energy is converted into the kinetic energy of the ejected
electron. The probability of photoelectric absorption is inversely proportional to
the cube of the photon’s energy, meaning lower-energy X-ray photons are more
likely to be absorbed [250].
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Compton Scattering: This occurs when an X-ray photon interacts with a loosely
bound outer shell electron, transferring part of its energy and causing the photon
to deflect with reduced energy. The scattered photon will have less energy, and
therefore a longer wavelength, than the incident photon. The probability of
Compton scattering occurring is approximately independent of the energy of
the photon for diagnostic X-ray energies, but it decreases slightly as the energy
increases [183].

Rayleigh Scattering, the primary form of scattering, happens when an X-ray
photon’s energy is small compared to an atom’s ionization energy. The photon
interacts with an atom’s electron, exciting the entire atom without causing ioniza-
tion or electron ejection. This energy is immediately re-emitted as a photon with
the same wavelength but possibly a different direction. In diagnostic imaging’s
energy range, this interaction is unlikely, accounting for less than 5% of X-ray
interaction above 70 keV in soft tissues [35, 148].

Pair Production: This effect involves an X-ray photon’s energy converting into
an electron-positron pair near an atom’s nucleus. This process only occurs when
the photon’s energy is above a certain threshold (1.022 MeV). Therefore, pair
production does not play a significant role in diagnostic radiology, which typically
uses X-ray photons with energies below this threshold [35].

The combined effects of these interactions result in a spectrum of attenuations
within the patient’s body, which create contrast in the final image. However,
scatter, primarily from Compton scattering, can degrade image quality by creating
a fogging effect due to photon deflection from their original path. Additionally,
the amount of photoelectric absorption, which depends on the photon energy
and the tissue’s atomic number, makes the choice of tube voltage critical for
determining image contrast. Lower tube voltages generate low-energy photons
that are more likely to be absorbed, thus providing better contrast for soft tissue
imaging. Conversely, higher tube voltages produce high-energy photons less
likely to be absorbed, making them suitable for dense tissue imaging. The tube
current, which determines the number of X-ray photons produced, can also
enhance image contrast.

2.1.3 Quantum Noise

Inherent uncertainties, known as quantum or Poisson noise, exist in the number
of X-ray photons due to attenuation and the randomness of photon generation.
Influenced by the Heisenberg uncertainty principle, which posits that the exact
position and momentum of an electron cannot be simultaneously known, there
is an inherent uncertainty in the timing and energy of each photon emission [79].
Additionally, randomness in the occurrence of attenuation events contributes to
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the uncertainty in the number of photons reaching the detector. As a result, the
number of X-ray photons reaching the detector during a specific exposure time
exhibits statistical variations, following a Poisson distribution [179].

It describes the probability of z photons hitting one detector pixel based on the
average photon arrival rate λ. It is defined as:

P (z|λ) = λz e−λ

z!
(2.3)

Since λ varies per pixel, the noise also varies accordingly. Hence, Poisson noise is
signal-dependent. It is crucial to note that in the Poisson distribution the mean
and variance are equal to the mean photon arrival rate [109]:

σ2 =µ=λ . (2.4)

This establishes that the ratio
p
λ
λ represents the relationship between the stan-

dard deviation and the mean. Consequently, it can be inferred that the relative
uncertainty, and by extension, the relative noise within the image, decreases
proportionally with an increase in the mean arrival rate, λ [148].

2.1.4 Photon Recording

The X-ray photon’s, attenuated after traversing the patient’s body, are captured
by a digital X-ray detector and transformed into digital signals for image creation.
The process of photon recording in digital flat panel X-ray detectors involves the
following four steps [122]:

1. Photon Conversion: The sensitive layer of the detector, known as the scin-
tillator, captures and converts X-ray photons into visible light for further
processing. However, the scintillator material may distort the spatial infor-
mation of the emitted light, resulting in image blurring [148]. It is worth
noting that in digital mammography, the process differs; instead of convert-
ing photons into visible light, electrons are directly converted into electrical
charges [148].

2. Signal Readout: A Thin Film Transistor (TFT) or Complementary Metal-
Oxide-Semiconductor (CMOS) array reads the electrical charges. Each
pixel in the array corresponds to a specific location on the detector, and the
charge collected at each pixel represents the X-ray intensity at that location
[122].

3. Digital Conversion: The electrical signals undergo amplification and are
subsequently converted into digital signals by an Analog-to-Digital Con-
verter (ADC). This conversion process introduces uncertainties, which
manifest as white Gaussian noise, commonly known as electronic noise.



14 CHAPTER 2. BACKGROUND

Notably, this noise level is constant and does not depend on the photon
count [146, 122].

4. Image Formation: The digital signals are processed to form an image, with
each pixel value corresponding to the X-ray intensity at a specific location
in the patient’s body. The image can be further processed to enhance its
quality and clarity.

This process enables digital detectors to capture high-resolution images with a
wide dynamic range, making them crucial in modern medical imaging.

2.1.5 Influence of Physical Parameters on Image Quality

Radiation has the potential to cause ionization within the body, leading to cell
damage and subsequent health risks. Thus, minimizing radiation exposure is
of utmost importance. This can be accomplished by meticulously adjusting
acquisition parameters such as tube voltage, tube current, and acquisition time
to achieve the desired contrast.

The energy of the photons should be calibrated based on the type of tissue under
examination, which can be achieved by adjusting the tube voltage, typically
given in kilovolts (kV). Lower tube voltages generate low-energy photons that are
more likely to be absorbed, making them suitable for soft tissue imaging. This is
necessitated by the fact that the level of photoelectric absorption is dependent on
both the energy of the photon and the atomic number of the tissue. Furthermore,
a balance must be struck between reducing image noise and achieving the desired
image quality, a process governed by the tube current and acquisition time,
which determine the quantity of X-ray photons emitted and is typically given in
milliampere-seconds (mAs) [148].

The quality of X-ray imaging is perpetually tasked with balancing the need for
high contrast and low noise, while keeping the radiation dose as low as possible.
Therefore, every opportunity to enhance image quality without enhancing the
radiation dose should be seized. This underscores the importance of further pro-
cessing the image algorithmically to enhance the presentation and preparation
of the image.

2.2 Mammography

Mammography, a particularly challenging modality in X-ray imaging, is utilized
for the screening, diagnosis, and monitoring of breast cancer treatment. The
diagnostic process is notably complex due to the close resemblance between
cancerous and normal tissue. Using mammography for screening necessitates
exposing healthy patients to regular radiation doses. Given these circumstances,
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minimizing radiation dose is paramount. Yet, the grave implications of a missed
breast cancer diagnosis highlight the crucial balance that must be struck. There-
fore, image processing techniques that improve the quality and diagnostic accu-
racy of mammograms without enhancing the radiation dose are of substantial
interest. This work, as a result, focuses specifically on mammography.

2.2.1 Breast Cancer

According to the World Health Organization (WHO), cancer continues to be the
second leading cause of death worldwide, responsible for 9.74 million fatalities in
2022 [168]. Among these, breast cancer is the second most prevalent, with 2.296
million cases. Furthermore, it is the most common cancer in women [210, 30]

Cancer, a collection of diseases, is characterized by uncontrolled cell growth
resulting from genetic alterations. These alterations can be inherited or induced
by environmental factors such as air pollution, alcohol abuse, physical inactivity,
or exposure to ionizing radiation [208, 244].

Unlike healthy cells, which differentiate, perform specific functions, and even-
tually stop dividing, cancer cells divide uncontrollably, disrupting this balance.
This abnormal division initially forms benign tumors, which are localized tissue
masses. Further genetic alterations can convert these benign tumors into malig-
nant ones that invade adjacent tissues. These malignant cells can metastasize,
spreading to other parts of the body and organs through the circulatory system
[40].

Breast cancer typically originates in the inner lining of milk ducts, a condition
known as Ductal Carcinoma In Situ (DCIS), and constitutes 80% of all cases.
Another type, Lobular Carcinoma In Situ (LCIS), originates in the lobules that
supply the milk ducts with milk, accounting for 10-15% of cases [203]. In 20-30%
of instances, these conditions progress to invasive breast cancer [238], specifically
to Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC), which
invade the surrounding tissues and spread to other parts of the body.

During the process of cellular proliferation in the breast, there is an elevated
production of calcium. This excess calcium can precipitate, forming microcal-
cifications, i.e. small calcium deposits. As such, regions of the breast exhibiting
active cellular growth and division frequently harbor these microcalcifications.
Therefore, clusters of microcalcifications often serve as early indicators of breast
cancer [200]. Notably, 50% of all carcinomas and 90% of DCIS are characterized by
microcalcifications and mammography is the sole method capable of detecting
microcalcifications [101].

The risk factors for breast cancer are diverse, including genetic components such
as BRCA1 and BRCA2 genes, environmental factors, and notably, age and breast



16 CHAPTER 2. BACKGROUND

density [124, 218]. Breast density, defined as the proportion of fibroglandular
tissue in the breast, is particularly significant. It is noteworthy that dense breast
tissue is more prone to cancer development than fatty tissue [242]. Additionally,
this dense tissue can obscure the presence of tumors in mammograms, thereby
complicating breast cancer detection [242].

To standardize risk assessment, the American College of Radiology proposed the
Breast Imaging Reporting and Data System (BI-RADS), which classifies breast
density into four categories [245]:

1. Category A (Fatty): The breasts are almost entirely fatty, making it easier to
detect abnormalities on a mammogram.

2. Category B (Scattered Areas of Fibroglandular Density): The breasts have
some scattered areas of density, slightly increasing the difficulty of detecting
abnormalities.

3. Category C (Heterogeneously Dense): The breasts have many areas of
fibroglandular density, which can hide abnormalities and make detection
harder.

4. Category D (Extremely Dense): The breasts have a high amount of fibrog-
landular density, significantly increasing the difficulty of detecting abnor-
malities.

Presently, evidence-based prevention strategies and avoidance of risk factors can
prevent between 30% and 50% of cancer cases. Furthermore, early detection,
coupled with suitable treatment and patient care, can significantly reduce the
impact of cancer. A high cure rate is achievable for many cancers when diagnosed
early and treated appropriately [169].

2.2.2 Mammography in Screening

Given the critical importance of early detection in successful cancer treatment,
screening programs have been established to detect cancer in its initial stages.
As a result, screening typically commences at the age of 40 and includes regular
breast examinations one to two times a year. The most common screening
methods are FFDM and DBT. However, new technological advancements, such as
SM, have the potential to reduce radiation dose and improve diagnostic accuracy
[213, 2, 47].

In digital mammography, typically referred to as FFDM, two images of each breast
are acquired: the Craniocaudal (CC) view and the Mediolateral Oblique (MLO)
view. To CC view captures the breast from top to bottom, while the MLO view
captures the breast from the side, including the pectoral muscle and lymph node.
To obtain these images, the breast is compressed between two plates to fixate and
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spread the tissue apart. This compression is necessary to reduce motion blurring
and tissue overlap, thereby enhancing image quality. FFDM has been especially
effective in detecting microcalcifications, due to the high resolution and low
noise level of the images [245, 84]. However, due to overlapping tissues, direct
carcinoma detection can be challenging, particularly in dense breasts [212].

This is where DBT demonstrates its utility. It is an imaging technique that cap-
tures multiple projections of the breast from various angles, albeit not in a full
180-degree range, and reconstructs them into a quasi-3D volume [214]. For this
reason, DBT exhibits lower susceptibility to tissue overlap, which leads to in-
creased detection rates of invasive cancers and reduced recall rates for additional
diagnostic imaging [6]. However, given that between 9 and 25 X-ray projections
are acquired, the radiation dose for each projection must be a fraction of the
dose for a single FFDM image. This requirement results in an increase in noise
within the projections. This can result in microcalcifications being obscured by
noise. Consequently, it has been found that the most consistent improvment in
breast cancer detection is achieved when DBT is used in conjunction with FFDM
[212]. It significantly increases sensitivity in CDR and notably reduces the recall
rate [157], thereby decreasing the number of false positives [214]. However, this
comes at the cost of a higher radiation exposure for the patient.

To address this issue of double acquisition, SM has been introduced. SM recon-
structs a 2D image out of the DBT projections, with the aim to eliminate the need
for additional FFDM acquisition. It has been demonstrated that the combination
of SM and DBT enhances the CDR compared to using FFDM or DBT indepen-
dently. However, it is still uncertain whether SM can completely substitute FFDM
in the screening setting [2].

In conclusion, both DBT and FFDM have their limitations, specifically in the
detection of microcalcifications and carcinomas, respectively. The combination
of both yields the lowest CDR but results in a higher radiation dose. SM attempts
to address this issue, but it remains uncertain whether SM can fully replace
FFDM in the screening setting. We propose that algorithmic improvements, such
as denoising, could be particularly beneficial in further enhancing diagnostic
accuracy and potentially improving the quality of SMs.

2.2.3 Malmö Breast Tomosynthesis Screening Trial (MBTST)

The Malmö Breast Tomosynthesis Screening Trial (MBTST), a prospective,
population-based diagnostic accuracy study conducted at Skåne University
Hospital in Malmö, Sweden, has been a notably influential screening trial in
the field of DBT and FFDM comparison. The trial’s objective was to examine
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the accuracy of one-view DBT in population screening, in comparison to the
standard two-view FFDM.

Women aged 40 to 74 years were invited to participate in the trial, where they
underwent screening with two-view FFDM followed by one-view DBT with re-
duced compression in the MLO view. The primary outcome measures were the
sensitivity and specificity of breast cancer detection.

The trial commenced on February 1, 2010, and concluded on September 30, 2019.
By March 2015, the recruitment of 14,851 women in Malmö was completed. The
study revealed that the sensitivity was higher for DBT than for FFDM (81.1% vs
60.4%), while the specificity was slightly lower for DBT than for FFDM (97.2% vs
98.1%) [249].

This trial is particularly relevant to this work as the data acquired includes both
FFDM and DBT images, along with information on breast density and thickness.
Crucially, it provides the unprocessed raw data, which is indispensable for the de-
velopment and evaluation of our proposed deep learning methods. Furthermore,
the dataset is publicly available for research purposes [127].

The dataset provided includes both thickness and density information for 7235
patients. Breast thickness, measured in millimeters, is defined as the distance
between the compression plates during a mammography examination. On the
other hand, breast density is classified according to the BI-RADS categories, as
previously outlined. For each patient, the dataset includes images from both the
left and right breast, each captured in a CC and MLO view through the FFDM
acquisition. This results in four FFDM images and two DBT images per patient.
The distribution of breast thickness and density within the dataset is depicted in
Fig. 2.2. The thickness values are approximately normally distributed, albeit with
a slight skew towards higher measurements, culminating in 55 mm as the most
frequently observed thickness. In terms of breast density, scattered and heteroge-
neously dense breasts are the most prevalent, each constituting approximately
40% of the dataset. Fatty breasts account for 16% of the dataset, while dense
breasts represent only 8%. It is important to note that dense breasts present
the greatest diagnostic challenge and are most prone to cancer development.
Therefore, this data imbalance should be considered when training machine
learning algorithms on this dataset.

2.3 X-ray Image Processing

Various analytical X-ray image post-processing algorithms exist to augment the
diagnostic information contained within the image. This section will discuss
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Figure 2.2: Breast thickness and density distribution of the MBTST dataset. (a)
The histogram shows the distribution of the breast thicknesses in steps of 5 mm,
beginning at 5 mm and ending at 85 mm. (b) The pie chart shows the distribution
of breast densities in the MBTST dataset.

three concepts that are especially pertinent to this work: the Anscombe transfor-
mation, the Hough transform, and image pyramids.

The Anscombe transformation, widely used to transform Poisson noise into
signal-independent noise with a constant variance, enhances denoising applica-
tions. As a result, it is employed in Chapter 5 to facilitate the denoising of DBT
projections.

The Hough transform is a technique used for line detection in images, which
is particularly relevant for the detection collimator edges in X-ray images in
Chapter 4.

Utilizing image pyramids to decompose an image into various frequency bands
serves as a significant method for feature extraction, where each frequency band
is treated as a distinct feature. This approach is particularly crucial in the context
of automatic X-ray style transfer, as discussed in Chapter 6. Furthermore, this
concept forms the foundation of an algorithm designed to generate diverse X-ray
image impressions, a key component in the development of an X-ray style loss,
as detailed in Chapter 7.

2.3.1 Anscombe Transformation

The primary source of noise in X-ray imaging is Poisson noise, which is signal-
dependent, i.e., its variance is proportional to the signal intensity and varies per
pixel based on its mean arrival rate, as discussed in Section 2.1.3. This makes
Poisson noise particularly challenging for denoising algorithms.

Applying a Variance Stabilizing Transformation (VST) can transform Poisson
noise into signal-independent noise with constant variance. This facilitates easier
denoising, as the noise is no longer dependent on the signal intensity. A popular
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choice for VST is the Anscombe transformation [8], which is an improvement of
the square root transformation [19].

The Square Root transformation is defined as:

S(z) = 2
p

z (2.5)

The Anscombe transformation, on the other hand, is defined as:

A(z) = 2

√
z + 3

8
(2.6)

In both equations, z represents the Poisson-distributed random variable.

Derivation of the Square Root Transformation

To elucidate the variance-stabilizing property of the Anscombe transformation,
we first derive this property for the square root transformation, and then explain
the rationale behind the improvements made in the Anscombe transformation
[151].

To demonstrate the approximated variance-stabilizing property of the square
root transformation, we begin by assuming a general VST f (z) that transforms
a random variable z. We then calculate the variance of the first-order Taylor
approximation of f (z) around the mean of z namelyµ. Subsequently, we illustrate
that when f (z) = 2

p
z, representing the square root transformation, and z follows

a Poisson distribution, the variance of the transformed variable approaches one
[151].

Thus the first-order Taylor approximation of f (z) around µ is [173]:

f (z) ≈ f (µ)+ (z −µ)
d f (µ)

dµ
(2.7)

To compute the variance, we subtract f (z), effectively moving it to the other side
of the equation, and then square the result, which leads to:

( f (z)− f (µ))2 = (z −µ)2
(

d f (µ)

dµ

)2

(2.8)

Upon taking the expectation of the derived expression, the variance can be ap-
proximated as follows:

σ2( f (z)
)= E{(

f (z)− f (µ)
)2

}
≈ E

{
(z −µ)2

(
d f (µ)

dµ

)2}
=σ2(z)

(
d f (µ)

dµ

)2

(2.9)
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By setting f (z) = 2
p

z to represent the square root transformation and leveraging
the property of the Poisson distribution that σ2

{
z|µ} = µ, the variance of the

transformed Poisson distribution approaches one.

σ2( f (z)
)≈σ2(z)

(
d2

p
µ

dµ

)2

=µ ·
(

2

2
p
µ

)2

= 1 (2.10)

Anscombe’s extension

Anscombe extended this approach by incorporating the second-order Taylor
polynomial. He demonstrated that introducing an additional constant b into
the transformation, yielding f (z) = 2

p
z +b, proves beneficial with respect to the

second-order Taylor polynomial. Consequently, the Anscombe transformation
provides a more accurate approximation of the variance-stabilizing property
compared to the square root transformation [8].

The variance of this second order Taylor approximation around µ is defined as
follows [151]:

σ2 (
f (z)

)= 1+ 3−8b

8µ
+ 32b2 −52b +17

32µ2 (2.11)

When applying the Anscombe transformation with b = 3
8 , the given expression

simplifies as follows:

σ2 (
f (z)

)= 1+ 1

16µ2 (2.12)

It is crucial to note that this equation approaches an approximation of one,
particularly when µ assumes large values.

Transformation Example and Analysis

In Fig. 2.3, the standard deviationsσ of z and their VST-transformed counterparts
are plotted against the mean arrival rate,λ. It becomes evident that the Anscombe
transformation rapidly approximates a standard deviation of one for λ> 5. As a
result, the variance becomes independent of both the mean arrival rate and the
signal intensity. In contrast, the square root transformation not only exhibits a
slower convergence but also overshoots the expected variance for low values of
λ.

Fig. 2.4 illustrates the impact of the Anscombe transformation on an image with
three distinct pixel intensities and Poisson noise. Upon examining the noise map
of the original image, the signal-dependent nature of the Poisson noise becomes
evident as the noise varies across regions with different intensities. However, fol-
lowing the Anscombe transformation, the noise map appears uniform, indicating
a constant variance throughout the image.
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Figure 2.3: The graph depicts the standard deviation σ over the mean arrival rate
λ for three types of signals: Poisson distributed signal, square root transformed
Poisson distributed signal, and Anscombe transformed Poisson distributed sig-
nal.

(a) Without Noise. (b) Noisy Image (c) Poisson Noise

(d) A(Without Noise) (e) A(Noisy Image) (f) A(Poisson Noise)

Figure 2.4: This figure displays an image with three distinct pixel intensities,
overlaid with Poisson noise. The top row shows the original image and its cor-
responding Poisson noise map, illustrating the signal-dependency of the noise.
The bottom row presents the same images after the Anscombe transformation,
highlighting the elimination of signal-dependency in the transformed noise.
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2.3.2 Hessian Normal Form

The Hessian normal form is an alternative representation to the slope-intercept
form of a line in Euclidean space. It is utilized by the HT in the subsequent
Section 2.3.3, and is therefore discussed in this section.

The slope-intercept form of a line is defined as:

y = mx +b (2.13)

In this equation, m signifies the slope and b denotes the y-intercept. However,
this equation tends towards infinity for vertical lines, rendering it inappropriate
for algorithmic implementations.

The Hessian normal form, on the other hand, is defined as:

ρ = x cos(θ)+ y sin(θ) (2.14)

This equation utilizes ρ and θ instead of m and b, where ρ denotes the line’s
distance from the origin and θ represents the angle between the line’s normal
vector and the x-axis, as depicted in Fig. 2.5.

The Hessian normal form can be transformed into the slope-intercept form by
dividing Eq. (2.14) by sin(θ) and rearranging the terms, yielding:

y =−cos(θ)

si n(θ)
x + ρ

si n(θ)
, (2.15)

Thus the slope m =− cos(θ)
si n(θ) and the y-intercept b = ρ

si n(θ) can be derived from the
Hessian normal form.

−0.5 0.5 1 1.5 2

0.5

1

1.5

ρ
g

θ x

y

Figure 2.5: In the Hessian normal form, the line g is represented using the angle
α and distance ρ.
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2.3.3 Hough Transform (HT)

The HT [93] is a technique used in image analysis for feature extraction [83]. Ini-
tially developed for line detection in images, its application was later broadened
to identify other shapes like circles and ellipses [97]. However, this work focuses
primarily on the use of the HT for line detection in images.

The HT transforms an edge map into the Hough Domain (HD), a two-dimensional
parameter space where each point signifies a line in the Euclidean space. Con-
sequently, the HD is spanned by the parameters m and b in the slope-intercept
form, or ρ and θ in the Hessian normal form. As outlined in Section 2.3.2, the
Hessian normal form is preferred because it can represent vertical lines. Fig. 2.6 il-
lustrates the transformation of a line from Fig. 2.6a to the HD. The HD is spanned
once by the slope-intercept line parameters as shown in Fig. 2.6b and again by
the Hessian normal form parameters in Section 2.3.3.

0 2 4
0

2

4

x

y

(a) Euclidean Space

−4−2 0 2 4

−4
−2

0
2
4

m

b

(b) Slope-Interecept HD

0 50 100 150

−5

0

5

θ

ρ

(c) Hessian HD

Figure 2.6: (a) A line in Euclidean space is parametrized with slope m = 1 and
intercept b = 0, or in Hessian normal form with θ = 45◦ and ρ = 0. Three points on
this line are highlighted and transformed into the HD. (b) The HD is spanned by
the Slope-Intercept parameters, where the three points manifest as distinct lines
that intersect at m = 1 and b = 0. (c) The HD is spanned by the Hessian normal
form parameters, with the three points manifest as sinusoidals intersecting at
θ = 45◦ and ρ = 0.

The HT necessitates a binary input image I, where each pixel is classified as either
part of an edge or not. The transformation of I into the HD is facilitated by the
HT algorithm, as detailed in Algorithm 1. This algorithm iteratively processes
all pixels that represent edges. For each edge pixel, all potential lines passing
through the pixel are computed. This computation corresponds to finding all
possible values of ρ and θ that delineate lines passing through the given pixel.
Subsequently, the HD value at the position corresponding to the calculated pairs
(θ,ρ) is incremented to denote the corresponding lines in HD.

It is crucial to highlight the efficiency of the HT in comparison to the Radon
transform [184]. This efficiency becomes apparent considering that an edge
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Algorithm 1 Hough Transform

for each I(x, y) 6= 0 do
for θ := 0 to π do

ρ := x ∗cos(θ)+ y ∗ sin(θ)
HD[θ][d ]++

end for
end for

image is typically sparse, and computations are exclusively performed for edge
pixels.

In Fig. 2.6, the transformation is exemplified for three marked pixels. Each trans-
formed pixel forms a straight line in the Slope-Intercept HD space. Each point
on that line represents the parameters of a line that would pass through the
respective pixel in the Euclidean space. All three lines intersect at the same point
(m = 1,b = 0). This intersection point is significant as these parameters describe
the common straight line that passes through all three pixels in the Euclidean
space. A similar pattern is observed in the Poloar Coordinate HD. However,
instead of lines, the three pixels are transformed into three sinusoidal curves,
intersecting at the same point (θ = 45◦,ρ = 0).

It is important to note that in the HD, lines accumulate as points, but sinusoidal
curves can also be observed alongside these points. This presents a particular
challenge when retrieving the parameters representing the lines from the HD.
Typically, a threshold is applied to the HD to identify the most prominent lines
and suppress the sinusoidal curves. However, shorter lines have less prominent
points, as fewer edge pixels represent that line, leading to fewer increments at
that point. Consequently, short lines might fall below the threshold. Therefore,
retrieving the parameters is a non-trivial task.

2.3.4 Image Pyramids

This section will discuss the two primary types of image pyramids: Gaussian and
Laplacian. However, before delving into these, it is necessary to understand some
prerequisites. Initially, the Fourier Transformation will be covered to provide
a brief overview of the frequency domain. This will be followed by an intro-
duction to the Low-Pass Filter, a crucial component of the Gaussian Pyramid.
Subsequently, the concepts of downsampling and upsampling with Bilinear In-
terpolation, will be explained. Finally, the construction of the Gaussian and
Laplacian Pyramids will be detailed.
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Fourier Transformation

Images are typically represented in the spatial domain, with each pixel corre-
sponding to a specific location. However, they can also be represented as an
superposition of sinusoidal functions within the frequency domain. In this do-
main, each value signifies the amplitude of a specific sinusoidal base function,
with a specific frequency. The 2D Fourier Transformation, which enables this tran-
sition from the spatial to the frequency domain by determining the amplitudes
of the frequencies, is defined as follows [108]:

I (u, v) =F (i (x, y)) =
∫ ∞

−∞

∫ ∞

−∞
i (x, y)e−2π j (ux+v y)d xd y (2.16)

The complex sinusoidal function is represented as e j (ux+v y) = cos(ux + v y)+
j sin(ux +v y), where j is the imaginary unit, and u and v denote the frequencies
in the x and y directions, respectively. A 2D image in the spatial domain is denoted
as i (x, y), and its corresponding representation in the frequency domain is I (u, v).

The frequency domain can be reverted to the spatial domain using the inverse
Fourier Transformation:

i (x, y) =F−1(I (u, v)) =
∫ ∞

−∞

∫ ∞

−∞
I (u, v)e2π j (ux+v y)dud v (2.17)

Low-Pass Filter

Low-pass filters, denoted as G(u, v), are utilized to eliminate high-frequency
components of a signal, thereby smoothing image features. This is accomplished
by multiplying the signal in the frequency domain with a filter, which exhibits
lower values at higher frequencies.

L(u, v) =G(u, v) · I (u, v) (2.18)

Multiplication in the frequency domain corresponds to convolution in the spatial
domain [166]. Therefore, the filtering operation can equivalently be performed
in the spatial domain as follows:

l (x, y) = (I ∗ g )(x, y) =
∫ ∞

−∞

∫ ∞

−∞
i (x ′, y ′)g (x −x ′, y − y ′)d x ′d y ′ (2.19)

Note that the filter g (x, y) represents the spatial domain equivalent of G(u, v).
Ideally, G(u, v) would be a rectangular filter that is zero for frequencies higher
than f0, described as follows:

G(u, v) =
{

1 if |D(u, v)| ≤ f0

0 if |D(u, v)| > f0
(2.20)
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Transforming this rectangular filter to the spatial domain results in a Sinc function:

g (x, y) = sin(πx)sin(πy)

πxπy
(2.21)

One-dimensional representations of both functions are depicted in Figure 2.7a,
revealing the inherent flaw of this ideal filter. The Sinc function extends infinitely,
necessitating an approximation for practical applications. This characteristic
of the Sinc function directly relates to the Uncertainty Principle [167], which
sets a limit to the simultaneous precision of certain pairs of physical properties,
such as space and frequency. In the frequency domain, an infinite Sinc function
would yield an infinitely sharp filter, but it would also result in the loss of all
locality information. Conversely, when the Sinc function is limited, as is the case
in practical applications, the sharpness of the filter in the frequency domain is
reduced. This illustrates the inherent trade-off between space and frequency
precision, as dictated by the Uncertainty Principle.

To mitigate this issue, the Gaussian filter is commonly used as a low-pass filter in
image processing [141]. Unlike the Sinc function, the Gaussian filter converges
to zero more quickly, as illustrated in Figure 2.7b. As a result, an approximated
version of the Gaussian filter more closely resembles its infinite size counterpart.
The Gaussian filter can be defined as follows:

g (x, y) = 1

2πσ2 e−
x2+y2

2σ2 (2.22)

and is illustrated in Figure 2.7b. In the frequency domain, the Gaussian filter
maintains a bell shape and can be defined as:

G(u, v) = e−2π2σ2(u2+v2) (2.23)

Both representations are Gaussian functions, with the width of the bell shape in
each domain being inversely proportional to the other. This inverse proportion-
ality stems from the kernel width being defined in the space domain by 1

σ2 , and
in the frequency domain by σ2. This relationship is again a consequence of the
time-frequency uncertainty principle [167], which stipulates that the product of
the standard deviation of a function in the space and frequency domains must
be at least 1

4π .

While the Gaussian filter serves as an effective low-pass filter, even when the
resolution does not extend to infinity, it nonetheless presents certain drawbacks.
Specifically, it alters the amplitude of low frequencies due to its lack of a flat top.
As an alternative, the Butterworth filter [37] is often employed. This filter offers a
better balance between maintaining a flat top and ensuring rapid convergence to
zero than the Gaussian filter. Nevertheless, due to its simplicity and proven ef-
fectiveness across various applications, the Gaussian filter remains the preferred
choice in image processing and is also utilized in this work.
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(a) Rectangular function in space and fre-
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Figure 2.7: Illustration of the Rectangular and Gauss functions in both the spatial
and frequency domains.

Downsampling

Downsampling, also known as downscaling or subsampling, is a process that
reduces the resolution of an image or signal by decreasing the number of pixels.
For an image i (x, y), the downscaled image i ′(x, y) is derived by selecting every
K th pixel in both the x and y directions, where K is the downscaling factor. This
process can be represented as:

i ′(x, y) = i (K · x,K · y) (2.24)

Typically, a low-pass filter is applied to the image before downsampling to elimi-
nate high frequencies. This step is crucial to prevent aliasing, a phenomenon that
introduces distortions or artifacts in the downscaled image if high frequencies
are not removed prior to downsampling [181], since during the downsampling
process high frequencies are folded into the low frequency band, distorting the
signal.

This requirement stems from the Nyquist-Shannon sampling theorem [199],
which stipulates that the sampling frequency must be at least twice the highest
frequency present in the signal to prevent aliasing. This is represented as:

fNyquist =
fsampling

2
(2.25)

Therefore, to avoid aliasing, the cut-off frequency of the low-pass filter must be
equal to or lower than fNyquist.
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Upsampling with Bilinear Interpolation

Upsampling, the counter operation to downsampling, improves image resolution
by adding new pixels between existing ones. These new pixels’ values are usually
determined by methods such as Nearest-neighbor, Bilinear, or Bicubic interpo-
lation [75, 113]. Bilinear interpolation, due to its computational efficiency and
effectiveness, is often used in image processing and is thus applied in this study.

The upsampling process is mathematically represented as i ′(x, y) = B(i (x, y)),
where i ′(x, y) is the intensity of a new image approximated from the original
image i (x, y). For each new pixel (x, y), the four closest pixels in the original
image are identified, and their intensities are used to compute the new pixel’s
intensity. The bilinear interpolation function B(i (x, y)) performs the following
operation:

B(i (x, y)) = (1−a)(1−b)i (x1, y1)+a(1−b)i (x2, y1)+
(1−a)v ∗ i (x1, y2)+ab ∗ i (x2, y2),

Here, x1, y1, x2, y2 are the coordinates of the four nearest pixels, and a = x−x1
x2−x1

,

b = y−y1

y2−y1
are the interpolation coefficients, which determine the weight of each

pixel’s intensity depending on the position of the new pixel. The interpolation
operation is applied to each pixel, resulting in a smoothly interpolated image.

Gaussian Pyramid

With the necessary tools in place, the stage is now set to introduce the concept of
the Gaussian Pyramid [216].

The Gaussian Pyramid is a sequence of N progressively low-pass filtered and
downsampled versions of an image, each with a lower resolution than the pre-
vious one. The construction process is succinctly described in Algorithm 2. In

Algorithm 2 Gaussian Pyramid

P0(x, y) := i (x, y) . Original image
for j in level ≤ N do

P ′
j (x, y) := (P j−1 ∗ g )(x, y) . Apply Gaussian filter

P j (x, y) := P ′
j (K · x,K · y) . Downsample the image

end for

this algorithm, the original image, denoted as P0(x, y), forms the first level of the
pyramid. Each subsequent level P j (x, y) is constructed by applying a Gaussian
filter to the previous level P j−1(x, y) and then downsampling it. The filtering
operation is mathematically represented as P ′

j (x, y) = (P j−1 ∗ g )(x, y), and the
downsampling operation as P j (x, y) = P ′

j (K x,K y), where K equals two.
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Notably, due to downsampling, the Gaussian kernel doubles in size with each
subsequent step. This results in a decrease in high frequencies in each image
within the Gaussian Pyramid, as illustrated in Figure 2.8a. Each pixel in a pyramid
level approximates the average of four pixels in the level below. Consequently,
each pixel represents the average value of its neighboring pixels in the original im-
age. As the pyramid levels increase, each pixel comes to represent an increasingly
larger neighborhood.

(a) Gauss Pyramid (b) Laplace Pyramid

Figure 2.8: Application of the Gauss and Laplace Pyramids on the widely recog-
nized photograph of Eileen Collins [131], the first female pilot of a space shuttle.

Laplacian Pyramid

A Laplacian Pyramid [34] is a sequence of images representing the difference
between the levels of the Gaussian Pyramid. It is constructed by subtracting
each Gaussian Pyramid level from the expanded version of the subsequent level,
achieved by upsampling the image of the next level to match the current level’s
resolution. This process is succinctly described in Algorithm 3. In this algorithm,

Algorithm 3 Laplacian Pyramid

for j in level < N do
P ′

j+1(x, y) := B(P ′
j+1)(x, y) . Upsample next level

L j (x, y) := P j (x, y)−P ′
j+1(x, y) . Subtract from current level

end for
Ln(x, y) := Pn(x, y) . Set last level

B(P ′
j+1)(x, y) represents the process of upsampling the image of the next level

using bilinear interpolation, and L j (x, y) = P j (x, y)−B(P ′
j+1)(x, y) is the equa-

tion for constructing each level of the Laplacian Pyramid. The last level in the
Laplacian Pyramid is identical to the last level in the Gaussian Pyramid, as there
is no subsequent level to subtract from.

Given that the Gaussian Pyramid comprises a sequence of low-pass filtered im-
ages, each level includes frequencies not present in the previous level. Conse-
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quently, the Laplacian Pyramid can be viewed as a series of band-pass filtered
images, as illustrated in Figure 2.8b.

2.4 Optimization in Machine Learning

Unlike their hard-coded counterparts, machine learning algorithms are not gov-
erned by predefined rules. Instead, they adjust their functionality based on
observations derived from training data. Therefore, a machine learning process
consists of two main components: the model that performs the required task
during inference, and the process that adjusts the model based on the training
data.

Algorithmic advancements, such as backpropagation [194], Convolutional Neural
Network (CNN) [70], and self-attention [225], combined with current computa-
tional resources and large data volumes, have facilitated the adoption of machine
learning, particularly deep learning, across a wide range of fields.

This work explores the significant impact of these algorithms in the field of medi-
cal imaging. Before delving into the specifics of deep learning, which employs
multi-layered neural networks, the following sections will first lay the groundwork
by discussing the core concepts of machine learning. A more detailed exploration
of deep learning and its application in medical imaging will be presented in the
subsequent Section 2.5.

2.4.1 Optimization Objective

In machine learning, a problem to be solved can be formulated as a function f ∗(x)
that maps an input x to a desired output y: y = f ∗(x). For instance, a function
f ∗(x) can describe the ideal mapping of a noisy image x to a clean image y.

In general, to solve a problem using machine learning, an optimization process
is employed to adjust the parameters w of a function f (x;w), so that f (x;w)
approximates f ∗(x) as closely as possible:

f ∗(x)
!= f (x;w) (2.26)

The parameters w are estimated by minimizing a loss function L. This function
quantifies the difference between f ∗(x) = y and f (x;w). The process can be
expressed as follows:

argmin
w

L(y, f (x;w)) (2.27)

Thus, for a given input x, the parameters w of f (x,w) are optimized such that
the output is an estimate ŷ of y. The function f (x;w) is typically referred to as
a model. The process of adjusting the parameters w to minimize the difference
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between f ∗(x) and f (x;w) is known as training. Consequently, x and y represent
the input and target of the training data, respectively.

2.4.2 Gradient Descent

Due to the complexity of many optimization problems that precludes analytical
solutions, Gradient Descent (GD) is commonly employed as an effective numeri-
cal method. This iterative optimization algorithm aims to find the minimum of
Eq. (2.27).

It does so by iteratively calculating the gradient ∂L
∂w =∇L(y, f (x;w)) with respect

to the parameters w at each iteration t . Given that the negative gradient indicates
the direction of steepest descent and potentially the direction of the minimum,
the parameters are updated by taking a step in this direction. It is important to
note that this approach yields optimal results for convex functions. However, for
non-convex functions, it may only find a local minimum. The update rule for the
parameters in each iteration is as follows:

wt+1 = wt −η∇L(y, f (x;wt ))) (2.28)

The learning rate η, an important hyperparameter, controls the step size. Small
values could lead to slow convergence, while large values might cause the algo-
rithm to overshoot the minimum.

2.4.3 Stochastic Gradient Descent

Calculating the gradient ∇L(y, f (x;w)) for the entire optimization function, which
encompasses the whole training data, may be too computationally expensive.
Furthermore, as previously discussed, GD can potentially become trapped in
local minima. Both these issues are addressed by SGD. Instead of computing
the gradient for the entire training data, SGD processes the data (x, y) in subsets,
commonly referred to as ’mini batches’. Each mini batch, denoted as (xi ,yi ), is
used to calculate the gradients. The weights w are then updated for each mini
batch according to the equation:

wt+1 = wt −η∇L(yi , f (xi ;wt )) (2.29)

The process of iterating over all training subsets can be repeated for a fixed
number of times, with one iteration over all subsets referred to as an epoch.
Alternatively, the process can continue until the loss value reaches a sufficiently
low level. The complete process is outlined in Algorithm 4.

Kleinberg et al. [116] demonstrated that calculating gradients on subsets of data,
allows the gradient to escape local minima, provided these minima are not
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Algorithm 4 Stochastic Gradient Descent

while L(wt ,x, y) > ε do . Continue until the loss is low
for each yi in y do . Iterate over each training example

wt −η∇L(yi , f (xi ,wt )); . Update the weight vector
end for

end while

present in all batches. Therefore, by employing SGD, the optimization process
is less prone to stagnation at these points. Additionally, updating the gradients
based on these batches reduces the computational cost of each update, and thus
also accelerates the overall optimization process.

2.4.4 Backpropagation

The calculation of the gradient in SGD necessitates the derivative of the loss
function with respect to the parameters w. For a large number of parameters, as
seen in neural networks, the backpropagation algorithm can be utilized to make
this computation feasible [194].

In backpropagation, the to be minimized function L(y, f (x;w)) is broken down
into a sequence of functions:

f (x;w) = f n (
f n−1 (

f n−2 (
. . . f 1(x;w1); . . . ;wn−2) ;wn−1) ;wn)

(2.30)

Backpropagation then utilizes the chain rule to calculate the gradient of the loss
function with respect to the parameters wi of each sub-function successively:

∂L

∂wi
= ∂L

∂ f n

∂ f n

∂ f n−1 . . .
∂ f i+1

∂ f i

∂ f i

∂wi
(2.31)

Thus, it begins by defining a gradient δn for the final function n:

δn = ∂L

∂ f n (2.32)

This is done by calculating the gradient with respect to f n . All intermediate
gradients δi can be computed by considering the preceding gradient δi+1 and
the derivative of the function f i :

δi =δi+1 ∂ f i+1

∂ f i
(2.33)
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Moreover, for calculating the gradients with respect to the parameters wi of a
function f i , the gradient δi is utilized:

∂L

∂wi
=δi ∂ f i

∂wi
(2.34)

In summary, backpropagation starts by calculating the derivative of the loss
function L with respect to its input f n . Subsequently, it computes the derivative
of the function f i with respect to its input f i−1, utilizing the previously calculated
derivative δi+1. This process continues until the derivative of the first function
f 1 is calculated. Finally, the gradient of the loss function with respect to the
parameters wi is computed by multiplying the intermediate gradient δi with the
derivative of the function f i with respect to its parameters wi . Thus, to calculate
gradients with respect to wi , the previous computed gradient δi is utilized. As a
result, backpropagation, rather than computing the derivative of the loss function
for each parameter individually, leverages previously calculated gradients. This
approach facilitates efficient computation of gradients, especially for complex
functions with a substantial number of parameters.

In practical implementations, δ may either vanish or explode after several steps i .
This is a phenomenon known as the vanishing or exploding gradient problem.
Furthermore, for the implementation of backpropagation, all elements of the
function must be differentiable. This differentiability must either be possible
analytically or, alternatively, numerically using methods such as subgradients
[29].

2.5 Deep Learning

Deep learning, a subfield of machine learning, focuses on a unique design of
approximation functions, f (x;w). These functions, known as neural networks,
are inspired by the functioning of mammalian brains, or more specifically, their
neurons. They have demonstrated the ability to handle a large number of param-
eters, which can be optimized using SGD and backpropagation. Furthermore,
their design facilitates parallelization on GPUs, significantly accelerating the
computation of gradients. This section will discuss the fundamentals of neural
network designs.
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2.5.1 Multi Layer Perceptron (MLP)

The Rosenblatt Perceptron (RP) [191, 192] represents the simplest form of a neural
network. The RP is modeled after the operation of a neuron, which integrates
several input signals to yield an output signal. It is defined as:

y = a(wT z+b) (2.35)

In this context, w denotes the trainable weights, z denotes the input to the neuron,
and b refers to a trainable bias [76]. In comparison to x, z can also be the output
of a previous neuron. The function a represents the activation function. In
the context of the RP, it is a binary step function that introduces a non-linear
component into the overall function. The mathematical operations of the RP are
graphically illustrated in Fig. 2.9a.

Despite the RP being modeled after the operation of a biological neuron, it lacks
the capability to solve non-linearly separable problems, such as the XOR function,
as demonstrated by Rosenblatt [191] and Minsky et al. [158].

However, mirroring the structure of mammalian brains where numerous neurons
are interconnected, the Multi-Layer Perceptron (MLP) overcomes the limitations
of the RP by arranging multiple RPs in layers, as depicted in Fig. 2.9b, with each
RP receiving inputs from the outputs of the preceding layer. Thus, a layer f l in a
MLP can be mathematically expressed as:

f l (z) = a(Wz+b) (2.36)

It is important to note that instead of a weight vector w, which signifies the input
weights of a single RP, a weight matrix W is employed. Each row of W corresponds
to the weights wT of one RP. Similar, instead of a sclalar bias b, a bias vector b is
used. This layers can now be chained to form the network:

f N (z,wnetwork) = f j ( f j−1(...)) (2.37)

This arrangement enables the use of the chain rule to calculate the gradients with
backpropagation, as detailed in Section 2.4.4.

Moreover, this chaining of layers does only contribute to the expressive power
of the network due to the non-linear activation functions a. The need for a
non-linear activation function becomes apparent when examining Eq. (2.37)
and Eq. (2.36). Without it, the network’s representation would collapse into a
single matrix, substantially diminishing its expressive power, as illustrated in the
subsequent equation:

Wi (Wi−1z+bi−1)+bi

= (Wi Wi−1)z+Wi bi−1 +bi

= Wz+b

(2.38)
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(a) Rosenblatt Perceptron (RP)
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(b) Multi Layer Perceptron (MLP)

Figure 2.9: The Rosenblatt and Multilayer Perceptron are illustrated. The MLP is
a composition of the RP. The outputs y from previous layers serve as the inputs
z1 and z2 for the RPs of the subsequent layer.

Rosenblatt [191] initially employed the step function as the activation function.
Nowadays, however, a variety of activation functions are utilized, such as the sig-
moid function, defined as sigmoid(x) = 1

1+e−x , or the Rectified Linear Unit (ReLU),
defined as ReLU(x) = max(0, x) [71]. The key criteria for the activation function
include non-linearity and numerical stable gradients during backpropagation.
As a result, a diverse range of activation functions exist [59].

Moreover, it has been prooven that a MLP with a non linear activation function, a
single hidden layer, and a finite number of neurons can approximate any function
[52, 92].

This capability, coupled with the powerful computational resources currently
available and vast volumes of data, led to an increase in the complexity and size
of neural networks, resulting in increasingly sophisticated and powerful models
capable of solving ever more complex tasks [159].

2.5.2 Convolutional Neural Networks (CNNs)

An MLP necessitates a weight for every input value, a requirement that poses
a significant challenge for data types such as images or high-resolution time
series due to the overwhelming number of parameters involved. This results
in substantial computational costs and the potential for overfitting, where the
model could inadvertently learn irrelevant patterns in the training data, thereby
diminishing its performance on unseen data.

To address this issue, prior knowledge regarding the fundamental characteristics
of images and time series can be integrated into the network design. This prior
knowledge is embodied in the following three properties: Equivariance, Sparsity,
and Shared Weights [76].
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Equivariance suggests that any alteration to the input of a neural network should
correspondingly change its output. More specifically, a function f (x) is equiv-
ariant to a function g (x) if f (g (x)) = g ( f (x)). In the context of neural networks,
g (·) could represent a translation like a shift operation. Consequently, translating
the output of the network should yield the same results as translating its input.
This property is particularly relevant for image-to-image processing tasks, such
as denoising. For instance, shifting a noisy input image should also yield a shifted
denoised output image. In the case of MLPs, each input value is assigned a
unique weight, thereby not guaranteeing equivariance.

Sparsity refers to the weighted connections between feature values of two con-
secutive layers. In MLPs, also known as Fully Convolutional Networks (FCNs),
each input value is connected to each output value. However, certain image
features, such as edges, are localized to specific regions of the image. Therefore,
recognizing these features does not necessitate connections between all areas of
the image. Consequently, the network can be made more efficient by reducing
the number of connections.

Shared Weights implies, that the same weights are applied to multiple input
values. This property is particularly relevant for images, as certain features, such
as edges, are present in multiple regions of the image. Thus, shared weights can
be trained to recognize features irrespective of their location.

Convolution Operation

CNNs, first introduced by Fukushima [70], fundamentally incorporate convo-
lution operations. These convolution operations inherently embody all three
required properties.

A fundamental aspect of each CNN is the convolution operation, as illustrated
in Fig. 2.10. A convolution kernel K contains trainable weights, and is depicted
with dimensions a ×b×c . This kernel is convolved across the spatial dimensions
h×w of the input feature map Zi , which has overall dimensions of h×w ×c . The
squares in Fig. 2.10 represent the unique values of the feature map and kernel.
In the first layer of a CNN, the feature map is the input itself, such as an image,
where c denotes the number of RGB channels.

The convolution operation for each kernel k is defined as:

Zi+1(x, y,k) =
a∑

i=1

b∑
j=1

C∑
c=1

Zi (x + i −a/2, y + j −b/2,c) ·Kk (i , j ,c) (2.39)

In this equation, each value in the output feature map Zi+1 at position (x, y,k),
denoted as Zi+1(x, y,k), is calculated by summing the product of the input feature
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Figure 2.10: The input feature map is represented in grey. Two convolution
kernels, K1 and K2, are illustrated in dark and light blue respectively. When
convolved over the spatial dimension h×w of the input feature map, each kernel
generates a layer of the output feature map, depicted in the color corresponding
to each kernel. Each square in the feature maps and kernels represents a distinct
numerical value.

map values Zi (x + i −a/2, y + j −b/2,c) and the corresponding kernel weights
Kk (i , j ,c) of the kth kernel.

The output of the convolution operation is illustrated in Fig. 2.10 using various
shades of blue, each representing a specific kernel and its corresponding output
channel. Each channel in the output feature map is generated by a unique kernel
Kk , as convolution is applied over the h ×w dimensions of the input.

To maintain the same spatial dimensions in the output as in the input, padding
can be utilized. This involves adding pixel values around the image, allowing the
convolution operation to have as many steps as input values and consequently,
an equal number of output values [60]. Additionally, the stride s can be adjusted
to control the kernel’s steps across the input. As a result, Eq. (2.39) is not applied
for all input values x and y , but only for every sth value, leading to a reduction in
the output’s spatial dimensions.

It can be observed that the convolution operation inherently embodies the prop-
erties of equivariance, sparsity, and shared weights. Equivariance is inherent in
the convolution operation because the kernel weights, which are independent
of the input’s location, are applied uniformly across all input locations. Conse-
quently, when the input is translated or shifted, the same convolution operation
is applied to the shifted region as was applied to the original region, resulting in
a correspondingly shifted output. Applying the same kernel to different regions
of the input feature map also ensures that weights are shared across the input.
Moreover, the convolution operation exhibits sparsity, as the kernel only covers a
specific region of the input and output values in the feature map are dependent
solely on a region of the input, specifically the kernel’s location. However, regard-
ing the channel dimension, the convolution operation links all input values to
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a single output value, thereby representing a fully connected operation in the
channel dimension.

Network Architecture

A single convolution operation is insufficient to construct a CNN. Much like
a MLP, a CNN requires multiple operations to learn complex features. More-
over, typical CNNs include not only convolution operations but also activation
functions, normalization, and pooling operations. The functions and impor-
tance of these additional operations will be discussed in this section. Typically,
a combination of convolution and some of these operations is referred to as
a (convolutional) layer. Sparse connectivity, despite its advantages, imposes a
limitation on single convolution operations in terms of their receptive field. This
is the region of the input that influences a single output value. However, this
limitation can be mitigated by stacking multiple convolution operations, which
enhances the receptive field of the subsequent layers. Moreover, akin to a MLP,
multiple layers enhance the network’s capacity to learn complex patterns.

Mathematically, the receptive field R is defined recursively. For a convolutional
operation l with kernel size kl , stride sl , and padding pl , the receptive field Rl

can be computed as:

Rl = Rl−1 + (kl −1) ·
l−1∏
i=1

si (2.40)

For the first operation, the receptive field is simply the kernel size: R1 = k1.

As the network deepens, individual values come to represent larger regions of
the network’s input. Consequently, single values in deep layers may represent
complex features like textures or shapes, derived from a large region of the input
image. Depending on the feature to be represented, different channels might be
activated, i.e., the output value of a specific channel changes. For this reason, as
the network deepens, the importance shifts from the spatial dimension to the
representation of a variety of features, necessitating an increase in the number of
channels.

Consequently, the number of kernels is typically augmented with the network’s
depth, increasing the number of channels. Simultaneously, the spatial dimen-
sions are often reduced by increasing the stride s. Therefore, with increasing
network depth, feature maps often exhibit a reduced spatial dimension but an
increased number of channels.

Constructing a functional network requires more than just stacking convolu-
tional operations. Similar to a MLP, CNNs also need activation functions such
as the ReLU or the sigmoid function to introduce non-linearity into the network.
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These are the same activation functions employed in MLPs. Furthermore, nor-
malization operations, such as batch normalization, are needed to stabilize the
training process [98]. Depending on the batch size and task, other normalization
approaches like instance normalization [221] or layer normalization [12] may be
more appropriate.

Additionally, pooling operations are often employed. These operations function
similarly to convolution operations, using a kernel that traverses the input. How-
ever, instead of applying a weighted summation, pooling operations select either
the maximum or average value within the kernel [27].

Zi+1(x, y,k) = max
i , j

Zi (x + i −a/2, y + j −b/2,c,k) (2.41)

Pooling, typically applied channel-wise with a stride s > 1, reduces the spa-
tial dimensions of the feature map. Notably, Max-Pooling introduces a slight
shift-invariance, as the output value is independent of the exact location of the
maximum value within the kernel. Consequently, a typical CNN layer consists
of a convolution operation, followed by a normalization, an activation function,
and a pooling operation, as illustrated in Fig. 2.11.

Convolution

Pooling
Activation 

Norm.

Figure 2.11: The figure illustrates the typical components of a CNN layer, includ-
ing batch normalization.

An architecture that encodes an image into an abstract feature map with reduced
spatial dimension is commonly known as an encoder. The resulting abstract fea-
ture maps, also known as embeddings, are particularly significant for Chapter 7.

ResNet

Residual Networks (ResNets), as introduced by He et al. [86], are a variant of
CNN specifically designed to tackle the problem of vanishing gradients. The
architecture of ResNets addresses this issue by introducing an identity connection
that bypasses a ResNet block f (Z), as illustrated in Fig. 2.12. In other words, the
input Z is added to the output of the ResNet Block, yielding the final output f ′(Z)
as follows:

f ′(Z) = f (Z)+Z (2.42)

This identity connection allows f (Z) to learn the residual, that is, the difference
between the input and the output. Additionally, identity connections promote a
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numerically stable gradient flow through the network by bypassing the ResNet
block, thereby enabling the training of deeper networks. Veit et al. [226] also
demonstrated that a residual network operates similarly to an ensemble of shal-
low networks, thereby providing further insight into its success. Various ResNet
architectures are available, each denoted by the number of convolutional layers
they contain. For instance, ResNet-18 employs 9 ResNet blocks.

Convolution

Convolution
Activation 
BatchNorm

BatchNorm

(a) ResNet Block Components.

ResNet
Block

(b) ResNet Block with Identity Connection.

Figure 2.12: The left image illustrates the components of a ResNet block, which
includes a convolutional layer, batch normalization, and a activation function.
The right image depicts the complete ResNet block with a identity connection,
which bypasses the convolutional layer and adds the input to the output.

U-Net

U-Net, introduced by Ronneberger et al. [190], is a special CNN architecture, orig-
inally designed for biomedical image segmentation. Similar to an Autoencoder
[231], the U-net architecture is characterized by an encoder and a decoder path.
Initially, the process reduces the spatial dimension while augmenting the channel
dimension. Subsequently, in the reverse process of the decoder path, it expands
the spatial dimension while diminishing the channel dimension. Additionally,
the U-Net architecture introduces skip connections, which transfer information
from the encoder to the decoder path on the corresponding matching resolution
levels as depicted in Fig. 2.13.

Each encoder block typically comprises two convolution layers, with the first one
doubling the channel size and the second one maintaining it. Each convolution
layer is succeeded by a batch normalization layer and a ReLU activation function.
At the end of each block a max-pooling operation halves the spatial dimensions.
Following the encoding blocks, a bottleneck layer is utilized to process the feature
maps, maintaining the same spatial dimensions. This bottleneck layer is similar
to the encoder blocks, but excludes max-pooling.

It should be noted that Fig. 2.13 depicts only two encoder blocks for clarity,
although the original U-Net architecture contains four.

The decoder block employs an upsampling operation, such as bilinear interpo-
lation as detailed in Section 2.3.4 or deconvolution [251], to double the spatial
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dimension of the feature map. The corresponding output of the encoder block
is then concatenated to this feature map. Subsequently, two convolutions, each
with a ReLU activation function, are applied to reduce the channel size.

Consequently, the U-Net architecture, through its combination of high-level
features with low-level features via skip connections, has proven to be particularly
effective in generating precise segmentation masks.

sSkip Connection
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Figure 2.13: The illustration provides a simplified depiction of the U-Net archi-
tecture, which includes two encoding blocks (e.), one bottleneck (b.), and two
decoding blocks (d.).

2.5.3 Metrics & Loss Functions

To fit the parameters w of a function f (x;w), i.e to train a neural network or
another machine learning model, a loss L(y, f (x;w)) must be defined, as detailed
in Section 2.4.1. This loss function quantifies the difference between the target y
and the prediction f (x;w).

Quantifying this error is crucial as it establishes the objective and consequently,
the gradients of the optimization problem. Given that objectives vary across
different tasks, a range of loss functions, each with its unique characteristics and
use cases, is available.

Moreover, evaluating a model’s performance necessitates the use of a metric,
which quantifies the difference between the target and the prediction of a test set.
Thus, the mathematical concept behind a metric and a loss function is the same,
with the difference that the latter is employed for optimization purposes and in
case of GD must be differentiable.

Mean Squared Error (MSE)

A widely used and intuitive metric is the Mean Squared Error (MSE), defined as
the average of the squared differences between two sets of values, y and ŷ:

MSE(y, ŷ) = 1

N

N∑
i=1

(yi − ŷi )2 (2.43)
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with N being the number of values in the sets. In the context of optimization, y
represents the target and ŷ denotes the prediction f (x;w).

The MSE, which calculates the difference between each value, is easy to interpret.
However, not all values are always equally important. For instance, in images,
edge pixels contribute more to the overall appearance than background pixels.
Therefore, more specific loss functions and metrics are often employed.

Peak Signal-to-Noise Ratio (PSNR)

In addition to the MSE, another important metric in image processing is the Peak
Signal-to-Noise Ratio (PSNR). This metric evaluates the ratio of meaningful signal
to noise and is typically expressed in dB. It utilizes the MSE between a noise-free
signal y and a noisy signal ŷ.

It is defined as:

PSNR(y, ŷ) = 10 · log10

(
MAX2

MSE(y, ŷ)

)
, (2.44)

with MAX being the maximum possible pixel value of the image.

Structural Similarity Index (SSIM)

The aforementioned limitations of the MSE metric are demonstrated in Fig. 2.14.
Despite the perceptible gradual decrease in image quality from Fig. 2.14b to
Fig. 2.14d, the MSE between Fig. 2.14a and the other three images of Einstein
remains constant. This is because a constant shift in pixel values in Fig. 2.14b
contributes substantially to the MSE, despite the fact that this difference is not
appreciable to a human observer. In contrast, blurring or artefacts, as depicted
in Fig. 2.14c and Fig. 2.14d, are more perceptible.

This issue is addressed by the Structural Similarity Index (SSIM), proposed by
Wang et al. [239], which is a metric specifically designed to mimic human percep-
tion.

The SSIM is represented as follows:

SSIM(Y, Ŷ) = l (Y, Ŷ)α · c(Y, Ŷ)β · s(Y, Ŷ)γ (2.45)

with l (·, ·), c(·, ·) and s(·, ·) representing the luminance, contrast and structure
difference between the two images Ŷ and Y. The constants α, β and γ are used to
weight the three components.

The luminance can be stated as:

l (X,Y) = 2µxµy +C1

µ2
x +µ2

y +C1
(2.46)
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(a)
MSE=0,
SSIM=1,
original

(b)
MSE=144,
SSIM=0.988,
offset added

(c)
MSE=144,
SSIM=0.84,
corrupted pixel

(d)
MSE=144,
SSIM=0.694,
blurred

Figure 2.14: Four images of Einstein [239] are depicted, with the last three being
compared against the first using MSE and SSIM. A gradual decrease in image
quality is observable, which is not captured by the MSE metric but is reflected by
the SSIM metric.

µx and µy are the two mean values of the to be compared images. C1 is a constant
to avoid instability, if the means get close to zero. Consequently eq. 2.46 is one, if
the mean of both images is the same and becomes less otherwise.

The construction of the contrast measurement is akin to the luminance rating,
but it utilizes the variances of the images instead of the means. The formula is as
follows:

c(X,Y) = 2σxσy +C2

σ2
x +σ2

y +C2
(2.47)

The constant C2 is introduced, similar to C1, to prevent instability.

A structural comparison can be performed by calculating the correlation between
the two entities, as shown in the following equation:

s(X,Y) = σx y +C3

σxσy +C3
(2.48)

Here, σx y represents the covariance between them, which is defined as the inner
product of both images:

σx y = 1

N −1

N∑
i=1

(xi −µx )(yi −µy ) (2.49)

with N being the number of pixels in the image.

Additionally, Wang et al. [239] suggested the application of the SSIM on a local
scale rather than a global one. This is achieved by calculating the SSIM for a
local square window, which moves pixel by pixel over the image. Moreover, they
employed an 11×11 circular symmetric Gaussian weighting function, denoted as
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w = wi |i = 1,2, ..., N , with σ= 1.5 and normalized to
∑N

i=1 wi = 1. Consequently,
the contribution of each pixel within the patch is determined by its Gaussian
weight, for instance, µx =∑N

i=1 wi xi .

Finally, they integrate the local patches into the Mean Structural Similarity Index
(MSSIM) by computing the average of the local SSIM values:

MSSIM(Y, Ŷ) = 1

M

M∑
j=1

SSIM(ŷ j ,y j ) (2.50)

In this context, ŷ j and y j signify the contents of the image patches under com-
parison, while M stands for the total count of patches. When utilizing MSSIM or
SSIM as a loss function, it must be taken into account that both yield a value of
one for identical images and zero for completely dissimilar ones. Consequently,
1−SSIM is employed as a loss function. The SSIM has proven to be particularly
effective in training a denoising neural network, as demonstrated in Chapter 5.

Dice-Sørensen Coeffient

While SSIM is specifically designed for image comparison, the Dice-Sørensen
Coefficient [206] or Dice loss is frequently employed to evaluate segmentation
tasks. This metric is defined as follows:

DSC = 2|Y∩ Ŷ|
|Y|+ |Ŷ| (2.51)

Here, |Y| and |Ŷ| denote the number of pixels in the ground truth and the pre-
diction, respectively, while |Y∩ Ŷ| represents the intersection of the two sets.
Originally designed for binary data, this coefficient compares the area of overlap
between the two sets to the total area of both sets. Given that it only considers the
area of segmentation, this coefficient is particularly effective in unbalanced seg-
mentation tasks, where the area of the object to be segmented is small compared
to the background. The Dice loss is explicitly employed in Chapter 4.

Perceptual Loss

Gatys et al. [74] proposed the innovative idea of using the comparison of fea-
ture maps from a pre-trained neural network as a loss function. Johnson et al.
[104] further advanced this concept by training a neural network using this loss
function. In this approach, Y and Ŷ are processed through the pre-trained net-
work f (·). This generates corresponding feature maps, denoted as Zl

y = fl (Y) and
Zl

ŷ = fl (Ŷ). In this context, fl (·) represents the operation of extracting the feature
map at layer l , while Z denotes the resulting feature map.
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The perceptual loss is then computed by comparing Zl
y and Zl

ŷ using the MSE, as
follows:

PerceptualLoss(Y, Ŷ) = 1

N
= ‖ fl (Y)− fl (Ŷ)‖2

F (2.52)

= 1

N

N∑
i=1

(z ŷ i − zyi )2 , (2.53)

with N being the number of elements in the feature maps, ‖ · ‖F denotes the
Frobenius norm and z ŷ i and zyi represent the elements of the feature maps Zl

ŷ

and Zl
y , respectively.

In a neural network, the depth of layer l is directly correlated with the level of
abstraction of the features it represents. Values in shallow layers maintain a
close relationship with the input pixel values, whereas elements in deeper layers
encapsulate more abstract information such as textures or shapes. As a result,
the perceptual loss proves to be especially effective when the task requires the ab-
stract features of two images to be identical. Moreover, the concept of calculating
the error between two feature maps serves as a pivotal idea in Chapter 7.
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Noise Simulation on X-ray Images

Simulating physically accurate noise on X-ray images enables the conversion of
high-dose X-rays to those acquired with a lower dose. This is primarily because
dose reduction leads to an increase in noise and a decrease in mean signal in-
tensity, ultimately resulting in a reduced Signal-to-Noise Ratio (SNR). Simulating
physical noise allows for the augmentation of training data for deep learning
models. Specifically, in our work, a sophisticated noise simulation is necessary
to train a denoising neural network, as presented in Chapter 5. Moreover, noise
simulation is essential for simulating collimator shadows in Chapter 4, as areas
of collimator shadows receive a reduced dosage, resulting in higher noise.

For this reason, we propose a comprehensive noise simulation that models differ-
ent aspects of noise in X-ray images, such as Poisson noise, electronic noise, and
scintillator (detailed in Section 2.1.4) blurring.

Furthermore, the noise model’s parameters are adjustable, allowing for the sim-
ulation of different detectors and dose levels, with the goal of enabling better
generalization of the trained models. We evaluate our noise simulation by com-
paring the simulated images to real X-ray images acquired at different dose levels
and assess the impact of various noise components on the simulation’s accuracy.

3.1 Related Work

In the field of X-ray imaging, numerous noise simulation methods have been
proposed [63, 21, 25], each with its own set of advantages and disadvantages.
In this section, we provide an overview of the state-of-the-art noise simulation
methods and compare them to our proposed method.

Båth et al. [21] developed a method, which necessitates the understanding of the
Noise Power Spectrum (NPS) from two pre-acquired empty (flat field) images at
two different dose levels. The known NPS is used to generate noise, which, when
added to the original image, simulates the noise characteristics at the lower dose

47
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level. While it is a precise method based on the correct NPS, it requires flatfield
images and does not allow for adjustment of the noise characteristics.

Borges et al. [25] introduced a novel approach by adding noise in the Anscombe
domain [150]. Similar to [21], this method involves acquiring two flatfield images
at different radiation doses and modeling the noise based on the local variance
of these images. While this method is more flexible due to its adjustable variance
parameter, it does not account for scintillator blurring or electronic noise.

Hariharan [82] also approaches the noise simulation by adding noise in the
Anscombe domain. The noise characteristics are estimated from the local vari-
ance of a high dose and low dose X-ray image. They also account for electronic
noise and scintillator blurring.

In contrast to [82] and [25], Cesarelli et al. [41] propose an approach that directly
simulates Poisson noise without the need for the Anscombe domain. This is
achieved by estimating an increase in this type of noise through the addition of
Gaussian noise with zero mean and variance dependent on the expected pixel
intensity. However, they do not account for noise already present in the high-dose
image, nor do they account for scintillator blurring.

Our approach is based on the premise that deep learning models generalize
better when trained with a diverse dataset. Thus, we propose a noise simulation
with adjustable parameters directly related to physical properties, such as the
variance and mean of the noise. Consequently, this method eliminates the need
for the Anscombe domain and does not necessarily require measurements to
generate realistic noise. Moreover, it considers the original noise in high-dose
images, enabling the precise simulation of low dose characteristics on Ground
Truth (GT) images that already contain some noise.

3.2 Methodology

In this chapter, we describe the four steps of the noise simulation pipeline, as
shown in Fig. 3.1. First, we examine the fundamental properties of the photon
distribution, which form the basis of the noise simulation. Next, we estimate the
detector gain to convert pixel values into the photon count domain. The photon
count is then adjusted to account for enhanced quantum noise. We then consider
the inherent scintillator blurring in the detector, which affects the quantum noise
characteristics. Finally, electronic noise is added to the image to complete the
noise simulation.
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Figure 3.1: The four stages of the noise simulation pipeline.

3.2.1 Poisson Distribution Approximation

The Poisson distribution [178], which describes the probability of z photons
hitting a detector pixel based on the average photon arrival rate λ (as discussed
in Section 2.1.3), serves as the primary source of noise in X-ray images. Unlike
the Gaussian distribution, the Poisson distribution exhibits signal-dependency,
indicating that the level of noise varies with pixel intensity.

Two fundamental properties of the Poisson distribution are crucial for the pro-
posed noise simulation. Firstly, as stated in Eq. (2.4), the mean and variance of
the Poisson distribution are both equal to the mean photon arrival rate.

Secondly, the Poisson distribution can be approximated by a normal distribution,
whose mean and variance equals λ [96]:

P (z|λ) ≈ No(µo =λ,σ2
o =λ) . (3.1)

It is important to note thatλ varies for each pixel. Consequently, a distinct normal
distribution is utilized for the approximation of each pixel. Furthermore, we use
the index o as an indicator to denote that the variables are in reference to the
photons that originally arrived at one detector pixel.

3.2.2 Detector Gain Estimation

In X-ray imaging, photon counts are converted to visible light using a scintillator.
This visible light is then converted into an electrical signal by a photodiode [246].
The electrical signal is subsequently converted by an ADC to pixel intensities i .
Therefore, the pixel intensities i do not directly represent the photon counts z.
However, the relationship between pixel intensities i and photon counts z can be
approximated linearly using the detector gain k:

i = k · z . (3.2)

Consequently, the variance and mean of the photon count domain are also linked
to the image pixel domain. The variance of the pixel intensities, σ2

i , is equivalent
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to k2σ2
o . The image mean is linked to the mean of the photon count via µi = kµo .

As per Eq. (2.4), σ2 =µ=λ. Thus, we can obtain k as follows:

σ2
i

µi
= k2σ2

o

kµo
= k2λ

kλ
= k (3.3)

However, in reality, only i of each pixel is known, not the underlying variance
σ2

i or mean µi of the Poisson distribution. Therefore, these parameters must be
estimated. It is important to note that both σ2

i and µi depend on λ, which varies
for each pixel, leading to different values of σ2

i and µi for each pixel. In order
to estimate the parameters σ2

i and µi , we make the assumption that neighbor-
ing pixels exhibit similar noise characteristics, given that the X-ray attenuation
should not significantly vary over short distances in most cases. Consequently,
by measuring the different intensities i within a small neighborhood, we can
compute an estimate for σ2

i and µi . This assumption holds even more true for
areas in the image where there are minimal to no anatomical changes. For this
reason, we propose an automatic algorithm that estimates σi and µi , which are
subsequently used to compute the detector gain k. This algorithm is designed
to automatically select areas with minimal anatomical variations. This selec-
tion process is facilitated by dividing the image into patches and calculating
the entropy of each patch. The patches with the lowest entropy, indicating the
least amount of anatomical changes, are selected. Consequently, the estimated
σ2

i and µi correspond to the mean and variance of the pixel intensities within
these selected patches. Having estimated σ2

i and µi , the detector gain k can be
automatically calculated following Eq. (3.3).

3.2.3 Photon Reduction

A dose reduction by the factor αmeans a decrease in the number of photons by α
and consequently a decrease in the mean photon arrival rate toαλ. This decrease
leads to a higher uncertainty in the photon count, which is reflected in the
increased noise. Therefore, to simulate a dose reduction, the noise characteristics
must be adjusted, then the number of photons must be scaled. Follwing Eq. (2.4),
the new variance and mean of the dose reduced noise is σ2

n =αλ and µn =αλ.
Considering the definition of the SNR as SNR = µ

σ , the SNR of the dose reduced
image is

SNRα = µn

σn
= αλp

αλ
=p

α
µo

σo
=p

αSNRo (3.4)

Here,µo andσo represent the mean and variance of the original photons detected,
while SNRo denotes the original SNR. Consequently, when the dose is reduced by
α, the SNR is scaled by

p
α.
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The knowledge regarding the degree of SNR reduction in relation to the scaling of
the photon count can now be applied to simulate the noise in the dose-reduced
image. A pixel-specific Gaussian noise Np (0,σ2

x ) is incorporated into the original
image to achieve a new SNRα. The addition of No to the image results in a new
variance σ2

o +σ2
x . The new SNR is µop

σ2
o+σ2

x

. Consequently, the following equation

must hold true:
µo√
σ2

o +σ2
x

!=p
α
µo

σo
, (3.5)

Rearranging the formula results inσ2
x = ( 1

α−1)σ2
o , or equivalently, ( 1

α−1)λ. There-
fore, the pixel-specific Gaussian noise to be added is solely dependent on the
mean photon arrival rate. We estimate λ for each pixel by applying a median filter
to the photon-count image. Thus far, only the variance of the image noise has
been enhanced. As a result, the mean and variance are not equal, and property
Eq. (2.4) does not hold, indicating that the image noise is not Poisson distributed.
Hence, a scaling factor s must be found to adjust the image intensities to restore
the Poisson distribution. Scaling the image by s results in a new altered variance
and mean, which must be equal:

s2σ2
n

!= sµo (3.6)

The scaling factor s can be calculated by rearranging Eq. (3.6) as follows:

s = µo

σ2
x +σ2

o
= λ

λ( 1
α −1)+λ =α (3.7)

Thus, we can simulate Poisson noise by adding pixel-specific Gaussian noise with
variance σ2

x = ( 1
α −1)λ to the image and scaling the image intensities by α.

3.2.4 Scintillator Blurring

In X-ray systems, scintillators convert incoming X-ray radiation into visible light.
However, light scattering within the scintillator can cause light to hit neighboring
pixels, introducing a correlation between them. Consequently, the Poisson noise
characteristics are altered [143, 134]. To account for this spreading effect, the
simulated Poisson noise needs to be convolved with a Gaussian kernel defined
by σs [165]. In our algorithm, we derive σs from the NPS of a single high-dose
GT image, as suggested by [82], resulting in a value of 0.6 pixels, which is depen-
dent on the scintillator material and thickness. Given that the pixel size of our
detector is 0.296 mm, σs can also be expressed in millimeters as 0.177 mm. This
allows other detectors with different pixel sizes to be simulated by adjusting σs

accordingly. It is important to note that for deep learning training, this parameter
can be varied around our proposed value to generate a diverse dataset. An exact
estimation may not be essential, as the value for the required detector is likely to
fall within the range of the augmented values.
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3.2.5 Electronic Noise

Electronic noise is caused by the detector’s electronic components, such as the
ADC and the amplifier. These components are independent of the photon count
and can be modeled by a Gaussian distribution with a constant variance, σ2

e

[68]. The electronic noise is added as the final step in the noise simulation to
the image with photon count pixel values. The variance of the electronic noise is
determined by the detector. For our detector, we once again used the NPS as per
[82], resulting in a determination of σ2

e = 5.

3.2.6 Adjustable Parameters

The proposed noise simulation automatically converts the input image to the
photon count domain. Subsequently, the image is manipulated based on three
adjustable parameters:

1. The dose reduction factor α,
2. The scintillator blurring σs .
3. The electronic noise σe .

α directly determines the amount of dose reduction or the number of photons in
the image. Hence, α should be always set to the desired range of dose reduction,
which needs to be simulated.

The scintillator blurring σs and the electronic noise σe are detector-specific
parameters. The proposed simulation is intended to generate training data.
Therefore, we recommend varying these parameters around our proposed values
to train models for better generalization. However, if the noise simulation needs
to be specific to a certain detector, we recommend measuring these parameters
directly on that detector.

3.2.7 Noise Power Spectrum (NPS)

For the evaluation of noise simulation, the NPS of the images I in the photon
count domain is computed. The NPS signifies the power of the noise component
within a signal or image, denoted here as I, in the frequency domain:

NPS( f ) = |F {noise(I)}|2 (3.8)

The image noise is determined by subtracting a high-dose ground truth image Ig t ,
characterized by barely noticeable noise, from the lower-dose images In , which
inherently have a higher noise level. In addition to subtraction, the high-dose



3.3. EXPERIMENTS & RESULTS 53

High-Dose Lvl 1 Lvl 2 Lvl 3

mAs 8.0 2.0 1.0 0.5
kV 80.9 80.9 80.9 80.9
α 1 0.25 0.125 0.0625

Table 3.1: Acquisition parameters of the phantom X-ray images. A constant tube
voltage of 80.9kV was maintained, with variations in the tube current employed
to achieve different dose levels and dose reductions α.

image must be scaled down by α to align with the intensity of the simulated
low-dose image. This can be represented by the following equation:

noise(In) = In − 1

α
Ig t (3.9)

3.3 Experiments & Results

The capabilities of the proposed noise simulation are examined by acquiring
X-ray images at varying dose levels from a phantom. The simulation is applied
to the high-dose ground truth image Ig t to generate simulated low-dose images
that correspond to the low-dose ground truth phantom X-ray images. The sim-
ulated images are subsequently visually compared to the ground truth images.
In addition to the visual comparison, a quantitative evaluation is performed by
measuring the NPS of the noise maps of both the simulated and ground truth
images. Moreover, the MSE between the NPS of these images is also calculated
to provide a comprehensive comparison. The impact of the different simulation
components, namely scintillator blurring and electronic noise, is analyzed by
applying the simulation with and without these components.

3.3.1 Phantom X-ray Image Acquisition

The phantom X-ray images, all taken at the same position, specifically the phan-
tom’s chest, are captured at four different dose levels. The acquisition with 8mAs
is considered the high-dose image, and the complete image is illustrated in
Fig. 3.2. The remaining three images are classified as low-dose images. These
dose levels are achieved by varying the tube current while maintaining a constant
tube voltage. Given that the dose level is linearly dependent on the tube current,
the dose reduction factor α can be calculated using the ratio of the tube currents.
The acquisition parameters for these phantom X-ray images are summarized in
Table 3.1.
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Figure 3.2: Phantom chest X-ray image used for the noise simulation.

3.3.2 Visual Evaluation

The simulations are conducted with correspondingα values to simulate the three
dose reductions. Fig. 3.3 depicts a comparison of the simulated images with the
ground truth image. The figures display patches to provide a higher resolution,
enabling a more precise comparison. Furthermore, the corresponding noise
maps of the patches are displayed.

A distinct discrepancy between the ground truth and the simulation without
scintillator blurring is evident in both the image patches and the noise maps. The
noise appears more fine-grained, a predictable outcome when the pixel corre-
lation due to the scintillator is eliminated. Furthermore, a difference between
the ground truth and the simulation without electronic noise is discernible upon
closer examination of the noise maps. The electronic noise contributes to the
overall noise, adding a fine-grained component visible in the real noise map and
the complete simulation. This fine-grained noise results in a sharper appearance
of the noise. No differences can be observed between the real and the patch of
the complete simulation. Moreover, these effects are observable at all three levels
of dose reduction.
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Figure 3.3: Patches represent all three levels of dose reduction. The first three
rows display the image patches, while the fourth to sixth rows show the noise
maps. The actual physical dose reduction is displayed, along with the complete
simulation and the simulation excluding scintillator blurring or electronic noise.
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Figure 3.4: NPS of the complete noise simulation at different dose levels, com-
pared against the ground truth NPS.

3.3.3 Noise Power Spectrum Comparison

To quantitatively assess the noise simulation alongside visual comparisons, the
NPS of the noise maps is calculated. Fig. 3.4 shows the NPS of the complete
simulation at various dose levels, compared to the ground truth. It is worth
noting that the NPS of the real noise peaks at zero, suggesting an offset difference
in addition to the noise differences. This is due to slight variations in the dosage
scaling factor α in a real setup, resulting in a small offset in the noise map when
the low-dose image is subtracted from the high-dose image. Excluding the offset
absent in the simulated NPS, the NPS of the complete simulation closely mirrors
the ground truth noise map, with minor variations contingent upon the noise
level. At Lvl 1, the real NPS exhibits a slightly narrower peak than the simulation,
while at Lvl 3, it displays a marginally flatter bell curve. These observations
suggest that some nonlinear effects in the scintillator blurring are not entirely
captured by our noise simulation. However, aside from these minor discrepancies,
the NPS of the complete simulation closely resembles the ground truth noise
map, indicating that the simulation accurately replicates the noise characteristics
of the ground truth images.

Fig. 3.5 compares the NPS of simulations without scintillator blurring and without
electronic noise to the ground truth at dose reduction Lvl 1. Comparisons of
these simulations for dose reduction Lvl 2 and Lvl 3 are provided in the Appendix
(Fig. A.1 and Fig. A.2).
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Figure 3.5: NPS comparison of the simulation without electronic noise or scintil-
lator blurring, compared against the NPS of the real acquisition.

Lvl Complete W./o. Electron Noise W./o. Scintillator Blurring

1 0.181 0.289 0.781
2 0.098 0.199 0.898
3 0.269 0.342 0.840

Table 3.2: The MSE between the simulated NPS and the ground truth NPS is
calculated for each level of dose reduction across all three noise simulations.

Both NPS show significant differences from the ground truth when compared to
the complete simulation. The NPS of the simulation without scintillator blurring
resembles white Gaussian noise at a higher level, while the NPS without electronic
noise lacks a constant component across all frequencies. This indicates that all
components of the simulation are essential for accurately replicating the noise
characteristics of the ground truth images.

In Table 3.2, the MSE between the simulated NPS and the ground truth NPS is
calculated for each dose reduction level across all three noise simulations. The
results align with the visual NPS observations, confirming that the complete
simulation most closely resembles the ground truth. The simulation without
electronic noise follows, while the simulation without scintillator blurring shows
the greatest discrepancy from the ground truth.
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3.4 Discussion

The experiments demonstrated that the complete noise simulation closely
matches the ground truth noise across three different noise levels. This consis-
tency suggests that our noise model does replicate other noise levels with the
same accuracy. Moreover we showed that scintillator blurring and electronic
noise are essential components, as the NPS changes when either component
is omitted. Furthermore, the adjustable parameters allow for the simulation of
different detectors and dose levels, enhancing the generalization of the trained
models.

The proposed noise simulation will be employed in the upcoming chapters,
Chapter 4 and Chapter 5. In these chapters, the simulation will be used to
augment noise in the training data. The models trained on this data will show
good generalization on real-world data, reinforcing the measured results of these
chapters and underlining the assertion that the noise simulation is sufficiently
realistic for training deep learning models.

3.5 Future Work

The noise simulation operates in the photon count domain; hence, an accurate
estimate of the conversion factor k is crucial for the simulation’s accuracy. The
stability of the k estimate has not been investigated and should be addressed in
future research. Moreover, at the current state, the detector gain estimation does
not take into account scintiallator blurring. Consequently, to further improve
the simulation’s accuracy, the scintillator blurring can be incorporated in the
estimate of the detector gain k.

3.6 Conclusion

We proposed a comprehensive noise simulation for X-ray images aimed at gener-
ating training data. The simulation automatically estimates the detector gain and
incorporates the existing noise of the high-dose image. It is capable of modeling
different dose levels, scintillator blurring, and electronic noise. Most importantly,
all parameters of the simulation are adjustable and comprehensible. This al-
lows for the augmentation of different detectors and dose levels in deep learning
training, thereby enabling better generalization of the trained models.



4
Collimator Shadow Detection

Collimation minimizes radiation dosage to patients by limiting exposure to the
Region of Interest (ROI) [237], as demonstrated in Fig. 4.1. However, the inclusion
of collimated areas in the captured image introduces two significant drawbacks.
Firstly, it can distort the image processing algorithms due to significant changes
in pixel values caused by collimation. Secondly, it reduces the visible area of the
image for radiologists, thereby potentially compromising the diagnostic quality
of the image.

source

collimator

patient

detector

Figure 4.1: The figure illustrates the impact of collimation on dose distribution
within a patient. The effect of scatter radiation, depicted in red, complicates the
detection of collimation areas.

Therefore, it is essential to remove these collimated areas from the image before
further processing. However, as depicted in Fig. 4.1, and further exemplified in
Fig. 4.2, scattered radiation can penetrate the detector behind the collimator.
This penetration results in a brightening of these areas, which subsequently
complicates the detection of shadows.

This chapter presents a deep-learning-based algorithm for detecting the colli-
mation area by estimating the parameters which describe the collimator shadow
edges. The algorithm is a collaborative work between Benjamin El-Zein and
myself, Dominik Eckert.

59
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Figure 4.2: The figure illustrates the effect on collimation, represented through a
profile plot and its corresponding image. Scatter results in higher intensities in
the collimated areas compared to the ROI.

4.1 Related Work

Research publications in the field of collimator shadow detection is relatively
limited. The most recent study was published in 2015 [170], before the widespread
acceptance of deep learning methodologies in medical imaging. To the best of
our knowledge, no studies have yet incorporated deep learning into this specific
area of research.

Existing works can be broadly categorized into two groups: those that estimate
the collimator boundaries or edges in the pixel domain [170, 153], and those that
utilize the HT [83] to obtain a parametric description of the collimator boundaries
[144, 130, 241, 111].

Ostojić et al. [170] propose a method for detecting the collimator shadow in the
pixel domain. This method involves rotating the collimator edges based on the
gradient histogram and calculating the Frobenius norm of the Hessian to detect
the edges. Similarly, Mao et al. [153] employ a random forest, but instead of
using superpixels, they classify each pixel directly to determine its affiliation to
the collimator shadow or ROI. After applying a convex hull around the detected
pixels to create a coherent area, they identify the corner points of the collimator
within this area, as these points provide a complete description of the collimator.

All HT based algorithms employ a similar three-step approach:

1. Estimate the edges of the collimator shadows.
2. Apply the HT to the edge image.
3. Acquire the collimator edge parameters from the HT domain.
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The first step typically involves generating a segmentation mask, which is then
converted into an edge image. The complete process is exemplified in Fig. 4.3.

However, this approach poses two significant challenges. Scatter can make areas
behind the collimator appear brighter than those in the uncovered area, and
edge blurring often results in poorly defined edges, as illustrated in Fig. 4.1.
Consequently, the first challenge is accurately estimating these edges. Both
effects are described in detail in Section 4.3.2.

The second challenge pertains to the determination of the collimator edge pa-
rameters from the HT domain, which is described in detail in Section 2.3.3. This
process is complicated by several factors. Firstly, the exact number of possible
collimator edges is uncertain due to the occasional invisibility of the entire colli-
mator in the image. Secondly, instead of lines being represented by single points
in the HT domain, they appear as sinusoidal curves due to resolution constraints,
as shown in Fig. 4.3d. These curves’ peaks symbolize the collimator’s edges, with
their amplitudes varying depending on the edge length. For instance, the two less
pronounced peaks on the left side in Fig. 4.3d represent the collimator’s two short
edges, while the more pronounced peak on the right side represents a longer
edge. Lastly, the presence of additional points and artifacts in the HT domain,
resulting from an imperfect collimator edge image, further complicates the edge
parameters’ acquisition.

(a) X-ray Image (b) Collimator Mask (c) Edge Mask (d) HT domain

Figure 4.3: Example of collimator edge detection with Hough transform. From
left to right: collimated X-ray image, segmentation mask corresponding to the
collimator, Sobel edge detection of segmentation mask, Hough domain of edge
mask.

The majority of existing literature on collimator detection presents diverse ap-
proaches to addressing these two aforementioned challenges. Wiemker et al.
[241] and Lehmann et al. [130] estimate an edge image by identifying the edges
through the calculation of the image gradients. Conversely, Luo et al. [144]
attempts to classify two edges in both x and y directions as collimator edges, em-
ploying the method proposed in [197]. This method involves applying a threshold
to the background and identifying the transition between the background and
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the object. Zhao et al. [258] generates edge images by creating superpixels [1],
which are perceptually meaningful atomic regions formed by combining pixels.
These superpixels are then classified using random forest [31] to determine if
they are located on the edge of the collimator.

The second challenge, acquiring edge parameters from the Hough space, is
typically addressed in most studies by incorporating prior knowledge about the
collimator edges. Luo et al. [144] posits that collimator edges exhibit a "butterfly"
pattern in the HT domain and suppress all peaks that do not display this pattern.
In contrast, Lehmann et al. [130] leverage the fact that a line must not be obscured
by the collimated area adjacent to another line. Zhao et al. [258] incorporate prior
knowledge that intersecting collimator lines form angles of approximately 90
degrees. They also utilize the knowledge gained from superpixel classification to
determine if the line reconstructed from the HT domain separates the ROI from
the collimator shadow.

4.2 Research Trajectories

Existing methods for collimator detection predominantly rely on analytical image
processing techniques. We posit that complex tasks, such as identifying the
ROI, generating an edge map with only the collimator edges, and extracting
the collimator boundaries from the Hough domain, could be addressed more
efficiently using deep learning techniques.

Deep learning typically necessitates a large volume of training data, a require-
ment often unfulfilled in medical imaging [112]. The collection of sufficient data
is often constrained by the essential need for patient privacy. Furthermore, the
annotation of medical data is a complex task that demands professional anno-
tators such as radiologists. In particular, the annotation of collimator edges is
notably time-consuming, as it involves not only label assignment but also the
meticulous task of delineating the collimator edges. Building upon the physics-
inspired noise simulation proposed in Chapter 3, we similarly suggest simulating
the collimator edges on clinically acquired images. This approach facilitates the
augmentation of different shapes and properties during training, thus increasing
the number of available training samples. Moreover, by simulating the collimator
shadows, the need for label assignment is eliminated, as the collimator edges are
known and can serve as the ground truth.

Given sufficient training data, we can pursue two different approaches to train
deep neural networks, mirroring existing methods that either rely on the HT or
directly estimate the collimator boundaries.
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Considering the principle of known operator learning [149], a neural network is
likely to approximate the objective function more accurately if all known opera-
tors are incorporated into the network architecture. In line with this principle,
Zhao et al. [257] proposed a differentiable Hough transform, called Deep Hough
Transform (DHT), a known operator that can be seamlessly integrated into the
training of a neural network.

Therefore, we propose to incorporate the DHT into a neural network architecture,
which, in line with existing literature, consists of three parts:

1. An edge image generator.
2. The DHT.
3. Hough Domain refinement.

The edge image generator’s role is to produce an image that exclusively illustrates
the collimator edges from the input X-ray image.

The HT domain refinement is designed to remove incorrect edges and artifacts,
and it is trained to equalize the amplitude of all points representing the collimator
boundaries. This simplifies the extraction of the collimator edge parameters.

4.3 Methodology

Given the proven benefits of known operator learning, we explore the potential
for detecting collimator edges with deep learning, by incorporating the HT into
neural network architectures. Moreover, we establish a simulation pipeline for
collimator shadow augmentation, which serves to generate training data for the
proposed networks.

4.3.1 Data

Prior to any image post-processing, the collimation cropping must be performed.
This is crucial as the presence of collimator shadows can distort the results of
these processes. Consequently, a neural network should be trained to detect the
collimator edges on unprocessed images.

Despite the notable scarcity of unprocessed images in the field, we successfully
procured a dataset of 1680 raw clinical images from Siemens Healthineers. This
dataset comprises images of various body parts, although their distribution is
not uniform. The distribution of these images is depicted in Fig. 4.4.

The unprocessed images naturally contain the collimator shadows. Fortunately,
a proprietary analytical vendor algorithm generates collimator labels, which are
intended to identify the precise location of a collimator edge. As discussed, this
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Thorax 40.9%
Lower Extremities 19.1%
Upper Extremities 9.5%
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Pelvis and Hip 8.5%
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Scull 1.5%
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Figure 4.4: The different body parts in the X-Ray dataset and their distribution.

task is complex due to edge blurring and scatter effects, resulting in these labels
exhibiting substantial deviations from the actual collimator edges.

The process of generating training data via simulation of collimator shadows
requires the cropping out of the actual collimator shadows. We utilized the
provided labels for this purpose and added a margin to account for potential
errors in the labels. This approach ensures that the cropped image is free of any
collimator shadows, even when considering possible inaccuracies in the label
boundaries.

To maintain diversity in the test set, we deliberately chose images that represent
all body parts found in the entire data set. We aimed to include as many diverse
and challenging cases as possible, including those with implants or line artifacts.

This approach resulted in the creation of three distinct test sets:

1. General test set: includes 80 images, ensures representation of all available
body parts.

2. Artifacts test set: specifically containing 20 images with line artifacts that
could be mistaken for collimator edges.

3. Implants test set: featuring 30 images with implants that significantly alter
the image appearance.

Since the provided collimation labels are not accurate, they are manually adjusted
for the test sets. This adjustment enables the evaluation of the network’s perfor-
mance on real-world collimator shadows. Furthermore, collimator shadows are
simulated on the cropped images of these test sets, creating two versions of each
set: one with the real collimator shadow and one with the simulated shadow. This
allows for a comparison of the network’s performance on real versus simulated
collimator shadows.
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4.3.2 Collimator Simulation

The simulation of collimator shadows necessitates the consideration of the phys-
ical effects that determine the collimator shadow. As illustrated in Fig. 4.5, the
collimator shadow significantly impacts the image. Photons emitted by the X-ray
source are attenuated by the collimator, leading to reduced intensities on the
subsequent detector. However, the non-infinitesimal size of the source results
in blurred edges of the collimator shadow. This effect is exemplified in Fig. 4.5a,
where one photon beam (depicted in green) emitted from the first position is
attenuated, while another beam emitted from the second position at the same
angle (depicted in blue) fully penetrates the detector. Furthermore, photons
penetrating an object are partially deflected, a phenomenon known as scatter
[123, 193]. These deflected photons can penetrate the detector behind the colli-
mator, thereby enhancing the intensity of the collimator shadow in certain areas.
This effect is illustrated in Fig. 4.5b. Scatter behind the collimator is the primary
reason why collimator edges are challenging to segment, as collimated areas can
appear brighter than some parts of the object.

source
photons

collimator

detector

attenuation

(a) Edge Blurring

photons

source

object

collimator

scatter

detector
(b) Scatter

Figure 4.5: Illustration of collimator shadow effects.

As collimation modifies the scatter characteristics, the initial step in the simula-
tion process is to eliminate the existing scatter from the clinical image. Ohnesorge
et al. [164] proposed a method to simulate the scatter map on an existing image.
Accordingly, this method is applied to the clinical images, and the estimated
scatter map is subtracted. The collimator shadow is then simulated on this
scatter-free images, taking into account the geometric manifestation, attenua-
tion, and edge blurring. Based on these collimated images, a new scatter map is
generated and added. Finally, as the alteration of the scatter and addition of the
collimator shadow modify the number of arriving photons, we adjust for the new
noise levels by applying the noise simulation of Chapter 3. The four stages of the
simulation pipeline are depicted in Fig. 4.6.
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Figure 4.6: The four stages of the collimator simulation pipeline are illustrated.

Scatter Estimation

Ohnesorge et al. [164] suggest that the photon scattering by an object can be
approximated using a Gaussian distribution. They employ this assumption to
model the scatter by initially defining a scatter potential, Sp (I|I0), which quan-
tifies the object-induced scatter in the image I. This potential is dependent on
the image I and the primary I0, representing the image’s intensity without any
object-induced attenuation. The scatter potential is defined as follows:

Sp (I|I0) = c ·
(

I

I0

)α
· ln

(
I0

I

)β
(4.1)

The potential for scatter depends on the number of photons penetrating an
object. The scatter potential Sp can be broken down into three components: a
scaling factor c, the direct ratio between I and I0 exponential weighted by α, and
the natural logarithm of the inverse ratio of I0 and I exponential weighted by β.
This equation was empirically derived by Ohnesorge et al. [164].

Finally, the estimated scatter Se is obtained by convolving the scatter potential
with a Gaussian kernel Gs as demonstrated in this equation:

Se (I) = Sp (I|I0)∗Gs (4.2)

Collimator Shadow

During X-ray image acquisition, situations may arise where the detector is freely
positioned behind the patient, a scenario commonly seen in bedside imaging.
Such a setup implies that the detector might not be centrally aligned with the
X-ray source, could be rotated or tilted, and may have varying distances from the
source. These factors, in turn, influence the positioning and geometric appear-
ance of the collimator shadow. We address this by simulating collimator shadows
of varying size, positioning, orientation, and skewness, as depicted in Fig. 4.7.
The simulation begins by initializing a rectangle with height h and width w. This
rectangle is then moved by an vector d, rotated by an angle θ, and skewed by a
parameter z. We define the so created binary collimator shadow as Cb .

With the geometric manifestations defined, the attenuation a of the collimator
shadow must be considered. Additionally, edge blurring is accounted for by con-
volution with a Gaussian kernel Ge . Its spread in x and y directions is determined
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Figure 4.7: The simulation of the effects of varying collimator alignments to the
source is achieved by transforming a rectangular collimator shadow through
changes in position, rotation, and skew.

by the same standard deviation σ. Both σ and a can be adjusted to enhance
different levels of edge blurring and augmentation.

The new collimator mask Cm is then obtained as follows:

Cm = Cb ∗Ge ·a (4.3)

Comprehensive Simulation Description

The simulation of the collimator on a clinical image, denoted as I, can be ex-
pressed through the following steps.

Firstly, a scatter-free image, denoted as I f , is generated by subtracting the esti-
mated scatter map Se (I|I0) from the clinical image I:

I f = I−Se (I|I0) (4.4)

Subsequently, the collimator mask is applied to the scatter-free image:

Ic = I f ·Cm (4.5)

Lastly, the scatter map is recalculated and added to the image with the collimator
shadow:

Iout = Ic +Se (Ic ) (4.6)

In the final step, the noise simulation outlined in Chapter 3 is applied to the
image with the collimator shadow to adjust for the new noise levels.

Data Generation

The fully set up simulation can be employed to generate training data. It produces
modified X-ray images with new collimation, while concurrently preserving the
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collimation masks Cm as target segmentation masks. Furthermore, by providing
precise edge parameters, the simulation enables the creation of idealized Hough
domain targets, where each edge is represented by a point of equal amplitude.

Phantom Evaluation

Prior to training the network on the simulated collimator shadows, an evaluation
of the simulation pipeline is conducted. This process involves acquiring two chest
X-ray images from a phantom; one with the collimator in place and the other
without it, both captured under otherwise identical conditions. A collimator
shadow is then simulated on the open field image, which can be compared
against the image containing the actual collimator shadow. The findings of this
comparison are elaborated upon in Section 4.4.1.

Feasability of Training with Simulated Data

The feasibility of the proposed collimator simulation is evaluated by training
a network on the simulated data to estimate the segmentation mask, a model
referred to as Simulation Trained Network (SimNet). Despite the inaccuracy of
the real collimator segmentation masks provided in the training set, a second
network, Real Data Trained Network (RealNet), is trained on the real collimator
shadows. This allows for a comparative analysis between training with real and
simulated data. Additionally, the performance of both networks is assessed on all
three test sets, each with real and simulated collimators.

Both networks are trained using an identical setup. The chosen architecture is
the DeepLabV3 model [44], a well-regarded model for semantic segmentation
tasks. The network training employs a Dice loss function [260, 209], detailed in
Section 2.5.3, and utilizes the Adam optimizer [115].

4.3.3 Edge Parameter Estimation with Hough Transformation

Upon successful generation of training data, it is necessary to develop and train
neural network architectures for estimating the collimation edges. To achieve
this, we explore the potential of incorporating a differential implementation of
the HT [257] into neural networks.

Loss Functions

Training these networks necessitates two distinct loss functions. One such loss
function, which operates on the collimation segmentation masks, is the Dice
loss. It is denoted as Ldice(Ĉ,C), where Ĉ represents the predicted mask and C
the ground truth mask. The details of the dice loss are provided in Section 2.5.3.
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The second loss function is designed to compare the predicted and actual Hough
space. This space is predominantly empty, with only sparse points representing
the lines. Thus, the loss function must be capable of managing this sparsity. We
found the SSIM loss to be highly effective. Originally created to mimic human
perception, the SSIM is sensitive to minor variations in the points within the
Hough space. These changes are specifically targeted by the cross-correlation in
the SSIM. The loss is represented as Lssim(Ĥ,H), where Ĥ denotes the predicted
Hough space and H signifies the actual Hough space. The SSIM loss is detailed in
Section 2.5.3.

Network Architectures

We investigate three distinct possibilities to integrate the HT in a network ar-
chitecture, which are compared against a Segmentation Network (SegNet), as
illustrated in Fig. 4.8. Inherently, SegNet is limited to predicting segmentation
masks and cannot estimate parameters. However, it provides a valuable reference
point for evaluating the other networks. Its sole module, Segmentation Module
(SegM), is built upon a U-Net [190] architecture. The architecture, as illustrated in
Fig. 4.8a, offers greater flexibility for modifications compared to the DeepLabV3
model, making it an ideal choice for the integration of DHT. Consequently, SegM
is also utilized as a component in the remaining three networks.

Regularization Network (RegNet) is illustrated in Fig. 4.8b. Like SegNet, it em-
ploys SegM, which is again trained with the Dice loss. However, it also aims to
incorporate a second loss in the Hough space, which encourages the network to
predict straighter lines. To achieve this, the network is enhanced with a second
branch that transforms the output into the Hough space. This branch comprises
two modules: an Edge Module (EdgeM) and a HT. The EdgeM changes the seg-
mentation mask into a binary edge map. Instead of using an analytical edge
detector, such as a Sobel operator, we discovered that the network performs
better when the EdgeM is a small convolutional neural network with five convo-
lutional layers, each followed by ReLU and batch normalization. Unlike a Sobel
operator, this network can eliminate noise and artifacts that were either intro-
duced or not properly removed by SegM. The output of the HT is then compared
to the actual Hough space using the SSIM loss.

Hough Network (H-Net) is employed to investigate the feasibility of training a
neural network to detect collimator edges exclusively in the Hough space. The
architecture of this process is depicted in Fig. 4.8c.

Given that SegM is not optimized for predicting collimator masks, we assume
it to be optimized to predict edge maps, thereby negating the need for EdgeM
as employed in RegNet. SegM is followed by HT. As elaborated in Section 4.1,
the extraction of peaks indicating edges in the HT domain is challenging due to
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Figure 4.8: The figure illustrates four distinct network architectures. SegNet is
trained to predict the segmentation mask without incorporating a Hough Layer.
RegNet, on the other hand, integrates a Hough Layer and utilizes its output in a
regularization loss. H-Net is designed to predict only the Hough Space. Lastly,
DH-Net employs multiple Hough Layers for each Decoding Block.

varying intensities, sinusoidal curves, and artifacts. To address this challenge,
we propose the incorporation of a refinement network, Refinement Module
(RefineM), following the HT, with the objective of simplifying the HT domain.
The training targets in the HT domain are devoid of artifacts and each edge is
represented by a single point with the same amplitude. Thus, we anticipate that
RefineM is trained to eliminate artifacts and refine the HT domain. We utilized a
ResNet-18 [86] as the RefineM, modifying it to match the output dimensions of
the Hough space. The output of RefineM is evaluated against the Hough domain
targets using the Lssim loss.

Deep Hough Network (DH-Net), the final network architecture proposed by
Zhao et al. [257], is depicted in Fig. 4.8d. Instead of applying a single HT, the
output of each decoding block of SegM is transformed into the Hough Space, with
each channel of the outputs processed separately. The outputs of all HT layers
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are subsequently concatenated and reduced to one channel through a single 1D
convolution, serving as the input to RefineM. All other aspects remain consistent
with H-Net.

Training

The networks are trained using the Adam optimizer. The incorporation of HT
into the networks necessitates a reduction in the Learning Rate (lr) from 10−3, as
used in SegNet, to 10−5. This phenomenon is often observed in known operator
learning [149]. The networks are trained for 300 epochs. Given the 1550 distinct X-
ray acquisitions used for training, this leads to 465,000 unique collimator shadow
manifestations presented to the networks.

Reconstruction & Evaluation

All four networks are evaluated on the three test sets. To enable a comparison
between all four, the estimated hough domains of H-Net and DH-Net are re-
constructed into a segmentation mask. The edge parameters are obtained by
applying the watershed algorithm [120] to the Hough domain and subsequently
calculating the center of mass of the resultant regions. The edges are then pro-
jected into the image space. In addition to identifying the edges, it is crucial
to ascertain which side of each edge corresponds to the collimated and non-
collimated areas. To do this, we assume that the non-collimated area has, on
average, higher intensities than the collimated area. The non-collimated area
is then identified by convolving the original input image with a Gaussian ker-
nel. The spread in the x and y direction is defined by the same σ> 50, with the
maximum value taken as the center of the non-collimated area.

4.4 Experiments & Results

The experiments are divided into two parts. The first part evaluates the simulation
pipeline, while the second part assesses the performance of the networks on the
test sets.

4.4.1 Simulation Evaluation

Fig. 4.9 presents two acquired phantom images: the open field image (without
collimation) and an image taken with the same parameters, but with collimation.
Adjacent to these, the open field image with simulated collimation is displayed.
To more accurately evaluate the simulation’s precision, the pixel values from
approximately the middle of all three plots are illustrated in the two line plots
Fig. 4.9d and Fig. 4.9e. The positions of these pixels are denoted by colored lines
in all three images.
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Figure 4.9: Comparison of simulated and real collimation. The top row presents
the images of the open field, collimated, and simulated scenarios. The bottom
row illustrates the intensity profiles of the open field compared to the collimated
scenario, and the collimated scenario compared to the simulated one. The
intensity profiles correspond to the positions of the lines indicated in the images.

The difference between the open field and the actual collimation can be observed
in Fig. 4.9d. As expected, at the position of the collimations, the intensity of
the open field image is markedly higher than that of the image with collimation.
These high intensities are transformed by the simulation to closely resemble the
actual collimation, as illustrated in Fig. 4.9e. The mean deviation between the
simulated and actual collimation is 5.08 %.

Despite the simulation requiring the removal of the initial scatter from the en-
tire open field image, the deviation in intensities within the ROI is only 1.05 %.
This implies that the newly added scatter characteristics, which consider the
collimation, are realistic.
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While confirming the simulation’s accuracy, it still leaves the question of whether
a network can be successfully trained on this data and if it generalizes to real data.
Table 4.1 presents the results of the SimNet and RealNet on the three test sets.
As detailed in Section 4.3.3, both networks are trained on the same 1500 X-ray
images. However, during the training of SimNet, 465,000 different collimator
shadows are simulated. Consequently, even though SimNet is trained exclusively
on simulated data, it surpasses RealNet in performance on the general and artifact
test sets.

Moreover, particularly for the general test set, the performance of SimNet when
tested on real versus simulated collimation, with scores of 0.9749 and 0.9718
respectively, is very similar. This suggests that the network generalizes to real
world collimation shadows.

However, there is a significant drop in performance on the implant test set. Hence,
the trained network is less accurate on images with implants.

SimNet RealNet

Clinical Simulated Clinical

General 0.9718±0.027 0.9749±0.041 0.9641±0.048
Artifacts 0.9778±0.025 0.9873±0.014 0.9652±0.038
Implants 0.9494±0.071 0.9820±0.027 0.9780±0.015

Table 4.1: This table compares the performance of SimNet and RealNet on clinical
and simulated data. It does so by comparing the dice scores of the estimated
collimation against the GT collimation. Higher scores indicate higher similarity
between the estimated and GT collimation.

4.4.2 Hough Network Performance

The performance of the four network architectures proposed in Section 4.3.3
is evaluated on the three test sets. The Dice scores between the estimated seg-
mentation masks and the ground truth masks are measured. The results are
illustrated in the boxplot in Fig. 4.10. Additionally, the mean scores are presented
in the Appendix in Table A.1.

For SegNet and RegNet, the networks directly estimate the segmentation masks,
which are then evaluated. Conversely, for H-Net and DH-Net, the masks recon-
structed from the Hough domain are used for evaluation. In terms of the Dice
score on segmentation masks, SegNet and RegNet yield superior results com-
pared to the reconstructed masks of the two networks trained solely in the Hough
domain. RegNet outperforms SegNet on all thre test sets, clearly indicating that
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Figure 4.10: This boxplot depicts the results of the four networks on three different
test sets.

the HT regularization is beneficial. Furthermore, for both networks, the most
extreme outliers still achieve a Dice score over 0.95.

In comparison, the networks trained in the Hough domain, H-Net and DH-Net,
perform approximately 0.01 Dice points worse and exhibit a greater variation in
their results. However, it is important to note that the first two networks were both
optimized on the Dice score. In contrast, the latter two networks were exclusively
trained in the Hough domain. Consequently, the former are naturally expected
to perform better when tested on the Dice score. This is evident when observing
the error of the estimated masks corresponding to a randomly selected image,
depicted in Fig. 4.11. The edges of the mask of SegNet appear non-linear and
imprecise. As expected, since the DH-Net mask is reconstructed from the Hough
domain, its edges are straight lines. However, a small offset in these straight lines
can contribute more significantly to a lower Dice score than irregularities in the
edge. Moreover, across all three test sets, the results of DH-Net outperform those
of H-Net. This superiority is also evident in Fig. 4.11, where the edges of the
DH-Net mask are more precise than those of the H-Net mask.
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Figure 4.11: This figure depicts the estimated errors of collimations from the
four different networks. For each of the three test sets, a representative image is
displayed.

Both Hough networks exhibit more severe outliers, as indicated by the arrows
in the boxplot. All outliers of DH-Net, along with some from H-Net, yield a Dice
score of zero. This can be attributed to the reconstruction’s inability to recognize
the non-collimated area, as depicted in Fig. 4.12. The edges are accurately re-
constructed, indicating that the Hough space is correctly estimated. However,
the wrong side of the edges has been assigned to the ROI. Therefore, it’s not the
DH-Net that needs improvement, but the detection of the ROI.

Inputs Labels Model Hough Edges Mask

H-Net:

DH-Net:

Figure 4.12: Example of an outlier detected by the Hough networks. The edges
are correctly reconstructed from the Hough domain, however, the ROI is placed
on the wrong side of the edge.
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4.4.3 Hough Network Inspection

In Section 4.3.3, different network architectures that incorporate the DHT are
proposed and depicted in Fig. 4.8. These networks comprise various modules,
each designed with specific tasks in mind. In Fig. 4.13, the outputs of the various
modules are examined to determine if they successfully perform their predefined
tasks.
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(a) Outputs of RegNet Modules
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Figure 4.13: Outputs of the modules of RegNet and H-Net architectures are
depicted.

In Fig. 4.13a, the outputs of the three modules SegM, EdgeM, and HT corre-
sponding to a single input image are displayed. All three modules effectively
perform their pre-defined tasks. SegM clearly produces a segmentation mask,
while EdgeM transforms this mask into an edge map. As expected, when provided
with a clean edge map, HT generates the hough points with the corresponding
sinusoidal curves.

In Fig. 4.13b, the outputs of SegM, HT, and RefineM are displayed. Since RegNet
lacks an EdgeM and is not trained on segmentation masks, we would expect its
output to resemble an edge map. However, as observed, the output is more akin
to a segmentation mask. As a result, the HT domain is imprecise and riddled
with artifacts. However, RefineM can eliminate these artifacts, producing a HT
domain where only the edges are represented as peaks. Notably, this process also
removes the typical sinusoidal curves. Hence, it can be inferred that the presence
of RefineM negates the necessity for SegM to produce clear edge maps during
the training process. Beside the aim of RefineM being to eliminate artifacts and
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generate a HT domain where all points have equal amplitude, this goal is only
partially achieved, as one amplitude remains lower.

4.5 Discussion

The evaluation started with investigating the simulation pipeline in Section 4.4.1.
We were able to confirm, on an X-ray image, that the pixel intensities of simu-
lated collimation closely resemble those of actual collimation. Furthermore, we
demonstrated the feasibility of training a neural network on simulated collima-
tion, to generalize well on real data. However, a noticeable drop in performance
was observed on images with implants. This could indicate that the presence
of implants disrupts the simulation’s precision, thereby hindering the effective
generalization of the networks on these images.

Given that collimator edges invariably form straight lines, we sought to leverage
this inherent characteristic. Consequently, we explored the integration of a HT
layer, denoted as HT, into the three network architectures, depicted in Fig. 4.8.

In RegNet, HT is incorporated as an additional regularization branch. Our inves-
tigations confirm that this integration enhances the performance compared to
SegNet, particularly in estimating collimator edges, which appear straighter. This
further suggests that the backpropagation of gradients through the HT functions
as expected, without any vanishing or exploding gradients.

For this reason, unlike RegNet, both H-Net and DH-Net were trained exclusively
in the HT domain. To compare the performance of these networks with SegNet
and RegNet, the estimated segmentation masks were reconstructed from the HT
domain. Consequently, the obtained segmentation masks inherently possess
straight edges. When evaluated using the Dice score, the performance of H-
Net and DH-Net is slightly inferior to SegNet and RegNet. This is attributed
to the fact that small offsets in straight lines contribute more significantly to a
lower Dice score than irregularities in the edge. Because cropping neccesitates
straight edges, these irregularities could significantly disrupt cropping algorithms.
Conversely, the parameters estimated from the HT domain could be further
utilized by these algorithms. Therefore, even though the Dice scores for H-Net
and DH-Net are lower compared to SegNet, we argue that the HT networks
present clear advantages.

We thus infer that networks, which can estimate their output in the HT domain,
are superior to those that produce segmentation masks. This is particularly
evident as RegNet outperforms SegNet. However, it is crucial to note that the
Dice score is not ideal for performance evaluation, as it is insensitive to minor
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offsets in the edges and irregular edges, features that are crucial for collimator
edge detection.

4.6 Future Work

The assessment of the collimator simulation in Section 4.4.1 suggests its effective
performance. However, SimNet is less accurate on images with implants. Thus,
a comprehensive evaluation is necessary to ascertain if the simulation needs
adjustments concerning implants, or if additional implant data is required for
training.

In the context of HT networks, several opportunities for enhancement can be
identified. The components of the two HT networks did not always perform
according to their pre-defined tasks. Given the capabilities of RefineM in refining
a HT domain abundant with artifacts, SegM was not compelled to generate edge
images during the training process. However, this reduced the interpretability
and reliability of the HT operation. Moreover, the reconstruction algorithm,
however, failed to identify the center of the non-collimated area, resulting in
several significant outliers, even though the edges were accurately reconstructed.
On the other hand, the HT regularization in RegNet enhanced the quality of the
segmentation masks.

We propose that a combination of RegNet and the HT networks is generally
beneficial. This would involve a network with a SegM module that outputs
segmentation masks. Unlike RegNet, it should also include a RefineM that refines
the HT domain, facilitating the easy reconstruction of edge parameters. This
approach enables the accurate reconstruction of edge parameters from the HT
domain, while simultaneously determining the center of the non-collimated area
using the center of mass of the segmentation mask, solving the issue of incorrect
ROI determination.

Several possibilities exist to enable a network with a SegM that outputs segmen-
tation masks and a RefineM that does not interfere with the training of SegM:

First, it can be examined, whether a RefineM with fewer parameters does not
disrupt the training of SegM and EdgeM.

Secondly, a two-step training approach could be employed. In the first step, SegM
can be trained without the HT domain. Subsequently, in the second step, the HT
with a RefineM is added and trained, while the weights of SegM are kept constant.

Thirdly, a multi-tasking training approach similar to RegNet could be employed.
In this approach, one loss function optimizes the HT domain output, while
another loss function enforces SegM to output segmentation masks.
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Another potential area of exploration involves integrating the HT domain re-
construction into the training process. Instead of training the HT networks in
the HT domain, the networks could be trained on the reconstructed masks. We
hypothesize that this approach would further stabilize the reconstruction pro-
cess, as it would be an integral part of the training process. This approach can
be further enhanced by utilizing the segmentation mask as prior knowledge to
determine which edges are relevant in the HT domain. However, this approach
presents the challenge of extracting the parameters from the HT domain in a
differentiable manner. Without this differentiability, integrated reconstruction
becomes unfeasible.

Not just the network architectures, but also the loss functions present opportuni-
ties for improvement. Rather than applying a Dice loss to the entire segmentation
mask, it may be advantageous to confine the Dice loss operation to the edges.
This approach would ensure that minor deviations in edges contribute more
significantly to the loss.

Furthermore, we have demonstrated that the SSIM loss effectively manages
the sparsity of the HT domain. Nevertheless, we hypothesize that this may be
primarily due to the cross-correlation calculation in the SSIM loss. As a result,
further investigation is necessary to ascertain if cross-correlation as a loss is
adequate. Eliminating the elements of SSIM that do not contribute to the loss
might result in more accurate gradients.

Additionally, another potential loss function could be a masked MSE loss, which
assigns greater weight to the edge-representing points in the HT domain than
to the background. We posit that exploring both options is beneficial, as the
combination of the important elements of SSIM with a masked MSE loss could
prove to be more effective than utilizing SSIM alone.

In addition to a network architecture that incorporates the HT, we propose that it
is worth exploring an approach that either directly regresses the edge parameters
or outputs a mask that highlights the collimator’s edges. The first approach
has the advantage of eliminating the need for an analytical reconstruction of
parameters, while the second approach simplifies the task for the network, as
the output is relatively similar to the input. However, this approach presents
the challenge of identifying the edges in the output. Both approaches, similar to
the HT, incorporate the prior knowledge that the edges are straight lines. The
implementation of these methods facilitates the evaluation of the assumption
that the network’s performance is enhanced by incorporating a known operator,
namely the HT, into its architecture.
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4.7 Conclusion

The contributions of this chapter are twofold. Firstly, we have developed a sim-
ulation pipeline that generates collimator shadows on clinical images, thereby
addressing the scarcity of training data and the labor-intensive task of manual
labeling. Secondly, we have explored the application of deep learning for identi-
fying collimator edges, particularly through the incorporation of the HT into the
network architecture. The promising approach of incorporating the HT into a
regularization branch, alongside a segmentation loss, has demonstrated potential
for further utilization and enhancement in future works.
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Denoising Breast Tomosynthesis

Projections

In this chapter, we introduce a novel denoising network specifically designed
for mammographic images. Our approach is tailored for practical application in
real-world settings, such as clinical routines. Hence, we prioritize reliability and
unbiased performance while ensuring that the network preserves as much detail
as possible.

5.1 Related Work

Despite the advancements in technology, the practical application of deep learn-
ing methods in medical image denoising remains limited. This is largely due to
their complex and non-deterministic nature, which raises concerns about their
reliability and predictability. There is a prevailing skepticism among practitioners
that these models, despite their potential, may behave unpredictably in real-
world scenarios, particularly in cases that deviate significantly from the training
distribution.

In light of these concerns, analytical algorithms continue to hold their ground in
the realm of medical imaging denoising. In fact, there exist relatively recent meth-
ods that either build upon these traditional filters or benchmark their techniques
against them. Some of the notable analytical methods employed in medical
imaging include:

• Block-Matching 3D (BM3D) [4, 16, 81]
• Total Variation (TV) [133, 24]
• Wiener Filter [3, 160, 78]
• Median and Gaussian Filters [125, 105, 57]

Nevertheless, Zhang et al. [253] demonstrated superior performance of a deep-
learning based denoising algorithm against analytical algorithms on photo-

81
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graphic images. They achieved this by employing a relatively simple 17-layer
CNN, known as Denoising Convolutional Neural Network (DnCNN), which esti-
mates the noise map directly instead of the denoised image. Additionally, DnCNN
denoises patches of the image rather than the entire image, allowing for sequen-
tial full-resolution denoising.

Despite the stringent requirements for reliability in medical imaging, such ad-
vances have spurred extensive research in deep learning-based medical image
denoising. Specifically in mammography, research has culminated in the formu-
lation of best practices for denoising with deep learning [102, 138, 202, 42].

A notable contribution to this field was made by Vieira et al. [228], who demon-
strated that the most effective results are obtained by denoising the raw projec-
tions directly, training the neural network to address physically accurate noise.
Additionally, this approach enables the simulation of a physically accurate dose
reduction to generate training data [177, 254].

However, physically accurate noise primarily consists of Poisson noise, which
is signal-dependent. Several studies have simplified the denoising process by
implementing a variance-stabilizing transformation, such as the Anscombe trans-
formation [8], which converts the Poisson noise into signal-independent white
Gaussian noise [26, 230, 189].

Besides selecting the appropriate noise and data domain, choosing a suitable
loss function is crucial for training denoising networks, a paradigm suggested
and thoroughly investigated by Zhao et al. [256].

They discovered that the MSE function falls short in preserving intricate im-
age details. This has led to the exploration of alternative losses for mammo-
graphic image denoising, such as SSIM and perceptual loss [104, 198]. Furthering
this research, Gao et al. [73] proposed using a discrimantor in the fashion of a
Wasserstein Generative Adversarial Network (WGAN) as a potential loss function
specifically for denoising mammographic images. Despite these advancements,
finding the perfect loss function remains challenging due to the absence of a uni-
versally accepted metric that accurately reflects human, especially radiologists’,
perception of minute structures in mammograms. This inherent subjectivity com-
plicates the task of evaluating and designing the optimal loss function. Hence,
we posit that no single best loss function exists so far.

Building on the discussed advancements, this work develops a deep learning-
based denoising model for practical application. The proposed noise simulation,
detailed in Chapter 3, is applied to simulate a physically accurate dose reduc-
tion to generate training data. Additionally, a novel loss function is introduced,
specifically tailored to preserve details in medical imaging. This loss function is
compared with other state-of-the-art loss functions, emphasizing the preserva-
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Noise
Simulation

Neural
Network

Anscombe
Transform.

Loss
Function

*

*

Figure 5.1: Complete setup of denoising training: 1. Dose reduction is simulated
on a patch of an input FFDM. 2. Anscombe Transformation is applied for variance
stabilization. 3. The neural network estimates the noise map. 4. The estimated
noise map is compared against the GT noise map.

tion of microcalcifications. To ensure the model’s reliability, extensive evaluations
are conducted across various breast groups to prevent bias towards any specific
patient group.

5.2 Methodology

The training of the denoising network follows the best practices proposed in
Section 5.1, with the sequential steps illustrated in Fig. 5.1. Digital Mammo-
grams (DMs) are employed as GT targets. To enhance the training data, a dose
reduction is simulated on the DMs as suggested in Chapter 3, ensuring the noise
corresponds to that of DBT projections. The signal-dependent noise is then trans-
formed to white Gaussian noise employing the Anscombe transformation, as
described in Section 2.3.1. Subsequently, a neural network is trained to estimate
the noise map, which can later be subtracted from the noisy image to yield the
fully denoised image.

Given that DMs have resolutions larger than 2000×2000 pixels, denoising the en-
tire image at once is not feasible due to Graphics Processing Unit (GPU) memory
constraints. Consequently, before processing by the neural network, the images
are cropped into patches of size 64×64 pixels, with each patch overlapping by
10 pixels. After processing, the patches are stitched back together to form the
denoised image.

5.2.1 Network Architecture

The denoising network adopts a U-Net-like architecture [190]. To balance image
processing time and performance, the U-Net is modified by replacing the en-
coding path with EfficientNet-B0 [215], as depicted in Fig. 5.2a. EfficientNet-B0
incorporates MobConv blocks from Mobilenetv2 [196], which utilize depthwise
separable convolutions [48] and inverted residual blocks. The decoding branch
consists of decoding blocks (Fig. 5.2b) connected via skip connections to the



84 CHAPTER 5. DENOISING BREAST TOMOSYNTHESIS PROJECTIONS

output of the activation functions following the first convolution of the MobConv
blocks. Processing an image of size 2082×2800 on an NVIDIA RTX 4000 GPU
required 8.35s with a standard U-Net and 3.16s with the modified U-Net.
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(a) Overview of the network architecture.

DecodeBlock

Concatenate

TransposedConv

skip
connection

Conv 3x3, BN, ReLU

Conv 3x3, BN, ReLU

(b) DecodingBlock used
in the decoding branch of
the neural network.

Figure 5.2: Network architecture in a U-Net-like fashion, using EfficientNet-B0
[215] as the encoding branch.

5.2.2 Loss Function

The loss function is a critical factor in the denoising process. Although the
MSE is a commonly used loss function, it tends to smooth out small structures,
which is not ideal for medical imaging [256]. This is particularly significant for
mammography, where small microcalcifications play a crucial role in diagnosis
and should not be smoothed out under any circumstances.

To address this challenge, we propose a novel loss function, namely the ReLU-
Loss (LReLU). The central idea of the LReLU is to penalize noise overestimation
more than underestimation, unlike most loss functions, such as MSE, which only
consider absolute deviations. The underlying principle is that the misinterpreta-
tion of image structures as noise equates to an overestimation of noise.

To implement the LReLU, a pixel-wise error ei =−sign(n̂i )·(ni −n̂i ) is first defined.
This error is negative for noise underestimation and positive otherwise. Here,
n̂i represents a pixel i from the estimated noise map, and ni represents the
corresponding pixel i from the ground truth noise map. By applying a ReLU
function to this error and adding it, weighted by the factor c, to a mean square
error, the LReLU is obtained:

LReLU = MSE+ c

N

N∑
i=0

ReLU[(−sign(n̂i ) · (ni − n̂i )]2 . (5.1)
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Therefore, the addition of this term to the MSE introduces a penalty for overesti-
mation. The impact of the LReLU on an exemplary 1D noise map is illustrated in
Fig. 5.3.

Additionally, the LReLU is combined with SSIM, as SSIM is a good representation
of human perception and represents another important direction for network
optimization. Hence, the network loss is defined as follows:

Loss =LReLU +η · (1−SSIM). (5.2)

pixel

in
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ity over

estimation

(a) Noise estimation with MSE as loss.

pixel
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ity

under
estimation

underestimated noise 
overestimated noise 

real noise 

(b) Noise estimation with LReLU.

Figure 5.3: Illustration of the influence of the LReLU on estimated noise maps in
a 1D example. With LReLU, the estimated noise intensities do not overshoot the
true noise intensity.

All hyperparameters used in the training process, including η and c, are detailed
in Table A.2 in the Appendix.

5.2.3 Data

A reliable denoising model must effectively handle a wide variety of patient
anatomies and recording settings. Therefore, a training dataset that encompasses
a broad range of patients and recording conditions is essential. For this reason,
the MBTST dataset, the largest open-source mammographic dataset containing
unprocessed FFDM projections, is utilized to train the denoising model. However,
the images in the MBTST dataset are all acquired at the same site with the same
equipment, introducing potential biases in the training dataset, such as specific
dose levels or overrepresentation of certain breast types due to demographic fac-
tors. This issue is particularly problematic if the test set also contains only images
from the MBTST dataset. To address this issue and identify potential biases in
the network, we use the Virtual Imaging Clinical Trial for Regulatory Evaluation
(VICTRE) pipeline to generate versatile test data. The VICTRE pipeline allows
the use of different breast phantoms with varying densities and thicknesses. Fur-
thermore, it is possible to simulate different dose levels with the Monte Carlo
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simulation, which simulates each photon’s path. Thus, the VICTRE pipeline en-
ables the generation of a test set completely independent of our noise simulation
and training data.

Breast Group Definition

Breast types vary depending on demographic factors; for instance, they differ
between Asia and America [39]. They are the most critical factor in mammo-
graphic image quality, as breast density and thickness directly influence the CDR
[155]. To ensure that no patient with certain breast types is disadvantaged by the
denoising algorithm, we evaluate its performance across various breast groups.
We have identified 12 distinct breast groups for this purpose. These groups are
established by combining four different breast densities (dense, heterogeneous,
scattered, and fatty) with three different thicknesses (13-40 mm, 40-60 mm, and
60-83 mm).

Clinical Data

The MBTST dataset is employed to generate the training and one test sets. The
objective is to ensure the training set is as unbiased as possible. To achieve
this, selection is restricted to data where both breast density and thickness are
available, enabling a balanced representation of breast types. This should prevent
the network from learning biases towards specific breast types. For each of the
defined breast groups, 20 images are sampled, yielding a total of 240 images per
set. The test set is generated in the same fashion to allow for an investigation of
the network’s performance across different breast types.

Synthetic Data

Similar to the MBTST test and training dataset, the VICTRE pipeline is employed
to generate two additional test datasets, each containing again the 12 different
breast density and thickness groups with 20 images per group.

The first dataset (VICTRE I) is designed to have approximately the same average
intensity for each breast type, ensuring that the noise level is consistent and
independent of breast types. This approach helps to identify potential biases
related to breast types rather than noise levels.

The second dataset (VICTRE II) mirrors the intensity distribution of the MBTST
dataset, meaning each breast group has approximately similar noise levels to the
MBTST test set. Thus, this dataset facilitates drawing conclusions regarding the
differences in denoising behavior between the MBTST test set and the VICTRE
simulated data.
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Dataset Mean Intensity Distribution

MBTST real but unequal distributed
VICTRE I equal distribution
VICTRE II distributed like MBTST

Table 5.1: Brief description of the breast density distribution in the different
datasets.

All three datasets, including the MBTST test set, are briefly described in Table 5.1.

To generate these test sets, 240 breast phantoms of varying densities are initially
created. These phantoms undergo simulated compression, the extent of which
depends on the breast density (Table 5.2). The compression process involves
moving plates towards each other until the desired thickness is achieved, with dis-
placement maps obtained for each finite element node [49]. After compression,
VICTRE-MCGPU [14] is applied to simulate low and high-dose projections. This
tool extends the MC-GPU of Badal et al. [13] to replicate a commercial mammog-
raphy and DBT device, simulating photon noise, scatter, and different radiation
doses.

In VICTRE I and VICTRE II, different mean intensity distributions are required,
to have same mean intensity for each breast group in VICTRE I and mirror the
MBTST mean intensities in VICTRE II. Consequently, the dose, i.e number of
emitted photons λreq must be adjusted to achieve the required mean intensity at
the detector µreq.

The relation between the detector intensities and the number of photons emitted
by the source is influenced by the average attenuation characteristics γ of each
individual breast:

µ=λ ·γ+o. (5.3)

with o being a known system offset to prevent negative intensities.

Thus, to determine the required number of photons λreq, γ of each breast must
be known. This can be achieved by conducting a pre-shot simulation, by setting
λ to a known value λpreshot and rearranging Eq. (5.3):

γ= µpreshot −o

λpreshot
(5.4)

Thus, to find the required number of photons λreq, Eq. (5.3) can be again ex-
ploited:

λreq = µreq −o

γ
, (5.5)
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Type Compression Size

dense 50 % ± 0.5 %
hetero 40 % ± 0.5 %

scattered 35 % ± 0.5 %
fatty 25 % ± 0.5 %

Table 5.2: Compression sizes for the VICTRE phantom relative to the original size
depend on breast density.

and γ can be substitued according to Eq. (5.4), yielding:

λreq = µreq −o

µpreshot −o
λpreshot . (5.6)

5.2.4 Performance Evaluation Methods

The evaluation of the image quality of mammographic images is a challenging
task. Ideally, the evaluation metric reflects the perception of a radiologist and
provides information on whether the diagnostic quality of the images has been
enhanced. Since there is no straightforward analysis to answer this question, we
examine different image qualities using various metrics and methods.

Our evaluation employs three different metrics to assess the denoising perfor-
mance, namely MSE, SSIM, and PSNR, all detailed in Section 2.5.3. It is important
to note that PSNR and MSE are pixel comparison metrics, while SSIM attempts
to mirror human perception. Consequently, while the first two metrics are useful
for a technical analysis, SSIM is more crucial in assessing the final image quality.

The aforementioned metrics are useful when comparing performance against the
same image. However, when comparing performance between different images,
two issues arise. First, the background of mammographic images lacks anatomi-
cal structure and varies in size depending on the image, which could significantly
influence the previous metrics. Moreover, the mean and maximum intensities
can vary substantially in X-ray images, making inter-image comparison chal-
lenging. Furthermore, according to the Poisson distribution, different mean
intensities imply varying noise levels, which can also skew the quantification.

To address these issues, we propose two modified versions of the MSE and MSSIM
metrics. Both metrics are applied solely to the foreground pixels, thereby ignoring
the background. Furthermore, the images to be compared are normalized by
dividing by their mean foreground intensity, yielding the normalized denoised
image Dnorm, the noisy normalized image Nnorm, and the high-dose normalized
image Gnorm.
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Moreover, since different noise levels can influence the denoising performance,
we propose a second normalization by normalizing to the MSE between the noisy
and high-dose image, yielding:

nMSE = MSE(Dnorm,Gnorm)

MSE(Nnorm,Gnorm)
. (5.7)

To modify the MSSIM to consider only the anatomical structure, we utilize the
local windows of the MSSIM calculation and adjust it to consider only those local
windows containing anatomy:

mSSIM(Dnorm,Gnorm) = 1

N

N∑
j=1

m j SSIM(dj,gj) with m j =
{

0, if gj isbackground

1, otherwise
(5.8)

The MSSIM is calculated using the normalized images Dnorm and Gnorm, ensuring
a fair comparison between images with different mean intensities. However,
due to the potential non-linear relationship between noise levels and denoising
performance, further normalization of the MSSIM was not performed. This
approach allows a direct comparison of denoising performance, enabling the
nMSE and mSSIM to effectively complement each other.

5.2.5 Statistical Analysis

To compare the denoising results across different breast groups, a series of sta-
tistical tests were conducted. First, Levene’s test [132] was used to check if the
variances among the groups were equal. This step is crucial because many statis-
tical tests assume equal variances, and verifying this assumption helps ensure the
validity of our analysis. Levene’s test showed significant differences in variances,
indicating that the assumption of equal variances was not met.

Because of this, Welch’s ANOVA [240] was performed next. Welch’s ANOVA is suit-
able when variances are unequal, as it adjusts the degrees of freedom to provide a
more accurate analysis. This makes it a more reliable choice for comparing group
means under these conditions, ensuring that our results are robust despite the
variance differences.

After Welch’s ANOVA, the Games-Howell post-hoc test [72] was conducted to
identify specific differences between groups. The Games-Howell test is ideal
for pairwise comparisons when variances are unequal and sample sizes differ.
It helps to pinpoint which breast groups have significantly different denoising
performance, providing detailed insights into the data.
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5.3 Experiments & Results

The denoising will be evaluated in several experiments in this section. The first
experiment compares the proposed denoising network against the most com-
mon analytical denoising algorithms. The second experiment investigates the
influence of the loss function on the denoising performance on small structures.
Both experiments do not use the proposed three complete test datasets. Instead,
they access single images or structures like microcalcifications from the MBTST
test set. In the third experiment, we evaluate the denoising performance in terms
of reliability and biases towards different breast groups. For this experiment, all
three test sets are employed.

5.3.1 Comparison with Base Line Methods

The first experiment compares the proposed denoising network against the most
common analytical denoising algorithms, namely the Gaussian Filter, Median
Filter, Total Variation, Wiener Filter, and BM3D. Additionally, the DnCNN network,
which set the denoising standards in photographic imaging, was retrained on
the MBTST train dataset. The algorithms are compared by denoising an image
with pleomorphic microcalcifications. A patch of the image, denoised with the
different baseline methods, is depicted in Fig. 5.4. The measured results on the
image are shown in Table 5.3.

(a) FFDM (b) Noisy (c) GT (d) Gaussian (e) Wiener

(f) Total V. (g) Median (h) BM3D (i) DnCNN (j) Proposed

Figure 5.4: Comparison of denoising methods against the most common base-
lines. For better clarity, one patch with pleomorphic microcalcifications is shown.

From visual observations, each conventional algorithm has its own flaws. The
Total Variation filter and Wiener filter add additional artifacts, whereas the Gaus-
sian and Median filters tend to blur the image. The artifacts of the Total Variation
filter can even be confused with tiny microcalcifications. BM3D seems to offer a
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Methods PSNR SSIM

Noisy 30.136 0.6421
Gaussian 35.348 0.8112
Median 33.649 0.7396
Total Variation 35.622 0.8148
Wiener [107] 35.240 0.8048
BM3D [53] 35.248 0.7966
DnCnn [253] 35.986 0.8384
Proposed 36.354 0.8451

Table 5.3: Comparison of the denoising model against baseline methods.

good trade-off between visible microcalcifications and fewer artifacts; however,
the background appears altered and not close to the GT. The DnCNN, trained
with our noise simulation on the MBTST train set, performs reasonably well, but
one microcalcification is blurred and the noise is not completely removed. The
patch denoised with our proposed method has very little noise, and both micro-
calcifications are clearly visible. Visually, it outperforms the baseline methods.
The results are also reflected in the quantitative measurements in Table 5.3; our
proposed method outperforms all other methods in terms of SSIM and PSNR. In
the GT image, two more tiny microcalcifications can be spotted. However, these
microcalcifications are completely lost in the noisy image and hence cannot be
restored by any denoising algorithm. This highlights the limitations of denoising:
if information is entirely lost in noise, it cannot be restored.

5.3.2 Loss Evaluation

Zhao et al. [256] demonstrated that using MSE as a loss function tends to smooth
out small structures in images, which is undesirable in medical imaging. There-
fore, we investigate the impact of various loss functions, including the proposed
LReLU, on the denoising performance of our network, with a particular focus on
microcalcifications and small structures in DMs.

Patches with small structures are extracted from denoised images from the
MBTST test set. The images are denoised with networks, trained with differ-
ent loss functions. The performance is subsequently assessed by quantifying the
MSE between the denoised and GT patches. Given that the microcalcifications
now cover a substantial portion of the patch area, this measurement method
offers a more precise depiction of small structure preservation.
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Performance of Loss Functions on Small Structures

The first experiment evaluates the performance of the different loss functions on
four small structures illustrated in Fig. 5.5. The corresponding MSE values are
shown in Table 5.4. The perceptual loss performs the worst, both visually and
quantitatively, introducing noise-like artifacts and proving unsuitable for medical
image denoising. Despite the known issues with MSE, it performs comparably
well on these structures. Quantitatively, however, the LReLU clearly outperforms
the other loss functions.

FFDM Orig.
Patch

Noisy MSE LReLU SSIM Percep. LReLU +
SSIM

MSE +
SSIM

Figure 5.5: Comparison of various loss functions on mammographic structures:
Four distinct patches are denoised by six networks, each trained with a different
loss function.

Structure MSE LReLU SSIM Perceptual LReLU + SSIM MSE + SSIM

1 298.5 295.6 299.5 520.1 296.7 299.5
2 304.9 300.0 303.2 494.0 301.6 303.9
3 245.8 242.6 245.3 427.0 244.0 245.7
4 253.2 249.9 252.5 432.0 251.0 253.2

Table 5.4: The MSE between the denoised structures in Fig. 5.5 and the high-dose
ground truth patch is shown.

Denoising Performance on Single Microcalcifications

The second experiment evaluates the denoising performance on 15 single micro-
calcifications, depicted in patches of size 15×15 pixels. Six of these patches are
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shown in Table 5.5, along with the average MSE values between the denoised and
ground truth patches. The remaining nine patches are shown in the Appendix
in Fig. A.3, and Fig. A.4 presents all individual measured values. In these micro-
calcifications, the smoothing behavior of MSE loss is clearly observed. Hence,
SSIM and LReLU offer a clear improvement both visually and quantitatively. The
performance of the network can be further improved by combining SSIM and
LReLU, as demonstrated in Table 5.5.

Calc. Original Noisy MSE LReLU SSIM LReLU + SSIM MSE + SSIM

p1

p2

p3

p4

p5

...

p15

Average MSE - - 900.13 701.06 680.14 649.52 730.09

Table 5.5: 6 out of 15 denoised patches with microcalcifications are depicted.
The MSE between each patch and the GT is measured, and the average of these
measurements is stated.

5.3.3 Bias and Generalization Investigation

Thus far, the denoising performance was evaluated on patches and structures.
To investigate the generalization of the denoising network and potential biases
towards specific breast types, the performance is now tested on the three com-
plete test datasets described in Section 5.2.3. The investigation covers all 12
breast types, as detailed in Section 5.2.3, to determine if there are biases between
these groups. The denoising performance is evaluated using the measurements
proposed in Section 5.2.4: nMSE, and mSSIM. Furthermore, the mean intensity
of the GT images is evaluated due to its direct correlation with the noise level in
the images. This provides additional insights into the complexity of the denoising
task, a factor that may exhibit variation across different breast types.

Fig. 5.6 exemplarily shows the denoising results for each breast density in both
simulated and clinical data. Fig. 5.7 presents the denoising results for each
thickness group across each test set. Both figures are available in the Appendix.
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Figure 5.6: Four X-ray images from the MBTST and 4 images simulated with the
VICTRE pipeline, each with a different density, are depicted. Patches are cropped
out of the images to enable assessment at a higher resolution.

Statistical Difference between Breast Groups and Test Sets

In the initial experiment, we conduct a statistical analysis to identify significant
differences in denoising performance and noise levels within each test set, as well
as between the three test sets: MBTST, VICTRE I, and VICTRE II. Since Levene’s
test showes significant differences in the variances of the measurements, Welch’s
ANOVA is used to evaluate the statistical significance.

In Welch’s ANOVA tests, the null hypothesis states that the means of the compared
distributions are equal. If the p-value is less than 0.05, the null hypothesis is
rejected, indicating that the distributions are significantly different. The results
are depicted in Table 5.6. The initial three rows present the statistical differences
among the breast groups within each test set, whereas the final row illustrates
the statistical differences between the test sets.

The mean intensities between all breast groups and test sets are significantly
different, except for VICTRE I, which was initially created to generate a test set
with equal mean intensities. Thus, the generation was successful. However, for
the MBTST test set and VICTRE II, each breast group has a different noise level
distribution.
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Figure 5.7: Three X-ray images from the MBTST and four images simulated with
the VICTRE pipeline, each with a different thickness, are depicted. Patches are
cropped out of the images to enable assessment at a higher resolution.

For each breast group, the measured nMSE is significantly different. In contrast,
when comparing the mSSIM values, there is no significant difference between the
breast groups of the MBTST set. This is an important observation since mSSIM
is the most reliable metric and the MBTST set is the most realistic test set. The
absence of statistical difference between the denoising behaviors of the groups
suggests that the denoising behavior is reliable and potentially unbiased.

However, Welch’s Anova revealed a significant difference in the mean intensi-
ties, and consequently, the noise levels of the MBTST test set. Therefore, the
impact of varying noise levels on the denoising performance remains ambiguous.
Additionally, significant differences were identified among the breast groups of
the VICTRE datasets and between the denoising performance of the VICTRE
datasets and the MBTST test set. This leaves the question of whether the network
effectively generalizes to the simulated VICTRE data unresolved. To address these
uncertainties, a detailed statistical analysis is conducted in the following section.

Denoised Breast Groups: Detailed Differences

The detailed statistical analysis is conducted by utilizing the Games-Howell post-
hoc test, which allows for pairwise comparisons between groups. The differences
in denoising performance and mean intensity between the three datasets are
depicted in Fig. 5.8a, which presents the mean intensities, nMSE, and mSSIM for
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mean(ghighdose) MSE(dnor m)/MSE(nnor m) mSSIM(dnor m , gnor m)

MBTST < 10−5 < 10−5 1.86×10−4

VICTRE I 0.63 < 10−5 < 10−5

VICTRE II < 10−5 < 10−5 < 10−5

Between Test Sets < 10−5 < 10−5 < 10−5

Table 5.6: The statistical significance between the different breast groups is mea-
sured using Welch’s ANOVA. The table shows the p-value for each measured
distribution. This analysis is conducted for the MBTST data set, the simulated
data with equal mean intensities (VICTRE I), and the simulated data whose mean
intensities follow that of the MBTST data set (VICTRE II). Additionally, the overall
distributions of each data set are compared against each other.

each test set. The statistical differences between these groups are illustrated in
Fig. 5.8b.
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Figure 5.8: Measurements on the three (denoised) datasets are depicted in this
figure. (a) The distributions of the measurements across the different datasets
are shown. (b) The statistical significance of the differences between the datasets
is tested using the Games-Howell test. Squares are brightest when the p-value for
the difference between two datasets is below 0.05.

The test reveals no statistically significant difference between the mean intensities
of VICTRE II and the MBTST test set. This confirms the successful generation of
VICTRE II, as the original goal was to create a simulated dataset with the same
intensity distribution as the MBTST dataset.

The denoising performance of VICTRE I is worse than that of the MBTST in terms
of nMSE as well as of mSSIM. The significantly lower mean intensities, and thus
higher noise levels of VICTRE I, are likely the cause of this inferior performance,
as more noise poses greater challenges to denoising.
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The noise level of VICTRE II is similar to that of the MBTST test set. Consequently,
VICTRE II demonstrates superior denoising performance compared to VICTRE I
due to its reduced noise levels. Moreover, in terms of mSSIM, the median value
for VICTRE II is higher than that for MBTST, although VICTRE II exhibits a wider
spread in denoising performance. This indicates, that regarding the mSSIM the
network is capable of denoising the VICTRE data similarly well than the MBTST
data. However, in terms of the MSE, the denoising performance is poorer on the
VICTRE data.

In the next step, the mean intensities, nMSE, and mSSIM for each breast group
are depicted, and the statistical differences between these groups are calculated.
This analysis is conducted for all three test sets.

MBTST test set results are depicted in Fig. 5.9a. The statistical differences be-
tween the groups are shown in Fig. 5.9b.
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Figure 5.9: Mean intensity, normalized MSE ratio, and SSIM are measured on
the denoised X-ray images from the MBTST data set. (a) This figure shows the
distribution of the measurements across different groups of the MBTST test set.
(b) The differences between the groups are tested for statistical significance using
the Games-Howell test. Squares are brightest when the p-value for the difference
between two groups is below 0.05.
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The mean intensities for the high-dose FFDMs, which serve as ground truth, vary
for each thickness and density group. Hence, depending on the breast groups,
there are different noise levels.

Regarding the nMSE, there are statistically significant differences in the denoising
performance across different breast groups, with thicker breasts being denoised
more effectively. However, the presence of larger areas with less or smoother
background in thicker breasts might contribute to their superior denoising per-
formance in terms of nMSE.

The pattern observed with mSSIM differs. The disparities between the groups
are minimal, and no discernible trend can be identified. This observation is
corroborated by the Games-Howell test, which indicates that the differences
between most groups are not statistically significant. This outcome aligns with
the previous section’s Welch’s ANOVA, which revealed no significant differences
between the breast groups in terms of mSSIM. Unlike the nMSE, the mSSIM is
more sensitive to altered image details and structures, akin to a human observer,
while smooth areas are less pertinent. Hence, the results suggest that, with regard
to human percpetion, the network can denoise all breast groups equally well,
without any bias in the MBTST test set.

Compared to the MBTST dataset, the VICTRE datasets exhibit different mean
intensities for each breast group. Therefore, to further investigate the impact
of varying noise levels on the denoising performance across breast groups, an
analysis of the VICTRE datasets is conducted.

VICTRE I results are depicted in Fig. 5.10. Welch’s ANOVA test confirms that the
mean intensities remain consistent across all groups. However, it also indicates
that the denoising performance deteriorates with an increase in breast thickness,
a trend that is not evident in the MBTST dataset. This raises the question of
whether the unequal denoising performance across different breast groups can
be attributed to the varying noise levels or to the differences between the VICTRE
data and the MBTST data. This issue is further explored by analysing the VICTRE
II results.

VICTRE II results are depicted in Fig. 5.11. VICTRE II follows the mean intensities
of the MBTST test set. However, the trend that dense breasts are denoised worse
than fatty breasts remains consistent with the results of VICTRE I. Hence, this
trend is independent of mean intensities and is only present in the simulated
data. Therefore, the amount of varying noise levels between the VICTRE datasets
do not alter the relative denoising performance among the breast groups. This
suggests that the same could be true for the MBTST test set, implying that the
results concerning the MBTST test set are not strongly distorted by diverse noise
levels. However, as illustrated in Section 5.3.3, significant fluctuations in noise
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Figure 5.10: Measurements regarding the VICTRE I test set with approximately
the same mean intensities are presented in this figure. (a) The distributions of
the measurements across different subgroups are depicted. (b) The differences
between the groups are tested for statistical significance using the Games-Howell
test. Squares are brightest when the p-value for the difference between two
groups is below 0.05.

level can affect the denoising performance. Thus, if the mean intensities exceed
the difference between the mean intensities of the VICTRE datasets, the uniform
denoising performance across all breast groups could potentially be jeopardized.

In conclusion, it can be inferred that the network does not exhibit any bias
towards any breast group in the MBTST test set. This observation holds true even
if different breast groups have a mean intensity distribution that deviates from
that of the MBTST test set.

5.3.4 Denoising Example

Lastly, a denoising example is provided to demonstrate the denoising perfor-
mance in a real-world scenario. The noisy image is displayed in Fig. 5.12a, where
microcalcifications are challenging to discern in the actual DBT projection due
to the obscuring noise. In contrast, these microcalcifications are clearly visible in
the denoised image, as depicted in Fig. 5.12b. Additionally, Fig. 5.13 illustrates
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Figure 5.11: Measurements on the VICTRE dataset, whose group mean distribu-
tion follows that of the MBTST set, are depicted in this figure. (a) The distributions
of the measurements across different groups are shown. (b) The statistical signifi-
cance of the differences between the groups is tested. Squares are brightest when
the p-value for the difference between two groups is below 0.05.

the application of the denoising network on DBT raw projections. From these
projections, an SM is reconstructed and compared against an FFDM acquisition
from the same breast. The microcalcifications in the reconstructed SM are even
more discernible than in the FFDM. This example underscores the potential of
the denoising network to be utilized as a component in DBT reconstruction.

5.4 Discussion

In Section 5.3.1, we showed that the proposed denoising network significantly
outperforms analytical algorithms. In these traditional methods, noise was often
not adequately reduced, or additional artifacts were introduced. These effects
were not observed in the proposed network. These initial results suggested that
the deep-learning approach may be a viable and effective method for denoising
mammographic images.
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(a) Unprocessed DBT raw projection. (b) Denoised raw projection.

Figure 5.12: Comparison between an unprocessed and a denoised DBT raw
projection.

In medical imaging, particularly mammography, preserving small image details
is essential for accurate diagnosis. To address this need, we proposed a novel
loss function called LReLU, specifically designed to preserve small structures. In
Section 5.3.2, we compared the performance of LReLU to other loss functions,
evaluating its effectiveness in maintaining small structures such as microcalcifi-
cations. Our results demonstrated that the choice of loss function significantly
influences the preservation of these structures. LReLU consistently outperformed
other loss functions in this regard, either as a standalone loss or in combination
with SSIM, depending on the experiment.

Besides preserving small structures, a denoising network must operate reliably
to prevent fatal errors. It is essential that the network performs well across all
breast types to avoid disadvantaging any patient group. Since different ethnicities
have varying distributions of breast types, the network must ensure equitable
performance for all [39]. For this reason a detailed investigation was conducted
in Section 5.3.3.

We demonstrated, using the MBTST test set, that there was no bias towards differ-
ent breast types in terms of mSSIM. Additionally, VICTRE I & II were employed
to explore the impact of varying noise levels on denoising performance and to
assess how well the network generalizes to data outside of the training distribu-
tion. Since the denoising performance between MBTST and VICTRE II is similar
regarding mSSIM, but inferior in terms of nMSE, it can be inferred that the net-
work performs equally well, regarding human perception, but the MBTST data
might have more smooth structures, which contribute to the superior denoising
performance on the MBTST data regarding the nMSE.
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(a) FFDM (b) SM (c) Patch of FFDM (d) Patch of SM

Figure 5.13: Comparison of DM against SM with denoised raw projections.

Moreover, in the detailed investigation of Section 5.3.3 the network denoised
the breast groups of VICTRE I & II differently, a trend that was not observed in
the MBTST data. Given that VICTRE II maintains the same noise levels for each
group as the MBTST dataset, it can be inferred that the variations in denoising
performance are attributable to the differences between the VICTRE and MBTST
data. This suggests that the VICTRE data possess different structures and features
compared to the real-world MBTST data. This observation is further corroborated
by visually examining Fig. 5.6 and Fig. 5.7.

Lastly, we demonstrated the denoising performance on a real-world case. We
showed that a real DBT projection could be denoised and that an SM recon-
structed from denoised projections displayed clearer microcalcifications than
an FFDM. Since our previous investigations demonstrated reliability and preser-
vation of small structures, we anticipate that the denoising network can be a
valuable tool in clinical practice.

5.5 Future Work

Deep-learning-based denoising in medical imaging has demonstrated excellent
results, as evidenced by the image quality achieved in our work. However, tra-
ditional metrics such as the SSIM do not provide information on whether these
algorithms genuinely improve the diagnostic performance of radiologists, which
is the ultimate aim of any denoising algorithm in medical imaging. Furthermore,
comparisons between different methods are often challenging due to the lack of
freely accessible test data.

Addressing these challenges necessitates the development of model observers,
as discussed by [28], representing a crucial direction for future research. These
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model observers mathematically simulate radiologists’ perception to quantify
whether modifications to the image appearance improve a radiologist’s diagnostic
performance. We believe it is necessary to further drive the development of
model observers to create an open-source framework based on clinical data
that can be employed to objectively evaluate new methodologies in denoising
mammographic images across research groups.

5.6 Conclusion

In this chapter, we proposed a novel deep-learning-based denoising network for
mammographic images. We introduced a novel loss function, LReLU, designed to
preserve small structures in images. Our results showed that LReLU significantly
outperformed other loss functions in maintaining small structures, such as mi-
crocalcifications. Furthermore, we demonstrated that the network performed
reliably across different breast types, showing no bias towards specific groups.
The network also generalized well to data outside the training distribution. Lastly,
we illustrated the denoising performance on a real-world case, showing that
the network could denoise real DBT projections and improve microcalcification
visibility in SM reconstructions.





6
Automatic X-Ray Style Adaption

Radiologists often exhibit diverse preferences when it comes to the visual rep-
resentation of X-ray images. This diversity necessitates the manual tweaking
of processing pipelines to cater to these individual preferences. In this chap-
ter, we delve into the potential of automating the adjustment of an X-ray image
processing pipeline to better align with the preferences of radiologists. Rather
than resorting to deep learning methods for style modification, we maintain an
interpretable and adjustable X-ray image processing pipeline even after optimiza-
tion. To achieve this, we initially propose and investigate the application of the
Local Laplacian Filter (LLF) [175] in X-ray image processing. Following this, we
optimize the LLF using stochastic gradient descent to attain a specific style. To
further enhance the style transfer capabilities of the LLF, we replace the remap
function of the LLF with a MLP. This allows for a more nuanced and effective
style transfer.

6.1 Related Work

X-ray signals captured by detectors encompass a broad spectrum of pixel values.
These values need to be mapped into a visible range, and diagnostic features
must be enhanced for better visibility. This task is typically addressed by X-ray
image processing algorithms that weight different frequency bands of the image
[232, 163, 56]. The fundamental assumption is that large image structures are
represented by low frequency bands, while small image structures are represented
by high frequency bands. By weighting these frequency bands differently, various
structures can be enhanced or suppressed. Low frequency bands are usually
attenuated, which scales down the overall range of pixel values and significantly
contributes to mapping the desired signal into the visible range [182]. However,
this core assumption has a fundamental flaw [136]. The decomposition of a
signal into frequency bands breaks the signal down into its sine and cosine
components. As a result, edges in an image, which are composed of an infinite

105
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number of frequencies [181], are affected when manipulating frequency bands.
This leads to the appearance of so-called halos around edges. Moreover, the
human eye is highly sensitive to edges [239]. Beside decomposing an image into
frequency bands, the wavelet transform has been proposed as an alternative to
the Fourier transform [152]. Instead of decomposing a signal into its sinusoidal
components, the wavelet aims to decompose a signal into signals which need
fewer components to represent edges [10]. As a result, wavelets have been very
successful in compressing image signals [229, 223]. However, when manipulating
the wavelet coefficients, artifacts can reappear in the images [174].

Despite these issues, wavelets and frequency weighting remain state-of-the-art
in X-ray image processing [139, 243, 162]. In photographic image processing,
the bilateral filter was proposed as an alternative for manipulating image signals
[67, 175]. It was later replaced by the LLF, developed by Paris et al. [174]. This
filter operates on the assumption that the information in the signal lies in the
direction of its gradients, and that manipulating the features of an image involves
changing the amplitude of the gradients. It showed remarkably results on natural
photographic image processing. Despite the rapid development in deep learning,
the LLF remains a state-of-the-art method in image processing. Interestingly,
Paris et al. [174] assume that ”. . . halos may be tolerable in the context of medical
imaging, e.g., [232, 56], [but] they are unacceptable in photography.” and hence
conclude that their proposed LLF might not be necessary for medical imaging.
Radiologists have to distinguish the smallest structures in X-ray images to conduct
diagnosis, such as breast cancer detection [99]. Furthermore, a misinterpretation
or oversight of a severe disease can have fatal consequences [234]. Contrary to
the assumption of [174], we posit that the LLF’s unique ability to manipulate
image features without halo effects could enhance the quality of X-ray images.
In the initial segment of this work, we explore this potential of the LLF in the
context of X-ray imagery, examining its efficacy in altering both minor and major
structures without inducing halos.

However, as highlighted in Section 1.1.3, radiologists exhibit varying preferences
for the appearance of X-ray images. Therefore, in addition to a method that
can manipulate X-ray image features, we also require a technique that can auto-
matically adjust the appearance of X-ray images to align with the preferences of
radiologists. Most work focusing on the automatic adjustment of X-ray images
has utilized deep learning methods such as (Cycle-)GANs [219, 91, 110]. However,
these methods primarily aim to optimize the X-ray image impression for Neural
Network training, to facilitate better generalization. Several factors hinder the
application of deep learning methods for automatic adjustment of X-ray image
styles for radiologists. Firstly, these methods necessitate a significant volume
of training data. This implies that a new model, backed by a sufficient dataset
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reflecting the desired style, must be trained for each radiologist, which is imprac-
tical. Secondly, deep learning methods suffer from a lack of interpretability and
proving their reliability is a formidable task. This becomes a crucial concern in
medical imaging, given the potentially fatal outcomes if the algorithm fails to
present all essential diagnostic information. Lastly, even when data is available,
the initial image assessment performed by the radiologist may not be optimal,
necessitating manual adjustments. However, due to the numerous parameters
involved in deep learning models, such manual adjustments are not feasible.

Given these considerations, we propose incorporating prior knowledge about the
necessary image manipulations into the optimization process, thereby reducing
the number of required parameters. To achieve this, we explore the LLF for the
automatic adaptation of image impressions, where image manipulations can be
interpreted by investigating its remap function.

We implement the LLF in a differentiable manner, which allows for the automatic
optimization of its parameters using backpropagation [194] and stochastic gradi-
ent descent [187]. It enables the LLF to be optimized as a component of a more
intricate pipeline. Furthermore, we suggest enhancing the LLF with a trainable
normalization layer and improving the remap function to express more complex
shapes. We demonstrate that it is feasible to optimize the LLF using fewer than
10 training images to achieve a desired image impression. Importantly, the LLF
retains its interpretability and allows for manual parameter adjustments post-
optimization, should a radiologist wish to alter the image impression. Moreover,
we compare our proposed method against Aubry et al. [11]’s style transfer method,
which aligns the gradient histograms of two images to transfer the style by manip-
ulating the gradients with the LLF. We demonstrate that our method surpasses
the style transfer method in achieving more accurate image impressions.

6.2 Methodology

In this section, we outline the methodology for the automatic alteration of X-
ray image impressions using the LLF proposed by Paris et al. [174]. We explore
the algorithm, its underlying intuition, and an efficient implementation of the
LLF. Furthermore, we discuss the LLF style transfer method proposed by Aubry
et al. [11]. Subsequently, we introduce an optimized differentiable implemen-
tation of the LLF, enhancing its functionality with a MLP remap function and a
normalization layer.

6.2.1 Algorithmic Functionality

The LLF utilizes the Gaussian pyramid, denoted as G, and the Laplacian pyramid,
represented as L, as discussed in Section 2.3. The function G(p) →R is defined
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Figure 6.1: Description of the Local Laplacian Filter Algorithm.

such that for any pixel coordinate p within the dimensions of G, G(p) returns the
pixel value at p. Similarly, the function L→R is defined for any pixel coordinate
p within the dimensions of the Laplacian pyramid L, where L(p) gives the pixel
value at p. For simplicity, we omit explicitly stating the level dimension of the
pyramids. Hence, when referencing a pixel p, it can be a pixel at any level of the
pyramid.

Fig. 6.1 illustrates the structure of the LLF. Initially, the input image I ∈ RM×N

is decomposed into a Gaussian pyramid G. Subsequently, the LLF operates
iteratively, cycling through all G(p) in the Gaussian pyramid G. The first step
in each iteration involves computing a remapped image I′ ∈RM×N . To achieve
this, the pixel value G(p) in the Gaussian pyramid is subtracted from the input
image I, and the resulting difference Id is remapped using a remap function
r(·) ∈RM×N 7→RM×N : I′ = r(I−G(p))+G(p). The remap function will be elaborated
upon in the subsequent section 6.2.3. For each transformed image I′, a new
intermediate Laplacian pyramidL′ is computed. Only one pixel value, specifically
L′(p), which corresponds to the position of G(p), is utilized as a new value for the
final output Laplacian pyramid L.

Upon completion of the iteration over all G(p), all p in L are determined and L
can be collapsed into a single output image Iout.

6.2.2 Intuition behind the Local Laplacian Filter

To intuitively comprehend why the LLF alters edges without generating halos, it
is necessary to first understand the underlying principle of the Gaussian pyramid
G. Each value G(p) represents a local average of its neighborhood in the original
image. As the pyramid levels increase, the neighborhood represented by each
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pixel naturally expands. When G(p) is subtracted from the input image I, a
difference image Id is produced, which resembles a gradient image. An edge
in the image would be accurately represented by a high value in Id . However,
unlike conventional image gradients, edges with different steepness can still
be represented by a single scalar value in Id . The values of these edges can
then be manipulated by r(·), and G(p) must be added back to the remapped
differences to obtain I′. Since G(p) represents the local average of the pixel within
its neighborhood, remapping differences to this neighborhood is only significant
for pixels within it. Consequently, I′ is used to compute a new Laplacian pyramid
L′, with only L′(p) incorporated into the final Laplacian pyramid L. Ultimately, a
single value L(p) is computed for G(p).

6.2.3 Remap Function

The function r(·) determines the manipulation of image features. While different
remap functions could theoretically be used, the function proposed by [174]
has shown remarkable results. It uses only three parameters and aligns with the
intuition of the LLF. This function comprises two parts:

r(Id ) =
{

rd (Id ) if Id <σr

re (Id ) if Id ≥σr
(6.1)

σr , the first parameter of r, defines the threshold for processing a pixel of Id with
either rd or re . Given that Id represents differences to the local neighborhood
average, σr determines whether a difference indicates an image detail or a global
image structure. Therefore, rd remaps local image details, while re remaps global
image structures.

rd is defined as:

rd (Id ) = sign
(
Id (p)

) ·( |Id (p)|
σr

)α
for all pixel values p in Id (6.2)

rd operates on the absolute values of Id , which are normalized to a range between
0 and 1 by dividing them by σr . The sign function is employed to maintain the
direction of the difference. The parameter α, with α> 0, is the second adjustable
parameter of r. If α < 1, image details are enhanced as smaller differences are
amplified. Conversely, if α> 1, image details are smoothed as these differences
are diminished. The influence of α on the remap function is depicted in Fig. 6.2b
and Fig. 6.2a.

re is defined as:

re (Id ) = sign
(
Id (p)

) · (β · |Id (p)−σr |+σr
)

(6.3)
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The function re operates in a similar manner to rd , acting on the absolute values
of Id , which are centered around zero for scaling purposes. A sign function is
utilized to preserve the direction of the difference. The third definable parameter
of r, denoted as β, must be greater than 0. This parameter influences the slope
of the remap functions, as illustrated in Fig. 6.2c and Fig. 6.2d. A larger β value
results in a more pronounced remapping of the differences. Conversely, a β value
less than 1 yields a less steep function, leading to a more subtle remapping of the
differences. The function re is applied exclusively to differences that exceed the
threshold σr , thereby serving to remap global changes in the image.

(a) r(x) with α> 1 (b) r(x) with α< 1

(c) r(x) with β> 1 (d) r(x) with β< 1

Figure 6.2: This figure illustrates the influence of the two parameters, α and β, on
the remapping function, r. Both parts of r, namely rd and re , are shown in dark
and light blue, respectively.

6.2.4 Efficient Implementation

The original LLF, as introduced by [174], mandates the computation of a
remapped image I′ for each pixel in the image, along with a new intermedi-
ate Laplacian pyramid L′ for each I′. Paris et al. [174] proposed that L′ could
be computed on sub-images centered around p, thereby reducing the LLF
complexity from O(N 2) to O(N logN ), where N is the total pixel count in G. To
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further optimize, [11] suggested using a Look-Up Table (LUT) to precompute the
remapped images I′ and the corresponding intermediate Laplacian pyramids
L′ (as shown in Fig 6.1). Instead of calculating I′ and L′ for each pixel in G,
they are computed for each possible pixel value in G, not exceeding the pixel
resolution R, typically less than 256. Thus, R ¿ N . At the algorithm’s onset, the
LUT is generated. During the LLF’s iterative process, only the precomputed L′

suitable for G(p) is selected. The algorithm’s efficiency can be further boosted by
precomputing a LUT with fewer entries than R. This involves selecting the two
closest entries in the LUT and linearly interpolating the output coefficient from
the precomputed pyramids. This procedure reduces the computational cost to
O(N ) [11].

6.2.5 Style Matching with Gradient Histogram Transformation

Aubry et al. [11] propose a style matching method based on the premise that
an image’s style is primarily characterized by its gradients. They extend the
assumption from Paris et al. [174] that the LLF can effectively manipulate image
gradients. Their method involves aligning the gradient histograms of two images,
a model image M and a target image I, by applying a remapping function to the
LLF. To derive this remapping function the gradient amplitudes |∇I| and |∇M|
are computed for both images. They then derive the histogram transfer function,
which is used as the remap function for the LLF and is defined as follows:

r(x) = CDF−1
|∇M|

(
CDF|∇I|(x)

)
(6.4)

In the equation above, x denotes the value that requires transformation. Applying
the Cumulative Distribution Function (CDF) of values to themselves results in a
uniform Probability Density Function (PDF) of the output values [75]. Hence,

c = PDF
(
CDF|∇I|(|∇I|)) (6.5)

The application of the inverse CDF to uniformly distributed values yields a dis-
tribution that is used to generate the inverse CDF. Consequently, equation 6.4
produces a gradient distribution that closely mirrors the gradient distribution of
the model image M. When equation 6.4 is used as a remap function on the LLF,
it implies the application of the remap function on Id . Given that Id is closely
associated with the image gradient, Aubry et al. [11] predict and demonstrate
that the image gradient distribution between M and I will converge when the LLF
is applied to I.

We implement this method on X-ray images, aiming to transform one X-ray style
into another. Furthermore, we strive to convert raw projections into processed X-
ray images by identifying the appropriate remap functions based on the gradient
distributions.
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6.2.6 Differentiability and Prallelization

Contrary to the style transfer method outlined in Section 6.2.5, we suggest an
alternative approach for the automatic adjustment of the remap function of
the LLF. We implemente the LLF differentiable, with the goal of optimizing the
parameters of the remap function using stochastic gradient descent [187] and
backpropagation [194].

We employ the PyTorch framework [176] to implement the LLF. PyTorch’s func-
tions inherently support automatic differentiation and facilitate parallel execu-
tion on GPUs. Hence, no additional effort is required to compute the gradients
of the LLF. The pyramids in the LLF possess varying dimensions for each level.
Consequently, PyTorch does not allow for parallel computation of G(p), necessi-
tating the time-consuming LLF iteration over G(p). To address this, we map both
pyramids G and L′ to 1D tensors:

RD(G) →R|G|

RD(L′) →R|L′|

Here, D refers to the dimensions of the respective pyramids and | · | denotes the
set size, i.e., the total number of pixel values in the pyramids. As a result, all
operations can be executed in parallel on the 1D tensors, eliminating the need for
iteration over the pixel G(p) values. Thus, utilizing the full potential of the prallel
computation capabilities of GPUs.

Compared to the approach proposed by [11], our method enables the application
of the LLF as a single element within a more complex pipeline. It enhances
the capabilities of the LLF with additional components, while still allowing for
automatic optimization of the remap function. If other components also have
adjustable parameters, they can be optimized concurrently during the same
optimization process.

6.2.7 Normalization Layer

The LLF transforms the relationship between pixel values. As a consequence its
capacity to map the total pixel range of an image to a desired range is limited. To
address this, we propose the addition of a trainable normalization layer to the
LLF. It can be defined as:

Inorm = I ·γ+ω , (6.6)

where γ and ω represent the trainable parameters of the layer.

6.2.8 Enhanced Remap Function

The remap function proposed by [174] has produced remarkable results. With
its three parameters, it is simple to adjust and to interpret. However, these three
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parameters also limit the potential shapes of the remap functions. For this rea-
son, we propose an enhanced remap function that is particularly suitable for
automatic adjustments. This remap function operates on Id and processes each
pixel value individually. The revised remap function should exhibit maximum
flexibility and be suitable for automatic optimization. To this end, we propose
a MLP [147] with a single scalar input and output value. Neural networks, in-
cluding MLPs, are recognized as universal function approximators [205] and
are inherently designed for optimization with stochastic gradient descent and
backpropagation. The MLP comprises six linear layers, each followed by a ReLU
activation function [161] and batch normalization [98], except for the final linear
layer. The number of neurons in the layers are as follows: 3, 12, 24, 24, 12, and 3,
resulting in a total of 709 parameters. Despite the MLP having significantly more
parameters than the original remap function, it remains interpretable as it still
only has one scalar as input and output. Consequently, it is possible to sweep
through the entire input space and observe the complete behavior of the remap
function. Moreover, verifying the remap function for monotonicity ensures that
no image information gets lost in the remapping process [174].

6.2.9 Datasets

To assess the performance of the LLF on X-ray images, we utilize the MBTST
dataset as outlined in Section 2.2.3. This dataset includes images from over
7325 patients. However, for the optimization of the LLF, we limit ourselves to a
subset of 145 images, with 130 images used for testing and 15 images reserved
for optimization. These images are preprocessed using a closed-source vendor
pipeline to generate corresponding pairs of unprocessed raw projections and
processed mammograms with a clinically relevant image impression.

6.2.10 Optimization

Our goal is to optimize the LLF for transforming raw projections into processed
mammograms, emulating the closed-source vendor pipeline. We use matching
pairs of processed and raw mammograms to optimize the remap function pa-
rameters of the LLF. The raw projections are input images, and their processed
counterparts are target images for comparison with the LLF output, as shown in
Fig. 6.3. The LLF is optimized with and without the normalizaiton layer attached
and with the original remap function as well as the MLP remap function. The LLF
is optimized both with and without the attached normalization layer, and with
both the original remap function and the MLP remap function. All optimization
processes are conducted using the Adam optimizer [115] with a learning rate
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Remap Parameter:
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Backpropagation

Figure 6.3: This figure depicts the optimization process of the LLF and the Nor-
malization Layer using backpropagation, along with the matching pairs for the
loss function.

of 0.0001, and the LLF is trained for 300 epochs. As a loss function, we use a
combination of MSE and MSSIM [239]:

L(Iout,Itarget) = MSE(Iout,Itarget)+1−MSSIM(Iout,Itarget) (6.7)

We also found that training with the MLP remap function converges faster if the
MLP is preinitialized to depict an identity function.

6.3 Experiments & Results

In this section, we evaluate the LLF on X-ray images and explore the optimization
of the LLF to achieve a specific image impression. We compare the LLF with the
original remap function and the enhanced MLP remap function. Additionally,
we compare the LLF with the style transfer method proposed by Aubry et al. [11].
Finally, we assess the processing and training times of the LLF.

6.3.1 LLF application on X-Ray images

Before investigating the optimization of the LLF, we first evaluate whether it is
possible to apply the LLF to manipulate the impressions of X-ray images. In this
experiment, we do not investigate the LLF’s ability to substitute an entire pipeline
but rather its potential use as part of an X-ray image processing chain. Hence,
we apply the LLF to a preprocessed mammogram and investigate the influence
of different parameter configurations on the image impression. The results are
depicted in Fig. 6.4. Furthermore, we compare the LLF manipulated images with
plain tone mapping. Tone mapping, akin to the LLF, applies a remap function
r (·) to pixel values, but without the use of image pyramids, represented as r (I).
Therefore, it offers insights into the advantages of the additional complexity
inherent in the LLF. Processing the pixel values with tone mapping to reduce the
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amount of large (i.e., bright) pixel values reduces the bright areas. However, as
a side effect, small details in these bright areas are also reduced, since they get
mapped into a smaller range. In contrast, this is an effect that the LLF avoids. It is
possible to manipulate large bright structures in the mammogram to enhance or
suppress them, while simultaneously ensuring that small details in these areas
are not affected. This manipulation can be achieved by changing the parameter
β, as demonstrated in Fig. 6.4c and Fig. 6.4d. Adjusting the parameter α allows
for the enhancement or suppression of small details, as shown in Fig. 6.4e and
Fig. 6.4f. This effect can be observed in the appearance change of the small
microvessels in the image. Most importantly, manipulating the mammogram
with the LLF does not produce side effects such as halos or the removal of details
from the image.

6.3.2 Automatic Optimization to Match Image Impressions

In this experiment, we examine the LLF’s capability to convert a raw projection
into a mammogram that provides a clinically relevant image impression. This is
accomplished by automatically optimizing the remap function, as suggested in
Section 6.2.6. We optimize both the original remap of [174] and the enhanced
MLP remap function. Each of these approaches are optimized twice: once with
the normalization layer described in Section 6.2.7 and once without it. Our
optimization method is compared with the style transfer technique proposed by
Aubry et al. [11] and detailed in Section 6.2.5. Altogether, we present five different
implementations:

1. Original Remapping Function optimized w/o Norm. (Orig-RM)
2. Original Remapping Function optimized with Norm. (OrigNorm-RM)
3. MLP Remapping Function optimized w/o Norm. (MLP-RM)
4. MLP Remapping Function optimized with Norm. (MLPNorm-RM)
5. Remap Function generated with Gradient Matching (∇-Matching)

Empirical Visual Evaluation

Fig. 6.5 presents an image from the test set, processed using the LLF and its
various remap functions. The raw input image differs substantially from the target
image, with structures being challenging to discern due to the concentration
of crucial information within a narrow pixel value range. The image processed
with ∇-Matching, as shown in Fig. 6.5e, exhibits a marked improvement over
the input image. However, the dense tissue appears brighter than in the target
image. In this particular example, MLP-RM yields the best results. While the
breast edges are less visible than in the target image and the non-dense tissue
areas appear slightly darker, the overall image impression closely resembles the
target image. The MLPNorm-RM performs slightly less effectively compared



116 CHAPTER 6. AUTOMATIC X-RAY STYLE ADAPTION

(a) Original Image (b) Tone Mapping (c) β= 0.1

(d) β= 2.0 (e) α= 0.1 (f) α= 2.0

Figure 6.4: Example of enhancing or suppressing features in a mammogram using
LLF, compared to the method of simple tone mapping.

to MLP-RM, as does OrigNorm-RM. In both corresponding output images, the
contrast between non-dense and dense tissues is less pronounced than in the
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target image. This effect is particularly noticeable in the output image generated
with OrigNorm-RM.

Quantitative Evaluation

The findings obtained from this individual image are largely supported by the
measured results across the entire test set, as detailed in Table 6.1. In contrast
to the example image, MLPNorm-RM demonstrates the best performance in
terms of the SSIM measurement when applied to the complete test set. The
other trends observed align with those from the example image. Additionally,
the evaluation using the MSE reveals that the output images processed with
∇-Matching deviate more from their targets than the input image does from the
target. This divergence can be ascribed to the overly bright dense tissues, which
considerably influence the MSE calculation. Nevertheless, it still succeeds in
producing images that are more akin to the target images than the input images,
as per the SSIM metric.

input MLP-RM MLPNorm-RM Orig-RM OrigNorm-RM ∇-Matching

SSIM 0.587 0.9426 0.9441 0.9190 0.9107 0.8174
MSE 0.0270 0.0064 0.0066 0.0264 0.0105 0.0738

Table 6.1: Different LLF optimizations are evaluated based on SSIM and MSE mea-
surements between the target mammogram and the LLF output. The comparison
also includes the input image against the target mammogram.

Evaluation of Remap Functions

Fig. 6.6 depicts the optimized remap functions. The two MLP remap functions
are displayed in Fig. 6.6a, while ∇-Matching, Orig-RM, and OrigNorm-RM are de-
picted in Fig. 6.6b. All four remap functions demonstrate similar behavior when
the input is close to zero. Orig-RM and OrigNorm-RM are identical, indicating
that the normalization layer did not affect the parameters of the remap functions.
The overall shape of these remap functions is akin to the MLP remap functions.
However, the MLP remap functions display a more complex behavior and possess
a steeper slope. Both the steeper slope and the more complex behavior cannot be
realized with the original remap function. The shape of MLP-RM and MLPNorm-
RM is similar; however, without the normalization layer, the remap functions
have a steeper slope, most likely compensating for the missing normalization.
The ∇-Matching is particularly distinctive as a remap function, forming an ’S’
shape. Since it is applied on absolute values, it maintains point symmetry around
zero. Similar to MLP-RM, it extends to approximately -1.5 and 1.5. The different
shape of ∇-Matching suggests that generating matching gradients is not the same
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(a) input (b) target

(c) MLPNorm-RM (d) MLP-RM (e) ∇-Matching

(f) OrigNorm-RM (g) Orig-RM

Figure 6.5: Images mapped using optimized remap functions through LLF. The
display includes gradient matching, MLP with and without normalization, and
the original remap functions, both with and without normalization layer.
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Figure 6.6: Optimized remap functions of LLF for transforming raw projections
into target mammograms are depicted. These include the MLP remap functions
of MLP-RM and MLPNorm-RM, the original remap function of Orig-RM and
OrigNorm-RM, and the remap function of ∇-Matching.

objective as optimizing the LLF using our proposed loss function and stochastic
gradient descent, and may miss some information about the image impression.

Required Number of Training Images

The LLF optimization process requires only a limited number of training data. In
this experiment, we investigate the influence of the number of training images
on the performance of the LLF. Again, we measure the MSSIM and MSE between
the target mammograms and the outputs of the LLF on the test data. Fig. 6.7
illustrates the results. We optimize with a number of training images ranging
from one to 15. The LLF is optimized with the corresponding number of training
images only where a marker is visible in Fig 6.7. Optimizing the LLF with only one
training image yields the worst results, indicating that the LLF overfits on that
single image. However, already with two training images, the performance of the
LLF improves. The MSSIM fluctuates for image numbers between two and 15. We
assume that this is due to statistical fluctuations of the optimization process and
it is difficult to draw a conclusion from the MSSIM values about which number
of training images, ranging from two to 15, is best. However, the MSE exhibits a
more steady trend and is best for image numbers between two and five. Hence,
we conclude that two to five training images are sufficient to optimize the LLF for
a specific image impression.
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Figure 6.7: LLF algorithm performance as the number of training data points
varies. The metrics MSSIM and MSE are depicted for each data point.

Processing Time

Applying the LLF to process X-ray images necessitates a reasonable execution
time, ideally allowing for real-time processing. Moreover, adapting an image pro-
cessing pipeline to meet a radiologist’s needs should also be accomplished within
a reasonable timeframe. Consequently, we implemented the LLF as proposed by
[11] and detailed in Section 6.2.4 which suggests a computational complexity of
O(N ). Additionally, we facilitated parallel computation of the LLF on GPUs as
outlined in Section 6.2.6.

To assess the effectiveness of this implementation, we examine the execution and
training time of the LLF. We explore the impact of various parameters, including
image size, the number of pyramid levels, and the pixel resolution of the LUT, on
the execution time. The results are presented in Fig. 6.8. In the plot, we denote
the image resolution as the length of one side of a square image. Consequently,
the number of pixels N is the square of the resolution. However, the execution
time of the LLF is almost linear to the image resolution. This is due to the parallel
implementation of the LLF on the GPU. An image with a resolution of 512×512
pixels takes 61ms to execute, allowing for real-time processing at this image
size. Decreasing the number of pyramid levels does not significantly reduce the
execution time. This is because the initial levels in the pyramids are the most
computationally intensive, and eliminating the lower levels does not significantly
affect the execution time. Reducing the pixel resolution of the LUT correlates
linearly with the execution time. Therefore, decreasing the resolution from 256
to 120 reduces the time from 61ms to 29ms. This reduction can be leveraged to
accelerate the execution time of the LLF.



6.4. DISCUSSION 121

200 400 600 800
0

50

100

150

200

Image Resolution

T
im

e
(m

s)

4 6 7 8 9 10
0

20
40
60
80

100

Pyramid Level
120 180 256

0
20
40
60
80

100

Pixel Resolution

Figure 6.8: Execution times of the LLF under varying parameters: image resolu-
tion, pyramid level number, and pixel value resolution.

6.4 Discussion

The LLF can be employed to manipulate features in X-ray images, akin to its ap-
plication on photographic images, as illustrated in Section 6.3.1. This establishes
it as a feasible component within an X-ray pipeline. In Section 6.3.2, we further
demonstrated that the LLF can be automatically optimized to align with the
image impression of a vendor pipeline through the processing of raw projections.
Moreover, substituting the remap function with the MLP improved the adapted
image impression. Optimizing the LLF through backpropagation facilitates its
refinement as a segment of a larger pipeline. Consequently, we incorporated a
trainable normalization layer, which notably improved the LLF’s performance
when used with the original remap function, leading to satisfactory outcomes.
This approach retains the advantage of using the original remap function, which,
due to its low number of trainable parameters, can be manually adjusted if re-
quired. When the LLF was further enhanced with the MLP remap function, its
performance improved even more, normalizing intrinsically and eliminating the
need for an additional normalization layer.

The proposed method demonstrates superior performance over ∇-Matching,
likely due to the fact that style is not solely encoded in gradients. For medical
imaging, especially when considering soft tissue and lesion contrast, the edges
are often diffuse and blend into the background texture rather than being sharply
defined. Therefore, purely gradient histogram matching cannot capture the full
complexity of a medical image.

Our optimization approach fully utilizes the capabilities of the LLF, optimizing
it to manipulate image impression across all features that the LLF can modify.
This includes edges, fine-grained structures, and large image structures. This
superiority is further reflected in the remap functions, where all functions opti-
mized with our method display similar shapes, in contrast to the different remap
function of ∇-Matching.
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The LLF can be optimized using a limited number of training images, making it a
practical solution for real-world applications where medical image data is scarce.
This is particularly useful when the image data must align with the specific image
impression of an individual radiologist.

Furthermore, the LLF can operate in real-time. Any increase in image resolution
or pyramid depth contributes at most linearly to the execution time. Leveraging
parallel computing on GPUs, an image can be processed in under 100ms.

6.5 Future Work

In our parallel computation of the LLF, the number of pixel resolution values
determines the number of precomputed Gaussian Pyramids that must be stored
simultaneously in the GPU memory. This limits the maximum resolution of the
LUT or the maximum image size. To overcome this limitation, a more efficient
implementation of the LLF could be developed, which precalculates the LUT only
for a subset of pixel values. The LLF can then be computed iteratively for different
pixel ranges, enabling a trade-off between computation time and memory usage.
Additionally, instead of using PyTorch for implementation, the LLF could be im-
plemented in C++ and CUDA to further optimize the execution time. In our work,
we examined the original remap function and a MLP, representing two extremes
of the spectrum of remap functions in terms of parameter number. Future work
could explore remap functions with a moderate number of parameters, such as a
spline function, to determine the optimal balance between complexity and the
allowance for manual adjustments. Moreover, we demonstrated the feasibility of
optimizing the LLF as a standalone algorithm and as part of a larger pipeline by
adding a normalization layer. However, this concept can be extended to far more
components, enabling the creation of a fully sophisticated pipeline that can be
optimized using backpropagation. We optimized the LLF using matching pairs.
However, matching pairs are often unavailable in medical imaging, especially
when a set of images must match the image impression required by an individual
radiologist. Most of the time, only already processed images from devices the
radiologist is familiar with are available. Therefore, a metric that can measure the
similarity of two images from different acquisitions, i.e., with different content
would allow for the optimization of the LLF without matching pairs. The next
chapter will introduce such a metric.

6.6 Conclusion

In this chapter, we demonstrated the feasibility of applying the LLF to X-ray im-
ages. We optimized the LLF to match the image impression of a vendor pipeline
by processing raw projections. We showed that the LLF can be optimized with
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backpropagation to match a certain image impression and that it can be inte-
grated into a larger pipeline. Simultaneously, the LLF remains interpretable and
can be manually adjusted if necessary. Moreover, the LLF can be executed in
real-time with parallel computation on GPUs.





7
A trainable metric to quantify style

differences.

We previously discussed the need for a metric to quantify style differences on
non-matching pairs in Chapter 6, as the lack of such a metric limited our ability
to optimize the LLF only on matching pairs. Besides this optimization, such a
metric is also beneficial to experts who adjust X-ray image styles for radiologists,
as it allows quantification of the differences between styles, thereby objectifying
the typically very subjective process of style selection. In this section, we delve
into the development of the Style Metric for X-ray Images (StyleX), that quantifies
style differences between X-ray images of non-matching pairs.

7.1 Related Work

To our knowledge, no existing research in the field of medical imaging has specif-
ically focused on developing a style metric for non-matching pairs. However,
numerous studies have examined the generalization of neural networks to inter-
modality and intra-modality appearance differences, implicitly or explicitly ad-
dressing style differences [261, 140]. Therefore, their work has some resemblance
to ours.

In addressing the generalization of neural networks, two primary strategies are
typically employed. The first, domain translation, aims to convert images from
one domain to another [38, 248], such as from CT to MRI [172] or CT to X-Ray
images [222, 77], with the goal of transferring the image to the domain on which
a neural network has been trained. The second strategy focuses on training net-
works on domain-invariant features. This can be achieved either by harmonizing
the domain of the training data [80, 20, 263] or by augmenting various domain ap-
pearances during training. This augmentation compels the network to disregard
domain-specific features [137, 247].

125
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Three methodologies are predominantly employed to address style differences:
Generative Adversarial Networks (GANs) [118, 219, 110], Diffusion models [114,
171, 188], and Autoencoder disentanglement approaches [121, 129, 95]. Each of
these methodologies may yield a style loss or style representations as a byproduct
of their training process. Given our work’s focus on the development of a style
metric based on style representations, we will explore these methodologies in
relation to their style representations and losses.

During the training of GANs [262, 106, 100], the generator is trained to produce
images that resemble the target domain. In the context of style transfer, the target
domain represents the desired style. Concurrently, the discriminator is trained
to differentiate between real and generated images. Thus, the discriminator’s
loss can be construed as a style loss, given that it is fundamentally trained to
recognize the style of the target domain. However, it is worth noting that the
discriminator also learns to recognize unrealistic artefacts generated at pixel level,
as it is trained to discern between real and generated images. Furthermore, the
discriminator’s capability is limited to distinguishing between a discrete set of
styles, typically confined to just the input and target domain. Consequently, its
application as a standalone style loss is limited.

In an effort to enhance the training of GANs on medical image style transfer,
Armanious et al. [9] and Hémon et al. [89] have integrated the well-known style
loss from Gatys et al. [74] and Johnson et al. [104] into their training process.
The style loss is constructed by extracting features from a pre-trained VGG net-
work [201]. These features are then permuted via a Gram matrix [85], resulting in
the loss of their locality. This approach allows the features to effectively represent
artistic elements such as brush strokes, textures, and colors. Implementing it as
a fixed loss that remains unoptimized during the GAN training process might
enhance the overall training. However, when used as a standalone style loss
without the discriminator, merely eliminating the locality of features in X-ray
images is insufficient to capture the style differences between these images.

Zhang et al. [255] enhanced their GAN training by introducing a handcrafted
style loss, premised on the assumption that style information resides in the high-
frequency domain, to generate different x-ray image styles. While high-frequency
information does contain some style information - for instance, contrast en-
hancement results in more dominant high frequencies - it is not solely confined
to these frequencies. Style information also encompasses the distribution of pixel
intensities, texture, and the weighting of low frequency background structures.
As such, a style loss based solely on high-frequency information is insufficient to
capture the full scope of style information. Additionally, it is worth noting that
high frequencies also encapsulate content information, which is not a desired
attribute in a style loss.
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Zhao et al. [259] developed a specific loss for their diffusion model by training a
network to differentiate between two distinct domains. This led to the construc-
tion of a deep-learning-based domain loss. However, it should be noted that their
focus was on discrete non-medical image domains, specifically differentiating
between categories like ’cats and dogs’ or ’female and male’. Yet, the idea of pre-
training a network on different domains and then using this pretrained network
to classify between the domains is a promising approach. However, this method
falls short in providing a quantifiable measure of style distance, which is essential
for a complete style loss.

The approach of incorporating two autoencoders into the GAN training process,
as applied to medical images by [233, 247, 80], was initially proposed by [121,
129, 95]. In this method, one autoencoder’s latent space encapsulates content
information, while the other represents style. The decoder combines the em-
beddings from the latent spaces of both autoencoders, aiming to reconstruct an
image that reflects the style of the style embedding and the content of the content
embedding. A discriminator is subsequently trained to assess the accuracy of
the content and style in the reconstructed image. This approach necessitates
an additional decoder and a discriminator, which evaluates the accuracy of the
reconstructed images on a pixel-level basis and it does not directly optimize the
accuracy of style representations in the latent space. Despite this, the concept of
generating style representations in the latent space, independent of the image’s
content, will be incorporated into StyleX.

Unlike the methods proposed in previous studies, our research uniquely de-
velops a style metric capable of quantifying style differences of non-matching
pairs. Our method does not rely on a decoder for embedding reconstruction, a
pixel-wise loss, a discriminator, or handcrafted style features. Furthermore, we
specifically focus on exploring and refining the capacity of our proposed style
loss to accurately distinguish between all styles.

7.2 Methodology

Our objective is to devise a style metric that enables quantifiable comparison
between the styles of images of non-matching pairs. The construction of this
metric is twofold. Firstly, we obtain a multi-dimensional vector r represent-
ing the style of an image I ∈ RM×N . This is achieved using an encoder network
eΘ(·) ∈ RM×N 7→ RD , with M , N being the image dimensions, D the embedding
dimension, and Θ the weights of the encoder. Secondly, we apply a distance
metric d(·), capable of quantifying the distance between two vectors. This mea-
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surement reflects the stylistic differences between the images. Consequently, the
style metric, StyleX, can be formulated as follows:

StyleX(I1,I2) = d(r1,r2) = d (eΘ (I1),eΘ (I2)) (7.1)

7.2.1 Essential Prerequisites for Training a Style Encoder

To develop a meaningful style metric, it is necessary to train an encoder eΘ . This
encoder should generate style representations r from the input image, which are
disentangled from the images’ content.

Training the encoder, however, cannot rely on parameters from imaging pipelines
that compute stylized X-ray images for information about style differences. This is
due to the fact that these parameters are either non-comparable when styles from
different pipelines are used, or they are undisclosed vendor secrets, effectively
rendering them as black boxes. Additionally, non-matching content complicates
pixel distance computation, such as Euclidean distance. Thus, while the training
data provides the style class c, it does not offer information about the distance
between styles, a critical element for deriving a meaningful distance metric.

Consequently, supervised methods cannot be used to train eΘ . An unsupervised
method is required, capable of generating style representations whose distances
reflect the stylistic differences. This excludes unsupervised methods that rely on
maximizing distances between negative pairs, such as Siamese learning [156, 23],
or contrastive learning [45, 87]. These methods artificially enlarge distances, even
when some styles might be close to each other.

7.2.2 Limitations of Siamese Training

In Siamese training, eΘ is optimized by presenting image pairs, which are ei-
ther matching or non-matching. The encoded embeddings, r1 and r2, are then
compared using a loss function. If the images are matching (i.e., they belong to
the same class, denoted by the label c = 0), the embeddings r should be similar,
and the distance between them, d(r1,r2), should be minimized. If the images
are non-matching (i.e., they belong to different classes, c = 1), d(r1,r2) should be
maximized. However, to stabilize the training process, a margin m is introduced,
which defines the maximum distance between the embeddings of non-matching
pairs. This results in the following total loss function, which must be minimized
in the training process [156]:

Lsiam = (1− c) ·d(r1,r2)+ c ·max(0,m −d(r1,r2)) (7.2)

The function max(·, ·) returns the maximum of the two arguments. The second
term in the loss function prevents the use of Siamese training for the training of
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eΘ . The distance maximization between non-matching pairs is problematic for
two reasons. Firstly, a fixed margin m must be defined beforehand; it sets the
maximum distance between two non-matching styles. This margin is arbitrary
and challenging to define accurately, as the maximum distance between different
styles is not known beforehand. Secondly, the loss function consistently attempts
to maximize the distance between two styles, irrespective of their actual proximity.
Some styles are very similar, and enforcing a large distance would not effectively
reflect their differences.

7.2.3 Employing SimSiam as a Style Encoder Training Method

To surmount the discussed barriers, we propose employing the Simple Siamese
(SimSiam) approach from Chen et al. [46], a method originally developed to
pre-train neural networks in an unsupervised manner to learn important image
features for downstream tasks like segmentation or classification. In contrast to
classical Siamse learning [156, 23], SimSiam relies solely on positive pairs, i.e.,
images sharing the same style.

Chen et al. [46] showed that SimSiam implicitly learns to embed distinct features,
which allows to differentiate negative pairs, despite being trained only on pos-
itive pairs. Hence, we propose to train the encoder in the SimSiam fashion, by
presenting only matching images with the same style to the encoder. Since no
artificial distance margin m must be enforced, this approach allows the style
representations to be freely positioned in the embedding space. We anticipate
that the distances between these representations in the embedding space will
reflect the stylistic differences between the images.

Training an encoder with only positive pairs in a Siamese approach bears the risk
of mode collapse, i.e., the encoder learns to map all images to the same point in
the embedding space. To prevent this, we adopt the approach of Chen et al. [46]
and utilize two asymmetries during training: 1) a neural network p∆(·) ∈RD 7→RD

with weights ∆, and 2) a one-sided gradient flow, as depicted in Fig. 7.1a. This
results in the following loss function:

Lsimsiam = d
(
eΘ (I1) , p∆ (eΘ (I2))

)
, (7.3)

which does not necessitate the maximization of distances.

For inference, the network p∆(·) is discarded, and the style representations are
directly obtained from the encoder eΘ(·). The distance between the output style
representations is then computed. This completes the setup of StyleX, as depicted
in Fig. 7.1b.
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stop grad.

(a) Training (b) Inference

Figure 7.1: This figure illustrates the training process (left) where an encoder
learns style representations, and the inference process of StyleX (right) used to
compute the distance between two images.

7.2.4 The Distance Measure for StyleX

Up to now, no measure d(r1,r2) to quantify the distance between the style repre-
sentations has been defined. We employ the same distance metric in inference as
in training. This is because, during inference, StyleX should accurately quantify
the distances of the style representations, as the encoder has been optimized to
do so. Having different distance metrics in training and inference might introduce
additional compelxity and potential errors, if the two distance measurements do
not align.

Chen et al. [46] applied the negative cosine similarity cs as the distance metric
d(r1,r2) =−cs(r1,r2). cs is defined as the dot product between the vectors divided
by each vector’s Euclidean norm: follows:

cs(r1,r2) = r1 · r2

‖r1‖‖r2‖
(7.4)

As a consequence, cs measures the angle between two multidimensional repre-
sentations, as it is normalized to the magnitude of the representations. Accord-
ingly, the range of cs is −1 ≤ cs ≤ 1, where 1 represents identical representations
and -1 represents representations pointing in opposite directions.

Both characteristics are beneficial for the encoder training, as the fixed output
range and the disregard of the magnitude does stabilize the gradients of the
optimization process. To employ cs as the inference distance measurement
dinf(·, ·) of StyleX, we convert it’s range to a more intuitive range of [0,1], with 0
representing the minimum distance. Therefore, we normalize cs for inference as
follows:

dinf(r1,r2) = csn(r1,r2) = 1+ cs(r1,r2)

2
(7.5)
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It should be noted that this normalization does not alter our initial proposition
that the training and inference loss should be identical, as we are merely mapping
the output range from [−1,1] to [0,1].

7.2.5 Image Processing

The operation of the encoder eΘ and the evaluation of StyleX require processed
X-ray images. Consequently, we employ two distinct pipelines to convert raw X-
ray image projections into stylized versions, as they would be typically presented
to radiologists:

1. The Linear Analysis Pipeline (LAP), designed for reproducible research and
straightforward analysis.

2. The Proprietary Advanced Style System (PASS), an advanced closed-source
prototype pipeline for processing clinically relevant image impressions.

Linear Analysis Pipeline (LAP)

LAP serves as a transparent pipeline, wherein the parameters influencing the style
are comprehensible. The core functionality of LAP is twofold. Firstly, it weighs
the frequency bands of the images, created with a Laplacian pyramid [34, 227,
232], as proposed in Section 2.3.4. Consequently, it enables the manipulation
of image structures, defined by the frequencies, which represent them. Fine
details are represented by high frequencies, medium-sized structures by low to
mid frequencies, and background characteristics by low frequencies. Secondly,
LAP maps a parameterized portion of the full pixel range to the final image.
Depending on the size of this mapping window, the image’s contrast is adjusted
accordingly [103]. This results in three adjustable parameters of the pipeline:

1. w (window): This defines the image’s contrast by setting a the mapping
window with.

2. l (low- to mid frequencies): This determines the extent to which medium-
sized structures are highlighted or suppressed by weighting low- to mid
frequencies.

3. h (high frequencies): This emphasizes fine image details by weighting high
frequencies.

A detailed flowchart and description of the pipeline are provided in Appendix A.

Proprietary Advanced Style System (PASS)

PASS, a prototype pipeline developed by Siemens Healthineers, aids radiologists
by generating clinically relevant image impressions. Unlike LAP, PASS offers
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advanced capabilities for complex image feature manipulation. We applied it to
generate 32 distinct styles.

The Benefits of PASS and LAP

The availability of LAP’s parameter settings serves as a valuable tool for analyzing
style representations. Due to the linear nature of the pipeline, parameter settings
that are closer together are expected to generate more similar styles. Thus, the
labels not only indicate identical styles but also signify the distance between
styles. This additional distance information is crucial for evaluating our method.
However, LAP is a simplified pipeline, and our proposed method for creating a
style metric should also be applicable to clinically relevant styles. For this reason,
we also train the encoder eΘ and evaluate StyleX using data processed with PASS.
On the other hand, unlike LAP, PASS operates as a black box with undisclosed
parameters, making the relationship between the produced styles unclear.

7.2.6 Datasets

We generate two training sets and various test datasets using the LAP and PASS
pipelines, by processing the raw data from MBTST, as detailed in Sec. 2.2.3. This
choice of data source provides two significant advantages. Firstly, the public avail-
ability of the MBTST data ensures the reproducibility of our research. Secondly,
the raw form of the data, as captured by the detector, allows us complete control
over the processing and generation of styles. For our training and evaluation, we
utilized only the data where information on breast density and thickness was
available, resulting in a total of 7325 patients. Out of these 7325 DMs, we allocated
70 % (5064 images) for the creation of training and validation datasets, and the
remaining 30 % (2171 images) for testing.

LAP Parameter Selection:

To describe the datasets generated with the LAP pipeline more efficiently, we
define functions for selecting values from all three LAP parameters. These func-
tions generate the corresponding parameter value within the range of its mini-
mum and maximum values and are denoted as follows: W (i ) = i ·wmax +wmin,
L( j ) = j · lmax + lmin, and H(k) = k ·hmax +hmin, with i , j ,k ∈ [0,1]. As a result, a
style is defined by the combination of all three parameters values, represented by
the tuple

(
W (i ),L( j ), H(k)

)
.



7.2. METHODOLOGY 133

W (0),L(0), H(0) W (0),L(0), H(0) W (0),L(1), H(0) W (0),L(1), H(1)

W (1),L(0), H(0) W (1),L(0), H(0) W (1),L(1), H(0) W (1),L(1), H(1)

Figure 7.2: This figure displays styles generated using extreme parameter settings
of LAP, as employed in the creation of the LAP-X dataset.

LAP-Train:

A training dataset is generated using the LAP pipeline to process the 5064 MBTST
raw images reserved for training. The potential values for the parameters that
define the styles are selected as follows:

(
W (i ), L( j ), H(k)

)
with i , j ,k ∈ {0,0.2, ...,1} (7.6)

For each raw image, 32 styles are randomly sampled from the 63 = 216 styles
obtained by assigning 6 different values to each parameter. This results in a total
of 162048 training images.

LAP-X

To evaluate the ability of the encoder eΘ to generate unique style representations
for distinct styles, we create styles using only the extreme values of the LAP
parameters: (

W (i ), L( j ), H(k)
)

with i , j ,k ∈ {0,1} (7.7)

This approach generates 8 distinct styles for each of the 2171 raw test images,
resulting in a total of 17368 images for the test set LAP’s eXtreme parameter test
dataset (LAP-X). Fig. 7.2 illustrates one of the processed raw images in all its 8
style manifestations. A clear distinction between all 8 styles can be observed.
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Lap-w/l/h

A style metric’s scalar output must reflect the degree of style difference. To analyze
this behaviour, we create three specialized test sets, LAP’s w parameter sweep
dataset (LAP-w), LAP’s l parameter sweep dataset (LAP-l ), and LAP’s h parameter
sweep dataset (LAP-h). In each test set, the respecitve parameter is varied from
its minimum to it’s maximum in 10 steps as follows:

• LAP-w parameter: (W (i ), L(0.5), H(0.5)) with i ∈ {0.0,0.1, ...,1.0}
• LAP-l parameter: (W (0.5), L( j ), H(0.5)) with j ∈ {0.0,0.1, ...,1.0}
• LAP-h parameter: (W (0.5), L(0.5), H(k)) with k ∈ {0.0,0.1, ...,1.0}

Having 11 different styles for each of the 2171 raw test images, each test set con-
tains a total of 23881 images. Fig. 7.3 illustrates an example of the three parameter
sweeps. The style differences between images with neighboring parameter values
are subtle, making it challenging for an untrained eye to distinguish between
them, even in matching pairs.

PASS - Datasets

PASS is capable of generating 32 unique styles. We employ 28 of these styles to
construct a training set (PASS-Train), while the test set (PASS-Test) incorporates
all 32 styles, thereby enabling the evaluation of the StyleX metric on styles not
previously encountered.

7.2.7 Conducted Trainings

We train the encoder eΘ two times. The first training is done on LAP-Train, and
the trained encoder version is referred to as eΘLAP . The encoder is then trained
from scratch a second time with PASS-Train, yielding eΘPASS . Both trainings are
conducted with the exact same hyperparameter configuration. The images of
both training datasets are cropped to dimensions of 800×800, positioning the
nipple at the center of the right side to standardize the anatomical starting point.
These cropped images are then resized to 400×400, which facilitates a batch size
of 200. For both encoder trainings, we utilize a ResNet18 [86], pre-trained on
ImageNet [55] encoder. The style representations are 2048 dimensions. We utilize
SGD as the optimizer, with a learning rate of 0.05, momentum of 0.9, and weight
decay of 10−4. Training occurs over 200 epochs with batch sizes of 200.

7.2.8 Evaluation

The efficacy of StyleX relies on the ability of eΘ to generate meaningful style rep-
resentations, as the StyleX output is determined by the scalar distance between
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W (0.0) W (0.4) W (0.5) W (0.6) W (1.0)

L(0.0) L(0.4) L(0.5) L(0.6) L(1.0)

H(0.0) H(0.4) H(0.5) H(0.6) H(1.0)

Figure 7.3: Styles generated by varying the three parameters of LAP. Images at the
extreme left and right are produced using the minimum and maximum values
of the corresponding parameter. The three central images are generated with
parameter differences of 0.1. For each variation, the inputs to the other two
defining functions are held constant at 0.5, as in W (0.x),L(0.5), H(0.5). Each row
represents one image of LAP-w , LAP-l , and LAP-h, respectively.

these representations. These representations should exhibit two crucial charac-
teristics. First, the distance between two representations should reflect the degree
of style variation. Second, representations of diverse styles should be distinctly
separated in the embedding space, while those of identical styles should cluster
closely. If these two properties are fulfilled, StyleX can accurately measure style
distances. We employ two methods to evaluate these characteristics.

t-SNE Reduction

Visualizing style representations, which exist in a 2048-dimensional space,
presents a significant challenge. However, by assessing the neighboring rela-
tionships between these representations, we can evaluate their ability to reflect
stylistic differences based on the distances between them.
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To accomplish this, we employ t-SNE [224] to reduce the dimensionality of the
style representations. t-SNE is designed to preserve the local neighborhood
structure from the original high-dimensional space within the reduced low-
dimensional space. This is achieved by assigning probabilities in both spaces
that reflect the relative distances between the representations. The Kullback-
Leibler divergence between both probability distributions is then minimized
with respect to the positioning of the representations in the low-dimensional
space. If the representations are not well-separated in the low-dimensional space,
caution is required, as this could indicate a failure of t-SNE to preserve the local
neighborhood structure. On the other hand, if the representations are grouped
into well-defined clusters, we can confidently infer that these clusters also exist
in the high-dimensional space. If this were not the case, it would imply that
t-SNE has randomly discovered a more ordered structure in the low-dimensional
space than in the high-dimensional space, a scenario that contradicts the law of
entropy [186].

k-Nearest Neighbors Classification Accuracy

While t-SNE offers valuable insights into the local neighborhood structure of
the representations, it does not provide a quantitative measure of the quality
of the separation. For this purpose, we employ the k-Nearest Neighbors (k-NN)
algorithm, which assigns a class to a data point based on the majority class of its
k-nearest neighbors, without needing to fit parameters. Using this approach, we
can take the high-dimensional representations of our test sets and assign them
a style class, based on the k-nearest neighbor representations from the training
set. The estimated style class is then compared with the actual style class, and
a classification accuracy is computed. This accuracy precisely quantifies the
number of data points correctly clustered, thereby providing a measure of the
representations’ ability to reflect style differences.

7.3 Experiments & Results

To evaluate the capabilities of StyleX, we first investigate the ability of eΘLAP to
generate meaningful and well-defined style representations on the LAP testsets.
This allows us to conduct a detailed investigation into the proposed method’s
capacity to generate style representations suitable for a style metric. Next, we
assess the ability of StyleX to work on clinically relevant data. This is done by
investigating the ability of eΘPASS to distinguish the styles of the PASS-Test dataset
and by applying StyleX to images from the PASS-Test dataset to evaluate its overall
performance as a metric.
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Figure 7.4: The figure presents style representations, reduced to 2D using t-SNE,
generated from LAP-X images processed by eΘLAP .

7.3.1 LAP Style Separation

The eight unique styles present in the LAP-X dataset are well-differentiated.
Therefore, for precise distance measurements with StyleX, it is essential that
the encoder eΘLAP generates style representations of LAP-X, which form distinct
clusters within the embedding space. To evaluate the clusters formed by the style
representations of LAP-X, we employ t-SNE to reduce the 2048D representation
into a visualizable 2D space. The resulting 2D representations are depicted in
Fig. 7.4. The 2D t-SNE reduction of LAP-X is illustrated, with each cluster’s mean
represented by a marker with a black border and the variance indicated by a
line in each direction. Additionally, the two top-most outliers and ten randomly
selected points from each cluster are visualized. The distinct clusters formed in
the embedding space suggest that the style representations are well-defined and
unique. The high classification accuracy of 99.7%, achieved with k-NN, further
supports the distinctness and well-definition of the style representations.

7.3.2 Representation Distance in Relation to Style Differences

A key characteristic of the representations, essential for a meaningful StyleX, is
that the distance between two representations should correlate with the degree
of style difference. To examine this behavior, we use three test sets: LAP-w , LAP-l ,
and LAP-h. Each set varies its respective parameter from the minimum to the
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maximum value in 11 steps, generating images with subtle style changes. We
reduce the 2048D representations corresponding to these test sets to 1D using
t-SNE and visualize the 1D representations in boxplots in Fig. 7.5. Each box com-
prises the style representations of images processed with identical parameter
values. Given that only one of the three parameters changes at a time, and consid-
ering the preservation of local neighborhoods by t-SNE, it is possible to analyze
the correlation between the changing style parameter and the corresponding
representations. As observed, the median values of each box increase or decrease
monotonically with the parameter values, suggesting a correlation between the
distance of the representations and the degree of style difference. Furthermore,
LAP-Train does not employ steps with odd parameter values, hence styles gen-
erated with these values are not encountered during training. Despite this, no
noticeable difference exists in the clustering of even and odd parameter values,
suggesting that eΘ can interpolate to unseen styles.

7.3.3 Separation of Clinically Relevant Styles

To investigate the applicability of our proposed method to complex and clinically
relevant styles, we use StyleX based on eΘPASS , since we do not anticipate that
eΘLAP will separate the PASS styles, due to their higher complexity. Following the
approach outlined in Sec. 7.3.1, the 2D t-SNE reduction is applied to the style
representations of the PASS-Test dataset. These 2D representations are visualized
in Fig. 7.6. It is important to note that four of the 32 styles were not encountered
during training and are marked with blue borders. The formation of distinct
clusters in the embedding space suggests that the style representations are well-
defined and unique. The high classification accuracy of 99.83% achieved with
k-NN further supports this observation. Interestingly, the clustering does not
differ between the unseen and seen styles, indicating eΘPASS ’s ability to generalize
to styles not encountered during training.

7.3.4 StyleX Application

To evaluate the ability of StyleX in measuring the distance between pairs, we
apply it to compute the distances between a reference image and both matching
and non-matching pairs. The images with their computed distances are depicted
in Fig. 7.7. The reference image is displayed in the first row, with two images with
the same content but different styles. The second row shows three non-matching
images, with the first image having the same style as the reference image, while
the second and third images have the same style as the corresponding images
in the first row. It can be observed that the computed distances between the
reference image and the matching pairs are relative to the style differences. The
distance between the non-matching image, which shares the same style as the
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:

(a) Parameter sweep with W (i )

:

(b) Parameter sweep with L( j )

:

(c) Parameter sweep with H(k)

Figure 7.5: 1D style representations are generated from data processed by eΘLAP

from LAP-l , LAP-h, and LAP-w . Styles created with identical parameter settings
are grouped together in one box. Each plot illustrates the style representation
from one of the three datasets.

reference image, is close to zero. Meanwhile, the distance between the non-
matching pairs approximates the distances of the matching content counterparts.
Therefore, in the given scenario, the image content does not affect the computed
style distances. This observation aligns with the outcomes of previous experi-
ments where the style representations were distinctly separated and independent
of the content.

7.4 Discussion

The heart of StyleX is the encoder eΘ . If eΘ is capable of generating meaning-
ful style representations, the StyleX metric can accurately quantify the distance
between these. Hence, our experiments focused on evaluating the ability of



140 CHAPTER 7. A TRAINABLE METRIC TO QUANTIFY STYLE DIFFERENCES.

Figure 7.6: Style representations, reduced to 2D with t-SNE and illustrated in the
figure, are generated from PASS-Test images processed by eΘPASS . Cluster centers
marked with blue borders indicate styles not encountered during training.

eΘ to generate style representations that are well-separated and reflect the de-
gree of style difference. The knowledge of the underlying parameters of LAP
give insight about the relationship between styles and hence it could be investi-
gated if the style representations reflect these changes. In Experiment Sec. 7.3.1,
we demonstrated that the style representations of the LAP-X dataset are well-
separated, achieving a high classification accuracy of 99.7%. This result allows
us to conclude that the first important property of eΘ is fulfilled: the ability to
generate well-defined style representations for distinctive styles. The second
experiment detailed in Sec. 7.3.1, analyzed the correlation between the distance
of the representations and the degree of style difference. The boxplots in Fig. 7.5,
representing the 1D t-SNE reduction, demonstrated a clear relationship between
the distances and style differences. Thus, the second crucial property of eΘ , the
ability to generate style representations that reflect the degree of style difference,
is also fulfilled. The third experiment, detailed in Sec. 7.3.3, evaluated the ability
of eΘ to work with complex clinically relevant styles. In contrast to the 8 styles
of LAP-X, there were 32 distinctive styles. However, with a high classification
accuracy of 99.83% and distinct clusters in the 2D t-SNE reduction, it is evident
that eΘ is capable of generating well-defined style representations for complex
styles. Thus, we can conclude that eΘ , when trained with SimSiam, performs
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Figure 7.7: Example application of the StyleX. The style distance between all
images and the reference image at the top left of the figure is calculated. The
first row compares images with different styles but same content as the reference
image. Images in the second row have different content, and column-wise the
same style.
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effectively on clinically relevant styles. Finally, we use StyleX to assess the cor-
relation between the image impression and the computed distance, using both
matching and non-matching content pairs (cf. Fig. 7.7). The visually perceived
style differences between the images align well with the measured style distances.
Moreover, the style quantification remains consistent whether comparing images
with matching or non-matching content. This indicates that the measured style
distance is not influenced by the image content. In the experiment detailed in
Sec. 7.3.2, we demonstrated that eΘ is capable of interpolating unseen styles.
Additionally, in the experiment in Sec. 7.3.3, we showed that eΘ can generalize
to four unseen styles. Hence, to some extent, we can conclude that eΘ can gen-
eralize to unseen styles. However, we hypothesize that substantial unseen style
modifications might not be well separated. We propose that the more extensive
and versatile the training dataset is, the more generally StyleX functions. The
transition from LAP-Train to PASS-Train did not affect the performance of StyleX,
suggesting that our method, particularly when trained with SimSiam, works well
with even more versatile datasets. eΘLAP exhibits similar behavior on the LAP-Test
datasets as eΘPASS does on the PASS-Test dataset, indicating that our proposed
method for training StyleX can be effectively applied on clinically relevant and
complex X-ray image styles. This is further supported by SimSiam’s ability to rely
solely on positive pairs, facilitating the compilation of larger datasets from differ-
ent pipelines. The requirement is only that images with the same style label share
the same style. In our research, we utilized StyleX on mammographic images,
using the publicly accessible MBTST dataset of raw X-ray images. However, this
method is not exclusive to mammographic images. We are confident that StyleX’s
application can be adapted to any X-ray image, regardless of the body region,
and that the concept could even be extend to other modalities like MR. However,
substantial style modifications necessitate encoder retraining.

7.5 Future Work

The proposed StyleX metric offers a promising approach to quantifying stylis-
tic differences in X-ray images. Our method was evaluated on mammographic
images, with the encoder trained solely on styles from a single pipeline. Future
research may involve compiling a more comprehensive dataset. It would be
intriguing to consider the expansion of the training dataset to include other X-ray
modalities. Furthermore, the incorporation of styles from various pipelines and
vendors could be beneficial. These styles could be made more complex by aug-
menting them with additional image processing steps, such as the LLF discussed
in Chapter 6. Besides utilizing more complex data for training, the evaluation
process could also be broadened to include a test set featuring styles from differ-
ent vendors and distances, labeled by an expert. We anticipate that the flexible
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SimSiam training, coupled with a more extensive dataset, will yield a StyleX capa-
ble of accurately quantifying complex stylistic differences across a wide range of
X-ray image styles. This would provide a powerful tool for radiologists or experts
needing to compare images with different styles.

Furthermore, the concept of training a metric with non-matching pairs could be
extended to other domains. It is conceivable to develop a metric to detect the
degree of artefacts in X-ray images, or to quantify the similarity between artistic
image styles or musical styles.

StyleX is not merely advantageous for human comparison of images, but could
also act as a loss metric for machine learning algorithms, such as the optimization
of the LLF or a neural network designed to generate stylized images.

Another potential area of investigation could involve employing eΘ trained on a
large dataset and fine-tuning it to directly output the image parameters necessary
to achieve a desired style.

7.6 Conclusion

This chapter presents StyleX, an innovative deep-learning metric for quantifying
stylistic differences in medical X-ray images. The metric is based on an encoder,
which sucesfully generates style representations independent of the image con-
tent. Based on these style representations, we construct a style metric capable of
accurately quantifying stylistic differences in X-ray images.

To train the encoder, we propose a unique application of the SimSiam concept,
originally designed for unsupervised pre-training of encoders by reducing the
similarity between images with the same content. Our adaptation trains the
encoder to produce embeddings that contain only information about X-ray image
styles.

In a second step, we leveraged t-SNE and k-NN to demonstrate that the encoder
generates well-separated style representations reflecting the degree of style dif-
ference. This ability to produce meaningful distances allows us to infer that the
constructed style metric is capable of accurately quantifying stylistic differences
in X-ray images.

Thus, this research lays the groundwork for a style loss in medical imaging, which
could facilitate a variety of applications, such as an automatic style selector for
radiologists or a loss function in imaging pipeline optimization.





8
Conclusion

The overarching goal of this work is to improve the diagnostic accuracy of X-ray
images by enhancing the processing of recorded X-ray images using machine
learning methods. This objective has been subdivided into four research objec-
tives, outlined in detail Chapter 1:

1. Collimator shadow detection in X-ray images.
2. X-ray image denoising.
3. Automatic adaptation of X-ray image processing pipelines.
4. Quantifying differences between non-matching image pairs.

The first part of the thesis addresses the initial two research goals: eliminating or
minimizing artifacts, specifically noise and collimator shadows. The latter part
focuses on the final two objectives related to X-ray image impressions, specifically,
the automatic adaptation of X-ray image processing pipelines to achieve a desired
impression, and the quantification of differences in impressions between non-
matching image pairs.

8.1 Summary

The first part of this work, discussed in Chapter 3, serves as a foundation for the
next two chapters which investigate the first two research objectives. It introduces
a novel noise simulation framework for X-ray images, which accurately models
the noise characteristics of real X-ray images. This framework enables the realistic
alteration of X-ray image dose levels, thereby accounting for additional noise. As a
result, the proposed pipeline can be used to generate training data for denoising.
Furthermore, the simulation of collimator shadows necessitates a dose level
adjustment, which is facilitated by this noise simulation.

Given that the purpose of the noise simulation is to generate training data, it has
been designed with physically meaningful parameters. These can be adjusted
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to simulate different detectors, dose levels, and noise characteristics. This is
especially beneficial in a training context, as it allows for the generation of a wide
range of training data. Consequently improving the genralization of a trained
ANN. The simulation automatically converts pixel intensities into photon counts
and effectively simulates a reduction in arriving photons. It also accounts for
scintillator blurring, which introduces a spatial correlation in the noise. Finally,
the simulation incorporates electronic noise, a factor that is particularly signifi-
cant at low dose levels. In the corresponding experiments, the simulated noise
characteristics have been compared to the ground truth noise of real X-ray im-
ages by investigating the NPS. The results demonstrate that the proposed noise
simulation accurately models the noise characteristics of real X-ray images across
different dose levels. Thus, we conclude that the noise simulation is well-suited
for generating training data for deep learning models.

Chapter 4 directly addresses the first research question by focusing on the de-
tection of collimator shadows in X-ray images. This chapter makes two key
contributions. It introduces a new simulation pipeline that creates collimator
shadows on clinical images, effectively tackling the issues of limited training data
and the time-consuming task of manual labeling. Similar to the noise simulation,
this pipeline has physically meaningful parameters that can be adjusted during
the training process to promote effective ANN generalization. Moreover, the
pipeline’s realism and accuracy were evaluated by testing it against collimator
shadows on a phantom, and the results have confirmed its validity. Additionally,
it pexplores the use of deep learning for identifying collimator edges. Based on
the assumption that ANNs converge more effectively when known operators
are incorporated into the architecture [149], we utilized the Hough Transform
(HT) to integrate the prior knowledge that collimator edges always form straight
lines. The trained model was assessed using both clinical and simulated im-
ages. Despite being trained solely on simulated images, the model demonstrated
effective generalization to clinical images, further underscoring the efficacy of
the simulation pipeline. Furthermore, we demonstrated that a model could be
trained exclusively in the Hough domain, enabling it to directly predict the line
parameters that describe the collimator edges. Additionally, the HT was incorpo-
rated into a second network architecture as a regularizer, which enhanced the
model’s segmentation output by enforcing straight lines. Therefore, we conclude
that deep learning proves effective in detecting collimator shadows.

In addressing the second research objective, Chapter 5 presents a novel deep
learning-based denoising network for DBT projections. The removal of noise is
intended to simplify image interpretation, thereby enhancing diagnostic accu-
racy. Additionally, it should reduce the disparity between FFDM and DBT images,
which are inherently noisier due to the lower dose levels utilized in DBT. The
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network was trained on FFDM images, which were augmented using the noise
simulation pipeline of Chapter 3, to replicate the noise characteristics of DBT
images. Considering that denoising should not eliminate diagnostically relevant
information, such as minuscule microcalcifications that closely resemble noise,
we introduced a novel loss function, LReLU, specifically designed to preserve
small structures. The network’s performance was evaluated using a microcalcifi-
cations dataset and compared to other loss functions. The results indicate that
LReLU significantly improves the preservation of small structures. However, a
combination of LReLU and SSIM could potentially yield even more stable results.
Moreover, the diagnostic accurady of radiologists is impeded for dense breasts,
as the overlapping tissues obscure carcinoma. Therefore, it is crucial to ensure
that denoising algorithms do not exacerbate the disparity in diagnostic accuracy
among different breast groups. For this reason the network’s performance was
evaluated across different breast types, and the results indicate that the network
does not exhibit bias towards specific groups. Finally, we demonstrated the
network’s denoising performance on a real-world case, illustrating its ability to
denoise actual DBT projections and enhance microcalcification visibility in SM
reconstructions.

Radiologists depend on their accustomed image impressions for efficient diagno-
sis. As a result, image processing pipelines are manually adjusted in a laborious
process to achieve the desired image impression. To circumvent this subjective
and suboptimal procedure, in Chapter 6, we addressed the third research objec-
tive: the automatic adaptation of X-ray image processing pipelines to achieve
the desired image impressions. Despite focusing on a single question, the con-
tributions of this chapter are twofold. The automatic adaptation of X-ray image
processing pipelines requires an optimizable pipeline. Consequently, we ex-
plored the feasibility of applying the LLF, a state-of-the-art photographic image
processing pipeline, to X-ray images. Additionally, we enhanced the functionality
of the LLF by replacing its remap function with a MLP, thereby increasing its
versatility. Subsequently, we optimized the LLF to match the image impression
of a vendor pipeline by processing raw projections. The optimization process
was conducted using SGD and backpropagation, thus we implemented a dif-
ferentiable version of the LLF. We demonstrated the effectiveness of the LLF in
matching the image impression of the vendor pipeline, thereby proving that (a)
the LLF is versatile enough to match existing vendor pipelines, and (b) optimiza-
tion with GD is feasible. Moreover, this optimization process proved effective on
small training datasets comprising five images, making it particularly suitable
for medical imaging where data are always limited. Optimizing the LLF with GD
allows its integration into a larger pipeline, as demonstrated by our addition of a
trainable window leveling operation. Despite this, the LLF remains interpretable
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and adjustable, and can be executed in real-time using parallel computation on
GPUs.

The final research objective is to quantify the differences in image impressions
between non-matching image pairs. Identifying these differences is crucial to
maintaining diagnostic accuracy and is particularly relevant in clinical practice,
where it is uncommon to encounter pairs of images with identical content pro-
cessed on two different devices. This objective is addressed in Chapter 7, where
we introduce a deep-learning metric, StyleX, specifically designed to quantify
appearance variations in medical X-ray images. The essence of this metric is an
encoder that produces content-independent style representations of X-ray im-
ages. The disparity between these representations is then quantified to assess the
dissimilarity in image impressions. Given the absence of a style metric, there were
no labels to quantify style distance. To overcome this challenge, we employed
SimSiam, a methodology originally proposed for self-supervised pre-training
by minimizing the distance between augmented views of the same image. To
assess the effectiveness of the style metric, we demonstrated the distinctiveness
of the style representations generated by the encoder. Additionally, we showed
that the distances between these representations correspond to the perceived
differences in image impressions. Finally, we established the feasibility of the
metric by comparing images with both matching and non-matching content,
thereby demonstrating that the metric successfully quantifies style differences
independent of the content.

By adressing the proposed research objectives, three challenges crystallized as
central to the sucess of the proposed solutions:

1. Given the sensitivity of patient data, data scarcity is a prevalent issue in medical
imaging. Therefore, the development of physics-based data augmentation tech-
niques, such as the noise simulation proposed in Chapter 3 and the collimator
shadow simulation in Chapter 4, proved essential for generating training data.
Furthermore, unsupervised learning techniques like SimSiam in Chapter 7 were
instrumental in addressing the scarcity of labeled data.

2. The reliability of X-ray image processing algorithms is paramount, as errors
can lead to severe consequences. The incorporation of prior knowledge into
these models can narrow the solution space, thereby enhancing their reliability.
In the collimator detection Chapter 4, the HT was utilized to incorporate the
understanding that collimator edges are straight lines, thereby reducing outliers
in the model’s predictions. For the automatic adaptation of the image processing
pipeline, the principle of preserving the direction of image gradients to maintain
diagnostic information was incorporated. This was achieved through the use of
the LLF in the optimization process, as detailed in Chapter 6.
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3. Quantifying improvements in image quality is challenging, both during the
training of deep learning models and when evaluating proposed solutions. To
address this, a specially tailored loss function was introduced for denoising in
Chapter 5, aiming to preserve diagnostically relevant information. Moreover,
Chapter 7 introduced a deep learning metric to quantify differences between
disparate image pairs.

8.2 Future Work

This work investigates various stages of the X-ray image processing pipeline. An
initial, apparent step is to integrate the presented solutions, including collimator
shadow detection, denoising, and post-processing to emphasize diagnostic infor-
mation, into a fully optimizable pipeline. This integrated pipeline can then be
optimized using StyleX to align with the radiologist’s preferred style.

Moreover, we believe that out work represents only the initial step towards a
self-adaptive and sophisticated X-ray image processing pipeline. We propose
that a general strategy for improving X-ray image processing pipelines involves
algorithms that garner additional knowledge about the image content and the
patient. This knowledge can facilitate differential processing of various areas
and steps within an X-ray image. Furthermore, to ensure reliability and trust in
the processing pipelines, the methods employed should prioritize interpretabil-
ity and self-explanatory functions. To achieve this objective, several different
research directions are worth exploring.

The first direction, particularly crucial in the medical domain, is to address the
issue of data scarcity. A particularly promising approach involves the develop-
ment and enhancement of simulation techniques and pipelines, such as the
VICTRE pipeline. Generating X-ray images with Monte Carlo simulations from
simulated phantoms can provide a substantial amount of training data, while
simultaneously offering comprehensive information about the image content.
Moreover, this approach would generalize our proposed denoising and colli-
mator simulations as the complete X-ray acquisition process can be simulated.
Nevertheless, as demonstrated in Chapter 5, the simulated breast phantoms of
the VICTRE pipeline do not accurately represent real-world breasts, as they lack
the complexity of actual breast tissue. Thus, research efforts should be directed
towards enhancing the realism of phantoms. A possible approach might be the
utilization of real world Computed Tomography (CT) phantoms as ground truth
for adversarial or diffusion networks. These networks can then be employed
to enhance the realism of simulated phantoms. For instance, these networks
can be trained to generate realistic 3D breast tissue or specific anatomical struc-
tures such as carcinoma, implants, or bones, which can then be incorporated
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into an existing phantom. Having realistic phantoms as a ground truth also en-
ables the development of more sophisticated metrics, as the knowlege about the
anatomical structures and image content can be incorporated, allowing for a
clear assesment if the visibility of anatomical structures is improved or not.

The second direction involves the abstraction of the X-ray image content to fa-
cilitate differential processing. This can be achieved by segmenting the X-ray
images into different areas, each of which can be processed differently. Moreover,
defining these areas also enables the explainability of deep-learning-based pro-
cessing pipelines, as the knowledge about the decision how areas are processed is
provided. However, pixels in X-ray images represent overlapping tissues, making
segmentation a challenging task. Consequently, segmentation maps may not
be as discrete as those in photographic images. Nevertheless, simulated X-ray
images with known content are well-suited for training deep learning models
that improve the segmentation of X-ray images. Moreover, foundation models
like Sam2 [185] or MedSam [145] can be utilized to improve the segmentation of
X-ray images.

Finally, the automatic adaptation of X-ray image processing pipelines can be
further enhanced. Rather than solely incorporating radiologists’ feedback in the
form of previous X-ray images, which limits improvements in image impression,
their feedback should be integrated as a preference function. This function can be
optimized using reinforcement learning techniques. Moreover, diagnostic errors
made by radiologists can also be considered during the optimization process.
For instance, an undetected carcinoma might prompt adjustments to image
processing parameters to better highlight such carcinomas. Therefore, instead
of maintaining a fixed image impression, the image impression can evolve in
tandem with the radiologist’s preferences and skills to achieve a perfect interplay.

8.3 Final Words

The initial objective of this work was to explore the potential of machine learning
in enhancing the diagnostic accuracy of X-ray images. Consequently, we have
demonstrated that machine learning algorithms, particularly deep learning al-
gorithms, can significantly improve X-ray image processing algorithms at every
stage of the imaging pipeline. Given the rapid and ongoing advancements in deep
learning techniques, we posit that our work merely provides a glimpse into the
potential improvements that could be realized in future X-ray image processing.
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Figure A.1: Comparison of the NPS simulation at dose reduction Lvl. 2, without
electronic noise or scintillator blurring, against the NPS of the actual acquisition.

151



152 APPENDIX A. DETAILED RESULTS

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Frequency

N
P

S

Real
No Electronic Noise

No Scintillator Blurring

Figure A.2: Comparison of the NPS simulation at dose reduction Lvl. 3, without
electronic noise or scintillator blurring, against the NPS of the actual acquisition.

SegNet RegNet H-Net DH-Net

General 0.9887±0.0073 0.9919±0.0049 0.9704±0.0470 0.9794±0.0123
Artifacts 0.9903±0.0067 0.9931±0.0036 0.9305±0.2145 0.9306±0.2154
Implants 0.9859±0.0113 0.9892±0.0089 0.9649±0.0762 0.9789±0.0098

Table A.1: Mean Dice scores and standard deviations of SegNet, RegNet, H-Net,
and DH-Net on three test sets.
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Hyperparameter Value

Number of epochs 300
Optimizer Adam [115]
Learning rate 0.0001
Loss function ReLU-loss combined with SSIM
ReLU-loss weighting factor (η) 10
Overestimation punishment factor (c) 3
Image crop size 64×64
Number of training patches 276,345
Number of validation patches 69,766
Dose reduction factor 25

Table A.2: Hyperparameters for training the denoising network.

Calc. Original Noisy MSE ReLU-L SSIM ReLU-L + SSIM MSE + SSIM
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Figure A.3: The denoised patches with microcalcifications, which are missing in
Section 5.3.2, are depicted. The MSE between each patch and the GT is measured,
and the average of these measurements is stated.



154 APPENDIX A. DETAILED RESULTS

Calc. MSE ReLU-L SSIM ReLU-L + SSIM MSE + SSIM

p1 1650.5 1025.6 975.2 886.5 1139.8
p2 979.4 603.0 647.4 547.2 757.8
p3 1138.8 820.0 591.4 518.6 857.0
p4 1275.1 1287.2 1337.0 1165.0 1118.3
p5 1220.9 1139.1 837.9 1044.4 1006.4
p6 706.0 566.0 583.2 588.0 600.2
p7 684.6 271.2 350.6 289.0 358.8
p8 681.0 492.8 487.6 462.4 572.7
p9 782.3 559.8 664.2 563.4 701.2
p10 763.4 761.0 818.0 701.6 781.6
p11 796.8 423.2 614.5 467.6 612.2
p12 554.2 504.7 490.2 523.0 496.5
p13 1220.9 1139.1 837.9 1044.4 1006.4
p14 545.4 494.6 533.1 489.8 512.1
p15 502.7 429.5 433.9 452.0 430.4

Average 900.13 701.06 680.14 649.52 730.09

Figure A.4: This table shows the MSE of the denoised microcalcifications against
the GT, corresponding to Fig. 5.5 and Fig. A.3.
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ADC Analog-to-Digital Converter

ANN Artificial Neural Network

BI-RADS Breast Imaging Reporting and Data System

BM3D Block-Matching 3D

CC Craniocaudal

CDF Cumulative Distribution Function

CDR Cancer Detection Rate

CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional Neural Network

CT Computed Tomography

DALI Workshop on Data Augmentation Labeling and Imperfections
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DCIS Ductal Carcinoma In Situ

DH-Net Deep Hough Network

DHT Deep Hough Transform

DM Digital Mammogram

DnCNN Denoising Convolutional Neural Network

EdgeM Edge Module

FCN Fully Convolutional Network
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FFDM Full Field Digital Mammography

GD Gradient Descent

GPU Graphics Processing Unit

∇-Matching Remap Function generated with Gradient Matching

GT Ground Truth

HD Hough Domain

H-Net Hough Network

HT Hough Transform

IDC Invasive Ductal Carcinoma

ILC Invasive Lobular Carcinoma

k-NN k-Nearest Neighbors

LAP Linear Analysis Pipeline

LAP-h LAP’s h parameter sweep dataset

LAP-l LAP’s l parameter sweep dataset

LAP-w LAP’s w parameter sweep dataset

LAP-X LAP’s eXtreme parameter test dataset

LCIS Lobular Carcinoma In Situ

LLF Local Laplacian Filter

lr Learning Rate

LUT Look-Up Table

MBTST Malmö Breast Tomosynthesis Screening Trial

MICCAI Medical Image Computing and Computer Assisted Intervention

MLO Mediolateral Oblique

MLP Multi-Layer Perceptron

MLPNorm-RM MLP Remapping Function optimized with Norm.

MLP-RM MLP Remapping Function optimized w/o Norm.

MSE Mean Squared Error

MSSIM Mean Structural Similarity Index
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NPS Noise Power Spectrum

Orig-RM Original Remapping Function optimized w/o Norm.

OrigNorm-RM Original Remapping Function optimized with Norm.

PASS Proprietary Advanced Style System

PDF Probability Density Function

PSNR Peak Signal-to-Noise Ratio

RealNet Real Data Trained Network

RefineM Refinement Module

RegNet Regularization Network

ReLU Rectified Linear Unit

LReLU ReLU-Loss

ResNet Residual Network

ROI Region of Interest

RP Rosenblatt Perceptron

SegM Segmentation Module

SegNet Segmentation Network

SGD Stochastic Gradient Descent

SimNet Simulation Trained Network

SimSiam Simple Siamese

SM Synthetic Mammogram

SNR Signal-to-Noise Ratio

SSIM Structural Similarity Index

StyleX Style Metric for X-ray Images

TFT Thin Film Transistor

TMI Transactions on Medical Imaging

TV Total Variation

VICTRE Virtual Imaging Clinical Trial for Regulatory Evaluation

VST Variance Stabilizing Transformation
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WGAN Wasserstein Generative Adversarial Network
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