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Local nutrient addition drives plant diversity
losses but not biotic homogenization in
global grasslands
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Nutrient enrichment typically causes local plant diversity declines. A common
but untested expectation is that nutrient enrichment also reduces variation in
nutrient conditions among localities and selects for a smaller pool of species,
causing greater diversity declines at larger than local scales and thus biotic
homogenization. Here we apply a framework that links changes in species
richness across scales to changes in the numbers of spatially restricted and
widespread species for a standardized nutrient addition experiment across 72
grasslands on six continents. Overall, we find proportionally similar species
loss at local and larger scales, suggesting similar declines of spatially restricted
and widespread species, and no biotic homogenization after 4 years and up to
14 years of treatment. These patterns of diversity changes are generally con-
sistent across species groups. Thus, nutrient enrichment poses threats to plant
diversity, including forwidespread species that are often critical for ecosystem
functions.

Agricultural fertilization practices and atmospheric nutrient deposi-
tion have led to increased availability and redistribution of soil nutri-
ents globally1–3. At local scales (i.e., α diversity), nutrient enrichment
tends to reduce plant diversity4,5. This diversity decline is typically
ascribed to disproportionate losses of rare species (i.e., species with
relatively low cover) because small populations are more susceptible

to extinction6–8. In addition, nutrient enrichment often leads to the
removal of species with traits ill-suited for effectively competing in
high nutrient conditions6. While species can vary widely in their
nutrient requirements and tolerances, groups of species with similar
(shared) characteristics can be lost from a flora. For example, native
species are more likely to be lost than non-native species when
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nutrients are enrichedbecausenon-natives areoften better-adapted to
nutrient-rich conditions6,9,10. Similarly, nitrogen-fixing legumes may be
more vulnerable than other species in high nutrient environments due
to their decreased competitive advantage6,11.

Despite clear evidence that nutrient enrichment causes losses ofα
diversity in grasslands4,5, how these losses are reflected at larger spatial
scales (i.e., γ diversity; calculated by aggregating local communities) is
less straightforward12–14. Yet, it is diversity loss and change at larger
spatial scales that is most often relevant for biodiversity conservation
and management as well as for the provision of ecosystem functions
and services15,16. It is often assumed thatnutrient enrichment, likemany
other global changes, results in biotic homogenization (i.e., increasing
similarity in composition among local communities, quantified as a
decrease in β diversity)17–21. This is because local nutrient enrichment is
expected to create homogeneous nutrient conditions among localities
and consistently select for a smaller pool of species that are nutrient-
demanding, fast-growing, andhighly competitive for light22,23. Previous
investigations of scale-dependent diversity change under nutrient
enrichment have tended to be short term or limited in spatial
extent24–28. These short-term or spatially-restricted studies have found
mixed results, indicating that nutrient enrichment leads to biotic
homogenization29–31, no changes in β diversity24,26,27,32 or even differ-
entiation (i.e., increase in β diversity)25,28,33–37.

A recent extension to Whittaker’s multiplicative β diversity parti-
tion enables linking changes in average α diversity (Δα), γ, and β
diversity (in log scale) to changes in the numbers of spatially restricted

and widespread species (Fig. 1)12,38. This framework illustrates how
nutrient enrichment could cause biotic homogenization if local com-
munities gain widespread species (Fig. 1: scenario I), if spatially
restricted species are replaced by widespread species (Fig. 1: scenario
II), or if the number of spatially restricted species decreases (Fig. 1:
scenario III). Conversely, nutrient enrichment could cause biotic dif-
ferentiation if local communities lose widespread species (Fig. 1: sce-
nario IV), if widespread species are replaced by spatially restricted
species (Fig. 1: scenario V), or if the number of spatially restricted
species increases (Fig. 1: scenario VI). Finally, if gains or losses of spe-
cies at the α and γ scale are similar (i.e., approximately equal or pro-
portional), then we would observe no change in β diversity (1:1
diagonal line in Fig. 1). However, clear links between changes in
diversity across spatial scales and changes in the number of spatially
restricted and widespread species under nutrient enrichment are yet
to be made.

Here, we use this framework to synthesize scale-dependent plant
diversity change (for the entire community and groups of species)
under nutrient enrichment using a long-termstandardized experiment
in 72 grasslands distributed across six continents (i.e., NutNet39; Fig. S1;
Table S1). We use two treatments: Ambient (Control) and fertilization
by nitrogen, phosphorus, and potassium together (i.e., NPK). Nutrients
were added at a rate of 10 gm−2 annually. Treatments were randomly
assigned to 5m× 5m plots and were replicated in three or more
blocks. Species cover was recorded in one 1m× 1m permanent sub-
plot using a standardized protocol. At each site, α diversity is deter-
mined as the number of species in each permanent subplot (i.e.,
species richness), and γ diversity as the total number of species
occurring in three permanent subplots (for each treatment sepa-
rately). We exclude additional blocks from sites that have more
than three because γ and β diversity depend on the number of local
communities used. We calculate Δα as the richness difference in
local communities (subplots) and Δγ as the difference in the sum of
the subplots under nutrient addition relative to that of control on
the log scale. That is,Δα = log(αNPK/αControl) andΔγ = log(γNPK/γControl).
We then calculate Δβ as Δγ minus Δα, whereΔα is the average of
Δα over three blocks. Overall, we find proportionally similar species
losses at local and larger scales, suggesting similar magnitudes of
declines of spatially restricted and widespread species. Thus, we find
no clear biotic homogenization or differentiation four years, and even
up to 14 years, after nutrient additions began. Moreover, these overall
patterns of little change in β diversity hold consistent across species
groups.

Results and discussion
Changes in α-, γ-, and β diversity for the entire communities
Overall, adding nutrients decreased α and γ diversity, but it had no
significant effects on β diversity (Δβ = 0.03; 95% credible interval:
−0.02 to 0.08) (Fig. 2; Table S3), see also ref. 27. While we observed
substantial variation inΔα, Δγ, and to a lesser extent, Δβ among sites
(Table S4), we found no strong relationships between Δα, Δγ, and Δβ
and distance among blocks within sites, site drought intensity, grazing
intensity, productivity, or species pool that have been shown in pre-
vious literature to influence diversity change under nutrient enrich-
ment in grasslands24,25,34,40 (Fig. S3). On a site level, we found biotic
homogenizationat 24 sites, differentiation at47 sites, andnochange in
β diversity at one site. However, the site-level 95% credible intervals
(see Methods) overlapped 0 for all sites, suggesting no significant
change in β diversity with nutrient addition (Table S4). Importantly,
the overall effects of nutrient addition on α, γ, and β diversity were
similar when we used effective numbers of species based on either
Shannon diversity or Simpson diversity that account for species rela-
tive covers40 (Fig. S4; Table S3). Because species richness is more
strongly influenced by rare species, while Shannon and Simpson
diversity increasingly weigh abundant species, this result suggests that
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Fig. 1 | A framework linking diversity changes at the α-, γ-, and β-scales to
changes in the number of spatially restricted and widespread species. Δα, Δγ,
andΔβ are log response ratios (LRR)of averageα-, γ- andβ- diversity undernutrient
enrichment relative to that under ambient conditions (control). Δβ is equal to zero
along the 1:1 diagonal line. Below the diagonal line, Δγ <Δα, Δβ <0, nutrient
enrichment causesbiotic homogenization. Above thediagonal line,Δγ >Δα,Δβ >0,
nutrient enrichment causes biotic differentiation. Moreover, homogenization can
be attributed to three scenarios including I: gain of widespread species (Δγ <Δα,
and Δγ >0, Δα >0); II: spatially restricted species replaced by widespread species
(Δγ <Δα, Δγ <0 and Δα >0); III: Loss of spatially restricted species (Δγ <Δα, and
Δγ <0,Δα <0). Conversely, differentiation can be attributed to three scenarios that
include IV: Loss of widespread species (Δγ >Δα, and Δγ <0,Δα <0); V:Widespread
species replaced by spatially restricted species (Δγ >Δα,Δγ >0 andΔα <0); VI: gain
of spatially restricted species (Δγ >Δα, and Δγ >0, Δα >0). Adapted from Blowes
et al.12. https://doi.org/10.1126/sciadv.adj9395 under a CC BY license: https://
creativecommons.org/licenses/by/4.0/.
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relatively rare and abundant species responded similarly to nutrient
addition.

Changes in α-, γ-, and β diversity for species groups
The overall proportional species loss within the community at local and
larger scales on average may result if different species groups have
contrasting patterns of response to nutrient addition. For instance, this
result could be the case if native species loss is greater at the larger
spatial scale than at the local scale, while non-native species loss is lower
at the larger than the local scale. To test this possibility, we investigated
changes in α, γ, and β diversity for native and non-native species sepa-
rately. Extending previous studies6,41, we found that nutrient addition
decreased native species more than non-native species. Compared to
non-native species, nutrient addition resulted in a 10% greater reduction
of α diversity and a 16% greater reduction of γ diversity for native plant
species, respectively (Table S5). The overall pattern of diversity change
across spatial scales for native species largely followed that of the entire
communities with similar magnitudes of decline in α and γ diversity and
little change in β diversity (Δβ=0; 95% credible interval: −0.05 to 0.06;
Fig. 3A). For non-native species, overall, nutrient addition decreased α
diversity 6% more than γ diversity (Table S5). But nutrient addition had
no significant effects on β diversity for non-native species (Δβ=0.04;
95% credible interval: −0.05 to 0.14; Fig. 3B).

We also separated species into forb, graminoid, legume, and
woody species to investigate scale-dependent diversity change within
species groups. Nutrient addition led to the greatest reduction of α

diversity for forb species and of γ diversity for woody species
(Table S6). Similar to that of entire communities, nutrient addition
decreasedα and γ diversity by similarmagnitudes and it hadno effects
on β diversity for graminoid species (Δβ = 0.01; 95% credible interval:
−0.04 to 0.05; Fig. 4B; Table S6) and legume species (Δβ =0.00; 95%
credible interval: −0.17 to 0.18; Fig. 4C; Table S6). Overall, nutrient
addition decreased α diversity 8% more than γ diversity for forb spe-
cies, while it decreased γ diversity 11%more than α diversity for woody
species (Table S6). However, nutrient addition also did not have sig-
nificant effects on β diversity for forb species (Δβ = 0.09; 95% credible
interval: −0.02 to 0.19; Fig. 4C; Table S6). Nutrient addition caused a
weak biotic homogenization for woody species (Δβ = −0.14; 95%
credible interval: −0.30 to0.003; Table S6), thiswas primarily linked to
loss of spatially restricted species (Fig. 4D).

Robustness and limitations
We tested the robustness of our results by performing multiple sen-
sitivity tests. We redid the analyses for the effects of nutrient addition
onα, γ, and β diversity for the entire communities aswell as for species
groups using a subset of 14 sites that had data 14 years after nutrient
additions began (Figs. S5–S7). We found that the overall effects were
largely similar in these longer-term sites to that of 72 sites that haddata
four years after nutrient additions began. Because three spatial blocks
maybe limited in spatial extent for estimating effects onβdiversity, we
redid the analyses for the effects of nutrient addition on α, γ, and β
diversity for the entire communities aswell as for species groups using
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11 sites that had five spatial blocks (Figs. S8–S10). Again, the overall
effects were largely similar to that we found for the full analysis of the
72 sites with three blocks.

Despite our evidence for little change in β diversity with nutrient
addition across the entire experiment, we recognize limitations of
extrapolating these results to the landscape scale (e.g., >1 km× 1 km).
This is because many ecological processes that directly and indirectly
influence plant diversity can be very different at the landscape
scales14,42. The scale at which we inferred changes in the number of
spatially restricted and widespread species, by examining how many
local communities they were lost from, is a relatively small spatial
scale. Linking estimates of species’ geographic range size and other
key traits with changes in plant diversity across larger spatial scales19,42

will deepen our understanding of themechanisms of diversity change.
To summarize, we provide a comprehensive synthesis of the

impact of nutrient addition on scale-dependent plant diversity change
in grasslands by applying a framework to a globally distributed long-
term experiment. The framework links changes in species richness
across scales to that changes in the numbers of spatially restricted and
widespread species. Overall, we found similar proportional plant
diversity declines at local and larger spatial scales with nutrient addi-
tion, and little evidence for either biotic homogenization or differ-
entiation within sites. These overall patterns were largely consistent
for diversity metrics that incorporate relative species covers, across
species groups, and over long time periods. This demonstrates that
nutrient enrichment poses a potential threat to all plant species
groups, including widespread and native species that often drive
ecosystem functions and services.

Methods
Experimental setup
The experimental sites used in this study are part of the Nutrient
Network (NutNet, Fig. S1 and Table S1). The experimental design
includes a factorial manipulation of nutrients (N, P, and K) plus two
fences to exclude herbivores, see ref. 39 for more details. For the
analyses here, we used plots under two treatments: Ambient (Control)

and fertilization by nitrogen, phosphate, and potassium together (i.e.,
NPK). Treatments were randomly assigned to 5m× 5m plots and were
replicated in three or more blocks. A micronutrient mix consists of Fe
(15%), S (14%), Mg (1.5%), Mn (2.5%), Cu (1%), Zn (1%), B (0.2%), and Mo
(0.05%) was added once only at the start of the experiment (i.e., year 1)
for the nutrient addition plots, but not in subsequent years to avoid
toxicity. Nitrogen, phosphate, potassium were added annually before
the growing season of each treatment year at most sites. Nitrogen was
added as 10 gm−2 yr−1 time-release urea [(NH2)2CO], phosphate was
added as 10 gm−2 yr−1 triple-super phosphate [Ca(H2PO4)2], while
potassium was added as 10 gm−2 yr−1 sulfate [K2SO4].

Data were retrieved from the NutNet database in November 2023.
We analyzed data from 72 sites where 1) nutrients were applied for at
least four years; and 2) each site had at least three blocks. These sites
are distributed across six continents and include a wide range of
grassland types. See Fig. S1 and Table S1 for details of geolocation,
grassland types, and experimental years used.

Sampling protocol
Scientists at NutNet sites followed standard sampling protocols39. Spe-
cifically, a 1m× 1m subplot within each plot was permanently marked
for annual recording of plant species composition. Species cover (%)was
estimated visually for individual species in the subplots; thus the total
cover of living plants may sometimes exceed 100% for multilayer
canopies. At most sites, cover was recorded once per year at peak bio-
mass. At some sites with strong seasonality, cover was recorded twice
per year to include a complete list of species. For those sites, the max-
imum cover for each species and total biomass were used in the ana-
lyses. When taxa could not be identified to the species level, they were
aggregated at the genus level but referred to as “species” for simplicity.

Quantifying changes in α, γ, and β diversity
We measured α and γ diversity using species richness (i.e., number of
species) because it is themost commonly examined diversity metric43.
At each site,α diversity was estimated as the number of species in each
permanent subplot (1m× 1m), and γ diversity as the total number of
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species occurring in three permanent subplots (for each treatment
separately). To standardize sampling effort, for sites with more than
three blocks, we selected the first three blocks according to the block
number recorded by site PIs. The framework relies on Whittaker’s
multiplicative β diversity partition, and it quantifies β diversity using
the effective number of communities12. As such, if all subplots share
the same species, then β diversity would equal to one. In contrast, if
each subplot has unique species, then β diversity would equal to three.
We calculated Δα as the richness difference in local communities
(subplots) and Δγ as the difference in the sum of the subplots under
nutrient addition relative to that of control treatment on the log scale.
That is, Δα = log(αNPK/αControl) and Δγ = log(γNPK/γControl). We calcu-
lated Δβ as Δγ minus Δα, whereΔα is the average of Δα over three
blocks. A decrease in Δβ indicates nutrient addition causes species
composition tobemore similar among three subplots than that among
control subplots. Because sites are not evenly distributed around the
world,many sites are aggregated in North America, we checked spatial
autocorrelation of diversity change under nutrient addition using
Moran’s I44. We found thatΔα, Δγ, and Δβ did not appear to be more
similar for sites that are closer to each other (Table S2).

Wefittedmultilevel (also referred asmixed effects or hierarchical)
models for Δα, Δγ, and Δβ (as the response variable; all on the log

scale) separately. We included random intercept for each site, model
was coded as: richness change ~ 1 + (1 |sites) to estimate site-level
variation. We used Bayesian analysis because it yields full posterior
distributions of parameters rather than point estimates and p-values,
which provides a deeper understanding of the uncertainty and varia-
bility in the results45. Models described above were fitted using the
Hamiltonian Monte Carlo (HMC) sampler in Stan and coded using the
package ‘brms’ (version 2.21.0) in R (version 4.4.1)46,47. Models were
fitted without explicitly specifying priors, allowing brms to assign its
default priors. Models were fitted with 6 chains and 3000 iterations
(1000 iterations forwarmup). Visual inspection of theHMCchains and
Rhat summaries showed model convergence (all Rhats <1.03;
Tables S3, S5 and S6).We visually checked posterior predictive plots to
determine how well models can reproduce the data (Fig. S2).

To examine whether diversity changes were sensitive to species
relative covers, we redid the above analyses (i.e., based on species
richness) using Shannon diversity and Simpson diversity (both con-
verted to effective numbers)48 (Fig. S4). Species richness is most sen-
sitive to rare species, followed by Shannon diversity, and Simpson
diversity is more sensitive to the numbers of relatively abundant spe-
cies. We calculated the exponential of Shannon diversity and the
inverse form of Simpson diversity using the R package vegan (version
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2.6-6.1)49. These three diversity metrics equal to diversity with order
q = {0, 1, 2}, where increasing q decreases the influence of rare species,
and Dq =

Ps
i= 1p

q
i

� �1= 1�qð Þ
, where p is the relative cover of species i, s is

the total number of species. Thesediversitymetrics are also referred to
as Hill numbers48,50.

Site covariates. We investigated whether the effects of nutrient
addition on Δα, γ, and β diversity based on species richness were
mediated by site characteristics. We included site characteristics that
have been shown in previous literature to influence Δα, Δγ, and Δβ in
grasslands: site species pool, site productivity, drought intensity, and
grazing intensity24,25,34,40. We quantified drought intensity as the sumof
annual evapotranspiration/precipitation, and averaged it from year 0
to 4 at each site. Precipitation and potential evapotranspiration used
were downloaded from https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_
4.07/. We quantified the site species pool as the total number of spe-
cies and site productivity as the average aboveground biomass from
year 0 to 4 under the control treatment in the three blocks at each site.
Aboveground biomass was harvested within two 1 × 0.1m strips (in
total 0.2 m2), strips were moved from year to year to avoid resampling
the same location. For subshrubs and shrubs occurring within strips,
we collected all leaves and current year’s woody growth. All biomass
was dried at 60 °C (to constant mass) before weighing to the nearest
0.01 g. We used published methods to quantify an integrated grazing
intensity metric from vertebrate herbivores at each site. Specifically,
herbivore species (>2 kg) that consume grassland biomass were
documented at each site by site PIs, and each species was assigned an
importance value from 1 (present but low impact and frequency) to 5
(high impact and frequency). An index value was calculated for each
site as the sum of herbivore importance values for all herbivores fol-
lowing refs. 51,52. We also investigated relationships between change
in diversity and distance among blocks, because species composition
may become less similar as the distance between sampled commu-
nities increases. The average pairwise distance among the three blocks
within sites ranged from 23.04 to 12538.09m, with a mean of 513.01m
and a median of 118.7m across 54 sites that have geolocation data for
eachblock.We first calculated three Euclideandistances betweenpairs
of blocks, we then used the mean of these pairwise distances as the
average distance among blocks. We used the average distance among
blocks instead of area, because blocks are arranged in parallel at some
sites. We fitted linear regression models withΔα, Δγ, and Δβ as the
response variable separately, and each of the site characteristics was
used as a predictor variable.

Species groups. We then investigated the effects of nutrient addition
on α, γ, and β diversity within groups of species with similar char-
acteristics following the method for changes in α, γ, and β diversity in
the entire communities. We eliminated sites where no species occur-
red in control, nutrient addition, or both plots for a particular group
because the value of the log (0) is undefined. We ran the analyses
separately for native and non-native species. Native and non-native
species were classified by site PIs. Then, we investigated effects of
nutrient addition on species richness for different life forms including
forb, graminoid, legume, and woody species because previous studies
have shown that different life forms may show distinct responses to
nutrient addition6,11,53.

Sensitivity test. We tested whether effects of nutrient addition on
species richness across spatial scales depend on experimental dura-
tion because a few single-site experiments have shown that the effects
of nutrient additions on changes in diversity, especially β diversity,
may take several years to emerge29,31. To that end, we used a subset of
14 sites that had data 14 years after nutrient additions began. Also,
because three blocks may be limited in spatial extent, we tested whe-
ther combining more blocks to create the γ scale would alter our

results. We redid the analyses using data from 11 sites that had five
spatial blocks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The species cover and species richness data, site abiotic and biotic
environmental data used and generated in this study have been
deposited in the Figshare database and are publicly available (https://
doi.org/10.6084/m9.figshare.26412295.v4). The NutNet data are pub-
licly available on the EnvironmentalData Initiative (EDI) (https://portal.
edirepository.org/nis/advancedSearch.jsp). Source data are provided
with this paper.

Code availability
The R codes used to produce results in this study have been deposited
in the GitHub (https://github.com/chqq365/plant-diversity-and-biotic-
homogenization.git) and archived through Zenodo (https://doi.org/
10.5281/zenodo.14902812).
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