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Simple Summary: Pancreatic cancer is a deadly disease which is often detected at advanced
stages. Novel and innovative approaches are urgently needed to improve diagnosis and
personalized treatment strategies to achieve significant clinical benefits. Here, we introduce
two interesting yet largely understudied classes of disease-associated molecules, i.e., long
non-coding RNAs and RNA-binding proteins. We highlight their potential as biomarkers
as well as therapeutic targets, and we provide examples of their functional diversity
contributing to pancreatic cancer development and progression.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancre-
atic cancer and is responsible for about 467,000 cancer deaths annually. An oftentimes
asymptomatic early phase of this disease results in a delayed diagnosis, and patients often
present with advanced disease. Current treatment options have limited survival benefits,
and only a minor patient population carries actionable genomic alterations. Hence, inno-
vative personalized treatment strategies that consider molecular, cellular and functional
analyses are urgently needed for pancreatic cancer patients. However, the majority of
the genetic alterations found in PDAC are currently undruggable, or patients’ response
is not as expected. Therefore, non-genomic biomarkers and alternative molecular targets
should be considered in order to advance the clinical management of PDAC patients. In
line with this, recent gene expression and single-cell transcriptome analyses have identified
molecular subtypes and transcriptional cell states that affect disease progression and drug
efficiency. In this review, we will introduce long non-coding RNAs (lncRNAs) as well as
RNA-binding proteins (RBPs) that are able to modulate the transcriptome of a cell through
diverse mechanisms, thereby contributing to disease progression. We will provide a brief
overview about the general functions of lncRNAs and RBPs, respectively. Subsequently,
we will highlight selected lncRNAs and RBPs that have been shown to play a role in PDAC
development, progression and drug response. Finally, we will present strategies aiming to
interfere with the expression and function of lncRNAs and RBPs.
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1. Introduction
The most recent global cancer statistics for the year 2022 estimate a total of almost

20 million new cancer cases and about 9.7 million cancer deaths [1]. With nearly 510,716 new
cases and 467,000 deaths, pancreatic cancer ranks at position 12 and 6 in terms of incidence
and mortality, respectively. Pancreatic ductal adenocarcinoma (PDAC), the most common
type of pancreatic cancer, is a devastating disease with an overall 5-year survival rate of
approximately 13% [2]. An oftentimes asymptomatic early phase leading to a delayed diag-
nosis of PDAC in patients presenting with advanced and metastatic disease, in conjunction
with a high resistance to currently available therapies, is a critical factor responsible for this
high mortality rate. Of note, surgery as well as chemotherapy and radiotherapy is the major
treatment option, and despite advances in surgical and perioperative approaches, high re-
currence rates (up to 79% after three years) after curative intended surgery are observed [3].
Importantly, somatic mutations in key cancer genes such as KRAS, TP53, CDKN2A, and
SMAD4 as well as a large number of genomic and epigenetic passenger alterations gen-
erate a remarkable inter- and intratumoural heterogeneity, which induces a considerable
variation in responses to anticancer therapies [4]. Moreover, the performance status and
comorbidities of the patient often dictate the choice of regimen and limit the application
of non-specific and toxic chemotherapy, thereby affecting therapy resistance and tumour
progression. Hence, for pancreatic cancer patients, personalized treatment strategies that
consider molecular, cellular and functional analyses are urgently needed to overcome these
limitations. However, only 12–25% of pancreatic cancer cases harbour actionable genomic
alterations [5]. For example, about 7% of patients carry BRCA1/2 germline mutations
that sensitize their tumours to the PARP inhibitor olaparib, which was shown to extend
progression-free survival in metastatic pancreatic adenocarcinoma [6]. Additional targeted
therapies for rare molecular pancreatic cancer subgroups like NTRK-fusion-positive, the
KRASG12C mutant, DNA mismatch repair-deficient, or microsatellite-instable (MSIhigh)
tumours might be viable options as well [7–10]. However, the majority of the genetic
alterations found in PDAC are currently undruggable, or patients’ response is not as ex-
pected despite targeting actionable mutations with tailored drugs. Therefore, non-genomic
biomarkers and alternative molecular targets should be considered in order to advance
the clinical management of PDAC patients. In line with this, recent gene expression and
single-cell transcriptome analyses have identified molecular subtypes and transcriptional
cell states that affect disease progression and drug efficiency [11–14].

In this review, we will introduce long non-coding RNAs (lncRNAs) as well as RNA-
binding proteins (RBPs), which have been shown to be associated with certain PDAC
subtypes and are able to modulate the transcriptome of a cell through diverse mecha-
nisms [15–18]. We will provide a brief overview about the general functions of lncRNAs
and RBPs, respectively. Subsequently, we will highlight selected lncRNAs and RBPs that
have been shown to play a role in PDAC development, progression, and drug response.
Last but not least, we will present strategies aiming to interfere with the expression and
function of lncRNAs and RBPs.

2. Role of lncRNAs in PDAC Development and Progression
Even though less than 2% of the human genome consists of protein-coding genes,

transcription is pervasive, and modern RNA sequencing technologies have shown that
transcripts are generated from 75 to 85% of the genome [19,20]. Some of these non-
protein-coding RNAs (ncRNAs), such as ribosomal RNAs, transfer RNAs and microRNAs
(miRNAs), can be categorized into classes based on their specific functions. What remains
is a vast number of mostly RNA polymerase II (Pol II)-derived transcripts that vary in size,
function and distribution. LncRNAs are somewhat arbitrarily, as they are defined as tran-
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scripts that are longer than 500 nucleotides (nts) [21]. More than 100,000 human lncRNAs
have been recorded, exceeding the ~20,000 protein-coding genes in number. Their lengths
range from one to tens of thousands of nucleotides, and they can occupy various genomic
locations [22–24]. Intergenic lncRNAs are derived from regions devoid of coding potential,
while intronic and sense/antisense lncRNAs are co-localized with protein-coding genes.
Bidirectional lncRNAs share promoters with protein-coding genes and are transcribed in
the antisense direction. Many lncRNAs share features with messenger RNAs (mRNAs)
in that they are often polyadenylated and 5′capped, tend to comprise multiple exons and
undergo alternative splicing [25,26]. Major differences lie in their overall lower degree of
sequence conservation between species and their more restricted expression patterns, often
being limited to specific cell types or developmental stages [27,28].

On a molecular level, lncRNAs can form complex secondary and tertiary structures
that can interface with DNA, proteins and other RNAs and may be found in both nucleus
and cytoplasm, enabling them to regulate gene expression on every level [29]. Through
RNA-DNA interactions, they can alter the chromatin architecture and control transcrip-
tion [30,31]. Via RNA-RNA actions, they affect the processing, splicing, editing, stability and
localization of RNAs, in general, as well as influence the translation rates of mRNAs [32–35].
Finally, they can regulate protein localization, turnover and modification through RNA–
protein interactions and serve as scaffolds for large protein complexes and biomolecular
condensates [36–40]. When it comes to classifying lncRNAs based on their functions,
the broadest approach is to differentiate between cis-acting and trans-acting lncRNAs.
Cis-acting lncRNAs accumulate at and interact with the locus from which they are tran-
scribed [41]. Many lncRNAs are found associated with the chromatin, tethered to their
transcriptional origins by Pol II, and these proximity-based mechanisms may offset their
often low expression levels [42,43]. Other lncRNAs vacate their sites of transcription to
operate in trans and exert their functions in other nuclear regions or the cytoplasm. Table 1
lists a selection of common modes of action that have been found for lncRNAs acting in
both cis and trans. Notably, a given lncRNA can have multiple interaction partners and
functional modes depending on the biological context.

Table 1. Overview of common modes of action of long non-coding RNAs (lncRNAs).

Function Mode of Action Description Examples

Enhancer
action cis/trans

A total of 30–60% of lncRNAs are transcribed from enhancer regions, and
enhancer activity is modulated by the active transcription and splicing of

enhancer lncRNAs [44–46]. These transcripts may potentiate enhancer activity by
recruiting proteins that participate in the formation of chromatin loops between
distal enhancers and their promoters or direct the recruitment of transcriptional

activators to gene-proximal enhancers [47–49]. Similar mechanisms can also result
in the repression of enhancer activity when lncRNA loci compete for enhancers

with protein-coding genes [50].

Hand2os1 [47,48]
CCAT1-L [49]

PVT1 [50]

Chromatin
architecture
modulation

cis/trans

The process of X chromosome inactivation is dependent on the cis-acting lncRNA
XIST, which spreads along and coats the inactive chromosome, ensuring dosage

compensation [31,51]. Additionally, association with chromatin remodelling
complexes is a common feature among lncRNAs [52]. The polycomp repressive
complex 2 (PRC2) in particular is functionally dependent on RNAs and has been

shown to interact with ~20% of human lncRNAs [52,53].

HOTAIR [30,54]
XIST [31,51]

Biomolecular
condensate
formation

trans
Intracellular condensates are formed from RNA and protein interactions through

liquid–liquid phase separation. Many of these compartments depend on
architectural lncRNAs for their structures, compositions and functions [55].

NORAD [36]
NEAT1 [40]

MALAT1 [56]

miRNA
sponge trans

The target sites of miRNAs are found in mRNAs but are also present in many
types of ncRNAs including lncRNAs. This has led to the hypothesis that all

transcripts sharing binding sites for a particular miRNA may regulate each other
by competing against each other [57]. An extensive number of publications have
focused on the action of lncRNAs as competing endogenous RNAs (ceRNAs), but
the hypothesis has also received criticism relating to the stoichiometries needed to

support ceRNA regulatory networks [58].

LINCMD1 [59],
PTENP1 [60,61]
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Importantly, lncRNAs have been associated with a broad spectrum of human diseases,
and it was discovered that the vast majority (~99%) of somatic single-nucleotide variations
(SNVs) occur in non-coding regions including lncRNA loci [62]. Importantly, gene expres-
sion analyses uncovered a frequent dysregulation of lncRNAs in cancer, and functional
studies identified individual non-coding transcripts controlling cancer hallmarks [63–65].
Accordingly, lncRNAs have gained relevance as biomarkers for the early detection of cancer,
prognostic markers and therapeutic targets [66]. Their expression patterns also have the ten-
dency to be more cancer-type specific compared to pseudogenes and protein-coding genes,
further underscoring their diagnostic value [67]. Given the dire trajectory of pancreatic
cancer incidence and mortality, the potential for new biomarkers and therapeutic avenues
offered by lncRNAs holds great potential. Of note, a large selection of lncRNAs has been
found to be dysregulated in pancreatic tumours and PDAC cell lines and was shown to be
associated with clinical disease parameters [68–72]. Many of these transcripts are upregu-
lated in PDAC acting as oncogenes, promoting proliferation, survival and invasiveness.
Several lncRNAs that were previously known to promote tumours in other cancer types
have also been found to be increased in PDAC, e.g., H19, MALAT1 and HOTAIR [73–75].
Tumour-suppressive lncRNAs have also been identified, with examples including DGCR5,
MEG3 and lnc-PCTST [76–78]. In the following paragraphs, we will highlight individ-
ual lncRNAs that have been linked with PDAC development and oncogenic signalling
pathways underlying pancreatic cancer progression.

2.1. LncRNAs Associated with PDAC Initiation and Early Development

Frequently, dysregulated lncRNAs in PDAC are identified by comparing the gene
expression signatures of late-stage tumour samples and normal pancreatic tissues. In order
to gain insights into the early stages of carcinogenesis, precursor lesions or preceding
benign pancreatic diseases should be included in such analyses, and liquid biopsy samples
might be considered for early biomarker discovery. In fact, the lncRNAs ABHD11-AS1 and
HULC were both detected in the serum of pancreatic cancer patients with increasing levels
following the disease’s progression from healthy patients to those with benign diseases
like chronic pancreatitis, as well as to those with fully developed pancreatic cancer [79,80].
Another study focused on intraductal papillary mucinous neoplasms (IPMNs), a common
type of cystic PDAC precursor lesion. LncRNA signatures in the plasma from a cohort
of IPMN cases could differentiate both IPMNs from non-disease controls as well as ag-
gressive IPMNs from benign precursors [81]. However, patient biopsies from early-stage
PDAC cases are often difficult to obtain due to the late diagnosis of the disease. Here,
genetically engineered mouse models (GEMMs) present a powerful tool to follow the entire
progression, from precursor to metastatic cancer, and study the role of lncRNAs in this
cascade. For example, Mello et al. used a mouse model with pancreas-specific expression
of oncogenic KrasG12D to study the role of the lncRNA Neat1 in tumour initiation. In this
model, Neat1 proved critical in suppressing the development of premalignant pancreatic
intraepithelial neoplasia (PanIN) and cystic lesions [82]. Of note, this conserved lncRNA
has been implicated in a variety of cellular functions and is best known for its architectural
role in nuclear paraspeckles, a type of nuclear body which is itself multifunctional [83]. It
is therefore perhaps not surprising that its role in cancer is also multifaceted, promoting
or suppressing tumour development depending on the cancer type and context. Indeed,
in developed pancreatic cancer and fully transformed PDAC cell lines, human NEAT1
has mostly been assigned oncogenic roles [84–86]. The example of NEAT1 highlights the
importance of resolving the functions of lncRNAs in early cancer stages to gain a complete
mechanistic understanding of the disease and the stage-specific contributions of lncRNAs.
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2.2. LncRNAs Associated with Oncogenic KRAS Signalling

In the majority of PDAC cases, mutations cause a molecular switch in KRAS to assume
a constitutive ‘ON’ state, resulting in a constant stream of proliferation and survival signals.
The G12D and G12V mutations in the KRAS gene are sufficient to initiate the development
of precursor lesions, and the gene dosage of mutant KRAS remains relevant throughout
the full progression of the disease up to the growth and maintenance of metastases [87–89].
Interestingly, some lncRNAs have been found to regulate the expression and activity of
KRAS. For example, MALAT1 and NUTF2P3-01 were both found to be overexpressed in
pancreatic cancer, and their knockdown led to a reduction in KRAS protein level. Both
lncRNAs share miRNA binding sites with the KRAS mRNA, suggesting a ceRNA network
that is involved in tuning intracellular KRAS expression [90,91]. Additionally, several stud-
ies have reported the upregulation of the lncRNA UCA1 in PDAC tissues and cell lines [92].
One of these studies observed that UCA1 promoted the interaction between the KRAS
and hnRNPAB1 proteins [93]. This interaction had previously been shown to positively
regulate the activation of PI3K/AKT/mTOR signalling through oncogenic KRAS [94]. The
authors also observed that UCA1 knockdown decreased KRAS expression, and KRAS
depletion reduced UCA1 levels, indicating a positive feedback loop [93]. Furthermore,
UCA1 was found to modulate the downstream signalling pathways of KRAS. In particular,
MAPK/ERK signalling was shown to be positively regulated by UCA1, which increased
mitochondrial dynamics and thereby affected the migratory ability of pancreatic cancer
cells [95]. Another study corroborated the enhancement of ERK signalling by UCA1 and
revealed that CUDR, an alternative transcript variant of UCA1, could promote the migra-
tion and invasion of pancreatic cancer cells by activating AKT/FAK and ERK signalling to
induce an epithelial-to-mesenchymal transition (EMT) [96,97].

In addition to UCA1, several other lncRNAs have been shown to modulate KRAS
downstream signalling in pancreatic cancer. For example, ABHD11-AS1 and SNHG1 are
both overexpressed in PDAC and promote the proliferation and survival of cancer cells by
up-regulating PI3K/AKT signalling [98,99]. In addition, the lncRNA LUCAT1 was found to
increase both AKT- and p38-mediated MAPK signalling, thereby supporting proliferation
and invasion [100,101]. One lncRNA that has been studied in more detail on the mechanistic
level is LINC01232. Like UCA1, it has also been shown to interact with hnRNPAB1 [102]. In
addition to the KRAS mRNA, hnRNPAB1 also binds to the pre-mRNA of the downstream
effector ARAF and regulates its splicing. This interaction favours the generation of the
full-length, kinase-proficient ARAF protein [103]. LINC01232 stabilizes hnRNPAB1 by
reducing its ubiquitination and proteasomal degradation, thereby promoting the splicing
of the active ARAF isoform and subsequent downstream MAPK signalling [102].

In addition to PDAC-associated lncRNAs that regulate KRAS and its downstream
pathways, several studies have also identified non-coding transcripts whose expression is
regulated by these signalling cues. For instance, a recent study systematically deactivated
MAPK/ERK signalling in a panel of PDAC cell lines and performed comparative transcrip-
tome analyses to identify MAPK-associated lncRNAs [104]. Out of a list of 45 candidates,
LINC00941 showed the most consistent downregulation upon MAPK abrogation, and the
authors identified a binding site for the MAPK-activated transcription factor ETS-1 in
its promoter region [104]. LINC00941 has been linked to PDAC progression in several
studies and has been implicated in enhancing aerobic glycolysis by modulating the Hippo
pathway and inducing AKT/FAK signalling by binding and stabilizing the ANXA2 pro-
tein [105,106]. Overall, these findings highlight the intimate link between lncRNAs and
KRAS/MAPK/ERK and their associated downstream signalling in PDAC.
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2.3. LncRNAs Associated with Oncogenic and Tumour-Suppressive TGF-β Signalling

TGF-β signalling has an ambivalent role throughout PDAC carcinogenesis. In the
early stages of the disease, it presents a serious impediment to cancer progression by
blocking the cell cycle and inducing apoptosis. In contrast, advanced tumours benefit from
TGF-β-mediated immune evasion and the increased cell motility and metastatic potential
stemming from a TGF-β-mediated epigenetic and transcriptional reprogramming that leads
to EMT [107]. The loss of the TGF-β downstream signalling protein and tumour suppressor
SMAD4, which occurs in up to 60% of PDAC, is often instrumental in this switch [108–111].
Many of the tumour suppressive effects of TGF-β are mediated by SMAD4, while the
oncogenic pathways are mostly SMAD4-independent [112]. Intriguingly, recent studies
identified regulatory lncRNAs that modulate the expression of SMAD4 in pancreatic cancer
cells. One prominent lncRNA that has been extensively studied in cancer, in part due to the
close proximity of its genomic locus to the well-known MYC oncogene, is PVT1 [113,114].
Increased levels of PVT1 were detected in PDAC tissues and cell lines, and its depletion
inhibited TGF-β/SMAD signalling, including the phosphorylation of SMAD2 and SMAD3,
as well as the expression of TGF-β1, but at the same time, it increased SMAD4 levels.
Conversely, transient overexpression of PVT1 decreased SMAD4 levels, enhanced cellular
proliferation and activated an EMT programme, thereby promoting cell migration and
invasion [115]. In addition, LINC00909 was recently identified as an upregulated lncRNA
in PDAC tissues compared to a normal pancreas, and its expression was associated with
poor clinicopathological features and patient outcomes. Importantly, experimental studies
revealed a cytoplasmic localization of this lncRNA in PDAC cell lines, and the modulation
of its expression inversely affected the stability of the SMAD4 mRNA. Hence, this study
established LINC00909 as an important regulator of pluripotency factors, cancer stemness
and metastasis by inhibiting SMAD4 expression [116].

While the downregulation or inactivation of SMAD4 is important for PDAC progres-
sion, the TGF-β pathway has several other members whose expression or activity could
be modulated by lncRNAs. In fact, several studies have identified lncRNAs that apply
diverse modes of action in order to promote or inhibit TGF-β signalling in PDAC. Two
lncRNAs, namely BC037916 and LINC00462, were found to be upregulated in PDAC, and
they positively regulate the core TGF-β pathway, as evaluated by the increased phosphory-
lation of SMAD2/3 [117,118]. BC037916 was shown to activate JAK/STAT in addition to
SMAD signalling, thereby promoting an EMT programme that increased cellular invasion
and metastasis in xenograft models [117]. In contrast, LINC00462 was found to sequester
miR-665, thereby upregulating TGFBR1 and TGFBR2 protein levels and activating migra-
tion and invasion through EMT induction [118].

In addition to these oncogenic lncRNAs, previous studies also highlighted the role
of lncRNAs acting as tumour suppressors by modulating TGF-β signalling. For exam-
ple, LINC-PINT was found to be downregulated in PDAC, and low plasma LINC-PINT
expression might serve as a biomarker for early pancreatic cancer detection, whereas low
levels of LINC-PINT in tumour tissues correlated with a poor prognosis after pancreate-
ctomy [119,120]. Of note, the plasma levels of LINC-PINT and TGF-β1 were positively
correlated in early-stage PDAC patients but not in healthy controls. Furthermore, the over-
expression of LINC-PINT upregulated TGF-β1 expression in a pancreatic cancer cell line but
not in telomerase-immortalized pancreatic ductal cells [120]. Importantly, LINC-PINT over-
expression as well as exogenous TGF-β1 stimulation specifically reduced the proliferation
of the pancreatic cancer cell line without affecting the growth of the non-malignant immor-
talized cells. The inhibitory effects of both LINC-PINT and TGF-β1 could be blocked by the
simultaneous application of SD-208, a TGFBR1 inhibitor [120]. In conclusion, LINC-PINT
may inhibit early-stage PDAC growth through TGF-β pathway activation. Last but not
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least, our own studies have identified LINC00261 as a TGF-β-regulated tumour-suppressive
lncRNA that is involved in maintaining a pro-epithelial cell state, which is associated with
a favourable disease outcome. We showed that the depletion of LINC00261 induced the
expression of EMT-related genes, decreased E-cadherin levels and increased cell migration
and invasion [121].

These examples underscore the diagnostic potential and functional relevance of
lncRNAs in modulating the oncogenic as well as tumour-suppressive properties of the
TGF-β signalling pathway in pancreatic cancer cells. Table 2 lists and Figure 1 schematically
summarizes the findings on lncRNAs associated with KRAS and TGF-β signalling that
have been described in this section. These principal cellular pathways controlling early
PDAC progression evidently undergo regulation by lncRNAs on many levels.

Table 2. LncRNAs associated with KRAS/MAPK and TGF-β signalling in pancreatic cancer.

LncRNA Expression in PDAC Clinical Association Function and Mechanism References

NUTF2P3-01 upregulated

high expression correlates with tumour
size; poor tumour differentiation; the
tumour, node and metastasis (TNM)

stage; lymphatic invasion; distant
metastasis; and shorter overall

survival (OS)

promotes proliferation, invasion,
xenograft tumour growth and hepatic

metastasis and acts as a ceRNA to
sequester miR-3923 and increase KRAS

expression

[90]

MALAT1 upregulated high expression is associated with
shorter OS

promotes proliferation, migration,
invasion, and xenograft growth;

reduces apoptosis; and acts as a ceRNA
to sequester miR-217 and increase

KRAS expression

[91]

UCA1/CUDR upregulated
high expression correlates with an

advanced T and N stage and is
associated with poor OS

promotes proliferation, migration,
drug resistance and xenograft tumour
growth; reduces apoptosis; positively
regulates MAPK/ERK and AKT/FAK

signalling; enhances the interaction
between KRAS and hnRNPA2/B1; and

acts as a ceRNA to sequester
miR-590-3p and increase KRAS

expression

[93,95,96]

ABHD11-AS1 upregulated

expression correlates with poor OS and
disease-free survival (DFS), an

advanced TNM stage, increased
distant metastasis and poor

tumour differentiation

promotes proliferation and migration,
reduces apoptosis and positively

regulates PI3K/AKT signalling and
EMT

[98]

SNHG1 upregulated expression correlates with an advanced
TNM stage and a larger tumour size

promotes proliferation, invasion and
xenograft tumour growth; reduces
apoptosis; and positively regulates

PI3K/AKT signalling

[99]

LUCAT1 upregulated increased expression linked to a larger
tumour size and lymphatic invasion

promotes proliferation, invasion and
xenograft tumour growth; reduces
apoptosis; and positively regulates

AKT and p38-MAPK signalling and
the sponge of miR-539

[100,101]

LINC01232 upregulated

expression is positively correlated with
nerve invasion, and high LINC01232

levels are associated with
worse outcomes

promotes migration and invasion and
regulates the alternative splicing of
ARAF by stabilizing hnRNPA2/B1,

thereby activating MAPK/ERK
signalling

[102]

LINC00941 upregulated high expression is associated with a
poor prognosis

promotes proliferation, is a
downstream target of MAPK/ETS-1

signalling and increases E2F7
[104]

PVT1 upregulated
high expression is associated with an

advanced clinical stage and lymph
node metastasis (LNM)

promotes cell adhesion, viability,
migration and invasion; enhances EMT

via TGF-β/SMAD signalling; and
downregulates SMAD4 and p21

[115,122]
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Table 2. Cont.

LncRNA Expression in PDAC Clinical Association Function and Mechanism References

LINC00909 upregulated

high expression is associated with poor
OS and DFS and correlates with an

advanced TNM stage, a larger tumour
size, poor differentiation and LNM

promotes cell viability, colony
formation, migration and xenograft

tumour growth and metastasis; inhibits
apoptosis; upregulates the expression
of pluripotency factors; promotes the

pancreatic cancer stem cell phenotype;
activates the MAPK/JNK pathway;
and destabilizes the SMAD4 mRNA

[116]

BC037916 upregulated
increased expression correlates with a
clinical stage and advanced T and N

stages and is associated with poor OS

promotes proliferation, invasion and
xenograft tumour growth; reduces

apoptosis; positively regulates EMT
via SMAD2/3 signalling; and

upregulates JAK/STAT signalling

[117]

LINC00462 upregulated

expression is associated with a larger
tumour size, poor tumour

differentiation, a TNM stage and
distant metastasis

promotes proliferation, migration,
invasion, xenograft growth and
invasion; reduces apoptosis and
cellular adhesion; induces EMT

through the activation of the TGF-β
pathway via the upregulation of

TGFBR1/2; and acts as a ceRNA to
sequester miR-665

[118]

LINC-PINT downregulated

Low plasma levels correlate with
tumour recurrence and are associated
with tumour size; a low LINC-PINT

level in tumour tissues correlates with
a poor prognosis after pancreatectomy

reduces cell proliferation and increases
TGF-β1 expression in a pancreatic

cancer cell line
[119,120]

LINC00261 downregulated

expression is subtype-dependent and
shows an inverse correlation with
tumour grade and stage, and high

expression is associated with better OS

inhibits cell migration and invasion;
TGF-β stimulation decreases

LINC00261 levels, and its genetic
ablation leads to the downregulation of
the E-cadherin mRNA and protein and
the induction of an EMT programme

[121]
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Figure 1. Long non-coding RNA (lncRNA)-guided functions and regulatory mechanisms involved
in PDAC development and progression. Identified mechanisms (a) and cellular functions (b) of
selected lncRNAs in pancreatic cancer, specifically in the context of KRAS/MAPK and TGF-/SMAD
signalling, have been described in the main text and are summarized here schematically, with
implicated promoting (orange) or inhibitory (turquois) lncRNAs assigned to their respective function.
For more details about the clinical relevance and the mode of action of these lncRNAs, see Table 2.
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The large number and functional versatility of lncRNAs, in general, suggest that
this list is by no means completed yet. Systematic approaches towards mapping lncRNA
dependencies could reveal many more potential biomarkers and therapeutic targets. Future
work should incorporate samples from patients with benign precursor lesions and early-
stage cancer models whenever possible. As illustrated by the examples of NEAT1 and
the TGF-β pathway, the roles of lncRNAs and the processes involving them may change
dynamically as pancreatic cancer progresses.

3. Role of RNA-Binding Proteins in PDAC
RNA-binding proteins are essential regulators of RNA biology, overseeing key stages

of RNA life, including RNA splicing, processing, transport, stability, turnover and transla-
tion [123–125]. These multifunctional proteins are integral for maintaining cellular home-
ostasis and, consequently, human health. However, RBPs can become dysregulated, con-
tributing to various diseases including cancer [126]. In PDAC, several RBPs are considered
as disease drivers with prognostic relevance [127]. Some RBPs like LIN28A/B, ELAVL1,
IGF2BP or MUSASHI proteins also exhibit long-standing and well-characterized roles in
carcinogenesis or tumour suppression in other cancer types. In these cases, small-molecule
inhibitors have been developed and employed to target malignant phenotypes. Despite
these advancements, novel cancer-related functions for RBPs have recently been identified,
continuously increasing the portfolio of RBP-based therapeutic strategies. This is partic-
ularly relevant in the context of PDAC where emerging evidence links specific RBPs to
disease progression. In this section, we explore recent pancreatic cancer-related findings
of selected RBPs, delving into the molecular mechanisms that underpin their influence
on tumour growth, survival and metastasis (Figure 2). We will provide an overview of
the regulatory pathways affected by the selected RBPs and summarize the potential of
targeting these proteins.
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Figure 2. RNA-binding protein-guided functions and regulatory mechanisms involved in PDAC
development and progression. Indicated cellular (a) and molecular functions (b) are depicted
schematically with implicated promoting (orange) or inhibitory (turquois) RBPs assigned to their
respective functions. Importantly, several RBPs have been shown to modulate cancer hallmarks by
applying one or more modes of action to regulate their target transcripts.
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3.1. ELAV-Like RNA Binding Protein 1 (ELAVL1)

ELAVL1, also known as human antigen R (HuR), plays a crucial role in the post-
transcriptional regulation of numerous mRNAs involved in proliferation, cell survival,
the stress response and chemoresistance. The protein is primarily located in the nucleus
but shuttles to the cytoplasm to control the expression of its target transcripts. HuR binds
to AU- or U-rich elements in the 3′ untranslated regions (3′UTRs) of target mRNAs to
stabilize and/or enhance the translation of the respective transcripts [128]. HuR was ini-
tially discovered to be overexpressed in various cancer entities associated with a poor
prognosis [129,130]. In PDAC, the HuR protein was detected in the nucleus and cytoplasm,
and its cytoplasmic localization was associated with the tumour (T) stage. Interestingly,
high cytoplasmic expression of HuR was associated with a favourable outcome in patients
who received adjuvant therapy with gemcitabine [131]. Mechanistically, it was shown that
HuR promotes the expression of DCK, an enzyme that activates gemcitabine, by stabilizing
the DCK mRNA and enhancing its translation [132]. However, a retrospective study con-
ducted in a cohort of 175 patients with resected periampullary adenocarcinomas, including
pancreatic cancer, could not confirm the association between HuR and DCK expression
and found that high HuR levels or a high HuR cytoplasmic-to-nuclear ratio is associated
with poor survival in patients that received gemcitabine [133]. This finding is well in line
with other reports that have assigned tumour-promoting functions to HuR. For instance,
HuR was shown to stabilize the GPRC5A mRNA, encoding an orphan G-protein-coupled
receptor, which is upregulated by gemcitabine and contributes to resistance mechanisms in
pancreatic cancer cells [134].

Furthermore, HuR was identified as a regulator of proliferation, the cell cycle and
apoptotic pathways in PDAC-derived cells under normal and stress conditions. In detail,
the treatment of pancreatic cancer cells with DNA-damaging agents led to an accumulation
of HuR in the cytoplasm and silenced expression-sensitized cells to these agents. Mechanis-
tically, HuR was identified as a post-transcriptional regulator of the mitotic inhibitor kinase
WEE1 by stabilizing the corresponding mRNA of this kinase, especially after DNA damage.
Importantly, the upregulation of WEE1 induces a G2/M cell cycle arrest that enables cancer
cells to repair their DNA [135]. Another study confirmed this DNA repair-promoting
function of HuR by regulating the expression of BARD1 mRNA, thereby ensuring effective
DNA repair via the homologous recombination repair pathway [136].

In addition to these DNA damage response-related functions, HuR was also shown
to enhance the resilience of PDAC cells to cope with metabolic stress. For example, the
depletion of HuR-sensitized pancreatic cancer cells to glucose deprivation led to increased
apoptosis and reduced anchorage-independent colony formation. Interestingly, glucose
deprivation induced the cytoplasmic translocation of HuR and allowed for the binding of
this RBP to mRNAs encoding for several metabolic enzymes, including GPI, PRPS2 and
IDH1. Of note, the depletion of HuR reduced the transcript and protein abundance of
these metabolic enzymes in three pancreatic cancer cell lines, suggesting a critical role of
HuR in modulating pancreatic cancer cell metabolism and survival under acute glucose
deprivation [137]. This pro-survival effect of HuR in pancreatic cancer cells was observed
in several other studies, and additional HuR target genes like YAP1 and DR5/TNFRSF10B
as well as their associated pathways have been shown to be activated or inhibited by
HuR [138,139].

Besides proliferation and apoptosis, HuR has been shown to promote cancer cell
migration, invasion and metastasis as well as stem cell properties through its regulation of
key genes, such as SNAI1, that play a role in EMT [140]. Intriguingly, the interruption of
the HuR-RNA interaction by a novel compound called KH-3 reduced PDAC cell viability,
EMT and metastatic potential both in vitro and in vivo [140].
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In addition to the aforementioned tumour cell intrinsic functions, HuR was also shown
to contribute to the remodelling of the tumour microenvironment (TME) by regulating the
secretion of PDGFA, which led to increased collagen deposition and stromal activation in
PDAC [141].

In summary, given its multifaceted role in promoting PDAC cell growth and survival,
drug resistance and DNA repair, metabolic adaptation, EMT as well as metastasis, HuR
represents an interesting as well as challenging therapeutic target. Inhibiting HuR alone or
in combination with, e.g., DNA-damaging agents or WEE1 inhibitors, may alter therapy
responses and patient outcomes in pancreatic cancer.

3.2. Insulin-Like Growth Factor II mRNA-Binding Proteins (IGF2BPs)

The family of oncofetal IGF2BPs, commonly upregulated or de novo expressed in
various solid cancers, is notably active in several types of cancer, including PDAC, where
these RBPs regulate a range of cellular processes such as proliferation, migration, inva-
sion, metabolic pathways, chemoresistance and interactions within the TME [142,143].
As highly conserved regulators of mRNA turnover and translation, IGF2BPs can act as
N6-methyladenosine (m6A) readers, binding predominantly to the 3′UTR of target mR-
NAs [144,145]. Through this binding, IGF2BPs protect mRNAs from miRNA-mediated
decay, thereby influencing the stability and translation efficiency of various oncogenic tran-
scripts [146]. In detail, IGF2BP1 has been identified as a key player in pancreatic cancer and
was found to be significantly upregulated in this malignancy [147,148]. The overexpression
of IGF2BP1 was correlated with tumour size and shorter overall survival (OS) in pancre-
atic cancer patients, highlighting its clinical relevance as a prognostic marker [147,148].
Mechanistically, IGF2BP1 was shown to promote cell cycle progression and proliferation
via CDC25A and E2F1 and by activating AKT signalling [147–150]. Moreover, IGF2BP1
was shown to contribute to gemcitabine resistance of pancreatic cancer cells via multiple
mechanisms. One study unravelled a complex RNA regulatory network that is controlled
by the interaction of IGF2BP1 with m6A-modified SH3BP5-AS1, which increased the ex-
pression and stability of this lncRNA. In turn, SH3BP5-AS1 activated the WNT signalling
pathway by sponging miR-139-5p, upregulated CTBP1 expression and thereby contributed
to increased pancreatic cancer cell invasion, migration and stemness, as well as enhanced
resistance to gemcitabine [151]. Another study could show that gemcitabine treatment
inhibited pancreatic cancer cell proliferation and migration and decreased the overall m6A
level potentially via the treatment-induced downregulation of the m6A writer WTAP [152].
The reduction in WTAP led to a downregulation of the m6A-modified MYC mRNA as well
as the MYC protein. Since the MYC mRNA is known to be bound and stabilized by IGF2BP1
in a m6A-dependent manner, the authors speculated that gemcitabine might interfere with
the WTAP/MYC/IGF2BP1 axis to inhibit pancreatic cancer progression [152,153].

The second member of the IGF2BP family, namely IGF2BP2, was found to be overex-
pressed in pancreatic cancer tissues as well, where it has been associated with significantly
shorter OS [154,155]. The overexpression of IGF2BP2 might be driven by multiple mecha-
nisms, including the loss of tumour-suppressive miRNAs, gene amplification and upregula-
tion mediated by the lncRNA LINC00901 [154,156]. Interestingly, high IGF2BP2 expression
is often found in high-risk tumours that exhibit lower immune response activity [157].
Moreover, a negative correlation with immune signature markers and a direct association
with the expression of PD-L1, a key immune checkpoint protein, have been described for
IGF2BP2. In fact, by regulating PD-L1 expression, IGF2BP2 may contribute to immune
evasion, further promoting tumour survival in the immune-suppressive microenvironment
of pancreatic cancer [158]. In addition, IGF2BP2 was shown to promote cell proliferation
and metabolic reprogramming to support rapid tumour growth through the activation
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of the PI3K/AKT signalling pathway as well as through the stimulation of the glycolytic
activity in PDAC cells by stabilizing the mRNA of GLUT1/SLC2A1, thus enhancing its
expression level and facilitating increased glucose uptake [154,159].

Last but not least, the third family member, IGF2BP3, is most frequently used as a
biomarker for solid tumours [160]. In 1997, IGF2BP3 was discovered in a large-scale screen
for differentially expressed genes in pancreatic cancer, and it was cloned and initially
named as a KH domain-containing protein overexpressed in cancer (KOC) [161]. Later
studies confirmed its overexpression and revealed the prognostic relevance of IGF2BP3
in PDAC [161–165]. Importantly, based on biopsies or microdissections, IGF2BP3 is con-
sidered as a biomarker that detects early pancreatic lesions with high sensitivity and
specificity [162–168]. Similar to IGF2BP2, IGF2BP3 is part of a prognostic five-gene sig-
nature that allows for the stratification of patients into low-risk and high-risk groups.
The latter shows a high tumour mutational burden with lower response rates to immune
checkpoint therapies [157]. Furthermore, elevated IGF2BP3 levels are associated with
increased cell proliferation, migration and invasion, although its exact mechanisms remain
incompletely understood. A recent study suggested that IGF2BP3 might act by blocking or
mediating the interaction of specific transcripts with the RNA-induced silencing complex
(RISC), thereby modulating their susceptibility to miRNA-mediated post-transcriptional
gene silencing [169]. Further data suggest that IGF2BP3 might facilitate pancreatic cancer
cell invasion and metastasis through additional mechanisms, including the regulation of
localized translation at cell protrusions, altered adhesion by controlling CD44 expression or
by stabilizing the SMS mRNA [170–173]. Furthermore, IGF2BP3 was shown to upregulate
UBE2K, which reinforces the proliferation and stem cell-like phenotype in PDAC [174].

Collectively, these studies highlight the functional relevance of the individual IGF2BP
family members in pancreatic cancer by employing overlapping as well as specific regula-
tory mechanisms to activate oncogenic pathways while at the same time inhibiting tumour
suppressive genes and immune cell functions. Hence, these proteins are prime candidates
for drug development efforts, and their oncofetal expression patterns should allow for
cancer-specific targeting with minimal side effects.

3.3. BicC Family RNA-Binding Protein 1 (BICC1)

BICC1 plays a crucial role in regulating cell fate through post-transcriptional mech-
anisms [175]. Originally identified in Drosophila melanogaster, BICC1 was recognized as
a gene associated with maternal-effect mutations that cause a double-abdomen pheno-
type [176,177]. Later it was shown that the RBP BICC1 regulates anterior–posterior pat-
terning in early development by controlling the localized translation of oskar, a key mRNA
in Drosophila axis formation [178]. Recent studies highlight the upregulation of BICC1 in
PDAC, particularly in lymph node metastases. Elevated BICC1 expression might affect
immune cell infiltration and was shown to correlate with oncogenic pathways like EMT,
TNFα/NF-kB and TGF-β signalling, which might underlie the poor prognosis of pancreatic
cancer patients that express high levels of BICC1 in their tumours [179]. Mechanistically,
BICC1 is able to influences tumour growth and progression through its post-transcriptional
control of several molecular targets and pathways. In pancreatic cancer, BICC1 was shown
to facilitate angiogenesis in a VEGF-independent manner [180]. In detail, an AU-rich
sequence within the 3′UTR of the LCN2 mRNA was recognized by BICC1, and this stabi-
lizing interaction increased the expression of the LCN2 protein. Elevated levels of LCN2
subsequently activated the JAK2/STAT3 signalling pathway and resulted in the enhanced
expression and secretion of the pro-angiogenic factor CXCL1. Intriguingly, the anti-tumour
effect of gemcitabine could be improved by treating patient-derived xenograft models with
elevated BICC1 expression with an anti-LCN2 antibody but not with the anti-VEGF anti-
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body Bevacizumab [180]. Another possibility to improve gemcitabine efficacy in PDAC by
targeting BICC1 and its downstream signalling was recently described. In particular, BICC1
has been identified as an activator of tryptophan catabolism by increasing the expression of
IDO1 [181]. The resulting increase in tryptophan metabolites contributes to the synthesis
of nicotinamide adenine dinucleotide (NAD+) and promotes oxidative phosphorylation,
creating a metabolic environment conducive to a stem cell-like phenotype in cancer cells.
Notably, the inhibition of the BICC1/IDO1/tryptophan metabolic axis has shown potential
in improving the efficacy of gemcitabine by reducing drug resistance and limiting the stem
cell-like qualities of tumour cells [181]. Hence, BICC1 emerges as a multifaceted regulator
in pancreatic cancer, influencing processes such as EMT, immune infiltration, angiogene-
sis, chemoresistance and stemness. Its regulatory impact on LCN2 and IDO1 expression
highlights its potential as a therapeutic target to overcome VEGF inhibitor resistance and
improve responses to chemotherapy in PDAC.

Taken together, the RBPs introduced in this section highlight the important contri-
bution of post-transcriptional regulators in modulating gene expression programmes in
pancreatic cancers. Table 3 provides a comprehensive overview about additional pancreatic
cancer-associated RBPs. While these RBPs represent interesting targets to treat PDAC, only
a limited number of inhibitors targeting a specific RBP have been developed so far. In
the final section, we will provide a general overview about the diverse opportunities that
enable interference with RBPs as well as lncRNAs.

Table 3. RNA-binding proteins and their roles in pancreatic cancer.

RBP Roles in PDAC References

ELAVL1 (HuR)

upregulated in PDAC; associated with a poor prognosis; promotes proliferation,
the cell cycle, migration and invasion; inhibits apoptosis; and might

mediate gemcitabine
sensitivity induced by promoting DCK expression; stabilized mRNAs in PDAC:
BARD1, DCK, DR5/TNFRSF10B, GPRC5A, IDH1, PRPS2, PDGFA, SNAI1, WEE1

and YAP1

[128,131–141,182]

IGF2BP1

upregulated in PDAC; associated with a poor prognosis; promotes proliferation,
cell cycle progression, EMT, metastasis and gemcitabine resistance; is an m6A

reader; and
stabilized RNAs in PDAC: SH3BP5-AS, E2F1 and CDC25A

[142–144,146–150,183]

IGF2BP2

upregulated in PDAC; associated with a poor prognosis; promotes proliferation
and glucose metabolism; associated with an immune-suppressive

microenvironment; is an m6A reader; and stabilized mRNAs in PDAC: SLC2A1
and CD274

[142,143,154–159,183]

IGF2BP3

upregulated in PDAC; associated with a poor prognosis; frequently used as a
biomarker (needle biopsy); promotes proliferation, adhesion, migration and

invasion; associated with an immune suppressive microenvironment; is an m6A
reader; and

stabilized mRNAs in PDAC: ARF6, ARHGEF4, CD44, SMS and UBE2K

[142,143,157,161,162,164–174,183]

BICC1

upregulated in PDAC; expression associated with EMT and immune infiltration;
and supports angiogenesis and chemoresistance by promoting LCN2

and CXCL1
expression

[176–181]

CELF2 (CUGBP2) enhances stability but represses the translation of VEGF and COX2 mRNAs and
induced by curcumin [184]

CSDE1 (UNR) biomarker associated with a favourable prognosis and the
immunogenic subtype [185]

FUS upregulated in PDAC, stabilizes the NRF2 mRNA and suppresses oxidative
stress and ferroptosis [186]

hnRNPA2/B1 upregulated in early PDAC stages; inhibits apoptosis by suppressing BCL-X(S)
splicing; regulates splicing of ARAF; and interacts with KRAS [93,102,187,188]

hnRNPC controls the mRNA stability of IQGAP3 to promote cell proliferation, migration,
invasion and metastasis [189]

hnRNPF part of a druggable super-enhancer network that promotes PDAC cell and
tumour growth and stabilizes the PRMT1 mRNA to promote MYC expression [190]
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Table 3. Cont.

RBP Roles in PDAC References

hnRNPL upregulated in PDAC, associated with a poor prognosis and promotes
migration and EMT [191]

LIN28B

upregulated in PDAC, associated with metastasis and a poor prognosis;
promotes proliferation, stemness, migration and EMT;

targets in PDAC (via de-regulating let-7): MYC, HMGA2, KRAS, TET3, WNT5A
and PCSK9

[192–194]

MEX3A
upregulated in PDAC, expression correlates with disease progression in human

and mice; promotes cell cycle and gemcitabine resistance and
stabilized mRNAs in PDAC: CDK6

[195]

MSI2

upregulated in PDAC; associated with metastasis and a poor prognosis;
promotes proliferation, metastasis and chemoresistance; transcriptionally

suppressed by KLF4; and controls HIPPO signalling by suppressing SAV1 and
MOB1 translation; mRNA targets in PDAC: NUMB, MOB1, SAV1

[196–199]

QKI upregulated in PDAC tumour cells and fibroblasts and promotes proliferation,
EMT and metastasis [200]

RBFOX2
prevents PDAC progression and metastasis and controls the splicing of ABI1

mRNA to
inhibit migration

[201]

RBM10 downregulated in PDAC; the RBM10 mutation in advanced-stage tumours is
associated with favourable survival; regulates the splicing of hTERT [202,203]

STRBP Binds to the HSATII RNA to prevent EMT and invasion and controls isoform
switching of CLSTN1 [204]

ZFR upregulated in PDAC and promotes proliferation, cell cycle progression
and invasion [205]

4. Strategies to Target lncRNAs and RBPs
In general, targeting lncRNAs or RBPs in human PDAC patients is not a trivial task,

and commonly applied strategies try to modulate the expression or interfere with molecular
interactions. More recently, small molecules that mediate the selective degradation of RNAs
and proteins have been developed and represent an innovative and promising opportunity
(Figure 3). In this section, we will briefly introduce these strategies in more detail, and we
discuss their advantages as well as their limitations.
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Figure 3. Summary of RBP- and lncRNA-directed therapeutic strategies and their current application
in pancreatic cancer. Most strategies are currently at the early stages and have been tested in cell lines
and pre-clinical mouse models. The targeting strategies can be divided into two groups. RNA inter-
ference (RNAi) and antisense oligonucleotides (ASOs). Ribonuclease-targeting chimeras (RIBOTACs)
are generally RNA-directed approaches and can be used to degrade RBP-encoding mRNAs as well as
lncRNAs. In contrast, small molecules and proteolysis-targeting chimeras (PROTACs) aim to target
the RNA-binding protein directly and can be used to either interfere with its molecular interactions,
i.e., binding to RNA, or to recruit an E3 ubiquitin ligase to induce the destruction of the RBP via
the ubiquitin–proteasome system. Small molecules can also be directed against structural elements
in lncRNAs to interfere with molecular interactions. The identification of specific and high-affinity
binding compounds and the tumour-specific delivery of these substances pose major challenges for
their clinical application in PDAC patients.
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4.1. RNA Interference-Based Targeting Approaches

RNA interference (RNAi) is a conserved cellular mechanism that utilizes small, double-
stranded RNA molecules, such as small interfering RNA (siRNA), short hairpin RNA
(shRNA) or miRNAs, to silence gene expression by targeting complementary RNA se-
quences [206]. This mechanism provides a versatile and fairly specific method for reducing
lncRNA and RBP expression by effectively eliminating the respective transcripts that are
mainly found in the cytoplasm. The specificity of the method minimizes the risk of off-
target effects, which can be a concern with other therapeutic approaches. Furthermore,
RNAi-based therapies offer the flexibility to inhibit multiple targets simultaneously, en-
abling a more comprehensive treatment design tailored to the complexities of the disease.
Hence, this multifaceted approach can potentially address various pathways that contribute
to tumour growth and resistance, enhancing overall treatment efficacy. However, despite
its promising capabilities, RNA-based therapy faces significant challenges, particularly
concerning delivery mechanisms. RNAi agents, such as siRNA and shRNA, are highly
susceptible to rapid degradation in the bloodstream, which can significantly diminish their
therapeutic potential. To achieve the effective silencing of target genes within PDAC cells,
RNAi agents often require the use of specialized delivery vectors, such as lipid nanoparti-
cles or viral vectors. These vectors play a crucial role in enhancing the stability of RNAi
agents and facilitating their successful delivery to target cells. Consequently, ongoing
research aims at improving the delivery and stability of RNAi agents, which is essential for
advancing the clinical applicability of RNAi in cancer therapy [207]. For example, novel
exosome-based delivery systems have been engineered to carry siRNAs or shRNAs that
targeted mutant KRASG12D in multiple mouse models of pancreatic cancer [208].

In summary, RNAi offers a precise and flexible approach for gene silencing, providing
a strategy for overcoming treatment resistance and enhancing chemotherapy efficacy by
targeting lncRNAs and RBPs highlighted herein. While challenges related to delivery and
stability persist, advancements in RNAi technologies hold promise for translating this
innovative approach into effective clinical therapies for PDAC patients.

4.2. Antisense Oligonucleotides to Target lncRNAs and RBPs

Antisense oligonucleotides (ASOs) represent a powerful therapeutic strategy for tar-
geting lncRNAs and RBPs. These short, single-stranded nucleic acids are designed to bind
to complementary RNA sequences, providing a means to modulate gene expression at the
transcript level. Importantly, their precise mechanisms of action depend on the specific
design and chemical modification of ASOs. A major mechanism by which ASOs exert
their effects is through their interaction with ribonuclease H (RNase H). This endogenous
enzyme cleaves the RNA strand in RNA-DNA hybrids, and ASOs designed to leverage
this interaction therefore contain a central DNA region flanked by chemically modified
nucleotides [207,209]. Because RNase H cleavage occurs in the nucleus and cytoplasm,
ASOs might be the preferred agents to manipulate the expression of lncRNAs that reside
in the nucleus [209,210]. Another clinically relevant mechanism of action involves the
regulation of alternative splicing by ASOs [211]. By binding to splice sites or regulatory
sequences, ASOs can modulate the splicing patterns of target genes. Similarly, ASOs
can function as steric blockers to prevent intra- and intermolecular RNA-RNA as well as
RNA-DNA and RNA–protein interactions. This mode of action could be harnessed to
inhibit mRNA translation, regulate polyadenylation or interfere with miRNA-mediated
RNAi. Hence, ASOs similar to RNAi agents offer high specificity and versatility, and their
design can be tailored for particular applications, enhancing their therapeutic potential.
Furthermore, ASOs generally have manageable toxicity profiles, as they can be engineered
to avoid interactions with non-targeted RNAs and proteins. Nevertheless, ASO-based
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therapies also face similar limitations like other RNA-based agents, particularly regarding
their specific delivery. ASOs are often susceptible to rapid degradation in the bloodstream,
which can hinder their effectiveness. To reach target cells, ASOs may require specialized
delivery systems, such as nanoparticle-based carriers or conjugation to cell-penetrating
peptides [207,212]. Thus, advancements in delivery strategies are crucial for improving the
therapeutic efficacy of ASOs and ensuring that they effectively reach their intended targets
within cancer cells.

In conclusion, ASOs are powerful agents that enable the targeting of nuclear and
cytoplasmic protein-coding and non-coding transcripts. By inhibiting the expression of
critical PDAC-associated lncRNAs and RBPs, ASOs can potentially disrupt the pathways
that support tumour growth and survival. However, innovative ASO delivery systems
need to be developed to enhance the effectiveness of these therapies in the fight against
pancreatic cancer.

4.3. Small-Molecule Inhibitors

In addition to the aforementioned oligonucleotide-based targeting strategies, small
molecules comprise another interesting approach to target lncRNAs and RBPs. These
molecules are either rationally designed to bind to specific regions within their targets or
they can be discovered using unbiased screening approaches. The major mechanism of
action of such small-molecule inhibitors is to interfere with intra- and/or intermolecular
interactions, thereby, for example, causing RNA misfolding or blocking the interaction
between RBPs and their target transcripts. Indeed, several small-molecule inhibitors
have been developed in recent years, and interested readers are referred to excellent
reviews on this exciting topic [17,213–218]. Importantly, small-molecule inhibitors offer
several advantages in targeting lncRNAs and RBPs. For example, by designing small
molecules that bind to specific domains or structural elements only present in the target
lncRNA or RBP, these molecules can be engineered for specificity, allowing for targeted
inhibition with potentially minimal impact on non-target RNAs or proteins. Furthermore,
many small-molecule inhibitors are designed for oral bioavailability and are optimized for
pharmacokinetics and pharmacodynamics, which can simplify their administration and
improve patient compliance. Compared to oligonucleotides and viral delivery systems,
small molecules are typically easier and cheaper to synthesize and modify. Nevertheless,
the identification of specific and effective small-molecule inhibitors to target RNAs and
RBPs is not a trivial task given the lack of enzymatic activities that would provide an easy
read-out for measuring on-target activity. Moreover, the lack of suitable binding pockets
within most RBPs as well as the conserved structure of commonly found RNA-binding
domains and therefore the lack of RBP-specific structural motifs as a suitable target region
to disrupt intermolecular interactions complicates the rational design of small molecules.
Moreover, combinatorial recognition of target RNA sequences or structures may be a
common phenomenon, which makes it difficult to design small molecules that are able
to block multiple binding sites. In the case of lncRNAs, structural information is often
not available, and functionally relevant regions within the transcript are often unknown.
Last but not least, a small molecule binding to its lncRNA or RBP target might not be
sufficient to interfere with the activity of the respective target. However, once identified,
specific small molecule binders can be converted to degraders as will be discussed in the
next paragraph.
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4.4. Targeting of lncRNAs and RBPs via Proximity-Inducing Bifunctional Molecules

The targeted degradation of disease-relevant proteins is a therapeutic concept that
has gained lots of attention in recent years and has been transferred recently to the RNA
world as well. The general idea is to induce proximity between a target molecule, e.g.,
RBP or lncRNA, and a machinery that is able to degrade the target. In order to achieve
targeted protein degradation (TPD), so-called proteolysis-targeting chimeras (PROTACs)
have been developed. These are heterobifunctional small molecules consisting of two
ligands: one that binds a specific target protein and another one that binds an E3 ubiquitin
ligase. Both ligands are joined by a linker, and the simultaneous binding of both ligands to
their intended proteins induces the ubiquitination and subsequent degradation of the target
protein [219]. This concept was recently applied to degrade the splicing factor SF3B1 as
well as the eukaryotic translation initiation factor EIF4E [220,221]. An interesting variation
of this concept, called RNA-PROTAC, has been developed and applied to degrade two
RBPs, namely LIN28A and RBFOX1 [222]. The RNA-PROTAC approach requires a chimeric
molecule which consists of a short oligo-ribonucleotide corresponding to the consensus
binding sequence of the RBP that is conjugated to a peptide derived from HIF1A, thereby
enabling the recruitment of VHL, an E3 ubiquitin ligase. The adaptation of the concept
of proximity-induced degradation to eliminate specific RNAs led to the development of
ribonuclease-targeting chimeras (RIBOTACs). Here, small molecules that bind to the RNA
of interest are modified to carry a short 2′-5′oligoadenylate or another small molecule that
binds to and locally activates RNase L [223–225]. This approach was recently leveraged to
convert strong yet inactive binding interactions into potent and specific modulators of RNA
function [226]. Of note, additional ASO and aptamer-based strategies have been invented to
engage RNase L in targeted RNA degradation [227–230]. Thus, the field is rapidly evolving,
and the development and application of PROTACs and RIBOTACs to target RBPs and
lncRNAs in pancreatic cancer might change the trajectories of this devastating disease.

In summary, several strategies enable the targeting of lncRNAs and RBPs, thereby
opening new avenues for biomedical research and development. However, targeting
these new classes of molecules comes with additional clinical challenges and limitations.
For example, targeting RBPs with housekeeping functions, e.g., regulators of splicing or
translation, might cause systemic on-target toxicities that need to be carefully assessed
using appropriate preclinical models. In addition, off-target toxicities of the therapeutic
molecules could also occur and should be taken into account. Furthermore, genes with
redundant functions, e.g., members of a specific RBP family, might require concurrent
targeting in order to achieve therapeutic effects and avoid treatment resistance. Hence,
potential resistance mechanisms, which are hard to predict, should be investigated early
on using in vitro and in vivo approaches including unbiased functional genetic screens
and molecular studies in order to understand the mode of action and drug resistance.
This could also enable the development of companion diagnostics to enhance safety and
efficacy. Last but not least, it is unlikely that single-target/single-agent strategies will
achieve an enduring and deep clinical response in cancer therapy. Therefore, targeting a
specific RBP or lncRNA in combination with already approved treatment regimen, e.g.,
gemcitabine/nab-paclitaxel in the case of PDAC, might be a promising strategy that should
be explored systematically.

5. Conclusions and Future Perspectives
LncRNAs and RBPs are critical regulators of chemoresistance, cancer stem cell proper-

ties and oncogenic signalling in PDAC, making them compelling candidates for therapeutic
interventions and disease biomarkers. In particular, the oncofetal expression pattern of
individual RBPs and the tissue- and cell-type specific expression of certain lncRNAs repre-
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sent unique opportunities for making future therapies more specific and early detection
more sensitive. Therefore, future research should focus, on the one hand, on elucidating the
molecular functions of individual, disease-associated lncRNAs and RBPs as well as their
interconnections to better understand the complex regulatory networks that drive PDAC
progression. Importantly, interfering with these interactions could be a valid therapeutic
strategy. For example, targeting LINC01232 or UCA1 might affect hnRNPA2/B1 expression
and its oncogenic functions [93,102]. Alternatively, preventing the m6A-dependent interac-
tion between LINC00941 and IGF2BP2 could be a valid strategy to impair pancreatic cancer
cell migration and invasion [231]. Additionally, LINC00261 was shown to compete with
the MYC mRNA for binding to IGF2BP1, suggesting that the overexpression of LINC00261,
or maybe just parts of it, could be used to decrease oncogenic MYC protein expression in
PDAC [232].

On the other hand, there is an urgent need for novel sensitive and specific biomarkers,
since the only Food and Drug Administration (FDA)-approved blood biomarker CA 19-9
is limited in its applicability for surveillance due to its variability among different ethnic
populations and its insufficient sensitivity and specificity [233,234]. Thus, prospective
studies should explore several sources, e.g., blood, saliva, urine and exosomes, and analyze
different molecular classes, as well as potentially combine multiple approaches, especially
transcriptomics and proteomics, in order to evaluate lncRNAs and RBPs as early disease
biomarkers for patient identification and stratification. In addition, high-risk populations,
like patients diagnosed with chronic pancreatitis, should also be considered and thoroughly
investigated in order to identify RBPs and lncRNAs that are associated with predisposing
conditions [235,236].

With ongoing research and improvements in targeting and drug delivery, the inhi-
bition of lncRNAs and RBPs holds great potential, and novel combinatorial approaches
involving lncRNA- or RBP-targeting drugs as well as conventional (chemo)therapies or
other targeted agents may enhance their therapeutic efficacy and pave the way for more
effective treatments against one of the most challenging cancers.
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