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Imperfect Crystals of Poly(butylene succinate) Formed at
High Supercooling of the Melt

Katalee Jariyavidyanont, Xiaoshi Zhang, Christoph Schick, Alicyn M. Rhoades,
and René Androsch*

Prior work revealed distinct differences in the X-ray diffraction patterns of
poly(butylene succinate) (PBS) melt-crystallized at different temperatures,
regarding the number, width, and position of diffraction peaks, detected in
isotropic samples. To further evaluate whether the observed differences are
caused by a change of the unit cell, or are solely due to different crystal sizes
and perfection, X-ray fiber patterns of solid-state oriented PBS are acquired
and analyzed. The data reveal that PBS crystallized at high supercooling of the
melt at 20 °C contains crystals with enlarged dimensions of the monoclinic
unit cell in the cross-chain direction, compared to PBS crystals initially grown
at 20 °C and subsequently reorganized at elevated temperature at 100 °C.
High-temperature reorganized crystals exhibit a unit cell similar to that
formed after direct crystallization of the quiescent melt at the same high
temperature, with the latter, however, unable to draw for observing X-ray fiber
pattern. The observed changes in the unit cell of PBS when changing the
crystallization temperature are discussed in the context of the widely observed
crystallization-temperature-induced crystal polymorphism in other polymers.

1. Introduction

Poly(butylene succinate) (PBS) is a crystallizable linear polyester
of increasing economic importance related, among others, to its
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biodegradability and the possibility for syn-
thesis based on short-term renewable re-
sources, offering application as packaging
material, in agriculture, or in the biomedi-
cal sector.[1–5] However, the required prop-
erties crucially depend on the presence
of crystals due to the low glass transition
temperature of ≈−35 °C.[6–9] Crystallization
of PBS at low supercooling of melt be-
low the equilibriummelting temperature of
≈130 °C[8–12] proceeds by spherulitic growth
of relatively thin lamellae,[11,13–17] starting
from a few heterogeneous nuclei, and with
the size of crystals and spherulites decreas-
ing with increasing melt-supercooling.[18]

Eventually, on crystallization near the glass
transition temperature, spherulites with an
inherent radial symmetry are absent, likely
related to the high number of homoge-
neous nuclei.[18] In addition to the changes
in the crystal morphology and their su-
perstructure, detected by microscopy and
small-angle X-ray scattering (SAXS), a

distinct dependence of the X-ray diffraction (XRD) patterns on
the crystallization temperature is observed.[12,18,19] Qualitatively,
XRD peaks obtained on isotropic samples, measured at an identi-
cal reference temperature, broaden, merge, and/or shift to lower
scattering angles on decreasing the crystallization temperature,
or even seem to completely disappear when being low in inten-
sity. These observations typically point to the formation/presence
of small and defective crystals,[20] however, with the determina-
tion of unit cell parameters obscured due to frequent superposi-
tion of scattering contributions from different lattice planes.
Regarding the crystal structure, PBS is polymorphic and shows

a stress-induced (reversible) crystal transformation. In the ab-
sence of stress, molecular segments arrange in the 𝛼-phase,
while above a critical stress of 140 MPa, 𝛼-crystals transform
to 𝛽-crystals, involving a change from a non-planar to an ex-
tended all-trans chain conformation of the tetramethylene unit.
In both 𝛼- and 𝛽-crystals, the unit cell is body-centered mono-
clinic, containing two chain repeat units.[13,21–23] Crystal struc-
ture analyses were based on uniaxially oriented fibers prepared
by melt-spinning at 200 °C, followed by additional drawing and
annealing at 80 °C,[21–23] or on cast films prepared from a so-
lution and stretched at 80 °C.[13] However, a systematic evalu-
ation of the effect of the crystallization/annealing temperature
has not been performed, and therefore no information about
the possible influence of melt-crystallization conditions on the
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crystal structure of PBS is available. Such investigation, how-
ever, seems important as the formation of different crystal poly-
morphs on crystallizing the isotropic and relaxed melt at dif-
ferent temperatures has been proven for many crystallizable
polymers. Often non-equilibrium—though in certain temper-
ature ranges metastable—conformationally disordered crystals
or mesophases grow at rather high supercooling of the melt,
in contrast to the formation of more perfect crystals at rela-
tively high temperatures. Prominent examples include isotactic
polypropylene (iPP),[24,25] polyamides (PA),[26–29] or poly(l-lactic
acid) (PLLA),[30,31] with the presence of different polymorphs then
also affecting ultimate, for example, mechanical properties.[32–36]

However, worth noting, crystallization-temperature-controlled
crystal polymorphism is not a general observation as there is a
similarly large number of polymers for which the crystallization
temperature seems of low importance regarding the formation of
different crystal structures, e.g. poly(butylene terephthalate).[37]

In order to advance the present incomplete knowledge of the
crystal structure of PBS formed at low temperatures, samples
were crystallized at 20 °C and then uniaxially oriented before ob-
serving X-ray fiber patterns of the resulting small and, presum-
ably, defective crystals. Afterward, the samples were annealed
at 100 °C, allowing distinct crystal reorganization, before re-
measurement of the X-ray fiber patterns and analysis of changes
in the unit cell. Note again that in prior experiments a similar
thermal profile was applied for analysis of isotropic samples,[19]

which, however, did not yield unambiguous outcomes.

2. Materials and Instrumentation

The study was performed on an extrusion-grade PBS with a
mass-average molar mass of 123 kg mol−1, obtained fromMCPP
Germany GmbH in the form of pellets.[38,39] The material was
processed by compression molding to films with a thickness
of ≈200 μm, involving a final quenching step employing wa-
ter with a temperature of 20 °C as coolant, to ensure isother-
mal low-temperature crystallization. From the obtained circular
films, mini-tensile bars were punched out and subjected to ten-
sile deformation using a homemade stretching device until a lo-
cal strain of≈400%, estimated bymarks in the center of the spec-
imen, was achieved. Afterward, the sample was unclamped from
the stretching device and allowed to relax, before X-ray analysis.
XRD experiments were performed in transmission mode em-

ploying a Retro-F laboratory setup (SAXSLAB, Copenhagen, Den-
mark) in combination with a microfocus X-ray source (AXO
Dresden GmbH, Dresden, Germany) and an ASTIX multilayer
X-ray optics (AXODresdenGmbH) formonochromatization.We
usedCuK𝛼 radiationwith awavelength 𝜆 of 0.154 nm, and the ap-
proximately circular beam had a size of ≈0.5 mm. The scattered
X-ray intensity was detected with a flat 2D-PILATUS3 R 300K
detector (DECTRIS Ltd., Baden, Switzerland), and plotted vs the
scattering vector q = 4𝜋

𝜆
sin 𝜃, with 𝜃 being the Bragg angle. The

sample-detector distance of ≈87 mm was calibrated using silver
behenate. In order to expand the limited observable q-range, the
detector was positioned asymmetrically with respect to the pri-
mary beam. The uniaxially drawn samples were positioned on
the silver block of an HFS350 hot stage (Linkam, Tadworth, UK),
serving as a sample holder and containing a hole with a diame-
ter of 1 mm for passing the X-rays. First, the fiber pattern of the

Figure 1. XRD curves of isotropic films of PBS melt-crystallized at 20 °C
(blue) and 100 °C (red), with the crystallization temperature directly ap-
proached by fast cooling the equilibrium melt, denoted “Direct melt-cry”
in the legend. The light-red curve represents the XRD pattern of a sample
which initially wasmelt-crystallized at 20 °C and subsequently reorganized
by heating to 100 °C. All measurements were performed at room temper-
ature. Selected peaks are indexed based on crystal-structure information
from the literature.[21] The upper panel scales the crystallization temper-
ature relative to the equilibrium melting temperature Tom and glass tran-
sition temperature Tg, illustrating the different supercooling of the melt
during crystallization. XRDdata of non-reorganized PBS are adapted under
terms of the CC-BY license 4.0 (https://creativecommons.org/licenses/
by/4.0/), Copyright 2023, from R. Androsch, K. Jariyavidyanont, A. Janke,
C. Schick, published by Elsevier (https://doi.org/10.1016/j.polymer.2023.
126311).

drawn and relaxed sample—crystallized at 20 °C and not further
thermally treated—was recorded. Then, the sample was annealed
at elevated temperature by heating to 100 °C using the sample-
holder hot stage, followed by immediate re-cooling to 20 °C and
repeated collection of the X-ray fiber pattern. Worth noting that
distinct shrinkage on heating the stretched samples was not ob-
served.

3. Results and Discussion

For an illustration of the scope of the present study, Figure 1
shows XRD curves of isotropic films of PBS melt-crystallized
at 20 °C (blue) and 100 °C (red), with selected diffraction
peaks indexed based on crystal-structure information from the
literature.[21] Crystallization at 100 and 20 °C corresponds to
supercooling of the melt of ≈30 and 110 K, respectively, as is
schematically shown with the temperature scale in the upper
part of the plot. In both cases, crystallization at 20 and 100 °C,
semicrystalline structures containing 30%–35% crystal lamellae
with thicknesses of ≈4 and 6 nm, respectively, are obtained.[18] A
comparison of the X-ray patterns reveals that in the case of crys-
tallization at 100 °C, the number, width, and position of peaks
may be different than after crystallization at 20 °C. Though it ap-
pears that after low-temperature crystallization some peaks are
no longer detectable, became much broader, or shifted to lower
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Figure 2. XRD fiber patterns of PBS. The left image a) was collected af-
ter melt-crystallization at 20 °C, with the initially isotropic film uniaxially
stretched by ≈400 % at room temperature, followed by relaxation. Image
b) to the right was observed after additional heating to 100 °C, to allow
crystal reorganization. The fiber direction and definition of the azimuthal
angle Φ are indicated in the left image. Indexing of scattering maxima is
based on the literature,[21] with further explanations provided in the text.

scattering angles, potentially indicating a larger unit cell than
after high-temperature crystallization, a final interpretation of
the origin of these observations is impossible without further
experimentation. In particular, conclusions about whether low-
temperature crystallization is connected with qualitative and/or
quantitative changes of the unit cell, to be discussed in terms of
incorporation of conformational defects into the crystals, cannot
yet be drawn. In addition, Figure 1 shows with the light-red curve
the XRD pattern of a sample which initially was melt-crystallized
at 20 °C and subsequently reorganized by heating to 100 °C. This
pattern reveals an identical crystal structure as obtained for PBS
directly crystallized from themelt at 100 °C (red curve), as judged
by visual inspection of peak positions (see also the dotted vertical
lines at selected peaks). This information is important as the X-
ray fiber pattern of PBS directly melt-crystallized at 100 °C could
not be obtained, in contrast to reorganized samples, as further
outlined below.
As an example, Figure 2 shows with the left image a) the

XRD fiber pattern of PBS melt-crystallized at 20 °C. The ini-
tially isotropic film—with its azimuthally averaged XRD pattern
shown with the blue curve in Figure 1—was uniaxially stretched
by ≈400 % at room temperature, and allowed to relax afterward,
to avoid/revert stress-induced transformation of the 𝛼- into the
𝛽-structure.[21–23] Image b) (right) was observed after additional
heating to 100 °C, to allow crystal reorganization as described
in detail elsewhere.[19] It is important to note that large-strain
solid-state deformation of semicrystalline PBS containing crys-
tals grown directly from the quiescent melt at 100 °C, to obtain
the corresponding crystal structure, is not possible, likely due to
the formation of rather large spherulites, causing brittleness.[40]

Such morphology was proven evident in melt-crystallization at
relatively high temperatures by independent studies,[13,15,41–43] in-
cluding the particular PBS grade used in the present work.[18]

However, as judged by inspection of XRD data obtained on
isotropic PBS directly melt-crystallized at 100 °C on one side, and
isotropic PBS melt-crystallized at 20 °C and then reorganized by
heating to 100 °C on the other side (see red and light-red curves in

Figure 3. Polar plots of parts of the XRD fiber patterns of Figure 2, that is,
of uniaxially drawn PBS melt-crystallized at 20 °C, a) before and b) after
annealing/recrystallization by heating to 100 °C, showing the strong zero-
and first-layer line peaks at q-values ≈1.5 Å−1, for demonstration of the
shift of the 020 and 110 peaks to higher q-values after high-temperature
annealing.

Figure 1, respectively), these different nucleation/crystallization
pathways seem not to affect the unit cell.
Both fiber patterns (Figure 2a,b) show peaks which all are char-

acteristic of the 𝛼-structure of PBS, and there is no indication of
the presence of 𝛽-crystals.[21–23] The crystal orientation, as judged
by the azimuthal width of scattering maxima, is lower than that
achieved after melt-spinning at 200 °C, drawing at room tem-
perature, and additional annealing at 80 °C, as applied for de-
termination of the crystal structure in the literature.[21] However,
the orientation is considered sufficient to analyze the effect of
the crystallization temperature on the unit cell. The peaks are
aligned at layer lines and are therefore well-resolved to allow
analysis of lattice spacings. Indexing of peaks (see Figure 2b) is
based on the literature,[21] except for the gray-labeled reflections
1̄03 and 1̄14. These assignments are based on references [13]
and [23], and on the match between expected and observed lat-
tice spacings, respectively. The most important observation from
Figure 2, however, is that the general angular position and num-
ber of peaks seem independent of the thermal history. Instead,
mainly the radial width of peaks and their exact location are af-
fected by the crystallization temperature. As expected, crystalliza-
tion at 20 °C yields broader peaks than after high-temperature
crystallization/reorganization, due to the formation of smaller
crystals,[20] as well as a change of unit cell parameters is ex-
pected from visual inspection of peak positions. For demonstra-
tion of the latter observation, Figure 3 shows parts of the XRD
patterns of Figure 2a, b in polar coordinates in the q-range from
1.2 to 1.8 Å−1, for direct comparison of the positions of the strong
equatorial 110 and 020 peaks. As such, PBS which was melt-
crystallized at 20 °C, and subsequently heated to 100 °C, ex-
hibits smaller interplanar spacings compared to non-annealed
low-temperature-crystallized PBS.
Measurements as shown in Figure 2 were conducted on two

independently prepared samples. For the second sample, XRD
patterns were collected such that the fiber direction was oriented
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Table 1.Unit-cell parameters, including unit-cell volume and crystal density of the 𝛼-structure of PBSmelt-crystallized at 20 °C, and of PBSmelt-crystallized
at 20 °C and subsequently reorganized by heating to 100 °C. The right two columns show the changes of the unit cell parameters when crystallizing at
20 °C, compared to high-temperature crystallization at 100 °C, reported in both absolute and percentage units.

Unit cell parameter Melt-crystallized at 20 °C Melt-crystallized at 20 °C and heated to
100 °C

Delta-absa) Delta-%b)

a0 [Å] 5.26 ± 0.04 5.21 ± 0.03 +0.05 +1.0 %

b0 [Å] 9.10 ± 0.03 9.08 ± 0.03 +0.02 +0.2 %

c0 [Å] 10.87 ± 0.02 10.87 ± 0.03 ±0.00 ±0.0 %

𝛽 [°] 123.02 ± 0.14 123.30 ± 0.23 +0.28 +0.2 %

Volume [Å3] 436.16 ± 0.84 430.01 ± 1.19 +6.15 +1.4 %

Density [g cm−3] 1.310 ± 0.00(3) 1.328 ± 0.00(4) −0.018 −1.4 %
a)
Delta-abs = (Melt-crystallized at 20 °C) – (Melt-crystallized at 20 °C and heated to 100 °C)

b)
Delta-% =Delta-abs / (Melt-crystallized at 20 °C and heated to 100 °C) × 100 %

Data are averages based on the analysis of two independently prepared samples. In the case of sample 1, a single XRD pattern was obtained for each thermal treatment. In
the case of sample 2, two patterns were observed for each crystallization history, including a variation of the fiber direction with respect to the x and y detector coordinates.
Errors are rounded up.

parallel to both the x and y direction of the detector, allowing
the analysis of the 121 peaks at q≈2.35 Å−1, in addition to those
that were indexed in Figure 2b. The fiber pattern and structure
analysis are detailed in the supporting information. The anal-
ysis included coordinate transformation to account for the flat
detector geometry as illustrated in Figure S1 (Supporting Infor-
mation). A customized interactive diffraction spot selection code
was used to identify diffraction spots near the calculated posi-
tions (see also Figure S2, Supporting Information). The q-values
associated with specific (hkl) lattice planes were averaged, and
the complete set of q-values extracted from the fiber pattern was
used as input for a custom MATLAB-based unit cell parameter
fitting code. Unit cell parameters from the literature,[21] as listed
in Table S1 (Supporting Information), were used as initial val-
ues. All indexed planes were then subjected to least-squares non-
linear refinement. High R2 values were achieved in all samples
studied, indicating good agreement between observed and cal-
culated d-spacing values. Examples of successful fitting results
are provided in Tables S2 and S3, and Figure S3 (Supporting
Information).
As the main outcome of this study, Table 1 shows the unit

cell parameters, the volume of the unit cell, and the crystal
density of PBS melt-crystallized at 20 °C, and of PBS melt-
crystallized at 20 °C and subsequently reorganized by melt-
ing and melt-recrystallization at 100 °C. As such, we observed
that low-temperature crystallization of PBS leads to a significant
increase of the area of the a0-b0 basal plane, while the fiber-
repeat distance remains unchanged, compared to the unit cell
of PBS annealed/recrystallized at high temperature. Ultimately,
this causes an increase in the unit-cell volume and a decrease
in the crystal density. These are in line with our expectations as
low-temperature crystallization may cause entrapment of (con-
formational) crystal defects, leading to an increase in the dis-
tance between neighbored molecular segments due to deterio-
rated lateral packing. Such behavior, to name only a few exam-
ples, has been observed a long time ago for iPP,[24,25] the entire
family of aliphatic PAs,[26–29] or, more recently, for PLLA.[30,31]

In these cases (iPP, PAs, PLLA), the crystal structures observed
during low-temperature crystallization are suggested to be new
polymorphs (e.g. the smectic/mesophase structure of iPP,[24,25]

the pseudohexagonal mesophase in PAs,[26–29,44] or the disorder

𝛼’-phase of PLLA[30,31]). Similar to PBS, these low-temperature-
generated structures appear to be metastable within a certain
temperature range, may improve their structures within limits
by annealing and local-melting-based reorganization, and trans-
form tomore perfect crystals only at high temperatures by reorga-
nization at the global scale, with the latter impacting the crystal
morphology and lamellar-stack structure. All these features are
recognizable by calorimetry, for example by observation of a small
but distinct exothermic peak prior to final melting (see the exam-
ples of iPP,[45–47] PLLA,[48,49] and PBS[19]). Also common for these
examples, the disordered crystals/mesophases typically exhibit a
lower bulk enthalpy of melting than the high-temperature-grown
counterparts (see iPP,[45,47] PLLA,[50–53] and PA 6[54]), however,
quantitative information for the disordered PBS phase is not yet
available. As we do not see a qualitatively different crystal struc-
ture in PBS crystallized at low temperature compared to high-
temperature crystallization, but only an enlarged unit cell, its low-
temperature crystal formmay not be considered as a specific crys-
tal polymorph, though there are many similarities—e.g. regard-
ing thermodynamic metastability and structural features—to the
well-accepted low-temperature-formed polymorphs described
above.

4. Conclusion

In this study, we investigated the effect of the temperature of
melt-crystallization on the crystal structure of poly(butylene suc-
cinate) (PBS). Early X-ray diffraction analyses of isotropic sam-
ples containing crystals grown at different supercooling of the
melt indicated the formation of crystals of different sizes and
perfection, however, without information about the unit cell. X-
ray fiber pattern analysis, performed in this work on uniaxially
drawn samples, revealed that crystallization of PBS at high su-
percooling of the melt causes the growth of crystals of low stabil-
ity with an enlarged basal plane of the monoclinic unit cell and
a lower crystal density compared to high-temperature crystalliza-
tion. This finding is in line with widely observed crystallization-
temperature-induced changes of the unit cell in many other poly-
mers, pointing to the presence of conformational chain defects in
crystals grown at relatively low temperatures.
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