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Abstract 

Ly6C
hi

 monocytes are an important myeloid-derived subset of innate immune cells. They are 

known to contribute to the restriction of infections as well as to immunopathology by 

phagocytosis, cytokine production and differentiation into specialized subpopulations. Recent 

groundbreaking studies have suggested that Ly6C
hi

 monocytes also play protective roles, e. g. 

during recovery from spinal cord injury. 

The goal of this thesis was to investigate the contribution of Ly6C
hi

 monocytes in homeostatic 

and pathophysiological processes of the central nervous system. In the first part of the results, 

we found that Ly6C
hi

 monocytes link both changes in the intestinal flora upon antibiotic or 

probiotic treatment and physical exercise to altered neurogenesis levels in a murine model. 

Moreover, their genetically-induced or antibody-dependent absence reduces neurogenesis and 

substitution of Ly6C
hi

 monocytes can restore reduced neurogenesis levels due to antibiotic-

treatment. 

In the second part, we provide evidence that Ly6C
hi

 monocytes are able to take up β-amyloid 

in an ex vivo phagocytosis assay and that their enhanced presence upon chronic experimental 

Toxoplasma gondii infection leads to reduced plaque disposal in the brain of 5xFAD mice. As 

soluble β-amyloid levels are also reduced upon monocyte infiltration and Ly6C
hi

 monocytes 

are not located in the direct vicinity of plaques, we conclude that Ly6C
hi

 monocytes prevent 

plaque formation by uptake of biochemical precursors. 

Taken together, our results demonstrate that Ly6C
hi

 monocytes promote the maintenance of 

hippocampal neurogenesis as well as clearance of waste products during neurodegenerative 

diseases. Thus, this study supports a refined and more balanced picture of this essential 

immune cell population. 
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1 

1 Introduction 

Ly6C
hi

 monocytes are a fundamental element of the innate immune response. In the following 

thesis, I will demonstrate how this cell subset contributes to maintain physiological levels of 

adult hippocampal neurogenesis in mice and the mechanism of reduction of β-amyloidosis 

using an experimental model for Alzheimer’s disease. 

1.1 Immune System 

With more than 9×10
29

 microbes on our planet and countless other pathogens including 

viruses, protozoan, and parasites, the integrity of our body is continuously challenged from 

outside. Moreover, mutated cells loom on the inside and many physiological processes leave 

behind potentially hazardous residues. Resolving these danger signals requires an elaborate 

protective system which is guard, soldier and cleaner all at once: the immune system. 

Within the vertebrate body, three main levels of protection can be found. First, surface 

barriers prevent attachment and entrance of pathogens. The second line of defense is provided 

by innate immune cells, which sense damage or pathogens via pattern recognition receptors. 

Third, highly specific cells of the adaptive immunity precisely target and fight individual 

pathogens via recombined high-affinity receptors (Delves & Roitt 2000). 

1.1.1 Innate Immunity 

The innate immune system is evolutionary older than adaptive immunity and can be found not 

only in vertebrates but also in plants, fungi, insects and primitive multicellular organisms. 

Recognition and response by the innate immune system are carried out in a generic manner 

and do not result in long-lasting protection (Delves & Roitt 2000). Both humoral and cellular 

components are part of the innate immunity (Parkin & Cohen 2001). 

The humoral branch consists of complement and contact cascade, naturally occurring 

antibodies and pentraxins. Through opsonization and activation of phagocytes, these elements 

facilitate an effective early response to pathogens and cell debris (Shishido et al. 2012). 

The cellular compartment of the innate immune system includes a variety of cells with diverse 

functions. Long-lived mast cells exert their major function during Immunoglobulin E (IgE)-

mediated responses e. g. against helminths and are involved in inflammatory responses to 

allergens along with basophils and eosinophils (Voehringer 2013). 



INTRODUCTION 

2 

Moreover, there are several types of phagocytic cells: monocytes, macrophages and their 

respective tissue-specific counterparts, neutrophils, and dendritic cells (DCs). 

Monocytes and their function will be described in detail in chapter 1.1.2. 

Macrophages are tissue resident phagocytes equipped with many different pattern recognition 

receptors. Harnessing these receptors, macrophages contribute to tissue homeostasis, 

effectively remove apoptotic cells, and can also recognize and phagocytose pathogens 

(Gordon 2002). Depending on their environment, macrophages can secrete different effector 

molecules including growth factors and cytokines (Arango Duque & Descoteaux 2014). 

Highly specialized macrophage subsets are specifically located in certain tissues, including 

Kupffer cells in the liver, microglia in the brain and osteoclasts in the bone (Davies et al. 

2013). 

Neutrophils are rapidly recruited to sites of inflammation, rendering them crucial contributors 

to early acute stages of infections and injury. Neutrophil functions cover intra- and 

extracellular killing of parasites, phagocytosis as well as secretory activity (Kolaczkowska & 

Kubes 2013). 

Classical DCs are short-lived cells with a high phagocytic and migratory potential. After 

taking up antigens at the site of infection, they travel to lymphoid organs where they activate 

T cells (Geissmann et al. 2010; Merad et al. 2013). That way, DCs provide a link between 

innate and adaptive immunity. 

Besides the long-known cell types mentioned above, there is another group of innate cells 

which has been recently reported as innate lymphoid cells (ILCs). ILCs form a family of 

multifunctional cells including the previously described natural killer cells and are located 

primarily at barrier surfaces (Diefenbach et al. 2014). Interestingly, the three subpopulations 

of ILCs display striking similarities with adaptive T helper cell subsets, in particular with 

respect to their cytokine secretion: ILC1 play a role during immunity against intracellular 

infections by producing interferon γ (IFN-γ); with interleukin 13 (IL-13), ILC2 contribute 

substantially to the defense against extracellular multicellular parasites; and ILC3 lead the 

response to extracellular bacteria and fungi via secretion of IL-22. In addition to their 

contributions to acute immune responses, ILCs help to eventually resolve inflammation 

(Sonnenberg & Artis 2015). 
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1.1.2 Monocytes 

Monocytes originate in the bone marrow and develop from macrophage/DC precursors. They 

are subsequently released into the blood stream in a CCR2-dependent manner (Serbina & 

Pamer 2006). In the blood, monocytes can be divided into two main subsets according to their 

expression of certain surface molecules: CX3CR1
low

 CCR2
+
 Ly6C

high
 and CX3CR1

high
 CCR2

-

 Ly6C
-
 monocytes (Geissmann et al. 2003). 

Monocytes exert a double function: First, they are important immune effector cells. Second, 

they can develop into macrophages and inflammatory DCs, depending on the inflammatory 

conditions (Geissmann et al. 2010). 

As effector cells, monocytes produce cytokines and take up debris similar to other innate 

immune effectors (Geissmann et al. 2010). Under steady-state conditions, Ly6C
-
 monocytes 

patrol blood vessels by crawling along the luminal side of the endothelium, ready to 

extravasate quickly following an infection (Auffray et al. 2007; Auffray et al. 2009). During 

Figure 1.1: Monocyte heterogeneity upon defense against protozoan parasites. 

This overview over the complex system of mononuclear phagocytes illustrates how Ly6C
hi
 and Ly6C

low
 

monocytes exit from the bone marrow into the blood in a CCR2-dependent manner. After migrating to tissue 

sites, Ly6C
hi
 monocytes can convert into monocyte derived DCs, monocyte derived macrophages and other 

subtypes. Importantly, Ly6C
hi
 monocytes can also directly phagocytose microbial pathogens. (Figure from 

Sheel & Engwerda 2012). 
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infection or tissue damage, inflammatory Ly6C
high

 monocytes migrate to the site of 

inflammation and produce high levels of TNF and IL-1 (Karlmark et al. 2012). 

As precursors, Ly6C
high

 monocytes differentiate into Ly6C
int

 DCs and Ly6C
low

 macrophages 

stimulated by the respective microenvironment. This functional monocyte heterogeneity 

provides a plastic immune response during the different stages of an inflammation and has 

been described in several experimental models (Gordon & Taylor 2005; Zigmond et al. 2012; 

Tacke & Zimmermann 2014; Sheel & Engwerda 2012). 

The role of monocytes in certain infections including Toxoplasma (T.) gondii, Plasmodium 

spp., Listeria monocytogenes and Influenza virus has been studied intensively.  

During acute infection with the protozoan parasite T. gondii, Ly6C
hi

 monocytes in the small 

intestine are vital cells to ensure the survival of mice (Dunay et al. 2008; Dunay et al. 2010). 

Even at later stages when the infection has reached the brain, Ly6C
hi

 monocytes are 

indispensable for parasite control (Biswas et al. 2015). 

Plasmodium spp. are close relatives of T. gondii and cause malaria in humans and mice. 

Monocytes and monocyte-derived macrophages contribute to parasite control by 

phagocytosis, antibody-dependent cell inhibition as well as regulation of cytokine regulation 

(reviewed in Chua et al. 2013). Concurrently, they are involved in immunopathology 

including occlusion of small blood vessels in the brain during cerebral malaria (reviewed in 

Chua et al. 2013). 

Ly6C
hi

 monocytes are also required for resistance against bacterial infections such as Listeria 

monocytogenes (Serbina et al. 2003). In contrast, monocyte derived cells aggravate the 

disease by causing severe immunopathology in the central nervous system (CNS) during West 

Nile Virus encephalitis (Getts et al. 2008). 

In addition to their substantial role during infectious diseases, monocytes and their progeny 

are involved in other inflammatory processes such as liver fibrosis, muscle and spinal cord 

injury. 

Chronic inflammation of the liver caused by alcoholism or infections leads to liver fibrosis. 

This disease stage is characterized by abundant collagen deposition which inhibits normal 

liver function. Ablation of CCR2
+
 monocytes reduces fibrosis (Karlmark et al. 2009) and 

increased recruitment enhances it (Karlmark et al. 2010), both pointing out the disease 

promoting capacity of monocytes. Adding to the diverse functions of monocytes, they also 

contribute to the resolution of collagen deposition under the same conditions of liver fibrosis 
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by differentiating into macrophages and producing matrix metalloproteinases (MMPs) (Tacke 

& Zimmermann 2014). 

After muscle injury, monocytes give rise to macrophages supporting muscle regeneration 

(Arnold et al. 2007). Similarly, infiltrating monocyte-derived macrophages promote tissue 

repair following spinal cord injury (Shechter et al. 2009). 

In conclusion, monocytes can promote as well as resolve inflammation, depending on the 

context. Therefore the manipulation of monocytes may provide a powerful tool to develop 

new therapeutic strategies (Shechter & Schwartz 2013). 

1.1.3 Phagocytosis 

As mentioned above, the innate immune system includes different types of phagocytic cells. 

The term ‘phagocytosis’ is derived from the Ancient Greek words φαγεῖν (phagein; to 

devour), κύτος (kytos; cell), and –osis (process) and describes the active uptake of a particle 

from the environment by a cell. The uptake of any particle is initiated by binding to cell 

surface receptors. This specific binding sets phagocytosis apart from macropinocytosis, 

during which extracellular material is taken up randomly. Recognition of a target particle sets 

off multiple signaling cascades concomitantly which ultimately lead to the formation of a 

vesicle containing the particle, a phagosome. While the phagosome undergoes several 

maturation steps, its contents are eventually degraded (Flannagan et al. 2012; Underhill & 

Goodridge 2012). 

The unlimited range of particles which can be taken up by phagocytes includes small 

structures such as proteins as well as large ones like pathogens and apoptotic cells. 

Correspondingly, there are numerous receptors recognizing potential target particles, some of 

which are sufficient to induce phagocytosis while others require the collaboration with other 

molecules. Phagocytosis mediating receptors include pattern recognition receptors like toll 

like receptors (TLRs), antibody binding Fc receptors, Scavenger receptor A (e. g. SCARA1), 

CD36 and triggering receptor expressed on myeloid cells 2 (TREM2) (Flannagan et al. 2012; 

Lue et al. 2014). 

CD36 is a multiligand class B scavenger receptor which binds different targets like collagen, 

lipoproteins, fatty acids, and β-amyloid (Nergiz-Unal et al. 2011). At least some of these 

ligands can promote sterile inflammation by combined signaling of CD36 with a TLR4/TLR6 

heterodimer (Stewart et al. 2010). This mechanism provides a possible explanation why CD36 
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has been linked to diseases like atherosclerosis (Park 2014) and Alzheimer’s disease (El 

Khoury et al. 2003). 

TREM2 from the immunoglobulin superfamily is another receptor implicated in the initiation 

of phagocytosis (Lue et al. 2014). It recently attracted attention because of its possible 

involvement in Alzheimer’s disease (Guerreiro et al. 2013; Jonsson et al. 2013). Consistently, 

β-amyloid has been identified as a TREM2 ligand (Kleinberger et al. 2014). 

Functionally, phagocytosis is an essential part of the developing as well as the mature 

organism. During embryonic development, high numbers of apoptotic cells have to be 

removed. In mature organisms, phagocytosis is equally important to maintain tissue 

homeostasis and to clear the body from any kind of toxic molecules and debris, e. g. protein 

aggregates and pathogens. 

Impaired phagocytosis can lead to autoimmune diseases because apoptotic cells are not 

cleared appropriately (Poon et al. 2014) and may be, as the example of CD36 shows, involved 

in the development of multiple other diseases. 

1.2 Immunity of the central nervous system 

The spinal cord, optic nerve and brain form the CNS. The remaining nerve tracks in the body 

compose the peripheral, enteric and autonomic nervous systems. Similar to the situation in 

other tissues, in the CNS there are resident (glia) and recruited immune cells. Glia cells 

comprise mainly of oligodendrocytes, astrocytes and microglia (Purves et al. 2004). While the 

primary function of oligodendrocytes is to wrap the neuronal axons in myelin sheaths, 

astrocytes and microglia have significant immunological functions. 

1.2.1 Resident cells: astrocytes 

With respect to numbers, astrocytes are the second most prominent glia cell population in the 

CNS after oligodendrocytes. They are involved in the regulation of blood flow and synaptic 

activity as well as potassium, glutamate and water balance (Ransohoff & Brown 2012). 

Moreover, astrocytes express multiple immune receptors including TLRs, scavenger and 

complement receptors and can secrete cytokines, chemokines and neurotrophic factors. 

Mediators secreted by astrocytes upon stimulation include IL-6, IL-1β, TNF, TGF-β, 

chemokine C-C motif ligand 2 (CCL2), nerve growth factor (NGF) and brain derived 

neurotrophic factor (BDNF) (Farina et al. 2007). Equipped with this immunological toolbox, 

astrocytes can interact with innate and adaptive immunity and contribute to disease control as 

well as pathogenesis (Ransohoff & Brown 2012). Moreover, they can communicate with 
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microglia, the third most abundant glia cell and the major tissue resident immune player in the 

CNS. 

1.2.2 Resident cells: microglia 

Microglia belong to the myeloid lineage, yet they invade the neuroectoderm (which will later 

form the CNS) during embryogenesis before definitive hematopoiesis takes place (Ginhoux et 

al. 2010). In adult rodents microglia represent 5 to 12 % of CNS cells, depending on the 

region (Lawson et al. 1990). Microglia are phagocytic cells, removing debris as well as 

pruning synapses (Paolicelli et al. 2011). They express surface markers including CD45 

(remnant of their hematopoietic origin), CD11b (part of the complement receptor 3 and 

expressed on various leukocytes), ionized calcium-binding adaptor molecule 1 (Iba1, 

expressed exclusively on microglia and macrophages), and F4/80 (traditionally a pan-

macrophage marker), pointing towards their considerable immune functions (Saijo & Glass 

2011). Beyond that, their extremely broad range of receptors enables microglia to recognize 

neurotransmitters, neurohormones and -modulators, as well as danger- and pathogen-

associated patterns, cytokines and chemokines (Kettenmann et al. 2011). 

In the healthy brain, microglia display a ramified, highly plastic morphology. Stimulation of 

microglia by infection, tissue damage, and modified neuronal activity induces a motile, 

amoeboid “activated” phenotype (Kettenmann et al. 2011). These “activated microglia” are 

the source of chemokines and cytokines including IL-1β, IL-6, CCL2, and TNF to activate 

other cells in the vicinity and recruit further immune cells, but also immunoregulatory 

cytokines such as IL-10 (Hanisch 2002). Although microglia are more responsive to stimuli 

like bacterial lipopolysaccharide (LPS), the repertoire of cytokines and receptors shared 

between astrocytes and microglia can lead to a positive feedback loop and an abundant release 

of cytokines (Saijo & Glass 2011; Saijo et al. 2009). 

In recent years, the simplified portrayal of microglia as either “good” or “bad”, “resting” or 

“activated”, “friend” or “foe” has been continuously refined (Aguzzi et al. 2013). This will be 

described in more detail using the example of microglia in Alzheimer’s disease, see chapter 

1.4.3.1. 

With respect to terminology it is important to note that previously all phagocytic cells in the 

CNS were described as microglia. Recently, fate mapping studies allowed the discrimination 

between yolk sac-derived resident phagocytes (microglia) and bone marrow-derived recruited 

phagocytes (monocytes, macrophages and such) (Ginhoux et al. 2010). Subsequent 
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differentiation between resident and recruited brain macrophages revealed specific 

contributions of each subset under several pathological conditions (Schwartz & Baruch 2014). 

1.2.3 Recruited immune cells in the CNS 

As outlined above, innate immune cells continuously patrol the organism using lymphatic and 

circulatory vessels and thus, can rapidly detect and react to different kinds of disturbances. 

Notably, there are particular tissues which are excluded from this surveillance network: the 

immune privileged regions including the eye, the testis, the pregnant uterus, and the brain. All 

are vulnerable structures where damage can have devastating consequences like blindness, 

infertility, abortion, and cognitive impairments. Therefore, the immune privilege increases 

protection from both pathogen intrusion and collateral damage during immune responses 

(Arck et al. 2008). 

Immune privilege is maintained by a complex network of immunoregulatory and 

immunosuppressive processes and utilizes membrane-bound molecules such as Fas/FasL, 

soluble compounds including IL-10 and transforming growth factor β (TGF-β) secretion, and 

spatial separation (reviewed in Niederkorn 2006). 

In the brain, spatial separation is achieved by the combination of different barriers: the 

meninges, the blood-brain-barrier (BBB), and the blood-cerebrospinal-fluid-barrier (BCSFB). 

The meninges comprise of three membranes lining the outer surface of the CNS (Ransohoff & 

Engelhardt 2012). The BBB is established by adjacent endothelial cells which are stimulated 

mainly by signals from astrocytes and form increased numbers of tight junctions to limit 

paracellular transport and the transmigration of immune cells from the blood (Abbott et al. 

2006). In contrast, the BCSFB comprises of a fenestrated endothelium amended by a tight 

junction lined epithelium (Shechter et al. 2013).  

Under certain inflammatory circumstances, the BBB becomes leaky and foci of infiltrating 

immune cells from the blood can be found within the CNS. Amongst these infiltrating cells 

are monocytes, which display a similar functional heterogeneity as found in peripheral tissues. 

Different experimental paradigms have revealed three main subsets, distinguished by their 

surface expression of Ly6C: Ly6C
high

 monocytes invade the CNS, where they can further 

develop into Ly6C
int

 monocytes resembling DCs and Ly6C
low/-

 monocytes with macrophage 

properties (Biswas et al. 2015; Lin et al. 2009; Zigmond et al. 2012; Mayer-Barber et al. 

2011). 
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In recent years, several interesting publications have added new layers to the concept of how 

the CNS is integrated into the overall immune system. A new model was promoted suggesting 

that when leukocytes enter through the BCSFB instead of through the BBB, they are 

modulated towards a regulatory phenotype beneficial for recovery from spinal cord injury 

(Shechter et al. 2013; Shechter et al. 2009). And with their remarkable discovery Louveau et 

al. revised the old dogma that the brain is exempted from lymphatic drainage (Louveau et al. 

2015). Finally, there is compelling evidence that immune cell recruitment and contribution is 

not restricted to inflammation but is instead an essential part of healthy physiology (Kipnis et 

al. 2004; Ziv et al. 2006; Schwartz et al. 2013). 

1.3 Role of monocytes in neurogenesis 

Looking at the CNS from an immunological point of view, glia cells often take the center 

stage. Nevertheless, the functional core of the CNS is formed by neuronal cells which develop 

from the neuroectoderm during embryogenesis (Liu & Niswander 2005). Neurogenesis, the 

process of generating functional neurons, was originally considered to occur only during 

embryogenesis (Ming & Song 2011). However, after the first descriptions of adult 

neurogenesis in the 1960s and 1980s (Altman & Das 1967; Paton & Nottebohm 1984), 

numerous studies revealed adult neurogenesis in almost all mammalian species including 

humans. Today, neurogenesis is acknowledged as a part of adult physiology (Kempermann et 

al. 1997; Eriksson et al. 1998; Kornack & Rakic 1999; Ming & Song 2011). 

1.3.1 Adult Neurogenesis 

Adult neurogenesis has mostly been described within two regions in the adult brain, the 

subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the 

dentate gyrus of the hippocampus. Neuroblasts generated in the SVZ migrate via the rostral 

migratory stream to the olfactory bulb, where they mature to interneurons. From the SGZ, 

neuroblasts travel only a short distance and develop into dentate granule neurons in the 

hippocampus (Ming & Song 2011). 

The hippocampus plays a crucial role in memory formation and spatial orientation (Fanselow 

& Dong 2010). However, the exact functions of adult neurogenesis in the SGZ of the 

hippocampus have not been elucidated yet. On the one hand, changes in (hippocampal) 

neurogenesis have been linked to different neurological diseases. These observations cannot 

give clear answers with respect to functionality, because the influence is most likely 

bidirectional (Ming & Song 2011). On the other hand, current animal research suggests that in 
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rodents only some hippocampus-dependent learning and memory tasks rely on the integration 

of new neurons during adulthood (Deng et al. 2010). 

Before their integration into the existing network, neurons undergo maturation. The different 

maturation stages are characterized by changes in morphology and protein expression, 

allowing their discrimination in immunohistological stainings. Neural precursors at the least 

differentiated stage, radial glia-like cells, express Nestin, which is later downregulated and 

replaced by doublecortin (Dcx) in neuroblasts (Ming & Song 2011). Adult, post-mitotic 

neurons can be identified by NeuN, a nuclear marker present on almost all neuronal cell types 

(Mullen et al. 1992). 

In adult humans, about 1400 new neurons are integrated into both dentate gyri every day 

(Spalding et al. 2013). Importantly, these surviving neurons are only a small proportion of the 

total number of newly generated neurons. Studies in mice have revealed that most of the 

newborn neurons die by apoptosis (Sierra et al. 2010). It is therefore important to discriminate 

between production and survival of newborn neurons. 

1.3.2 Immune system & neurogenesis 

A plethora of different factors have been identified to regulate adult neurogenesis including 

sex, aging, hormones, neurotransmitters, drugs, stress, diet or physical activity (reviewed in 

Ming & Song 2005). Both physiological and pathological stimuli influence adult neurogenesis 

in a complex manner. Multiple studies have shown that physical exercise and hippocampal 

dependent learning increase adult neurogenesis in the SGZ (van Praag et al. 1999; Ming & 

Song 2011; Mustroph et al. 2012). Injuries such as seizures and stroke also enhance adult 

neurogenesis, whereas chronic stress and inflammation both lead to a reduction (Ming & 

Song 2011). 

Accordingly, microglia derived inflammation inhibits neurogenesis after stimulation by 

irradiation (Monje et al. 2003), LPS or tissue damage (Ekdahl et al. 2003). Later it was found 

however, that microglia can also support neurogenesis, particularly after stimulation with IL-4 

or low levels of IFN-γ (Butovsky et al. 2006). Moreover, unchallenged microglia in the SGZ 

indirectly ensure proper neurogenesis by efficiently removing those newborn neurons which 

undergo apoptosis (Sierra et al. 2010). Interestingly, T cells have also been found to support 

neurogenesis (Ziv et al. 2006; Wolf et al. 2009). It is of note that only T cells recognizing the 

CNS located antigen myelin basic protein (MBP) were able to boost neurogenesis, but not 

those recognizing ovalbumin. This was reflected also in spatial memory and learning (Ziv et 
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al. 2006). A subsequent study specified that CD4
+
 but not CD8

+
 T cells are necessary to 

maintain neurogenesis levels (Wolf et al. 2009). 

The mechanisms by which immune cells influence neurogenesis are largely unknown, even 

though reduced BDNF levels were reported along with T cell depletion (Wolf et al. 2009). 

Additionally, the effect of selected immune mediators on neuronal proliferation, survival and 

differentiation is summarized in Table 1.1, proposing possible links between the immune 

system and neurogenesis. 

Table 1.1: Impact of selected immune mediators on neuronal proliferation, survival and differentiation. 

(Table adapted from Kohman & Rhodes 2013) 

 Proliferation Survival Neuronal differentiation 

IL-6 - - - 

IL-1β -  - 

TNF -  - 

TGF-β  + + 

IL-4   + 

IL-10 +   

1.3.3 Gut-Brain-Axis 

The increased recognition of homeostatic immune interactions between periphery and CNS 

(as described in chapters 1.2 and 1.3.2) brought on more questions: Which events in the 

periphery do influence the CNS milieu? How is this information from the periphery 

transmitted to the CNS? Which processes in the CNS are susceptible to immune modulation? 

1.3.3.1 Gut flora 

One of the factors proposed to influence the CNS milieu is the gut flora. It comprises bacteria, 

fungi, and viruses populating the luminal surface of the gut (Guarner & Malagelada 2003; 

Underhill & Iliev 2014; Cadwell 2015). Similarly, all other surfaces including skin, vaginal 

and upper respiratory tract are covered with microbes. The largest microbial community is 

located in the gut where it prevents the growth of invasive pathogens and helps with the 

digestion and uptake of nutrients (Guarner & Malagelada 2003). It has further been revealed 

that the gut flora is required for proper development of the immune system (Hooper et al. 

2012). 

Correspondingly, changes in the commensal gut flora have been associated with the 

susceptibility to diabetes, obesity (Tilg & Kaser 2011), inflammatory bowel disease (Wu et al. 
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2013), cancer, allergy and other diseases (Round & Mazmanian 2009). Alterations of the gut 

flora can also limit as well as exacerbate infections (Haag et al. 2012; Dicksved et al. 2014). 

Further, absence of gut microbiota impairs an effective antiviral response (Ichinohe et al. 

2011; Abt et al. 2012). 

The gut flora is not only highly diverse, but also differs from individual to individual 

(Eckburg et al. 2005). Nevertheless, certain trends can be observed, for example the shift from 

gram-negative Bacteroidetes towards gram-positive Firmicutes in obese mice and humans 

(Turnbaugh et al. 2006; Ley et al. 2006). 

1.3.3.2 Consequences for the CNS 

In addition to its effects on the immune system, the gut microbiota have been found to 

influence CNS-related disorders as well. This is reflected in several interesting findings. First, 

germ-free mice display reduced anxiety (Diaz Heijtz et al. 2011) and do not develop 

spontaneous autoimmune demyelination in the CNS (Berer et al. 2011). Second, depletion of 

the gut flora was proposed to alter microglia in the CNS and this altered phenotype can be 

reverted by short-chain fatty acid (SCFA) treatment (Erny et al. 2015). Third, the 

neurobehavioral changes accompanying obesity could be induced also by transferring an 

Figure 1.2: Communication 

pathways of the gut-brain-axis. 

ACTH, adrenocorticotropic 

hormone; CRF, corticotropin-

releasing factor; SCFAs, short-

chain fatty acids (Figure from 

Cryan & Dinan 2012). 
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obesity-like gut flora to non-obese mice (Bruce-Keller et al. 2015). Similarly, the visceral 

pain (or visceral hypersensitivity in animal models) associated with inflammatory bowel 

disease could be transferred by the gut flora alone (Crouzet et al. 2013). 

In line with these experimental results, human studies reported connections between microbial 

imbalance and psychiatric diseases including depression (Naseribafrouei et al. 2014) and 

autism (Parracho et al. 2005). 

1.3.3.3 Transmission of signals between gut and CNS 

There are multiple communication channels used to transmit information between the gut and 

the CNS, including neural, endocrinal and immune pathways (summarized in Figure 1.2) 

(Cryan & Dinan 2012). Neural communication can occur via the vagus nerve, providing a 

direct nervous connection between the enteric nervous system of the gut and the brain. 

Endocrinal signals include hormones whose release is triggered by the hypothalamus-

pituitary-adrenal axis. Classically, the immune system uses cytokines to exchange 

information, which can also act directly on the CNS (Cryan & Dinan 2012). Immune cells 

also have receptors for neuro-related molecules, e. g. cannabinoids (Croxford & Yamamura 

2005) making it a bidirectional communication. Other neuroactive mediators influenced by 

gut microbes include SCFAs and neurotransmitters, e. g. via tryptophan metabolism 

(reviewed in Cryan & Dinan 2012). Lastly, the gut microbes possibly translocate into the 

blood and form a dormant blood microbiome which could also interfere with immunity 

(Potgieter et al. 2015). 

1.3.4 Mouse models to study the gut-brain-axis 

The impact of the gut flora on aspects of physiology and pathology can be studied in different 

mouse models. Germ-free mice are transferred as embryos into sterile cages and are raised in 

absence of any microbiological flora. In contrast, gnotobiotic mice are raised under controlled 

specific pathogen free (SPF) conditions and the gut flora is later eradicated by admission of 

broad-spectrum antibiotics. The first model suffers from the high maintenance as well as 

developmental defects of the animals including an immature immune system (Mazmanian et 

al. 2005; Abt et al. 2012) and behavioral deficits (Diaz Heijtz et al. 2011; Cryan & Dinan 

2012). The second model permits mice a normal development and thus, facilitates the study of 

immunological questions. 
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1.4 Role of monocytes in Alzheimer’s disease 

Neurogenesis is, as described above, a physiological homeostatic process. In contrast, 

Alzheimer’s disease (AD) is a pathological condition of the CNS followed by 

neurodegeneration. 

1.4.1 Alzheimer’s disease 

With an estimated 24 million cases worldwide, dementia is a global health threat. Because the 

major risk factor for the onset of dementia is old age, patient numbers are predicted to rise, 

particularly in developed countries where demographics shift towards the elderly. With about 

70 %, the leading cause of dementia is AD (Reitz et al. 2011). AD is as neurodegenerative 

disorder and was first described more than 100 years ago by the German neuropathologist 

Alois Alzheimer (Alzheimer et al. 1991). 

The definite diagnosis of AD requires pathological evidence, in most cases post mortem. 

However, possible or probable AD can be diagnosed according to the gradual onset and 

aggravation of neuropsychiatric symptoms which cannot be explained by other causes (Reitz 

et al. 2011). 

The first clinical symptoms of AD include disturbances of short-term and episodic memory 

and loss of the ability to store new information, e. g. noticeable in displacement of every-day 

items. Subsequent decline in cognitive abilities is characterized by impairment of language, 

problem-solving, attention, mood, and long-term memory (Weintraub et al. 2012). Advanced 

and final stages of the disease usually require the patient’s hospitalization due to spatial and 

temporal disorientation, incontinence, and eventually the inability to perform even simple 

tasks without assistance. The cause of death is commonly not the disease itself but infections, 

e. g. pneumonia (Förstl & Kurz 1999). 

Despite extended and ongoing efforts in research, treatment options of AD are still poor. In 

the absence of a cure, treatment is carried out symptomatically and targets psychiatric 

symptoms as well as cognitive impairment. The latter is treated by inhibition of 

acetylcholinesterase and thereby slowing down the degradation of acetylcholine to antagonize 

the loss of cholinergic neurons. Additionally, neuronal loss through overstimulation can be 

fought by inhibiting the glutamatergic system (Lleó et al. 2006). 

Unfortunately, already lost cognitive functions cannot be restored. Moreover, the diagnosis of 

AD and with it the beginning of treatment is preceded by years or decades of “silent” 

pathogenesis (Saido & Iwata 2006). 
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The onset of disease usually takes place after 60 to 65 years of age in more than 95 % of AD 

cases, only in very rare (1-5 %) familial cases due to genetic mutations patients experience an 

early onset in their late 40s or early 50s (Reitz et al. 2011). Even though there is most likely 

some genetic contribution in sporadic cases, too, the biggest risk factor for developing AD is 

old age (Bekris et al. 2010). Additionally, systemic conditions including cerebrovascular 

disease, hypertension, and diabetes have been speculated to increase the risk for developing 

AD (Reitz et al. 2011). 

1.4.2 Pathogenesis of Alzheimer’s disease 

On the molecular level, the pathogenesis of AD is characterized by intracellular aggregation 

of hyperphosphorylated tau as neurofibrillary tangles and extracellular accumulation of β-

amyloid plaques (Braak & Braak 1991). 

Tau is a microtubule associated protein, which is found mostly in neurons. Abundant and 

abnormal phosphorylation leads to a loss of the microtubule stabilizing function and the 

Figure 1.3: Proteolytic cleavage of amyloid precursor protein (APP) by α-, β- and γ-secretases within the 

anti-amyloidogenic (left) and amyloidogenic (right) pathway. 

APP, amyloid precursor protein. CTF, carboxy-terminal fragment. AICD, APP intracellular domain. Aβ, β-amyloid. 

(Figure from Haass et al. 2012). 
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aggregation of tau proteins as helical filaments. Intracellularly, these filaments build up and 

form neurofibrillary tangles (NFT). Even though the amount of hyperphosphorylated tau 

correlates well with the severity of AD, it is not yet clear whether NFT formation contributes 

to disease progression or represents rather a neuroprotective mechanism (Wang et al. 2012). 

The second hallmark of AD is extracellular plaques, which comprise small peptides of about 

4 kDa in size with a varying length of 37 to 43 amino acids, β-amyloid (Aβ). Monomeric Aβ 

is generated from amyloid precursor protein (APP). APP is a transmembrane protein and 

contains cleavage sites for different enzymes including α-, β- and γ-secretase. In the anti-

amyloidogenic pathway (Figure 1.3, left panel), cleavage by α- and γ-secretase leads to the 

production of APPsα (incorporating the amino-terminal part), p3 (incorporating a large 

portion of the transmembrane domain) and AICD (APP intracellular domain, incorporating 

the carboxy-terminal part). The truncated Aβ peptide p3 is pathologically irrelevant. In 

contrast, the first cleavage of the amyloidogenic pathway (Figure 1.3, right panel) is executed 

by β-secretase and releases APPsβ (incorporating the amino-terminal part). The remaining 

βAPP carboxy-terminal fragment (CTF) is subsequently processed by γ-secretase, resulting in 

AICD and Aβ (Haass et al. 2012). 

Due to the presence of multiple cleavage sites for γ-secretase activity and a certain 

imprecision of the execution, there are several different species of Aβ. These differences are 

biologically relevant, because longer forms like Aβ42 are particularly prone to form highly 

toxic oligomers. Oligomers then assemble as (proto-)fibrils and later aggregate to amyloid 

plaques (Masters & Selkoe 2012) (Figure 1.4). 

Interestingly, certain mutations causing familial AD were found to enhance the 

amyloidogenic pathway and to alter APP in a way favoring the production of longer Aβ 

species. Likewise, people born with an additional copy of APP due to trisomy 21 show AD 

like symptoms early in life. This genetic evidence is the strongest support for the amyloid 

Figure 1.4: Aggregation of Aβ from 

monomers to plaques. 

(Figure adapted from Heppner et al. 

2015). 
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cascade hypothesis presenting Aβ as the causative agent of AD (Hardy & Higgins 1992; 

Hardy & Selkoe 2002). 

1.4.2.1 Clearance of Aβ 

In general, abnormal accumulation of a substance is due to an imbalance of production and 

clearance. Interestingly, the level of APP in the cerebrospinal fluid of AD patients was 

reduced compared to non-demented controls (Van Nostrand et al. 1992; Mawuenyega et al. 

2010), suggesting that contrary to the animal models used for research, AD patients do not 

suffer from an overproduction of APP. Even though familial AD presents with more Aβ due 

to an enhanced amyloidogenic processing of APP, this is not the case in sporadic AD and 

thus, brings into focus the mechanisms by which Aβ is removed. 

In the CNS, a multi-layered cleaning system comprising general and specific mechanisms is 

responsible for the clearance of Aβ. General, unspecific elimination of waste including Aβ 

occurs via the glymphatic system, a general fluid stream guiding substances from the CNS 

parenchyma towards lymphatic vessels from where they are removed (Nedergaard 2013; 

Louveau et al. 2015). Specific elimination at the level of the BBB may be supported by ATP-

binding cassette (ABC) transporters, which can dispose Aβ into the periphery (Krohn et al. 

2011; Pahnke et al. 2014). 

In addition to its transport out of the CNS, the in situ proteolytic degradation is another way to 

specifically remove Aβ. There are multiple proteases breaking down Aβ, including the 

metalloproteases neprilysin (NEP), insulin degrading enzyme (IDE), and matrix-

metalloprotease 9 (MMP9) (Saido & Leissring 2012). NEP is one of the major regulators of 

Aβ and is almost exclusively expressed in neurons (Fukami et al. 2002). IDE is also of great 

importance for degradation of Aβ, and is expressed in a wide range of tissues (Yfanti et al. 

2008). MMP9 is of particular interest, because it is one of the few enzymes that can degrade 

monomeric as well as oligomeric/fibrillar Aβ (Yan et al. 2006). Despite Aβ being a substrate 

for many different peptidases and proteases, the lack of only one can have a significant impact 

on β-amyloidosis (Iwata et al. 2001; Yin et al. 2006). Accordingly, increased expression of 

IDE or NEP led to reduced levels of Aβ (Leissring et al. 2003). 

Notably, most of the proteases can be found in the extracellular space, as well as within the 

cells, for example in endosomes (Saido & Leissring 2012). This is important, because in 

immune cells phagocytosing Aβ, the subsequent intracellular degradation is equally 

important. 
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1.4.3 Immune system & Alzheimer’s disease 

The role of immune cells, in particular innate immunity in the pathogenesis of AD is far from 

being fully understood, despite a high number of published studies. Even though immune 

cells may influence the course of disease on many layers, two prominent fields of action stand 

out: First, the secretion of mediators including cytokines and chemokines, and second, the 

clearance of Aβ. Together, local glia cells and infiltrating immune cells modulate disease 

progression by engaging in these tasks – or failing to do so. 

1.4.3.1 Microglia 

Driving force of the inflammation found in AD are the intrinsic immune cells of the CNS. 

Indeed, microglia are in intimate proximity to Aβ plaques (Itagaki et al. 1989) and express 

receptors for Aβ (including CD36 and SCARA-1), inducing activation and stimulating Aβ 

uptake (Yu & Ye 2015). It is of note that Aβ is continuously present in AD and thus, results in 

chronic activation and inflammation, which other than in acute injury like stroke cannot be 

resolved (Wang et al. 2014; Schwartz & Baruch 2014). 

Activation of microglia is characterized by morphological changes and secretion of cytokines 

including IL-6, TNF, and IL-1β (Prokop et al. 2013). There is evidence that the prolonged 

exposure to pro-inflammatory mediators can cause neuronal damage (Holmes et al. 2003; 

Holmes 2013). Subsequently, multiple studies have shown that long-term treatment with 

nonsteroidal anti-inflammatory drugs (NSAIDs) is inversely correlated with the risk for 

dementia in patients (reviewed in Heneka et al. 2015) and Aβ deposits in mouse models (Lim 

et al. 2000; Yan et al. 2003). However, the modulation of inflammation is not that simple. 

Many studies have shown that it strongly depends on which molecule is targeted when and 

results are not always conclusive (reviewed in Heppner et al. 2015). 

In addition to their role in (detrimental) inflammation, microglia also engage in beneficial 

processes in the course of the disease. As learned from acute axonal injury, microglia can 

protect neurons (Streit 2005), even though it is unclear whether they can utilize their full 

potential in AD. Microglia also possess the general tools for Aβ clearance, but they don’t 

seem to make a long-lasting contribution (Grathwohl et al. 2009). Moreover, microglia have 

been found to be functionally impaired in mouse models of AD compared to age-matched 

non-transgenic controls (Hickman et al. 2008; Krabbe et al. 2013). Accordingly, Schwartz and 

Baruch suggest that after microglia fail to fully restore tissue homeostasis (i. e. remove Aβ), 

their role as cytokine-producing cells overrides the benefits and leads to long lasting, 
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unresolved inflammation damaging the surrounding neuronal tissue (Schwartz & Baruch 

2014). 

Stimulation of microglia with harsh methods such as bacterial LPS could overcome the 

impairment and thus, was found to reduce β-amyloidosis when examined early after treatment 

(around one week in different studies). In the long run, however, the amount of plaques 

increased (reviewed in Prokop et al. 2013). 

1.4.3.2 Recruited monocytes 

One idea of dealing with the exhaustion of microglia is to replace or supplement microglia 

with fresh mononuclear cells from the periphery. While under healthy, physiological 

circumstances, they do not contribute significantly to the pool of microglia (Ajami et al. 2007; 

Ginhoux et al. 2010), monocytes/macrophages may represent potential effector cells to be 

recruited to the CNS. Their potential is underlined by the following four findings: 

First, their functional plasticity allows them to react differently to a wide range of stimuli 

(Gordon & Taylor 2005; Zigmond et al. 2012; Tacke & Zimmermann 2014). 

Second, similar to the CNS located microglia, monocytes can engage in phagocytosis and 

cytokine secretion (Biswas et al. 2015). 

Third, perivascular macrophages are monocyte progeny located in the perivascular space 

around the CNS vasculature. These macrophages are continuously replaced from the bone 

marrow and contribute to removal of amyloid deposited around blood vessels (Hawkes & 

McLaurin 2009). 

Fourth, in AD patients with comorbid stroke, macrophage recruitment to the CNS was 

observed and further, Aβ fibrils were detected within lysosomes of the macrophages, pointing 

out their capacity to take up Aβ (Wisniewski et al. 1991; Akiyama et al. 1996). 

Indeed, several studies have directly addressed the role of monocytes in mouse models of AD. 

It has been shown that the absence of monocytes in CCR2
-/-

 mice (where monocytes fail to 

exit from the bone marrow) worsens the early accumulation of Aβ and increases mortality (El 

Khoury et al. 2007). Accordingly, the enrichment of monocytes by peripheral injection of 

macrophage colony-stimulating factor (M-CSF) (Boissonneault et al. 2009), glatiramer 

acetate treatment or transplantation of CD115+ monocytes (Koronyo et al. 2015) reduced β-

amyloidosis. 

In contrast, in a comparative study of microglia, perivascular macrophages and parenchymal 

monocytes conducted by Mildner and colleagues, the beneficial effects were attributed to 
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perivascular and not to parenchymal macrophages/monocytes (Mildner et al. 2011). 

Interestingly, the authors also pointed out that CCR2 was necessary for Aβ clearance by 

perivascular macrophages, but not for their migration to the perivascular space (Mildner et al. 

2011).  

1.4.3.3 Age & infection 

Increased presence of immune cells including monocytes can be caused by infection. 

Interestingly, old age (the most important risk factor do develop AD) also comes with an 

increased susceptibility to infectious diseases. The prevalence of bacterial infections including 

pneumonia and urinary tract infections is increased by 3- to 20-fold amongst elderly 

individuals as compared to younger ones (Gavazzi & Krause 2002).  

Systemic inflammation can influence the milieu in the CNS via different routes, e. g. vagal-

nerve signaling and cytokine or cell signaling at the endothelium or choroid plexus (Perry et 

al. 2007). Systemic infection was further found to have a negative impact on cognitive 

functions in AD patients (Holmes et al. 2003). 

During life, people go through acute infections as well as acquire chronic infections. In line 

with this correlation, the seroprevalence of T. gondii infection increases with age (Jones et al. 

2001). Thus, the interesting question arises, how T. gondii influences the pathogenesis of AD. 

1.4.3.4 Toxoplasma gondii 

T. gondii is an obligate intracellular protozoan parasite which is able to infect all vertebrates. 

After oral ingestion of oocysts via contaminated food or water or tissue cysts via 

contaminated meat, the parasite causes a local acute infection of the small intestine (Dunay et 

al. 2008; Dunay et al. 2010). Only in the digestive tract of its definitive hosts from the feline 

family, T. gondii completes its life cycle and undergoes sexual replication to be shed as 

oocysts in the feces. In all other intermediate hosts, T. gondii spreads throughout the body via 

infected migratory cells including dendritic cells (John et al. 2011) and monocytes (Courret et 

al. 2006) and thus, establishes a systemic chronic infection. Long-term survival of the parasite 

is possible due to formation of cysts in non-replicating cells like muscle and neuronal cells 

(Munoz et al. 2011). 

As a wide-spread parasite with a strong tropism to the CNS, T. gondii has been suspected to 

contribute to the development of AD. However, results are not conclusive: A small study 

amongst AD patients confirmed T. gondii seropositivity as a possible risk factor for AD 

(Kusbeci et al. 2011), whereas Jung and colleagues suggested a beneficial effect of chronic 
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T. gondii infection in rodents (Jung et al. 2012). Moreover, a recent study did not find any 

differences with respect to seropositivity and –intensity between non-demented controls and 

AD patients (Perry et al. 2015).  

1.4.4 Mouse models for AD 

To better study the disease mechanism and possible treatment options, many mouse models 

have been developed mostly based on those gene mutations causing familial AD (Chin 2011). 

The models differ essentially with respect to the background mouse strain, the aspect of 

pathophysiology they mimic (amyloid plaques, neurofibrillary tangles, neurodegeneration, 

cognitive deficits), and the time the mice take to develop respective symptoms (Chin 2011). 

5xFAD mice with C57BL/6SJL background, which have been used for the present study, 

overexpress human APP (hAPP) under the neuronal murine Thy1 promotor. Five genetic 

mutations in the hAPP and the PSEN1 gene lead to a rapid and almost exclusive accumulation 

of Aβ42, visible plaque formation as early as 2 months after birth, neuronal loss at the age of 9 

months and measurable cognitive impairments starting at 4 to 6 months (Chin 2011; Fröhlich 

et al. 2013). 
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1.5 Aims of this thesis 

Part 1: Effect of monocytes on neurogenesis 

A growing number of studies indicate that the gut microbiome is able to influence immune 

homeostasis. Moreover, the immune system has been found to affect neurogenesis. 

Associating these findings with recent studies linking gut flora alterations to neuropsychiatric 

diseases, we aimed to investigate the following questions: 

I. How does manipulation of the gut flora affect neurogenesis levels in mice? 

In addition, if any change occurs, the subsequent aim was: 

II. How does the immune system signal from the gut to the CNS? 

 

Part 2: Role of monocytes in AD 

Given the robust recruitment of monocytes to the CNS upon chronic T. gondii infection in 

mice, we investigated the two following questions: 

III. How is T. gondii infection involved in the etiology of AD in mice? 

IV. How does the recruitment of Ly6C
hi

 monocytes upon chronic infection influence 

β-amyloidosis? 

  



 

23 

2 Materials and Methods 

2.1 Animal models 

The animals were handled according to governmental (LaGeSo) and internal (University of 

Magdeburg/MDC/Charité) rules and regulations. All mice were kept under a 12 hour 

light/dark cycle with 2-6 mice per cage and had access to food and water ad libitum. 

2.1.1 Wildtype mice (part 1) 

Female C57BL/6 wildtype mice for each individual experimental were randomly assigned to 

the different treatment groups and experiments were repeated independently two to three 

times. We need to emphasize, that not all treatment groups were included in each of the 

independent experiments. However, necessary control groups were always included. 

2.1.2 CCR2
-/-

 

CCR2
-/-

 mice and their heterozygote and wildtype littermates were housed and treated under 

SPF conditions in the animal facilities of the Cleveland Clinic, Cleveland Ohio, USA 

according to the governmental and federal law and recommendation. 

2.1.3 5xFAD 

Experiments were conducted with 8 weeks old C57BL/6J mice and female and male 5xFAD 

mice (5xFAD/Tg6799 strain (B6SJL-Tg(APPSwFlLon, PSEN1*M146L*L286V) 

6799Vas/Mmjax backcrossed for >10 generations to C57BL/6J, JAX stock#006554) (Oakley 

et al. 2006; Teipel et al. 2011). In this model, Aβ plaques in the brain are detectable from the 

age of 50 days and their number increases by age (Fröhlich et al. 2013). At least five animals 

per group in up to two independent experiments were used. 

2.1.4 T. gondii infection 

T. gondii cysts of the ME49 type II strain were used for this study. Parasites were harvested 

from the brains of female NMRI mice strain infected intraperitoneally (i. p.) with 10 T. gondii 

cysts 5 to 10 months earlier. Brains obtained from infected mice were mechanically 

homogenized in 1 mL sterile phosphate-buffered saline (PBS) and the cysts counted using a 

light microscope. If not stated otherwise, two cysts were administered i. p. into 8-week-old 

mice in a total volume of 200 µL. This time point was chosen because at the age of 8 weeks, 
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animals are fertile and are considered adults in this respect. At the chronic stage of infection 

(8 weeks post infection and 4 weeks post infection for depletion and phagocytosis assays, see 

below), mice were sampled. 

2.2 Experimental design & procedures 

2.2.1 Antibiotic and probiotic treatment 

Since commensals are required for normal development especially of the immune and 

nervous system, we used a model of antibiotic induced dysbiosis according to the protocol 

published previously (Heimesaat et al. 2006). The antibiotic compounds were applied via the 

drinking water for 7 weeks and consisted of ampicillin plus sulbactam (1.5 g/L; Pfizer), 

vancomycin (500 mg/L; Cell Pharm), 0.5 mg/L ciprofloxacin (200 mg/L; Bayer Vital), 

imipenem plus cilastatin (250 mg/L; MSD), and metronidazol (1 g/L; Fresenius). 72 h before 

gut flora reconstitution, the antibiotic treatment was discontinued and replaced by sterile tap 

water. Then antibiotic-treated mice were per orally challenged with a 300µL of fecal 

transplant by gavage on two consecutive days. The fecal transplant constituted of a mixture 

from 1 mg feces of 3 different naïve SPF mice dissolved in 15ml PBS. In parallel to the fecal 

transplants, the Abx plus probiotics group received VSL#3
®

 (Sigma-Tau Pharmaceuticals, 

Inc. Gaithersburg, MD) probiotics orally by gavage on two consecutive days. VLS#3 is a 

commercially available probiotic mixture consisting of 8 bacterial strains: Streptococcus 

thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, 

Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus 

delbrueckii subsp. Bulgaricus. We dissolved a total of 4.5x10
9
 probiotics into 10 mL PBS. By 

gavaging 300 µl, each mouse received approximately 1x10
7
 probiotic bacteria. 

2.2.2 Voluntary exercise 

Mice with access to a running wheel were housed in pairs to avoid single housing, which can 

result in social deprivation that has an impact on neurogenesis per se. We glued a small 

magnet at the bottom rim of the wheels and monitored the rotations using a cycling computer 

during the active phase from 6pm – 8am. Knowing the diameter of the wheel (17cm) we were 

able to calculate the distance the two mice ran per active phase. We monitored the running 

groups over 10 days and calculated an average distance for each group. 
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2.2.3 Adoptive transfer 

Ly6C
hi

 monocytes were isolated from the bone marrow of C57BL/6 mice using FACS sorting 

for adoptive transfer. 10
6
 Ly6C

hi
 monocytes were injected into the tail vein of adult female 

C57BL/6 antibiotic-treated mice. The procedure was repeated 48 h later followed by BrdU 

injections. 

2.2.4 Monocyte depletion in non-infected wildtype mice 

Depletion of monocytes with 75 µg/injection anti-CCR2 monoclonal antibody (MC-21, 

kindly provided by M. Mack, University of Regensburg) and neutrophil granulocytes with 

440 µg/injection anti-Ly6G monoclonal antibody (1A8, BioXCell) was started on d0 by i. p. 

injection of the respective antibody in 300µL PBS. BrdU was injected on d1 - d3. Antibody 

injections were continued every third day until d20 and animals were sacrificed on d21. 

Control animals received 75 µg polyclonal rat IgG (BioXCell). 

2.2.5 Monocyte ablation in T. gondii infected 5xFAD mice 

To specifically ablate CCR2
+
Ly6C

hi
 monocytes, 66 µg of anti-CCR2 antibody (clone MC-21, 

kindly provided by M. Mack, University of Regensburg) were administered i. p. on d15, d18, 

d21, d24 and d27 post infection. Control mice received PBS. On d22 (12-15h post antibody 

injection), blood was collected retro-orbitally to confirm depletion. Mice were sacrificed and 

samples were collected on d28. 

2.3 Organ collection 

For organ sampling, mice were deeply anesthetized and if necessary blood was drawn from 

the inferior vena cava using a 26 G needle and syringe. Subsequently, mice were perfused 

intracardially with 60 mL sterile ice-cold PBS. The required organs were removed and 

prepared accordingly for further analysis. 

2.4 Nucleic acid isolation 

After removal, tissue samples from brains were immediately transferred to RNA later 

(QIAgen, Germany). They were kept at 4 °C for at least 24 h and then stored at -20 °C until 

RNA isolation. For total RNA isolation, the tissue was removed from RNA later and 

homogenized with 1mL of TriFast (peqGOLD, Erlangen, Germany) in BashingBeads tubes 

(Zymo Research, Freiburg, Germany). PeqGOLD HP Total RNA Kit was used for 

purification and manufacturer’s instructions were followed. On-membrane DNase I digestion 
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(peqGOLD, Erlangen, Germany) was performed and RNA purity and concentration was 

determined by absorbance at 230, 260 and 280 nm in a NanoDrop (Fisher Scientific, 

Germany). 

2.5 Real Time Polymerase Chain Reaction (RT-PCR) 

2.5.1 RT-PCR from whole-brain homogenates 

Relative gene expression was determined similar to previous descriptions (Möhle et al. 2014; 

Bereswill et al. 2014) using TaqMan
®
 RNA-to-CT

TM
 1-Step Kit (life technologies, Germany). 

Reactions were developed in a LightCycler
®
 480 Instrument II (Roche, Germany). Reverse 

transcription was performed for 15min at 48°C followed by 10min at 95°C. Subsequently, 45 

amplification cycles were run, comprising of denaturation at 95°C for 15sec and 

annealing/elongation at 60°C for 1min. TaqMan
®
 Gene Expression Assays (life technologies, 

Germany) were used for mRNA amplification of APP (Hs00169098_m1), BDNF 

(Mm04230607_s1), HPRT (Mm01545399_m1), IDE (Mm00473077_m1), IFN-γ (IFNG, 

Mm00801778_m1), IL-1β (IL1B, Mm00434228_m1), IL-6 (IL6, Mm00446190_m1), IL-10 

(IL10, Mm00439616_m1), MMP9 (Mm00442991_m1), NEP (MME, Mm00485028_m1), 

NGF (Mm00443039_m1), TGF-β (TGFB1, Mm01178820_m1) and TNF 

(Mm00443258_m1). HPRT mRNA expression was chosen as reference for normalization and 

target/reference ratios were calculated with the LightCycler® 480 Software release 1.5.0 

(Roche, Germany). Resulting data were further normalized to values of appropriate control 

groups. 

2.5.2 RT-PCR from sorted cell populations 

Isolated brain single cell suspensions were surface stained as described below and sorted on a 

BD FACSAria
TM

 III. After sorting, cells were pelleted, any remaining liquid was removed 

and cells were frozen at -80°C. Total RNA was isolated using the RNeasy
®

 Mini Kit 

(QIAgen, Germany). cDNA was synthetized with the iScript™ cDNA Synthesis Kit (BIO-

RAD, Germany). Relative gene expression was measured using the TaqMan
®
 Universal PCR 

Master Mix (Applied Biosystems, Germany). TaqMan
®
 Gene Expression Assays (life 

technologies, Germany) and data analysis was the same as for RT-PCR from whole-brain 

homogenates. 
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2.6 Protein extraction 

For protein extraction, freshly harvested brain tissue was snap-frozen in liquid nitrogen and 

stored at -80 °C until further purification. 

2.6.1 Total β-amyloid 

For isolation of total β-amyloid42 (Aβ42), one hemisphere was homogenized in 1.5 mL 5 M 

guanidine hydrochloride (GuHCl) buffer (5M GuHCl in 50mM Tris/HCl, pH 8.0) using an 

Ultra-Turrax
®
 T8 (IKA, Germany). Afterwards, homogenates were shaken at 150 U/min for 

4 h at room temperature (RT) and then stored at -20 °C for analysis. Prior to ELISA analysis, 

samples were diluted in PBS (without Ca
2+

 and Mg
2+

) containing 5 % bovine serum albumin, 

0.03 % Tween-20 and protease inhibitor (Roche, Germany) and centrifuged at 16000 rpm for 

20 min. The supernatant was further used as described in chapter 2.7. 

2.6.2 Carbonate buffer and guanidine soluble Aβ 

To discriminate between small (carbonate buffer soluble) and large (guanidine soluble) Aβ42 

aggregates, 20mg brain homogenate were homogenized in 400 µl carbonate buffer (100 mM 

Na2CO3 in 50 mM NaCl, pH 11.5) including protease inhibitor (Roche, Germany) and 

centrifuged at 14000 rpm for 20 min. The supernatant was adjusted with 8.2 M GuHCl in 

82 mM Tris/HCl (0.6ml GuHCl/1ml carbonate buffer), again centrifuged at 14000 rpm for 

20 min and stored at -20 °C until further analysis. The pellet from the first centrifugation step 

was dissolved in 160 µL 5 M GuHCl in 50 mM Tris/HCl, shaken at 1500 rpm for 3 h at RT 

and also centrifuged at 14000 rpm for 20 min. The supernatant was stored at -20 °C until 

further analysis as described in chapter 2.7. 

2.7 ELISA 

Aβ42 was quantified in whole brain hemispheres by ELISA against human Aβ42 (Thermo 

Fisher Scientific, Germany). Prior to ELISA analysis, each extract (total, soluble and 

insoluble) was diluted with BSAT-PBS (5% bovine serum albumin in PBS with 0.03% 

Tween-20 and protease inhibitor (Roche, Germany)) according to the expected Aβ42 content. 

ELISA was then performed according to the manufacturer’s instructions. 
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2.8 Immunohistology 

2.8.1 Analysis of BrdU-labeling and co-labeling 

2.8.1.1 BrdU treatment 

For the analysis of cell proliferation and survival, the animals received i. p. injections of 50 µg 

BrdU (Sigma-Aldrich)/g body weight at a concentration of 10 mg/mL BrdU in sterile 0.9 % 

NaCl solution for three consecutive days and were examined four weeks later (if not stated 

otherwise). Please note that the BrdU injections for our experiments were performed in 

different labs (University of Magdeburg, Charité Berlin or Cleveland Clinic, Ohio). Despite 

keeping protocols and substances similar across labs, individual injection techniques and 

volumes account for differences in baseline BrdU cell numbers. Thus, we always included a 

matching control group in each individual experiment and one should not compare baseline 

BrdU numbers across experiments. 

2.8.1.2 Immunolabeling 

Brains were cryopreserved in 30 % sucrose overnight, rapidly frozen in dry ice and mounted 

onto a sliding microtome. 40 µm thick sections were collected into cryoprotecting buffer 

(25 % glycerol, 25 % ethylenglycol in 0.05 M PBS). Before immunolabeling, sections were 

washed with PBS and blocked by incubation on a shaker in 0.6 % H2O2 (in PBS) for 30 min 

at RT. For BrdU labeling, sections were treated with 2 N HCl for 30 min at 37 °C and with 

0.1 M borate buffer for 10 min at RT. The sections were again washed and incubated in 

blocking buffer (3 % donkey serum, 0.1 % TritonX100) for 1 h for permeabilization. The 

sections were then incubated overnight at 4 °C with the primary antibody (rat BrdU, 1:500, 

Biozol, Germany; goat Dcx, 1:200, Santa Cruz Biotechnology; mouse NeuN, 1:100, 

Millipore). Sections were washed and blocked for 30 min. For 3,3'-Diaminobenzidine (DAB)-

staining, the slices were incubated for 2 h in the secondary antibody (anti rat Biotin-SP-

conjugated, Dianova, at RT). After washing, the third antibody was incubated for 1 h (HRP-

conjugated streptavidin, Dianova, at RT), following detection via DAB. The reaction was 

stopped with water. For immunofluorescence labeling, the slices were labeled by incubation 

with a fluorophore-labeled antibody (anti goat Alexa488, anti-mouse Cy5, and anti-rat Cy3, 

all 1:250, Dianova). 
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2.8.1.3 Confocal microscopy 

For confocal microscopy we used a Leica SPE microscope (Leica microsystems, Germany) 

with appropriate gain and black level settings (determined on control tissues stained with 

secondary antibodies alone). Images were recorded as z-stacks and analyzed using Volocity 

LE software (PerkinElmer). 

2.8.1.4 Cell counting and unbiased stereology 

Cell counts were determined in an unbiased approach using the optical fractionator procedure 

of the StereoInvestigator software (MBF Bioscience, USA) for every 6th brain section 

containing the hippocampus. The obtained cell number was multiplied by the number of slices 

analyzed, to calculate the number of BrdU
+
 cells in the whole hippocampus. Since both 

hippocampi were counted, we used the total number of BrdU
+
 cells per brain as a unit. 

2.8.2 Immunohistological analysis 

Brain hemispheres were removed and immersed in 4% paraformaldehyde (PFA) for several 

days. Paraffin-embedded, 4 µm thick sections were deparaffinized and conventionally stained 

with hematoxylin-eosin (H&E) stain. Immunohistochemical analysis was performed 

according to our previous publications (Fröhlich et al. 2013; Hofrichter et al. 2013; Pahnke et 

al. 2013; Schumacher et al. 2012; Scheffler et al. 2012; Schmidt & Pahnke 2012; Krohn et al. 

2011) using a BOND-MAX (Leica Microsystems GmbH/Menarini, Germany) with antibodies 

against Aβ (clone 4G8, Chemicon, Germany), ionized calcium-binding adapter molecule 1 

(IBA1, Wako 019-19741, Germany) to label microglia, glial fibrillary acid protein (GFAP, 

DAKO Z033401, Germany) to label astrocytes, NeuN (Millipore MAB377, Germany) to 

label neurons, and anti-Toxo (Dianova DLN-16734, Germany) to label T. gondii. Slides were 

developed using the Bond
TM

 Polymer Refine Detection kit (Menarini/Leica, Germany). For 

the evaluation whole tissue sections were digitized at 230 nm resolution using a MiraxMidi 

Slide Scanner (ZeissMicroImaging GmbH, Germany) (Scheffler et al. 2011). 

2.8.3 Immunofluorescence analysis 

For immunofluorescent staining, coronal brain sections (16µm) were prepared with a 

cryomicrotome (Leica, Germany). Immunolabeling with antibodies against Aβ (4G8, 

Chemicon, Germany), Iba1 (polyclonal, Wako) and Ly6C (ER-MP20, Acris Antibodies, 

Germany) were performed overnight at 4°C after 2 min pretreatment with 98% formic acid. 

Secondary antibodies goat anti-rat (Alexa Fluor 488, 1:200, Invitrogen, Germany), goat anti-
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rabbit (Alexa Fluor 488, Invitrogen, Germany) and goat anti-mouse (Alexa Fluor 594, 

Invitrogen, Germany) were used. Free floating sections were mounted with ProLong Gold 

with DAPI (life technologies, Germany). A Zeiss (Carl Zeiss, Germany) microscope equipped 

with an AxioCam HRc 3 digital camera and AxioVision 4 Software were used to analyze 

staining and obtain images. 

Quantification of Iba1 and Ly6C association with plaques was performed using the ImageJ 

plot profile function (http://imagej.nih.gov/ij/). For this purpose, two perpendicular 

fluorescence profiles spanning 400 µm and centered over the plaques were measured in 

immunofluorescence stainings. At least 30 plaques from at least four different tissue sections 

were analyzed. 

2.8.4 Two-Photon image acquisition and analysis 

For in vivo staining of amyloid plaques, mice were i. p. injected with 10mg kg
-1

 methoxy-X04 

(Tocris Bioscience) in 5% DMSO/95% NaCl (0.9%) 12 hours before brain harvesting and 

two-photon image acquisition. 

Brains were placed under microscopy coverslips for ex vivo microscopy using a Zeiss LSM 

710 (Carl Zeiss, Jena, Germany) equipped with a MaiTai DeepSee 2-Photon laser (Spectra-

Physics, Darmstadt, Germany) tuned at 800nm. Fluorescence emission was split using a 

dichroic mirrors and detected using non-descanned detectors. Methoxy-X04 fluorescence was 

read out at 450-490nm. Fluorescence signal acquired above 520nm was considered 

autofluorescence. Confocal stacks spanning at least 50µm were collected with a z-spacing of 

4µm using a W Plan-Apochromat 20x water immersion objective with a numerical aperture of 

1.0. 

Images were processed and superimposed using the Imaris (Version 7.7., Bitplane, Zürich, 

Switzerland) software. Methoxy-X04-positive objects co-localizing with blood vessels 

(identified by different tissue autofluorescence) were manually excluded from the analysis. 

Plaques were automatically detected and quantified in three dimensions using the 

measurement package of the Imaris software. 
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2.9 Primary cell isolation 

2.9.1 Brain 

For mononuclear cell isolation brains were homogenized in a buffer containing 1 M Hepes 

pH 7.3 and 45 % Glucose and then sieved through a 70 µm strainer as published previously 

(Möhle et al. 2014). The cell suspension was washed and re-suspended in 10 mL 75 % Percoll 

(GE Healthcare, Germany) in PBS and over layered with 10 mL 25 % Percoll in PBS and 

5 mL PBS. The gradient was centrifuged for 45 min at 800 g without brake. Cells were 

recovered from the 25 %/75 % interphase, washed and used immediately for further 

experiments. 

2.9.2 Blood, bone marrow 

Blood from the inferior vena cava was diluted in FACS buffer. To obtain the bone marrow, 

femur and tibia were isolated and surrounding tissue was removed. The proximal and distal 

ends were removed and a syringe with a 26 G needle attached was inserted to wash out bone 

marrow cells with FACS buffer. 

The cell suspensions were spun down (400 g, 10 min, 4°C) and after carefully discarding the 

supernatant, lysis of erythrocytes was performed in 1 mL RBC lysis buffer (eBioscience, 

Germany) for 8 min on ice. After washing with PBS, cells were ready for further analysis. 

2.10 Flow cytometry 

2.10.1 Surface staining 

Single cell suspensions were incubated with an anti-FcγIII/II receptor antibody (clone 93) to 

block unspecific binding and Zombie Violet
TM

 (Biolegend, Germany), a fixable viability dye. 

Thereafter, cells were stained with fluorochrome conjugated antibodies against cell surface 

markers: CD45 (1:200, 30-F11, eBioscience, Germany), CD11b (1:333, M1/70, eBioscience, 

Germany), Ly6G (1:100, 1A8, BD Biosciences, Germany), Ly6C (1:333, HK1.4, 

eBioscience, Germany), MHC I (1:200, 28-14-8, eBioscience, Germany), MHC II (1:200, 

M5/114.15.2, eBioscience, Germany), CD11c (1:333, N418, eBioscience, Germany), F4/80 

(1:100, BM8, eBioscience, Germany), CCR2 (1:33, 475301, R&D, USA), TREM2 (1:33, 

237920, R&D, USA), CD36 (1:100, HM36, Biolegend, Germany), in FACS buffer (PBS 

containing 2% FCS and 0.1% NaN3) for 30min on ice and then washed and fixed in 4% 

paraformaldehyde (PFA) for 10min. 
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2.10.2 Conventional flow cytometry 

Cell acquisition was performed on BD FACS Canto
TM

 II flow cytometer. Data were analyzed 

using FlowJo software (TreeStar). 

2.10.3 Imaging flow cytometry 

Data were acquired with FlowSight
TM

 (EMD Millipore, USA) with a 20x objective and 

analyzed using IDEAS software version 6.0. At least 52,000 (control animals) or 500,000 

(T. gondii infected animals) cells were acquired for each sample and gated to select images 

with single cells in good focus (by bright field area/aspect ratio and gradient root mean square 

of the bright-field image, respectively). To analyze internalization, the erode mask was used 

on the bright field picture of Aβ
+
 cells to remove 2 pixels from the edges of the starting mask 

and to define the inner part of the cell. Then, the internalization feature was used to define the 

ratio of intensity of the Aβ signal between the inside of the cells (defined by the erode mask) 

and the intensity of the total cell. While cells with little internalization have negative scores, 

cells with high internalization have positive scores. Here, an internalization>0 was defined as 

intermediate to high internalization. Compensation matrix generated by single-color 

compensation controls was used to correct spectral overlap. Representative pictures from cell 

populations were chosen. 

2.11 Ex vivo phagocytosis assay 

Animals were sacrificed 4 weeks post infection and single cell suspensions were prepared as 

described above. Live cells remained unstained by the Zombie Violet
TM

 (Biolegend, 

Germany) viability dye and were sorted on a BD FACSAria
TM

 III. 150,000 cells were seeded 

into each well of a 96-well round bottom plate and allowed to settle down for 1 hour in an 

incubator (37°C, with 5% CO2 and 70% humidity) before HiLyte Fluor
TM

 488-labeled, HFIP 

monomerized Aβ42 (Eurogentec, Belgium) was added to a final concentration of 500nM. Cells 

were incubated for 6 hours, washed, surface stained and measured by conventional and 

imaging flow cytometry. 

2.12 Statistical analysis 

Statistical analysis was performed with Prism version 6 (GraphPad Software, USA). p values 

of p≤0.05 were considered statistically significant. 
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2.12.1 Statistical analysis of results for part 1 (Neurogenesis) 

Before we started statistical analysis, we tested for normality with a normality probability 

plot. For parametric data we used for all neurogenesis analysis: two-way ANOVA, with 

Bonferroni post hoc and for the FACS analysis either one-way ANOVA followed by a 

Fisher’s LSD test or unpaired two-tailed Student’s t test. When we tested with the F test, 

similar variances were detected in the groups included in the test. Significances are depicted 

in the respective figure legends as mean + standard error of the mean (SEM). We performed 

Dixons Test for single outlier, but did not detected outliers in our data set. When we sacrificed 

the animals, we prepared a list with animal IDs. We prepared the specimens for further 

analysis and coded the samples in order to do a blind analysis afterwards. The investigator 

who analyzed the samples was blind to the animal’s treatment group. 

2.12.2 Statistical analysis of results for part 2 (Alzheimer’s disease) 

Results are presented as mean + SEM. Different tests were used to compare values, namely 

Mann-Whitney U test (plaque numbers and volume), Fisher’s LSD test (results with multiple 

comparisons) and unpaired two-tailed Student’s t test (results with one comparison). p values 

of p≤0.05 were considered statistically significant. 
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3 Results 

3.1 Role of monocytes in neurogenesis 

The work presented in the first part of the results has been performed in collaboration with the 

research group of Dr. Susanne Wolf (MDC Berlin), where neurogenesis levels were 

determined by BrdU immunolabeling and analyses. 

3.1.1 Antibiotic treatment decreases adult hippocampal neurogenesis 

Adult C57BL/6 mice were treated with broad-spectrum antibiotics (Abx) for seven weeks, 

which has been shown previously to eliminate the intestinal microbiota (Heimesaat et al. 

2006). In these antibiotic-treated mice, we labeled proliferating cells by injection of BrdU, a 

thymidine analog that is incorporated into the DNA during cell replication. Analysis of the 

hippocampi was performed four weeks after BrdU injections (Kempermann & Gage 2000), to 

analyze the survival of generated neurons (i. e. net neurogenesis). Proliferated cells were 

further characterized based on their expression of the phenotypical markers Dcx and NeuN. 

Dcx labels the majority of proliferating mitotic neuronal progenitor cells and marks the time 

point of commitment to the neuronal lineage, while NeuN is expressed by mature neurons. In 

this thesis, I will present the basic quantification of BrdU
+
 cells, the full phenotyping will be 

available in the publication. 

In immunofluorescence labeled brain sections including the hippocampus we detected that the 

number of BrdU
+
 cells in the SGZ of the DG was significantly lower in the brains of 

antibiotic-treated (Figure 3.1A and B, light blue bars) compared to naïve SPF mice (Figure 

3.1A and B, light grey bars). These first data suggest that antibiotic treatment has a long 

lasting effect on neurogenesis. 
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Figure 3.1: Reduced neurogenesis in antibiotic-treated mice can be partially restored by running. 

(A) The total number of BrdU
+
 cells was quantified from naïve SPF mice or SPF mice treated with antibiotics (Abx 

treated). One group of mice received a fecal transplant (Abx + SPF transplant), and half the mice in each group 

were given access to a running wheel (darker bars, running +). Two-way ANOVA with Bonferroni post hoc test. 

***p<0.001. 

(B) The total number of BrdU
+
 cells normalized after probiotic treatment. Two-way ANOVA with Bonferroni post 

hoc test. ***p<0.001. 

 

3.1.2 Running rescues neurogenesis levels despite antibiosis 

Many factors have been shown to influence neurogenesis, such as sex, drugs, stress, diet and 

physical activity (reviewed in Ming & Song 2005). Amongst these, we were particularly 

interested in the effect of physical activity, because exercise is easily available for patients, 

e. g. antibiotic-treated individuals. To test if physical exercise affects neurogenesis, especially 

in antibiotic-treated mice, we supplied mice with running wheels for ten days during the 

treatment, injected BrdU for the last three days of exercise and assessed neurogenesis four 

weeks later. Exercise duration was similar across all groups, covering a distance of 

0.28±0.05 km/day. Access to running wheels significantly increased neurogenesis by 44 % in 

naïve SPF mice (Figure 3.1A, dark grey bar). In antibiotic-treated mice, the beneficial effect 
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of exercise was less pronounced and neurogenesis was only increased by 28 % (Figure 3.1A, 

dark blue bar). After reconstitution of the intestinal flora with a fecal transplant, exercise 

increased neurogenesis levels again by 47 % (Figure 3.1A, dark brown bar) similar to its 

effect on naïve SPF mice. 

3.1.3 Probiotics fully restore neurogenesis 

After observing the significant reduction of neurogenesis accompanying gut microbiota 

depletion, we were interested if reconstitution with a complex gut flora rescues neurogenesis. 

To this end, mice received a fecal transplant from naïve SPF mice two days after 

discontinuation of the antibiotic treatment. After allowing the flora to settle for seven days, 

we injected BrdU and analyzed neurogenesis levels four weeks later. Even though the 

intestinal flora was restored in mice by the SPF transplant (data not included in this thesis), 

this recovery had little effect on the hippocampal neurogenesis (Figure 3.1A and B, light 

brown bars). Another group of antibiotic-treated mice received VSL#3 probiotics instead of 

an SPF transplant. In these probiotic-treated mice, the number of proliferated cells was back 

to naïve SPF levels (Figure 3.1B, dark red bar). Control treatment of naïve SPF mice with 

probiotics did not increase neurogenesis (Figure 3.1B, light red bar). These results indicate 

that the impairment of neurogenesis by antibiotic treatment can only be restored by treatment 

with probiotics and not with conventional SPF flora. 

3.1.4 Expression of soluble mediators in the brain remains unaltered upon changes of 

the intestinal flora 

Soluble mediators contribute to brain homeostasis including neurogenesis. Among others, 

TNF (Iosif et al. 2006) and BDNF (Scharfman et al. 2005; Rossi et al. 2006) were reported to 

directly influence neurogenesis. 

TNF mRNA expression as measured by RT-PCR was the same in whole-brain and 

hippocampus extracts and remained unchanged upon treatment with antibiotics (Figure 3.2A; 

brain: naïve SPF 1.0±0.1, Abx treated 0.9±0.05; hippocampus: naïve SPF 1.6±0.05, Abx 

treated 1.5±0.1). While BDNF mRNA expression was significantly higher in the hippocampus 

than in the rest of the brain, antibiotic treatment did not influence its expression in the whole 

brain or in the hippocampus alone (Figure 3.2B; brain: naïve SPF 1.0±0.2, Abx treated 

1.2±0.4; hippocampus: naïve SPF 1.2±0.1, Abx treated 1.4±0.4). 
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Figure 3.2: Expression of TNF and BDNF in whole-brain and hippocampus 

Four weeks after antibiotic treatment, total RNA was isolated from either one whole hemisphere (brain) or from 

the hippocampus only (hc). Relative expression of TNF and BDNF mRNA was measured by RT-PCR. Data are 

normalized on the naïve SPF group (brain) and presented as mean + SEM. Statistical analysis was performed 

using Fisher’s LSD test. ***p<0.001, ****p<0.0001. 

 

Extending the investigation of soluble factors, we measured the expression of TNF, IL-6, 

BDNF and NGF mRNA at two time points after reconstitution of the intestinal flora. Since we 

had not seen differences restricted to the hippocampus in our previous analysis, we conducted 

the experiment with whole-hemisphere extracts. 

We did not detect differences regarding the expression of the immune mediators TNF and IL-

6 both one and four weeks after reconstitution in any of the treatment groups (Figure 3.3A and 

B; TNF one week – SPF naïve 1.0±0.2, Abx treated 0.7±0.05, Abx + SPF transplant 0.8±0.1, 

probiotics 0.8±0.2; TNF four weeks – SPF naïve 1.0±0.1, Abx treated 1.0±0.2, Abx + SPF 

transplant 0.8±0.1, probiotics 0.9±0.1; IL-6 one week – SPF naïve 1.0±0.1, Abx treated 

0.9±0.05, Abx + SPF transplant 0.9±0.03, probiotics 0.9±0.06; IL-6 four weeks – SPF naïve 

1.0±0.1, Abx treated 1.1±0.3, Abx + SPF transplant 0.8±0.1, probiotics 1.1±0.03). Similar 

results were obtained for the expression of BDNF and NGF (Figure 3.3A and B; BDNF one 

week – SPF naïve 1.0±0.04, Abx treated 1.1±0.05, Abx + SPF transplant 1.2±0.09, probiotics 

0.8±0.06; BDNF four weeks – SPF naïve 1.0±0.08, Abx treated 1.0±0.09, Abx + SPF 

transplant 1.1±0.07, probiotics 1.1±0.1; NGF one week – SPF naïve 1.0±0.04, Abx treated 

0.9±0.02, Abx + SPF transplant 0.9±0.04, probiotics 0.9±0.06; NGF four weeks – SPF naïve 

1.0±0.02, Abx treated 1.0±0.03, Abx + SPF transplant 1.0±0.02, probiotics 1.0±0.02). Even 

though BDNF expression was significantly reduced in mice receiving probiotic treatment 

(compared to the Abx treated and Abx + SPF transplant groups) at one week after 

reconstitution, this returned to normal after four weeks of antibiotic-free time. Reduced 

BDNF expression would point towards lower neurogenesis levels, whereas we had observed 

higher levels in mice receiving probiotic treatment. 
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Figure 3.3: Expression of inflammatory and neurotrophic mediators in the brain 

(A) One or (B) four weeks after reconstitution with an SPF transplant or probiotics, total RNA was isolated from 

whole-hemisphere homogenates. Relative expression of TNF, IL-6, BDNF and NGF mRNA was measured by RT-

PCR. Data are normalized on the naïve SPF group and presented as mean + SEM. Statistical analysis was 

performed using Fisher’s LSD test. *p>0.05, **p<0.01. 

 

Taken together, none of the quantified soluble mediators explained the previously described 

changes in neurogenesis, as they all remained largely unaltered upon treatment with anti- or 

probiotics. 

3.1.5 Ly6C
hi

 monocytes provide a link between brain, gut and treatment paradigms 

The neuronal associations between the gut and the brain are well known (Mayer 2011) and 

recent evidence suggests that both structures may be further linked by the immune system. 

Previous studies indicate that immune cells help to maintain neurogenesis levels (Wolf et al. 

2009; Ziv et al. 2006). Interestingly, immune cells can be influenced by antibiotics (Morgun 

et al. 2015) as well as exercise (Shantsila et al. 2012). Therefore, we explored if mononuclear 

innate immune cells in the brain may act as a link between brain, gut and exercise. 

We analyzed the immune cell subpopulations infiltrating the brain by flow cytometry. 

Mononuclear cells isolated from whole-hemisphere homogenates were stained for CD45, 

CD11b, Ly6G and Ly6C. Figure 3.4A illustrates the gating strategy for Ly6C
hi

 monocytes in 

the brain: CD45
int

 CD11b
+
 microglia were discriminated from CD45

hi
 CD11b

+
 infiltrating 
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myeloid cells. Within the myeloid population we further separated Ly6G
+
 neutrophils from 

Ly6C
hi

 monocytes. 

We detected that the percentage of Ly6C
hi

 monocytes had dropped almost by half in 

antibiotic-treated mice compared to naïve SPF mice (Figure 3.4C, light grey and light blue 

bars; naïve SPF: 0.26±0.1%; Abx: 0.16±0.05 %). This decrease was also evident in bone 

marrow and blood, even one week after discontinuation of antibiotic treatment and 

transplantation of SPF flora (Figure 3.5B and E). Four weeks after transplantation of SPF 

flora, the number of Ly6C
hi

 monocytes was back to the naïve SPF level in bone marrow and 

blood (Figure 3.5C and F). 

Reconstitution of the intestinal flora with an SPF transplant did not rescue the Ly6C
hi

 

monocyte population in the brain (Figure 3.4C, light brown bar; 0.14±0.02 %). Reconstitution 

with probiotics on the other hand significantly increased the number of Ly6C
hi

 monocytes in 

the brain (Figure 3.4C, dark red bar; 0.46±0.15 %). Similarly, exercise in the form of access to 

a running wheel increased the number of Ly6C
hi

 monocytes in the brain of antibiotic-treated 

mice (Figure 3.4C, dark blue bar; 0.27±0.06 %). Of note, only exercise and not probiotic 

treatment could raise Ly6C
hi

 monocyte numbers in naïve SPF mice. 

We detected similar trends for the myeloid population, which in addition to Ly6C
hi

 monocytes 

contains also Ly6G
+
 neutrophils as well as the Ly6C

int
 and Ly6C

low
 populations (Figure 

3.4B). The number of intrinsic microglia remained unaltered upon all experimental groups 

(Figure 3.4D). 

Interestingly, the measured alterations in the Ly6C
hi

 monocyte population matched the pattern 

we had previously observed for hippocampal neurogenesis levels. We found reduced Ly6C
hi

 

monocyte numbers as well as decreased neurogenesis levels in antibiotic-treated compared to 

naïve SPF mice. Correspondingly, the neurogenesis rescue by running or probiotic treatment 

(Figure 3.1) was paralleled by an increase in the Ly6C
hi

 monocyte population found in the 

brain. 
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Figure 3.4: The number of Ly6C
hi

 monocytes is reduced in the brain of antibiotic-treated mice and is 

rescued by exercise but not by fecal transplant. 

(A) Cells isolated from brains were stained for CD45, CD11b, Ly6G and Ly6C for flow cytometric analysis. 

Representative pseudocolor plots demonstrate the gating strategy used to identify resident CD11b
+
 CD45

int 

microglia (lower right quadrant) and recruited CD11b
+
 CD45

hi 
myeloid cells (upper right quadrant). The right-hand 

plot displays how we separated Ly6G
+
 neutrophils from Ly6C

hi
 monocytes within the myeloid population. 

(B-D) Bar graphs display the number of (B) total myeloid cells, (C) Ly6C
hi
 monocytes, and (D) microglia in brain 

homogenates as percentage of CD11b
+
 cells. Fisher’s LSD test. *p<0.05, **p<0.01, ***p<0.001. 

(E) To visualize the location of the Ly6C
hi
 monocytes, we utilized a reporter for CCR2 (RFP) and CX3CR1 

(EGFP). (E’) Localization of the choroid plexus within the 3
rd

 ventricle, cell nuclei stained with DAPI (white), 10x 

objective. (E’’) Representative images of CCR2
+
 cells (blue) in the choroid plexus (DAPI white) that are distinct 

from CX3CR1 expressing cells (green), 20x objective. (E’’’) Representative picture of a CCR2
+
 cell (blue) in the 

hippocampus (DAPI white, CX3CR1 green), 20x objective. In the insert within the CCR2 single channel image we 

zoomed on the single CCR2 expressing cell with a 63x objective (merge of DAPI in white, CCR2 in blue and 

CX3CR1 in green). 
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Figure 3.5: Kinetics of the Ly6C
hi

 monocyte populations in bone marrow and blood during gut 

reconstitution with SPF flora 

 (A, D) Cells isolated from peripheral organs were stained against specific surface markers for flow cytometric 

analysis. Representative pseudocolor plots demonstrate the gating strategies used to identify Ly6C
hi 

monocytes 

from (A) bone marrow and (D) blood. In (A) we gated for the CD3
neg

CD11
pos 

population. In (D) we gated for the 

Ly6G
neg

CD11b
pos

 population. The Ly6C
hi
 population is gated in the right hand plots and quantified as a 

percentage of CD11b
+
 cells. 

(B) In the bone marrow, we found a lower proportion of Ly6C
hi
 monocytes in Abx treated animals reconstituted 

with SPF flora compared to SPF naïve one week after discontinuation of Abx treatment. 

(C) Four weeks after discontinuation of the Abx treatment and start of SPF fecal transplant, no differences in the 

proportion of Ly6C
hi
 monocytes in the bone marrow were measured between the groups. 

(E) In the blood, there were fewer Ly6C
hi 

monocytes in Abx treated than in SPF naïve mice one week after 

discontinuation. 

(F) Four weeks after discontinuation of the Abx treatment and start of SPF fecal transplant, the differences were 

no longer present and the same proportion of Ly6C
hi
 monocytes was found in all experimental groups. 

Unpaired two-tailed Student’s t test. *p<0.05, **p<0.01. 

 

Because the total number of Ly6C
hi

 monocytes is very low in the non-inflamed, non-infected 

brain parenchyma, the previous analyses were performed with single cell solutions prepared 

from whole-hemisphere homogenates. In addition to the quantitative approach, we were 

interested in the location of Ly6C
hi

 monocytes in the brain. Therefore, we used CCR2-RFP 

CX3CR1-eGFP reporter mice to visualize Ly6C
hi

 monocytes and resident microglia. CCR2 

has a substantial overlap with the Ly6C
hi

 population and labels infiltrating monocytes, while 

in the brain, CX3CR1 is expressed exclusively by (brain-)resident microglia. We detected the 

majority of CCR2
+
 cells in the choroid plexus (Figure 3.4E’), which has previously been 

described as an entrance gate for immune cells to the brain (Schwartz & Baruch 2014). Figure 

3.4E” shows representative images of CCR2
+
 cells (blue) in the choroid plexus (DAPI-labeled 
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nuclei in white) that are distinct from CX3CR1 expressing cells (green). While CCR2
+
 Ly6C

hi
 

monocytes are abundant in the brain parenchyma of infected mice (Möhle et al. 2014), we 

rarely detected them here in non-infected brains. Figure 3.4”’ shows the hippocampus with a 

representative CCR2
+
 cell (CCR2 blue, DAPI white, CX3CR1 green). 

3.1.6 Lack of monocytes decreases neurogenesis 

To determine whether altered Ly6C
hi

 monocyte numbers were cause, effect or simply 

coincided with the rate of hippocampal neurogenesis, we used three different strategies to 

alter monocyte numbers: genetic depletion, antibody-induced depletion and adoptive transfer. 

 

Figure 3.6: Distribution of the Ly6C
hi

 monocyte population in CCR2
-/- 

mice. 

(A, C) Cells isolated from bone marrow and blood were stained against specific surface markers for flow 

cytometric analysis. Representative pseudocolor plots demonstrate the gating strategies used to identify Ly6C
hi 

monocytes from (A) bone marrow and (C) blood of wildtype (middle plots) and CCR2
-/- 

mice (right plots). First, 

CD11b
+
 Ly6G

-
 cells were gated (left plots), amongst which the Ly6C

hi
 monocytes were then identified (middle and 

right plots). 

(B, D) The number of Ly6Chi monocytes in all three tissues was quantified as percentage of CD11b+ cells and is 

displayed as mean + SEM. n=2, unpaired two-tailed Student’s t test. ns, not significant, **p<0.01. 

(E) Ly6Chi monocytes in the brain were identified as the CD45
hi
 CD11b

+
 Ly6G

-
 population. 
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Genetic depletion was achieved by knocking out CCR2. Lack of this chemokine receptor 

prevents CCR2
+
 Ly6C

hi
 monocytes from exiting the bone marrow and consequently reduces 

their number in the periphery (Serbina & Pamer 2006). We confirmed the general presence of 

Ly6C
hi

 monocytes in the bone marrow and their significantly decreased number in the 

periphery (Figure 3.6A-D). 

We found significantly less Ly6C
hi

 monocytes in the brains of CCR2
-/-

 compared to wildtype 

mice (Figure 3.6E and Figure 3.7B). Likewise, CCR2
-/-

 mice exhibited significantly decreased 

levels of adult hippocampal neurogenesis (Figure 3.7A). A direct effect of CCR2 on 

neurogenesis is unlikely, because neurogenesis remained unaltered in heterozygous CCR2
+/-

 

mice (Figure 3.7A). 

Since it is unclear how the continuous absence of CCR2 may affect the development of brain 

and immune system, we utilized a second model in which we targeted Ly6C
hi

 monocytes in 

adult mice. Injection of an anti-CCR2 monoclonal antibody (MC-21) specifically reduced the 

number of Ly6C
hi

 monocytes in the brain (Figure 3.7B). In contrast to macrophages, 

monocytes have a relatively short life span of maximum three to five days in the blood 

(Whitelaw 1966; Yona et al. 2013). One day after the first antibody treatment, we injected 

BrdU and evaluated the effect of the depletion on neurogenesis levels three weeks later. Here 

we found that the treatment of naïve SPF mice with MC-21 led to a 25 % decrease in total 

BrdU
+
 cells compared to IgG-treated controls (Figure 3.7A). The depletion of another subset 

of myeloid cells, namely Ly6G
+
 neutrophils (Figure 3.7E), did not have any effect on 

neurogenesis levels and Ly6C
hi

 monocyte numbers. Despite some alterations we have seen in 

the total myeloid population (Figure 3.4B), we can exclude a contribution of Ly6G
+
 

neutrophils in this case. 

Together, these two depletion studies suggest that CCR2
+
 Ly6C

hi
 monocytes are necessary to 

maintain neurogenesis levels in the adult brain. 
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Figure 3.7: Genetic absence or antibody-induced loss of CRR2
+
Ly6C

hi
 monocytes results in decreased 

neurogenesis. 

(A, B) Adult female CCR2
-/-

, CCR2
+/-

 and wildtype littermates were analyzed four weeks after BrdU injections. 

(A) Neurogenesis was evaluated by counting BrdU
+
 cells in the hippocampus. Two-way ANOVA, Bonferroni post 

hoc test. ***p<0.001. 

(B) The decrease of Ly6C
hi
 cells as a proportion of CD11b

+
 cells in the brains of CCR2

-/-
 animals compared to 

wildtype littermates was measured using a gating strategy as in Figure 3.6E. Unpaired two-tailed Student’s t test. 

**p<0.01. 

(C, D) SPF naïve mice were injected with an anti-CCR2 antibody (MC-21) to deplete CCR2
+
 Ly6C

hi
 monocytes or 

an anti-Ly6G antibody (1A8) to deplete Ly6G
+
 neutrophils. 

(C) Neurogenesis was evaluated after three weeks of depletion by counting BrdU
+
 cells in the hippocampus. 

Unpaired two-tailed Student’s t test. ***p<0.001. 

(D, E) The proportion of (D) Ly6C
hi
 monocytes and (E) Ly6G

+
 neutrophils in the brain was measured as a 

percentage of CD11b
+
 cells using the gating strategy shown in Figure 3.6E. Unpaired two-tailed Student’s t test. 

*p<0.05, **p<0.01. 
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3.1.7 Neurogenesis can be rescued by adoptive transfer of Ly6C
hi 

monocytes to 

antibiotic-treated mice 

To resolve whether the transfer of Ly6C
hi

 monocytes can rescue neurogenesis in antibiotic-

treated mice, we intravenously injected 10
6
 Ly6C

hi
 monocytes sorted from the bone marrow 

into antibiotic-treated mice, two and seven days after discontinuation of antibiotic treatment. 

24 h after the first cell transfer, we started BrdU injections and analyzed the numbers of 

Ly6C
hi

 monocytes as well as proliferating neurons three weeks later. Adoptive transfer of 

isolated bone marrow-derived Ly6C
hi

 monocytes into antibiotic-treated mice significantly 

increased the number of Ly6C
hi

 monocytes in the brain (Figure 3.8B). This rescue was 

paralleled by restored neurogenesis levels in antibiotic-treated mice which received a Ly6C
hi

 

monocyte transfer (Figure 3.8A). However, naïve SPF mice did not benefit from the adoptive 

transfer with respect to the Ly6C
hi

 monocyte population in the brain and hippocampal 

neurogenesis levels. In conclusion, these results confirm that Ly6C
hi

 monocytes are involved 

in the signaling between the periphery and the brain to restore neurogenesis. 

 

 

Figure 3.8: Transfer of Ly6C
hi

 cells into antibiotic-treated animals rescues neurogenesis. 

(A, B) Naïve SPF and antibiotic-treated mice were injected twice with freshly isolated FACS sorted Ly6C
hi
 

monocytes from the bone marrow. Proliferating cells were labeled with BrdU one day after the first adoptive 

transfer. 

(A) BrdU
+
 cells in the hippocampus were counted. Two-way ANOVA, Bonferroni post hoc test. ***p<0.001. 

(B) Adoptive transfer of Ly6C
hi 

monocytes increased the number of Ly6C
hi
 monocytes in the brain of Abx treated 

mice, but not in naïve SPF mice. Unpaired two-tailed Student’s t test. *p<0.05, **p<0.01.  
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3.2 Role of monocytes in Alzheimer’s disease 

To investigate the influence of T. gondii induced microglia activation and cell recruitment on 

neurodegenerative diseases, in particular the effect of monocytes and their progeny, we used 

the 5xFAD murine model of AD. After infecting mice with T. gondii, we first analyzed 

cerebral Aβ content, followed by the general immune response and individual cell properties 

at the chronic stage of infection, which is after four to eight weeks of infection. 

3.2.1 T. gondii infection reduces the plaque burden in 5xFAD mice 

We detected that the infection with T. gondii led to reduced plaque burden as determined by 

immunohistological staining of Aβ plaques in 5xFAD mice (Figure 3.9A and A’). 

Quantification revealed significantly lower plaque numbers in the cortex of mice infected 

with T. gondii as compared to transgenic control mice (control 21.9 plaques/mm², T. gondii 

5.9 plaques/mm², p<0.006, Figure 3.9B). This observation was further confirmed by in situ 

two-photon microscopy, which was technically restricted to the observation of cortical layers 

I and II (Figure 3.9C and C’). Here, volumes of the remaining methoxy-X04 stained amyloid 

plaques were significantly reduced in T. gondii infected animals (controls 1548±205µm³, 

T. gondii 466±92µm³, p<0.002, Figure 3.9D). 

While immunohistological methods can only identify Aβ plaques, ELISA measurement 

allows the quantification of total Aβ. Using a sequential protocol, we separated monomeric 

and small oligomeric Aβ (carbonate-soluble) from larger aggregates (guanidine-soluble) in 

whole-brain homogenates. This separation is based on the different solubility of smaller and 

larger aggregates. Smaller aggregates can be dissolved in a rather mild carbonate buffer, 

whereas larger aggregates require a harsh guanidine buffer to be fully dissolved. We 

quantified the amount of Aβ42 and found that it was significantly reduced in both fractions 

(carbonate soluble: control 109.3±21.6 ng/ml, T. gondii 31.1±12.5 ng/ml, p<0.05; guanidine 

fraction: control 406.9±79.9 ng/ml, T. gondii 132.3±35.2 ng/ml, p<0.05, Figure 3.10). 

Using morphological methods, we detected substantial changes in the cortex and subcortical 

regions of infected mice such as inflammatory lesions (Figure 3.11A’), extensive Iba1-

reactivity (Figure 3.11B’) due to the activation of microglia and myeloid cell infiltration, as 

well as GFAP-positive astrogliosis (Figure 3.11C’). Non-infected 5xFAD mice presented with 

known brain histology (Figure 3.11A) and only minor activation of resident glia cells (Iba1 

and GFAP staining, Figure 3.11B, C) (Oakley et al. 2006). 
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Figure 3.9: T. gondii infection leads to reduced plaque burden in 5xFAD mice. 

(A, A’) show representative cortex regions with immunohistochemical labeling against Aβ from (A) non-infected 

and (A’) T. gondii infected 5xFAD mice. Arrow heads point towards remaining plaques in infected animals. Scale 

bars represent 1000 µm (left) and 200 µm (right). 

(B) Quantification of cortical Aβ plaques. Data are displayed as mean ± SEM. Significance as determined by 

unpaired t test with Welsh‘s correction is indicated. **p≤0.01. 

(C, C’) Ex vivo two-photon micrographs of the cerebral cortex layers I and II of (C) control and (C’) T. gondii 

infected 5xFAD mice injected with methoxy-X04. Amyloid plaques stained with methoxy-X04 are represented in 

green, autofluorescence is shown in red. One representative z-stack projection spanning at least 50 µm depth is 

shown for each condition. Scale bar, 100 µm. 

(D) Plaque volume in cortical layers I and II determined from at least five ex vivo two-photon micrographs shown 

in (C, C’). Each symbol represents one plaque and bars represent the mean, statistical significance is denoted by 

asterisks. **p≤0.01. 
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Figure 3.10: T. gondii infection reduces small and large Aβ aggregates. 

Aβ42 in the carbonate soluble (monomeric and small oligomeric Aβ42 aggregates) and guanidine soluble fractions 

(large Aβ42 aggregates) of whole-brain homogenates was measured by ELISA. Data are presented as mean + 

SEM. Significance levels (p values) determined by unpaired Student’s t test are indicated. *p≤0.05. 

 

Activation of microglia can be recognized by an increased expression of certain surface 

molecules including major histocompatibility complex class (MHC) I and MHC II, CD11c 

and CD45. Flowcytometric analysis revealed a significantly increased expression of these 

markers by brain microglia in T. gondii infected wildtype and 5xFAD mice compared to 

respective non-infected controls (Figure 3.12). For MHC II, CD11c and CD45, genotype did 

not influence expression levels in neither non-infected nor T. gondii infected animals. Mild 

baseline activation of microglia was observed for MHC I, which resulted in an increased 

expression of MHC I by microglia in T. gondii infected 5xFAD animals compared to T. gondii 

infected wildtype mice (Figure 3.12). 

Specific immunodetection for neurons (NeuN labeling) revealed no alterations in the number 

of neurons in the cortex of infected versus control mice (Figure 3.11D, D’). The slightly 

darker shading in the infected brain is due to increased background staining as previously 

seen in this infection model in wildtype C57BL/6J mice (Möhle et al. 2014). Occasionally, 

T. gondii cysts were detectable (Figure 3.11A inset). 

Noting the vast activation of microglia and astrocytes as well as a strong recruitment of 

myeloid cells in the infected animals, we have to potentially take into account additional 

specific and unspecific immunological responses as further factors for the reduction of Aβ 

(Rubio-Perez & Morillas-Ruiz 2012; Perry et al. 2010). 
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Figure 3.11: T. gondii infection induces histopathological changes and activation of microglia. 

(A, A’) Hematoxylin and eosin (H&E) stained coronal sections from (A) non-infected and (A’) T. gondii infected 

5xFAD mice. * denotes meningeal infiltrates, arrows show inflammatory foci, the arrow head highlights a T. gondii 

cyst. The inset shows a cyst stained with an antibody against T. gondii. 

(B-D’) Representative pictures of immunohistochemical stainings against (B, B’) Iba1, (C, C’) GFAP, and (D, D’) 

NeuN of coronal brain sections from (B, C, D) non-infected and (B’, C’, D’) T. gondii infected 5xFAD mice. 

Scale bars represent 1000 µm (left column) and 200 µm (right column). 
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Figure 3.12: Microglia are activated in wildtype and 5xFAD mice upon T. gondii infection. 

Mononuclear cells were isolated from wildtype and 5xFAD mouse brains and subjected to flowcytometric analysis. 

Microglia were gated as shown in Figure 3.16 and the surface expression of major histocompatibility complex 

class (MHC) I, MHC II, CD11c and CD45 was quantified using the median fluorescence intensity (MFI) of the 

respective channel. Bars represent mean + SEM. Significance levels (p values) are indicated as determined by 

Fisher’s LSD test. ns, not significant, **p≤0.01, ***p≤0.001, ****p≤0.0001. 

 

3.2.2 Expression of pro- and anti-inflammatory cytokines is triggered by T. gondii 

infection in wildtype and 5xFAD mice 

Collectively, resident and recruited cells form a robust immune response to control T. gondii 

infection by producing pro-inflammatory cytokines, chemokines and anti-parasitic effector 

molecules (Möhle et al. 2014). To characterize this component of the immune response, 

particularly comparing wildtype and 5xFAD T. gondii infected mice, we measured the 

expression of certain cytokines in the brain by semi-quantitative RT-PCR. 

The infection triggered a strongly enhanced mRNA expression of pro-inflammatory 

cytokines, including IFN-γ (wildtype control: 0.23±0.04; wildtype T. gondii: 2011±384; 

5xFAD T. gondii: 2279±95; all values are fold-change over 5xFAD controls), TNF (wildtype 

control: 0.35±0.05; wildtype T. gondii: 201±33; 5xFAD T. gondii: 238±13; all values are fold-

change over 5xFAD controls), IL-1β (wildtype control: 0.37±0.03; wildtype T. gondii: 

183±52; 5xFAD T. gondii: 211±14; all values are fold-change over 5xFAD controls), and IL-6 

(wildtype control: 0.7±0.09; wildtype T. gondii: 22±6; 5xFAD T. gondii: 26±1; all values are 

fold-change over 5xFAD controls) (Figure 3.13). Notably, no differences were detected due to 

the genotype. 



RESULTS 

51 

 

Figure 3.13: Expression of pro-inflammatory cytokine mRNA in the brain is triggered in T. gondii infected 

wildtype and 5xFAD mice. 

Total RNA was isolated from brains collected from chronically T. gondii infected (n=7) and non-infected control 

(n=5) wildtype and 5xFAD mice. Semi-quantitative RT-PCR was performed for IFN-γ, TNF, IL-1β, and IL-6 and 

relative mRNA levels were normalized on housekeeping gene expression. Data are presented as fold change 

over 5xFAD controls in box and whisker graphs. Significance levels (p values) are indicated as determined by 

unpaired Student’s t test. ns, not significant, ***p≤0.001, ****p≤0.0001. 

 

During chronic T. gondii infection, the pro-inflammatory immune response is followed by the 

production of cytokines associated with anti-inflammatory functions (Gaddi & Yap 2007). In 

this context, we detected increased mRNA expression of IL-10 (wildtype control: 0.85±0.09; 

wildtype T. gondii: 125±19; 5xFAD T. gondii: 148±9; all values are fold-change over 5xFAD 

controls) and TGF-β (wildtype control: 0.52±0.06; wildtype T. gondii: 3.7±0.4; 5xFAD 

T. gondii: 5.1±0.4; all values are fold-change over 5xFAD controls) in T. gondii infected mice 

(Figure 3.14). While IL-10 mRNA expression was independent of the genotype, TGF-β 

mRNA expression was higher in 5xFAD T. gondii infected compared to wildtype T. gondii 

infected mice. 
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Figure 3.14: Expression of anti-inflammatory cytokine mRNA in the brain is triggered in T. gondii infected 

wildtype and 5xFAD mice. 

Total RNA was isolated from brains collected from chronically T. gondii infected (n=7) and non-infected control 

(n=5) wildtype and 5xFAD mice. Semi-quantitative RT-PCR was performed for TGF-β and IL-10 and relative 

mRNA levels were normalized on housekeeping gene expression. Data are presented as fold change over 5xFAD 

controls in box and whisker graphs. Significance levels (p values) are indicated as determined by unpaired 

Student’s t test. ns, not significant, **p≤0.01, ****p≤0.0001. 

 

It is apparent that the immune response triggered by T. gondii causes tremendous changes in 

gene expression profiles. Thus, we wanted to exclude that the reduction of Aβ plaques was 

due to a downregulation of APP which might lead to a diminished production of Aβ42. We 

measured mRNA expression of hAPP in the brains of 5xFAD mice and did not detect 

significant changes compared to non-infected 5xFAD mice (5xFAD T. gondii: 0.64±0.06 

fold-change over 5xFAD controls, p>0.05; Figure 3.15). 

 

 

Figure 3.15: mRNA expression of APP in the brain remains unaltered upon infection with T. gondii. 

Total RNA was isolated from brains collected from non-infected control (n=5) and chronically T. gondii infected 

(n=7) 5xFAD mice. Semi-quantitative RT-PCR was performed for hAPP and the relative mRNA level was 

normalized on housekeeping gene expression. Data are presented as fold change over 5xFAD controls in box 

and whisker graphs. Significance levels (p values) are indicated as determined by unpaired Student’s t test. ns, 

not significant. 
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3.2.3 Recruited monocytes express high CCR2, intermediate TREM2 and CD36 

Local activation of glia cells upon T. gondii infection is accompanied by recruitment of 

immune cells from the periphery to the brain. Among recruited immune cells, the 

CD45
hi

 CD11b
hi

 myeloid compartment plays an important role in cerebral toxoplasmosis 

(Fischer et al. 2000; Clark et al. 2011; Schlüter et al. 1995). Myeloid cells comprise of Ly6G
+
 

neutrophils, Ly6G
neg

 Ly6C
hi

 monocytes, Ly6G
neg

 Ly6C
int

 monocyte-derived DCs and 

Ly6G
neg

 Ly6C
low

 monocyte-derived macrophages. In the following, we focused our analysis 

on these three subsets of myeloid-derived CD45
hi

 CD11b
hi

 Ly6G
neg

 CCR2
+ 

mononuclear cells 

(gating strategy depicted in Figure 3.16A, A’). These subsets of myeloid cells were chosen 

because age-related defects in the Ly6C
hi

 monocyte population have been linked to cognitive 

decline in a murine AD model (Naert & Rivest 2012a). 

To validate that cell recruitment in 5xFAD mice resembles the cell recruitment observed in 

wildtype mice, we analyzed the relative proportions of Ly6G
neg

 mononuclear cell subsets 

amongst recruited cells by flow cytometry. In both T. gondii infected groups, the presence of 

Ly6C
hi

, Ly6C
int

 and Ly6C
low

 cells was greatly enhanced compared to respective non-infected 

mice (Figure 3.16A, A’, Figure 3.17). Quantitative analysis revealed no genotype-related 

differences with respect to Ly6C
hi

, Ly6C
int

 and Ly6C
low

 mononuclear cells (Figure 3.17). 

Similar to the activation of microglia, these cells can be phenotypically characterized by 

expression of different surface molecules. We were especially interested in phagocytosis-

related molecules, such as TREM2, CD36, and SCARA1. 

To this end, we quantified the MFI by flow cytometry and compared the surface expression 

on resident and myeloid-derived mononuclear cells. The expression pattern was similar for all 

three markers: We found the highest expression of TREM2, CD36 and SCARA1 on 

Ly6C
low

 F4/80
hi

 macrophages and activated microglia and a lower expression on 

Ly6C
hi

 CCR2
hi

 monocytes and resting microglia. Ly6C
int

 mononuclear cells expressed 

intermediate amounts of TREM2, CD36 and SCARA1 on their surface (TREM2: microglia 

688±25, activated microglia 2191±179, Ly6C
hi

 595±48, Ly6C
int

 1298±13, Ly6C
low

 3222±511, 

Figure 3.16D; CD36: microglia 152±8, activated microglia 1616±281, Ly6C
hi

 749±37, 

Ly6C
int

 1175±92, Ly6C
low

 1879±208, Figure 3.16E; SCARA1: activated microglia 

15977±3220, Ly6C
hi

 6319±1395, Ly6C
int

 10805±2221, Ly6C
low

 14964±3088, Figure 3.16F). 
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Figure 3.16: Myeloid-derived mononuclear cells are recruited to the brain upon T. gondii infection and 

express phagocytosis related surface molecules. 

Mononuclear cells were isolated from 5xFAD mouse brains and subjected to flowcytometric analysis. 

(A, A’) Representative pseudocolor plots are shown for (A) non-infected and (A’) infected 5xFAD animals and 

demonstrate the recruitment of CD45
hi
CD11b

hi
Ly6G

neg
Ly6C

+
 cells to the brain upon T. gondii infection. After 

gating cells by their forward and side scatter properties, excluding doublets and dead cells (not shown), we used 

CD45 and CD11b expression to discriminate between resting microglia (A, bottom elliptic gate) or activated 

microglia (A’, bottom elliptic gate), respectively, and myeloid cells (A’, top elliptic gate). From myeloid cells, Ly6G
+
 

neutrophils were excluded and the Ly6C expression of the remaining CD11b
hi
Ly6G

-
 cells was used to gate 

Ly6C
hi
, Ly6C

int
 and Ly6C

low
 mononuclear cells. 

(B-E) We compared the surface expression of CCR2, F4/80, TREM2, CD36, and SCARA1 between resting 

microglia, activated microglia and myeloid-derived mononuclear cell subsets. The median fluorescence intensity 

(MFI) for each marker and population is displayed as mean + SEM. Significance levels (p values) determined by 

Fisher’s LSD test are indicated. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. 

 

Our data indicate that the recruitment of different myeloid-derived mononuclear cell subsets 

to the CNS induced by cerebral toxoplasmosis may contribute to the removal of Aβ by 

activated microglia. 
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Figure 3.17: Recruitment of Ly6C
hi

 monocytes, Ly6C
int

 mononuclear cells and Ly6C
low

 macrophages in 

wildtype and 5xFAD mice upon T. gondii infection. 

Mononuclear cells were isolated from wildtype and 5xFAD mouse brains and subjected to flowcytometric analysis. 

CD45
hi
 CD11b

hi
 Ly6G

-
 Ly6C

hi
, Ly6C

int
 and Ly6C

low
 mononuclear cell populations were gated as shown in Figure 

3.16. Bars represent the percentage of single cells of each population displayed as mean + SEM. Significance 

levels (p values) are indicated as determined by Fisher’s LSD test. ns, not significant, ****p≤0.0001. 

3.2.4 Myeloid-derived mononuclear cells phagocytose Aβ 

Previous examination of resident and recruited immune cell subpopulations in chronic 

T. gondii infection revealed that these cell subsets display different phagocytic capacity 

(Biswas et al. 2015). Here we compared mononuclear cell subpopulations with respect to their 

ability to specifically phagocytose Aβ42 in an ex vivo phagocytosis assay. To this end, we 

freshly isolated brain mononuclear cells and exposed them to fluorophore-conjugated Aβ42 ex 

vivo. Resident surveilling microglia (CD45
int

 CD11b
+
), activated microglia (CD45

+
 CD11b

+
) 

as well as Ly6C
hi

 monocytes, Ly6C
int

 and Ly6C
low

 cells (CD45
hi

 CD11b
hi

 Ly6G
-
 Ly6C

hi
/
int

/
low

) 

were distinguished by flow cytometric analysis. The low ability of resident microglia to take 

up Aβ42 was reflected in their low MFI for Aβ42-HiLyte Fluor 488 (1749±88, Figure 3.18B, 

green bar). Upon T. gondii infection, microglia cells became activated, but their Aβ42 uptake 

remained low (1564±119, Figure 3.18B, blue bar). Notably, Ly6C
hi

 monocytes exhibited the 

highest MFI (5238±239, Figure 3.18B, dark red bar) suggesting greater phagocytic capacity. 

Similarly, also Ly6C
int

 and Ly6C
low

 cells were found to exhibit significantly higher MFI 

compared to microglia or activated microglia (Ly6C
int

 4396±204, Ly6C
low

 3890±387, Figure 

3.18B, medium and light red bars, p<0.0001). Relative MFIs measured in cells isolated from 

wildtype mice showed a similar pattern, confirming that Aβ42 uptake was not restricted to 

5xFAD cells (Figure 3.19). Differences in the absolute values can be – at least in part – 

attributed to the different quantification methods used for both analyses, i. e. conventional 

versus imaging flow cytometry. 
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Figure 3.18: Recruited mononuclear cells are potent Aβ phagocytic cells. 

(A-C) Ex vivo phagocytosis assay was performed with mononuclear cells isolated from 5xFAD and C57BL/6 

mouse brains and cleared from dead cells by sorting via flow cytometer. 

(A) Populations were gated as described in Figure 3.16. Representative histograms show the uptake of 

fluorescence labeled Aβ42 peptide by different cell populations. Gray curves show the 4°C control (dark gray) and 

the Aβ42
-
 control (light gray) for each population. 

(B) Bars indicate the median fluorescence intensity (MFI) of each population to express differences in the amount 

of Aβ42 taken up. Data are displayed as mean + SEM (n=4-5). 

(C) Representative images obtained with FlowSight
TM

 are shown for each population. Scale bar, 20 µm. 

Significance levels (p values) determined by Fisher’s LSD test are indicated. ns, not significant, *p≤0.05, 

***p≤0.001, ****p≤0.0001. 
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We further verified that the detected fluorescence resulted from internalized Aβ42 rather than 

from unspecific surface-bound signals. Therefore, we analyzed the cells using imaging flow 

cytometry that allows obtaining images of individual cells. Gating was performed as 

described in Figure 3.16A and representative pictures for each population are shown in Figure 

3.18C. Microglia and activated microglia populations contained lower numbers of Aβ
+
 cells 

(Table 3.1, first column). Consistent with the previous measurements by conventional flow 

cytometry, fluorescence was low or absent in resting and activated microglia, but all 

monocyte populations showed an intense signal (Figure 3.18C and Figure 3.19). Fluorescence 

was distributed equally across the cells, sometimes with several additional bright spots inside 

individual cells. This further indicated the uptake of Aβ42 by recruited mononuclear cells 

(CD45
hi

 CD11b
hi

 Ly6G
-
 Ly6C

hi
/
int

/
low

) upon T. gondii infection. Morphologically, monocytes 

and the other two monocyte-derived cell subsets were more granular than (activated) 

microglia, represented by higher side scatter intensities (Figure 3.18C and Table 3.1, last 

column). We quantified the internalization of Aβ42 by calculating the ratio of the fluorescence 

intensity within the cell to the intensity of the entire cell. Ratios higher than 0 indicate 

intermediate to high internalization and were found in more than 97% of all Aβ
+
 cells 

regardless of the population (Table 3.1, second column). The mean internalization varied 

between populations with activated microglia being the lowest and Ly6C
hi

 monocytes being 

the highest (Table 3.1, third column). 

 

Figure 3.19: Quantification of uptake of Aβ42 by imaging flow cytometry. 

The uptake of Aβ42 by different mononuclear cell populations isolated from C57BL/6 wildtype was quantified in an 

ex vivo phagocytosis assay using imaging flow cytometry. Populations were gated as described in Figure 3.16. 

Bars represent the mean fluorescence intensity of each population. Data are displayed as mean + SEM (n=4-5). 

Significance levels (p values) determined by Fisher’s LSD test are indicated. ns, not significant, *p≤0.05, **p≤0.01, 

****p≤0.0001. 
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Table 3.1: Quantification of Aβ42 uptake and cell properties by imaging flow cytometry. 

Population Aβ
+
 cells ratio > 0 Mean ratio 

Mean side 

scatter 

intensity 

Microglia 77.8±2.5 % 99.3±0.2 % 5.0±0.1 1916±85 

Activated microglia 71.8±2.3 % 97.1±0.2 % 3.0±0.02 1161±35 

Ly6C
hi

 99.4±0.09 % 99.8±0.02 % 5.4±0.06 3574±143 

Ly6C
int

 96.1±0.5 % 99.4±0.1 % 5.0±0.1 3376±130 

Ly6C
low

 92.8±0.8 % 99.0±0.05 % 4.8±0.08 3107±93 

 

To confirm that it is indeed the recruited monocytes and their progeny contributing to plaque 

removal, we ablated Ly6C
hi

 monocytes using a monoclonal anti-CCR2 antibody. We chose a 

lower antibody concentration to only reduce monocyte numbers, because the complete 

elimination would highly increase the susceptibility of infected mice as recently described by 

our research group (Biswas et al. 2015). One week after initiating the ablation, we detected 

significantly reduced Ly6C
hi

 monocyte levels in the blood (Figure 3.20A, B, C). After two 

weeks of anti-CCR2 antibody administration (28 days after infection), Ly6C
hi

 monocyte 

numbers were still significantly reduced in the blood (Figure 3.20B, C). This peripheral 

depletion led to a trending reduction of Ly6C
hi

 monocytes and Ly6C
low

 monocyte-derived 

macrophages in the brain on day 28 after T. gondii infection (Figure 3.20D). From the isolated 

brains, we quantified Aβ42 by ELISA. Importantly, diminished Ly6C
hi

 monocyte numbers 

were associated with an increased total amount of Aβ42 in the brain of T. gondii infected 

5xFAD mice (T. gondii 148±30ng/ml, T. gondii + anti-CCR2 414±75ng/ml, Figure 3.20E). 
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Figure 3.20: Ablation of CCR2
+
Ly6C

hi
 monocytes increases Aβ accumulation in T. gondii infected 5xFAD 

mice. 

T. gondii infected 5xFAD mice were treated with the anti-CCR2 monoclonal antibody MC-21 to specifically ablate 

CCR2
+
Ly6C

hi
 monocytes.  

(A, B) Ly6C
hi
 monocytes in the blood were measured 28 days post infection and after 13 days of anti-CCR2 

administration. Representative dot plots picture the gating strategy and the specific ablation of Ly6C
hi
 monocytes 

in (B) anti-CCR2 treated animals compared to (A) PBS treated animals. 

(C, D) Ly6C
hi
 monocytes in the blood on d22 and d28 as well as in the brain on d28 were analyzed and their 

percentage of live cells is displayed. 

(E) The amount of Aβ42 in the brains of 5xFAD mice after T. gondii infection with and without monocyte ablation 

was measured by ELISA. 

Data (n=4 per group) are presented as mean + SEM. Significance levels (p values) determined by unpaired 

Student’s t test are indicated. *p ≤0.05, **p≤0.01. 

 

3.2.5 Recruited mononuclear cells increase proteolytic clearance of Aβ 

Along with uptake of Aβ, its proteolytic processing is also very important. Therefore, we 

measured the expression of three Aβ-degrading enzymes in the brain, namely insulin-

degrading enzyme (IDE), neprilysin (NEP), and matrix metalloproteinase 9 (MMP9), using 

RT-PCR, and we observed a significant increase in the expression of MMP9 and IDE mRNA 

following infection with T. gondii (MMP9: 1.3±0.1 fold-change over 5xFAD controls, 

p<0.01, Figure 3.21; IDE: 1.7±0.1 fold-change over 5xFAD controls, p<0.01, Figure 3.21). 

The expression of NEP remained unaltered (Figure 3.21, 0.94±0.1 fold-change over 5xFAD 

controls, p>0.6). 
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Figure 3.21: T. gondii infection enhances mRNA expression of the Aβ degrading enzymes IDE and MMP9. 

Expression of neprilysin (NEP), matrix metalloproteinase 9 (MMP9) and insulysin (IDE) in the brain was measured 

by RT-PCR in non-infected (n=5) and T. gondii infected (n=7) 5xFAD mice. Data are presented as fold-change 

over non-infected 5xFAD mice in box and whisker graphs. Significance levels (p values) determined by unpaired 

Student’s t test are indicated. **p≤0.01. 

We further performed a detailed investigation of brain resident as well as recruited immune 

cells in T. gondii infected mice. Of note, in the chronic stage of infection the intracellular 

parasites form cysts within neurons hiding from the immune system, thus the analyzed cells 

were not directly infected with tachyzoites. We found that MMP9 mRNA was upregulated 

nearly three-fold in activated compared to surveilling microglia, but almost undetectable in 

recruited mononuclear cells (Figure 3.22). IDE mRNA was similarly expressed across all 

innate immune cell populations we investigated (Figure 3.22).  

 

Figure 3.22: mRNA of Aβ degrading enzymes is expressed in different cell populations. 

Expression of MMP9 and IDE by innate immune cells isolated and sorted from the brains of non-infected and 

T. gondii infected C57BL/6 mice was measured by RT-PCR. Each sample consists of pooled cells from 6 animals 

and was measured in triplicates. 

Furthermore, we investigated which cell types are located around the Aβ plaques in the cortex 

of T. gondii infected 5xFAD mice by performing immunofluorescence stainings against Iba1, 

Ly6C, and Aβ. Due to their general distribution in the parenchyma, Iba1
+
 microglia and 

monocyte-derived macrophages were closely associated with Aβ plaques (Figure 3.23A, B). 

Interestingly, Ly6C
+
 cells were not located directly in the vicinity of Aβ plaques (Figure 
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3.23C, D). As to that, it is important not to confuse Ly6C
+
 monocytes with Ly6C expressing 

endothelial cells (Jutila et al. 1988), which can be recognized by their elongated shape. This 

qualitative finding was confirmed by quantification of fluorescence intensity around plaques 

(Figure 3.24A, B). 

 

Figure 3.23: Microglia but not Ly6C
hi

 monocytes are located in the vicinity of Aβ plaques. 

Immunolabeled coronal sections from T. gondii infected 5xFAD mice. 

(A, B) Co-labeling of Iba1 (microglia) and Aβ (plaques) reveals close interaction of microglia with plaques. (A) Low 

magnification (20x) overview of the cortex. Scale bar, 200 µm. (B) Representative cortical plaque surrounded by 

microglial processes. 63x magnification, scale bar, 20 µm. 

(C, D) In sections co-labeled for Ly6C (Ly6C
hi
 monocytes) and Aβ (plaques), Ly6C

hi
 monocytes were not located 

in the direct vicinity of plaques. (C) Low magnification (20x) overview of the cortex. Scale bar, 200 µm. 

(D) Representative cortical plaque with a nearby Ly6C
+
 blood vessel but no associated Ly6C

hi
 monocytes. 63x 

magnification, scale bar, 20 µm. 
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Taken together, our results reveal that Ly6C
hi

, Ly6C
int

, and Ly6C
low

 mononuclear cells are 

highly capable of removing soluble Aβ peptides. While Ly6C
hi

 monocytes contribute 

significantly to this clearance, they cannot be found in the direct vicinity of established 

plaques and thus, may rather lower the general amount of Aβ to prevent higher molecular 

weight Aβ aggregates and plaque formation. 

 

Figure 3.24: Iba1 but not Ly6C reactivity is increased around Aβ plaques 

(A, B) Immunolabeled coronal sections from T. gondii infected 5xFAD mice were analyzed to quantify the 

fluorescence intensity of (E) Iba1 and (F) Ly6C in the direct environment of plaques. The black line represents the 

average at a given distance. AU, arbitrary units. 
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3.2.6 T. gondii infection reduces Aβ load in older animals 

In the previously described experiments, mice were infected around the time point when first 

plaques become detectable in the brain (60 d). Additionally, we were interested whether in 

older animals the Aβ burden can also be reduced by T. gondii infection. Therefore, we 

infected 7 months old 5xFAD mice and used ELISA to quantify Aβ. After 6 weeks of 

infection, we found a significantly lower amount of Aβ in the brains of T. gondii infected 

compared to non-infected 5xFAD mice (control 7529±623 ng/ml, T. gondii 4641±487 ng/ml, 

p<0.001, Figure 3.25). 

 

 

Figure 3.25: Infection with T. gondii reduces total Aβ burden in older animals. 

The amount of Aβ42 in the brains of aged (7 months) non-infected and T. gondii infected 5xFAD mice was 

measured by ELISA on d44 post infection. The significance level (p value) determined by unpaired Student’s t test 

is indicated. **p≤0.01. 
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4 Discussion 

4.1 Role of monocytes in neurogenesis within the gut-brain-axis 

In the first part of this study, we examined the interactions between antibiotic treatment, 

intestinal microbiota and adult hippocampal neurogenesis. 

Treatment with antibiotics severely depleted the intestinal microbiota and was associated with 

reduced levels of proliferating cells in the hippocampus of mice. Reconstitution of the 

intestinal flora with probiotics rescued neurogenesis in antibiotic-treated mice. Similarly, a 

recent study conducted in a mouse model of stress has also found probiotics to increase 

neurogenesis levels (Ait-Belgnaoui et al. 2014). Like probiotics, voluntary exercise improved 

neurogenesis in antibiotic-treated mice to naïve SPF levels in our experiments. This is 

consistent with previous experimental setups where physical exercise is a widely used 

strategy known to promote neurogenesis in various disease models (Kempermann et al. 2010; 

van Praag et al. 1999; Wolf et al. 2011; Farioli-Vecchioli et al. 2014). 

Interestingly, both treatment paradigms were accompanied by an increase of the Ly6C
hi

 

monocyte population in the brain. Previous findings indicate that CCR2
+
 Ly6C

hi
 monocytes 

entering the CNS are essential for recovery after spinal cord injury (Shechter et al. 2009) and 

potentially contribute to restrict cerebral amyloidosis (Naert & Rivest 2013). These results 

propose new beneficial roles in addition to the established pro-inflammatory one (Biswas et 

al. 2015; Hammond et al. 2014; Karlmark et al. 2012). With respect to neurogenesis, previous 

reports have linked cells of the adaptive immunity i. e. T cells to the maintenance of this 

homeostatic process (Ziv et al. 2006; Wolf et al. 2009). 

Investigating the potential link between Ly6C
hi

 monocytes and neurogenesis in more detail, 

we demonstrated that the lack of Ly6C
hi

 monocytes, either by knockout of CCR2 or by 

antibody-induced depletion, led to decreased hippocampal neurogenesis levels. Moreover, 

substitution of antibiotic-treated mice with adoptively transferred Ly6C
hi

 monocytes was also 

able to rescue neurogenesis. 

Unexpectedly, the fecal transplant from naïve SPF into antibiotic-treated mice could not 

rescue neurogenesis and Ly6C
hi

 monocyte numbers. Even though the SPF transplant seemed 

to promote a microbiome similar to that of naïve SPF mice, it cannot be excluded that the 

treatment induced fine-tuned robust changes as described for human subjects (Lozupone et al. 
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2012). Alternatively, these data suggest a (partial) direct and long-lasting effect of antibiotics 

on the host which is not mediated by the intestinal microbiota. Indeed, a recent study 

confirmed that at least two factors are responsible for antibiotic-induced changes in gene 

expression, depletion of microbiota and direct interaction with host tissues (Morgun et al. 

2015). The authors argue that, as host mitochondria have retained many features of bacteria 

from which they descend, this similarity may actually facilitate the direct interaction between 

antibiotics and cell metabolism (Morgun et al. 2015). However, both adoptive transfer of 

Ly6C
hi

 monocytes and voluntary exercise were able to increase neurogenesis in antibiotic-

treatment mice, indicating that neurogenesis was not irreversibly impaired and that it is 

possible to overcome the potential direct effects of antibiotics using appropriate stimuli. From 

these results we concluded that not the lack of intestinal flora as such determines neurogenesis 

levels, but that there is a common regulator or messenger, mediating signals from the 

periphery to the brain and that this mediator is affected by antibiotic and probiotic treatment 

and exercise. Considering the results presented here as well as the finding that Ly6C
hi

 

monocytes can support neurosphere formation in vitro (data not included in this thesis), we 

suggest Ly6C
hi

 monocytes as a potential mediator. 

As Ly6C
hi

 monocytes migrate via the bloodstream from the bone marrow to their destined 

location, we investigated their presence in both tissues. We revealed that antibiotic-induced 

depletion of microbiota reduces Ly6C
hi

 monocyte numbers in the bone marrow. In line with 

our results, several studies have reported the substantial impact of microbiota on host 

immunity including their ability to regulate myeloid hematopoiesis in the bone marrow (Hill 

et al. 2012; Deshmukh et al. 2014). This effect is manifested in a reduced bone marrow-

derived monocyte population in the spleen of germ-free mice (Khosravi et al. 2014). 

Subsequently, antibiotic treatment also reduced the number of Ly6C
hi

 monocytes in the blood. 

Four weeks after discontinuation of antibiotic treatment, both bone marrow and blood 

populations had recovered, but the reduced number of Ly6C
hi

 monocytes in the brain was still 

evident. We presume that this is due to the slow turnover rate of peripheral immune cells in 

the brain as it has been previously described for leukocytes (Ousman & Kubes 2012). 

We found no changes of the numbers of microglia, the brain’s intrinsic immune cell 

population, upon any of the treatments. This finding is consistent with a recent study in germ-

free mice (Erny et al. 2015). Despite unchanged cell numbers, Erny and colleagues describe 

alterations of morphology and phenotypic marker expression (Erny et al. 2015). However, it 

is unclear whether these modifications also occur upon antibiotic treatment as the absence of 
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microbiota during the entire ontogenesis (in germ-free mice) has more pronounced effects 

than short-term absence (due to antibiotic treatment), such as impaired brain and immune 

system development (Mazmanian et al. 2005; Abt et al. 2012; Diaz Heijtz et al. 2011; Cryan 

& Dinan 2012). As the study by Erny et al. investigated only microglia and missed the 

important contribution of myeloid-derived cells, a direct comparison of our results to this 

study is rather difficult. It is likely that some of the changes reported in germ-free mice could 

be attributed to alterations in the circulating immune cell composition and function. 

This basic difference between the two models became further obvious when we quantified 

neurotrophic factors and did not find differences with respect to BDNF and NGF mRNA 

expression. In contrast, germ-free mice present with increased BDNF mRNA levels in the 

hippocampus (Neufeld et al. 2011) and decreased BDNF mRNA levels in the amygdala 

(Arentsen et al. 2015). Increased neurogenesis found in germ-free mice (Ogbonnaya et al. 

2015) would correspond to the increased BDNF expression (Neufeld et al. 2011) as well as 

increased motor activity in this model (Diaz Heijtz et al. 2011). Another study reported 

reduced BDNF mRNA levels in the adult hippocampus after early depletion of intestinal 

microbiota from weaning onwards (Desbonnet et al. 2015). Thus, it becomes apparent that 

differences between our model and the germ-free model make it difficult to compare these 

studies. 

CCR2
+
 Ly6C

hi
 monocytes were located mostly in the choroid plexus and only in rare cases in 

the hippocampus. The remote distance of Ly6C
hi

 monocytes from the proliferating neuronal 

precursors indicates that it is probably soluble factors which mediate this interaction. We 

could not identify a concrete mechanism, but our results suggest that BDNF, NGF, TNF and 

IL-6 are not involved, even though they have all been shown to influence neurogenesis (Iosif 

et al. 2006; Scharfman et al. 2005; Rossi et al. 2006; Frielingsdorf et al. 2007; Islam et al. 

2009). It also remains to be investigated whether this regulation has a direct effect on 

proliferating precursors or it indirectly modulates the neurogenic niche. 

Taken together, our results demonstrate that antibiotic treatment results in a long lasting 

impairment of neurogenesis, which can be reversed by probiotics and exercise. Ly6C
hi

 

monocytes, a myeloid-derived innate immune cell population, critically contribute to this 

restoration. While we cannot completely rule out the contribution of other CNS resident cells, 

our analysis of Ly6C
hi

 monocytes in different treatment paradigms in conjunction with the 

depletion and re-substitution experiments point toward their crucial involvement in 

maintenance of adult hippocampal neurogenesis. Among the multiple factors forming the gut-
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immune-brain-axis, we highlight the synergy between intestinal flora and Ly6C
hi

 monocytes 

as one potential route of communication. Finally, our results provide a rationale for probiotic 

supplementation and exercise to restore monocyte homeostasis and brain plasticity as 

countermeasure against the side effects of prolonged antibiotic treatment. 

4.2 Role of monocytes in Alzheimer’s disease 

In the second part of this study, we investigated the effect of the commonly persisting cerebral 

Toxoplasma infection and resulting CNS inflammation on Aβ plaque formation in a murine 

model of AD. In the following, I will first discuss the etiologic connection between T. gondii 

and AD and how our results contribute to the understanding of this connection. Second, I will 

address the individual results and evaluate what we learned from this experimental setup with 

respect to a possible treatment of AD. 

4.2.1 Etiologic connection between T. gondii and AD 

Aβ and hyperphosphorylated tau form disease promoting aggregates in AD that trigger 

chronic cerebral inflammatory processes (Hickman et al. 2008; Meda et al. 1995). Further 

modulation of the chronic inflammation may occur following several infectious diseases, 

which are known to induce inflammatory cascades in the CNS. It is well established that 

certain pathogenic components modulate the course of disease in murine β-amyloidosis 

models (Kahn et al. 2012). Although the impact of particular infections during the 

pathogenesis of AD has been discussed, the underlying mechanisms are especially 

challenging to untangle (reviewed in Miklossy 2011). Periodontal infections have been found 

to increase the Aβ load in vulnerable brain areas in non-AD humans (Kamer et al. 2015). The 

respiratory pathogen Chlamydia pneumoniae is more present in human AD patients (Balin et 

al. 1998) and is also able to induce Aβ plaques in wildtype mice (Little et al. 2004). In 

general, previous studies have found chronic or latent infections to be associated with an 

increased risk for AD (reviewed in Miklossy 2011), although evidence regarding T. gondii 

specifically is inconclusive (Kusbeci et al. 2011; Perry et al. 2015). On the other hand, in a 

recent study using a mouse model of cerebral β-amyloidosis, T. gondii infection has been 

associated with a reduced risk of developing AD-like pathology (Jung et al. 2012). Our study 

provides further evidence for this notion, as we detected a significant reduction in the number 

and volume of β-amyloid plaques in T. gondii infected compared to non-infected 5xFAD 

mice. 
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Despite this observed reduction in plaque deposition, one should be cautious in concluding 

that T. gondii infection may protect against developing AD. In fact, while evidence regarding 

actual disease risk is sparse and conflicting (Kusbeci et al. 2011; Perry et al. 2015), latent 

toxoplasmosis in healthy individuals has recently been associated with subtle reductions of 

cognitive performance in various tasks (Gajewski et al. 2014; Shawn D. Gale et al. 2015; S D 

Gale et al. 2015). Directly translating this finding to the situation of human AD patients is 

rather difficult, considering the limitations of the applied experimental model. Low dose 

infection of mice with the parasite is a broadly used model to mimic human chronic 

Toxoplasma infection (Parlog et al. 2014; Möhle et al. 2014; Biswas et al. 2015; Nance et al. 

2012; Z. T. Wang et al. 2015; Blanchard et al. 2015; Gulinello et al. 2010; Haroon et al. 2012; 

Hermes et al. 2008), although the immune cell recruitment in mice is most likely more 

pronounced than during latent chronic infection of humans. Considering that we propose the 

recruited immune cells as major mediators of the beneficial effect, it is unclear which effects 

are applicable to the human CNS. 

4.2.2 Insights regarding the treatment of AD 

As mentioned above, we measured decreased levels of Aβ plaques in the brains of T. gondii 

infected 5xFAD mice and the remaining plaques were also smaller in volume. These findings 

are consistent with the aforementioned study by Jung and colleagues, where they further 

described an improved performance in behavioral tests compared to non-infected transgenic 

mice (Jung et al. 2012). 

We performed a more detailed investigation of the Aβ load and detected that the general 

reduction of Aβ plaques was paralleled by a decrease in small soluble Aβ species. Because 

higher levels of soluble Aβ has previously been linked to decreased cognitive performance 

(Zhang et al. 2011; Lesné et al. 2008), this finding suggests that our experimental setup at 

least partially protects from cognitive decline. 

Before studying the direct contribution of immune cells, we outlined the immune response in 

the brain. We measured increased levels of IFN-γ, TNF, IL-1β, IL-6, IL-10 and TGF-β mRNA 

in T. gondii infected wildtype and 5xFAD mice compared to respective controls. IFN-γ is the 

key cytokine controlling T. gondii infection (Wang et al. 2004; Wang et al. 2005), but also 

TNF, IL-1β and IL-6 carry out important anti-parasitic effector activities (Jebbari et al. 1998; 

Schlüter et al. 2003; Hunter et al. 1995). Increased IL-10 and TGF-β have been described to 

counterbalance the inflammation and thus, prevent extensive tissue damage in chronic 

T. gondii infection (Wilson et al. 2005; Cekanaviciute et al. 2014). Interestingly, in addition to 
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its involvement in the immune reaction against T. gondii, IL-6 has been found to induce 

phagocytic markers and therefore reduce Aβ deposition (Chakrabarty et al. 2010). Overall, the 

significant changes in cytokine mRNA expression are attributed to the infection and not the 

mouse genotype. Despite the broad changes in inflammatory gene expression, APP expression 

remained unaltered in T. gondii infected 5xFAD mice compared to non-infected controls and 

cannot account for the reduced plaque burden. 

Curiously, in the study by Jung and colleagues, the authors did not measure elevated IFN-γ 

levels in T. gondii infected Tg2576 mice despite using the same parasite strain as we did and 

an even higher infection dose (Jung et al. 2012). With respect to the experimental setup, the 

main difference between their study and ours is the mouse model. Due to only one genetic 

mutation, Tg2576 mice start to develop plaques only at the age of 9 months (Chin 2011), 

while the 5xFAD mice used by us already show plaque deposition starting from the age of 2 

months (Chin 2011; Fröhlich et al. 2013). This faster progression allows for shorter 

experiment times, but both transgenic models are based on the C57BL/6 background (Chin 

2011) and thus, show a high susceptibility to the infection with T. gondii compared to other 

mouse strains like Balb/c (Dupont et al. 2012). 

Consequently, our histopathological evaluation revealed substantial changes in both cortical 

and subcortical brain regions of infected mice, indicating the infiltration by immune cells 

(monocytes and lymphocytes) and the pronounced activation of resident microglia and 

astrocytes. These observations point toward a functional role for resident and recruited 

immune cells in reducing the Aβ burden. 

Controlling the infection with T. gondii requires the collaboration of innate and adaptive 

immunity (Dupont et al. 2012). Even though there are inflammatory diseases of the CNS 

which involve adaptive immune cells, such as multiple sclerosis, the inflammation observed 

in AD seems to be restricted to innate immune cells (Heppner et al. 2015). Thus, we focused 

our further analysis on the contribution of the innate compartment. 

The detailed analysis of infiltrating immune cells confirmed the strong recruitment of innate 

immune cells, particularly CD45
hi

 CD11b
hi

 myeloid cells, to the brains of T. gondii infected 

5xFAD mice, similar to that seen in wildtype mice. It has been described previously by our 

group that in mice chronically infected with T. gondii, Ly6C
hi

 monocytes migrate to the CNS 

and further differentiate into Ly6C
int

 mononuclear cells and Ly6C
low 

macrophages in order to 

carry out specific tasks in host defense, such as cytokine production and Fc receptor mediated 

cellular phagocytosis (Biswas et al. 2015; Möhle et al. 2014). 
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We analyzed the contribution of these myeloid-derived mononuclear cell subsets in the 

process of accumulating Aβ plaques that, according to the widely accepted view on AD 

pathophysiology, ultimately promote neurodegeneration. 

Ex vivo phagocytosis assay most likely by an antibody-independent mechanism revealed that 

all recruited mononuclear subpopulations were able to take up significantly more Aβ42 than 

microglia from non-infected or activated microglia from T. gondii infected 5xFAD mice. We 

found that Ly6C
hi

 monocytes displayed an even higher uptake compared to Ly6C
low

 cells. 

Comparing the ability to take up Aβ42 with the ability to take up latex spheres as previously 

published (Biswas et al. 2015), we noted a difference with respect to the Ly6C
hi

 and Ly6C
int

 

subsets. While their uptake of latex spheres is very low (Biswas et al. 2015), they displayed a 

prominent uptake of Aβ42. Even though our results are against the general view that Ly6C
low

 

cells are the most macrophage-like subset, other publications have attributed phagocytic 

activity to Ly6C
+
 monocytes against parasites (Sponaas et al. 2009; Sheel & Engwerda 2012). 

Thus, we conclude that uptake of latex beads and Aβ42 is mediated by different mechanisms 

with diverse appearance in Ly6C
hi

 monocytes and Ly6C
low

 macrophages. 

While neuroinflammation has been conventionally reported to be detrimental and associated 

with several neurological diseases (London et al. 1996; Akiyama et al. 2000; Lyman et al. 

2013), emerging research promotes a more differentiated view on the roles of recruited 

immune cells in homeostatic and repair mechanisms (Shechter et al. 2009; Ziv et al. 2006; 

Frenkel et al. 2005; Pahnke et al. 2013; Fröhlich et al. 2013). Consistent with this concept, 

there are a growing number of reports indicating the beneficial effect of recruited immune 

cells in AD and vascular amyloidosis (Simard et al. 2006; Naert & Rivest 2012b; El Khoury 

et al. 2007; Hawkes & McLaurin 2009; Michaud et al. 2013; Koronyo et al. 2015). 

Performing the ex vivo phagocytosis assay with cells obtained from both wildtype and 5xFAD 

mice, we also observed that the relative contributions were independent of the genotype, 

despite absolute values being different. As these differences were most likely caused by the 

different quantification methods, we conclude that wildtype cells are potent Aβ clearing cells 

as well. Importantly, this finding suggests that cells probably do not have to be pre-exposed to 

Aβ to efficiently phagocytose Aβ in a possible treatment strategy. It is somehow challenging 

that human macrophages were found to be ineffective at Aβ phagocytosis when derived from 

AD patients (Fiala et al. 2005). Nevertheless, modulating the route of entry may provide a 

tool to skew recruited monocytes towards an inflammation resolving phenotype (Schwartz & 

Baruch 2014) and the capacity of these manipulated monocytes to remove Aβ remains to be 
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investigated, as two studies have found that the replacement of brain resident microglia with 

peripheral myeloid cells does not reduce the Aβ burden (Prokop et al. 2015; Varvel et al. 

2015). Both studies used a similar approach to replace microglia with peripheral cells, i. e. 

depletion of brain resident CD11b-expressing cells during a 10 to 14 days intracerebral 

ganciclovir treatment of CD11b-HSVTK (herpes simplex virus thymidine kinase) transgenic 

mice (Prokop et al. 2015; Varvel et al. 2015). This treatment leads to a one-time replacement 

with bone marrow-derived myeloid cells, as opposed to the continuous influx observed in our 

model of chronic cerebral T. gondii infection. Additionally, Prokop and colleagues point out 

the lack of an activating stimulus in their model, which would be able to induce the uptake of 

Aβ by myeloid cells (Prokop et al. 2015). Even though this lack of stimulation is resolved in 

our experimental model, finding appropriate stimuli to manipulate the cells is a complex task, 

as we have to keep in mind that beneficial and detrimental effects of monocytes and 

macrophages can occur at the same time (Gensel et al. 2009). 

The increased amount of Aβ42 detected following CCR2
hi

 Ly6C
hi

 monocyte ablation in 

infected 5xFAD mice points to a causal role of these cells to Aβ clearance. Our findings are 

supported by a report from Naert and Rivest, who have linked the lack of Ly6C
hi

 

(CX3CR1
low

 CCR2
+
 Gr1

+
) monocytes to cognitive decline in APPSwe/PS1 mice (Naert & 

Rivest 2012a). This hypothesis is further strengthened by two recent studies where myeloid 

cell recruitment to the CNS was correlated with Aβ plaque reduction (Koronyo et al. 2015; 

Hohsfield & Humpel 2015). In a very recently published study, Baruch and colleagues 

proposed a novel treatment strategy to target AD via programmed death-1 (PD-1) inhibition 

and thereby increasing the recruitment of Ly6C
hi

 monocytes to the CNS in an IFN-γ 

dependent manner (Baruch et al. 2016). The proposed mechanisms included enhanced cellular 

uptake and degradation. Furthermore, Savage et al. detected phagocytic cells directly 

associated with plaques, and the CD45
hi

 status of these cells suggested their myeloid origin 

(Savage et al. 2015). Only short-term recruitment of monocytes did not alter plaque 

deposition as seen in a mouse model of traumatic brain injury (Collins et al. 2015). 

Having confirmed Ly6C
hi

 monocytes as key contributors to Aβ removal in our model, we 

were interested if they migrate into the parenchyma to “attack” Aβ plaques like previous 

reports have shown (Mildner et al. 2011; Simard et al. 2006; Hohsfield & Humpel 2015). 

However, CCR2
+
 Ly6C

+
 monocytes were not located in the vicinity of plaques in our 

experiments. Therefore, we propose that the low plaque burden in the applied experimental 

model is due to Ly6C
hi

 monocytes’ increased capacity to remove soluble Aβ rather than due 

to direct removal of established plaques. In addition, monocyte-derived Ly6C
low

 macrophages 
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upregulate F4/80 and Iba1, and can be located adjacent to the plaques, similarly to resident 

microglia. 

It has to be carefully investigated, at which stages of disease the recruitment of monocytes 

and subsequent removal of Aβ is beneficial and can delay the onset of disease, and at which 

stages the cascade triggered by Aβ is already on its way and additional cell recruitment 

potentially worsens neuroinflammation (Musiek & Holtzman 2015). Our data from old 

animals provides evidence that the ability of freshly recruited immune cells to remove Aβ 

persists at later stages of experimental amyloidosis. 

Searching for a mechanism mediating Aβ uptake, we analyzed the expression of cell surface 

markers related to phagocytosis on CD11b
hi

 Ly6G
-
 myeloid-derived cells. The measurements 

revealed intermediate levels of TREM2, CD36 and SCARA1 on Ly6C
hi

 monocytes and high 

levels on Ly6C
low

 monocyte-derived macrophages. Recent reports of a correlation between 

genetic TREM2 mutation and AD (Jonsson et al. 2013; Guerreiro et al. 2013), along with 

experiments pointing out the anti-inflammatory and phagocytosis-enhancing role of TREM2, 

have drawn the attention towards this molecule (Jones et al. 2014; Jiang et al. 2013; Cantoni 

et al. 2015; Y. Wang et al. 2015). We detected that monocyte-derived Ly6C
low

 macrophages 

expressed high levels of TREM2, in contrast to Ly6C
hi

 monocytes. This result underlines that, 

besides TREM2, other factors may determine the capacity of immune cells such as monocytes 

to phagocytose Aβ. Several studies have suggested that CD36 expression is associated with 

Aβ uptake (Yamanaka et al. 2012; Koenigsknecht & Landreth 2004; Hickman et al. 2008), 

consistent with the CD36 expression of Ly6C
low

 monocyte-derived macrophages. Moreover, 

the lower expression of CD36 detected on Ly6C
hi

 monocytes may be beneficial because of 

less harmful pro-inflammatory CD36-Aβ interaction (Kagan & Horng 2013; Frenkel et al. 

2013; Moore et al. 2002; Wilkinson & El Khoury 2012). Frenkel and colleagues had shown 

that SCARA1 (and not CD36) mediates phagocytosis of Aβ (Frenkel et al. 2013). However, 

similar to TREM2 and CD36, SCARA1 expression was not a reliable predictor of the Aβ 

phagocytic capacity of each myeloid-derived mononuclear cell subset in our model. 

Recent research highlights the importance of proteolytic Aβ degradation. Several enzymes are 

known to digest Aβ, including MMP9 and IDE, but the contribution of each enzyme is 

crucial. Removal of only one can result in significantly increased cerebral Aβ levels (Saido & 

Leissring 2012), and overexpression leads to decreased Aβ loads (Leissring et al. 2003; 

Hoshino et al. 2011; Saido & Leissring 2012). We found both MMP9 and IDE upregulated 

significantly upon T. gondii infection in 5xFAD mice. 
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MMP9 is one of several matrix metalloproteinases that have been implicated in Aβ 

degradation and administration of an MMP inhibitor resulted in increased Aβ loads (Saido & 

Leissring 2012). Activation of MMPs has to be regarded carefully as well, as a recent study 

has shown that Aβ increases the permeability of the BCSFB by activation of MMPs (Brkic et 

al. 2015). Even though Brkic and colleagues found the biggest changes for MMP3 expression, 

the contribution of other MMPs cannot be ruled out. IDE has several substrates and exists as a 

cytosolic, membranous, and secreted variant (Wang et al. 2006), which can be ubiquitously 

found in human tissue including immune cells like granulocytes (Weirich et al. 2008). It 

hydrolytically cleaves Aβ (Mukherjee et al. 2000), and the significantly increased expression 

of IDE, particularly in conjunction with the simultaneously increased MMP9 expression, 

therefore most likely promoted the enhanced degradation of Aβ in T. gondii infected 5xFAD 

mice, when compared to non-infected controls. Upregulation of IDE may be a compensatory 

mechanism, since insulin has been shown to stimulate the growth of T. gondii in vitro (Zhu et 

al. 2006), and increased Aβ degradation could be a beneficial secondary effect. An interesting, 

yet unanswered question is whether IDE family members expressed by T. gondii itself 

(Laliberté & Carruthers 2011) could also contribute to Aβ degradation. Their substrates are, 

however, not currently known, although structural analysis suggests that T. gondii IDEs may 

be different from other family members (Hajagos et al. 2012). 

In addition, intracellular control of protein homeostasis is mediated by the ubiquitin-

proteasome system (UPS), whereby proteasomes represent the proteolytically active part. 

Dysfunction of the UPS has been shown to be an early event in AD, suggesting that 

proteasomes may be unable to properly degrade ubiquitin-tagged proteins (Dantuma & Bott 

2014). Immunoproteasomes are specific proteasome isoforms that have incorporated 

immunosubunits instead of the conventional proteases. Data not included in this thesis (Möhle 

et al. 2016) suggest a possible involvement of the immunoproteasome in Aβ degradation 

particularly by monocytes. The exact engagement of the UPS in the mentioned processes still 

requires detailed investigation in forthcoming experiments. 

Taken together, our results demonstrate that mononuclear cell recruitment to the brain upon 

chronic T. gondii infection leads to reduced plaque burden by promoting phagocytosis of 

soluble Aβ42 and enhanced proteolytic degradation. This aspect is especially critical in a 

situation where resident microglia are dysfunctional and fail to control amyloid plaque 

deposition (Hickman et al. 2008; Orre et al. 2014). Chronic T. gondii infection acts as a strong 

immunological stimulus, possibly even overcoming the impaired phagocytic capacities of 

monocytes/macrophages as observed in AD patients (Fiala et al. 2005). In the light of a future 
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treatment option, a recent study by Neal and Knoll presented data from mice showing that 

infection with T. gondii protects from bacterial infection with Listeria monocytogenes by 

recruitment of Ly6C
hi

 monocytes. Further experiments revealed that only application of a 

component of T. gondii is sufficient to mediate the resistance (Neal & Knoll 2014). This 

method of recruiting monocytes may be interesting to consider, as our results suggest a 

promising candidate mechanism for the protective effect, namely increased phagocytosis and 

degradation of Aβ. 

4.3 Conclusions 

With two distinct experimental setups I could demonstrate that Ly6C
hi

 monocytes 

significantly contribute to brain homeostasis, in addition to their well-established roles in 

inflammatory and infectious conditions. I have presented evidence that they link changes in 

neurogenesis to an altered gut flora and physical exercise, and that they are also highly potent 

Aβ removing cells. As discussed above, these findings add to an increasing body of work 

which focusses on the beneficial effects of monocytes and possible therapeutic applications. 

Although the experiments presented in this thesis were conducted exclusively in mouse 

models, the results open the door for subsequent studies with human subjects. 

While my thesis has focused on one particular subset of innate immune cells, the immune 

system is extremely complex and new types of immune cells are still being discovered e. g. 

certain ILCs have emerged only in the past years. Thus, it is very likely that future research 

will discover more diverse roles for other immune cell types.  

 

Figure 4.1: Graphical summary 
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