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Abstract
In this work, the optical properties of semiconductor quantum dots (QDs) are stud-
ied and a particular emphasis is placed on many-particle correlations of the confined
carriers and the emitted photons. In each part of this thesis a different aspect of
the light-matter interaction in semiconductor QDs is examined. According to the
requirements of the physical situation the theoretical methods are modified and
further developed.

As a first step a microscopic theory for the luminescence into free space of a single
semiconductor QD is developed. To formulate this theory the well established cluster
expansion is used with the twist that here, all possible many-particle correlations
of the carriers confined to the QD are included exactly. Furthermore the developed
theory allows for a consistent description of scattering and dephasing, that goes
beyond phenomenological relaxation rates.

Based on the presented modifications of the cluster expansion a general formalism
to derive equations of motion for open many-particle systems is introduced. This
formalism, although more flexible than the cluster expansion, is equivalent to the
former and it allows to go to considerably higher orders of approximation. With
this approach the photon autocorrelation functions of light emitted by a QD based
microcavity laser are calculated and the convergence of the cluster expansion is
demonstrated.

To understand results of recent experiments performed in the group of Prof. Re-
itzenstein (TU Berlin) on bimodal microcavity lasers, a two-mode laser theory is
presented. It is shown how the interaction of the two cavity modes mediated by the
QDs triggers super-thermal intensity fluctuations. The results of the microscopic
theory are in excellent agreement with the experimental results. In order to under-
stand the observed intensity fluctuations in terms of the photon statistics an intuitive
and exactly solvable master-equation model is developed, which is able to reproduce
the results qualitatively. A comprehensive physical picture of the observed effects is
given by the dynamics of the first order autocorrelation function.

In the models presented so far the correlations of either the cavity photons or
the carriers confined to a QD have played an important role. However, correlations
between different emitters (QDs) have been neglected so far as this is typically done
in standard laser models as well. To further understand the threshold behavior of
current state of the art micro/nano cavity lasers the influence of quantum mechanical
correlations between different QDs is investigated. It turns out that additionally
to the laser transition, a system that is dominated by inter emitter correlations,
undergoes a second transition from the sub- to superradiant regime. It is further
demonstrated that the inter emitter correlations can be the decisive reason for the
system to enter the lasing regime.
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Chapter 1

Introduction

Lasers are an essential tool for fundamental and applied research and even play
an important role in our everyday life [Perkowitz, 2010, Max et al., 2010]. In the last
two decades the development of optical cavities [Reitzenstein and Forchel, 2010, Cao
and Wiersig, 2015] and lasers has shown a remarkable miniaturization [He et al.,
2013, Vahala, 2003, Kryzhanovskaya et al., 2014] that has led to highly efficient
(laser-)devices with a very low laser threshold [Reitzenstein et al., 2008b]. Refer-
ence [Gourley, 1998] gives a good popular introduction to micro/nano-lasers, and
Ref. [Samuel et al., 2009] reviews the traditional criteria a light source has to fulfill
to be called a laser.

One of the main effects that makes micro/nano-lasers more efficient than con-
ventional lasers is the Purcell-Effect [Purcell, 1946]. The Purcell effect is the mod-
ification (enhancement) of the spontaneous emission from the light source by its
electromagnetic environment into certain modes. The factor that quantifies the
enhancement of the spontaneous emission into a cavity mode compared to the spon-
taneous emission into free space is called the Purcell factor [Kleppner, 1981, Lodahl
et al., 2004, Haroche and Kleppner, 2008]. The enhancement is largest for high-
quality modes (i.e. modes with a very long photon dwelling times) with a low mode
volume.

The important quantity to characterize a laser device is the β-factor which is
closely related to the Purcell factor. The β-factor is the fraction of spontaneous
emission into the laser mode compared to the overall spontaneous emission of the
laser-gain medium. Conventional gas lasers have β-factors of roughly 10−6 meaning
that only one of a million spontaneously emitted photons actually goes into the laser
mode. Nowadays many micro lasers with β-factors around 0.1 are used in experi-
ments e.g. [Lermer et al., 2013, Musiał et al., 2015] and there are experiments that
claim to have lasers with a β-factor close to one [Strauf et al., 2006, Thyrrestrup
et al., 2010]. The β-factor of a laser determines the threshold behavior. The follow-
ing rule of thumb, that is only exact for a simple rate equation analysis, still gives a
good impression of the (in conventional lasers dramatic) changes a laser undergoes
at the threshold and demonstrates the significance of the β-factor: ’In a log-log scale
input-output plot, the intensity jump at the laser-threshold is proportional to β−1’
[Rice and Carmichael, 1994].

The threshold behavior of a laser is of course influenced by various effects [Chow
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and Jahnke, 2013, Chow et al., 2014, Gies et al., 2007] and some of them will be
addressed in this thesis. For conventional lasers the threshold and the β-factor can
simply be determined by the intensity jump over several orders of magnitude at the
threshold. In a micro/nano-laser where almost the entire spontaneous emission goes
into the lasing mode, there is no sharp intensity jump and the onset of lasing cannot
be determined by the input/output curve alone. To characterize such ’threshold-
less’ micro/nano-lasers, new theories [Rice and Carmichael, 1994] and experiments
[Ulrich et al., 2007] have been developed that monitor the transition into lasing by
the changes in the photon statistics of the emitted light [Wiersig et al., 2009]. The
theories have to take photon correlations into account that arise from the quantum
nature of light, in order to describe the light-matter interaction in the laser accu-
rately. These more advanced theories and experiments show that the emitted light
changes qualitatively even if no threshold is visible in the input-output curve. Inde-
pendent from the height of the intensity jump the process dominating the system,
changes from spontaneous to stimulated emission at the laser threshold. This transi-
tion from the spontaneous to the stimulated emission regime changes the statistical
properties of the emitted light from thermal to coherent. In the lasing regime the
photons no longer obey thermal statistics but have a Poisson-distribution, typical
for a coherent state. The change of the photon statistics is measurable in the photon
correlation function [Ulrich et al., 2007, Wiersig et al., 2009] and is used to deter-
mine the laser threshold and characterize the coherence properties of the emitted
light.

Optical microresonators facilitate the confinement of light to a very small spa-
cial region, which is required to achieve low threshold laser devices and to couple a
single mode to the gain medium [Vahala, 2003]. There are many different types of
microresonators, and their design, optimization, characterization, and experimental
realization are research fields of their own. The type of microresonators that are
used for the experiments described in this thesis are micropillars like the one shown
in Fig. 1.1. In axial direction the light is confined by Bragg-reflection accomplished
by several λ

4
-layers of different refractive index material below and above the region

where the light is confined to and where the gain material is located [Sebald et al.,
2009]. In lateral direction the light is confined by air-dielectric guiding [Vahala,
2003].

Semiconductor Quantum Dots Next to the laser-mode resonator that stores
the photons and modifies their emission, the gain medium, that actually emits the
photons into the laser mode is the second crucial component of a laser. While
atoms in the gas phase are the traditional gain medium, semiconductor lasers offer
a variety of advantages [Alferov, 2001], with respect e.g. in miniaturization and mass
production. The progress made in growth technologies has led to nano structured
low dimensional gain materials. These new materials allow to tailor their optical
and electronic properties [Bimberg et al., 1999, Bimberg et al., 2009, Reitzenstein,
2012], and offer a variety of possible applications in quantum cryptography, quantum
computing, and optoelectronics [Petroff et al., 2001].

In this thesis the gain material under consideration are zero dimensional struc-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Scanning electron-microscopy picture of a micropillar based on ZnSe
and MgS with a diameter 700 nm. The pillar has been fabricated by the groups of
D. Hommel and J. Gutowski in Bremen [Lohmeyer et al., 2006].
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Figure 1.2: Free density of states for systems with three-, two-, one-, and zero-
dimensional extension [Singleton, 2001, Haug and Koch, 2004].

tures. In these structures the carriers are confined in all three spatial directions,
that is why early works have called them ’quantum boxes’ [Asada et al., 1986] or
’artificial atoms’ [Fafard et al., 1999]. These names arise from the discrete atom-like
density of states that can be understood by a simple box potential model for the
carrier confinement. Whenever the wave function of the schrödinger equation is
confined to a finite region in all spatial directions the energy level structure of the
single-particle states becomes discrete in contrast to the (quasi) continuous states
of systems where carrier propagation is allowed in at least one direction. The in-
fluence of the dimension of a system on the free density of states is illustrated in
Fig. 1.2. Today ’quantum dot’ (QD) is the most common term for these zero dimen-
sional structures. The QDs studied in this thesis are ensembles of several thousand
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atoms of a certain semiconductor material located in a different semiconductor ma-
terial with a larger band gap. These ’islands’ of atoms with an extension of several
nanometers create the ’potential box’ that confines the quasi-free carriers in all
spacial directions.

For more than a decade QDs are of high interest [Michler, 2003] for fundamental
research and their potential applications. In contrast to atoms the confining po-
tential and with this the level spacing of the confined carriers can be tailored by
the size, geometry and material of the QDs. For example InGaAS QDs on a GaAs
substrate exhibit a direct band-gap in the infrared spectrum. Among many differ-
ent applications it was demonstrated early on that due to their high gain [Asada
et al., 1986] and low temperature dependence [Arakawa and Sakaki, 1982] QDs are a
very promising material for low threshold lasers. One way of fabricating QDs is the
self organized growth in the Stranski-Krastanow-mode [Jacobi, 2003, Anders et al.,
2002]: By molecular beam epitaxy or metal organic gas epitaxy a semiconductor
material is grown on top of a substrate material with a larger band gap. At the be-
ginning the new material layer grows homogeneously with the same lattice constant
as the substrate, this introduces tension between the two materials. At a critical
thickness this tension is reduced by the rise of small material island, the actual QDs.
This process results in a thin homogeneous wetting layer with randomly distributed
QDs as shown in Fig. 1.3. Subsequently the substrate is grown on top of the wetting
layer with the QDs.

Figure 1.3: Transmission electron microscope of self organized InGaAs QDs. Left:
Single QD with the wetting layer on a GaAs substrate. Right: Top view of a sample
with randomly distributed QDs. Both pictures are taken from Ref. [Anders et al.,
2002].

One main task for theorists describing the light-matter interaction of semicon-
ductor QDs is to identify differences in behavior between QDs and atoms. Since
the level spacing of the lowest confined states is much smaller for QDs than for
atoms, the energetically higher states have to be taken into account. This gives
rise to many-particle effects. As a result, a simple two-level description of the QDs
which is often used for atomic systems is generally no longer valid. Semiconductor
QDs cannot be regarded as isolated systems; they are located in a dense semicon-
ductor environment. The confined carrier states couple to phonons, the electronic
(quasi)continuum states of the wetting layer, and the bulk material. The interaction
with the environment triggers various processes that have to be taken into account
for a realistic QD model. A generic QD model is portrayed in Fig. 1.4.

Superradiance Successful realizations of single QD lasers have been reported
[Reitzenstein et al., 2008a, Nomura et al., 2009, Nomura et al., 2010, Xie et al., 2007]
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Figure 1.4: Illustration of the various processes that take place in a QD. For elec-
trically pumped QDs, electrons and holes are created in the quasicontinuum states
and relax into the upper confined QD states. In the QD model used throughout
this thesis, this process is mapped onto the direct creation of electrons and holes in
the p-shell. The carriers within the QD can relax further into the QD via scattering
with the continuum- and the phonon-states. When multiple carriers are confined to
the QD their Coulomb interaction has to be taken into account, as well. The re-
combination of electron-hole pairs creates photons and the reverse process absorbs
them.

and these devices present a very interesting field for theoretical research [Ritter et al.,
2010, Gies et al., 2011, Gies et al., 2012]. However, state-of-the-art micropillar-lasers
have between twenty and several hundred QDs as their active material [Reitzenstein
et al., 2008b]. These are the systems that are studied in this thesis. When several
emitters are coupled to the same radiation field, they can exhibit a phenomenon
that is called superradiance (SR). Superradiance was originally discussed by Dicke
for the coherent spontaneous emission of light by an ensemble of initially excited
atoms in the gas phase [Dicke, 1954]. Dicke showed that the spontaneous emission
from an ensemble of atoms can be enhanced simply by the fact that the atoms
”share” the excitation. The concept of shared excitation can be understood with the
introduction of superpositions of energetically degenerate states [Mandel and Wolf,
1995]. When this superposition is symmetric with respect to the commutation of
two emitters, the initially excited ensemble emits a SR burst of light. This emitted
pulse is significantly larger than and of a shorter duration compared to the emission
profile of a single emitter multiplied by the number of emitters in the former case.

The concept of SR and collective emission has lead to many studies in vari-
ous fields of research, reaching from single-photon emission enhancement [Scully
and Svidzinsky, 2009, Chen et al., 2012] over photosynthetic bio-complexes [Ferrari
et al., 2014] to Dicke phase transitions [Liu et al., 2014] and directional SR emis-
sion from statistically independent incoherent sources [Oppel et al., 2014]. Light
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sources based on alkaline-earth atoms can emit collectively photons with an ex-
tremely narrow linewidth [Meiser et al., 2009], which has triggered the development
of a recently reported new kind of “nearly photon-less” SR laser [Bohnet et al., 2012].
For semiconductor systems, SR effects resulting in radiative lifetime changes have
been shown for an ensemble of semiconductor QDs [Scheibner et al., 2007]. For a
few (up to three) quantum emitters it is shown that the coupling to a common reser-
voir can increase the coherence of the emitted light by inducing additional quantum
correlations between the emitters [Su et al., 2013]. Also in quantum well systems
spontaneous-emission enhancement has been demonstrated [Timothy Noe Ii et al.,
2012] that originates from superfluorescence, a collective effect closely related to SR
(see [Mandel and Wolf, 1995] for details).

Outline of this Thesis This general introduction to the main physical topics
of this thesis is followed by an outline of the chapters. Figure 1.5 gives a graphical
overview on the subjects of this thesis. An extended introduction to the correspond-
ing topics is given at the beginning of each chapter. The chapters are roughly in
the order in which they have been worked out, and start with the initial task that
motivated this thesis: ’The technical and conceptional improvement of the cluster
expansion method for semiconductor QD systems’.

Chapter 2 gives a short introduction to general aspects of the theoretical descrip-
tion of light-matter interaction in semiconductor nano structures. The calculation of
the single-particle states for the confined carriers and the cavity modes is sketched.
In a second step the construction of the many-particle Hamiltonian, in the frame-
work of the second quantization is shown. For this thesis the single-particle states
enter only indirectly into the theory via the matrix elements of the many-particle
Hamiltonian describing the Coulomb-interaction of the carriers and the light-matter
interaction of photons and electron-hole pairs in the dipole approximation. To de-
scribe the influence of the environment on the localized carrier and photon states
a reduced density matrix formalism is applied which results in the von Neumann
Lindblad (vNL) equation for the density operator of the coupled system.

Chapter 3 introduces one formulation of the cluster expansion (CE) [Fricke,
1996b, Fricke, 1996a, Fricke et al., 1997, Schoeller, 1994], an approximation method
to solve the vNL equation indirectly, that is used and further developed in this
thesis. Direct numerical exact solutions of the vNL equation have been successfully
applied for the description of small systems containing one or very few QDs [Ritter
et al., 2010, Gies et al., 2011, Florian et al., 2013a]. Greens function methods
have also been used to investigate the light-matter interaction of semiconductor QD
systems [Bányai et al., 1998, Binder et al., 1992, Lorke et al., 2006, Schneider et al.,
2004, Seebeck et al., 2005], but they have the shortcoming that second-order photon
correlations are very hard to obtain [Florian, 2014]. For large systems the derivation
and solution of EoM hierarchies like the CE is an established method in the field
of semiconductor quantum optics [Hoyer et al., 2004, Kira and Koch, 2011, Jahnke,
2012]. An important result of this thesis is the extension and reformulation of
the CE. The CE is based on the neglection of many-particle correlation functions
and allows one to systematically include higher-order many-particle correlations
and truncate the well known Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY)
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Figure 1.5: Graphical table of contents of this thesis: I. the quantum mechanical
description of the processes that take place in a single QD (chapter 3), II. the photon
correlations and coherence properties of a single-mode microcavity laser (section
5.1), III. the photon correlations and coherence properties of a bimodal microcavity
laser (section 5.2 and 5.3), IV. the influence of inter-QD correlations on the laser
threshold (chapter 6), and V. the cluster expansion (chapter 4).

hierarchy in many-particle physics. Originally the CE was designed for large systems
i.e. systems with a (quasi-)continuous Hilbert space with a large number of single-
particle states, since the neglection of many-particle correlations relies partly on
the large size of the Hilbert space. The application of the CE to QD systems
introduces subtle difficulties, since a QD accommodates only a limited number of
carriers confined to very few states.

In chapter 3 it is shown how the discrete and finite level structure of a QD can be
incorporated into the traditional formulation of the CE. It is also demonstrated in
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Chapter 3, how the influence of the environment can be incorporated in the CE via
the Lindblad formalism. In this context the relation between scattering, dephasing
and the build up of correlations due to the environment is discussed as well. As an
application of the modified CE the photo luminescence of a single QD into free space
is investigated. The obtained spectra exhibit the expected biexcitonic signatures,
and the peak heights, widths and positions can be interpreted by connecting them
to the underlying physical process. In these new results the nonphysical behavior
produced by the conventional CE used in previous approaches [Baer et al., 2006] are
no longer present.

Chapter 4 takes the ideas developed in chapter 3 and uses them to radically
reformulate the CE. Instead of modifying the traditional CE by adding corrective
terms to account for the finite number of carriers confined to a QD as done in chapter
3, the expectation value based cluster expansion (EVCE) is introduced. The EVCE
is entirely formulated in terms of expectation values instead of correlation functions.
It is shown in this chapter that the EVCE can produce exactly the same results as the
CE. However, the EVCE is conceptually much simpler, allows for a straight forward
application of the Lindblad formalism to all orders, a flexible implementation of
finite size effects e.g. in QDs and reduces the algebraic effort considerably.

Chapter 5 focuses on the coherence properties of QD-based micro/nano cavity
lasers. In the first section the EVCE is applied to a single-mode QD-based microcav-
ity laser. As shown in chapter 4 the EVCE enables one to go to higher orders in the
BBGKY-hierarchy than the CE. This particular advantage of the EVCE is used in
this chapter to show (for the first time) that the CE actually converges when applied
to a QD laser system. As discussed in the above paragraph, for increasing β-factors
the typical intensity jump at the lasers-threshold vanishes [Rice and Carmichael,
1994]. To monitor the transition to lasing for these nearly threshold less devices
one has to investigate the statistical properties of the emitted light [Chow et al.,
2014]. The second-order photon correlation function at zero delay time g(2)(0) is
commonly accepted as a good indicator for the onset of lasing [Jin et al., 1994, Gies
et al., 2007, Chow et al., 2014]. However, at the lasing threshold the entire statistics
of the emitted light changes, not just its second moment g(2)(0). Having access to
higher orders of the BBGKY-hierarchy one can also monitor the laser transition ac-
cording to higher-order photon correlation function at zero delay time g(n)(0), with
n = 3, 4, 5. The theoretical study of these higher-order functions becomes more rel-
evant. On the one hand since improvements of experimental techniques [Zhou et al.,
2013, Dynes et al., 2011, Stevens et al., 2010] have made it possible to measure
them in various systems e.g. in Bose-Einstein Condensates [Hodgman et al., 2011],
in micro- and nano-lasers [Aßmann et al., 2009, Elvira et al., 2011], and in strongly
coupled QD-cavity systems [Rundquist et al., 2014]. On the other hand there are
many situations e.g. [Leymann et al., 2013c] where the study of only the second
moments is not sufficient to gain enough information about the character of the full
photon statistics.

In the second section of chapter 5 the microscopic theory for semiconductor QD-
based single-mode microcavity lasers, presented in Ref. [Gies et al., 2007], is extended
to a two-mode theory. This theory is used to explain the experimentally observed
super thermal intensity fluctuations in a bimodal microcavity laser [Leymann et al.,
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2013c, Leymann et al., 2013a]. In electrically contacted micropillars a small asym-
metry of the cross section leads to a splitting of the two degenerate fundamental
modes. Thus two cavity modes with slightly different frequencies are supported,
that emit linear (orthogonal) polarized light. The gain competition of these two
high-quality modes leads to the observed intensity fluctuations in the weaker mode.
A very good agreement between the experimental results and the microscopic theory
is achieved, within the framework of the CE.

However, for a more intuitive understanding of the underlying physics, a master
equation based on a simple birth-and-death model is derived [Rice and Carmichael,
1994]. In this model all specific semiconductor aspects are ignored and it solely
features two modes competing for laser gain. The simplicity of this model allows
one to solve its master equation numerically exact, and obtain to the full photon
statistics. The examination of the full photon statistics reveals that the peculiar
intensity fluctuations of the weak mode are related to a double peak structure in
the photon statistics. The photon statistics of each mode is composed of a thermal-
and a Poisson-like part producing one maximum at the zero photon state and one
Poisson-like peak around the average photon number.

The third section of chapter 5 deals with the spectral properties of the modes,
that are directly related to their gain-mediated interaction. Equations of motion for
the first order autocorrelation-function g(1)(τ) are derived [Wiersig, 2010]. Starting
from the microscopic CE, the key aspects describing the interaction of the two
modes are mapped to a 2 × 2 matrix model with a coupling strength proportional
to the number of QDs times the inversion. This reveals the relationship to the
collective strong coupling regime. Conventional normal mode coupling appears in
atomic [Brune et al., 1996, McKeever et al., 2003, Nußmann et al., 2005] and solid-
state [Reithmaier et al., 2004, Yoshie et al., 2004] systems in the single-particle or
collective strong coupling [Tavis and Cummings, 1968, Andreani et al., 1999, Raizen
et al., 1989, Tuchman et al., 2006, Wickenbrock et al., 2013] regime. In these cases
of conventional strong coupling a single or multiple emitters couple to a photonic
mode. When losses and dephasing process are sufficiently small and the emitter and
mode frequency match, the coherent regime is reached and two new eigenstates are
formed with a frequency splitting proportional to a generalized coupling strength.

However, the mode coupling discussed in this section 5.3 is different from the
conventional coupling discussed in the literature and it is therefore called unconven-
tional normal mode coupling. In contrast to the conventional normal mode coupling
here a hybridization of the two cavity modes is observed that leads to a locking of
the frequencies and to a splitting of the linewidths in the coherent regime. In the
incoherent regime i.e. for a sufficiently large mode splitting or low coupling, both
mode frequencies are visible in each of the polarization directions, which can be
traced back to the mode hybridization. In this regime the locking of the linewidth
provides a direct explanation of the low linewidth i.e. the long coherence time of the
weak mode observed in the experiments. The large coherence time, typical for the
lasing mode, is particularly surprising since the weak mode exhibits super thermal
intensity fluctuations that can almost be regarded as the ”opposite” of lasing. The
calculated spectra are in very good agreement with the experimental results. They
clearly confirm that the double peak structure measured in the polarization direc-
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tion of the weak mode does not originate from cross-talk but is a result of the QD
mediated unconventional mode-coupling [Khanbekyan et al., 2015].

In Chapter 6 the influence of radiative coupling of the QDs on the threshold of
micro/nano lasers is studied. This collective effect is of entirely different nature than
the collective coupling discussed in the previous chapter. The collective effect dis-
cussed here, called SR, originates from the interaction of different quantum emitters
(in this case QDs) with a common radiation field resulting in a coupling between
the individual emitters. In former quantum theories for micro and nano lasers the
quantum correlations between the emitters of the gain medium (QDs, atoms, exci-
tons) have, to a large extend in the literature, been neglected [Gies et al., 2007, Rice
and Carmichael, 1994]. In this chapter it is demonstrated that for nanolasers with
a small number of QD emitters the inter-emitter coupling mediated by the cavity
field can have a strong influence on the photon statistics of the emitted light as well
as on the laser-threshold properties [Leymann et al., 2015]. The investigations are
based on the fully quantum-mechanical theory presented in the first section of chap-
ter 5, which is extended by the inclusion of inter-emitter correlations. It is shown
that for typical emitter numbers of current state-of-the-art devices (∼ 20 − 100)
[Lermer et al., 2013, Strauf and Jahnke, 2011] radiation-field induced inter-emitter
coupling can be crucial for the system to reach the lasing regime. Since the devel-
oped microscopic theory is scalable, the influence of the system size i.e. the emitter
number can be studied. In the limit of large emitter numbers the influence of the
inter-emitter coupling diminishes and the results agree with the ones obtained by
former theories neglecting the inter-emitter coupling. The inter-emitter correlations
suppress the spontaneous emission below the threshold and enhance the emission
above the threshold. The superradiantly enhanced intensity jump at the threshold
can lead to an underestimation of the β-factor. The presented effects are interpreted
in terms of symmetric and antisymmetric Dicke states [Garraway, 2011]. The results
demonstrate that in QD nanolasers the picture of independent emitters breaks down
and these devices have to be regarded as coherently correlated quantum systems.

The last Chapter 7 concludes the thesis, discusses open questions, and proposes
new research projects.
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Chapter 2

Basic aspects of the Theory of
Light-Matter Interaction in
Semiconductors

The quantum mechanical description of the light-matter interaction in semiconduc-
tor nano-structures is accomplished in several steps, where each step is a research
field of its own. In this introductory overview the steps that are not in the focus of
this thesis are only sketched. In the first step the single-particle states of the elec-
tronic carriers need to be determined. To accomplish this, one has to find solutions
of the Schrödinger equation for the wave function of the non-interacting carriers.
In a second step the mode functions of the electromagnetic field without the active
material need to be determined by solving Maxwell’s equations. Within the frame-
work of the canonical quantization the single-particle states and the mode functions
are used in the next step to calculate the matrix elements of the full many-particle
Hamiltonian describing the interacting system. To facilitate the calculations involv-
ing quantum dots (QDs) embedded in a dense semiconductor environment one needs
to separate the Hilbert space into a system and an environment part, and reduce
the dynamical calculations to the system.

2.1 Electronic and photonic single-particle states

A very accurate framework to determine the single-particle states of carriers confined
to semiconductor nano-structures are tight-binding models [Singleton, 2001, Sheng
et al., 2005, Schulz and Czycholl, 2005], where the precise structure of the atomic
lattice forming the QD enters the calculation to determine the confined states. For
a simpler description one can start with the single-particle states and the band
structure of the corresponding bulk material [Singleton, 2001, Chelikowsky and Co-
hen, 1976]. The single-particle states of the bulk material can be used to find the
confined states introduced by the QD. For GaAs and other zinc-blende materials
with a direct band gap, semi-empirical methods provide good agreement with more
accurate methods [Sheng et al., 2005], given that the QD extent becomes not to
small (diameter & 12nm) so that the influence of the precise atomic structure is ir-
relevant compared to the global shape. Representative for these kind of continuum
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methods are the k · p-model [Haug and Koch, 2004, Sheng et al., 2005] and the
envelope-function approach [Haug and Koch, 2004] which will be sketched in the
following.

In systems with a direct band gap in the optical region of the spectrum the part of
the Brillouin-zone, which is relevant for optical transitions, lies around the extrema
of its band structure. Figure 2.1 shows the band structure of GaAs, where the
extrema are located at the Γ-point. Around the Γ-point the band structure can be
approximated by parabolic functions. By this reasoning one can describe the carriers
as quasi-free particles with an effective mass mλ

eff that depends on the curvature of
the corresponding band, where λ is the corresponding band index. According to
the Bloch-theorem the carrier wave functions for the bulk material can be expressed
by plane waves multiplied with functions uλk(r) with the same periodicity as the
crystal lattice and k being the wave vector. The discrete translational symmetry of
the system is broken by the QD that introduces an effective potential UQD(r) that
varies only slowly over one unit cell. In the envelope function approximation the
plane waves, valid for the periodic bulk material, are substituted by slowly varying
envelope functions ζλν (r). The ansatz for the carrier wave function is the lattice-
periodic Bloch-function uλk(r) times the envelope function ζν

ψλν (r) = ζλν (r)uλkw0(r), (2.1)

where ν stands for the quantum numbers specifying the confined state. The envelope

Figure 2.1: Band structure of GaAs taken from Ref. [Rohlfing et al., 1993]. The
gray circle marks the area relevant for optical transitions.

function can be found by solving the effective single-particle Schrödinger equation
[ −~2

2mλ
eff

4+UQD(r)

]
ζλν (r) = ελνζ

λ
ν (r), (2.2)

with the effective mass and the QD potential. For lens shaped QDs (like the ones
shown in Fig. 1.3) the potential in the direction orthogonal to the growth direction
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can be approximated by a two dimensional harmonic potential [Wojs et al., 1996,
Baer et al., 2004, Nielsen et al., 2004, Teichmann et al., 2013]. In growth direction the
strong confinement by the QD and the wetting layer allows for a simple description
with a one dimensional potential well. In this case the separation ansatz

ζν(r) = ϕn(z)φl(r⊥) (2.3)

is valid, where ϕ(z) is confined by the potential well in growth direction and φ(r⊥)
is confined by the two-dimensional harmonic potential in the plane. The energetic
difference between the sub-bands n is large compared to the optical energies (1eV �
50meV ) [Wojs et al., 1996] so that a restriction to the first sub-band is justified. The
cylindrical symmetry of the QDs implies to classify the confined carrier states by
their angular-momentum and spin encoded in the quantum number ν. In this thesis,
the simple case of QDs with two confined states for electrons and holes is considered
[Gies et al., 2011], with the quantum numbers s, p. For a fixed spin direction the
s-state is non degenerated and the p-state is twofold degenerated.

With the single-particle states one can construct the field operators

Ψ̂(t, r) =
∑

âλ,ν(t)ψ
λ
ν (r), (2.4)

where the â
(†)
λ,i are the fermionic annihilation (creation) operators1 obeying the

anti-commutation relations used for canonical quantization [Schwabl, 2008, Mahan,
2000]. To obtain also a quantum mechanical description of the light field, a similar
approach as for the electronic Hamiltonian has to be chosen. First the wave equation
for the vector potential in Coulomb-gauge

[
4+

n(r)

c2

∂2

∂t2

]
A(r, t) = 0 (2.5)

has to be solved, where n(r) is the refractive index of the resonator and the sur-
rounding material. The field is then expanded into eigenmodes Mξ with a fixed
frequency ωξ

A(r, t) =
∑[

bξ(t)Mξ(r) + b∗ξ(t)M
∗
ξ(r)

]
, (2.6)

where ξ contains the polarization direction and the wave vector. When the mode
functions are determined, one can express the electromagnetic field operator, within
the framework of the canonical quantization, in terms of bosonic annihilation and
creation operators

Â(r, t) =
∑[

b̂†ξ(t)M
∗
ξ(r) + b̂ξ(t)Mξ(r)

]
, (2.7)

where the b̂(†)
ξ obey the canonical bosonic commutation relations.

1The cumbersome notation, where an operator is indicated by a hat on top of its corresponding
letter, is only used in this chapter.
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2.2 Many-particle Hamiltonian
With the field operators one can construct the full Hamiltonian of the interacting
system. The many-particle Hamiltonian consists of several parts: The Hamiltonian
of the free carriers

Ĥ0 =

∫
d3rΨ̂ †(t, r)

[
~2

2m
4+U(r)

]
Ψ̂(t, r), (2.8)

since the single-particle problem is already solved the free Hamiltonian is a diagonal
sum2

Ĥ0 =
∑

ελν â
†
λ,ν âλ,ν (2.9)

over the creation and annihilation operators with the single-particle energies ελν . The
Coulomb Hamiltonian can be constructed in a similar fashion only that here two
carrier field operators are involved

ĤCoul =

∫
d3r

∫
d3r′Ψ̂ †(t, r)Ψ̂ †(t, r′)V (r− r′)Ψ̂(t, r′)Ψ̂(t, r), (2.10)

with V (r) = e2/(4πε0ε|r|) being the Coulomb-energy with the electron charge e
and the dielectric function ε0ε. Like the free particle Hamiltonian the Coulomb
Hamiltonian can be expressed by creation and annihilation operators

ĤCoul =
∑

V λλ′
νιν′ι′ â

†
λ,ν â

†
λ′,ιâλ′,ν′ âλ,ι′ , (2.11)

and the corresponding matrix elements are

V λλ′
νιν′ι′ =

∫
d3r

∫
d3r′ψλ∗ν (r)ψλ

′∗
ι (r′)V (r− r′)ψλ

′
ν′ (r

′)ψλι′(r), (2.12)

where the single-particle wave functions enter. The free part of the photon Hamil-
tonian can be written as

Ĥph =
∑

~ωξ
(
b̂†ξ b̂ξ +

1

2

)
. (2.13)

The interaction of the carriers with the transverse electric field (in Coulomb gauge)
ET = − ∂

∂t
A can be described in dipole approximation [Garrison and Chiao, 2014,

Wiersig, 2007] since the mode function of the electromagnetic field varies only
slightly over the extend of the QD Mξ(r) ≈ Mξ(r0), with r0 being the location
of the QD

ĤD =

∫
d3rΨ̂ †(t, r)

[
−erÊT (r0)

]
Ψ̂(t, r). (2.14)

With the dipole matrix elements

gλλ
′

ξνι =

∫
d3r ψλ∗ν (r)erMξ(r)ψ

λ′
ι (r) (2.15)

2We omit the specification of the summation indices in this chapter, since in all cases the
summation has to be performed over all occurring indices.
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one can express the dipole Hamiltonian

HD =
∑

[gλλ
′

ξνι â
†
λ,ν âλ′,ι(b̂

†
ξ + b̂ξ) + g∗λλ

′
ξνι â

†
λ′,ιâλ,ν(b̂

†
ξ + b̂ξ)], (2.16)

in terms of bosonic and fermionic creation and annihilation operators. Note that
Eξ =

√
~ω/2ε0εVξ is the vacuum amplitude where the mode volume Vξ is contained

in the mode functions. A more graphic interpretation of the dipole matrix elements
is that it measures the overlap of the mode function of the light field in the cavity
with the single-particle wave functions of the confined carriers in the states |ψλν 〉
and |ψλ′ι 〉. Throughout this thesis the approximation of equal envelopes for the
wave functions of the conduction- and the valence-carriers is used. Therefore only
diagonal transitions between the angular momentum states are supported by the
dipole Hamiltonian. The dipole matrix elements read gλλ′ξνι = Mξ(r0)dλλ′δνι, here r0

is the location of the QD and dλλ′ are the interband matrix elements (see e.g. [Baer
et al., 2006] and references therein).

The harmonic oscillations of the bulk material ions can be described by a field
theory of non-interacting Bosons [Mahan, 2000], where the fundamental excitations
are called phonons. In materials with a multi-atom basis the phonon-dispersion
relation splits into two main branches: the acoustic and the optical phonons. The
acoustic phonons have a linear dispersion relation for small wave vectors. Acoustic
phonons result from a coherent movement of ions out of their equilibrium position
in the lattice. The high frequency optical phonons have an approximately constant
frequency in the proximity of the Γ-Point and result from the movement of at least
two different ions against each other within the unit-cell [Czycholl, 2008].

The phonons interact with the carriers since the carriers receive a change in their
potential energy caused by oscillatory motion of the ions out of their equilibrium
position. The Hamiltonian interaction of the phonons with the carriers could in prin-
ciple be described analogous to the light matter interaction [Ashcroft and Mermin,
1976]. The interaction with phonons is next to the Coulomb scattering the relevant
mechanism for dephasing of the optical transitions in semiconductor QDs [Hoyer
et al., 2003] and inhibit e.g. the formation of polarization entangled photons gen-
erated by a QD cavity system [Carmele et al., 2010a]. There are countless ways to
take the phonon interaction into account ranging from exact methods [Carmele et al.,
2010b] over expressions for the phonon self-energy [Hughes et al., 2011] derived from
the independent boson model [Mahan, 2000] to phenomenological dephasing terms
directly added to the EoM [Gies et al., 2007]. In this thesis we are predominantly
interested in light-matter interaction and Coulomb effects and restrict ourselves to a
Markovian treatment of the phonons. The phonons are described as an external bath
that interacts with the carriers confined to the QD. In this approach no additional
degrees of freedom for the phonons need to be included into the calculations but
the approach still goes beyond the simple addition of phenomenological dephasing
terms to the EoM. A description of the basic principles is given in the next section.
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2.3 Equation of motion for the reduced density op-
erator

Semiconductor QDs are located in a dense environment and the discrete electronic
states confined to QDs are coupled to a (quasi)continuum of states in the wetting
layer and the bulk material. To be able to include many-particle correlations into
our theory we need to restrict the size of the systems Hilbert space and treat the
(quasi)continuum states as a reservoir. The Hamiltonian describing the system and
reservoir consists of thee parts

Ĥ = ĤSystem + ĤReservoir + ĤSR,

the system we are interested in, in this case the electrons and holes confined to
the QD and the (cavity-)photons, the reservoir and the system-reservoir interaction
Hamiltonian ĤSR =

∑
L̂i Γ̂i. Where the L̂i : S 7→ S are the operators evoking a

process in the system and Γ̂j : R 7→ R are the corresponding ones in the reservoir.
The dynamics of the complex system is described by the von-Neumann equation for
the full density operator ρ̂

d

dt
ρ̂ =

i

~

[
ρ̂, Ĥ

]
.

We are only interested in expectation values of system operators Â : S 7→ S,
and define the reduced density operator TrR(ρ̂) = ρ̂S by tracing over all reservoir
states and calculate all desired expectation values with this reduced density operator
〈Â〉 = Tr(ρ̂Â) = TrS(TrR(ρ̂)Â) = TrS(ρ̂SÂ).

To obtain a simple dynamical equation for ρ̂S the reservoir is treated in Born-
Markov approximation meaning that the reservoir R with a temperature T is very
large compared to the system and is therefore unaffected by the dynamics of the
system S

ρ̂(t) ≈ ρ̂S(t) R̂0(T ) +�����O(ĤSR)

and the timescales of the reservoir and the system dynamics can be separated. On
the much slower timescale of the system the reservoir correlations decay instantly

〈
Γ̂i(t) Γ̂j(t

′)
〉
R
∼ δ(t− t′).

These assumptions allows to derive the von Neumann-Lindblad equation (vNL)

d

dt
ρ̂S = − i

~

[
ĤS , ρ̂S

]
+
∑

λ̂νν′
(

2L̂†ν ρ̂SL̂ν′ − L̂†νL̂ν′ ρ̂S − ρ̂SL̂†νL̂ν′
)
,

for the reduced density operator ρ̂s; for details see [Carmichael, 1999]. More de-
tails on the concept and consequences of the vNL equation is given in [Breuer and
Petruccione, 2002] and it is worth mentioning that the vNL equation is the most
general trace preserving map that generates a time evolution of the density oper-
ator. The dynamics of the vNL equation are in general not reversible since the
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differences between states of the reservoir are ignored due to the tracing over all
possible reservoir states. This contracting effect of the dynamics in the system and
the tremendous reduction of the computational afford this reduced density matrix
approach provides is illustrated in Fig. 2.2. Instead of generating the dynamics in
the large space of the system and reservoir (S ⊗ R) and tracing over the reservoir
at the end of the dynamics one can trace over the reservoir in the beginning and
generate the dynamics in the much smaller space S.

S S

S ⊗R S ⊗R

TrRTrR

Figure 2.2: Illustration of the contraction of various initial conditions under the
influence of a large reservoir. A similar illustration can be found in [Breuer and
Petruccione, 2002].
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Chapter 3

Single Quantum Dot
Photoluminescence into free-space

( )

To describe the dynamics of an interacting system an equation of motion (EoM)
based theory for the description of light emission from a multi-level semiconductor
quantum dot (QD) is presented. The theory accounts for electronic excitations
in presence of the Coulomb interaction, leading to multi-exciton states, and their
coupling to the quantized electromagnetic field.

The two key aspects of this chapter concern (i) the combination of an exact
treatment of the electronic degrees of freedom with an approximate approach for
the photonic degrees of freedom that is based on the cluster expansion (CE), and
(ii) the consistent incorporation of scattering and dephasing due to the coupling to
delocalized electronic states and phonons into the EoM via Lindblad terms. Differ-
ences to previously used theories are discussed and results of the theory are shown
for free-space emission, where multi-exciton spectra are shown, and for emission
into a single high-Q cavity mode. In the latter case, a full solution of the von-
Neumann Lindblad equation is used to benchmark the proposed theory, which we
term “finite-size hierarchy” (FSH) method.

In parts this chapter is published in [Florian et al., 2013a]. The basic theoretical
concepts for this work where mainly developed in discussions between M. Florian
and H.A.M. Leymann, the EoM where derived by H.A.M. Leymann, the numerical
integrating of the equations of motion and the solution of the von-Neumann Lindblad
equation was mainly performed by M. Florian and all authors of [Florian et al.,
2013a] discussed the results.

3.1 Cluster expansion for semiconductor systems

Semiconductor heterostructures [Alferov, 2001] are of central importance in the de-
sign of today’s optoelectronic devices with a wide application range in light emitters,
detectors, and quantum information technology. Quantum dots play an important
role as active material in semiconductor lasers and quantum light emitters [Bim-
berg et al., 1999, Strauf and Jahnke, 2011, Chow et al., 2011, Hendrickson et al.,
2005, Strauf et al., 2006, Reitzenstein et al., 2006a, Peter et al., 2005]. For the
development of microscopic models, the CE technique [Baumann and Hegerfeldt,
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1985, Schoeller, 1994, Kira et al., 1999, Hoyer et al., 2003, Gies et al., 2007, Feldt-
mann et al., 2006, Baer et al., 2006, Schwab et al., 2006, Berstermann et al.,
2007, Fricke, 1996b, Fricke, 1996a, Fricke et al., 1997, Ulrich et al., 2007, Krügel
et al., 2006] has been successfully used to address correlation effects due to various
many-body interactions. In semiconductors, many-body effects are present due to
carrier-photon and carrier-carrier Coulomb interaction, as well as the interaction
between carriers and phonons. The idea of the CE technique is to formulate EoM
for correlation functions (CFs) up to a given order N , and to express all expectation
values of interest in terms of these CFs. The underlying assumption is the presence
of a large Hilbert space for the many-body excitations, so that the configuration
averages render higher-order correlations increasingly unimportant. The CE tech-
nique has initially been applied to systems with many degrees of freedom, where the
number of possible electronic configurations by far exceeds the highest number of
considered N -particle correlations (typically N = 2, 3, 4). This included, for exam-
ple, photoluminescence [Kira et al., 1998], resonance fluorescence [Kira et al., 1999],
exciton formation dynamics [Hoyer et al., 2003] in quantum-well systems, quantum
dynamics of condensed Bose gases [Köhler and Burnett, 2002], and spin dynamics
of ferromagnetic systems [Kapetanakis and Perakis, 2008].

More recently, applications have been extended to QD-based systems, where the
CE method has successfully been used to study quantum-optical and related effects,
like photon anti-bunching and coherence properties of the light emission [Ulrich
et al., 2007, Gies et al., 2007, Richter et al., 2009, Carmele et al., 2010b], coherent
emission of cavity phonons [Kabuss et al., 2012, Kabuss et al., 2013], sequential
build-up of quantum-optical correlations in a semiconductor QD system [Mootz
et al., 2012], quantum spectroscopy [Kira et al., 2011], as well as the influence of
Coulomb-induced carrier correlations [Baer et al., 2006, Feldtmann et al., 2006,
Schwab et al., 2006]. In QDs, the carrier confinement results in a small number
of localized states, which contrasts the situation in quasi-continuous systems like
quantum wells. Both, in theory and experiment [Beirne et al., 2007], QDs with only
a few or even a single localized electron state have been considered.

It is one aim of this chapter to discuss the implications of the system-size limi-
tation to the application of the CE and to propose a new way to describe systems,
in which the small size of the electronic Hilbert space leads to strongly enhanced
correlations. In this chapter the methods are developed with the direct applica-
tion on the single QD photoluminescence in mind. A general formulation of the
CE and techniques beyond that can be found in chapter 4. The single-QD case is
often addressed with methods from atomic quantum optics, where the emitter is
represented by a few-level system. The non-perturbative interaction with a high-Q
cavity mode via the dipole Hamiltonian and the perturbative interaction with a con-
tinuum of free-space modes via Lindblad terms can be treated by directly solving
the von-Neumann Lindblad (vNL) equation for the density matrix of the electronic
system and the cavity mode [Mu and Savage, 1992]. This requires the underlying
Hilbert space to be small enough and is currently only feasible for a single or very
few emitters. Examples for applications to single-QD systems are [Troiani et al.,
2006, del Valle et al., 2009, Ritter et al., 2010, Gies et al., 2011]. The vNL dynamics
are ideal to study multi-exciton effects, since all the various excitonic configurations
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can be distinguished by the theory. An explicit use of this ability to distinguish
multi-exciton configurations from one another was made in a study of the influence
of multi-exciton effects on the efficiency of carrier scattering [Steinhoff et al., 2012].
When considering explicitly the case of many individual emitters or the emission
into many modes, however, the size of the Hilbert space precludes direct calcula-
tions of the many-particle density matrix, and one has to retreat to approximate
many-body methods, like the CE technique.

Another central point addressed in this chapter is the consistent description of
scattering and dephasing in the EoM approach. QDs are embedded systems and
coupled to continuum states of the surrounding material. The Coulomb interaction
and the coupling to LO-phonons leads to efficient carrier scattering processes be-
tween localized and delocalized states, feeding carriers into the QD after off-resonant
excitation into the continuum states of the barrier material, as well as being a
source of dephasing. A Hamiltonian description of these scattering processes is nat-
urally possible within an EoM approach, but practically challenging [Carmele et al.,
2010b, Hoyer et al., 2003]. More often, scattering and dephasing were accounted
for phenomenologically by adding constant rates to the EoM. Especially for equa-
tions describing the dynamics of higher-order CFs, this may lead to inconsistencies
and produce artifacts, such as heating [Hoyer et al., 2003]. In quantum optics one
typically discriminates between the system and environmental degrees of freedom,
and treats the interaction of the system with the environment via Lindblad terms
[Lindblad, 1976] that are added to the von-Neumann equation and the equation
is consequently called vNL equation. As we show, this can be carried over to an
EoM based approach. The carrier dynamics in QDs naturally separates into the
system, represented by the localized states, and the environment, provided by the
quasi-continuum of delocalized states. Then the Coulomb and light-matter interac-
tion are fully accounted for the localized QD states, while the interaction processes
with the continuum states are described via Lindblad terms. These terms and the
corresponding rates can be obtained with standard many-body techniques [Breuer
and Petruccione, 2002, Steinhoff et al., 2012, Roy and Hughes, 2011, Hohenester,
2010]. The result is a consistent formulation of scattering and dephasing that is free
of the problems associated with the phenomenological approaches.

We begin by addressing the EoM technique for the carrier system, before we
introduce and classify mixed-operator CFs that are subject to different interactions.
The “finite-size hierarchy” (FSH) method is introduced, in which we combine an
exact treatment of the carrier degrees of freedom with an approximate CE approach
for the arising hierarchy in the photon operators. In Section 3.3 we specify the nature
of the environment coupling and the inclusion in the theoretical formalism. In order
to apply the theoretical framework in the following sections, a specific QD model is
introduced in Section 3.4. We derive EoM for the Hamiltonian time evolution of the
QD carriers, as well as the dissipative interaction with carriers in delocalized states.
Section 3.5 is devoted to emission into a continuum of free-space modes. Here we
discuss how carrier correlations give rise to multi-excitonic effects in the emission
spectra, and how the various scattering and dephasing processes manifest themselves
in the linewidths of the various emission peaks. A comparison with the conventional
CE technique reveals insight into the physical representation of the system by a
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limited number of CFs. Numerical results for the emission of a single QD in a
microcavity are presented in Section 3.6. For this system, we are able to compare
the approximate treatment of the system dynamics in terms of the conventional CE
method to an exact solution obtained from the FSH and von-Neumann equation.
This comparison illustrates the impact of the truncation at different orders in the
hierarchy of photon operators and demonstrate the applicability of the FSH method.

3.2 Many-body treatment of the embedded QD sys-
tem

QDs are embedded systems and their electronic single-particle states are coupled to
those of the surrounding environment by the Coulomb interaction and the interaction
with LO phonons. It is important to stress that correlations amongst QD carriers
are dominated by the interaction within the dot, as well as, e.g. in the presence of
a resonator, by the interaction with photons. Based on this, we treat the localized
electronic degrees of freedom explicitly, fully accounting for the Coulomb interaction
amongst QD carriers and their light-matter interaction. In this section we focus on
the system dynamics and its formulation in the von-Neumann and EoM approaches.
The coupling of the environment states to the system dynamics via Lindblad terms
is discussed in Section 3.3.

The system dynamics is determined by the von-Neumann equation

d

dt
ρ = −i[H, ρ] , (3.1)

for the density operator (~ = 1). Here, we consider the free electronic contributions
to the Hamiltonian H, as well as the Coulomb interaction and subsequently in
Sec. 3.2.2 also the dipole interaction. The time-dependent solution of Eq. (3.1) then
includes the interaction of all possible configurations. The electronic Hilbert space
is finite and limited by the possible number of carriers that the QD system can
accommodate. In (quasi-) continuous systems this limitation is merely formal. In
a QD with only few confined states, however, the limitation is perceivable and may
even allow for a direct solution of Eq. (3.1), see, e.g., the Refs. [del Valle et al.,
2009, Troiani et al., 2006] for a small and [Gies et al., 2011, Gies et al., 2012] for
a large number of configurations or even for a small number of QDs [Florian et al.,
2013a].

By suitable tracing of the many-body density matrix, Eq. (3.1) can be rewritten
into a hierarchy of EoM for EVs, in which single-particle EVs are coupled to two-
particle EVs, and so on. The hierarchy of coupled equations is limited by the finite
size of the Hilbert space that introduces a ’natural’ truncation. This can also be un-
derstood by considering the fact that only those normal-ordered operator averages,
addressing up to the maximum possible number of carriers in the system, can be
different from zero, as the consecutive application of a number of creation or annihi-
lation operators that exceeds the number of possible single-particle states must give
a vanishing contribution. As long as no further approximations are introduced, both
the density-matrix and the EoM approaches are equivalent. We will elaborate more
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on the equivalence of various approaches in chapter 4 where the ’natural’ truncation
of the hierarchy due to a finite Hilbert space is associated to the truncation operator
∆〈N〉 (see Eq. (4.7)),

. For a system with mixed hierarchies in carrier and photon operators, this
equivalence will be used to establish the link between the ‘exact’ von-Neumann-
based treatment for the electronic degrees of freedom, for which we introduce the
name “finite-size hierarchy” (FSH) method, and the approximate CE method, in
which the electronic hierarchy is truncated typically at an order that is much lower
than the size limitation of the Hilbert space.

3.2.1 Equation-of-motion formulation for the electronic de-
grees of freedom

We begin by schematically formulating the hierarchy of EoM for a system that can
accommodate up to N c,v

max conduction- and valence-band carriers per spin direction.
Since the successive application of N c

max + 1 conduction-band electron or N v
max + 1

valence-band electron annihilation operators yields zero, an automatic truncation of
the hierarchy is implied. To achieve a simplification of the following discussion, we
consider from here on equal numbers of confined states in both bands, so that the
highest operator average that can differ from zero contains 2(N c

max +N v
max) = 4Nmax

carrier operators.
In the following we embrace the formulation of the conventional CE, where CFs

are used instead of operator EVs. As long as the hierarchy of equations is not termi-
nated at an order below its ’natural’ truncation, both formulations are equivalent.
A CF of the order N is defined as

δ(N) = 〈N〉 − δ(N)F , (3.2)

where δ(N)F represents products of all possible factorizations of the operator ex-
pectation value 〈N〉 into CFs of orders smaller than N 1. The order N is defined
as half the number of carrier operators. For example, occupation probabilities of
single-particle states2 〈c†ici〉 and 〈v†i vi〉 (for the notation see Appendix A.1) are of
first order (in former approaches called singlets) that represent uncorrelated entities,

δ〈1〉 ≡ 〈1〉. (3.3)

Examples for CFs of the order N = 2 (in former approaches called doublets) are
δ(c†ic

†
jckcl) or δ(c†iv

†
jckvl).

The hierarchy defined by Eqs. (3.2)–(3.3) terminates due to the discussed lim-
itation in operator averages to 2Nmax carrier operators and is represented by the
boundary condition

δ(N) = −δ(N)F if N > Nmax . (3.4)

For N = Nmax + 1 Eq. (3.4) terminates the coupling to higher EV and ensures
a correct treatment of the finite carrier system, so that indeed the formulation in

1In case of fermionic operators, a sign change is required if an odd number of permutations is
necessary to regain normal ordering.

2Note that due to the incoherent excitation, all EV of the form 〈v(†)i 〉 vanish.

23



3.2. MANY-BODY TREATMENT OF THE EMBEDDED QD SYSTEM

terms of dynamical equations for CFs is equivalent to a solution of Eq. (3.1) for the
corresponding finite set of basis configurations (see chapter 4).

When the electronic Hilbert space, and correspondingly the number of electronic
degrees of freedom is large, an inclusion of CFs up to this level is neither possible
nor necessary. This defines the regime of applicability of the CE method, where
suitable approximations are based on a truncation of the hierarchy at a level much
lower than Nmax, realized by setting all CFs above a certain cutoff Ntrunc to zero:

δ(N) = 0 if N > Ntrunc . (3.5)

In what comes next, it is important to emphasize that this procedure introduces two
separate ideas to justify the approximations. Firstly, the influences of correlated
processes involving more than Ntrunc carriers are neglected. Secondly, for N > Nmax

there is a contradiction between Eq. (3.4) and Eq. (3.5) in the sense that the latter
formally violates the boundary condition due to the finite system size. We discuss
the implications of both approximations in the following.

For an approximate treatment of carrier correlations in large systems, the order
up to which N -particle correlations need to be calculated depends on the strength of
dephasing processes on the one hand, and on the quantities of interest on the other.
Scattering processes, introduced e.g. by the Coulomb- and LO-phonon interaction,
are responsible for damping out correlation effects, and so are cavity losses that act
on the photonic sub-system, see Sec. 3.2.2. Higher-order CFs are typically subject to
stronger dephasing, so that their impact on the dynamics of lower-order quantities
decreases with increasing N . Nevertheless, if correlation effects themselves are of
interest, the corresponding CFs must be accounted for, and corrections due to the
next higher order may be relevant even if the impact on lower orders is small. E.g.,
exciton formation is described by second-order CFs δ(c†iv

†
jckvl). Their study therefore

requires going beyond the first order.
The error introduced by the violation of the boundary condition (3.4) depends

on the system size in relation to the order Ntrunc at which the cutoff is performed, as
well as on the strength of dephasing processes in the system that assist in damping
out correlations. In large systems, where the allowed number of carriers exceeds the
cutoff by orders of magnitude, the effect of violating the boundary condition at the
highest order is imperceptible. In QDs with only few localized states, the situation
may be entirely different, and this is the point we are addressing: If the cutoff Ntrunc

imposed by an approximative treatment is close to the ’natural’ cutoff Nmax, the
error made in replacing Eq. (3.4) by Eq. (3.5) is more likely to propagate into those
CFs that are kept and become significant. In terms of the underlying physics, the
restriction to a few-particle system enhances higher-order carrier correlations. In
Section 3.4 we will focus on a particular QD model with two confined states for
electrons and holes and show that the CE method is in fact not applicable to the
electronic subsystem, and the exact description including Eq. (3.4) must be used
instead.

3.2.2 Many-body description for mixed expectation values

We now turn to the case that a hierarchy arises not only in the electronic degrees
of freedom, but also due to other interactions that may explicitly appear in the
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Figure 3.1: (a) Illustration of the classification of mixed CFs δ(N,M) according to
the number of carrier (2N) and photon (M) operators (represented by dots). (b)
Classification and truncation employed by the conventional CE method. Mixed CFs
are treated by a single hierarchy of order N + M . The shaded area encloses those
correlations up to the doublet level (N+M)trunc = 2. (c) Situation found in a system
where the number of electrons and holes is limited to two. Then the hierarchy of
carrier operators closes ’naturally’ on the four-operator level Nmax = 2 and is, in
principle, not restricted in the number of photon operators M . As an example, the
shaded area shows the necessary CFs for Mtrunc = 4.

Hamiltonian, like the coupling to photons or phonons. Extra thought must be given
how to classify the order and how to perform the truncation of the arising hierarchies
of mixed-operator EVs.

As an example, consider the time derivative of a conduction band carrier and
a photon annihilation operator with respect to the dipole Hamiltonian HD (see
Appendix A.1):

d

dt
ci
∣∣
HD

= −
∑

ξ

gξbξvi , (3.6a)

d

dt
bξ
∣∣
HD

=
∑

i

g∗ξv
†
i ci . (3.6b)

Two hierarchies are introduced, one in the photon operators and one in the carrier
operators: In the EoM for a carrier operator (3.6a) an additional photon operator
is added, and vice versa, a carrier transition v†i ci is associated with the derivative of
a photon operator in Eq. (3.6b). Regarding the additional light-matter interaction,
we introduce a classification of mixed CFs δ(M,N), containing M photon and 2N
carrier operators by the tuple of numbers (M,N). Eq. (3.2) is generalized to

δ(M,N) = 〈M,N〉 − δ(M,N)F , (3.7)

where the factorization δ(M,N)F contains all possible products of lower-order CFs of
order (M ′, N ′) that meet the three criteria N ′ ≤ N ,M ′ ≤M , and N ′+M ′ < N+M .
The classification is illustrated in Fig. 3.1(a), where each set of CFs of the order
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(M,N) is represented as a dot. This suggested classification scheme serves two
purposes: One the one hand, it offers a clear-cut definition of the correlation effects
included at each order, namely those involving N carriers and M photons. On the
other hand, it provides a platform to treat the two hierarchies in a different fashion,
which we discuss in detail below.

A different classification scheme has been used in the past and is typically asso-
ciated with the CE method [Fricke, 1996b, Fricke, 1996a, Fricke et al., 1997, Kira
et al., 1999]. There, mixed CFs δ(M,N) are classified by a single number M + N ,
as schematically depicted in Fig. 3.1(b). It is based on the observation that the
coupling of carriers and photons, provided by the dipole Hamiltonian, leads to the
formal equivalence of a photon annihilation operator and an electron-hole-pair cre-
ation operator. Correlation functions with N + M = 1, 2, 3, 4, ... have been termed
singlets, doublets, triplets, quadruplets, and so on. As described for the electronic
system in Sec. 3.2.1, a cutoff (N + M)trunc is performed, and all higher-order CFs
are approximated as zero in the fashion of Eq. (3.5),

δ(M,N) = 0 if N +M > (N +M)trunc . (3.8)

An illustration is given in Fig. 3.1(b), where the shaded area corresponds to those
CFs kept up to the second order. The CE method based on this scheme has been
used for systems, where the truncation was performed at an order much lower than
the implicitly assumed size of the electronic subsystem (the photonic subsystem is,
by nature, not limited) [Kira et al., 1999, Hoyer et al., 2003, Hoyer et al., 2004].

This brings us to the question how to formulate the hierarchy problem in systems
where the electronic subsystem is limited to accommodate a small number of carriers,
which leads to the definition of the finite-size hierarchy (FSH) method (a special
case of the more general approach described in chapter 4). As we have discussed
for the electronic subsystem in the absence of additional interactions in Sec. 3.2.1,
the approximate treatment of the CE method introduces errors in the boundary
condition that may require an exact treatment of the electronic degrees of freedom
in a fashion analog to the von Neumann equation. For a system with mixed-operator
CFs δ(M,N), the boundary condition (3.4) can be generalized to

δ(M,N) = −δ(M,N)F ∀ N > Nmax . (3.9)

The exact treatment of electronic correlations requires taking all CFs δ(M,N) up to
N = Nmax into account and to satisfy Eq. (3.9) at the highest level N = Nmax. The
photonic hierarchy is not limited and must be truncated at a manually introduced
cutoff Mtrunc. The order at which this approximation is performed depends on the
quantities of interest, as well as on the relationship between correlation built-up and
dephasing. A schematic illustration is found in Fig. 3.1(c), where the number of
electrons and holes is restricted to Nmax = 2, and the truncation is performed at the
level of Mtrunc = 4 correlated photons.

Summarizing this section, starting from the general form of the von-Neumann
equation, the treatment of an electronic system residing in a finite Hilbert space
can be formulated as a closed set of EoM for CFs, fully representing the electronic
degrees of freedom (FSH method). An additional hierarchy in the photon operators
spoils the exact representation, as all electronic operator averages can appear with

26



CHAPTER 3. SINGLE QD PL INTO FREE-SPACE

additional photon operators. The hierarchy in terms of photon operators requires
an approximate truncation in the fashion of the CE method. This is, however,
uncritical and works very well in practice, as we will demonstrate in Sec. 3.6. A
discussion of the manifestation of differences between the traditional CE and FSH
methods is found in Sections 3.5 and 3.6.

3.3 Environment coupling: Treatment of scattering
and dephasing processes

The localized states of self-assembled QDs are generally coupled to delocalized states
of the surrounding semiconductor matrix material. In experiments and device ap-
plications, carriers are excited optically or electrically in these continuum states.
The successive capture into the localized QDs states is mediated by scattering pro-
cesses with carriers in the continuum, but also with lattice vibrations that are known
to effectively exchange excess energy by emission/absorption of phonons [Seebeck
et al., 2005, Zibik et al., 2004, Xu et al., 2002, Urayama et al., 2001]. Redistribution
by scattering of carriers is always accompanied by dephasing. Dephasing of coher-
ences and correlations in QD-based nanostructures is of central importance for the
emission properties of devices.

The discrete nature of the localized states in QDs allows for the possibility to
make a distinction between the QD system and its environment, where the dynamics
of the first is fully accounted for by contributions to the system Hamiltonian, and
the latter are treated in a system-bath approach. The purpose of Sec. 3.3.1 is the
specification of both components and the description of the Lindblad formalism that
is commonly used to model system-reservoir coupling within the vNL equation. This
is carried over to the EoM approach for EoMs in Sec. 3.3.2 to provide a consistent
platform to include scattering and dephasing contributions. The consistent inclusion
of dephasing is a major advancement from previous versions of the theory and one
of the central achievements in this chapter.

3.3.1 System-reservoir interaction

In quantum well or bulk material, a large number of carriers are distributed amongst
dense-lying states that are generally treated as a continuum. Processes involving
the continuum states, such as carrier-carrier scattering, optical recombination, and
scattering with phonons, must be treated on equal footing. In QDs the situation is
different. The three-dimensional carrier confinement leads to a discretization of the
single-particle density of states. Typical self-assembled QDs are grown on a wetting
layer (WL) and the whole system is embedded in a barrier material. The energy of
the lowest-lying continuum states of the WL provides an energetic upper bound for
the localized QD states and, therefore, limits their number.

One therefore finds the situation, in which the localized states are responsible
for the recombination dynamics of interest, whereas the nearby continuum provides
carriers that can be captured into the localized states, or serve as scattering part-
ners for carriers in the QD states. A separation into a system, consisting of the
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DEPHASING PROCESSES

localized states, and a reservoir, consisting of the continuum states, is justified if
the interaction between the two does not lead to a mixing of states (hybridization).
The dynamics of carriers in the continuum states is determined by an excitation
process, by scattering amongst carriers in the continuum, as well as by the interac-
tion with carriers in the localized QD states. The effects can be accommodated in
the calculation of the rates γη.

The contribution of the reservoir, which can either be seen as a fermionic or a
bosonic bath (depending if a coupling to carriers in the continuum, or to phonons
is considered), to the density operator can be treated, in many cases, in the Born-
Markov approximation. This approach leads to a Lindblad term Dη [Lindblad,
1976, Carmichael, 1999] for each capture and relaxation process (in the following
denoted by the index η) associated with the considered reservoir and of the form

d

dt
ρ
∣∣
Dη =

γη
2

(∑

α,β

2 |f ηα〉 〈iηα| ρ |iηβ〉 〈f ηβ | −
∑

α

(
|iηα〉 〈iηα| ρ+ ρ |iηα〉 〈iηα|

))
. (3.10)

Here γη is referred to as the corresponding capture/relaxation rate and |iηα〉 are the
initial and |f ηα〉 the final configurations of the described scattering process. The
contribution of the Lindblad terms to the dynamical equations for the diagonal
elements of the density matrix ρ

d

dt
〈f ηα|ρ|f ηα〉 = γη 〈iηα|ρ|iηα〉 = − d

dt
〈iηα|ρ|iηα〉 (3.11)

reflect the trace-conserving nature of the Lindblad form, leading to an equilibration
of the system with respect to the bath at a characteristic time 1/γη, determined by
the QD level-spacing, the lattice temperature, and the carrier density. Additionally,
dephasing originates from the contribution of the second term in Eq. (3.10) to the
equations for the non-diagonal elements of the density matrix, i.e.

d

dt
〈iηα|ρ|f ηα〉 = −γη

2
〈iηα|ρ|f ηα〉 , (3.12)

and its complex conjugate. Thus, all optical transitions involving |iηα〉 and/or |f ηα〉
as an initial/final state are consistently dephased by the process η [Gies et al.,
2012, Gies et al., 2011].

More sophisticated many-body methods beyond the Born-Markov limit [Lorke
et al., 2006, Steinhoff et al., 2012, Schuh et al., 2013], as well as experimental results
[Borri et al., 2001, Beirne et al., 2007] can be used to determine more accurate rates
γη, which enter this formalism as input parameters.

3.3.2 Lindblad terms in the equation-of-motion technique

The time evolution of the density operator is determined by the vNL equation
with the Hamiltonian part H and the dissipative Lindblad-type superoperator Dη
according to Eq. (3.10), which can be written as

d

dt
ρ = −i[H, ρ] +

∑

η

Dηρ. (3.13)
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Once the solution is known, arbitrary single-time operator averages 〈A〉 can be
obtained by taking the trace Tr {ρA}.

Equations of motion are derived by considering the time evolution of expectation
values 〈A〉 = Tr {ρA}, expressed by a generalized Ehrenfest EoM for operator av-
erages, for which the explicit knowledge of ρ is not required, cf. Sec. 3.2. A natural
way to include the Lindblad contributions in the many-body formalism is to add
them to the EoM, which follows directly from the vNL equation (3.13) by calculating
operator averages and leads to

d

dt
〈A〉 = i 〈[H,A]〉+

∑

η

γη
2

(
〈[σ†η, A]ση〉+ 〈σ†η[A, ση]〉

)
(3.14)

with the operators ση =
∑

α |f ηα〉 〈iηα| (~ = 1). Both the interaction parts of the
Hamiltonian and the Lindblad contributions in the above equation introduce a hi-
erarchy of coupled equations. What has been discussed for the Hamiltonian contri-
butions in Sec. 3.2 also applies for the latter with respect to finite system size and
truncation.

The proposed method has the benefit of a consistent inclusion of scattering and
dephasing in a reservoir fashion, while rates for the interaction with the carrier and
phonon reservoirs can be obtained from separate calculations of desired sophistica-
tion. In the past dephasing has often been included phenomenologically by adding
a constant dephasing rate Γ to the dynamical equations for EVs associated with
polarizations [Richter et al., 2009, Baer et al., 2006, Feldtmann et al., 2006, Fricke,
1996b]. Next to providing dephasing, this phenomenological method has been shown
to introduce artifacts, like artificial heating of the system [Hoyer et al., 2003]. A
consistent formulation of dephasing requires a relationship between both, scattering
and dephasing, that is expressed in Eqs. (3.11) and (3.12).

3.4 Equations of Motion for single QD PL

In the following we will illustrate the FSH method by deriving the dynamical equa-
tions for a particular QD model. So far the model has been formulated for arbitrary
type and number of single-particle states. However, it greatly simplifies the discus-
sion and the resulting equations if we consider a QD with only two confined states
for electrons and holes each. These levels we refer to as s- and p-shells. Furthermore,
only carriers of one spin direction are considered. The restriction to one spin subsys-
tem has been shown [Gies et al., 2011, Gies et al., 2012] to constitute a reasonable
approximation in the regime of strong off-resonant excitation in self-assembled QDs,
where scattering processes with quasi-continuum carriers broaden the spectral lines.
For applications like low-excitation spectroscopy the QD system must be augmented
to explicitly contain the spin degree of freedom. On the two-particle-correlation level
this situation has e.g. been studied in [Hohenester et al., 1999].

We will use an additional approximation that considerably simplifies the arising
hierarchy of equations and that we would like to discuss in detail. The total number
of possible configurations in the described QD is 16, since zero to four electrons can
be distributed amongst four localized single-particle states. The FSH method, in
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Figure 3.2: Possible configurations in a four-level QD, in which valence- and
conduction-band carriers are excited and de-excited only in pairs. The represen-
tation is given in the c-v picture.

which the electronic degrees of freedom are treated exactly, requires to take oper-
ator averages with up to 2(N c

max + N v
max) = 8 carrier operators into account. The

highest possible-carrier operator average that can differ from zero is the four-particle
quantity

〈c†sc†pv†sv†pvpvscpcs〉 . (3.15)

A derivation of the EoM for the corresponding CFs is a cumbersome and error-prone
endeavor and only recommended with an automatic generation algorithm. For this
chapter a separate program has been written in FORM [Vermaseren, 2000], (appendix
D) to fulfill this goal. For simplification purposes, we restrict the number of possible
configurations by the following assumptions:

(i) An effective pair-wise carrier capture, in which the in-scattering of an electron
into the QD p-shell is always accompanied by the in-scattering of a hole (in the cv-
picture: A carrier present in the valence-band p-state is excited into the conduction-
band p-state). (ii) Only intraband scattering processes preserving the carrier number
within the QD are considered.

Since, the optical recombination is also carrier-number conserving, only the six
configurations shown in Fig. 3.2 can form under this condition, all of which contain
two carriers in the system. Thus, the largest operator averages that have to be
evaluated for a system with the boundary condition N c

max = N v
max = 2 are those

with up to four carrier operators, plus additional photon operators. One example is
discussed in the beginning of Sec. 3.5 in the context of biexcitonic recombination.

Several scattering processes are accounted for: The discussed pair-wise capture of
carriers from the continuum into the localized p-states at rate P , as well as scattering
from the conduction band p-shell to s-shell and valence-band s-shell to p-shell via
the rates γccsp and γvvps . The rates γccps and γvvsp correspond to the reverse processes. The
model system together with the considered scattering and recombination processes is
sketched in Fig. 3.3. This section is split into two parts in which the FSH hierarchy
is derived: The first Sec. 3.4.1 deals with the dynamics due to the Hamiltonian
contributions using the light-matter interaction as an example. Contributions due to
other parts of the Hamiltonian are given in Appendix A.2. In Sec. 3.4.2 contributions
from the system-reservoir interaction are discussed. A special emphasis is placed on
the differences between the FSH and the traditional CE method, and deviations
occurring in the equations are pointed out.

3.4.1 Hamiltonian dynamics

The lowest-order observables of interest are the carrier populations, as well as the
mean number of photons. Higher order operator averages appear in the derivation
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Figure 3.3: QD model with the considered rates γ for electrons in the conduction and
valence band, describing scattering into and out of the s-shell. Carrier generation
is modeled by a transition process between the p-levels at rate P . Light-matter
coupling leads to recombination processes between the s- and the p-states due to
spontaneous emission (dashed arrows).

of EoM. The arising hierarchy is finite in the carrier degrees of freedom, while the
photonic hierarchy is truncated at the Mtrunc = 2 level, cf. Sec. 3.2.2.

The contribution of the light-matter interaction HLM to the Ehrenfest EoM for
the conduction band carrier population f ci = 〈c†ici〉, are given by

d

dt
f ci

∣∣∣
HLM

= −2 Re
∑

ξ

g∗ξΠξ,i . (3.16)

The real part of the photon-assisted polarization Πξ,i = δ(b†ξv
†
i ci) describes transition

amplitudes between QD levels, and is proportional to the light-matter coupling
strength gξ. In order to solve Eq. (3.16) additional dynamical equations for the
photon-assisted polarization, which are one step up in the hierarchy with respect to
photon operators, are required and evolve as

d

dt
Πξ,i

∣∣∣
HLM

= gξ f
c
i (1− f vi ) + gξ

∑

α

Cx
αiiα

+gξNξ(f ci − f vi ) + gξN c
ξ,i − gξN v

ξ,i .

(3.17)

The recombination of a QD excitation described by Πξ,i does not only require the
presence of a conduction-band carrier, but also the non-occupancy of a valence-band
state, which ends up in an emission rate proportional to 〈c†iviv†jcj〉 (cf. Ref. [Kira
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et al., 1999]). In Eq. (3.17) enters the decomposition of this EV in a contribution of
two uncorrelated carriers ∝ f ci (1− f vi ) in the upper and lower state, plus interband
carrier correlations ∝ Cx

ijji := δ(c†iv
†
jcjvi) according to Eq. (3.2)3. Thus, the first two

terms in Eq. (3.17) can be identified as the source term of spontaneous emission,
naturally appearing within this formalism due to quantization of the light field.
The remaining terms of Eq. (3.17) arises from mixed EVs 〈b†ξbξc†ici〉 and 〈b†ξbξv†i vi〉,
of which the uncorrelated contribution is proportional to the photon number Nξ :=

〈b†ξbξ〉 and can be attributed to stimulated emission and absorption, whereas N c
ξ,i :=

δ(b†ξbξc
†
ici) and N v

ξ,i := δ(b†ξbξv
†
i vi) represent carrier-photon correlations. Note that

〈b†ξ〉 and 〈v†i cj〉 vanish in the incoherent regime. Throughout this chapter we do not
account for correlations between different optical modes. This is well justified in the
presence of a microresonator, where a single cavity mode strongly dominates over
all other leaky and far detuned cavity modes. In chapter 5 correlations between
two slightly detuned high-quality cavity modes are included, and are crucial for the
mode-coupling effects. Also when free space emission is considered, mode coupling
effects may play a role and an evaluation of such terms can be considered. One must
be aware, however, that the inclusion of continuum mode-coupling effects severely
increases the numerical effort, and is in fact not feasible in a straightforward manner
for higher-order CFs.

Significant contributions of higher-order correlations with respect to photons can
be expected, e.g., if one of the considered QD transitions is resonant with a cavity
mode, thereby providing feedback of the emitted photons. However, for QD emission
into a continuum of free-space modes, where photons disappear once emitted, cor-
rections to the dynamical evolution of the photon-assisted polarization, introduced
by higher order photon correlations are negligible. Nevertheless, carrier correlations
can still play an important role [Baer et al., 2006]. Especially in the regime of
few emitters these correlations strongly dictate the carrier-photon dynamics and are
indispensable for the description of single-QD luminescence.

N

0 1 2

0 / 〈c†c〉 , 〈v†v〉 δ(c†v†cv), δ(c†c†cc), δ(v†v†vv)

M 1 / δ(b†v†c) δ(b†c†v†cc), δ(b†v†v†cv)

2 〈b†b〉 δ(b†bc†c), δ(b†bv†v) δ(b†bc†v†cv), δ(b†bv†v†vv),

δ(b†bc†c†cc), δ(b†b†v†v†cc)
...

...
...

...

Table 3.1: Overview of all relevant CFs for the semiconductor luminescence model
discussed in this chapter.

3The abbreviate notations for certain CFs like Cx
ijji is introduced to facilitate the comparison

to the EoM presented in [Baer et al., 2004, Baer et al., 2006], this notation will be dropped in later
chapters.
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The light-matter part of the Hamiltonian (A.5) yields the time evolution

d

dt
Cx
ijkl

∣∣∣
HD

= (3.18)

−
∑

ξ

δilδjk
[
g∗ξ (f

v
i − f ci )Πξ,j + gξ(f

v
j − f cj )Π∗ξ,i

]

+
∑

ξ

[
gξΠ

c,∗
ξ,lkji + g∗ξΠ

c
ξ,ijkl − gξΠv,∗

ξ,lkji − g∗ξΠv
ξ,ijkl

]
.

The first bracket contains the factorized contributions of the EVs 〈b†ξc†iv†jckcl〉 and
〈b†ξv†i v†jckvl〉. The remaining correlation contributions Πc

ξ,ijkl := δ(b†ξc
†
iv
†
jckcl) and

Πv
ξ,ijkl := δ(b†ξv

†
i v
†
jckvl) appear in the second bracket. Specifically, Π

c/v
ξ,ijij = −Π

c/v
ξ,ijji

describe the correlated process of a photon-assisted polarization in presence of an
additional carrier in the conduction- or valence-band, respectively. In a similar
manner equations for the intraband carrier correlations Cc

ijkl := δ(c†ic
†
jckcl) and

Cv
ijkl := δ(v†i v

†
jvkvl) can be obtained and are provided in Appendix A.2.

The before-mentioned ’natural’ truncation of the hierarchy of carrier operators
becomes apparent in the time evolution of the mixed CFs Πc

ξ,ijkl and Πv
ξ,ijkl. To

facilitate a better understanding, we provide a schematic explanation using the
notation introduced in Section 3.2. The quantities Πc

ξ,ijkl and Πv
ξ,ijkl are CFs δ(M,N)

of the order M = 1 and N = 2. The time evolution with respect to the dipole part
of the Hamiltonian is given by

d

dt
δ(1, 2)

∣∣∣
HD

= 〈0, 3〉+ 〈2, 2〉 (3.19)

− d

dt
(δ(1, 1)) 〈0, 1〉 − δ(1, 1)

d

dt
〈0, 1〉 .

Each term in this schematic representation may correspond to several contributions.
The time derivative of the factorization is subtracted in the last line in order to obtain
a CF (cf. Eq. (3.2)). Due to the limitation to two carriers in the QD states the first
term drops out, because it describes processes where three carriers are created or
annihilated. Enforcing this property of the system requires the strict fulfillment of
the boundary condition

δ(0, 3) = −δ(0, 2) 〈0, 1〉 − 〈0, 1〉 〈0, 1〉 〈0, 1〉 , (3.20)

which means that, in fact, all CFs up to Nmax = 2 must be taken into account. This
is the explicit manifestation of what we referred to earlier as the enhancement of
correlations due to the limited size of the system.

The remaining hierarchy in the photon operators is truncated at the desired level
Mmax. All terms appearing in the CE up to Mmax = 2 are summarized in Table 3.1.

Applying the CE to the remaining second term in Eq. (3.19) yields

d

dt
δ(1, 2)

∣∣∣
HD

= (3.21)

+ δ(2, 2) + δ(2, 0)δ(0, 2) + δ(1, 1)δ(1, 1) + δ(2, 1) 〈0, 1〉

− d

dt
(δ(1, 1)) 〈0, 1〉 − δ(1, 1)

d

dt
〈0, 1〉 .
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Explicitly performing the calculation behind this schematic representation leads
to the following EoM

d

dt
Πc
ξ,ijkl

∣∣∣
HD

=
[
gξf

c
i f

c
j f

v
j − g∗ξΠξ,iΠξ,j (3.22)

+ gξN c
ξ,i(f

c
j − f vj )− gξf ci

∑

α

Cx
αjjα

]
(δilδjk − δikδjl)

+ gξ(1 +Nξ)Cc
ijkl + gξNξ(Cx

ijlk − Cx
ijkl)

+ gξδ(b
†
ξbξc

†
ic
†
jckcl) + gξδ(b

†
ξbξc

†
iv
†
jclvk)

− gξδ(b†ξbξc†iv†jckvl)− g∗ξδ(b†ξb†ξv†i v†jckcl) ,

and similar equations can be given for Πv
ξ,ijkl by exploiting the symmetries of the

Hamiltonian.
It is worthwhile pointing out that the restriction to a certain system size funda-

mentally changes the structure of the underlying EoM. In Eq. (3.22), the uncommon
product of three populations appears in the first line, originating from the subtrac-
tion of the factorization in the last line of Eq. (3.21) (from Eq. (3.17) one finds that
there is a contribution d

dt
δ(1, 1) ∝ 〈0, 1〉 〈0, 1〉). In a system where the restriction to

two carriers was lifted, these terms would be compensated by the factorization of the
three-particle EV 〈0, 3〉, which would, in this case, have a non-zero contribution. In
fact, this compensation is also known as the linked-cluster theorem [Fricke, 1996b].
Finally, the CF δ(b†ξb

†
ξv
†
i v
†
jckcl) in the last line of Eq. (3.22) can be attributed to

spontaneous two-photon emission, recently demonstrated for a single-QD in a high-
Q photonic crystal nanocavity [Ota et al., 2011].

Eqs. (3.16)–(3.22), together with the additional equations given in Appendix A.2,
form a closed set of coupled nonlinear equations for the dynamics determined by the
Hamiltonian. Before we turn to numerical results, we discuss the scattering and
dephasing contributions to these equations.

3.4.2 System-bath interaction

In Section 3.3 we have discussed the reservoir-treatment of scattering and dephasing,
as well as carrier pumping. In the EoM these contributions are included via Lind-
blad terms in Eq. (3.14). As we have briefly mentioned, a microscopic treatment of
these processes is also possible and can be derived from a mixed basis of localized
and extended states. For the quantum-well case this has has been performed by
including the carrier-phonon interaction explicitly in the Hamiltonian [Hoyer et al.,
2003, Carmele et al., 2010b]. However, this approach comes along with an addi-
tional hierarchy in the phonon operators that makes the classification of mixed CF
containing carrier, photon, and phonon operators more difficult. Furthermore, in-
cluding delocalized states of the two-dimensional WL continuum on the same level
of complexity as the equations presented in Section 3.4.1, i.e. by considering CFs
of an order up to Mtrunc = 2 and Nmax = 2, would involve nonlinearly coupled
integro-differential equations for CFs that carry several indices of continuum states.
A numerical solution would be possible only for certain limiting cases. Therefore,
we base the approach for the inclusion of scattering and dephasing within the CE
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method on the Lindblad formalism. As a benefit, delocalized states enter the system
dynamics only in the determination of the Lindblad rates, which can be obtained
phenomenologically or from independent quantum-kinetic calculations [Bockelmann
and Egeler, 1992, Vurgaftman et al., 1994, Inoshita and Sakaki, 1997, Braskén et al.,
1998, Braskén et al., 1998, Jiang and Singh, 1998, Stauber et al., 2000, Lorke et al.,
2006, Steinhoff et al., 2012, Schuh et al., 2013]. In principle the structure of the Lind-
blad formalism allows for a high degree of sophistication. For example, occupation-
induced energy renormalizations due to the Coulomb interaction can be explicitly
taken into account in the calculation of scattering, which then leads to different
scattering rates for different configurations [Steinhoff et al., 2012]. The influence of
this effect is strongly entwined with the dynamics of the system. Especially at low
WL carrier densities when screening is weak, the rates may differ significantly, and
a study of the impact on the emission dynamics of a single QD in a microcavity
could prove interesting for future studies.

We now turn to the EoM. By evaluating the second line of Eq. (3.14) we can
calculate the contributions for scattering, pumping and cavity losses.

Intraband scattering

For the scattering between the bound QD states µ and ν in the conduction band,
we obtain

d

dt
〈A〉

∣∣
scatt

=
∑

µ6=ν
µ,ν∈{s,p}

γccµν
2

[
〈[c†νcµ, A]c†µcν〉+ 〈c†νcµ[A, c†µcν ]〉

]
, (3.23)

where we have identified ση by c†µcν , and the Lindblad rates γη by the intraband
scattering rates γccµν . The resulting change in the single-particle population f cν =
〈c†νcν〉 due to intraband scattering

d

dt
f cν
∣∣
scatt

= (Sin
ν (1− f cν)− Sout

ν f cν) +
∑

µ6=ν
(γccνµ − γccµν)Cc

νµνµ ,

takes on the form of a Boltzmann-like collision term (first term), consisting of in-
and out-scattering contributions with the corresponding rates Sin

ν =
∑

µ 6=ν γ
cc
νµf

c
µ

and Sout
ν =

∑
µ 6=ν γ

cc
µν(1− f cµ), as well as correlation contributions beyond the single-

particle description (second term). It it evident that the total carrier number is
preserved, i.e. d

dt

∑
ν f

c
ν = 0, reflecting the trace-conserving property of the Lindblad

formulation that we have already discussed in the context of Eq. (3.11).
If carrier correlations Cc

νµνµ are neglected in Eq. (3.24), only populations of single-
particle states f cν are taken into account. These populations are obtained by averag-
ing over all configurations containing a carrier in the state ν. Due to this averaging,
the single-particle description is not able to distinguish between different configu-
rations with an occupation of the state ν and can, thereby, account for the Pauli
exclusion principle only in an averaged sense. Consider for example the carrier re-
laxation in the conduction band: The configurations |Xp〉, |0p〉 and |XX〉 are valid
initial configurations for a p-to-s electron scattering process, although the Pauli
exclusion principle forbids a carrier transition for the latter, because the s-shell
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already contains one carrier. Thus, in this case the single-particle description al-
lows for relaxation and attributes for dephasing, whereas an exact configuration-
based treatment does not. Especially for few-emitter systems, this deficiency of
the single-particle description (sometimes called ‘collision approximation’ of carrier
correlations) should be avoided by considering the carrier correlations in Eq. (3.24).

The inclusion of scattering processes introduces a source of dephasing for all CFs.
The scattering contribution to the EoM of the photon-assisted polarization,

d

dt
Πξ,ν

∣∣
scatt

= −ΓνΠξ,ν −
1

2

∑

µ 6=ν
(γccνµ − γccµν)Πc

ξ,µννµ , (3.24)

includes a population-dependent dephasing rate Γν = 1
2
(Sin

ν + Sout
ν ), instead of a

constant rate Γ that is frequently used in the literature. To study the influence of
correlations, it is crucial to account for their proper dephasing, because it determines
the timescale on which correlations are damped out. It is shown in Ref. [Baer et al.,
2006] that the influence of the carrier correlations on the luminescence dynamics
can be strong if no dephasing is used at all, while a small constant dephasing of the
interband CF in the µeV regime already leads to a complete damping towards an
uncorrelated system on a timescale of several 100 ps. To make quantitative predic-
tions, a consistent treatment of dephasing with correct rates for the different CFs
is important. The dynamics of the interband carrier correlations due to intraband
scattering introduced by the Lindblad term (3.23) is given by

d

dt
Cx
ijkl

∣∣
scatt

= −
∑

µ6=ν
µ,ν∈{s,p}

γccµν
2

{
Cx
ijkl(δiµ + δkµ) (3.25)

−2
[
f cµf

v
j (δiµδkµ − δiνδkν)δjl + Cx

µjµlδiνδkν
]

−2
[
(f cµ(1− f ci )− Cc

µiiµ)δiν

− (f ci (1− f cν)− Cc
iννi)δiµ] f vj δikδjl

}
,

from which we obtain, using Cc
spsp = Cc

psps = −Cc
spps = −Cc

pssp, the following sum
rule

d

dt
(Cx

ssss + 2Cx
psps)

∣∣
scatt

= 0 . (3.26)

Thus, both CFs Cx
ssss and Cx

psps are not independent quantities, but are linked by
the scattering process they represent. Obviously this property cannot be fulfilled
by a simpler approach, where equal and constant rates Γ are used to describe the
dephasing of both CFs.

Pumping

In a typical situation for incoherent pumping carriers are excited in the barrier states
and subsequently captured into the QD states. We describe this by a simultaneous
generation/annihilation of carriers in the conduction/valence band p-state, which
is assumed to persist during the pump pulse and to rapidly disappear afterwards.
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Specifically, we consider a time-dependent capture rate P (t) following a Gaussian-
shaped pump pulse. The corresponding Lindblad contribution to the EoM reads

d

dt
〈A〉

∣∣
pump

=
P (t)

2

(
〈[v†pcp, A]c†pvp〉+ 〈v†pcp[A, c†pvp]〉

)
. (3.27)

This treatment of the pump process leads to an automatic built-up of CFs, e.g. for
correlations between conduction- and valence-band carriers in the p-shell

d

dt
Cx
pppp

∣∣
pump

= P (t)(f vp − f cp)(Cx
pppp + (1− f cp)f vp ) . (3.28)

This way, initial conditions for correlations do not have to be calculated separately
by considering a quasi-equilibrium initial-state population that is defined by a total
carrier density and a temperature [Baer et al., 2006, Feldtmann et al., 2006], which
is a great practical and conceptual advantage of our approach.

It is worth noting that it is particularly the pair-wise generation of electrons
and holes that leads to the generation of certain electron-hole correlations in the
system. Furthermore, since the recombination also destroys electrons and holes
pair-wise, only configurations with an equal number of electrons and holes appear
in the system dynamics. Thereby, charged excitonic configurations are excluded.
Alternative pump schemes can be considered [Gies et al., 2011, Gies et al., 2012], in
which electrons and holes are captured independently. The implications are worth
a separate discussion, which can be found in [Florian et al., 2013b].

Cavity losses

In Sec. 3.6 we show results for a QD in a microcavity. The latter provides a three-
dimensional confinement of the electromagnetic field, leading to a spectrum of well-
separated cavity modes. This allows for the situation, in which only a single mode
ξ̄ is resonant with the s-exciton transition of the QD. Nevertheless this resonant
cavity mode couples to a continuum of modes outside the cavity which introduces
dissipation on a nanosecond timescale. To account for a finite lifetime of the resonant
mode, we introduce the Lindblad contribution

d

dt
〈A〉

∣∣
cav

=
κξ̄
2

(
〈[b†

ξ̄
, A]bξ̄〉+ 〈b†

ξ̄
[A, bξ̄]〉

)
, (3.29)

where the photon loss rate κξ̄ is directly connected to the quality factor Q = ωξ̄/κξ̄
of the cavity mode ξ̄ at the energy ωξ̄.

Note that this contribution has a similar structure as the one for the carrier
scattering (3.23), but now contains system operators acting only on the photonic
degrees of freedom and leading to transitions between states involving n and n −
1 photons in the mode ξ̄. The contribution to the EoM leads to a damping of
correlations at a rate Mκξ̄/2,

d

dt
δ(
(
b†
ξ̄

)p(
bξ̄
)q
C)
∣∣
cav

= −Mκξ̄
2
δ(
(
b†
ξ̄

)p(
bξ̄
)q
C) , (3.30)

where M = p + q is the order of the corresponding CF with respect to the photon
operators, independent of further carrier operators C contained in the CF. Thus,
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photon correlations get more strongly damped in the presence of a lossy cavity, and
even more so with increasing order. This plays an important role in the truncation
of the hierarchy within the CE approach and is demonstrated in Sec. 3.6.

3.4.3 Luminescence dynamics and spectrum

The luminescence dynamics is determined by the change of the mean photon number
Nξ, for which the EoM reads

(
d

dt
+ κξ

)
Nξ = 2 Re

∑

ν

g∗ξΠξ,ν . (3.31)

The only contributions to this equation arise from the light-matter interaction and
the cavity losses in Eq. (3.29). One can see that cavity losses lead to a decrease of
the mean photon number, while spontaneous and stimulated emission and absorp-
tion due to the emitter are expressed in terms of the sum over the photon-assisted
polarizations over all bound QD states.

In the absence of a cavity, emission into the continuum of free space modes takes
place, and the corresponding luminescence spectrum I(ω, t) is given by

I(ω, t) = 2 Re
∑

ν,ξ

|gξ|2 Πξ,ν

∣∣
|q|=ω

c

. (3.32)

Note that from here on we consider all polarization-like quantities to be rescaled
with the light-matter coupling strength g in order to have the square of the coupling
constant appear in the equations; for details we refer to Ref. [Baer et al., 2006]. The
sum in Eq. (3.31) runs over wave vectors with the same photon energy irrespective of
the direction of the wave vector. When studying time-resolved photoluminescence,
the spectral information is discarded by integration over all frequencies, i.e.

I(t) =

∫
dω I(ω, t) . (3.33)

3.5 Photoluminescence into free-space

We first present numerical results for the luminescence from a single QD into a con-
tinuum of modes, i.e. emission into free space. Here, the EoM approach can play
out its full advantage, because the large Hilbert space associated with a continuum
of modes prohibits a direct solution of the vNL equation. The four-level QD model
is used that has been introduced in the previous section. The luminescence spec-
tra and the time-resolved photoluminescence decay provide direct insight into both
the physical system and the underlying mechanism of the FSH approach. Further-
more, comparing with results from the regular CE method enables us to gain an
understanding how the factorization of the carrier degrees of freedom leads to an
effective “mean-field”-like approximation of the exact result and the limitations of
this description. The frequency-resolved and time-dependent luminescence spectra
are calculated from Eq. (3.32).
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In Fig. 3.4 four series of luminescence spectra from the emission 10, 20, 30, and
50 ps after the start of the time evolution are shown. Continuum-state carriers
are excited by a laser pulse and are subsequently captured pair-wise into the QD
p-states.

The Gaussian pulse is centered at 25 ps, has a width of 10 ps (FWHM), and
a dimensionless pulse area of Ptotal. The spectra in the left panel correspond to
weak excitation with Ptotal = 0.1, whereas the right panel shows results after strong
excitation with Ptotal = 1. Upper and lower panels compare results from the FSH
method forMtrunc = 1, and the second order of the regular CE with (N+M)trunc = 2,
respectively.

We first provide an explanation of the FSH results. In Fig. 3.5 an illustration of
the following explanation is given. Since the FSH method contains an exact treat-
ment of the carrier degrees of freedom, the resulting (multi-) exciton lines appear at
renormalized energies that are equivalent to those obtained from a diagonalization
of the carrier and Coulomb Hamiltonian in the complete basis of all possible con-
figurations. The position of the lines is fixed, and their intensity in the spectrum
is determined by the probability of the corresponding transition taking place. Four
peaks are visible, which correspond to the four possible recombination channels of
the excited QD. The recombination channels are the decay to the ground state from
the s- and p-excitons, as well as the s- and p-recombination from the s-p-biexciton
configuration. The s- and p-recombination are separated by approximately 63meV
in the spectrum due to the level spacing of the single-particle states and direct
(Hartree) interaction. The Coulomb Hamiltonian introduces a further splitting, if
the recombination takes place in the presence of another electron-hole pair in the
other shell. The splitting between the |XX〉 → |Xs/p〉 and the |Xs/p〉 → |G〉 tran-
sitions is determined by the Coulomb s-p-exchange interaction and gives raise to a
detuning of 2Vspsp, which amounts approximately to 9.8meV.
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Figure 3.4: Frequency-resolved photoluminescence spectra for the emission into a
continuum of modes. Compared are FSH (top) and the second order of the regular
CE (bottom) results after a weak (left, Ptotal = 0.1) and strong (right, Ptotal =
1.0) excitation pulse. Spectra are shown after 10 (solid line), 20 (dash-dotted), 30
(dotted) and 50 (dashed) ps of the time evolution. The excitation pulse is centered at
25 ps and 10 ps in width. The spectra are depicted in log scale y-axis and have been
rescaled for better visibility. In order to be able to compare absolute heights, the
scaling factors are required. Typical relaxation times for electrons in the conduction-
and valence-band are used: γccsp = 1.07/ps, γccps = 0.02/ps, γvvsp = 0.13/ps and γvvps =
0.59/ps. The peak height of the top right spectrum after 50 ps has been set to unity.
Relative to this, in all panels the spectra after 50, 30, 20, and 10 ps have been scaled
by 0.76, 0.31, 0.02, and 1.4 · 10−5.
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Because all recombination channels are spectrally separated, it is possible to con-
nect the carrier dynamics to the time-dependent spectra in Fig. 3.4. The following
discussion is valid for both upper panels, as the situation is similar for weak and
strong excitation. In the lowermost spectrum in each panel, corresponding to the
beginning of the excitation pulse, only signatures of s- and p-exciton emission are
visible. Because excitation is still weak, relaxation and recombination are by far
the fastest processes in the system, so that excitations decay before population in
the biexciton state can build up. The second spectra (dotted-dashed lines) depict
the situation just before the peak of the excitation pulse. Now the faster refilling
of the p-states already leads to weak signatures from the biexciton. The s-exciton
emission clearly dominates the spectra over that of the p-exciton. The dominance of
the s-exciton emission becomes even more obvious in the spectra at later times and
is explained by the scattering processes between s- and p-shells: At the considered
temperature of 120K, down-scattering from p- to s-shell is much faster than the re-
verse process and offers a fast second channel in addition to the direct recombination,
through which the p-exciton can decay.

+CoulHx+Es
c

pEc Es
v

pEv+Es
v

pEc+Es
c

pEv+

Figure 3.5: Illustration of the various recombination channels and the dephasing
mechanisms of the bright configurations. The red(black) arrows on top and below
the states indicate the p-shell(s-shell) recombination. The solid green lines indicate
the intraband down-scattering of the electrons and the dashed green lines indicate
the weaker up-scattering. The solid blue arrow indicates the incoherent pump into
the p-shell.

Before we discuss the results of the regular CE, we explain in more detail the
origin of the spectral splitting between exciton and biexciton emission in the for-
malism. The biexciton recombination process is described by the expectation value
〈b†ξXsX

†
pXp〉. Here, exciton operators X†i = c†ivi have been used to express the re-

combination process of an exciton in the s-shell in the presence of a second exciton in
the p-shell (equivalently, p-shell recombination in the presence of an s-shell exciton
is given by a similar expression). Normal ordering yields

〈b†ξXsX
†
pXp〉 = 〈b†ξv†scsc†pvpv†pcp〉

= 〈b†ξv†scsc†pcp〉 − 〈b†ξv†sc†pv†pvpcpcs〉 .
(3.34)

The assumption of pair-wise carrier generation and the resulting limitation to the
six possible configurations shown in Fig. 3.2 implies that the second term must
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be zero, since the annihilation of three carriers is not possible in the used QD
model. So the biexciton recombination process is actually described by the quantity
〈b†ξv†scsc†pcp〉. This can readily be understood, as the presence of two carriers in the
conduction-band s- and p-states automatically implies their absence in the valence-
band states. At this point, the limitation to include only scattering processes that
leave the total number of carriers in the localized states constant constitutes a
significant simplification of the EoM method. In the more general case, where the
electron number in the QD can vary from zero to four, EoM for CFs containing up
to 2Nmax = 8 carrier- and Mtrunc = 1 photon operators are required.

We now turn to the results of the regular CE method, which are depicted in the
lower two panels. Here, the truncation is performed at the level (N + M)trunc = 2,
which implies that all CFs containing more than four carrier operators are approx-
imated as zero. CFs Π

c/v
ξ,ijkl responsible for biexcitonic emission, as they appear in

the spectra obtained from the FSH, are not included in the theory at the second
order. As a result of the truncation, the CE method performs a compensation in a
‘mean-field’ like fashion. At the first order of the regular CE all carrier contributions
are formulated in terms of populations. At the second order, additional correlations
are included4 and the peaks appear at the s- and p-exciton transitions at energies
that are renormalized proportionally to the single-particle electron and hole pop-
ulations in the QD states. With increasing excitation the resonances are tuned
continuously towards the energies of the multi-exciton configurations that are visi-
ble in the full theory. The amount of the shift results from the singlet contribution∑

µ Viµiµ(1 + f cµ − f vµ) in the dynamical equation for the photon-assisted polariza-
tion Πξ,s/p responsible for the s- (p-) shell recombination. The exact Coulomb-
renormalized energies of the four recombination channels are shown as vertical lines
as a guide to the eye to better visualize the shift. This effect can also be observed
in the absorption spectra shown in Ref. [Hohenester et al., 1999], where results
from calculations on the mean-field and two-particle correlation level are compared.
Spectral line shifts, though not the main focus of that publication, are prominent
especially in the first case and are reduced by the important step to include two-
particle correlations.

Complementary information, which turns out less sensitive to the approximate
treatment of carrier correlations, is provided by the time-resolved photolumines-
cence, which is obtained by integrating the spectrum over all energies at every point
in time. The result for the discussed four situations is shown in Fig. 3.6, where
curves from the FSH and regular CE methods are compared. For weak excitation
(Ptotal = 0.1), both results are in good agreement, demonstrating that the ‘inter-
polation’ performed by the regular CE on the second order provides indeed a good
approximation of the total photon emission. At high excitation (Ptotal = 1.0), when
additional configurations become increasingly important, deviations appear. Strong
line shifts are observed in the corresponding spectra (lower right panel in Fig. 3.4) in
order to mimic the dominant emission from the filled QD configuration at the p-shell
resonance. In this regime, the second order CE breaks down and nonphysical results,

4The inclusion of higher-order electronic correlations would not result in the ’exact’ description
as the FSH does. The reason is that, in the CE approach for finite systems, at all levels higher-order
CFs are, erroneously approximated as zero.
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Figure 3.6: Time-resolved photoluminescence for the results shown in Fig. 3.4.

like negative populations may occur. The ‘interpolation’ of the transition energies in
the second order of the CE leads to a problem in the presence of a high-Q resonator.
The narrow linewidth associated with the cavity mode makes the light emission very
sensitive to shifts of the emission lines, leading to a population-dependent overlap
between QD transition and mode. This artificial situation is discussed in detail in
the next section 3.6.

A further aspect of the spectra that requires additional explanation regards the
linewidths of the different transitions. We have explained in the context of Eq. (3.12)
that scattering processes lead to dephasing of optical transitions if they act on either
the initial and/or final state of that transition [Gies et al., 2012, Gies et al., 2011].
The strength of the underlying dephasing manifests itself in the linewidths in the
emission spectrum (see Fig. 3.5 for an illustration). For example, the s-exciton to
ground-state transition is subject to the p-shell carrier generation process, as well as
the up-scattering of electrons and holes from s- to p-states. While the latter is very
weak, the pump process is responsible for the line broadening of the corresponding
peak. After the pump pulse is over, the line clearly narrows (compare the spectra at
10 and 50 ps). The situation is similar for the p-exciton-to-ground-state transition,
which is affected by the pump process in the same way, but is additionally dephased
by the fast carrier relaxation from p- to s-states. In contrast to the previously
discussed transition, the line of the corresponding peak is not significantly narrowed
after the excitation pulse is over.

The effect of carrier relaxation is reversed for the biexciton emission lines. Since
for the considered QD system, the initial configuration of this recombination process
is the completely filled QD, only the final configuration, which is either the s- or the
p-exciton, can be involved in carrier scattering. For the p−exciton, this is the fast
p-to-s relaxation, while for the s-exciton, it is the much slower s-to-p up-scattering
process. Accordingly, the linewidth of the |XX〉 → |Xs〉 is significantly smaller
than that of the |XX〉 → |Xp〉 transition. The impact of the dephasing reaches
even deeper than its reflection in the transition linewidths, and the final point we
would like to discuss in the context of the spectra are the relative intensities of
the two biexciton emission channels. Recombination at the s-shell leaves behind a
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p-exciton. As we have discussed before, this is subject to strong dephasing due to
carrier relaxation. Recombination at the p-shell, on the other hand, leaves behind
the s-exciton, which is only weakly dephased in the absence of pumping. Thus,
the photon-assisted polarization that drives the transition process is damped more
strongly in the first case, which is clearly reflected by the higher peak from the
recombination at the p-shell (|XX〉 → |Xs〉) in the spectrum at 50 ps after the
pump pulse has ended.

3.6 Numerical results for a single QD in a micro-
cavity

Now we turn to the situation, in which a single QD emitter is embedded in a res-
onator structure and coupled to a single high-quality mode of that resonator. In
contrast to the free-space emission considered in the previous section, the cavity
strongly enhances the resonant emission from the QD. We will demonstrate that
the resulting sensitivity to the resonance condition can lead to an enhancement of
artifacts introduced by the truncation of the hierarchy of EoM. The limited size of
the Hilbert space now facilitates a direct solution of the vNL equation (3.13), which
is exact, and against which we check the validity of (i) the FSH method, where
carrier degrees of freedom are represented by a closed set of carrier CFs, plus the
corresponding correlations augmented by photon operators up to order Mtrunc, and
(ii) the approximate treatment of carrier and photon degrees of freedom according
to the conventional CE method at the second order (N +M)trunc = 2.

We consider the s-exciton transition to be resonant with a single cavity mode, and
a corresponding light-matter coupling strength of g = 0.01/ps. The pump process
is modeled like in Sec. 3.5 (a Gaussian pulse centered at 25 ps and 10 ps of width
(FWHM)) with a total area of Ptotal = 0.5. Typical relaxation times for electrons
in the conduction- and valence-band are used: γccsp = 1.07/ps, γccps = 0.02/ps, γvvsp =
0.13/ps and γvvps = 0.59/ps.

In analogy to the discussion in Sec. 3.4.3 we can infer that the luminescence
dynamics follows from Eq. (3.32), when only a single mode ξ̄ is considered. We drop
the mode index in the remainder of this section. This leads to the expression

I(t) = 2|g|2 Re
∑

ν

Πν . (3.35)

For a light-matter coupling strength of g = 0.01/ps and a cavity loss rate of
κ = 0.1/ps (Q ≈ 20, 000 for a cavity mode wavelength of 915nm), the time-resolved
photoluminescence at the cavity resonance is shown in Fig. 3.7(a). The FSH method,
which treats the electronic degrees of freedom exact and the photonic degrees of
freedom up to second order (Mtrunc = 2), is in excellent agreement with the exact
solution of the vNL equation (symbols). The solid line represents the CE at the
second order (N +M)trunc = 2 and is found to exhibit a peculiar oscillatory behav-
ior that strongly deviates from the exact result. The reason lies in the fact that,
at this level of approximation, the transition energies are not fixed but are renor-
malized as a function of the carrier populations, as it was demonstrated in Sec. 3.5.
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Figure 3.7: (a) Time-resolved photoluminescence at the cavity-mode frequency.
Results obtained from the FSH (dashed lines) and the second order of the CE (solid
lines) methods are compared to the exact solution (symbols) of the vNL equation.
(b) displays the same results under the omission of the Coulomb interaction.

With the cavity tuned to the properly renormalized energy of the exciton transition,
this transition comes into resonance as the mean QD carrier occupancy increases.
With the onset of emission, the QD is depopulated, which, in turn, reduces the
renormalization and brings the exciton transition out of resonance again. This leads
to an initial oscillatory behavior and finally to a strongly suppressed emission due
to the reduced spectral overlap between emitter and cavity mode. This picture is
supported by a comparative calculation where the influence of Coulomb interaction
is neglected, shown in Fig. 3.7(b). In this case, exciton and biexciton recombination
take place at the same energy, so that the shifting of the transition lines is no longer
appeared in the CE method.

In Fig. 3.8 we study the influence of the truncation level in the photonic degrees
of freedom when using the FSH method. The blue set of curves and plus symbols
correspond to the parameters used in Fig. 3.7, the crosses and red set of curves depict
the case of a cavity with an exaggeratedly long storage time of photons (κ = 0.01/ps,
Q ≈ 200, 000). For the Q ≈ 20, 000 cavity, a truncation of the photon hierarchy at
the Mtrunc = 1 level (dash-dotted line) can hardly be distinguished from the results
for Mtrunc = 2 (dashed line). The reason lies in the dephasing of correlations due to
the dissipation of photons from the cavity according to Eq. (3.30). In the higher-Q
cavity the dephasing is significantly weakened, thereby strengthening the impact
of photon correlations. Thus, the calculation for Mtrunc = 1 yields a visibly less
accurate description of the time-resolved photoluminescence than the Mtrunc = 2
calculation. In the well-known manner of the CE, the level of truncation depends
on the strength of correlations, as well as on the quantities of interest.

In this section we have demonstrated that the FSH method yields an accurate
description of the system dynamics and can overcome the limitations inherent to
the CE method. The results were obtained under the assumption of a pair-wise
carrier generation process, which greatly simplifies the hierarchy of EoM, but does
not harm the general validity of the drawn conclusions or the applicability of the
FSH.
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Figure 3.8: Comparison between the solution of the von-Neumann equation (sym-
bols) and the FSH method for the time evolution of the single-QD photolumines-
cence. For all curves a light-matter coupling strength of g = 0.01/ps is used. The red
lines and crosses correspond to the results for cavity losses at a rate κ = 0.01/ps. In
comparison to the red curves κ = 0.1/ps is used for the blue lines and plus symbols.
The various line styles show the results of the FSH method obtained at different
truncation levels with respect to the photonic hierarchy.

3.7 Chapter Conclusion

In this chapter we have presented a new approach to the treatment of electronic
correlations in a nanostructure coupled to continuous electronic states, phonons,
and photons. For such a system, the direct solution of the vNL equation is only
possible if the electronic Hilbert space is small, which is the case for a single or few
emitters and a single cavity mode with a limited number of photons. On the other
hand, an EoM approach, in connection with the CE method to truncate the infinite
hierarchy of equations, has been used in the past as a valuable method to describe
luminescence-related phenomena, laser emission and photon correlations for systems
with many QDs or other active materials with a continuous density of states. We
have addressed the situation in finite-sized systems, in which the small number of
electronic degrees of freedom plays an important role. This is for example the case
in QDs with few confined states. We have demonstrated that boundary conditions
play an important role and lead to an enhancement of correlations. For this, we have
devised a formalism that combines the exact representation of the electronic degrees
of freedom of the vNL approach, with the truncation of the photonic hierarchy from
the CE method, resulting in the FSH method.

The second major point addressed in this chapter is the inclusion of scatter-
ing and dephasing by using the Lindblad formalism in the EoM-based approaches.
This regards scattering and dephasing in a consistent manner and on equal footing
with the Hamiltonian contributions to the time evolution of the system. A correct
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treatment of dissipative processes is a key requirement for making quantitative pre-
dictions in correlated systems. In earlier attempts, simpler models for the dephasing
have been used to obtain an estimate for the impact of correlations, such as adding
an estimated constant dephasing term to the EoM. Such an approach is subject to
artifacts that are overcome by the presented theory.

The FSH method allows for a description of much larger systems than it is possible
by means of the vNL equation, the emission into free space via a mode continuum.
For a single QD we have presented free-space emission spectra comprising multi-
excitonic effects, as well as time-resolved photoluminescence for a QD coupled to a
microcavity mode. The latter case allows for a comparison with the vNL equation to
benchmark the theory. The outcome is that the FSH method provides an accurate
description of the dynamics predicted by the vNL equation.
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Chapter 4

Expectation Value
Based Cluster Expansion

≈ + +

In this chapter a new method to formulate equations of motion (EoM) for open
quantum many-particle systems is presented. Our approach allows for a numerically
exact treatment as well as for approximations necessary in large systems and can
be applied to systems involving both bosonic and fermionic particles. The method
generalizes the cluster expansion (CE) technique by using expectation values (EVs)
instead of correlation functions (CFs), which we will term expectation value based
cluster expansion (EVCE). The use of EVs not only makes the equations more trans-
parent, but also considerably reduces the amount of algebraic effort to derive the
equations. The proposed formulation offers a unified view on various approxima-
tion techniques presented recently in the literature. The convergence properties of
the EVCE are studied for the Jaynes-Cummings model (JCM) explicitly, and three
additional examples for the application of the EVCE are shown schematically.

Parts of this chapter are published in [Leymann et al., 2014, Leymann et al.,
2013b]. The basic theoretical concept of the EVCE where developed by H.A.M. Ley-
mann in collaboration with A. Foerster, the EoM where mainly derived H.A.M. Ley-
mann, the numerical integration of the EoM was mainly done by A. Foerster, all
authors of [Leymann et al., 2014, Leymann et al., 2013b] discussed the results and
physical implications of the results.

4.1 Numerical approaches for interacting
many-particle systems

The finite size hierarchy described in chapter 3 was developed with a specific ap-
plication in mind, in this chapter we introduce the EVCE as a general technique
to describe interacting many-particle systems. In order to do justice to this general
approach we need to reintroduce some concepts already introduced in the former
chapter in a slightly different language or form, and the reader is kindly asked to
pardon for inevitable repetitions. Interacting many-particle systems can drive strong
correlations between the interacting particles. A straight forward way to describe
the dynamics of correlated many-particle systems is to directly derive the equations

49



4.2. THE CONCEPT OF CORRELATION FUNCTIONS

of motion for the quantities of interest. Equation of motion (EoM) techniques have
been used successfully to realize microscopic descriptions of quantum systems, and
are a way to systematically incorporate many-particle correlations into the descrip-
tion of exciton dynamics in quantum wells [Hoyer et al., 2003], ultracold Bose gases
[Köhler and Burnett, 2002], spin dynamics [Kapetanakis and Perakis, 2008], pho-
toluminescence [Kira et al., 1998], resonance fluorescence [Kira et al., 1999], cavity
phonons [Kabuss et al., 2012, Kabuss et al., 2013], cavity-quantum-electrodynamics
[Carmele et al., 2010b], and microcavity quantum dot (QD) lasers [Gies et al., 2007].
The basic idea of EoM approaches is to truncate the unfolding hierarchy of differ-
ential equations at a certain level to allow for a numerical solution. The details of
the truncation depend strongly on the used technique and the investigated system
and are the subject of this chapter. Many different formulations and approximation
techniques are known in the field of EoM approaches. However, we will distinguish
between two basic types of formulations using correlation functions (CFs) [Wiersig
et al., 2009, Kapetanakis and Perakis, 2008, Kira et al., 1998, Kira et al., 1999, Hoyer
et al., 2003, Hohenester and Pötz, 1997] as in the CE [Fricke, 1996a, Hoyer et al.,
2004] on the one hand and EVs (or density matrix elements) on the other hand [Gart-
ner, 2011, Richter et al., 2009, Witthaut et al., 2011, Kabuss et al., 2012, Carmele
et al., 2010b, Richter et al., 2015]. The formulation in CFs is algebraically demand-
ing but has proven to be very effective in approximately describing large systems.
Expectation value based formulations are algebraically less demanding and produce
a linear and very clear system of EoM, but are usually limited to small systems.
The proposed approach combines the two formulations (in CFs and EVs) with their
respective advantages and adds a new perspective on former techniques used in the
literature.

The outline of this chapter is as follows. In Sec. 4.2, we will revisit the general
concept of CFs and the factorization of EVs. The approximation techniques pre-
sented in Sec. 4.2 are the basis for the truncation variants presented in Sec. 4.3.
Section 4.3 is devoted to the derivation of EoM and we show how the introduced
formulation can be used to truncate the unfolding hierarchy of EoM. We focus on
the truncation of EoM for systems involving bosons and fermions and provide de-
tails on the various truncation possibilities. In Sec. 4.4, we will give an example for
the EoM of a coupled quantum system and show how different truncation schemes
result in known models.

4.2 The concept of correlation functions

In the following, we recapitulate and work out the details of the concept of CFs.
The fundamental definitions of CFs and a formal introduction to CFs can be found
in [Fricke, 1996a]. We introduce a new formulation that will facilitate switching
between a formulation in EVs or CFs. With this flexibility in the formulation we
give detail to the various approximations that are related to the neglection of EVs
and CFs.
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4.2.1 Definition of correlation functions

A key point of this section is the fact that one can represent every EV 〈b1b2 · · · bk〉
of operators bi as a sum of products of CFs in a unique way. In this part, we stick
to bosonic operators to keep it simple and the general ideas clear.

For the mathematical framework, we define a set of indices I = {1, 2, · · · , k} and
a product of operators bI = b1b2 · · · bk. P is a partition of the set I meaning a set
family of disjoint nonempty subsets J of I with ∪J∈PJ = I, and finally PI is defined
as the set of all partitions of I. We introduce the factorization operator F. This
operator does not change the value of the complex number

〈
bI
〉
, instead F changes

the representation of the EV, similar maybe to a passive transformation of a vector.
With these preliminaries we can now give a general definition of the CFs δ(bJ):

F
〈
bI
〉

= δ(bI) + δ(bI)F =
∑

P∈PI

∏

J∈P
δ(bJ). (4.1)

where δ(bI)F is a short notation for the sum of products of all possible factorizations
of the operator EV

〈
bI
〉
into CFs containing a smaller number of operators than the

cardinality of I, #(I). We show as an example the factorizations of the first EVs
containing products of up to three operators according to Eq. (4.1):

F 〈b1〉 = δ(b1),

F 〈b1b2〉 = δ(b1b2) + δ(b1)δ(b2), (4.2)
F 〈b1b2b3〉 = δ(b1b2b3) + δ(b1b2)δ(b3) + δ(b1b3)δ(b2)

+δ(b2b3)δ(b1) + δ(b1)δ(b2)δ(b3).

One can define the inverse operation F−1F = 1 as well. Applying F−1 to Eq. (4.1),

F−1δ(bI) =
〈
bI
〉
− F−1δ(bI)F , (4.3)

gives an implicit definition of F−1. As well as F, the operator F−1 does not change
the value of the complex number δ(bI), but rather its representation. By successively
applying Eq. (4.3) to itself one arrives at the form

F−1δ(bI) =
∑

P∈PI
cP
∏

J∈P

〈
bJ
〉

(4.4)

with cP = (−1)#(P )−1(#(P ) − 1)!, where the CF is represented entirely by EV.
Due to the implicit definition of F−1 the coefficients cP are not equal to +1 as in
Eq. (4.2). The first three ’refactorized’ CFs according to Eq. (4.4) are:

F−1δ(b1) = 〈b1〉 ,
F−1δ(b1b2) = 〈b1b2〉 − 〈b1〉 〈b2〉 , (4.5)

F−1δ(b1b2b3) = 〈b1b2b3〉 − 〈b1b2〉 〈b3〉 − 〈b1b3〉 〈b2〉
− 〈b2b3〉 〈b1〉+ 2 〈b1〉 〈b2〉 〈b3〉 .

With the recursive definition one can easily prove by induction that every EV can
be represented in an unambiguous way by CFs and every CF can be represented by
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EVs as well. The definition of the lowest-order CF is linear and therefore obviously
unambiguous. By using this first definition one can solve the second-order equation
unambiguously and with these two solutions one can solve the third-order equation
unambiguously and so on, therefore F−1F = FF−1 = 1 holds for every order. Note
that a similar definition of CFs can be introduced for fermionic operators fi, if
the sign of δ(fJ) is changed for every commutation of operators corresponding to
identical fermionic particles that is performed in the factorization of δ(f I).

4.2.2 Approximations by lower-order quantities

In this section we show how the concept of representing a quantity by a sum of
products of another quantity can be exploited for approximation schemes. To
this end we introduce the abbreviated notation δ(N), representing any function
of CFs δ(bI) of order N or smaller, where we call the order just the cardinality of
I (O[δ(bI)] = #(I) ≤ N). As an example we display the third line of Eqs. (4.2) in
this fashion:

F 〈b1b2b3〉 ≡ δ(3) + 3δ(2)δ(1) + δ(1)3 ≡ δ(3).

To symbolize neglections we define the truncation operator ∆δ(N). Applied to any
function of CFs, all CFs of order larger than N are neglected

∆δ(N)δ(N + 1) = δ(N). (4.6)

To further illustrate this notation we apply ∆δ(2) on the third line in Eqs. (4.2)

∆δ(2)

(
δ(3) + 3δ(2)δ(1) + δ(1)3

)
= 3δ(2)δ(1) + δ(1)3 ≡ δ(2),

leaving an expression that contains only CFs up the second order. Figure 4.1 gives
an illustration of this concept.

≈ + +

Figure 4.1: Illustration of the basic Idea of the CE. In this case the picture is meant
to represent the application of ∆δ(2)F on a third order EV.

Whether this neglection is justified depends on the physical system under inves-
tigation. An analogous definition can be made for the neglection of EVs, here 〈N〉
is a short notation for any function of EVs addressing N or less operators. The
application of the truncation operator ∆〈N〉,

∆〈N〉 〈N + 1〉 = 〈N〉 , (4.7)

reduces any function of EV 〈N + 1〉 of order (N+1) to a function of EVs containing
only EVs of order N or smaller by setting 〈N + 1〉 to zero.
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The application of the truncation operator is simple when ∆δ(N) is applied to
CFs, and ∆〈N〉 is applied to EVs. However, the representation of the quantities in
EV or CF is independent from the approximation one applies. One can formulate
all quantities in CFs and make an approximation by neglecting higher-order CFs.
Alternatively one can formulate all quantities in EV and still apply the very same
approximation. Using the factorization operators F(−1) we can apply ∆δ(N) to EVs
as well. The EV has to be rewritten into CFs (by application of F), then the highest
order CF is set to zero (by application of ∆δ(#I−1)) and finally the remaining CFs
are rewritten as EVs (by application of F−1). The EV

〈
bI
〉
is approximated by

F−1∆δ(#I−1)F
〈
bI
〉

= −
∑

P∈PI\I
cP
∏

J∈P

〈
bJ
〉
, (4.8)

a sum of products of lower-order EVs. We show in Sec. 4.3.2 that this approximation
scheme is very useful when it is necessary to describe systems with a large number
of particles and many degrees of freedom. To illustrate the approach, we apply ∆δ(1)

to 〈b1b2〉 and 〈b1b2b3〉 and∆δ(2) to 〈b1b2b3〉:
F−1∆δ(1)F 〈b1b2〉 = 〈b1〉 〈b2〉 , (4.9)

F−1∆δ(1)F 〈b1b2b3〉 = 〈b1〉 〈b2〉 〈b3〉 , (4.10)
F−1∆δ(2)F 〈b1b2b3〉 = 〈b1b2〉 〈b3〉+ 〈b1b3〉 〈b2〉 (4.11)

+ 〈b2b3〉 〈b1〉 − 2 〈b1〉 〈b2〉 〈b3〉 .
The reader will recognize Eq. (4.9) as the mean-field approximation and that Eq. (4.10)
is related to the second Born approximation [Hoyer et al., 2003]. Equation (4.11) re-
produces the so-called Bogoliubov back-reaction method recently used in [Witthaut
et al., 2011, Trimborn et al., 2011].

Since we have defined unambiguous transformations between CFs and EVs, it is
also possible to formulate analogous approximations for CF δ(bI). In this case, the
truncation operator ∆〈N〉 is applied to a CF:

F∆〈N−1〉F−1δ(bI) = −
∑

P∈PI\I

∏

J∈P
δ(bJ). (4.12)

A CF is approximated by a sum of products of lower-order CFs, since the corre-
sponding EV vanishes. This way of approximation leads exactly to the finite size
hierarchy introduced in the previous chapter and in [Florian et al., 2013b], were the
finite number of carriers confined in a single QD is taken into account by replacing
higher CFs with their factorizations.

We have formulated the two different approximations in a very symmetric fashion.
Nevertheless the two approximations are quite the opposite of each other: when a
system has many degrees of freedom and the interaction between the particles is
weak a CF of certain order can be neglected, the corresponding EV can not,

δ(bI) = 0 ⇒
〈
bI
〉

= F−1δ(bI)F ,

but has to be replaced by products of non-zero EVs of lower order. If a system has
only a limited number of particles and certain normal ordered EVs vanish

〈
bI
〉

= 0 ⇒ δ(bI) = −δ(bI)F ,
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the corresponding CF cannot be neglected but has to be replaced by its factorization
(see the FSH described in the previous chapter). In Sec. 4.4.1 we will give a specific
example on the difference of the two approaches and see how badly a system with
vanishing EV can be described by EoM in which CFs are neglected.

We emphasize that up to this point our considerations are of entirely formal
nature. We worked out the case of a vanishing CF and the effect this has on the
corresponding EV and vice versa. It depends on the investigated physical system
whether one of these approximations is adequate.

Expanding a the characteristic function of a probability distribution

In this last subsection describing the concept of CFs we briefly illustrate the connec-
tion between the moments 〈xn〉 of a probability distribution and the characteristic
function of a probability distribution. It is not our aim and not in the scope of
this chapter to do this with mathematical strictness, the aim is merely to offer an
additional perspective on the idea of the CE, i.e. the neglection of EVs/CFs. On can
say, neglecting higher-order moments of a probability distribution ρ is equivalent to
a Taylor expansion of the inverse Fourier transform of ρ. In the following we try to
illustrate this point of view.

For an arbitrary continuous probability distribution ρ(x) like the one depicted in
Fig. 4.2 one can define the characteristic function as the inverse Fourier transform
F−1 of the probability distribution

φX(t) = 〈eixt〉 =

∫
dxeixtρ(x) = F−1[ρ(x)] .

From the kth derivative of the characteristic function with respect to t one can
obtain all moments of the probability distribution 〈xk〉 = φ

(k)
X (t = 0)i−k. Conversely

this means that the characteristic function can be expressed by a power series with
the first N moments as expansion coefficients plus a residual function

φX(t) = TNX (t) +RN
X(t) =

N∑

k=1

(it)k

k!
〈xk〉+RN

X(t) .

So the question how good a probability distribution is represented by its first N
moments can be answered by comparing F [TNX (t)] to the correct probability dis-
tribution. For a more in depth analysis we recommend [Wheeler, 1998, Fick and
Sauermann, 1990].

4.3 Equations of motion

In this section we show how EVs and CFs are used to derive EoM for a given physical
system. We work out how the suggested approximation schemes can be applied to
different systems of EoM formulated in terms of EVs or CFs. We also discuss the
situation of a mixed Hilbert space describing different types of particles.
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Figure 4.2: Arbitrary probability distribution ρ(x) shown in red, accompanied by
an illustration of its first moments: the mean 〈x〉 (blue), the variance 〈(x − 〈x〉)2〉
(black), and the unnormalized skewness〈(x−〈x〉)3〉 (green). The blue line is located
at the mean of ρ, the width of the black box corresponds to the square root of the
variance, and the asymmetry of the green triangle is proportional to the cube root
of the skewness.

4.3.1 Infinite Hierarchy

The dynamics of an open quantum mechanical system with the Hamiltonian H is
described by the von Neumann-Lindblad equation (vNL) for the density operator ρ

d

dt
ρ = − i

~
[H, ρ] +

∑

ν

γν
2

(
2ηνρη

†
ν − η†νηνρ− ρη†νην

)
, (4.13)

where H generates the internal dynamics and the Lindblad terms describes the
coupling to external baths with transition rates λν and the collapse operators Lν
(see, for example, [Carmichael, 1999] and references therein). For many systems, an
exact solution of ρ(t) is not feasible due to the size of the system and the interaction
part of H. Moreover, a solution of ρ(t) is not necessary for many applications and
it is enough to know the dynamics of some EVs 〈A〉 = Tr(Aρ). Equation (4.13) can
be used to derive generalized Ehrenfest EoM 1,

d

dt
〈A〉 = 〈L(A)〉 =

i

~
〈[H,A]〉+

∑

ν

γν
2
〈2η†νAην − η†νηνA− Aη†νην〉 (4.14)

for the desired operator EVs 〈A〉. In Eq. (4.14), L is a superoperator that stands for
the application of the Lindblad form and the commutator with H to the operator
A. When deriving Ehrenfest EoM, the interaction part of the Hamiltonian and the
scattering terms in the Lindblad terms lead to an hierarchy of EoM. These terms

1This is not a generalized Heisenberg EoM. A Heisenberg equation is an EoM for an operator
in the Heisenberg picture. Equation (4.14) is an EoM for an EV and is derived from the vNL
Eq. (4.13) in the Schrödinger picture and not from the Heisenberg equation.
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couple a first-order quantity to a second-order quantity and a second-order to a
third-order quantity and so on. Symbolically this reads:

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

d

dt
〈2〉 = 〈L(2)〉 = 〈3〉 (4.15)

...
...

...

and without any truncation the hierarchy would go up to infinite order. In many
cases, it is possible to calculate the effect of L for a whole family of operators
Aα and to formulate an inductive scheme for arbitrary high orders [Gartner, 2011,
Kabuss et al., 2011]. When the system contains only n particles or it is justified
to approximate an actual infinite system by a systems containing n particles, then
normal ordered EVs addressing n+ 1 particles vanish,

〈b† · · · b† b · · · b︸ ︷︷ ︸
n+1

〉 = 0

which has the same effect as the application of the truncation operator ∆〈N〉 with
N = 2n:

〈2n+ 1〉 ≈ ∆〈2n〉 〈2n+ 1〉 = 〈2n〉 . (4.16)

Note that in the case of finite particle numbers the total number of normal ordered
operators is not important, but the number of annihilation (creation) operators is.
However, we do not focus on this point because in every practical case one can
unambiguously identify the vanishing EV. The truncation operator ∆〈N〉 applied
on the Nth line of the hierarchy in Eqs. (4.15) leads to a finite system of linear
differential equations:

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

...
...

... (4.17)
d

dt
〈N〉 = 〈L(N)〉 ≈ ∆〈N〉 〈N + 1〉 = 〈N〉 .

Figure 4.3 gives a visualization of the coupled linear EoM in system (4.17). This
truncation scheme is useful when the system contains a small number of particles
occupying a limited number of states, i.e. , the Hilbert space is finite and manageable
with numerical methods. If a system can be described by this method it is, in
principle, also possible to solve the vNL Eq. (4.13) directly, since the corresponding
matrix equation can be solved in the basis of configurations the finite number of
particles occupy. These approaches are often called numerically exact methods.
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Figure 4.3: Illustration of an EV hierarchy. The black lines indicate the linear
coupling between the EV of increasing order. One can imagine the hierarchy as a
line of EVs coupled by linear differential equations to the next order. The hierarchy
is truncated by setting the (N +1) EV to zero, i.e. applying the truncation operator
∆〈N〉.

When the physical system under consideration is too large to be described by a
finite Hilbert space, the CE method has proven beneficial. In this method the EoM
are derived for the CFs and the CFs of certain order are neglected. To derive the EoM
for the CF δ(bI), the Ehrenfest EoM (4.14) has to be applied to the corresponding
EV and the resulting EVs have to factorized into CFs again and finally the previously
calculated derivatives of the lower-order factorizations have to be subtracted:

d

dt
δ(bI) = F

〈
L(bI)

〉
− d

dt
δ(bI)F . (4.18)

As well as for the EV hierarchy, the interaction and scattering terms in L give rise
to an infinite hierarchy of CFs:

d

dt
δ(1) = F 〈L(1)〉 − d

dt
δ(1)F = δ(2),

d

dt
δ(2) = F 〈L(2)〉 − d

dt
δ(2)F = δ(3), (4.19)

...
...

...

The infinite hierarchy displayed in the set of Eqs. (4.19) is equivalent to the infinite
hierarchy in Eqs. (4.15) and the two systems of EoM produce exactly the same
results if they were formulated up to infinite order and solved exactly.

For a large system with sufficiently weak interaction, CFs δ(bI) of order #(I) > N
can be neglected and the hierarchy of CFs can be truncated. This is equivalent to
the application of the truncation operator ∆δ(N) (from Eq. (4.6)) to the Nth line of
the hierarchy in Eqs. (4.19)

d

dt
δ(1) = F 〈L(1)〉 − d

dt
δ(1)F = δ(2),

...
...

... (4.20)
d

dt
δ(N) = F 〈L(N)〉 − d

dt
δ(N)F

≈ ∆δ(N)F 〈L(N)〉 − d

dt
δ(N)F = δ(N).

This system of Eqs. (4.20), illustrated in Fig. 4.4, is no longer equivalent to the
truncated hierarchy of EVs in Eqs. (4.17) due to the application of different trun-
cation operators. In fact Eqs. (4.17) and Eqs. (4.20) describe opposite situations in
the same sense as pointed out at the end of Sec. 4.2.2.
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Figure 4.4: Illustration of a CF hierarchy. The CF of a certain order couple linearly
to the CF of the next order indicated by the black line, but also to products of lower-
order CF indicated by the blue merging lines on top. To truncate the hierarchy at
order N the (N +1)th CF is set to zero i.e. the truncation operator ∆δ(N) is applied.
In contrast to the EV hierarchy depicted in Fig. 4.3 the CF hierarchy cannot be
imagined as a straight line, due to the nonlinear coupling of the CF. The structure
of this hierarchy is nonlinear and has to be imagined as an intertwined chain.

Let us compare the hierarchies (4.15, 4.17) of EVs to the hierarchies (4.19, 4.20)
of CFs. On the one hand Eqs. (4.15, 4.17) are entirely linear since they originate
from the linear Ehrenfest EoM (4.14). The only necessary algebraic operation to
derive these equations is the normal ordering of L(bI). The truncated version in
Eqs. (4.17) can be used to describe the dynamics of a finite quantum system. On
the other hand Eqs. (4.19, 4.20) are nonlinear for all orders larger than one. To derive
these equations, L(bI) has to be normal ordered, the resulting EV has to be fac-
torized and time derivatives of the lower-order factorizations have to be subtracted.
Without advanced methods the algebraic effort is very high since the factorization
(F
〈
L(bI)

〉
) and the time derivative of the products of the lower-order CFs ( d

dt
δ(bI)F )

are demanding and error intensive operations and have to be performed for every
single order in the hierarchy. The benefits of this effort are that Eqs. (4.20) can be
used to describe the dynamics of a large system with small correlations that would
in fact be too large to be described by the set of Eqs. (4.17).

4.3.2 Expectation value based cluster expansion

We will now give detail to the central concept of this chapter, the independence of
the formulation of the EoM in EVs or CFs from the principle of approximation that
is used to truncate the infinite hierarchy of EoM. We have shown in Sec. 4.2.2 that
one can apply ∆δ(N) to EVs and ∆〈N〉 to CFs as well. The consequence is that we can
apply the truncation operator ∆δ(N) also on the Nth line of Eqs.(4.15) and obtain a
system of EoM formulated in EVs that is equivalent to the CF system Eqs.(4.20):

d

dt
〈1〉 = 〈L(1)〉 = 〈2〉

...
...

... (4.21)
d

dt
〈N〉 = 〈L(N)〉 ≈ F−1∆δ(N)F 〈N + 1〉 = 〈N〉 .

Equations (4.21) are equivalent to Eqs. (4.20), and produce the same results, since
the same truncation scheme (∆δ(N)) is used. Note that Eqs. (4.21) are almost linear,
only the EoM where actual approximations are made are nonlinear. An infinite
system of linear equations is approximated by a finite set of nonlinear equations in
which the non-linearity arises from the approximation. A visualization of Eqs. (4.21)
can be found in Fig. 4.5.
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Figure 4.5: Illustration of an EV hierarchy truncated by neglecting CFs. This
hierarchy is equivalent to the hierarchy illustrated in Fig. 4.4 though in its structure
it is very similar to the EV hierarchy illustrated in Fig. 4.3. The EVs of a certain
order couple linearly to the next order. The truncation here is not achieved by
setting the (N + 1)th EV to zero but by substituting it by products of lower-order
EVs indicated by the merging blue line entering the Nth EV from the side mediated
by the truncation operator. In consequence this hierarchy can be imagined as an
“almost” straight line where only the last order couples nonlinearly to products of
lower-order quantities.

We emphasize that it is much less demanding to derive Eqs. (4.21) than Eqs. (4.20)
since an inductive scheme can be used to derive Eqs.(4.21) up to line N . The
factorizations that are required in F−1∆δ(N)F 〈N + 1〉 can be listed as indicated in
Eqs. (4.9)-(4.11) and all emerging EVs of order larger than N can be substituted
according to such a list. Lists for higher-order EVs can be constructed using the
computer algebra tool FORM [Vermaseren, 2000](see appendix D)). Though this
formulation is very different from the “traditional” CE it can still be called so, since
its approximations and results are exactly the same.

For the sake of completeness, we will also show a system of equations equivalent
to Eqs. (4.17) but entirely formulated in terms of CFs:

d

dt
δ(1) = F 〈L(1)〉 − d

dt
δ(1)F = δ(2),

...
...

... (4.22)
d

dt
δ(N) = F 〈L(N)〉 − d

dt
δ(N)F

≈ F∆〈N〉 〈L(N)〉 − d

dt
δ(N)F = δ(N).

Figure 4.6: Illustration of a CF hierarchy truncated by neglecting EVs. This hierar-
chy is equivalent to the hierarchy illustrated in Fig. 4.3 though in its structure it is
very similar to the CF hierarchy illustrated in Fig. 4.4. The CF of a certain order
couples linearly to the CF of the next order indicated by the black line, but also to
products of lower-order CF indicated by the blue merging lines on top. The trunca-
tion here is not achieved by setting the (N + 1)th CF to zero but by substituting it
by products of lower-order CF indicated by the merging blue line entering the Nth
CF from the right side.

The illustration of this system of equations is displayed in Fig. 4.6. It is obvious
that it is clearer and also easier to derive Eqs. (4.17) than it is to derive Eqs. (4.22),
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=?

Figure 4.7: Question how correlations between different particles have to be valued
compared to correlations between identical particles.

but we see that it is possible to describe a finite system exactly by EoM formulated
in CFs, this is again the FSH introduced in the previous chapter.

We conclude this subsection with the suggestion to formulate all EoM in terms of
EVs. If the neglection of CFs is required the truncation operator in combination with
the factorization operators F−1∆δ(N)F can be used. By this approach, one can use
simple inductive algebra to derive Ehrenfest EoM for the EVs and then perform the
factorizations only in the highest order EVs. The resulting EoM are much simpler
in structure than the equivalent ones formulated in CFs and are much easier to
obtain. Another advantage of the formulation in terms of EVs is that the effect of
the neglection of CFs is directly marked in the equations by the nonlinearities in the
otherwise linear equations.

4.3.3 Equation of motion for mixed Hilbert spaces

The advantage of the formulation of the EoM via EV becomes even more evi-
dent when one investigates the dynamics of a coupled system, in which the vari-
ous types of particles have different constraints and correlation strength. Figure
4.7 illustrates the question how correlations between different particles have to be
weighted. For example, let us consider a system coupling fermionic carriers de-
scribed by creation/annihilation operators from the set F = {f †1 , . . . , f †n, f1, . . . , fn}
to a quantized light field described by bosonic creation/annihilation operators B =
{b†1, . . . , b†m, b1, . . . , bm}. A general normal ordered EV in this system would be〈
bIfK

〉
= 〈b†i . . . blf †o . . . fr〉, where I and K are index sets addressing elements in

B and F respectively. In analogy to the abbreviated notation introduced at the
beginning of Sec. 4.2.2 we will write 〈N,M〉 for any function of EVs

〈
bIfK

〉
with a

maximum orderN,M given by the cardinality of the index sets (#I ≤ N,#K ≤M).
And we will write δ(N,M) for an arbitrary function of CFs δ(bIfK) with a maximum
order N,M . In Sec. 4.2.2 we have introduced the truncation operators ∆〈N〉/δ(N) act-
ing either on EVs or CFs. For mixed Hilbert spaces the truncation operator has to
be specified further to indicate on which part of the EV/CF ∆ it is acting on. The
upper index B,F specifies whether ∆ is applied on the bosonic or on the fermionic
part of the quantity. We give examples for ∆δ(N/M) acting on CFs

∆Bδ(N−1)δ(N,M) = δ(N − 1,M), (4.23)

∆Fδ(M−1)δ(N,M) = δ(N,M − 1), (4.24)

∆B+F
δ(N+M−1)δ(N +M) = δ(N +M − 1). (4.25)

In our example ∆Bδ(N) neglects bosonic correlations in Eq. (4.23), ∆Fδ(M) neglects
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fermionic correlations in Eq. (4.24) and ∆B+F
δ(N+M) neglects (N +M)-operator correla-

tions in Eq. (4.25), which can be reasonable in large systems with a direct coupling
between the different particles. There are many cases were the weighting of the
operators is not symmetrical (B + F) but weighted (B + wF) with w being the
weighting factor [Kira et al., 1999]. This is for instance the case when a large sys-
tem is dominated by the dipole Hamiltonian b†f †gfe + bf †efg. In this case one Bose
operator is coupled to two Fermi operators and the weighting factor is 1/2.

4.4 Applications

To illustrate our approach, we give a specific example for a hierarchy of EoM de-
scribing a coupled electron-photon system. We give details on how the derived EoM
can be used to describe very different physical systems depending on the approxima-
tions that are made to truncate the hierarchy. To conclude this section we interpret
former EoM techniques according to our approach.

4.4.1 Hierarchy induced by the dipole Hamiltonian

For systems with coupling in-between the different kinds of particles, the hierarchy
unfolds into various directions. In this example, the dipole Hamiltonian

HD =
∑

gmb
†f †gmfem + h.c. (4.26)

for a single optical mode in rotating wave approximation (see, for example, [Meystre
and Iii, 1999]) couples the operators b(†) ∈ B annihilating (creating) a photon in the
cavity mode, b|n〉B =

√
n|n−1〉B, to the operators f (†)

e/gm
∈ F annihilating (creating)

a carrier in the state |e/g;m〉F . In this context e/g specifies the energetic state
of the electron in the exited or ground level (conduction and valance band in a
semiconductor context) and m is a place holder for all remaining quantum numbers
specifying the carriers state. The EoM for the generalized electron density

d

dt

∣∣∣∣
HD

〈
b†abaf †eifei

〉
= −2Re(gi

〈
b†a+1baf †gifei

〉
) (4.27)

− 2a
∑

Re(gm
〈
b†aba−1f †eif

†
gmfeifem

〉
),

or more schematically

d

dt

∣∣∣∣
HD

〈2a, 2〉 = −2Regi 〈2a+ 1, 2〉 (4.28)

− 2a
∑

Regm 〈2a− 1, 4〉 ,

is a quantity of order (2a, 2). It couples to the photon assisted polarization of order
(2a+ 1, 2) and to EVs correlating polarizations in other shells m with the presence
of a second carrier in state |e; i〉, this term has the order (2a − 1, 4) (compare to
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Eq. (4.28)). The EoM for the photon assisted polarization

d

dt

∣∣∣∣
HD

〈
b†a+1baf †gifei

〉
= (a+ 1)gi

〈
b†abaf †eifei

〉
(4.29)

+ gi
〈
b†a+1ba+1(f †eifei − f †gifgi)

〉

+ (a+ 1)
∑

gm
〈
b†abaf †emf

†
gi
feifgm

〉

− a
∑

gm
〈
b†a+1ba−1f †gif

†
gmfeifem

〉
,

d

dt

∣∣∣∣
HD

〈2a+ 1, 2〉 = (a+ 1)gi 〈2a, 2〉 (4.30)

+ gi 〈2a+ 2, 2〉
+ (a+ 1)

∑
gm 〈2a, 4〉

− a
∑

gm 〈2a, 4〉 ,

couples to the spontaneous emission (2a, 2), to the stimulated emission (2a+2, 2), to
the spontaneous emission modified by additional electrons present in the semicon-
ductor system (2a, 4) and to possible two-photon processes generated by transitions
in other shells (2a, 4) or other emitters (compare Eq. (4.29) and Eq. (4.30)). The
desired EVs couple to EVs with a growing number of Bose and Fermi operators.
To close this hierarchy it has to be truncated by a combination of ∆B and ∆F

as depicted in Fig. 4.8. For information about the photon statistics and to close

Figure 4.8: Illustration of the system of EoM (4.27-4.30) induced by the dipole
Hamiltonian HD. The hierarchy unfolds in two directions and therefore has to be
truncated by a combination of ∆B and ∆F . The sketch shows how the hierarchy
is truncated in our framework in the fermionic direction at single-particle level by
∆F2 standing for ∆F〈2〉 applicable to one-electron systems or for ∆Fδ(2) applicable to
semiconductor systems with more than one electron. The photonic direction of the
hierarchy is truncated by ∆BM standing for ∆B〈M〉 with applications in cavity-QED
systems or for ∆Bδ(M) applicable, for example, in laser systems.

the set of equations after factorization the EoM for the (not normalized) photon
autocorrelation function

d

dt

∣∣∣∣
HD

〈
b†aba

〉
= 2

∑

i

Re(gi
〈
b†a+1baf †gifei

〉
) (4.31)

is required as well.
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In Fig. 4.9 several different combinations of truncation operators for M and N
are illustrated. (a) The system can be described by a large but in principle finite
Hilbert space, all EV up to the maximum umber of particles in the system are taken
into account (∆N

〈Nmax〉∆
M
〈Mmax〉). (b) This is the ’traditional’ truncation scheme of

the CE. The Hilbert space is too large to be described exactly for both kinds of
particles and the interaction Hamiltonian allows to formally identify the two types
particles with one another and take all correlations up to a certain combined number
of particles into account (∆N+M

δ(2) ). (c) This system contains a maximum number of
M = 4 particles of type M and very large/unlimited number of particles of type
N . To describe this system all EVs addressing M = 5 or more particles have to be
set to zero and CFs of the desired order N are neglected (∆N

δ(1)∆
M
〈4〉). In panel (d) a

similar situation as in panel (c) is depicted, only this time the number of particles of
type N is limited to two and the particle number of the other kind is too large to be
treated exactly (∆N

〈2〉∆
M
δ(4)). In panel (e, f) we find the same physical situation as in

panel (d) but here we give examples for inappropriate truncations in the ’direction’
of particle type N . (e) CFs up to the order N = 3 are taken into account and higher
order CFs are neglected (∆N

δ(3)) which is unnecessary complicated and will produce
artifacts due to the violation of the boundary condition 〈3〉 = 0. (f) In this case CFs
of the order two are neglected ∆N

δ(1). Again, this is unnecessary complicated since
one could simply include the EoM for the two-particle EVs have the hierarchy of
EVs terminate ’naturally’. Furthermore it is wrong to assume that the two-particle
CFs can be neglected for this system, since the particle number is limited to two
and therefore two-particle correlations are expected to be strong.

To further illustrate the application of the combined truncation scheme, we will
give examples that result in known models. To obtain these models, we show in the
following how Eqs. (4.27,4.29) have to be modified and truncated and in some cases
augmented with additional EoM. Note that all systems in the following examples
are considered to be in the incoherent regime where EVs like

〈
b†
〉
,
〈
f †efg

〉
vanish

[Molmer, 1997]. So far, we have only defined the interaction part of the Hamiltonian
in an abstract manner. To describe a real model, the free part of the Hamiltonian,
the number of particles and the level structure of the particles have to be declared
and according to this the sum and indices in the dipole Hamiltonian. Furthermore,
several external processes have to be included into the equations, either by Lindblad
terms or directly by adding phenomenological terms to the equations. However,
the processes induced by an external bath do not change the necessity to truncate
the hierarchy created by HD. For the sake of simplicity, we will only consider the
external processes explicitly in the first and simplest example.
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Figure 4.9: Illustration of various truncation possibilities for a system of interacting
particles with different order M and N . The circles and crosses stand for possible
combinations ofM andN that can occur in the considered CFs and EVs. The crosses
indicate a vanishing EV when addressing the corresponding number of particles. The
gray area marks all CFs/EVs that are taken into-account in the considered order.
A detailed description is in the text.
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Jaynes-Cummings model

A very basic example is the JCM with a fixed number of N photons inside the cavity
and one carrier that can occupy the ground or exited state (a = 0 . . . N and m/i
can only have only one value in Eqs. (4.27,4.29)). The application of ∆B〈N〉∆

F
〈2〉 is

sufficient to describe this system. Since the JCM is a one-electron model all EV
addressing two electrons are zero:

∆F〈2〉
〈
bIf †f †ff

〉
= 0,

and because the number of photons is limited to N , the probability to find N + 1
photons is zero, i.e.

∆B〈N〉
〈
b†N+1bN+1f †f

〉
= 0,

is justified.

Figure 4.10: Dynamics of the photon-autocorrelation function g(2)(0) of the JCM for
an initially exited electron and the cavity field prepared in a Fock state with 〈b†b〉 = 1
and 〈b†nbn〉 = 0 for n > 1. The time is measured in units of the Rabi frequency ωR.
Depicted is the analytically exact solution compared to various numerical solutions
of the EoM from Eqs. (4.27,4.29). The fermionic part is truncated by ∆F〈2〉 since the
JCM is a one electron model, the photonic part is truncated by ∆B〈4〉 or ∆Bδ(N)with
N = {4, 6, 8, 10, 12}. Note that the analytically exact solution and the numerically
exact solution (∆B〈4〉) lie on top of each other. The results obtained by the CE fail
to describe the dynamics of this system and the orders eight to twelve even reach
nonphysical values below zero marked by the gray hatched area. The curves shown
here were all obtained by the EVCE. The corresponding curves obtained by the
traditional CE would lie on top of them since both approaches differ only in the
formulation but not in the results.
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In Fig. 4.10 this EoM approach is compared to the CE where CFs are neglected,
which is totally inappropriate for this finite system (see end of Sec. 4.2.2). Figure
4.10 shows the time evolution of the second-order photon-autocorrelation function,

g(2)(t, τ) =

〈
b†(t)b†(t+ τ)b(t+ τ)b(t)

〉

〈b†(t)b(t)〉 〈b†(t+ τ)b(t+ τ)〉 ,

at zero delay time (g(2)(t, 0) = g(2)(0)) for the JCM with the electron initially in the
exited state and the cavity prepared in a Fock state with 1 photon (|ψ0〉 = |e〉F |1〉B).
The system oscillates between the initial state and a two-photon state with the elec-
tron in the ground state (|ψ1〉 = |g〉F |2〉B) consequently the photon-autocorrelation
function oscillates between g(2)(0) = 0 and g(2)(0) = 0.5 with the Rabi-frequency
ωR. The result of the EoM truncated with ∆B〈4〉 is in perfect agreement with the
exact analytical result. The results obtained with the CE (i. e. by applying ∆Bδ(N))
diverge dramatically from the exact solution and exhibit even nonphysical behavior
(g(2)(0) < 0). Going to higher orders enlarges the time interval in which the CE
matches the exact results. However, the algebraic effort is tremendous and still the
CE of order twelve is not able to monitor a half Rabi cycle for this system. Only the
inclusion of an infinite number of CFs would be able to compensate the vanishing
EV, which is facilitated by ∆B〈4〉 in a very natural fashion. Further details on this
approach to the JCM and on the convergence properties of the CE can be found
e.g in [Richter et al., 2009, Leymann et al., 2013b]

Four-level laser rate equations

Allowing the index i to be {1, 2} and limiting the number of carriers per atom to one
gives the basis of a four-level laser model (a = 0, 1 and i = 1, 2 in Eqs. (4.27,4.29)).
The application of ∆

B+F/2
δ(2) gives the basis for the laser rate equations with

F−1∆
B+F/2
δ(2) F

〈
b†bf †f

〉
≈
〈
b†b
〉 〈
f †f
〉

as the main approximation [Yokoyama and Brorson, 1989, Rice and Carmichael,
1994]. Since the gain medium is considered to consist of one-electron systems the
two-electron quantities vanish ∆F〈2〉

〈
f †f †ff

〉
= 0. This model provides no statistical

information about the photons other than the mean photon number
〈
b†b
〉
, but can

easily be extended within our framework by including higher-order correlations.

Semiconductor model for a single quantum dot microcavity laser

Characteristic for a semiconductor QD is the presence of more than one carrier con-
fined in the QD shell structure. Pauli blocking of recombination channels, Coulomb
interaction and scattering with wetting layer carriers and phonons influence the dy-
namics of carriers in a semiconductor QD. We consider QDs with two shells (i = s, p
in Eqs. (4.27,4.29)) in the valence and the conduction band. Note that this QD
model is identical to the one introduced in chapter 3. Expectation values addressing
two carriers are different from zero in this system and thus have to be considered.
The Hilbert space corresponding to a single QD inside a cavity with only one reso-
nant photonic mode is still small enough to allow for a numerically exact description
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(a = 1 . . . N). Single semiconductor QD systems have been studied for example in
[Ritter et al., 2010, Gies et al., 2012] by the direct solution of the vNL Eq. (4.13).
The application of the truncation operators ∆F〈4〉∆

B
〈N〉 on the Eqs. (4.27, 4.29) gives

a numerically exact semiconductor QD model equivalent to the vNL equation, when
N is chosen sufficiently large.

To obtain a complete model the EoM for the two-electron quantities
〈
bIf †f †ff

〉

have to be derived using Eq. (4.14) and the corresponding Lindblad terms have to
be included. The hierarchy is truncated at the two-electron level, meaning that EV
addressing three electrons vanish,

∆F〈4〉
〈
bIf †f †f †fff

〉
= 0.

This truncation is justified by the assumption that the QD initial state is uncharged
and electrons and holes are pumped symmetrically (see chapter 3); a discussion of
the effects of a unsymmetrical pump can be found in [Florian et al., 2013b]. Every
photonic state that is produced by a single QD, be it a thermal or coherent state,
can be approximated by a large but finite superposition of Fock states N so that
EVs addressing (N + 1) photons vanish,

∆B〈N〉
〈
b†N+1bN+1fK

〉
= 0.

Semiconductor laser model for multiple quantum dots

In semiconductor QD microcavity lasers, typically, several QDs take part in the laser
dynamics. To obtain a microscopic semiconductor laser model, all the processes
mentioned in the single semiconductor QD model have to be taken into account as
well. For three or four QDs the size of the Hilbert space is still small enough so that
the system can still be described by the vNL equation as in [Florian et al., 2013a] or
by the induction method up to vanishing EVs [Su et al., 2013]. However, in the case
of five or more QDs the fermionic part of the Hilbert space is too large for an exact
treatment. When the laser operates above threshold the photon number grows too
fast with the pump as well to set up an hierarchy that goes up to vanishing EVs.
To truncate the EoM hierarchy for such a large system, CFs have to be neglected.

A model that is sufficient to describe an ensemble of semiconductor QDs coupled
to a single cavity mode and to provide statistical information about the photons
beyond the intensity is given when Eqs. (4.27,4.29) are carried up to a = 0, 1, 2 and
the truncation operators ∆Fδ(2) and ∆Bδ(4) are applied. The hierarchy is closed in the
fermionic subspace by factorizing all two-electron quantities:

F−1∆Fδ(2)F
〈
bIf †f †ff

〉
≈

∑
c{J,L,M}

〈
bJf †f

〉 〈
bLf †f

〉 〈
bM
〉

where I = J ∪ L ∪M is the index set addressing the Bose operators. In contrast
to the single QD model, a large number (> 10) of QDs takes part in the laser
dynamics. Therefore an exact treatment of the carriers is impossible and carrier-
carrier correlations are not in focus of this model. The carriers can be treated
on Hartree-Fock level since the Coulomb interaction is screened by the high carrier
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densities in the lasing regime and correlations are strongly diminished by dephasing.
In chapter 6 we will explicitly include these and higher correlations to study the
influence of correlations between different emitters. In the bosonic subspace the
hierarchy is closed by factorizing all EVs containing more than four photon operators

F−1∆Bδ(4)F
〈
b†b†b†bbfK

〉
≈

+
∑

c{Q,R,S,T}
〈
b†bfQ

〉 〈
b†bfR

〉 〈
b†fS

〉 〈
fT
〉

+
∑

c{Q′,R′,T ′}
〈
b†b†bbfQ

′
〉〈

b†fR
′
〉〈

fT
′
〉

+
∑

c{Q′′,R′′,T ′′}
〈
b†b†bfQ

′′
〉〈

b†bfR
′′
〉〈

fT
′′
〉
,

where K = Q ∪ R ∪ S ∪ T is the index set addressing the Fermi operators. There
are more possible factorizations, but these terms are zero in the incoherent regime
or not driven by the particular Hamiltonian. Expectation values with up to four
photon operators are considered in this model. Thereby we have access to the
photon-autocorrelation function of the cavity photons at zero delay time g(2)(0). An
equivalent model formulated in terms of CFs has been introduced in [Gies et al.,
2007].

We conclude this section with a comparison between the presented examples.
Note the similarities between our first and third example, in both examples, a lim-
ited number of carriers interact with limited number of photons. The single semi-
conductor QD can be regarded as the extension of the JCM to the case of a many
electron system. And our fourth example can be considered as the extension of the
four-level system laser to a semiconductor laser model that provides additional to
the intensities, information about the photon statistics. All these models originate
from the same hierarchy of EVs and differ, with respect to the truncation of the
hierarchy, only in the order and combination of the truncation operators ∆F and
∆B.

4.4.2 Classification of former approaches by the proposed
truncation scheme

At the end of this section, we will briefly touch on former approaches to truncate
hierarchies of EoM. The formulation in the literature may differ from ours but the
truncation techniques can all be regarded as an application of one or more truncation
operators as defined in Eqs.(4.6,4.7). Our formulation offers a new perspective
to the various approaches listed in Table 4.1. Example (i) and (ii) in the table
are concerned with relatively small systems that can still be treated numerically
exact. In the first example (i), the vNL. Eq. (4.13) for the density operator ρ for
a single QD laser is solved in the basis of the finite configuration states |φi〉 =
|electron1〉|electron2〉|photon〉 numerically [Ritter et al., 2010], which could also be
mapped onto an EV hierarchy truncated at the order corresponding to the size of the
matrix ρij = 〈φi|ρ|φj〉. The second example (ii) is formulated in EVs and describes
a QD cavity system coupled to phonons. The hierarchy of EoM is set up by the
induction method [Carmele et al., 2010b] referred to in Sec. 4.3. The single QD
described by a finite Hilbert space investigated in the third example (iii) is coupled
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to a continuum of modes and has therefore be treated approximately by neglecting
photon correlations. The EoM in this example are formulated in CF but the finite
fermionic part of the system is treated exactly by factorizing CFs that address three
or more carriers according to Eq. (4.12). Since this method is designed to set up
a hierarchy of EoM for a finite fermionic system, it is called finite-size hierarchy
(FSH) see (chapter 3 and [Florian et al., 2013b]). Example (iv) treats its bosonic part
exactly by using the photon probability up to N photons, which could be mapped on
EVs

〈
b†aba

〉
with a up to N . The correlations between the two carriers are neglected

and EVs with more than two Fermi operators are factorized. This method combines
the photon probability with the factorization of the carrier EVs according to the CE
and is therefore called the photon probability cluster expansion (PPCE) [Richter
et al., 2009]. The FSH and the PPCE can be regarded as opposite approaches as
the FSH treats the Fermi part exactly and factorizes Bose EVs whereas the PPCE
factorizes the Fermi part and treats the Bose part exactly. Example (v) is exactly
the model described in Sec. 4.4.1 formulated in CFs [Gies et al., 2007]. Quantum
wells are described by a continuous Hilbert space and are predesignated for the CE,
i.e. , the neglection of CFs as in example (vi), studying the effects of Coulomb and
phonon interaction on exciton formation in semiconductor quantum wells [Hoyer
et al., 2003]. In example (vii) the radiation induced coupling between carriers is
investigated. In this theory configuration operators Q are introduced that describe
the carriers confined to the QD exactly and then CFs between these Q operators
are neglected. This theory called configuration cluster expansion (CCE) is further
described in chapter 6 and appendix C. The last example (viii) investigates the
dynamics of Bose Einstein condensates (BECs) in optical lattices and has therefore
a purely bosonic Hilbert space. The hierarchy of EoM in this example is formulated
in EVs. The influence of two-particle correlations is investigated and the hierarchy
is truncated by the factorization of three-particle EV according to Eq. (4.11) and is
called Bogoliubov back-reaction approximation [Witthaut et al., 2011].

4.5 Chapter Conclusion

We have shown how the description of many-particle quantum systems can be fa-
cilitated making use of the connection between EVs and CFs. We have seen that
the formulation of the EoM in EVs or CFs is independent from the approximations
that are made to truncate the hierarchy of EoM. This independence allows for a
description entirely formulated in terms of EVs. The use of EVs has several advan-
tages: simple algebra can be used to derive the EoM for all orders, constrains like a
limited particle number can be incorporated directly, and the effect of approxima-
tions typical for the CE are directly marked by the nonlinear terms in the otherwise
linear equations. Additionally, we find it remarkable that this formulation of the CE
shows that it is possible to approximate an infinite linear system of EoM by a finite,
almost linear system of EoM. It is also worth mentioning that the traditional CE
formulated in CFs is equivalent to this almost linear hierarchy of EVs. The linearity
of the equations up to the order where actual approximations result in factoriza-
tions may be interesting for numerical implementation of the EoM as well as the
possibility to give an inductive scheme to set up the EoM. Another aspect we have
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concentrated on in this chapter is the truncation of hierarchies of EoM for systems
containing different interacting particles and the implementation of constrains like
a limited particle number. The flexibility that our approach offers, concerning the
approximation principles, is expressed in the various combinations of the truncation
operators ∆

B/F
δ(N)/〈M〉. Our formulation emphasizes the connections, similarities and

differences between various techniques applied in the literature.
The introduced formulation can be useful in all situations where a systematic

inclusion of higher-order correlations is desirable. Our method is, in principle,
applicable to all systems where the traditional CE is used and due to the alge-
braic simplifications higher-order correlations are accessible with our formulation as
demonstrated for the JCM in Sec. 4.4 and in the following chapter(s).
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Chapter 5

Coherence properties
of Microcavity QD Lasers

( )
〉〈

In this chapter we examine the coherence properties of light emitted by quantum
dot (QD) based microcavity lasers. To this end we focus on three different aspects.
In the first part we examine the photon autocorrelation function of single-mode
lasers and extend the laser theory introduced in [Gies et al., 2007] to higher orders
and validate the convergence of the cluster expansion (CE) for this system. We
study photon autocorrelation functions up to fifth order and monitor the onset of
lasing. We observe a successive vanishing of photon bunching in the higher-order
photon autocorrelation functions with increasing pump rates. Our results reveal,
that the laser threshold is not only softened in microcavity laser systems but is
centered around different pump rates with respect to the different orders of photon
autocorrelation functions.

In the second part we investigate correlations between two high quality-factor cav-
ity modes of a bimodal microcavity laser. These investigations where initiated by
the need to understand recent experimental results from the group of S. Reitzenstein
(TU Berlin). In the experiments one emission mode of the microlaser demonstrates
the characteristic S-shaped input-output curve, while the output intensity of the
second mode saturates and even decreases with increasing injection current above
threshold. Measurements of the photon autocorrelation function g(2)(τ) of the light
emission confirm the onset of lasing in the first mode with g(2)(0) approaching unity
above threshold. In contrast, strong photon bunching associated with super-thermal
values of g(2)(0) up to 3.08 detected for the other mode, for currents above threshold.
This behavior is attributed to gain competition of the two modes induced by the
common gain material, which is confirmed by photon crosscorrelation measurements
revealing a clear anti-correlation between emission events of the two modes. The
experimental results are in agreement with our theoretical studies based on a micro-
scopic semiconductor theory, which we extend to the case of two modes interacting
with the common gain medium. Moreover, we treat the problem by a phenomeno-
logical birth-death model extended to two interacting modes, which reveals, that the
photon probability distribution of each mode has a double peak structure, indicating
switching behavior of the modes for pump rates above threshold.

In the third part of this chapter we investigate the temporal coherence and spec-
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tral properties of the studied bimodal microcavity lasers. This leads us to the study
of the occurrence of normal-mode coupling (NMC) between the two laser modes.
The NMC is attributed to the collective interaction of the cavity field with a meso-
scopic number of QDs. In contrast to the conventional NMC here locking of the
frequencies and splitting of the linewidths of the eigenmodes of the system in the
coherent coupling regime is observed. The theoretical analysis of the incoherent
regime is supported by experimental observations where the emission spectrum of
one of the orthogonally polarized modes of the bimodal QD micropillar laser demon-
strates a two-peak structure.

Parts of the first section of this chapter are published in [Leymann et al., 2013b].
The equations of motion (EoM) where mainly derived by H.A.M. Leymann, and the
numerical integration of the EoM was mainly done by A. Foerster.

Parts of the second section of this chapter are published in [Leymann et al.,
2013c, Leymann et al., 2013a]. The microscopic EoM where mainly derived by
H.A.M. Leymann and A. Foerster, and the numerical integration of the EoM was
mainly done by A. Foerster. The extended birth-death model was developed and
numerically solved by H.A.M. Leymann. M. Khanbekyan set the theory into con-
text and provided physical insight to the results. The experiments where mainly
performed by C. Hopfmann and F. Albert in the group of S. Reitzenstein, while the
samples where mainly produced by C. Schneider in the group of A. Forchel.

Parts of the third section of this chapter are published in [Khanbekyan et al.,
2015]. M. Khanbekyan worked out the details of the connection between the con-
ventional NMC and the unconventional NMC of the two laser modes. H.A.M. Ley-
mann extended the theory for the first order coherence function to the two-mode
case and derived the EoM. A. Foerster performed the numerical integration of the
EoM. The experiments where mainly performed by C. Hopfmann from the group
of S. Reitzenstein, while the samples where mainly produced by C. Schneider in
the group of S. Höfling. All authors of [Leymann et al., 2013b, Leymann et al.,
2013c, Leymann et al., 2013a, Khanbekyan et al., 2015] discussed the results and
physical implications of the results.

5.1 Characterization of micro laser emission in the
single-mode case

Quantum dot microcavities are a very attractive system to study quantum optical
effects in the solid state [Reitzenstein, 2012]. Apart from research on fundamental
light-matter interaction in the weak and strong coupling regime of cavity quantum
electrodynamics (see sec. 5.3 and e.g. [Gérard et al., 1998, Bayer et al., 2001, Va-
hala, 2003, Reithmaier et al., 2004, Yoshie et al., 2004]), they offer the possibility
to investigate stimulated emission in a regime approaching the ultimate limit of
a thresholdless laser based on a single zero-dimensional gain center [Noda, 2006].
Studies in this field include, e.g., technological works on optically and electrically
pumped microlasers aiming at an increase of the β-factor which expresses the frac-
tion of spontaneous emission coupled into the lasing mode [Wang et al., 2005, Strauf
et al., 2006, Reitzenstein et al., 2008b]. The increase of the β-factor leads to a van-
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ishing intensity jump in the input-output curve, so that the laser threshold can no
longer be identified by a drastic change in the intensities. To characterize the tran-
sition into lasing of these new ’threshold-less’ devices, the changes in the photon
statistics of the emitted light have to be studied [Rice and Carmichael, 1994, Ulrich
et al., 2007, Wiersig et al., 2009, Chow et al., 2014].

This section is organized as follows. In sub-sec. 5.1.1 we introduce the photon
autocorrelation functions as an experimental and theoretical tool to determine the
onset of lasing for high β-microlasers. In sub-sec. 5.1.2 we exploit the techniques
developed in the previous chapter 4 and extend the semiconductor QD microlaser
model introduced in [Gies et al., 2007] to higher orders in the photon hierarchy.
This extension is used to confirm the convergence of the CE for this system and to
monitor the lasing transition in higher-order photon autocorrelation functions. A
brief conclusion of the results can be found at the end of this section.

5.1.1 Photon autocorrelation function

In high β-microlasers it becomes increasingly difficult to identify the transition from
spontaneous emission to stimulated emission at the laser threshold via their input-
output characteristics [Björk et al., 1994]. To illustrate this point the input-output
curves for microcavity lasers with increasing β-factors are shown in Fig. 5.1. Before
saturation, the system exhibits the typical S-shaped behavior of the input-output
curve in a double logarithmic plot. From atomic laser theory it is known that the
height of the intensity-jump at the threshold is proportional to the inverse β-factor.
In [Gies et al., 2007] it is shown that the strict proportionality of the height of the
intensity jump and the inverse β-factor is not valid in semiconductor systems due to
many-particle effects in the QD emitters, and in chapter 6 we will demonstrate that
even the correlations between the electrons in different QDs can modify the height
of the intensity jump. Beside these subtle difficulties concerning the height of the
intensity jump, Fig. 5.1 clearly illustrates that it is very difficult (for β = 10−1) or
impossible (for β = 1) to determine the onset of lasing from the input-output curve
alone. This issue has triggered comprehensive experimental and theoretical research
activities on the second-order photon autocorrelation function

g(2)(t, τ) =
〈b†(t)b†(t+ τ)b(t+ τ)b(t)〉

〈b†(t)b(t)〉2 , (5.1)

in order to unambiguously identify the onset of stimulated emission at the laser
threshold [Rice and Carmichael, 1994, Gies et al., 2007, Strauf et al., 2006, Ulrich
et al., 2007]. Moreover, the autocorrelation function is very beneficial to identify sin-
gle QD controlled lasing effects [Xie et al., 2007, Reitzenstein et al., 2008b, Nomura
et al., 2009] and reveals other effects such as correlations between individual pho-
ton emission events [Wiersig et al., 2009] and chaotic behavior of feedback coupled
microlasers [Albert et al., 2011].

The photon autocorrelation function of second order contains information about
the occurrence probability of photon pairs and can be measured in a Hanbury-
Brown and Twiss (HBT) setup [Hanbury Brown and Twiss, 1956, Brown and Twiss,
1957, Brown and Twiss, 1958]. In the HBT setup the emitted light is divided
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Figure 5.1: Input/output curves for increasing β-factors. The other system param-
eters are chosen identical to the ones in [Gies et al., 2007]

by a 50/50% beam splitter and the coincidences of photon detections behind the
beam splitter are integrated with respect to the delay time τ (see Fig. 5.2 for a
schematic illustration) [Garrison and Chiao, 2014]. The photon autocorrelation at

light
source

detector

detector

photon
autocorrelation

g�(τ)
(2)

τ

Figure 5.2: Schematic illustration of a HBT setup.

zero delay time is closely related to the photon statistics P (n) i.e. the probability
to find exactly n photons in the light-field. At the laser threshold the statistical
properties of the emitted light change significantly since the process dominating the
light emission changes from, spontaneous emission of many uncorrelated emitters
to, emission stimulated by a light-field shared by all emitters. The photon statistics
and the corresponding values of the photon autocorrelation function at zero delay
time are shown in Fig. 5.3. Below the threshold the emitted photons obey thermal
statistics, while laser photons are known to obey Poisson statistics, typical for a
coherent state [Loudon, 2000, Garrison and Chiao, 2014]. As a rule of thumb one
can say that g(2)(0) indicates how broad the photon probability distribution is,
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Figure 5.3: Photon statistics and g(2)(0) values of the ’archetypal’ states of light for
average photon numbers 〈n〉 = 1, 8, 20.

i.e. how strong the fluctuations in the light-field are. In this way g(2)(0) can be used
to monitor the decreasing of fluctuations at the laser threshold even for a microlaser
with β = 1. Due to the monotone behavior of g(2)(τ) with respect to the delay time τ
(see Fig. 5.4) the photon autocorrelation is often only considered for zero delay time.
Figure 5.5 from [Ulrich et al., 2007] shows the theoretical and experimental results

0

0.5

1

1.5

2

τ

g(
2)
(τ
)

Coherent
Quantum

Thermal

Figure 5.4: Illustration of the monotone behavior of the photon autocorrelation
function g(2)(τ) that justifies to consider g(2) only at zero delay time g(2)(τ = 0).
g(2)(0) < 1 is characteristic for quantum light, i.e. the intensity fluctuations can not
be produced by averaging with a classical probability distribution. g(2)(0) = 1 is
characteristic for coherent light, and g(2)(0) = 2 is characteristic for thermal light.

for the intensity and g(2)(0). One can clearly see the threshold in the g(2)(0) curves,
whereas a fundamental change in the character of the emitted light can hardly be
seen in the input-output curves for β > 10−2. Note that in the experimental results
the limited temporal resolution of the detectors destroys the agreement with the pure
theoretical predictions. When the limited temporal resolution is taken into account
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in the theory by the convolution of g(2)(τ) with the detector function, experiment
and theory agree (Fig. 5.5(c)).

Thermal Thermal

Coherent
Coherent

Figure 5.5: (a,b) Theoretical results for the photon autocorrelation function and
the light intensities of a QD based microcavity laser. Even for a laser where all
spontaneous emission goes into the lasing mode (β = 1) a transition from thermal
to coherent light can be seen in the photon autocorrelation function. (c,d) Experi-
mental results for the photon autocorrelation function and the light intensities of a
QD based microcavity laser. The picture is taken from [Ulrich et al., 2007]

5.1.2 Laser transition in higher-order photon autocorrelation
functions

In this sub-section the concepts introduced in the previous sub-section to charac-
terize the onset of lasing are combined with the advanced CE techniques presented
in chapter 4. The microscopic semiconductor QD laser theory from [Gies et al.,
2007] is extended further into the bosonic subspace in the same manner as the CE
of the Jaynes-Cummings model is in sec. 4.4.1. This enables us to take a closer
look at the carrier-photon and photon-photon correlations driven by the laser cavity
feedback. The carriers are still treated on Hartree-Fock level, which can be justified
by the strong dephasing and the relatively large QD numbers in this system (see
chapter 6 for a study on the influence of carrier/emitter correlations). Formally, the
truncation operator from Eqs. (4.6) ∆Bδ(4) is changed to ∆Bδ(N)with N = {6, 8, 10}
and applied to the Eqs. (4.27), (4.29), and (4.31). With this approach, we obtain
converged values for lower-order quantities and also information about higher-order
photon autocorrelation functions,

g(n)(0) =
〈b†nbn〉
〈b†b〉n , (5.2)
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up to n = N/2 = 5. We show numerical results for a semiconductor QD micro-
cavity laser with 20 identical QDs1, a β-factor of 0.01 and all remaining material
parameters chosen as in [Gies et al., 2007]. In particular, we concentrate on the
photon autocorrelation functions g(n)(0). Experimentally, higher-order photon cor-
relations of coupled quantum systems were investigated by several groups [Aßmann
et al., 2009, Avenhaus et al., 2010, Stevens et al., 2010, Rundquist et al., 2014].
The behavior of g(2)(0) at the lasing threshold for a QD-based-microcavity laser is
experimentally well studied and has also been investigated with the CE [Gies et al.,
2007, Wiersig et al., 2009].

Before we show the theoretical results for the higher-order photon correlation
functions we validate the convergence of the CE for this system. Figure 5.6 shows
the behavior of g(2)(0) over the pump rate for increasing orders of the CE. For
the chosen β-factor (10−2), the photon autocorrelation function drops steeply from
two to one at lasing threshold. Note that the deviations of the different orders are
small and are becoming smaller with increasing order. The strongest deviations
appear directly at the threshold because of the rapid change of photon correlations
in this parameter region. Below threshold, photon correlations are small due to the
thermal state of the photons and far above the threshold the dephasing induced by
the pumping has a strong influence on the system and damps out all higher-order
(carrier-)correlations.

Laser light is coherent in all orders n, as pointed out in the previous sub-section
the transition from non-lasing to lasing can be characterized by a change in the
photon statistics from a thermal- to a Poisson-distribution. Therefore, not only the
second-order photon autocorrelation function but all orders of g(n)(0) drop from n!
to one at the lasing threshold [Glauber, 1963, Loudon, 2000, Garrison and Chiao,
2014]. In Fig. 5.7 (from [Aßmann et al., 2009]) results for photon autocorrelation
measurements up to the forth order are shown. These experimental results exhibit
the transition from g(n)(0) = n! to g(n)(0) = 1 at the laser threshold expected
for (microcavity)lasers. However, one can not assume that this is always the case.
Therefore observing the mean photon number and the two photon autocorrelation
function g(2)(0) might not be enough to monitor the laser transition. The state
|ψnl〉 = 1√

2
(|0〉 + |2〉) for example, is not a lasing state at all, however, if one only

looks at the photon number and the two-photon autocorrelation function one could
think |ψnl〉 might be a laser state (〈b†b〉|nl = 1 is sufficient for stimulated emission to
take place, and g(2)(0)|nl = 1 indicates a coherent field). With our approach, higher-
order correlation functions are accessible so we are able to monitor the transition
to laser light in higher-orders of the photon autocorrelation function. In Fig. 5.8(a)
one can see how the autocorrelation functions g(2,··· ,5)(0) drop from thermal values
n! to one. Note the logarithmic scale and that the deviation of g(5)(0) from one in
relation to its thermal value 5! = 120 is as large as the deviations for the lower-order
photon autocorrelations. To be able to better monitor the transition in the photon

1For a detailed description of the CE technique see chapter 4. To avoid repetition, details of the
used model will be given in the following section where a multi-mode version of the microscopic
semiconductor QD laser theory is presented.
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Figure 5.6: Numerical solution of the semiconductor QD laser model for β = 0.01
and 20 QDs. The convergence of the photon autocorrelation function g(2)(0) for
different truncation operators ∆Bδ(N)with N = {4, 6, 8, 10} is shown. Further infor-
mation about the model will be given in the following section and can be found in
[Gies et al., 2007].

statistics we also depict scaled photon correlation functions:

C(n)(0) =
δ(b†nbn)

〈b†b〉n
(
δ(b†nbn)|coh

〈b†b〉n
)−1

, (5.3)

were δ(b†nbn)|coh is the value of the correlation functions for a coherent field, which
can be obtained by successively solving

g(n)(0)|coh = 1 =
F〈b†nbn〉|coh

〈b†b〉n . (5.4)

For n = {2, 3} Eq. (5.4) reads:

g(2)(0)|coh = 1 = 2 +
δ(b†2b2)|coh

〈b†b〉2

g(3)(0)|coh = 1 = 6 + 9
δ(b†2b2)|coh

〈b†b〉2 +
δ(b†3b3)|coh

〈b†b〉3 .

In Fig. 5.8(b) the C(n)(0) are depicted and one can see that all scaled photon
correlation functions are zero for low pump rates (where thermal emission is ex-
pected), which is consistent with Wick’s theorem. For pump rates above threshold,
all C(n)(0) approach one as assumed for a system emitting laser light. However,
the four depicted C(n)(0) have not a common threshold pump rate. They all exhibit
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Figure 5.7: Experimental results for g(n)(0) up to the fourth order. The photon
autocorrelation function drops from g(n)(0) = n! below the threshold to g(n)(0) = 1
above the threshold. The figure is taken from [Aßmann et al., 2009].

their maximum slope at different pump rates. So not only in systems with a β-factor
close to one where no intensity jump is apparent and g(2)(0) exhibits a very shallow
slope at the ’threshold’ [Rice and Carmichael, 1994], but also for intermediate sys-
tems like the one in this example with β = 0.01 where a steep slope is still present
in g(2)(0) it is more precise to speak of a threshold parameter region than of one
threshold value for the pump rates. The level of coherence builds up successively
for increasing orders of g(n)(0) with increasing pump rates. Comparing Fig. 5.8(a)
and (b) one sees that both quantities g(n)(0) and C(n)(0) can be used to monitor
the transition from thermal to laser light. For a comparison of the different orders
of coherence, the scaled correlation functions C(n)(0) appeal more appropriate since
all C(n)(0) have values between zero and one.

In conclusion the capability of our reformulation of the CE from chapter 4 is
demonstrated for a specific example where we have extended the semiconductor QD
laser model presented in [Gies et al., 2007] to higher orders and demonstrated for this
model the convergence of the CE. In microcavity systems, the common definition of
the laser threshold is not only questionable due to smooth transition in the input
output characteristic. Our results suggest that one should keep in mind that it is
actually a threshold region when one uses the term laser threshold.
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Figure 5.8: Numerical solution of the semiconductor QD laser model for β = 0.01
and 20 QDs for order δ(10) in the bosonic subspace. The higher-order photon
autocorrelation functions g(n)(0) in dependence of the pump rate are depicted in
(a). The theoretical expected transition from thermal to coherent light could be
approved up to g(5)(0) (note the logarithmic scale of the y-axis). In (b) the scaled
photon correlation functions C(n)(0) are depicted. For the thermal field at low pump
rates, all correlation functions are zero. An ideal coherent light field would produce
C(n)(0) = 1 for all n. The various C(n)(0) begin to approach one at different pump
rates and not at one particular threshold value.
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5.2 Intensity fluctuations
in bimodal micropillar lasers

( )
〉〈

The research efforts on microcavity lasers so far have focused mostly on emission
features based on the interaction between a single laser mode and the (QD) gain
medium. Going beyond this investigations, micropillar lasers with a bimodal emis-
sion spectrum allow one to address the coupling of two orthogonal optical modes
via the common gain medium which can lead to characteristic oscillations in the
coherence properties [Ates et al., 2007], an enhanced sensitivity on external pertur-
bations in the presence of optical self-feedback [Albert et al., 2011] and deterministic
polarization chaos even in the absence of optical feedback [Virte et al., 2013].

In this section, we present a detailed experimental and theoretical analysis of the
mode coupling and gain competition of bimodal, electrically pumped micropillar
lasers. In a generalization of the concepts introduced in the previous section, we
measure the coherence properties of the bimodal electromagnetic field with a set of
photon correlation functions:

g
(2)
ξζ (τ) =

〈b†ξ(t)b†ζ(t+ τ)bζ(t+ τ)bξ(t)〉
〈b†ξ(t)bξ(t)〉〈b†ζ(t)bζ(t)〉

, (5.5)

where ξ, ζ = 1, 2, with delay time τ and photon annihilation operators b1 and b2 of
the mode 1 and the mode 2, correspondingly. The gain competition is reflected in
distinct differences in the input-output characteristic and the autocorrelation func-
tion g(2)

ξξ (τ) of the two optical modes. Moreover, the crosscorrelation function g(2)
12 (τ)

can illustrate correlations between emission events from the two modes. In order to
describe and analyze these specific features of bimodal microlasers we extend the mi-
croscopic semiconductor model [Gies et al., 2007] accordingly by taking two modes
and mode interactions into account. Similarly, we extend a standard birth-death
approach [Rice and Carmichael, 1994] to the multi-mode case for the description
of bimodal lasers. While the microscopic semiconductor theory is applied to model
the input-output characteristics, the intensity correlation functions of the laser and
the gain competition between the two emission modes within a strict microscopic
theory (see chapter 4 for details on the CE), the extended birth-death approach is
phenomenological in nature and allows for a more intuitive understanding of the
underlying physics.

The section is organized as follows. In sub-sec. 5.2.1 the experimental results
obtained from an electrically pumped, bimodal micropillar laser are presented. Sub-
sec. 5.2.2 deals with the theoretical description of the experimental data and is
divided into two parts addressing a microscopic semiconductor theory, and an ex-
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tended birth-death approach, respectively. We conclude this section in 5.2.5 with a
comparison of the experimental and theoretical results.

5.2.1 Experiment

The electrically pumped micropillar lasers are based on a planar AlAs/GaAs mi-
crocavity structure which includes an active layer consisting of a single layer of
In0.3Ga0.3As QDs. High resolution electron-beam lithography, plasma enhanced
etching and metal deposition have been applied to fabricate high quality electri-
cally pumped microlasers. For more details on the sample processing we refer to
Ref. [Reitzenstein et al., 2011]. The microlasers have been investigated at low tem-
perature (20 K) using a high resolution micro-electroluminescence (µEL) setup. A
linear polarizer in combination with a λ/4-wave-plate is installed in front of the
entrance slit of the monochromator in order to perform polarization resolved mea-
surements of the laser signal. The photon statistics of the emitted light has been
studied by means of the measurement of the photon autocorrelation function g(2)

ξξ (τ),
that has been carried out using a fiber coupled HBT configuration with a temporal
resolution τirf = 40 ps. The HBT configuration is coupled to the output slit of the
monochromator which has a focal length of f = 0.75 m. The interaction of the
orthogonally polarized modes of the microlaser has been investigated by means of
photon crosscorrelation measurements. For this purpose, the light emitted by the
microlaser is split by a polarization-maintaining 50/50 beamsplitter and coupled
into two monochromators, each of which is equipped with a linear polarizer at the
input slit and a fiber coupled single photon counting module at the output slit.
This configuration allows to perform polarization resolved crosscorrelation measure-
ments with a spectral resolution of 25 µeV. Unfortunately, within the present setup
it is not possible to perform photon number distribution measurements due to the
low (� 1µW ) emission power of the microlaser, in contrast to the measurements
presented recently for a standard laser diode with the output power of order of
milliwatts [Roumpos and Cundiff, 2013].

First, let us focus on the input-output characteristics of the microlaser. Due to
slight asymmetry of the cross-section of the pillar and the ring-shaped contact the
degeneracy of the fundamental mode in the pillar microcavity is lifted and two dis-
tinct linearly polarized modes are supported [Reitzenstein et al., 2007]. Details on
how the QD-mediated mode coupling affects the modes of the passive system can
be found in the next section and are subject to further research. In this context,
the spectral splitting ∆12 and accordingly the overlap between the two modes plays
an important role for the studies of emission of bimodal cavities. Figure 5.9 shows
representative polarization resolved spectra of an electrically pumped bimodal mi-
crolaser at threshold (injection current, Iinj = 5.1 µA). The two linearly polarized
modes are split in energy by 103 µeV and have absorption limited Q-factors of
Q = 13900 (mode 1) and Q = 13100 (mode 2) at the threshold. The input-output
characteristic of the bimodal microlaser is presented in Fig. 5.10(a). We observe
pronounced differences between the two modes: while mode 1 shows a standard “S”-
shaped input-output characteristic with a threshold current of about Ith = 5.1 µA,
the intensity of mode 2 saturates at Iinj/Ith = 2 and even drops down for injection
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Figure 5.9: Polarization resolved µEL emission spectra of a microlaser with a
diameter of 3 µm. The electromagnetic field emission features two orthogonally
polarized cavity modes, the mode 1 (Q = 13900) and the mode 2 (Q = 13100) with
a spectral separation of 103 µeV (Injection current: Iinj = 5.1 µA).

currents exceeding Iinj/Ith = 2.5. This behavior indicates a pronounced competition
between the modes 1 and 2 which is mediated by the common QD gain material as
it will be further elaborated in the following. Further, to study the lasing features
we extract the emission linewidths of the two modes and plot them as a function
of the injection current in Fig. 5.10(b). The linewidths of the modes 1 and 2 have
similar magnitude and decrease strongly at threshold which reflects enhanced tem-
poral coherence in the lasing regime. Interestingly, while the linewidth of mode 1
stays at a resolution limited value of 25 µeV, a slight increase of the linewidth can
be observed for mode 2 above Iinj/Ith = 3. This is in agreement with the decreasing
emission intensity seen in Fig. 5.10(a), which indicates an increasing contribution of
spontaneous emission in the mode 2 at high injection currents. However, we have to
stress that the linewidth of mode 2 is still surprisingly small given its low intensity
and strong fluctuations.

In order to verify the interpretation of mode coupling in terms of gain com-
petition, crosscorrelation measurements were performed between the modes 1 and
2 at different injection currents. The results of of such a measurement are pre-
sented in Fig. 5.10(e) for Iinj/Ith = 3. The cross-correlation function g(2)

12 (τ) shows
a pronounced dip g(2)

12,min = 0.62 at τ = 0 which indicates an anti-correlation between
emission events from the two laser modes. The anti-correlated emission occurs at a
characteristic timescale of τ12 = 3.8 ns. Figure 5.10(d) reveals that the crosscorrela-
tion function g(2)

12 (0) strongly depends on the injection current. In particular, in the
regime of certain injection currents above the threshold (2.7<Iinj/Ith< 3.3), the
anti-correlation between the modes is the strongest.

As it is seen from Fig. 5.10(a), at these values of the injection currents above the
threshold the intensity of mode 2 decreases. The interplay between the two emission
modes is also accompanied by strong temporal intensity fluctuations which are iden-
tified by measuring the photon autocorrelation function of the two competing modes
for different injection currents. The respective dependencies, i.e. g(2)

11 (0) and g(2)
22 (0)
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versus injection current, are plotted in Fig. 5.10(c), while Fig. 5.10(f) shows the au-
tocorrelation function g(2)

22 (τ) for Iinj/Ith = 3. The mode 1 shows the in experiments
typical maximum of g(2)

11 (0) around threshold, which indicates the transition from
spontaneous emission to stimulated emission, where g(2)

11 (0) is lower than expected
from theory due to the limited temporal resolution of the HBT configuration [Ul-
rich et al., 2007]. In contrast, as can be concluded from Fig. 5.10(c), the statistics
of the mode 2 at certain injection currents demonstrates strongly super-Poissonian
behavior, since the autocorrelation function g(2)

22 (0) increases strongly at the pump
rates well above threshold and reaches a maximum value of 3.08 at Iinj/Ith = 3.
This value is significantly higher than g(2)

22 (0) = 2, expected for thermal light and,
therefore, can not be explained by standard photon statistics.

It is important to note, that similar statistical properties of the emission, i.e. strong
super-Poissonian behavior for the weak mode, has been also observed for microlasers
in the presence of an external mirror, where a delayed feedback of the emitted signal
disturbs laser operation and leads to strong bunching for the weak mode [Albert
et al., 2011, Schulze et al., 2014]. Optical feedback can also be used to enhance
quantum properties in the single photon [Carmele et al., 2013] and two-photon
[Hein et al., 2014] regime, and it might be very interesting to further explore the
connection between mode coupling and self-induced feedback.
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Figure 5.10: Experimental characteristics of a bimodal micropillar laser with a
diameter of 3 µm. (a) Input-output characteristic, (b) emission mode linewidth and
the photon (c) auto- and (d) crosscorrelation functions g(2)

11 (0), g(2)
12 (0), and g(2)

22 (0)
of emission from modes 1 and 2, respectively. Panels (e) and (f) show exemplary
crosscorrelation g

(2)
12 (τ) and autocorrelation g

(2)
22 (τ) measurements at an injection

current of Iinj/Ith = 3.
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5.2.2 Theory

To develop a theoretical framework for the study of the coupled carrier-photon
system in the bimodal cavity we consider two different theoretical approaches. In
the first, a microscopic theory of light-matter interaction of semiconductor QDs with
the cavity field is given, which allows the derivation of the EoM for quantities of
interest. In the second approach, starting with a master equation derived from a
birth-death model, statistics of the photon distribution can be derived for the case
of two-level carriers.

5.2.3 Microscopic Semiconductor Theory

To study the interaction of QDs with the electromagnetic field inside an optical
bimodal microcavity we have extended the Microscopic Semiconductor Theory [Gies
et al., 2007] to the case of two modes and photon crosscorrelation functions.

Physical Model

The Microscopic Semiconductor Theory allows for inclusion of many-body effects
of the carriers and can be used to calculate correlations required to determine the
statistics of the emission of microcavities with active QDs (for a review see, e. g.,
Ref. [Michler, 2009]). The calculations are based on the CE truncation scheme of
the EoM for operator EV (see chapter 4).

In what follows the generic QD model from sec. 3.4 is used in which it is assumed
that only two confined QD shells for both electrons and holes are relevant: whereas
the resonant interaction with the electromagnetic field of the bimodal cavity is due
to the coupling with the s-shell transition, the carrier generation due to electri-
cal pumping is to take place in the p-shell. The assumption suits well also for an
experimental situation, where the electrical pumping is to take place via injection
of electrons and holes into the wetting layer and subsequent fast relaxation to the
discrete electronic states of the QDs. Further, carrier-carrier and carrier-phonon
scattering contributions to the dynamics are evaluated using a relaxation time ap-
proximation, where the relaxation towards quasi-equilibrium is given in terms of a
relaxation rate [Nielsen et al., 2004]2.

To be more specific, let us consider a bimodal microcavity with the QDs as gain
medium with the driving performed by the recombination of carriers in the valence
and conduction bands. The Hamiltonian that governs the temporal evolution of the
overall system can be given in the form

H = H0
carr +HCoul +Hph +HD, (5.6)

2This approach deviates from the more general one using Lindblad terms introduced introduced
in chapters 3 and 4. The reason for this deviation formulation is twofold: Firstly, the presented
theory is a direct extension from the one presented in [Gies et al., 2007]. Secondly, at the time
this two-mode theory was developed, the EVCE from chapter 4 was not ready to use. Since the
influence of the environment is not in the focus of this specific work and it is shown in [Foerster,
2012] that the different descriptions do not deviate qualitatively, we stick in this section to the old
theory using relaxation rates and correlation functions.
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where H0
carr is the single-particle contributions for conduction and valence band

carriers with the energies εc,vj ,

H0
carr =

∑

j

εcjc
†
jcj +

∑

j

εvjv
†
jvj, (5.7)

and the two-particle Coulomb interaction is given by [Baer et al., 2006]

HCoul =
1

2

∑

k′jj′k

(V cc
k′jj′kc

†
k′c
†
jcj′ck + V vv

k′jj′kv
†
k′v
†
jvj′vk) +

∑

k′jj′k

V cv
k′jj′kc

†
k′v
†
jvj′ck. (5.8)

In the above, cj (c†j) and vj (v†j) are fermionic operators that annihilate (create) a
conduction-band carrier in the state |j〉c and a valence-band carrier in the state |j〉v,
respectively. Further, the Hamiltonian of the electromagnetic field modes inside the
cavity reads

Hph =
∑

ξ

~ωξb†ξbξ, (5.9)

where bξ (b†ξ) is the bosonic annihilation (creation) operator of the ξth mode of the
cavity.

The energy of interaction of the QDs with the electromagnetic field inside the
cavity in dipole approximation can be given by:

HD = −i
∑

ξ,j

(gξjc
†
jvjbξ + gξjv

†
jcjbξ) + H.c., (5.10)

where the approximation of equal wave-function envelopes for conduction- and
valence-band states is used. Moreover, for simplicity the coupling strength gξj is
assumed to be real.

The Hamiltonian given by Eq. (5.6) together with Eqs. (5.7–5.10) determines the
dynamical evolution of the carrier and field operators and, in particular, the time
evolution for operator expectation values.

The EoM for quantities of interest, as for example the average photon number
in the cavity modes and the average electron population in the conduction and
valence bands, have source terms that contain operator expectation values of higher
order. In this way, the approach bears an infinite hierarchy of equations of motion for
various expectation values for photon and carrier operators. To perform a consistent
truncation of the equations the CE scheme is applied (for details, see chapter 4
and references therein). Namely, starting from the expectation values of the first
order of photon operators, the EoM for operator expectation values are replaced
by EoM for correlation functions. For example, instead of the EoM for expectation
values of amplitudes of the cavity mode operators 〈b†ξbζ〉, the EoM for corresponding
amplitude correlation functions δ〈b†ξbζ〉= 〈b†ξbζ〉−〈b†ξ〉〈bζ〉 are used. Then, to achieve
a consistent classification and inclusion of correlations up to a certain order the
truncation of the equations for correlation functions rather than for expectation
values is performed.
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In particular, in the case of a system without coherent external excitation 〈b†ξ〉
= 〈bξ〉= 0 and 〈c†jvj′〉= 0 hold. Therefore, applying the rotating-wave approxima-
tion here and thereafter, the EoM for amplitude correlation functions of the mode
operators can be given by

d

dt
δ〈b†ξbζ〉 = −(κξ + κζ)δ〈b†ξbζ〉+

∑

j,q

(
gξjδ〈c†jvjbξ〉+ gξjδ〈v†jcjb†ζ〉

)
, (5.11)

where κξ is the loss rate of the ξth cavity mode and q= 1 . . . N , with N being the
total number of QDs. Note, that both cavity-mode amplitude correlation functions
δ〈b†ξbζ〉 and the coupled photon-assisted polarization amplitude correlations δ〈v†jcjb†ξ〉
and δ〈c†jvjbζ〉 are classified as doublet terms in the CE scheme, i.e., they correspond
to an excitation of two electrons. In the terms of the truncation operators closing
the hierarchy at doublet level would correspond to the truncation operator ∆

Bi+F/2
δ(2) .

The equation of motion for the photon-assisted polarization amplitude correlation
read [see also Eq. (B.1) in Appendix B]:

d

dt
δ〈v†jcjb†ξ〉 = −i(∆ξj − iκξ − iΓ)δ〈v†jcjb†ξ〉+ gξjδ〈c†jcj〉(1− δ〈v†jvj〉)

+
∑

ξ′

[
gξ′jδ〈b†ξ′bξ〉(δ〈c†jcj〉 − δ〈v†jvj〉) +gξ′jδ〈c†jcjb†ξ′bξ〉 − gξ′jδ〈v†jvjb†ξ′bξ〉

]
, (5.12)

where ∆ξj = εcj − εvj − ~ωξ is the detuning of the ξth cavity-mode from the QD
transition and Γ is a phenomenological dephasing parameter describing spectral line
broadening. In the case of a bimodal cavity only the cavity modes with indices
ξ = 1, 2 are nearly resonantly coupled to the QDs. Whereas the modes with ξ 6= 1, 2
are not within the gain spectrum of the QD ensemble or have low Q-value. Since
the population of the non-lasing modes 〈b†ξbξ〉 and the cross-correlation functions
〈b†ξb1〉 and 〈b†ξb2〉 with ξ 6= 1, 2 remain negligibly small, the third terms on the right-
hand side of Eq. (5.12) for ξ 6= 1, 2 can be effectively set equal to zero. Thus,
Eq. (5.12) for ξ 6= 1, 2 can be solved in the adiabatic limit yielding a time constant
τnl that describes the spontaneous emission into non-lasing modes according to the
Weisskopf-Wigner theory. The spontaneous emission of QDs into non-lasing modes
leading to a loss of excitation is described by a β-factor defined as the ratio of the
spontaneous emission rate into the lasing modes 1/τl and the total spontaneous
emission rate enhanced by the Purcell effect 1/τsp:

β =
τ−1
l

τ−1
sp

=
τ−1
l

τ−1
l + τ−1

nl

. (5.13)

The dynamics of the carrier population of the electrons in the s-shell is given by

d

dt
δ〈c†scs〉 = −

∑

ξ

Re
(
gξqδ〈c†svsbξ〉

)
+δ〈c†pcp〉(1−δ〈c†scs〉)τ−1

c −δ〈c†scs〉(1−δ〈v†svs〉)τ−1
nl .

(5.14)

Here, the first term on the right-hand side originates from the interaction with the
cavity-modes, the second term describes the relaxation of carriers from the p- to
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the s-shell with a relaxation timescale τc, and the last term represents the loss of
excitation into the non-lasing modes.

We assume, according to the generic QD model used throughout this thesis,
that the p-shell carriers are generated at a constant pump rate p. Then, similar to
Eq. (5.14), the EoM for the carrier population of the electrons in the p-shell reads:

d

dt
δ〈c†pcp〉 = p(δ〈v†pvp〉− δ〈c†pcp〉)− δ〈c†pcp〉(1− δ〈c†scs〉)τ−1

c − δ〈c†pcp〉(1− δ〈v†pvp〉)τ−1
sp ,

(5.15)

where the last term on the right-hand side describes spontaneous recombination of
p-shell carriers. The corresponding equations for valence band carriers are relegated
into Appendix B.

The form of the expression for the intensity correlation functions suggests (see
Eq. (5.5)) that to exploit the statistical properties of the light emission using inten-
sity correlations, a consistent treatment within the CE up to the quadruplet order is
required (correspond to the truncation operator ∆

Bi+F/2
δ(4) ). As in the section before

we treat the carrier correlations on Hartree-Fock level (i.e. ∆Fδ(2)). In particular, the
EoM for cavity-mode intensity correlations read:

d

dt
δ〈b†ξb†ξ′bζbζ′〉 = −(κξ + κξ′ + κζ + κζ′)δ〈b†ξb†ξ′bζbζ′〉

+
∑

j

(
gξjδ〈c†jvjb†ξ′bζbζ′〉+ gξ′jδ〈c†jvjb†ξbζbζ′〉 +gζjδ〈v†jcjb†ξb†ξ′bζ′〉+ gζ′jδ〈v†jcjb†ξb†ξ′bζ〉

)
.

(5.16)

The EoM for further correlation functions of the quadruplet order, which include
correlation between the photon-assisted polarization and the photon number, can
be found in Appendix B [see Eqs. (B.4)–(B.7)].

Results

As described above, the quadruplet order of the CE leads to a system of coupled
equations [see Eqs. (5.11)–(5.12), (5.14)–(5.15), (5.16) together with Eqs. (B.1)–
(B.7)]. The system of differential equations describes the dynamics of various cor-
relations between carriers and cavity modes. In particular, the method makes it
possible to obtain both amplitude and intensity correlation functions of the cavity
emission modes including the effects of the carrier-photon correlations.

In the ensuing section the numerical analysis of the time evolution of the emission
correlation functions is presented. To relate our theory to the experimental results
we estimate the number of QDs with effective gain contribution by starting with
the initial density of present QDs and excluding the ones with negligible spectral
and spatial overlap. Thus, it is assumed that the cavity mode field is coupled to N
identical QDs. Further, we consider continuous carrier generation in the p-shell at
a constant rate p as an excitation process.

To obtain a valid comparison with the experimental results we simulate the cou-
pled system using standard numerical integration routines with a realistic set of pa-
rameters β = 0.2, κ1 = 0.03 [1/ps], κ2 = 0.0318 [1/ps], Γ = 2.06 [1/ps], τsp = 50 [ps],
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τc = 1 [ps] and τv = 0.5 [ps]. The number of carriers within the frequency region of
interest is estimated from the total density of QDs to be N = 40. For the assumed
β = 0.2 the carrier recombination is determined by the stimulated emission into
the lasing modes 1 and 2 with a characteristic time scale τl = τsp/β and into the
non-lasing modes with a characteristic time scale that can be found from Eq. (5.13)
for the given set of parameters. Further, we assume that the cavity mode 1 is in
exact resonance with the QD transition (∆1s = 0) and the mode 2 is detuned with
∆12≡ ω1 − ω2 = ∆2s = 0.2 [1/ps]. Figure 5.11 illustrates the model for the density of
states used for the comparison with the experimental results. In Fig. 5.12 we present

D
(E

)

E

Γ

κ1 κ2

QDs

M1
M2

E1 E2

Figure 5.11: Illustration of the considered model for the density of states of the QDs
and the modes.

the simulation results for intensity functions for the modes nξ = 〈b†ξbξ〉, ξ = 1, 2,
autocorrelation functions and crosscorrelation as a function of the pump power. Fig-
ure 5.12(a) reveals, that whereas the mode 1 shows a drastic increase of emission
intensity, the intensity of the emission mode 2 reaches a maximum and then slowly
decreases with increasing pump power in agreement with the experimental data de-
picted in Fig. 5.10(a). The calculations further show, that, again in agreement with
the experimental data in Fig. 5.10(c), the dependencies of the autocorrelation func-
tions for the cavity modes 1 and 2 on the pump power exhibit dramatically different
behavior. As shown in Fig. 5.12(b) for low values of pump power, the autocorre-
lation function is equal to 2 characteristic for the statistics of thermal light. For
higher rates of the pump power, the autocorrelation function of the mode 1 drops
close to the value 1 indicating the emission of coherent laser light. In contrast, the
autocorrelation function of mode 2 slightly decreases at first with increasing pump
powers, but for larger values of the pump power, it increases and reaches values well
above 2, which is in agreement with the behavior of the autocorrelation function
detected in the experiment (see Fig. 5.10(c); recall the limited temporal resolution
of the HBT configuration Fig. 5.5 and[Ulrich et al., 2007]). The gain competition
behavior between the modes can be approved by plotting the crosscorrelation func-
tion [see Fig. 5.12(c)], that decreases to the values smaller than unity at the power
pump values for which the lasing behavior of the mode 1 is observed [also, compare
to Fig. 5.10(d)]. Further, numerical calculations demonstrate that the observed ef-
fect is independent of the modification of the spontaneous emission rate due to the
many-body interaction (not shown). Note, that the discrepancy of the experimen-
tal and theoretical results for the autocorrelation function of mode 2 [Figs. 5.10(c)
and 5.12(b), correspondingly] and the crosscorrelation function [Figs. 5.10(d) and
5.12(c), correspondingly] at the higher pump powers is due to the presence of both
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modes in each polarization direction due to the QD induced mode coupling (see
sec. 5.3). The numerical simulation of the CE truncation scheme of the quadruplet

Figure 5.12: Laser characteristics calculated with the semiconductor model. (a)
Intensity for the modes 1 and 2 as a function of the pump power in a log-log plot.
(b) Autocorrelation functions of the two modes. (c) Crosscorrelation between the
modes 1 and 2.

order can be approved by plotting the emission mode autocorrelation functions for
higher order of truncation (not shown), which demonstrates qualitatively the same
behavior of the functions independent of the order of truncation. It is important to
note, that since the framework of the microscopic semiconductor theory presented in
this section is based on the neglection of correlation functions, the numerical results
are valid in the regime when higher order correlations remain small. As it can seen
from the numerical evaluation of the truncated equations, this is not the case for
pump power rates exceeding 2×10−1 [1/ps], where the correlation functions strongly
increase. In essence the CE has to fail for this system since it is a method that relies
on the neglection of higher order correlation functions, applied on a system that
inherently drives strong correlations in the photonic subspace. To get a deeper un-
derstanding of the statistical properties of the emission in the next section we will
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use a different approach to gain insight into the full photon statistics.

5.2.4 Extended Birth-Death Approach

In the following subsection we present an alternative approach to the study of
the light-matter interaction of QDs with a bimodal cavity, that involves numeri-
cally solving a complete master equation and thus deriving the time evolution of
the system. In contrast to the microscopic semiconductor model discussed in de-
tail in sub-sec. 5.2.3, this approach allows to calculate not only photon auto- and
crosscorrelation-functions but also full photon statistics. We follow the approach
from [Rice and Carmichael, 1994] and extend it to the case of a bimodal cavity
with two (nearly) resonant modes containing n1 and n2 photons, respectively. The
method simplifies the model for the gain medium and takes into account only fully
inverted two-level systems. Note, that no semiconductor effects or complex level
structure are reflected. In this case, we introduce the coupling between the modes
induced by the interaction with the common gain medium by means of a phe-
nomenological term. The state of the gain medium is fully described by the number
of excited carriers N . A detailed discussion of the master equation approach, the
semiclassical rate equations and its connection to the semiconductor theory for the
case of a single-mode microcavity can be found in Refs. [Gies et al., 2007, Gies,
2008] and references therein. The master equation describes the time evolution of
the diagonal elements

ρn1,n2

N = 〈n1, n2, N |ρ|n1, n2, N〉 (5.17)

of the density matrix ρ. These elements can be interpreted as the probability of
finding a state with n1, n2 photons in the modes 1 and 2, respectively, and N Atoms
in the excited state.

Physical Model

To arrive at the final form of the master equation a birth and death model, analogue
the one introduced in [Rice and Carmichael, 1994], is considered. Transition rates
into and out of the state ρn1,n2

N are connected to the relevant processes in the coupled
photon carrier system. In Fig. 5.13 all relevant processes are illustrated. Figures 5.14
and 5.15 show how the master equation is derived on a phenomenological level. Each
filled circle represents a state with N excited carriers, n1 and n2 photons in the
cavity modes, i.e. the diagonal elements ρn1,n2

N of the density matrix. The photon
distribution for mode ξ is gained by summation over the remaining indices e.g. P (n1)
=
∑

N,n1
ρn1,n1

N . Figure 5.14 illustrates the coupling of one mode to the gain medium.
The horizontal axis shows the number of photons nξ in mode ξ and the vertical axis
shows the number of excited carriers N . The carrier generation is represented by
solid vertical arrows since the photon number is not changed. The rate of carrier
generation in the excited level is given by the pump power p. Vertical dotted arrows
indicate the loss of excited carriers due to spontaneous emission into non lasing
modes. Moreover, the emission into the cavity modes is represented by pairs of
diagonal arrows corresponding to spontaneous (dotted arrow) and stimulated (solid
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2ϰ

2ϰ

Figure 5.13: Illustration of the various processes represented by in the birth-death
model. From left to right and top to bottom the processes are: exited carrier
generation (pump), spontaneous emission in non-lasing modes, spontaneous emission
into a lasing mode, stimulated emission into a lasing mode, cavity photon losses,
and QD mediated mode coupling.

arrow) emissions, illustrating that an excited carrier is lost and one photon in one
of the modes is gained. The factors τ−1

l1 and τ−1
l2 are introduced, which represent

the fractions of laser emission rate into the cavity modes 1 and 2, correspondingly,
where the relation τ−1

l1 + τ−1
l2 = τ−1

l holds. Further, the interaction of the modes is
illustrated in Fig. 5.15. The two axes show the number of photons n1, n2 in the modes
1 and 2, respectively. The horizontal and vertical dotted arrows represent the cavity
losses of the two lasing modes with the loss rates 2κξ. A phenomenological nonlinear
coupling between the lasing modes 1 and 2 mediated by the gain medium is also
introduced. In contrast to the microscopic semiconductor theory (see Sec. 5.2.3),
where the coupling between the cavity modes is mediated by the overlap of the mode
functions with the gain carriers, here a nonlinear coupling between the lasing modes
1 and 2 is introduced phenomenologically. The mode coupling strengths ξ12 and ξ21

are represented by the diagonal solid arrows in the sketch.

The complete master equation derived by the phenomenological birth and death
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Figure 5.14: Schematic representation of the various processes in the extended
birth-death-model. The sketch illustrates the light-matter-interaction and shows
the transition rates into and out of the state with photon number nξ and carrier
number N . Solid arrows represent stimulated emission and pump, dotted arrows
show spontaneous emission.

model reads:

d

dt
ρn1,n2

N = p
[
ρn1,n2

N−1 − ρn1,n2

N

]
− τ−1

nl [Nρn1,n2

N − (N + 1)ρn1,n2

N+1 ]

−τ−1
l1 [(n1+1)Nρn1,n2

N −(n1)(N+1)ρn1−1,n2

N+1 ]−τ−1
l2 [(n2+1)Nρn1,n2

N −(n2)(N+1)ρn1,n2−1
N+1 ]

− 2κ1[n1ρ
n1,n2

N − (n1 + 1)ρn1+1,n2

N ]− 2κ2[n2ρ
n1,n2

N − (n2 + 1)ρn1,n2+1
N ]

− ξ12[n1n2ρ
n1,n2

N − (n1 + 1)(n2 − 1)ρn1+1,n2−1
N ]

− ξ21[n1n2ρ
n1,n2

N − (n1 − 1)(n2 + 1)ρn1−1,n2+1
N ]. (5.18)

In the above, each term corresponds to a process in the coupled carrier photon
system, i.e. to arrows going in and out of a state ρn1,n2

N in Figs. 5.14 and 5.15. Note
that the spontaneous and stimulated emission into the laser modes is combined to
one term, hence the (nξ + 1) in the diagonal term.
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Figure 5.15: Schematic representation of the various processes in the extended
birth-death-model. The sketch illustrates the interaction of the modes and shows
the transition rates into and out of the state with photon number n1 and n2. Solid
arrows show mode interaction, dotted arrows represent cavity losses.

Results

The solution of Eq. (5.18) for d
dt
ρn1,n2

N = 0 gives the stationary photon probability
distribution. Figure 5.16 shows the photon distributions P (nξ) for various pump
strengths. Above the laser threshold the autocorrelation functions of the modes
1 and 2 are quite different, while g(2)

11 (0) drops to values close to one indicating
Poissonian statistics, g(2)

22 (0) rises up to values substantially larger then two (thermal
statistics). The results for the autocorrelation functions of the modes 1 and 2 are
in full agreement with the ones obtained within the Microscopic Semiconductor
Theory in Sec. 5.2.3 (see Fig. 5.12), in contrast to the experimental data presented
in Fig. 5.10, the autocorrelation function of the mode 2 monotonically increases
further for high pump power rates.

The full photon statistics reveals that both mode statistics exhibit a double peak
structure. The first peak appears at the zero photon state declining very steep and
a second Poissonian-like peak appears at higher photon numbers. In mode 1 the
Poissonian peak is very pronounced and dominates the statistics, while mode 2 is
dominated by the first peak at the zero photon number state. It is important to
note, that the overall broad photon number distribution of the mode 2 corresponds
to the large values of the autocorrelation function. These statistics combined with
the fact of the crosscorrelation function is far below unity, which is reproduced by
the master equation as well, allows for the interpretation of a switching behavior of
the modes. Both modes are in a statistical mixture of a coherent and a thermal-like
states. We see that Fig. 5.3 has to be augmented by a fourth panel (see Fig. 5.17)
showing the statistical origin of the super thermal intensity fluctuations present in
coupled bimodal systems.
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Figure 5.16: Photon probability distributions for mode 1 (a) and mode 2 (b) are
shown for different pump rates in the units of [τ−1

sp ] and for τ−1
l1 = τ−1

l2 = 0.1 τ−1
sp , τ−1

nl

= 0.9 τ−1
sp , 2κ1 = τ−1

sp , 2κ2 = 1.2 τ−1
sp , ξ12 = ξ21 = 0.15 τ−1

sp . In the legend the pumprates
and the corresponding g(2)(0) values are enlisted.
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Figure 5.17: Illustration of the various states of light and the statistical properties
and the connection to the photon autocorrelation function g(n)(0). In addition to
Fig.5.3 this figure displays super thermal fluctuations caused by a mixture of a
thermal (〈n〉Th = 1) and a Poisson (〈n〉Po = 20) distribution.
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5.2.5 Conclusion and comparison of the experimental and
theoretical results

We have investigated laser emission of electrically pumped QDs in a bimodal mi-
cropillar cavity with special emphasis to the effects induced by gain competition of
the two orthogonally polarized modes.

The system consisting of a single low-density layer of QDs and two spectrally split
modes with nearly equal Q-factors, induced from the double degenerate fundamental
mode by slight cross-section asymmetry of the pillar, represents a viable platform
for the study of the coupling of two cavity modes in the presence of a common gain
medium. The polarization resolved measurements of the statistical properties of
the emitted light reveal that the two competing modes display completely different
features. One of the modes (mode 1) demonstrates typical statistical behavior of a
laser mode, namely the mode intensity displays the usual "S"-shaped input-output
characteristic, and the autocorrelation function at zero time delay, measured using a
HBT configuration, indicates the transition from spontaneous to stimulated emission
for increasing pump rates. The measurements of the input-output characteristic
of mode 2 indicate a threshold behavior, but for further increasing pump rates
the intensity saturates and even decreases, as the result of the competition of the
two modes induced by the common gain material. Moreover, the autocorrelation
function at zero time delay of mode 2 at certain pump rates higher than the threshold
values exhibits intensity fluctuation much higher than for a thermal state. It is worth
to note, that at these rates of the injection current the anti-correlation between the
two modes is the strongest. For even larger pump rates, the crosstalk between the
modes induces a reduction of the autocorrelation function at zero time delay of the
mode 2 reaching the value for a lasing mode.

Starting with the microscopical semiconductor model [Gies et al., 2007] we have
developed a quantum theoretical framework for the description of the interaction
of two cavity modes with the QD-gain medium. The theory allows to obtain the
full emission statistics of the carrier-photon system in the bimodal cavity taking into
account the many-body effects. Importantly, within our approach the effects related
to the coupling of the two modes of the bimodal cavity, induced by the interaction
with the common QD carriers are consistently included on the microscopic level.
The solution of the EoM for correlation functions using the CE scheme reveals, that
indeed the autocorrelation function of the mode 2 for the pump rates larger than the
threshold rate reaches values well above g(2)(0) = 2, that corresponds to the thermal
state of light. The decrease of the crosscorrelation function of the two modes below
unity indicates anti-correlated behavior of the mode coupling at these pump rates.
In fact, this effect can be explained by random intensity switching between the two
modes, which has negligible influence on the photon statistics of the lasing mode, but
strongly affects the mode 2 for which the relative strength of fluctuations is larger.
It is worth to mention, that in the case of macroscopic two-mode ring lasers [Singh
and Mandel, 1979] large intensity fluctuations have been also found in the statistics
of the more lossy mode, as the result of the mode competition with the favored mode
and emission switching of the common atomic ensemble.

We have demonstrated that the problem can qualitatively be, considered in a
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simpler phenomenological approach, where a nonlinear term for the coupling be-
tween the modes can be introduced in the master equation. In this way, we have
extended the birth-death model of the master equation to the case of a bimodal cav-
ity. In particular, we have assumed a phenomenological nonlinear coupling between
the cavity modes, mediated by the overlap of the modes with the gain carriers. We
have solved the complete master equation numerically, where the nonlinear mode
coupling parameter is chosen so to match the results of the microscopic semiconduc-
tor theory. Then, we have shown, that the photon number statistics of both modes
exhibit similar double peak structure, a peak at the zero photon state and a second
peak at a higher photon number. The results imply, that the both modes are in a
mixture of a coherent and a thermal-like states. Whereas, the Poisson peak at the
higher photon number dominates the statistics of the mode 1, the statistics of the
mode 2 indicates thermal state-like behavior, with a pronounced peak at zero photon
state complemented with a local maximum at a higher photon number state. Thus,
we may conclude that the photon number distribution of the two modes approves
the switching behavior of the interaction of the two modes with the common gain
medium.

Similar double peak curve has been found in the theoretical calculations using a
semiclassical approach [Singh and Mandel, 1979] and experimentally verified [Lett
et al., 1981] for the intensity probability distribution of the favored mode of ring
lasers. Moreover, a double peak structure of the photon number distribution has
been found for the composite mode at threshold in the two-mode open laser the-
ory [Eremeev et al., 2011], where both modes interact with the common ensemble of
atoms and with the common dissipation system. It is worth mentioning that mech-
anisms to create light sources with super thermal intensity fluctuations i.e. super
thermal photon bunching have gained some interest in recent years [Kazimierczuk
et al., 2015, Albert et al., 2011, Callsen et al., 2013]. Applications in two-photon ex-
cited fluorescence microscopy can benefit from the high probability of photon pairs
in the light source without the danger of photon damage of the probe [Jechow et al.,
2013].
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5.3 Unconventional Collective Normal-Mode Cou-
pling in Quantum-Dot-based Bimodal Micro-
lasers

In this section we demonstrated that interaction of the modes of a passive bimodal
microcavity (cavity modes) with a mesoscopic number of quantum emitters in the
active region induces unconventional coherent coupling between these modes in the
lasing regime. To understand what we mean by the term unconventional we reca-
pitulate the concepts of ”conventional” coherent coupling i.e. strong coupling, before
we describe differences and similarities to the type of coupling that we encounter
here.

5.3.1 The strong coupling regime

The study of cavity quantum electrodynamics (cQED) in the strong coupling regime
between atom-like emitters and the confined light field of microcavities has been
a subject of considerable attention. In the traditional cQED, low-mode volume
resonators are used to enhance the coupling rate g between a single emitter and
the field in comparison to the system damping rates. Prominent realizations of
the strong coupling include experimental demonstrations of reversible exchange of
excitation between a single emitter with the field from both atomic [Brune et al.,
1996, McKeever et al., 2003, Nußmann et al., 2005] and solid-state [Reithmaier et al.,
2004, Yoshie et al., 2004] systems. A typical evidence of the strong coupling regime
represents splitting of the two degenerate modes, i.e. normal-mode splitting, that is a
consequence of NMC e.g. between emitter polarization mode and field mode leading
to a doublet cavity transmission spectrum [Shore and Knight, 1993]. In addition,
NMC occurs i.a. in exciton-photon and phonon-photon interactions [Weisbuch et al.,
1992] and optomechanical phenomena [Kippenberg and Vahala, 2008], where the
cavity field couples to a mechanical mode [Dobrindt et al., 2008].

In view of the variety of implications of the regime of coherent coupling (see, e. g.,
[Monroe, 2002]), a different approach to achieve strong coupling has also attracted
much attention. Instead of reducing the cavity mode-volume to achieve large g,
the number of emitters N interacting with the field can be increased leading to the
collective strong coupling regime, where the coupling rate scales as

√
Ng [Tavis and

Cummings, 1968, Andreani et al., 1999]. Various experimental observations of the
cavity mode spectra splitting, proportional to

√
Ng due to the collective coherent

coupling with two [Reitzenstein et al., 2006b, Albert et al., 2013] or multiple [Raizen
et al., 1989, Tuchman et al., 2006] emitters have been experimentally observed,
including the case of a multi-mode cavity [Wickenbrock et al., 2013]. In solid-
state systems, the coherent coupling between a cavity mode and an ensemble of
emitters has been achieved in the classical regime with semiconductor quantum
wells [Weisbuch et al., 1992, Khitrova, 1999]. However, in the quantum regime the
significant inhomogeneous broadening of emission from self-assembled QDs has so
far hindered the observation of collective coherent coupling for semiconductor based
quantum emitters. An illustration of the concept of this type of ”conventional”
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Figure 5.18: (a) Illustration of the concept of ”conventional” collective mode coupling
between one electromagnetic mode and an ensemble of quantum emitters, where the
excitation is coherently exchanged between the QDs and the electromagnetic field.
(b) Illustration of the introduced unconventional NMC where the coupling of two
electromagnetic mode is mediated by their weak coupling to a shared ensemble of
QD emitters.

coherent coupling in contrast to the unconventional NMC is given in Fig. 5.18(a).
In many different situations,(see e.g. [Brune et al., 1996, McKeever et al., 2003,
Nußmann et al., 2005, Reithmaier et al., 2004, Yoshie et al., 2004, Shore and Knight,
1993, Kippenberg and Vahala, 2008, Dobrindt et al., 2008, Monroe, 2002, Tavis and
Cummings, 1968, Andreani et al., 1999, Reitzenstein et al., 2006b, Albert et al.,
2013, Raizen et al., 1989, Tuchman et al., 2006, Wickenbrock et al., 2013, Weisbuch
et al., 1992, Khitrova, 1999]), coherent coupling of two (nearly degenerate) modes
is commonly explained by studying the eigenvalues of the system,

Λ± =
ω1 + ω2

2
− iγ1 + γ2

4
±
√

[(ω1 − ω2)/2− i(γ1 − γ2)/4]2 +Ng2, (5.19)

where ω1,2 and γ1,2 are the frequencies and decay rates of the modes, correspond-
ingly. Analysis of this expression reveals that in the resonant case (ω1 = ω2) for√
Ng < |γ1 − γ2|/4 the square root term is fully imaginary and modifies the de-

cay rates of the modes. Further, for
√
Ng > |γ1 − γ2|/4 it becomes real and the

frequencies exhibit splitting attributed to NMC.
Coherent coupling is also relevant to laser physics for achieving the regime of

bistable lasing of the two-mode lasers [Meystre and Iii, 1999, Siegman, 1986]. In
particular, in the case of large pump rates when strong coupling regime of emitter-
field interaction is achieved and the Rabi frequency is larger than mode separation
mode locking has been observed [Hillman et al., 1984, Wang et al., 2007]. Otherwise,
bimodal cavities are investigated in the context of single-photon generation with
whispering-gallery mode resonators [Dayan et al., 2008, Majumdar et al., 2012],
where an atom strongly interacts with two cavity modes.

In contrast to the conventional NMC described above, here, in the case of the
near-resonant cavity modes the eigenmodes of the total active system (eigenmodes)
exhibit frequency locking, and the effective coupling rate with the emitters

√
Ng

induces splitting of the linewidths of the eigenmodes. Further, for sufficiently large
spectral splitting between the cavity modes, the incoherent coupling between the
modes leads to a mixing of the "bare" cavity mode frequencies in the emission spec-
trum. The basic principle of this type of coupling originates from the fact that
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two different modes couple weakly to a common gain medium which mediates the
coupling in between the modes as illustrated in Fig. 5.18(b). Further below exper-
imental observation of this mode mixing for bimodal micropillar lasers are shown.
Moreover, the theoretical study shows, that in the case of incoherent coupling and
approximately equal mode-QD coupling rates the eigenmode linewidths demonstrate
locking, leading to almost equal values of the coherence times of the cavity mode
emission. This intriguing and unexpected scenario is presented in the previous sec-
tion in Fig. 5.10(b,c), where the inferior mode which exhibits large super-thermal
intensity fluctuations, indeed has a coherence time/linewidth of the same order of
magnitude as the dominant lasing mode.

5.3.2 Theoretical Model

The general theoretical model for this system and the results for the steady state
are described in the previous section 5.2.2.

The coherent features of the output radiation are described by the (normalized)
first-order correlation function,

g
(1)
ξ (t, τ) =

G
(1)
ξξ (t, τ)

〈b†ξ(t)bξ(t)〉
, ξ = 1, 2, (5.20)

with G
(1)
ξξ′(t, τ) = 〈b†ξ(t+ τ)bξ′(t)〉. The coherence times and the frequency spectra

are given, respectively, by

τ cξ =2

∫ ∞

0

dτ |g(1)
ξ (τ)|2, and Sξ(ω)=2Re

∫ ∞

0

dτg(1)
ξ (τ)e−2πiτω. (5.21)

The system is pumped by continuous wave excitation until a steady state is reached.
Two-time quantities as the correlation function g(1)

ξ (t, τ) are t-time independent in
the steady-state regime for large enough t-times. Therefore, the two-time evolution
problem can be separated to two single-time problems, which is analogous to the
method of the quantum regression theorem [Lax, 1967]. Then, the EoM with respect
to the delay time τ can be solved with initial values given by the stationary steady-
state result of the t-time problem [Wiersig, 2010]. The EoM for expectation values
of the τ -time dependent quantities of interest lead to a hierarchy problem as well
which can be treated by the CE (see chapter 4). The system of EoM is derived
using Ehrenfest EoM with dissipative terms, of Lindblad form [Gardiner and Zoller,
2001].

To obtain the dynamical equations of the first-order coherence the CE up to
the doublet level is required (i.e. ∆

Bi+F/2
δ(2) ), which in particular implies the semi-

classical factorization [in the following the dependence on the time t is omitted, as
bξ(τ)≡ bξ(t, τ), bξ≡ bξ(t, 0) etc.]

〈c†j(τ)cj(τ)b†ξbξ(τ)〉 ≈ 〈c†j(τ)cj(τ)〉〈b†ξbξ(τ)〉, (5.22)

where 〈c†j(τ)cj(τ)〉 in the stationary regime is τ -time-independent. Thus, assum-
ing identical QDs with equal transition energies and coupling rates gξ ≡ gξj, we
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obtain a closed system of linear differential equations for the correlation functions
Gξζ ≡ G

(1)
ξζ (τ) and Pξ(τ) ≡ Pξj(τ) = 〈c†j(τ)vj(τ)bξ〉 in the rotating-wave approxima-

tion and in the frame rotating at εcj − εvj
d
dτ
Pξ(τ) = −ΓPξ(τ) + Ig1G1ξ(τ) + Ig2G2ξ(τ), (5.23)

d
dτ
G1ξ(τ) = (i∆1 − 1

2
κ1)G1ξ(τ) +Ng1Pξ(τ), (5.24)

d
dτ
G2ξ(τ) = (i∆2 − 1

2
κ2)G2ξ(τ) +Ng2Pξ(τ), (5.25)

where ∆ξ ≡ ∆ξj = εcj − εvj −~ωξ is the detuning of the cavity modes from the QD
transition, and κ1,2 describe cavity mode losses. The inhomogeneous broadening is
approximated by the spectral line broadening rate Γ in Eq. (5.23). The excitation
of emitters with given pump rate is encoded into the steady-state inversion per
QD, I ≡ Ij(t) = 〈c†jcj〉−〈v†jvj〉, that represents an important pump rate-dependent
parameter for the τ -dynamics.

5.3.3 Mode coupling

The system of six equations above consists of two independent subsystems with
ξ = 1, 2. Autocorrelation functions of two cavity modes G(1)

ξξ (τ) are coupled to each
other indirectly, namely, through Pξ(τ) representing the common gain medium. To
provide a simple yet deeper understanding of the coupling of the two cavity modes,
we use an approximation of fast relaxation of Pξ(τ) compared to the time-scale of
the dynamics of Gξζ(τ), which is typically valid for semiconductor systems [Alferov,
2001]. We formally insert (d/dτ)Pξ(τ) =0 into Eq. (5.23) and reduce Eqs. (5.23)–
(5.25) to

d
dτ

(
G1ξ

G2ξ

)
= i

(
∆1 + iκ̃1/2 −iNIg1g2/Γ
−iNIg1g2/Γ ∆2 + iκ̃2/2

)(
G1ξ

G2ξ

)
, (5.26)

which represents two 2 × 2 identical matrices and characterize the coupling of the
two cavity modes. The eigenvalues of the matrix above read

λ± =
∆1 + ∆2

2
+ i

κ̃1 + κ̃2

4
±
√

[(∆1−∆2)/2 + i(κ̃1−κ̃2)/4]2 − (NIg1g2/Γ)2,

(5.27)

with κ̃ξ = κξ − 2NIg2
ξ/Γ it follows, that increasing NIg2

ξ/Γ effectively reduces the
linewidths. Inspection of Eq. (5.27) reveals that the dependence of the eigenvalues
on the involved parameters behave quite differently from the case of conventional
NMC, Eq. (5.19). That is why we term this type of coupling ”unconventional”. For
∆1 = ∆2 and g1 = g2, the square root term of λ± remains imaginary and modifies the
peak widths independent on how large the effective coupling |NIg1g2/Γ| is chosen
in comparison with |κ1−κ2|. In the case, when κ1 =κ2 and g1 = g2, the square root
term leads to two regimes. For |NIg1g2/Γ|< |∆1−∆2|/2, the regime of incoherent
coupling, the term is real and modifies the peak positions of the modes. In the regime
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of coherent coupling, i.e. for |NIg1g2/Γ|> |∆1−∆2|/2, it becomes imaginary and
modifies the peak widths of the modes. Note, this striking behavior is qualitatively
opposite from that of conventional NMC3. Since the effective coupling |NIg1g2/Γ| is
proportional to |I|, the experimental observation of the coherent regime of collective
coupling requires |I| to be close to unity.

Figure 5.19: Real parts (correspond to peak positions) (a), (c) and imaginary
parts (correspond to peak widths) (b), (d) of the eigenvalues (Eq. (5.27)) vs. ∆1

for fixed pump strength [(a), (b), I = 0.3] and vs. NI [(c), (d), ∆1 = 115 µeV],
N = 42, κ1 = 36 µeV, κ2 = 44 µeV, ∆2 = 0, Γ = 1.38 meV, g1 = 30.4 µeV, and
g2 = 30.3 µeV. The shaded regions indicate incoherent coupling. The hatched area
indicate experimentally accessible NI-range (see Fig. 5.21). The values of κξ and
∆ξ are measured in the experiment, and the values of N , Γ and gξ are estimated in
correspondence to the experiment.

To demonstrate the unconventional NMC we plot the real and imaginary parts of
the eigenvalues for a coupled bimodal cavity system in Fig. 5.19. The dependence on
the detuning ∆1 (∆2 = 0) [Figs. 5.19(a) and (b)] reveals that in the near-resonant re-
gion where the coherent coupling regime is maintained, the splitting of the imaginary
parts of the eigenvalues (peak widths) is observed. For increasing detuning between
the cavity modes, in the incoherent coupling regime, the eigenvalues demonstrate
splitting in the real parts (peak positions) and locking of the imaginary parts. To
illustrate the dependence on the effective coupling rate the eigenvalues are presented
as functions of NI in Figs. 5.19(c,d). In the regime of incoherent coupling, for small
effective coupling rate (small N |I|), the splitting of the peak positions is observed.
In the regime of coherent coupling the splitting of the peak widths increases for
increasing effective coupling rate (large N |I|). Whereas in the case of the conven-
tional coherent NMC, Eq. (5.19), the splitting of the mode resonances increases for
increasing N [Thompson et al., 1992].

5.3.4 Cavity Mode Spectra

Importantly, the above discussed effects can be deduced starting with the more
general Eqs. (5.23)–(5.25). In the following we use Eqs. (5.23)–(5.25) to obtain
τ -dependent expressions for the auto-correlation functions. The initial values of

3The reason for this switching of roles is that all relevant quantities are multiplied with the
imaginary unit i, so we could have called this type of coupling ”imaginary” NMC as well.
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quantities Pξ(τ), Gζξ(τ) are taken as the stationary solutions of t-time-dependent
problem. Figure 5.20 reveals that in the regime of incoherent coupling the co-
herence times of the dominant and inferior modes, which correspond to the decay
rates of |g(1)

1 (τ)| and |g(1)
2 (τ)|, respectively, are of the same order of magnitude. This

counter-intuitive behavior, which has been experimentally observed and is presented
in Fig. 5.10(b), is particularly interesting considering that the inferior mode features
large super-thermal intensity fluctuations with g(2)(0) ≈ 3 (Fig. 5.10(c,f)). The spec-
tra of both (”bare”) modes (Fig. 5.20, inset) exhibit a two-peak structure according
to the eigenvalues in Eq. (5.27). Indeed, for the chosen parameters NI = 27.3,
which corresponds to the incoherent coupling, Figs. 5.19(c, d) reveal splitting of
peak positions and locking of the widths. Obviously, emission in the basis of the
two cavity modes carries both "bare" frequencies of the passive cavity modes due
to NMC via the common gain medium. The emission peak positions and widths
are established by the real and imaginary parts of the eigenvalues λ±, since every
mode carries both basis (eigen)vectors. The mode coupling is also associated with
the oscillations of |g(1)

ξ (τ)| (easy to see in Fig. 5.20 for |g(1)
2 (τ)| but holds true for

|g(1)
1 (τ)|). In particular, the oscillation amplitudes are attributed to the correspond-

ing frequency spectra peak heights, whereas the oscillation frequency is defined by
the peak position difference, which in turn is related to the relative detuning of the
cavity modes. Importantly, the oscillations of |g(1)

ξ (τ)| originate from a double-peak
feature of two cavity modes and need to be distinguished from those reported in
Ref. [Ates et al., 2007], which arise from the interference of emission in two different
polarization directions.

Cavity mode 1
Cavity mode 2

-200 -100 1000

Figure 5.20: Absolute values of the autocorrelation functions and the frequency
spectra (inset, semi-log scale) for the emission of the cavity modes in the incoherent
regime for I = 0.65, ∆1 = 115 µeV and estimated cavity-enhanced QD spontaneous
emission rate of 20 ns−1. Other parameter values are from Figs. 5.19(c, d). The
vertical lines mark the cavity mode frequencies.

5.3.5 Experimental Realization

Here we present the experimental investigation of NMC in bimodal lasers, where we
study electrically pumped micropillar lasers based on a doped planar microcavity
sample with a single layer of self-assembled InGaAs QDs acting as active medium
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(for technological details see Refs. [Reitzenstein et al., 2011, Albert et al., 2011]).
Pillar cross-section asymmetry and/or the upper ring-shaped electrical contact in-
duce a degeneracy of the resonator fundamental mode, thus two frequency-separated
linearly (orthogonally) polarized cavity modes are supported [Reitzenstein et al.,
2007]. The micropillar laser under study has a diameter of 3.6 µm, and the two
modes of 0◦ and 90◦ polarizations and Q-factors of 10000 and 10800 are split by
115 µeV. The emission has been investigated at low temperature (10 K) by a micro-
electroluminescence (µEL) setup (spectral resolution, 20 µeV). A linear polarizer
in combination with a λ/4-wave plate is installed to perform polarization-resolved
measurements.

The input-output dependence of the emission in 0◦ and 90◦ detection angle are
depicted in Fig. 5.21(c). The emission mode in 0◦ polarization shows a thresh-
old current of about Ith = 4µA. The smooth transition at threshold and the S-
shaped input-output characteristics indicates the high-β lasing with β≈ 0.2 [Ley-
mann et al., 2013c]. A similar behavior is observed for emission in 90◦ polarization
up to Iinj ∼= 1.5Ith. At higher injection currents saturation and even a decrease of
the output intensity is observed. This anticorrelation between emission of the dom-
inant mode in 0◦ and the inferior mode in 90◦ polarization is explained by means of
the microscopic semiconductor model in terms of gain competition. Moreover, the
model allows us to determine the inversion per pump rate which changes from −0.8
to 0.8 for the used parameter values (see Fig. 5.21(c)). The corresponding NI range
is indicated in Fig. 5.19(c,d) as hatched area. Interestingly, the intensity of emission
in 90◦ polarization increases again for Iinj & 4Ith. To analyze this feature we study
emission spectra for different injection currents. While in 0◦ orientation emission a
single peak is observed (not shown), for the 90◦ component at injection currents ex-
ceeding about 1.5Ith a transition of a single emission peak into a doublet occurs (see
Fig. 5.21(a)), where the intensity of the low-energy component rises with increasing
current and dominates for Iinj > 5Ith. This double-peak feature of the 90◦ orienta-
tion emission and its peculiar current dependence is in very good agreement with
the calculated emission spectra presented in Fig. 5.21(b) for incoherent collective
coupling4. Indeed, for the range of the chosen parameters NI ≈ 26 . . . 28 according
to Figs. 5.19(c, d) corresponds to the region of incoherent coupling, where the peak
positions split.

In Fig. 5.21(d) mode energies of 0◦ and 90◦ polarizations vs. injection current
are plotted. At low injection currents the single-peak emission in both polarization
directions correspond to the "bare" frequencies of the cavity modes. Moreover,
the low-energy component of the 90◦ emission for low injection currents coincides
spectrally with emission from the 0◦ emission, but at high excitation currents it
approaches the energy of the high-energy peak in 90◦ orientation. This clearly
shows that this emission does not originate from possible cross-talk between 0◦ and
90◦ components, but is in accordance with the theoretical prediction in Fig. 5.19(c),
namely that the peak positions approach each other with increasing NI.

4These spectra were convoluted with a Lorentzian to take into account the spectral resolution
of 20 µeV of the experimental setup.
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Figure 5.21: (a) Injection current-dependent µEL emission spectra in 90◦ po-
larization for 2.1 ≤ Iinj/Ith ≤ 5.5, plotted relative to the high energy peak val-
ues to compensate for an injection current-dependent shift of the emission energy
[cf. (d)]. (b) Calculated frequency spectrum in 90◦ polarization for inversion values
0.63 ≤ I ≤ 0.67. Parameter values are the same as in Fig. 5.20. (c) Calculated
inversion (green, crosses) vs. injection current and measured integrated µEL inten-
sity for 0◦ and 90◦ polarizations. (d) Emission energy (relative to the reference
point 1.366 eV) of the 0◦-component and the two-mode features in 90◦ detection vs.
injection current.

5.3.6 Conclusion

In this section, we have demonstrated the existence of collective NMC in bimodal mi-
crolasers. In contrast to the conventional case, here, in the coherent coupling regime,
the increase of the effective coupling rate produces a splitting of the linewidths in-
stead of the frequencies. In the incoherent coupling regime, increasing effective
coupling induces splitting of frequencies and locking of linewidths. The consequence
is the double-peak structure of the output spectra of the modes and the large coher-
ence times for both dominant lasing and inferior modes, which we have confirmed
experimentally in QD-based bimodal micropillar lasers. The latter offer unique pos-
sibilities to study collective coupling, since the stimulated emission of the dominant
mode leads to clamping of the carrier density with large inversion (I ≈ 0.8), while the
inferior mode experiences collective coupling mediated by multiple inverted emitters.
Note, the unconventional NMC is not a semiconductor effect, but can be observed
in the collective weak interaction of two modes with a mesoscopic number of atoms.
We expect to observe further interesting effects related to NMC in bimodal lasers in
the coherent coupling regime which could be accessed by using micropillar cavities
with small mode splitting and larger inversion rate and/or number of involved QDs.
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5.4 Chapter Conclusion
In this chapter we have discussed in sec. 5.1 the techniques and theoretical tools
to characterize laser emission, in the highly efficient microcavity laser regime. The
photon autocorrelation function g(2)(τ) is commonly accepted as a measure to mon-
itor the transition into lasing. We have exploited the methods developed in the
previous chapter to extend an existing semiconductor laser model to higher orders
and confirm (i) the convergence of the CE and (ii) to study the transition into a
lasing state for higher degrees of coherence.

In the second section and third section we have presented theoretical end experi-
mental results for the coherence properties of bimodal microcavity lasers. For both,
the quantum statistical- (sec. 5.2), the temporal coherence-properties and spectra
(sec. 5.3), we could obtain theoretical results that are in very good agreement with
the experimental results. This excellent agreement was achieved by using the pre-
viously introduced CE method which allows to microscopically model the coupled
QD-cavity system. To gain a more intuitive understanding of the basic physics,
that dominate the system, we derived very simple phenomenological models that
can qualitatively reproduce the results and emphasize the essence of the observed
effects.

The developed (microscopic semiconductor) theory of bimodal cavities is well-
suited for further investigation of the emission properties for various interaction
regimes depending on the cavity mode detunings and decay rates or effects related to
the many-body interaction. Thus, the theory lays the groundwork for investigations
of the effects related to the coupling of the modes in the bimodal cavity by means
of interaction with a common gain medium.
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Chapter 6

Sub- and
Superradiance in QD Nanolasers

( )
〉〈

In this chapter we investigate radiative coupling between emitters in quantum dot
(QD) nanolasers. For typical systems with tens to hundreds of active emitters, a
strong impact of sub- and superradiance on steady-state properties is demonstrated.
In a device-relevant parameter regime, it is shown that radiative coupling enhances
spontaneous emission such that significantly fewer emitters are required to reach the
lasing threshold. The formation of QD-QD correlations can seemingly change the
β-factor by an order of magnitude. The results provide insight into a new kind of
lasing in a highly efficient regime dominated by cavity-QED effects. Calculations are
based on a microscopic laser theory for the coupled multi-QD-cavity-photon system
that provides access to the photon autocorrelation function g(2)(0).

This chapter is in parts published in [Leymann et al., 2015]. The basic theory
was developed in discussions between C. Gies, A. Foerster, and H.A.M. Leymann.
The details of the theory was mainly worked out by H.A.M. Leymann while the
equations of motion (EoM) where mainly derived and integrated by A. Foerster. All
authors of [Leymann et al., 2015] discussed the results.

6.1 Introduction

When the active material gain compensates photon losses from the cavity, a conven-
tional laser crosses the threshold into coherent emission. In nanolasers, spontaneous
emission is strongly enhanced, and the previous criterion must be augmented such
that stimulated and spontaneous emission must compensate the cavity losses. The
enhancement originates from the Purcell effect and the high β-factor that quantifies
the coupling efficiency of spontaneous emission into the laser mode. The threshold
condition is again modified when emitters of the gain material act no longer inde-
pendently, but radiative coupling triggers a collective spontaneous emission. The ra-
diative coupling originates from the exchange of photons via the high-Q cavity mode
that establishes Dicke states [Garraway, 2011]. Super- and subradiance, which is the
enhancement or inhibition of emission due to radiative coupling, was first discussed
as a collective effect in a gas of atoms coupled to a common radiation field [Dicke,
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1954]. The work of Dicke has been the foundation for a vast number of studies
on superradiance (SR), reaching from single-photon emission enhancement [Scully
and Svidzinsky, 2009, Chen et al., 2012] over photosynthetic bio-complexes [Fer-
rari et al., 2014] to Dicke phase transitions [Liu et al., 2014, Baumann et al., 2010]
and directional SR emission from statistically independent incoherent sources [Op-
pel et al., 2014]. Regarding semiconductor systems, radiative lifetime changes have
been observed in a QD ensemble due to emitter-coupling effects [Scheibner et al.,
2007]. Superfluorescent spontaneous-emission enhancement has been demonstrated
in quantum-well systems [Timothy Noe Ii et al., 2012]. Recent investigations have
also addressed dynamical and statistical properties of SR coupling effects in cavities
where QD emitters couple to a single mode [Temnov and Woggon, 2005, Temnov
and Woggon, 2009, Auffèves et al., 2011].

This chapter is concerned with the impact of radiative coupling in continuously
driven (cw) state-of-the-art nanolasers. Strong cavity enhancement and a limitation
of the achievable gain due to the smallness of the resonator enhances many-particle
correlations in these systems. As an example, nonclassical antibunching has been ob-
served within the broad threshold region to lasing in QD microcavity lasers [Wiersig
et al., 2009]. While in conventional lasers stimulated emission completely domi-
nates above threshold, this is not necessarily so in nanolasers, where spontaneously
emitted photons can constitute a significant part of the laser emission. It is not far
fetched to assume that interemitter coupling effects play a role in the emission prop-
erties, even though they are typically assumed to be weak in semiconductor systems
due to strong dephasing. These collective effects are typically not contained in most
applications of laser theories, which are derived and used under the assumption of
individual uncoupled emitters. To this date, radiative coupling is seldom associated
with steady-state properties. The possible coexistence of lasing and superradiance
in systems with few (2–5) two-level systems is discussed in Ref. [Mascarenhas et al.,
2013]. The prediction of emerging superradiance in a continuously driven gas of
atoms [Meiser and Holland, 2010] has led to the recent demonstration of a new
kind of “nearly photonless” SR laser [Bohnet et al., 2012]. Collective effects are
also expected to play an important role in random lasers, where the role of the
cavity is replaced by multiple scattering events within the gain material [Wiersma,
2008, Baudouin et al., 2013].

We develop and apply a laser model for QD nanolasers that explicitly takes
interemitter correlations and photon correlations into account. For a many-emitter
gain medium, density-matrix approaches can account for interemitter coupling, but
are limited to a small number of emitters (∼ 10 two-level systems, < 5 multilevel
QDs on present-day computer systems) due to the rapidly increasing size of the
Hilbert space [Auffèves et al., 2011, Florian et al., 2013a, Sitek and Manolescu,
2013, Lax and Louisell, 1969, Scully and Lamb, 1967]. Established quantum-optical
master equations for the diagonal elements of the density matrix do not account for
interemitter coupling [Rice and Carmichael, 1994], and rate equations are obtained
under the assumption of individual emitters and prohibit access to the statistical
emission properties [Moelbjerg et al., 2013, Rice and Carmichael, 1994, Yokoyama
and Brorson, 1989, Chow and Koch, 1999]. Monte Carlo approaches have also been
used to study SR [Meiser and Holland, 2010]. Here, we use a method that is based
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on the systematic inclusion of expectation values (EVs) of QD-configuration and
cavity-photon operators that allows keeping correlations up to a desired order and
truncate higher clusters of operators. Photon-photon and interemitter correlations
provide access to the photon autocorrelation function g(2)(0) and radiative emitter
coupling. Related cluster-expansion or cumulant-expansion approaches have been
used in both the atom [Meiser et al., 2009, Witthaut et al., 2011] and semiconductor
fields [Chow et al., 2014, Gies et al., 2007, Kira and Koch, 2008, Carmele et al., 2009]
to describe either extended systems, or systems with many emitters, as the numerical
problem typically scales only linearly with particle number.

The laser model is described in the following section. In Section 6.3, the impact of
radiative coupling on the input-output curve is analyzed to reveal that correlations
introduced by the radiative coupling drastically change the height of the jump in
the input-output curve, as well as its slope in the spontaneous emission regime.
In Section 6.4, the impact of radiative coupling is quantified by means of suitable
pair-correlation functions for electronic and photonic degrees of freedom. These
are used to introduce an effective rate of spontaneous emission and to explain the
superthermal photon bunching that appears at low excitation powers. In Section 6.5,
radiative coupling effects are quantified in terms of the quality factor of the mode
(Q) and the emitter number, it is demonstrated that superradiance enhances the
“coherence per photon”, so that significantly fewer emitters suffice to reach coherent
emission i.e. lasing in comparison to the case of individual emitters. In Section 6.6
we provide an illustrative explanation of the observed features in terms of Dicke
states between pairs of emitters in the ensemble. The appendix C provides details
about the underlying laser theory.

6.2 Laser theory formulated in configuration oper-
ators

We consider an ensemble of self-assembled QDs coupled to a single high-quality
mode of an optical microcavity. Three-dimensional carrier confinement of the QDs
leads to a discrete density of states below a quasicontinuum of states from the
surrounding semiconductor material. Interaction with carriers in these states is the
source of the capture, scattering, and dephasing processes. For the laser model,
we consider generic QDs each having two localized states for electrons and holes.
Assuming excitation by the simultaneous capture of electron-hole pairs from the
continuum states, six configurations are possible that represent bright and dark
(multi-) exciton configurations |i〉α = {G,Xs, 0p, 0s, Xp, XX} of QD α, see Appendix
C.1. Both the Xs and XX configurations allow for an optical recombination of an
s-shell electron-hole pair into the laser mode. This model captures the essential
properties of a multilevel emitter that can accommodate bright and dark multi-
exciton configurations [Gies et al., 2011]. We introduce the operator

Qα
ij = |i〉α 〈j|α . (6.1)

For i 6= j, it describes the transition from configuration j to configuration i in QD
α, whereas for i = j, its EV refers to the probability to find QD α in configuration
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i. In the picture of many-particle configurations, we define the excitation operator
for the s-shell of QD α as

Eα†
s = Qα

XsG +Qα
XX,Xp . (6.2)

The product states |i1 . . . iN , n〉 span the Hilbert space of N QDs and photons of
the cavity mode. The dimension 6N × nmax of the Hilbert space grows quickly with
emitter number, which is why a solution of the von Neumann equation for the full
system density operator, popular for single-emitter systems, becomes costly already
for a handful of emitters.

The dynamics of the microcavity-QD system is governed by the Hamiltonian
H = H0 + HD + HC , with the free Hamiltonian H0 =

∑
α,i ε

α
i Q

α
ii + ~ωb†b that

contains the configuration energies εαi and the mode frequency ω, the light-matter
interaction Hamiltonian HD, and the Coulomb interaction Hamiltonian HC . We
have introduced the photon creation and annihilation operators b†, b for photons in
the laser mode. In terms of the configuration operators, in dipole- and rotating-wave
approximation the dipole Hamiltonian is given by

HD = −i
∑

α

gαb
†Eα

s + H.c. (6.3)

and couples the s-shell recombination to the creation of a cavity-photon, and vice
versa. gα is the light-matter coupling strength of the s-transition of QD α to the
laser mode. In the scope of the present paper, we take the Coulomb interaction
into account by renormalized configuration energies and an effective light-matter
coupling strength.

We obtain the system dynamics by deriving EoM for observable quantities by
deriving the generalized Ehrenfest EoM, 〈Ȧ〉 = i〈[H,A]〉/~+ L(A) for the corre-
sponding operators A. The two-particle nature of the dipole Hamiltonian creates
two different hierarchies: 1) EVs with M photon operators are coupled to EVs with
M + 1 photon operators. 2) EVs acting on transitions or occupations in one QD
are coupled to EVs that couple transitions or occupations in different QDs. Both
hierarchies do not end at low orders: 1) is limited only if the cavity field is rep-
resented by a finite linear combination of number states, and 2) is limited by the
finite, but possibly large number of emitters in the gain material. In the spirit of the
cluster-expansion method, both hierarchies are truncated consistently at a desired
level to close the set of coupled equations. A formulation of the cluster expansion
is introduced and discussed in chapter 4 more traditional formulations of the clus-
ter expansion method have been used with great success to model quantum-well
[Kira and Koch, 2008, Kira et al., 1999, Kira and Koch, 2011] and QD [Feldtmann
et al., 2006, Gies et al., 2007, Richter et al., 2009] systems. Our approach here
differs in two ways from the conventional method: Rather than using single-particle
operators, we work in the many-particle configuration picture using the operators
Qα
ij defined in Eq. (6.1), and we expand the hierarchy in terms of EVs rather than

correlation functions (see chapter 4). For details of the laser theory formulated in
configuration operators we refer to Appendix C.

We start from the mean photon number 〈b†b〉 and the configuration probabili-
ties 〈Qα

ii〉 in each QD and derive their EoM. Photon correlations are included up to
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〈b†b†bb〉, because they are needed to access the autocorrelation function g(2)(0) =
〈b†b†bb〉/〈b†b〉2. EVs containing more operators are factorized. Radiative emit-
ter coupling is related to EVs of the type 〈(b†)nbmQα

ijQ
β
i′j′〉, which contain oper-

ators Q acting on different emitters α, β. Higher-order correlations of the kind
〈(b†)nbmQα

ijQ
β
i′j′Q

γ
i′′j′′〉 are factorized. In our results, we compare to the case of

“individual emitters”, which is obtained by performing a separate calculation, in
which the hierarchy is truncated at the lowest level with respect to the Q oper-
ators, i.e. only EV of the type 〈(b†)nbmQα

ij〉 are explicitly considered. The level
where QD-QD correlations are explicitly considered corresponds to the truncation
operator ∆Qδ(2) ' ∆

F/2
δ(8) from chapter 4. Here the Q indicates that the truncation is

performed in the subspace spanned by the Q-operators. This truncation corresponds
the level of 4-electron correlations, i.e. correlation functions with up to 8 electron
creation/annihilation operators are taken into account (neglecting QD-QD correla-
tions corresponds to ∆Qδ(1)). Note that for the formulation in configuration operators
the boundary conditions, originating from the finiteness of each QD, are taken into
account automatically unlike in the formulations using Fock-space operators (see
chapters 3 and 4).

Self-organized QDs are embedded systems, and their localized states are coupled
to continuum states of wetting layer and barrier material. This enables efficient
above-band-gap pumping. A simplified treatment consists of modeling incoherent
carrier capture into higher confined QD states and successive relaxation via a Lind-
blad term [Carmichael, 1999]. This is a commonly used method with the twist that
here, the formalism needs to be spelled out in terms of EoM for the operators Qα

ij.
We introduce the rates: Pα capture of e-h pairs into the QD p-shell (pump rate), γαr
carrier relaxation, γα,{s,p}spont spontaneous losses of s and p-shell electron-hole pairs, and
κ the loss rate of photons from the cavity. The Lindblad contributions are added to
the EoM by evaluating 〈Ȧ〉|Lindblad = L(A) = γη

∑
{i,j}〈([Qα

ij, A]Qα
ji + Qα

ij[A,Q
α
ji])〉

for each pair {i, j} of configurations connected by the underlying microscopic pro-
cess η [Florian et al., 2013b]. A similar term using photon operators arises for cavity
losses. Details are found in Appendix C.3, and in chapter 3 the incorporation of
Lindblad terms into the conventional formulation of the cluster expansion is dis-
cussed in detail. The large number of coupled EoM are generated by means of the
computer algebra tool FORM [Vermaseren, 2000](see appendix D).

Inhomogeneous broadening is an inherent property of QD-emitter ensembles ob-
tained from self-assembled growth techniques [Bimberg et al., 1999]. The number
of QDs considered in our calculations corresponds to the number of QDs in the en-
semble found in spectral vicinity to the cavity mode. For these emitters, we assume
that radiative coupling effects are fully present. Detailed investigations of the effect
of detuning will be the topic of future work.

6.3 Signatures of Radiative Coupling in the Input-
Output Characteristics of Nanolasers

In a conventional laser, a sudden intensity jump in the input-output curve over
several orders of magnitude serves as an indicator for the onset of coherent emis-
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sion. The height of the jump may be used to estimate the spontaneous-emission
factor β [Yokoyama and Brorson, 1989, Chow and Koch, 1999]. In microcavity sys-
tems that approach the thresholdless β ≈ 1 regime, a more gradual transition to
coherent emission can be revealed by studying statistical properties of the emitted
light (see chapter 5 and e.g. [Jin et al., 1994, Khurgin and Sun, 2012, Rice and
Carmichael, 1994, Strauf et al., 2006]. In Fig. 6.1(a), the input-output characteris-
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Figure 6.1: (a) Input-output curve for a typical nanolaser device [Lermer et al.,
2013, Aßmann et al., 2010]. N = 100 QD emitters are used with a light-matter
coupling of g = 0.015/ps, cavity loss rate κ = 0.05/ps (corresponding to Q= 20 000),
carrier relaxation rate γr = 0.05/ps, and spontaneous losses into leaky modes γspont =
0.01/ps. The solid blue curve results from a calculation without radiative coupling
effects (∆Qδ(1)), the dashed red curve includes sub- and superradiant coupling between
pairs of emitters (∆Qδ(2)). The thin solid green line shows the intensity produced by a
single QD (∆Q〈1〉) multiplied by the emitter number. (b) The cooperativity factor CF
(dash-dotted black curve) gives a measure of the change in photon output caused
by the radiative coupling.

tics with (dashed line) and without (solid line) interemitter coupling are compared
for a nanolaser with 100 emitters that are resonant with a high-quality (Q= 20 000)
mode of the cavity. The system shows a transition into lasing at a pump rate of about
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0.01 electron-hole pairs per ps and QD. It is striking that suppression of photon pro-
duction below and enhancement above threshold increases the height of the gradual
intensity jump. If rate- or master-equation approaches that neglect interemitter
coupling were used to describe an experiment, in which strong interemitter coupling
is present, one would erroneously conclude a β-factor that is smaller by about one
order of magnitude. Furthermore, the radiative coupling visibly increases the slope
of the input-output curve in the spontaneous emission regime.

To quantify the impact of the interemitter coupling, we define the cooperativity
factor

CF =
Irad. coupled QDs

Iindependent QDs
− 1 (6.4)

which is also shown in Fig. 6.1(b). It gives a direct measure whether radiative
coupling enhances or inhibits photon production. In addition to the laser transi-
tion from thermal to coherent light emission, it reveals a second transition from the
subradiant (CF < 0) to the superradiant (CF > 0) regime. CF is obtained from
two separate calculations including and excluding the QD-QD coupling terms while
keeping everything else unchanged. The possibility to do so is a particular advantage
of our method over multiemitter density-matrix approaches that compare the full
system to N times a single-emitter system [Mascarenhas et al., 2013]. The latter
method amplifies the effects of saturation and reduced absorption of the single emit-
ter by a factor N , causing significant deviations from the N -emitter input-output
curve especially for larger emitter numbers. This is demonstrated by the thin green
line in Fig. 6.1(a) showing the input-output characteristics of a single QD system
multiplied with the number of QDs N . Comparing this result to the dashed red
curve (calculated for N emitters including interemitter coupling) would result in an
overestimation of the radiative coupling effects.

6.4 Statistical Properties of the Emission and Ef-
fective Spontaneous Emission Rate

In the following we demonstrate that superradiance enhances spontaneous emission
in a way that fewer emitters are required to overcome the cavity losses of a nanolaser
and to reach coherent emission. To this end, we chose slightly different parameters
than in the previous section that are given in the caption of Fig. 6.2. Panels (a)
and (b) depict input-output curve and the photon autocorrelation function g(2)(0)
with and without radiative coupling effects. In the gray area with CF < 0 (P .
10−2 ps−1), the interemitter coupling reduces the photon output. Microcavity lasers
are well known to exhibit saturation effects at high excitation. This is owed to the
limited amount of gain that can be obtained from the active medium [Strauf et al.,
2006]. If saturation sets in before or during the threshold, it can prohibit lasing
or suppress the development of the full intensity jump [Gies et al., 2008]. Here,
coherent emission with g(2)(0) = 1 is reached only when collective effects enhance
the emission (red curves). Without SR coupling (blue curves), the system saturates
before coherent emission is reached. The important finding that radiative emission
enhancement reduces the number of emitters required to reach lasing is further
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Figure 6.2: Stationary states for increasing pump rates into the QDs p-shell for
the case with (dashed red curve) and without radiative coupling effects (solid blue
curve). (a) The intensity is measured on the left y axis in logarithmic scale and the
cooperativity factor CF is measured on the right y axis, (b) photon autocorrelation
function (c) dipole correlation function CD (d) two-photon emission function C2P .
The gray area marks the subradiant regime where the cooperativity factor CF is
below zero. A schematic representation of both correlation functions in the sub- and
superradiant regime is shown as insets. The calculations are performed for 20 QDs
in resonance with the cavity mode. The photons have a loss rate of κ = 0.0125/ps,
the other parameters are g = 0.01/ps, γr = 0.05/ps, γpspont = γsspont = 0.005/ps (see
Appendix C.3).
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analyzed in Sec. 6.5.
Enhancement of photon-intensity fluctuations with superthermal bunching values

g(2)(0) > 2 is observed at low pump rates and reflects the increased probability that
two photons are emitted at the same time. In this system the fluctuations do
not originate from gain competition (see sec. 5.2), its microscopic origin is given
by synchronous dipole transitions in separate QDs α and β as described by the
EV 〈b†b†Eα

s E
β
s 〉, where Eα

s is defined in Eq. (6.2). To quantify the two-photon
(2P) emission probability from pairs of radiatively coupled emitters, we use the
normalized correlation function

C2P =

∑
α 6=β〈b†b†Eα

s E
β
s 〉∑

α 6=β〈b†Eα
s 〉〈b†Eβ

s 〉
(6.5)

shown in Fig. 6.2(d). Consistently with the super thermal intensity fluctuations
below and the coherent values above threshold, C2P drops from values around seven
to one in the threshold region. This clearly reveals the correlated emission of photons
pairs for low pump rates, which explains the superthermal photon bunching below
threshold.

Figure 6.3: Contributions to the total emission rate Γem for the parameters used
in Fig. 6.2 plotted versus pump rate P . The solid (dashed) curve represents the
effective spontaneous emission rate excluding (including) radiative coupling effects.
The end of the shaded area indicates the onset of lasing, where the stimulated
contribution (dot-dashed line) changes from absorption to amplification.

More insight can be obtained by looking at the modification of spontaneous emis-
sion caused by the radiative coupling. In the commonly used rate-equation approach,
independent emitters are considered, and spontaneous emission into the laser mode
enters the dynamics via β × nex/τspont, with nex and τspont being the number of
excitations in the gain medium and the total rate of spontaneous emission, respec-
tively. In a semiconductor system, optical recombination is driven by electrons and
holes, and the assumption of independent electron and hole populations f e,h leads
to the spontaneous recombination rate β × f efh/τspont [Chow and Koch, 1999, Gies
et al., 2007]. We explicitly calculate the degree of correlations between electrons and
holes and the resulting spontaneous-emission contribution. With the dipole opera-
tor Dα = E†αs + Eα

s , we define the dipole correlation function [Meyer and Yeoman,
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1997]

Cαβ
D =

〈DαDβ〉
〈E†αs Eα

s + E†βs E
β
s 〉

, (6.6)

where the diagonal EV 〈DαDα〉 is the spontaneous-emission contribution from QD
α. Of particular interest is the off-diagonal EV 〈DαDβ〉, which is the spontaneous-
emission contribution due to radiative interemitter coupling. In the following we
use CD, which is defined as the arithmetic mean of Cαβ

D over all QD pairs α 6= β.
The sign of CD indicates whether the dipoles of QD pairs are in phase (CD > 0)
or out of phase (CD < 0). The results in Fig. 6.2(c) show a clear transition from
out-of-phase to in-phase in the threshold region when the pumping is increased.
Comparing Fig. 6.2(a,c) we see that dipoles that are in phase (out of phase) lead
to an enhancement (suppression) of the emission into the cavity mode. An intuitive
explanation of this effect is provided in Sec. 6.5. The impact of the SR emitter
coupling can be cast into the form of an effective emission rate into the laser mode,
as it is familiar from laser theories. It is made up of three contributions

Γem = Γspont + Γsr + Γstim , (6.7)

where Γspont =
∑

α〈DαDα〉/τdeph, and Γsr =
∑

β 6=α〈DαDβ〉/τdeph, see Appendix C.4.
The first two terms constitute the total rate of spontaneous emission into the laser
mode: The diagonal one is the usual contribution from independent emitters to the
spontaneous emission, and the nondiagonal sum reflects the enhancement or sup-
pression of spontaneous emission due to QD-QD correlations. For identical emitters,∑

β 6=α leads to the well-known factor N(N − 1) in the spontaneous photon produc-
tion rate [Mandel and Wolf, 1995]. The third term represents the contribution due
to stimulated emission or absorption. For the situation discussed in Fig. 6.2, the
three contributions as functions of pump rate are shown in Fig. 6.3. Subradiant
coupling is seen to reduce the effective spontaneous emission rate until the onset
of stimulated emission. Stimulated emission is reached when its contribution (dot-
dashed curve) becomes positive. Then, lasing rapidly decreases the population of
excitonic states, while excitation-induced dephasing increases with pump, thereby
reducing the spontaneous emission (see Appendix C.4). We emphasize that the
sub/superradiant suppression/enhancement of the spontaneous emission rate is not
caused by a de/increase of exciton population, but solely by the buildup of corre-
lations between QDs, and these correlations enhance or suppress the emission from
the exited carriers. Equation (6.7) also allows for an interpretation of the photonless
laser in Ref. [Bohnet et al., 2012]: There, by the absence of photons, coherence is
obtained only from dipole correlations stored in the atoms. These are represented
by Γsr, which completely takes over the role of the stimulated emission contribution
in conventional lasers.

6.5 Influence of the Emitter Number and Coherence
Per Photon

In Fig. 6.4 we study how the influence of the coupling changes with the number of
emitters N . Values in the stationary regime of the discussed quantities are shown
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Figure 6.4: Stationary states for increasing number of QDs N at a low (P = 10−4/ps
solid lines), and a high pump rate (P = 1/ps dashed lines), all other parameters are
the same as in Fig. 6.2. (a) Cooperativity factor CF , (b) dipole correlation function
CD, (c) photon autocorrelation function g(2)(0) for low pump rates ((d): high pump
rates). Compared are results for independent (blue) and radiatively coupled QDs
(red). The shaded region marks the QD numbers where coherent emission is only
reached when radiative coupling effects are taken into account.

for two selected pump rates. At low excitation (solid lines), out-of-phase QD-QD-
dipole alignment (CD < 0) and superthermal bunching (g(2)(0) > 2) are observed.
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They are strongest for few emitters and reach the values of independent-emitter
theories in the limit of large N (c.f. panels (b) and (c)). At high excitation (dashed
lines), the impact of radiative coupling also decreases for large QD numbers, as the
system is then entirely dominated by stimulated emission.

Interemitter-coupling effects have the most striking impact at low and interme-
diate QD numbers: In this regime, the presence or absence of SR coupling decides
whether or not the system can reach coherent emission. This important finding is
reflected in the autocorrelation function g(2)(0) at high excitation rates (panel (d)).
Without radiative coupling (blue curves), lasing is reached with N & 40 emitters in
the cavity, indicated by a mean photon number above one and g(2)(0) ≈ 1. In the
presence of radiative coupling (red curves), lasing by the same criteria is possible
with only half the emitter number N & 20. The regime, where lasing is possible only
in the presence of the collective coupling effects is shaded in orange. In fact, many
current realizations of microcavity laser systems operate in the regime of 20–100
emitters effectively coupling to the laser mode [Strauf and Jahnke, 2011].

Interestingly, in the presence of radiative coupling, the same level of coherence
expressed in g(2)(0) is achieved at a much lower mean photon number (〈b†b〉 ≈ 8
with and 〈b†b〉 ≈ 35 without radiative coupling). Thus, the creation of dipole-phase
correlations between the emitters, associated with a positive value for CD, leads to
an increase of the “coherence per photon”, so that a lower mean photon number
suffices to reach the same level of coherence in the emission.

The influence of the cavity mode quality factor is studied in Fig. 6.5 for a range
of values from Q= 80 000 to Q= 5 000. Shown are results for the high-excitation
regime (P = 1/ps), in which lasing occurs when the emitter gain can compensate
the photon losses. With increasing photon losses (decreasing quality factor), this
requires emission from more emitters N in the gain material and effectively shifts
the lower-Q curves to higher emitter numbers. Of particular interest is the region, in
which lasing is only reached if radiative coupling is present. For each value of Q, this
is indicated by the solid-colored bars. The width of these regions increases at higher
N , as the emission enhancement seen in the cooperativity factor CF scales with the
emitter number (top panel). While at Q = 80 000, about half the number of emitters
suffices to reach stimulated emission in the presence of the discussed enhancement,
at Q = 10 000 it is less than a fourth. At the same time, it is interesting to note that
the average strength of the dipole correlations between pairs of emitters (CD, shown
in lower panel) is largely independent of the quality factor of the mode and is solely
determined by the light-matter coupling strength. We point out that the size of
the resonator and the linewidth of the cavity mode provides a physical limit for the
number of emitters that can effectively couple to a single mode. Nevertheless, the
implications of the insensitivity of radiative coupling effects to the quality factor may
be of interest in devices that naturally offer lower quality factors, such as e.g. surface
plasmon lasers.

6.6 Dicke States of Pairs of Emitters
The origin of sub- and superradiance is often discussed in a simplified picture of
two coupled two-level systems [Dicke, 1954, Meyer and Yeoman, 1997]. The eigen-
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Figure 6.5: Stationary states of the cooperativity factor CF (top) and dipole cor-
relation function CD as function of emitter number. Results are obtained for
high pumping (P = 1/ps) and shown for cavity modes with quality factors of
Q = 80 000, 40 000, 20 000, 10 000 and 5 000 from left to right. All other param-
eters are unchanged with respect to Fig. 6.4. The Q = 80 000 results (black curves)
are identical to the data in the top panels of Fig. 6.4. The solid bars indicate the in-
terval of QD numbers N for which coherent emission is only reached when radiative
coupling between the QDs is present (analog to the shaded region in Fig. 6.4).

states of the coupled system are the ground state |↓↓〉, the fully exited state |↑↑〉,
and the two degenerate states |↓↑ ± ↑↓〉. The antisymmetric state is, in general,
dipole forbidden [Mandel and Wolf, 1995], on which basis one can explain the pho-
ton bunching in the subradiant regime [Auffèves et al., 2011]. By considering EVs
of the type 〈(b†)nbmQα

ijQ
β
i′j′〉 within our formalism, we have access to occupation

probabilities of QD pairs, which corresponds to the information contained in a re-
duced two-QD density matrix. In an ensemble of many emitters, the EV 〈Q1

GGQ
2
GG〉

represents the averaged probability to find QD pairs in the ground state |↓↓〉, and
〈Q1

XXXXQ
2
XXXX〉 in the fully exited state |↑↑〉, respectively. When the |↑↑〉 state

is likely to be occupied, not only single-photon emission is possible, but also cor-
related two-photon emission via the process 〈b†b†EαEβ〉, which leads to C2P > 1.
The (anti)symmetric state is the eigenstate of the product of two dipole operators
D1D2 with the eigenvalue (−)1, therefore the dipole correlation function CD con-
tains information on whether pairs of QDs predominantly occupy the symmetric
|↓↑ + ↑↓〉 (CD > 0), or the antisymmetric |↓↑ − ↑↓〉 (CD < 0) state. With the
knowledge of the EVs 〈Q1

GGQ
1
GG〉, 〈Q1

XXXXQ
2
XXXX〉, and 〈D1D2〉 we can reconstruct

the probabilities 〈↓↓〉, 〈↑↑〉, and 〈↓↑ ± ↑↓〉 to find pairs of emitters in the ground

123



6.7. CHAPTER CONCLUSION

state, the fully exited state, or the (anti)symmetric half exited state. Analogous to
the two-emitter case, in the antisymmetric configuration the excitation is trapped.
This is reflected in the effective spontaneous emission rate (6.7), where negative
values of CD suppress the spontaneous emission into the laser mode. On the other
hand, photon emission from the symmetric state is accelerated, as a positive CD
enhances the emission rate into the laser mode. These two regimes are referred to
in the literature as subradiant [Auffèves et al., 2011] or anti-superradiant [Mandel
and Wolf, 1995] (CD < 0), and superradiant (CD > 0).

In contrast, on the level of independent emitters, EV between pairs of emitters
are factorized: 〈↓↑ ± ↑↓〉 → 〈↓〉〈↑〉. This results in a much simpler structure of pos-
sible processes as illustrated in Fig. 6.6. In this case, a distinction between the
discussed symmetric and antisymmetric states of QD pairs is not possible, and the
corresponding emission inhibition or enhancement due to out-of-phase (in-phase)
dipole moments is not accounted for. Neither is correlated two-photon emission
(C2P > 1) possible on the level of independent emitters, which results in the van-
ishing superthermal photon bunching with g(2)(0) ≤ 2 for this case.

〈↑〉〈↑〉
b
†
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〈↑↑〉b

†
b
†
b
†

〈↑〉〈↓〉
P

b
†

〈↓↑ + ↑↓〉
P

b
†

〈↓↑ − ↑↓〉
P

〈↓〉〈↓〉
P

〈↓↓〉

PP

Figure 6.6: Illustration of the population and depopulation processes for the reduced
two-QD density matrices. We compare the case of the product states of individual
emitters, which is obtained when QD-QD correlations are factorized (left), to the
case of radiatively coupled emitters (right). The solid red lines indicate the coherent
photon emission into the cavity b†. Dotted gray lines indicate the effective incoherent
pump P resulting from the electron-hole capture in the p-shell and the various
relaxation and scattering processes.

6.7 Chapter Conclusion

Current QD nanocavity devices challenge our understanding of lasers. The small
mode volume sets a limit for the number of emitters that can effectively couple to a
single cavity mode. Micropillar devices operate with about 20–200 emitters [Lermer
et al., 2013], and even less in photonic-crystal resonators [Strauf and Jahnke, 2011].
In this extreme regime, cavity-QED effects are known to enhance correlations and
to alter the nature of the emitted light [Nomura et al., 2010, Wiersig et al., 2009].
In a range of quality factor values typical for current microcavity lasers, we predict
correlations between the emitters to influence the output characteristics of cw-driven
lasers significantly: In the presence of collective effects, coherent emission is reached
with fewer emitters and at lower mean photon numbers. The increased “coherence
per photon” reflects the presence of dipole correlations in the gain medium. At
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low excitation, subradiant suppression of emission increases the jump in the input-
output curve that is typically associated with the β-factor. Theories that neglect
radiative emitter coupling may underestimate the β-factor by an order of magnitude.
These findings can explain the efficiency in photon production of current few-emitter
nanolasers, which is often better than predicted from conventional laser models, and
stimulate further experimental effort to identify the role of sub- and superradiance
in these systems, e.g. by investigating the laser dynamics with respect to collective
lifetime changes in the emission, or by high time-resolution measurements of the
emission statistics to reveal superthermal photon bunching. Strong collective effects
are also expected under pulsed excitation, which will be the topic of future work.

Our results are obtained from a laser theory that includes radiative interemitter
coupling and photon correlations to obtain g(2)(0). The underlying configuration
cluster-expansion (CCE) approach is based on the factorization of higher-order EVs
of electronic configuration and photon operators and allows for the description of
systems with a large number of degrees of freedom. This is well suited to model
the coupling of the multi-exciton states of several hundred solid-state emitters to
a cavity mode. The method may also prove useful to describe collective effects in
cold atomic gases, for which lifetime changes due to sub- and superradiant coupling
have been reported [Bienaimé et al., 2013, Pellegrino et al., 2014], in the context of
random lasers with many photonic modes [Wiersma, 2008], or in the description of
collective effects in coupled microcavity arrays [Ruiz-Rivas et al., 2014].
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Chapter 7

Final Conclusions

Summary The initial task for this thesis was to apply and extend a well es-
tablished theory for optical properties of semiconductor quantum dots (QDs) and
microcavity lasers. This already very sophisticated theory is based on the cluster
expansion (CE) [Schoeller, 1994, Hoyer et al., 2004]. The CE has been successfully
applied to quantum-wells [Hoyer et al., 2003], ultracold Bose gases [Witthaut et al.,
2011], spin systems [Kapetanakis and Perakis, 2008], and semiconductor QD sys-
tems [Wiersig, 2007, Gies et al., 2007, Gies, 2008, Baer et al., 2006, Ulrich et al.,
2007, Ates et al., 2008, Wiersig et al., 2009]. The last references by Wiersig et
al. were the starting point for this thesis. Although very successful, the CE reveals
technical and conceptional flaws, especially when applied to systems with a finite
component.

On the technical side the derivation of the hierarchy of equations of motion (EoM)
for the correlation functions is a tedious and error-prone task. Additional to this
technical problem which is more concerned with convenience of the user, the regular
CE provided a rather unsatisfying handling of scattering and dephasing processes
caused by the environment. In the regular CE for semiconductor QDs the micro-
scopic EoM derived from the Dipole and Coulomb Hamiltonian are augmented by
phenomenological terms [Gies et al., 2007] to describe the effects of the surround-
ing semiconductor material. In particular the phenomenological terms describe the
transfer of population due to scattering, for the single particle properties, and cre-
ate the dephasing of the corresponding polarizations. For a consistent physical
model, the scattering and dephasing rates should not be chosen independent from
each other, they should rather be connected to the underlying physical processes.
An inconsistent treatment of scattering and dephasing can also lead to artifacts like
heating [Hoyer et al., 2003], or a build up of nonphysical correlations. Closely related
is the question how the environment affects higher-order many-particle correlations
and how one can determine their EoM with acceptable effort.

The consistent treatment of scattering and dephasing for all many-particle cor-
relation functions based on Lindblad terms was presented chapter 3. The Lindblad
terms, commonly used in quantum optics [Carmichael, 1999], generate the time evo-
lution of the density operator that is caused by the environment. This time evolution
was transferred, in the presented theory, to all orders of many-particle correlation
functions occurring in the CE.

127



A conceptual problem of the CE is its convergence, when applied to finite systems.
The CE was originally developed for (quasi)continuous or at least very large systems,
and it is known that the CE can produce nonphysical results like negative occupation
numbers when applied to small and finite systems [Richter et al., 2009, Leymann
et al., 2013b]. In chapter 3 a solution to this problem is presented as well. The fact
that a QD can only accommodate a limited number of carriers is taken into account
by adding corrective terms to the regular EoM based on correlation functions. The
new improvements of the theory have the drawback that the algebraic afford was
increased considerably, and a computer algebra program was needed to derive the
EoM.

A reformulation of the traditional CE where all quantities are expressed in simple
expectation values (EVs) is given in chapter 4. This reformulation fixes the flaws
of the traditional CE, described above, and it is much more user friendly than the
regular CE. In contrast to the traditional CE, where the EoM are nonlinear in all
orders, in the expectation value based cluster expansion (EVCE) the EoM become
nonlinear only in those terms where correlation functions actually are neglected.
This way of formulating the CE allows to directly include the Lindblad terms and
apply all approximations concerning the finiteness of the Hilbert space in a straight
forward manner, with a minimum of algebraic afford. It has to be pointed out that
the CE and the EVCE are equivalent and produce exactly the same results. Finally,
the EVCE and the formulation introduced in chapter 4 allows for a unified view on
a variety of methods and approximations presented in the literature.

In chapter 5 the ideas and techniques developed in the previous chapters are used
to further improve and extend the laser theory presented in [Gies et al., 2007, Wiersig
et al., 2009, Wiersig, 2010, Wiersig, 2007, Gies, 2008]. In the first part of chapter
5 the laser transition of a QD-based single-mode microcavity laser is studied by
calculating the higher-order (g(n)(0) with n = 3 . . . 5) photon correlation functions.
In former theories, based on the CE only the photon correlation function of second-
order was accessible. The possibility to calculate photon correlation functions of 5th
order, within the framework of the CE, is an important achievement of this work.
The results in this chapter demonstrate the convergence of the CE for a nontrivial
example [Leymann et al., 2014]. Additionally the results emphasize that for high
β-factor lasers it is worth to reconsider the concept of a laser threshold.

In the second part of chapter 5 the single-mode theory is extended to a two-mode
theory. This theory is used to understand the superthermal intensity fluctuations
[Leymann et al., 2013c] in bimodal microcavity lasers experimentally observed by the
group of Prof. Reitzenstein (TU Berlin). In the third part of chapter 5 the ideas of
the cluster expansion are used to calculate the dynamics of the first-order coherence
function g(1)(τ) from which the spectrum of the system can be obtained. To get
a more intuitive understanding of the observations a simple birth and death model
is introduced that agrees qualitatively with the experiments and the microscopic
theory but provides more insight to the underlying photon statistics. For the spectral
properties of the bimodal laser a simple 2 × 2 matrix model is derived. It features
the main aspects of the system and reveals relations to the strong and weak coupling
regime of a single photonic mode and an atomic transition. A comprehensive picture
of the lasing properties of a bimodal microcavity laser is given. Microscopic theories
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CHAPTER 7. FINAL CONCLUSIONS

that match the experimental results are derived, and phenomenological models are
introduced to illustrate and illuminate the abstract microscopic theory.

In chapter 6 the superradiant (SR) coupling between QDs is investigated. It is
shown how the SR coupling between the QDs can be described with the CE and how
the SR coupling of emitters affects the threshold behavior of a microcavity laser.
For a consistent inclusion of QD-QD correlations the traditional CE is again mod-
ified based on the ideas developed in chapter 3 and 4. The new formulation treats
the electronic configurations in a QD exactly and factorizes correlations between
different QDs. SR coupling reduces the number of emitters required to achieve las-
ing operation and enhances the intensity fluctuations below the lasing threshold to
super thermal values. By examining the EoM we have shown that the dipole-dipole
correlations between different QDs make a significant contribution to the sponta-
neous emission and can be the crucial component of the emission terms to reach the
lasing regime.

It may as well be noted in this conclusion that the very interesting topic of
SR coupling was already mentioned in the outlooks of the habilitation treatise of
Prof. Wiersig and the PhD thesis of Dr. Gies [Wiersig, 2007, Gies, 2008], and pro-
posed as a fruitful direction of further research.

Outlook As it is always the case, when new methods are developed and applied
to new and interesting physical systems, a research project raises more questions
then it answers. In the case of this thesis the open questions arise manly from the
new possibilities that the improvements of the CE offer. In the following the most
promising questions and new problems are briefly sketched.

The two mode-theory presented in section 5.2 and Ref. [Leymann et al., 2013c]
could be extended to a multi-mode theory. In a multi-mode system more than one
mode could be lasing and the crosscorrelation functions as well as the statistical
properties of the non-lasing modes promise to be interesting. The theory of gener-
alized Bose-Einstein condensates presented in [Vorberg et al., 2013, Vorberg et al.,
2015] has many parallels to the proposed multi-mode version of the two-mode laser
theory developed in this thesis. In contrast to the generalized Bose-Einstein con-
densates, an even number of modes can be selected and go into lasing. Furthermore
the relations to the theory of generalized Bose-Einstein condensates could be stud-
ied and used to gain an new perspective on multi-mode microcavity systems and
explain the switching of the selected modes with increasing pump power, observed
in recent experiments [Reitzenstein and Vorberg private communication].

In chapter 6 it was assumed that all QDs have roughly the same size, hence
the s-shell transition-energies of the QDs are all equal and additionally in perfect
resonance with the cavity mode. The inhomogeneous broadening of the QDs was not
considered. To quantify the impact of the inhomogeneous broadening of the QDs on
the SR effects is a very important and experimentally relevant task. The important
question is: Will the SR effects persist when the inevitable inhomogeneous nature
of the QDs is considered? So far, the SR coupling of only a few different QDs
could be investigated [Temnov and Woggon, 2005, Sitek and Machnikowski, 2007,
Abdussalam and Machnikowski, 2014] with exact theoretical methods. The very
efficient formulation of the CE established in chapter 6 allows for an investigation
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of at least 50 QDs from an inhomogeneously distributed ensemble, thus providing
access to scenarios present in state of the art micro/nano lasers.

Another interesting turn on the description of SR in micro lasers could be the
introduction of an extended birth-and death-model similar to the two-mode laser
model introduced in chapter 5. An extended birth and death model describing
the transitions between the ground-, bright-, dark-, and twofold exited -state (see
Fig. 6.6) should be able to reproduce (qualitatively) the core effects the microscopic
theory predicts, much like the two-mode birth-and death model reproduces the
results of the microscopic theory in section 5.2. The benefit of such a theory would
be, the mathematical confirmation of the intuitive explanation based on Dicke states
given at the end of chapter 6. Another advantage of a description in terms of a birth
and death model would be the access to the full photon statistics.

Starting from the very general ideas developed in chapter 4, there are various
possibilities to further improve the CE. One could for example combine the EVCE
approach with the methods from section 5.3 to calculate the delay dynamics of the
higher-order photon correlation functions e.g. g(2)(τ). Another interesting applica-
tion would be the calculation of the spectra and coherence time of light emitted by
superradiantly coupled QDs in a microcavity. To this end one would have to combine
the methods developed in chapter 6 with the ones used in section 5.3. It is expected
that the SR-coupling of the QDs will have an impact on the spectral properties of
the emitted light. This would provide another experimentally accessible fingerprint
of the SR coupling between QDs.

In general the CE and its various reformulations have proven to be a versatile
and powerful tool and we believe the CE has a variety of new applications that are
yet to be discovered.
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Appendix A

Equations of motion for single QD
PL into free Space

In this appendix we provide supplementary material to chapter 3. We provide a de-
tailed account of all contributions to the equations of motion up to the Mtrunc = 1,
Nmax = 2 level of the FSH method that were omitted for the sake of transparency in
Sec. 3.4. This includes contributions from the light-matter, Coulomb and system-
bath interaction, which has been used for calculations shown in Section 3.6 and 3.5.
To derive the equations we follow the same line as presented in Section 3.4. Espe-
cially the Coulomb contributions add significant complexity to the equations, thus
we have derived/checked them by utilizing the symbolic manipulation system FORM
[Vermaseren, 2000] (see appendix D for details).

A.1 Hamiltonian
The microscopic Hamiltonian that describes the carrier dynamics and the quantized
electromagnetic field contains the following contributions

H = H0
carr +H0

ph +HLM +HCoul. (A.1)

The first part of the Hamiltonian includes the non-interacting single-particle spec-
trum ε

c/v
i of the conduction- and valence band carriers

H0
carr =

∑

i

εcic
†
ici +

∑

i

εvi v
†
i vi, (A.2)

which are annihilated (created) by the fermionic operator ci (c†i ) and vi (v
†
i ), respec-

tively. Carrier-carrier interaction arises from the two-particle Coulomb Hamiltonian

HCoul =
1

2

∑

ijkl

Vijkl c
†
ic
†
jckcl +

1

2

∑

ijkl

Vijkl v
†
i v
†
jvkvl +

∑

ijkl

Vijkl c
†
iv
†
jvkcl

+
1

2

∑

ijkl

Vijkl
(
v†i vkδjl + v†jvlδik − v†i vlδjk − v†jvkδil

)
−
∑

ijkl

Vijkl c
†
iclδjk , (A.3)

that contains direct (Hartree) terms Vijji and exchange (Fock) terms Vijij, resulting
in energy renormalizations and a mixing between single particle configurations. The
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last two terms ensure that the contribution of the full valence band, that is already
included in the single particle properties is not double-counted. The explicit form
of the single-particle states enters the calculation of the Coulomb-matrix elements
Vijkl and is discussed in [Baer et al., 2006, Wojs et al., 1996] for a cylindrical,
lens-shaped QD. Throughout this hole thesis we consider the single-particle wave
functions in envelope-function approximation [Haug and Koch, 2004], as well as
equal envelopes for the conduction- and valence-band electrons. However, more
sophisticated methods, like tight-binding calculations [Schulz and Czycholl, 2005],
can be used. For the material parameters we have chosen those of Ref. [Baer et al.,
2004] for an InGaAs/GaAs QD.

We consider the fully quantized electromagnetic field, of which the free part is
given by

H0
ph =

∑

ξ

ωξ

(
b†ξbξ +

1

2

)
. (A.4)

Here, the bosonic operators bξ (b†ξ) annihilate (create) a photon with the energy
ωξ in the photon mode ξ. The index ξ represents both, the wave vector q and
the polarization vector of the electromagnetic field e±(q). The non-perturbative
light-matter interaction HLM in dipole and rotating-wave approximation reads [Kira
et al., 1999, Baer et al., 2006]

HLM = −i
∑

ξ,i

(
gξbξc

†
ivi − g∗ξb†ξv†i ci

)
, (A.5)

where the light-matter coupling strength gξ is proportional to the interband dipole
matrix element dcv. Note that within the envelope-function approximation, optical
transitions occur only between the s- or the p-shell of the conduction- and valence
band.

In the case that the QD is resonant with a single cavity mode, the influence of all
other modes can be treated via Lindblad terms, so that HLM reduces to the Jaynes-
Cummings (JC) interaction Hamiltonian [Jaynes and Cummings, 1963, Shore and
Knight, 1993].

A.2 Equations of motion

A.2.1 Light-matter interaction

Writing down the contribution of the light-matter interaction to the equations of
motion for the populations, we obtain

d

dt
f ci
∣∣
HLM

= − d

dt
f vi
∣∣
HLM

= −2Re
∑

ξ

g∗ξΠξ,i, (A.6)

which is coupled to the photon-assisted polarization Πξ,i. The corresponding dy-
namical equations read

d

dt
Πξ,i

∣∣
HLM

= gξf
c
i (1− f vi ) +

∑

µ

gξC
x
µiiµ (A.7)
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and contain the interband carrier correlation functions Cx
ijkl. In contrast to Eq. (3.17)

the photon population Nξ and carrier-photon correlations N c
ξ,i and N v

ξ,i have been
omitted as the maximum order with respect to the photons is restricted to the
Mtrunc = 1 level in this appendix.

The equations of motion for the interband carrier correlation functions

d

dt
Cx
ijkl

∣∣
HLM

=
∑

ξ

[
gξ
(
f cj − f vj

)
Π∗ξ,i + g∗ξ (f ci − f vi ) Πξ,j

]
δilδjk

+
∑

ξ

(
gξΠ

c∗
ξ,ijkl + g∗ξΠ

c
ξ,ijkl − gξΠv∗

ξ,ijkl − g∗ξΠv
ξ,ijkl

)
, (A.8)

and for the conduction band carrier-carrier correlations

d

dt
Cc
ijkl

∣∣
HLM

=
∑

ξ

(
gξΠ

c∗
ξ,ijlk − gξΠc∗

ξ,ijkl + g∗ξΠ
c
ξ,jikl − g∗ξΠc

ξ,ijkl

)
(A.9)

contain the higher order contributions Πc
ξ,ijkl and Πv

ξ,ijkl, which obey their own dy-
namics. A similar expression can be found for the valence-band carrier-carrier cor-
relations Cv

ijkl by exploiting the symmetry properties of the Hamiltonian.
Due to the limited number of considered single-particle states (cf. the beginning of

Sec. 3.4), in conjunction with scattering processes that conserve the total number of
excitations in the electronic system, the electronic hierarchy automatically truncates
at the Nmax = 2 level. Therefore, by including the equations of motion for Πc

ξ,ijkl

and Πv
ξ,ijkl

d

dt
Πc
ξ,ijkl

∣∣
HLM

= gξC
c
ijkl +

(
g∗ξΠξ,iΠξ,j − gξf ci f cj f vj + f ci

∑

µ

gξC
x
µjjµ

)
(δikδjl − δilδjk)

(A.10)

and

d

dt
Πv
ξ,ijkl

∣∣
HLM

= gξC
x
ijkl − gξCx

jikl

+
(
g∗ξΠξ,lΠξ,k + gξf

c
kf

v
k f

v
l − f vl

∑

µ

gξC
x
µkkµ

)
(δilδjk − δikδjl) (A.11)

we obtain a closed set of equations at the Mtrunc = 1, Nmax = 2 level by neglect-
ing the contributions from the correlation functions δ〈b†ξbξc†ic†jckcl〉, δ〈b†ξbξv†i v†jvkvl〉,
δ〈b†ξbξc†iv†jckvl〉 and δ〈b†ξb†ξv†i v†jckcl〉, which are second order in the photon hierarchy.

At this point we have written down equations for all occurring correlation func-
tions. Coulomb and Lindblad contributions are discussed subsequently and only
add to the quantities we have introduced.

A.2.2 Coulomb interaction

The inclusion of the Coulomb interaction is of central importance for the physical
behavior of semiconductor nanostructures. In contrast to atomic systems, here
Coulomb effects can be of similar magnitude as the energetic separation between
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the localized electronic states. Thus, energetic shifts introduced by the Coulomb
interaction can have a severe impact on dynamical and spectral properties in a
system of contributing multi-exciton configurations.

Starting with the contributions of the Coulomb Hamiltonian (A.3) to the equa-
tions of motion for the carrier populations, we obtain

d

dt
f ci
∣∣
HCoul

=− 2Im
∑

µνα

ViµναC
x+c
iµαν . (A.12)

Here we have introduced the abbreviation Cx+c
ijkl = Cx

ijkl + Cc
ijkl. For the higher-

order correlation functions, a straightforward interpretation of the contributions is
obscured by their complexity, and we restrain ourselves to a mere listing of equations.

d

dt
Πξ,i

∣∣
HCoul

= i
∑

µ

{
Viµiµ

[(
1 + f cµ − f vµ

)
Πξ,i − (f ci − f vi ) Πξ,µ

]

+
∑

να

Viµνα
(
Πc
ξ,µiνα + Πv

ξ,iµαν

)
+
∑

να

V ∗iµνα
(
Πc
ξ,ναiµ + Πv

ξ,ναiµ

) }
(A.13)

d

dt
Cx
ijkl

∣∣
HCoul

= iV ∗ijlk
[
f ci f

v
j − f ckf vl

]

+i
∑

µν

[
V ∗ijµνC

x
νµkl − VklµνCx

ijνµ + VkµµνC
x
ijνl − V ∗iµµνCx

νjkl

]

+i
∑

µν

[
(Vlµµν − Vlµνµ)Cx

ijkν +
(
V ∗jµνµ − V ∗jµµν

)
Cx
iνkl

]

−i
∑

µ

[
V ∗iµµk (f ci − f ck) f vj δjl +

(
V ∗jµlµ − V ∗jµµl

)
f ci
(
f vl − f vj

)
δik
]

− 2Im
{∑

µνα

[
f vj ViµναC

x+c
iµαν + f ci VjµναC

x+v
µjνα

]}
δikδjl (A.14)

d

dt
Cc
ijkl

∣∣
HCoul

= i
(
V ∗ijkl − V ∗ijlk

) (
f ckf

c
l − f ci f cj

)

+i
∑

µν

[
VlµµνC

c
ijkν − VkµµνCc

ijlν + VklµνC
c
ijµν + V ∗iµµνC

c
jνkl − V ∗jµµνCc

iνkl − V ∗ijµνCc
µνkl

]

+i
∑

µ

[
V ∗iµµkf

c
j (f ck − f ci ) δjl − V ∗iµµlf cj (f cl − f ci ) δjk

]

−i
∑

µ

[
V ∗jµµkf

c
i

(
f ck − f cj

)
δil − V ∗jµµlf ci

(
f cl − f cj

)
δik
]

−2Im
{∑

µνα

[
f cj
(
ViµναC

x+c
iµαν

)
+ f ci

(
VjµναC

x+c
jµαν

) ]}
(δikδjl − δilδjk)
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d

dt
Πc
ξ,ijkl

∣∣
HCoul

= i
∑

µν

[
VlµµνΠ

c
ξ,ijkν − VkµµνΠc

ξ,ijlν + VklµνΠ
c
ξ,ijµν

− V ∗iµµνΠc
ξ,νjkl + V ∗ijµνΠ

c
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(
V ∗jµνµ − V ∗jµµν

)
Πc
ξ,iνkl

]

+i
[
V ∗ijkl (f

c
l Πξ,k − f ci Πξ,j)− V ∗ijlk (f ckΠξ,l − f ci Πξ,j)

]

+if ci
∑

µ

{ [
V ∗jµµk (Πξ,j − Πξ,k) + V ∗jµkµΠξ,k

]
δil

−
[
V ∗jµµl (Πξ,j − Πξ,l) + V ∗jµlµΠξ,l

]
δik
}

+iΠξ,j

∑

µ

[
V ∗iµµk (f ck − f ci ) δjl − V ∗iµµl (f cl − f ci ) δjk

]

−2Πξ,jIm
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µνα

ViµναC
x+c
iµαν

)(
δikδjl − δilδjk

)

+if ci
∑

µνα

[
Vjµνα

(
Πc
ξ,µjνα + Πv

ξ,jµαν

)
+ V ∗jµνα

(
Πc
ξ,ναjµ + Πv
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)](
δikδjl − δilδjk

)

+if ci
∑

µ

Vjµjµ
[
Πξ,j

(
1− f vµ + f cµ

)
− Πξ,µ

(
f cj − f vj

) ]
(δikδjl − δilδjk) (A.15)

d

dt
Πv
ξ,ijkl

∣∣
HCoul

= −iV ∗ijkl [Πξ,jf
v
i − Πξ,kf

v
l ] + iV ∗ijlk

[
Πξ,if

v
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v
l

]

−i
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µ

{
Vkµkµ
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(
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)

+i
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(
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)
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ξ,ijνµ + (Vlµµν − Vlµνµ) Πv
ξ,ijkν

]
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−iΠξ,k

∑

µ

[ (
V ∗iµkµ − V ∗iµµk

)
δjl −

(
V ∗jµkµ − V ∗jµµk

)
δil
]
f vl

−iΠξ,k

∑

µ

[ (
V ∗iµlµ − V ∗iµµl

)
(f vi − f vl ) δjk −

(
V ∗jµlµ − V ∗jµµl

) (
f vj − f vl

)
δik
]

−if vl
∑

µ

[
V ∗iµµkΠξ,iδjl − V ∗jµµkΠξ,jδil

]
(A.16)

A.2.3 System-bath interaction

The evaluation of the system-bath contributions follows from Eq. (3.14). Cavity
losses have already been included in the discussion in Sec. 3.4.
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Scattering

The physical effects of the intraband scattering processes listed in the following
include carrier redistribution, dephasing, and redistribution of correlation strength
in compliance with the sum rule (3.26), as well as effects on higher-order correlation
functions. Note that the evaluation of the sum for µ 6= ν in Eq. (3.23) formally
requires setting γccµµ = 0.

d

dt
f ci
∣∣
scatt

=
∑

µ

γcciµ
[
f cµ (1− f ci ) + Cc

iµiµ

]
−
∑

µ

γccµi
[
f ci
(
1− f cµ

)
+ Cc

iµiµ

]
(A.17)

d

dt
Πξ,i

∣∣
scatt

= −1

2

∑

µ

γccµiΠξ,i +
1

2

∑

µ

(
γccµi − γcciµ

)
f cµΠξ,iΠ

c
ξ,µiiµ (A.18)

d

dt
Cx
ijkl

∣∣
scatt

=
∑

µ

[
γcciµC

x
µjµlδik −

1

2

(
γccµi + γccµk

)
Cx
ijkl

]

−
∑

µ

(
γcciµ − γccµi

) (
f ci f

c
µ − Cc

iµiµ

)
f vj δikδjl (A.19)

d

dt
Cc
ijkl

∣∣
scatt

=
1

2

(
γccij + γccji + γcckl + γcclk

)
Cc
ijkl

+
[
γccij f

c
j

(
f cj − f ci

)
− γccjif ci

(
f cj − f ci

) ]
(δikδjl − δilδjk)

−1

2

∑

µ

(
γccµi + γccµj + γccµk + γccµl

)
Cc
ijkl

+
∑

µ

(
γccµi − γcciµ + γccµj − γccjµ

)
f ci f

c
j f

c
µ (δikδjl − δilδjk)

+
∑

µ

γcciµ
(
Cc
jµlµδik − Cc

jµkµδil
)

+
∑

µ

γccjµ
(
Cc
iµkµδjl − Cc

iµlµδjk
)

+
∑

µ

[ (
γcciµ − γccµi

)
f cjC

c
iµiµ +

(
γccjµ − γccµj

)
f ci C

c
jµjµ

]
(δikδjl − δilδjk)

d

dt
Πc
ξ,ijkl

∣∣
scatt

=
1

2
(γcckl + γcclk ) Πc

ξ,ijkl

+
[
γccij
(
f cj −

1

2
f ci
)
− 1

2
γccjif

c
i

]
Πξ,j

(
δikδjl − δilδjk

)
− 1

2

∑

µ

(
γccµi + γccµk + γccµl

)
Πc
ξ,ijkl

+
∑

µ

γcciµ
(
Πc
ξ,µjkµδil − Πc

ξ,µjlµδik
)

+
∑

µ

[ (
γccµi − γcciµ

) (
f ci f

c
µ − Cc

iµiµ

)
Πξ,j

+
1

2

(
γccµj − γccjµ

) (
f cµΠξ,j + Πc

ξ,µjjµ

)
f ci
]

(δikδjl − δilδjk) (A.20)
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d

dt
Πv
ξ,ijkl

∣∣
scatt

= −1

2

∑

µ

γccµkΠ
v
ξ,ijkl (A.21)

−1

2

∑

µ

(
γcckµ − γccµk

)
f vl
(
f cµΠξ,k + Πc

ξ,µkkµ

)
(δikδjl − δilδjk)

A similar set of equations can be given for the intraband scattering in the valence
band (by interchanging c andv).

Pumping

In Eq. (3.27) we have formulated the Lindblad contribution for pair-wise carrier
capture into the QD p-states. For a general capture into the state |µ〉 at a rate
Pµ(t), this equation reads

d

dt
〈A〉

∣∣
pump

=
Pµ(t)

2

(
〈[v†µcµ, A]c†µvµ〉+ 〈v†µcµ[A, c†µvµ]〉

)
(A.22)

and leads to the following contributions in the set of equations of motion:

d

dt
f ci
∣∣
pump

=Pi(t) [(1− f ci ) f vi + Cx
iiii]

d

dt
Πξ,i

∣∣
pump

=− 1

2
Pi(t)Πξ,i

d

dt
Cx
ijkl

∣∣
pump

= −1

2
(Pj(t) + Pl(t))C

x
ijkl + Pi(t)C

v
ijilδik

+
1

2

(
Pi(t)C

x
iiklδij + Pk(t)C

x
ijkkδkl

)
+ Pi(t) (Cx

iiii − f ci f vi ) f vj δikδjl

+Pj(t)
(
f cj f

v
j − Cx

jjjj

)
f ci δikδjl + Pi(t) (f vi f

v
i − f ci f vi ) δijδikδil

d

dt
Cc
ijkl

∣∣
pump

= +Pi(t)
(
Cx
jiliδik − Cx

jikiδil
)

+Pj(t)
(
Cx
ijkjδjl − Cx

ijljδjk
)

+ Pi(t)f
c
j (Cx

iiii − f vi f ci ) (δikδjl − δilδjk)
+Pj(t)f

c
i

(
Cx
jjjj − f vj f cj

)
(δikδjl − δilδjk)

d

dt
Πc
ξ,ijkl

∣∣
pump

=− 1

2
Pj(t)Π

c
ξ,ijkl +

1

2
Pi(t)

(
Πc
ξ,iiklδij + 2Πv

ξ,ijkiδil − 2Πv
ξ,ijliδik

)

+ Pi(t)Πξ,j (Cx
iiii − f vi f ci ) (δikδjl − δilδjk)

d

dt
Πv
ξ,ijkl

∣∣
pump

= −1

2
(Pi(t) + Pj(t) + Pl(t)) Πv

ξ,ijkl

+
1

2
Pk(t)Π

v
ξ,ijkkδkl + Pl(t)Πξ,k (f vl f

c
l − Cx

llll) (δikδjl − δilδjk)
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Appendix B

Equations of motion for the
microscopic bimodal laser model

In this appendix we provide supplementary material to the second section of chapter
5. We present the equations of motion that together with Eqs. (5.11), (5.12), (5.14),
(5.15) and (5.16) complete the full set of equations of motion for one-time correlation
functions on the quadruplet level of the cluster expansion:

d

dt
δ〈c†jvjbξ〉 = i(∆ξj + iκξ + iΓ)δ〈c†jvjbξ〉+ gξjδ〈c†jcj〉(1− δ〈v†jvj〉)

+
∑

ζ

[
gζjδ〈b†ζbξ〉(δ〈c†jcj〉 − δ〈v†jvj〉) +gζjδ〈c†jcjb†ζbξ〉 − gζjδ〈v†jvjb†ζbξ〉

]
(B.1)

d

dt
δ〈v†svs〉 =

(∑

ξ

gξjδ〈c†svsbξ〉+ H.c.

)

− δ〈v†p, vp〉(1− δ〈v†s, vs〉)τ−1
v + δ〈c†scs〉(1− δ〈v†svs〉)τ−1

nl (B.2)

d

dt
δ〈v†pvp〉 = −P (δ〈v†pvp〉−δ〈c†pcp〉)+δ〈v†p, vp〉(1−δ〈v†s, vs〉)τ−1

v +δ〈c†pcp〉(1−δ〈v†pvp〉)τ−1
sp

(B.3)

d

dt
δ〈c†jcjb†ξbζ〉 = −(κξ + κζ)δ〈c†jcjb†ξbζ〉 − gξjδ〈c†jcj〉δ〈c†jvjbζ〉 − gζjδ〈c†jcj〉δ〈v†jcjb†ξ〉

−
∑

ξ′

gξ′j

(
δ〈c†jvjb†ξbξ′bζ〉 − δ〈c†jvjbζ〉δ〈b†ξbξ′〉 −δ〈v†jcjb†ξ′b†ξbζ〉 − δ〈v†jcjb†ξ〉δ〈b†ξ′bζ〉

)

(B.4)

d

dt
δ〈v†jvjb†ξbζ〉 = −(κξ + κζ)δ〈v†jvjb†ξbζ〉

+
∑

ξ′

[
gξ′jδ〈c†jvjb†ξbξ′bζ〉+ gξ′jδ〈c†jvjbζ〉(1− δ〈v†jvj〉+ δ〈b†ξbξ′〉)

+gξ′jδ〈v†jcjb†ξ′b†ξbζ〉+ gξ′jδ〈v†jcjb†ξ〉(1− δ〈v†jvj〉+ δ〈b†ξ′bζ〉)
]

(B.5)
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d

dt
δ〈c†jvjb†ξbζbξ′〉 = i[∆ξ′j + ∆ζj −∆ξj + i(κξ + κζ + κξ′) + iΓ]δ〈c†jvjb†ξbζbξ′〉

− gξ′jδ〈c†jcj〉(δ〈v†jvjb†ξbζ〉 − δ〈v†jvjb†ξbξ′〉+ δ〈b†ζ′b†ξbζbξ′〉)
+
∑

ζ′

[
gζ′jδ〈c†jcjb†ξbζ〉(1− δ〈v†jvj〉+ δ〈b†ζ′bξ′〉) + gζ′jδ〈c†jcjb†ξbξ′〉(1− δ〈v†jvj〉 − δ〈b†ζ′bζ〉)

− 2gζ′jδ〈c†jvjbζ〉δ〈c†jvjbξ′〉 − gζ′jδ〈v†jvj〉δ〈b†ζ′jb†ξbζbξ′〉
−gζ′jδ〈v†jvjb†ξbζ〉δ〈b†ζ′bξ′〉 − gζ′jδ〈v†jvjb†ξbξ′〉δ〈b†ζ′bζ〉

]
(B.6)

d

dt
δ〈v†jcjb†ξb†ζbξ′〉 = i[−∆ξj −∆ζj + ∆ξ′j + i(κξ + κζ + κξ′) + iΓ]δ〈v†jcjb†ξb†ζbξ′〉

− gjδ〈c†jcj〉(δ〈v†jvjb†ξbξ′〉 − δ〈v†jvjb†ζbξ′〉+ δ〈b†ξb†ζbnbξ′〉)
+
∑

ζ′

[
gζ′jδ〈c†jcjb†ξbξ′〉(1− δ〈v†jvj〉+ δ〈b†ζbζ′〉) + gζ′jδ〈c†jcjb†ζbξ′〉(1− δ〈v†jvj〉+ δ〈b†ξbζ′〉)

− 2gζ′jδ〈v†jcjb†ξ〉δ〈v†jcjb†ζ〉 − gζ′jδ〈v†jvj〉δ〈b†ξb†ζbζ′bξ′〉
−gζ′jδ〈v†jvjb†ξbξ′〉δ〈b†ζbζ′〉 − gζ′jδ〈v†jvjb†ζbξ′〉δ〈b†ξbζ′〉

]
(B.7)
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Appendix C

Details of the laser theory
formulated in configuration operators

In this appendix we provide supplementary material to chapter 6.

C.1 Configuration Operators
The confinement of electrons and holes in a QD in all three spatial dimensions leads
to states with discrete energies. Because of the finite height of the confinement
potential, a QD can provide only a limited number of electronic single-particle states.
Distributing carriers in these states results in electronic configurations as shown in
Fig. C.1. The corresponding many-particle Hilbert space vectors |i〉 define the basis
states of our QD model. For simplicity we restrict ourselves to charge neutral states
within one spin system, which couples to one circular polarization of the light field.
A generalization to charged multi-exciton states or to QDs with a different level
structure is possible without changing the fundamental aspects of this formulation.
The electronic state of all carriers confined in multiple QDs is described by the
tensor product of all single QD states:

|ψ〉 = |i〉1|j〉2 · · · |k〉α · · · |l〉N , (C.1)

where |k〉α denotes QD α to be in configuration k. We assume that the QDs are
spatially well separated. Therefore the carriers confined in different QDs can be
treated as distinguishable particles and we do not have to antisymmetrize the vector
|ψ〉. In fact, the position of the configuration state |k〉α in the tensor product is
irrelevant since the index α always denotes a specific QD

|i〉1 · · · |j〉α|k〉β · · · |l〉N = |i〉1 · · · |k〉β|j〉α · · · |l〉N . (C.2)

We define the QD configuration operators

Qα
ij = |i〉α〈j|α (C.3)

mapping the configuration j of QD α to the configuration i of the same QD. The al-
gebraic properties of the configuration operators follow from the fact that all configu-
ration states of the same QD are orthonormal, 〈iα|jα〉 = δij, and can be summarized
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Figure C.1: Illustration of the electronic configuration states |i〉 of a QD with
two confined states for electrons and holes that accommodates two electrons (i =
{G,Xs, 0p, 0s, Xp, XX}). The different configurations are the ground state |G〉, the
s-exciton |Xs〉, the dark states with the electrons in the p-shell |0p〉 and in the s-shell
|0s〉 respectively, the p-exciton |Xp〉 and the bi-exciton |XX〉.

by the commutation relation

[Qα
ij, Q

β
kl] = (Qα

ilδj,k −Qα
kjδl,i)δα,β. (C.4)

To illustrate our approach and to connect it to former theories we give a few ex-
amples on how one can construct single-particle operators in second quantization
with the configuration operators Qα

ij for the model QD illustrated in Fig. C.1. In
the following c

(†)α
s annihilates (creates) a conduction-band carrier in the single-

particle s-state of QD α and v
(†)β
p annihilates (creates) a valence-band carrier in

the single-particle p-state of QD β. Contributions from all configurations contain-
ing an (un)occupied single-particle state must be summed up to represent the cor-
responding single-particle operator. For example, the number operator of p-shell
conduction-band electrons in QD α is given by c†αp cαp = Qα

0p0p +Qα
XpXp

+Qα
XX,XX .

The annihilation of an s-shell electron-hole pair in QD β can be constructed by
v†βs c

β
s = Eβ

s = Qβ
GXs

+Qβ
XpXX

. The total number of electrons in the valence band in
QD γ is given by

∑
i v
†γ
i v

γ
i = 2Qγ

GG +Qγ
XsXs

+Qγ
0p0p +Qγ

0s0s +Qγ
XpXp

.

C.2 Equation-of-motion hierarchy
In this section we illustrate how the dipole Hamiltonian creates two hierarchies in
the equations of motion (EoM) 〈Ȧ〉 = i〈[H,A]〉/~ for the photon- and QD-operator
EVs. In the second half of this section we explain the technique we use to truncate
this hierarchy. In terms of the configuration operators, the dipole Hamiltonian has
the form

HD = −i
N∑

γ

g̃γb
†(Qγ

G,Xs
+Qγ

Xp,XX
) + H.c., (C.5)

where b(†) is the photon annihilation (creation) operator of the laser mode, N is the
number of QDs, and g̃α = ~gα is the scaled light-matter interaction strength. The
dipole Hamiltonian couples the photon operators of a single mode to N different
QD-operators. To illustrate the structure of the hierarchies created by the dipole
Hamiltonian, we first consider the time derivative of the occupation probability of
the s-exciton configuration in QD α

d

dt

∣∣∣∣
HD

〈Qα
XsXs〉 = −2gαRe〈b†Qα

GXs〉, (C.6)
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that couples to the photon-assisted polarization of the ground-state- to s-exciton-
transition. This polarization is an EV with one additional photon operator. The
EoM for the photon-assisted polarization

d

dt

∣∣∣∣
HD

〈b†Qα
GXs〉 = gα〈Qα

XsXs〉+
∑

γ 6=α
gγ〈Qα

GXs(Q
γ
XsG

+Qγ
XX,Xp

)〉

+gα〈b†b(Qα
XsXs −Qα

GG)〉

couples to EVs describing correlations between different QDs (second term) and to
EVs describing correlations between the electronic configurations of the given QD
and the cavity photons (third term). The two higher-order terms that occur here
have one additional QD operator and one additional photon operator, giving rise to
the mentioned hierarchies.

For the rest of this section, to make the considerations more transparent, we
omit all configuration indices and prefactors and also the information whether the
considered photon operators create or annihilate photons. The following equations
should be seen as illustrations of the hierarchy structure, that can be explored best
by considering the time derivative of a general EV 〈b(†)nQα . . . Qω〉 containing a
product of n photon operators and m QD operators addressing the QDs α to ω:

d

dt

∣∣∣∣
HD

〈b(†)nQα . . . Qω〉 = 〈[HD, b
(†)n]Qα . . . Qω〉

+〈b(†)n[HD, Q
α] . . . Qω〉+ · · ·+ 〈b(†)nQα . . . [HD, Q

ω]〉.

We can evaluate this expression with [HD, b
(†)n] = b(†)n−1

∑
γ Q

γ and
[HD, Q

α] = b(†)Qα. By omitting all details and possible lower-order terms we obtain

d

dt

∣∣∣∣
HD

〈b(†)nQα . . . Qω〉 =
∑

γ 6={α...ω}
〈b(†)n−1Qα . . . QωQγ〉

+〈b(†)n+1Qα . . . Qω〉.

In the first term on the right-hand side we can clearly see the emergence of QD-
QD correlations that are induced by the interaction of different QDs with a common
radiation field. These terms are not included in laser theories that do not account for
interemitter coupling effects. The second term describes the coupling to higher-order
photon correlations. It provides access to the next rung in the Jaynes-Cummings
ladder. We see that the dipole Hamiltonian creates two different hierarchies. An EV
with n photon operators and m QDs operator couples to EVs with one additional
QD operator and one additional photon operator:

d

dt

∣∣∣∣
HD

〈b(†)nQ . . . Q︸ ︷︷ ︸
m

〉 = 〈b(†)n−1Q . . . Q︸ ︷︷ ︸
m+1

〉+ 〈b(†)n+1Q . . . Q︸ ︷︷ ︸
m

〉.

The first hierarchy only terminates exactly i) at the order m = N , where N is the
number of QDs. Including the EV 〈bnQ . . . Q︸ ︷︷ ︸

N

〉 i.e. all QD N operators of the system
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(∆Q〈N〉 in terms of the truncation operator from chapter 4). The second hierarchy
only terminates exactly if ii) the photonic state of the system can be represented
by a finite linear combination of Fock states. We need approximations to truncate
the hierarchies consistently and at a computable level. Being interested in systems
where up to several hundred QDs take part in the dynamics, it is impossible to match
condition i) numerically. Condition ii) cannot be fulfilled because we are studying
laser systems, whose coherent states cannot be represented by a small number of
Fock states.

We introduce a variant of the well-established cluster expansion (see chapter 4)
[Kira and Koch, 2008, Kira et al., 1999, Kira and Koch, 2011, Feldtmann et al.,
2006, Gies et al., 2007, Richter et al., 2009, Leymann et al., 2014] which we refer to
as the configuration cluster expansion (CCE). The main differences of our formula-
tion to the traditional cluster expansion [Kira et al., 1998] are that a) we formulate
our theory in EVs instead of correlation functions (see chapter 4) and, more impor-
tantly, b) the electronic state of the QDs is described by the configuration operators
Qα
ij instead of single-particle creation (annihilation) operators. The configuration

operators are considered as the elementary constituents of our theory and therefore
the factorization of EVs is done in terms of the configuration operators. This method
reduces the algebraic effort to a minimum and ensures that all many-particle states
of the confined QD carriers are treated without further approximation.

In our system the two-particle nature of the dipole Hamiltonian is the source
of higher-order correlations and the hierarchies in the EoM have to be truncated
according to the structure of the dipole Hamiltonian (see chapter 4). As we have
shown, the dipole Hamiltonian couples a single-mode photon operator to all QD
operators and hereby creates two hierarchies, one in the photonic and one in the
electronic part of the part of the Hilbert space. To truncate the hierarchies all EVs
containing a total number of operators (b(†) and Q) larger than the desired order are
factorized (∆Q+B

δ(4) ). The factorization of the EV is accomplished by neglecting the
corresponding correlation function according to the cluster expansion (see chapter
4). The intensity I = 〈b†b〉 is of second order. The photon autocorrelation func-
tion at zero delay time G(2)(0) = 〈b†b†bb〉 and the correlated two-photon emission
function 〈b†b†EαEβ〉 are both of fourth order. The fourth order of the CCE used in
this chapter provides information about the photon statistics (g(2)(0) = G(2)(0)/I2)
[Leymann et al., 2014, Gies et al., 2007, Wiersig et al., 2009]. Additionally we in-
troduce a truncation that addresses the QD-QD correlations. We use two variants
of the theory: one with and one without interemitter correlations. To systemati-
cally neglect QD-QD correlations we factorize all EVs addressing two different QDs
according to

〈Qα
ijQ

β
kl〉 ≈ 〈Qα

ij〉〈Qβ
kl〉, (C.7)

which corresponds to a mean-field approximation1 and the assumption of individual
emitters (∆Qδ(1)). To take radiation-induced QD-QD correlations into account we

1Since we are using configuration operators that automatically treat all carriers confined to a
QD exactly this mean-field means that the confined carriers in a QD are in the mean-field of all
other carriers in the other QDs
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have to include EVs of the form 〈Qα
ijQ

β
kl〉. At this level, three-QD EVs are factorized

according to

〈Qα
ijQ

β
klQ

γ
mn〉 ≈ 〈Qα

ijQ
β
kl〉〈Qγ

mn〉+ 〈Qα
ij〉〈Qβ

klQ
γ
mn〉

+〈Qβ
kl〉〈Qα

ijQ
γ
mn〉 − 2〈Qα

ij〉〈Qβ
kl〉〈Qγ

mn〉, (C.8)

which corresponds to the application of ∆Qδ(2) and is formally equivalent to the Bo-
goliubov back-reaction method mentioned in chapter 4. In this way our theory
enables us to directly switch the QD-QD correlation effects on and off and to com-
pare our approach to laser theories, in which QD-QD correlations are not contained,
e.g. Refs. [Gies et al., 2007, Wiersig et al., 2009, Rice and Carmichael, 1994].

C.3 Coupling to the continuum states
In this section we discuss the influence of the continuum states that arise from the
interaction of QD carriers with carriers in the wetting-layer and barrier states, as
well as the out-coupling of photons from the cavity. These environment states are
not represented by configuration and photon operators but by the Lindblad form

d

dt

∣∣∣∣
Lindblad

〈A〉 =
∑

i

γηi〈[η†i , A]ηi + η†i [A, ηi]〉

in the general EoM. First, we enlist the various microscopic processes generated by
the operators ηi that are triggered by the coupling of the confined-state carriers
to the continuum states. Then we give explicit examples for the resulting terms
in the EoM, showing that the process ηi transfers occupation probability from one
configuration to another while dephasing the corresponding polarization.

The microscopic processes in QD α are the following: electron-hole capture in
the QD p-shell with rate Pα (pump) generated by ηαP,1 = Qα

XpG
and ηαP,2 = Qα

XX,Xs
,

carrier relaxation from the p-shell to the s-shell in the conduction band generated
by ηαr,c,1 = Qα

Xs0p
and ηαr,c,2 = Qα

0sXp
, carrier relaxation from the s-shell to the p-

shell in the valence band generated by ηαr,v,1 = Qα
Xs0s

and ηαr,v,2 = Qα
0pXp

with the
rates γαr,{c,v} respectively, spontaneous losses of electron hole pairs in the p-shell
generated by ηα,pspont,1 = Qα

GXp
and ηα,pspont,2 = Qα

XsXX
, and in the s-shell generated by

ηα,sspont,1 = Qα
GXs

and ηα,sspont,2 = Qα
XpXX

with the rates γα,{s,p}spont and the cavity-photon
losses ηph = b with the loss rate κ.

As a first example we discuss the impact of spontaneous electron-hole recombi-
nation in the s-shell on the s-exciton configuration

d

dt

∣∣∣∣
ηαspont,s

〈Qα
XsXs〉 = −2γα,sspont〈Qα

XsXs〉, (C.9)

the ground-state configuration

d

dt

∣∣∣∣
ηαspont,s

〈Qα
GG〉 = +2γα,sspont〈Qα

XsXs〉, (C.10)
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and the photon-assisted polarization between the ground- and s-exciton state

d

dt

∣∣∣∣
ηαspont,s

〈b†Qα
GXs〉 = −γα,sspont〈b†Qα

GXs〉. (C.11)

The process generates a direct transfer of population from the s-exciton to the ground
state and dephases the polarization between these states. Note that no additional
terms are needed to take account for Pauli-blocking. As a second example, we
discuss the impact of carrier relaxation in QD α from the s-shell to the p-shell in
the valence band on the correlation between the p-exciton configuration of QD α
and the ground-state configuration of QD β

d

dt

∣∣∣∣
ηαr,v

〈Qα
XpXpQ

β
GG〉 = −2γαr,v〈Qα

XpXpQ
β
GG〉, (C.12)

the correlation between the dark p-shell configuration of QD α and the ground-state
configuration of QD β

d

dt

∣∣∣∣
ηαr,v

〈Qα
0p0pQ

β
GG〉 = +2γαr,v〈Qα

XpXpQ
β
GG〉, (C.13)

and on the correlation between the photon-assisted polarization of the p-exciton con-
figuration and biexciton configuration in QD α and the ground-state configuration
of QD β

d

dt

∣∣∣∣
ηαr,v

〈b†Qα
XpXXQ

β
GG〉 = −γαr,v〈b†Qα

XpXXQ
β
GG〉. (C.14)

As in the example before, the microscopic process generates a direct transfer of pop-
ulation from one configuration to the other and dephases a polarization connected
to the initial state. In this example, all occupations and processes in QD α are
correlated with an occupation in QD β. However, since the microscopic process ηαr,v
takes place in QD α it has no influence on a possible correlation with QD β.

C.4 Total emission rate into the laser mode
The total emission rate into the laser mode, Γem, can be obtained from the EoM for
the mean photon number

d

dt
〈b†b〉 =− 2κ〈b†b〉+ 2

∑

α

gαRe(〈b†Qα
GXs〉+ 〈b†Qα

XpXX〉)

=− 2κ〈b†b〉+ Γem . (C.15)

To simplify the discussion in the main text, an approximate expression of Γem has
been used there. This facilitates a comparison to laser theories that consider only one
bright configuration, i.e. [Rice and Carmichael, 1994]. In the following, we derive
the exact expression that is used to compute the curves in Fig. 6.3. To this end
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CONFIGURATION OPERATORS

we solve the EoM for the photon-assisted polarization adiabatically and insert the
solution into Eq. (C.15). The adiabatic solution for the photon-assisted polarization
of the s-exciton and biexciton can be written as

〈b†Qα
GXs〉 = gτXDeph

∑

β 6=α
〈Qα

GXs(Q
β
XsG

+Qβ
XX,Xp

)〉

+gτXDeph

(
〈b†b(Qα

XsXs −Qα
GG)〉+ 〈Qα

XsXs〉
)
, (C.16)

〈b†Qα
Xp,XX〉 = gτXXDeph

∑

β 6=α
〈Qα

Xp,XX(Qβ
XsG

+Qβ
XX,Xp

)〉

+gτXXDeph

(
〈b†b(Qα

XX,XX −Qα
XpXp)〉+ 〈Qα

XX,XX〉
)

(C.17)

respectively, with the exciton and biexciton dephasing times

τXDeph =
1

κ+ γspont + 2P
,

and

τXXDeph =
1

κ+ 2γr + 3γspont

.

For the sake of simplicity of our discussion, we choose the light-matter interaction
gα = g, and relaxation and spontaneous loss rates γα,{s,p}spont = γspont, γαr,{s,p} = γr to
be equal for all QDs. Comparison to Eq. (C.15) leads to an expression of the total
emission rate in terms of the right-hand side of Eqs. (C.16) and (C.17)

Γem = 2g2τXDeph

∑

β 6=α
〈Qα

GXs(Q
β
XsG

+Qβ
XX,Xp

)〉

+ 2g2τXDeph

∑

α

〈b†b(Qα
XsXs −Qα

GG)〉+ 2g2τXDeph

∑

α

〈Qα
XsXs〉

+ 2g2τXXDeph

∑

β 6=α
〈Qα

Xp,XX(Qβ
XsG

+Qβ
XX,Xp

)〉

+ 2g2τXXDeph

∑

α

〈b†b(Qα
XX,XX −Qα

XpXp)〉+ 2g2τXXDeph

∑

α

〈Qα
XX,XX〉 . (C.18)

To connect our results to theories that consider only one bright configuration, the
assumption of equal dephasing of the bright configurations allows the definition of
a common dephasing rate

τ−1
Deph ≈ 2g2τXDeph ≈ 2g2τXXDeph .

Rewriting Eq. (C.18) in terms of the dipole operator Dα = E†αs + Eα
s we obtain the

simple form of Eq. (6.7) for the total emission rate used in the main text:

Γem =

∑
α〈DαDα〉
τDeph

+

∑
β 6=α〈DαDβ〉
τDeph

+
〈b†bInv〉
τDeph

= Γspont + Γsr + Γstim

with the total inversion operator defined as

Inv =
∑

α

(Qα
XX,XX −Qα

XpXp +Qα
XsXs −Qα

GG) .

Note that in all numerical calculations, the correct dephasing rates are used.
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Appendix D

The computer algebra system FORM

In this appendix we will show how we use the language FORM [Vermaseren, 2000]
to derive the equations of motion (EoM). We will assume that the reader is familiar
with the basic concepts of FORM. A very helpful introduction to FORM can be found
at http://www.nikhef.nl/~form/. The advantage of FORM is that, the user has
full control of what the system does, in contrast to other commonly used computer
algebra systems like Wolfram Mathematica or Maple. The calculations performed
by FORM are actually a combination of self defined sophisticated search and replace
operations. We will describe the core procedures that are required to perform the
cluster expansion (CE). These procedures are basically the implementation of the
Ehrenfest EoM, and the application of the factorization and truncation operators
(F, F−1, ∆〈N〉,δ(N)) introduced in chapter 4.

D.1 Establishing standard order

In the generalized Ehrenfest EoM, the commutator in the Hamiltonian part and in
the Lindblad terms, produces strings of operators deviating from a yet to define
standard order. To obtain a simple form of the EoM we need to establish a prede-
fined standard order of the operators. The most convenient order for our purposes
is the order of operators that is closest to the normal order for operators in second
quantization. We define the standard order that we want to establish in all strings
of operators in three steps: (i) Separate Bose- and Fermi-operators (Bose left, Fermi
right), and within each group (ii) separate creation and annihilation operators (cre-
ation operators left annihilation operators right, which is the normal order in second
quantization), and within these groups (iii) alphanumeric order according to the let-
ters of the operators and their indices. This (unique) standard form ensures that no
terms appear in the EoM that would actually cancel each other out. The normal
ordering of creation and annihilation operators also facilitates the implementation
of the truncation operator ∆〈N〉, that is applied to systems with a limited number
of particles.

(i) Separate Bose and Fermi operators: To establish the previously defined
standard order FORM searches for products of two operators that deviate from
this order and replaces them according to their commutation relation. The id
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command is the central search and replace command in FORM. Its structure is
id search=replace , where search stands for a mathematical expression, that is to be
replaced by the expression replace . The lines of code within the repeat / endrepeat -
loop are executed until the output of the operation does not differ from the input.
The following lines of code separate the Fermi from the Bose operators
repeat;

id [Q](?j)*[b+]?bose(?i)=[b+](?i)*[Q](?j);
endrepeat;

To define the mathematical expressions in a general way FORM uses different types
of wild-cards. The first type of wild-cards encounters in the term [Q](?j) where ?j

is the argument-field wild-card for any argument (of arbitrary number) entering the
function [Q] .

To address (c)functions FORM has also the function wild-card ? . This wild-card
is used in the following manner: typeoffunction?set , where typeoffunction specifies
the type of the function for which FORM has to search for and set can be used
to further specify the function that are to be replaced by previously defined sets.
In this particular case FORM searches for all operators from the set bose=[b],[b+] .
Altogether the code above means: replace all products of functions [Q] times func-
tions [b+] from the set bose , regardless of their argument, by the very same Bose
function [b+] times the [Q] function with their arguments respectively. In other
words, the commutation relation [Q, b(′)] = 0, between photon and configuration
operators is applied until (i) is fulfilled.

(ii) Normal order: In the configuration operators there are no creation and an-
nihilation operators, therefore we only have to do this step for the Bose operators.
The following lines of code will establish normal order of the Bose operators:
repeat;

id [b]*[b+]=[b+]*[b]+1;
id [b]*[N](a?)=a*[N](a-1)*[b]+[N](a)*[b];
id [N](a?)*[b+]=a*[b+]*[N](a-1)+[b+]*[N](a);
id [b+]*[N](a?)*[b]=[N](a+1);

endrepeat;

In the above [N](a) =b†aba, all the performed substitutions are performed according
to the standard bosonic commutation relations.

(iii) Alphanumeric order: For this example, the Fermi part of the Hilbert space
is described with the configuration operators introduced in chapter 6 and appendix
C. To obtain alphanumeric order in the configuration operators we use a combination
of id commands:
repeat;

id disorder [Q](k?,i?,j?)*[Q](t?,l?,m?)=([Q](k,i,m)*d(j,l)-[Q](
k,l,j)*d(i,m))*d(k,t)+[Q](t,l,m)*[Q](k,i,j);

id [Q](k?,i?,j?)*[Q](k?,l?,m?)=[Q](k,i,m)*d(j,l);

endrepeat;

The first line in the above is the implementation of the commutation relation between
the configuration operators Eq. (C.4) with the aim to establish numerical order with
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respect to the indices. The disorder option of the id command tells FORM to
substitute a matching expression only when this results in an increased numerical
order of otherwise equivalent expressions. For example id would replace F21 ∗
F12 by F12 ∗ F21 and then by F21 ∗ F12 and so on while id disorder would replace
F21 ∗ F12 by F12 ∗ F21 and then stop. In the second line the contracting property
of the configuration operator is reflected. This line ensures that no products of
configuration operators addressing the same QD are present in the EoM [Leymann
et al., 2015].

The d(i,j) function is the Kronecker delta, which can be implemented by the
two lines

id d(i?,i?)=1;
id d(i?,j?)=0;

that can be placed at the end of every routine using the Kronecker delta.

D.2 Factorization

In this section we show an implementation of the factorization of expectation values
in correlation functions and vice versa. For details on the mathematical formulas and
theorems belonging to this concepts we refer to [Fricke, 1996b, Leymann et al., 2014]
and chapter 4. The procedure described in this section is a direct implementation
of the equation 〈

bI
〉

= δ(bI) +
∑

I′ I

〈bI/I′〉δ(bI′), (D.1)

which can be derived from Eq. (4.1). Equation (D.1) distributes operators into cor-
relation functions and expectation values and when applied successively all expecta-
tion values are substituted by correlation functions. The procedure we are presenting
here uses the build in combinatorial function distrib_(type,n,f1,f2,x1,...,xm) , which
divides products of operators [b+]?(?b) into arguments of functions AV,DD . The
following lines of code are the implementation of the factorization operator F:

id av(?a)=L*AV(?a)*R;

#do i=1,31
id AV([b+]?(?b),?a)=AV(first*[b+](?b),?a);
id AV(first*[b+]?(?b),?a)=distrib_(0,2,AV,DD,first*[b+](?b),?a)

;
id AV=1;
id DD=1;
id AV(?a,first*[b+]?(?c),?b)=0;
argument;

id first=1;
endargument;
.sort

#enddo

id L=1;
id R=1;
id DD(?a)=dd(?a);
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The lines in the #do -loop above are repeated until complete factorization is reached.
To prevent FORM from crashing the maximum number iterations is limited. Note
that the variable first is a dummy that marks the position of the summation in
Eq. (D.1) where the expectation values and correlation functions are distributed.
The variables L/R are dummy variables as well, that stand for 〈 and 〉 in the expec-
tation values and are an efficient way to implement linear functions in FORM. Using
Eq. (D.1) the ’refactorization’, i.e. the application of F−1, can be implemented in a
fashion analog to the one of F:
id dd(?a)=L*DD(?a)*R;

#do i=1,31
id DD([b+]?(?b),?a)=DD(first*[b+](?b),?a);
id DD(first*[b+]?(?b),?a)=-distrib_(0,2,AV,DD,first*[b+](?b),?a

)+AV([b+](?b),?a)+DD([b+](?b),?a);
id AV=1;
id DD=1;
id AV(?a,first*[b+]?(?c),?b)=0;
argument;

id first=1;
endargument;
.sort

#enddo

id L=1;
id R=1;
id AV(?a)=av(?a);.

D.3 The truncation Operator
In this section we show how the application of the truncation operators is imple-
mented. To evaluate the order of a correlation function the count command is used,
which counts the number of specified operators in a product and returns the a num-
ber that corresponds to the order of the correlation function ( count(typeofoperator

_1,value_1,...) =
∑

i #(typeofoperator_i)∗value_i). The following lines of code show
the implementation of a product of the truncation operators ∆Qδ(’QDC’) (first line) and
∆B+Q
δ(’PhC’) (second line):

argument dd;
if (count([Q],1)>’QDC’) discard;
if (count([b+],1,[b],1,[Q],1)>’PhC’) discard;

endargument;
id dd(0)=0;

The argument dd / endargument -loop is equivalent to the repeat -loop, only for this loop
all commands are only applied to expressions that are arguments of the function dd .
When the logical expression behind the if command is true the operators in the
correlation function dd are discarded i.e. replaced by zero. Correlation functions
with the argument zero are replaced by the number zero.
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