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Global climate change has triggered an urgent need for predicting the reorganization of
Earth’s biodiversity. For dioecious species (those with separate sexes), it is unclear how
commonly unique climate sensitivities of females and males could influence projections
for species-level responses to climate change. We developed demographic models
of range limitation, parameterized from geographically distributed common garden
experiments, with females and males of a dioecious grass species (Poa arachnifera)
throughout and beyond its range in the south-central U.S. We contrasted predictions
of a standard female-dominant model with those of a two-sex model that accounts
for feedbacks between sex ratio and vital rates. Both model versions predict that
future climate change will induce a poleward shift of niche suitability beyond current
northern limits. However, the magnitude of the poleward shift was underestimated by
the female-dominant model because females have broader temperature tolerance than
males but become mate-limited under female-biased sex ratios, which are forecasted
to become more common under future climate. Our results illustrate how explicitly
accounting for both sexes can enhance population viability forecasts and conservation
planning for dioecious species in response to climate change.
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Rising temperatures and extreme drought events associated with global climate change
are leading to increased concern about how species will become redistributed across the
globe under future climate conditions (1). Species’ range limits, when not driven by
dispersal limitation, should generally reflect the limits of the ecological niche (2). Niches
and geographic ranges are often limited by climatic factors including temperature and
precipitation (3). Therefore, changes in these climatic factors could impact population
viability, with implications for range expansion or contraction based on which regions
of a species’ range become more or less suitable (4, 5).

Forecasting range shifts for dioecious species (most animals and ca. 7% of plant species
(6)) is complicated by the potential for sexual niche differentiation, i.e., distinct responses
of females and males to shared climate drivers (7, 8). Populations in which males are
rare under current climatic conditions could experience low reproductive success due to
sperm or pollen limitation that may lead to population decline in response to climate
change that disproportionately favors females (9). In contrast, climate change could
expand male habitat suitability (e.g., upslope movement), which might increase seed
set for mate-limited females and favor range expansion (10). Across dioecious plants,
studies suggest that future climate change toward hotter and drier conditions may favor
male-biased sex ratios, likely due to lower costs of male reproduction that enable greater
stress tolerance (7, 11). Although the response of species to climate warming is an urgent
and active area of research, few studies have disentangled the interaction between sex and
climate drivers to understand their combined effects on population dynamics and range
shifts, despite calls for such an approach (7, 12).

The vast majority of theory and models in population biology, including those used to
forecast biodiversity responses to climate change, ignore the complication of sex structure
(but see 13, 14). Traditional “female-dominant” approaches instead focus exclusively on
females, assuming that males are in sufficient supply as to never limit female fertility.
In contrast, “two-sex” models are required to fully account for demographic differences
between females and males, and how these differences may influence population dynamics
(15, 16). Sex differences in maturation, reproduction, and mortality schedules can
generate skew in the operational sex ratio (OSR; sex ratio of individuals available for
mating) even if the birth sex ratio is 1:1 (9, 17). Climate and other environmental drivers
can therefore influence the OSR via their influence on sex-specific demographic rates.

Significance

Dioecy is ubiquitous in nature
and central to the ecology and
evolution of most animals and
many plants. However, most
forecasts of population viability
and range shifts overlook the
complexity of sex structure, and
thus the potential for females and
males to differ in their sensitivity
to climate change. Using a
dioecious plant model system, we
show that future climate change
is likely to push populations
toward female-biased sex ratios,
which will impair seed
production. Ignoring this
feedback between sex ratio and
vital rates, as traditional models
do, overestimates the range
of suitable habitat and
underestimates the likelihood
of range shifts under climate
change. This work highlights how
incorporating demographic
complexity can improve
biodiversity forecasts in a
changing world.
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Fig. 1. Geographic distribution and climatic variation of P. arachnifera in Texas, Oklahoma, and Kansas. (A) Colored points indicate common garden locations
in Texas, Oklahoma, and Kansas. Gray diamonds represent GBIF occurrences, + show source populations. (B and C) Changes in growing and dormant season
climate for each site. Arrows in B and C connect past (1901–1930) and present (1990–2019) climate normals, and present and future (2071–2100) climate
normals under RCP4.5 and RCP8.5 forecasts. Future forecasts are from MIROC5 but other climate models show similar patterns.

In a two-sex framework, demographic rates both influence and
respond to the OSR in a feedback loop that makes two-sex models
inherently nonlinear and more data-hungry than corresponding
female-dominant models. Given the additional complexity and
data needs, forecasts of range dynamics for dioecious species
under future climate change that explicitly account for females,
males, and their interdependence are limited (10, 18).

In this study, we combined geographically distributed com-
mon garden experiments, hierarchical Bayesian statistical model-
ing, two-sex population projection modeling, and climate back-
casting and forecasting to understand demographic responses
to climate change and their implications for past, present, and
future range dynamics. Our work focused on the dioecious
plant species Texas bluegrass (Poa arachnifera), which is dis-
tributed along environmental gradients in the south-central U.S.
corresponding to variation in temperature across latitude and
precipitation across longitude (SI Appendix, Fig. S1). Across these
environmental gradients, we installed common gardens at 14 sites
to quantify sex-specific demographic responses to environmental
variation, and we conducted a sex ratio manipulation experiment
to measure the influence of OSR on demographic rates. The
south-central U.S. has experienced rapid climate warming since
1900 and warming is projected to continue through the end of
the century (Fig. 1 and SI Appendix, Fig. S2). Our previous study
showed that, despite evidence for differentiation of climatic niche
between sexes, the female niche mattered the most in driving
longitudinal range limits of Texas bluegrass (19). However,
that study used a single proxy variable (longitude) to represent
environmental variation related to aridity and did not consider
variation in temperature, which is the stronger dimension of
forecasted climate change in this region (Fig. 1). A rigorous
forecast for the implications of future climate change requires
that we transition from implicit to explicit treatment of multiple
climate drivers, as we do here. Leveraging the power of Bayesian
inference, we take a probabilistic view of past, present, and
future range limits by quantifying the probability of population
viability (Pr(� ≥ 1)) in relation to geographic variation in the
climate drivers of demography, an approach that fully accounts

for uncertainty arising from multiple sources of estimation and
process error. Specifically, we asked:

1. What are the sex-specific vital rate responses (survival,
growth, and reproduction) to variation in temperature and
precipitation across the species’ range?

2. How do sex-specific vital rates combine to determine the
influence of climate on operational sex ratio and population
viability (Pr(� ≥ 1))?

3. What are the likely historical and projected dynamics of the
Texas bluegrass geographic niche and how does accounting
for sex structure modify these predictions?

Results

Sex Specific Demographic Responses and Sex Ratio Variation
Across Climatic Conditions. Bayesian mixed effect models, de-
scribing how each vital rate varies as a function of sex, size, and
climate covariates (precipitation and temperature of growing and
dormant seasons), revealed the demographic response of Texas
bluegrass to climate drivers across common garden sites and
years, and identified demographic differences between the sexes.
Regression coefficients related to sex and/or sex:size interactions
were consistently different from zero for survival, growth, and
flowering (Pr(coefficient ≶ 0) > 0.75, SI Appendix, Fig. S3
and Table S1), suggesting sexual divergence in demography.
Particularly for survival and flowering, females had an advantage
over males (Fig. 2). Furthermore, there were strong effects of
climate covariates and interactions between sex and one or more
climate variables (SI Appendix, Fig. S3 and Table S1), indicating
sexual niche divergence in response to shared climate drivers.
SI Appendix, Figs. S4 and S5 visualize the magnitude of sexual
divergence in demography across niche space, revealing that
female advantages in survival and flowering were greatest at both
high and low growing season temperature extremes.

Across 14 common garden sites, the operational sex ratio
(proportion of panicles that are female) of the experimental
populations was female-biased on average (≈60% female),
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Fig. 2. Sex specific demographic response to climate across species range. (A–D) Probability of survival as a function of precipitation and temperature of
the growing and dormant season. (E–H) Change in number of tillers as a function of precipitation and temperature of the growing and dormant season. (I–L)
Probability of flowering as a function of precipitation and temperature of growing and dormant season. (M–P) Change in number of panicles as a function
of precipitation and temperature of the growing and dormant season. Points show means by site for females (orange) and males (green). Points sizes are
proportional to the sample sizes of the mean and are jittered. Lines show fitted statistical models for females (orange) and males (green) based on posterior
mean parameter values. The fitted lines were estimated using only one climate covariate, while the other covariates and size were held constant (mean).

reflecting the overall greater rates of female vs. male flowering.
OSR was most female-biased (up to 80% female) at extreme
values of temperature, especially growing season temperature
(SI Appendix, Figs. S6 and S7), consistent with the female
flowering advantage at temperature extremes seen in the vital
rate data. In contrast, there was very little variation in sex ratio
(proportion of plants that are female) in the years following
common garden establishment (all sites were planted with equal
numbers of females and males) and no detectable influence
of climate covariates (SI Appendix, Fig. S8), indicating that
operational sex ratio is much more labile than population sex
ratio, and skew in the OSR comes from sex-biased reproductive
rates more so than sex-biased mortality.

Climate Drivers of Population Viability Across Niche Space.
We integrated the vital rate responses in a climate-explicit
matrix projection model (MPM) framework. Female-dominant

and two-sex versions of the MPM both allow for sex-specific
response to climate, but only the two-sex model accounts for the
feedback between OSR and seed fertilization (pollen limitation
under female-biased sex ratios: SI Appendix, Fig. S12). Fig. 3
shows the estimated probability of population viability (� ≥ 1)
across seasonal climate niche space; these probabilities account
for uncertainty in the vital rate parameters as well as process
error related to the spatial heterogeneity and genotypic variation
incorporated into our experimental design. For both female-
dominant and two-sex models, fitness variation across niche
space indicated intermediate temperature optima and declines
in fitness at high and low temperature extremes, with weaker
effects of precipitation (compare vertical and horizontal contours
in Fig. 3). These visual trends are supported by life table response
experiment (LTRE) decomposition indicating that variation in
fitness across climatic conditions is most strongly driven by
responses to growing and dormant season temperature, with
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Fig. 3. Niche suitability across seasonal climate space predicted by female-dominant and the two-sex models. Panels (A–D) show predicted probabilities of
self- sustaining populations, Pr (� > 1) conditional on precipitation and temperature of the dormant and growing season. Panels (E) and (F ) show the difference
in niche estimation between the female dominant model and the two-sex model for each season. The pink color indicates the female dominant (F ) while the
violet represents the two-sex models (FM). The dash line represents the mean probability for each model.

weaker interactive effects of precipitation that modulate the
effects of temperature (SI Appendix, Fig. S9). LTRE analysis
also showed that declines in population viability at high and

low temperatures were driven most strongly by reductions
in vegetative growth and flower production, with stronger
contributions from females than males (SI Appendix, Fig. S10).
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While the female-dominant and two-sex models were generally
in agreement about high confidence in intermediate temperature
optima, they differed around the edges of niche space (Fig. 3
C and D and SI Appendix, Fig. S11). The female-dominant
model overpredicted population viability, especially with respect
to growing season temperature (Fig. 3 E and F ). For example,
the female-dominant model predicted that, for most levels
of precipitation, warm growing season (winter) temperatures
of >20 ◦C had high suitability (Pr(� ≥ 1) > 0.9), while
the two-sex model indicated that these conditions were most
likely unsuitable (Pr(� ≥ 1) < 0.5). Similarly, at low
winter temperatures that the two-sex model identifies with
high certainty as unsuitable (Pr(� ≥ 1) < 0.1), the female-
dominant model is more optimistic (Pr(� ≥ 1) > 0.4).
Across growing season climate space, the female-dominant model
overestimates population viability by 9.2%, on average (Fig. 3F ).
The difference between female-dominant and two-sex models
was qualitatively similar but weaker in magnitude for niche
dimensions of the dormant season (Fig. 3E). Female-dominant
and two-sex models diverged most strongly in regions of niche
space that favored strongly female-biased operational sex ratios
(SI Appendix, Figs. S16–S19). The two-sex model accounts for
feedbacks between OSR and female fertility that were estimated
through a separate sex ratio manipulation experiment, showing
reduced seed viability at OSR exceeding ∼ 75% female panicles
(SI Appendix, Fig. S12). Lacking this feedback, the female-
dominant model overpredicts population viability in regions of
niche space where male flowering is not sufficient to maximize
seed set.

Climatic Change Induces Shifts in Geographic Niche and
Population OSR. We next projected the climatic niche onto
geographic space (Texas, Oklahoma, and Kansas) to examine
how suitable niche conditions for Texas bluegrass are shifting due
to climate change, considering relatively “optimistic”(RCP4.5)
and “pessimistic”(RCP8.5) scenarios (Fig. 4). For both female-
dominant and two-sex models, the predicted geographic niche
generally corresponds well to independent observations of Texas
bluegrass occurrence from the global biodiversity information
facility (GBIF) (Fig. 4). The predicted geographic niche is more
expansive than the GBIF occurrences, particularly at southern,
western, and eastern edges, suggesting some degree of range
disequilibrium (e.g., due to dispersal limitation), geographic bias
in occurrence records, and/or model misspecification. Under
past (1901–1930) and present (1990–2019) conditions, the two-
sex and female-dominant models predict widespread suitability
with high confidence (Pr(� ≥ 1) ≈ 1) across much of
Texas and Oklahoma. Comparing past to present conditions,
the geographic niche for both models has shifted slightly
poleward, with reductions in viability at the southern margins
and expansions of viability at northern margins. The northward
shift of suitable niche conditions is even more pronounced in
projections to end-of-century (2071–2100) conditions, with the
most dramatic changes in the most pessimistic (RCP8.5) scenario
(Fig. 4). In fact, under the pessimistic scenario, Texas bluegrass
will have very little remaining climate suitability in the state of
Texas by the end of the 21st century. This predicted poleward
niche shift is highly consistent across different global circulation
models (SI Appendix, Figs. S13–S15).

Female-dominant and two-sex models are in broad agreement
about northward migration of the climatic niche, but the
geographic projections reveal hotspots of disagreement where
the female-dominant model overpredicts climate suitability and

underpredicts the likelihood of range shifts (Fig. 4). These
hotspots are generally regions of predicted strong female bias
in the operational sex ratio (SI Appendix, Figs. S16–S19). The
strongest contrast between the two models is in the pessimistic
climate change scenario (RCP8.5), where the female-dominant
model overpredicts suitability by as much as 20% across much
of the region (SI Appendix, Fig. S20) and thus underestimates
the magnitude of a potential range shift. In this scenario, a
broad swath of the current distribution that is forecasted to
be unsuitable (Pr(� ≥ 1) ≈ 0) by the two-sex model is
identified as marginally suitable (Pr(� ≥ 1) ≈ 0.5) by the
female-dominant model. That difference arises because the two-
sex model recognizes that strongly female-biased sex ratios cannot
support viable populations. The OSR of Texas bluegrass across
its range is projected to be ca. 75% female panicles, on average, by
end of century under RCP8.5, an increase from ca. 60% female
under projections for past and current conditions (SI Appendix,
Fig. S21). The more optimistic climate change scenario (RCP4.5)
predicts an intermediate shift in OSR, with hotspots of change
at northern and southern range edges becoming strongly female-
biased but most of the range remaining near current levels of
60% female (SI Appendix, Figs. S16–S19).

Discussion

Dioecious species make up a large fraction of Earth’s
biodiversity—most animals and many plants—yet we have little
knowledge about how sex-specific demography and responses to
climate drivers may affect population viability and range shifts of
dioecious species under climate change. We used demographic
data collected from common garden and sex ratio manipulation
experiments, hierarchical Bayesian statistical modeling, and sex-
structured demographic modeling to forecast the likely impact
of climate change on range dynamics of a dioecious species.
We found that demographic rates of Texas bluegrass and their
sensitivities to climate drivers show significant sex bias, with
females outperforming males, on average, and high and low
temperature extremes negatively affecting flowering rates of males
more so than females, leading to female skew in the operational
sex ratio. Future climate change will likely not only shift this
species’ geographic niche northward, but it will also further skew
operational sex ratios toward stronger female bias. For Texas
bluegrass, the future is female—and it is in Kansas. Our two-sex
modeling framework accounts for reductions in female fertility
with increasing female bias, and therefore predicts a narrower
climatic niche than the corresponding female-dominant model
that ignores the feedback between population structure and
vital rates. Failure to account for population sex structure can
therefore lead to overestimation of suitable niche space and
underestimation of range shifts under global change.

While a two-sex modeling approach clearly adds biological
realism, it was also additional work (in the form of experiments,
data, equations, code, and computation). Was it worth the
trouble? Generally, we suggest the answer should depend on
the aims of the investigator. Predictions of the two-sex and
female-dominant models were in strong agreement about climate
niche optima, and LTRE decomposition suggested that female
vital rates determine population responses to climate variation
much more so than male vital rates. If we wanted to know
whether a poleward range shift is likely for Texas bluegrass,
the simpler female-dominant approach could have given us the
correct answer. This is potentially good news given the high data
demands of the two-sex model, especially in conservation settings
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Fig. 4. Geographic projections of population viability predicted by the female-dominant and two-sex models. Maps show past, current, and future (RCP 4.5
and RCP 8.5) range shifts based on the predicted probabilities of self-sustaining populations Pr (� > 1). The last panel shows the difference in geographic
projections of population viability between the female-dominant model and the two-sex model for each season. Future projections are based on the CMCC-CM
climate model. Black dots on the panel showing current climatic conditions represent all known presence records from GBIF. These occurrences are located
within areas of higher population fitness Pr (� > 1), supporting the validity of our approach in predicting range shifts.

where decisions need to be made with sparse data. But more
focused questions, especially around the edges of niche space,
where sex ratio skew is more likely to impair population viability,
may require an explicit accounting for feedbacks associated with
sex structure (9). If we aimed to identify specific regions that
are more or less inclined toward contraction or expansion, or

sites that might be suitable for assisted migration, we would
reach qualitatively different conclusions with female-dominant
and two-sex models. For example, the female-dominant model
is overconfident that large swaths of Oklahoma will remain
marginally suitable for Texas bluegrass under the business-
as-usual emissions scenario, while the two-sex model is more
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pessimistic, because this region will become too female-biased to
support viable populations. More generally, we hypothesize that
accounting for sex structure should be most important under
conditions that are already near the limits of population viability,
where effects of mate limitation could be more consequential.
This suggests a particularly important role of sex-structured
modeling for threatened and endangered species, as conservation
biologists have already recognized (e.g., ref. 20).

Our results suggest that climate change, and specifically climate
warming, will drive a classic pattern of poleward expansion:
contraction at the southern trailing edge due to temperatures
exceeding tolerable limits and expansion at the northern leading
edge due to release from low temperature limitation. Our statis-
tical models captured temperature dependence in a phenomeno-
logical way, and the physiological mechanisms underlying these
responses remain to be explored. Increasing temperature could
increase evaporative demand, affect plant phenology (21, 22), and
germination rate (23). The potential for temperature to influence
these different processes changes seasonally (24). For example,
studies suggested that grasses can have delayed phenology in
response to global warming, particularly if temperatures rise
above their physiological tolerances (25). Regardless of the
mechanism, it is clear that climate warming will generate leading
and trailing edges. Whether and at what pace the realized
species’ distribution tracks geographic changes in suitable niche
space is a different, open question. Expansion of the leading
edge could lag behind availability of suitable habitat due to
dispersal limitation (26), and legacies of long-lived individuals
can promote persistence of trailing edge populations even as
environmental conditions deteriorate (27, 28). Environmentally
explicit demographic models are emerging as powerful tools
to understand and predict the limits of population viability
under global change (29, 30), but incorporating nonequilibrium
dynamics that emerge from dispersal limitation and historical
legacies is an important new direction for this field.

Our findings add to the growing body of literature suggesting
that climate change will influence sex ratios in dioecious plants
and animals (12, 31, 32). We observed a female bias in response
to climate change in Texas bluegrass, which contrasts with
previous studies on dioecious species. While a baseline female
demographic advantage has been observed in several dioecious
species (33, 34), studies focused on sex-specific sensitivity to
climate drivers often predict an increase in male frequency in
response to climate stress (7, 10). Here, the female bias was
not a direct response to climate, such as temperature-dependent
sex determination seen in some organisms like invertebrates and
reptiles (35, 36). Instead, bias in the operational sex ratio resulted
from climate-induced changes in vital rates that accumulate
throughout the life cycle. We speculate that differences in the
costs of reproduction related to pollination mode may help
explain which sex is favored under climate stress. For most
dioecious plant species, the cost of reproduction is often higher
for females than males due to the requirement to develop seeds
and fruits (37). However, several studies reported a higher cost
of reproduction for males in wind pollinated species, such as
Texas bluegrass, due to the larger amounts of pollen they produce
(11, 38). Additional comparative studies across species that differ
in life history traits are needed to draw inferences regarding which
types of species are likely to become female- or male-biased in
response to global change stressors.

Interestingly, we found that climate conditions during the
dormant season were at least as important as those during the
growing season. This finding is consistent with a recent synthesis
suggesting that the dormant season can be surprisingly important

for plant demography (39). For Texas bluegrass, a C-3 species,
the dormant season corresponds to the hot summer months in
the southern Great Plains, which are forecasted to reach seasonal
mean temperatures of up to 32 to 34 ◦C by the end of the
century (Fig. 1). High dormant-season temperatures could reduce
water storage in the soil, negatively affecting plant survival and
subsequent performance of individuals that survive the summer.
We also found some negative effects of high growing-season
precipitation, which may reflect extreme weather systems during
the spring growing season. For example, the wettest conditions
we observed were linked to a Spring 2015 flooding and tornado
outbreak across much of Texas and Oklahoma. Negative effects
of high precipitation were therefore likely driven by waterlogged
soils and disturbances associated with these extreme events.

Our forecasts for responses to climate change in Texas
bluegrass should be interpreted in light of several features of our
study design. First, the design of our common garden experiment
and statistical modeling (which treats source population as a
random effect) means that our geographic projections correspond
to an average genotype from across the range of Texas bluegrass.
Local adaptation to climate could make southern and northern
edge populations more resilient to high and low temperature
stress, respectively, than the range-wide average (40). The role of
local adaptation in mitigating population response to climate is
an important next step in forecasting species’ responses to global
change. Second, as is true for many ecological systems, future
climate is likely to include conditions that have no present-day
analog (41), a major challenge for ecological forecasting. The
years and locations of our experiment provided us with unusually
good coverage of likely past, present, and future conditions ex-
pected throughout the study region (SI Appendix, Fig. S2), but we
still had to extrapolate the statistical models to predict responses
to colder winter temperatures (that were more common in the
past) and hotter summer temperatures (that are expected in the
future) than we directly observed. By employing a probabilistic
measure of niche and geographic suitability (Pr(�) ≥ 1), our
projections account for the uncertainty associated with these
extrapolated climate responses, but there would be value in
combining the spatiotemporal sampling of a common garden
design with experimental manipulations that push the system
toward historical and/or future conditions. Third, while we
incorporated uncertainty associated with parameter estimation
and process error, there is additional uncertainty in future climate
conditions. Future forecasts for Texas bluegrass were generally
consistent across different global circulation models (SI Appendix,
Figs. S13–S15), but combining uncertainty in future conditions
alongside uncertainty in biological responses to those conditions
is an important frontier in ecological forecasting (42).

Conclusion

We investigated how demographic differences between the sexes
and contrasting sensitivity to climate can drive skewness in
operational sex ratio and possible range shifts in the context
of climate change. Our results suggest that tracking only females
could lead to an underestimation of the effect of climate change
on population viability, because it misses the feedback between
population structure and female fertility. But in broad strokes,
a female-dominant perspective tells much of the story, and that
will likely be true for dioecious plants and animals with mating
systems in which few males can fertilize many females. Our work
provides a mechanistic framework for predicting the impact of
global change on population dynamics and range shifts using
probabilistic measures that can incorporate the many types of
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uncertainty that arise when reconstructing the past or forecasting
the future.

Materials and Methods

Study Species and Climate Context. Texas bluegrass (P. arachnifera) is a
dioecious perennial, cool-season (C3) grass that occurs in the south-central U.S.
(Texas, Oklahoma, and southern Kansas) (Fig. 1) (43). Texas bluegrass grows
between October and May, flowers in spring, and goes dormant during the
hot summer months of June to September (44). Following this life history, we
divided the calendar year into growing (October 1 to May 31) and dormant
(June 1 to September 30) seasons in the analyses below. Biological sex is
genetically based and the birth (seed) sex ratio is 1:1 (45, 46). Like all grasses,
this species is wind-pollinated (43) and most male–female pollen transfer occurs
within 15 m (47). In P. arachnifera, unfertilized ovules lead to the production
of nonviable seeds, and seed viability is dependent on males (47). Surveys
of 22 natural populations throughout the species’ distribution indicated that
operational sex ratio (the female fraction of inflorescences) ranged from 0.007
to 0.986 with a mean of 0.404 (19).

Latitudinal limits of the Texas bluegrass distribution span 7.74 to 16.94 ◦C
of mean temperature during the growing season and 24.38 to 28.80 ◦C during
the dormant season. Longitudinal limits span 244.9 to 901.5 mm of total
precipitation during the growing season and 156.3 to 373.3 mm during the
dormant season. This region has experienced ca. 0.5 ◦C of climate warming
since 1900, with faster warming during the cool-season months (0.0055 ◦C/y)
than the hot summers (0.0046 ◦C/y) (Fig. 1). Future warming is projected to
accelerate to 0.03 to 0.06 ◦C/y by the end of the century depending on the
season and forecast model. On the other hand, precipitation has increased over
the past century for much of the region but is forecasted to decline back to
early-20th century levels (Fig. 1).

Common Garden Experiment.
Experimental design. We conducted a range-wide common garden experiment
to quantify sex-specific demographic responses to climate variation. Details of
the experimental design are provided in ref. 19; we provide a brief overview here.
The experiment was installed at 14 sites throughout and, in some cases, beyond
the natural range of Texas bluegrass, providing coverage of a broad range of
latitude and longitude (Fig. 1A). At each site, we established 14 blocks. For each
block we planted three female and three male individuals that were clonally
propagated from females and males from seven natural source populations
(Fig. 1A); upon flowering, clones never deviated from their expected sex. The
experiment was established in November 2013 with a total of 588 female and
588 male plants and was censused in May of 2014, 2015, and 2016. At each
census, we collected data on survival, size (number of tillers), and number of
panicles (reproductive inflorescences). For the analyses that follow, we focus on
the 2014–15 and 2015–16 transition years, since the start of the experiment did
not include the full 2013–14 transition year.
Climatic data collection. We gathered downscaled monthly temperature and
precipitation data for each site from Chelsa (48) to describe observed climate
conditions during our study period. These climate data were used as covariates
in vital rate regressions. We aligned the climatic years to match demographic
transition years (June 1 to May 31) and growing and dormant seasons within
each year. To backcast and forecast demographic responses to changes in climate
throughout the study region, we also gathered projection data for three 30-y
periods: “past” (1901–1930), “current” (1990–2019), and “future” (2070–2100).
We evaluated future climate projections for two scenarios of representative
concentration pathways (RCP4.5 and RCP8.5) using four general circulation
models (GCMs) (SI Appendix, section A).
Sex-specific demographic responses to climatic variation across common
garden sites. We used individual-level measurements of survival, growth
(change in number of tillers), flowering (yes/no), and number of panicles
(conditional on flowering), to develop Bayesian mixed effect models describing
how each vital rate varies as a function of sex, size, and four climate covariates
(precipitation and temperature of growing and dormant season). These vital
rate models included main effects of size (the natural log of tiller number),
sex, seasonal climate covariates, and the interactions between sex and climate

covariates (SI Appendix, section B). We included second-order terms for the
climate covariates to account for potentially nonmonotonic responses (SI
Appendix, section B).
Sex ratio responses to climatic variation across common garden sites. The
experimental data were additionally used to investigate how climatic variation
across the range influenced sex ratio and operational sex ratio of the common
garden populations. To do so, we developed two Bayesian linear models, pooling
data collected during three years. Each model had OSR (female fraction of
panicles) or SR (female fraction of surviving individuals) as response variable
and a climate variable (temperature and precipitation of the growing season
and dormant season) as predictor (SI Appendix, section C).
Model-fitting procedures. All models were fit using Stan (49) in R 4.3.1 (50). We
centered and standardized all climatic predictors to mean zero and unit variance,
which facilitated model convergence. We ran three chains for 1,000 samples for
warmup and 4,000 for sampling, with a thinning rate of 3. We assessed the fit
of the models using posterior predictive checks (51) (SI Appendix, Fig. S22).

Two-Sex and Female-DominantMPMs. We used the climate-dependent vital
rate regressions estimated above, combined with additional data on seed
number, OSR-dependent seed viability, and seed germination to build female-
dominant and two-sex versions of a climate-explicit MPMs structured by the
discrete state variables size (number of tillers) and sex. Here, seed number
reflects how many seeds a female initiated, while seed viability is the fraction
of initiated seeds that are fertilized via pollination from males. The female-
dominant and two-sex versions of the model both allow for sex-specific response
to climate and differ only in the feedback between OSR and seed fertilization.
For clarity of presentation, we do not explicitly include climate dependence in
the notation below, but the following model was evaluated over variation in
seasonal temperature and precipitation.

Let Fx, t and Mx, t be the number of female and male plants of size x in year
t, where x is integer-valued with x ∈ [1, ... U]. The minimum possible size is
one tiller and U is the 95th percentile of observed maximum size (35 tillers). Let
FRt and MR

t be new female and male recruits in year t, which we treat as distinct
from the rest of the size distribution because we assume they do not reproduce
in their first year, consistent with our observations. For a prebreeding census,
the expected numbers of recruits in year t + 1 is given by

FRt+1 =

U∑
1

[ pF(x) · cF(x) · d · v(Ft , Mt) · m · �] Fx,t , [1]

MR
t+1 =

U∑
1

[ pF(x) · cF(x) · d · v(Ft , Mt) · m · (1− �)] Fx,t , [2]

where pF and cF are, respectively, flowering probability and panicle production
for females of size x,d is the total (fertilized and unfertilized) number of seeds per
female panicle, v is the probability that a seed is fertilized, m is the probability
that a fertilized seed germinates, and � is the primary sex ratio (proportion of
recruits that are female), which we assume to be 0.5 (19).

In the two-sex model, seed fertilization is a function of population structure,
allowing for feedback between vital rates and operational sex ratio. In the context
of the model, OSR is defined as the fraction of panicles that are female and is
derived from the U× 1 vectors Ft and Mt:

v(Ft , Mt) = v0 ∗ [1−Φ(x)] , [3]

where Φ(x) =

( ∑U
1 p

F(x, z)cF(x, z)Fx,t∑U
1 p

F(x, z)cF(x, z)Fx,t+pM(x, z)cM(x, z)Mx, t

)�
The summations tally the numbers of female and male panicles over the size

distribution, giving the fraction of total panicles that are female. We focus on
the female fraction of panicles and not female fraction of flowering individuals
because panicle number can vary widely depending on size; we assume that few
males with many panicles vs. many males with few panicles are interchangeable
pollination environments. Eq. 3 has the properties that seed fertilization is
maximized at v0 as OSR approaches 100% male, goes to zero as OSR approaches
100% female, and parameter � controls how female seed viability declines as
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male panicles become rare. We estimated these parameters using data from
a sex ratio manipulation experiment, conducted in the center of the range, in
which seed fertilization was measured in plots of varying OSR; this experiment
is described elsewhere (47) and is summarized in SI Appendix, section D. This
experiment also provided parameters for total seed number per panicle (d) and
germination rate (m). All parameter estimates related to seed production, seed
viability, and germination were estimated in Bayesian framework, and their
uncertainty was propagated into the MPM along with that of other demographic
rates. Lacking data on climate dependence, we assume that seed fertilization,
seed number, and germination rate do not vary with climate.

The dynamics of the size-structured component of the population are given
by

Fy,t+1 = [ � · gF(y, x = 1)] FRt +

U∑
L

[ sF(x) · gF(y, x)] Fx, t , [4]

My,t+1 = [ � · gM(y, x = 1)]MR
t +

U∑
L

[ sM(x) · gM(y, x)]Mx, t. [5]

The first terms indicate recruits that survived their first year and enter the size
distribution of established plants. We estimated the seedling survival probability
� using demographic data from the congeneric species P. autumnalis in east
Texas, and we assume that � is the same across sexes and climatic variables.
We did this because we had little information on the early life cycle transitions
of greenhouse-raised transplants. We used g (y, x = 1) (the future size
distribution of one-tiller plants from the transplant experiment) to give the
probability that a surviving recruit reaches size y. The second component of
the equations indicates survival and size transition of established plants from
the previous year, where s and g give the probabilities of surviving at size x
and growing from sizes x to y, respectively, and superscripts indicate that these
functions may be unique to females (F) and males (M).

The model described above yields a 2(U+ 1)× 2(U+ 1) transition matrix.
The matrix population model is parameterized from regression submodels like
an integral projection model (IPM), but it is not an IPM because size is a discrete
state variable (52, 53). We employed a discrete probability distribution (the
Poisson Inverse-Gaussian) to define transitions from each initial size to each
possible subsequent size in [1, ..., U] (SI Appendix, section B). We estimated
the asymptotic population growth rate � of the female dominant model as
the leading eigenvalue of the transition matrix. Since the two-sex MPM is
nonlinear (matrix elements affect and are affected by population structure) we
estimated � and asymptotic sex ratio (female fraction of all individuals) and
operational sex ratio (female fraction of panicles) by numerical simulation. Since
all parameters were estimated using MCMC sampling, we were able to propagate
the uncertainty in our estimates of the vital rate parameters to uncertainty in �.
Furthermore, by sampling over distributions associated with site, block, and
source population variance terms, we are able to incorporate process error
into the total uncertainty in �, in addition to the uncertainty that arises from
imperfect knowledge of the parameter values. For example, sampling over site
and block variances accounts for regional and local spatial heterogeneity that is
not explained by climate, and sampling over source population variance accounts
for genetically based demographic differences across the species’ range.

LTRE. To identify which aspect of climate is most important for population
viability, we used a LTRE based on a nonparametric model for the dependence of

� on parameters associated with seasonal temperature and precipitation (54).
To do so, we used the RandomForest package to fit a regression model with
four climatic variables (temperature of growing season, precipitation of growing
season, temperature of the dormant season and precipitation of the dormant
season) as predictors and� calculated from the two sex model as response (55).

Second, to understand how climate drivers influence � via sex-specific
demography, we decomposed the effect of each climate variable on population
growth rate (�) into contributions arising from the effect on each female and
male vital rate using a “regression design” LTRE (56). This LTRE decomposes the
sensitivity of � to climate according to:

∂�
∂climate

≈

∑
i

∂�
∂�Fi

∂�Fi
∂climate

+
∂�
∂�Mi

∂�Mi
∂climate

, [6]

where, �Fi and �Mi represent sex-specific parameters (the regression coefficients
of the vital rate functions).

Population Viability Across the Climatic Niche and Geographic Range.
To understand how climate shapes the niche and geographic range of Texas
bluegrass, we estimated the probability of self-sustaining populations (Pr (� ≥
1)) conditional to temperature and precipitation of the dormant and growing
seasons. Pr (� ≥ 1) was calculated for the two-sex and female dominant MPMs
using the proportion of 300 posterior samples that lead to a � ≥ 1 (57).
Population viability in climate niche space was then represented as a contour
plot with values of Pr (� ≥ 1) at given temperature and precipitation for the
growing season, holding dormant season climate constant, and vice versa.

Pr (� ≥ 1) was also mapped onto geographic layers of three US states
(Texas, Oklahoma, and Kansas) to delineate past, current, and future potential
geographic distribution of the species. To do so, we estimated Pr (� ≥ 1)
conditional to all climate covariates for each pixel (∼25 km2) for each time period
(past, present, future). Because of the amount of the computation involved, we
use 100 posterior samples to estimate Pr (� ≥ 1) across the study area (Texas,
Oklahoma, and Kansas). Then, we added the species occurrences extracted from
GBIF to the present time period map to explore how well our model predicts the
presence of the species across its range.

Data, Materials, and Software Availability. All data used in this paper
are publicly available and cited appropriately (58, 59). All computer scripts
supporting this work are archived at ref. 60. All other data are included in the
manuscript and/or SI Appendix.

ACKNOWLEDGMENTS. This research was supported by NSF Division of Envi-
ronmental Biology Awards 2208857 and 2225027. We thank the organizations
and institutions who hosted us at their field station facilities, including The
Nature Conservancy, Sam Houston State University, University of Texas, Texas
A&M University, Texas Tech University, Lake Lewisville Environmental Learning
Area, Wichita State University, and Pittsburgh State University.

Author affiliations: aDepartment of BioSciences, Program in Ecology and Evolutionary
Biology, Rice University, Houston, TX 77005; bInstitute of Biology, Martin Luther University
Halle-Wittenberg, Halle (Saale) 06120, Germany; and cGerman Centre for Integrative
Biodiversity Research (iDiv), Leipzig 04103, Germany

1. R. Bertrand et al., Changes in plant community composition lag behind climate warming in
lowland forests. Nature 479, 517–520 (2011).

2. J. A. Lee-Yaw et al., A synthesis of transplant experiments and ecological niche models suggests
that range limits are often niche limits. Ecol. Lett. 19, 710–722 (2016).

3. J. P. Sexton, P. J. McIntyre, A. L. Angert, K. J. Rice, Evolution and ecology of species range limits.
Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

4. M. B. Davis, R. G. Shaw, Range shifts and adaptive responses to quaternary climate change. Science
292, 673–679 (2001).

5. C. M. Pease, R. Lande, J. Bull, A model of population growth, dispersal and evolution in a changing
environment. Ecology 70, 1657–1664 (1989).

6. J. C. Heilbuth, Lower species richness in dioecious clades. Am. Nat. 156, 221–241 (2000).
7. K. R. Hultine et al., Climate change perils for dioecious plant species. Nat. Plants 2, 1–8 (2016).

8. C. A. Morrison, R. A. Robinson, J. A. Clark, J. A. Gill, Causes and consequences of
spatial variation in sex ratios in a declining bird species. J. Anim. Ecol. 85, 1298–1306
(2016).

9. L. J. Eberhart-Phillips et al., Sex-specific early survival drives adult sex ratio bias in snowy plovers
and impacts mating system and population growth. Proc. Natl. Acad. Sci. U.S.A. 114, E5474–E5481
(2017).

10. W. K. Petry et al., Sex-specific responses to climate change in plants alter population sex ratio and
performance. Science 353, 69–71 (2016).

11. D. L. Field, M. Pickup, S. C. Barrett, Comparative analyses of sex-ratio variation in dioecious
flowering plants. Evolution 67, 661–672 (2013).

12. E. Gissi et al., Exploring climate-induced sex-based differences in aquatic and terrestrial ecosystems
to mitigate biodiversity loss. Nat. Commun. 14, 4787 (2023).

PNAS 2025 Vol. 122 No. 21 e2422162122 https://doi.org/10.1073/pnas.2422162122 9 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

R
T

IN
 L

U
T

H
E

R
 U

N
IV

E
R

SI
T

A
E

T
 o

n 
Ju

ly
 1

5,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

14
1.

48
.6

7.
87

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2422162122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2422162122#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2422162122#supplementary-materials


13. P. Pottier, S. Burke, S. M. Drobniak, M. Lagisz, S. Nakagawa, Sexual (in) equality? A meta-analysis
of sex differences in thermal acclimation capacity across ectotherms. Funct. Ecol. 35, 2663–2678
(2021).

14. R. P. Ellis et al., Does sex really matter? Explaining intraspecies variation in ocean acidification
responses. Biol. Lett. 13, 20160761 (2017).

15. L. R. Gerber, E. R. White, Two-sex matrix models in assessing population viability: When do male
dynamics matter? J. Appl. Ecol. 51, 270–278 (2014).

16. T. E. Miller, A. K. Shaw, B. D. Inouye, M. G. Neubert, Sex-biased dispersal and the speed of two-sex
invasions. Am. Nat. 177, 549–561 (2011).

17. A. O. Shelton, The ecological and evolutionary drivers of female-biased sex ratios: Two-sex models
of perennial seagrasses. Am. Nat. 175, 302–315 (2010).

18. H. J. Lynch et al., How climate extremes—Not means—Define a species’ geographic range boundary
via a demographic tipping point. Ecol. Monogr. 84, 131–149 (2014).

19. T. E. Miller, A. Compagnoni, Two-sex demography, sexual niche differentiation, and the geographic
range limits of Texas bluegrass (Poa arachnifera). Am. Nat. 200, 17–31 (2022).

20. S. Jenouvrier et al., Effects of climate change on an emperor penguin population: Analysis of
coupled demographic and climate models. Glob. Change Biol. 18, 2756–2770 (2012).

21. N. McLean, C. R. Lawson, D. I. Leech, M. van de Pol, Predicting when climate-driven phenotypic
change affects population dynamics. Ecol. Lett. 19, 595–608 (2016).

22. A. M. Iler et al., Reproductive losses due to climate change-induced earlier flowering are not the
primary threat to plant population viability in a perennial herb. J. Ecol. 107, 1931–1943 (2019).

23. P. B. Reed et al., Climate manipulations differentially affect plant population dynamics within
versus beyond northern range limits. J. Ecol. 109, 664–675 (2021).

24. G. Konapala, A. K. Mishra, Y. Wada, M. E. Mann, Climate change will affect global water availability
through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044
(2020).

25. E. E. Cleland, N. R. Chiariello, S. R. Loarie, H. A. Mooney, C. B. Field, Diverse responses of
phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. U.S.A. 103,
13740–13744 (2006).

26. J. Pagel et al., Mismatches between demographic niches and geographic distributions are
strongest in poorly dispersed and highly persistent plant species. Proc. Natl. Acad. Sci. U.S.A.
117, 3663–3669 (2020).

27. E. Margaret et al., The trailing edge is everywhere: tree rings reveal the transient risk of extinction
hidden inside climate envelope forecasts (Tech. Rep., Los Alamos National Laboratory (LANL), Los
Alamos, NM, 2023).

28. T. Bohner, J. Diez, Extensive mismatches between species distributions and performance and their
relationship to functional traits. Ecol. Lett. 23, 33–44 (2020).

29. E. L. Schultz et al., Climate-driven, but dynamic and complex? A reconciliation of competing
hypotheses for species’ distributions. Ecol. Lett. 25, 38–51 (2022).

30. C. Merow, S. T. Bois, J. M. Allen, Y. Xie, J. A. Silander Jr, Climate change both facilitates and inhibits
invasive plant ranges in New England. Proc. Natl. Acad. Sci. U.S.A. 114, E3276–E3284 (2017).

31. W. A. Woldemelak, M. Ladányi, J. Fail, Effect of temperature on the sex ratio and life table
parameters of the leek-(L1) and tobacco-associated (T) Thrips tabaci lineages (Thysanoptera:
Thripidae). Popul. Ecol. 63, 230–237 (2021).

32. S. Varga, C. D. Soulsbury, Environmental stressors affect sex ratios in sexually dimorphic plant
sexual systems. Plant Biol. 22, 890–898 (2020).

33. K. S. Bawa, Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11, 15–39 (1980).
34. M. Sasaki, S. Hedberg, K. Richardson, H. G. Dam, Complex interactions between local adaptation,

phenotypic plasticity and sex affect vulnerability to warming in a widespread marine copepod. R.
Soc. Open Sci. 6, 182115 (2019).

35. H. Korpelainen, Sex ratios and conditions required for environmental sex determination in animals.
Biol. Rev. 65, 147–184 (1990).

36. F. J. Janzen, Climate change and temperature-dependent sex determination in reptiles. Proc. Natl.
Acad. Sci. U.S.A. 91, 7487–7490 (1994).

37. M. L. Cipollini, D. F. Whigham, Sexual dimorphism and cost of reproduction in the dioecious shrub
Lindera benzoin (Lauraceae). Am. J. Bot. 81, 65–75 (1994).

38. S. Bürli, J. R. Pannell, J. Tonnabel, Environmental variation in sex ratios and sexual dimorphism in
three wind-pollinated dioecious plant species. Oikos 2022, e08651 (2022).

39. S. M. Evers et al., Lagged and dormant season climate better predict plant vital rates than climate
during the growing season. Glob. Change Biol. 27, 1927–1941 (2021).

40. A. L. Angert, M. G. Bontrager, J. Ågren, What do we really know about adaptation at range edges?
Annu. Rev. Ecol. Evol. Syst. 51, 341–361 (2020).

41. Intergovernmental Panel on Climate Change (IPCC), “Climate change 2022—Impacts, adaptation
and vulnerability” in Working Group II Contribution to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (Cambridge University Press, ed. 1, 2023).

42. M. C. Dietze et al., Iterative near-term ecological forecasting: Needs, opportunities, and challenges.
Proc. Natl. Acad. Sci. U.S.A. 115, 1424–1432 (2018).

43. A. S. Hitchcock, Manual of the Grasses of the United States (Courier Corporation, 1971), vol. 2.
44. B. Kindiger, Interspecific hybrids of Poa arachnifera× Poa secunda. J. New Seeds 6, 1–26 (2004).
45. K. Renganayaki, R. Jessup, B. Burson, M. Hussey, J. Read, Identification of male-specific AFLP

markers in dioecious Texas bluegrass. Crop Sci. 45, 2529–2539 (2005).
46. S. W. Jacobs, J. Everett, Grasses: Systematics and Evolution: Systematics and Evolution (CSIRO

Publishing, 2000).
47. A. Compagnoni, K. Steigman, T. E. Miller, Can’t live with them, can’t live without them? Balancing

mating and competition in two-sex populations. Proc. R. Soc. B, Biol. Sci. 284, 20171999 (2017).
48. D. N. Karger et al., Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4,

1–20 (2017).
49. Stan Development Team, RStan: The R Tnterface to Stan. R package version 2.21.8 (Stan

Development Team, 2023).
50. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical

Computing, Vienna, Austria, 2023).
51. J. Piironen, A. Vehtari, Comparison of Bayesian predictive methods for model selection. Stat.

Comput. 27, 711–735 (2017).
52. J. C. Fowler, S. Ziegler, K. D. Whitney, J. A. Rudgers, T. E. Miller, Microbial symbionts buffer hosts

from the demographic costs of environmental stochasticity. Ecol. Lett. 27, e14438 (2024).
53. J. S. Lynn, T. E. Miller, J. A. Rudgers, Mammalian herbivores restrict the altitudinal range limits of

alpine plants. Ecol. Lett. 24, 1930–1942 (2021).
54. S. P. Ellner et al., Data-Driven Modelling of Structured Populations. A Practical Guide to the Integral

Projection Model (Springer, Cham, Switzerland, 2016).
55. A. Liaw et al., Classification and regression by randomForest. R News 2, 18–22 (2002).
56. H. Caswell, Analysis of life table response experiments. I. Decomposition of effects on population

growth rate. Ecol. Model. 46, 221–237 (1989).
57. J. M. Diez, I. Giladi, R. Warren, H. R. Pulliam, Probabilistic and spatially variable niches inferred

from demography. J. Ecol. 102, 544–554 (2014).
58. T. Miller, A. Compagnoni, Data from: Two-sex demography, sexual niche differentiation, and the

geographic range limits of Texas bluegrass (Poa arachnifera). Am. Nat. 200, 17–31 (2022).
59. GBIF.Org User, Occurrence download. GBIF.Org. https://doi.org/10.15468/dl.j6n7ck. Accessed 14

February 2025.
60. J. Moutouama, T. Miller, jmoutouama/POAR-Forecasting: Forecasting (POAR). Zenodo. https://doi.

org/10.5281/zenodo.15127716. Accessed 2 April 2025.

10 of 10 https://doi.org/10.1073/pnas.2422162122 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

R
T

IN
 L

U
T

H
E

R
 U

N
IV

E
R

SI
T

A
E

T
 o

n 
Ju

ly
 1

5,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

14
1.

48
.6

7.
87

.

https://doi.org/10.15468/dl.j6n7ck
https://doi.org/10.5281/zenodo.15127716
https://doi.org/10.5281/zenodo.15127716

