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Abstract

In this work, the optical properties of semiconductor quantum dots (QDs) are stud-
ied and a particular emphasis is placed on many-particle correlations of the confined
carriers and the emitted photons. In each part of this thesis a different aspect of
the light-matter interaction in semiconductor QDs is examined. According to the
requirements of the physical situation the theoretical methods are modified and
further developed.

As a first step a microscopic theory for the luminescence into free space of a single
semiconductor QD is developed. To formulate this theory the well established cluster
expansion is used with the twist that here, all possible many-particle correlations
of the carriers confined to the QD are included exactly. Furthermore the developed
theory allows for a consistent description of scattering and dephasing, that goes
beyond phenomenological relaxation rates.

Based on the presented modifications of the cluster expansion a general formalism
to derive equations of motion for open many-particle systems is introduced. This
formalism, although more flexible than the cluster expansion, is equivalent to the
former and it allows to go to considerably higher orders of approximation. With
this approach the photon autocorrelation functions of light emitted by a QD based
microcavity laser are calculated and the convergence of the cluster expansion is
demonstrated.

To understand results of recent experiments performed in the group of Prof. Re-
itzenstein (TU Berlin) on bimodal microcavity lasers, a two-mode laser theory is
presented. It is shown how the interaction of the two cavity modes mediated by the
QDs triggers super-thermal intensity fluctuations. The results of the microscopic
theory are in excellent agreement with the experimental results. In order to under-
stand the observed intensity fluctuations in terms of the photon statistics an intuitive
and exactly solvable master-equation model is developed, which is able to reproduce
the results qualitatively. A comprehensive physical picture of the observed effects is
given by the dynamics of the first order autocorrelation function.

In the models presented so far the correlations of either the cavity photons or
the carriers confined to a QD have played an important role. However, correlations
between different emitters ((QDs) have been neglected so far as this is typically done
in standard laser models as well. To further understand the threshold behavior of
current state of the art micro/nano cavity lasers the influence of quantum mechanical
correlations between different QDs is investigated. It turns out that additionally
to the laser transition, a system that is dominated by inter emitter correlations,
undergoes a second transition from the sub- to superradiant regime. It is further
demonstrated that the inter emitter correlations can be the decisive reason for the
system to enter the lasing regime.
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Chapter 1

Introduction

Lasers are an essential tool for fundamental and applied research and even play
an important role in our everyday life [Perkowitz, 2010, Max et al., 2010]. In the last
two decades the development of optical cavities [Reitzenstein and Forchel, 2010, Cao
and Wiersig, 2015] and lasers has shown a remarkable miniaturization [He et al.,
2013, Vahala, 2003, Kryzhanovskaya et al., 2014] that has led to highly efficient
(laser-)devices with a very low laser threshold [Reitzenstein et al., 2008b|. Refer-
ence [Gourley, 1998] gives a good popular introduction to micro/nano-lasers, and
Ref. [Samuel et al., 2009] reviews the traditional criteria a light source has to fulfill
to be called a laser.

One of the main effects that makes micro/nano-lasers more efficient than con-
ventional lasers is the Purcell-Effect [Purcell, 1946]. The Purcell effect is the mod-
ification (enhancement) of the spontaneous emission from the light source by its
electromagnetic environment into certain modes. The factor that quantifies the
enhancement of the spontaneous emission into a cavity mode compared to the spon-
taneous emission into free space is called the Purcell factor [Kleppner, 1981, Lodahl
et al., 2004, Haroche and Kleppner, 2008]. The enhancement is largest for high-
quality modes (i.e. modes with a very long photon dwelling times) with a low mode
volume.

The important quantity to characterize a laser device is the [-factor which is
closely related to the Purcell factor. The S-factor is the fraction of spontaneous
emission into the laser mode compared to the overall spontaneous emission of the
laser-gain medium. Conventional gas lasers have -factors of roughly 10~¢ meaning
that only one of a million spontaneously emitted photons actually goes into the laser
mode. Nowadays many micro lasers with [-factors around 0.1 are used in experi-
ments e.g. [Lermer et al., 2013, Musial et al., 2015] and there are experiments that
claim to have lasers with a [-factor close to one [Strauf et al., 2006, Thyrrestrup
et al., 2010]. The p-factor of a laser determines the threshold behavior. The follow-
ing rule of thumb, that is only exact for a simple rate equation analysis, still gives a
good impression of the (in conventional lasers dramatic) changes a laser undergoes
at the threshold and demonstrates the significance of the S-factor: 'In a log-log scale
input-output plot, the intensity jump at the laser-threshold is proportional to S~
[Rice and Carmichael, 1994].

The threshold behavior of a laser is of course influenced by various effects [Chow
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and Jahnke, 2013, Chow et al., 2014, Gies et al., 2007] and some of them will be
addressed in this thesis. For conventional lasers the threshold and the S-factor can
simply be determined by the intensity jump over several orders of magnitude at the
threshold. In a micro/nano-laser where almost the entire spontaneous emission goes
into the lasing mode, there is no sharp intensity jump and the onset of lasing cannot
be determined by the input/output curve alone. To characterize such ’threshold-
less’ micro/nano-lasers, new theories [Rice and Carmichael, 1994| and experiments
[Ulrich et al., 2007] have been developed that monitor the transition into lasing by
the changes in the photon statistics of the emitted light [Wiersig et al., 2009]. The
theories have to take photon correlations into account that arise from the quantum
nature of light, in order to describe the light-matter interaction in the laser accu-
rately. These more advanced theories and experiments show that the emitted light
changes qualitatively even if no threshold is visible in the input-output curve. Inde-
pendent from the height of the intensity jump the process dominating the system,
changes from spontaneous to stimulated emission at the laser threshold. This transi-
tion from the spontaneous to the stimulated emission regime changes the statistical
properties of the emitted light from thermal to coherent. In the lasing regime the
photons no longer obey thermal statistics but have a Poisson-distribution, typical
for a coherent state. The change of the photon statistics is measurable in the photon
correlation function |[Ulrich et al., 2007, Wiersig et al., 2009] and is used to deter-
mine the laser threshold and characterize the coherence properties of the emitted
light.

Optical microresonators facilitate the confinement of light to a very small spa-
cial region, which is required to achieve low threshold laser devices and to couple a
single mode to the gain medium [Vahala, 2003|. There are many different types of
microresonators, and their design, optimization, characterization, and experimental
realization are research fields of their own. The type of microresonators that are
used for the experiments described in this thesis are micropillars like the one shown
in Fig. 1.1. In axial direction the light is confined by Bragg-reflection accomplished
by several %—layers of different refractive index material below and above the region
where the light is confined to and where the gain material is located [Sebald et al.,
2009]. In lateral direction the light is confined by air-dielectric guiding [Vahala,
2003].

Semiconductor Quantum Dots Next to the laser-mode resonator that stores
the photons and modifies their emission, the gain medium, that actually emits the
photons into the laser mode is the second crucial component of a laser. While
atoms in the gas phase are the traditional gain medium, semiconductor lasers offer
a variety of advantages [Alferov, 2001|, with respect e.g. in miniaturization and mass
production. The progress made in growth technologies has led to nano structured
low dimensional gain materials. These new materials allow to tailor their optical
and electronic properties [Bimberg et al., 1999, Bimberg et al., 2009, Reitzenstein,
2012|, and offer a variety of possible applications in quantum cryptography, quantum
computing, and optoelectronics [Petroff et al., 2001].

In this thesis the gain material under consideration are zero dimensional struc-
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Figure 1.1: Scanning electron-microscopy picture of a micropillar based on ZnSe
and MgS with a diameter 700 nm. The pillar has been fabricated by the groups of
D. Hommel and J. Gutowski in Bremen [Lohmeyer et al., 2006].
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Figure 1.2: Free density of states for systems with three-, two-, one-, and zero-
dimensional extension [Singleton, 2001, Haug and Koch, 2004].

tures. In these structures the carriers are confined in all three spatial directions,
that is why early works have called them ’quantum boxes’ [Asada et al., 1986] or
‘artificial atoms’ [Fafard et al., 1999]. These names arise from the discrete atom-like
density of states that can be understood by a simple box potential model for the
carrier confinement. Whenever the wave function of the schrédinger equation is
confined to a finite region in all spatial directions the energy level structure of the
single-particle states becomes discrete in contrast to the (quasi) continuous states
of systems where carrier propagation is allowed in at least one direction. The in-
fluence of the dimension of a system on the free density of states is illustrated in
Fig. 1.2. Today ’quantum dot’ (QD) is the most common term for these zero dimen-
sional structures. The QDs studied in this thesis are ensembles of several thousand



atoms of a certain semiconductor material located in a different semiconductor ma-
terial with a larger band gap. These ’islands’ of atoms with an extension of several
nanometers create the ’'potential box’ that confines the quasi-free carriers in all
spacial directions.

For more than a decade QDs are of high interest [Michler, 2003| for fundamental
research and their potential applications. In contrast to atoms the confining po-
tential and with this the level spacing of the confined carriers can be tailored by
the size, geometry and material of the QDs. For example InGaAS QDs on a GaAs
substrate exhibit a direct band-gap in the infrared spectrum. Among many differ-
ent applications it was demonstrated early on that due to their high gain [Asada
et al., 1986] and low temperature dependence [Arakawa and Sakaki, 1982] QDs are a
very promising material for low threshold lasers. One way of fabricating QDs is the
self organized growth in the Stranski-Krastanow-mode [Jacobi, 2003, Anders et al.,
2002]: By molecular beam epitaxy or metal organic gas epitaxy a semiconductor
material is grown on top of a substrate material with a larger band gap. At the be-
ginning the new material layer grows homogeneously with the same lattice constant
as the substrate, this introduces tension between the two materials. At a critical
thickness this tension is reduced by the rise of small material island, the actual QDs.
This process results in a thin homogeneous wetting layer with randomly distributed
QDs as shown in Fig. 1.3. Subsequently the substrate is grown on top of the wetting
layer with the QDs.

& vs ®

Figure 1.3: Transmission electron microscope of self organized InGaAs QDs. Left:
Single QD with the wetting layer on a GaAs substrate. Right: Top view of a sample
with randomly distributed QDs. Both pictures are taken from Ref. [Anders et al.,
2002].

One main task for theorists describing the light-matter interaction of semicon-
ductor QDs is to identify differences in behavior between QDs and atoms. Since
the level spacing of the lowest confined states is much smaller for QDs than for
atoms, the energetically higher states have to be taken into account. This gives
rise to many-particle effects. As a result, a simple two-level description of the QDs
which is often used for atomic systems is generally no longer valid. Semiconductor
QDs cannot be regarded as isolated systems; they are located in a dense semicon-
ductor environment. The confined carrier states couple to phonons, the electronic
(quasi)continuum states of the wetting layer, and the bulk material. The interaction
with the environment triggers various processes that have to be taken into account
for a realistic QD model. A generic QD model is portrayed in Fig. 1.4.

Superradiance Successful realizations of single QD lasers have been reported
[Reitzenstein et al., 2008a, Nomura et al., 2009, Nomura et al., 2010, Xie et al., 2007]
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Figure 1.4: Illustration of the various processes that take place in a QD. For elec-
trically pumped QDs, electrons and holes are created in the quasicontinuum states
and relax into the upper confined QD states. In the QD model used throughout
this thesis, this process is mapped onto the direct creation of electrons and holes in
the p-shell. The carriers within the QD can relax further into the QD via scattering
with the continuum- and the phonon-states. When multiple carriers are confined to
the QD their Coulomb interaction has to be taken into account, as well. The re-
combination of electron-hole pairs creates photons and the reverse process absorbs
them.

and these devices present a very interesting field for theoretical research [Ritter et al.,
2010, Gies et al., 2011, Gies et al., 2012|. However, state-of-the-art micropillar-lasers
have between twenty and several hundred QDs as their active material [Reitzenstein
et al., 2008b]. These are the systems that are studied in this thesis. When several
emitters are coupled to the same radiation field, they can exhibit a phenomenon
that is called superradiance (SR). Superradiance was originally discussed by Dicke
for the coherent spontanecous emission of light by an ensemble of initially excited
atoms in the gas phase [Dicke, 1954]. Dicke showed that the spontaneous emission
from an ensemble of atoms can be enhanced simply by the fact that the atoms
“share” the excitation. The concept of shared excitation can be understood with the
introduction of superpositions of energetically degenerate states [Mandel and Wolf,
1995]. When this superposition is symmetric with respect to the commutation of
two emitters, the initially excited ensemble emits a SR burst of light. This emitted
pulse is significantly larger than and of a shorter duration compared to the emission
profile of a single emitter multiplied by the number of emitters in the former case.

The concept of SR and collective emission has lead to many studies in vari-
ous fields of research, reaching from single-photon emission enhancement [Scully
and Svidzinsky, 2009, Chen et al., 2012| over photosynthetic bio-complexes |[Ferrari
et al., 2014] to Dicke phase transitions [Liu et al., 2014] and directional SR emis-
sion from statistically independent incoherent sources [Oppel et al., 2014|. Light
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sources based on alkaline-earth atoms can emit collectively photons with an ex-
tremely narrow linewidth [Meiser et al., 2009], which has triggered the development
of a recently reported new kind of “nearly photon-less” SR laser [Bohnet et al., 2012].
For semiconductor systems, SR effects resulting in radiative lifetime changes have
been shown for an ensemble of semiconductor QDs [Scheibner et al., 2007]. For a
few (up to three) quantum emitters it is shown that the coupling to a common reser-
voir can increase the coherence of the emitted light by inducing additional quantum
correlations between the emitters [Su et al., 2013]. Also in quantum well systems
spontaneous-emission enhancement has been demonstrated [Timothy Noe Ii et al.,
2012 that originates from superfluorescence, a collective effect closely related to SR
(see [Mandel and Wolf, 1995] for details).

Outline of this Thesis This general introduction to the main physical topics
of this thesis is followed by an outline of the chapters. Figure 1.5 gives a graphical
overview on the subjects of this thesis. An extended introduction to the correspond-
ing topics is given at the beginning of each chapter. The chapters are roughly in
the order in which they have been worked out, and start with the initial task that
motivated this thesis: "The technical and conceptional improvement of the cluster
expansion method for semiconductor QD systems’.

Chapter 2 gives a short introduction to general aspects of the theoretical descrip-
tion of light-matter interaction in semiconductor nano structures. The calculation of
the single-particle states for the confined carriers and the cavity modes is sketched.
In a second step the construction of the many-particle Hamiltonian, in the frame-
work of the second quantization is shown. For this thesis the single-particle states
enter only indirectly into the theory via the matrix elements of the many-particle
Hamiltonian describing the Coulomb-interaction of the carriers and the light-matter
interaction of photons and electron-hole pairs in the dipole approximation. To de-
scribe the influence of the environment on the localized carrier and photon states
a reduced density matrix formalism is applied which results in the von Neumann
Lindblad (vNL) equation for the density operator of the coupled system.

Chapter 3 introduces one formulation of the cluster expansion (CE) [Fricke,
1996b, Fricke, 1996a, Fricke et al., 1997, Schoeller, 1994], an approximation method
to solve the vNL equation indirectly, that is used and further developed in this
thesis. Direct numerical exact solutions of the vNL equation have been successfully
applied for the description of small systems containing one or very few QDs [Ritter
et al., 2010, Gies et al., 2011, Florian et al., 2013a]. Greens function methods
have also been used to investigate the light-matter interaction of semiconductor QD
systems [Banyai et al., 1998, Binder et al., 1992, Lorke et al., 2006, Schneider et al.,
2004, Seebeck et al., 2005], but they have the shortcoming that second-order photon
correlations are very hard to obtain [Florian, 2014|. For large systems the derivation
and solution of EoM hierarchies like the CE is an established method in the field
of semiconductor quantum optics [Hoyer et al., 2004, Kira and Koch, 2011, Jahnke,
2012].  An important result of this thesis is the extension and reformulation of
the CE. The CE is based on the neglection of many-particle correlation functions
and allows one to systematically include higher-order many-particle correlations
and truncate the well known Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY)

6
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Figure 1.5: Graphical table of contents of this thesis: I. the quantum mechanical
description of the processes that take place in a single QD (chapter 3), II. the photon
correlations and coherence properties of a single-mode microcavity laser (section
5.1), II. the photon correlations and coherence properties of a bimodal microcavity
laser (section 5.2 and 5.3), IV. the influence of inter-QD correlations on the laser
threshold (chapter 6), and V. the cluster expansion (chapter 4).

hierarchy in many-particle physics. Originally the CE was designed for large systems
i.e. systems with a (quasi-)continuous Hilbert space with a large number of single-
particle states, since the neglection of many-particle correlations relies partly on
the large size of the Hilbert space. The application of the CE to QD systems
introduces subtle difficulties, since a QD accommodates only a limited number of
carriers confined to very few states.

In chapter 3 it is shown how the discrete and finite level structure of a QD can be
incorporated into the traditional formulation of the CE. It is also demonstrated in
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Chapter 3, how the influence of the environment can be incorporated in the CE via
the Lindblad formalism. In this context the relation between scattering, dephasing
and the build up of correlations due to the environment is discussed as well. As an
application of the modified CE the photo luminescence of a single QD into free space
is investigated. The obtained spectra exhibit the expected biexcitonic signatures,
and the peak heights, widths and positions can be interpreted by connecting them
to the underlying physical process. In these new results the nonphysical behavior
produced by the conventional CE used in previous approaches [Baer et al., 2006| are
no longer present.

Chapter 4 takes the ideas developed in chapter 3 and uses them to radically
reformulate the CE. Instead of modifying the traditional CE by adding corrective
terms to account for the finite number of carriers confined to a QD as done in chapter
3, the expectation value based cluster expansion (EVCE) is introduced. The EVCE
is entirely formulated in terms of expectation values instead of correlation functions.
It is shown in this chapter that the EVCE can produce exactly the same results as the
CE. However, the EVCE is conceptually much simpler, allows for a straight forward
application of the Lindblad formalism to all orders, a flexible implementation of
finite size effects e.g. in QDs and reduces the algebraic effort considerably.

Chapter 5 focuses on the coherence properties of QD-based micro/nano cavity
lasers. In the first section the EVCE is applied to a single-mode QD-based microcav-
ity laser. As shown in chapter 4 the EVCE enables one to go to higher orders in the
BBGKY-hierarchy than the CE. This particular advantage of the EVCE is used in
this chapter to show (for the first time) that the CE actually converges when applied
to a QD laser system. As discussed in the above paragraph, for increasing S-factors
the typical intensity jump at the lasers-threshold vanishes |[Rice and Carmichael,
1994]. To monitor the transition to lasing for these nearly threshold less devices
one has to investigate the statistical properties of the emitted light [Chow et al.,
2014]. The second-order photon correlation function at zero delay time ¢ (0) is
commonly accepted as a good indicator for the onset of lasing [Jin et al., 1994, Gies
et al., 2007, Chow et al., 2014|. However, at the lasing threshold the entire statistics
of the emitted light changes, not just its second moment ¢®(0). Having access to
higher orders of the BBGKY-hierarchy one can also monitor the laser transition ac-
cording to higher-order photon correlation function at zero delay time g™ (0), with
n = 3,4,5. The theoretical study of these higher-order functions becomes more rel-
evant. On the one hand since improvements of experimental techniques [Zhou et al.,
2013, Dynes et al., 2011, Stevens et al., 2010] have made it possible to measure
them in various systems e.g. in Bose-Einstein Condensates [Hodgman et al., 2011],
in micro- and nano-lasers [Afmann et al., 2009, Elvira et al., 2011], and in strongly
coupled QD-cavity systems [Rundquist et al., 2014]. On the other hand there are
many situations e.g. [Leymann et al., 2013c|] where the study of only the second
moments is not sufficient to gain enough information about the character of the full
photon statistics.

In the second section of chapter 5 the microscopic theory for semiconductor QD-
based single-mode microcavity lasers, presented in Ref. [Gies et al., 2007/, is extended
to a two-mode theory. This theory is used to explain the experimentally observed
super thermal intensity fluctuations in a bimodal microcavity laser [Leymann et al.,
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2013c, Leymann et al., 2013a]. In electrically contacted micropillars a small asym-
metry of the cross section leads to a splitting of the two degenerate fundamental
modes. Thus two cavity modes with slightly different frequencies are supported,
that emit linear (orthogonal) polarized light. The gain competition of these two
high-quality modes leads to the observed intensity fluctuations in the weaker mode.
A very good agreement between the experimental results and the microscopic theory
is achieved, within the framework of the CE.

However, for a more intuitive understanding of the underlying physics, a master
equation based on a simple birth-and-death model is derived [Rice and Carmichael,
1994]. In this model all specific semiconductor aspects are ignored and it solely
features two modes competing for laser gain. The simplicity of this model allows
one to solve its master equation numerically exact, and obtain to the full photon
statistics. The examination of the full photon statistics reveals that the peculiar
intensity fluctuations of the weak mode are related to a double peak structure in
the photon statistics. The photon statistics of each mode is composed of a thermal-
and a Poisson-like part producing one maximum at the zero photon state and one
Poisson-like peak around the average photon number.

The third section of chapter 5 deals with the spectral properties of the modes,
that are directly related to their gain-mediated interaction. Equations of motion for
the first order autocorrelation-function g™ (7) are derived [Wiersig, 2010]. Starting
from the microscopic CE, the key aspects describing the interaction of the two
modes are mapped to a 2 X 2 matrix model with a coupling strength proportional
to the number of QDs times the inversion. This reveals the relationship to the
collective strong coupling regime. Conventional normal mode coupling appears in
atomic [Brune et al., 1996, McKeever et al., 2003, Nukmann et al., 2005] and solid-
state [Reithmaier et al., 2004, Yoshie et al., 2004| systems in the single-particle or
collective strong coupling [Tavis and Cummings, 1968, Andreani et al., 1999, Raizen
et al., 1989, Tuchman et al., 2006, Wickenbrock et al., 2013] regime. In these cases
of conventional strong coupling a single or multiple emitters couple to a photonic
mode. When losses and dephasing process are sufficiently small and the emitter and
mode frequency match, the coherent regime is reached and two new eigenstates are
formed with a frequency splitting proportional to a generalized coupling strength.

However, the mode coupling discussed in this section 5.3 is different from the
conventional coupling discussed in the literature and it is therefore called unconven-
tional normal mode coupling. In contrast to the conventional normal mode coupling
here a hybridization of the two cavity modes is observed that leads to a locking of
the frequencies and to a splitting of the linewidths in the coherent regime. In the
incoherent regime i.e. for a sufficiently large mode splitting or low coupling, both
mode frequencies are visible in each of the polarization directions, which can be
traced back to the mode hybridization. In this regime the locking of the linewidth
provides a direct explanation of the low linewidth i.e. the long coherence time of the
weak mode observed in the experiments. The large coherence time, typical for the
lasing mode, is particularly surprising since the weak mode exhibits super thermal
intensity fluctuations that can almost be regarded as the “opposite” of lasing. The
calculated spectra are in very good agreement with the experimental results. They
clearly confirm that the double peak structure measured in the polarization direc-



tion of the weak mode does not originate from cross-talk but is a result of the QD
mediated unconventional mode-coupling [Khanbekyan et al., 2015].

In Chapter 6 the influence of radiative coupling of the QDs on the threshold of
micro/nano lasers is studied. This collective effect is of entirely different nature than
the collective coupling discussed in the previous chapter. The collective effect dis-
cussed here, called SR, originates from the interaction of different quantum emitters
(in this case QDs) with a common radiation field resulting in a coupling between
the individual emitters. In former quantum theories for micro and nano lasers the
quantum correlations between the emitters of the gain medium (QDs, atoms, exci-
tons) have, to a large extend in the literature, been neglected [Gies et al., 2007, Rice
and Carmichael, 1994]. In this chapter it is demonstrated that for nanolasers with
a small number of QD emitters the inter-emitter coupling mediated by the cavity
field can have a strong influence on the photon statistics of the emitted light as well
as on the laser-threshold properties [Leymann et al., 2015]. The investigations are
based on the fully quantum-mechanical theory presented in the first section of chap-
ter 5, which is extended by the inclusion of inter-emitter correlations. It is shown
that for typical emitter numbers of current state-of-the-art devices (~ 20 — 100)
[Lermer et al., 2013, Strauf and Jahnke, 2011] radiation-field induced inter-emitter
coupling can be crucial for the system to reach the lasing regime. Since the devel-
oped microscopic theory is scalable, the influence of the system size i.e. the emitter
number can be studied. In the limit of large emitter numbers the influence of the
inter-emitter coupling diminishes and the results agree with the ones obtained by
former theories neglecting the inter-emitter coupling. The inter-emitter correlations
suppress the spontaneous emission below the threshold and enhance the emission
above the threshold. The superradiantly enhanced intensity jump at the threshold
can lead to an underestimation of the S-factor. The presented effects are interpreted
in terms of symmetric and antisymmetric Dicke states [Garraway, 2011]. The results
demonstrate that in QD nanolasers the picture of independent emitters breaks down
and these devices have to be regarded as coherently correlated quantum systems.

The last Chapter 7 concludes the thesis, discusses open questions, and proposes
new research projects.
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Chapter 2

Basic aspects of the Theory of
Light-Matter Interaction in
Semiconductors

The quantum mechanical description of the light-matter interaction in semiconduc-
tor nano-structures is accomplished in several steps, where each step is a research
field of its own. In this introductory overview the steps that are not in the focus of
this thesis are only sketched. In the first step the single-particle states of the elec-
tronic carriers need to be determined. To accomplish this, one has to find solutions
of the Schrodinger equation for the wave function of the non-interacting carriers.
In a second step the mode functions of the electromagnetic field without the active
material need to be determined by solving Maxwell’s equations. Within the frame-
work of the canonical quantization the single-particle states and the mode functions
are used in the next step to calculate the matrix elements of the full many-particle
Hamiltonian describing the interacting system. To facilitate the calculations involv-
ing quantum dots (QDs) embedded in a dense semiconductor environment one needs
to separate the Hilbert space into a system and an environment part, and reduce
the dynamical calculations to the system.

2.1 Electronic and photonic single-particle states

A very accurate framework to determine the single-particle states of carriers confined
to semiconductor nano-structures are tight-binding models [Singleton, 2001, Sheng
et al., 2005, Schulz and Czycholl, 2005|, where the precise structure of the atomic
lattice forming the QD enters the calculation to determine the confined states. For
a simpler description one can start with the single-particle states and the band
structure of the corresponding bulk material [Singleton, 2001, Chelikowsky and Co-
hen, 1976]. The single-particle states of the bulk material can be used to find the
confined states introduced by the QD. For GaAs and other zinc-blende materials
with a direct band gap, semi-empirical methods provide good agreement with more
accurate methods [Sheng et al., 2005|, given that the QD extent becomes not to
small (diameter 2 12nm) so that the influence of the precise atomic structure is ir-
relevant compared to the global shape. Representative for these kind of continuum
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2.1. ELECTRONIC AND PHOTONIC SINGLE-PARTICLE STATES

methods are the k - p-model [Haug and Koch, 2004, Sheng et al., 2005| and the
envelope-function approach [Haug and Koch, 2004] which will be sketched in the
following.

In systems with a direct band gap in the optical region of the spectrum the part of
the Brillouin-zone, which is relevant for optical transitions, lies around the extrema
of its band structure. Figure 2.1 shows the band structure of GaAs, where the
extrema are located at the I'-point. Around the I'-point the band structure can be
approximated by parabolic functions. By this reasoning one can describe the carriers
as quasi-free particles with an effective mass m2s that depends on the curvature of
the corresponding band, where A is the corresponding band index. According to
the Bloch-theorem the carrier wave functions for the bulk material can be expressed
by plane waves multiplied with functions up(r) with the same periodicity as the
crystal lattice and k being the wave vector. The discrete translational symmetry of
the system is broken by the QD that introduces an effective potential Ugp(r) that
varies only slowly over one unit cell. In the envelope function approximation the
plane waves, valid for the periodic bulk material, are substituted by slowly varying
envelope functions ¢)(r). The ansatz for the carrier wave function is the lattice-
periodic Bloch-function uy(r) times the envelope function ¢,

U (r) = G (r)tie (1), (2.1)
where v stands for the quantum numbers specifying the confined state. The envelope
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Figure 2.1: Band structure of GaAs taken from Ref. [Rohlfing et al., 1993]. The
gray circle marks the area relevant for optical transitions.

function can be found by solving the effective single-particle Schrodinger equation

2

5 O +Uap(r)| (r) = 3G (x), (2.2)
eff

with the effective mass and the QD potential. For lens shaped QDs (like the ones
shown in Fig. 1.3) the potential in the direction orthogonal to the growth direction
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CHAPTER 2. BASIC ASPECTS OF LM INTERACTION

can be approximated by a two dimensional harmonic potential [Wojs et al., 1996,
Baer et al., 2004, Nielsen et al., 2004, Teichmann et al., 2013|. In growth direction the
strong confinement by the QD and the wetting layer allows for a simple description
with a one dimensional potential well. In this case the separation ansatz

(1) = en(2)en(rL) (2.3)

is valid, where ¢(z) is confined by the potential well in growth direction and ¢(r )
is confined by the two-dimensional harmonic potential in the plane. The energetic
difference between the sub-bands n is large compared to the optical energies (1eV >
50meV’) [Wojs et al., 1996] so that a restriction to the first sub-band is justified. The
cylindrical symmetry of the QDs implies to classify the confined carrier states by
their angular-momentum and spin encoded in the quantum number v. In this thesis,
the simple case of QDs with two confined states for electrons and holes is considered
[Gies et al., 2011|, with the quantum numbers s, p. For a fixed spin direction the
s-state is non degenerated and the p-state is twofold degenerated.
With the single-particle states one can construct the field operators

U(t,r) = ar,(t))(r), (2.4)

where the &E\TZ are the fermionic annihilation (creation) operators! obeying the

anti-commutation relations used for canonical quantization [Schwabl, 2008, Mahan,
2000|. To obtain also a quantum mechanical description of the light field, a similar
approach as for the electronic Hamiltonian has to be chosen. First the wave equation
for the vector potential in Coulomb-gauge

[A + %g—;} A(r,t) =0 (2.5)

has to be solved, where n(r) is the refractive index of the resonator and the sur-
rounding material. The field is then expanded into eigenmodes M, with a fixed
frequency we

Art) =Y [be(t)Me(r) + b; () M(r)] (2.6)
where ¢ contains the polarization direction and the wave vector. When the mode
functions are determined, one can express the electromagnetic field operator, within

the framework of the canonical quantization, in terms of bosonic annihilation and
creation operators

Aty =Y {82(15)1\4;@) +be(H)Me(r)] (2.7)

where the BQ) obey the canonical bosonic commutation relations.

!The cumbersome notation, where an operator is indicated by a hat on top of its corresponding
letter, is only used in this chapter.
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2.2 Many-particle Hamiltonian

With the field operators one can construct the full Hamiltonian of the interacting
system. The many-particle Hamiltonian consists of several parts: The Hamiltonian
of the free carriers

Hy = /d?’r@(t, r) {% A +U(r)] U(t,r), (2.8)

since the single-particle problem is already solved the free Hamiltonian is a diagonal

sum?

Hy =) eyal as, (2.9)

over the creation and annihilation operators with the single-particle energies ). The
Coulomb Hamiltonian can be constructed in a similar fashion only that here two
carrier field operators are involved

Hoo = /df"r/d?’r'@*(t, () (e — )i ) E (), (2.10)

with V(r) = e?/(4mege|r|) being the Coulomb-energy with the electron charge e
and the dielectric function €ye. Like the free particle Hamiltonian the Coulomb
Hamiltonian can be expressed by creation and annihilation operators

3 _Z POPS S B
HCoul = VVW/L/CLAVVCL)\“LCL)\/,Z,/CL)\’L/, (211)

and the corresponding matrix elements are

VL = [Erfere @e Ve - e ene, @)

where the single-particle wave functions enter. The free part of the photon Hamil-
tonian can be written as

. e 1
Hyp =) hwe (bgbg + 5) : (2.13)

The interaction of the carriers with the transverse electric field (in Coulomb gauge)
Er = —%A can be described in dipole approximation |Garrison and Chiao, 2014,
Wiersig, 2007| since the mode function of the electromagnetic field varies only
slightly over the extend of the QD M(r) ~ M¢(ry), with ro being the location
of the QD

~

Hp = /d%@*(t, r) [—erET(ro)} (t,r). (2.14)
With the dipole matrix elements

o = /dSrw3*<r>eng<r>wf’<r> (2.15)

2We omit the specification of the summation indices in this chapter, since in all cases the
summation has to be performed over all occurring indices.
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CHAPTER 2. BASIC ASPECTS OF LM INTERACTION

one can express the dipole Hamiltonian

Hp = [gaoral ax. (b} + be) + gin al,  an . (b + b)), (2.16)

in terms of bosonic and fermionic creation and annihilation operators. Note that
Ee = \/hw/2€p€eVe is the vacuum amplitude where the mode volume V is contained
in the mode functions. A more graphic interpretation of the dipole matrix elements
is that it measures the overlap of the mode function of the light field in the cavity
with the single-particle wave functions of the confined carriers in the states [))
and [¢"). Throughout this thesis the approximation of equal envelopes for the
wave functions of the conduction- and the valence-carriers is used. Therefore only
diagonal transitions between the angular momentum states are supported by the
dipole Hamiltonian. The dipole matrix elements read gg\lﬁ/ = M¢(ro)drx 6., here rg
is the location of the QD and dyy are the interband matrix elements (see e.g. [Baer
et al., 2006] and references therein).

The harmonic oscillations of the bulk material ions can be described by a field
theory of non-interacting Bosons [Mahan, 2000|, where the fundamental excitations
are called phonons. In materials with a multi-atom basis the phonon-dispersion
relation splits into two main branches: the acoustic and the optical phonons. The
acoustic phonons have a linear dispersion relation for small wave vectors. Acoustic
phonons result from a coherent movement of ions out of their equilibrium position
in the lattice. The high frequency optical phonons have an approximately constant
frequency in the proximity of the I'-Point and result from the movement of at least
two different ions against each other within the unit-cell [Czycholl, 2008].

The phonons interact with the carriers since the carriers receive a change in their
potential energy caused by oscillatory motion of the ions out of their equilibrium
position. The Hamiltonian interaction of the phonons with the carriers could in prin-
ciple be described analogous to the light matter interaction [Ashcroft and Mermin,
1976]. The interaction with phonons is next to the Coulomb scattering the relevant
mechanism for dephasing of the optical transitions in semiconductor QDs [Hoyer
et al., 2003] and inhibit e.g. the formation of polarization entangled photons gen-
erated by a QD cavity system [Carmele et al., 2010a]. There are countless ways to
take the phonon interaction into account ranging from exact methods [Carmele et al.,
2010b] over expressions for the phonon self-energy [Hughes et al., 2011] derived from
the independent boson model [Mahan, 2000] to phenomenological dephasing terms
directly added to the EoM |[Gies et al., 2007]. In this thesis we are predominantly
interested in light-matter interaction and Coulomb effects and restrict ourselves to a
Markovian treatment of the phonons. The phonons are described as an external bath
that interacts with the carriers confined to the QD. In this approach no additional
degrees of freedom for the phonons need to be included into the calculations but
the approach still goes beyond the simple addition of phenomenological dephasing
terms to the EoM. A description of the basic principles is given in the next section.
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2.3. EQUATION OF MOTION FOR THE REDUCED DENSITY OPERATOR

2.3 Equation of motion for the reduced density op-
erator

Semiconductor QDs are located in a dense environment and the discrete electronic
states confined to QDs are coupled to a (quasi)continuum of states in the wetting
layer and the bulk material. To be able to include many-particle correlations into
our theory we need to restrict the size of the systems Hilbert space and treat the
(quasi)continuum states as a reservoir. The Hamiltonian describing the system and
reservoir consists of thee parts

H= HSystem + HReservoir + HSR)

the system we are interested in, in this case the electrons and holes confined to
the QD and the (cavity- )photons the reservoir and the system-reservoir interaction
Hamiltonian Hgr = > L; ;. Where the L; : S — S are the operators evoking a
process in the system and I i R— R are the corresponding ones in the reservoir.
The dynamics of the complex system is described by the von-Neumann equation for
the full density operator p

W= w7
We are only interested in expectation values of system operators A: §— S ,
and define the reduced density operator Tr”*(p) = ps by tracing over all reservoir
states and calculate all desired expectation values with this reduced density operator
() = Te(pA) = T¥ (TR () A) = ¥ (ps A).

To obtain a snnple dynamical equation for ps the reservoir is treated in Born-
Markov approximation meaning that the reservoir R with a temperature T is very
large compared to the system and is therefore unaffected by the dynamics of the
system &

pt) = ps(t) Ro(T) + ObHsr)

and the timescales of the reservoir and the system dynamics can be separated. On
the much slower timescale of the system the reservoir correlations decay instantly

A

(L) L))~ o —1).

R

These assumptions allows to derive the von Neumann-Lindblad equation (vNL)

d

_——H, ] AW(QLT Ly —LiLps — LL)
dtﬂs [sﬂs Z Ps ps = Ps

for the reduced density operator pg; for details see [Carmichael, 1999]. More de-
tails on the concept and consequences of the vNL equation is given in [Breuer and
Petruccione, 2002] and it is worth mentioning that the vNL equation is the most
general trace preserving map that generates a time evolution of the density oper-
ator. The dynamics of the vNL equation are in general not reversible since the
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differences between states of the reservoir are ignored due to the tracing over all
possible reservoir states. This contracting effect of the dynamics in the system and
the tremendous reduction of the computational afford this reduced density matrix
approach provides is illustrated in Fig. 2.2. Instead of generating the dynamics in
the large space of the system and reservoir (S ® R) and tracing over the reservoir
at the end of the dynamics one can trace over the reservoir in the beginning and
generate the dynamics in the much smaller space S.

S®R S®R

TR VS

5}5

Figure 2.2: Tllustration of the contraction of various initial conditions under the
influence of a large reservoir. A similar illustration can be found in [Breuer and
Petruccione, 2002].
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C hapt er 3

Single Quantum Dot 7=
Photoluminescence into free-space

To describe the dynamics of an interacting system an equation of motion (EoM)
based theory for the description of light emission from a multi-level semiconductor
quantum dot (QD) is presented. The theory accounts for electronic excitations
in presence of the Coulomb interaction, leading to multi-exciton states, and their
coupling to the quantized electromagnetic field.

The two key aspects of this chapter concern (i) the combination of an exact
treatment of the electronic degrees of freedom with an approximate approach for
the photonic degrees of freedom that is based on the cluster expansion (CE), and
(ii) the consistent incorporation of scattering and dephasing due to the coupling to
delocalized electronic states and phonons into the EoM via Lindblad terms. Differ-
ences to previously used theories are discussed and results of the theory are shown
for free-space emission, where multi-exciton spectra are shown, and for emission
into a single high-Q) cavity mode. In the latter case, a full solution of the von-
Neumann Lindblad equation is used to benchmark the proposed theory, which we
term “finite-size hierarchy” (FSH) method.

In parts this chapter is published in [Florian et al., 2013a]. The basic theoretical
concepts for this work where mainly developed in discussions between M. Florian
and H.A.M. Leymann, the EoM where derived by H.A.M. Leymann, the numerical
integrating of the equations of motion and the solution of the von-Neumann Lindblad
equation was mainly performed by M. Florian and all authors of [Florian et al.,
2013a] discussed the results.

3.1 Cluster expansion for semiconductor systems

Semiconductor heterostructures [Alferov, 2001] are of central importance in the de-
sign of today’s optoelectronic devices with a wide application range in light emitters,
detectors, and quantum information technology. Quantum dots play an important
role as active material in semiconductor lasers and quantum light emitters [Bim-
berg et al., 1999, Strauf and Jahnke, 2011, Chow et al., 2011, Hendrickson et al.,
2005, Strauf et al., 2006, Reitzenstein et al., 2006a, Peter et al., 2005]. For the
development of microscopic models, the CE technique [Baumann and Hegerfeldt,
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3.1. CLUSTER EXPANSION FOR SEMICONDUCTOR SYSTEMS

1985, Schoeller, 1994, Kira et al., 1999, Hoyer et al., 2003, Gies et al., 2007, Feldt-
mann et al., 2006, Baer et al., 2006, Schwab et al., 2006, Berstermann et al.,
2007, Fricke, 1996b, Fricke, 1996a, Fricke et al., 1997, Ulrich et al., 2007, Kriigel
et al., 2006] has been successfully used to address correlation effects due to various
many-body interactions. In semiconductors, many-body effects are present due to
carrier-photon and carrier-carrier Coulomb interaction, as well as the interaction
between carriers and phonons. The idea of the CE technique is to formulate EoM
for correlation functions (CFs) up to a given order N, and to express all expectation
values of interest in terms of these CFs. The underlying assumption is the presence
of a large Hilbert space for the many-body excitations, so that the configuration
averages render higher-order correlations increasingly unimportant. The CE tech-
nique has initially been applied to systems with many degrees of freedom, where the
number of possible electronic configurations by far exceeds the highest number of
considered N-particle correlations (typically N = 2,3,4). This included, for exam-
ple, photoluminescence [Kira et al., 1998|, resonance fluorescence [Kira et al., 1999|,
exciton formation dynamics [Hoyer et al., 2003| in quantum-well systems, quantum
dynamics of condensed Bose gases [Kohler and Burnett, 2002], and spin dynamics
of ferromagnetic systems [Kapetanakis and Perakis, 2008].

More recently, applications have been extended to QD-based systems, where the
CE method has successfully been used to study quantum-optical and related effects,
like photon anti-bunching and coherence properties of the light emission |[Ulrich
et al., 2007, Gies et al., 2007, Richter et al., 2009, Carmele et al., 2010b], coherent
emission of cavity phonons [Kabuss et al.; 2012, Kabuss et al., 2013|, sequential
build-up of quantum-optical correlations in a semiconductor QD system [Mootz
et al., 2012|, quantum spectroscopy [Kira et al., 2011|, as well as the influence of
Coulomb-induced carrier correlations [Baer et al., 2006, Feldtmann et al., 2006,
Schwab et al., 2006]. In QDs, the carrier confinement results in a small number
of localized states, which contrasts the situation in quasi-continuous systems like
quantum wells. Both, in theory and experiment |Beirne et al., 2007], QDs with only
a few or even a single localized electron state have been considered.

It is one aim of this chapter to discuss the implications of the system-size limi-
tation to the application of the CE and to propose a new way to describe systems,
in which the small size of the electronic Hilbert space leads to strongly enhanced
correlations. In this chapter the methods are developed with the direct applica-
tion on the single QD photoluminescence in mind. A general formulation of the
CE and techniques beyond that can be found in chapter 4. The single-QD case is
often addressed with methods from atomic quantum optics, where the emitter is
represented by a few-level system. The non-perturbative interaction with a high-Q
cavity mode via the dipole Hamiltonian and the perturbative interaction with a con-
tinuum of free-space modes via Lindblad terms can be treated by directly solving
the von-Neumann Lindblad (vNL) equation for the density matrix of the electronic
system and the cavity mode [Mu and Savage, 1992|. This requires the underlying
Hilbert space to be small enough and is currently only feasible for a single or very
few emitters. Examples for applications to single-QD systems are |Troiani et al.,
2006, del Valle et al., 2009, Ritter et al., 2010, Gies et al., 2011]. The vNL dynamics
are ideal to study multi-exciton effects, since all the various excitonic configurations
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can be distinguished by the theory. An explicit use of this ability to distinguish
multi-exciton configurations from one another was made in a study of the influence
of multi-exciton effects on the efficiency of carrier scattering [Steinhoff et al., 2012].
When considering explicitly the case of many individual emitters or the emission
into many modes, however, the size of the Hilbert space precludes direct calcula-
tions of the many-particle density matrix, and one has to retreat to approximate
many-body methods, like the CE technique.

Another central point addressed in this chapter is the consistent description of
scattering and dephasing in the EoM approach. QDs are embedded systems and
coupled to continuum states of the surrounding material. The Coulomb interaction
and the coupling to LO-phonons leads to efficient carrier scattering processes be-
tween localized and delocalized states, feeding carriers into the QD after off-resonant
excitation into the continuum states of the barrier material, as well as being a
source of dephasing. A Hamiltonian description of these scattering processes is nat-
urally possible within an EoM approach, but practically challenging [Carmele et al.,
2010b, Hoyer et al., 2003|. More often, scattering and dephasing were accounted
for phenomenologically by adding constant rates to the EoM. Especially for equa-
tions describing the dynamics of higher-order CFs, this may lead to inconsistencies
and produce artifacts, such as heating [Hoyer et al., 2003]. In quantum optics one
typically discriminates between the system and environmental degrees of freedom,
and treats the interaction of the system with the environment via Lindblad terms
[Lindblad, 1976] that are added to the von-Neumann equation and the equation
is consequently called vNL equation. As we show, this can be carried over to an
EoM based approach. The carrier dynamics in QDs naturally separates into the
system, represented by the localized states, and the environment, provided by the
quasi-continuum of delocalized states. Then the Coulomb and light-matter interac-
tion are fully accounted for the localized QD states, while the interaction processes
with the continuum states are described via Lindblad terms. These terms and the
corresponding rates can be obtained with standard many-body techniques [Breuer
and Petruccione, 2002, Steinhoff et al., 2012, Roy and Hughes, 2011, Hohenester,
2010]. The result is a consistent formulation of scattering and dephasing that is free
of the problems associated with the phenomenological approaches.

We begin by addressing the EoM technique for the carrier system, before we
introduce and classify mixed-operator CFs that are subject to different interactions.
The “finite-size hierarchy” (FSH) method is introduced, in which we combine an
exact treatment of the carrier degrees of freedom with an approximate CE approach
for the arising hierarchy in the photon operators. In Section 3.3 we specify the nature
of the environment coupling and the inclusion in the theoretical formalism. In order
to apply the theoretical framework in the following sections, a specific QD model is
introduced in Section 3.4. We derive EoM for the Hamiltonian time evolution of the
QD carriers, as well as the dissipative interaction with carriers in delocalized states.
Section 3.5 is devoted to emission into a continuum of free-space modes. Here we
discuss how carrier correlations give rise to multi-excitonic effects in the emission
spectra, and how the various scattering and dephasing processes manifest themselves
in the linewidths of the various emission peaks. A comparison with the conventional
CE technique reveals insight into the physical representation of the system by a
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limited number of CFs. Numerical results for the emission of a single QD in a
microcavity are presented in Section 3.6. For this system, we are able to compare
the approximate treatment of the system dynamics in terms of the conventional CE
method to an exact solution obtained from the FSH and von-Neumann equation.
This comparison illustrates the impact of the truncation at different orders in the
hierarchy of photon operators and demonstrate the applicability of the FSH method.

3.2 Many-body treatment of the embedded QD sys-
tem

QDs are embedded systems and their electronic single-particle states are coupled to
those of the surrounding environment by the Coulomb interaction and the interaction
with LO phonons. It is important to stress that correlations amongst QD carriers
are dominated by the interaction within the dot, as well as, e.g. in the presence of
a resonator, by the interaction with photons. Based on this, we treat the localized
electronic degrees of freedom explicitly, fully accounting for the Coulomb interaction
amongst QD carriers and their light-matter interaction. In this section we focus on
the system dynamics and its formulation in the von-Neumann and EoM approaches.
The coupling of the environment states to the system dynamics via Lindblad terms
is discussed in Section 3.3.
The system dynamics is determined by the von-Neumann equation

d

=P =il (3.1)
for the density operator (A = 1). Here, we consider the free electronic contributions
to the Hamiltonian H, as well as the Coulomb interaction and subsequently in
Sec. 3.2.2 also the dipole interaction. The time-dependent solution of Eq. (3.1) then
includes the interaction of all possible configurations. The electronic Hilbert space
is finite and limited by the possible number of carriers that the QD system can
accommodate. In (quasi-) continuous systems this limitation is merely formal. In
a QD with only few confined states, however, the limitation is perceivable and may
even allow for a direct solution of Eq. (3.1), see, e.g., the Refs. |del Valle et al.,
2009, Troiani et al., 2006] for a small and [Gies et al., 2011, Gies et al., 2012] for
a large number of configurations or even for a small number of QDs [Florian et al.,
2013a).

By suitable tracing of the many-body density matrix, Eq. (3.1) can be rewritten
into a hierarchy of EoM for EVs, in which single-particle EVs are coupled to two-
particle EVs, and so on. The hierarchy of coupled equations is limited by the finite
size of the Hilbert space that introduces a 'natural’ truncation. This can also be un-
derstood by considering the fact that only those normal-ordered operator averages,
addressing up to the maximum possible number of carriers in the system, can be
different from zero, as the consecutive application of a number of creation or annihi-
lation operators that exceeds the number of possible single-particle states must give
a vanishing contribution. As long as no further approximations are introduced, both
the density-matrix and the EoM approaches are equivalent. We will elaborate more
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on the equivalence of various approaches in chapter 4 where the 'natural’ truncation
of the hierarchy due to a finite Hilbert space is associated to the truncation operator
Ay (see Eq. (4.7)),

For a system with mixed hierarchies in carrier and photon operators, this
equivalence will be used to establish the link between the ‘exact’ von-Neumann-
based treatment for the electronic degrees of freedom, for which we introduce the
name “finite-size hierarchy” (FSH) method, and the approximate CE method, in
which the electronic hierarchy is truncated typically at an order that is much lower
than the size limitation of the Hilbert space.

3.2.1 Equation-of-motion formulation for the electronic de-
grees of freedom

We begin by schematically formulating the hierarchy of EoM for a system that can
accommodate up to N7 conduction- and valence-band carriers per spin direction.

Since the successive application of NS .+ 1 conduction-band electron or Np . + 1
valence-band electron annihilation operators yields zero, an automatic truncation of
the hierarchy is implied. To achieve a simplification of the following discussion, we
consider from here on equal numbers of confined states in both bands, so that the
highest operator average that can differ from zero contains 2(N¢.. + N .. ) = 4Npax
carrier operators.

In the following we embrace the formulation of the conventional CE, where CFs
are used instead of operator EVs. As long as the hierarchy of equations is not termi-
nated at an order below its matural’ truncation, both formulations are equivalent.

A CF of the order N is defined as
6(N) = (N) = 6(N)r, (3.2)

where 0(NN)p represents products of all possible factorizations of the operator ex-
pectation value (N) into CFs of orders smaller than N !. The order N is defined
as half the number of carrier operators. For example, occupation probabilities of
single-particle states® (cl¢;) and (v]v;) (for the notation see Appendix A.1) are of

first order (in former approaches called singlets) that represent uncorrelated entities,

5(1) = (1). (3.3)

Examples for CFs of the order N = 2 (in former approaches called doublets) are
5(0}0}0;601) or 5(czv;ckvl).

The hierarchy defined by Egs. (3.2)—(3.3) terminates due to the discussed lim-
itation in operator averages to 2Np.,. carrier operators and is represented by the
boundary condition

S(N) = =6(N)p if N> Nyax . (3.4)

For N = Nyax + 1 Eq. (3.4) terminates the coupling to higher EV and ensures
a correct treatment of the finite carrier system, so that indeed the formulation in

Tn case of fermionic operators, a sign change is required if an odd number of permutations is
necessary to regain normal ordering.

ZNote that due to the incoherent excitation, all EV of the form (vl.(ﬂ> vanish.
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terms of dynamical equations for CFs is equivalent to a solution of Eq. (3.1) for the
corresponding finite set of basis configurations (see chapter 4).

When the electronic Hilbert space, and correspondingly the number of electronic
degrees of freedom is large, an inclusion of CFs up to this level is neither possible
nor necessary. This defines the regime of applicability of the CE method, where
suitable approximations are based on a truncation of the hierarchy at a level much
lower than N,., realized by setting all CFs above a certain cutoff N, to zero:

S(N)=0 if N > Nyune - (3.5)

In what comes next, it is important to emphasize that this procedure introduces two
separate ideas to justify the approximations. Firstly, the influences of correlated
processes involving more than Ny, carriers are neglected. Secondly, for N > Np.x
there is a contradiction between Eq. (3.4) and Eq. (3.5) in the sense that the latter
formally violates the boundary condition due to the finite system size. We discuss
the implications of both approximations in the following.

For an approximate treatment of carrier correlations in large systems, the order
up to which N-particle correlations need to be calculated depends on the strength of
dephasing processes on the one hand, and on the quantities of interest on the other.
Scattering processes, introduced e.g. by the Coulomb- and LO-phonon interaction,
are responsible for damping out correlation effects, and so are cavity losses that act
on the photonic sub-system, see Sec. 3.2.2. Higher-order CFs are typically subject to
stronger dephasing, so that their impact on the dynamics of lower-order quantities
decreases with increasing N. Nevertheless, if correlation effects themselves are of
interest, the corresponding CFs must be accounted for, and corrections due to the
next higher order may be relevant even if the impact on lower orders is small. E.g.,
exciton formation is described by second-order CFs ¢ (cjv;ckvl). Their study therefore
requires going beyond the first order.

The error introduced by the violation of the boundary condition (3.4) depends
on the system size in relation to the order N, at which the cutoff is performed, as
well as on the strength of dephasing processes in the system that assist in damping
out correlations. In large systems, where the allowed number of carriers exceeds the
cutoff by orders of magnitude, the effect of violating the boundary condition at the
highest order is imperceptible. In QDs with only few localized states, the situation
may be entirely different, and this is the point we are addressing: If the cutoff Nyunc
imposed by an approximative treatment is close to the 'natural’ cutoff Np.., the
error made in replacing Eq. (3.4) by Eq. (3.5) is more likely to propagate into those
CFs that are kept and become significant. In terms of the underlying physics, the
restriction to a few-particle system enhances higher-order carrier correlations. In
Section 3.4 we will focus on a particular QD model with two confined states for
electrons and holes and show that the CE method is in fact not applicable to the
electronic subsystem, and the exact description including Eq. (3.4) must be used
instead.

3.2.2 Many-body description for mixed expectation values

We now turn to the case that a hierarchy arises not only in the electronic degrees
of freedom, but also due to other interactions that may explicitly appear in the
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Figure 3.1: (a) Illustration of the classification of mixed CFs 0(N, M) according to
the number of carrier (2N) and photon (M) operators (represented by dots). (b)
(Classification and truncation employed by the conventional CE method. Mixed CFs
are treated by a single hierarchy of order N 4+ M. The shaded area encloses those
correlations up to the doublet level (N + M )gune = 2. (¢) Situation found in a system
where the number of electrons and holes is limited to two. Then the hierarchy of
carrier operators closes 'naturally’ on the four-operator level N, = 2 and is, in
principle, not restricted in the number of photon operators M. As an example, the
shaded area shows the necessary CFs for M. = 4.

Hamiltonian, like the coupling to photons or phonons. Extra thought must be given
how to classify the order and how to perform the truncation of the arising hierarchies
of mixed-operator EVs.

As an example, consider the time derivative of a conduction band carrier and
a photon annihilation operator with respect to the dipole Hamiltonian Hp (see
Appendix A.1):

d

7 ¢ ’HD = — Z gebev; (3.6a)
'3

d

pr bﬁ’HD = Zggv;rci : (3.6b)

Two hierarchies are introduced, one in the photon operators and one in the carrier
operators: In the EoM for a carrier operator (3.6a) an additional photon operator
is added, and vice versa, a carrier transition v, ¢; is associated with the derivative of
a photon operator in Eq. (3.6b). Regarding the additional light-matter interaction,
we introduce a classification of mixed CFs 6(M, N), containing M photon and 2N
carrier operators by the tuple of numbers (M, N). Eq. (3.2) is generalized to

§(M,N) = (M,N) —§(M, N)p, (3.7)

where the factorization (M, V). contains all possible products of lower-order CFs of
order (M’, N') that meet the three criteria N' < N, M' < M, and N'+M' < N+ M.
The classification is illustrated in Fig. 3.1(a), where each set of CFs of the order
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(M, N) is represented as a dot. This suggested classification scheme serves two
purposes: One the one hand, it offers a clear-cut definition of the correlation effects
included at each order, namely those involving N carriers and M photons. On the
other hand, it provides a platform to treat the two hierarchies in a different fashion,
which we discuss in detail below.

A different classification scheme has been used in the past and is typically asso-
ciated with the CE method [Fricke, 1996b, Fricke, 1996a, Fricke et al., 1997, Kira
et al., 1999|. There, mixed CFs 6(M, N) are classified by a single number M + N,
as schematically depicted in Fig. 3.1(b). It is based on the observation that the
coupling of carriers and photons, provided by the dipole Hamiltonian, leads to the
formal equivalence of a photon annihilation operator and an electron-hole-pair cre-
ation operator. Correlation functions with N + M = 1,2, 3,4, ... have been termed
singlets, doublets, triplets, quadruplets, and so on. As described for the electronic
system in Sec. 3.2.1, a cutoff (N 4+ M )irunc is performed, and all higher-order CFs
are approximated as zero in the fashion of Eq. (3.5),

S(M,N)=0 if N+ M > (N + M)unc - (3.8)

An illustration is given in Fig. 3.1(b), where the shaded area corresponds to those
CFs kept up to the second order. The CE method based on this scheme has been
used for systems, where the truncation was performed at an order much lower than
the implicitly assumed size of the electronic subsystem (the photonic subsystem is,
by nature, not limited) [Kira et al., 1999, Hoyer et al., 2003, Hoyer et al., 2004].

This brings us to the question how to formulate the hierarchy problem in systems
where the electronic subsystem is limited to accommodate a small number of carriers,
which leads to the definition of the finite-size hierarchy (FSH) method (a special
case of the more general approach described in chapter 4). As we have discussed
for the electronic subsystem in the absence of additional interactions in Sec. 3.2.1,
the approximate treatment of the CE method introduces errors in the boundary
condition that may require an exact treatment of the electronic degrees of freedom
in a fashion analog to the von Neumann equation. For a system with mixed-operator
CFs 0(M, N), the boundary condition (3.4) can be generalized to

S(M,N)=—6(M,N)p ¥ N > Npax - (3.9)

The exact treatment of electronic correlations requires taking all CFs §(M, N) up to
N = Npax into account and to satisfy Eq. (3.9) at the highest level N = Ny.x. The
photonic hierarchy is not limited and must be truncated at a manually introduced
cutoff Miune. The order at which this approximation is performed depends on the
quantities of interest, as well as on the relationship between correlation built-up and
dephasing. A schematic illustration is found in Fig. 3.1(c), where the number of
electrons and holes is restricted to N.x = 2, and the truncation is performed at the
level of M;,une = 4 correlated photons.

Summarizing this section, starting from the general form of the von-Neumann
equation, the treatment of an electronic system residing in a finite Hilbert space
can be formulated as a closed set of EoM for CFs, fully representing the electronic
degrees of freedom (FSH method). An additional hierarchy in the photon operators
spoils the exact representation, as all electronic operator averages can appear with
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additional photon operators. The hierarchy in terms of photon operators requires
an approximate truncation in the fashion of the CE method. This is, however,
uncritical and works very well in practice, as we will demonstrate in Sec. 3.6. A
discussion of the manifestation of differences between the traditional CE and FSH
methods is found in Sections 3.5 and 3.6.

3.3 Environment coupling: Treatment of scattering
and dephasing processes

The localized states of self-assembled QDs are generally coupled to delocalized states
of the surrounding semiconductor matrix material. In experiments and device ap-
plications, carriers are excited optically or electrically in these continuum states.
The successive capture into the localized QDs states is mediated by scattering pro-
cesses with carriers in the continuum, but also with lattice vibrations that are known
to effectively exchange excess energy by emission/absorption of phonons [Seebeck
et al., 2005, Zibik et al., 2004, Xu et al., 2002, Urayama et al., 2001]. Redistribution
by scattering of carriers is always accompanied by dephasing. Dephasing of coher-
ences and correlations in (QD-based nanostructures is of central importance for the
emission properties of devices.

The discrete nature of the localized states in QDs allows for the possibility to
make a distinction between the QD system and its environment, where the dynamics
of the first is fully accounted for by contributions to the system Hamiltonian, and
the latter are treated in a system-bath approach. The purpose of Sec. 3.3.1 is the
specification of both components and the description of the Lindblad formalism that
is commonly used to model system-reservoir coupling within the vNL equation. This
is carried over to the EoM approach for EoMs in Sec. 3.3.2 to provide a consistent
platform to include scattering and dephasing contributions. The consistent inclusion
of dephasing is a major advancement from previous versions of the theory and one
of the central achievements in this chapter.

3.3.1 System-reservoir interaction

In quantum well or bulk material, a large number of carriers are distributed amongst
dense-lying states that are generally treated as a continuum. Processes involving
the continuum states, such as carrier-carrier scattering, optical recombination, and
scattering with phonons, must be treated on equal footing. In QDs the situation is
different. The three-dimensional carrier confinement leads to a discretization of the
single-particle density of states. Typical self-assembled QDs are grown on a wetting
layer (WL) and the whole system is embedded in a barrier material. The energy of
the lowest-lying continuum states of the WL provides an energetic upper bound for
the localized QD states and, therefore, limits their number.

One therefore finds the situation, in which the localized states are responsible
for the recombination dynamics of interest, whereas the nearby continuum provides
carriers that can be captured into the localized states, or serve as scattering part-
ners for carriers in the QD states. A separation into a system, consisting of the
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localized states, and a reservoir, consisting of the continuum states, is justified if
the interaction between the two does not lead to a mixing of states (hybridization).
The dynamics of carriers in the continuum states is determined by an excitation
process, by scattering amongst carriers in the continuum, as well as by the interac-
tion with carriers in the localized QD states. The effects can be accommodated in
the calculation of the rates ,.

The contribution of the reservoir, which can either be seen as a fermionic or a
bosonic bath (depending if a coupling to carriers in the continuum, or to phonons
is considered), to the density operator can be treated, in many cases, in the Born-
Markov approximation. This approach leads to a Lindblad term D, [Lindblad,
1976, Carmichael, 1999| for each capture and relaxation process (in the following
denoted by the index 7) associated with the considered reservoir and of the form

b, = 2 (20 ol (3 - 5 (1 el o+ pliy (1) ) @10
a,f «

Here 7, is referred to as the corresponding capture/relaxation rate and |i!?) are the
initial and |f) the final configurations of the described scattering process. The
contribution of the Lindblad terms to the dynamical equations for the diagonal
elements of the density matrix p

d n n\ — -7 -7 __i -9 )
g alelfd) = (ilplia) = =7 (loliz) (3.11)

t

reflect the trace-conserving nature of the Lindblad form, leading to an equilibration
of the system with respect to the bath at a characteristic time 1/, determined by
the QD level-spacing, the lattice temperature, and the carrier density. Additionally,
dephasing originates from the contribution of the second term in Eq. (3.10) to the
equations for the non-diagonal elements of the density matrix, i.e.

d
= @lplf2) = =2 lelf2) (3.12)

and its complex conjugate. Thus, all optical transitions involving |i”) and/or |f)
as an initial/final state are consistently dephased by the process n [Gies et al.,
2012, Gies et al., 2011].

More sophisticated many-body methods beyond the Born-Markov limit |[Lorke
et al., 2006, Steinhoff et al., 2012, Schuh et al., 2013], as well as experimental results
[Borri et al., 2001, Beirne et al., 2007| can be used to determine more accurate rates
Y, which enter this formalism as input parameters.

3.3.2 Lindblad terms in the equation-of-motion technique

The time evolution of the density operator is determined by the vNL equation
with the Hamiltonian part H and the dissipative Lindblad-type superoperator D,
according to Eq. (3.10), which can be written as

d .
o0 =—ilH,p] + zﬂ: D,p. (3.13)
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Once the solution is known, arbitrary single-time operator averages (A) can be
obtained by taking the trace Tr {pA}.

Equations of motion are derived by considering the time evolution of expectation
values (A) = Tr {pA}, expressed by a generalized Ehrenfest EoM for operator av-
erages, for which the explicit knowledge of p is not required, cf. Sec. 3.2. A natural
way to include the Lindblad contributions in the many-body formalism is to add
them to the EoM, which follows directly from the vNL equation (3.13) by calculating
operator averages and leads to

S =AY+ 2 (o] Ao + (A 0])  (314)
U

with the operators o, = > |f7) (i"?| (b = 1). Both the interaction parts of the

Hamiltonian and the Lindblad contributions in the above equation introduce a hi-

erarchy of coupled equations. What has been discussed for the Hamiltonian contri-

butions in Sec. 3.2 also applies for the latter with respect to finite system size and

truncation.

The proposed method has the benefit of a consistent inclusion of scattering and
dephasing in a reservoir fashion, while rates for the interaction with the carrier and
phonon reservoirs can be obtained from separate calculations of desired sophistica-
tion. In the past dephasing has often been included phenomenologically by adding
a constant dephasing rate I' to the dynamical equations for EVs associated with
polarizations [Richter et al., 2009, Baer et al., 2006, Feldtmann et al., 2006, Fricke,
1996b]. Next to providing dephasing, this phenomenological method has been shown
to introduce artifacts, like artificial heating of the system [Hoyer et al., 2003]. A
consistent formulation of dephasing requires a relationship between both, scattering
and dephasing, that is expressed in Eqgs. (3.11) and (3.12).

3.4 Equations of Motion for single QD PL

In the following we will illustrate the FSH method by deriving the dynamical equa-
tions for a particular QD model. So far the model has been formulated for arbitrary
type and number of single-particle states. However, it greatly simplifies the discus-
sion and the resulting equations if we consider a QD with only two confined states
for electrons and holes each. These levels we refer to as s- and p-shells. Furthermore,
only carriers of one spin direction are considered. The restriction to one spin subsys-
tem has been shown [Gies et al., 2011, Gies et al., 2012| to constitute a reasonable
approximation in the regime of strong off-resonant excitation in self-assembled QDs,
where scattering processes with quasi-continuum carriers broaden the spectral lines.
For applications like low-excitation spectroscopy the QD system must be augmented
to explicitly contain the spin degree of freedom. On the two-particle-correlation level
this situation has e.g. been studied in [Hohenester et al., 1999].

We will use an additional approximation that considerably simplifies the arising
hierarchy of equations and that we would like to discuss in detail. The total number
of possible configurations in the described QD is 16, since zero to four electrons can
be distributed amongst four localized single-particle states. The FSH method, in
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Figure 3.2: Possible configurations in a four-level QD, in which valence- and
conduction-band carriers are excited and de-excited only in pairs. The represen-
tation is given in the c-v picture.

which the electronic degrees of freedom are treated exactly, requires to take oper-
ator averages with up to 2(N¢,, + NY,.) = 8 carrier operators into account. The
highest possible-carrier operator average that can differ from zero is the four-particle
quantity

(3.15)

v, V.C.C

(clehvlvfv,ve,e,) -

A derivation of the EoM for the corresponding CFs is a cumbersome and error-prone
endeavor and only recommended with an automatic generation algorithm. For this
chapter a separate program has been written in FORM [Vermaseren, 2000], (appendix
D) to fulfill this goal. For simplification purposes, we restrict the number of possible
configurations by the following assumptions:

(i) An effective pair-wise carrier capture, in which the in-scattering of an electron
into the QD p-shell is always accompanied by the in-scattering of a hole (in the cv-
picture: A carrier present in the valence-band p-state is excited into the conduction-
band p-state). (ii) Only intraband scattering processes preserving the carrier number
within the QD are considered.

Since, the optical recombination is also carrier-number conserving, only the six
configurations shown in Fig. 3.2 can form under this condition, all of which contain
two carriers in the system. Thus, the largest operator averages that have to be
evaluated for a system with the boundary condition Nf, . = Ng.. = 2 are those
with up to four carrier operators, plus additional photon operators. One example is
discussed in the beginning of Sec. 3.5 in the context of biexcitonic recombination.

Several scattering processes are accounted for: The discussed pair-wise capture of
carriers from the continuum into the localized p-states at rate P, as well as scattering
from the conduction band p-shell to s-shell and valence-band s-shell to p-shell via
the rates v, and 7,;. The rates v,¢ and v correspond to the reverse processes. The
model system together with the considered scattering and recombination processes is
sketched in Fig. 3.3. This section is split into two parts in which the FSH hierarchy
is derived: The first Sec. 3.4.1 deals with the dynamics due to the Hamiltonian
contributions using the light-matter interaction as an example. Contributions due to
other parts of the Hamiltonian are given in Appendix A.2. In Sec. 3.4.2 contributions
from the system-reservoir interaction are discussed. A special emphasis is placed on
the differences between the FSH and the traditional CE method, and deviations
occurring in the equations are pointed out.

3.4.1 Hamiltonian dynamics

The lowest-order observables of interest are the carrier populations, as well as the
mean number of photons. Higher order operator averages appear in the derivation
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Figure 3.3: QD model with the considered rates «y for electrons in the conduction and
valence band, describing scattering into and out of the s-shell. Carrier generation
is modeled by a transition process between the p-levels at rate P. Light-matter
coupling leads to recombination processes between the s- and the p-states due to
spontaneous emission (dashed arrows).

of EoM. The arising hierarchy is finite in the carrier degrees of freedom, while the
photonic hierarchy is truncated at the M. = 2 level, cf. Sec. 3.2.2.
The contribution of the light-matter interaction Hyy; to the Ehrenfest EoM for

the conduction band carrier population f{ = <cj-ci), are given by

d
ale|, =-2Re Zﬁ:ggngyi. (3.16)
The real part of the photon-assisted polarization Il¢ ; = 0 (bzviT ¢;) describes transition
amplitudes between QD levels, and is proportional to the light-matter coupling
strength ge. In order to solve Eq. (3.16) additional dynamical equations for the
photon-assisted polarization, which are one step up in the hierarchy with respect to
photon operators, are required and evolve as

d
_H Z _ C 1 _ 'U
a es|, =ge f{i (1= f7) +9§§ i

+95N§(fz~ — f7) + geNE — 95/\/ i -

(3.17)

The recombination of a QD excitation described by Il¢; does not only require the
presence of a conduction-band carrier, but also the non-occupancy of a valence-band
state, which ends up in an emission rate proportional to <CTUZU ¢j) (cf