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1. Introduction 

 

Living organisms have developed complex metabolic networks in order to generate the 

biomolecules and energy required for survival and proliferation. These metabolic networks 

consist of a huge numbers of different metabolic enzymes catalyzing distinct chemical reactions. 

In principle, these reactions can be divided into two groups: anabolic reactions, which are 

endergonic (energy absorbing) processes to synthesize macromolecules, and catabolic reactions, 

which breakdown macromolecular substrates in order to generate energy and thereby also 

generate new products/substrates (Figure 1.1). Both networks consist of a huge variety of 

different enzymatic reactions forming characteristic intermediates, which can serve as new 

substrates for further catabolic or anabolic reactions. According to the cell’s needs, the pathways 

for building up and breaking down cellular components can be turned on and off or sped 

up/slowed down. Therefore it is crucial for the cell to develop regulatory mechanisms to monitor 

and balance the different metabolic pathways.  

 

 

Figure 1.1. Schematic overview on cell metabolism (Nature Education 2010) 
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1.2. Cell catabolism – delivering the energy for life 

 

Living systems rely on a constant supply of free energy to maintain 3 major processes, 

mechanical work like cellular movements or muscle contractions, active transport of molecules 

and ions, and synthesis of macromolecules and other biomolecules. The major energy carriers 

providing the required vigor are nucleotide triphosphates (NTPs), of which adenosine 

triphosphate (ATP) is perhaps the most famous. ATP consists of an adenosine and three 

phosphate groups containing two energy rich phosphoanhydride bonds. The free energy resulting 

from the hydrolysis of these bonds (Figure 1.2.) drives thermodynamic unfavorably enzymatic 

reactions. 

 

Figure 1.2. ATP structure and free energy resulting from hydrolysis of phosphoanhydride bonds 

 

Since ATP is an energy carrier, which serves not as an energy store, there is a very high turnover 

of ATP, ADP, and AMP molecules. Cells are able to sense their current energy status by 

determining the ration between ATP and AMP through highly specific cellular energy sensors 

like adenosine monophosphate-activated protein kinase (AMPK) and subsequently modulate 

metabolic pathways to produce or consume ATP (Hardie et al. 1999). 

Another role of ATP is in signal transduction pathways. Kinases use ATP as a phosphate donor 

to phosphorylate proteins, which commonly leads to protein activation driving signal 

transduction processes. Finally ATP can also be used as donor for AMP during DNA-synthesis. 

There are several ATP analogs like guanosine triphosphate (GTP), uridine triphosphate (UTP) 

and cytidine triphosphate (CTP), which are mainly used for DNA/RNA synthesis, but there are 

also metabolic processes which specifically utilize these triphosphates, e.g. glycogen syntheses 

(UTP), pyrimidine biosynthesis (CTP), and microtubule organization (GTP). 

The main energy source for living cells is provided by the consumption of glucose. Glucose is 

metabolized through glycolysis and the subsequent tricarboxylic acid (TCA) cycle. During 

glycolysis a series of ten enzymatic reactions convert glucose to pyruvate (Figure 1.3.).  
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Figure 1.3. Overview glycolytic pathway from glucose to pyruvate and subsequent fermentation reactions to lactate or 
ethanol 

 

The first key reaction is the phosphorylation of glucose by hexokinase thereby forming glucose-

6-phosphate. This is followed by an isomerization by glucose phosphate-isomerase to fructose-6-

phosphate. Further phosphorylation of fructose-6-phosphate by phosphofructokinase, 

consuming one ATP, leads to the formation of fructose-1,6-bisphosphate. The reaction of 

phosphofructokinase is a key step in regulating this process. Subsequent action of the enzyme 

aldolase leads to a cleavage of fructose-1,6-bisphosphate into dihydroxyacetone-phosphate and 

glyceraldehyde-3-phosphate. Since these two metabolites are isomers, triose phosphate-isomerase 

can convert dihydroxyacetone-phosphate to glyceraldehyde-3-phosphate. Two molecules of 

glyceraldehyde-3-phosphate are then metabolized to 1,3–bisphosphoglycerate by the enzyme 

glyceraldehyde-3-phosphate dehydrogenase, which reduces nicotinamide adenine dinucleotide 

(NAD+) to NADH.. This is followed by the conversion of 1,3–bisphosphoglycerate to 3-

phosphoglycerate catalyzed by phosphoglycerate kinase, which leads to the generation of ATP. 

The subsequent reactions from 3-phosphoglycerate to 2-phosphoglycerate by phosphoglycerate-
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mutase, followed by enolase which generates phosphoenolpyruvate leads to the last important 

reaction of glycolysis the formation of pyruvate by pyruvate kinase, which again leads to 

production of ATP. In summary, the consumption of one molecule of glucose and one NAD+ by 

the glycolytic pathway leads to the net production of 2 molecules of pyruvate, 2 ATP, and one 

NADH.  

Pyruvate can be further utilized for ATP generation by entering the tricarboxylic acid (TCA) 

cycle. Although this marks the main metabolic pathway in energy metabolism, two other 

pathways exist for metabolizing pyruvate. Under hypoxic conditions, yeast (and other 

microorganisms) can convert pyruvate to ethanol (Figure 1.3.). The second possibility is the 

generation of lactate through the activity of lactate dehydrogenase (Figure 1.3.). While this activity 

is also found in microorganisms, the best example is muscle cells after intensive mechanical work. 

Both reactions occur in the absence of sufficient oxygen and do not produce ATP, however they 

are needed for the regeneration of NADH (produced during glycolysis) to NAD+ in order to 

maintain a high rate of glycolysis. Since all reactions of glycolysis are carried out in the cell 

cytoplasm, the reaction from pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase is a 

key step for entering the mitochondria, where the reactions of the TCA cycle occur (Figure 1.4.). 

Upon entering the mitochondria, acetyl-coenzyme A (acetyl coA) enters a condensing reaction 

with oxaloacetate to forms citrate, catalyzed by citrate synthase. Afterwards, citrate isomerizes to 

isocitrate. This is followed by oxidative decarboxylation by isocitrate dehydrogenase leading to 

the formation of α-ketoglutarate and the oxidation of NAD+ to NADH. A second oxidative 

decarboxylation is characterized by the formation of succinyl coA and again the formation of 

NADH. Succinyl coA is than further metabolized to succinate, which leads to the formation of 

GTP. In the following 3 reactions, succinate is then converted to fumarate and subsequently 

malate, which in turn regenerates oxaloacetate enabling it to bind new acetyl-coA again. During 

the TCA cycle, the generation of 3 molecules of oxidized NADH per one molecule of acetyl-coA 

is essential for the following energy producing steps. 
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Figure 1.4. schematic overview over TCA-cycle reactions 

 

Through the electron transport chain during the oxidative phosphorylation the reduction of 

NADH to NAD+ leads to a formation of proton gradient at the mitochondrial membrane, which 

drives ATP synthesis by the enzyme ATP-synthase. In total, during the TCA-cycle and 

subsequent oxidative phosphorylation, 28 molecules of ATP are generated, making this the main 

energy producing process in the cell. 

 

1.3 Metabolism in cancer 

 

The pathways of glycolysis and the TCA-cycle are highly conserved throughout living organisms. 

Although the energy delivered to maintain cellular homeostasis is predominantly produced by the 

TCA-cycle, the process of completely breaking down glucose is rather slow. In proliferating and 

rapidly growing cells the demand for energy and nutrients is high, which requires changes in the 

metabolic signature. One example of abnormal cell proliferation is cancer. Cancer metabolism 

has been extensively studied in the last decades beginning with the fundamental observation 

made by Otto Warburg in the 1920s. He showed that in the presence of oxygen, cancer cells 

favored the conversion of glucose via glycolysis and subsequent reaction from pyruvate to lactate 

instead of further metabolizing it through the TCA-cycle and oxidative phosphorylation 
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(WARBURG 1956). This feature, termed the “Warburg effect”, has been described for many 

types of tumors and is now considered a hallmark of cancer. One explanation for this altered 

metabolism is the selective advantage for survival and proliferation in the tumor 

microenvironment. During tumor progression, the oxygen levels within the tumor 

microenvironment vary spatially and temporally selecting for cells that constitutively upregulate 

glycolysis. This is characterized by the increased expression of glycolytic enzymes, glucose 

transporters, and inhibitors of mitochondrial metabolism (Yamamoto et al. 1990; Mathupala et al. 

1997; Rivenzon-Segal et al. 2003). One mechanism to upregulate glycolysis is the stabilization of 

hypoxia-inducible transcription factor (HIF). HIF initiates a transcriptional program providing 

the basics of upregulated glycolysis under hypoxic stress (Cramer et al. 2003). Since the 

stabilization of HIF is coupled to oxygen levels, it is not the only factor responsible for altered 

metabolism. Also the increased expression and/or stabilization of certain oncogenes have been 

described to play a role in the upregulation of glycolysis. Mutations in the proto-oncogene Ras 

(Flotho et al. 1999; Stirewalt et al. 2001), AKT (Zeng et al. 2006) and PI3kinase (Jücker et al. 

2002) which play an important role in insulin signaling as well as the transcription factor Myc 

(Dang et al. 2009; Gao et al. 2009) have all been shown to be responsible for the expression of 

metabolism related genes.  

Often mutations of regulatory proteins lead to tumor progression, characterized by altered 

metabolism. These characteristic metabolic signatures are not unique to tumor cells, but in fact 

are features of highly proliferating cells found in higher organism. One example of such cells are 

T lymphocytes in the immune system. Upon recognition of their antigen, a small number of cells 

expand within hours to form an effector population. This strong proliferation shares similarities 

in its metabolic profile to cancer cells. In addition, when T lymphocytes are recruited to a site of 

infection to fight pathogens or to restrict tumor progression they encounter a similar 

microenvironment like cancer cells. Thus, by adjusting their metabolic features T lymphocytes 

can maintain their protective function within the immune system. 

 

1.4. The immune system 

 

The main task for the immune system is to prevent and/or eliminate pathogens causing a wide 

variety of diseases. Therefore the innate and the adaptive immune system are the pillars of the 

immune response. If pathogens overcome the physical barriers and enter the organism, the innate 

immune system provides a fast, non-specific response. If the mechanisms of the innate immune 

response fail to clear a pathogen, then an adaptive immune response develops. Adaptive 
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immunity acts by specific recognition and selective elimination of the target. Adaptive immunity 

is triggered when foreign antigens enter into secondary lymphoid organs by diffusion or are 

presented by specific antigen presenting cells (APCs). There are two types of lymphocytes 

characteristic for adaptive immune response. B lymphocytes regulate humoral immunity by 

secreting immunoglobulins, which eliminate pathogens by neutralization, agglutination, 

phagocytosis, and/or complement activation. B lymphocytes development in the bone marrow 

from pluripotent stem cells via a series of different progenitor stages which in the end leads to 

the clonal expansion of the mature B cells upon the binding of foreign antigen to the B cell 

receptor (BCR). A second type of lymphocyte, T lymphocytes, is required for cell mediated 

immunity. Upon triggering the specific T cell receptor (TCR), T cells proliferate and differentiate 

into different effector cells. Cytotoxic T cells kill infected or damaged cells, whereas Helper T 

cells coordinate the immune response by secreting specific cytokines. T cells develop in the 

thymus, where they undergo two selection processes. The first process, positive selection, ensures 

that only T cells with receptors that can recognize self-MHC molecules survive. The second 

process, negative selection, eliminates T cells that strongly recognize self-antigens on MHC 

molecules, thereby ensuring that only those cells able to detect foreign peptides are allowed to 

exit the thymus. In addition, there exist populations of regulatory lymphocytes, called native or 

inducible regulatory T cells (nTregs or iTregs), which control the amount of differentiated cells 

and inhibit further proliferation once the pathogen is cleared. A small amount of the 

differentiated cells remain as long lived memory cells to ensure protection should the same 

pathogen be encountered again. 

 

1.4.1. T cell development and activation 

 

T cells play a central role in the immune system and are important for cell mediated immunity. 

Initiation of T cell receptor signaling is a critical step for the activation of T cells and therefore 

requires tight control. The T cell receptor is formed during thymocyte development. These 

selection processes ensure that only receptors with a weak affinity for self MHC exit into the 

periphery. Naïve T cells can be distinguished by their expression of the surface molecules CD4 

and CD8. CD4 T cells, also called helper T cells are restricted to MHC-class II recognition 

whereas cytotoxic CD8 T cells only recognize MHC-class I molecules. They are constantly 

recirculating between peripheral lymphoid organs and the bloodstream until they encounter their 

specific antigen. These antigens are expressed on antigen presenting cells (APCs) like B cells, 

dendritic cells, and macrophages as peptide-MHC class I or II complexes. Upon recognition of 
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antigen by the T cell receptor (TCR) an adaptive immune response is initiated (von Andrian et al. 

2000; Mescher et al. 2006). The TCR consists of 2 transmembrane proteins termed the α and β 

chain. The extracellular domains of these two chains contain variable regions, which are capable 

of binding the peptide-MHC complex. Since the variable chains are formed during thymocyte 

development by somatic recombination every T cell harbors a different TCR with unique 

specificity. However, the α and β chains lack cytoplasmic domains and thus are not able to 

transmit signals into the cell. Signals via the TCR are transmitted via the noncovalently associated 

CD3 subunits, namely one heterodimer consisting of γ and ε and another of δ and ε chains, as 

well as a homodimer of ζ chains. These subunits possess intracellular tails containing specific 

signaling motifs called immunoreceptor tyrosine-based activation motifs (ITAMs). Upon 

triggering of the TCR these ITAMs become phosphorylated by members of the Src family of 

protein tyrosine kinases, namely LCK and Fyn. 

Phosphorylated ITAMs provide docking sites for the tandem SH2 domains of the Syk family 

kinase ZAP70, which is thereby recruited to the plasma membrane and itself becomes activated 

via phosphorylation by Lck (Chan et al. 1992; Chan et al. 1995). One important target of ZAP70 

is the transmembrane adaptor called the linker for activation of T cells (LAT). Phosphorylated 

LAT serves as a scaffold to recruit further downstream molecules, which activate distinct 

signaling pathways leading to the activation of transcription factors, such as NFAT, NF-B and 

AP-1. These transcription factors are required for initiating cytokine production, T cell 

proliferation, and differentiation.  

Translocation of the transcription factor NFAT into the nucleus is Ca2+ dependent. Upon 

recruitment and activation of PLCγ1 in the LAT complex results in hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) producing two second messengers diacylglycerol 

(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 binds to the IP3 receptor on the endoplasmic 

reticulum inducing a transient increase in free intracellular Ca2+, which binds to calmodulin which 

in turn activates calcineurin, a Ca2+/calmodulin-dependent protein phosphatase. Activated 

calcineurin dephosphorylates the transcription factor NFAT, thereby allowing its translocation to 

the nucleus (Garcia-Cozar et al. 1998).  

The transcription factor AP-1, a heterodimer consisting of the transcription factors Fos and Jun, 

is activated via the MAP kinase pathways. The transcription factor Fos is activated by the Ras-

Raf-MEK-ERK pathway which can be triggered by the recruitment of Grb2/SoS to LAT or via 

the activation of RasGRP by DAG (Genot et al. 2000; Jones et al. 2002). Furthermore upon TCR 

triggering SLP76 is recruited to phosphorylated LAT and leads to phosphorylation of Vav1, 

which in a series of events leads to the activation of Jnk. Phosphorylated JNK is then required 

for activation of Jun (Saez-Rodriguez et al. 2007).  
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Activation of the transcription factor NF-B is dependent on the activation of protein kinase C 

(PKC) via DAG. This leads to the formation of the Carma1-BCL10-MALT1 (CBM) complex, 

which in turn activates the IKK complex leading to the degradation of inhibitory protein IBα. 

Removal of this inhibitor allows the active transcription factor NF-B to translocate into the 

nucleus (Ruefli-Brasse et al. 2003; Egawa et al. 2003). 

A variety of stimuli, including soluble or immobilized antibodies (Abs) that recognize the T cell 

receptor (TCR), peptide-loaded APCs, or MHC-I tetramers carrying high- or low-affinity 

peptides, have been used to study T cell activation. It was previously shown that different stimuli 

used to activate the TCR can lead to either a strong/transient activation of signaling molecules or 

to weak/sustained signal. The former lead to apoptosis, while the latter induces proliferation 

(Wang et al. 2008). Interesting this was true for both thymocytes (Daniels et al. 2006) and 

peripheral T cells (Wang et al. 2008). However, it is poorly understood how triggering of the 

same receptor with ligands of different affinity can induce these different outcomes. Though, it is 

known that thymocytes which cannot fulfill their energy demands undergo apoptosis (Daniels et 

al. 2006). Therefore we hypothesized that changes in the metabolic profiles of activated T cells 

might contribute to cell fate specification. 

 

1.5. Metabolic signatures of the immune system 

 

A functional immune response requires rapid cell growth, proliferation, and the production of 

effector proteins. In the presence of its specific antigen, T lymphocytes must rapidly shift from a 

resting state to an activated one in order to accomplish these tasks. The activation of T cells is 

accompanied by a huge demand for ATP; the major energy source in cell metabolism. The main 

pathways for generating ATP are glycolysis and the TCA cycle followed by oxidative 

phosphorylation. Resting T cells require relatively low amounts of energy for housekeeping 

functions, i.e. homeostasis. Most of this energy is produced by oxidative phosphorylation 

(OXPHOS) through the degradation of glucose, fatty acids, and glutamine (Roos,Loos 1973). 

Upon activation, cellular programs direct T cells towards proliferation, differentiation, and 

cytokine production. Especially during rapid proliferation where T cells expand exponentially 

they must double their intracellular content, i.e. lipids, proteins and nucleic acids. The subsequent 

increasing need for energy and metabolic precursors was shown to be accomplished by a strong 

upregulation of glycolysis (Greiner et al. 1994). Although the generation of ATP by glycolysis is 

inefficient when compared to OXPHOS, upregulating glycolysis has the advantage of being a fast 

process and was shown to protect cells from apoptosis (Perl et al. 2002). Since upregulating 
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glycolysis without a corresponding increase in OXPHOS would lead to an accumulation of the 

end product pyruvate, it was shown that the excess pyruvate generated is converted to lactate by 

lactate dehydrogenase (Brand et al. 2005). This step is essential to regenerate the reducing 

equivalent NADH, which is needed to maintain the high glycolytic turnover. It was shown for 

muscle cells that high intracellular concentrations of lactate are secreted by an active cotransport 

via monocarboxylic transporters together with an H+ which in turn leads to extracellular 

acidification. To prevent lactic acidosis the extracellular lactate is then transported via the 

bloodstream to the liver where during gluconeogenesis lactate is metabolized back to glucose 

(Juel 1997). 

These observations lead to the conclusion that glucose is the major energy source of activated 

lymphocytes. This was also confirmed by showing that removing glucose in activated T cells 

leads to an inhibition of T cell proliferation and cytokine production (Greiner et al. 1994; 

MacDonald et al. 1979). In addition, also other metabolic pathways have been shown to play a 

role in T cell metabolism, e.g. increased glutamine consumption was shown to be essential for T 

cell function (MacDonald et al. 1979; Brand et al. 1984). The degradation of glutamine is an 

energy-producing pathway by entering the TCA cycle, which in the end leads to the conversion 

from malate to pyruvate. This pyruvate together with an upregulated glycolysis can foster the 

generation of lactate. Glutamine is also needed to refill intermediates of the TCA cycle, which are 

also used for biosynthetic processes that are essential for maintaining T cell proliferation, i.e. 

providing a nitrogen source for non-essential amino acids and nucleotides. Beside the generation 

of ATP, T cells also require NADPH to support lipid and nucleotide biosynthesis. NADPH is 

generated in two different processes, the pentose-phosphate-pathway dependent on glucose-6-

phosphate and the last step of glutamine degradation – the conversion from malate to pyruvate. 

This suggests that glucose and glutamine are the major nutrients required for T cell proliferation. 

 

1.5.1. Protein Kinase B/AKT 

 

The most prominent pathway responsible for upregulating glycolysis is the PI3K/AKT pathway. 

In T cells, coligation of the TCR and the costimulatory molecule CD28 leads to direct 

phosphorylation of phosphatidylinositol-4,5-bisphosphate (PIP2) by phosphoinositide 3-kinase 

(PI3K), which in turn leads to increased levels of phosphatidylinositol-3,4,5-trisphosphate (PIP3) 

within the membrane. AKT translocates to the plasma membrane since it binds to PIP3 via its 

PH-domain, where it can be phosphorylated by PDK1 on Thr308. For full activation, AKT 

requires an additional phosphorylation on Ser473 by mTOR complex 2. It was shown for T cells 
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that sustained activation of AKT upregulates the glucose transporter 1 (GLUT1) and increases 

the activity of the rate-limiting glycolytic enzyme hexokinase (Frauwirth et al. 2004). Together 

with the observations that AKT regulates the activity of hexokinase and phosphofructokinase the 

two rate limiting enzymes of the glycolysis, it can be hypothesized that AKT is responsible for 

regulating enzymes of glycolysis and lactate production, which leads to an increased glycolytic 

rate. The observations on the activating role of AKT were mostly performed in primary human T 

cells stimulated with CD3 and CD28, which fully activate AKT. This led to upregulation of 

GLUT1 and glucose uptake, which could be inhibited by addition of CTLA4 (Frauwirth et al. 

2004; Parry et al. 2005).  

1.5.2. Mammalian Target of Rapamycin - mTOR 

 

In T cells, mTOR exists as one gene, but forms two distinct protein complexes: mTOR complex 

(mTORC) 1 and mTORC2, which differ in their inputs and substrates (Hara et al. 2002; Kim et 

al. 2002; Sarbassov et al. 2004). The mTORC1 complex consists of the regulatory-associated 

protein of mTOR (Raptor), mLST8, PRAS40, and DEPTOR. The proteins mLST8 and 

DEPTOR are also found in the mTORC2 complex, with the addition of RICTOR, mSIN1 

proteins, and PROTOR (Kim et al. 2002). Upstream of the mTORC1 complex is the small 

activating GTPase Ras homolog enriched in brain (Rheb), the function of which is regulated by 

the GAP activity of tuberous sclerosis complex 1 (TSC-1) and TSC-2 (Zhang et al. 2003). 

Phosphorylation of TSC-1/2 by AKT leads to inhibition of the GAP activity and subsequent 

inactivation of Rheb (Tee et al. 2003).  

Additionally, AKT-mediated inhibition of PRAS40 has been shown the promote mTORC1 

activity independently of TSC-1/2 (Wang et al. 2007). mTORC1 is known to play a critical role in 

regulating mRNA translation, glucose and lipid metabolism, mitochondrial biosynthesis, and 

autophagy (Düvel et al. 2010). Recent studies have shown that mTORC2 is strongly and 

specifically activated following association with ribosomes, whereas its kinase activity is inhibited 

by endoplasmic reticulum stress and the glycogen synthetase kinase-3b (GSK-3b) (Chen et al. 

2011). Downstream targets of mTORC2 include AKT, serum and glucocorticoid-inducible 

kinase 1, and protein kinase C (Guertin et al. 2006). Therefore it is known that AKT acts 

upstream as a regulator of mTORC1 activity, which is dependent on the phosphorylation of 

AKTT308 by the PI3K/PDK1 pathway. Additionally AKT is also a downstream target of 

mTORC2, which phosphorylates AKTS473 (Sarbassov et al. 2005; Guertin et al. 2006). 
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1.5.3. AMPK 

 

Another important regulator of cellular metabolism is adenosine-monophosphate kinase 

(AMPK), which promotes ATP conservation and production through the activation of glycolysis, 

fatty acid oxidation, and the inhibition of ATP-consuming pathways, such as protein synthesis, 

fatty acid synthesis, gluconeogenesis, and glycogen synthesis. AMPK can be activated by an 

increase in the AMP:ATP ratio followed by phosphorylation through LKB1 (a serine/threonine 

kinase)(Hardie et al. 1999; Woods et al. 2003; Cao et al. 2010) . In addition it has been shown that 

Ca2+-calmodulin-dependent kinase kinase 2 (CAMKK2) can activate AMPK independent of 

AMP levels (Hurley et al. 2005; Tamás et al. 2006). This suggests that LKB1/AMPK antagonize 

the PI3K/AKT/mTOR pathway, which promotes anabolism. This could be confirmed by the 

observations that AMPK activation was shown to be transient upon T cell stimulation (Tamás et 

al. 2006). Additionally, AMPK was shown to be required for memory T cell differentiation. 

Addition of the drug metformin caused an sustained activation of AMPK and subsequently led to 

increased numbers of memory T cells (Rolf et al. 2013). Recent studies showing that 

LKB1/AMPK influences assymetric cell division in D. melanogaster (Mirouse et al. 2007; Lee et al. 

2007), suggest that there could be a role for AMPK in the assymetric division T cells. Since 

sustained activation of AKT is needed for effector T cell differentiation and AMPK activation 

appears to be only transient under these conditions, one could hypothesize that the contact of a 

T cell  to an APC could also lead to a polarized distribution of metabolites.  

1.5.4. Transcription factors 

 

Recently several studies have further analyzed the connection between the major metabolic 

regulators and metabolism. It was investigated whether transcription factors like Hif1α  and MYC 

play an important role in expression of metabolic enzymes. Hif1α is a transcription factor that 

regulates the expression of genes that encode for glycolytic enzymes as well as downregulates 

mitochondrial oxygen consumption by blocking the entrance of pyruvate into the TCA cycle 

(Firth et al. 1994; Semenza et al. 1996). Hif1α is constitutely active, but under normoxic 

conditions, it is rapidly degraded. Under low oxygen conditions the degradation of Hif1α is 

inhibited and it translocates to the nucleus where it upregulates glycolytic genes and drives the 

cell towards aerobic glycolysis. Another factor investigated was the proto-oncogenic transcription 

factor Myc, which was shown to be induced upon T cell stimulation (Douglas et al. 2001). The 

deletion of Myc lead to an impaired upregulation of glycolysis and glutaminolysis, and a 
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decreased activation of targets downstream of mTOR. These observations led to the conclusion 

that Myc is probably the major transcription factor regulating T cell metabolism upon activation.  

 

1.6. Aim of the project 

 

It was previously shown that triggering of the T cell receptor with stimuli of different affinities 

lead to different outcomes. Activation of CD8 T cell with soluble CD3 and CD8 antibodies lead 

to the strong phosphorylation of downstream molecules like ZAP70, LAT, and ERK (Wang et al. 

2008). However this activation was transient and the T cells failed to induce proliferation, but 

rather undergo apoptosis within 24h. On the contrary, stimulation with MHC-I tetramers 

presenting the OVA peptide lead to a weak, but sustained activation of signaling molecules. Here, 

the T cells were able to survive and proliferate.  

Based upon these results, I generated the hypothesis that different stimuli could induce different 

metabolic signatures, which in turn could explain the different phenotypes/functional outcomes. 

To test this hypothesis, I analyzed and compared specific metabolic features upon TCR 

triggering. 

A second goal was to further analyze the metabolic parameters upon TCR triggering to provide a 

more detailed overview of how metabolism is regulated in T cells. Therefore, I analyzed the early 

changes in metabolism which enable T cells to switch from a resting state to an activated and 

proliferative phenotype. Furthermore I assessed regulatory parameters to elucidate the role of 

signaling proteins like AKT, mTOR and CTLA4 in upregulation of glucose metabolism and 

subsequent down modulation of these energy demanding processes. 
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2. Materials and Methods 

 

2.1. Antibodies used in this study 

 

Antibody Species and clone Application Source 

actin  mouse monoclonal 
IgG1(AC-15) 

WB - 1:10,000 Sigma-Aldrich 

anti-mouse-HRP goat WB - 1:10,000 Dianova 
 

anti-rabbit-HRP  goat WB - 1:10,000 Dianova 
 

AMPKα mouse monoclonal 
(F6) 

WB - 1:1000 cell signaling 
technologies 

AMPK –pT172 rabbit polyclonal WB - 1:1000 cell signaling 
technologies 

CTLA-4-PE (CD152) mouse monoclonal 
(UC10-4F10-11) 

FACS – 1:100 BD 

CD3ε-biotin mouse monoclonal 
(145-2C11) 

stimulation BD 

CD8α mouse monoclonal 
(53-67) 

stimulation BD 

Erk1/2 –  

p Thr202/pTyr204 

rabbit monoclonal 
(D13.14.4E) 

WB – 1:1000 cell signaling 
technologies 

GLUT1 rabbit monoclonal 
(EPR3915) 

FACS - 1:100 Epitomics 

Hexokinase rabbit monoclonal 
(C35C4) 

WB - 1:1000 cell signaling 
technologies 

HIF1α-hydroxy- P564 rabbit monoclonal 
(D43B5) 

WB - 1:1000 cell signaling 
technologies 

JNK 
pThr183/pTyr185 

rabbit polyclonal WB- 1:1000 cell signaling 
technologies 
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LDHA rabbit polyclonal WB - 1:1000 cell signaling 
technologies 

Phosphofructokinase 
(PFK1) 

mouse monoclonal 
(E9) 

WB - 1:1000 santa cruz 
biotechnologies 

p70-S6K – pT389 mouse monoclonal 
(1A5) 

WB - 1:1000 cell signaling 
technologies 

Stat5-pY694 rabbit monoclonal 
(C11C5) 

WB - 1:1000 cell signaling 
technologies 

Stat5-pY694 mouse monoclonal 
(C47) 

FACS – 1:100 BD  

 

2.2. General reagents for cell culture 

 

RPMI 1640 medium with NaHCO3 and stable glutamine   Biochrom AG 

PBS without Ca2+Mg2+       Biochrom AG 

FCS          PAN Biotech GmbH 

CiproBay 200         Bayer 

Trypan blue         Sigma 

 

2.3. Inhibitors used in this study 

Inhibitor concentration used Source 

AKT V 1µM Calbiochem 

AKT VIII/AKTi 2µM Calbiochem 

AKT XII 5µM Calbiochem 

Oxamate 50mM Sigma Aldrich 

Rapamycin 2mM Sigma Aldrich 

Rotenone 100nM Sigma Aldrich 

 

All inhibitors were tested for induction of necrosis/apoptosis and specific function for various 

concentrations. The concentrations depicted are the ones used in the subsequent experiments. 
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2.4 Analysis of human T cells 

 

2.4.1. Isolation and purification of human T cells 

 

Reagents and instruments: 

Ficoll Biochrom AG 

Heparin Biochrom AG 

Pan T cell isolation kit II Miltenyi Biotec 

AutoMACS Miltenyi Biotec 

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll gradient centrifugation of 

heparinized blood collected from healthy volunteers. A ring containing PBMCs formed during 

the gradient centrifugation. PBMCs were carefully aspirated and washed 3x with RPMI 1640 

medium. The cells were rested in RPMI 1640 medium supplemented with 10% FCS for 2 hours 

in an incubator. T cells were further purified by non-T cell depletion on the AutoMACS machine 

using the Pan T cell isolation kit II. T cell populations of greater than 95% purity were obtained, 

as determined by flow cytometry analysis. 

2.4.2. Stimulation of human T cells 

 

For microbead stimulation, SuperAvidin™-coated polystyrene microspheres (Ø ~ 10 μm, Bangs 

Laboratories) were coated with biotinylated CD3 alone or in combination with CD28 and CD4 

mAbs as indicated (10 μg/ml each) for 30 min at 37 °C in PBS. Antibody-coated microbeads 

were washed twice with PBS, resuspended in RPMI 1640 and incubated with T cells in a 1:1 ratio. 

2.5. Animal experimentation 

2.5.1. Mice condition and handling 

 

Mice were kept in the central animal facility at the Otto-von-Guericke-University of Magdeburg 

and maintained in pathogen-free conditions. All experiments involving mice were performed 

according to the guidelines of the State of Sachsen-Anhalt,Germany. 
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2.5.2 Genomic DNA isolation from mouse tails 

 

Genomic DNA was purified from a 1 cm piece of mouse tail, provided from the animal facility 

and placed into a 1.5 ml eppendorf tube. The mouse tail was predigested by incubation with 600 

μl Tail lysis buffer and 6 μl proteinase K solution at 56°C for 3-5 h under constant shaking. After 

a centrifugation for 10 min at 10000 rpm the supernatant was added to a new tube containing 

600µl isopropanol. Next the sample was centrifuged again for 10min at 12000 rpm and 

subsequently washed with 600 µl ice-cold ethanol, centrifuged again for 5 min at 12000 rpm and 

dried on a paper towel for 30min. The dried DNA was than resuspended in 150µl water and 

stored at 4°C. 

2.5.3. Genotyping of OT-I-transgenic mice strain by PCR  

 
Genotyping of the OT-I transgenic mice was performed according to the PCR protocol 

established by Jackson Laboratories. 

Primers used for genotyping (Metabion): 

Primer 1 (internal control F): 5’- CAA ATG TTG CTT GTC TGG TG -3’ 

Primer 2 (internal control R): 5’- GTC AGT CGA GTG CAC AGT TT-3’ 

Primer 3 (OT1-TCR F): 5’- AAG GTG GAG AGA GAC AAA GGA TTC-3’ 

Primer 4 (OT1-TCR R): 5’- TTG AGA GCT GTC TCC-3’ 

The following reaction mix was pipetted into the PCR tube according to the manufacturer’s 

protocol: 

 

PCR reaction mix PCR program 

Primer 1 0.25 μl (1 μM) Hot start 94°C, 3 min 

Primer 2 0.25 μl (1 μM) Denaturation 94°C, 30 sec 

Primer 3 0.125 μl (0.5 μM) Hybridization 52°C, 30 sec 38 cycles 

Primer 4 0.125 μl (0.5 μM) Elongation 72°C, 30 sec 

Taq polymerase 0.5 μl (2.5 U) Final elongation 72°C, 2 min 

5 x enhancing buffer 5 μl  
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10 x reaction buffer 2.5 μl  

dNTP (mix) 0.25 μl (200 μM)  

dH2O up to 23.5 μl  

To each reaction 1.5 μl DNA was added  

 

2.5.4. Gel electrophoresis of nucleic acids 

 

1 x TAE buffer:    10 mM Tris 

0.1142% acetic acid 

1 mM EDTA pH 8.0 

Agarose gel 2%:    2 g agarose 

100 ml 1 x TAE buffer 

10 μl ethidium bromide (10 mg/ml) 

6 x loading buffer:    30% glycerol 

20 mM Tris (pH 7.6) 

2 mM EDTA 

0.02% bromphenolblue 

0.02% xylenxylanol 

Marker:     GeneRuler 50 bp DNA Ladder 

The reaction was analyzed by mixing the PCR products with 6 x loading buffer and loaded on a 

2% agarose gel supplemented with ethidium bromide. Electrophoresis was carried out with a Bio-

Rad Mini DNA system in TAE-buffer at 100 V for 30 min. DNA fragments were visualized by 

UV light observing a band at ~200bp referring to the internal TCR control and at ~350bp 

referring to the transgene. 
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2.5.5. Purification of CD8+ OT-I T cells from mouse spleen 

 

Pan T cell isolation kit mouse Miltenyi Biotec 

AutoMACS Miltenyi Biotec 

 

Mice were sacrificed and the spleens were removed. To disrupt the organs and to release the 

cells, the spleen was mashed through a 40 μm diameter pore-size strainer with a syringe plunger 

at room temperature. Cells were collected in a 15 ml tube and washed by adding ice-cold PBS to 

a final volume of 15 ml and centrifuged for 10 min, 370 g, at 4°C. The pellet was resuspended in 

10 ml ice-cold PBS and the cell number was determined. 

Since OT-I TCR tg mice contain only CD8+ T cells, a Pan T cell isolation kit was used for 

purification. The single cell suspension was centrifuged at 370 g for 10 min. The cell pellet was 

resuspended in ice-cold PBS at a concentration of 10 x 106
 cells/45 μl. Staining was performed 

with 5 μl Biotin-Antibody Cocktail (cocktail of biotin-conjugated monoclonal antibodies against 

CD11b (Mac-1), CD45R (B220), DX5 and Ter-119) and incubated for 10 min on ice. 

Subsequently, the cell suspension was mixed together with 40 μl of ice-cold PBS per 10 x 106
 cells 

and 10 μl of anti-Biotin MicroBeads. The mixture was incubated for 15min on ice. Afterwards 

the cells were washed once with 10 ml of ice-cold PBS and centrifuged at 370 g for 10 min. The 

supernatant was removed and the cell pellet was resuspended in PBS at the concentration of 1 x 

108cells/ml. The magnetic separation was performed by using the Auto-MACS separator. The 

purity of isolated cells was determined by flow cytometry. 

Since CTLA4-/-
 mice provided by the group of Prof. Brunner-Weinzierl were also crossed onto 

the OT-I transgenic background, the purification procedure was the same as described above. 

  



MATERIALS AND METHODS        24 

2.5.6. OT-I T cell stimulation in vitro 

2.5.6.1 Stimulation with OT-I tetramers 

 

Mouse medium:     RPMI-1640 

10% FBS 

1% antibiotics (penicillin and streptomycin) 

1.75 μl 2-mercaptoethanol (in 500 ml RPMI) 

Prior to stimulation of T cells with OT-I tetramers, 0.75 μg Strep-Tactin was incubated with 

recombinant monomeric biotinylated-MHC-I (1 μg) in a final volume of 50 μl with PBS or 

mouse medium at 4°C for 45 min according to the manufacturer’s instructions. Recombinant 

monomeric biotinylated H-2Kb molecules presenting the ovalbumin SIINFEKL peptide 

(OVA) or presenting the SIIQFEHL peptide (Q4H7) for the OT-I TCR were used in this 

study. 2 x 10
6
 purified T cells were resuspended in 50 μl PBS or mouse medium. 

Subsequently, the cell solution was mixed with the OT-I tetramers (pMHC-strep-tactin) at 

37°C for the indicated time points. Stimulation was stopped by adding 1 ml ice-cold PBS. The 

procedure was continued according to the specific purpose. 

2.5.6.2. stimulation with CD3/CD8 mAbs 

 

2 x 10
6

 purified T cells were resuspended in 100 μl of PBS or mouse medium. Before 

stimulation, the cells were pre-incubated with biotinylated CD3ε mAb and biotinylated CD8 

mAb (10 μg/ml) at 37°C for 1 min. Stimulation started when cells were cross-linked with 50 

μg/ml streptavidin. 1 ml of ice-cold PBS was added to stop the reaction. The procedure was 

continued according to the specific purpose. 
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2.6. Surface staining and FACS (Fluorescence Activated Cell Sorting) analysis 

2.6.1. Extracellular staining 

 

1 x 10
6

 cells were centrifuged for 5 min, 400 g, at 4°C. The pellet was resuspended in 100 μl 

of the indicated antibody solution. After 30 min of incubation in the dark at 4°C, cells were 

washed with PBS. The cell pellet was resuspended in 300 μl PBS and measured by the FACS 

Diva machine. Data were analyzed using the FlowJo software. 

2.6.2. Proliferation assay 

 

CellTrace™ CFSE Cell Proliferation Kit   Life technologies 

 

1 x 106/ml purified OT-I T cells were incubated with 5µM CFSE for 20min at 37°C in the dark. 

After 2 subsequent washing steps with PBS the cells were resuspended in mouse medium. After 

labeling the cells were cultured in mouse medium using U-bottomed 96-well plates at a 

concentration of 1.5 x 104cells/well. Cells were stimulated with OT-I tetramers (1 μg) alone or in 

the presence of the inhibitors oxamate or rotenone for 72 h at 37°C. Cells were then analyzed for 

proliferation by flow cytometry. 

2.6.3. Apoptosis assay 

 

Annexin V–FITC      Biolegend 

Propidium Iodide      Biolegend 

Cell staining buffer      Biolegend 

Cell apoptosis was analyzed by the ability of Annexin V to bind to exposed phosphatidylserine 

residues at the outer leaflet of the plasma membrane in combination with the application of 

Propidium Iodide (PI). Purified T cells were resuspended in mouse medium at the concentration 

of 1 x 106cells/ml in a 48-well cell culture plate. Cells were left untreated or treated with OT-I-

tetramers (1 μg) alone or in presence of the inhibitors oxamate and rotenone at 37°C for 24h, 

respectively. Cells were harvested and washed with PBS. The cell pellet was resuspended in 195 

μl of cell staining buffer. The staining was performed by mixing the cell solution with 5 μl of 
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Annexin V-FITC and incubating for 10 min at RT in the dark. Afterwards 10 μl PI were added. 

Samples were analyzed by flow cytometry within one hour.  

2.6.4. Glucose uptake 

 

Glucose Uptake Cell-Based Assay Kit    Cayman Chemical 

Annexin V-pacific blue     Biolegend 

Propidium Iodide      Biolegend 

OT-I T cells were stimulated for 24h with OT-1 tetramers and then analyzed with glucose uptake 

cell-based assay kit (Cayman Chemical Company). Cells were harvested and starved for 15min in 

PBS at 37C°. Afterwards fluorescent labelled glucose (150µg/ml, 2-NBDG) was added to the 

cells for 15min. After subsequent washing, the cells were additionally stained as described before 

(2.5.2.) with Annexin V and PI to exclude apoptotic cells and analyzed via FACS immediately. 

 

2.7. Metabolic analysis 

 

2.7.1. Extraction of intracellular metabolites 

 

Methanol       Roth 

Chloroform       Roth 

Tricine        Roth 

 

CD8+ T cells were cultured in mouse medium in 48-well plates at a concentration of 4 x 106 

cells/well. Cells were left unstimulated or stimulated with either CD3/CD8 mAbs or OT-I 

tetramers at 37°C. Cells were harvested after 2h, 4h, 6h and 8h. The cells were immediately 

resuspended in 600µl ice cold Methanol/Chloroform (2:1). Afterwards additional 500µL ice cold 

Methanol/Chloroform (2:1) were added to the samples. In a first extraction step 800µL 

Methanol/3,8mM Tricine (9:10) is added and leads to the separation of the aqueous and the 

organic phase. After vigorous vortexing the sample is centrifuged for 5min at 16000g at 0°C. 

Afterwards the aqueous phase is transferred to a new tube. Then again 800µL Methanol/3,8mM 

Tricine (9:10) is added in a second extraction step to the remaining organic phase, incubated for 

5min at 4°C and subseuqently centrifuged for 5min at 16000g at 0°C. After centrifugation the 
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aqueous phase is pooled together with the one from the first extraction step. Afterwards the 

samples are boiled at 90°C for 4 min followed by a 10min centrifugation step at 16000g and 0°C. 

The liquid supernatant is then transferred to a new tube and dried using a SpeedVAC for 24h and 

can be stored at -80°C. Prior the analysis the pellets are resuspended in 600µl bidest H2O 

followed by a centrifugation for 10min at 16000g at 0°C and the supernatant is transferred to a 

new tube and a sample of 120µL was  measured with MS-coupled anion-exchange 

chromatography (Ritter et al. 2008) in cooperation with the group of Prof. Reichl at the Max 

Planck Institute for Dynamics of Complex Technisl Systems, Magdeburg.  

2.7.2. Measurement of intracellular ATP 

 

ATPlite™ Luminescence Assay System   Perkin Elmer 

Luminometer       Berthold 

1 x 10
6

 purified CD8+ T cells were either left untreated or stimulated with CD3/CD8 mAbs or 

OT-I tetramers for 3´,15´,30´,60´, 120´ and 240´. After stopping the stimulation with ice-cold 

PBS the sample were centrifuged for 2min at 6000 rpm 4°C. The pellets were resuspended in 

100µL PBS and 50µL mammalian cell lysis solution added and placed on an orbital shaker with 

700rpm for 5min. Next 50µL substrate solution containing Luciferase and Luciferin was added to 

the samples and again placed on an orbital shaker for 5min at 700rpm. Afterwards the samples 

were placed in the dark at room temperature for 10min. Then the emitted light from the 

luciferase reaction was assessed by a Luminometer. The concentrations were calculated by a ATP 

standard curve added to the measurement. 

2.7.3 Lactate 

 

Lactate Colorimetric Assay Kit II    Bio Cat 

Microplate reader      Tecan 

1 x 10
6

 purified CD8+ T cells were either left untreated or stimulated with CD3/CD8 mAbs or 

OT-I tetramers. After stimulation and subsequent washing with PBS, cells were lysed by adding 

50µL bidestilled H2O. Afterwards 50µL reaction mix from the kit containing assay buffer (48µL), 

substrate mix (2µL) and enzyme mix (2µL) was added to the sample and incubated for 30min at 

room temperature. Finally the samples including an appropriate standard curve were measured at 

a microplate reader at 450nm.  
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2.8. Immunoblotting  

 

2.8.1. Cell lysis 

 

Lysis buffer:      1% LM 

1% NP-40 

1 mM Na-monovanadate 

1 mM PMSF 

50 mM Tris-HCl (pH 7.4) 

10 mM NaF 

10 mM EDTA 

0.16 M NaCl 

 

After stimulation, 2x106 cells were washed once with ice-cold PBS. Cells were resuspended in 40 

μl lysis buffer and incubated for 20 min on ice. Samples were then centrifuged for 10 min at 

16,000 g, 4°C and the supernatant was transferred into a new eppendorf tube. 

2.8.2. Protein concentration measurement 

 

BSA standard (0-100 μg/ml)    Sigma 

Roti-Nanoquant     Roth 

Protein concentrations were determined by using the Bradford protein assay. According to the 

manufacturer’s protocol, a working solution was prepared by diluting the 5x Roti-Nanoquant to 

1x with dH2O. Samples were pre-diluted with dH2O. 50 μl of the prediluted samples were then 

transferred to a 96-well plate and incubated with 200 μl of 1x Roti-Nanoquant. Absorption was 

measured using an ELISA reader at 570 nm. BSA (0-100 μg/ml) was used as standard and the 

protein concentration was calculated on the basis of the derived standard curve. 
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2.8.3. SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis) 

 

In SDS-PAGE, the migration of proteins is related to their molecular weight. 

10% and 12% SDS-PAGE separating gel:  4.2 ml (10%) or 3.44 ml (12%) dH2O 

2.46 ml 1.5 M Tris-HCl, pH 8.8 

3.2 ml (10%) or 3.94 ml (12%) 30% 
acrylamide/BIS 

0.1 ml 10% SDS 

0.05 ml 10% APS 

5 μl TEMED 

SDS-PAGE stacking gel:    2.4 ml dH2O 

0.5 ml 30% acrylamide/BIS 

1 ml 0.5 M Tris-HCl pH 6.8 

0.04 ml 10% SDS 

0.04 ml 10% APS 

0.004 ml TEMED 

SDS-PAGE running buffer (1x):   25 mM Tris, 

250 mM glycine, 

0.1% SDS 

5x reducing loading buffer :    50% glycerol 

330 mM Tris, pH 6.8 

10% SDS 

0.01% bromphenolblue 

10% 2-mercaptoethanol 

Marker:      pageruler prestained protein ladder  

Cell lysates and 5x sample buffer were mixed and boiled at 95°C for 8 min. The samples were 

then loaded and resolved on a 10% or 12% SDS-PAGE gel. For each lane, 40 μg of total protein 

were loaded. Electrophoresis was conducted with Bio-Rad Protein system. Gels were run at 120 

V for 90 min. 
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2.8.4. Western blotting analysis and immunoblotting 

 

Protein transfer buffer (1x):     39 mM glycine 

48 mM Tris 

0.037% SDS 

20% methanol 

TBS 0.01M Tris 

0.15M NaCl 

Blocking buffer:      5% milk powder in TBS 

Washing buffer:      0.02% Tween 20 in TBS 

Ponceau S solution:      0.1% Ponceau S in 5% acetic acid 

 

The proteins seperated by gel electrophoresis were then transferred to a nitrocellulose membrane, 

where they were detected using antibodies specific to the target proteins. In some experiments, 

equal loading was controlled by incubation of the membrane with Ponceau S solution for 2 min. 

The staining was removed by washing with TBS. Blocking of the membrane was performed using 

blocking buffer for 30 min to prevent unspecific binding to the membrane. Subsequently, 

membranes were probed with a primary antibody overnight 4°C. After washing 3 times with 

washing buffer, the membrane was incubated with the appropriate peroxidase-conjugated 

secondary antibody for 1 h at RT. The membrane was further washed 3 times with washing 

buffer and the bound antibodies were then visualized using an ECL (Enhanced 

Chemiluminescence) detection system according to the manufacturer’s instructions. 
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3. Results  

 

3.1. Peptide-stimulation induces metabolic reprogramming in T cells 

 

Stimulation of T cells leads to a change from a quiescent resting state into an activated state, 

which is characterized by an extensive cell growth, proliferation, and the production of effector 

proteins, such as cytokines. In the resting state, T lymphocytes maintain their basal energy 

demands primarily through a mixed usage of glucose and glutamine (Brand 1985; 

Frauwirth,Thompson 2004). However, to meet the increased energy demands following 

activation, glucose metabolism increases as a source of energy and providing precursor molecules 

for cellular biosynthesis (Frauwirth,Thompson 2004). It was previously shown that different 

stimuli lead to either proliferation or apoptosis of thymocytes (Daniels et al. 2006) and mature T 

cells (Wang et al. 2008). However, it is poorly understood how triggering of the same receptor 

with ligands of different affinity can induce such different outcomes. 

Since it is known that thymocytes which cannot fulfill their energy demands undergo apoptosis 

we hypothesized that changes in the metabolic profiles in activated T cells might contribute to 

cell fate specification. Therefore we stimulated purified OT-I T cells either with soluble 

biotinylated CD3 and CD8 monoclonal antibodies or incubated them with biotinylated H-2Kb 

molecules loaded with the SIINFEKL peptide derived from ovalbumin (OVA) (Wang et al. 

2008). Stimulated T cells were then cross-linked and further assessed for different metabolic 

parameters.  

3.1.1. Changes in intracellular ATP concentrations following T cell stimulation 

 

To determine metabolic changes upon stimulation using the two stimuli described above, we first 

assessed whether the concentration of ATP changes by measuring the level of intracellular ATP. 

In Figure 3.1. it is shown that within 4 hours of stimulation with soluble antibodies there is a 

strong decrease in intracellular ATP concentrations. In contrast to this, physiological stimulation 

lead to a mild decrease in ATP within the first 30min following stimulation, but remained 

constant for the rest of the time.  
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Figure 3.1. Soluble antibody stimulation leads to reduced intracellular ATP concentrations. Purified CD8+ T cells were 
treated with either soluble CD3/CD8 mAbs or OT-I tetramers (PMHC) for the indicated time periods. Cellular ATP 
production was analyzed using the ATP-Assay Kit. n=6. 

 

These data indicate that stimulation with soluble antibodies leads to a strong decrease in ATP, 

which could promote apoptosis by failing to upregulate cellular metabolic responses. 

 

3.1.2. Analyzing intermediates of glucose metabolism following T cell stimulation 

 

It has been shown before in several studies (Frauwirth et al. 2002; Frauwirth,Thompson 2004) 

that stimulation of CD4+ T cells leads to increased glycolytic rates to maintain the metabolic 

demands of proliferating cells. Therefore we analyzed our OT-I T cells for metabolic 

intermediates of glycolysis to see whether this upregulation can be observed also in CD8+ T cells 

and furthermore compare the changes for the two different stimuli. To measure 20 different 

intermediates of glycolysis and TCA cycle, the lysates of stimulated T cells were separated by 

high-performance anion exchange chromatography and further identified by mass spectroscopy 

(MS)(Ritter et al. 2008).  
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Figure 3.2. Stimulation with OT-I tetramers leads to upregulation of glycolytic metabolites. Purified CD8+ T cells were 
treated with either soluble CD3/CD8 mAbs or OT-I tetramers (PMHC) for the indicated time periods. Concentrations 
of glycolytic metabolites Fructose-1.6-bisphosphate (A), 3-phosphoglycerate (B), Phosphoenolpyruvate (C) and 
Pyruvate (D) where measured by MS coupled high-performance anion-exchange chromatography; n=5. 

 

For the intermediates of glycolysis we observed a strong increase of fructose-1.6-bisphosphate 

(F-1,6-bp) and 3-phosphoglycerate (3-PG) 2-4 h upon tetramer stimulation, which could not be 

observed upon antibody stimulation (Figure 3.2). Furthermore the concentration of 

phosphoenolpyruvate (Pep) was not significantly increased upon both stimuli. However, pyruvate 

the “end product” of glycolysis shows a different kinetic, in the first hours following tetramer 

stimulation there was no significant increase, but at later time points we could observe an 

increase in pyruvate concentrations. In comparison, antibody stimulation had no impact on 

pyruvate concentrations. 

In Figure 3.3, we analyzed further metabolites of the TCA cycle. Here, we observed a trend 

towards increased ketoglutarate, malate, and fumarate upon tetramer stimulation. However this 

increase was not statistically significant. In contrast to tetramer stimulation, changes in glycolysis 

and the TCA cycle were not observed after antibody stimulation. 
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Figure 3.3. TCA cycle metabolites showed no significant changes upon stimulation. Purified CD8+ T cells were treated 
with either soluble CD3/CD8 mAbs or OT-I tetramers (PMHC) for the indicated time periods. Concentrations of 
intermediates of citric acid cycle α-ketoglutarate (A), fumarate (B) and malate (C) where measured by MS coupled 
high-performance anion-exchange chromatography; n=5. 

 

Furthermore we assessed also ATP by metabolite analysis to confirm and expand the observed 

data for intracellular ATP concentrations and get a more detailed view about cellular energy 

homeostasis by additionally measuring ADP and AMP (Figure 3.4.A). Decreasing ATP 

concentrations measured upon soluble antibody stimulation were correlating to the experiment 

shown in Figure 3.1 and this trend was observed for up to 8 hours. In contrast, tetramer 

stimulation showed no decrease in ATP during the first 2 hours, afterwards it also decreases for 

up to 8 hours after stimulation. These observed effects are reflected by the inverse concentration 

behavior of ADP and AMP concentrations (Figure 3.4.B and C). Upon soluble antibody 

treatment these measurements revealed that the initial decrease in ATP lead to a strong increase 

in AMP, whereas ADP remained unaffected. Tetramer stimulation showed a relative stable ADP 

and AMP concentrations within 4 hours of the experiment. After 6h and 8h the concentrations 

for ADP dramatically increased. 



RESULTS           35 

 

Figure 3.4. Changes in ATP with the different stimuli. Purified CD8+ T cells were treated with either soluble 
CD3/CD8 mAbs or OT-I tetramers (PMHC) for the indicated time periods. Concentrations of ATP (A), ADP (B) and 
AMP (C) where measured by MS coupled high-performance anion-exchange chromatography; n=5. 

 

Further investigation of GTP, GDP, and GMP revealed that the effect of both stimuli did not 

alter significantly the changes in their concentrations. For GTP could observe a decrease after 6h 

to 8h (Figure3.5.A). Furthermore GDP concentrations increased at these time points (Figure 

3.5.B). GMP showed a small peak after 4 hours followed by a rapid decrease in intracellular 

concentrations Figure 3.5.C).  
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Figure 3.5. Changes in GTP concentration. Purified CD8+ T cells were treated with either soluble CD3/CD8 mAbs or 
OT-I tetramers (PMHC) for the indicated time periods. Concentrations of GTP (A), GDP (B) and GMP (C) where 
measured by MS coupled high-performance anion-exchange chromatography; n=5. 

 

3.1.3. Elevated glycolysis leads to increased lactate production upon tetramer 

stimulation 

 

The observed increase in glycolysis without significant changes in the TCA cycle lead us to 

hypothesize that pyruvate produced by glycolysis is converted into lactate (i.e. aerobic glycolysis). 

It was also shown previously that human CD4+ T cells produce lactate following CD3/CD28 

stimulation. To test our hypothesis, we directly measured lactate production (Figure 3.6.).  
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Figure 3.6. Tetramer stimulation leads to lactate production which peaks at 48h and decreased again. Purified CD8+ T 
cells were treated with either soluble CD3/CD8 mAbs or OT-I tetramers (PMHC) for the short term stimulation up to 
4h (A) and OT-I tetramers or Q4H7 tetramers for the long term stimulation (B) lactate concentrations were assessed at 
indicated time points; n=7. 

We observed a 3-fold increase in lactate production within the first 4 hours following tetramer 

stimulation, whereas there was no lactate production after antibody stimulation. When we 

analyzed later timepoints, we found that lactate production occurs at a high rate during the first 

48 hours following stimulation. At later timepoints we observed a decrease in lactate production. 

Since T cells die within 24h upon antibody stimulation, it was not feasible to measure for longer 

stimulations. Therefore we used the low affinity peptide Q4H7 as a “negative” control, as it was 

shown previously that Q4H7 is a low affinity peptide which induces survival, but not T cell 

proliferation (Mallaun et al. 2008). 

 

3.1.4. Metabolic inhibition leads to abrogated T cell proliferation 

 

In the next step we examined the role of lactate production for T cell proliferation. The addition 

of oxamate, a lactate dehydrogenase inhibitor, lead to decreased proliferation and decreased 

intracellular lactate concentrations (Figure 3.7 A and B). Nevertheless, inhibiting the ATP 

production with rotenone lead to a complete block in proliferation, but did not effect lactate 

production. This inhibition is rather indirect because rotenone blocks complex I of the electron 

transport chain, disrupting the proton gradient at the mitochondrial membrane, which in the end 

abolishes the ATP synthase reaction. 
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Figure 3.7. Inhibition of lactate production leads to reduced T cell proliferation. Purified CD8+ T cells were stimulated 
for 72h with OT-I tetramers in presence of the inhibitors rotenone and oxamate, proliferation was assessed by CFSE 
staining (A) and lactate production was measured at indicated time points. 

To check that these inhibitory effects are not due to toxic effects of the inhibitors, we examined 

the induction of apoptosis and necrosis versus survival of the T cells by Annexin V/PI staining 

upon tetramer stimulation in presence or absence of the inhibitor. The observed data suggests 

that the inhibitor concentrations used had only a mild effect on T cell survival (Figure 3.8.). 

Rotenone lead to an increase in apoptotic cells from 22% to 26% whereas oxamate treatment 

increases the amount of apoptotic cells from 22% to 30%. Therefore we concluded that these 

findings were due to the proposed effect of the inhibitors and not due to high toxicity. 

 

Figure 3.8. No severe toxic effects were observed upon application of the inhibitors. Purified CD8+ T cells were 
stimulated for 24h with OT-I tetramers in presence of the inhibitors rotenone and oxamate, apoptosis was assessed by 
Annexin V/PI staining 
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3.2. Regulation of T cell metabolic reprogramming following tetramer 

stimulation 

 

In order to shed more light onto the metabolic changes occuring during T cell proliferation, we 

investigated the activation of known metabolic regulators like AMPK and the 

PI3K/AKT/mTOR pathway. We were particularl interested to further examine the regulation of 

metabolic reprogramming in T cells. Since only tetramer stimulation shows changes in metabolic 

parameters leading to T cell proliferation, we therfore focussed our work on the events following 

tetramer stimulation.  

3.2.1. AMPK 

First we analyzed the activation of the metabolic regulator AMPK, which becomes 

phosphorylated by LKB1 if the AMP:ATP ratio is increased. Here we show that AMPK is 

activated immediately by both stimuli (Figure 3.9). At later time points, antibody-stimulated T 

cells continue to show a sustained activation of AMPK, whereas tetramer-stimulated cells do not.  

 

 

Figure 3.9. Soluble antibody stimulation leads to sustained AMPK activation. Purified CD8+ T cells were stimulated 
for indicated timepoints with either CD3/CD8 soluble antibodies or OT-I tetramers, whole cell lysates were 
immunoblotted with p-AMPK, total AMPK and p-ERK antibody, ß-actin served as loading control. 
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3.2.1.1. AKT and mTOR  

 

Since it is known that the PI3K/AKT/mTOR pathway is required for metabolic regulation of 

cellular metabolism, we investigated the contribution of AKT and mTOR. Therefore we 

inhibited mTOR by using rapamycin. Rapamycin binds to the protein FK-binding protein 12 

(FKbp12), the resulting FKbp12-rapamycin complex is then binding to the TSC1 protein of the 

mTOR complex and therefore inhibiting it´s activity (Loewith et al. 2002). Inhibition of AKT 

was mainly done using the AKT inibitor, AKT VIII which binds to the ph-domain of AKT and 

therefore inhibits the recruitment of AKT to the cell membrane. Inhibition of mTOR with 

rapamycin showed no effect on lactate production, while the inhibition of AKT completely 

abrogated lactate production (Figure 3.10.). The phosphorylation of S6K, which is downstream 

of AKT and mTOR was used as a positive control to ensure inhibitor function. In Figure 3.11. 

the observed phosphorylation of S6K was strongly reduced in presence of both inhibitors. 

 

Figure 3.10. Inhibition of AKT leads to reduced lactate production. Purified CD8+ T cells were left untreated or 
stimulated for indicated timepoints with OT-I tetramers in the presence or absence of the inhibitors AKTVIII and 
Rapamycin (RAPA), cells were analyzed for intracellular lactate concentrations.  
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Figure 3.11. Succesful inhibition of AKT and mTOR leads to abrogated phosphorylation of S6K. Purified CD8+ T cells 
were left untreated or stimulated for indicated timepoints with OT-I tetramers in the presence of rapamycin (A) or 
AKTVIII (B), whole cell lysates were immunoblotted with p-S6K and p-ERK antibody, ß-actin served as loading 
control. 

 

3.2.1.2. Regulation of metabolic enzymes by activation of AKT 

 

Additionaly, it is shown for the first time that activation of AKT upregulates the expression of 

LDH, the enzyme which converts pyruvate to lactate. In Figure 3.12. this observation was 

confirmed using 3 specific functionally distinct AKT inhibitors, which lead to a marked reduction 

in LDH expression. This was accompanied by a strong and significant reduction in lactate 

production after 4h and 24h following stimulation in the presence of AKT inibitors. 

 

Figure 3.12. Inhibition of AKT with three different inhibitors leads to reduced upregulation of LDH. Purified CD8+ T 
cells were stimulated for indicated timepoints with OT-I tetramers in the presence of 3 specific AKT inhibitors, whole 
cell lysates were immunoblotted with total LDH and ß-actin as loading control (A) or cells were analyzed for 
intracellular lactate concentrations; n=3. 

Furthermore we assessed the expression of hexokinase and phosphofructokinase (Figure 3.13.). 

Both enzymes catalyze reactions of the glycolysis and play a key role in enzymatically regulating 

this pathway. There was only mild increase in hexokinase expression observed upon 24 and 48h 

following stimulation; however phosphofructokinase showed a marked upregulation after 24h 

and 48h. Both expression patterns were not influenced by inhibition of AKT. 
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Figure 3.13. Inhibition of AKT has no effect on upregulation of hexokinase and phosphofructokinase. Purified CD8+ T 
cells were stimulated for indicated time points with OT-I tetramers in the presence of specific AKT inhibitor, whole 
cell lysates were immunoblotted with total hexokinase, total pfk1 and pERK, ß-actin served as loading control. 

 

3.2.1.3. Hif1α is not a downstream target of AKT 

 

Since mTOR is a downstream target of AKT and AKT-inhibition showed a strong impact on 

lactate metabolism in T cells, whereas mTOR did not, we searched for a direct target of AKT 

bypassing mTOR. Hif1α is a transcription factor which is known to regulate cellular metabolism 

(Cramer et al. 2003). Although it was previously described that Hif1α is mainly activated under 

hypoxic conditions (Shi et al. 2011), we hypothesized that AKT regulating Hif1α also under 

normoxic conditions. In Figure 3.14 Hif1α stabilization following T cell stimulation was 

examined. There is no difference observed between soluble stimulation and tetramer stimulation 

in the presence or absence of the AKT inhibitor.  

 

Figure 3.14. No stabilization of Hif1α was observed upon T cell stimulation under normoxic conditions. Purified CD8+ 
T cells were stimulated for indicated time points with soluble antibodies or OT-I tetramers in the presence of specific 
AKT inhibitor, whole cell lysates were immunoblotted with total Hif1α and pERK, ß-actin served as loading control. 
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3.2.1.4. Impact of AKT activation on expression of glucose transporter 1 (GLUT1) 

and glucose uptake 

 

It was described previously for human CD4+ T cells that stimulation leads to an upregulation of 

glucose transporter 1 (GLUT1). This observation could be confirmed by flow cytometry 

measurements of GLUT1-expression (Figure 3.15.). Additionally, no significant impact of AKT 

inhibition on GLUT1 expression was observed. 

 

Figure 3.15. Upregulation of GLUT1 is not affected by AKT inhibition. Purified CD8+ T cells were stimulated for 
indicated time points with OT-I tetramers in the presence of specific AKT inhibitor, cells were analyzed by flow 
cytometry for GLUT1 expression. 

Furthermore we analyzed the subsequent uptake of glucose by activated T cells. Here we 

observed an increased glucose uptake upon tetramer stimulation (Figure 3.16.), which reflects the 

upregulation of GLUT1 described above. This correlation was also observed in presence of the 

inhibitor application, which had no influence on glucose uptake. 
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Figure 3.16. Upregulated glucose uptake upon tetramer stimulation is not altered by AKT inhibition. Purified CD8+ T 
cells were stimulated for 24h with OT-I tetramers in the presence or absence of specific AKT inhibitor or glucose 
transport inhibitor apigenin as negative control, cells were analyzed by flow cytometry for glucose uptake. 

 

3.2.2. Switching off lactate production 

 

In Figure 3.6B the lactate concentrations increased for 48 hours and then rapidly decreased. 

Therefore we hypothesized that in addition to a metabolic switch that turns on lactate 

production; there must also be a switch for shutting off this process.  

 

3.2.2.1. No feedback inhibition of lactate 

 

In our experimental setup, the activated T cells secrete lactate into the culture medium. Since in 

vivo this produced lactate is transported away, we hypothesized that the accumulating lactate 

might lead to feedback inhibition of its production. Feedback inhibition is a common mechanism 

to regulate metabolic processes and it is characterized by enzyme inhibition mediated by its 

product. To test this hypothesis, we added different concentrations of lactate to the stimulation 

reactions and assessed the intracellular lactate concentration after 4h, 24h, and 48h.  
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Figure 3.17. No feedback inhibition of lactate on lactate production. Purified CD8+ T cells were stimulated for 24h 
with OT-I tetramers in the presence or absence of different lactate concentrations, cells were analyzed for intracellular 
lactate concentrations, n=2. 

The results shown in Figure 3.17. lead to the conclusion that there is no impact of extracellular 

lactate concentrations on intracellular lactate production up to a concentration of 100µM. 

 

3.2.2.2. IL-2 is required for maintaining upregulated glycolysis 

 

IL-2 is an autocrine growth factor which drives proliferation at later stages of T cell activation. 

Therefore, we tested the hypothesis that IL-2 might be involved in switching off lactate 

production. To test this, we applied a neutralizing IL-2 antibody to our cultures in order to 

prevent the binding of IL-2 to its receptor. To confirm that our neutralizing IL-2 antibody was 

effective and not toxic, we analyzed Stat5 phosphorylation 24h after stimulation (Figure 3.18.A) 

as well as apoptosis (Figure 3.18.B).  
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Figure 3.18 Addition of IL-2 neutralizing antibody leads to reduced pSTAT5 phosphorylation and showed no severe 
toxic effects. Purified CD8+ T cells were stimulated for 24h with OT-I tetramers in the presence or absence of aIL-2 
antibody, cells were analyzed for pSTAT5 by intracellular flow cytometry staining (A) and apoptosis induction by 
AnnexinV/PI staining (B), n=2 

Surpisingly, when the neutralizing IL-2 antibody was added to the culture, we observed a 

decreased lactate production (Figure 3.19.) after 24h stimulation which decreased further after 

48h and 72h. Moreover, the addition of exogenous IL-2 to the stimulated cells fostered the 

production of lactate, leading to higher concentrations of lactate compared to normal tetramer 

stimualtion. This led us to the conclusion that IL-2 is needed to maintain lactate production and 

does not act as the 'OFF switch for lactate production.  

 

 

Figure 3.19 IL-2 is required to maintain lactate production. Purified CD8+ T cells were stimulated for 24h with OT-I 
tetramers in the presence of exogenous IL-2 or aIL-2 antibody, cells were analyzed for intracellular lactate 
concentrations, n=3. 
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3.2.2.3. Upregulation CTLA4 inhibits IL-2 production and subsequently shuts off 

the production of lactate 

 

Since CTLA4 is known to be a negative regulator of T cell proliferation, we investigated the 

impact on CTLA4 on T cell metabolism. Therefore we analyzed the lactate production CTLA4-

deficient OT-I T cells and compared them to wild-type OT-I T cells. Surprisingly the CTLA4-/- T 

cells showed a different kinetic of lactate production compared to normal OT-I T cells. After 48h 

of stimulation the produced lactate did not decrease, but rather continued to increase 

(Figure 3.20). 

 

Figure 3.20. CTLA4-/--OT-I T cells showed no decrease in lactate production.  Purified CD8+ T cells from CTLA-/- or 
CTL4+/+ mice were stimulated with OT-I tetramers for indicated time points, cells were analyzed for intracellular 
lactate concentrations, n=3. 

The further analysis of IL-2 production in CTLA4-/- T cells revealed that also IL-2 production is 

not decreasing after 48h of stimulation as was observed for wild-type OT-I T cells (Figure 3.21). 

Taken together, the similar behavior of IL-2 and lactate production combined with the 

observations made by adding exogenous IL-2 or neutralizing IL-2 (i.e. aIL-2 antibodies) lead us 

to the conclusion that the upregulation of CTLA4 leads to a decrease in IL-2 production, which 

subsequently results in a decreased lactate production. 
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Figure 3.21. Upregulation of CTLA4 leads to decrease of IL-2 production. Purified CD8+ T cells from CTLA-/- or 
CTL4+/+ OT-I mice were stimulated with OT-I tetramers for indicated time points, cells were analyzed for intracellular 
IL-2 concentrations by ELISA, n=3. 

 

3.3. Comparing stimulation conditions for mouse and human T cells 

 

It was previously shown that primary human T cells respond to the stimulation with CD3/CD28 

coupled beads by upregulating both glycolysis and lactate production (Frauwirth et al. 2002). We 

confirmed this observation by stimulating primary human T cells with beads coupled with CD3 

alone or in combination with CD28 (Figure 3.22.A). We found that there is a strong upregulation 

of lactate production upon CD3/CD28 stimulation, whereas the increase in lactate production 

upon CD3 stimulation alone appeared to be much weaker. When we applied these stimulation 

conditions to CD8+ OT-I T cells (Figure 3.22.B) both bead coupled antibodies as well as 

tetramers showed the same induction of lactate production. While the addition of co-stimulatory 

CD28 to the CD3 stimulation in human T cells leads to a significant increase in lactate 

production, there was only a minor increase observed in mouse T cells.  
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Figure 3.21 Purified human CD8+ T cells were stimulated CD3/CD28 bead coupled Abs (A) or mouse CD8+ T cells  
stimulated with OT-I tetramers (B) were analyzed for lactate production, n=3. 

To control whether CD28 stimulation was successful, we analyzed JNK phosphorylation as we 

had previously shown that CD28 stimulation alone induces the activation of JNK (REF) 

(Figure 3.22.). From this we conclude that the addition of CD28 to the tetramer stimulation had 

no impact on lactate production. 

 

Figure 3.22. Comparable JNK phosphorylation upon stimulation with OT-I tetramers and CD28.  Purified CD8+ T 
cells were stimulated for 3´ and 60´ with OT-I tetramers, CD28 and both together, whole cell lysates were 
immunoblotted with pJNK, ß-actin served as loading control, n=2. 

 

In summary, we found that tetramer induced activation result in an increase in key glycolytic 

metabolites, whereas the TCA cycle remains unaffected. The upregulation of glycolysis led to a 

strong lactate production, which is dependent upon AKT/PKB, but not mTOR. The increased 

lactate production results from the upregulation of lactate dehydrogenase, which we found to be 

dependent on IL-2 and to be required for proliferation. Additionally, we observed an 

upregulation of Glucose-transporter 1 (GLUT1) as well as glucose uptake upon stimulation, 

which were not influenced by AKT inhibition. Furthermore knocking out CTL4, a negative 

regulator of T cell proliferation, led to a sustained lactate production, which correlates with a 

sustained IL-2 production. Thus we conclude that the upregulation of CTL4 in the later stage of 

T cell activation shuts off lactate production by down regulating the production of IL-2.
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4. Discussion 

 

4.1. Effect of different stimuli on T cell metabolism  

 

Triggering the T cell receptor by pathogens in vivo leads to an activation of a specific network of 

signaling cascades. These signaling events are crucial for proliferation and differentiation leading 

to a functional immune response. To elucidate the complex intracellular networks soluble 

polyclonal stimuli such as agonistic antibodies against the TCR/CD3 complex (i.e UCHT1, 

OKT3), the co-receptors and/or the co-stimulatory molecules (i.e. CD28) were used for many 

years. However recent studies have shown that these in vitro stimuli are not able to mimic 

physiological conditions leading to a productive T cell response (Daniels et al. 2006; Wang et al. 

2008; Arndt et al. 2013). It was described previously for OT-I mouse T cells that stimulation with 

soluble antibodies leads to strong phosphorylation of the T cell signaling network (i.e. ZAP70, 

AKT and ERK) which results in apoptosis (Brand et al. 1984; Wang et al. 2008). On the contrary 

more physiological stimuli like OT-I tetramers for mouse T cells or antibodies coupled to 

microbeads for human T cells showed sustained phoshorylation of signaling proteins that leads 

to proliferation and differentiation of T cells reflecting the in vivo stimulations. The reason why 

these stimuli have different outcomes on the T cell fate still remains unclear. Our hypothesis to 

explain these opposite cellular responses was that the depletion of the intracellular ATP stores 

following antibody stimulation could be responsible for the induction of apoptosis. It was 

previously shown that intracellular ATP levels can be used as a marker for cell viability in tumor 

cell lines meaning that if intracellular ATP concentrations fall below a certain limit, apoptosis is 

induced (Garland 1997; Izyumov et al. 2004). On the other hand, several studies showed that 

apoptotic processes require ATP to transfer apoptotic signals into the nucleus as well as for 

chromatin condensation and nuclear fragmentation (Tsujimoto 1997; Yasuhara et al. 1997; Kass 

et al. 1996). We observed a rapid consumption of ATP upon antibody stimulation, whereas ATP 

levels remain constant after tetramer stimulation. The question is whether the drop in ATP levels 

are the cause or a consequence of the resulting apoptosis. First consider that the changes in ATP 

levels were observed already within the first hour of stimulation. From this one is led to assume 

that the dramatic phosphorylation which occurs upon antibody stimulation leads to a high 

consumption of ATP (Leist et al. 1997). This in turn results in the induction of apoptosis, which 

further reinforces the reduction in ATP levels. Therefore these results suggest that following 
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tetramer stimulation, T cells switch on metabolic programs to generate ATP in order to 

counterbalance their ATP consumption. 

Therefore, we next investigated the activation of AMPK, as this is the major energy sensor in 

cells and its activation is closely linked to intracellular ATP levels. We observed an initial 

activation of AMPK upon both tetramer and antibody stimulation. This initial activation was 

previously reported to be induced by the activation of CAMKK2 upon TCR triggering (Tamás et 

al. 2006). Since AMPK is further activated by a high AMP:ATP ratio, the decreased ATP levels 

observed upon antibody stimulation forces AMPK to remain active. In contrast, upon tetramer 

stimulation, T cells maintain high levels of ATP, thus inactivating AMPK. This led us to the 

conclusion that tetramer stimulation induces additional changes in the metabolic profiles, since 

the initial activation of AMPK is not sufficient to shift T cell metabolism towards glycolysis, 

which is needed to maintain proliferation.  

 

4.2. Metabolic changes upon tetramer stimulation 

 

Several previous studies analysed the upregulation of glycolysis by monitoring glucose 

consumption from the media, direct glucose uptake by the cell, or the upregulation of GLUT1 

(Frauwirth et al. 2002; Macintyre et al. 2011; Bauer et al. 2004). We used a new method to analyze 

25 metabolites and nucleotides from both glycolysis and the TCA cycle in order to further 

investigate the metabolic shift. In our experiments with tetramer stimulation, we clearly observed 

a significant increase in glycolytic metabolites compared to either the antibody stimulated or 

unstimulated cells. Taking a closer look at the glycolytic reactions, it is thought that there exist 

three rate-limiting steps at positions in the pathway where large free energy differences arise: 

hexokinase, phosphofructokinase, and pyruvate kinase (Rose,Warms 1966; Rapoport et al. 1976; 

Hue,Rider 1987). Surprisingly no increase in the concentrations of substrates for these reactions 

were found in our analysis. On the contrary, increased levels of fructose-1,6-bisphosphate and 3-

phosphoglycerate, the respective substrates for the phosphofructokinase and glycerinaldehyde-3-

phosphatedehydrogenase reactions where observed. In the recent study by Shestov et al. 

GAPDH was identified as a limiting step by computational modeling of glycolysis and an 

integrated metabolic control analysis (Shestov et al. 2014). They propose that GAPDH is the 

bottleneck in this pathway due to its unique placement where it can be regulated by ATP, 

NAD+, and the levels of glucose-derived intermediates that affects the thermodynamics of 

glycolysis. Furthermore in this study the authors explained that high concentrations of fructose-
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1,6-bisphosphate are allosterically activating pyruvate kinase causing a depletion in the 

metabolites downstream of the GAPDH. This amplified the role of GAPDH as the most rate-

determining step in the pathway since increased activity through GAPDH will then serve to 

create a balance along the pathway. This observations might help in understanding the results of 

our metabolite analysis in T cells, as they confirm that the overall glycolytic rate is increased. In 

addition after tetramer stimulation, T cells produce high amounts of lactate, which is an 

indication for increased aerobic glycolysis. The fact that lactate production is essential for T cell 

proliferation was confirmed by the observation that the addition of oxamate, a lactate 

dehydrogenase inhibitor, leads to decreased proliferation. We also observed small changes in the 

metabolites of the TCA cycle, however these were not statistically significant. Nevertheless, T 

cells still require the TCA cycle to maintain proliferation, as shown by inhibiting the ATP 

production with rotenone. This inhibition is rather indirect because rotenone blocks complex I of 

the electron transport chain, disrupting the proton gradient at the mitochondrial membrane, 

which in the end abolishes the ATP synthase reaction. In a recent study comparing metablic 

features of T cell subsets, the authors observed striking differences between CD8+ T cells, which 

showed more glycolytic metabolism, compare to CD4+ T cells, which show higher rates of 

mitochondrial oxidative metabolism and a greater maximal respiratory capacity (Cao et al. 2014). 

Nevertheless activation and proliferation of both cell types were similar sensitive to the addition 

of rotenone. This supports the idea that the TCA cycle is not only required for the generation of 

ATP, but is also essential to deliver substrates for biosynthetic processes like the generation of 

nucleotides, which are neede for proliferation. Furthermore it has been shown that during 

oxidative phosphorylation, reactive oxygen species are generated, which played a critical role in T 

cell activation (Sena,Chandel 2012). In summary T cells require an increased in both pathways, 

glycolysis and TCA cycle, to support rapid proliferation and inflammatory function.  

 

4.3. Shutting off increased glycolysis and lactate production. 

 

Surprisingly we observed that after 48 hours of activation, lactate production decreases. This 

observation led us to hypothesize that there is a switch in T cell metabolism to shut down aerobic 

glycolysis. IL-2 is the autocrine growth factor responsible for the switch from antigen-driven 

proliferation to cytokine-driven proliferation. Since IL-2 production occurs on a similar time 

scale, we tested the hypothesis that IL-2 might be involved in switching off lactate production. 

When we tested this hypothesis we found that IL-2 is required to maintain lactate production. 
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This observation contradicts a previous study were the authors showed that the removal of IL-2 

within the first 20h of stimulation had no effect on lactate production in primary human CD4 T 

cells (Frauwirth et al. 2002). Under normal conditions, it is known for humans that the lactate 

produced is pumped out of the cell and transported by the bloodstream to organs like the liver 

where lactate recycling takes place. Since our in vitro assays lead to an accumulation of 

extracellular lactate we tested whether feedback inhibition, a common process for regulating 

enzymatic activities, can be observed. Adding up to 100µM exogenous lactate to the cells, which 

is about the amount of lactate we measured extracellularly in vitro, had no impact on the 

intracellular lactate production, therefore we could exclude feedback inhibition as a reason for the 

decreased lactate production after 48h in our experimental system. Although we can not exclude 

feedback inhibition in vivo as concentrations in the bloodstream can reach 5mM during high 

muscular activity. Since it is known that IL-2 induces negative regulators of T cell activation like 

CTLA4, which downmodulate T cell responses to prevent an overreaction of the immune system 

(Frauwirth et al. 2002; Parry et al. 2005), we next assessed lactate production in OT-I T cells from 

CTLA4-/- mice upon stimulation. Interestingly the decrease in lactate production could not be 

observed in these cells indicating that CTLA4 plays a critical role in downmodulating T cell 

metabolism. Furthermore this activity could be correlated to the IL-2 production in these cells. 

Under normal conditions the expression of IL-2 ultimately leads to the upregulation of CTLA4 

(Alegre et al. 1996; Wang et al. 2001). This in turn leads to a downregulation of IL-2, which 

would explain the observed decrease in lactate production (Carreno et al. 2000). In a recent study, 

it was shown that the upregulation of BCL-6 represses genes encoding molecules involved in 

aerobic glycolysis that are upregulated during the effector phase of the immune response 

(Oestreich et al. 2014). A connection between the expression of CTLA4 and BCL-6 has been 

discussed recently in the generation of follicular helper T cells (Wang et al. 2015), but if it is a 

common feature in downmodulation T cell metabolism remains unclear and has to be addressed 

in further experiments. Furthermore it has been shown that a blockade of CTLA4 and PD-1 

leads to an increased tumor rejection in the B16 mouse melanoma model by increased infiltration 

of T cells into the tumor and decreased generation of regulatory T cells (Curran et al. 2010).  

In summary we showed a strong correlation of IL-2 and CTLA4 for mediating the switching of 

upregulated T cell metabolism. However it has to be further investigated if the downregulation of 

lactate production is a direct effect of CTLA4 upregulation and what might be the molecular 

mechaism behind this observation. 
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4.4. Regulation of T cell metabolism 

 

Since it is known that the PI3K/AKT/mTOR pathway is required for metabolism, we analyzed 

the contribution of AKT and mTOR, as both are nvolved in signaling processes known to 

regulate cellular metabolism (ANDRES et al. 1955; Rathmell et al. 2003). Inhibition of mTOR 

with rapamycin showed no effect on lactate production, while the inhibition of AKT completely 

abrogated lactate production. Additionally, we show for the first time that activation of AKT 

upregulates the expression of lactate-dehydrogenase, the enzyme which converts pyruvate to 

lactate. This observation was confirmed using functionally distinct AKT inhibitors, all of which 

abrogated the expression of LDH. 

Moreover, we observed an increase in GLUT1 expression and glucose uptake upon tetramer 

stimulation, which was also been previously described in primary human T cells (Rathmell et al. 

2003; Frauwirth et al. 2002). In contrast to these previous studies, the upregulation of GLUT1 

and glucose uptake in OT-I CD8+ T cells was not AKT-dependent. These contradictory results 

were also described in a recent study by Macintyre and coworkers (Macintyre et al. 2011), who 

showed that inhibition of AKT had no effect on glucose uptake after stimulation of P14 TCR tg 

T cells with gp33 peptide. Thus, we confirm the results of Macintyre showing that AKT has no 

impact on the uptake of glucose. However, we additionally show that AKT is required for the 

upregulation of lactate dehydrogenase expression. Therefore, we suggest that GLUT1 

upregulation and glucose uptake are regulated in an AKT-independent manner, whereas lactate 

production strongly requires the activation of AKT. It was shown that phosphoinositol-

dependent protein kinase 1 (PDK1), an upstream activator of AKT, is responsible for the 

upregulation of glucose uptake independent of the PI3K/AKT pathway (Macintyre et al. 2011). 

Since the role of PDK1 was assessed in T cell blasts in the presence of high IL-2 concentrations, 

there is a strong temporal separation from our system. We clearly observe the upregulation of 

LDH in parallel to the activation of AKT within 48h upon stimulation. This leads to the 

hypothesis that AKT activation upon stimulation induces an upregulation of LDH, whereas IL-2 

production induces an AKT independent upregulation of glucose uptake via PDK1.  

Surprisingly the inhibition of mTOR by rapamycin had no effect on lactate production, since it 

was described that mTOR is one of the crucial players in nutrient sensing in mammalian cells. 

Previous studies revealed an important role of mTOR in the regulation of differentiation  into 

CD4+ T cell subsets like Th1, Th2 and Th17 cells (Michalek et al. 2011; Shi et al. 2011). 

Furthermore we observed no activation of HIF1α in our study which was proposed to be a link 
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between mTOR and upregulation of glycolytic enzymes (Shi et al. 2011). Therefore we could 

conclude that mTOR activation is not required for upregulation of glycolysis in CD8+ T cells. 

Since it was also shown that inhibition of mTOR drives memory T cell formation (Pearce et al. 

2009), the addition of rapamycin is a powerful target in modulating CD4+ T cell related 

autoimmune diseases like multiples sclerosis (Esposito et al. 2010) with minimal effect on CD8+ 

T cell responses. 

 

4.5. CD28 costimulation is dispensable for OT-I T cells stimulated with 

tetramers  

 

A change in metabolism and the production of lactate has also been described for primary human 

CD4+ T cells (Salmond et al. 2009). We were able to confirm these previous results showing that 

CD3 alone induced only a weak production of lactate, whereas the addition of co-stimulation via 

CD28 led to a full activation of lactate production in human T cells. When we applied these 

conditions to our CD8+ mouse model, we see a insignificant difference between the stimulation 

with CD3 alone and the co-stimulation with CD28. Additionally, we show that tetramer 

stimulation leads to a level of lactate production similar to that after stimulation with antibodies 

coupled to beads. This supports the hypothesis made by Wang et al. that stimulation of CD8+ T 

cells does not require a co-stimulatory signal in contrast to CD4+ T cells (Wang et al. 2000). 

Similar effects were shown in a study were the blockade of the CD28 pathway hat no effect on 

allograft rejection mediated by CD8+ T cells (Newell et al. 1999). 

 

4.6. Modulating metabolism 

 

We show that CD8+ T cells undergo rapid metabolic changes following activation in order to 

maintain their energetic needs for proliferation and differentiation leading to a functional 

immune response. As mentioned before CD4+ T cells were shown to perform in a similar way 

upon activation. However other T cell subsets like regulatory or memory T cells require different 

metabolic programs according to their function. It was shown for these subsets that their 

metabolism mostly relying on an increased TCA cycle (Pearce et al. 2009; Delgoffe et al. 2009). 

The induction of fatty acid oxidation feeding into the TCA cycle leads to an enhanced generation 

of memory T cells. It was shown that inhibition of mTOR substantially increased the generation 
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of memory T cells during vaccination and virus infection. In our work we identified several key 

molecules to modulate T cell metabolism. Inhibition of AKT or an upregulation of CTLA4 could 

be possible targets for preventing the overreaction and exhaustion of T cells as seen in chronic 

viral infections, like HIV or HCV. Until now some metabolic inhibitors have been shown to 

suppress T cell responses in EAE, asthma, and graft versus host disease (Dang et al. 2011; Shi et 

al. 2011; Ostroukhova et al. 2012; Gatza et al. 2011). Furthermore a recent study revealed an 

altered metabolism in CD4+ T cells from a systemic lupus erythematosus (SLE) mouse model 

(Yin et al. 2015). These T cells showed besides upregulation of glycolysis and elevated 

mitochondrial oxidative metabolism. The addition of 2-deoxyglucose to downregulate glycolytic 

levels together with metformin, which downmodulates the TCA-cycle, could reverse disease 

biomarkers. A key goal of future work will be to determine how the activation environment in 

vivo alters metabolic reprogramming in specific disease states. Recently a new molecule was 

identified called lymphocyte expansion molecule (LEM, Okoye et al. 2015), which was shown to 

promote antigen specific CD8+ T cell expansion, effector function, and memory cell generation. 

LEM was observed to regulate the protein complexes of the oxidative phosphorylation pathway 

in the inner membrane of the mitochondria thereby upregulating the generation of reactive 

oxygen species which play a crucial role in T cell proliferation. Nevertheless the whole 

mechanism how this modulation effects T cell beahviour remains unclear. This leads to the 

conclusion that changes in T cell metabolism can alter T cell expansion and differentiation 

making metabolic regulation a powerful target for treatment of a large variety of diseases like  

immune-related diseases characterized by hyperactive T cells.     



ABBREVIATIONS          57 

5. References 

 

Alegre, M L; Noel, P J; Eisfelder, B J; Chuang, E; Clark, M R; Reiner, S L; Thompson, C 
B (1996): Regulation of surface and intracellular expression of CTLA4 on mouse T cells. In: J. 
Immunol 157 (11), S. 4762–4770. 

ANDRES, R; CADER, G; ZIERLER, K L (1955): Metabolic exchange of human muscle in 
situ. In: Am J Phys Med 34 (1), S. 286–290. 

Andrian, U H von; Mackay, C R (2000): T-cell function and migration. Two sides of the same 
coin. In: N. Engl. J. Med 343 (14), S. 1020–1034. 

Arndt, B; Poltorak, M; Kowtharapu, B S; Reichardt, P; Philipsen, L; Lindquist, J A et al. 
(2013): Analysis of TCR activation kinetics in primary human T cells upon focal or soluble 
stimulation. In: J. Immunol. Methods 387 (1-2), S. 276–283. 

Bauer, D E; Harris, M H; Plas, D R; Lum, J J; Hammerman, P S; Rathmell, J C et al. 
(2004): Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative 
demand. In: FASEB J 18 (11), S. 1303–1305. 

Brand, K; Williams, J F; Weidemann, M J (1984): Glucose and glutamine metabolism in rat 
thymocytes. In: Biochem. J 221 (2), S. 471–475. 

Brand, K (1985): Glutamine and glucose metabolism during thymocyte proliferation. Pathways 
of glutamine and glutamate metabolism. In: Biochem. J 228 (2), S. 353–361. 

Brand, K; Aichinger S; Forster S; Kupper S;Neumann B; Nürnberg W; Ohrisch G. (1988) 
Cell-cycle-related metabolic and enzymatic events in proliferating rat thymocytes.in: Eur. J. 
Biochem. 172, 695–702. 

Cao, Y; Li, H; Liu, H; Zheng, C; Ji, H; Liu, X (2010): The serine/threonine kinase LKB1 
controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. In: 
Cell Res 20 (1), S. 99–108. 

Cao, Y; Rathmell, J C; Macintyre, A N (2014): Metabolic reprogramming towards aerobic 
glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in 
CD8 versus CD4 T cells. In: PLoS ONE 9 (8), S. e104104. 

Carreno, B M; Bennett, F; Chau, T A; Ling, V; Luxenberg, D; Jussif, J et al. (2000): CTLA-
4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell 
surface expression. In: J. Immunol 165 (3), S. 1352–1356. 

Chan, A C; Dalton, M; Johnson, R; Kong, G H; Wang, T; Thoma, R; Kurosaki, T (1995): 
Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for 
lymphocyte antigen receptor function. In: EMBO J 14 (11), S. 2499–2508. 

Chan, A C; Iwashima, M; Turck, C W; Weiss, A (1992): ZAP-70: a 70 kd protein-tyrosine 
kinase that associates with the TCR zeta chain. In: Cell 71 (4), S. 649–662. 

Chen, C-H; Shaikenov, T; Peterson, T R; Aimbetov, R; Bissenbaev, A K; Lee, S-W et al. 
(2011): ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated 
phosphorylation of rictor. In: Sci Signal 4 (161), S. ra10. 

Ciofani, M; Zúñiga-Pflücker, J C (2005): Notch promotes survival of pre-T cells at the beta-
selection checkpoint by regulating cellular metabolism. In: Nat. Immunol 6 (9), S. 881–888. 



ABBREVIATIONS          58 

Cramer, T; Yamanishi, Y; Clausen, B E; Förster, I; Pawlinski, R; Mackman, N et al. 
(2003): HIF-1alpha is essential for myeloid cell-mediated inflammation. In: Cell 112 (5), S. 645–
657. 

Curran, M A; Montalvo, W; Yagita, H; Allison, J P (2010): PD-1 and CTLA-4 combination 
blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 
melanoma tumors. In: Proc. Natl. Acad. Sci. U.S.A 107 (9), S. 4275–4280. 

Dang, C V; Le, A; Gao, P (2009): MYC-induced cancer cell energy metabolism and therapeutic 
opportunities. In: Clin. Cancer Res 15 (21), S. 6479–6483. 

Dang, E V; Barbi, J; Yang, H-Y; Jinasena, D; Yu, H; Zheng, Y et al. (2011): Control of 
T(H)17/T(reg) balance by hypoxia-inducible factor 1. In: Cell 146 (5), S. 772–784. 

Daniels, M A; Teixeiro, E; Gill, J; Hausmann, B; Roubaty, D; Holmberg, K et al. (2006): 
Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. In: Nature 
444 (7120), S. 724–729. 

Delgoffe, G M; Kole, T P; Zheng, Y; Zarek, P E; Matthews, K L; Xiao, B et al. (2009): The 
mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. In: 
Immunity 30 (6), S. 832–844. 

Douglas, N C; Jacobs, H; Bothwell, A L; Hayday, A C (2001): Defining the specific 
physiological requirements for c-Myc in T cell development. In: Nat. Immunol 2 (4), S. 307–315. 

Düvel, K; Yecies, J L; Menon, S; Raman, P; Lipovsky, A I; Souza, A L et al. (2010): 
Activation of a metabolic gene regulatory network downstream of mTOR complex 1. In: Mol. 
Cell 39 (2), S. 171–183. 

Dziurla, R; Gaber, T; Fangradt, M; Hahne, M; Tripmacher, R; Kolar, P et al. (2010): 
Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production 
in stimulated human CD4+ T lymphocytes. In: Immunol. Lett 131 (1), S. 97–105. 

Egawa, T; Albrecht, B; Favier, B; Sunshine, M-J; Mirchandani, K; O'Brien, W et al. 
(2003): Requirement for CARMA1 in antigen receptor-induced NF-kappa B activation and 
lymphocyte proliferation. In: Curr. Biol 13 (14), S. 1252–1258. 

Esposito, M; Ruffini, F; Bellone, M; Gagliani, N; Battaglia, M; Martino, G; Furlan, R 
(2010): Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both 
effector and regulatory T cells modulation. In: J. Neuroimmunol 220 (1-2), S. 52–63. 

Firth, J D; Ebert, B L; Pugh, C W; Ratcliffe, P J (1994): Oxygen-regulated control elements in 
the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the 
erythropoietin 3' enhancer. In: Proc. Natl. Acad. Sci. U.S.A 91 (14), S. 6496–6500. 

Flotho, C; Valcamonica, S; Mach-Pascual, S; Schmahl, G; Corral, L; Ritterbach, J et al. 
(1999): RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia 
(JMML). In: Leukemia 13 (1), S. 32–37. 

Frauwirth, K A; Riley, J L; Harris, M H; Parry, R V; Rathmell, J C; Plas, D R et al. (2002): 
The CD28 signaling pathway regulates glucose metabolism. In: Immunity 16 (6), S. 769–777. 

Frauwirth, K A; Thompson, C B (2004): Regulation of T lymphocyte metabolism. In: J. 
Immunol 172 (8), S. 4661–4665. 

Gatza, E; Wahl, D R; Opipari, A W; Sundberg, T B; Reddy, P; Liu, C et al. (2011): 
Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests 
graft-versus-host disease. In: Sci Transl Med 3 (67), S. 67ra8. 

 



ABBREVIATIONS          59 

Gao, P; Tchernyshyov, I; Chang, T-C; Lee, Y-S; Kita, K; Ochi, T et al. (2009): c-Myc 
suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine 
metabolism. In: Nature 458 (7239), S. 762–765. 

Garcia-Cozar, F J; Okamura, H; Aramburu, J F; Shaw, K T; Pelletier, L; Showalter, R et 
al. (1998): Two-site interaction of nuclear factor of activated T cells with activated calcineurin. In: 
J. Biol. Chem 273 (37), S. 23877–23883. 

Garland, J M; Halestrap, A (1997): Energy metabolism during apoptosis. Bcl-2 promotes 
survival in hematopoietic cells induced to apoptose by growth factor withdrawal by stabilizing a 
form of metabolic arrest. In: J. Biol. Chem 272 (8), S. 4680–4688. 

Genot, E; Cantrell, D A (2000): Ras regulation and function in lymphocytes. In: Curr. Opin. 
Immunol 12 (3), S. 289–294. 

Gottlob, K; Majewski, N; Kennedy, S; Kandel, E; Robey, R B; Hay, N (2001): Inhibition of 
early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and 
mitochondrial hexokinase. In: Genes Dev 15 (11), S. 1406–1418. 

Greiner, E F; Guppy, M; Brand, K (1994): Glucose is essential for proliferation and the 
glycolytic enzyme induction that provokes a transition to glycolytic energy production. In: J. Biol. 
Chem 269 (50), S. 31484–31490. 

Guertin, D A; Stevens, D M; Thoreen, C C; Burds, A A; Kalaany, N Y; Moffat, J et al. 
(2006): Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that 
mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. In: Dev. Cell 11 
(6), S. 859–871. 

Hara, K; Maruki, Y; Long, X; Yoshino, K-i; Oshiro, N; Hidayat, S et al. (2002): Raptor, a 
binding partner of target of rapamycin (TOR), mediates TOR action. In: Cell 110 (2), S. 177–189. 

Hardie, D G; Salt, I P; Hawley, S A; Davies, S P (1999): AMP-activated protein kinase: an 
ultrasensitive system for monitoring cellular energy charge. In: Biochem. J 338 (Pt 3), S. 717–722. 

Hardie, D G; Scott, J W; Pan, D A; Hudson, E R (2003): Management of cellular energy by 
the AMP-activated protein kinase system. In: FEBS Lett 546 (1), S. 113–120. 

Hue, L; Rider, M H (1987): Role of fructose 2,6-bisphosphate in the control of glycolysis in 
mammalian tissues. In: Biochem. J 245 (2), S. 313–324. 

Hurley, R L; Anderson, K A; Franzone, J M; Kemp, B E; Means, A R; Witters, L A (2005): 
The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase 
kinases. In: J. Biol. Chem 280 (32), S. 29060–29066. 

Izyumov, D S; Avetisyan, A V; Pletjushkina, O Y; Sakharov, D V; Wirtz, K W; Chernyak, 
B V; Skulachev, V P (2004): "Wages of fear": transient threefold decrease in intracellular ATP 
level imposes apoptosis. In: Biochim. Biophys. Acta 1658 (1-2), S. 141–147. 

Jacobs, S R; Herman, C E; Maciver, N J; Wofford, J A; Wieman, H L; Hammen, J J; 
Rathmell, J C (2008): Glucose uptake is limiting in T cell activation and requires CD28-mediated 
Akt-dependent and independent pathways. In: J. Immunol 180 (7), S. 4476–4486. 

Jones, D R; Sanjuán, M A; Stone, J C; Mérida, I (2002): Expression of a catalytically inactive 
form of diacylglycerol kinase alpha induces sustained signaling through RasGRP. In: FASEB J 16 
(6), S. 595–597. 

Jücker, M; Südel, K; Horn, S; Sickel, M; Wegner, W; Fiedler, W; Feldman, R A (2002): 
Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-
kinase in a Hodgkin's lymphoma-derived cell line (CO). In: Leukemia 16 (5), S. 894–901. 

Juel, C (1997): Lactate-proton cotransport in skeletal muscle. In: Physiol. Rev 77 (2), S. 321–358. 



ABBREVIATIONS          60 

Kass, G E; Eriksson, J E; Weis, M; Orrenius, S; Chow, S C (1996): Chromatin condensation 
during apoptosis requires ATP. In: Biochem. J 318 (Pt 3), S. 749–752. 

Kim, D-H; Sarbassov, D D; Ali, S M; King, J E; Latek, R R; Erdjument-Bromage, H et al. 
(2002): mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell 
growth machinery. In: Cell 110 (2), S. 163–175. 

Lee, J H; Koh, H; Kim, M; Kim, Y; Lee, S Y; Karess, R E et al. (2007): Energy-dependent 
regulation of cell structure by AMP-activated protein kinase. In: Nature 447 (7147), S. 1017–1020. 

Leist, M; Single, B; Castoldi, A F; Kühnle, S; Nicotera, P (1997): Intracellular adenosine 
triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. In: J. 
Exp. Med 185 (8), S. 1481–1486. 

Loewith, R; Jacinto, E; Wullschleger, S; Lorberg, A; Crespo, J L; Bonenfant, D et al. 
(2002): Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell 
growth control. In: Mol. Cell 10 (3), S. 457–468. 

MacDonald, H R; Cerottini, J C (1979): Inhibition of T cell-mediated cytolysis by 2-deoxy-D-
glucose (2-DG): differential effect of 2-DG on effector cells isolated early or late after 
alloantigenic stimulation in vitro. In: J. Immunol 122 (3), S. 1067–1072. 

Macintyre, A N; Finlay, D; Preston, G; Sinclair, L V; Waugh, C M; Tamas, P et al. (2011): 
Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is 
dispensable for T cell metabolism. In: Immunity 34 (2), S. 224–236. 

Mallaun, M; Naeher, D; Daniels, M A; Yachi, P P; Hausmann, B; Luescher, I F et al. 
(2008): The T cell receptor's alpha-chain connecting peptide motif promotes close approximation 
of the CD8 coreceptor allowing efficient signal initiation. In: J. Immunol 180 (12), S. 8211–8221. 

Mathupala, S P; Rempel, A; Pedersen, P L (1997): Aberrant glycolytic metabolism of cancer 
cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational 
events that lead to a critical role for type II hexokinase. In: J. Bioenerg. Biomembr 29 (4), S. 339–343. 

Mescher, M F; Curtsinger, J M; Agarwal, P; Casey, K A; Gerner, M; Hammerbeck, C D et 
al. (2006): Signals required for programming effector and memory development by CD8+ T 
cells. In: Immunol. Rev 211, S. 81–92. 

Michalek, R D; Gerriets, V A; Jacobs, S R; Macintyre, A N; Maciver, N J; Mason, E F et 
al. (2011): Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential 
for effector and regulatory CD4+ T cell subsets. In: J. Immunol 186 (6), S. 3299–3303. 

Mirouse, V; Swick, L L; Kazgan, N; St Johnston, D; Brenman, J E (2007): LKB1 and 
AMPK maintain epithelial cell polarity under energetic stress. In: J. Cell Biol 177 (3), S. 387–392. 

Newell, K A; He, G; Guo, Z; Kim, O; Szot, G L; Rulifson, I et al. (1999): Cutting edge: 
blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated 
by CD4+ but not CD8+ T cells. In: J. Immunol 163 (5), S. 2358–2362. 

Oestreich, K J; Read, K A; Gilbertson, S E; Hough, K P; McDonald, P W; 
Krishnamoorthy, V; Weinmann, A S (2014): Bcl-6 directly represses the gene program of the 
glycolysis pathway. In: Nat. Immunol 15 (10), S. 957–964. 

Okoye, I; Wang, L; Pallmer, K; Richter, K; Ichimura, T; Haas, R et al. (2015): T cell 

metabolism. The protein LEM promotes CD8⁺ T cell immunity through effects on 
mitochondrial respiration. In: Science 348 (6238), S. 995–1001. 

Ostroukhova, M; Goplen, N; Karim, M Z; Michalec, L; Guo, L; Liang, Q; Alam, R (2012): 
The role of low-level lactate production in airway inflammation in asthma. In: Am. J. Physiol. Lung 
Cell Mol. Physiol 302 (3), S. L300-7. 



ABBREVIATIONS          61 

Parry, R V; Chemnitz, J M; Frauwirth, K A; Lanfranco, A R; Braunstein, I; Kobayashi, S V 
et al. (2005): CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. In: 
Mol. Cell. Biol 25 (21), S. 9543–9553. 

Pearce, E L; Walsh, M C; Cejas, P J; Harms, G M; Shen, H; Wang, L-S et al. (2009): 
Enhancing CD8 T-cell memory by modulating fatty acid metabolism. In: Nature 460 (7251), S. 
103–107. 

Perl, A; Gergely, P; Puskas, F; Banki, K (2002): Metabolic switches of T-cell activation and 
apoptosis. In: Antioxid. Redox Signal 4 (3), S. 427–443. 

Peter, C; Waldmann, H; Cobbold, S P (2010): mTOR signalling and metabolic regulation of T 
cell differentiation. In: Curr. Opin. Immunol 22 (5), S. 655–661. 

Rapoport, T A; Heinrich, R; Rapoport, S M (1976): The regulatory principles of glycolysis in 
erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-
steady states and time-dependent processes. In: Biochem. J 154 (2), S. 449–469. 

Rathmell, J C; Elstrom, R L; Cinalli, R M; Thompson, C B (2003): Activated Akt promotes 
increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity 
and lymphoma. In: Eur. J. Immunol 33 (8), S. 2223–2232. 

Ritter, J B; Genzel, Y; Reichl, U (2008): Simultaneous extraction of several metabolites of 
energy metabolism and related substances in mammalian cells: optimization using experimental 
design. In: Anal. Biochem 373 (2), S. 349–369. 

Ritter, J B; Wahl, A S; Freund, S; Genzel, Y; Reichl, U (2010): Metabolic effects of influenza 
virus infection in cultured animal cells: Intra- and extracellular metabolite profiling. In: BMC Syst 
Biol 4, S. 61. 

Rivenzon-Segal, D; Boldin-Adamsky, S; Seger, D; Seger, R; Degani, H (2003): Glycolysis 
and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. In: Int. J. 
Cancer 107 (2), S. 177–182. 

Rolf, J; Zarrouk, M; Finlay, D K; Foretz, M; Viollet, B; Cantrell, D A (2013): AMPKα1: a 
glucose sensor that controls CD8 T-cell memory. In: Eur. J. Immunol 43 (4), S. 889–896. 

Roos, D; Loos, J A (1973): Changes in the carbohydrate metabolism of mitogenically stimulated 
human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative 
phosphorylation on phytohaemagglutinin stimulation. In: Exp. Cell Res 77 (1), S. 127–135. 

Rose, I A; Warms, J V (1966): Control of glycolysis in the human red blood cell. In: J. Biol. Chem 
241 (21), S. 4848–4854. 

Ruefli-Brasse, A A; French, D M; Dixit, V M (2003): Regulation of NF-kappaB-dependent 
lymphocyte activation and development by paracaspase. In: Science 302 (5650), S. 1581–1584. 

Saez-Rodriguez, J; Simeoni, L; Lindquist, J A; Hemenway, R; Bommhardt, U; Arndt, B et 
al. (2007): A logical model provides insights into T cell receptor signaling. In: PLoS Comput. Biol 3 
(8), S. e163. 

Salmond, R J; Emery, J; Okkenhaug, K; Zamoyska, R (2009): MAPK, phosphatidylinositol 
3-kinase, and mammalian target of rapamycin pathways converge at the level of ribosomal 
protein S6 phosphorylation to control metabolic signaling in CD8 T cells. In: J. Immunol 183 (11), 
S. 7388–7397. 

Sarbassov, D D; Ali, S M; Kim, D-H; Guertin, D A; Latek, R R; Erdjument-Bromage, H 
et al. (2004): Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and 
raptor-independent pathway that regulates the cytoskeleton. In: Curr. Biol 14 (14), S. 1296–1302. 



ABBREVIATIONS          62 

Sarbassov, D D; Guertin, D A; Ali, S M; Sabatini, D M (2005): Phosphorylation and 
regulation of Akt/PKB by the rictor-mTOR complex. In: Science 307 (5712), S. 1098–1101. 

Semenza, G L; Jiang, B H; Leung, S W; Passantino, R; Concordet, J P; Maire, P; 
Giallongo, A (1996): Hypoxia response elements in the aldolase A, enolase 1, and lactate 
dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. 
In: J. Biol. Chem 271 (51), S. 32529–32537. 

Sena, L A; Chandel, N S (2012): Physiological roles of mitochondrial reactive oxygen species. 
In: Mol. Cell 48 (2), S. 158–167. 

Sena, L A; Li, S; Jairaman, A; Prakriya, M; Ezponda, T; Hildeman, D A et al. (2013): 
Mitochondria are required for antigen-specific T cell activation through reactive oxygen species 
signaling. In: Immunity 38 (2), S. 225–236. 

Shestov, A A; Liu, X; Ser, Z; Cluntun, A A; Hung, Y P; Huang, L et al. (2014): Quantitative 
determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. 
In: Elife 3. 

Shi, L Z; Wang, R; Huang, G; Vogel, P; Neale, G; Green, D R; Chi, H (2011): HIF1alpha-
dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of 
TH17 and Treg cells. In: J. Exp. Med 208 (7), S. 1367–1376. 

Smida, M; Posevitz-Fejfar, A; Horejsi, V; Schraven, B; Lindquist, J A (2007): A novel 
negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched 
microdomains: blocking Ras activation. In: Blood 110 (2), S. 596–615. 

Stirewalt, D L; Kopecky, K J; Meshinchi, S; Appelbaum, F R; Slovak, M L; Willman, C L; 
Radich, J P (2001): FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid 
leukemia. In: Blood 97 (11), S. 3589–3595. 

Tamás, P; Hawley, S A; Clarke, R G; Mustard, K J; Green, K; Hardie, D G; Cantrell, D A 
(2006): Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and 
Ca2+ in T lymphocytes. In: J. Exp. Med 203 (7), S. 1665–1670. 

Tee, A R; Manning, B D; Roux, P P; Cantley, L C; Blenis, J (2003): Tuberous sclerosis 
complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-
activating protein complex toward Rheb. In: Curr. Biol 13 (15), S. 1259–1268. 

Tsujimoto, Y (1997): Apoptosis and necrosis: intracellular ATP level as a determinant for cell 
death modes. In: Cell Death Differ 4 (6), S. 429–434. 

Wang, L; Harris, T E; Roth, R A; Lawrence, J C (2007): PRAS40 regulates mTORC1 kinase 
activity by functioning as a direct inhibitor of substrate binding. In: J. Biol. Chem 282 (27), S. 
20036–20044. 

Wang, C J; Heuts, F; Ovcinnikovs, V; Wardzinski, L; Bowers, C; Schmidt, E M et al. 
(2015): CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of 
CD28 engagement. In: Proc. Natl. Acad. Sci. U.S.A 112 (2), S. 524–529. 

Wang, B; Maile, R; Greenwood, R; Collins, E J; Frelinger, J A (2000): Naive CD8+ T cells 
do not require costimulation for proliferation and differentiation into cytotoxic effector cells. In: 
J. Immunol 164 (3), S. 1216–1222. 

Wang, X B; Zheng, C Y; Giscombe, R; Lefvert, A K (2001): Regulation of surface and 
intracellular expression of CTLA-4 on human peripheral T cells. In: Scand. J. Immunol 54 (5), S. 
453–458. 

Wang, X; Simeoni, L; Lindquist, J A; Saez-Rodriguez, J; Ambach, A; Gilles, E D et al. 
(2008): Dynamics of proximal signaling events after TCR/CD8-mediated induction of 
proliferation or apoptosis in mature CD8+ T cells. In: J. Immunol 180 (10), S. 6703–6712. 



ABBREVIATIONS          63 

WARBURG, O (1956): On the origin of cancer cells. In: Science 123 (3191), S. 309–314. 

Woods, A; Johnstone, S R; Dickerson, K; Leiper, F C; Fryer, L G D; Neumann, D et al. 
(2003): LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. In: Curr. Biol 
13 (22), S. 2004–2008. 

Yamamoto, T; Seino, Y; Fukumoto, H; Koh, G; Yano, H; Inagaki, N et al. (1990): Over-
expression of facilitative glucose transporter genes in human cancer. In: Biochem. Biophys. Res. 
Commun 170 (1), S. 223–230. 

Yasuhara, N; Eguchi, Y; Tachibana, T; Imamoto, N; Yoneda, Y; Tsujimoto, Y (1997): 
Essential role of active nuclear transport in apoptosis. In: Genes Cells 2 (1), S. 55–64. 

Yin, Y; Choi, S-C; Xu, Z; Perry, D J; Seay, H; Croker, B P et al. (2015): Normalization of 
CD4+ T cell metabolism reverses lupus. In: Sci Transl Med 7 (274), S. 274ra18. 

Zarrouk, M; Rolf, J; Cantrell, D A (2013): LKB1 mediates the development of conventional 
and innate T cells via AMP-dependent kinase autonomous pathways. In: PLoS ONE 8 (3), S. 
e60217. 

Zeng, Z; Samudio, I J; Zhang, W; Estrov, Z; Pelicano, H; Harris, D et al. (2006): 
Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-
molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous 
leukemia. In: Cancer Res 66 (7), S. 3737–3746. 

Zhang, Y; Gao, X; Saucedo, L J; Ru, B; Edgar, B A; Pan, D (2003): Rheb is a direct target of 
the tuberous sclerosis tumour suppressor proteins. In: Nat. Cell Biol 5 (6), S. 578–581. 

 



ABBREVIATIONS          64 

6. Abbreviations 

 

ADP adenosine diphosphate 

AMP adenosine monophosphate 

AMPK 5' adenosine monophosphate-activated protein 

kinase 

ATP adenosine triphosphate 

BSA bovine serum albumin 

CTLA4 cytotoxic T-lymphocyte-associated protein 4 

DMSO dimethyl sulfoxide 

EDTA ethylenediaminetetraacetic acid 

ERK extracellular-signal-regulated kinase 

GDP guanosine-5'-diphosphate 

GLUTI glucose transporter 1 

GMP guanosine-5'-monophosphate 

GTP guanosine-5'-triphosphate 

HIF1α Hypoxia-inducible factor 1-alpha 

IL interleukin 

LDH lactate dehydrogenase 

LKB1 liver kinase B1 

MHC major histocompatibility complex 

mTOR mammalian/mechanistic target of rapamycin 

NADH nicotinamide adenine dinucleotide 
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NTP nucleoside triphosphate 

OXPHOS oxidative phosphorylation 

PBS phosphate buffered saline 

PDK1 3-phosphoinositide dependent protein kinase-1 

TCA-cycle tricarboxylic acid cycle 

TCR T cell receptor 
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