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ABSTRACT Staphylococcus epidermidis, a commensal bacterium inhabiting collagen-
rich areas like human skin, has gained significance due to its probiotic potential in the 
nasal microbiome and as a leading cause of nosocomial infections. While infrequently 
leading to severe illnesses, S. epidermidis exerts a significant influence, particularly in 
its close association with implant-related infections and its role as a classic opportun
istic biofilm former. Understanding its opportunistic nature is crucial for developing 
novel therapeutic strategies, addressing both its beneficial and pathogenic aspects, 
and alleviating the burdens it imposes on patients and healthcare systems. Here, we 
employ genome-scale metabolic modeling as a powerful tool to elucidate the metabolic 
capabilities of S. epidermidis. We created a comprehensive computational resource for 
understanding the organism’s growth conditions within diverse habitats by recon
structing and analyzing a manually curated and experimentally validated metabolic 
model. The final network, iSep23, incorporates 1,415 reactions, 1,051 metabolites, and 
705 genes, adhering to established community standards and modeling guidelines. 
Benchmarking with the Metabolic Model Testing suite yields a high score, indicating the 
model’s remarkable semantic quality. Following the findable, accessible, interoperable, 
and reusable (FAIR) data principles, iSep23 becomes a valuable and publicly accessi
ble asset for subsequent studies. Growth simulations and carbon source utilization 
predictions align with experimental results, showcasing the model’s predictive power. 
Ultimately, this work provides a robust foundation for future research aimed at both 
exploiting the probiotic potential and mitigating the pathogenic risks posed by S. 
epidermidis.

IMPORTANCE Staphylococcus epidermidis, a bacterium commonly found on human skin, 
has shown probiotic effects in the nasal microbiome and is a notable causative agent 
of hospital-acquired infections. While these infections are typically non-life-threatening, 
their economic impact is considerable, with annual costs reaching billions of dollars 
in the United States. To better understand its opportunistic nature, we employed 
genome-scale metabolic modeling to construct a detailed network of S. epidermidis’s 
metabolic capabilities. This model, comprising over a thousand reactions, metabolites, 
and genes, adheres to established standards and demonstrates solid benchmarking 
performance. Following the findable, accessible, interoperable, and reusable (FAIR) data 
principles, the model provides a valuable resource for future research. Growth simu
lations and predictions closely match experimental data, underscoring the model’s 
predictive accuracy. Overall, this work lays a solid foundation for future studies aimed 
at leveraging the beneficial properties of S. epidermidis while mitigating its pathogenic 
potential.
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A prevalent constituent of the human skin flora is the coagulase-negative commensal 
(1, 2). This Gram-positive coccus predominantly inhabits the skin and mucosal 

membranes in areas such as the axillae, head, legs, arms, and nares. Staphylococcus 
epidermidis plays a crucial role in maintaining a balanced microbiome within the human 
nasal cavity, where harmful pathogens like Staphylococcus aureus commonly establish 
colonization. There is ongoing discourse regarding whether S. epidermidis, through 
competition in nutritionally scarce environments like the human nose, may exhibit 
probiotic effects against formidable pathogens such as S. aureus (2, 3). Nevertheless, 
S. epidermidis is recognized as a significant causative agent of nosocomial infections 
under specific conditions (4). It is particularly notable as the primary source of infec
tions associated with indwelling medical devices, including intravascular catheters and 
implants such as prosthetic joints (1, 5, 6). The high occurrence of these nosocomial 
infections is attributed to S. epidermidis’s ubiquitous presence on the human skin, 
increasing the likelihood of contamination during the insertion of medical devices (7). 
Upon infection, S. epidermidis strains can form biofilms that protect them from antibiot
ics and host immune responses, making S. epidermidis infections highly resistant and 
challenging to eradicate (1, 7). Often, removing the foreign material becomes neces
sary to combat the infection effectively. While S. epidermidis infections seldom lead to 
life-threatening conditions, their impact on patients and the public health system is 
substantial. In the United States alone, the annual economic burden of S. epidermidis 
vascular catheter-related bloodstream infections is estimated to be around $2 billion 
(1, 6). Besides biofilm formation, S. epidermidis becomes pathogenic through several 
additional mechanisms that enable it to evade the immune system. These include the 
production of phenol-soluble modulins (PSMs) and extracellular proteases, which impair 
immune cell function and degrade immune components (8). S. epidermidis adheres to 
surfaces via surface-associated proteins, such as the Aap, facilitating colonization on 
medical devices (9). The bacterium also produces exopolysaccharides that protect it 
from immune detection, while its ability to acquire antibiotic resistance genes, espe
cially against methicillin, allows it to survive treatment and establish chronic infections. 
Furthermore, it releases cytotoxins that damage host tissues and can acquire new 
virulence factors through horizontal gene transfer (10). Therefore, there is an urgent 
need for a more comprehensive understanding of S. epidermidis and its opportunistic 
characteristics to identify novel therapeutic strategies (1, 7).

One effective way to better understand and analyze an organism’s lifestyle and 
capabilities is through the reconstruction and analysis of genome-scale metabolic 
models (GEMs). These models rely on the organism’s annotated genome sequence, 
with genes encoding proteins of metabolic significance being linked to their respec
tive reactions through gene-protein-reaction associations (GPRs). The resulting network 
integrates biochemical reactions and their associated metabolites with enzyme-cod
ing genes specifying the catalytic activities of these reactions. Such models enable a 
comprehensive understanding of an organism’s metabolism at a systems level. Díaz 
Calvo et al. reconstructed the metabolic network of RP62A, a slime-producing and 
methicillin-resistant biofilm-forming isolate (11), while Guil et al. further validated it 
(12). However, the model lacks annotations and standardization in the identifiers for 
reactions and metabolites and does not include any associated genes. Additionally, we 
observed inconsistencies between the content of the model uploaded in the BioModels 
database (13) and the model provided in the supplementary material accompanying the 
manuscript.

Here, we introduce iSep23, a new manually curated, experimentally validated, and 
publicly available GEM, designed for the non-biofilm-forming S. epidermidis ATCC 
12228. Figure 1 summarizes the computational and experimental approaches used in 
this study. The model comprises 1,415 reactions, 1,051 metabolites, and 705 genes
and is freely available in the BioModels database (13) with the accession identifier 
MODEL2012220002. Moreover, it aligns with current community standards (14–16) 
and modeling guidelines (17, 18). Semantic benchmarking was conducted using the 
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Metabolic Model Testing (MEMOTE) suite (19). Finally, iSep23 follows the findable, 
accessible, interoperable, and reusable(FAIR) data principles (20), rendering it a valuable 
resource for subsequent research (21, 22). Growth simulations in various media were 
compared against laboratory experiments to assess the predictive capacity of the 
model. The model’s predictions regarding the utilization of diverse carbon sources 
were cross-referenced with experimental findings. Altogether, our model establishes a 
foundation for improved comprehension of the organism’s phenotypes and behavior 
under different nutritional conditions.

RESULTS

Properties of the constructed GEM

The initial draft model was built with CarveMe (23) and comprised 1,295 reactions, 
933 metabolites, and 722 genes, yielding a MEMOTE score of 36%. Subsequent 
manual refinement involved the addition of 120 reactions, 118 metabolites, and 63 
genes, as illustrated in Fig. 2A. This model represents the most comprehensive avail
able reconstruction of S. epidermidis, exhibiting greater metabolic coverage with an 
increased number of reactions, metabolites, and associated genes compared to the 
RP2A model (Table 1). More specifically, the model was enhanced by adding key 
reactions, including tetrapeptide L,D-carboxypeptidase and various acyl-CoA dehydro
genases. Transport mechanisms were improved with the inclusion of uptake systems 
for L-cysteine, D-arabinose, glucose, and several amino acids (e.g., L-phenylalanine and 
L-tyrosine). Additionally, glycosyl transferases, glycerol-3-phosphate acyltransferase, and 
phosphatidylglycerol transport enzymes were incorporated to enhance lipid metabolism 
pathways. The model also includes reactions for iron transport (e.g., Fe-enterobactin 
and ferrioxamine G) and nucleotide metabolism (e.g., purine-nucleoside phosphoryla
ses), significantly improving its capacity to simulate metabolic functions and nutrient 
utilization (Table S2). This represents the most comprehensive metabolic model available 
for S. epidermidis, as it includes remarkably more reactions, metabolites, and genes 

FIG 1 Reconstruction of a new metabolic network for S. epidermidis ATCC 12228, called iSep23. The computational metabolic network was created and validated 

using a two-phase approach. The initial phase encompassed the mathematical representation of the metabolism using genome-scale models. In the second 

phase, the model underwent functional validation based on experimental data.
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compared to the previously existing network for RP62A (11). Additionally, iSep23 
comprises over 980 GPRs and defines three distinct cellular compartments (cytosol, 
periplasm, and extracellular space). The 63 mass- and charge-imbalanced reactions 
initially found in the draft model were reduced to one mass-imbalanced and nine 
charge-imbalanced reactions, resulting in MEMOTE balance scores of 99.7% and 99.3%, 
respectively. Based on the literature evidence, we corrected the directionality of 34 
enzymatic reactions in the model to ensure proper constraints during model simulations. 
Moreover, the final metabolic network does not include infeasible energy-generating 
cycles (EGCs) that could inflate the simulation results (see Materials and Methods). We 
annotated the model entities with cross-references to various databases and additional 
information to increase the model’s interoperability and re-usability. The reaction 
annotations are divided into three different biological qualifier types:

FIG 2 Reconstruction of a new metabolic network for properties of the network reconstructed for S. epidermidis ATCC 12228. (A) Quantitative comparison 

content between initial draft and final models. The draft network consisted of 1,295 reactions, 933 metabolites, and 722 genes. Further refinement and 

augmentation yielded the final metabolic model, comprising 1,415 reactions, 1,051 metabolites, and 785 genes. (B) Distribution of evidence and conclusion 

ontology (ECO) terms within the network. To characterize the inclusion evidence of biochemical reactions, ECO terms were assigned based on the associated GPR 

and UniProt evidence. The terms were allocated according to varying levels of evidentiary support. (C) Metabolic subsystem distribution of reactions. Each bar 

represents a distinct metabolic subsystem, with the length of the bar corresponding to the number of reactions in that pathway. (D) Coverage of systems biology 

ontology (SBO) terms within the metabolic network after applying the SBOannotator (24).
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i. BQB_IS_DESCRIED_BY: stores ECO terms, which provide evidence supporting the 
reaction.

ii. BQB_IS: stores cross-references to eight external databases, linking the reaction to 
corresponding entries.

iii. BQB_OCCURS_IN: stores information about pathways associated with biochemical 
reactions.

The inclusion of ECO terms ensures a comprehensive understanding of evidence 
and assertion methodologies (25), thereby facilitating robust quality control measures 
and evidence queries. The ECO term with the lowest evidence level is ECO:0000001, 
coding for inference from background scientific knowledge. This term was ascribed 
to 30.2% of the biochemical reactions within the network (Fig. 2B). Notably, this 
percentage encompasses pseudoreactions, such as exchanges, sinks, demands, and 
biomass function. Within the group of 431 reactions associated with this ECO term, 
170 pertained to pseudoreactions. The ECO term ECO:0000251 denotes similarity 
evidence used in automatic assertion and was assigned to 28.5% of all reactions. 
Moreover, the terms ECO:0000251 (computational inference used in the automatic 
assertion) and ECO:0000044 (sequence similarity evidence) annotated 9.3% and 31.9%
of all reactions, respectively. A minimal fraction (0.1%) of reactions exhibits protein 
assay evidence, identified by the ECO:0000039 term. In iSep23, transporters are the 
most frequent subsystem with 318 reactions, highlighting their importance in nutrient 
exchange. Amino acid metabolism (137 reactions) and nucleotide metabolism (122 
reactions), essential for protein and nucleic acid synthesis, are also prominent (Fig. 2C). 
Less frequent subsystems include the metabolism of terpenoids and polyketides (16 
reactions) and xenobiotics biodegradation and metabolism (10 reactions), indicating a 
more limited role in detoxification and specialized biosynthetic pathways. Subsequently, 
the SBOannotator was utilized to annotate the model with precise and descriptive SBO 
terms (24) (Fig. 2D). In total, 25 terms describing classes of various model elements were 
incorporated. Finally, similar to reactions, all metabolites and genes were annotated with 
12 and 3 additional external databases, respectively, using the biological qualifier type 
BQB_IS (Fig. 3). These modifications resulted in the final metabolic network, with an 
overall MEMOTE score of 88. In contrast, the metabolic network for RP62A has a MEMOTE 
score of only 14% and lacks both GPRs and cellular compartments.

The final curated metabolic model was stored as a Systems Biology Markup Language 
(SBML) (26) file. This format supports the integration of various plugins, such as the fbc 
package (27) and the groups (28), both of which are enabled in iSep23. The group 
package allows for incorporating additional information without altering the mathemati
cal interpretation of the model. We defined all pathways and subsystems identified from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (29) as individual 
groups and assigned the corresponding reactions as members. Overall, we added 99 
distinct groups to the model that facilitate pathway-related analysis.

TABLE 1 Comparison of GEMs of S. epidermidisa

Parameter iSep23 (this 
study)

RP62A (11) RP62A (BioModels 
[11])

RP62A (Guil et al. 
[12])

Reactions 1,415 1,064 1,065 990
Metabolites 1,051 938 939 864
Genes 785 0 0 0
Gene-protein-reaction rules 984 0 0 0
Defined subsystems ☑ □ □ □

aThe number of reactions, metabolites, genes, GPRs, and the presence of defined subsystems are considered. 
The model developed in this study exhibits the highest metabolic coverage, with a greater number of reactions, 
metabolites, and genes compared to the existing RP62A models. Due to discrepancies observed between the 
model uploaded to BioModels and the version provided in the supplemental material of the corresponding paper, 
both versions were considered in this analysis. A checked box means the presence of a feature, whereas an empty 
box denotes its absence.
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Validation of the metabolic network

In addition to syntactic evaluation, data structure, and file format validation, the model 
was assessed for its predictive value by comparing simulation outcomes with empirical 
laboratory data. Given the adaptability of microbes to diverse environments, we focused 
on investigating their growth behavior across various nutrient media, ensuring that 
simulated conditions closely matched the experimental setups.

Evaluation of different growth media

First, we conducted growth simulations using various chemically defined media. 
Specifically, we utilized three synthetic minimal media: synthetic minimal medium (SMM) 
(30), AAM (31), and AAM− (32). Developed initially to explore the metabolic requirements 
of S. aureus, these media definitions served as the basis for our simulations. We used the 
compound concentrations specified in the media definitions for the in silico simulations 
and tested whether our model exhibited growth under these conditions. Furthermore, 
we extended our evaluations to include the widely used lysogeny broth (LB) medium. 
Through a combination of in silico and in vitro experiments, we investigated the growth 
behavior in four different media, both with and without D-glucose as the carbon source. 
This dual approach allowed us to measure growth in a simulated environment and in a 
real laboratory setting, providing a comprehensive validation of the model’s predictive 
performance under various nutritional conditions. Additionally, we refined our metabolic 
network based on experimental outcomes by adding necessary reactions and eliminat
ing those lacking genetic evidence. During this manual model curation, we incorporated 
reactions to improve alignment with experimental data, including biotin and cysteine 
transporter and exchange reactions, as well as transporters and exchange reactions 
for L-phenylalanine, L-arginine, and L-tryptophan. Additionally, a nicotinamide uptake 
reaction was incorporated to refine the model’s metabolic capabilities further. Con
versely, transport reactions via the phosphoenolpyruvate and pyruvate phosphotransfer
ase system for D-glucosamine, D-mannose, mannitol, and cellobiose were removed due 
to insufficient genetic evidence (Table S2).

Figure 4 illustrates the growth behavior of S. epidermidis in various environments 
both in silico and in vitro. The computational model successfully simulated growth across 
all media when glucose was utilized as the sole carbon source. However, growth was 
observed exclusively in LB without glucose (Fig. 4A). On the contrary, in vitro experiments 
revealed no growth in AAM−, a medium lacking L-arginine. Comparative analysis of 
AAM−, AAM, and SMM highlights the absence of L-arginine in AAM−, a compound 
crucial for S. epidermidis growth. Prior studies have identified L-arginine auxotrophies 
in Staphylococcus species, including S. epidermidis (33). Despite reported L-arginine 
auxotrophy, the S. epidermidis strain ATCC 12228 harbors biosynthetic pathways for 
L-arginine via L-ornithine and L-glutamate, as reported in BioCyc (34) and KEGG (29). 

FIG 3 Reconstruction of a new metabolic network for cross-references incorporated into the metabolic network iSep23. Each axis represents a different 

cross-reference source, with the plotted values indicating the percentage of entries for (A) reactions, (B) metabolites, and (C) genes. The chart highlights the 

relative abundance of various cross-reference sources in the metabolic network.
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In AAM−, L-glutamate is not provided as an amino acid, but it can be synthesized 
from L-proline, an amino acid present in the medium. The biosynthetic pathway as 
derived from the databases is illustrated in Fig. 5. All available L-proline is taken up and 
metabolized into several products, including L-glutamate, L-ornithine, and L-arginine. 
Each reaction in this pathway is supported by genetic evidence through a GPR within 
iSep23.

Growth in different carbon sources

In addition to evaluating S. epidermidis’s growth behavior in different media, we assessed 
the utilization of various carbon sources. This involved employing SMM and substitut
ing D-glucose with alternative sugars in amounts adjusted for carbon content. A total 
of 12 different sugars were subjected to evaluation, as illustrated in Fig. 4B. Except 
for cellobiose and D-mannose, S. epidermidis demonstrated the capability to utilize all 
tested sugars as a carbon source, both through computational simulations (in silico) 
and laboratory experiments (in vitro). This consistency between model predictions and 
experimental observations lends robust support to the accuracy of the computational 
model.

DISCUSSION

Here, we present a manually curated GEM of S. epidermidis ATCC 12228, iSep23. 
Literature-based corrections and meticulous manual curation ensured the accurate 
representation of enzymatic reaction directions, which is essential for precise con
straints during simulations. Overall, our model aligns with experimental data and 
offers a comprehensive platform for exploring S. epidermidis’s metabolic capabilities 
and behavior under diverse conditions. Exploring the growth patterns under varied 
nutritional environments provides valuable insights into activated metabolic pathways, 

FIG 4 Reconstruction of a new metabolic network for growth phenotypes of S. epidermidis in different nutritional environments. (A) Evaluation of S. epidermidis 

growth encompassed various environmental conditions, including testing on complete LB and three minimal media formulations: SMM, AAM, and AAM−, both 

with and without D-glucose as a carbon source. (B) Analysis of growth in different carbon sources utilized SMM as the primary medium, where different amounts 

of other sugars systematically replaced glucose. Simulation results closely paralleled laboratory findings, ensuring consistency across computational predictions 

and experimental outcomes.
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FIG 5 Reconstruction of a new metabolic network for the biosynthetic pathway of L-arginine via 

L-glutamate and L-proline in iSep23, extracted from biochemical databases. The colors represent the 

magnitude of the simulated reaction fluxes in the model. Gray arrows indicate zero flux, while colored 

arrows represent non-zero fluxes in AAM−. All available L-proline is actively taken up and subsequently 

metabolized into various products, including L-glutamate, L-ornithine, and ultimately L-arginine. Genetic 

evidence supporting each reaction is provided as gene-reaction rules within iSep23. Figure created with 

Escher (35).
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enriching our comprehension of the bacterium’s adaptability across diverse conditions. 
This understanding is pivotal for predicting bacterial behavior and survival strategies 
in specific niches. Additionally, discerning the impact of specific nutrients in host 
environments on bacterial virulence and infection establishment is essential, guiding 
the development of strategies to control or inhibit bacterial pathogens. The growth 
media tested in this work simulate nutrient conditions relevant to environments where 
S. epidermidis infections occur. SMM and AAM provide essential nutrients for minimal 
growth, reflecting nutrient-limited conditions. In contrast, LB offers a nutrient-rich profile, 
mimicking more favorable niches. In the human host, sugars and other carbon sources 
are available primarily from dietary carbohydrates, which are broken down into simpler 
sugars during digestion. The primary sugar in human blood is glucose, produced in the 
liver and released into circulation, making it the most abundant free carbohydrate in 
human serum (36). The inconsistency between the in silico and in vitro results regard
ing the AAM− in the presence of glucose could be attributed to factors beyond the 
metabolic scope. For instance, non-metabolic factors could be regulatory mechanisms 
and post-translational modifications. Staphylococcus sp. have reported auxotrophies for 
various amino acids, including arginine (33). However, recent studies suggest that this 
is due to condition-specific regulatory mechanisms (carbon catabolite repression) rather 
than a permanent loss of biosynthetic capability. These mechanisms repress arginine 
synthesis in response to glucose, particularly when proline is the substrate (37) but not 
when glutamate is used (38). Sadykov demonstrated that the carbon catabolite-respon
sive regulator CcpA plays a critical role in biofilm formation and virulence by inactivating 
the CcpA gene in S. epidermidis 1457 (39). The observed discrepancy highlights the 
need for a deeper understanding of the regulatory and metabolic factors influencing 
S. epidermidis growth in AAM−, with experimental validation crucial to resolving the 
difference between in silico and in vitro outcomes.

All in all, the refined network serves as a powerful tool for exploring S. epidermi
dis’s metabolic capabilities and behavior under diverse conditions. Future perspectives 
involve leveraging the model for targeted studies, such as investigating metabolic 
pathways, assessing the impact of genetic modifications, and exploring potential drug 
targets. The model’s compatibility with the fbc and groups packages in the SBML level 
3 version 1 (16) format enhances its flexibility, enabling the integration of additional 
plugins for more intricate analyses. Including 99 distinct groups representing pathways 
and subsystems from the KEGG database provides a foundation for comprehensive 
pathway-related analyses. Altogether, iSep23 aligns with experimental data and lays 
the groundwork for future investigations into the bacterium’s metabolism. Its accu
racy, comprehensibility, and flexibility make it a valuable resource for advancing our 
understanding of microbial physiology and metabolic engineering applications.

MATERIALS AND METHODS

Reconstruction and manual refinement of the metabolic network

The reconstruction of the presented GEM is based on protocols described in previous 
studies (40, 41). The fast and automated reconstruction tool CarveMe (23) curates 
genome-scale metabolic models of microbial species and communities (23). During the 
initial curation phase, a universal model was systematically compared to the annotated 
genome sequence of the species of interest, facilitating the construction of individ
ual single-species metabolic models. In this study, we utilized CarveMe version 1.2.2 
and the annotated genome sequence of S. epidermidis ATCC 12228 with the RefSeq 
(42) accession ID NC_004461.1 that covers the bacterial chromosome. Throughout the 
drafting process and subsequent model iterations, rigorous monitoring and benchmark
ing were conducted using MEMOTE and the SBML Validator from libSBML (19, 43). 
MEMOTE performs standardized semantic tests across four key domains: annotation, 
basic tests, biomass reaction, and stoichiometry. The results are stored in a comprehen
sive report that includes the model’s overall performance assessed by a metric called 
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MEMOTE score (denoted as a percentage with 100%). A higher MEMOTE score correlates 
with enhanced annotation quality, greater consistency, and formal correctness of the 
model in SBML (26) format. We utilized the SBML Validator to check the model file 
for syntax errors such as improper structure, incorrect tags, missing attributes, and 
invalid values, ensuring a valid model format. To refine the initial model automatically, 
the ModelPolisher (44) was employed in a preliminary step. Leveraging the Biochemi
cal, Genetical, and Genomical (BiGG) database (45), identifiers of the model entities, 
ModelPolisher systematically accessed the BiGG database, assimilating all available 
information for these entities into the network as annotations.

In the initial draft model, a total of 63 reactions were identified as exhibiting mass and 
charge imbalances. To address the identified imbalances, the MassChargeCuration tool 
was utilized to correct mass- and charge-imbalanced reactions (46). Databases such as 
MetaNetX (47) and BioCyc (34) were consulted to obtain accurate information regard
ing the charges and chemical formulas of the metabolites involved in these reactions. 
This approach enabled precise adjustments to the mass and charge imbalances within 
the model, achieving 100% stoichiometric consistency and over 95% mass and charge 
balance.

Additionally, the network constraints were carefully reviewed. Enzymes frequently 
act as catalysts in metabolic reactions. However, some enzymes effectively catalyze 
the reaction only in one direction. Consequently, it becomes imperative to impose 
constraints on the directionality of a given reaction. Cases where irreversible reactions 
are erroneously modeled as reversible can result in an artificial expansion of the solution 
space within simulations. Conversely, misrepresenting reversible reactions as irreversible 
can unduly constrict the solution space, thereby precluding potential solutions. During 
our analysis, we systematically assessed various reaction directionalities and rectified any 
inaccuracies as needed, using information derived from the organism-specific BioCyc 
database.

Model extension

The model extension involved the integration of supplementary reactions sourced from 
established literature. The knowledge bases utilized for this purpose included BioCyc 
(34), KEGG (29), and ModelSEED (48). To identify relevant genetic information, locus 
tags from gene annotations were extracted and compared against the KEGG data
base. Reactions catalyzed by hypothetical enzymes were excluded from the analy
sis. Candidate reactions were systematically cross-referenced with the BiGG (45) and 
ModelSEED databases and were subsequently integrated into the network with BiGG 
identifiers and corresponding GPRs. If no entry in the BiGG database was specified, 
reaction identifiers from the source database were used.

Detecting energy-generating cycles

GEMs with EGCs may harbor thermodynamically inaccurate cycles capable of generat
ing energy without concurrent nutrient consumption (49). These undesirable loops 
necessitate detection and subsequent elimination from the model. Fritzemeier et al. 
developed a systematic workflow for different energy metabolites. A dissipation reaction 
was introduced into the model for each energy metabolite. After the imposition of 
constraints whereby all uptake rates were set to zero, an optimization process was 
conducted on the dissipation reaction. The presence of a non-zero flux following 
optimization serves as an indicator of the existence of EGCs within the model.

Including gene annotations

The software ModelPolisher (44) was used to annotate the model entities. It is notewor
thy, however, that this tool does not facilitate the annotation of model genes due to their 
strain-specific nature. We annotated the network genes using the associated National 
Center for Biotechnology Information (NCBI) protein identifiers (50). Notably, these gene 
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identifiers underwent modifications during reconstruction due to the prokaryotic RefSeq 
genome re-annotation project (42). To address this, we retrieved the updated NCBI 
protein identifiers from the NCBI database (50). Subsequently, leveraging these novel 
protein identifiers in conjunction with the organism’s GenBank file (51), we extracted 
the corresponding KEGG gene identifiers, which align with the organism’s locus tag and 
UniProt identifiers (52). The integration of cross-references was executed as annotations 
using libSBML (43). This comprehensive process ensures the accuracy and coherence of 
gene annotations within the model, thereby contributing to the reliability and accuracy 
of subsequent analyses.

Adding subsystems and groups

The reaction-associated pathways were retrieved using the annotated KEGG identifiers 
and the KEGG REST API. Subsequently, these pathways were incorporated as annotations 
utilizing the biological qualifier BQB_OCCURS_IN. Furthermore, the group’s package was 
activated for enhanced functionality. Each identified pathway was integrated as a group
and the corresponding reactions as members.

Adding ECO and SBO terms

To enhance the model’s reusability, we incorporated ECO terms that annotate all 
metabolic reactions (25). This ontology comprises terms and classes of the various 
evidence and assertion methods. These terms elucidate, for instance, the nature of 
evidence associated with a gene product or reaction, facilitating robust model quality 
control. The assignment of a suitable ECO term to each reaction involved the extraction 
of GPRs. If a reaction lacked a GPR, the term ECO:0000001 was ascribed, denoting its 
inference from background scientific knowledge. Conversely, for all reactions with a GPR, 
the protein’s existence was reviewed in the UniProt database (52). We distinguished the 
presence of proteins based on distinct categories, namely: (i) inferred from homology 
(ECO: 0000044), (ii) predicted (ECO: 0000363), (iii) evidence at the transcript level (ECO: 
0000009), or (iv) protein as say evidence. Genes not found in UniProt were assigned 
the term ECO:0000251, indicating the similar evidence used in an automatic assertion. 
The relevant ECO term was incorporated as an annotation in cases where a biochemical 
reaction was associated with a GPR described by a single gene. If the GPR involved 
multiple genes, the gene associated with the lowest evidence score was appended. All 
ECO terms were supplemented with the biological qualifier BQB_IS_DESCRIBED_BY.

The SBOannotator (24) was employed to assign SBO terms to all reactions, metabo
lites, and genes within the metabolic network. These terms offer unambiguous semantic 
information, delineating the type or role of each model component.

Elimination of redundant information

CarveMe stores the annotation information on model entities and cross-references to 
external databases within the notes field. However, the annotation field in the form of 
the controlled vocabulary terms is more appropriate for this information. Hence, we 
transferred all cross-references to the annotation field using the ModelPolisher (44). 
Subsequently, the annotation information was systematically removed from the notes 
field to optimize file size and eliminate redundancy in information storage.

Formulation of the linear programming framework

We employed constraint-based modeling, specifically flux balance analysis (FBA), to 
determine flux distribution through the optimization of an objective function using 
linear programming (53). The metabolic network is mathematically encoded in a 
stoichiometric matrix S, which maps the connectivity of mass- and charge-balanced 
reactions to metabolites. At steady state, the system of linear equations derived from the 
network is defined as follows:

Research Article mSystems

June 2025  Volume 10  Issue 6 10.1128/msystems.00418-2511

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

5 
Ju

ly
 2

02
5 

by
 1

41
.4

8.
67

.8
7.

https://doi.org/10.1128/msystems.00418-25


(1)S ⋅ v→ = 0

with S being the stoichiometric matrix and v→ being the flux vector. Constraints are 
imposed to restrict the solution space and ensure biological relevance. Altogether, the 
FBA maximization problem, incorporating mass balance, thermodynamic, and capacity 
constraints, is formulated as follows:

(2)
maximize Z = cT v→ subject to:  S ⋅ v→ = 0vmin ≤ vr ≤ vmax  for r ∈ {1, …, n}∀r ∈ I :0 ≤ vr

Here, n is the amount of reactions, Z represents the linear objective function, and c→ is 

a vector of coefficients on the fluxes v→ used to define the objective function.

Evaluation and validation of growth capabilities

Different growth media

The growth behavior of S. epidermidis was assessed in three distinct synthetic minimal 
media initially formulated to investigate the metabolic requirements of S. aureus. These 
are the (i) SMM (30), (ii) AAM (30), and (iii) AAM− (32); a modified version of the AAM 
medium. The concentrations of the various components served as lower bounds for the 
corresponding exchange reactions of metabolites, as detailed in Table S1. In addition to 
the already provided salts and ions, we added minimal traces of zinc (EX_zn2_e), cobalt 
(EX_cobalt2_e), and copper (EX_cu2_e) to the simulated medium to enable growth. The 
lower bound of these reactions was set to −0.0001 mmol/(gDW⋅h). Oxygen availabil
ity was defined by setting the lower bound of the exchange reaction to −20 mmol/
(gDW⋅h). The initial formulation of the three media involved the use of nicotinic acid. 
However, as nicotinic acid was substituted with nicotinamide in laboratory experiments, 
our simulated media also incorporated nicotinamide. In addition to the three minimal 
media, we tested S. epidermidis’s growth on the LB (23). The lower bounds of the 
compounds’ exchange reactions listed in Table S1 were set to −10 mmol/(gDW⋅h). All 
in silico simulations were evaluated with and without D-glucose as a carbon source.

Different carbon sources

Twelve different sugars were tested for their potential role as a carbon source: D-glucose, 
D-arabinose, maltose, lactose, raffinose, D-sucrose, trehalose, D-xylose, D-cellobiose, 
fructose, mannose, and D-ribose. For the growth simulations in different carbon sources, 
we used the SMM with nicotinamide instead of nicotinic acid as a basis (Table 2). 
The concentrations reported in the medium were established as lower bounds for 
the simulation. The concentrations of the listed carbon sources were calculated to be 
equivalent in carbon content to the initial 5 g/L of glucose used in the defined SMM.

Laboratory validation

Media preparation

The minimal media AAM, AAM−, and SMM were prepared as carbon-source-free base 
media following the methods provided by Machado et al. after omitting glucose as 
the default carbon source (30). The carbohydrates that replaced glucose as alternative 
carbon sources were dissolved in their respective base medium, and the resulting 
media were sterile filtered. Carbohydrates were obtained from Carl Roth (D-arabinose, 
D-glucose, trehalose, lactose, sucrose, and raffinose), EMD-Millipore (fructose), Fluka 
(maltose, D-cellobiose), and Sigma Aldrich (mannose, D-ribose, and D-xylose) in purity 
grades of ≥98. LB was prepared following the standard formulation of 10 g/L tryptone 
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(MP Biomedicals), 10 g/L sodium chloride (Carl Roth), 5 g/L yeast extract (Carl Roth), and 
5 g/L glucose when required.

Growth experiments

Cultures of S. epidermidis ATCC 12228 were initiated by inoculating overnight precultures 
in LB at 37°C. Subsequently, primary cultures in LB were established from them and 
allowed to grow to an optical density (OD) at 600 (OD600) of 0.5. Cell harvesting was 
achieved through centrifugation and two washes with the carbon-source-free medium. 
The cells were then resuspended to an OD600 of 0.05 in media containing the respec
tive carbon source. Growth was assessed by determination of the OD after a 24-hour 
incubation at 37°C. Growth experiments were performed in at least three biological 
replicates in a 96-well plate format. OD measurements were performed with a Tecan 
Spark microplate reader.
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