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Simple Summary: Chronic pancreatitis (CP) is a common risk factor for pancreatic ductal
adenocarcinoma (PDAC), which is a highly aggressive cancer. The development of PDAC
is influenced by interactions between tumor cells and their surrounding microenvironment,
including immune cells as well as platelets. Immune cells can either help or hinder tumor
growth, while platelets play a major role in supporting tumor growth and metastasis.
Understanding these interactions is key to developing treatments that impact the immune
and coagulation systems to fight PDAC and improve patient outcomes.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal
forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One
main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced
by persistent inflammation promoting genomic instability, acinar–ductal metaplasia, and
pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular
matrix, including immune cells, can modulate this progression phase. This includes cells of
the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells,
mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting
or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory
responses that support tumor progression by releasing cytokines and growth factors,
fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can
also activate immune surveillance mechanisms, which can limit tumor development. For
example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells,
and active dendritic cells are crucial for a functioning anti-tumor immune response. In
contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment
that is additionally sustained by platelets. Once thought to play a role in hemostasis only,
platelets are now recognized as key players in inflammation and cancer progression. By
releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an
immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation,
progression, metastasis, and immune evasion. Neutrophils and macrophages exist in
different functional subtypes that can both act pro- and anti-tumorigenic. Understanding
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the complex interactions between innate immune cells, platelets, and early precursor
lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that
can harness the immune and potentially also the coagulation system to target and eliminate
tumors, offering hope for improved patient outcomes.

Keywords: innate immune cells; immune microenvironment; platelets; pancreatitis; PDAC

1. Introduction
Chronic pancreatitis (CP) is a major cause of morbidity and a global burden for

healthcare systems [1]. It is a chronic inflammatory condition of the pancreas leading to
progressive scarring of pancreatic tissue, endocrine and exocrine tissue dysfunction, and
increased risk for pancreatic cancer development [2–4]. Persistent tissue damage of the
pancreas is caused primarily by prolonged alcohol abuse or smoking, and more rarely by
hereditary genetic disorders [5–7]. This leads to direct or indirect cellular damages that
result in an inflammatory reaction, activation of pancreatic stellate cells, and ultimately
replacement of orthotopic pancreatic tissue with fibrotic tissue. The key histological fea-
tures (Figure 1a–c) are intralobular, interlobular and periductal fibrosis, atrophy of acinar
parenchyma and acinar–ductal metaplasia (ADM), ductal changes including ductal dilation
and distortion with protein plugs and calcifications and associated interstitial inflamma-
tion [8,9], that ultimately persist after progression to pancreatic ductal adenocarcinoma
(PDAC, Figure 1a,d,e).
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Figure 1. Histology of PDAC with associated features of chronic pancreatitis. Overview of an HE-
stained section of a pancreatic resection specimen (a) of a patient with PDAC (d,e) with associated
parenchyma atrophy and extensive inter- and intralobular fibrosis with interstitial inflammation and
ADM lesions of surrounding peritumoral pancreatic tissue characterizing chronic pancreatitis (b,c).
Arrowheads mark areas with fibrosis and/or desmoplasia, asterisks show areas of inflammation.
Scale bar for (a) 1000 µm, scale bar for (b–e) 500 µm.

It is well-recognized that CP is a risk factor for PDAC development. A large mul-
ticenter retrospective study found that subjects with chronic pancreatitis had a 14-fold
increased risk of developing PDAC [4]. Other studies estimate the risk of PDAC devel-
opment in patients with CP to be even higher [10]. Mechanistically, both genetic as well
as epigenetic mechanisms, subsequent inflammatory processes, and oxidative stress re-
sulting in DNA damage have been implicated in the progressive development of PDAC
from CP [11]. A recent study aimed to identify hub genes in the development of CP
and PDAC by analyzing transcriptomic data of various publicly available datasets. This



Cancers 2025, 17, 1689 3 of 35

study identified the gene CEL (carboxyl ester lipase), a glycoprotein secreted from the
pancreas, as particularly important for CP and PDAC, and its expression correlated with
the pancreatic immune cell landscape [12]. Others identified genes related to cell cycle
and DNA replication to be key for the development of CP and pancreatic cancer [13].
In general, chronic inflammation, as seen in CP, is known to cause DNA damage, endo-
plasmic reticulum (ER) stress and autophagy. Tumor-promoting inflammation is one of
the prerequisites for sustaining proliferative activity and promoting angiogenesis [14–16].
Finally, the accumulation of mutations in acinar or ductal cells of the pancreas can lead
to dysplasia and the development of PDAC [17]. Based on the most recent global cancer
statistics, PDAC is the third leading cause of cancer-related death worldwide [18]. The
molecular pathology of PDAC is dominated by activating mutations in codon 12 of the
proto-oncogene KRAS that occur in >90% of PDACs [19,20]. In the course of the disease,
additional mutations arise, including inactivating mutations in tumor suppressor genes
like TP53, CDKN2A, or SMAD4. It is well accepted that KRAS mutations occur very early
in disease development and are already detected in preneoplastic lesions, including ADM
and pancreatic intraepithelial neoplasia (PanIN) [21–23]. In mice, a KRAS G12D mutation is
able to promote ADM and PanIN formation and spontaneously induce invasive cancer [24],
accelerated by an additional inflammatory trigger [25,26]. Interestingly, KRAS mutations
not only regulate intrinsic signaling pathways to sustain cellular proliferation and inhibit
apoptosis in mutated cells. They are also able to regulate the tumor microenvironment
(TME) by supporting a tumor-promoting inflammatory milieu that eventually contributes
to immune escape [27]. In general, it is believed that KRAS induces several inflammatory
cytokines and chemokines as well as signaling pathways, which promote tumorigenesis.
For example, KRAS mutations have been shown to promote the progression of PanIN
lesions and PDAC, which depended on the secretion of IL-6 (interleukin-6) by myeloid
cells, activation of STAT3 (signal transducer and activator of transcription 3) and, SOCS3
(suppressor of cytokine signaling 3) [28]. In addition, KRAS and IL-6 synergism caused
activation of the mitogen-activated protein kinase (MAPK) signaling pathway that was
responsible for the initiation of pancreatic cancer precursor lesions [29]. Similarly to IL-6,
the CXCR2 (C-X-C motif chemokine receptor 2)/IL-8 axis induced by KRAS was shown to
be crucial for promoting phenotype alterations of CAFs (cancer-associated fibroblasts) and
increased secretion of pro-tumoral cytokines that eventually promoted the development
of PDAC [30]. Moreover, STAT5 activation downstream of oncogenic KRAS signaling
can trigger inflammation-mediated ADM formation and PDAC growth [31]. Interestingly,
oncogenic KRASG12D can be transferred to tumor cells via platelet-like particles leading
to a growth advantage in KRAS wildtype cells [32]. In addition, it was shown that KRAS-
mutated cancer cells induce platelet aggregation [33], a phenomenon called TCIPA (tumor
cell-induced platelet aggregation) that is associated with metastasis formation and might
be an emerging therapeutic target in cancer therapy [34]. Once activated by tumor cells,
platelets can secrete a plethora of inflammatory cytokines that lead to the recruitment and
activation of immune cells, which then secrete chemotactic factors to regulate other immune
cells [35]. Various classes of regulatory and cytotoxic immune cells were frequently iden-
tified within the microenvironment of the pancreas and pancreatic cancer tissue [36–38],
showing differences in diverse tumor areas as well as changes upon disease progression
and neoadjuvant therapy. During early cancer progression, immune cells are still able to
eliminate precancerous cells. However, tumor cytotoxicity or anti-tumor immunity are
mainly suppressed in PDAC, suggesting increasing dysfunction of the immune response,
which is likely mediated by the PDAC cells themselves [35,39]. Moreover, tumor-associated
immune cells can be divided into tumor-antagonizing and tumor-promoting immune cells,
playing various roles in the different stages of tumor progression [40]. PDAC cells can
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influence the metabolic reprogramming of immune cells [41]. In addition, the interaction of
immune cells with platelets, both in the circulation and within the TME, appears to play a
critical role in modulating immune cell infiltration, differentiation, and activity, thereby
regulating tumor growth and immune evasion [42–44]. Altogether, this suggests that both
genetic and non-genetic factors regulate microenvironmental changes in pancreatic tissue
that impact tumorigenesis and cancer dissemination. Moreover, persistent organ injury and
chronic inflammation induce DNA damage in preneoplastic lesions, ultimately resulting in
the breaching of basement membranes and invasive cancer.

In this review, we focus on the role of innate immune effector cells and platelets in
chronic pancreatitis and pancreatic cancer, given their involvement in tissue injury and
repair, fibrosis, stromal remodeling, tumor growth, and metastasis. We focused on the
main key signaling pathways that drive the reorganization of the tumor immune microen-
vironment in PDAC, highlighting their potential as therapeutic targets. Additionally, we
emphasize the emerging role of platelets as orchestrators of innate immunity and potential
facilitators of immune evasion in cancer.

2. Innate Immune Cells in Chronic Pancreatitis and PDAC
Innate immune cells are active players in the pathogenesis of both CP and PDAC.

They perpetuate chronic inflammation, shape the tumor microenvironment, promote or
inhibit tumor progression, and influence immune evasion. In addition, they are altered
in their function, maturation, or number which might have clinical implications. Crucial
functions and intercellular interactions of innate immune cells and tumor cells and their
impact on T cells within the TME are summarized in Figures 2 and 3 and described in more
detail in the following paragraphs.
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impaired NK cell cytotoxicity, e.g., via downregulation of the surface receptor NCR1. Additionally,



Cancers 2025, 17, 1689 5 of 35

MHC (major histocompatibility complex) class I molecules on the tumor cell surface similarly sup-
press NK cell cytotoxicity. Increased NK cell cytotoxicity is mediated via IL-15 (interleukin-15),
secreted by DCs (dendritic cells) or macrophages. Active NK cells can reduce cytotoxic T cell func-
tion and regulate the expansion of Tregs either directly by engaging NKG2D or indirectly by the
secretion of IFN-γ (interferon gamma), IL-10 or perforin. Other mechanisms that can limit adaptive
immune responses include secretion of cytokines by MDSCs or macrophages, including TGF-β (trans-
forming growth factor beta) among others. MDSCs are recruited via tumor cell-derived lactate or
GM-CSF (granulocyte-macrophage colony-stimulating factor). In addition, PSCs (pancreatic stellate
stells) support the recruitment and infiltration as well as differentiation of MDSCs via the STAT3
(signal transducer and activator of transcription 3) pathway. Proliferation of PSCs is induced via
mast cell-derived IL-13 and tryptase. In addition, mast cells are considered tumor-promoting in
PDAC and secrete pro-angiogenic factors that induce an angiogenic switch and limit the efficacy of
anti-angiogenic therapy. The figure was created with BioRender.com.
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Figure 3. Interplay of tumor cells with macrophages, DCs and neutrophils. Integrin αV/β8 and
GARP (glycoprotein a repetitions predominant) secreted by tumor cells lead to a metabolic switch
in macrophages promoting the secreting of TGF-β that supports an immunosuppressive and tumor-
promoting TME (tumor microenvironment). In addition, tumor cells secreted TNF-α (tumor necrosis
factor alpha) and PGE2 (prostaglandin E2) are part of a positive feedback loop, which triggers IL-1β
secretion by macrophages. This sustains a tumor-promoting inflammatory response, facilitating immune

BioRender.com


Cancers 2025, 17, 1689 6 of 35

suppression and tumor progression. Tumor cell-derived PGE2, Reg3g (regenerating islet-derived
protein 3 gamma) and lactate induced dysfunctional phenotypic changes in DCs, reduced DC mat-
uration and impaired antigen presentation by DCs, respectively. In addition, tumor cells increase
TLR4 (toll-like-receptor 4) expression in DCs which leads to a secretion of cytokines via the MyD88
pathways that favor Th1 cell differentiation. In summary, tumor cells can influence DCs in ways that
induce both anti-tumorigenic and pro-tumorigenic effects in the T cell compartment. A close interac-
tion also exists between tumor cells and neutrophils. Tumor-derived cytokines induce infiltration
of neutrophils into tumor tissue and induce NET formation. On the other hand, neutrophils secrete
cytokines that support a tumor-promoting TME and induce tumor cell migration and invasion. The
figure was created with BioRender.com.

2.1. Natural Killer (NK) Cells
2.1.1. Key Physiological Functions

Natural killer (NK) cells have been the focus of fundamental research for quite some
time, as they represent an efficient endogenous first-line defense against cancer [45,46]. As
part of the innate immune system, NK cells are “naturally” cytotoxic, which means they are
able to identify virus-infected [45] or malignant cells and eliminate them via induction of
apoptosis without prior antigen exposure. The activity of NK cells is balanced by activating
and inhibitory receptors on their surface [47–51], which in turn are affected by activating
and inhibitory signals. NK cells recognize if a proximal cell expresses a ligand profile
associated with oncogenic transformation. The joint activating and inhibitory signals
decide whether a cell is targeted for killing [52]. Activating NK cell receptors recognize
stress-induced ligands on the target cells, as well as other alert molecules and toll-like-
receptor ligands. Additionally, NK cells are able to exert ADCC (antibody-dependent cell
cytotoxicity) by recognizing antibody-coated target cells with the Fc receptor CD16 [53].
Inhibitory receptors recognize constitutively expressed self-molecules on potentially altered
target cells and induce NK cell tolerance, especially the MHC-I (major histocompatibility
complex class I molecule) [54]. According to the “missing self”-hypothesis, NK cells
contribute to T cell-mediated killing by eliminating cells that lack MHC-I [50]. However,
other inhibitory ways exist that are independent of MHC-I molecules. In this context, the
inhibition of NK cells via the 2B4 receptor is one of the best-characterized mechanisms.
Other NK-cell inhibitory receptors that have non-MHC-molecule ligands include, for
example, the NK-cell-receptor protein 1 family, the carcinoembryonic antigen family, the
sialic-acid-binding immunoglobulin-like lectins [55].

2.1.2. Pathophysiology in PDAC

NK cells should kill single tumor cells before they develop into solid tumors. Also,
they should contribute to preventing metastasis by eliminating circulating tumor cells [56].
Previous studies have shown that the pathophysiology and progression of pancreatic
cancer are strongly affected by the interaction of cancer cells with the TME, and are closely
associated with dysfunctional NK cells [57–61]. Impairment of NK cells is associated
with a reduced ability of the organism to target tumor cells and thus promotes cancer
spread [62]. PDAC cells are able to develop mechanisms to inhibit NK cell function and thus
protect themselves from the host immune system [63–65]. NK cells in the TME markedly
downregulate activating receptors in response to immune evasion factors produced by
tumor cells [66]. For example, tumor-derived lactate causes a downregulation of NCR1
(NKp46), therefore, inhibiting NK cell cytotoxicity [67]. Tumor cells can also secrete the
protein IGHG1 (Igγ-1 chain C region), which attenuates the cytotoxic activity of NK cells by
inhibiting ADCC [68]. He et al. discovered that PDAC cells actively consume vitamin B6,
which NK cells need as a critical energy source for activation via glycogen metabolism [69].
Besides the direct influence of tumor cells, NK cells are indirectly affected by other immune
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cells and platelets found in the TME. For example, lactate increases the amount of MDSCs
(myeloid-derived suppressor cells) in the tumor tissue and, therefore, leads to NK cell
suppression indirectly [67]. It could be shown that natural killer T (NKT) cells have a
beneficial effect on NK cell activity [70]. IL-15 (interleukin-15) produced by dendritic
cells, monocytes, and macrophages increases NK cell cytotoxicity [71]. In contrast to that,
platelets have a suppressive effect on NK cell function, as described in detail below [72,73].

2.1.3. Clinical Implications in PDAC

Despite the limited functionality of NK cells as mentioned above, the amount of
circulating NK cells in the peripheral blood of PDAC patients is a positive prognostic
biomarker for resectable pancreatic cancer [74]. NK cells in the peripheral blood of PDAC
patients display a reduced cytotoxic function and adopt a regulatory, IL-10-producing
phenotype [66]. PDAC patients with high NK cell infiltration in the tumor displayed
improved survival [69]. Interferon type I and II, produced by NK cells, are enriched
in tumors with later recurrence [74]. As NK cells are able to kill tumor cells without
prior sensitization, they have become a key focus of cell-mediated cancer immunotherapy.
It could be shown that less differentiated tumor cells were more sensitive to NK cell-
mediated killing, as higher differentiated tumors could re-increase their expression of
MHC-I [75]. Highly differentiated cells were, in turn, more sensitive to chemotherapy.
This suggests that a combination of surgical resection, chemotherapy, and immunotherapy
might be a promising tool for the treatment of pancreatic cancer treatment. Especially
after tumor resection and adjuvant treatment, NK cells play a crucial role in the control
of recurrence [75]. Brooks et al. showed that the activation of CD8+ T cells and NK cells
after surgery increased perioperative survival. Additionally, neoadjuvant anti-PD-1 and
gemcitabine treatment, followed by tumor resection, and adjuvant anti-CD96 therapy,
stimulated NK cell activation and led to significantly improved survival [76].

2.1.4. Therapeutic Strategies

Various approaches exist to NK cell immunotherapy. One is to block NK cell MHC-I
specific inhibitory receptors to increase NK cell effector function against tumor cells. This
was successfully tested in mice with leukemia [77]. It is also possible to upregulate the
expression of NKG2D, which is the strongest NK cell activator [52]. Another approach
would be to isolate NK cells from the patient’s peripheral blood, followed by in vitro
stimulation with IL-2 and/or co-culture with K562 tumor cells, resulting in proliferation
and activation. NK cells are then released back into the patient’s bloodstream [52,78]. It
is also possible to produce CAR-NK cells that bind to specific surface molecules of the
tumor [52]. For example, CD70-targeting CAR NK cells were able to eliminate both PDAC
cells and CAFs (cancer-associated fibroblasts) in vitro and in vivo when stimulated with
IL-15 [79]. In conclusion, NK cells play a crucial role in tumor development, especially in
the early stages, and are a promising target for immunotherapies.

2.2. Macrophages
2.2.1. Key Physiological Functions

Macrophages play a wide role in tissue maintenance and pathological conditions,
and their divergent role depends on several factors like origin, residence, and micro-
environmental conditions [80]. Macrophages play a dynamic role in the immune sys-
tem and are traditionally classified into two polarization states. While M1 macrophages
are considered pro-inflammatory cells with anti-tumor properties, M2 macrophages
have anti-inflammatory and pro-tumor properties [81]. Recent studies have revealed
that macrophages can have mixed origins. In pancreatic cancer, both tissue-resident
macrophages as well as inflammatory monocytes can be the source of TAMs (tumor-
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associated macrophages), exhibiting distinct functions depending on their source [82].
Macrophages are phenotypically highly plastic by nature, and polarization depends on
external stimuli. In PDAC, macrophages are more prone to a pro-tumorigenic, or M2
polarization state. M2 macrophages can promote tumor angiogenesis, immune evasion,
chemotherapy resistance, metabolic rewiring, and metastasis [37]. The phenotypic proper-
ties of macrophages highly depend on TME factors like hypoxia, cachexia, fibrosis, and
immune-mediated secreted factors [80].

2.2.2. Pathophysiology in Chronic Pancreatitis or PDAC

TAMs are the most abundant inflammatory cells in chronic pancreatitis and pancreatic
cancer. TAMs are present and increase in number with disease progression from the early
stage of PanIN to the metastatic stage of PDAC [83]. A detailed multi-institutional study of
more than 300 patients by Väyrynen et al. reported that a higher density of macrophages
in PDAC is associated with a worse prognosis and DFS (disease-free survival). While M2
macrophages were associated with worse prognosis and DFS, M1 macrophages did not
show any specific correlation with prognosis [84]. However, macrophages might not only
have disease-promoting functions but are also necessary for maintaining tissue homeostasis
during pancreatic inflammation. Baer et al. identified a subset of TRMs (tissue-resident
macrophages) showing high levels of LYVE1 and expression of genes important for tissue
homeostasis. TRMs were necessary for tissue fibrosis and mediated a protective effect in
cerulean-induced acute pancreatitis. In contrast, LYVE1+ TRMs supported pancreatitis-
accelerated PDAC progression [85]. Another recent publication demonstrated the role
of IL-1β+ TAMs in pancreatic cancer. This study highlighted that this subset of TAMs
interacted with PDAC cells expressing an IL-1β response signature, leading to worse
prognosis and survival of patients. Upon exposure to TNF (tumor necrosis factor) and
PGE2 (prostaglandin E2) secreted by PDAC cells infiltrating monocytes differentiated to
IL-1β+ TAMs and facilitated inflammatory reprogramming of cancer cells to potentiate
the release of TNF, PGE2, and other factors for maintenance of an IL-1β+ TAM state. This
positive feedback loop helped to mediate the inflammatory reprogramming leading to
tumor-promoting inflammation, facilitating immune suppression and tissue repair in the
tumor, and establishing the PGE2–IL-1β axis as a key driver of the inflammation-induced
tumor progression [86]. Macrophages also play important roles in cachexia in pancreatic
cancer. A current study highlighted the role of TWEAK (TNF-related weak inducer of
apoptosis), a pro-inflammatory cytokine belonging to the TNF family, which led to mus-
cle wasting. Specifically, tumor cells induced secretion of CCL2 (C-C motif chemokine
ligand 2), leading to macrophage activation and subsequent TWEAK secretion by tumor
cells via the CCL5/TRAF6 (TNF receptor-associated factor 6)/NF-κB signaling axis, which
stimulated muscular atrophy [87]. Macrophage function and phenotypic switch largely de-
pend on changes in their metabolic state [88,89]. M1 macrophage mediate their metabolism
through glycolysis by increased glucose consumption, whilst M2 macrophages show an
increase in oxidative phosphorylation [90]. A study performed by Zhang et al. using a co-
culture model to understand the metabolic crosstalk between cancer cells and macrophages
described the capability of PDAC cells to metabolically alter M1 macrophages to release
the M2-specific cytokine IL-10. The results from the study suggested that the metabolic
switch of M1 macrophages happens via direct interaction with PDAC cells, mediated by
GARP (glycoprotein a repetitions predominant) and integrin αV/β8, and ultimately leads
to TGF-β (transforming growth factor beta) secretion. Interestingly, selective reprogram-
ming induced by PDAC cell interaction was only possible in M1 macrophages, whereas
M2-like macrophages retained their phenotype upon tumor cell interaction. The same
study highlighted that PDAC cells induced DNA methylation of genes related to glucose
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metabolism and oxidative phosphorylation (OXPHOS), including quinone oxidoreductase
(NQO-1) and aldehyde dehydrogenase 1A3 (ALDH1A3), in M1 macrophages. This led
to metabolic dysregulation. In M2 macrophages, these metabolism-related genes were
upregulated [91]. Metabolic changes in macrophages might also influence chemoresis-
tance. Halbrook et al. generated tumor-educated macrophages (TEMs) by growing bone
marrow-derived macrophages in conditioned media from PDAC cells and performing
metabolomics profiling. They identified an increased release of pyrimidine nucleosides
and nucleobases in TEMs compared to control macrophages that impeded gemcitabine
cytotoxic activity through molecular competition [92].

2.2.3. Clinical Implications and Therapeutic Strategies

A deeper and better understanding of signaling pathways involved in tumor-
associated macrophage recruitment and functional properties has led to the development
of several macrophage-targeted therapies in various cancers. For example, trabectedin
and its analog lurbinectedin selectively depleted monocytes and TAMs in patients and
mice through the TNFRSF10 (tumor necrosis factor receptor superfamily member 10, also
known as TRAIL)-dependent apoptosis pathway [93]. CD40, which is a key component
of both the innate and adaptive immune system, remains an attractive target for cancer
immunotherapy. CD40 receptor agonists are used to facilitate the production of TNF,
reactive oxygen, and nitrogen species, which mediate the bactericidal and tumoricidal
activity of macrophages. CD40 agonist administration caused an increased influx of CD4+

T cells into the TME. The safety of APX005M (CD40 agonistic antibody) was assessed in a
phase I study in patients with metastatic pancreatic cancer. However, promising results
demand further investigation in phase II/III clinical trials [94,95]. Altogether, this suggests
that macrophages are an integral part of the pancreatic TME. The opportunity to under-
stand TAM diversity at a single cell level and within a spatial context will enable a better
characterization of pro- and anti-tumor behaviors of macrophages in PDAC [93].

2.3. Dendritic Cells
2.3.1. Key Physiological Functions

Dendritic cells (DCs) are characterized as professional antigen-presenting cells [96] that
bridge the innate and adaptive immune system [96]. DCs can differentiate in various ways
to fulfill their tasks [96]. All DC subsets originate from HSCs (hematopoietic stem cells)
within the bone marrow [97,98]. HSCs develop into CMPs (common myeloid progenitors)
and CLPs (common lymphoid progenitors). CMPs generate imDCs (immature DCs) and
monocytes, which can differentiate into cDCs (conventional DCs) or moDCs (monocyte-
derived DCs) [98]. cDCs are further classified into cDC1s, which become interstitial DCs,
and cDC2s, which differentiate into Langerhans cells in the epidermis [96,99–101]. The
only DC subtype that develops from CLPs is the pDC (plasmacytoid DC) subtype, which
can produce high amounts of type I IFN (interferon) to actively participate in antiviral
immunity [100,102]. In PDAC, several DC subtypes can be affected. However, cDC1
dendritic cells are particularly important because of their ability to present antigens to T
cells. Although this classification is simplified, recent studies have defined multiple new
DC types with unique functional properties [103].

2.3.2. Pathophysiology in PDAC

Disturbed maturation and a reduced number of DCs are fundamental problems in
PDAC. The maturation of DCs can also be influenced by Reg3g (regenerating islet-derived
protein 3 gamma) expression in PDAC cells. Reg3g promoted pancreatic cancer carcino-
genesis via a STAT3 signaling pathway in a murine model of chronic pancreatitis [104].
Regarding an intratumoral immune response, Reg3g triggered an immunosuppressive



Cancers 2025, 17, 1689 10 of 35

microenvironment, including suppression of DC maturation, upregulation of EGFR (epi-
dermal growth factor receptor) expression, and increase in Th2 cytokines in DCs while
suppressing and inactivating CD8+ T cell responses [105]. Ochi et al. showed that MyD88
(myeloid differentiation primary response 88 innate immune signal transduction adaptor)
inhibition exacerbated pancreatic inflammation and progression to invasive cancer [106].
TLR4 (toll-like-receptor 4) activation on DCs usually triggers either a MyD88-dependent
or -independent pathway [107]. The MyD88-dependent pathway is the predominant
one in DCs and leads to the production of pro-inflammatory cytokines, favoring Th1-
differentiation. This, in turn, can activate anti-tumor immunity and suppress pancre-
atic tumor growth. Blocking the MyD88-dependent-pathway induces pancreatic antigen-
restricted, Th2-deviated CD4+ T cells, leading to a transition from pancreatitis to pancreatic
carcinoma [106]. A similar report by Lin and colleagues showed that cDC1 abundance and
maturation declined progressively during pancreatic carcinogenesis. They remained in
a semi-mature state associated with the upregulation of inflammation-related genes but
impaired production of T-cell polarizing cytokines. Consequently, cDC1-mediated CD8+ T
cell priming was compromised [108]. The TME, featuring hypoxia, dense stroma, a high
presence of immunosuppressive cells like MDSCs and Tregs (regulatory T cells), and low
pH due to the glycolytic metabolism of tumor cells can also affect DC function [109,110].
Elevated glycolytic activity in PDAC cells led to decreased DC infiltration and impaired
antigen-presenting functions due to low glucose and high lactate concentrations, which
were detrimental to DC mitochondrial and antigen-presenting capabilities [111]. Addition-
ally, Treg infiltration suppressed the immunogenicity of DCs, contributing to a disturbed
T cell activation [112]. Kenkel et al. described an immunosuppressive subset of DCs that
promoted Treg expansion, thus leading to a higher risk of tumor metastasis [113].

2.3.3. Clinical Implications in PDAC

Disturbed maturation and a reduced number of DCs are associated with poor progno-
sis and low survival rates in PDAC patients [114–116]. In addition, DCs play a crucial role
in immunotherapy against various cancers, including PDAC [117–120]. PDAC patients
exhibited decreased levels and enhanced apoptosis of cDCs and pDCs in comparison to
control patients. Additionally, patients who have undergone tumor resection had lower DC
counts even 12 weeks after surgery. Moreover, the authors found that high blood DC levels
positively correlated with prolonged patient survival [120] and were usually associated
with a better prognosis [121]. This is consistent with the data of Plesca et al., which showed
that higher frequencies of tumor-infiltrating cDC1s and pDCs correlated with improved
survival outcomes in PDAC patients, suggesting that the presence and functionality of DCs
could serve as prognostic markers [122]. The same group claimed that the blood of PDAC
patients accommodates more DCs with disturbed maturation in comparison to healthy
patients. This includes both cDCs and pDCs. They showed an increased expression of
CD83, CD40, B7H3 (also known as CD276), PD-L1 (also known as CD274), CCR6 (C-C
chemokine receptor type 6), and CCR7 and a lowered expression of ICOSL (inducible T cell
costimulator ligand), and DCIR, also known as CLEC4A (C-type lectin domain family 4
member A) [123]. Mechanistically, inflammatory factors, including elevated levels of PGE2

in PDAC patients’ plasma, were related to dysfunctional changes in DC phenotype [123].
Before pancreatic cancer development, particularly at the (IPMN) (intraductal papillary
mucinous neoplasm) stage, increased secretion of CXCL17 and ICAM2 (intercellular ad-
hesion molecule 2) led to the infiltration of cDCs, followed by T-cell-mediated cytolysis
of tumor cells. Secretion of CXCL17 and ICAM2 was significantly decreased when IPMA
progressed to pancreatic cancer, contributing to immune tolerance [124].
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2.3.4. Therapeutic Strategies

DCs are a fundamental component of immunotherapeutic approaches in numerous
cancers, including PDAC [98,116,117]. One possibility is given by pulsing DCs with tumor-
specific antigens, e.g., using cell lysates, KRAS G12D1–23 peptide, or alpha-enolase. As an
example, in mice treated with alpha-enolase-pulsed DCs, T cell proliferation is stimulated.
As a result, these cells secreted IFN-γ, which subsequently led to PDAC cell lysis [100,118].
Alternatively, DC vaccination might be combined with other treatments. Mahadevan et al.
reported that using engineered cancer-specific cDC1s along with immunotherapy might be
an approach for the treatment of pancreatitis-associated PDAC. They showed that ex vivo-
engineered cDC1s stimulated with tumor antigens sensitized resistant PDAC tumors to
immune checkpoint blockade [98]. A recent study showed that IL-2 promoted the expansion
and intratumoral accretion of tumor-infiltrating DCs in PDAC [118]. Further approaches
pursue the creation of a more favorable immune landscape to improve both DC infiltration
and T cell activation and infiltration by inhibiting TNFR1 signaling or hypoxia-driven
immune checkpoints [119,120]. Although DC-based therapy is promising in PDAC, further
research is necessary to understand the fundamental biology and functionality of tumor-
associated DCs to be able to improve or combine existing immunotherapeutic approaches.

2.4. Mast Cells
2.4.1. Key Physiological Functions

Mast cells belong to the group of granulocytes and derive from myeloid progenitor
cells [125]. During mast cell differentiation and maturation, mast cell progenitor cells
typically migrate to areas of the body that are in direct contact with the environment, e.g.,
the skin, mucosa of the conjunctiva, and the respiratory and gastrointestinal tract [126].
Therefore, they are only found as immature precursor cells in the peripheral blood [101].
Fully differentiated mast cells are traditionally classified into three categories based on the
dominant serine protease secreted: MCT (tryptase-producing mast cells), MCC (chymase-
producing mast cells), and MCTC, which produce both [127]. Further classification is based
on the location of the mast cell: CMCs (connective tissue mast cells) can be distinguished
from MMCs (mucosal mast cells) [128]. Mast cells play a vital role in allergic reactions,
especially type 1 allergic reactions. Physiologically, mast cells bind IgE antibodies, which
are produced by B-lymphocytes after first antigen contact. At the time of a second antigen
contact, the antigen binds to IgE on the mast cell’s surface, causing its degranulation.
Regulation of mast cells is mediated by the KIT receptor (CD117) [129]. Mast cell granules
comprise, for instance, histamine, heparin, proteases (tryptase, chymase), and cytokines
like interleukin (IL-1, -3, -4, -5, -8, -10), as well as PDGF (platelet-derived growth factor),
TNF-α, TGF-β, and MMP9 (matrix metalloproteinase-9) [130].

2.4.2. Pathophysiology and Clinical Implications in PDAC

The role of mast cells in cancer is multifaceted [131–133]. In some cancer types,
mast cell infiltration of the TME is associated with better outcomes [134–136]. In
other tumor entities, it has a negative impact on patient prognosis [137], e.g., for
melanoma [138,139], breast cancer [140,141], and gastric cancer [142,143]. In PDAC, they
are considered one of the tumor-promoting cell types [144], and mast cell infiltration is
associated with a lower survival rate [145–147]. Tumor-infiltrating mast cells often accu-
mulate at the edges of the tumor, which is also observed in PDAC [148,149]. Analyses of
the mast cell count in pancreatic tissue from PDAC patients after curative partial pancreas
resection showed a correlation between high mast cell count and TNM stage. Remark-
ably, only mast cell infiltration of the intratumoral border zone could be identified as an
independent prognostic factor for overall survival, whereas survival did not correlate
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with the mast cell count in the intratumoral central zone or in the peritumoral zone [145].
A similar effect was also described for K-rasG12V mice, where mast cells accumulated at
the tumor edge [146]. Therefore, they contributed significantly to the angiogenic switch
during tumor progression [150,151]. Mast cells secrete several pro-angiogenic factors, such
as VEGF (vascular endothelial growth factor), TNF-α, TGF-β, FGF-2 (fibroblast growth
factor-2), and angiopoietin-1 [152–156]. Consistent with these findings, mast cell inhibition
promoted the efficiency of anti-angiogenic therapy [157]. Other factors secreted by mast
cells are IL-13 and tryptase, which directly induce the proliferation of pancreatic stellate
cells (PSCs) [158,159]. On the other hand, tumor growth was suppressed significantly in
mast cell-deficient mice [146,151]. In conclusion, mast cells infiltrate the TME of PDAC,
promoting tumor progression by activating PSCs and facilitating angiogenesis.

2.4.3. Therapeutic Strategies

Mast cells can be useful targets in cancer therapy. So far, three different approaches
have evolved: mast cell inhibition, decreasing the mast cell count, or altering the effects of
secreted mediators [160]. Although previous findings suggested that mast cell inhibition
might be a promising approach, data for PDAC therapy are scarce [144]. Decreasing their
chemotaxis by pharmacological inhibition of CXCR4 resulted in reduced mast cell migration
in mice, and thus improved survival [158]. The tyrosine kinase inhibitor masitinib, which
selectively targets the c-Kit receptor, increased overall survival in PDAC patients when
combined with gemcitabine [161–163]. However, it is not yet known to what extent the
effect of masitinib on mast cells contributes to these findings. Thus, further research is
needed to elucidate the potential of mast cell inhibition in PDAC therapy.

2.5. Neutrophils
2.5.1. Key Physiological Functions

Neutrophils are the most abundant innate immune cells in the blood and bone mar-
row [164,165]. They are the first cells being recruited to the site of inflammation and play
a crucial role in host defense mechanisms, having antibacterial [166], antifungal [167],
and antiviral [168] functions. Also, they perform phagocytosis of cell debris, an essential
process for tissue regeneration and angiogenesis [169]. Some studies have proposed that
two groups of tumor-associated neutrophils exist that differ according to their polarization
state: tumor-suppressing N1 neutrophils and tumor-promoting N2 neutrophils [170].

2.5.2. Pathophysiology and Clinical Implications in PDAC

Since neutrophils are considered major initiators of inflammation, they play a role
in both acute and chronic pancreatitis as well as PDAC. Normal pancreatic tissue is not
infiltrated by neutrophils, however, infiltration is significantly increased after cerulein-
mediated tissue damage and release of PAF (platelet-activating factor) [171]. Neutrophils
are recruited by the secretion of pro-inflammatory factors, such as TNF-α and IL-23. On
the other hand, infiltrated neutrophils secrete a number of chemokines that further attract
other immune cells of the innate and adaptive immune system [60]. In addition, the
secretion of cytokines, including CXCL10 and CCL-21, can promote the migration of
pancreatic cancer cells towards sensory neurons [172]. Moreover, neutrophil-derived
elastase has been shown to mediate the dyshesion of tumor cells and degradation of
E-cadherin, contributing to enhanced migration and invasion [173]. Another important
function of neutrophils is the capability of forming NETs (neutrophil extracellular traps).
NETs are large, web-like structures that contain neutrophil DNA as well as cytosolic and
granule proteins [174] and are considered a defense mechanism for bacterial killing. Across
several cancer types, NETs may promote tumor progression and metastasis (reviewed
in [175]). Pancreatic cancer cells were able to induce NET formation [176] and the serum of
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PDAC patients has a higher NET-forming potential mediated by IL-17 [177]. In addition,
tumor-derived TIMP-1 (tissue inhibitor of metalloproteinase-1) triggered NET formation
upon interaction with its receptor CD63 and activation of ERK signaling. Inhibition of
TIMP-1 or inhibition of NETosis prolonged survival in a murine PDAC model. Likewise,
TIMP-1 levels correlated with local and systemic NET-formation in PDAC patients and
negatively affected survival [178]. Furthermore, additional studies have shown that NETs
induce migration, invasion, and EMT (epithelial–mesenchymal transition) of pancreatic
cancer cells in an IL-1b/EGFR/ERK-dependent manner, which could potentially be utilized
for therapy [179]. Interestingly, inhibition of PAD4 (protein arginine deiminase 4), which is
critical for NET release, reduced NET formation and suppressed pancreatic tumor growth
in a xenograft model [180]. NETs not only entrap pathogens but also bind platelets and
contribute to cancer-associated thrombosis [181], which is associated with reduced survival
in pancreatic cancer patients [182].

2.6. Myeloid-Derived Suppressor Cells (MDSCs)
2.6.1. Key Physiological Functions

MDSCs are a heterogeneous cell population of pathologically activated neutrophils
(granulocytic/polymorphonuclear MDSCs; PMN-MDSCs) and monocytes (monocytic
MDSCs; M-MDSCs) that show strong immune suppressive capabilities and have been
implicated in multiple malignancies [183]. While M-MDSCs are mainly responsible for
T cell suppression in an antigen-specific and non-specific manner, associated with the
production of nitric oxide and cytokines [184], PMN-MDSCs suppress T cells primarily in
an antigen-specific manner [185]. The pathological activation and recruitment of MDSCs
are mediated by a large variety of mostly pro-inflammatory cytokines, indicating the
increasing importance of these cells in malignancies associated with chronic inflammation,
such as chronic pancreatitis with associated pancreatic adenocarcinoma.

2.6.2. Pathophysiology and Clinical Implications in PDAC

Monitoring infiltration of immune cells during disease progression in an LSL-
KrasG12D/+;p48Cre mouse model showed an early influx of leukocytes into pancreatic tissue.
Macrophage infiltration began very early in preinvasive disease, followed by an infil-
tration of MDSCs. MDSCs persisted after progression to PDAC and were found to be
highly immunosuppressive in vitro [83]. Several studies have revealed that the homing
of MDSCs to the pancreas in preinvasive and invasive diseases is mediated by cytokines
directly produced within the pancreas. For example, PDAC cells were found to be able
to produce high levels of GM-CSF (granulocyte-macrophage colony-stimulating factor)
in mice. GM-CSF was capable of inducing splenocyte differentiation into MDSCs that
suppressed T cell responses in vitro [186]. Likewise, human PDAC prominently expressed
GM-CSF as well. Neutralizing GM-CSF blocked the recruitment of MDSCs and reduced
tumor growth in mice that were dependent on CD8+ T cells [186]. In mice, data showed
that the upregulation of GM-CSF was specifically dependent on oncogenic KrasG12D [187].
Furthermore, other factors including IL-1β, VEGF, CXCL1, and IL-6 can influence MDSC
number in the tumor microenvironment, some of which are produced by PSCs. Mace
et al. showed that PSCs secreted MDSC-promoting cytokines and chemokines and led to
MDSC differentiation in a STAT3-dependent manner [188]. STAT3 signaling is suggested
to be a crucial pathway regulating immunosuppressive activity in MDSCs. In head and
neck squamous cell carcinoma patients, STAT3 signaling was responsible for arginase-I
expression in MDSCs, which was crucial for MDSCs’ suppressive function [189]. Arginase-I
has been shown to be a key driver of the immunosuppressive tumor microenvironment
in PDAC [190]. In addition, the transformation of monocytes to M-MDSCs was depen-
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dent on STAT3 activation contributing to stemness and increased mesenchymal properties
in pancreatic cancer [191]. Porembka et al. showed that C57BL/6 mice inoculated with
Panc02 pancreatic cancer cells have increased numbers of MDSCs in their bone marrow
and peripheral blood, which were recruited to the tumor site and were able to decrease T
cell responses. Similar results were found in PDAC patients. Recruitment of MDSCs and
tumor growth could be inhibited by zoledronic acid treatment in vivo [192]. Unfortunately,
translating these findings to PDAC patients was not successful as zoledronic acid did
not impact overall or progression-free survival [193]. Besides inhibition of CD8+ T cell
function directly, MDSCs can also stimulate the expansion of immunosuppressive Tregs
via TGF-β and IFN-γ [194,195], which contributes to impaired CD8+ T cell function as well.
In addition, the influence on NK cells as well as macrophages can also attenuate anti-tumor
immunity [196–198].

2.6.3. Therapeutic Strategies

As MDSCs are key drivers of immune suppression in pancreatic cancer, targeting
MDSCs might represent a potential tool to promote anti-tumor response. Interestingly,
gemcitabine is known to decrease the quantity of MDSCs, thereby promoting antitumor
response [199]. Another approach includes targeting mediators that promote their pro-
liferation and recruitment, e.g., GM-CSF, as mentioned above. In addition, inhibitors of
the JAK2/STAT3 signaling pathway might limit MDSC stimulation and infiltration. This
was tested in immunocompetent PDAC mouse models, where the authors used CXCR4-
modified Claudin 18.2-directed CAR-T cells that suppressed recruitment of MDSCs via a
STAT3/NF-κB/SDF-1α axis. CXCR4 not only led to a better infiltration of CAR-T cells into
tumor sites but also increased the efficacy of CAR-T cell therapy by reducing the production
of STAT3-mediated cytokines [200].

While current and novel therapeutic approaches might reduce MDSC function and
infiltration, it is known that chemotherapy in PDAC leads to the release of inflammatory
factors, including GM-CSF, that contribute to increased numbers of intratumoral MD-
SCs [201,202]. In conclusion, MDSCs play a crucial role in shaping the tumor immune
microenvironment in PDAC, thereby affecting initiation, disease progression, and ther-
apy response. Understanding their function and regulation might further help to design
innovative therapeutic strategies that impact the PDAC TME.

3. Platelets as Regulators of Tumor Growth and Immunity
Platelets are increasingly recognized as active contributors to tumor growth, immunity,

and immune evasion beyond their traditional role in hemostasis. Interaction with immune
or cancer cells happens either directly via receptor–ligand interactions or indirectly via the
secretion of cytokines or growth factors. Thus, platelets are positioned at the intersection of
inflammation, tumor immunity, and cancer progression.

3.1. Key Physiological Functions

Platelets or thrombocytes are blood components that, although not categorized as im-
mune cells, can have considerable roles in inflammation and immune response. Megakary-
ocytes are the precursors of platelets and reside in the bone marrow, where platelet for-
mation primarily occurs [203]. After their release from megakaryocytes into the blood
vessels, platelets have a lifespan of 5–7 days [204]. Being highly abundant in circulation,
platelets play a key role in regulating hemostasis. They are able to sense damage to blood
vessels within seconds as they recognize glycosylated structures of the extracellular matrix,
like collagen, von Willebrand factor, laminin, or fibronectin, that become exposed when
the vessel is injured. Subsequently, platelets become activated [205]. In the past years,
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accumulating evidence suggests that platelets become activated by tumor cells as well and
that they are not merely bystander cells but play active roles in several steps of tumori-
genesis [206]. For example, platelets were shown to regulate tumor growth and therapy
response [207,208]. Moreover, platelets interact with circulating tumor cells and protect
them from anoikis, thereby promoting metastasis formation [209]. In addition, several
studies have highlighted platelets as orchestrators of immunity and regulators of the cancer
immune microenvironment with potential roles in immune evasion. It is well known that
platelets store and release chemokines and cytokines upon activation that can regulate the
recruitment, activation, and differentiation of immune cells [210]. In addition, platelets in-
teract with immune cells of innate and adaptive immunity via receptor–ligand interactions,
e.g., PSGL-1 (P-selectin-P-selectin glycoprotein ligand-1 interaction) that mediates rolling
and adhesion of neutrophils [211]. Similarly to innate immune cells, they express PRRs
(pattern recognition receptors) like TLRs, NLRs (NOD-like receptors), and CLR (C-type
lectin receptors) on their surface [212] that recognize damage- or pathogen-associated
molecular patterns, and they communicate with or present antigens to T cells [213].

3.2. Impact of Platelets on Immune Cells of the Innate Immune System

In several murine models of inflammation, platelets have been key in regulating the
extravasation of immune cells [214,215]. When platelet numbers were low, host defense in
bacterial pneumonia was impaired [216,217]. Likewise, in cancer, immune cell infiltration
and activity can be regulated by platelets. This is the result of direct platelet-immune cell
interactions or cytokine secretion after platelet activation (Figure 4a–c). Subsequently, this
can impact tumor growth and metastasis.

It has long been recognized that NK cell-mediated tumor lysis is impaired by platelets
forming a platelet coat around circulating tumor cells [218]. Mechanistically, it has been
shown that platelet coating led to a transfer of MHC class I molecules onto the tumor
cell surface that disrupted NK cell recognition and impaired cytotoxicity [73]. Alter-
natively, platelet coating reduced surface expression of NKG2D ligands, in particular,
MHC class I chain-related sequence A (MICA) and MICB, on tumor cells and thereby
diminished NKG2D-dependent lysis of tumor cells [219]. NKG2D expression can also
be downregulated by platelet-derived TGF-β [72]. Moreover, platelet RANKL (receptor
activator of nF-κB ligand) reduced IFN-γ production by NK cells and inhibited NK cell
cytotoxicity [220].

Platelets can also regulate the differentiation of innate immune cells. This has been
shown for DCs, where platelets reduced DC differentiation and altered production of
proinflammatory and immunoregulatory cytokines [221]. In contrast to these findings, an-
other study reported that platelets enhanced DC maturation, infiltration, and their capacity
to stimulate lymphocyte proliferation [222]. Similarly, the polarisation of macrophages
can be regulated by platelet interaction. Here, studies show that platelets can promote
both a polarisation towards an M1- and an M2-phenotype, likely depending on the model
used. In a murine sepsis model, platelets promoted macrophage polarization towards a
pro-inflammatory M1 phenotype in a cell contact-dependent manner involving the gly-
coprotein Ib (GPIb)-CD11b axis [223]. In cancer, platelet aggregation increased hematoge-
nous metastasis formation by triggering macrophage recruitment and promoting an M2
phenotype [224]. Other results showed that platelet-derived CXCL4 induced a unique
phenotype in macrophages, showing characteristics of both M1 and M2 macrophages.
The authors called these M4-macrophages [225]. A strong functional interplay between
macrophages and platelets is also demonstrated for cancer-associated thrombosis driven
by a pro-thrombotic niche that was induced by CXCL13-reprogrammed macrophages. This
promoted metastasis across multiple cancer types including a murine PDAC model [226].
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Figure 4. Platelet collaboration with innate immune cells, their role in cancer, and in immune
evasion. (a) Tumor cell coating protects CTCs from anoikis, supports their dissemination, and shields
them from NK cell cytotoxicity by secreting TGF-β or RANKL (receptor activator of nF-κB ligand).
This reduces NKG2D expression or IFN-γ secretion. In addition, platelets mediate cleavage of
NKG2D ligands or transfer MHC class I molecules onto the tumor cell surface. (b) Platelets mediate
infiltration and differentiation of MDSCs, and ultimately support an immunosuppressive TME, via
CXCL4 and PAF (platelet-activating factor), adhesion and rolling of neutrophils by receptor–ligand
interactions, e.g., P-Sel (P-Selectin)-PSGL-1 (P-selectin glycoprotein ligand-1) among others, and
induce the formation of neutrophil extracellular traps (NETosis). NET formation contributes to
platelet aggregation, thrombosis and metastasis. Furthermore, platelets can induce the degranulation
of perivascular mast cells via PAF. (c) Platelets induce macrophage polarization and recruitment via
direct and indirect mechanisms and regulate differentiation and infiltration of DCs. Polarization to
an M2-phenotype in tumors drives an immunosuppressive TME. Moreover, macrophages can induce
a pro-thrombotic niche via CXCL13 secretion that stimulates thrombosis and metastasis. (d) Platelets
may transfer to or upregulate PD-L1 expression in tumor cells that predicts ICI treatment sensitivity.
In addition, platelet PD-L1, as well as, secretion of TXA2 (thromboxane A2) or TGF-β, reduces T cell
reactivity and efficacy of T cell-based immunotherapy that can be alleviated by platelet inhibitory
agents, including aspirin. Immune evasion from NK cell surveillance is induced by platelet RGS18
(regulator of G protein signaling 18). The figure was created using BioRender.com.

Due to their rapid response after vessel injury, platelets are ideally positioned be-
tween the damaged endothelium and infiltrating neutrophils. Indeed, direct interactions of
platelets and neutrophils seem to be crucial for inflammatory processes, NETosis, throm-
bosis, and cancer. Interaction between neutrophils and platelets is mediated via multiple
receptor–ligand pairs, including P-Selectin-PSGL1, ICAM2-LFA1 (lymphocyte function-
associated antigen 1), JAM-3 (junctional adhesion molecule 3), Mac-1 (macrophage-1 anti-
gen), and CD40-CD40L [211,227–229]. Platelets foster transmigration and extravasation
of neutrophils after vessel injury, which is required for subsequent effective immune re-
sponses and tissue repair [230]. On the other hand, neutrophils trigger platelet activation
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and thrombosis during systemic infections, which suppresses pathogen dissemination [231].
It has been shown that neutrophil recruitment in the early phase of thrombus formation is
indispensable for deep venous thrombosis (DVT), partly driven by tissue factor secretion.
In turn, DVT propagation is supported by platelets via stimulation of NETs [232]. NET
formation can be induced by cytokines secreted via tumor cells [233] or is dependent on
platelet proteins, receptors, or adhesion molecules [234–236].

The impact of platelets on MDSCs is relevant for local immunosuppression. It has been
shown that platelets increase the differentiation of monocytes into MDSCs, which inhibit
CD8+ T cell function [237]. A similar report by Servais et al. showed that platelets enhanced
immunosuppression, MDSC infiltration into tumors and MDSC-mediated inhibition of T
cell proliferation [238].

While the interactions between platelets and above mentioned innate immune cells
are well characterized, the significance of platelet–mast cell crosstalk remains largely
unexplored. It has been shown that platelets trigger perivascular mast cell degranulation
via PAF [239]. In addition, platelets and mast cells might work together to promote the
recruitment of eosinophils during fungal infections [240]. However, their interaction in the
context of cancer has not been studied so far.

In summary, platelets play a pivotal role in modulating innate immune responses during
cancer and inflammation. Platelet–immune cell interactions can trigger pro-inflammatory and
pro-thrombotic pathways that link hemostasis, immunity, and oncogenesis.

3.3. Role of Platelets in Immune Evasion

A meta-analysis of 12 studies with 1340 cancer patients showed that the platelet–
lymphocyte ratio (PLR) is a negative predictor of survival under immune checkpoint in-
hibitor therapy (ICI) [241]. This raised the question of whether PLR is a simple biomarker or
if platelets, either alone or through interactions with immune cells in the tumor microenvi-
ronment, actively influence response to ICI, immune evasion, and disease outcome. Indeed,
it has been shown that platelets can increase PD-L1 expression in cancer cells [242,243], a
well-accepted and long-standing marker of immune evasion in several types of cancer [244].
Similarly, a report showed that platelet PD-L1 was able to protect PD-L1 negative tumor
cells from elimination by T cells [245]. Platelets are also capable of transferring PD-L1 to
tumor cells. This was shown for lung cancer cells and was dependent on fibronectin 1,
integrin α5β1, and GPIbα. Platelet PD-L1 inhibited CD4+ and CD8+ T cells and predicted
response towards ICI [246]. Other T cell-based immunotherapies, e.g., T cell-recruiting
bsAb (bispecific antibody) treatment, can be modulated by platelets as well. A study
showed that platelets significantly reduced bsAb-mediated CD4+ and CD8+ T cell reactivity
mediated by platelet TGF-β, providing a rationale for modulation of platelet function to
reinforce the effectiveness of bsAb treatment [247]. Platelet effects are not limited to bsAb
treatment but have been shown to be useful for adoptive T cell transfer as well. Platelet
TGF-β reduced the efficacy of adoptive T cell transfer in murine melanoma, which could be
mitigated by platelet inhibitory drugs, including aspirin and clopidogrel [248]. In general,
platelet inhibitory drugs might hold great promise to overcome immune evasion. In a
murine ovarian cancer model, aspirin in combination with adoptive T cell transfer led to a
markedly increased infiltration of tumor-reactive CD8+ T cells [249]. Similar results have
been demonstrated recently, showing that aspirin prevented metastasis formation by releas-
ing T cells from suppression of platelet thromboxane A2 [250]. NK cell-based treatments
may also be affected by platelets, as numerous in vitro and vitro studies have demonstrated
that platelets suppress NK cell cytotoxic activity, as highlighted above. A recent study in
PDAC demonstrated that immune evasion of CTCs from NK cell surveillance, engaging
the HLA-E:CD94-NKG2A immune checkpoint, is promoted by platelet-derived RGS18
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(regulator of G protein signaling 18). RGS18 significantly increased hepatic metastasis,
which was inhibited by the blockade of NKG2A or the knockdown of HLA-E [251].

Overall, these findings underscore the role of platelets as key contributors to im-
mune evasion and the effectiveness of immunotherapy (summarized in Figure 4d),
thereby supporting the rationale for incorporating anti-platelet therapy into certain
treatment strategies.

3.4. Pathophysiology and Clinical Implications in PDAC

Pancreatic cancer cells were shown to induce platelet aggregation and activation [252].
This is associated with a release of bioactive molecules from platelet granules. Moreover,
pancreatic cancer cell-derived tissue factor (TF) can lead to activation of coagulation and
thrombus formation [253,254]. In fact, pancreatic cancer patients are especially prone to
venous thrombosis [255], and paraneoplastic thrombocytosis is associated with worse
survival in PDAC [256,257]. In line with this, the relative risk for the subsequent diagno-
sis of an occult pancreatic carcinoma after the occurrence of a thromboembolic event is
six-fold higher [258]. In addition, high platelet-to-albumin ratios as well as high platelet-
lymphocyte ratios are negative predictors of PDAC patient survival [259,260]. This suggests
that platelets might be used as diagnostic and prognostic biomarkers. Indeed, the use
of the RNA content of tumor-educated platelets as a source for liquid biopsy has been
proposed [261]. Platelets might also be important for pancreatitis and PDAC develop-
ment. Upon platelet activation, TGF-β can be released from platelet granules [262], which
is a critical immunomodulatory cytokine and highly abundant in chronic pancreatitis
and pancreatic cancer (reviewed in [263]). Activation of the TGF-β signaling pathway
was found to be a driving force for fibrosis in chronic pancreatitis, acinar-to-ductal meta-
plasia, and pancreatic tumor initiation [264,265]. Furthermore, platelets actively release
IL-1β [266,267], which is associated with acute and chronic pancreatitis as well as PDAC
promotion [268,269]. Indeed, pannexin 1 led to increased IL-1β secretion in CD41+/CD62+

platelets that promoted migration and invasion of PDAC cells in vitro. Inhibition of pan-
nexin 1 using a small molecule inhibitor proved its relevance also in vivo by inhibition
of primary tumor growth, metastasis, and survival [270]. In addition, analyzing TCGA
pancreatic cancer transcriptomics data showed an inverse correlation between platelet and
CD8+ T cell RNA signatures but a positive correlation with MDSC RNA signatures [237],
indicating that platelets are crucial for regulating the infiltration of respective immune cells
into pancreatic tumor tissue. Likewise, the expression of platelet-related genes in PDAC
has been associated with immune cell infiltration and immune checkpoint expression [271].
Moreover, evasion of human PDAC CTCs from NK cell surveillance has been mediated by
platelets [251].

Although several indirect associations exist, the question of whether platelets directly
influence early pancreatic carcinogenesis and PDAC progression still requires more detailed
investigations and is the subject of ongoing research.

3.5. Therapeutic Strategies

Platelets might not only be important for cancer development but also for cancer
treatment. For example, inhibiting platelet activity by combining aspirin and the P2Y12
inhibitor clopidogrel was able to reduce progression to hepatocellular carcinoma [272].
Aspirin may hold global significance, especially regarding the prevention of pancreatic can-
cer [273]. In addition, the homing capabilities of platelets have been harnessed in systems
where platelet mimics were loaded with a cytotoxic payload to restrict the localization of
the drug to the tumor site [274–276]. The most interesting application of this methodology
includes perforin/granzyme-loaded platelets that are able to kill tumor cells upon activa-
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tion and subsequent alpha granule release directly at the tumor site [277]. Platelets and
platelet inhibitory drugs might also regulate the efficacy of immunotherapy, as highlighted
above [246–250]. Very recently, combining immunotherapy with antithrombotic therapy
has been reported to improve survival of advanced melanoma patients [278]. Although
PDAC is an immunologically cold tumor with low T cell infiltration and restricted efficacy
of immunotherapeutic agents, adding platelet-based therapies might be a novel approach
to handling this deadly disease. However, whether such a therapeutic strategy is effective
in PDAC remains to be determined.

4. Future Directions and Perspectives
Intricate crosstalk exists between the innate immune system, tumor cells, and platelets

that drive intratumoral inflammation, fibrosis, tumor growth, metastasis, and therapy
response. However, innate immune cells and platelets also critically shape responses of the
adaptive immune system. In particular, the role of platelets in regulating T cell responses
and immune evasion was described in detail above. In addition, dysregulation of the
innate immune system can profoundly impair adaptive immune responses, particularly
in the context of cancer. Uptake and presentation of tumor antigens is a prerequisite for
subsequent priming and activation of naϊve T cells. Here, dendritic cells play a central role in
generating specific T cell-mediated antitumor responses (see also Figure 3) to control tumor
growth and dissemination [279]. However, the phenotype and function of DCs are altered
by inflammatory mediators generated in the TME, which impairs their antigen-presenting
capacity [280]. In addition, NK cells influence adaptive immunity and can both stimulate
and inhibit T cell responses (see also Figure 2). Regulation of T cell responses can be direct
or indirect. Direct mechanisms include the secretion of cytokines, e.g., IFN-γ or IL-10 that
mediate T cell differentiation or T cell inhibition, respectively. Alternatively, they are able
to kill CD4+ and CD8+ T cells in an NKG2D- and perforin-dependent manner. Effects on T
cells can also be indirect via governing DC maturation and elimination or antigen cross-
presentation [281]. The recruitment of immunosuppressive cells, including MDSCs and
TAMs, is an additional mechanism to reduce anti-tumor T cell responses and the efficacy of
immunotherapy. Similar to NK cells, both direct and indirect regulatory mechanisms exist.
They inhibit T cell functions through the production of reactive oxygen species, arginase-
1, IL-10, and nitric oxide. In addition, they can restrain the intratumoral localization
of cytotoxic T cells while promoting the recruitment of regulatory T cells. Moreover,
their presence in the tumor microenvironment can limit the effectiveness of ICI [80,183].
In summary, an effectively regulated innate immune system is crucial for orchestrating
robust and functional adaptive immune responses that can also be limited by platelets.
This interplay is particularly relevant for PDAC, where a dominant immunosuppressive
environment hinders effective antitumor immunity. Therefore, targeting innate immune
cells or platelets, alongside T cell-based therapies such as immune checkpoint blockade,
represents a promising therapeutic strategy. Indeed, several currently ongoing and recently
completed approaches are used in PDAC that target these cellular compartments and are
summarized in Table 1.

Furthermore, emerging technologies such as single-cell RNA sequencing (scRNA-
seq), spatial transcriptomics, and high-dimensional immune profiling are transforming
our understanding of the tumor microenvironment. This is critical, particularly in PDAC,
which is characterized by extensive cellular heterogeneity and a dense stromal compart-
ment. This cellular heterogeneity could be uncovered using single-cell transcriptomics, e.g.,
in primary PDAC, metastatic lesions, as well as PDAC-derived organoids [282,283]. To
further differentiate the cellular subtypes, scRNA-seq enabled the high-resolution charac-
terization of rare or previously unrecognized subpopulations of immune cells [284–286],
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fibroblasts [287,288], and malignant epithelial cells. Spatial transcriptomics complements
scRNA-seq by preserving the spatial architecture of the tumor, allowing researchers to
map specific gene expression patterns to discrete regions within the tumor and stroma.
This is crucial for understanding how cell–cell interactions and gradients of signaling
molecules influence tumor progression, immune evasion or metastasis. Immune profiling,
including high-dimensional flow cytometry and multiplexed imaging, adds another layer
by quantifying immune cell subsets, their activation states, and interactions with other cell
types such as platelets, cancer-associated fibroblasts, and endothelial cells [289]. Together,
these approaches offer a powerful toolkit for dissecting the immunological landscape of
PDAC, identifying novel biomarkers and causes for interindividual differences in drug
responses as well as developing strategies for precision immunotherapy [36,290]. Integrat-
ing these insights with functional and translational studies will be pivotal for identifying
new therapeutic targets and guiding the development of more effective, personalized
immunotherapies for PDAC.

Table 1. Summary of ongoing and recently completed clinical trials targeting innate immune cells
or platelets in PDAC. 5-FU: 5-Fluorouracil; ACT: Adoptive cellular therapy; CAR: chimeric anti-
gen receptor; CCR: CC motif chemokine receptors; CD: Cluster of differentiation; CSF1R: Colony-
stimulating factor 1 receptor; mTOR: Mammalian target of rapamycin; PI3K: Phosphatidylinositol 3-
kinase; SIRPα: Signal-regulatory protein α; STING: Stimulator of interferon genes; CXCR: CXC motif
chemokine receptor; TKI: tyrosine kinase inhibitor; ILRAP: Interleukin-1 receptor accessory protein.

NK Cells

Compound Clinical Study Phase Trial Number Combination Drugs/Treatment

CAR-NK Cells (CL-NK-001) Phase 1 NCT06816823 -

Allogeneic Magicell-NK infusion Phases 1/2 NCT06730009 SLOG chemotherapy

CAR-T/CAR-NK cells Phase 1 NCT06572956 -

Chemotherapy Sequential NKG2D
CAR-NK Cell Phase 1 NCT06503497 Second-line chemotherapy

(not specified)

Intratumoral Injection and intravenous
infusion of NKG2D CAR-NK cells Phase 1 NCT06478459 -

CAR-NK cells (CB CAR-NK182)
targeting Claudin18.2 Phase 1 NCT06464965 -

TROP2-CAR/IL15-transduced
CB-NK cells Phases 1/2 NCT05922930 Cyclophosphamide, Fludarabine

NK cell infusion Phases 1/2 NCT02718859 Irreversible electroporation (IRE)

Cytokine-induced Killer Cells Phases 1/2 NCT01868490 -

Dendritic cell-activated
Cytokine-induced killer

treatment (DC-CIK)
Phases 1/2 NCT01781520 S-1

Interleukin-2 Phase 2 NCT05810792 Histamine Dihydrochloride
(HDC)

FT500 Phase 1 NCT03841110
Cyclophosphamide, Fludarabine,

Nivolumab, Pembrolizumab,
Atezolizumab, IL-2

FATE-NK100 Phase 1 NCT03319459 Cetuximab, Trastuzumab
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Table 1. Cont.

Macrophages

Compound Preclinical/clinical
study Trial Number Combination drug

BMS-813160 (CCR2/CCR5 antagonist) Phases 1/2 NCT03184870
Nivolumab, nab-paclitaxel,

gemcitabine, 5-FU,
leucovorin, irinotecan

BMS-813160 Phases 1/2 NCT03767582 Nivolumab, GVAX

TAK-500 (CCR2 and STING agonist) Phase 1 NCT05070247 Pembrolizumab

PLX3397 (CSF1R inhibitors) Phase 1 NCT02777710 Durvalumab

LY3022855 (anti-CSF1R antibody) Phase 1 NCT03153410 Cyclophosphamide, GVAX,
pembrolizumab

Cabiralizumab (anti-CSF1R antibody) Phase 1 NCT02526017 Nivolumab

Lurbinectedin Phase 2 NCT05229588 -

BI 754,091 (anti-CD47/SIRPα antibody) Phase 1 NCT04752215 Ezabenlimab

CP-870, 893 (CD40 agonist antibody) Phase 1 NCT01456585 Gemcitabine

APX005M (CD40 agonist antibody) Phase 1 NCT02600949 Pembrolizumab, sotigalimab

APX005M Phases 1/2 NCT05419479 Zimberelimab, domvanalimab

RO7009789 (CD40 agonist antibody) Phase 1 NCT02588443 Nab-paclitaxel, gemcitabine

Gedatolisib (PI3K/mTOR inhibitor) Phase 1 NCT03065062 Palbociclib

Metformin Phase 1 NCT02336087
Gemcitabine, paclitaxel

albumin-stabilized
nanoparticle formulation

Metformin Phase 2 NCT01666730 Oxaliplatin, leucovorin
calcium, fluorouracil

Metformin Phase 2 NCT04033107 Vitamin C

CT-0508 (CAR macrophages) Phase 1 NCT04660929 Pembrolizumab

Dendritic cells

Compound Preclinical/clinical
study Trial Number Combination drug

Metformin Phase 2
PREOPANC trial

EudraCT:
2012-003181-40

-

Toripalimab Phases 1b/2 ChiCTR2000032293 chemotherapy

Ibrutinib Phase 1/2 NCT02562898 Paclitaxel, gemcitabine

Wilms’ tumor 1 (WT1) peptides Phase 2 jRCTc030190195 multiagent chemotherapy

Mast cells

Compound Preclinical/clinical
study Trial Number Combination drug

Masitinib (TKI targeting KIT) Phase 3 NCT00789633 Gemcitabine

Neutrophils

Compound Preclinical/clinical
study Trial Number Combination drug

Nadunolimab (IL1RAP inhibition) Phases 1/2 NCT03267316
Cisplatin, gemcitabine,

nab-paclitaxel,
carboplatin, pemetrexed
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Table 1. Cont.

MDSCs

Compound Preclinical/clinical
study Trial Number Combination drug

Entinostat Phase 2 NCT03250273 Nivolumab

SX-682 (CXCR1/2 Inhibitor) Phase 1 NCT04477343 Nivolumab

Platelets

Compound Preclinical/clinical
study Trial Number Combination drug

Avatrombopag Phase 1 NCT06182072 Gemcitabine, nab-Paclitaxel

5. Conclusions
Chronic pancreatitis is a global health problem and an important risk factor for PDAC,

which remains one of the most lethal malignancies worldwide. The innate immune sys-
tem and platelets play multifaceted and often context-dependent roles in the pathogen-
esis and progression of chronic pancreatitis and PDAC. Persistent inflammation, partly
driven by innate immune cells and platelets, contributes to tissue remodeling and fibrosis,
setting the stage for malignant transformation. In PDAC, these same cells often adopt
tumor-promoting phenotypes that support immune evasion, angiogenesis, and metastasis.
Clinically, the complex crosstalk between innate immune cells, platelets, and tumor cells
underscores the limitations of monotherapies in PDAC. A more effective approach will
likely involve combination strategies that target both the tumor and its immunosuppressive
microenvironment. Integrating innate immune modulators with T cell-based therapies
holds promise for overcoming resistance and improving patient outcomes. In conclusion,
understanding the diverse roles of innate immune cells and platelets in pancreatic inflam-
mation and malignancy offers critical insights into disease mechanisms and reveals novel
opportunities for therapeutic intervention in PDAC. Continued research into the dynamic
interactions within the pancreatic tumor microenvironment is essential to translate these
insights into effective clinical strategies.
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