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Abstract

Vector field visualization is a major discipline of scientific visualization that helps to

push the frontiers of research in fluid mechanics, medicine, biology, astrophysics and

many more. In particular, vector field visualization is concerned with the discovery

of relationships in possibly large and complex vector fields, which serve as general

descriptors of air and fluid flows, magnetic fields and dynamical systems. The visu-

alization community found a number of different ways to assist in the analysis and

exploration of these fields. Two major classes of approaches are the so-called geometry-

based and feature-based / topology-based techniques. The first and second part of this

thesis introduce techniques that reside in these two classes, respectively. The third

part of the thesis addresses the analysis of inertial particles, i.e., finite-sized objects

carried by fluid flows.

When it comes to 3D flow visualization, we often encounter occlusion problems when

displaying dense sets of lines or multiple surfaces. A vital aspect is the careful selection

of the primitives that best communicate the relevant features in a data set. In the first

part of the thesis, we present optimization-based approaches that adjust the opacity

of lines and surfaces to strive for a balance between the presentation of relevant

information and occlusion avoidance.

The second part of the thesis is dedicated to novel rendering techniques for the visu-

alization of unsteady flows. For this, we will apply techniques from light transport in

heterogeneous participating media to the unbiased rendering of Lagrangian scalar

fields, namely finite-time Lyapunov exponents. Further, we propose a new class of

vortex definitions for flows that are induced by rotating mechanical parts, such as

stirring devices, hydrocyclones, centrifugal pumps or ventilators.

In the third part of this thesis, we introduce inertial particles as a new application

domain to the flow visualization community. Recent research in flow visualization

focused on the analysis of massless particles. However, in many application scenarios,

the mass of particles and their resulting inertia are essential, such as when sand

particles interact with aircraft. The governing ODE of even simple inertial flow models

is up to seven dimensional, which makes feature extraction a challenging task. We

abstract the description of mass-dependent particle trajectories and apply existing

flow visualization methods to the mass-dependent case. In particular, we extract
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and visualize integral geometry, study the vortical motion and separation behavior

of inertial particles, extend traditional vector field topology to the inertial case and

present a new approach to the source inversion problem, i.e., the recovery of the source

of dispersed pollutants.

We demonstrate the usefulness of our methods by applying them to a variety of syn-

thetic and real-world data sets.



Zusammenfassung

Die Visualisierung von Vektorfeldern ist eine zentrale Disziplin der wissenschaftlichen

Visualisierung. In der Strömungsmechanik, Medizin, Biologie, Astrophysik und in

vielen weiteren Bereichen hilft sie den gegenwärtigen Forschungsstand voranzutreiben.

Insbesondere spielt die Visualisierung in der Entdeckung von Zusammenhängen in

großen und komplexen Vektorfeldern eine Rolle, die generell der Beschreibung von

Luft- und Wasserströmungen, Magnetfeldern und dynamischen Systemen dienen. Die

Visualisierungs-Community erschloss eine Vielzahl an Wegen um bei der Analyse und

Exploration dieser Felder zu unterstützen. Zwei grundlegende Klassen von Ansätzen

sind die sogenannten geometrie-basierten und feature-/topologie-basierten Techniken.

Der erste und zweite Teil dieser Dissertation stellt Techniken vor, die in diesen zwei

Klassen angesiedelt sind. Der dritte Teil der Arbeit adressiert die Analyse von masse-

behafteten Partikeln, die in Strömungen transportiert werden.

In der 3D Strömungsvisualisierung begegnet man häufig Verdeckungsproblemen,

sobald dichte Linienfelder oder mehrere Flächen dargestellt werden. Ein wichtiger

Aspekt ist daher die sorgfältige Auswahl von Darstellungsprimitiven, sodass die rele-

vanten Strukturen im Datensatz bestmöglich kommuniziert werden können. Im ersten

Teil der Dissertation stellen wir optimierungsbasierte Ansätze vor, die die Sichtbarkeit

von Linien und Flächen einstellen um eine Balance zwischen der Darstellbarkeit von

Informationen und der Vermeidung von Verdeckung zu finden.

Der zweite Teil der Dissertation ist neuen Visualisierungsmethoden für zeit-abhängige

Strömungen gewidmet. Hierfür wenden wir Techniken aus dem Lichttransport in-

homogener partizipierender Medien auf die erwartungstreue Darstellung von inte-

grationsbasierten Skalarfeldern an, nämlich dem sogenannten finite-time Lyapunov

Exponent. Des Weiteren stellen wir eine neue Klasse von Wirbeldefinitionen für Strö-

mungen vor, die von rotierenden mechanischen Teilen induziert werden, wie etwa von

Rührwerken, Hydrokzyklonen, Zentrifugalpumpen oder Ventilatoren.

Im dritten Teil der Dissertation, führen wir masse-behaftete Partikel als ein neues

Anwendungsfeld in der Strömungsvisualisierung ein. Bisherige Forschung im Bereich

der Strömungsvisualisierung beschränkte sich auf die Analyse zeitabhängiger, jedoch

masseloser Partikel. In vielen Anwendungsgebieten spielt die Masse von Partikeln,

und die daraus resultierende Trägheit, allerdings eine essentielle Rolle in der Strö-
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mungsmechanik, beispielsweise wenn Sandpartikel mit Luftfahrzeugen interagieren.

Die zugrundeliegende gewöhnliche Differentialgleichung von selbst einfachen Par-

tikelbewegungsmodellen ist bis zu sieben-dimensional, was die Merkmalsextraktion

zu einer herausfordernden Aufgabe macht. Wir abstrahieren die Beschreibung masse-

abhängiger Partikelflugbahnen und wenden existierenden Visualisierungsmethoden

für Strömungen auf den masse-abhängigen Fall an. Im Einzelnen extrahieren und

visualisieren wir Integralgeometrie, studieren das Wirbelverhalten und die Separation

von masse-abhängigen Partikeln, erweitern traditionelle Vektorfeldtopologie auf den

masse-abhängigen Fall und präsentieren einen neuen Ansatz zur Entdeckung der

Herkunft von Schmutzpartikeln in Strömungen.

Wir demonstrieren die Anwendbarkeit unserer Methoden in einer Vielzahl von syn-

thetischen und realen Datensätzen.
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1
Chapter 1.

Introduction

The movement of air and fluids is astounding in many ways. It surrounds us at all

times, yet often we cannot see, but only feel it. When made visible – even by chance –

for instance by leaves circling in the air or by smoke rising from a blown out candle,

we see complex patterns emerge that inevitably catch the eye. While such small

phenomena might only be noticed by watchful eyes, nature repeatedly unleashes

its inconceivable power, reminding us that we are bound to its laws. Major fluid

dynamics such as hurricanes, tornadoes and tsunamis affect billions of lives. Aside

from such uncontrollable forces, air and fluid flows are tamed on lower scales to our

advantage. For instance, they can be harnessed for conversion into electrical energy in

an ecologically compatible way. Not only industrial processes such as combustion of

pulverized coal or spray drying are successfully utilizing optimized circular air flows,

but also smaller problems are solved, such as air jets at revolving doors or ventilators.

In engineering, aerodynamics play a role in the fuel consumption of airplanes and cars.

In certain applications, not only the flow itself is of interest, but the behavior of small

objects transported therein. These include desert sediment transport, sand blasting,

and brownout in helicopter landing maneuvers. In fact, they influence our everyday

life, even though we are not constantly fully aware of it. On the one hand, nature

engenders phenomena that are in part dangerous and need to be further researched in

order to forecast them better. These reach from oceanic currents that drive the global

climate to the blood flow in our veins. On the other hand, aerodynamics affect many

engineering problems that are optimized for efficiency and safety.

In all these fields, researchers seek to understand the laws at play and strive to model

these typically highly complex phenomena. For this, flow visualization is an important

tool that makes these processes visible. Thereby, it targets a vast range of applications,

in which it allows to communicate information, explore relationships, reason about

causes and even helps to predict future events.
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1. Introduction

Understanding flow data is challenging for a number of reasons. Data sets are not only

getting larger in size, especially for time-dependent sequences, which is challenging

from a computational point of view. Also, the presentation of such densely packed

information raises perceptual issues that need to be solved, for instance by avoidance

of occlusion or the extraction of descriptive features. Thus, a main challenge is to find

interactive exploration techniques that deal with the complexity of such flow data.

This thesis is concerned with topics resided in geometric and feature-based / topology-

based flow visualization. Traditionally, the approaches in these fields have in common

that they are based on the observation of massless tracer particles, carried by the fluid.

Their trajectories follow the flow tangentially and thus provide a compact picture that

proved useful to identify areas of interest and to comprehend the overall behavior of the

flow. The first part of the thesis addresses a very fundamental and long-standing issue,

i.e., the selection of meaningful geometry for the exploration of both time-independent

and time-dependent flow data. More specifically, we study the selection of relevant

lines and surfaces by using global optimization-based adjustments of opacity that take

domain knowledge into account. In the second part of the thesis, we present two novel

techniques for feature-based / topology-based visualization of unsteady flows. We

present a technique that allows to render Lagrangian scalar fields, such as finite-time

Lyapunov exponent fields, without grid discretization and step size errors during ray

marching, which enables the construction of a ground truth. Afterwards, we introduce

a new class of vortex concepts that is invariant under uniform equal-speed rotation,

i.e., rotation invariant vortices.

Since traditional flow visualization is based on the observation of massless particles, it

does not allow to infer the behavior of finite-sized, so-called inertial particles, moving

in the flow. Currently, this is a large gap in the visualization literature. Thus, the third

part of the thesis is dedicated to the study of inertial particles. We will extend known

concepts, like integral curves to the mass-dependent case, study finite-time mass

separation and establish vortex core line extraction methods that are applicable to

inertial particles. Further, we study inertial critical points and asymptotic forward

integration behavior, and present a novel approach to the source inversion problem.

The study of inertial particles opens a vast field of visualization applications, such as

sediment transport, pollution problems or view restriction during landing maneuvers

of aircraft. For many problems, it is to expect that we can extend and draw ideas

from the large body of flow visualization literature, originally designed for traditional

massless flows. We are hopeful that our work encourages more visualization research

on inertial particles, which have eluded the visualization community long enough.
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1.1. Thesis Structure

1.1. Thesis Structure

This thesis is divided into three parts. The first part resides in geometry-based flow

visualization and is dedicated to the selection of lines and surfaces for the display of

general flow data.

• Chapter 2 introduces vector fields, reviews the most recent literature on line

and surface selection and places our work in the context of geometry-based flow

visualization.

• Chapter 3 focuses on the interactive and frame-coherent selection of meaningful

lines in 3D, such that the view is cleared on lines that exhibit a high user-defined

importance. In this area, our approach is the first that formulates the selection

problem as a global optimization-based adjustment of line opacities.

• Chapter 4 targets the yet completely unsolved problem of line selection for ani-

mated 3D lines. For this, we present a hierarchical and view-dependent partition

of lines to speed up the opacity computation and additionally address time

coherence for animated lines.

• Chapter 5 extends the concept of opacity optimization to surfaces, for which an

optimization-based opacity adjustment was absent, too. We present an approach

to the partition of the surfaces and the final interpolation of opacities across the

surface.

The second part of this thesis presents novel feature-based / topology-based tech-

niques for the visualization of unsteady flows.

• Chapter 6 introduces into the computation of finite-time Lyapunov exponents

and revisits vortex invariance under certain types of motion.

• Chapter 7 uses unbiased free path sampling to construct ground renderings of

finite-time Lyapunov exponent fields that are free of grid discretization and step

size errors during ray marching.

• Chapter 8 presents a new class of vortex concepts for the use in rotating devices

such as mixers or centrifugal pumps. For those, we introduce a general way to

turn Galilean invariant vortex concepts into rotation invariant ones.

In the third part of the thesis, we introduce methods for the analysis of inertial particles

in flow fields.

• Chapter 9 presents an overview of the modeling of inertial particle motion and

its relation to massless particles.

• Chapter 10 introduces an abstract concept to describe inertial particle trajectories.
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1. Introduction

Based on this, we define mass-dependent extensions of traditional integral curves,

as well as a new class of integral curves that depicts the separation of masses.

• Chapter 11 builds up on the mass-dependent integral curves and presents three

coordinated views that assist in the exploration of mass-induced separation

behavior.

• Chapter 12 takes a first step toward inertial steady 2D vector field topology by

conducting a full classification of inertial critical points and a visualization of the

asymptotic flow behavior in forward direction.

• Chapter 13 addresses the source inversion problem, which is useful to recover

the origin of dispersed pollutants. We will show that for a given initial velocity

all possible origins form a curve, which can be described as tangent curve of a

derived vector field.

• Chapter 14 is dedicated to the extraction of the mass-dependent vortex cores

of inertial particles. We present a parallel vectors-based technique that extends

Sujudi-Haimes and its time-dependent counterpart, i.e., the cores of swirling

particle motion. Further, for the extraction of attracting vortices, we apply the

well-known particle density estimation.

We conclude the thesis in Chapter 15, where we present an outlook on future work.
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1.2. Notation

1.2. Notation

General Notation

p,E Scalar value or scalar-valued function

x Vector (column-wise) in n-D space

x Vector (column-wise) in (n+ 1)-D space-time

x̃ Vector (column-wise) in (2n)-D space-velocity

x̂ Vector (column-wise) in (2n+ 1)-D space-velocity-time

A Matrix

A Set

xT Transpose of a vector or matrix

p · x Multiplication by a scalar

xTx Dot product (always in matrix notation)

df/dt Total derivative of a (multivariate) function

∂f/∂t Partial derivative of a multivariate function

v1 ‖ v2 Parallel vectors operator

Common Symbols

u(x) Steady vector field (time-independent)

u(x, t) Unsteady vector field (time-dependent)

τ Integration duration

Φτ
t (x) Flow map

∇ Nabla operator

J = ∇u Jacobian matrix (first-order partial derivatives)

0 Zero vector (column-wise)

I Identity matrix

v Particle velocity

r Particle response time [s]

dp Particle diameter [µm]

ρp Particle density [kg/m3]

ν Kinematic viscosity [m2/s]

µ Dynamic viscosity [kg/(ms)]

g Gravity vector [m/s2]

λ Eigenvalue (of Jacobian)

e Eigenvector (of Jacobian)

f Feature flow field
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2
Chapter 2.

Overview on Geometry-based Flow

Visualization

Flow visualization is the discipline of visualizing vector field data for means of data

presentation, visual exploration and visual analysis. Generally, flow visualization is

classified into four classes, which are shortly described below.

Direct Methods. Direct visualization methods are characterized by a depiction of a

set of primitives that directly encode properties of the data, e.g., arrow plots pointing

in the flow direction. They are suitable for multi-variate data visualization, as multiple

attributes can be encoded by glyphs [BKC∗13]. While they are widely and successfully

applied in 2D, their utility is limited when they are spatially embedded in 3D due to

the arising occlusion.

Dense / Texture-based Methods. Texture-based methods, which are sometimes

also referred to as dense methods, densely encode data on the flow domain by using

textures. They are predominantly used in 2D and on 2D manifolds, again due to the

occlusion problems. A famous example is the line integral convolution [CL93]. More

details on texture-based methods are found in [LHD∗04] and [LEG∗08].

Feature-based / Topology-based Methods. In flow visualization, the term feature

is often reserved for structures that are comprised in vector field topology [HH91].

The essence of these methods is to partition and compactly describe the flow as an

ensemble of areas with coherent behavior. More on the extraction and tracking of

those feature is compiled in [PVH∗03]. More recent reports summarize the efforts

in topology-based [LHZP07] and specifically unsteady topology-based [PPF∗11] flow
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2. Overview on Geometry-based Flow Visualization

visualization. Features will play a larger role in the second part of this thesis, when we

discuss finite-time Lyapunov exponents and vortex concepts.

Geometry-based Methods. Geometry-based methods represent the flow by geomet-

ric primitives such as flow aligning lines and surfaces. A profound overview of integral

geometry approaches is given by McLoughlin et al. [MLP∗10]. Recent reports focused

on surface-based [ELC∗12a] and illustrative flow visualization [BCP∗12].

The first part of this thesis is mainly concerned with geometry-based techniques. For

this reason, the next section elaborates on various concepts required in geometry-

based flow visualization. Parts of the following text are compiled from our publica-

tions [GRT13, GRT14, GSM∗14] that the subsequent chapters are based upon.

2.1. Introduction to Geometry-based Flow Visualization

In the following, we formally introduce into vector fields and their properties, consider

the equations of particle motion, describe the concept of flow map, and numerical

integration schemes. Finally, we use the flow map to define the most common charac-

teristic integral curves and surfaces.

2.1.1. Vector Fields, Particle Motion and the Flow Map

First, we distinguish between steady and unsteady flows. A steady flow is not changing

over time and is formally given as a time-independent vector field u(x) = u(x, y [, z]) :

D → D, defined in a spatial domain D, with x ∈ D. Thereby, D is a subset of the

n-dimensional (n = 2, 3) Euclidean space IEn, i.e., D ⊂ IEn. Steady flows are used to

describe instantaneous fields, such as magnetic fields or generally fields that are not

changing over time.

An unsteady flow, on the other hand, varies over time, and thus, it is given as a time-

dependent vector field u(x, t) = u(x, y, [z, ] t) : D × T → D. Most physical processes

are subject to temporal variation, including the motion of air and fluids. By interpreting

a time-dependent field as an autonomous system in space-time, we can write it as an

(n+ 1)-dimensional steady field p =

(
u

1

)
.

Note that we denote vectors in (n+ 1)-D space-time formally by a bar.
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2.1. Introduction to Geometry-based Flow Visualization

Derivatives. We denote the partial derivatives of a time-dependent vector field as:

ux =
∂u(x, t)

∂x
, uy =

∂u(x, t)

∂y
,

[
uz =

∂u(x, t)

∂z
,

]
ut =

∂u(x, t)

∂t
.

Note that for steady flows ut = 0.

Nabla Operator The Nabla operator ∇ is a symbol that simplifies the notation of

several derived differential quantities. It is a vector that contains the partial derivative

symbols with respect to the spatial dimensions:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T

Divergence. The divergence divu of a steady flow u(x, y [, z]) = (u, v [, w])T is a

scalar field that characterizes the change in volume of a virtual finite-sized sphere that

is advected with the flow. The divergence is given as:

divu = ∇ · u =
∂u

∂x
+
∂v

∂y

[
+
∂w

∂z

]
= ux + vy [+wz]

If the volume increases the divergence is positive; if it decreases the divergence is

negative. If the volume remains constant, even though the shape of the sphere might

deform, the divergence is zero. If a flow has zero divergence everywhere in the domain,

the flow is known to be divergence-free or incompressible. The compressibility of a fluid

depends on its molecular composition. Tightly packed fluids such as water are often

modeled as incompressible. Since gases can easily be packed tighter under pressure,

they are highly compressible and not divergence-free.

Curl. The curl curlu of a steady 3D vector field u(x, y, z) = (u, v, w)T is a vector field

that indicates how the flow swirls at a certain point. It is defined as:

curlu = ∇× u =

wy − vzuz − wx
vx − uy


When a virtual finite-sized particle is advected with the flow, it might spin. The axis

around which it spins is parallel to the curl vector and the curl’s magnitude corresponds

to the angular speed of the rotation. A vector field in which the curl is the zero vector

everywhere in the domain is called curl-free or irrotational.
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2. Overview on Geometry-based Flow Visualization

Jacobian. The spatial Jacobian J = ∇u = (ux,uy[,uz]) is an n×nmatrix that contains

a first-order description of how the flow behaves locally around a given location. The

space-time Jacobian is an (n+1)×(n+1) matrix that additionally contains the temporal

derivative. It is defined as J = ∇p =

(
J ut

0T 0

)
.

The eigenvalues and eigenvectors of the Jacobian are of great interest to characterize

isolated first-order critical points [HH89, HH91, Wei08], i.e., locations at which u(x) =

0 and u(x+ε) 6= 0. We cover critical points in detail later in Section 9.3.1. We denote the

eigenvectors of J as e1, e2[, e3], respectively. For n = 3 and the case that two eigenvalues

are complex, the eigenvector to the only real eigenvalue is e. The eigenvectors will play

a greater role later for the definition of vortex concepts.

Acceleration. The acceleration of a particle in space is a = Ju + ut, and the accelera-

tion in space-time is a = J p. Note that a =

(
a

0

)
.

Feature Flow Field. The feature flow field is a derived vector field that was originally

introduced to track critical points in space-time [TS03]. Later, we will use it for general

vortex tracking. We define it in space-time as f and in space as f by division by its last

component. For n = 2 we have [TS03]

f =

det(uy,ut)

det(ut,ux)

det(ux,uy)

 , f =
1

det(ux,uy)

(
det(uy,ut)

det(ut,ux)

)
. (2.1)

For n = 3 we have [WSTH07]

f =


−det(uy,uz,ut)

det(uz,ut,ux)

−det(ut,ux,uy)

det(ux,uy,uz)

 , f =
1

det(ux,uy,uz)

−det(uy,uz,ut)

det(uz,ut,ux)

−det(ut,ux,uy)

 . (2.2)

Note that f can only be computed if J is non-singular. Also note that J has the eigen-

vectors

(
e1

0

)
,

(
e2

0

)
,

[(
e3

0

)
,

]
f , where f has the corresponding eigenvalue 0. There is

a simple relation

u− f = J−1 a (2.3)

and a simpler definition of the feature flow field as

f = −J−1 ut (2.4)
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2.1. Introduction to Geometry-based Flow Visualization

that follow both directly from the definitions of J, a and f , respectively1.

Particle Motion. The heart of geometry-based flow visualization techniques is the

observation of massless particles, which are often referred to as tracer particles. The

location of a particle x(τ), seeded in a steady flow at x0 and observed after integration

time τ , is the solution of the autonomous ordinary differential equation (ODE):

d

dτ
x(τ) = u(x(τ)) with x(0) = x0. (2.6)

The location of a massless particle in an unsteady flow u(x(t), t) is governed by:

d

dt
x(t) = u(x(t), t) with x(0) = x0. (2.7)

The ODE in (2.7) can be rendered autonomous by modeling time as a state variable:

d

dτ

(
x

t

)
(τ) =

(
u(x, t)

1

)
with

(
x

t

)
(0) =

(
x0

t0

)
. (2.8)

Flow Map. An abbreviated notation is the so-called flow map φ : D → D, whereby

φτt (x) describes the location where a particle seeded at (x, t) moves to during the

integration in a vector field u over a time interval τ .

2.1.2. Numerical Integration

In the following, we explain how autonomous ODEs are solved by the example of parti-

cle tracing in unsteady flow. In some cases, autonomous ODEs can be solved analyti-

cally, e.g., if we are interested in the particle trajectories in linear vector fields [BDH92].

In most cases, an analytic solution is not available and we must rely on numerical

integration techniques. Given an initial condition to start with, here, the seed point

(x0, t0) of a particle, a numerical integrator repeatedly estimates the next location of

the particle and advances it to sweep out the particle trajectory.

The accuracy of numerical integrators is a function of the step size h. During a nu-

merical integration the error accumulates, which may quickly lead to quite inaccurate

1 The relation (2.3) can be shown by rearranging:

J(u− f) = Ju− Jf = Ju+ ut = a . (2.5)

With the fact that f has eigenvalue 0, we have Jf = 0 ⇔ J

(
f

1

)
= 0 ⇔ Jf +ut = 0 , which also leads

to (2.4). The relationship in Eq. (2.3) was shown in [Sah09] as part of the proof of Galilean invariance

of the cores of swirling particle motion [WSTH07], and goes back to Ronald Peikert.
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2. Overview on Geometry-based Flow Visualization

Input: Initial particle position x0, start time t0, integration duration τ , step size h

Output: Reached particle location x at time t = t0 + τ

x← x0, t← t0 ; // initialize current state

while t+ h < t0 + τ do
(x, t)← integrateStep(x, t, u, h) ; // repeatedly take step, Eqs. (2.15) and (2.16)

end

(x, t)← integrateStep(x, t, u, t0 + τ − t) ; // final step to reach time t0 + τ exactly

Algorithm 1: Implementation of the flow map φτt (x) in a vector field u(x, t).

results. The choice of the step size is therefore an important trade-off between higher

numerical accuracy and faster computations. The easiest, fastest and unfortunately

most inaccurate method is the explicit Euler method:

xi+1 = xi + h · u(xi, ti) (2.9)

ti+1 = ti + h . (2.10)

It is sometimes used for explanatory brevity, but is not recommended for practical use.

The majority of the results presented in this thesis is obtained with the fourth-order

Runge-Kutta method [BDH92], which averages four slopes in the step size interval h to

obtain a more accurate prediction of the next particle location. Computing the four

slopes requires four vector field samples:

k1 = u(xi, ti) (2.11)

k2 = u(xi +
h

2
k1, ti +

h

2
) (2.12)

k3 = u(xi +
h

2
k2, ti +

h

2
) (2.13)

k4 = u(xi + h k3, ti + h) . (2.14)

Finally, the slopes are averaged with greater weight given at the midpoint:

xi+1 =
h

6
(k1 + 2k2 + 2k3 + k4) (2.15)

ti+1 = ti + h . (2.16)

The implementation of the flow map is listed in Alg. 1 as a repeated application of the

integrator.

Explicit methods require a fixed step size to be set in advance. On the one hand, this

requires to set a conservatively small step size, which leads to increased computational

cost. On the other hand, a fixed step size can also be an advantage if massive sets of

particles are integrated simultaneously, since then all particles share the current time

state and require the same vector field time slices to be in memory, which reduces I/O
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2.1. Introduction to Geometry-based Flow Visualization

traffic, increases caching performance and eases the implementation. Alternatively,

adaptive methods are available that adjust the step size to stay below a certain error

bound in each step (the error still accumulates). In its essence they compare two

integrators with different order and reduce the step size if their results differ too strongly.

Adaptive methods naturally allow better error-control and are faster compared to

conservatively set fixed step sizes. Famous examples are the Heun-Euler method (order

1 and 2), and the Runge-Kutta-Fehlberg method (order 4 and 5) [HNW93].

Integrators require to sample a vector field at a given location. Depending on the

discretization of the vector field, the cell that contains the queried sample is easy

to find or requires an acceleration data structure for efficiency. In regular grids, the

cell is easily determined analytically. Rectilinear grids require a binary search, and

unstructured grids typical involve a search in a balanced kd-tree. Cell locations in

spatial trees can typically be accelerated by starting the search at the cell of the previous

query. Ueng et al. [USM96] and Garth and Joy [GJ10] have shown how cell locations

are efficiently carried out in unstructured grids.

2.1.3. Particle-based Visualization

Most flow visualization techniques rely on virtual massless particles moving with the

underlying flow field. A system for the interactive visualization of large particle sets,

exploiting graphics hardware capabilities, is presented by Krüger et al. [KKKW05] and

another system to explore multi-variate flow properties is presented by Fraedrich and

Westermann [FW12]. Further GPU realizations for massive particle advection in steady

and time-dependent vector fields have been presented by Peterka et al. [PRN∗11],

Kipfer et al. [KSW04] and Hlawatsch et al. [HSW11]. A recent particle advection

benchmark was performed by Childs et al. [CBP∗14] for several architectures. Staib et

al. [SGG15] demonstrated the utility of transparency and ambient occlusion for the

visualization of particle data.

The advection of additional flow field properties along particle trajectories, further

allows to derive insight into the dynamics of those properties. Li et al. [LTH08] pro-

pose a physically oriented dye advection scheme using mass conservation, which

was later improved by Karch et al. [KSW∗12]. Recently, Sadlo [Sad15] introduced the

Lyapunov time, which is the time over which a particle trajectory is predictable (i.e.,

not dominated by error). This consideration allows to incorporate uncertainty into

integration-based visualizations. Similarly, McLoughlin et al. [MET∗15] visualize the

impact of a small modification of a seed point.

31



2. Overview on Geometry-based Flow Visualization

2.1.4. Integral Curves

In general, direct particle visualization does only allow for limited insight into the dy-

namic motion behavior. Hence, a common approach is the usage of integral geometry,

based on the trajectories of moving particles, to visualize their long-term behavior and

structural patterns therein.

The integration of particles in vector fields leads to different kinds of curves and

trajectories, which are generally summarized as integral curves. It was shown that all of

the classic kinds of integral curves are tangent curves of special vector fields [WT10a],

[WHT12].

A curve x(τ) is called tangent curve of a vector field u, if the tangent of the curve

coincides everywhere with u(x):

d

dτ
x(τ) = u(x(τ)). (2.17)

Such curves follow the path of a massless particle, which makes them meaningful tools

for the visualization of flow data. For massless observations in time-dependent (un-

steady) flows u(x, t), four types of integral curves are established, namely streamlines,

pathlines, streaklines and timelines, which we describe in the following.

Streamlines. The path of a massless particle in steady flow can be computed from

Eq. (2.6). For time-independent (steady) vector fields u(x) such tangent curve is called

streamline. For every point, there is just one curve passing through, making the map

between particle trajectory and vector field bijective.

Similar to the steady case, streamlines are acquired in unsteady flow by integrating a

particle trajectory at a constant time t0. Thus, streamlines of an unsteady vector field

u(x, t) are tangent curves of the (n+ 1)-dimensional vector field s̄(x, t):

s̄(x, t) =

(
u(x, t)

0

)
. (2.18)

An example for streamlines in unsteady data are the instantaneous field lines of un-

steady magnetic fields. Fig. 2.1a shows streamlines in the flow around an obstacle.

Pathlines. In unsteady flow, the trajectory of a massless particle is called pathline. It is

the solution of Eq. (2.8) and therefore arises as tangent curve of the (n+1)-dimensional

vector field

p̄(x, t) =

(
u(x, t)

1

)
. (2.19)
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(a) Streamlines: Trajectories in a single time slice, e.g., magnetic field lines.
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(b) Pathlines: Trajectories of tracer particles, advancing in time.

x

y

t
streakline

pathlines

(c) Streaklines: Trail of smoke from a blown out (point-sized) candle.

x
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t
timeline

pathlines

(d) Timelines: Particle front that advances over time.

Figure 2.1.: Space-time illustrations and examples of integral curves in unsteady flow.

In terms of the flow map, it is simply expressed as

p(τ) = φτt (x). (2.20)

Here, an infinite number of pathlines passes through each point in the spatial domain,

depending on the seed time of the curve, which makes the visualization of pathlines

challenging. Fig. 2.1b gives an example.

Streaklines. A streakline arises by the continuous injection of particles at a location

x. The advected trail of particles forms a continuous curve that visualizes temporal

coherence, i.e., the change of the flow at a certain location over time. A real-world
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2. Overview on Geometry-based Flow Visualization

example is smoke, injected at a single point. Streaklines are expressed by:

s(τ) = φt−ττ (x). (2.21)

In Fig. 2.1c, streaklines are released in the flow around an obstacle, revealing the char-

acteristic von Kármán vortex street. Weinkauf and Theisel [WT10a] have shown how

these curves can be computed as tangent curves of a higher-dimensional derived vec-

tor field. Varying the injection location over time results in the generalized streaklines in

Wiebel et al. [WTS∗07], which are useful to visualize the flow separation at boundaries

of an object immersed in the flow.

Timelines. Injecting particles on a seed curve c(u) simultaneously and tracing them

over time forms a timeline, as shown in Fig. 2.1d. These lines show the spatial coherence

between particles that were seeded at the same time along a curve. Using the flow map

they are defined as

t(u) = φτt (c(u)). (2.22)

Weinkauf et al. [WHT12] derived these curves as tangent curves of a special higher-

dimensional vector field.

Extraction of Integral Curves

Once defined as a tangent curve, integral curves can be computed by integrating the

particle trajectory in the defining vector field numerically step-by-step. In practice,

however, streaklines and timelines are most often computed by refinement of an

advancing front line. Thereby, the line is represented by a discrete set of particles that is

advected with the flow. Whenever adjacent particles get very close they can be merged,

and when they move too far apart, a new particle is inserted between them. Ideally,

the new particle is inserted on the seed curve at the seed time and is integrated up to

the current time. This refinement strategy is computationally expensive, especially in

out-of-core settings when not all time steps reside in memory, and would have to be

streamed through once more just to insert a couple of particles (possibly after every

integration step). Further, the selection of the seed point on the seed curve is only

done heuristically by assuming that the mid-point on the seed curve partitions the

front line well. This assumption might not hold well near saddle-like structures. For

this reason, a practical heuristic is to insert the new particle at the center of the front

line edge that needs refinement. While this introduces a small error, this is the most

commonly used approach, especially when GPUs are involved. An improvement of the

refinement criterion was proposed by Wiebel et al. [WWSS10] in order to reduce the

number of particles, required to adequately represent the line. For this, they estimate
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the accuracy of the polyline representation not only by the particle distance, but also

by the angle and triangle area spanned between adjacent polyline segments.

Rendering of Integral Curves

Lines are basic geometric primitives that are directly supported by rasterization hard-

ware in form of line lists or strips. An anti-aliased and fast display of large line sets is

therefore technically not a problem. When it comes to their visualization, however,

several issues arise, as they do not have a unique normal and no spatial extent that

conveys depth information. Zöckler et al. [ZSH96] applied the Phong illumination

model to streamlines by selecting a normal in the plane spanned by the tangent and

light direction. Everts et al. [EBRI09] proposed a halo visualization for view-oriented

line strips, in which the halo is folded slightly toward the background. Consequentially,

the halos stay hidden if lines are close to each other, which creates an impression of

line bundling. In later work, Everts et al. [EBRI11, EBRI15] further investigated different

line styles. Aside from line strips, textured stream tubes have been proposed by Stoll et

al. [SGS05]. Eichelbaum et al. [EHS13] added an ambient occlusion effect to convey

a depth impression that improves the perception of nearby spatial relations. Further

approaches to improve the depth perception were shown by Lawonn et al. [LLPH15],

who redundantly encoded depth by (quantized) color and a hatching on the lines. We

refer to Brambilla et al. [BCP∗12] for a broader overview of the topic.

2.1.5. Integral Surfaces

The definitions of integral curves naturally extend to surfaces by parameterizing the

seeding structure of the integral curves. For stream surfaces, path surfaces and streak

surfaces, integral curves are not released from a single point but from a seed curve c(s)

with s ∈ [s0, s1]. A time surface is released from a seed surface c(s, u) with an additional

parameter u ∈ [u0, u1].

Formally, a stream surface x(s, τ) is the union of all streamlines released from the seed

curve:
∂x(s, τ)

∂τ
= u(x(s, τ)) with x(s, 0) = c(s). (2.23)

Isoparametric lines s = const are streamlines. Examples are shown in Fig. 2.2.

Similarly, a path surface is obtained by releasing pathlines in unsteady flow from a seed

curve:
∂p(s, t)

∂t
= u(p(s, t), t) with p(s, 0) = c(s). (2.24)
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Figure 2.2.: Examples of integral surfaces in 3D vector fields.

Here, isoparametric lines s = const are pathlines and isoparametric lines t = const are

timelines.

Path surfaces, streak surfaces and time surfaces can be expressed by the flow map as:

p(s, τ) = φτt (c(s)) (2.25)

s(s, τ) = φt−ττ (c(s)) (2.26)

t(s, u) = φτt (c(s, u)). (2.27)

Extraction of Integral Surfaces

Stream and path surfaces can be extracted by advancing front algorithms. Thereby, an

active particle front line is advected with the flow, starting at the seed curve. Because of

potential growing and shrinking of the front line, the particle front is adaptively refined.

The refinement is similar to the refinement of a streakline or timeline. All locations

that the front line sweeps over form the integral surface. The surface can be tessellated

by creating triangles between the current front line and its previous position.

The tessellation of the surface can become quite difficult as the front line might un-

dergo shearing, which leads to thin and elongated triangles. Schulze et al. [SGRT12]

called this the small angle problem, as the angle between the isoparametric lines be-

comes small. Further, critical points can cause problems, as for instance at a saddle a

front line could infinitely grow. Therefore, some surface extraction algorithms employ

a special handling of these cases. The seminal work of Hultquist [Hul92] describes

a quite robust approach that advances the front particles adaptively in a recursive
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manner. The approach is greedy and implicitly tends to front lines that are orthogonal

to the flow. The recursive nature of the algorithm makes it hard to parallelize the

approach on GPUs.

The approach was later extended by Stalling [Sta98] to better handle saddles, and

eventually by Schneider et al. [SRWS10] with a full topology-aware surface extractor.

Garth et al. [GTS∗04] modified Hultquist’s method by making the streamline integration

based on arc length in order to better handle flow of inhomogeneous magnitude. In

addition, they added another refinement criterion that considers the curvature of

the front in order to better handle flows in the vicinity of vortices. In a later work,

Garth et al. [GKT∗08] focused on the avoidance of the recursion. For this, they split the

surface computation into two steps: a parallel timeline advancing front integration to

obtain a rough skeleton and a subsequent adaptive meshing. The resulting method is

easier parallelized, but it cannot handle the small angle problem, since the front line

tessellation is local. For this, Schulze et al. [SGRT12] recognized the need for a global

front line tessellation. They proposed an adaptive optimization of the step size of the

individual front line particles so that after each integration step flow orthogonal front

lines are obtained.

A higher order tessellation method for smooth surfaces was presented in Schneider

et al. [SWS09]. Schafhitzel et al. [STWE07] presented a particle-based approach that

is GPU-accelerated and completely avoids the necessity of a triangulation. They pro-

posed a method to maintain a uniform sampling of the surface and then splatted

individual particles. Scheuermann et al. [SBH∗01] proposed solutions for analytic sur-

faces in tetrahedral cells, given linear seed curve segments. Recently, Lu et al. [LSP14]

presented a workload balancing approach for a scalable and parallelized integration of

stream surfaces across many processors.

The work of Weinkauf et al. [WT10a, WHT12] made it possible to integrate streak sur-

faces and time surfaces by the aforementioned advancing front algorithms, as they

described streaklines and timelines as tangent curves of higher dimensional derived

vector fields. When extracted on the original vector field, streak surfaces and time

surfaces must be remeshed after every integration step, since not only the front line

but the whole surface changes. For this, Bürger et al. [BFTW09] proposed two realtime

approaches on the GPU. The first is patch-based for which individual patches are

advected and refined. This method has the advantage that required memory for the

added patches can be pulled from a global memory pool. However, T-junctions arise

between the patches, which have to be handled by blending. The second approach is

mesh-based and handles converging and diverging flows with potentially inhomoge-

neous magnitude. Here, the refinement along a timeline is limited up to a pre-defined

upper bound. Additional timelines can, however, be added by pulling data from a
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global memory pool. These methods cannot handle shear flows, i.e., the small angle

problem is not considered. For this, Krishnan et al. [KGJ09] introduced a triangle-based

approach that performs edge flips, edge collapse and edge split in order to improve the

mesh quality. Their approach is implemented on the CPU, same as the quad-based

approach of McLoughlin et al. [MLZ10]. More recently, Machado et al. [MSE14] pro-

posed an image-based stream surface rendering approach that adaptively generates

dense streamlines and thereby avoids the necessity of an intermediate triangulation for

rendering. Biswas and Shen [BS13] proposed a number of metrics for the evaluation

and verification of stream surfaces, in terms of tessellation and integration accuracy.

Rendering of Integral Surfaces

Surface rendering has a long history in computer graphics. From a visualization point

of view, we will look in the following on methods to convey shape information, avoid

occlusions and finally review some recent work on surface-based flow visualization.

Conveying Shape. Comprehensible rendering of 3D shapes has a long tradition and

was pioneered by Saito and Takahashi [ST90], who extracted discontinuities, edges

and contour lines in screen space. Interrante et al. [IFP96] placed curvature-oriented

strokes on transparent iso-surfaces. Nienhaus and Döllner [ND04] rendered technical

blueprints by peeling the layers of complex compound objects and extracted edges per

layer. Luft et al. [LCD06] amplified high frequencies in the depth buffer by unsharp

masking to emphasize depth discontinuities. Beside silhouettes, various classes of sur-

face curves were suggested to enhance shape understanding like suggestive contours

by DeCarlo et al. [DFRS03], apparent ridges by Judd et al. [JDA07] and Laplacian lines

by Zhang et al. [ZHXC09]. To improve the perception of transparent surfaces, Wang

et al. [WGM∗08] proposed an interactive tool for color design in illustrative visualiza-

tions that respects intermixing of colors of transparent objects. Vergne et al. [VPB∗09]

warped environment light around surface features to enhance shape perception.

Occlusion Avoidance. Occlusion is typically avoided by transparency. Viola and

Gröller [VG05] compiled a survey on smart visibility in visualization, including cut-

aways and ghosting, which are mainly utilized in direct volume rendering. There, Viola

et al. [VKG04] adapted opacity dependent on importance. Bruckner and Gröller [BG07]

improved on the perception of spatial relations by using volumetric halos. Chan et

al. [CWM∗09] adjusted opacity based on psychological principles, whereas Correa and

Ma [CM11] used visibility histograms to assist in transfer function design. For surfaces,

Diepstraten et al. [DWE02] addressed transparency in technical illustrations by cap-
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turing styles and choices of technical artists. There exist other conceptually different

ways to avoid occlusion like exploded views [APH∗03] or interactive spatial separation

by deformation [CSC07].

Flow Visualization. In flow visualization, surfaces are used to visualize complex

data [BCP∗12], which has a long tradition as can be observed for the manually crafted il-

lustrations in text books [AS84]. The rendering of integral surfaces [ELC∗12a], as a field

of geometric flow visualization [MLP∗10], was actively studied in recent years. To avoid

occlusions Born et al. [BWF∗10] interactively selected cuts and surface slabs, which

were rendered by halftoning with additional line contours. Spencer et al. [SLCZ09] sug-

gested the texturing of evenly-spaced streamlines on surfaces. Carnecky et al. [CSFP12]

computed line integral convolution on transparent surfaces by an anisotropic dif-

fusion of spot noise. Hummel et al. [HGH∗10] enriched the surfaces by adaptive

view-dependent line textures that represent tangent curves and timelines. Moreover,

they proposed two transparency mappings that accentuate grazing angles. We briefly

recall their mapping approaches as we compare them later on with our method.

Angle-based transparency maps the dot product between normal and eye vector to

transparency:

αangle =
2

π
arccos(nTu) . (2.28)

Normal variation considers screen space partial derivatives ∂/∂u and ∂/∂v of the view

space normal’s z-component:

αnormal =

(
(
∂nz
∂u

)2 + (
∂nz
∂v

)2

)γ/2
. (2.29)

The angle-based approach was used in Fig. 2.2.

Carnecky et al. [CFM∗13] addressed the perception of the layer order of transparent

surfaces by a diffusion of silhouettes and halos that makes surface crossings distin-

guishable. We make use of this technique later on.

2.2. Challenges in Line and Surface Selection

The following sections lay the foundation for the subsequent chapters by motivating

the problems to solve and by summarizing the related work.

Typically, the path to a meaningful geometry-based flow visualization is laid out in

three steps: integral geometry has to be extracted (integrated), selected, and rendered.

In the previous section, we discussed extraction and rendering. The first part of this
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thesis is dedicated to the selection problem. To provide a notion for the complexity of

the selection problem, we first introduce the concept of line fields.

2.2.1. Steady Line Fields

Line fields consist of families of 3D curves that cover (part of) a 3D domain densely.

This means that for every point in a 3D domain there is exactly one line passing through

it. Examples are streamlines (of velocity vector fields), tensor lines or fiber bundles

of DT-MRI data (medical imaging), magnetic field lines (physics) and speedlines de-

picting motion (computer graphics). The main challenge in rendering line fields is

line selection: from the potentially infinite set of possible lines, a set of representatives

has to be selected for rendering, and this selection should visually convey the main

features of the data. On the one hand, displaying too many lines results in cluttered

renderings where important features may be hidden. On the other hand, displaying

too few or the wrong lines may also lead to missing features due to undersampling of

the interesting regions.

Line selection for line fields was intensively studied, mainly in the field of flow visual-

ization. So far, all existing methods use a local or greedy approach: a suitable line is

found either by locally searching for a good seeding point for a line integration, using

a greedy algorithm that repeatedly inserts new lines, or by computing local impor-

tance measures for a finite set of pre-selected lines. Furthermore, none of the existing

approaches is readily applicable to a free navigation in a scene: existing methods

depict lines to generate illustrations for a distant viewpoint, and they do not handle

the massive occlusion that can be introduced by even a single line very close to the

camera. (Lines are usually expanded to ribbons or tubes to provide depth cues, thus

they typically cover more screen space when moving close to them). Chapter 3 presents

the first global optimization-based approach to the line selection problem. Given a

user-defined importance measure that provides a notion for relevant structures, our

method trades the representation of information for occlusion avoidance.

2.2.2. Unsteady Line Fields

In many applications, not one single line field but sets of line fields occur, meaning that

more than one line passes through a point in 3D. These sets of line fields depend on

one or multiple parameters. Examples are pathlines and streaklines of time-dependent

flow, as well as sequences of instantaneous magnetic field lines.

Chapter 4 presents the first global approach to line selection in sets of line fields. In

particular, this is the first work in flow visualization presenting a global line selection

40



2.2. Challenges in Line and Surface Selection

algorithm for 3D pathlines and streaklines. For this, we extend the work from Chapter 3

for which two problems have to be solved:

• Sets of line fields consist of significantly more lines than a single field. Since

view-dependent line selection is an interactive process, our approach for single

line fields has to be extended and accelerated to cope with larger amounts of line

segments.

• Parametric sets of line fields can be naturally visualized by an animation, i.e., a

time sequence of line fields. In this case, time coherence has to be ensured.

This work presents solutions to both problems. We solve the first problem using a

hierarchical representation of the lines to make the problem size of the numerical

optimization view-dependent. The second problem is addressed by an additional

temporal smoothness term in the underlying energy minimization together with a

propagation of opacity values to lines in adjacent time steps.

2.2.3. Steady Surfaces

Stream surfaces are another standard tool to visualize steady vector fields. Unfortu-

nately, their use is often limited even for simple data sets: the user is interested in

understanding a volume domain that is covered by surfaces that are typically complex

and experience a high degree of occlusion. The perception of surfaces, however, is

limited in the presence of occlusion to which the use of transparency is a common

approach. For the rendering of transparent surfaces, visual cues such as opacity at

grazing angles or silhouettes are key to convey shape. Still, multiple surfaces or even

one single complex surface can result in heavily occluding cues. This may make it

difficult to faithfully capture shape information from an image. In fact, this may even

be impossible if occlusion hinders the view on the relevant structures.

As a consequence, it becomes difficult for the user to discover and to explore the rele-

vant structures, e.g., vortex cores, and hence to understand the data set. Our goal is

to facilitate the interactive rendering of complex surfaces with a high degree of (self-)

occlusion such that important surface features and cues are visually communicated.

Thus in Chapter 5, we pick up the general idea of Chapter 3 and extend our global opac-

ity optimization to the rendering of transparent surfaces. For this, our method balances

occlusion avoidance and an importance-driven representation of relevant structures

to provide a clear view with visual cues supporting an intuitive comprehension of the

visualized shapes.
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2.3. Related Work

The rendering of integral geometry, such as streamlines, pathlines, streaklines or

their corresponding surface extensions, is a fundamental and well-established tool

in geometric flow visualization [MLP∗10] and an active area of research [BCP∗12]. A

particular problem is the placement and selection of the geometry to display. This

section reviews previous algorithmic solutions to this problem for both steady and

unsteady vector fields.

2.3.1. Line Selection in Steady Vector Fields

Much work went into the placement of streamlines in 2D domains or 2D mani-

folds [TB96, JL97, VKP00, JL01, MAD05, LMG06, LHS08, SLCZ09, RPP∗09]. The focus

of these approaches was mainly on finding seeds to cover the domain densely with

streamlines (evenly-spacing or according to a density field). Extensions to 3D have

been developed by guiding the seeding by density-based [MTHG03, SHH∗07], feature-

based [YKP05, YWSC12], or similarity-based measures [CCK07, MJL∗13].

In 3D, however, the maximization of perceivable information is not only a matter

of evenly sampling the domain, but also of avoiding occlusions: it becomes a view-

dependent problem. Li and Shen [LS07] applied the iterative 2D seeding strategy

of Jobard and Lefer [JL97] to produce evenly-spaced streamlines by an image-space

approach. Thereby, the depth of the lines is acquired by reprojection. Annen et

al. [ATR∗08] proposed a seeding algorithm, inspired by non-photorealistic rendering

techniques. Hereby, the termination of streamline integration depends on local mea-

sures, such that selected lines have the most similar behavior to contours on surfaces.

Xu et al. [XLS10] used an information-theoretic approach to measure the information

conveyed by a given set of streamlines. The disparity to the original field’s entropy

guides the seeding of streamlines to add details where needed. Lines are faded out to

reduce occlusion by mapping the scalar entropy field to transparency.

Selection-based approaches do not search for seed points for line integration but

instead select lines from a precomputed set. This does not only speed up the search,

it also makes frame coherence (i.e., avoidance of popping artifacts) easier to achieve

and is therefore a good choice when aiming at interactive navigation. Marchesin et

al. [MCHM10] joined lines from a precomputed set with additionally generated lines,

depending on the on-screen footprint of the already chosen lines (accumulated in a

so-called occupancy buffer), as well as local properties per line. Such local properties

again originate in information theory and are the linear entropy [FI08] (i.e., variation

of velocity along a line) and the angular entropy [MCHM10] (i.e., variation of a line’s
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direction). So far, these approaches are neither interactive nor frame coherent. We

introduced another local, but view-dependent measure in Günther et al. [GBWT11],

where we mapped the number of visible pixels to transparency to fade out lines with

only minor contribution. Since this approach tends to favor lines closer to the camera it

cannot remove lines covering up the viewport. Ma et al. [MWS13] combined lines from

a view-independent and view-dependent set by considering coherence between local

views and the last frame. For filling the viewport they compute occupancy [MCHM10],

thus do not account for the order of occlusions.

A problem related to line selection – and sometimes solved simultaneously with it

– is viewpoint selection. Lee et al. [LMSC11] steered the selection of lines from a

precomputed pool in a greedy algorithm based on the maximum intensity projection

(MIP) of a scalar entropy field, called maximum entropy projection (MEP). They also

used the MEP to select the best viewpoint among 780 candidates placed on a sphere

surrounding the data set. Tao et al. [TMWS13] coupled the selection of streamlines and

viewpoints by modeling them as interrelated information channels [WS11], i.e., they

selected a streamline set and a viewpoint simultaneously. The viewpoint is constrained

to be located on a sphere surrounding the data set, and the streamline selection is

invariant under camera movement but is based on the evaluation of multiple views.

Additionally, they generate a camera path on the sphere.

The aforementioned techniques all tried to come up with information-theoretic or

geometry-based properties that characterize the relevance of a line. These properties,

however, do not work well in all scenarios. In fact, dependent on the exploration task

or the application domain, different aspects of a vector field might be of interest, such

as presence of vortices, flow behavior close to boundaries etc. Therefore, it makes

sense to let the user provide application-dependent importance measures. However,

a direct mapping of such importance measure to opacity is only local and does not

incorporate the occlusions introduced by the selected lines. Such straightforward

method would neither provide context information nor does it allow navigation in the

scene without suffering from potentially vast occlusions. We will provide a technique

that incorporates the importance information in a more sophisticated way.

All existing approaches for 3D line selection are – to the best of our knowledge – either

local or greedy. “Local” means that a line is selected based on certain importance

measures without considering its relation to other selected lines. “Greedy” means that

a new line is selected based on its relation to already selected lines, making the process

of line selection dependent on the order of line insertion. Furthermore, the restriction

of some techniques for having the viewpoint outside of the domain is a limitation that

makes viewpoint selection approaches not an option for free scene navigation.

Table 2.1 compares features of the most relevant techniques for 3D line selection and
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our new approach. We consider (in columns left to right) the following features: view

dependence (selected lines change when changing the viewpoint), frame coherence

(small changes of the viewpoint lead to small changes in the shown lines without pop-

ping artifacts of new lines; view-independent techniques are trivially frame coherent),

occlusion (occlusion information is used for line selection), interactivity (line selection

is either precomputed or fast enough for interactive navigation, trivially yes for view-

independent), GPU-accelerated (availability of GPU-accelerated implementation),

transparency (semi-transparency used for line rendering), and strategy (either local,

greedy, or global). The yellow boxes could not be uniquely classified: the image-based

approach of Li and Shen [LS07] produces for a given view a line set that does not

intersect in image-space, thus there is no occlusion. For more complex and larger

data sets they propose to combine the lines acquired from multiple views. In that

case, they do not address the arising occlusion. Albeit Li and Shen [LS07] and Ma et

al. [MWS13] first validate lines from the previous frame, frame coherence is still an

issue, as newly added lines introduce popping artifacts. McLoughlin et al. [MJL∗13]

and Yu et al. [YWSC12] present hierarchical streamline clustering algorithms in which

the user steers the degree of occlusion by interactively selecting a level-of-detail.

In a later work, we tailored a local transparency mapping for blood flow data [LGP14].

For this, first vortices are extracted by the λ2 criterion [JH95]. Then, the flow around

them is separated into convex and concave flow (as seen from the camera), which

distinguishes between the flow in front and behind the vortex. Those are separately

mapped to transparency in order to clear the view on the vortices.

Method View-dep. Frame coh. Occlusion Interact. GPU-acc. Transp. Strategy

[CCK07] 7 3 7 3 7 7 greedy

[LS07] 3 3 3 7 n/a 7 greedy

[ATR∗08] 3 3 7 3 3 7 local

[MCHM10] 3 7 3 7 3 7 greedy

[XLS10] 7 3 7 3 n/a 3 greedy

[GBWT11] 3 3 7 3 3 3 local

[LMSC11] 3 7 3 3 3 7 greedy

[MJL∗13] 7 3 3 3 n/a 7 greedy

[YWSC12] 7 3 3 3 3 7 greedy

[TMWS13] 7 3 7 3 3 7 greedy

[MWS13] 3 3 3 3 3 7 greedy

Our approach 3 3 3 3 3 3 global

Table 2.1.: Comparison of features of related methods and our approach.
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2.3.2. Line Selection in Unsteady Vector Fields

There is considerably less work on line (placement and) selection for unsteady flow

data in 2D and 3D domains likewise. For 2D, Jobard and Lefer[JL00] suggested to

depict a coherent animation of streamlines instead of displaying pathlines. For each

streamline in one time step a corresponding line in the next time step is found by

integrating candidate lines from sample points in the next time step and choosing the

closest line. Weinkauf et al. [WTS12] proposed a selection strategy for creating static

illustrations of pathlines and streaklines. They reduced visual clutter by avoiding cusps

in the projections of the lines. To cope with the visual complexity of possibly heavily

intersecting pathlines, Hlawatsch et al. [HSJW14] proposed a glyph visualization, in

which each glyph contains a single pathline. When zooming out, patterns emerge that

provide an impression of areas with coherent flow behavior. Until now, the selection

problem was neither addressed for animated pathlines nor for streaklines.

For 3D line fields, Günther et al. [GBWT11] proposed a view-dependent and frame-

coherent approach, which sets the opacity of a line based on its contribution to the

viewport, i.e., the number of pixels visible in the rendered image. Since this is a local

approach, the method is potentially fast enough for line selection from sets of line

fields. However, we will show later that even for steady data the screen contribution

blending method is of limited use, because occlusion is not considered in the selection

process. So far, there exists no satisfying solution that allows explorative navigation in

sets of line fields, such as pathlines or streaklines.

2.3.3. Surface Selection in Steady Vector Fields

Even more complicated than the placement of lines is the placement of surfaces.

Most often the seed curves of integral surfaces are placed manually by the user. The

placement of a 2D line in a 3D domain is thereby a rather tedious and cumbersome task.

The manual placement can be facilitated by dragging flow-aligning surfaces [MSRT13b]

for a more intuitive interaction.

There is also a thread of research on the automatic placement of stream surfaces.

Early work of van Wijk [vW93] and Cai and Heng [CH97] proposed methods to built

evenly-spaced stream surfaces in flows for which a stream function exists, i.e., these

methods are limited to helicity-free flows. Martinez Esturo et al. [MSRT13a] extracted

one single representative surface that is globally optimal w.r.t. a quality measure. They

have shown that their approach extracts the surface that was manually chosen by expe-

rienced visualization researchers in related visualization papers, which gives evidence

for the usefulness of their method. Instead of displaying just a single surface, Edmunds
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et al. [ELC∗12b] densely filled the domain with multiple stream surfaces automatically.

For this, they used isolines on the domain boundaries as seed curves. While the full set

of their extracted surfaces is not necessarily useful for direct visualization due to rather

strong occlusions, it might serve as input to a subsequent selection procedure. Further,

Edmunds et al. [ELM∗12] clustered seed curves to obtain multiple stream surfaces.

They do, however, not consider in the selection process how well a resulting stream

surface represents the flow. In Schulze et al. [SMG∗14], we extended the work of Mar-

tinez Esturo et al. [MSRT13a] to produce multiple characteristic stream surfaces that

are suitable for an exploration task. Here, quality criteria are evaluated for the extracted

surfaces. Recently, Brambilla and Hauser [BH15] constructed multiple stream surfaces,

based on the similarity of the streamlines therein. They aim for surfaces that consist of

most similar streamlines, whereas streamlines of different stream surfaces maximize

dissimilarity. Bartoň et al. [BKC15] extracted stretch-minimizing stream surfaces in

divergence-free vector field.

46



3
Chapter 3.

Opacity Optimization for 3D Line

Fields

In this chapter, we describe an energy-based optimization for the opacity of 3D lines

such that the view is cleared on important line parts. The following text is in large parts

based on our publication:

T. Günther, C. Rössl and H. Theisel

Opacity Optimization for 3D Line Fields

ACM Transactions on Graphics (Proc. SIGGRAPH) 32, 4 (2013), 120:1–120:8.

The selection of lines that represent a vector field best is a long-standing and very

fundamental problem. If we show too many lines, as in Fig. 3.1a, we get occlusions

(a) Too many lines cause occlu-

sion.

(b) The wrong lines miss impor-

tant features.

(c) The right lines highlight fea-

tures and show context.

Figure 3.1.: Line selection is a difficult problem that requires to find a balance between

the presentation of relevant lines and the avoidance of occlusion. In this chapter, we

tackle this problem, leading to visualizations as in Fig. 3.1c.
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3. Opacity Optimization for 3D Line Fields

that hinder the view at relevant structures. If we remove a few lines without regarding

their role in the image, we might miss relevant parts as in Fig. 3.1b. Still, even for the

lines that we did not miss, we might still get occlusions. In the end, it is always a trade-

off between the presentation of information (i.e., relevant lines) and the avoidance

of occlusion. But, there is more. When looking at a visualization, there is always

something that we are searching for, something that is of interest to us, like the eye of

the tornado shown in Fig. 3.1c. Thus, what we rather want is a visualization technique

that clears the view on those relevant parts. So, given a set of lines, and a user-defined

importance measure, this chapter describes a technique that adjusts line opacities so

that we can see the important structures more clearly. Fig. 3.2 demonstrates several

results of our method.

Figure 3.2.: Applications of our interactive, global line selection algorithm. Our

bounded linear optimization for the opacities reveals user-defined important features,

e.g., vortices in rotorcraft flow data, convection cells in heating processes (Rayleigh-

Bénard cells) and field lines of decaying magnetic knots (from left to right).

3.1. Problem Setting and Error Function

This work is based on the insight that line selection should be formulated as a global

optimization problem: if a line is detected to be important, but at the same time

occludes more important structures, it should not be rendered. On the other hand, if a

line is of only moderate importance and does not occlude more important structures,

it can (and should) safely be rendered. This means that the decision of selecting

a particular line is a compromise between having a maximal amount of conveyed

information and having a minimal amount of occlusion of other features. There are a

number of challenges associated with this problem:

View Dependence. Occlusion is an inherently view-dependent problem, i.e., it must

be solved for every possible viewpoint anew to enable free scene navigation.
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Interactivity. Results should be provided at interactive rates. Solving the problem

per pixel might therefore be too expensive. Instead, a coarser discretization should be

devised.

Frame Coherence. A critical challenge is to obtain frame coherence under camera

movement. This means lines should not suddenly pop up, be removed or flicker.

(Greedy approaches are particularly prone to this problem, e.g., [MCHM10].)

Continuity. The opacity should vary slowly along the lines. This continuity is im-

portant as artificial discontinuities might grab attention and distract. If lines appear

chopped it is only because they left the domain, which is a useful information to

present, as it supports the spatial perception.

Error Function

Similar to existing methods, our approach starts with a finite set of polylines that covers

a 3D domain densely. Instead of selecting a subset of these lines, we render all lines

but assign varying opacities to their segments. For this, every polyline is split into

a number of segments, producing in total n polyline segments. Figs. 3.3a and 3.3b

illustrate this for two polylines with n = 6. We compute the optimal opacity αi ∈ [0, 1]

for each segment 1 ≤ i ≤ n as solution to a bounded-variable least-squares problem

(Fig. 3.3c). Thereby, αi = 0 means completely invisible, and αi = 1 is completely

opaque. For rendering, the opacities are interpolated between adjacent segments to

yield vertex opacities, see Fig. 3.3d. This way, we resolve occlusions by locally fading

out line segments.

Each segment is equipped with a local importance gi ∈ [0, 1], which can be chosen

depending on the application. (A discussion of possible choices for gi follows in

Section 3.3.1.) The higher gi the more the segment should be emphasized. If no

particular importance is given, gi is set to 0.5 for all segments. In addition, the following

properties are computed for every pair (i, j) of segments

(a) Given is a set of poly-

lines.

1 2

3
4 5

6

(b) Discretize polylines

into n segments (here:

n = 6).

(c) Compute per-

segment opacity αi by

energy minimization.

(d) Interpolate opaci-

ties between adjacent

segments for rendering.

Figure 3.3.: Illustration of the general idea.
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• aij encodes adjacency of segments: aij = 1 if the segments i and j are adjacent

on the same polyline; otherwise aij = 0. The example in Fig. 3.3c has a12 = a21 =

a23 = a32 = a45 = a54 = a56 = a65 = 1 and all remaining aij = 0,

• hij ≥ 0 describes how much segment j is occluded by segment i as seen from

the particular viewpoint. Its continuity during camera movement induces frame

coherence. In Fig. 3.3c we have h25 > 0 and all remaining hij = 0.

We find opacities αi as minimizers of the quadratic error function

E =
p

2

n∑
i=1

(αi − 1)2 (3.1)

+
q

2

n∑
i=1

n∑
j=1

(
αi (1− gi)λ hij gj

)2
(3.2)

+
r

2

n∑
i=1

n∑
j=1

(
αi (1− gi)λ hji gj

)2
(3.3)

+
s

2

n∑
i=1

n∑
j=1

aij
2

(αi − αj)2 (3.4)

with bounded variables 0 ≤ αi ≤ 1. The four terms of E can be interpreted as follows:

Strive for Visibility. Term (3.1) is a regularization to prevent almost empty renderings,

i.e., prevent all αi from being close to 0 by penalizing a variation of αi from 1. That is,

all segments try to be visible.

Penalize Occlusion. Term (3.2) introduces a penalty if an unimportant segment i (i.e.,

1− gi is large) occludes to some degree an important segment j (i.e., gj is large). Then,

hij > 0 and in this case the product (1− gi)λ hij gj gets a high value. To minimize the

entire term, the optimization will assign a low opacity to the segment in front, i.e., αi
is reduced. The parameter λ steers the fall-off of gi from 1 and thereby allows to put

further emphasis on the important structures.

Remove Background Clutter. Term (3.3) is used to remove background clutter behind

important segments. It therefore covers the opposite case, i.e., it acts if an unimportant

segment i is occluded by an important segment j. Similarly, the opacity of segment i is

forced to be small in order to have a “more empty” background behind the important

segment j.

Smoothness. Term (3.4) is a smoothness term that enforces a slow change of the

opacity along a line. Intuitively speaking, the term expresses: if two segments are

adjacent, their opacity should be similar, i.e., we penalize the opacity deviation of
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3.2. Details and Implementation

adjacent segments.

Finally, the weights p, q, r, s balance the contribution of the terms. They can be re-

stricted by a normalization or global scale, e.g., we choose p = 1. Section 3.3.2 discusses

the parameters in more detail.

3.2. Details and Implementation

The essence of our approach is to use transparency to locally fade out line segments

that cause occlusion. This requires a method for correctly blending many transparent

layers, see Maule et al. [MCTB11] for a survey of raster-based transparency techniques.

We decided to create on the GPU for each pixel a linked list of the rasterized frag-

ments [YHGT10], as this data structure serves two different purposes: the blending of

transparent layers and the generation of occlusion degrees hij that measure occlusion

caused by segment i on j. For the latter, fragment linked list elements store – in addi-

tion to color and depth – a value that is used to identify the polyline segments. Based

on the segment index and the fragment depth, the order of occlusions is taken into

account.

3.2.1. Initial Line Set

Firstly, we obtain the initial polyline set from the given line field in a preprocess. For

this, the only requirement is a dense covering of the domain, i.e., for every point in the

domain there is a line passing by closely. For the examples on flow visualization and

medical imaging, we used a random distribution of seeding points for line integration.

If random seeding does not yield a fair uniform distribution of line geometry, sophisti-

cated view-independent seeding strategies may serve as input [CCK07, XLS10, MJL∗13].

Secondly, we partition each polyline into a fixed number of k polyline segments. The

total number of segments is n, which is given for all images later in Section 3.4.1. The

value k trades the potential variation in opacity along each polyline for the size of

the system to solve. We observed that k can be rather small because the computed

opacities are blended smoothly along polylines for rendering. We used k = 8 for all

examples.

In the current chapter, the n segments are uniformly distributed along the lines. Note

that an importance-driven subdivision is not helpful, i.e., having smaller segments in

more important regions. This is because we want unimportant segments to be able

to locally fade out. In an importance-driven subdivision, unimportant lines might

consist of only one segment, making the entire line disappear even if only a small part
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3. Opacity Optimization for 3D Line Fields

α1 α2
α3

w

Figure 3.4.: The precomputed parameterization w provides lookup up of nearest line

segment centers and blending weights.

of the line causes occlusion. Which part of a line needs to reduce its opacity is view-

dependent, and can thus not be known a priori. For that reason, a uniform distribution

of segments is advisable to give all segments a similar chance to purposefully fade

out. On a further note, an adaptive, view-dependent partition of the lines, so that

all segments have a similar size in screen space, helps to reduce the total number of

segments n. This improvement is subject of Chapter 4.

3.2.2. Fragment Linked List Construction and Rendering

All element data of the fragment linked lists resides in a global memory pool that is

shared by all pixels, and is managed by atomic operations in the fragment shader. The

element data to append is obtained by rendering all lines, and expanding them in a

geometry shader to viewport-aligned triangle strips. Since our technique only focuses

on the computation of opacities, it can be combined with all kinds of rendering styles

and techniques. Depth-dependent halos [EBRI09] are one option to provide depth

cues (e.g., when two lines cross). We used this method, i.e., in the pixel shader we

alter the depth and color of the boundary region to add halos. Other depth enhancing

methods are imaginable here as well, e.g., line ambient occlusion [EHS13] or unsharp

masking of the depth buffer [LCD06]. Techniques related to ambient occlusion excel

especially in very dense fields. Further, we use an illuminated streamline shading (ISL)

by Zöckler et al. [ZSH96], combined with multi-sampling (16× coverage-sampling anti-

aliasing/CSAA, i.e., 4 samples per pixel). We run the pixel shader only once per pixel

(i.e., on pixel-frequency) to create only one fragment in the linked list, and evaluate

multiple samples explicitly to smooth the sharp edge between center and halo region.

Every opacity value is associated with the center of the respective polyline segment.

The arc length distance of an arbitrary point on the line to its closest left and right

centers is used as weight for blending opacities, i.e., to define the transparency of a

line’s fragment. Blending weights and the indices of the closest opacity centers are

easy to obtain from the blending weight parameterization w, shown in Fig. 3.4, which

is precomputed and added as a vertex attribute. We evaluate index i and opacity α for
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a weight w as

i ← floor(w)

α ← lerp
(
αi, αi+1, frac(w)

)
.

The transparent colored fragment is appended to the pixel’s fragment linked list. We

store the depth (quantized to 24 bit) and the coverage bit vector (8 bit) together. Color

and blending weight w are stored as RGBA vector with 8 bit per component and as full

32-bit float, respectively. A second pass sorts the lists, which is required for computing

hij (see below). We remark that also rendering benefits from pre-sorting per pixel

instead of sorting per sample.

3.2.3. Computation of Occlusion Degrees

To gain higher throughput, we use an otherwise unoccupied CPU core for the assembly

of the system matrix. Thus, in order to compute the values hij , we stream the fragment

linked lists asynchronously to the CPU after sorting. We iterate all lists and sum up the

weights of the occluded fragments for all segments, see Alg. 2.

Input: fragment linked list per pixel

Output: h(i,j)

h(i,j)← 0 ;

foreach pixel p do

foreach fragment A in linked list of pixel p do

i← floor(A.w + 0.5) ;

foreach fragment B behind A do

j← floor(B.w) ;

v← frac(B.w) ;

h(i,j)← h(i,j) + 1-v ;

h(i,j+1)← h(i,j+1) + v ;

end

end

end
Algorithm 2: Penalty hij for segment i occluding j.
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3.2.4. Minimization of the Error Function

The minimization of the quadratic error functionE refers to solving a bounded-variable

least-squares problem which can be formulated in the normal equations as

minimize
1

2
xTQx + cTx + const

subject to 0 ≤ xi ≤ 1.

with x = (α1, ..., αn)T. The sparse, positive definite matrix Q captures the error terms

(3.1)–(3.4) together with the constant vector c = (−p, . . . ,−p)T, which stems from the

constant−1 in (3.1). The operator Q can be assembled as

Q = p · I + q ·W + r ·V + s ·DTD ,

where I is the identity matrix. The matrices W and V are both diagonal matrices with

entries Wii = (1−gi)2λ
∑n

j=1 h
2
ij g

2
j and Vii = (1−gi)2λ

∑n
j=1 h

2
ji g

2
j . such that W and V

refer to (3.2) and (3.3), respectively. The matrix D is the backward difference operator

that is applied to adjacent polyline segments in (3.4). Due to the smoothness term, the

final system matrix Q becomes a tridiagonal matrix. Appendix A contains a derivation

of the reformulation of the energy into matrix notation.

The original publication [GRT13] contained an error in the reformulation of the energy

into matrix notation, which has now been fixed1. We wish to thank Florian Ferstl

for reporting this. Unfortunately, the error carried into the follow-up papers [GRT14,

GSM∗14], as well. For this thesis, the experiments have been repeated. With the

corrected version, we obtained visually similar results for a slightly different parameter

setting. The parameter listings and solver timings have been updated accordingly. On

the plus side, the correction increased the performance of the system, as the system

matrix Q became tridiagonal. We elaborate on the performance in Section 3.4.1.

We use the reflective Newton method [CL96] that is implemented in MATLAB’s quad-

prog2 function to solve the system. Due to frame coherence of the solutions, we obtain

a significant speed-up by using the previous solution as an initial guess for the next

solution. We perform the setup of the system matrix Q for the next time step in one

1 The original implementation minimized a different energy for the occlusion term (and similarly the

background clutter term):

q

2

n∑
j=1

(
n∑
i=1

αi (1− gi)λ hij gj

)2

instead of
q

2

n∑
i=1

n∑
j=1

(
αi (1− gi)λ hij gj

)2
2We found that an equivalent formulation for MATLAB’s lsqlin was slower, and same for

quadratic/conic solvers in MOSEK (see mosek.com). Thanks to Christian Rössl for the experiments.
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CPU-thread, while another thread is dedicated to solving the system for the current

time step, i.e., we pipeline the computation. Once a solution is available, it is streamed

to the GPU to smoothly blend the current opacities to the latest solution. A technical

reason for this fading is that we do not get every frame a new solution, i.e., we want

to hide this typically short latency. An additional benefit is that a smooth and soft

transition is more comfortable than sudden changes, as it avoids the perceptual issues

of popping artifacts. Thus, even if a solution was available every frame, an artificial

fading is still helpful.

3.3. Parameter Studies

In the following, we discuss the importance function gi and parameters of our system.

3.3.1. Choosing the Importance

As the meaning of importance depends on the application and goals of data exploration,

we do not prescribe a particular importance function. Instead, we provide a generic

way to incorporate any suitable importance measure, which is defined as gi per polyline

segment i. This enables the user to either explore the presence of, or to communicate

a specific feature in the data. For all examples, we use either the polyline length (i.e., all

segments of a line have identical importance) or the segment curvature (i.e., integrated

curvature). These measures are generic and available for any application. In addition,

various methods exist that extract application-independent line features, for instance

linear entropy [FI08], angular entropy [MCHM10], scalar entropy fields [XLS10], or the

number of pixels that a line covers on the screen [GBWT11]. Alternatively, importance

may be application-specific, e.g., distance to a tumor in medical imaging, cluster

sizes in fiber tracking, uncertainty in data, or it can simply be sampled from a scalar

field. With our approach, we can incorporate any of those sophisticated importance

functions. Different choices for importance are shown for a synthetic TORNADO data

set in Fig. 3.8 (line length) and Fig. 3.2 (curvature). The latter brings out the vortex core.

(For both images we set q = 1.2, λ = 5.)

Note that setting the importance of a segment to gi = 1 guarantees that the segment will

always be visible, since the energy terms (3.2) (penalize occlusion) and (3.3) (remove

background clutter) both evaluate to zero. Then, only the smoothness term (3.4) may

reduce the opacity. The ability to specify lines that should definitely be seen is a

valuable tool for the user, as it allows to represent critical parts in the data set, e.g., an

aneurysm in blood flow.

55



3. Opacity Optimization for 3D Line Fields

3.3.2. Optimization Parameters

The parameters p, q, r, s act as weights for the error terms, and λ emphasizes important

lines. We set p = 1 and select q, r, s relatively to this value. The parameter q weights

occlusion and is probably most important: it scales the amount of opacity in the final

image. Setting q = 0 keeps all lines opaque (if r is chosen relative to q, as described

later). An increasing q gradually fades out occluding lines. Effectively, this is the main

tool to resolve occlusions introduced by lines in the foreground, as shown in Fig. 3.5:

Here, we placed a camera behind a helicopter in slow forward flight close to the ground.

The data set we used is described in [KKKK12] and is a validated simulation in a wind

tunnel (test case No. 12 in the paper), computed in about 41
2 weeks wall clock time

on 256 processors on the cray cluster at the High Performance Computing Center in

Stuttgart, Germany. We uniformly resampled 400 degree rotor revolution at 10 degree

per time step at a resolution of 700× 100× 130 voxels, yielding in total 4.2 GB of vector

field data. In the remainder of the thesis, we refer to this data set as the HELICOPTER

HOVER flow. The line field represents air flow, and the direct visualization of the

original data, shown in the left image, suffers from vast occlusion. In the right image,

we use curvature as importance to reveal the main vortices: visible are not only the two

vortices, released from the rotor blades and transported back, but also the vortex on

the ground in front of the helicopter. The latter vortex is critical as it is the main source

of small dust particles that cause hazardous brownout conditions, which endanger

ground personnel as well as passengers.

The parameter r has a more subtle effect: it accounts for fading out unimportant

lines in the background that are occluded by important lines in the foreground. This

effect is demonstrated in the flow around a short WALL-MOUNTED CYLINDER, simulated

by [FWT08] and shown in Fig. 3.6. Behind the interesting region there is an unimportant

laminar layer that clutters the view for r = 0 (left). For r > 0 we obtain a much clearer

visualization, as disturbing unimportant lines in the background are faded out (right).

Figure 3.5.: Streamlines visualize the air flow around a helicopter in forward flight close

to the ground. The camera is placed in the wake of the helicopter. Left: Input line set is

cluttered (q = r = 0). Right: We set q = 1, r = 0.4, λ = 3 to fade out unimportant parts.
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Figure 3.6.: Visualization of a turbulent area behind a wall-mounted cylinder. In both

images, we set q = 0.8, λ = 1.5. Left: Visual clutter in the background for r = 0. Right:

Clutter can be removed by setting r = q/10.

Figure 3.7.: Streamlines in a hydrocyclone. An increase of λ emphasizes important

lines, i.e., the conical outflow part. We set q = 1, r = 0.01, left: λ = 28 and right: λ = 25.

It is reasonable to select r ≤ q, and our experiments show that setting r relative to q, as

r = 1
10 q is generally a good choice. We use this setting in the remainder of the chapter

unless stated otherwise.

The remaining parameter s weights a smoothing term that penalizes high variation of

opacities along polylines. We always set s = 0.3.

Finally, the coefficient λ controls the emphasis of important lines. In Fig. 3.7, we

demonstrate its utility in a HYDROCYCLONE, a device to separate particles in a liquid

suspension. The steady data set was provided by Markus Rütten and was uniformly

resampled to 256 × 369 × 536 voxels. If not stated otherwise, we set λ = 1 neutral,

i.e., no increased emphasis on important lines. In all the examples above, we used

curvature as importance measure.

3.4. Results and Discussion

We compare [MCHM10] and [GBWT11] with our algorithm in Fig. 3.8. The columns

show the initial line set (left) and the different methods. The different data sets are

arranged in the rows.
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Figure 3.8.: Comparison with other line selection algorithms. Columns from left to

right: input line set (i.e., all lines), [MCHM10], [GBWT11] and our approach. Data sets

are in rows, top to bottom: Borromean rings, flow around a descending helicopter,

tornado, aneurysm and Rayleigh-Bénard convection. Our method brings out specific

features that are otherwise occluded, i.e., rings, vortex cores, the aneurysm (cf. Fig. 3.9),

and the convection cells (cf. Fig. 3.2 for an overview image).
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The first row shows magnetic field lines in the decay of magnetic knots, as present

in astrophysical objects. Here, the topological reconnection of rings was studied by

Candelaresi and Brandenburg [CB11]. The rings temporarily form the shape of BOR-

ROMEAN RINGS. The objective of the visualization is to bring out the highly occluded,

symmetric rings, a task at which our technique performed best. We use line lengths as

importance with q = 1.8, r = 0.18, and λ = 3.

The second row analyzes experimental wind tunnel data by [YTvdW∗02] of a descend-

ing helicopter (HELICOPTER DESCENT), viewed from below without the helicopter body.

Of interest are the vortices that detach from the tips of the rotor blades: their impact

on the rotor and on the noise generation (by blades cutting the vortices) should be

analyzed. Our method produces clear views on the vortices. Here, curvature was used

as importance, with q = 1.3, r = 0.65, and λ = 2.

The TORNADO data set shown in the third row is described in Section 3.3.1. Since our

approach is able to locally fade out segments, it can cover the entire viewport with

lines (by using all lines) and at the same time reveal features like the tornado’s vortex

core (in contrast to [MCHM10]). Furthermore, this test case shows the advantage of

being able to fade out line segments locally over using a global opacity value per line

as in [GBWT11].

Figure 3.9.: Aneurysm.

The fourth row shows medical data, i.e., blood flow

through an ANEURYSM, simulated at the Institute of

Fluid Dynamics and Thermodynamics, based on ves-

sel geometry acquired at the University Hospital, both

in Magdeburg. In the input data, the aneurysm is

entirely occluded by flow through the blood vessel.

Not only the aneurysm but also convection due to

wall reflection is made visible by our approach. Here,

we used curvature as importance and set q = 3 and

λ = 3.5. An overview, taken from a distant viewpoint,

is shown in Fig. 3.9, using curvature as important and

setting q = 2 and λ = 2.5.

The fifth row shows a RAYLEIGH-BÉNARD convection, i.e., the forming of separate

convection cells by fluids heated from below (simulated using the free software

NaSt3DGP [GDN98]). The center left image in Fig. 3.2 depicts all four cells. To demon-

strate the disadvantage of greedy algorithms, we placed the camera inside a convection

cell. Both methods, [MCHM10] and [GBWT11], select highly occluding lines, while

our approach reveals the occluded cells (curvature as importance and q = 0.5, r = 0.1,

λ = 3).
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3. Opacity Optimization for 3D Line Fields

Figure 3.10.: Tensor data in medical imaging: Diffusion tensor lines, using line length

as importance with q = 4, λ = 5.

Figure 3.11.: Trajectories of three falling dice. Each casts eight speed lines, which are

partially faded out to reveal the helical trajectory. (curvature as importance, q = 0.15,

r = 0.375, λ = 1)

Fig. 3.10 shows visualizations of diffusion tensor data, i.e., tractography in medical

imaging, which allows to infer the white-matter connectivity of the brain to diagnose

vascular strokes or cancer. The DT-MRI data was acquired at the Central Hospital of

Bremen.

In Fig. 3.11, we visualize trajectories of three falling dice to depict motion. We show

speed lines for every corner to demonstrate that our technique is also suited for auto-

matic fading of lines in illustrative renderings. This scene is courtesy of Maik Schulze.

We applied the opacity optimization technique in our IEEE Scientific Visualization Con-

test 2014 submission [GSFT16]. The contest was hosted by RWTH Aachen University

and the data and tasks were provided by the Simulation Laboratory Climate Science at

the Jülich Supercomputing Centre and the Institute of Energy and Climate Research,

both resided at the Research Center Jülich, Germany. The contest centered around the

fusion of multiple satellite data modalities to reconstruct and assess the movement of
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volcanic ash and sulfate aerosol emissions. Among others, the provided data set con-

tained simulated trajectories of individual sulfate aerosol particle, which are visualized

in Fig. 3.12. The simulation of these trajectories is based on the ERA-Interim [DUS∗11]

meteorological reanalysis and is calculated by the Chemical Lagrangian Model of the

Stratosphere (CLaMS) [MKG∗02, KGM∗07, KGG∗10] that has recently been extended

to the troposphere [PKM∗12]. While the input line set is highly cluttered, the sulfate

aerosol clouds of the volcanoes Puyehue-Cordón Caulle in Chile (eruption on June

4th, 2011) and Nabro in Eritrea (eruption on June 13th, 2011) can clearly be seen when

opacity optimization is applied. In the images, an index measure related to sulfate

aerosol concentration was used to specify importance.

(a) June 4th – June 8th, with opacity optimization. (b) June 4th – June 16th, with opacity optimization.

(c) June 13th – June 27th, opaque (input line set). (d) June 13th – June 27th, with opacity optimization.

(e) June 21st – July 5th, opaque (input line set). (f) June 21st – July 5th, with opacity optimization.

Figure 3.12.: Trajectories of sulfate aerosol particles after volcanic eruptions.
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3.4.1. Performance

We measured the performance for an Intel Core i7-2600K CPU with 3.4 GHz, 24 GB

RAM and a Nvidia GeForce GTX 560 Ti GPU with 2 GB VRAM. The number of frames,

hij assemblies, and solves per second are listed for all referenced figures in Table 3.1.

Note that the assembling, solving, and rendering run in parallel. Thus, the slowest

component poses the bottleneck, which was in all but one case the assembly of the

system matrix (including the traversal of fragment linked list for computing the occlu-

sion degrees). The only exception was the dice in Fig. 3.11, for which the optimization

problem was small so that the rendering was slower. The streaming of the fragment

linked lists to the CPU took always 22 ms (due to the constant fragment pool size). In

the examples throughout this chapter, the fragment pool size was set to an average

fillrate of 8 fragments per pixel. If the entire memory pool is consumed, the buffer

could dynamically be enlarged (reallocated on the GPU). All results were computed for

a resolution of 1200× 1000 with 16× coverage-sampling anti-aliasing (CSAA).

Table 3.1.: Performance: Frames per second (Fps), assemblies of hij per second (Alg. 2)

and solves per second (including computation of Q), with n being the number of

segments. The bottleneck is printed bold.

Data set Figs. Fps Asm./s Sol./s n

Aneurysm 3.8 16.3 4.3 12.8 3,816

Aneurysm 3.9 20.8 6.3 14.7 3,816

Bénard 3.2 7.6 1.1 16.9 2,224

Bénard 3.8 10.5 2.8 12.5 2,224

Borromean 3.2, 3.8 37.0 9.9 14.7 2,936

Brain (axial) 3.10 66.6 13.3 21.3 5,808

Cylinder 3.6 27.0 9.5 34.5 3,776

Dice 3.11 46.3 166.6 156.2 576

Heli Brownout 3.5 19.2 5.1 14.1 8,136

Heli Descent 3.2, 3.8 14.5 5.9 14.5 6,896

Hydrocyclone 3.7 16.9 3.9 28.6 2,016

Tornado 3.2, 3.8 28.4 13.7 27.7 2,648
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3.4. Results and Discussion

(a) Turbulent flow with only important lines.

(q = 40, r = 80)

(b) Laminar flow without any important lines.

(q = 1, r = 1)

Figure 3.13.: Limitations: for extreme cases with no prominent feature to bring out, the

results of our method resemble depth cueing.

3.4.2. Limitations

Our approach strives to keep a balance between information presentation and oc-

clusion avoidance. There are two cases, shown in Fig. 3.13, when it does not get

meaningful results:

• There are too many important structures: for the example of streamlines in a

turbulent flow, the whole domain may be densely covered with important lines.

In this case, it is difficult to decide on the parts to emphasize, leading to a simple

depth cueing as optimum.

• There are too few important structures: if all lines are of low interest (e.g., stream-

lines in a laminar flow), the optimum also gives a simple depth cueing. This is

because there is no feature to direct the focus on.

Although both cases can occur, we do not consider them as critical. For turbulent

flows, as in the first case, streamlines are generally not an adequate approach for visual

representation, since the shape of particular lines is dominated by randomness. In the

second case, the rendering of a dense line field is not really necessary because of its

simple structure.

An inherent disadvantage of line selection methods compared to seed placement

methods (such as Jobard and Lefer [JL01]) is the inability to provide unlimited level of

detail. In other words, if the viewer zooms into the data set, no further lines are added

in sparse regions. Some line selection approaches, such as Marchesin et al. [MCHM10],

63



3. Opacity Optimization for 3D Line Fields

fill the viewport in a post-process by integrating further lines. Similarly extending our

method requires special care to preserve the frame coherence, since newly added lines

would influence the opacity of existing lines.

The rendering of transparent objects often makes it harder to infer the depth order of

object, cf. Carnecky et al. [CFM∗13]. Especially the crossing of lines provides “context”

that helps to resolve this ambiguity. Since in our setting all lines have equal width, their

projected size tells whether an unimportant line is in front or behind an important line.

A constant width, however, limits the ability to zoom in, since eventually every line will

cover large parts of the viewport, causing tremendous occlusion. Again, this is an issue

that falls into the unlimited level-of-detail category described above.

Another limitation is the fact that our optimization does not explicitly incorporate the

density of the lines. If many lines are spatially close to each other, the algorithm will

assign similar opacities to them. A simple (and limited) workaround is to add small

noise to the importance of the lines so that individual lines are emphasized more. A

better approach would be to assign one representative a high opacity and to make

adjacent lines less visible, which requires a notion of line density. While the mini-

mization of our quadratic energy leads to considering a linear gradient, higher-order

energies such as density estimators lead to non-linear gradients. Note that due to the

presence of bounds on variables the problem becomes significantly more expensive

than standard linear least-squares settings. We leave the challenge of effectively in-

corporating density into the energy to future research. The aforementioned proximity

problem can be avoided by a suitable filtering of the input line set, which if executed

in a view-dependent way is far from trivial, since frame coherence must be ensured.

Having a general method to deal with this problem therefore seems desirable.

Also, fading lines might be confused with depth cueing, which might interfere with

depth perception. There are different aspects that could be studied here. Lawonn et

al. [LLPH15] studied a number of different visual cues that help with depth perception

in the context of vascular trees, which to some extend might directly transfer to general

line depictions. An application of this in our context likely improves the perception,

though more work could be spend on understanding when fading lines relate to depth

cueing. For instance, restricting the opacity profiles along the lines to a series of

smoothstep functions of a specified width that connect plateaus of either entirely

invisible (αi = 0) or entirely visible (αi = 1) line segments could remove the impression

that lines slowly bend away from the camera, since they no longer vary opacity slowly.

Instead, it might only appear that lines bend away from the camera very sharply.

Whether this association is triggered can be questioned, as it is not represented by the

line shape/width or the shading. Of course, answering these questions requires further

study.
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3.5. Summary

3.5. Summary

In this chapter, we introduced the first method for line selection in 3D line fields

that is based on a global optimization: We computed a globally optimal opacity for

polyline segments by minimizing a quadratic error function, which formalizes desired

properties (favor opaque lines, reduce occlusions, smooth opacity gradient along the

lines). Our approach can be steered by a-priori domain knowledge in terms of an

importance function, and it attains interactive, frame coherent and view-dependent

visualizations. Moreover, it is the first approach that resolves occlusions effectively for

every viewpoint position.

So far, we narrowed the user parameters down to a small and intuitive set. All parame-

ters are stable, i.e., no sudden changes occur when interactively varying them. A deeper

study of the behavior of the parameters, and ultimately a reduction of the number

of parameters are necessary steps that have to be taken to deploy the technique into

standard visualization software. That is, the focus should shift from technical research

to user-centered development. An automatic setup that adjusts the parameters to a

given scene is an interesting idea that could be further investigated, especially if the

processing of a large number of data sets is anticipated. Tao et al. [TMWS13] already

worked on viewpoint selection, which is quite helpful for that task.

Another aspect of future work is the mapping of the optimization result to other visual

parameters. So far, color was intentionally left open for the visualization task. It is

undoubtedly useful to direct attention and communicate information. Varying the

width of lines could compromise depth understanding, as we have argued before, yet

for the purpose of continuous level-of-detail a compromise has to be found. Further, a

number of different rendering styles (cf. [EBRI11],[EBRI15]) could be combined with

our methods, such as using shaded tubes instead of line strips [SGS05], ambient oc-

clusion [EHS13], depth encoding by (quantized) color and redundant depth encoding

by using hatching on the lines [LLPH15], and so on. See Brambilla et al. [BCP∗12] for a

broader overview.

The performance of the system is another factor to improve. Our practice showed

that CPU-based solvers are fast for sparse systems. In fact, we attained sufficient

performance with a standard solver on the otherwise unoccupied CPU cores for the

scenes that we have worked with. Nevertheless, complexity and scene sizes are never

bound and are constantly growing. We think that the setup of the system (Alg. 2) may

benefit from using the GPU.

The next step is to apply our line selection to unsteady line fields. The following chapter

is dedicated to this problem.
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4
Chapter 4.

Hierarchical Opacity Optimization for

Sets of 3D Line Fields

In this chapter, we address the yet completely unsolved problem of line selection for

animated 3D lines, as described in:

T. Günther, C. Rössl and H. Theisel

Hierarchical Opacity Optimization for Sets of 3D Line Fields

Computer Graphics Forum (Proc. Eurographics) 33, 2 (2014), 507–516.

For this, we extend the method from Chapter 3, for which two problems have to be

solved. First, the performance has to be increased to be able to rapidly adapt the

opacity to the deforming and growing lines. Second, time coherence has to be assured.

For this, we present a hierarchical and view-dependent partition of lines to speed up

the opacity computation. Additionally, we address time coherence by an additional

energy term and a correspondence heuristic for opacity transport between time steps.

Fig. 4.1 shows an example: the display of pathlines and streaklines in a time-dependent

cylinder flow.

Optimizing opacities requires the solution of a bounded-variable least-squares prob-

Figure 4.1.: View-dependent, frame-coherent and interactive selection of meaningful

lines for sets of line fields: pathlines (left, 48 ms/opacity update) and streaklines (right,

53 ms/opacity update) in a SQUARE CYLINDER flow.
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lem. The assembly of the system matrix and the numerical solving dominate the

computation time. The rate at which solutions are computed depends on the number

of unknowns, i.e., the total number of polyline segments n used for opacity optimiza-

tion. For the interactive exploration of line sets, we reported in the previous chapter in

Section 3.4.1 a maximum problem size of n < 10, 000 polyline segments; this bound

may vary depending on the data (and the desired rate of solves), n ≈ 3, 000 is a typ-

ical value. This is not sufficient for the interactive exploration of parametric sets of

line fields such as pathlines or streaklines, because these fields consist of many more,

possibly time-dependent, lines. Generally, the line representation used for rendering

is decoupled from the representation used for solving the numerical problem. In the

previous chapter, this was achieved by splitting each polyline into only few polyline

segments of equal length. This coarse representation was used in the numerical op-

timization, and the computed opacity values were then interpolated on the original

polyline. The splitting solely depended on arc length. Even though the lines were

typically split into only few – at most 8 – polyline segments the total number of seg-

ments n could have become high, as all lines were treated equally regardless of their

contribution to the image.

The idea of this chapter is to advance from a static arc length-based splitting to a

view-dependent distribution of polyline segments. This way, not only the problem size

is decreased, but effectively a better distribution of opacity samples is achieved in a

sense that lines closer to the camera obtain a locally higher line sampling rate, see

Fig. 4.2, and lines outside the viewport are not taken into account. We achieve this

by a hierarchical representation of polylines that enables an efficient extraction of n

coarse, adaptively sampled polyline segments used for the opacity optimization from

a potentially large total number of candidate segments c. In all our examples, we use

c = 20, 000.

To accelerate the assembly of the system we propose a faster approximation to calcu-

late the occlusion degree. Previously, we used a multi-sampled full resolution pass

to construct fragment linked lists, which were used for both rendering and determin-

ing the occlusion degrees. Approximating the occlusion degree in a single-sampled

quarter resolution pass produces less fragments to process on the CPU side and allows

to discard invisible lines and segments from the rendering pass completely. Both im-

provements accelerate opacity optimization greatly and apply similarly for the steady

case.

Further, we show how to achieve temporal coherence for sets of line fields in the

presence of time-dependent data. This requires an extension of the energy term as

well as an interpolation of opacities across hierarchy levels (see Section 4.2).
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4. Hierarchical Opacity Optimization for Sets of 3D Line Fields

Figure 4.2.: BORROMEAN RINGS. A better distribution and higher number of polyline

segments yield details around important structures, here, the field lines close to the

ring. Left: original opacity optimization from Chapter 3 for n = 6 k with 431 ms/solve.

Center: novel hierarchical approach forn = 1.4 kwith 65 ms/solve, and right forn = 4 k

with 147 ms/solve.

4.1. Hierarchical Opacity Optimization

4.1.1. Hierarchical Polyline Representation

In an off-line preprocess, we build a hierarchical representation for each polyline in

the input set of lines as follows. The initially given polyline is assumed to be sampled

uniformly with respect to the arc length, possibly at a high sampling rate. These

uniform segments represent the finest level of the hierarchy. The coarser levels are built

iteratively in a bottom-up approach: for the next coarser level, every pair of adjacent

segments in the current level is collapsed into one single segment. For an uneven

number, the remaining segment is left as is. Doing this recursively until there remains

only one root segment yields a binary tree with leaf nodes referring to the original

segments and internal nodes referring to recursively collapsed segments. Finally, doing

this for all lines, the union of all line representations defines a forest of binary trees. If

the input is a set of line fields (e.g., an animated line field), we process every field in the

set individually and obtain a set of forests, which are discussed further in Section 4.2.

Fig. 4.3 illustrates the setting of a single line field containing two lines.

4.1.2. View-dependent Adaptation of the Problem Size

From the hierarchical representation of lines as a forest of binary trees, we determine

the discretization of polylines for the numerical optimization dynamically based on

the current view. The selection of an appropriate set of resampled lines refers to finding

a cut through the forest. An ideal cut should make the projected lengths of the joined

polyline segments, i.e., the nodes’ footprints, as equal as possible. The rationale of the

heuristic is to obtain an as uniform as possible discretization of opacity samples. Note

that while a low cut yields fine granularity of opacity samples, a higher cut would still
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4.1. Hierarchical Opacity Optimization

Figure 4.3.: Illustration of the hierarchical representation (Section 4.1.1) for two lines.

For finding a cut (orange nodes) the tree is traversed (blue arrows) top-down (Sec-

tion 4.1.2).

maintain a fair distribution of samples, which improves visual quality (see Fig. 4.2).

We use a breadth-first search to efficiently find a good approximation to such a cut.

Thereby, each node is associated with the bounding box of the represented polyline

segment. Starting from the root nodes of the trees, we traverse toward the leaf nodes

with two stopping criteria: First, the traversal stops at a node when the bounding box

of this node is completely outside the view frustum. In this case, the node is “trivially”

rejected and neither considered for the opacity optimization nor the rendering. Second,

the traversal stops when a node reached a desired viewport footprint.

The footprint threshold f is a user parameter that balances the solve rate (and hence

interactive response) versus the number of possible opacity changes along the lines. An

exact calculation of the viewport footprint of a given polyline is view-dependent and

quite expensive as it would (likely) require a rasterization of the polyline. Instead, we

approximate the footprint. The footprint of a leaf node is approximated by assuming

that the polyline segment that is represented by the leaf node is a straight line. For a

sufficiently fine discretization of the polyline into segments this assumption is valid. We

project the bounding box corners of the polyline segment (which are view-independent

and precomputed) onto the viewport. For small (straight) segments, the diagonal of

the screen space bounding box that contains the eight projected corner vertices, is a

practical approximation to the footprint. That is, the footprint can be easily evaluated

without rasterization. For internal nodes the footprint of the children is summed up.

Fig. 4.3 illustrates the finding of a cut conceptually and Fig. 4.4 visualizes a cut for f =

30% of the viewport diagonal.

The view-dependent selection is particularly helpful in large scenes, for instance the

blood vessel in Fig. 4.5. There, only about 33% of the polyline segments are visible. As

shown in the figure, the view-dependent selection of polyline segments from a large

set of candidates produces a better set for the optimization compared to the fixed,

precomputed subdivision. For using computed opacity values as an initial guess in the
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4. Hierarchical Opacity Optimization for Sets of 3D Line Fields

Figure 4.4.: Visualization of a cut with color-coded segments (alternating blue/black).

Note that more polyline segments are spent in the foreground. (n = 2.5k segments).

Figure 4.5.: BYPASS. Vortex core in a blood vessel. Left: standard opacity optimization

(n = 8k at 365 ms/solve). Right: novel approach provides clearer view at the vortex

core (cut contains n = 1.8k polyline segments at 60 ms/solve).

next solving iteration, the opacities are propagated in the hierarchy from the old cut to

the new cut. Fig. 4.6 illustrates this and the aforementioned culling of segments.
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Figure 4.6.: Propagation of opacity values between cuts in the hierarchy. Thereby,

invisible polyline segments are culled. The dashed line represents the old cut, the solid

line is the new cut.

4.2. Processing Parametric Sets of Line Fields

Our goal is to visualize sets of line fields that may depend on additional parameters such

as time. Examples are animated pathlines and streaklines, as shown in Fig. 4.1. Another

class of parameter-dependent integral curve is the so-called massline. Masslines arise

when considering finite-sized particles in fluids, which will be subject of the third

part of this thesis. We formally introduce these lines in Chapter 10. For now, we can

consider them as another type of time-dependent line field.

For an overview of the space of pathlines, there is an alternative to animation: Render-

ing all lines in a static scene and letting the opacity optimization put focus on the most

important events of the entire sequence. In this case, time is an additional dimension

which leads to a larger amount of data. This case can be handled effectively by the

hierarchical optimization as is.

4.2.1. Enforcing Temporal Coherence in Opacity Values

Typically, the visualization of parametric sets of line fields is an animation of lines over

time. As an example, Fig. 4.7 shows a sequence of time steps of a streakline animation.

Animations require to solve an additional problem: the sequence of frames should be

coherent over time. Thereby, we have to carefully distinguish between coherent opacity

values on the lines – this is the problem we solve – and the possibly incoherent behavior

of the lines themselves. The latter means that lines may suddenly disappear, when line

parts leave the domain or when integral lines suddenly change their direction due to

an insufficient temporal resolution of the animation. This behavior is inherent to the

data and should therefore not be faded out (even though it may be due to artifacts, e.g.,

from sampling).

In order to ensure temporal coherence of opacity values, we introduce an additional
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4. Hierarchical Opacity Optimization for Sets of 3D Line Fields

Figure 4.7.: Time steps of the evolution of streaklines forming a vortex street behind a

SQUARE CYLINDER. Time advances from top to bottom.
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4.2. Processing Parametric Sets of Line Fields

again, with bounded variables 0 ≤ αi ≤ 1. The new (boxed) term penalizes deviation

from the solutionα′ of the previous iteration and hence introduces “inertia” to suppress

sudden changes. Note that thereby inertia depends on the solving rate. The new

parameter u balances smoothness of the animation versus accuracy in a sense of

deviation from the minimizer of the original energy with u = 0. The choice u = 1

(w.r.t. the normalization p = 1 suggested in Section 3.1) showed good results in all our

experiments.

4.2.2. Inter-frame Interpolation of Opacity Values

To improve the performance of the numerical solver, we provide the previously com-

puted opacity values α′ as initial guess to the next solving iteration. As mentioned in

Section 4.1, we represent time-parametric sets of line fields as sequence of hierarchical

representations, i.e., one forest per time step. Consequently, we have to interpolate

opacity values not only within cuts in one forest but between two forests: Then, a

correspondence problem arises for the transport of opacities αi from nodes of the

current cut to a possibly topologically different cut in the next time step. Our approach

is visualized in Fig. 4.8. First, we propagate opacity values in the current time step

down to the leaf nodes. From there, opacities are copied to leaf nodes in the next time

step, i.e., the next forest. Since leaf nodes represent polyline segments of roughly equal

length, leaf nodes of the same index can be assumed to be spatially close to each other.

If a line has grown and no corresponding segment exists, its opacity value is set to 0,

i.e., “invisible”. Then, opacity values are propagated upward from the leaf nodes to the

new cut.

There are several heuristics imaginable that establish segment correspondence at the

base level. An advection of opacities (copy to next index) induces a flow of opacities

along lines, while the index-to-index correspondence (which we used) holds opacities

in position. Which is better depends on the lines behind and in front, since if the

location of the crossing does not move it is better to hold the opacities in position. If

the location of the crossing is advected with the flow instead, advection gives a better

estimate for the next time step. In short, we can find examples where one yields the

better result or the other. In practice, we found the index-to-index correspondence to

give overall better visuals.

4.2.3. Hiding the Latency of the Solver

In the original opacity optimization in Chapter 3, opacity values of the polyline seg-

ments fade slowly toward the newly computed solution to hide the latency of the solver.
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Figure 4.8.: For propagating opacity to the next time step a correspondence at the leaf

nodes is required. Polyline segments without a corresponding segment in the previous

time step are initialized as invisible, i.e., αi = 0.

Fading opacity in animated sequences requires their projection onto the line set in

the next time step, i.e., a correspondence has to be established. Depending on the

type of integral curve, a meaningful correspondence is naturally given, i.e., opacity

can be copied to the subsequently released particle (e.g., pathlines or streaklines) or

it can be advected with the vertices (e.g., timelines or masslines). Thus, we store the

current opacity values used for display not per node (polyline segment) as in Chapter 3,

but as a vertex attribute. We acquire the opacity values to fade to by interpolation of

solutions from nearby polyline segments. For this, we can use the blending weight

parameterization from Fig. 3.4, which was used in the original algorithm to interpolate

opacities on the lines.

4.3. Implementation and Technical Details

4.3.1. Initial Line Set

For the display of all pathlines, we place seeds on the space-time boundaries to ensure

a dense sampling. Animated pathlines and streaklines were seeded in inlet regions.

Masslines in the HELICOPTER HOVER data set are released from the sediment bed,

as they depict sand particle behavior. Clustering lines and choosing representatives

[CYY∗11, YWSC12, MJL∗13] is a possible improvement to reduce the size of the input

set required to represent the field. Given the line set, we divide all lines into a total of c

polyline segments such that all segments have roughly equal lengths. We use c = 20k

in all our examples. Afterwards, the forests are formed bottom-up for each line field

individually.
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4.3.2. Matrix Setup Using the Hierarchy

Compared to the original method in Chapter 3, we made a few detailed modifications

due to the hierarchical data structure when setting up the system matrix. Counting

the occlusion degrees hi,j requires to identify the corresponding polyline segment (i

or j) for each fragment. In the previous chapter, we proposed a parameterization that

yields in the hierarchical case the index of the polyline segment at the leaf level. In

addition, we maintain for each leaf node a pointer to the representing inner node that

is currently selected by the cut. For identifying whether cut nodes are adjacent (aij = 1),

the left-most and right-most leaf nodes of the cut nodes are tested for neighborhood.

To speed up the test, the indices of these children are stored for each inner node after

cut construction. For bottom-up propagation of opacities (and initially the importance

g) in the hierarchy, the entries of child nodes are averaged. For top-down propagation

opacities are copied to the child nodes.

Reformulating the bounded-variable least-squares problem from Section 4.2 to:

minimize
1

2
xTQx + cTx + const

subject to 0 ≤ xi ≤ 1.

with x = (α1, ..., αn)T, yields

Q = p · I + q ·W + r ·V + s ·DTD + u · I

c = (−p− u · α′1, . . . ,−p− u · α′n)T

As before, I is the identity matrix. The matrices W and V are both diagonal matrices

with entries Wii = (1−gi)2λ
∑n

j=1 h
2
ij g

2
j and Vii = (1−gi)2λ

∑n
j=1 h

2
ji g

2
j , and the matrix

D is the backward difference operator. A derivation is contained in Appendix A.

4.3.3. Decoupling Rendering and System Setup

In Chapter 3, we used a single rendering pass of all lines to acquire fragment linked

lists that were used for both rendering and occlusion degree extraction on the CPU. We

found that splitting them into two passes led to a significant frame rate improvement,

as measured later in Section 4.4.2. In the first pass, we construct the linked lists at

quarter viewport resolution and with single sampling. Using these shorter, separate

lists to compute approximations of the occlusion degrees reduces the amount of data

to copy to the CPU and shortens the time spent on iterating them when counting

occlusion pairs. A reduction of the resolution is justified here, since the lines typically

cover multiple pixels due to their expansion to triangle strips in view space. Moreover,

the subsequent high quality rendering pass is no longer required to render all lines,

but only polyline segments in the view frustum with an opacity αi > 0.
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4. Hierarchical Opacity Optimization for Sets of 3D Line Fields

Figure 4.9.: Set of all pathlines in the SQUARE CYLINDER sequence. The opacity opti-

mization shows an overview of events for any point in time (74 ms/solve, n = 2k).

4.4. Results

In this section, we show examples for visualizations generated by our hierarchical ap-

proach. Afterward, we discuss its performance. As we are processing time-dependent

data, we would also like to refer to the video of the corresponding paper [GRT14].

4.4.1. Visualization of Steady and Time-dependent Data

Square Cylinder. Fig. 4.1 shows the unsteady wake of a square cylinder by animated

pathlines and streaklines—the latter revealing a vortex street. The uniformly resampled

version of this vector field sequence was provided by Tino Weinkauf (see [vFWTS08])

and is based on the Navier-Stokes simulation by Camarri et al. [CSBI05]. The set of all

pathlines is shown in Fig. 4.9, depicting events from any point in time.

Helicopter Hover. The second unsteady sequence captures the simulation of the flow

regime around a helicopter in slow forward flight close to the ground (cf. Section 3.3.2).

The data was simulated by Kutz et al. [KKKK12] and is studied to understand how sand

and dust clouds develop around rotorcrafts. This phenomenon is called brownout

and is subject of Chapter 10. Fig. 4.10 depicts the data from two perspectives using

streaklines. In this data set, masslines were used to analyze relationships of the finite-

sized sand particles. A massline connects all the locations that finite-sized particles of

different mass reach after a certain integration time, when released from the same seed

point. In Fig. 4.11 a vortex ring is visible that stirs up particles from the loose sediment

bed, hindering the view of the pilot.

Wall-mounted Cylinder. Frederich et al. [FWT08] simulated the air flow around a

short wall-mounted cylinder (see Section 3.3.2). The view on animated pathlines in
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4.4. Results

Figure 4.10.: Animated streaklines in the HELICOPTER HOVER sequence from outside

and inside the domain. The location of the vortex on the ground is best seen in the left

image (65 ms/solve, n = 1k). In the image on the right, the camera looks at the two

vortices in the air. There, the vortex on the ground is visible in the distance (73 ms/solve,

n = 1k).

Figure 4.11.: Masslines forming a vortex ring in the HELICOPTER HOVER sequence. Left:

cluttered input line field, right: our method (77 ms/solve, n = 612).

Fig. 4.12 in the wake of the cylinder is hindered by a laminar layer that is removed by

the opacity optimization.

Borromean Rings. If the spatial relation of events permits it, individual time steps of

an unsteady sequence can be shown simultaneously in one static view, which conse-

quently contains an increased number of lines. Candelaresi and Brandenburg [CB11]

simulated the decay of a magnetic field, with field lines initially interlocked in the

shape of Borromean rings (cf. Section 3.4). During the simulation, the rings decay to

two small magnetic knots that drift apart, as visualized in Fig. 4.13.

Helicopter Descent. The following steady data sets were used to demonstrate the

improved performance (Section 4.4.2) and visual quality of the novel hierarchical

optimization. In Fig. 4.14 (left) streamlines depict the air flow around a descending

helicopter, viewed from below without the helicopter geometry as in Section 3.4.
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4. Hierarchical Opacity Optimization for Sets of 3D Line Fields

Figure 4.12.: Wake of a WALL-MOUNTED CYLINDER shown using animated pathlines

(83 ms/solve, n = 1.4k).

Figure 4.13.: BORROMEAN RINGS. Multiple magnetic fields from a time series of a

magnetic flux decay simulation. The time steps are color-coded from orange to yellow

to blue. Left: input line fields, right: visualization of the two knots therein moving apart

(160 ms/solve, n = 4k).

Blood Flow in Bypass and Aneurysm. As an example for medical applications, we use

hemodynamics data acquired at the Leipzig Heart Center and the University Hospital

of Magdeburg (processed at Institute of Fluid Dynamics and Thermodynamics in

Magdeburg). We visualize blood flow in an aortic bypass (Fig. 4.5), measured by PCMRI

and in an aneurysm at a pathological vessel (Fig. 4.14, center) as in Section 3.4.

Rayleigh-Bénard Convection. In Fig. 4.14 (right) the camera is placed inside a

Rayleigh-Bénard convection that arises if a thin layer of liquid is heated from below (cf.

Section 3.4). The opacity optimization clears the view on the cells.
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Figure 4.14.: Results in steady data sets. From left to right: Vortices behind a HE-

LICOPTER in descent (95 ms/solve, n = 2k), blood flow through an ANEURYSM of a

pathological vessel (55 ms/solve, n = 2k), and field lines in a RAYLEIGH-BÉNARD CON-

VECTION (110 ms/solve, n = 1.4k).

4.4.2. Performance

For the following performance measurements, we used an Intel Core i7-2600K CPU

with 3.4 GHz and an Nvidia GeForce GTX 560 Ti GPU. All results were computed for a

resolution of 1200× 1000 with 16× coverage-sampling anti-aliasing (CSAA).

The hierarchy construction took 4 – 8 ms per line set, which corresponds to 50 – 60 %

of the total preprocessing time. Timings for our sequences and an average time per

set (which corresponds to the steady case) are listed in Table 4.1. The hierarchy data

structure contains parent and child pointers, bounding boxes, importance values and

several pointers for faster access, see Section 4.3.2. For 500 lines, each consisting of 40

segments, this yields less than 2.5 MB in total per line set.

We compared the solve rate and frame rate of the original method from Chapter 3 with

the novel hierarchical approach in Figs. 4.15a and 4.15b for the benchmark data shown

in Figs. 4.5 and 4.14. We observed a 1.3 – 3.1× speedup for rendering and a 2.5 – 8.0×
speedup for solving while maintaining a similar visual quality for the generated images.

Using the standard method, the solver provided at least one solution per second for

almost all data sets, which matches the results reported in the previous section. The

Table 4.1.: Preprocessing timings for the SQUARE CYLINDER (streaklines), WALL-

MOUNTED CYLINDER (pathlines) and HELICOPTER HOVER (masslines) sequences.

Preprocessing Sq. Cyl. Wall-mt. Helicopt.

Number of line sets 200 400 250

Average per set 14.04 ms 6.97 ms 10.60 ms

Total Time 2.81 s 2.79 s 2.65 s
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Figure 4.15.: Rendering and solving timings.

blood flow in the BYPASS data set in Fig. 4.5 contains off-screen vessel geometry that

is filled with irrelevant streamlines. Generally, as soon as the camera moves into the

domain (e.g., into the vessel’s bounding box), the speedup factor for solving increases

due to the culling in the view-dependent selection of polyline segments. (Note that

culling in this context refers to decreasing the problem size for the solver.)

Next, we evaluate the use of the previous solution as initial guess for the next solve.

For this, we quantify the speedup for solving and the cost for propagation of opacities

between solves for a still camera. Then, in the steady case, the given initial solution is

a “perfect” guess, which thus results in the best possible performance. However, this

performance is generally unreachable for animated line fields, where the system of

equation changes. But it states an upper bound that we strive to approach. Not using

an initial guess resulted in a worse performance. The timings for solving in Table 4.2

indicate that the propagation of the solutions from the previous frame to the next

solver iteration yields a constant speedup of 5 – 12 ms in our tests.

Table 4.3 summarizes timings for the different steps of the algorithm for both rendering

and solving (including setup of the system matrix), which are executed in different

threads. The given timings are averages for one complete turn-over in the threads’

main loops, including all synchronization barriers.

Table 4.2.: Benefits of an initial guess (on/off) for the next solve iteration. Shown are

the solver turn-over times in milliseconds for the SQUARE CYLINDER, WALL-MOUNTED

CYLINDER and HELICOPTER HOVER data, each for a fixed view.

Test Case Sq. Cyl. Wall-mt. Helicopt.

Steady 51.7 75.6 71.6

Unsteady (on) 52.8 83.2 73.2

Unsteady (off) 64.2 88.4 80.3

80



4.4. Results

In the following, the steps and their bottlenecks are discussed. The fading toward new

opacity solutions is fast and primarily depends on the number of vertices in the scene.

The speed of the low resolution pass depends on the image overdraw. Incidentally, the

time for assembling the system matrix goes up, as more time is required to compute

the occlusion degrees. The high quality rendering pass, however, does not need to

render all the lines. Thus, it has less overdraw and is therefore faster. It depends on

the number of segments chosen by the solver, which in turn depends on the user

parameters of the energy. The computation time for the cut depends on the number of

segments to begin with and the recursion depth. The propagation of opacity values

from the previous frame depends on the number of segments. The same holds for the

solving performance. If the input line set is larger, while targeting the same problem

size, fewer line segments are available per line. In summary, the time-critical parts are

the system setup and the solving. The first scales with the number of input lines and

the latter depends on the number of polyline segments chosen in the cut.

The total solving performance is suitable for a visualization of animated line fields. For

most scenes, we were below 60 ms and observed up to 83 ms only in scenes with high

overdraw. For steady scenes, we increased the number of lines and polyline segments,

thus, the solving time went up. Our worst case example was the BORROMEAN RINGS

scene in Fig. 4.2 with up to 147 ms. There, we have shown that a higher cut at 65 ms

produced better results than the original method from Chapter 3 with 431 ms.

Compared to the original method, the hierarchical approach performs significantly

Table 4.3.: Performance of the different algorithm steps for the SQUARE CYLINDER, WALL-

MOUNTED CYLINDER and HELICOPTER HOVER data (all unsteady) with timings given

in milliseconds. The upper part is executed in the rendering thread, the lower part is

executed in the solver thread.

Pipeline Step Sq. Cyl. Wall-mt. Helicopt.

Segments n (cut) 2.5k 1.4k 1k

Alpha Fading 0.01 0.01 0.01

Low Res Pass 1.06 4.17 7.82

HQ Pass 13.51 20.75 19.76

Turn-Over 14.58 24.93 27.59

Compute Cut 1.02 0.83 0.63

Assemble Matrix 42.17 61.45 62.95

Propagate α′ 0.18 0.18 0.16

Solve 9.43 20.78 9.52

Turn-Over 52.80 83.24 73.26
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better with a speedup factor of about 8. This performance improvement stems from

our view-dependent (per frame) selection of polyline segments for which the opacity

optimization is solved. The hierarchical data structure to accelerate this selection

is preprocessed. Reusing previous solutions as initial guess requires a scheme to

transport opacities between hierarchies at runtime.

4.4.3. Discussion and Limitations

We demonstrated that the proposed hierarchical opacity optimization enables interac-

tive exploration of sets of line fields. For meeting the higher performance demands

of animated line field exploration, the novel method does not need to sacrifice visual

quality for speedup – quite the contrary. The improved polyline discretization for the

opacity computation leads to an improved rendering quality at a smaller problem

size. However, this makes it somewhat difficult to faithfully compare the standard

and hierarchical methods: for the same problem size n they yield generally different

results. In our experiments, the effective values of n are usually lower for the hierar-

chical approach in the comparisons. The magnitude of n is steered by the maximum

footprint threshold (Section 4.1.2), which is the user parameter that defines the visual

quality achieved by the optimization. We do not see much benefit in having a true

“load balancing” in a sense of finding the best cut for a prescribed n: first, even a greedy

search for such cut is more expensive. Second, a dynamic adaptation is preferable

in practice, such that the footprint threshold is higher during interaction (low n) and

lower at a user-defined value when the interaction pauses (high n).

Our hierarchy construction is based on binary trees. Other representations are imag-

inable as well and they might have additional benefits though most likely certain

Figure 4.16.: Multiple parents.

difficulties, too. Imagine the use of a graph instead,

i.e., the connection of one base node to multiple par-

ents. For example, consider the graph in Fig. 4.16.

There, node 3 has two parents to blend values from.

This is advantageous as downward propagation re-

sults in smoother transitions at the base level, since we can blend parent opacities at

overlapping nodes. However, this configuration makes the definition of a seamless cut

more complicated, as collapsed line parts overlap. Further, we thought of grouping

child nodes during the bottom-up construction in a greedy manner, steered by the

segment importance. This raises issues in the temporal coherence of the tree’s topology.

The same problem arises with more general tree topologies. The fix topology of a binary

tree worked best for us, and already produced satisfactory results.

In Section 4.1.2, we described an approximation of the viewport footprint of a curve
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by summing up the bounding box extends of the leaf nodes in screen space. An exact

calculation of the footprint is imaginable as well, but depends linearly on the number

of vertices. Our approximation depends on the number of segments. Recomputing the

exact footprint for every curve is currently too expensive for us. However, it could be

reconsidered when a GPU acceleration is targeted for all pipeline stages. At present,

this was not required and our approximation worked fine.

Our method shares the limitations of the standard opacity optimization: adequate

input data is required such that all relevant features are represented. A local oversam-

pling could be addressed in a preprocess, e.g., using a clustering approach on lines

and visualizing cluster representatives. Furthermore, the animation of parametric line

sets requires a correspondence between lines. This is not always given, for instance, in

time-dependent magnetic fields. Streamline animations [JL00] might be a good start

to search for a correspondence heuristic.

4.5. Summary

In this chapter, we extended our work from Chapter 3 so that sets of 3D line fields

can be visualized at interactive rates. The main contributions consist in the therefore

required design of a hierarchical representation of line sets and a modification of the

energy together with an efficient interpolation of opacity values between time steps.

The hierarchical representation enables a view-dependent and feasible problem size

for opacity optimization even though the amount of input data may be magnitudes

larger than for “steady” line sets. In addition, the opacity sampling is regularized which

improves visual quality for similar problem size. The modification of the energy and the

opacity interpolation provide temporally-coherent opacity changes during rendering

and help with guessing initial solutions. With this we proposed the first global line

selection approach for pathlines, streaklines and masslines in 3D time-dependent flow,

and accelerated opacity optimization for general 3D line fields.

In the following chapter, we extend the steady opacity optimization (Chapter 3) in

another direction: We move from lines to surfaces.
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5
Chapter 5.

Opacity Optimization for Surfaces

In this chapter, we apply the concept of opacity optimization to surfaces, which was

described in the publication:

T. Günther, M. Schulze, J. Martinez Esturo, C. Rössl and H. Theisel

Opacity Optimization for Surfaces

Computer Graphics Forum (Proc. EuroVis) 33, 3 (2014), 11–20.

The idea of our method is similar as for lines, i.e., we adapt opacity to clear the view

on important parts in the data. Here, the problem is even more challenging, because

surface partition, opacity interpolation and the computation of the energy terms are

not straightforward. In contrast to the line approaches, our surface method additionally

respects visual cues of the rendering style, i.e., it controls the fading of silhouettes and

halos. Examples are shown in Fig. 5.1.

Figure 5.1.: Stream surfaces in a SQUARE CYLINDER flow and in a RAYLEIGH-BÉNARD

convection (left to right). Our method fades out unimportant surfaces to clear the view

on interesting structures, e.g., vortex cores. The visualizations are view-dependent,

frame-coherent, at interactive rates (13–50 fps), and with 3–15 opacity updates per

second.
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5.1. Problem Statement and Contribution

Surface rendering is a classic tool in computer graphics. The perception of surfaces,

however, is limited in the presence of occlusion to which the use of transparency is

a common approach. Though, for multiple surfaces or even a single complex one, it

might still be difficult to faithfully capture the data. See Fig. 5.2 for an example. In this

chapter, we aim for a surface visualization that clears the view on the relevant parts,

whereas relevance is again specified by the user.

The perception of surface order thereby resides in two key aspects: surface opacity

and presentation of edges. The standard opacity mappings are local and accentuate

grazing angles: angle-based transparency (2.28) and normal variation (2.29). When

surfaces have low curvature or their boundary is not seen at a grazing angle, they are

difficult to perceive. The more opaque a surface is, the better surfaces behind can be

classified as such. Thus, our first objective is to only use transparency where strictly

needed, which requires global occlusion information.

Carnecky et al. [CFM∗13] applied insights from cognition to produce silhouettes that

allow to deduce the order of surfaces. However, both the local transparency mapping

approaches, as well as the straightforward and smart silhouette renderings tend to

produce too many visual cues that occlude each other if surfaces are complex. Under

certain views edges might appear that confuse the viewer, see Fig. 5.3. Therefore, our

second object is to reduce the opacity of unimportant visual cues if they hide important

structures.

While the established visual cues, such as opacity at grazing angles and edge enhance-

ments, work well for many cases, they start to fail in complex scenarios. In this chapter,

we propose a filtering of visual cues by transparency that is not just based on local

Figure 5.2.: A common approach to address occlusion of surfaces is to render them

semi-transparently. When using multiple surfaces, or even a single complex one,

perception might still be limited due to occlusion and difficulties in perceiving layer

order.
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Figure 5.3.: Even for rather simple surfaces, silhouettes may be distracting if the object

of interest is hidden. Opacity optimization: off (left) / on (right).

measures, but respects the occlusion of structures and their associated user-defined

importance. Moreover, since we are only computing opacities, the method can be

combined with any favorable rendering style or technique. For our purposes, we ap-

plied our view-dependent opacities to the silhouette rendering method of Carnecky et

al. [CFM∗13].

5.2. Opacity Optimization for Surfaces

In Chapters 3 and 4 we solved the occlusion problem for line rendering. In this section,

we seize the formulation of opacity optimization as a global optimization problem,

and we reformulate it such that it can be used for the rendering of steady surfaces.

An overview of our method is shown in Fig. 5.4. Starting with a partition of the initial

surfaces 5.4a into patches 5.4b, we compute for each patch an opacity by minimizing

an energy that balances occlusion avoidance and presentation of visual cues. In

our examples, cues originate from the smart transparency technique of Carnecky

et al. [CFM∗13]. For rendering, the resulting opacities are interpolated across the

surface 5.4c.

5.2.1. Surface Partition

In a preprocessing step, we partition the given surfaces into patches. The preprocessing

tool was implemented by Maik Schulze and is based on the geodesics in heat [CWW13]

implementation of Janick Martinez Esturo. The partition of the surfaces corresponds

to the subdivision of lines into polyline segments as in Section 3.1, however, this step

is nontrivial for surfaces. In order to solve this problem, we apply a vertex clustering

based on geodesic distance. This can be interpreted as computing discrete Voronoi

cells on the manifold surfaces. Assume we are given a set of seed vertices on the

surface that act as centers of cells or equally as cluster representatives. We compute
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(a) Initial surfaces (b) Patches & centers (c) Result

Figure 5.4.: Overview: Starting with an initial set (a), we partition all surfaces into n

patches (b) and compute an optimal opacity, which is interpolated on the surface (c).

Here, we used n = 100 patches for illustration.

the approximate geodesic distance from each center to all other non-center vertices,

and we assign each of these vertices to the cell whose center is nearest. Fortunately,

the computation of highly accurate approximate geodesic distances can be done very

efficiently by reformulation as a discrete heat-flow problem [CWW13]: This requires

only the factorization of two sparse symmetric positive definite linear operators as

the most expensive step. After that the computation of all distances can be done by

back substitution. We use a farthest point seeding to place the centers. Starting from a

randomly chosen vertex, we iterate the following step: place a new center at a vertex

that has maximum geodesic distance to all existing centers. The iteration stops if the

partition is fine enough, i.e., the cell size is below a threshold or a certain number of

cells is reached.

The partition based on geodesic distance is reasonable as it tends to produce compact,

“convex” cells with a good ratio of circumference to area. We observe that the partition

by greedy farthest point seeding is, even though it is not perfectly regular, good enough

for the purpose. This means that we can avoid global patch rearrangement, e.g., by a

Lloyd relaxation [Llo82], which has a slow convergence.

5.2.2. Averaging and Interpolation

Given is a set of surface meshes with vertices V . The partition of the surfaces is given

as a map C : V → C where C ⊂ V denotes the cell centers, which in turn represent

patches. We use the preimage C−1(i) = {` ∈ V |C(`) = i} to describe the set of all

vertices in a cell. In the remainder of this section, we use indices i, j for centers and `

for general vertices. For the subsequent steps, we require operators for averaging and

interpolation of values.
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The first one is straightforward. Given some quantity x that is defined per vertex

(denoted by x`), we define

avgx(i) := |C−1(i)|−1
∑

`∈C−1(i)

x` ,

where | · | denotes the cardinality of a set.

By interpolation we refer to computing new values at arbitrary vertices from values

given at centers. This is a bivariate scattered data interpolation problem with samples

distributed on a manifold. Finding a “high quality”, smooth interpolating function

is a nontrivial problem that is possibly computationally expensive, e.g., requires the

solution of a linear system. For our application, we require first of all a highly efficient

interpolation scheme. Thus, we locally apply Shepard’s method (see, e.g., [HL93]),

which is a kind of inverse distance weighting. Distances dg(`, i) from vertex ` to center

i are the geodesic distances (see previous section). Given any vertex ` ∈ V we define

Nk(`) ⊆ C as its k nearest centers w.r.t. dg. To evaluate a quantity x we use the subset

{xi | i ∈ Nk(`)} of the values given at centers to define

interpx(`, k) :=

∑
i∈Nk(`)wi xi∑
i∈Nk(`)wi

with wi = dg(`, i)
−2 .

with interpx(i, k) = xi for centers i ∈ C. The function interpx(`, k) provides interpola-

tion of values at centers with constant precision but without any theoretical guarantees

on smoothness and continuity when evaluated, e.g., for adjacent vertices. This is

sufficient for our purpose, even though it is not a high quality interpolation. The

main advantage is that this simple scheme can be evaluated efficiently. Its overall

smoothness can, to some extent, be steered by the exponent for the inverse distance;

we found that weights d−2
g provided best results. Here we use k = 3, which is small

for typical uses of Shepard’s method. We do this because first, we found that in our

setting the quality of interpolation is still good enough. Fig. 5.5 shows the quality

of an interpolation of mean curvature that was averaged at centers for partitions of

decreasing number of patches n and k = 3. Second, this allows to store the indices of

nearest centers simply as a 3-vector, i.e.,N3(·) is a coordinate look-up, which enables

efficient interpolation on the GPU. We precompute nearest centers and interpolation

weights once in a preprocess.

5.2.3. Optimization

Our surface opacity optimization is based on opacity optimization for 3D steady line

fields, which is described in Section 3.1. The main differences consist in the use

of surface patches instead of polyline segments and a modification of the energy
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per vertex n = 2000 n = 1000 n = 400

Figure 5.5.: Mean curvature is estimated per vertex, then averaged per patch and

interpolated for n patches.

functions. In particular, the coefficients gi, hij and aij are computed differently. Note

that all sums in the energy function now iterate over patches or their centers i, j ∈ C,

respectively. We abstain from a formal redefinition.

Change of Energy. We compute opacities for discrete elements. In the surface case,

these are patches that result from partitioning. All quantities are measured on patches:

patch importance gi is an average of the importance values prescribed per vertex, for

which choices are discussed in Section 5.2.4. For all examples, we use gi = avgH(i),

where H is the mean curvature estimated at every vertex. The occlusion degree hij
is determined from rasterization on fragment level, which is detailed below in Sec-

tion 5.2.5. We use a different notion of adjacency than for lines: The coefficients aij > 0

that contribute to the smoothness term are now no more either 0 or 1 but continuous

values that reflect geodesic distance. Thereby, centers closer to each other receive

higher penalty if their opacity differs. We define for centers i, j ∈ C

aij :=
dg(i, j)

−2∑
k′∈Nk+1(i)\{i} dg(i, k

′)−2
,

with the convention that aij = 0 whenever j is not one of the k + 1 nearest neighbors

of i, which can be interpreted as the denominator approaching infinity. Note that

i ∈ Nk+1(i), since i is the closest center to itself. Thus, in total k neighboring centers

are looked up.

Opacity values αi, with i ∈ {1, . . . , n}, are computed for each patch as minimizer of an
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energy E that formalizes desired properties:

E =
p

2

n∑
i=1

(αi − t)2 (5.1)

+
q

2

n∑
i=1

n∑
j=1

(
αi (1− gi)λ hij gj

)2
(5.2)

+
r

2

n∑
i=1

n∑
j=1

(
αi (1− gi)λ hji gj

)2
(5.3)

+
s

2

n∑
i=1

n∑
j=1

aij(αi − αj)2 . (5.4)

Compared to the original opacity optimization, we replaced the regularization by the

boxed term, which includes a user-specified target opacity 0 < t ≤ 1. Thereby, we

can prescribe a desired opacity, which allows to render generally transparent surfaces.

The modified energy is still frame-coherent and leads to a least-squares problem with

unknown opacity values bounded in [0, 1] (0 for transparent and 1 for opaque). We use

the same algorithm for the numerical solution as in Chapter 3.

Evaluation of Opacity. Finally, the computed optimal opacity values ai at centers

i ∈ C are interpolated within patches such that every vertex ` ∈ V is assigned an opacity

α` = interpα(`, k) .

At rasterization, opacity is linearly interpolated in triangles, resulting in a fragment

opacity. As silhouettes are key to understand surface ordering, we apply a transfer

function to the opacity of silhouette fragments to fade them out slower

α← 1− (1− α)η (5.5)

Increasing η keeps silhouettes longer, see later Section 5.3.2.

5.2.4. Importance Function

The importance gi plays an important role, as it is the designated tool to characterize

the regions and parts of the data worth to look at. In fact, the success of our method

depends on its correlation to relevant structures. It might originate in local geometric

information, might be sampled from scalar fields, or might be global information such

as distance to a an object (such as a tumor in medical data). Consequentially, impor-

tance is strongly application-dependent and driven by domain knowledge. However,
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vertex

center

fragment

Figure 5.6.: Occlusion degrees hij are obtained by rasterization: The contribution of

centers (•) to the rasterized fragment’s (�) opacity is reconstructed. For each vertex

(•) of the rasterized triangle the k = 3 closest centers are considered. (For illustration,

their distances are shortened.) The center-to-fragment contribution is the product of

interpolation weight (- -) and barycentric weight (—).

simple geometric measures exist that work well in many cases, e.g., in all examples, we

used mean curvature. Note that for gi = 1 surface parts do not vanish since Eqs. (5.2)

and (5.3) evaluate to zero.

5.2.5. Computing Occlusion Degree on Fragment Level

The coefficients hij in the energy term measure the occlusion that patch i causes

by occluding another patch j. Similarly to Chapter 3, we determine the occlusion

after rasterization on fragment level, see Fig. 5.6. For each fragment we look up the

centers and interpolation weights used for opacity interpolation. These are the k = 3

nearest centers for each vertex of the rasterized triangle and thus 3k centers in total per

fragment (see Fig. 5.6). We maintain for every pixel a sorted linked list of the rasterized

fragments [YHGT10], from which we obtain all “occluder-occludee” fragment pairs.

Then we identify for every fragment pair the 3k centers F ⊂ C of the fragment in front

as well as for every fragment behind the respective centers B ⊂ C. Every fragment pair

introduces a small amount of occlusion for the 3k× 3k front-back center pairs i, j, with

i ∈ F and j ∈ B. The amount of occlusion is the product of the contribution of i to

the occluder fragment and of j to the occluded fragment’s opacity. For deducing the

contribution of a center to a fragment, we store for each fragment the primitive ID

(generated by the graphics runtime) and the barycentric coordinate of the fragment

in the rasterized triangle. Based on the primitive ID, we look up contributing vertices,

their k nearest centers and the interpolation weights. These weights are w.r.t. the

triangle vertices, and they are multiplied by the barycentric weights to get per-fragment

occlusion degrees. The total occlusion degree hij is determined as the sum of all

contributions to fragments. We do not penalize self-occlusion of patches to prevent

fading at grazing angles, i.e., we set hii = 0.
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5.3. Usage and Parameters

This section elaborates on the choice of surfaces for visualizing flow data, the selection

of parameters and their effect, as well as implementation details on rendering and

solving.

5.3.1. Input Surface Set

Surface opacity optimization only reveals structures that are contained in the set,

thus the set of input surfaces should be selected carefully. For the examples in this

chapter, we used Hultquist’s algorithm [Hul92] for extraction and placed the seed curve

manually. All stream surfaces that were used in this chapter were provided by Maik

Schulze. Dragging flow-aligning surfaces [MSRT13b] or using automatic placement

methods [ELM∗12, MSRT13a, SMG∗14] as discussed earlier in Section 2.3.3 are possible

alternatives.

5.3.2. Parameter Selection

We inherit the parameters of the original opacity optimization, which was introduced

in Chapter 3. We discuss these parameters in the following. First, the total number

of surface patches n is chosen. A higher number of patches leads to a more local

adaptation of the surface opacity and thus preserves details, however, at the cost

of higher solving timings. Fig. 5.7 depicts different choices for n. Most often, we

used n = 400, cf. Table 5.2. The effect of parameters in the energy function E (see

Section 5.2.3) are shown in Fig. 5.8: The weight q of the occlusion term (5.2) adjusts

the overall opacity in the image. In Fig. 5.8 (left), a surface layer is removed to clear

the view on the wake turbulences of a DELTA WING. The weight r of term (5.3) steers

the removal of background clutter. In our example, the laminar stream surfaces in

the background are removed to increase the visibility of the wake turbulence behind

a WALL-MOUNTED CYLINDER. The weight s of the smoothness term (5.4) is used to

enforce continuity of the surface opacity, as shown for the STATIC MIXER data set. If

not mentioned otherwise, we set s = 50. Finally, the emphasis exponent λ in (5.2) and

(5.3) stresses important structures: Fig. 5.8 (right) depicts the aerodynamics around a

HELICOPTER in ground effect, studied for brownout conditions. Of particular interest is

the green vortex in front of the helicopter, as it entrains sand particles that hinder the

pilot’s view.

In Section 5.2.3, we introduced two additional parameters both with a recommended

default value. First, the target opacity t in (5.1) is used to let surfaces strive for being
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almost, but not completely, opaque. A high value proved useful, as it supports the

1− (1− α)η

α

Figure 5.10.: Silhouette opacity

transfer function plot for η = 10.

perception of layer order. We recommend t = 0.9,

which is used in all examples. Second, silhouette

opacity is steered by parameter η, introduced in

(5.5), to control how fast silhouettes fade out. The

effect is demonstrated in Fig. 5.9. As edges are

helpful to hint how nearly invisible surfaces pass

in front of important structures, a high value is

recommended. In all our examples, η = 10 is used,

as shown in Fig. 5.10.

n = 400,

solve: 18ms

n = 1000,

solve: 44ms

n = 2000,

solve: 105ms

Figure 5.7.: Solve rates for varying number of patches n. Using a higher number of

patches preserves details, though n = 400 already proved useful.
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Occlusion term (5.2),

top: q = 0,

bottom: q = 7.8

Background clutter

term (5.3),

top: r = 0,

bottom: r = 3

Smoothness

term (5.4),

top: s = 0,

bottom: s = 50

Emphasis exponent

λ (5.2)&(5.3),

top: λ = 1,

bottom: λ = 10

Figure 5.8.: Study of the parameters inherited from opacity optimization in Chapter 3

Figure 5.9.: Silhouette edges depend on the surface opacity, and can be longer con-

served by an η-exponent. Left to right: η = 1 (neutral), η = 10 (recommended), η = 50.

5.4. Details on Rendering and Solving

Similar to the hierarchical version from Chapter 4, we execute rendering and solv-

ing in different threads to enable an interactive response. We use fragment linked

lists[YHGT10] for both the rendering of transparent surfaces (cf. Maule et al. [MCTB11])

and the extraction of occlusion degrees. The latter is done in the solver thread on the

CPU, thus fragment linked lists are copied to RAM. We construct two separate lists,

one for rendering and one at quarter resolution for computing occlusion degrees. The

solver thread assembles the system matrix and right-hand-side and solves the system

as described in Section 5.2.3. The rendering thread repeatedly executes two steps:
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Figure 5.11.: Black silhouette gradients (J–) and white halo gradients (–I) are injected

at the occluder fragment (�) and next (�) to the occluded fragment (�), see [CFM∗13]

for details. We modulate their intensity (which is then diffused) by the opacity of the

occluder fragment (�).

1 Render surfaces at low resolution (for computing hij)

a) Create and sort fragment linked lists

b) Stream lists to RAM and pass to solver thread

2 Render surfaces on full resolution

a) Upload new opacities (if solver has new solution)

b) Create and sort fragment linked lists

c) Establish adjacency pointers (for diffusion)

d) Inject black silhouette and white halo intensities

e) Diffuse silhouettes and halos

f) Blend fragment lists front-to-back

g) Render shadow on ground plane using Fourier opacity mapping [JB10]

Opacity optimization and the silhouette extraction by Carnecky et al. [CFM∗13] (steps

2c-2e) are easily combined as they are both based on fragment linked lists. The data

stored per fragment is expanded by pointers to adjacent fragments and intensity scalars

for the black borders and white halos, which are both diffused, here in five iterations of

(2e).

As a visual hint for the layer order, Carnecky et al. inject and diffuse white and black

color at silhouettes, see Fig. 5.11. We modulate the injected intensity by the opacity of

the fragment that caused the silhouette. For the white halos, we require in addition to

the adjacent fragments access to the predecessor of a fragment to lookup the occluder’s

opacity. Thus, we create doubly-linked lists in (2b).
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5.5. Results

Fig. 5.12 compares our global method with established local approaches. These are

(from left to right): rendering with constant opacity: angle-based transparency and nor-

mal variation [HGH∗10] (see (2.28) and (2.29), resp.), and smart transparency [CFM∗13],

i.e., constant opacity adapted to the number of layers with silhouettes and halos to

visualize surface layer order. The last column depicts results of our surface opacity

optimization, for which we used mean curvature as importance. The first row shows

stream surfaces in a STATIC MIXER. Here, the central vortex core is of interest (blue

surface). Opacity optimization removes distracting surface parts, e.g., the blue part

pointed out in Fig. 5.3, as well as the orange and green surface parts in front of and

behind the core. This yields a clearer view of the interesting region.

The second row depicts the RAYLEIGH-BÉNARD CONVECTION from Section 3.4. Among

the local methods, especially normal variation (2.29) excels in outlining contours of

curved surfaces. Due to its low opacity the perception of the layer order is difficult. This

is better preserved by angle-based transparency (2.28) and by [CFM∗13], though at the

cost of occlusions. Opacity optimization removes the occlusions and clears the view

on the four convection cells. While simple importance measures such as curvature

often do a good job, here, the part of the blue surface that connects the cells is not well

preserved, as it occludes the more important red surface behind.

The third row shows the synthetic TORNADO data set, previously used in Section 3.4.

Here, the vortex core is of interest, which is hidden behind a number of space-filling

surfaces that represent the outer flow region. As seen in the center, normal varia-

tion (2.29) cannot reproduce planar surfaces faithfully. Surface opacity optimization

performed best in accentuating the vortex core and maintaining context by removal of

surface parts in front and behind the vortex core—the latter producing halos.

In the fourth row, the RAYLEIGH-BÉNARD CONVECTION is viewed from inside—a sce-

nario that is useful for interactive exploration. The orange surface in the foreground

hinders the view on the cells, depicted in blue and green. The removal of unimportant

occluding surface parts is not addressed by local approaches. Therefore, our global

surface opacity optimization performed best and removed the occlusions. We see our

method best suited for interactive exploration scenarios with free camera navigation.

The fifth row illustrates blood flow in an ANEURYSM. The flow in the aneurysm is slow

and results in highly folded and complex surfaces. For such data, all local approaches

extract a high number of visual cues. Both, angle-based transparency (2.28) and normal

variation (2.29), show important cues but cannot hint layer ordering. Carnecky et al.’s

method [CFM∗13] produces complex silhouettes that are hard to comprehend of due

to their sheer number. Our method removes visual cues to reveal the twisting surfaces
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(a) Stream surfaces in a mixer (q = 8.5, r = 14.3, λ = 25).

(b) Stream surfaces in a Rayleigh-Bénard convection (q = 9.0, r = 5.0, λ = 15).

(c) Stream surfaces in a tornado (q = 33.8, r = 35.1, s = 20, λ = 15).

(d) Stream surfaces in a Rayleigh-Bénard convection, viewed from inside (q = 1.0, r = 1.1, λ = 12).

(e) Stream surfaces in a blood vessel with an aneurysm (q = 4, r = 6, s = 5, λ = 11).

(f) A single highly folded stream surface approaching a delta wing (q = 7.85, r = 4.98, λ = 14).

Figure 5.12.: Comparison with standard techniques, from left to right: constant

transparency, angle-based [HGH∗10], normal variation [HGH∗10], smart trans-

parency [CFM∗13], and our novel surface opacity optimization.
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in the inflow (orange) and the vortex in the aneurysm (blue).

The last row shows a single stream surface approaching a DELTA WING, which is pro-

vided by Markus Rütten. It starts with a laminar flow, which is problematic for normal

variation (2.29), and then begins to fold as wake turbulences detach. Even for simple

surfaces, such as these, surface opacity optimization adds additional benefit by remov-

ing the topmost layer, clearing the view on the vortex cores. The DELTA WING is also

shown in the first column of Fig. 5.8.

Fig. 5.1 (left) shows stream surfaces in the flow around a SQUARE CYLINDER. This flow

was used and described earlier in Section 4.4.

The second column of Fig. 5.8 displays stream surfaces in the flow around a WALL-

MOUNTED CYLINDER, which was described in Section 3.3.2. We show that distracting,

laminar layers in the background are effectively removed by surface opacity optimiza-

tion, leading to more visual clarity.

The last column of Fig. 5.8 shows a HELICOPTER in slow forward flight close to the

ground (cf. Section 3.3.2). This simulation by Kutz et al. [KKKK12] was used to study

brownout, i.e., the entrainment of sand particles by aerodynamic uplift and impacting

particles. Brownout clouds hinder the pilot’s view and are mainly introduced by a

vortex in front of the helicopter that is shown by the green surface.

It should be noted that in the comparison in Fig. 5.12 our technique has an edge over

the others, as it includes an additional importance value that none of the standard

techniques is making use of. Given that our technique uses more information the

comparison could be considered not perfectly fair. Thus, it might occur to additionally

weight the opacity of the standard techniques by the same importance value that we

used in our technique. We present such experiments, once for the Rayleigh-Bénard

convection in Fig. 5.13, in which important regions are spread throughout the domain,

and again for the tornado data set in Fig. 5.14, in which the important region is small

and centered in the domain. It can be seen that the modification of the standard

techniques, i.e., the weighting of the opacity by the importance, results in loss of

information in the image. This is because it makes unimportant surface parts always

invisible. In contrast, our method preserves unimportant surfaces and only intervenes

if they start to occlude important structures. With this, more context is preserved. In

fact, it is this intelligent handling of occlusions and importance, which goes beyond

mere weighting or blending, that is the key to success and the central contribution of

our method.
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(a) Comparison with standard techniques as proposed in the literature (same as in Fig. 5.12b).

(b) Comparison with standard techniques with an additional weighting of the opacity by importance.

Figure 5.13.: Rayleigh-Bénard convection, displayed using different techniques. From

left to right: constant transparency, angle-based transparency, normal variation, smart

transparency and our opacity optimization.

(a) Comparison with standard techniques as proposed in the literature (same as in Fig. 5.12c).

(b) Comparison with standard techniques with an additional weighting of the opacity by importance.

Figure 5.14.: Tornado, displayed using different techniques. From left to right: constant

transparency, angle-based transparency, normal variation, smart transparency and

our opacity optimization.
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5.5.1. Performance

We measured the performance of our system with an Intel Core i7-2600K CPU with 3.4

GHz, 16 GB RAM and Nvidia GeForce GTX 560 Ti GPU with 2 GB VRAM. The parameters

(q, r, s, λ) have again been adapted to match the results obtained with the original

implementation (see Section 3.2.4), and the solver and assembly timings have been

updated. All images were rendered with Direct3D at a resolution of 1000× 1000 pixels.

Table 5.1 gives an overview of the test case configurations, and provides preprocessing

timings (surface partition). Table 5.2 summarizes the timings for rendering and solving.

The column labels refer to algorithm steps in Section 5.4. The shadow map used for

Fourier opacity mapping [JB10] in step 2f has a resolution of 512 × 512 pixels and is

filtered by a separated 7× 7 Gaussian kernel.

The bottleneck of the system is the time required for streaming the fragment linked lists

to RAM. This is because streaming is two frames deferred after enqueuing draw calls in

the command buffer. Therefore, the streaming time depends on the rendering time

per frame. The solving time was in our examples generally lower than the streaming

time. Since both run asynchronously, we could have used more patches without loss

of performance. The key to faster opacity updates therefore resides in optimizing the

rendering. Fig. 5.15 compares the performance of enhanced silhouettes [CFM∗13] with

simple silhouettes, obtained by detecting depth discontinuities in image space. The

latter is twice as fast in both rendering and solving, though at lower visual quality. One

way to improve the scalability of the system is to use the simple silhouette detection or

fewer diffusion iterations in [CFM∗13] during interactive navigation and to switch to a

high quality parameter set whenever the camera stops moving.

Table 5.1.: Configuration and partition time (in secs.) of our test scenes.

Data set Figs. Partition time Triangles Patches n

Aneurysm 5.12e 271 s 454 k 400

Bénard (in) 5.12d 97 s 246 k 400

Bénard (out) 5.12b 97 s 246 k 400

Delta Wing 5.12f 182 s 580 k 200

Helicopter 5.8 260 s 484 k 400

Square Cyl. 5.1 48 s 155 k 400

Static Mixer 5.12a 4.7 s 33 k 200

Tornado 5.12c 220 s 438 k 400

Wall. Cyl. 5.8 62 s 177 k 400
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Table 5.2.: Performance analysis with time in milliseconds. Column labels refer to

algorithm steps, see Section 5.4. The low resolution and high resolution pass are

executed in the rendering thread. The solver thread comprises assembling of the

system matrix (3a) and solving (3b). The asynchronous streaming of fragment linked

lists is the bottleneck (bold).

Low Res. Pass Full Resolution Pass Solver

Data set 1a 1b 2a 2b 2c–e 2f 2g 3a 3b

Aneurysm 2.24 206.6 0.40 9.53 49.40 1.94 5.03 7.15 5.31

Bénard (in) 1.53 198.7 0.26 9.81 48.82 1.95 2.08 4.15 3.37

Bénard (out) 1.36 168.2 0.26 6.61 43.80 1.49 2.08 4.48 3.41

Delta Wing 2.53 91.2 0.48 7.88 16.19 0.87 6.37 3.34 2.74

Helicopter 2.27 117.7 0.42 7.29 22.89 1.02 5.33 4.97 5.02

Square Cyl. 0.69 53.9 0.20 2.85 10.94 0.60 2.33 3.33 3.23

Static Mixer 0.21 98.8 0.12 4.30 24.77 0.99 0.35 3.96 2.80

Tornado 2.37 194.7 0.40 9.25 45.30 2.31 4.82 5.83 3.49

Wall. Cyl. 0.92 115.5 0.22 4.83 25.46 1.15 3.23 6.12 5.37

Figure 5.15.: The performance of the silhouette rendering has great impact on the

frames and solves per second. Left: enhanced silhouettes [CFM∗13] (12.8 fps, 3.8 sol/s),

right: silhouettes by depth discontinuity (25.8 fps, 7.5 sol/s).

In summary, our rendering achieves interactive rates at about 13–50 frames per second,

depending on the data set and the view. Due to the streaming bottleneck, opacity

solutions are updated only 3–15 times per second. This latency is hidden similarly as

in the original method by slowly fading toward the latest opacity solution.
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5.5.2. Discussion and Limitations

Surface opacity optimization removes unimportant surface parts that occlude impor-

tant scene elements. This requires the presence of visual clutter in the first place, which

is only the case if both unimportant and important regions are present in the scene.

If too many surfaces of likewise high importance occlude each other, it is impossible

to decide, which surface should be shown. Similarly, surfaces with equally low im-

portance, such as parallel planar surfaces, have no distinctive feature to accentuate.

For such scenes, users are required to supply the importance terms with additional

information to decide upon relevance. Besides, important structures might occlude

each other, thus a notification of such an event is a possible step for future work. Fur-

thermore, the results depend on the initial surface set, as opacity optimization only

reveals information contained in the set.

In this chapter, we followed a patch-based approach that uses a fixed object-space

subdivision. A fragment-based approach is to minimize our energy per pixel and to

then smooth the resulting opacities in object space along the surfaces. The result would

be qualitatively similar, but the runtime of the fragment-based algorithm is determined

by the screen resolution, which is not desirable. Due to the high number of pixels (for

each a quadratic programming problem is solved), the algorithm is very likely to be

slower than solving once for n = 400 unknowns. Moreover, an object-space approach

allows to update the solutions every few frames, whereas a fragment-based approach

must either update every frame or find a correspondence to the new view, which is

not easy and likely to be achieved by an intermediate mapping to the surface, i.e.,

the object space. Of course, the performance difference alleviates for an aggregation

of pixels to tiles, which is not quite straightforward due to frame coherence issues.

Also, an object-space subdivision is view-independent and can thus be computed

once in a preprocessing step, which is a strong performance benefit. Though, there

is an advantage to the view-dependent subdivision of a screen-space approach, i.e.,

only visible scene content is considered. However, the favorable independence from

the screen resolution suggests an object-space subdivision approach into patches,

such as ours, followed by a view-dependent grouping of patches, in the spirit of our

hierarchical approach from Chapter 4. Then, frame coherence is easier to achieve due

to the fix topology of the subdivision.

5.6. Summary

In this chapter, we addressed the occlusion problem for surfaces and developed the first

global approach that determines a surface opacity that balances occlusion avoidance
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versus importance-driven shape representation. For this, we fade out surface parts

in a view-dependent and frame-coherent way so that important structures are no

longer occluded. By decoupling rendering and solving, we obtain interactive rates. Our

method targets specifically scenes with multiple surfaces or highly complex scenes.

For such, improvements over existing local methods are significant.

Future work includes the extension to animated surfaces and accelerated solving by

partitioning the surfaces in a view-dependent way in the spirit of our hierarchical

method for line fields in Chapter 4. For the latter, the intermediate farthest point sets

of the subdivision could be used to build a hierarchy of patches. Choosing the patches

to compute opacities for then corresponds to finding a view-dependent cut based on

the patch size on the viewport. As for animations, the surface subdivision has to be

frame coherent so that opacities can be propagated to the surface patches of the next

frame. Again, inverse distance-weighted k-nearest neighbor interpolation would be a

first step. Another challenge is the performance that needs to be improved to deliver

opacity updates fast enough for animated surfaces.

Aside from this, opacity optimization could also be extended to point sets, since

geodesics can be computed for them, too, cf. Crane et al. [CWW13]. In the current

state, surface opacity optimization can readily be applied to other prominent surface

types, such as isosurfaces. The study of our method in other application contexts is an

avenue for future work.
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6
Chapter 6.

Overview on FTLE and Vortex

Concepts

The second part of this thesis focuses on the rendering of finite-time Lyapunov expo-

nent fields without bias (Chapter 7) and on novel rotation invariant vortex concepts

(Chapter 8). In this chapter, we start with an introduction of finite-time Lyapunov

exponents (FTLE) for the use in unsteady flow visualization. Afterwards, using the

concept of domain deformation, we formally introduce Galilean invariance and objec-

tivity. Given this background, we motivate the problems to be solved in the subsequent

chapters. Finally, we cover related work, i.e., we explain the relevant terminology of

consistent volume rendering and we explain the most common vortex concepts. This

chapter is in part compiled from our previous work [GST16, GT16a, GKT16].

6.1. Finite-Time Lyapunov Exponents

In flow visualization, finite-time Lyapunov exponent (FTLE) fields became one of the

most popular tools to analyze coherent structures in unsteady vector fields [PPF∗11,

SLM05]. They describe how nearby-released particles separate over time, which allows

to approximate regions of coherent behavior and barriers, i.e., Lagrangian coherent

structures (LCS) or material structures, that particles will never cross [HY00, Hal01].

LCS have been shown to be valuable in a wide range of application scenarios such as

predicting ocean pollutant transport due to oil mishaps, studying spread of algae in

water currents, or to observe the feeding of jellyfish (see [Hal15] for an introduction).

Finite-time Lyapunov exponents characterize the separation behavior of particles in

time-dependent fluid flows. In such flows, the flow map φτt (x) = φ(x, t, τ) maps a

particle seeded at (x, t) to its destination after pathline integration for duration τ (cf.
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Section 2.1.1). The (spatial) gradient of the flow map∇φ(x, t, τ) = ∂
∂xφ(x, t, τ) describes

the behavior of particles released close to each other. We are interested in their separa-

tion behavior, which is characterized by the right Cauchy-Green deformation tensor

∇T∇. Its largest real, positive eigenvalue λmax denotes the (squared) largest magni-

tude of separation. Accounting for the exponential growth and normalizing by the

integration duration τ yields the finite-time Lyapunov exponent (FTLE) [HY00, Hal01]:

FTLE(x, t, τ) =
1

|τ |
ln
√
λmax(∇T∇), (6.1)

Commonly, ridges of FTLE fields are often used as indicators for Lagrangian coher-

ent structures (LCS) [SLM05]. In the literature, a variety of alternative LCS extraction

techniques can be found (see [OHH15] for an overview) that typically exploit differ-

ential properties of the flow map and/or Lagrangian properties of the flow around

tracer trajectories. For FTLE, the probably most wide-spread implementation (and

the one we used) is to seed particles close to one another and approximate the flow

map gradient by taking finite differences of their reached destinations, as in Haller and

Yuan [HY00, Hal01]. The flow visualization community proposed alternative methods,

such as localized FTLE [KPH∗09], streak surface-based extraction [ÜSE13] and timeline

tracking [KER∗14]. A benchmark comparison of further computation methods was

compiled by Kuhn et al. [KRWT12].

FTLE computations can be accelerated, e.g., by adaptive refinement of the flow

map by Catmull-Rom interpolation [GGTH07] by the observation of filtered height

ridges [SP07] or around automatically detected geometric structures [BT13]. Brun-

ton and Rowley [BR10] reduced the number of redundant particle integrations by

composition of intermediate flow maps. Nouanesengsy et al. [NLL∗12] investigated a

new scheduling strategy to distribute the particle tracing work across a large number

of processors, minimizing idle times. Further, higher order flow map approxima-

tion [ÜSK∗12] and timeline refinement [KER∗14] schemes have been proposed. There

exist several integral curve approximation schemes, such as hierarchical lines [HSW11],

interpolation [COJ15, AOGJ15] and edge maps [BJB∗12], which can be used to speed

up any Lagrangian analysis technique. Generally, this requires a compromise between

memory consumption, interactive response (speed) and accuracy (quality). An inter-

active 3D FTLE visualization was developed by Barakat et al. [BGT12], who interleave a

computation and rendering phase to view-dependently build an adaptively sampled

hierarchical representation of the FTLE field. Similar to our method, it produces more

accurate FTLE approximations within multiple rendering passes. The accuracy of

their method, however, is bound by memory and as it is based on ray marching, it

cannot deliver a consistent solution. In this thesis, we strive for a consistent method

that operates on a small and fixed memory bound, and avoids discretization onto

(adaptive) grids and ray marching errors.
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6.2. Domain Deformation, Galilean Invariance and Objectivity

Much of the argumentation in the second part of this thesis will be based on the

concept of domain deformation. In fact, we use it for two purposes. First, it is used to

formally define the concept of Galilean invariance and objectivity. Later in Chapter 8,

we use it again to define rotation invariance and for finding practical computations of

rotation invariant vortex measures.

6.2.1. Domain Deformation

Given the vector field u(x, t) in the spatial domain D and the temporal domain T , we

consider a domain deformation as a differentiable map

g : D × T → D (6.2)

which is a diffeomorphism in its reduction to any t ∈ T . This means that there is a

unique inverse map h : D × T → D with

h(g(x, t), t) = g(h(x, t), t) = x (6.3)

for any (x, t) ∈ D×T . Based on g, we define a new vector field in the domain g(D) that

transforms pathlines: for every pathline (q(t), t) in u, the transformed line (g(q(t), t), t)

is a pathline in w. This property uniquely defines w as [KRWT12]

w(x, t) = (∇h(x, t))−1(u(h(x, t), t)− ht(x, t)) (6.4)

where∇h is the spatial gradient of h and ht is its derivative with respect to time. We

call w the domain transformed vector field inducted by the domain transformation g.

Fig. 6.1 illustrates this. Eq. (6.4) can be inverted to transform w back to u:

u(x, t) = (∇g(x, t))−1(w(g(x, t), t)− gt(x, t)) (6.5)

u(x, t)

D

w(x, t)

g(D)

g

h

Figure 6.1.: Creating a new vector field w by a domain transformation g.
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6.2.2. Galilean Invariance

A vortex measure is Galilean invariant if it is invariant under an equal-speed translation

of the underlying coordinate system. By using the concept of domain deformation we

can formalize this by

Definition 1 A vortex measure is Galilean invariant if for any transformation

g(x, t) = x + c0 + t c (6.6)

where c0 is a constant point and c is a constant vector, the following holds: the vortex

measure classifies a point (x, t) to be on the vortex in u iff the vortex measure classifies

the point (g(x, t), t) to be on a vortex in the domain transformed field w.

Common local Galilean invariant measures are Jacobian J and acceleration a. Any

measure that contains only J,a, their derivatives or a Lagrangian aggregation of them

over time is Galilean invariant as well. Examples are cores of swirling particle motion

[WSTH07] (also known as pathline cores), λ2 [JH95], Okubo-Weiss [Oku70, Wei91],

FTLE [Hal01] and FSLE [BLRV01]. For n = 2 we also have the following Galilean

invariant conditions that are all equivalent in areas of non-vanishing Jacobian:

a = 0 ⇔ u− f = 0 ⇔ f ‖ p ⇔ J p ‖ p. (6.7)

The equivalence of the four expressions1 in (6.7) follows directly from Eq. (2.3), J p =(
a

0

)
and p =

(
u

1

)
.

As a side note, it means that for n = 2 the cores of swirling particle motion [WSTH07]

and vortices by vanishing acceleration [KRHH11, KHNH11] are identical. For n = 3

there are the following equivalent conditions for a non-singular Jacobian [WSTH07]:

p, f ,

(
e

0

)
are coplanar ⇔ e ‖ u− f ⇔ J(u− f) ‖ u− f , (6.8)

all of them giving Galilean invariant vortices.

1 Pathlines in 2D unsteady flow can be equivalently computed as streamlines of the space-time flow

p. Thus, pathline cores are streamline cores of p, and thus Sujudi-Haimes J p ‖ p can be applied for

their extraction (cf. Section 6.4.2).

In 2D space-time, we have three eigenvectors. In case of swirling motion, two eigenvectors span

the swirling plane (complex-conjugate eigenvalues) and the remaining eigenvector (the feature flow

f ) has a real-valued eigenvalue (zero). According to the reduced velocity criterion, the flow must be

parallel to the eigenvector with real-valued eigenvalue: f ‖ p (cf. Section 6.4.2).

Further, it follows J p ‖ p⇔

(
a

0

)
‖

(
u

1

)
⇔

(
a

0

)
= γ

(
u

1

)
. With γ = 0,

(
a

0

)
=

(
0

0

)
⇔ a = 0.

From u− f = J−1 a in Eq. (2.3) follows u− f = 0⇔ a = 0.
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Generally, standard Sujudi-Haimes [SH95] is known to not be Galilean invariant. How-

ever, based on the insights from Eq. (6.7) and Eq. (6.8), we can make Sujudi-Haimes

applicable by a small change. For n = 2, we simply have to view the flow in space-time

p, and apply Sujudi-Haimes there [KSWE15], because this gives: J p ‖ p.

For n = 3, we have to subtract the right ambient flow, i.e., in first-order approximation

the feature flow field f , which describes how features are moving forward and apply

Sujudi-Haimes to u− f , which gives:

∇(u− f) · (u− f) ‖ u− f (6.9)

If vortices are subject to equal-speed translations, then f = const and thus∇f = 0. The

PV condition therefore reduces to J(u− f) ‖ u− f . Eq. 6.9 will play a role in Chapter 8.

6.2.3. Objectivity

Definition 2 A vortex measure is objective if it is invariant under any smooth transla-

tion and rotation of the reference system

g(x, t) = Q(t) x + c(t) (6.10)

where Q(t) is a time-dependent rotation matrix and c(t) is a time-dependent translation

vector. Then, the following holds: the vortex measure classifies a point (x, t) to be on the

vortex in u iff the vortex measure classifies the point (g(x, t), t) to be on a vortex in the

domain transformed field w.

The strain tensor S = 1
2(J + JT) is known to be objective. Any Lagrangian aggregation

of it or its derivatives is objective as well, as done in the Mz criterion in [Hal05].

6.3. Challenges with FTLE Rendering and Vortex Tracking

6.3.1. Systematic Bias in Finite-Time Lyapunov Exponent Renderings

The FTLE field is a Lagrangian measure, i.e., a scalar field that arises from integration in

a vector field and poses specific challenges with respect to the required computational

resources and analysis complexity. All integration-based scalar fields and Lagrangian

features have a key property in common: due to the integration, features are non-local

and are defined at sub-grid resolution compared to the resolution of the underlying

vector field. Since observable features (e.g., ridges) can become arbitrarily thin, the

discretization and sampling of these fields is a fundamental challenge. In 3D, these
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fields are typically precomputed on grids and are afterwards view-dependently ray

casted, which introduces both grid discretization errors and sampling errors during

ray marching. Further, even adaptive discretization [SP07, BGT12] can still be quite

memory intensive.

In Chapter 7, we aim for high accuracy renderings of integration-based scalar fields,

with focus on FTLE, by the use of Monte Carlo rendering techniques. Similar to [KPB12],

we adopt progressive volumetric radiance transfer simulations to obtain high quality,

aliasing-free renderings. In this work, however, we concentrate on renderings of La-

grangian measures. A scalable implementation therefore requires an acceleration data

structure that allows to quickly determine an upper bound for the integration-based

scalar value in a certain region. Since this cannot be decided a-priori due to sampling

problems, the technical novelty of this chapter is that we adapt the underlying ren-

dering method to progressively converge to the correct upper bounds. The remaining

technical aspects (free path sampling, transmittance estimator and acceleration data

structure) are applications of recent research from the offline rendering community.

Monte Carlo techniques start noisy and progressively converge, which typically re-

quires time. Our method is therefore not meant to replace recent interactive sys-

tems [BGT12], but is rather aiming at HQ renderings for marketing, and the generation

of exact ground truth data.

6.3.2. Vortex Tracking Beyond Equal-Speed Translations

In recent years, the visualization community contributed new definitions of vortex

concepts and efficient algorithms to their numerical computation. Several vortex

concepts are not invariant to any type of reference frame motion, which means that

they cannot correctly extract vortices that move. A common useful property of many

vortex definitions is Galilean invariance, i.e., the invariance of the vortex under an

equal-speed translation of the underlying coordinate system. This property guaran-

tees that a method successfully tracks vortices that perform equal-speed translations.

However, if vortices perform a different type of motion, these techniques fail as well.

In addition, there are a few approaches demanding the much stronger property of

objectivity of a vortex, i.e., invariance under any smooth translation and rotation of the

coordinate system. Such an invariance is rather restricting and there is only a rather

small set of derived differential vector field quantities that can be used to formulate

vortex criteria (e.g., the symmetric part of the Jacobian). There is evidence [Sah09] that

objective measures are not descriptive enough to reveal known vortex patterns, e.g.,

the von Kármán vortex street in the wake of a cylinder.

Thus, we look for vortex concepts that are invariant to another relevant template of

112



6.4. Related Work

vortex movement. In Chapter 8, we propose a new class of vortex definitions for flows

that are induced by rotating mechanical parts, such as stirring devices, hydrocyclones,

centrifugal pumps, or ventilators. Instead of a Galilean invariance, we enforce a rota-

tion invariance, i.e., the invariance of a vortex under a uniform-speed rotation of the

underlying coordinate system around a fixed axis.

6.4. Related Work

In the following, we explain the notion of bias and consistency in the context of Monte

Carlo rendering and review recent work in consistent volume rendering. To pave the

way for the subsequent chapter on rotation invariant vortices, we summarize related

work on vortex extraction afterwards.

6.4.1. Consistent Volume Rendering

In rendering, Monte Carlo sampling methods are deeply established as a practical

and general approach to calculate light transport [Vea98]. Generally, a Monte Carlo

estimator computes the average of a sequence ofnmeasurementsMi with i ∈ {1, ..., n}
that is supposed to match some unknown quantity Q. Thereby, each measurement

has an error Mi − Q. If the expected value of this error is zero, the method is called

unbiased. A famous example in light transport is bidirectional path tracing [LW93].

However, even biased methods can be made consistent if the bias converges to zero

as n increases, such as in progressive photon mapping [HOJ08]. Note that being

biased does not necessarily mean that convergence is reached slower. In Chapter 7,

we seize an unbiased approach (Section 7.1). Our subsequent acceleration, however,

is biased (Section 7.2). Nevertheless, the method remains consistent. Consistent

light transport in participating media has also been extensively researched [CPP∗05],

including improved importance sampling [KF12], efficient beam estimates [JNT∗11]

and their union with general light transport [KGH∗14], free path sampling [RSK08] and

its acceleration [YIC∗10, SKTM11], as well as efficient transmittance estimators [NSJ14].

In visualization, direct volume rendering has found many applications [MHB∗00,

HLSR08]. Photorealistic light transport on regular scalar fields was considered in the Ex-

posure renderer by Kroes et al. [KPB12]. Note that integration-based scalar fields (such

as FTLE) are much more expensive to evaluate. A scalable implementation requires ad-

ditional changes to the necessary acceleration data structures [YIC∗10, SKTM11] that

could be neglected in [KPB12]. We describe how we tailored the acceleration to FTLE

fields in Section 7.2. A general sampling and reconstruction framework for progressive

rendering was described by Frey et al. [FSME14]. Recent surveys on GPU-based volume
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rendering have been compiled by Beyer et al. [BHP14] and Balsa Rodríguez [BRGIG∗14].

Typically, volume rendering approaches employ ray marching. Ray marching, however,

results in unpredictable bias [NSJ14], and becomes much slower in high resolution

volume data (in integration-based volumes the features can become arbitrarily thin)

than Monte Carlo methods, as demonstrated by Yue et al. [YIC∗10].

6.4.2. Vortex Extraction

Vortices are among the most important features in fluid flows and for this reason much

research was devoted to their quantification, extraction and tracking. As there is no

universal definition that captures all desired properties, a number of different vortex

measures have been proposed in the literature [Hal05, Hun87, JH95, RP98]. Overall,

they can be categorized into region-based methods and line-based methods.

In region-based methods, volumes of vortex-like behavior are extracted. Simple exam-

ples are thresholding pressure, vorticity or helicity, though they require a threshold to

be set that is not necessarily constant along the vortex, thus they might be somewhat

impractical. In the CFD community, region-based measures such as the Q criterion by

Hunt [Hun87] and the λ2-criterion by Jeong and Hussain [JH95] are well-established.

Biswas et al. [BHD∗15] combined four local region-based vortex detectors via majority

voting, namely λ2, Q, ∆ [CPC90] and Γ2 [GMG01]. Okubo [Oku70] and Weiss [Wei91]

independently developed a criterion related to Q and more recently Haller [Hal05]

derived the objective Mz criterion. A region-based method finding nested vortices was

developed by Petz et al. [PKPH09]. Kasten et al. [KRHH11] extracted Galilean invariant

vortex regions by use of acceleration. Further, Kasten et al. [KHNH12] tracked vortex

merging events over time by use of combinatorial scalar field topology. Combinatorial

topology was also of concern in the vortex core region detection of Jiang et al. [JMT02b].

Line-based methods, on the other hand, search for lines that particles rotate around.

For this, Banks and Singer [BS95] suggested a curve following velocity-predictor,

pressure-corrector method. Sahner et al. [SWH05a] extracted extremum lines of region-

based methods, naming the λ2 criterion and Q criterion by the use of feature flow

fields [TS03]. Later, Sahner et al. [SWTH07] computed vortex and strain skeletons as

extremal structures of derived scalar quantities. Schafhitzel et al. [SVG∗08] set further

focus on the topology of λ2-based vortex corelines.

For a 3D steady flow u, Sujudi and Haimes [SH95] defined the reduced velocity crite-

rion, which considers the eigenvalues and eigenvectors of the Jacobian J. A vortex

coreline is present if two conditions are fulfilled. First, a pair of complex-conjugate

eigenvalues exists, which is the necessary condition for swirling. Their two correspond-

ing eigenvectors span the swirling plane, i.e., the plane in which rotating motion occurs.
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Second, the remaining eigenvector e to the remaining real eigenvalue fulfills:

u− (uTe)e = 0 .

That is, the projection of the flow vector u onto the swirling plane gives zero. This

means that precisely on the coreline, the particles only move forward and are not

rotating. This method extracts the coreline of swirling streamlines in 3D flow and

has found many applications [GLT∗07]. Peikert and Roth [PR99] formally defined the

parallel vectors (PV) operator, which returns the set of points at which two vector fields

are parallel. Using the PV operator, Sujudi-Haimes is equivalently expressed as u ‖ Ju,

i.e., u is parallel to an eigenvector of J. A higher-order method was described later

by Roth and Peikert [RP98] to extract bent vortex corelines. Van Gelder [VG12] made

aware that inaccurate results with local methods are not only attributed to (possible)

lack of Galilean invariance, but also arise when swirling occurs at different scales.

Aside from physically-based vortex definitions, geometric methods can be found in

the literature [PHR99], which are useful for handling weak vortices. With the curva-

ture centre method and the winding-angle method, Sadarjoen and Post [SP99] pre-

sented two geometric approaches that are based on streamline geometry. Köhler et

al. [KGP∗13] presented a semi-automatic method based on line predicates to assess

vortices in cardiac blood flow. For unsteady data, Bauer and Peikert [BP02], and Theisel

et al. [TSW∗05] tracked the cores of swirling streamlines over time. This makes sense

for vortex tracking in instantaneous vector fields, such as magnetic fields. Fuchs et

al. [FPH∗08] and Weinkauf et al. [WSTH07] found that pathlines swirl around a differ-

ent coreline than streamlines and thus extended the method of Sujudi and Haimes in

different ways to find cores of swirling pathlines, i.e., the cores of particles in unsteady

flow. Weinkauf et al. [WSTH07] observed the four eigenvectors of the 4D space-time

Jacobian J̄: (
e1

0

)
︸ ︷︷ ︸

real

,

(
e2

0

)
,

(
e3

0

)
︸ ︷︷ ︸

complex

,

(
f

1

)
︸︷︷ ︸
real (0)

Below the vectors, we denoted whether the corresponding eigenvalues are real-valued

or complex. W.l.o.g., we assume the vector containing e1 to be the eigenvector with

real eigenvalue. One of the eigenvectors contains the feature flow field from Eq. 2.22.

Following the idea of Sujudi and Haimes [SH95], Weinkauf et al. search for space-time

locations at which the flow is in the plane spanned by the two eigenvectors to the

2 Recalling, the feature flow field is defined as suitable combination of the partial derivatives of u:

f =
1

detJ

− det(uy,uz,ut)

+det(uz,ut,ux)

− det(ut,ux,uy)

 . (6.11)

The eigenvector that contains the feature flow field has always the real-valued eigenvalue 0.
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two real remaining eigenvalues. Closer inspection of the vectors reveals that the 4D

coplanarity condition can be reduced to a 3D parallel vectors operation, as the fourth

dimension becomes zero after setting γ = 1 and subtracting the 4D feature flow field

on both sides:(
u

1

)
,

(
e1

0

)
,

(
f

1

)
are coplanar⇔

(
u

1

)
= β

(
e1

0

)
+ γ

(
f

1

)
set: γ = 1

⇔ u− f = β e1

⇔ u− f ‖ e1

⇔ (u− f) ‖ J(u− f)

The remaining two eigenvalues must be complex, which is the necessary condition for

swirling.

Fuchs et al. [FPH∗08] based their extension of Sujudi-Haimes to the unsteady case

on the acceleration. The acceleration of an unsteady flow is a = Ju + ut. In the

steady case, the temporal derivative is zero ut = 0, thus Sujudi-Haimes can likewise

be interpreted as u ‖ a. In order to include the temporal derivative in unsteady flows,

Fuchs et al. [FPH∗08] use the unsteady acceleration in the parallel vectors condition:

u ‖ Ju + ut. Since J(u− f) = a from Eq. (2.5), their method is equivalently expressed

by:

u ‖ a ⇔ u ‖ Ju + ut ⇔ u ‖ J(u− f) .

Note that these conditions are not Galilean invariant. The last condition differs only by

the subtraction of f on the left side from Weinkauf et al. [WSTH07].

Aside from the geometric methods, all aforementioned automatic extraction ap-

proaches have in common that they are local, and thus easily parallelized. However,

it was shown that there are classes of vortices that cannot be extracted by local meth-

ods, for instance attracting vortices that move on non-linear paths. Thus, instead,

integration-based methods were developed, such as particle density estimation by

Wiebel et al. [WCW∗09]. They proposed to inject a number of particles and observe

their attraction behavior over time. Weinkauf and Theisel [WT10a] found attractors by

analyzing the Jacobian of a derived vector field in which streaklines are tangent curves.

Another Lagrangian detector was developed by Cucitore et al. [CQB99]. They extracted

vortices by observing the neighboring particles around a particle to test, i.e., they let

the reference frame move with the tested particle. Further, Lagrangian smoothing as

proposed by Fuchs et al. [FPS∗08] and Shi et al. [STH∗09] can be applied to any local

vortex detector that was originally designed for steady flow by smoothing the extraction

results along pathlines over time.

Aside from the definition of extraction methods that are invariant under certain types

of reference frame motion (Galilean invariance, objectivity, rotation invariance), there
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is a thread of research on finding a suitable reference frame in which the flow ap-

pears (nearly) steady. A very common example is the subtraction of a mean flow

(or a certain percentage of it that is based on domain expert experience), which is

obsolete for Galilean invariant extraction methods [WSTH07]. More sophisticated

reference frame choices use decompositions of the flow to find a harmonic vector

field that can be subtracted to eliminate the general motion. Since harmonic fields

are divergence-free and curl-free, the resulting field keeps its local divergence and

rotation properties. Wiebel et al. [WTS∗07] decomposed the flow into a localized and a

harmonic component, and studied the localized component, with the restriction that

the “localized” flow is confined into a domain. The Helmholtz-Hodge decomposition

(HHD) [BNPB13] decomposes a vector field into a scalar potential (curl-free), a vector

potential (divergence-free) and a harmonic vector field. If the latter is present, the

resulting components and the uniqueness of the decomposition strongly depend on

the boundary conditions. Bathia et al. [BPKB14] used their natural HHD to extract

vortices in the resulting (near-)steady flow. Aside from using the HHD to perform

a change of the reference frame, vortices have also been characterized as extremal

structures of the magnitude of the vector potential, e.g., by Tong et al. [TLHD03] and

Wiebel et al. [Wie04]. Fig. 6.2 illustrates the two conceptually different approaches to

vortex tracking in unsteady flows: subtraction of the ambient flow and invariance to

certain types of motion.

Orthogonal to vortex definitions are the verification of numerical extraction results

and their further processing for visualization. Jiang et al. [JMT02a] presented a method

to verify corelines based on the geometry of streamlines. To improve the vortex core

visualization, Garth et al. [GTS∗04] computed hull surfaces around vortex cores based

on the Rankine vortex model. Sahner et al. [SWH05a] proposed an iconic represen-

tation to indicate scale and extent. Shafii et al. [SOK∗13] encoded rotation direction,

rotational strength and the spatial extent of vortex cores and show the behavior of the

flow in the vicinity of the vortex. For a more detailed overview on vortex extraction and

visualization methods we refer to [LHZP07, PR99, PVH∗03].
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(a) Unsteady vector field u(x, t), shown using LIC (streamlines). Vortices are not

apparent.

(b) Subtraction of the “right” ambient flow, reveals vortices, extracted with Sujudi-

Haimes [SH95].

(c) Extracted vortex corelines in (b) are indeed centers of rotating particle motion.

(d) Galilean invariant methods find vortices without subtraction of ambient

flow. Here, with λ2 isosurfaces [JH95] and pathline cores [WSTH07].

Figure 6.2.: Overview of the two approaches to vortex tracking: subtracting a suitable

ambient flow (b)–(c) or the invariance to certain types of vortex motion (d).
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7
Chapter 7.

MCFTLE: Monte Carlo Rendering of

Finite-Time Lyapunov Exponent

Fields

The following chapter describes a progressive rendering approach for the visualiza-

tion of finite-time Lyapunov exponent fields that avoids discretization errors and ray

marching artifacts. The chapter is based on the publication:

T. Günther, A. Kuhn and H. Theisel

MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

Computer Graphics Forum (Proc. EuroVis) 35, 3 (2016).

Traditionally, Lagrangian fields such as finite-time Lyapunov exponents (FTLE) are

precomputed on a discrete grid and are ray casted afterwards. This, however, intro-

duces both grid discretization errors and sampling errors during ray marching. In this

work, we apply a progressive, view-dependent Monte Carlo-based approach for the

visualization of such Lagrangian fields in time-dependent flows. Our approach avoids

grid discretization and ray marching errors completely, is consistent, and has a low

memory consumption. The system provides noisy previews that converge over time

to an accurate high-quality visualization. Compared to traditional approaches, the

proposed system avoids explicitly predefined fieldline seeding structures, and uses a

Monte Carlo sampling strategy named Woodcock tracking to distribute samples along

the view ray. An acceleration of this sampling strategy requires local upper bounds for

the FTLE values, which we progressively acquire during the rendering. Our approach

is tailored for high-quality visualizations of complex FTLE fields and is guaranteed

to faithfully represent detailed ridge surface structures as indicators for Lagrangian

coherent structures (LCS), as demonstrated in Fig. 7.1.
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FTLE samples: 2× 1011, 82.4hrs (10 k it.)

FTLE samples: 3.88× 1011, 103.9hrs (6.2 k it.)

Figure 7.1.: High-quality FTLE visualization of a European Centre for Medium-Range

Weather Forecasts (ECMWF) reanalysis simulation of the wind velocity field of the north-

ern hemisphere at April, 10th in 2010. The three-dimensional FTLE field emphasizes

the spatial turbulence structure in the wind field and illustrates differences above land

masses of North America (left and detail region), the North Atlantic region (center)

and Europe (right). The bottom image shows a close-up of the FTLE field above North

America. Integration duration (GPU): τ = 10, majorant extinction σ̄t = 1, FTLE values

are in the range R = [0.35, 0.61], resolution of acceleration grid (σ̄t grid): 100× 50× 10,

image resolution top: 1600× 600, bottom: 1400× 800 pixels.
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x

xs
xL

D

Le

σs · fp

~ω

~ωL

Tr(x↔ xs)

Tr(xs ↔ xL)

Figure 7.2.: Illustration of single-scattering light transport. A directional light emits

radiance Le in direction ~ωL, which enters the domain D at xL. The transmittance

Tr(xs ↔ xL) accounts for the attenuation on the way toward xs, where it scatters with

coefficient σs. The amount of light that is scattered toward the viewer in direction ~ω

is determined by fp(xs, ~ωL → ~ω). Finally, the transmittance Tr(x ↔ xs) attenuates

toward the entry point x of the view ray.

7.1. Monte Carlo FTLE Rendering

Our method is generally applicable to a progressive and consistent rendering of

integration-based scalar fields. As such, we keep the theory and problem formu-

lation general. Given is a scalar field F (x) : D → IR that is defined over the spatial

domainD ⊆ IR3. In this chapter, we regard F (x) as the FTLE value at x at a given time t

and integration duration τ , see Eq. (6.1).

F (x) = FTLE(x, t, τ) (7.1)

We drop the temporal arguments for brevity, as they remain fixed. Next, we explain

the light transport model that we use and describe its progressive Monte Carlo-based

computation.

7.1.1. Volume Rendering Equation

We employ a single-scattering model [Max95], as illustrated in Fig. 7.2. For this, we

need to set an extinction coefficient σt(x) and a scattering albedo color c(x), which

are both derived via transfer functions from the scalar field F (x). Fig. 7.3 shows the

transfer function that we used throughout the chapter for color c(x). Extinction σt(x)

was mapped linearly on the same value range. The scattering albedo c is the ratio

between scattering and extinction coefficients c = σs/σt, and denotes the probability
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FTLE samples: 4.75× 1011, 54.3hrs (10 k it.)
0.05

0.235
F

T
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R

Figure 7.3.: DOUBLE GYRE flow on the GPU without σ̄t grid (Section 7.2) at 4000× 2000

pixels. Integration time: T = [0, 40], σ̄t = 100, FTLE range R = [0.05, 0.235].

of a scattering event at a certain location. Intuitively speaking, the color red means

that all red photons scatter, whereas blue and green photons are absorbed.

The transmittance Tr is the fraction of light that reaches point x′ if emitted from x (or

vice versa), when traveling on a straight line in inhomogeneous media. It is defined as

Tr(x↔ x′) = e−
∫ d
0 σt(xs) ds (7.2)

with xs = x + s ~ω and s ∈ [0, d] parameterizes the ray in direction ~ω from x to x′. Note

that by definition 0 ≤ Tr ≤ 1.

The incoming radiance L at x with incoming direction ~ω is governed by the volume

rendering equation [Jar08, CPP∗05]:

L(x← ~ω) =

∫ d

0
Tr(x↔ xs) σs(xs) Li(xs ← ~ω) ds (7.3)

≈ 1

n

n∑
i=1

Tr(x↔ xs) σs(xs) Li(xs ← ~ω)

p(xs)
. (7.4)

Here, without emission and surface interaction, thus the integral only contains the

in-scattered radiance Li. Distributing samples xs along the ray according to the proba-

bility

p(xs) = σt(xs) Tr(x↔ xs) (7.5)
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7.1. Monte Carlo FTLE Rendering

importance samples the integrand with respect to high FTLE values (high extinction

σt) and high transmittance Tr, which further reduces Eq. (7.4) to

L(x← ~ω) ≈ 1

n

n∑
i=1

c(xs) Li(xs ← ~ω) (7.6)

Later in Section 7.1.2, we explain a method that determines the scattering location

xs of the photon according to probability p(xs). The traveled distance from x to the

scattering location xs is called free flight distance di(x→ x′).

Assuming single-scattering from a directional light source with radiance Le, incident

direction ~ωL, and xL being the intersection of the light ray with the domain boundary,

the in-scattered radiance Li at a point xs toward the viewer in direction ω is:

Li(xs ← ~ω) = fp(xs, ~ωL → ~ω) Tr(xs ↔ xL) Le (7.7)

with fp(xs, ~ωL → ~ω) = 1/(4π) being an isotropic phase function (other choices are

possible [AD16]), which describes how much light coming from ~ωL is scattered at xs
toward ~ω.

Given the scattering event at xs, we need to determine the fraction of light that arrives

from the light source, i.e., Tr(xs ↔ xL). Raab et al. [RSK08] and Szirmay-Kalos et

al. [SKTM11] computed this for inhomogeneous participating media consistently as

the expected value of a visibility experiment, in which they randomly emit photons at

xs and test if they reach xL:

ν(xs) =

1 if di(xs → xL) ≥ ‖xs − xL‖

0 else
(7.8)

Then, the final estimate of the incoming radiance becomes:

L(x← ~ω) ≈ 1

4π n

n∑
i=1

c(xs) ν(xs) Le (7.9)

Several improvements to the transmittance calculation have been proposed, including

the separation of Tr into multiple parts and solving them separately [SKTM11, NSJ14],

and estimating the visibility by multiple free path runs to reduce variance [JNT∗11].

The more recent ratio tracking and residual tracking [NSJ14] lower the variance by

weighting full paths, rather than taking them as binary estimates.

7.1.2. Free Path Sampling

Evaluating Eq. (7.9) requires a method to generate samples xs along a ray according

to probability p(xs) in Eq. (7.5). The most commonly used method is the so-called
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Woodcock tracking, which is also known as free path sampling. It probabilistically

determines the free flight distance of a photon until it reaches a scattering event in

inhomogeneous media. The method was invented in the 60s in the neutron transport

community [WMHL65] and was picked up by [RSK08] in the rendering community,

where it had great impact in practice [JNT∗11, NSJ14].

The idea of the method is to fill up inhomogeneous media with virtual particles to

obtain a homogeneous medium with a joint, spatially constant so-called majorant ex-

tinction σ̄t. It then randomly samples the free flight distance in the joint homogeneous

medium along the ray and thereby generates tentative particle interactions, which are

probabilistically selected as either being virtual or real. In case of a virtual interaction

(σt/σ̄t < rand()), the random walk continues. As proven by Coleman [Col68], the algo-

rithm is unbiased and generates samples according to probability p(xs). The algorithm

is listed in Alg. 3. Carter et al. [CCT72] and Galtier et al. [GBC∗13] showed variants that

handle non-bounding majorants, but at the cost of increased variance [NSJ14].

Input: Ray origin x0 and normalized direction ~ω, majorant extinction σ̄t and a ray

interval (dmin, dmax] to evaluate.

Output: Free flight distance d.

d← dmin − ln(1− rand())/σ̄t

while d ≤ dmax ∧ σt(x0 + d ~ω)/σ̄t < rand() do
d← d− ln(1− rand())/σ̄t

end
Algorithm 3: This algorithm determines the free flight distance of a photon along a ray

(x0, ~ω). It implements di(x→ x′) with ~ω being the normalized direction vector from x

to x′, dmin = ‖x− x0‖, and dmax = ‖x′ − x0‖. (Pseudo code adapted from [YIC∗10].)

7.2. Acceleration by Spatially-Varying Extinction Bounds

The expected worst case number of samples a free path run performs on a ray interval

(dmin, dmax] is σ̄t · (dmax − dmin), since the expected step size in the joint homogeneous

medium is 1/σ̄t. Thus, the runtime strongly depends on how tightly σ̄t bounds the true

extinction σt. This is especially crucial in “empty” areas, where a globally defined upper

bound strongly over-estimates the extinction. Therefore, Yue et al. [YIC∗10] proposed a

kd-tree-based space partition of the domain, in which they stored a bounding majorant

extinction σ̄t per volume segment. A related approach was taken by Szirmay-Kalos et

al. [SKTM11], who defined several segmentations over regular grids.

In this chapter, we follow one approach in [SKTM11] and use piecewise constant

bounds stored on a coarse voxel grid, i.e., a constant value per voxel. In order to handle
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7.2. Acceleration by Spatially-Varying Extinction Bounds

transitions between volume segments correctly, they have shown that a free path run

always has to start at the entry point in the next voxel. If a scattering event is found

inside a voxel it is reported, otherwise the run proceeds in a DDA traversal with the

next voxel until the ray leaves the domain, see Alg. 4.

Input: Ray origin x0 and normalized direction ~ω, and a ray interval (dmin, dmax] to

evaluate.

Output: Free flight distance d.

V ← locate voxel containing x0 + dmin ~ω

do
d̂min ← V.entry()

d̂max ← V.exit()

σ̄t ← V.majorant()

d← freePathRun(x0, ~ω, σ̄t, d̂min, d̂max)

if d < d̂max ∨ d ≥ dmax then break;

while V ← V.nextVoxel();
Algorithm 4: Determines free flight distance along a ray (x0, ~ω) by DDA traversal in a

voxel grid that contains the majorant extinction σ̄t. Alg. 3 implements freePathRun.

Finding Local Upper Bounds

In integration-based scalar fields a tight upper bound cannot be evaluated locally.

Ridge features might become arbitrarily thin and trying to sample them is a costly

endeavor. For this reason, we start with an (under-estimating) approximation of the

true upper bound by taking a small number of k samples per voxel of the acceleration

grid (typically, k ≈ 4). This initial approximation causes the method to be biased.

Over time, the free path runs take additional samples, at which we update the upper

bounds. Since the free path sampling produces a continuous and unbiased sampling

of the domain, the true upper bound is found in the limit. Thus, the bias converges

to zero, and hence the method remains consistent (cf. definition of consistency in

Section 6.4.1).

The initial upper extinction bound estimate of a voxel might be zero, even though a

sharp ridge might exist in the voxel. In this case, all future free path runs would skip the

voxel, and no further samples would be taken. The method would become inconsistent.

To guarantee a certain minimum sampling rate, we clamp the extinction of each voxel

to a lower bound, which adds additional tracing cost. The lower extinction bound is

chosen such that a voxel with diagonal extent d has a pV probability of being sampled

by a free path run along the diagonal, i.e., the lower extinction bound is pV/d. Thereby,

pV is a user parameter that balances performance versus quality (convergence to true
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upper bound), and we empirically set pV = 0.1: In practice, we found that setting

pV = 0 gives visually similar results. In the ABC flow, the root mean squared error

(RMSE) for pV = 0 after 1,000 iterations was reached with pV = 0.1 after 750 iterations

already. For pV = 0.1 the runtime increases by about factor 1.22. Thus, the additional

cost for assuring consistency amortizes.

7.3. Implementation

We implemented our method on the CPU (multi-threaded) and on the GPU using

DirectCompute. The accompanying material of the corresponding paper [GKT16] con-

tains C++ demo code that implements the Monte Carlo FTLE rendering in the DOUBLE

GYRE flow on the CPU. The CPU code is easy to integrate into existing visualization

frameworks, and may serve the purpose of generating ground truth data for other

rendering methods.

We computed the flow map gradients by taking finite differences [HY00, Hal01].

Thereby, the separation distance was set to 10−6 to capture thin ridge structures. Gen-

erally, separation distances cannot be arbitrarily small, since for even smaller values

numerical problems arise in the computation of the eigenvalues of the Cauchy-Green

tensor in Eq. (6.1), see Kuhn et al. [KRWT12] for a study of this effect. The numerical

issues in the underlying scalar field are independent of the rendering method, and

thus do not make the Monte Carlo approach unbiased or inconsistent.

Alg. 5 computes the incoming radiance L of a pixel according to Eq. (7.9). Thereby,

generateViewRay uniformly samples the pixel for anti-aliasing purposes and the

method intersectRayWithDomain calculates the entry and exit distance of the view

ray into and out of the domain. Note that dmin is set to 0 if the ray origin is inside the

domain. Finally, Alg. 4 implements the method freePathRunDDA.

7.4. Results

We applied our method to a number of analytic and real-world vector fields. In all

figures, we list the rendering time, number of iterations (rays per pixel), and cost, which

refers to the total number of FTLE samples taken to compute the image. Note that

we deliberately used a high number of iterations to produce high quality images. A

convergence series, showing that early results are useful, too, is shown in the next

section.

126



7.4. Results

Input: Pixel coordinate (px, py), number of iterations n.

Output: Incoming radiance L of pixel.

L← 0 ;

for i = 1 to n do
(x0, ~ω)← generateViewRay(px, py)

(dmin, dmax)← intersectRayWithDomain(x0, ~ω)

d← freePathRunDDA(x0, ~ω, dmin, dmax)

if d < dmax then
xs ← x0 + d ~ω

L← L+ c(xs) ν(xs) Le
end

end

L← L/(4π n)
Algorithm 5: Computes radiance according to Eq. (7.9).

(a) 1.1 secs, 3 iter. (b) 10 secs, 27 iter. (c) 1 min, 160 iter. (d) 10 mins, 1600 iter.

Figure 7.4.: Convergence series of a close-up in the DOUBLE GYRE at 300× 300 pixels,

using the GPU (without σ̄t grid). The majority of the noise vanishes in a few minutes.

Integration time: T = [0, 40], σ̄t = 100, FTLE range R = [0.05, 0.235].

Double Gyre. The DOUBLE GYRE [SLM05] is a periodic 2D unsteady vector field

that is commonly used as a benchmark for FTLE computations. In this chapter, we

define it in the temporal-periodic domain D × T = [0, 2]× [0, 1]× [0, 10] and use the

parameterization

u(x, y, t) =

(
−0.1π sin (f(x, t)π) cos(y π)

0.1π cos (f(x, t)π) sin(y π) d
dxf(x, t)

)
(7.10)

with f(x, t) = a(t)x2 + b(t)x and a(t) = 0.25 sin(t π/5) and b(t) = 1 − 0.5 sin(t π/5).

In order to create a 3D unsteady sequence, we set it constant along the z dimension.

An example is shown in Fig. 7.3. Fig. 7.4 shows a convergence series, conveying an

impression of what early results look like and at which rate the noise reduces. Further

results on real-world data sets are shown at the end of this chapter in Figs 7.11–7.15.
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FTLE samples: 5.16× 1011, 2.9hrs (10 k it.)

Figure 7.5.: ABC flow on the GPU without σ̄t grid at 1500× 1500 pixels, showing several

sharp ridges. Integration time: T = [5, 15], σ̄t = 35, FTLE range R = [0.38, 0.92].

ABC Flow. The ABC (Arnold-Beltrami-Childress) flows are a class of parameterizable

3D unsteady flows that are often studied to assess turbulence. We used the following

parameterization:

u(x, y, z, t) =

 c(t) sin(z) + cos(y)√
2 sin(x) + c(t) cos(z)

sin(y) +
√

2 cos(x)

 (7.11)

with c(t) =
√

3 + (1 − e−0.1 t) sin(2π t). The flow is defined in the domain D × T =

[0, 2π]3 × [0, 40]. Fig. 7.5 gives an example of the particularly sharp ridges in this flow.
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FTLE samples: 1.58× 1011, 22.6hrs (10 k it.)

Figure 7.6.: RABINOVICH-FABRIKANT flow on the GPU with σ̄t grid of 50 × 20 × 5 at

1200× 750 pixels. Integration duration τ = 20, σ̄t = 5, FTLE range R = [0, 0.47].

Rabinovich-Fabrikant Equations. The RABINOVICH-FABRIKANT equations describe a

parameter-dependent 3D steady dynamical system that exhibits chaotic behavior for

certain parameter configurations. We consider it in the domain D = [−15, 15]3:

u(x, y, z) =

 y(z − 1 + x2) + γ x

x(3z + 1− x2) + γ y

−2z(α+ xy)

 (7.12)

here, with α = 0.98 and γ = 0.1. This flow is difficult to analyze numerically, as

traditional integrators reach different attractors depending on the step size [DC04]. In

Fig. 7.6, we used a fourth-order Runge-Kutta integrator (cf. Section 2.1.2) with step size

h = 0.1.

Boussinesq. The BOUSSINESQ flow contains a 2D unsteady convection simulation

that develops around a heated cylinder. The flow was provided by Tino Weinkauf and

was simulated with Gerris Flow solver [Pop04], using the Boussinesq-approximation to

generate the turbulent vortex behavior. In Fig. 7.7, the start time of the integration is

mapped to the third spatial dimension. The flow exhibits a high number of spatially

close FTLE ridges.
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FTLE samples: 8.57× 1010, 34.2hrs (10 k it.) FTLE samples: 7.64× 1010, 24.2hrs (10 k it.)

Figure 7.7.: BOUSSINESQ flow on the GPU with σ̄t grid of 5× 10× 5 at 600× 1600 pixels.

We set σ̄t = 60 and FTLE range R = [0.02, 1]. The flow is shown at different start times

(front slice), left: t0 = 1, right: t0 = 5, both with τ = 10.

Simulated Cloud-topped Boundary Layer (CTBL). The CTBL data set contains a

cloud resolving boundary layer simulation (UCLA-LES, details in [Ste13]). A large eddy

simulation (LES) was used on a finite size domain (longitudinal, latitudinal extend:

10 km with 384 cells, height extend 3.2 km with 130 cells) under idealized conditions: It

uses double-periodic boundary conditions and homogeneous surface forcing, while

large-scale information are taken from the COSMO-DE simulation model. The purpose

of this model is to study the detailed cloud dynamics on high spatial and temporal

resolutions for sub-scale parametrization of synoptic climate simulations. For this task,

convective flow patterns are of central interest since they are tightly coupled with cloud

production and interaction processes. FTLE fields are specifically useful to visualize

the complex spatial structure and distribution of turbulent plumes produced by the

UCLA-LES model. The results for our method are shown in Fig. 7.8.
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FTLE samples: 1.9× 1011, 117.6hrs (5.2 k it.)

FTLE samples: 2.15× 1011, 98.1hrs (4.4 k it.)

Figure 7.8.: CLOUD-TOPPED BOUNDARY LAYER flow on the GPU with 40× 20× 20 σ̄t grid.

Integration duration: τ = 30, majorant extinction σ̄t = 2, FTLE range R = [0.09, 0.21],

left: 1200× 640, right: 800× 800 pixels.
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ECMWF Reanalysis. The ECMWF data set shows a large scale ECMWF reanalysis

simulation of the weather in the northern hemisphere (long. range: −120° to 60° with

1200 cells, lat. range: 30° to 90° with 40 cells, height from 0m to 1050m with 90 cells)

from April 10−19, 2010. Similarly to the CTBL example, convective flow features in the

wind velocity field are of central interest, since they are strongly related to the exchange

of energy and transport of trace gases in the atmosphere. LCS features have been shown

to characterize transport patterns and mixing behavior of atmospheric flows [Hal15].

In Fig. 7.1, FTLE highlights the characteristic structure of atmospheric features above

the North American land surface (bottom left, detailed zoom), the North Atlantic ocean

(center) and the European land mass (bottom right corner). Specifically the spatial

turbulent structure of vortices (cyclones) and stream-like features are emphasized.

Note that we used time-averaged velocity fields to compute FTLE fields.

7.5. Discussion

In the following, we compare our method with traditional ray casting and report

timings, number of FTLE samples and memory consumption for the figures shown

throughout the paper. Afterwards, we observe the convergence behavior of the Monte

Carlo integration and discuss the limitations.

7.5.1. Comparison with Ray Casting

Next, we show the artifacts that grid discretization and ray marching entail. The results

are obtained with our CPU code using a resolution of 100× 100 pixels. For comparison,

a GPU-based high resolution image is shown in Fig. 7.5.

In Figs. 7.9a and 7.9b, the scalar field was discretized onto a 2003 or 5003 regular

grid, respectively, and was afterwards ray casted. Thereby, the separation distance

of particles in the FTLE computation was set to the voxel size. The FTLE value range

depends on the separation distance, same as the sharpness of the ridges that can be

recovered. The tracing time is per iteration. In all remaining images, the separation

distance in the FTLE computation was set to 10−6.

Figs. 7.9c and 7.9d show the same setting as in (a)–(b), but with smaller separation

distance. Here, the discretization onto the grid causes an under-sampling of the ridges.

Since the discrete sampling does not preserve maxima, the transfer functions return

more transparent and blueish values (color shift). We display the result with 1 sample

per pixel (spp) to show the systematic bias and the average of 10 spp, i.e., 10 tracing

iterations. Fig. 7.9e and Fig. 7.9f apply the ray casting directly to the FTLE scalar field
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1 spp 10 spp

(a) Ray casting of discrete

grid with 2003 voxels

(30.5MB), grid precomp.:

22 s, tracing: 1.3 s.

1 spp 10 spp

(b) Ray casting of discrete

grid with 5003 voxels

(476MB), grid precomp.:

5min, tracing: 7.2 s.

1 spp 10 spp

(c) Ray casting of discrete

grid with 2003 voxels

(30.5MB), grid precomp.:

129 s, tracing: 1.3 s.

1 spp 10 spp

(d) Ray casting of discrete

grid with 5003 voxels

(476MB), grid precomp.:

30min, tracing: 7.2 s.

(e) Ray casting without

grid (evaluate FTLE at

each sample), 11.3min,

insufficient sampling

rate (aliasing artifacts).

(f) Ray casting without

grid (evaluate FTLE at

each sample), 69.9min,

higher sampling rate

than (e), some artifacts.

(g) Monte Carlo (ours), 70

iterations, 111.3 s, no dis-

cretization artifacts, con-

tains noise.

(h) Monte Carlo (ours),

1055 iterations, 29.7min,

less noise.

Figure 7.9.: Comparison of Monte Carlo and ray casting.

without discretization. The step size discretization during ray marching results in

Fig. 7.9e in heavy aliasing. We used the same step sizes as in (a)–(d) and show 1 spp.

Although early ray termination was used, the computation time of ray casting is high.

Fig. 7.9g and Fig. 7.9h show results of our consistent Monte Carlo-based approach.

The discretization artifacts (aliasing and color shifts) are avoided; instead the result

contains the typical Monte Carlo noise. In a time comparable to Fig. 7.9c, 70 iterations

could be computed per pixel in Fig. 7.9g. With Fig. 7.9d setting the reference time, 1055

iterations were computed in Fig. 7.9h. The precomputation of the initial σ̄t grid (603, 4

samples per voxel) took 17 s. Our method takes multiple spp, while the initial σ̄t grid is

precomputed once per FTLE field.

7.5.2. Timings, Cost and Memory Consumption

We used an AMD Phenom II X6 1055T CPU, and an Nvidia GeForce GTX 970 GPU

with 4 GB VRAM. The results in Fig. 7.9 were obtained on an Intel Core i7-2600K CPU.
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Data set
CPU time (ms) GPU time (µs) cost CPU cost GPU cost memory

w/o acc. w/ acc. w/o acc. w/ acc. w/o acc. w/ acc. w/ acc. (inMB)

DOUBLE GYRE, Fig. 7.3 2.41 1.14 2.44 8.25 5.94 2.79 5.20 122.07

ABC, Fig. 7.5 0.52 0.13 0.46 1.00 22.93 5.90 10.25 34.33

RABINOVICH, Fig. 7.6 1.82 0.12 11.40 9.04 91.31 5.73 17.56 13.75

BOUSSINESQ, Fig. 7.7 (left) 4.08 0.13 100.33 12.83 47.12 1.49 8.93 14.65

BOUSSINESQ, Fig. 7.7 (right) 1.73 0.17 36.58 9.08 24.74 2.09 7.96 14.65

CTBL, Fig. 7.8 14.10 3.65 250.83 106.01 62.99 16.09 47.55 11.78

CTBL, Fig. 7.8 (close-up) 20.94 5.88 220.00 125.41 93.38 25.77 76.49 9.83

ECMWF, Fig. 7.1 3.29 0.54 79.50 30.90 54.17 7.56 20.83 14.84

ECMWF, Fig. 7.1 (close-up) 6.82 1.28 121.03 33.40 111.56 17.62 34.64 17.28

Table 7.1.: Average time and average number of FTLE samples (average cost) per

iteration per pixel, as well as the memory consumption for the respective figures

throughout the chapter (single precision). Without acceleration the CPU and GPU

have identical cost. Viewport resolutions are listed in the referenced figures.

Table 7.1 lists for all datasets the average time and average number of FTLE samples

(cost) per iteration per pixel. The latter is hardware-independent and only depends

on the dataset and view. The CPU timings are in milliseconds (ms), whereas GPU

timings are in microseconds (µs). We conducted experiments with and without σ̄t
grids, and list the main memory required for rendering the images in the referenced

figures. Our method stores four floats per pixel for the accumulated radiance (RGBA)

and an optional (scalar) acceleration grid (both single precision). Thus, 16MB are

required per megapixel plus < 1MB for a σ̄t grid, as we have used on the GPU. Among

all examples, the DOUBLE GYRE was rendered at highest resolution, and has thus the

largest memory consumption.

The GPU code is orders of magnitude faster than the CPU code, and especially on

the CPU the acceleration greatly increases the performance. In the RABINOVICH case

(Fig. 7.6), for instance, large portions of the domain are empty. Thus, here, the acceler-

ated CPU version is about 15× faster. The speedup obtained by the σ̄t grid depends

on the tightness of the upper extinction bounds. If large areas in the domain have low

extinction, much can be gained compared to a global constant upper bound. This is

visible in the BOUSSINESQ case in Fig. 7.7. The left image has more empty areas and

here the time and cost savings are greater than in the right image.

On the GPU, arithmetic (ALU) calculations are much faster than memory accesses (e.g.,

lookups in the σ̄t grid) which is why we generally recommend lower σ̄t grid resolutions

than for the CPU in order to reduce memory I/O pressure. Our manually-tuned grid

resolutions are listed in Table 7.2. Tracing in analytic fields is entirely ALU bound

and requires no memory access at all. For the two analytic examples (DOUBLE GYRE

in Fig. 7.3, ABC in Fig. 7.5), the σ̄t lookups are more expensive than the brute force

evaluation of more FTLE samples, while the balance tips in favor of the σ̄t grid for the
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Data set σ̄t grid (CPU) σ̄t grid (GPU)

DOUBLE GYRE 100× 50× 1 20× 10× 1

ABC 60× 60× 60 20× 20× 20

RABINOVICH 300× 300× 30 50× 20× 5

BOUSSINESQ 200× 200× 50 5× 10× 5

CTBL 200× 100× 100 40× 20× 20

ECMWF 200× 100× 100 100× 50× 10

Table 7.2.: Manually-tuned resolutions of the σ̄t grids.

RABINOVICH case. In general, the σ̄t grid can be recommended for sampled real-world

flows, as here the σ̄t lookup cost amortizes much faster.

7.5.3. Convergence

In (bounded) Monte Carlo integration, the variance decreases asymptotically to zero.

Plotting the root-mean-square error (RMSE) over time, i.e., the difference between the

progressively estimated radiance from Eq. (7.9) and the ground truth radiance, in log-

log scale thereby shows a linear convergence behavior in Fig. 7.10. The plotted RMSE

for our data sets confirms that the method converges as expected. In this experiment,

we used the GPU for the DOUBLE GYRE and ABC without σ̄t grid and for the others

with σ̄t grid.
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Figure 7.10.: Plotting the RMSE over time in log-log scale shows the linear convergence

expected from MC methods.

7.5.4. Limitations

Our bottleneck is the pathline integration. Recently, interpolation of pathlines from a

set of candidates rather than full numerical integration has been investigated [COJ15,

AOGJ15]. Clearly, any interpolation-based approach introduces an error that makes

the rendering inconsistent. Nevertheless, if faster previews are desired in an entirely

Monte Carlo-based framework, this is a promising approach to take. Every Monte
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7. MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

Carlo-based approach essentially reduces variance on some quantity, which shows up

as slowly reducing noise. In the rendering community, reconstruction filters and noise

removal are applied to remove the residual noise in order to satisfy the often narrow

time budgets. Out of that need, a large number of filters have been developed [ZJL∗15]

that could be applied to our technique as well.

7.6. Conclusions

In this chapter, we applied a consistent light transport simulation method to the

rendering of Lagrangian scalar fields, focusing on FTLE. While previous approaches

discretize the FTLE field onto a (possibly adaptive) grid [BGT12], our method avoids

discretization errors completely and operates on a fixed and small memory bound. We

used a progressive Monte Carlo sampling technique named Woodcock tracking for

distributing the samples along the view ray, which obtains consistent solutions with

iterative previews and is free of ray marching artifacts. With this, we obtained high

quality visualizations of FTLE fields, which may serve as ground truth or are available

for marketing applications. A technical novelty of this chapter is that we tailored the

acceleration data structure to FTLE, by progressively converging to correct local upper

extinction bounds, which are not available a-priori in Lagrangian scalar fields.

In the future, we would like to incorporate approximating techniques to provide faster

previews, such as pathline interpolation methods [COJ15, AOGJ15]. Further, we would

like to experiment with adaptive sampling and reconstruction filters [ZJL∗15]. The re-

cent residual tracking and ratio tracking [NSJ14] are alternative approaches to evaluate

the transmittance, which could be evaluated in the context of Lagrangian scalar fields

in future work. Using regular grids to find local bounds of the majorant extinction as

in [SKTM11] requires to set the right voxel resolution manually to get the best perfor-

mance. Yue et al. [YIC∗10] avoided this by construction of a kd-tree with an adequate

stopping criterion, which we would like to test. Our method is purely image-based. For

further processing of the FTLE ridge surfaces, geometry extraction techniques are still

a challenging topic.
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7.6. Conclusions

Figure 7.11.: MCFTLE results in ECMWF and CTBL after 1 iteration.
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Figure 7.12.: MCFTLE results in ECMWF and CTBL after 100 iterations.
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7.6. Conclusions

Figure 7.13.: MCFTLE results in ECMWF and CTBL after 200 iterations.
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Figure 7.14.: MCFTLE results in ECMWF and CTBL after 1000 iterations.
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7.6. Conclusions

Figure 7.15.: MCFTLE results after 10 k (ECMWF), 6.2 k (ECWMF CLOSE), 5.2 k (CTBL)

and 4.4 k (CTBL CLOSE) iterations.
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8
Chapter 8.

Rotation Invariant Vortices for Flow

Visualization

In the following, we describe a general approach to obtain vortex concepts that are

invariant under equal-speed rotations of the reference frame. The chapter is based on

the publication:

T. Günther, M. Schulze and H. Theisel

Rotation Invariant Vortices for Flow Visualization

IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Scientific

Visualization 2015) 22, 1 (2016), 817–826.

This chapter focuses on vortices in flows that are obtained by rotating mechanical

parts around a fixed and known axis. Examples are stirring devices, helicopters, hy-

drocyclones, centrifugal pumps, or ventilators. To illustrate the problem, consider a

cylindrical container filled with a fluid and an inserted propeller, as shown in Fig. 8.1a.

Rotating the propeller with constant angular speed induces a fluid motion. We are

interested in its vortices. As depicted by a camera in Fig. 8.1a, the observer has a fixed

position above the container, meaning that the observer sees the propeller rotating

and the container standing still. In Fig. 8.1b, we have the same configuration, but

now the observer is “sitting” on the propeller and rotating with it. This means that

in the local coordinate system of the observer the propeller is standing still while the

container is rotating. Computing vortices in the different reference frames usually

gives different results, even though the applied vortex concepts are Galilean invariant.

Which reference coordinate system should be used to get “correct” vortices? A first

assumption may be that in areas close to the propeller configuration 8.1b gives better

results because there the flow has a rotational speed similar to the propeller, and that

close to the wall of the container configuration 8.1a is better if a no-slip boundary is

assumed. This, however, raises the question how to treat the areas between propeller
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(a) Fixed reference frame (b) Rotating reference frame

Figure 8.1.: Rotating flow with different positions of the observer; (a) observer has a

fixed position and sees the propeller rotate; (b) observer is “sitting” on the propeller

and sees the propeller standing still.

and wall. Because for those, the observer may have an optimal own rotation between

zero and the propeller. In fact, the choice of the rotating reference frame of the observer

has a great influence on the resulting vortices. How to choose it correctly?

This chapter presents a solution for this problem: we propose new vortex concepts for

which the choice of the rotating reference frame does not matter, i.e., vortex concepts

that are invariant under the relative rotation of the observer. We call them rotation

invariant vortices. Starting with a formal definition of rotation invariance, we present a

simple and generic approach to transform a Galilean invariant vortex concept to a rota-

tion invariant one. In fact, it reduces to a slight modification of the Jacobian, i.e., adding

of a simple closed-form matrix. We apply this to several standard vortex concepts:

cores of swirling particle motion [WSTH07], λ2 [JH95], and theQ criterion [Hun87]. We

demonstrate our method on several rotating flows, showing that the rotation invariant

methods give better results than their Galilean invariant counterparts.

8.1. Rotation Invariance

To give a formal definition of rotation invariance, we consider a fixed rotation cen-

ter point x0 = (x0, y0)T for n = 2 or a fixed rotation axis given by a point x0 and a

normalized vector n for n = 3.
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(a) Galilean invariance (b) Objectivity

x0

(c) Rotation invariance

Figure 8.2.: Invariance under different transformations of the coordinate frame (i.e.,

the camera): Galilean invariant (left), objective (middle), rotation invariant (right).

Definition 3 A vortex measure is rotation invariant if it is invariant under any equal

speed rotation of the reference system. For n = 2 by

g(x, t) =

(
cos(ω t+ ω0) sin(ω t+ ω0)

− sin(ω t+ ω0) cos(ω t+ ω0)

)
(x− x0) + x0 (8.1)

and for n = 3 by

g(x, t) = Q−1
0

 cos(ω t+ ω0) sin(ω t+ ω0) 0

− sin(ω t+ ω0) cos(ω t+ ω0) 0

0 0 1

Q0 (x− x0) + x0 (8.2)

where Q0 is the rotation matrix transforming n to the z-axis and ω, ω0 are arbitrary

scalars. Then, the following holds: the vortex measure classifies a point (x, t) to be on

the vortex in u iff the vortex measure classifies the point (g(x, t), t) to be on a vortex in

the domain transformed field w.

Note that (8.1) and (8.2) describe rotations with constant angular speed of the observer

around a fixed point/axis. Also note that up to now all introduced domain transforma-

tions (6.6), (6.10), (8.1) and (8.2) describe isometric deformations, i.e., they transform a

square to a square of the same size. Fig. 8.2 illustrates the concepts.

Clearly, standard Galilean invariant vortex concepts like cores of swirling particle

motion, λ2, orQ are generally not rotation invariant. We describe now a simple generic

approach to transform a Galilean invariant concept to a rotation invariant one. For

n = 2, we introduce a non-isometric domain deformation gp(x, t) and its inverse

hp(x, t)

gp(x, t) =

(
arctan y−y0

x−x0
‖x− x0‖

)
, hp(x, t) = x0 + y

(
cosx

sinx

)
(8.3)
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along with its domain transformed vector field wp. Eq. (8.3) describes a do-

main transformation to polar coordinates. Instead of applying a Galilean in-

variant vortex criterion to u at (x, t), we apply it to wp at gp(x, t). In other

words: we domain transform u to polar coordinates, do the vortex extraction

there, and transform the resulting vortex structures back to the original Carte-

sian coordinates. Note that this gives in general different vortex structures than

an application of the vortex measure in Cartesian coordinates because the non-

isometric domain transformation induces a non-linear transformation of the Jacobian.

Figure 8.3.: Rotation in Carte-

sian frame equals translation

in polar coordinates.

Also note that this way we obtain a rotation invariant

vortex measure if the vortex measure applied to wp

is Galilean invariant: an equal-speed rotation around

x0 in the domain of u corresponds to an equal-speed

translation of the coordinate system in the domain of

wp, see Fig. 8.3. Hence, a Galilean invariant measure in

wp becomes a rotation invariant measure in u.

Although the domain transformation to polar coordi-

nates is the theoretical solution of our problem, it cre-

ates new practical problems concerning the computa-

tion of the Jacobian in polar coordinates. In particular, it is unclear on which discretiza-

tion to compute the Jacobian in polar coordinates since the domain transformation gp

maps cells with planar faces in Cartesian coordinates to cells of different size and den-

sity with non-planar faces in polar coordinates, see Fig. 8.4. To address this problem,

we present an approach to compute the (modified) Jacobian in Cartesian coordinates

only, without a transformation to polar coordinates. For this, we can directly use the

grid discretization coming from the simulation. To introduce this, we keep in mind

that most vortex measures are computed by a certain combination of u, ut and J. This

(a) Interpolation/resampling (b) Varying cell sizes (c) Discretization

Figure 8.4.: Illustration of the problems related to the computation of a Jacobian in

polar coordinates, when the flow data is provided on a regular grid.
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means that after the domain transformation we have to consider wp(gp(x, t), t) and

its Jacobian Jp(gp(x, t), t) = ∇(wp(gp(x, t), t)). Instead of considering wp and Jp, we

transform them back to Cartesian coordinates

ur(x, t) = (∇gp(x, t))−1 ·wp(gp(x, t), t) (8.4)

urt(x, t) = (∇gp(x, t))−1 · ∂
∂t

wp(gp(x, t), t) (8.5)

Jr(x, t) = (∇gp(x, t))−1 · ∇(wp(gp(x, t), t)). (8.6)

Fortunately, (8.4)–(8.6) have a simple closed-form solution:

ur = u (8.7)

urt =
∂ur
∂t

= ut (8.8)

Jr = J +
1

d
R H RT = (uxr,uyr) (8.9)

with

d = ‖x− x0‖ , r =
x− x0

d
, rp =

(
0 1

−1 0

)
r (8.10)

and the 2D matrices

R = (rp, r) , H =

(
−uTr −uTrp

uTrp 0

)
. (8.11)

See Appendix B for a derivation. Eqs. (8.7)–(8.9) have an interesting meaning: in order

to transform a Galilean invariant vortex measure to a rotation invariant one, we only

have to replace J by Jr. Note that Jr is obtained by adding a closed-form matrix to J,

meaning that we do not have to worry about grid discretization in a transformation.

From the rotation invariant Jacobian, we directly get rotation invariant acceleration

and feature flow field:

ar = Jr u + ut , ar = Jr p (8.12)

with

Jr =

(
Jr ut

0T 0

)
, (8.13)

and

f r =

 det(uyr,ut)

det(ut,uxr)

det(uxr,uyr)

 , fr =
1

det(uxr,uyr)

(
det(uyr,ut)

det(ut,uxr)

)
.

The case n = 3 is similar and a straightforward extension of the case n = 2. Instead
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x0

x

d

u(x, t) r

rp

x0

n

n

r

rp

u(x, t)

d

b

x

Figure 8.5.: Setup for computing the rotation invariant Jacobian for n = 2 (left) and

n = 3 (right).

of a domain deformation to polar coordinates, we do a deformation to cylindrical

coordinates around the axis given by x0 and n. A transformation of the Jacobian back

to Cartesian space gives the rotation invariant Jacobian

Jr = J +
1

d
R H RT = (uxr,uyr,uzr)

withb being the point on the rotation axis with shortest distance tox, i.e., (x−b)Tn = 0,

and

d = ‖x− b‖ , r =
x− b

d
, rp = r× n (8.14)

and the 3D matrices

R = (rp, r,n) , H =

−u
Tr −uTrp 0

uTrp 0 0

0 0 0

 . (8.15)

This gives for rotation invariant acceleration the same forms (8.12)–(8.13) as for n = 2,

and for the rotation invariant feature flow field we have

f r =


−det(uyr,uzr,ut)

det(uzr,ut,uxr)

−det(ut,uxr,uyr)

det(uxr,uyr,uzr)

, fr =
1

det(uxr,uyr,uzr)

−det(uyr,uzr,ut)

det(uzr,ut,uxr)

−det(ut,uxr,uyr)

.

Fig. 8.5 illustrates the setups for 2D and 3D.
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8.2. Rotation Invariant Vortex Measures

We can now propose particular rotation invariant vortex measures by inserting Jr in

the respective definitions of the previously Galilean invariant measures.

8.2.1. Rotation Invariant Cores of Swirling Particle Motion

For n = 2, any condition of (6.7) gives Galilean invariant cores of swirling particle

motion. For rotation invariant cores of swirling particle motion we propose any of the

following equivalent conditions:

ar = 0 ⇔ u− fr = 0 ⇔ f r ‖ p ⇔ Jr p ‖ p. (8.16)

For n = 3, the Galilean invariant conditions are in (6.8). In addition to this, we propose

a new Galilean invariant vortex measure (which we already mentioned in Eq. (6.9)):

∇(u− f) · (u− f) ‖ (u− f), (8.17)

i.e., we apply Sujudi-Haimes to u− f . In case of vortices moving along an equal-speed

translation, we can assume ∇f = 0, meaning that (6.8) and (8.17) show the same

vortices. However, in the rotation invariant case, (8.17) performs better, as shown later

in Section 8.4. We propose

∇(u− fr) · (u− fr) ‖ (u− fr) (8.18)

for rotation invariant cores of swirling particle motion.

8.2.2. Rotation Invariant Region-based Methods

For the definition of rotation invariant region-based measures, we consider the decom-

position of the rotation invariant Jacobian

Jr = Sr + Ωr (8.19)

into the rate-of-strain tensor Sr = 1
2(Jr + JT

r ) and the vorticity tensor Ωr = 1
2(Jr − JT

r ).

Following [JH95], we define the rotation invariant λ2r criterion by considering the

second-largest eigenvalue of S2
r + Ω2

r :

λ2r = λ2(S2
r + Ω2

r) < 0. (8.20)

Similarly, we follow [Hun87] and define the rotation invariant Qr criterion

Qr =
1

2

(
‖Ωr‖2 − ‖Sr‖2

)
> 0, (8.21)

which characterizes vortices as regions in which the Euclidean norm of the rotation

invariant vorticity tensor dominates that of the rotation invariant rate-of-strain tensor.
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8.3. On the Construction of Test Data

In the previous section, we added rotation invariant extractors to the tool box of local

vortex extraction methods. In order to create test data, it is useful to understand, which

options we have to construct rotating vector fields from a steady vector field.

Slice-by-Slice Rotation. The first construction method is to linearly rotate the steady

vector field slice-by-slice, i.e, rotate both coordinates and vectors for each time slice

individually. Here, the reference frame remains fixed, i.e., we watch the flow rotate

from an outside perspective. Essentially, this approach rotates the streamlines of the

vector field. Imagine a LIC slice rotating over time around the normal of the slice.

The streamline vortices remain visible on the LIC slice, i.e., streamline cores are not

vanishing. Observing rotating streamlines makes sense for instantaneous vector fields

such as magnetic fields. In those, the methods of Bauer and Peikert [BP02], and Theisel

et al. [TSW∗05] can be used to extract the corelines.

Adding a Center. A different approach is to add a center with a certain angular velocity

to a steady field. Here, the reference frame rotates with the angular velocity of the center.

Thus, in this frame, the flow appears to be steady. Note that adding a center to a steady

vector field might cancel out weak vortices (depending on the rotation direction and

strength). The vortices that are visible in the rotating frame, i.e., the (near-)steady flow,

are pathline cores (PC), and since we add a center they might cancel out.

It is important to note that slice-by-slice rotation and adding of a center result in the

same rotating flow, but in different reference frames. In fact, we can convert between

the two using Eqs. (6.4) and (6.5), by using Eq. (8.1) or (8.2) for 2D or 3D, respectively.

This means, if we prescribe streamline cores (SC), i.e., add a center in the rotating

frame, we might lose pathline cores (PC).

Moving Rotationally Symmetric Flows. For rotationally symmetric flows the slice-by-

slice rotation is similarly achieved by simply moving the flow on a circle, as the rotation

is freely selectable. The BEADS flow reported by Wiebel et al. [WCW∗09], for instance,

was approximated in Weinkauf et al. [WT10a] as a focus sink moving on a circle. Then,

the streamline coreline tracks the location of the sink. Pathline cores, however, rotate

around a different center. In fact, the analogous streamline core approach of adding a

center in the rotating frame, gives us already a hint. Since cores can be canceled out

due to addition of the center, pathline cores cannot be the same as streamline cores.

All three aforementioned approaches have in common that they construct a vector

field by prescribing a rotation on the streamlines.
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Linearly Rotate Reference Frame. For the fourth method, we let the given steady flow

be our flow in the rotating reference frame, and we transform the vector field into the

fixed reference frame, without adding a center. Therefore, this fourth approach must

lead to a different unsteady flow than the three methods described before. As here no

center was added in the rotating frame, the pathline cores remain visible and are not

vanishing. Instead, streamline cores might vanish. Previously, no local method existed

that was able to find the pathline core in rotating flows. In both unsteady flows (SC and

PC) our rotation invariant extractor delivers the correct pathline cores, regardless of

the chosen reference frame.

8.4. Results

In the following, we demonstrate the rotation invariant vortex measures. We use several

synthetic data sets and study two real-world flows.

Beads. The BEADS FLOW was reported by Wiebel et al. [WCW∗09] and has previously

been among the most challenging benchmarks for vortex extraction. An analytic

approximation to it was given in [WT10a]:

u(x, y, t) =

(
−(y − 1

3 sin(t))− (x− 1
3 cos(t))

(x− 1
3 cos(t))− (y − 1

3 sin(t))

)
. (8.22)

The flow is defined in the domain D×T = [−2, 2]2×[0, 2π]. Previously, all local vortex

extractors failed and only integration-based methods could find the solution [WT10a],

such as particle density estimation [WCW∗09] or cores of swirling streaklines [WT10a].

As shown in Fig. 8.6a, our rotation invariant method is the first local method that finds

the correct coreline, which was identified by Weinkauf et al. [WT10a] as the pathline

x(t) = 1
3(sin(t) + cos(t), − cos(t) + sin(t))T.

We go a step further and consider a modification of the BEADS FLOW that cannot be

handled by integration-based particle density estimation, as it is divergence-free. Thus,

neither standard local nor integration-based methods are applicable. That is, a center

moving on a circle:

u(x, y, t) =

(
−2y + 2

3 sin(t)

2x− 2
3 cos(t)

)
, (8.23)

again defined in the domain D×T = [−2, 2]2×[0, 2π]. Fig. 8.6b depicts the rotation

invariant coreline and swirling pathlines as context, showing that our method delivers

correct results in this data set, too. Here, the correct coreline is the pathline x(t) =
2
3(cos(t), sin(t))T.
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8.4. Results

(a) Standard Beads flow. (b) Divergence-free Beads flow.

(c) Galilean invariant

coreline with pathlines.

(d) Rotation invariant

coreline with pathlines.

(e) Images (c) and (d)

shown together.

Figure 8.6.: Local corelines in the standard BEADS flow in (a), and its divergence-

free version in (b), both visualized in space-time where time denotes the vertical

axis. Images (c)–(e) show close-ups of (b), with pathline seeds depicted by colored

spheres. Green corelines are obtained by the Galilean invariant cores of swirling

particle motion (wrong result), whereas blue corelines are computed with our rotation

invariant extension (correct result). In image (b)–(e), pathlines are seeded on extracted

corelines, showing that green pathlines (seeded at Galilean invariant coreline) spiral

away, whereas blue pathlines stay at the rotation invariant coreline.
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Four Rotating 2D Centers. The FOUR CENTERS (SC) data set is based on the scalar

field

s(x, y) = 3x y · e−x2−y2 (8.24)

and is defined in the domain D = [−2, 2]2. Its co-gradient vector field contains four

centers. The abbreviation SC stems from streamline core, as we construct the unsteady

flow by rotation of the streamlines, which prescribes the location of the streamline

cores. That is, over time, we slice-by-slice rotate the underlying scalar field around

x0 = 0, considering it in the temporal domain T = [0, 2π]:

u(x, y, t) =

(
∂
∂ys(x

′, y′)

− ∂
∂xs(x

′, y′)

)
(8.25)

with

(
x′

y′

)
=

(
cos(t) sin(t)

− sin(t) cos(t)

) (
x

y

)
. Equivalently, the flow can be constructed by

adding a center with the angular velocity of the above rotation, and transforming the

flow using Eqs. (6.5) and (8.1) from the rotating reference frame into the fixed reference

frame. While the steady field contains four streamline vortex corelines, the rotating

system exhibits only two pathline cores, as shown in Fig. 8.7. This cancellation of cores

is due to the addition of the center in the analogous flow in the rotating reference

frame. We use this flow to demonstrate the rotation invariance of our method in

Fig. 8.8. A direct application of Galilean invariant pathline cores [WSTH07] (which

are for 2D unsteady flows identical to Sujudi-Haimes [SH95] in space-time), as in

Figure 8.7.: Space-time visualization of the 2D unsteady FOUR CENTERS (SC) flow, with

the camera viewing along the time axis and gray pathlines as context. Green corelines

are obtained by cores of swirling motion, the blue corelines are their rotation invariant

counterparts. As visible by the green and blue pathlines, only rotation invariant cores

exhibit swirling motion in their vicinity.
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8.4. Results

(a) Galilean invariant pathline cores (original ref-

erence frame)

(b) Galilean invariant pathline cores (modified

reference frame)

(c) Rotation invariant pathline cores (original ref-

erence frame)

(d) Rotation invariant pathline cores (modified

reference frame)

Figure 8.8.: The 2D unsteady FOUR CENTERS (SC) flow in space-time. Direct application

of (Galilean invariant) pathline cores [WSTH07] in (a) does not reveal the correct

corelines. It does produce correct corelines after an appropriate change of the reference

frame (b). Our rotation invariant pathline cores in (c) and (d) find the centers of swirling

motion in rotating systems regardless of the reference frame.

153



8. Rotation Invariant Vortices for Flow Visualization

Fig. 8.8a does not find the correct rotation centers, as shown by green pathlines leaving

the coreline. In this data set, a prior change to an appropriate reference frame, as in

Fig. 8.8b, removes the rotational movement, making Galilean invariant pathline cores

applicable. In this chapter, we extend existing Galilean invariant vortex core extractors

to become rotation invariant, which extracts the correct rotation centers, regardless of

the reference frame, see Figs. 8.8c and 8.8d.

Next, we construct another unsteady vector field named FOUR CENTERS (PC) by pre-

scribing the flow in the rotating frame as:

w(x̂, ŷ, t) =

(
−x̂ · e−x̂2−ŷ2(2ŷ2 − 1)

ŷ · e−x̂2−ŷ2(2x̂2 − 1)

)
(8.26)

with coordinates in the rotating frame (x̂, ŷ)T = g(x, t) and rotate it using Eqs. (6.5) and

(8.1) with ω = 1 and ω0 = 0 into the fixed frame. With this, we prescribe the rotation of

pathline cores (PC). In the fixed frame, the centers vanish, as visible in Fig. 8.9 (left).

This time, we find four rotation invariant pathline cores, but only two (wrong) cores

with the Galilean invariant counterpart. Our rotation invariant coreline extraction

finds the correct cores of swirling pathlines in both unsteady flows (SC) and (PC).

Next, we compare the Galilean invariant region-based vortex criteria λ2 and Q with

their rotation invariant versions λ2r and Qr in the flow with prescribed pathline cores

Figure 8.9.: FOUR CENTERS (PC) flow with prescribed centers in the rotating reference

frame in space-time. In the fixed reference frame (left), the four centers partly vanished.

Corelines were extracted in the fixed reference frame. The right image shows a LIC slice

of the rotating frame, displaying the four centers.
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Figure 8.10.: Region-based methods in the FOUR CENTERS flow in space-time. Left:

Overview image. Top right: Galilean invariant methods (two cores). Bottom right:

Rotation invariant methods (four cores). Opaque isosurfaces show λ2 (top) and λ2r

(bottom) and transparent isosurfaces depict Q (top) and Qr (bottom). Here, Q and λ2

deliver similar results. The same applies for Qr and λ2r.

(PC), i.e., we know that there are four vortices to expect. Fig. 8.10 (left) shows an

overview of the methods, containing Galilean invariant pathline cores (green), rotation

invariant pathline cores (blue), Galilean invariant region-based methods (red) and rota-

tion invariant region-based methods (yellow). The top right image shows the Galilean

invariant techniques, which detect only two cores. The green pathlines spiral away

from the vortex corelines, showing that the classic Galilean invariant method delivers

incorrect results. The bottom right image shows our rotation invariant extensions,

which extract four vortex cores, as expected. The blue pathlines show that the rotation

invariant vortex coreline is indeed the correct coreline.

Two Spiraling 2D Centers. A major strength of rotation invariance is that the angular

speed of the underlying rotation must not be known in advance to obtain accurate

extraction results. This is very helpful for non-linear rotations, in which the underlying
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Figure 8.11.: TWO SPIRALING CENTERS in space-time with their center positions pre-

scribed in the rotating reference frame. The left image visualizes the fixed reference

frame, which was used to extract the corelines shown on the right. In the right image,

pathlines were released from the corelines, and a LIC slice of the rotating reference

frame is shown, displaying the two centers.

rotation is unknown or difficult to describe. An example is a system in which the

angular speed decays or increases with distance to the center of rotation. We built a

synthetic test data set to demonstrate such situation. We place centers at (1, 0)T and

(2, 0)T in the rotating reference frame:

w(x̂, ŷ, t) =

(
−2ŷ

4x̂3 − 18x̂2 + 26x̂− 12

)
(8.27)

with coordinates in the rotating frame (x̂, ŷ)T = g(x, t) and transform it using Eqs. (6.5)

and (8.1) with ω = 0.3(x2 + y2) and ω0 = 0 into the fixed reference frame. We consider

the flow in the domain D × T = [−2.5, 2.5]2 × [−π, π], as shown in Fig. 8.11. Note that

in this flow the distance of a particle to the center of rotation remains constant, and

thus a particle’s angular speed does not change. It can be seen that with lower angular

speed (closer to the global rotation center) the difference to cores of swirling particle

motion becomes smaller, as the vector field is more steady, i.e., the temporal derivative
du
dt is smaller. As shown by the pathlines, our rotation invariant method accurately

extracts the vortex cores of swirling pathlines.

Rotating 3D Center. In the following, we construct a time-dependent 3D vector

field. At time t = 0, it contains a center with its coreline through the points (1, 0, 0)T

and (0, 1, 1)T. (At t = 0, this coreline can be found using Sujudi-Haimes.) Over
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time, we rotate the center globally slice-by-slice around the z-axis, i.e., x0 = 0 and

n = (0, 0, 1)T. The resulting field in a fixed reference frame is defined in the domain

D × T = [−5, 5]3 × [0, 2π] as:

u(x, y, z, t) =


√

3
3 (z cos(t) + z sin(t)− cos(t)− y)
√

3
3 (z cos(t)− z sin(t) + sin(t) + x)

−
√

3
3 (x cos(t) + y cos(t) + x sin(t)− y sin(t)− 2)


Fig. 8.12 depicts the rotating center and the vortex corelines therein. In Fig. 8.12a a

streamline core is shown for t = 1 with pathlines seeded at the coreline and integrated

up to t = 4. Similarly, Fig. 8.12b contains the streamline core of t = 4, with backwards

integrated pathlines to t = 1. Comparing both, we see that pathlines seeded from

one coreline do not reach the other coreline. Thus, the traced particles have not

been seeded at a true vortex core. A direct extension of cores of swirling particle

motion [WSTH07] does not result in the correct corelines, as shown in Fig. 8.12c. With

our proposed generalization (8.18), the rotation invariant pathline cores can be found.

This is demonstrated by the pathline ribbons that were seeded on one coreline and

have reached the other. Further, their twist shows the swirling behavior of nearby

particles. Note that this vector field has no Galilean invariant pathline cores, since

det(J) = 0.

Centrifugal Pump. Our first real-world data set was subject of the IEEE Visualization

Contest 2011. The data is courtesy of the Institute of Applied Mechanics, Clausthal

University, Germany and was made available by Dipl. Wirtsch.-Ing. Andreas Lucius.

We consider an unsteady 2D slice (z = 0.01) of the simulated flow based on the DES

turbulence model, which is already provided in a rotating reference frame. Common

practice is to track vortices in a reference frame rotating with the angular velocity of

the blades. As we will show, this rotating frame is not ideal as the vortices are moving in

the blank areas between the blades. In fact, our rotation invariant extractor finds cores

of better quality. Fig. 8.13a depicts cores of swirling particle motion and our rotation

invariant pathline cores.

In the following, we explain how we evaluate the quality of the extracted corelines.

Unfortunately, there is no ground truth location, since there is no universal vortex

measure that can be considered best. There is, however, a rather commonly desired

coreline property: Corelines should ideally be pathlines, since they would then rep-

resent particles that other particles swirl around, and hence, we get cores of swirling

particle motion. We measure this property by the tangent alignment with the flow. We

define the tangent alignment τc(t) of a coreline c(t) as a scalar line attribute that is

defined as the absolute value of the dot product between (space-time) vector field p
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(a) Streamline core by Sujudi-Haimes at t = 1,

streamlines in background.

(b) Streamline core by Sujudi-Haimes at t = 4,

streamlines in background.

(c) A direct extension of [WSTH07], i.e., Jr(u−fr) ‖
(u− fr) is incorrect.

(d) Our correct rotation invariant pathline cores at

t = 1 and t = 4.

Figure 8.12.: Vortex cores in the ROTATING CENTER flow, with pathlines starting or

ending at the corelines. Figs. (a) and (b) depict the flow at two instantaneous time steps,

with streamlines in the background. A direct extension of cores of swirling particle

motion yields wrong results (c). Image (d) shows the rotation invariant pathline cores

at t = 1 (dark blue) and t = 4 (dark purple). Pathline ribbons from t = 1...4 connect

the two corelines, showing both the coreline’s movement path and the rotational

movement of particles by the ribbon twist.

and the tangent of the space-time coreline c(t) =

(
c(t)

t

)
(both normalized):

τc(t) =

∣∣∣∣ p(c(t), t)

‖p(c(t), t)‖
· dc(t)/dt

‖dc(t)/dt‖

∣∣∣∣ . (8.28)
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(a) Galilean (green) and rotation invariant

(blue) cores.

(b) Galilean (green) and rotation invar. (blue) cores.

(c) Galilean invariant - Tangent alignment (d) Galilean invariant - Tangent alignment

(e) Rotation invariant - Tangent alignment (f) Rotation invariant - Tangent alignment

0.93
(good)

0.83
(bad)

Figure 8.13.: Vortex cores of a CENTRIFUGAL PUMP in a rotating reference frame in space-

time. While Galilean and rotation invariant cores are similar (a), the Galilean invariant

cores (c) have poorer tangent alignment than our rotation invariant counterpart (e).

The right column shows a close-up of the region highlighted in (a).
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(a) isosurfaces λ2 = −60 and λ2r = −60 (b) isosurfaces Q = 40 and Qr = 40

Figure 8.14.: Region-based techniques in the ROTATING MIXER data set. Backfaces

of the red isosurfaces depict the standard Galilean invariant λ2 and Q criteria. The

frontfaces of blue isosurfaces show our rotation invariant counterparts λ2r and Qr.

As visible in Fig. 8.13c, Galilean invariant cores of swirling particle motion have a poorer

tangent alignment than our rotation invariant pathline cores, shown in Fig. 8.13e.

Rotating Mixer. Our second real-world data set features a rotating mixer, which was

provided by Gábor Janiga, who is with the Institute of Fluid Dynamics and Thermo-

dynamics, University of Magdeburg, Germany. This vector field is given in a fixed

reference frame. Fig. 8.14 displays isosurfaces of the λ2, Q, λ2r and Qr criteria, for

the time step t = 0.004. The left image shows Galilean invariant (red) and rotation

invariant (blue) isosurfaces for λ2 = −60 and λ2r = −60, respectively. With the Q

criterion we examined very similar results for Q = 60 and Qr = 60. The right image

depicts Galilean invariant (red) and rotation invariant (blue) isosurfaces for Q = 40

and Qr = 40. Similarly, λ2 = −40 and λ2r = −40 give similar results. For such tur-

bulent real-world flows a ground truth is unknown, and thus it is hard to quantify

which vortex extraction method works better. We observed that Galilean invariant and

rotation invariant surfaces differed only slightly in their strength (isovalue). We found

the largest differences in the proximity of the mixer geometry. Apparently, those areas

are more influenced by rotating motion. The cylindrical mixer geometry itself becomes

apparent too, but is largely a boundary artifact.
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8.5. Implementation and Evaluation

Next, we provide details on the coreline extraction and elaborate on the performance.

8.5.1. Coreline Extraction and Filtering

As shown earlier, our rotation invariant corelines are expressed by the parallel vectors

operator. Peikert and Roth [PR99] explained several methods for PV extraction, which

can be applied here. For all examples shown in the chapter, we used the parallel

vectors implementation of the visualization toolkit Amira [SWH05b]. The computation

involves the setup of the vector fields to test for parallelism and a prior test for presence

of complex eigenvalues in the rotation invariant Jacobian Jr, which is a necessary

swirling condition. After extraction, a tangent alignment filter using Eq. (8.28) is applied

to remove lines that are not tangential enough to the flow, followed by subsequent

joining of close line segments to fill gaps and a final thresholding of lines by length to

remove the remaining noise. All these filter steps are considered as standard procedure

in local coreline extraction methods. There are a number of alternatives for closed PV

line extraction including the curve-following predictor-corrector method of Peikert

and Roth [PR99], the PVsolve algorithm of van Gelder and Pang [VGP09], the use of

stable feature flow fields as in Weinkauf et al. [WTGP11], or the extractor of Pagot

et al. [POS∗11] for higher-order data. For cell-based extractions, Ju et al. [JCWD14]

recently proposed a robust parity test to determine the number of PV points per cell

face.

8.5.2. Performance

Our modifications to enable rotation invariance are only local and rapidly computed.

They are much faster compared to the actual parallel vectors extraction in the line-

based techniques and the computation of eigenvalues in the region-based techniques.

Thus, the performance is very similar to standard Galilean invariant techniques. Space-

time grid sizes and extraction times are shown in Table 8.1 for our rotation invariant

pathline cores. The timings are measured on a system with an Intel Core i7-2600K CPU

with 3.4 GHz and 24 GB RAM. The computation time linearly depends on the number

of voxels with complex-conjugate eigenvalues in the Jacobian. For instance, in the

FOUR CENTERS (SC) flow more voxels could be skipped than in the BEADS flows, due

to the prior test for swirling behavior. Timings for the region-based techniques are

shown in Table 8.2. As the Qr criterion comes almost for free with the computation of

λ2r becauseQr = −1
2(λ1r +λ2r +λ3r), we list combined timings, i.e., the time required

to compute the eigenvalues and from those λ2r and Qr.
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Data set Grid size Extraction time

BEADS (STD) 64× 64× 64 20.7 sec.

BEADS (DIV.-FREE) 64× 64× 64 20.9 sec.

FOUR CENTERS (SC) 64× 64× 64 4.5 sec.

FOUR CENTERS (PC) 128× 128× 128 55.2 sec.

SPIRALING CENTERS 128× 128× 128 55.6 sec.

ROTATING CENTER 64× 64× 64 20.2 sec.

CENTRIFUGAL PUMP 512× 512× 80 7.5 min.

Table 8.1.: Total computation time of rotation invariant pathline cores.

Data set Grid size Extraction time

ROTATING MIXER 256× 256× 128 36.5 sec.

FOUR CENTERS (PC) 256× 256× 256 2.3 min.

Table 8.2.: Total computation time of rotation invariant λ2r and Qr.

8.6. Discussion and Limitations

Simplicity: Our technique to compute rotation invariant vortices is extremely simple:

just add a closed form matrix to the Jacobian and feed the vortex extractor with it.

There is virtually no computation overhead or performance and accuracy drop in

comparison to the original methods.

Relation to objective vortices: Clearly, an objective vortex is also rotation invariant:

objectivity is a much stronger property than rotation invariance. However, existing

objective vortex measures can be “too strong” to find expected vortices in a standard

data set. An example can be found in [Sah09], where the Mz criterion of [Hal05] is

applied to a cylinder flow: the objective Mz does not detect the typical von Kármán

vortex street behind the cylinder. In particular, we are not aware of an objective

measure that detects the correct vortex in the divergence-free BEADS data set.

Restriction to rotating flows: Our technique makes only sense for flows that are

induced by a rotating movement around an axis. We think that this class of flows is large

enough to make our approach relevant. Note that moving the rotation center/axis to

infinity lets Jr converge to J and therefore converges to a Galilean invariant technique.

Another issue is that for our technique one must know the location of the rotation

point/axis. We do not consider this as a strong restriction because this information

usually comes with the data set.
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No Galilean invariance: We stress again that our technique is not Galilean invariant

anymore. We argue that, for the data considered here, rotation invariance is more

important than Galilean invariance. The better vortex structures shown in this chapter

confirm this assumption.

8.7. Summary

In this chapter, we made the following contributions:

• We identified rotation invariance as desirable property for vortex measures in

flows that are induced by rotating parts.

• We gave a formal definition of rotation invariance.

• We have shown an extremely simple way to transform a Galilean invariant mea-

sure to a rotation invariant one: we simply have to add a closed form matrix to

the Jacobian and feed the vortex extractor with it.

• We proposed rotation invariant versions of cores of swirling particle motion, λ2

and Q.

• We have applied them to a number of data sets, showing that our technique gives

better vortices than the Galilean invariant measures. In particular, our technique

is – to the best of our knowledge – the first local method that finds the exact core

in the standard and divergence-free BEADS flow.

• For n = 3, we proposed a slight variation of the cores of swirling particle motion

[WSTH07] in (8.17). In fact, we propose to apply Sujudi-Haimes on u− f . While

this does not affect the results in the Galilean invariant case, it improves the

results for the rotation invariant case.

This concludes the second part of the thesis. We now move on to the visualization of

finite-sized objects carried with flows. In this context, vortices will play a roll later on.
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9
Chapter 9.

Overview on Inertial Particles

The third part of this thesis focuses on the visualization of finite-sized particle dynamics.

Finite-sized particles are commonly referred to as mass-dependent or inertial particles

and they are used to model the motion of finite-sized objects in fluids. In this chapter,

we start with an introduction into inertial particles, which is compiled from our pre-

viously published work [GKKT13, GT14, GT15, GT16a, GT16b]. Our mass-dependent

particle studies include geometry-based techniques (Chapter 10), the visualization of

mass separation (Chapter 11), the study of inertial steady vector field topology in 2D

(Chapter 12), a novel approach to the source inversion problem (Chapter 13) and the

extraction of inertial vortices (Chapter 14).

9.1. Introduction to Inertial Particles

Particle-based flow visualization has a long tradition in experimental and computa-

tional fluid dynamics, cf. McLoughlin et al. [MLP∗10]. So far, the flow visualization

literature only used massless particles, since the tangent of their trajectory directly

Figure 9.1.: Massless (•)
and inertial (•) particle

trajectories.

correlates to the velocity direction in the vector field, mak-

ing massless particles a meaningful tool to visualize the

vector field, see Fig. 9.1(•) for example. However, in many

applications, the mass of transported particles, and result-

ing inertia, has critical impact to observable phenomena

and are yet inaccessible by the previous methods. The

consideration of particle mass has fundamental implica-

tions on the numerical integration process, as a number of

forces acts on finite-size particles in viscous fluids. These

additional forces cause trajectories to be no longer tangen-

tial to the flow, as demonstrated in Fig. 9.1(•). The CFD
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literature gives strong evidence that inertial particle dynamics vary considerably from

the infinitesimal dynamics [OOG08, HS08]. The motion of solid inertial particles in gas

or fluid flows is an important field of research, since they are involved in numerous

scientific and industrial applications, such as sand saltation modeling [SL99], soil-

ing of cars [RSBE01], visual obscuration in helicopter landing maneuvers [KGRK14],

formation of rain [Bor11], jellyfish feeding [PD09], plant spores and pathogens car-

ried by atmospheric flow [BH02], fuel injectors transporting droplets at supersonic

speeds [MTP∗02] and observations of charged particles in magnetic fields [BZ89]. Mass-

less particles have been studied by the flow visualization community for decades, which

created a rich pool of concepts that we can draw on to develop new visualizations that

facilitate the assessment of inertial particle dynamics.

9.1.1. Inertial Equations of Motion

The trajectories of inertial particles are determined by their underlying equations of

motion. Typically, they involve a number of forces that act on the particles, such as the

force exerted by the flow itself, buoyancy, Stokes drag, the force exerted due to the mass

of the fluid moving with the particle and the Basset-Boussinesq memory term, cf. Haller

and Sapsis [HS08]. Today’s most accepted form of these forces was described by Maxey

and Riley [MR83] for small rigid spherical particles. The properties of the solutions to

their equations of motion and the history of its corrections were recently documented

by Farazmand and Haller [FH15]. Depending on the application, several assumptions

can be made that simplify the equations of motion considerably. For the examples

given throughout the thesis, we assume particles to be spherical and very small in size,

which allows to assume Stokes flow due to the small particle Reynolds number. Also,

the particle density is assumed to be far higher than the density of the surrounding

fluid, which allows to neglect buoyancy. Further assuming dilute flow, the particle

motion is dominated by drag forces, rather than particle-particle collision. Thus, we

neglect collision handling and particle rotation, and assume one-way coupling, i.e.,

the particles do not affect the surrounding fluid. These simplifications are common

and were used for instance in [SGL10, PSGC11a, KGRK14, CGP∗10, BBC∗09, BBC∗11,

SKK∗15].

According to Crowe et al. [CST98], they lead to the following equations of motion:

dx

dt
= v(t) with x(0) = x0 (9.1)

dv

dt
=

u(x(t), t)− v(t)

r
+ g with v(0) = v0 (9.2)

where u(x , t) is a time-dependent flow field, v is the current particle velocity, g is an

(optional) gravity vector, x0 and v0 are the initial particle position and velocity, and
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r is the particle response time1. The influence of the particle’s mass on its trajectory

is manifested in this response time r. For spherical particles in Stokes-type flows the

response time r is characterized by the diameter dp and density ρp of the particle, as

well as the viscosity µ of the surrounding fluid (cf. Crowe et al. [CST98]):

r =
d2
p ρp

18µ
(9.3)

Figuratively spoken, the response time is the time required for a particle released from

rest in a gravity-free environment to acquire 63% of the velocity of the carrying fluid,

cf. [CST98]. Note that these equations of motion hold for dp � ηk, with ηk being the

Kolmogorov length scale, i.e., the length scale of the smallest turbulent motion2. In the

following, we speak at times of mass and particle diameter, rather than referring to the

more general quantity response time, since mass and diameter are more accessible. All

three directly relate to each other, since particle density and viscosity are kept constant.

The equations of motion (9.1) and (9.2) can be rendered autonomous by making

particle position x, particle velocity v and time t state variables:

d

dt

x

v

t

 =

 v
u(x,t)−v

r + g

1

 with

x

v

t

 (0) =

x0

v0

t0

 (9.5)

Viewing the problem in phase space, the state variables on the left hand side are the

attributes stored per particle, i.e., position x, velocity v and time t. Trajectories of

inertial particles appear as phase lines, which are in fact tangent curves of the higher-

dimensional vector field on the right hand side. Occasionally, we will refer to this

higher-dimensional phase space as the spatio-velocity(-time) domain.

An alternative approach to the modeling of inertial particle motion is to add the

material derivative Du/Dt of the fluid to the particle equations in order to indirectly

model gravity (and/or buoyancy) as external force. Thereby, fluid motion (in Eulerian

frame) and particle motion (in Lagrangian frame) are made consistent, cf. Benzi et al.

[BBC∗09]. As we later synthetically alter the gravity to generate new test cases (without

recomputing the fluid flow), we use equations of particle motion that model gravity

explicitly [CST98]. This method is simpler in its modeling, but holds for the given

1In the fluid dynamics literature the particle response time is usually named τp, but to avoid confusions

with the integration duration, we rename it to r.
2 By means of the large scale flow features U and L, the Kolmogorov length scale can be estimated

as [Pop00]:

ηk ≈
(
ν3 L

U3

)1/4

, (9.4)

with U being the average speed of the flow, L being the length scale (domain size), and ν being the

kinematic viscosity, here always assumed for air ν = 1.51 · 10−5m2

s
.
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assumptions. Another approach is the explicit consideration of buoyancy to model

both aerosols and bubbles [HS08].

For further reading, we recommend a recent report on experimental and compu-

tational fluid dynamics of inertial particles in turbulent fluids by Balachandar and

Eaton [BE10]. Of interest in the inertial fluid dynamics literature are problems such

as direct numerical simulations of jets [PSGC11a], stirring of sand during helicopter

maneuvers [SGL10], comparisons between experimentally determined and simulated

trajectories [OOG08] (depicted by Euclidean distances over time), energy dissipation

along trajectories [BBC∗09], or the effects of inertial particles on the underlying flow

(two-way coupling) [PSGC11b, TAB15]. The effect of inertia, resulting from finite-sized

particles, has been studied by Cartwright et al. [CFK∗10]. The motion dynamics of dust

particles with mass in vortical flows has been analyzed by Angilella [Ang10].

9.1.2. Relation to Massless Particles

Inertial particles are not used to explore the properties of a vector field, but to assess

the motion of inertial objects therein. Massless particles, on the other hand, are used

for the visualization of the underlying vector field, as their trajectory is tangential

to the flow. When approaching zero response time r → 0, the inertial equations of

motion approach the massless case. This is shown by rearranging Eq. (9.2) for v and

substituting in Eq. 9.1, which yields in the limit tangent curves of u:

lim
r→0

dx

dt
= u(x(t), t)−rdv

dt
+ r g︸ ︷︷ ︸

0

. (9.6)

Further, a common measure for the inertia of particles is the Stokes number Sk:

Sk = r/rη, (9.7)

with rη being the Kolmogorov time scale [LMC92]. Particles with very low Stokes

numbers (Sk � 1) are known to follow pathlines of the flow closely. As shown in

Eq. (9.7), the Stokes number Sk is proportional to the particle response time r, thus

if the response time approaches zero due to zero mass a massless particle follows a

pathline.

However, the smaller the response time becomes, the more numerical problems occur,

since Eq. (9.5) contains a division by the response time. During integration with step

size h the error in the position evolves at rate O(h), while the error in the velocity

evolves at O(h/r), cf. [HS08]. Thus, for very small particles (r � 1), the error in the

velocity becomes very high. For this reason, an adaptive higher-order Runge-Kutta

integration is recommended that controls the error in the spatio-velocity domain (not
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only in space). This so-called singular perturbation problem can be avoided by scaling

the time step, cf. Haller and Sapsis [HS08]: Assuming, a very small response time

r = ε� 1. The usual approach to integrate Eq. (9.5) is to use:

d

dt

x

v

t

 =

 ε v

u(x, t)− v + ε g

ε

 . (9.8)

Thereby, the integration of an inertial path can be very expensive due to the potentially

small step size. In the practical use, the difference to massless trajectories becomes ne-

glectable for very small particles. Thus, at some point (depending on particle diameter,

particle density and viscosity), massless trajectories can be used instead.

9.2. Challenges with Inertial Particles

In the following, we explain several challenges that arise in the context of inertial

particle visualization. In the subsequent chapters, we elaborate on these problems and

present our solutions.

9.2.1. Inertial Integral Geometry

The equations of motion that define the behavior of the particles need to be modeled

according to the assumptions that can be made in the respective application. Conse-

quentially, different particle models were established as standards in certain CFD areas,

making each application unique. In order to generalize this, we introduce a unified

visualization framework for the geometry-based analysis of mass-dependent particles.

The framework provides the following contributions:

• A unified description of mass-dependent particle trajectories independent of the

application case, i.e., mass-dependent pathlines.

• In order to reveal temporal and spatial coherent structures, we derive mass-

dependent streaklines and timelines.

• To analyze the influence of the mass on the trajectories, a new class of integral

lines is introduced, called masslines.

The applications of mass-dependent particle visualizations are numerous and of great

importance, e.g., in understanding particle separation due to density variations (for

instance by hydrocyclones), or the analysis of the aerodynamics around a helicopter

close to the ground, which will be the primary example in Chapter 10.
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9.2.2. Mass Separation

Among the many unresolved problems that center around inertial particles is the

search for an effective visualization of the differences between inertial particle trajecto-

ries, for instance to locate regions in which massless trajectories are similar enough

to fall back on standard techniques. In the context of this work, the term compara-

tive visualization comprises both the qualitative and quantitative comparison with

reference particles, as well as the detection of critical masses that cause a separation of

differently sized inertial particles. The latter plays a major role in rotorcraft engineer-

ing [SGL10], as sand particles dragged into a rotor disk cause mechanical wear and

entrain further particles when being convected to the sediment bed, which severely

hinders the pilot’s view. For quantitative comparisons, common practice is to plot the

Euclidean distance between differently sized inertial particles over time [Bor11], which

however, suffers from occlusion and is unaware of the behavior of particle sizes in-

between. Up until now, it was not possible to effectively explore where mass separation

occurs, how distinct it is and which masses are separating. The difficulty of quantifying

trajectory differences and the integration-based nature of separation detection make

these problems challenging. We devote Chapter 11 to this problem.

9.2.3. Inertial Steady 2D Vector Field Topology

The motion of inertial particles is governed by an ODE, and their asymptotic behavior

depends on the initial conditions, i.e., initial position (2D) and initial velocity (2D).

Visualizing the possible outcome of any initial condition (4D) and understanding sepa-

ratrices that divide the 4D spatio-velocity domain into compartments of homogeneous

asymptotic inertial flow behavior are challenging tasks. Further, many concepts of

vector field topology rely on the ability to integrate particles backwards. Extending

these concepts to the inertial case is in part challenging, since inertial backward inte-

gration toward critical points exhibits a strong repelling behavior [HS08]. We explain

this phenomenon in Chapter 12 by the use of differential vector field topology. Further,

we devise a glyph that visualizes the asymptotic behavior of inertial particles that start

with variable initial velocity.

9.2.4. Source Inversion in Inertial Flows

Even though inertial particle motion is theoretically well-defined by an ODE, inertial

backward integration is problematic in practice. Given an observation from which

a backward integration is started, the recovered initial position and velocity of the

inertial particle heavily depend on the observed velocity that we started with. In
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fact, a slight change leads to a completely different initial position, and most often

the recovered initial velocity is extremely high and therefore implausible. Exploring

different observed velocities until a plausible source is recovered is therefore a very

tedious and impractical task. In Chapter 13, we address this problem. Instead of

prescribing the observed position and the observed velocity, the idea of our approach

is to prescribe the observed position and an initial velocity: we assume that particles

can start from any spatial location but with a fixed initial velocity. Then, the set of

possible initial positions that lead to the observation form a curve, which we extract as

tangent curve of a derived vector field.

9.2.5. Inertial Vortex Cores

Another powerful concept from tradition flow visualization that we can draw on is

the extraction of vortices. Vortices are among the most interesting structures in fluid

flows, and frequently they are visually analyzed. In Section 6.4.2, we already discussion

local and integration-based vortex extraction methods. Both classes extract their own

subset of vortices. The local methods detect steady vortices or vortices that perform

certain types of movements (e.g., equal-speed translations along straight lines are

detected with Galilean invariant methods). The integration-based methods find only

attracting corelines, though for every kind of vortex motion. From our experiments

with inertial integral geometry in Chapter 10, we can expect that the location of vortex

cores also depends on the mass of the considered particles. In Chapter 14, we extend

well-established vortex concepts to the inertial case.

9.3. Related Work

Chapter 12 will deal with steady 2D vector field topology of inertial particles. Thus, we

begin with a brief introduction into steady 2D vector field topology for the traditional

massless case. Afterwards, we elaborate on attracting manifolds of inertial particles

and inertial backward integration. We close this chapter with an outline of recent

visualization work in the field of inertial particles.

9.3.1. Steady 2D Vector Field Topology

Topology-based visualization aims for compact descriptions of vector fields. This in-

cludes the extraction of features and the segmentation of the domain into regions of

coherent asymptotic behavior. Topological methods received much attention and be-

came a very active research area. Among others, they spurred work to smooth [WJE01],
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attracting node
R1, R2 < 0
I1 = I2 = 0

attracting focus
R1 = R2 < 0
I1 = −I2 6= 0

repelling node
R1, R2 > 0
I1 = I2 = 0

repelling focus
R1 = R2 > 0
I1 = −I2 6= 0

saddle
R1 < 0, R2 > 0
I1 = I2 = 0

center
R1 = R2 = 0
I1 = −I2 6= 0

Figure 9.2.: Types of critical points in 2D steady vector fields (from [HH89]). R1 and R2

denote the real parts of the eigenvalues and I1 and I2 the imaginary parts.

compress [LRR00, TRS03] and model [The02, WTHS04b] or edit [CML∗07] vector fields.

For brevity, we will focus only on topology aspects relevant for the following chap-

ters. We refer to the dissertation thesis of Tino Weinkauf [Wei08] for a comprehensive

introduction into topology-based methods.

The most fundamental aspect of vector field topology is the extraction of first-order

critical points. In the related dynamical systems literature (where phase spaces can

be interpreted as vector fields), these points are also known as fixed points, stationary

points or singularities. The term critical point was coined for vector fields by Helman

and Hesselink in their seminal work [HH89], which introduced vector field topology to

the visualization community.

Critical Points. Formally, a critical point x0 is a location at which the velocity vanishes:

u(x0) = 0.

For their classification, we additionally require that the vector field is non-zero in

the vicinity of the point u(x0 + ε) 6= 0, i.e., it is an isolated critical point. Further, for

a first-order classification, we require that u is differentiable and that the Jacobian

J = ∇u(x0) is non-singular. If this is fulfilled, the eigenvalues and eigenvectors of the

Jacobian characterize the behavior of the flow around the critical point.

Fig. 9.2 gives an overview of the types of isolated first-order critical points that may

arise in 2D steady vector fields. Each eigenvalue characterizes the behavior of the flow
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in the direction of the corresponding eigenvector. If both eigenvalues have positive

real parts, the critical point is repelling. If both are negative, it is attracting. If the real

parts of the two eigenvalues have opposite signs, a saddle is present. If the eigenvalues

are complex, they indicate a swirling motion. In this case, the critical point is called

focus. A focus with zero real parts is called center.

Asymptotic Flow Behavior. Steady vector fields are not temporally bound and thus, it

is possible to observe where a particle would go to after an infinite integration duration.

This allows to segment the domain into regions that have the same asymptotic behavior.

All locations in the domain D ⊆ IR2 that reach the same isolated first-order critical

point p ∈ D after infinite forward integration form a so-called ω-basin:

ω(p) = {xq ∈ D : φτ (xq)→ p as τ →∞} (9.9)

Likewise all locations in the domain D ⊆ IR2 that reach the same isolated first-order

critical point p ∈ D after infinite backward integration form a so-called α-basin:

α(p) = {xq ∈ D : φτ (xq)→ p as τ → −∞} (9.10)

The domain can be partitioned into disjoined ω-basins or into disjoined α-basins.

The boundaries of ω-basis and α-basins are called separatrices. In 2D flows, a separatrix

is a streamline that connects a saddle with a source, sink or a saddle. In bounded

domains additional separatrices arise that connect critical points with the domain

boundaries at so-called boundary switch points, i.e., places on the boundary at which

the inflow and outflow behavior switches.

Further Reading. Helman and Hesselink extended the topological methods to

3D [HH91], including the classification of first-order critical points, separatrices

starting at saddles and attachment/detachment points at no-slip boundaries. Def-

initions of higher-order critical points [SKMR98], boundary switch points [dLvL99],

closed separatrices [WS01], saddle connectors [TWHS03], boundary switch connec-

tors [WTHS04a] and topology in two-parameter dependent vector fields [WTHS06]

followed shortly later. Further examples of vector field topology in 3D can be found

in [GLL91, LDG98, MBS∗04]. For further reading we refer to the reports of Laramee et

al. [LHZP07] and Pobitzer et al. [PPF∗11], and the PhD thesis of Tino Weinkauf [Wei08].

9.3.2. Source Inversion, Attracting Manifolds and Backward Integration

In traditional massless vector field topology, many visualization concepts rely on the

ability to integrate particles backward in time. In the context of dispersed fluids,
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x

v

τ

M

f

Figure 9.3.: Inertial particle trajectories (blue) are attracted by a manifold M , and repel

away from it during backward integration. The union of initial conditions (x0, v0) that

converge to the same trajectory is called a fiber f . Haller and Sapsis [HS08] derived

an ODE to move on the manifold M (orange) in order to integrate backward without

repelling behavior. (Sketch is based on [HS08].)

backward integration is related to the source inversion problem, which is of interest in

detecting localized sources of pollution in air or water. The problem can be formulated

as follows: Given an observed airborne or waterborne dispersed pollutant, compute the

source of the pollution. Typically, the transport involves a diffusion process [ABG∗03,

BRR05, BHDH05, CKC08], though even without it, source inversion is nontrivial. For

this simplified case, Haller and Sapsis [HS08] provide an approximate solution. Their

method is based on the observation that during forward integration, inertial particles

are attracted toward manifolds in the spatio-velocity domain and cluster on them,

cf. [MBZ06, HS08]. In fact, multiple initial conditions of (x0, v0) might attract to the

same spatio-velocity structure, as illustrated in Fig. 9.3. The union of initial conditions

that converges to the same structure is called a fiber or a limit set in dynamical systems

theory. Consequentially, a backward integration repels away from such an attracting

manifold. In Chapter 12, we give another intuitive explanation why this repelling

behavior occurs by observation and classification of the inertial critical points in the

spatio-velocity domain. The extraction of topology of inertial flow becomes much

more complicated than for traditional massless flow, since backward integration toward

critical points is practically impossible due to the repelling behavior.

Haller and Sapsis [HS08] derived an ODE that allows to move robustly on such an

attracting manifold in both forward and backward direction. They called this ODE the

inertial equation. Applied to our model, a first-order approximation essentially boils
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Figure 9.4.: The orange critical point acts as a source in Haller’s inertial equation, and

the red separatrix is found by backward integration from the saddle (yellow critical

point on the right). It can be seen that inertial forward trajectories (gray) of particles

released from rest for dp = 70µm cross the red line. Blue lines are actual trajectories of

inertial particles that connect the critical points.

down to an integration in the vector field u + r g. While their findings have a strong

theoretical merit, there are three problems with this approach when applied to source

inversion. First, the inertial equation lives in the spatial domain and thus it cannot

recover the initial velocity with which the pollutant entered the flow. Second, for larger

particles, instabilities occur [SH09] that drive inertial particles away from the attracting

manifold on which the inertial equation is valid. For their particle model, Sapsis and

Haller [SH09] derived a threshold that characterizes when this happens, which they

applied in [SPH11]. Third, the inertial equation operates on the limit assumption that

particles have reached the manifold. The method does not consider the accumulating

inertia effects of actual inertial trajectories. Fig. 9.4 shows for example that separatrices

recovered from backward integration inu+r g do not match the actual separatrices that

are found via bisection and forward integration of the actual inertial flow of Eq. (9.5).

In Chapter 13, we present an approach to the source inversion problem by consider-

ing actual inertial trajectories and we require forward integration only. For this, we

describe possible sources as tangent curves of a derived vector field, yielding so-called

influence curves. Modeling topological features or integral curves as tangent curves of

possibly higher dimensional vector fields is a common approach in flow visualization.

Streaklines [WT10a] and timelines [WHT12] for instance have been modeled as tangent

curves, same as the paths of critical points [TS03] or vortex corelines [WTGP11].

A problem related to source inversion is the computation of visitation maps. A visitation
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map determines for a given initial position the visitation frequency of all locations

that may be reached in an uncertain flow. Bürger et al. [BFMW12] computed instant

visitation maps by a Monte Carlo simulation that traces massive particle sets. Monte

Carlo particle tracing could be applied to the source inversion problem as well by

releasing particles from all locations in the domain and testing, which of them reach

the observation point. This, however, is very costly and does not provide a parametric

description of the locations that reach the observation point.

9.3.3. Inertial Particles in Visualization

The observation of inertial particles is a relatively young field in the visualization

community, which opened up new challenges. The third part of this thesis, centers

around the extension of concepts that were originally devised for traditional massless

flows in order to reach out to new application areas. In an early work, Roettger et

al. [RSBE01] conducted sand particle simulations to determine the soiling of cars in a

wind tunnel. They visualized the sand concentration on the cars via heat maps. Aside

from that inertial particles have eluded the visualization community.

In the CFD literature, Lagrangian coherent structures (LCS) have also been extended

to inertial particles. Haller [Hal01] has demonstrated that LCS can be extracted as

ridges of the finite-time Lyapunov exponent (FTLE) field (cf. FTLE background in

Section 6.1). Thus, repelling inertial Lagrangian coherent structures (ILCS or pLCS)

have been defined in [SH09] and [PD09] as ridges of a forward FTLE computation

based on the trajectories of inertial particles.

IFTLE(x, t, τ, r) =
1

|τ |
ln

√√√√λmax

(
dφτt (x, r)

dx

T dφτt (x, r)

dx

)
This scalar field measures the separation of nearby placed, equally-sized particles.

Standard FTLE is the special case for massless particles, i.e., r = 0.

In order to be able to calculate backward inertial FTLE (attracting ILCS), Sapsis et

al. [SPH11] calculated ILCS in the context of jellyfish feeding, based on trajectories of

the inertial equation [HS08] (cf. Section 9.3.2). Since the inertial equation is valid on the

attracting manifold only, it only holds well for very small particles. As it turns out, the

dynamics of “larger”3 inertial particles become instable in areas of high strain [SH08],

causing particles to spin away from attracting ILCS due to their inertia rather than

being attracted. We are not aware of a method that can reliably calculate attracting

inertial LCS of large inertial particles.
3 Here, “larger” refers to particles with sufficient inertia to overcome the forces of ILCS. In terms of scales,

it is a matter of the particle Stokes number. A criterion for the identification of such instabilities was

derived in [SH08] and was picked up again in [SPH11].
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Raben et al. [RRV14] computed FTLE for both tracer particles and inertial particles

from experimental trajectories. This way, they obtain trajectories without making

assumptions in the equations of motion, which would usually be required for numeri-

cal computation of trajectories. On a related note, a scheme for FTLE computations

from trajectories was provided by Kuhn et al. [KER∗14]. More recently, Sudharsan et

al. [SBR16] investigated the relationship between preferential particle concentrations

and FTLE for both aerosols and bubbles. Inertial FTLE was not only calculated based

on spatial separation, but also on the separation in the spatio-velocity domain, i.e., in

the phase space in which inertial particles are tangent curves [GPPMn15].
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10
Chapter 10.

Mass-Dependent Integral Curves in

Unsteady Vector Fields

In this chapter, we introduce a generalized concept to describe inertial particle trajecto-

ries and from that we define mass-dependent extensions of traditional integral curves,

i.e., mass-dependent pathlines, mass-dependent streaklines and mass-dependent

timelines, as well as a new class of integral curves that depicts the separation of masses:

the masslines. The chapter is based on the publication:

T. Günther, A. Kuhn, B. Kutz and H. Theisel

Mass-Dependent Integral Curves in Unsteady Vector Fields

Computer Graphics Forum (Proc. EuroVis) 32, 3 (2013), 211–220.

10.1. Mass-dependent Flow Map

Given is a 3D time-dependent vector field u(x, t). For simplifying explanations we

assume its domain – both spatial and temporal – to be infinite, which ensures that

the integration of u never leaves the domain. (In real data sets, a boundary treatment

is necessary.) In order to decouple the derivation of integral curves from the particle

model, we generalize the particle model by extending the concept of flow map φ

(cf. [Sha05]) to mass-dependent particles. This yields a new mass-dependent flow map

φτt (x, r,v0) that describes where a particle with response time r, seeded at location

(x, t), and with an initial velocity v0 moves to during integration of u over a time

interval τ . The mass-dependent flow map can be understood as a black-box that

comprises the application-dependent equations of motion. Thus, all concepts that are

derived from the mass-dependent flow map (such as integral curves) are described

independent of the underlying equations of motion. Note that the continuity of the
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flow map’s derivatives depends on the underlying particle model. If random events

such as collisions are neglected, they are continuous everywhere in the domain.

In the following, we consider all particles to be released from rest, i.e., v0 = 0. For

brevity, we therefore shortly denote the mass-dependent flow map for particles re-

leased from rest as φτt (x, r). Note that mass-dependent particles develop inertia, which

influences the trajectory. In contrast to the massless flow map, the following property

therefore does not generally hold in the shortened notation, as the velocity of the

particle is assumed to be zero at time t+ τ1:

φτ2t+τ1(φτ1t (x, r), r) 6= φτ1+τ2
t (x, r).

The property, however, is fulfilled by considering the initial velocity when continuing

the integration, as in the unshortened description:

φτ2t+τ1(φτ1t (x, r,v0), r,
dφτ1t
dτ

(x, r,v0)) = φτ1+τ2
t (x, r,v0).

10.2. Mass-dependent Integral Curves

In this section, we introduce the four natural classes of integral curves for mass-

dependent particles. They arise when varying one parameter of the mass-dependent

flow map in turn.

Mass-dependent Pathline. Using the mass-dependent flow map φτt (x, r), the trajec-

tory of a mass-dependent particle – for brevity called mass-dependent pathline – can

be described as a parametric curve in the form:

p(τ) = φτt (x, r),

when seeding at position x at time t with response time r. Such pathlines can be used

to visualize where particles of a certain mass are transported to over time. Fig. 10.1a

illustrates a mass-dependent pathline in mass-space-time.

Mass-dependent Streakline. The temporal coherence between particles of equal

mass can be visualized by mass-dependent streaklines s(τ), see Fig. 10.1b, which can

be described using:

s(τ) = φt−ττ (x, r).

Mass-dependent Timeline. Mass-dependent timelines t(u) are used to reveal spatial

coherent structures, as illustrated in Fig. 10.1c, and are defined as:

t(u) = φτt (c(u), r).
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(d) Massline (•)

Figure 10.1.: Illustrations of the integral lines in mass-space-time.

Massline. A new class of integral curves arises when varying the response time, while

keeping the start location x, start time t and integration duration τ constant. We name

these curves masslines and define them as:

m(r) = φτt (x, r)

These lines connect all locations that can be reached at a certain time t+τ , starting from

one place x by using different masses, i.e., a massline connects the end points of mass-

dependent pathlines, see Fig. 10.1d. Since a pathline and a streakline, seeded at the

same position and time, share the end point, masslines are also the connections of the

end points of mass-dependent streaklines. (We examine an example in Section 10.4.)

On a further note, the length of masslines correlates with the separation introduced by

particles released with different mass, which can be used as a descriptor for features.

We elaborate on this later in Chapter 11. Similar to timelines, masslines have the

limitation to not directly visualize the correspondence to the seeding structure.

10.3. Implementation

In the following examples, the integral curves are integrated on the GPU using geometry

shaders. The capability of the geometry shader to dynamically insert vertex data is

of use for the adaptive refinement of the integral curves. Streaklines, timelines and

masslines are refined dependent on the length of the edge that connects neighboring

particles. We chose the refinement scheme that is most commonly used on GPUs, i.e.,

to emit a new particle in the center of the edge that needs refinement. Unsteady vector

field data often exceeds the video memory, which is why we asynchronously stream

the data of the next time steps to a ring buffer on the GPU.

Integral lines were shaded with ISL shading by Zöckler et al. [ZSH96]. Depth cues were

added by depth-dependent halos of Everts et al. [EBRI09].
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10.4. Results

In this section, we apply the integral curves to three data sets, one analytic and two real-

world. Furthermore, we present measurements of the performance of our interactive

GPU implementation, captured in the helicopter data set.

In all experiments, the (dynamic) viscosity is set to µ = 1.81× 10−5 kg/(m s) (air), and

the gravity is set to g = (0,−9.8065, 0)T m/s2. For the particles, we used the density of

dry sand ρp = 1600 kg/m3. Since the particle diameter dp varies between dp = 10µm

and dp = 500µm the particle response time r is in the range r ∈ [0.00049, 1.228].

Beads Flow. First, we investigate the BEADS flow, which was previously described in

Section 8.4. Pathlines, streaklines and masslines are shown for this data set in space-

time in Fig. 10.2. As illustrated, masslines connect the end points of both pathlines

and streaklines, seeded with varying mass, see Fig. 10.2a. Releasing pathlines with

continuously increasing mass assembles a surface. Furthermore, we show an example

for the mass-dependence of topological structures, such as vortex cores, in Fig. 10.2b.

While heavy particles diverge due to inertia, light particles can converge to a mass-

dependent core line. The smaller the mass, the closer the massless pathline core,

reported by Weinkauf and Theisel [WT10a], is approached. It can be seen that the

mass-dependent particle model is coherent with traditional massless particles when

approaching zero mass (for zero gravity).

Helicopter in Ground Proximity. When approaching the ground or hovering near it,

the aerodynamics around a helicopter is significantly altered compared to the free

flight. Especially the wake of the rotor is influenced, hindered and deflected by the

ground. This flow regime is known to be highly unsteady and three-dimensional.

Therefore, not all the mechanisms are fully understood [SGL10]. When this flight state

occurs over a terrain with loose ground, such as sand or snow, the wake will lift up

sediment particles, which will be entrained into the surrounding flow of the helicopter

and lead to a dangerously obscured view capability of the pilot. This phenomenon is

known as brownout or whiteout and may be hazardous to the flight crew as well as the

ground personnel [MKW08]. Therefore, this flight state was subject of many studies in

the past [Bet37, WT10b, TLKB11].

In the following, we illustrate brownout conditions around a helicopter in slow forward

flight close to the ground. For this, we use the HELICOPTER HOVER sequence. The

origin and simulation setting of this flow was described earlier in Section 3.3.2. We

employ the equations of motion of Crowe et al. [CST98], which we stated earlier in

Eq. (9.5). With this, we assume one-way coupling, i.e., the particles do not act back
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(a) The massline (•) connects the end points of

both pathlines (dp = 15µm (•) to 500µm (•)) and

streaklines (dp = 15µm (•), 500µm (•)).

t
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y

(b) Converging and diverging mass-dependent

pathlines (dp = 300µm (•), 500µm (•)) and the

massless pathline core (•), reported in [WT10a].

Figure 10.2.: Integral lines in the Beads flow, depicted in space-time. Gravity is set to

zero.

(a) Mass-dependent pathlines,

dp = 15µm

(b) Mass-dependent pathlines,

dp = 50µm

(c) Mass-dependent pathlines,

dp = 90µm

Figure 10.3.: Depictions of pathlines with different mass in the helicopter data set.

Larger particles do not lift as high, due to gravity.

on the fluid. This assumption is in accordance with the current practice in CFD

brownout engineering [TKB12]. The effects of inertial particles on the underlying flow

(two-way coupling) [PSGC11b] are still actively under research. We stress that our

mass-dependent flow map is a generalized description that allows to substitute the

underlying particle model. The ability to use two-way coupled simulations in the

future or to adapt the particle model to the application at hand are anticipated by

design and our model is therefore generalized. The assumption of one-way coupling

has a big advantage. While the underlying fluid flow simulation might take weeks to

compute, inertial particles can be simulated and visualized interactively. This can be

of useful to preview and steer parameters for long-term CFD simulations.

In Fig. 10.3 the trajectories of mass-dependent particles are shown for different masses.
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(a) Mass-dependent streaklines,

dp = 15µm

(b) Mass-dependent streaklines,

dp = 50µm

(c) Mass-dependent streaklines,

dp = 90µm

Figure 10.4.: Depictions of streaklines with different mass in the helicopter data set. A

higher uplift threshold and gravity keep larger particles closer to the ground.

(a) Mass-dependent timeline, dp = 15µm (b) Mass-dependent timeline, dp = 30µm

Figure 10.5.: Timelines seeded below the rotor disk reveal that lighter particles are more

subject to turbulence.

Figure 10.6.: Depiction of masslines with a varying diameter dp = 10µm..100µm, color-

coded from brown (•) to teal (•).

As a frame of reference we placed an Eurocopter AS365 Dauphin helicopter in the

brownout scenes. (The CFD simulation only contained the rotor disk, not this particu-

lar model.) In Fig. 10.4 streaklines of different mass are shown. Note that the vortex

in front of the helicopter uplifts smaller particles directly (Fig. 10.4a), whereas larger

particles partially fall back to the ground and bounce off (Fig. 10.4c). Especially, to

the left and right of the helicopter the vortex that traps the sand particles is highly un-

steady and requires much refinement of the lines. Fig. 10.5 uses timelines to makes the

influence of the mass apparent. Smaller particles are more subject to the unsteadiness

of the vector field, thereby exhibiting more turbulent behavior.

Fig. 10.6 depicts masslines in the helicopter data set. Here, the response time is varied,
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which is either achieved by a change of the diameter, the particle density or the viscosity.

Either way, the same line is acquired, but with a different parameterization and other

meaning. Modifying the diameter allows to observe the separation of differently sized

particles, while a variation of the density allows to view differences between dry and

moist sand. In all examples, we kept density and viscosity constant.

Our domain experts confirmed three use cases, in which the masslines in Fig. 10.6

are of particular help. First, when rotorcrafts approach the ground, ground personnel

and also civilians (e.g., on rescue missions) are possibly exposed to forceful air blows

containing sand particles of different sizes. These particles can cause injuries (eyes and

lungs) and their ejection direction and strength varies around the rotorcraft. Masslines

visualize for multiple sizes simultaneously in which directions particles are tossed and

also what the critical sizes are that lead to uplift, giving leads which areas to avoid

when rotorcrafts approach. (In the case of slow forward flight, this is a few meters in

the frontal hemisphere.)

The second application concerns the rotor blades. Masslines depict which particles of

a certain mass spectrum enter the rotor disk, causing blade erosion and mechanical

wear. Fig. 10.6 shows that nearly the whole spectrum of masses enters the rotor from

the frontal left and frontal right direction, as viewed from the pilot.

The third use case is called modified saltation bombardment and is concerned with

particles that return to the sediment bed after a short uplift due to a nearby vortex.

These impacting particles entrain smaller particles, thereby contributing to brownout.

The masslines in Fig. 10.6 show the masses that take part in this process (which is

dependent on the distance to the vortex), e.g., directly in front of the helicopter lower

masses (i.e., smaller particles) fall back to the sediment bed than on the frontal left and

right.

Hydrocyclone. Another example for the information conveyed by masslines is shown

in Fig. 10.7 in the steady HYDROCYCLONE data set from Section 3.3.2. Here, the particle

model includes particle-boundary interaction, i.e., the reflection of particles at the

wall geometry. The employed particle model cannot yet describe interactions between

different media, but gives reasonable results when observing the paths of only few

particles (neglecting inter-particle forces).

In the hydrocyclone, inertial particles move on a helix trajectory downward. The

helix-like movement depends on the mass, thus the exit location and direction are

mass-dependent, causing a different mass-dependent exit distribution. The mass

dependence of the particle trajectories is expressed by a swirling massline, which

appears as a particle wave that swirls inside the bottleneck until it eventually exists
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it. The fact that it expands to a visible line leads to the conclusion that particles with

different masses pass the bottleneck at a different time. This is also visible when

comparing the pathline images, in which lighter particles exit the bottleneck later,

since they circled the bottleneck longer.

10.4.1. Performance

For all measurements, we used a machine equipped with an Intel Core I7-2600K

CPU with 3.4 GHz and an Nvidia Quadro 6000 GPU with 6GB VRAM. All images were

rendered at a resolution of 1280× 916 pixels with 16× coverage-sampling anti-aliasing

(CSAA). For the individual classes of integral curves the performance is measured

in Table 10.1. Due to the absence of refinement, pathlines are fast to integrate and

render on the GPU. Streaklines and timelines adaptively generate more line geometry,

which slows down integration and rendering (by factor 2). Masslines were shorter

than the other line classes, therefore less geometry was created, which made both the

integration and the rendering faster. Coincidentally, masslines produced less occlusion.

Summarizing, direct particle visualizations usually require a high number of individual

particles to reveal structures in the flow. The integral lines presented in this work,

however, are a fast and compact alternative that can furthermore reveal temporal and

spatial coherence, as well as mass separation.

(a) Pathlines with particle diameters of 15µm (•), 25µm (•), 35µm (•) and

50µm (•).
(b) Masslines (dp =

15..50µm)

Figure 10.7.: Hydrocyclones are used to separate particles in liquid suspensions based

on density variations. As visible in Fig. 10.7a, an increase of mass (and thereby inertia)

causes particles to drift off the vortex core and to exit at different times. Masslines in

Fig. 10.7b expand and swirl around the bottleneck, which shows that lighter particles

reside longer in the bottleneck.
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10. Mass-Dependent Integral Curves in Unsteady Vector Fields

Table 10.1.: Timings for the interactive integration of 2 k integral lines in the helicopter

data set (dp = 15µm, for masslines dp = 15..100µm). The integration timings refer to

the duration of one integration step. In our implementation advection and rendering

are interleaved.

Pipeline step Pathlines Streaklines Timelines Masslines

Integration 1.2 ms 3.9 ms 3.4 ms 1.0 ms

Rendering 2.7 ms 6.0 ms 6.3 ms 1.7 ms

Total fps 202 100 92 340

10.5. Summary

In this chapter, we extended geometry-based flow visualization tools, usually used in

massless particle-based visualizations, to mass-dependent particles. We defined a new

flow map to abstract the application-dependent particle model, i.e., the assumptions

made in the equations of motion. Based on that, we derived four classes of mass-

dependent integral curves in unsteady vector fields: mass-dependent pathlines, mass-

dependent streaklines, mass-dependent timelines, and a new class called masslines

that visualizes the separation of particles with different response times, i.e., due to

different size or density. We demonstrated the influence of the mass by the use of

integral geometry in an artificial and two real-world data sets. Hereby, our main

test case was the brownout simulation around a helicopter flying forward in ground

proximity.

The processes involved in brownout are not yet fully understood, since it is difficult

and expensive to validate the models, cf. Syal et al. [SGL10]. This is where we see

much potential for future work, e.g., in the assistance in model validation, interactive

previews for parameter steering of the long-term simulations, and most importantly,

capturing the behavior of particles with mass in unsteady flow and revealing structures,

e.g., vortices carrying heavy particles. But brownout simulations are just one appli-

cation of mass-dependent particle visualization techniques. In the future, we plan to

explore further applications.
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11
Chapter 11.

Finite-Time Mass Separation for

Comparative Visualizations of

Inertial Particles

The following chapter presents methods for the visualization of the mass-induced

separation behavior of inertial particles and is based on the publication:

T. Günther and H. Theisel

Finite-Time Mass Separation for Comparative Visualizations of Inertial Particles

Computer Graphics Forum (Proc. EuroVis) 34, 3 (2015), 471–480.

Imagine we have a 2D time-dependent flow, as illustrated in Fig. 11.1. If we release at

the very same seed point (here in black) two particles of different size – a small one in

red and a big one in blue –, then they might separate due to inertia. The topic of this

Figure 11.1.: The trajectories of two differently-sized particles separate in the 2D un-

steady Double Gyre flow, which is here depicted in 3D space-time.
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11. Finite-Time Mass Separation for Comparative Visualizations of Inertial Particles

chapter is the exploration of this separation behavior, in order to determine where and

when inertial particles separate due to their differences in mass. For this, we introduce

a scalar field named Finite-Time Mass Separation (FTMS). Inspired by the inertial

extension [SH09, PD09] of FTLE [Hal01, SLM05], the idea is to release inertial particles

from the same location, but with slightly varied mass and to observe their separation

behavior over time. Inertial FTLE, on the other hand, observes the separation due

to spatial variation of the seed point, which can lead to different answers. Locating

the mass that produces the largest separation in FTMS allows to extract and visualize

critical masses. In addition, we complement the visualization by two coordinated

views that provide detailed information on the mass-dependent particle trajectories

released at a given seed point. In a plot view, we use a new distance measure between

inertial particle trajectories that is occlusion-free and considers the actions of particle

sizes in-between. This view allows to quantitatively measure absolute and relative

differences, provides insights on how separation evolves over time and allows to quickly

locate separation events. In a domain view, we depict inertial particle trajectories of

unsteady 2D flows in 3D space-time, which embeds the trajectories in the domain

and allows to see how they separate. By varying the mass, inertial particle trajectories

assemble a surface, on which separation can be shown by visualizing its stretching.

Fig. 11.2 gives an example. With this, we provide the first comprehensive study of the

mass-dependent behavior of inertial particles that answers: where and when mass

separation occurs, which masses are separating and what the separation looks like in

the domain.

An application of this is the comparison of inertial particle trajectories with massless

ones to see in which areas of the domain they make a difference and if it is possible to

fall back to massless trajectories for efficiency. Rather specific to rotorcraft engineering

is the question, which masses lift up from the ground and enter the rotor disk, cf. Syal

et al. [SGL10]. In the wake of a helicopter, a large number of particles wash over the

sediment bed, yet only some masses enter suspension. It is of interest to see, which

mass is the one that induced the largest separation, i.e., smaller masses enter the

disk whereas larger ones fall back to the sediment bed. Particles that enter the rotor

disk cause mechanical wear of the blades and also, particles are convected downward

by the rotordisk very rapidly. When they hit the sediment bed they stir up further

particles, causing a chain reaction, i.e., brownout. Another application is jellyfish

feeding [PD09, SPH11], in which prey motion was studied already with IFTLE.
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Figure 11.2.: Mass separation of inertial particles in the DOUBLE GYRE. Top image: Mass

(color-coded) that separates strongest during integration over time τ = 17. Center

image: inertial particles of different mass are released at the cross in the left image. In

space-time their trajectories assemble a surface, with the purple line being its front line

– a so-called massline. The green line is the particle trajectory with strongest separation

(here, with diameter dp = 99µm). Bottom image: plot of difference to reference particle,

here the smallest inertial particle (diameter dp = 20µm), which makes the temporal

evolution of the separation apparent.
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11.1. Finite-Time Mass Separation

A so far unaddressed problem in flow visualization is the comparative visualization of

inertial particles. This problem is quite challenging, as even from a single point in the

domain an infinite number of inertial particles can be released that take different tra-

jectories depending on their mass. Quantifying their differences requires an adequate

distance measure and a study of the temporal evolution of these differences. This,

however, first of all requires to set a seed point. Unfortunately, it is nearly impossible

to predict ad-hoc when and where and for which mass interesting events occur in the

domain. The key to the problem is to analyze the mass-induced separation behavior of

inertial particles, as a separation entails the development of a difference. This insight

leads us to the definition of the Finite-Time Mass Separation (FTMS) field. That is,

we strive to quantify at every location in the space-time domain, how quickly inertial

particles of slightly different mass separate if they are released from the same location.

Inertial FTLE, in contrast, describes how inertial particles of the same mass separate if

released in proximity, which does not produce insights on the relationship between dif-

ferent masses. Differences to inertial FTLE are discussed later in Section 11.4.1. FTMS

is computed by considering the derivative of the flow map with respect to response

time r1, which is determined by the mass of the particle, cf. Eq. (9.3):

FTMS(x, t, τ, r) =
1

|τ |
ln

∣∣∣∣∣∣∣∣dφτt (x, r)

dr

∣∣∣∣∣∣∣∣ (11.1)

This scalar field measures the separation of inertial particles that were released from

the same location but with slightly different mass. Note that the field is derived from the

flow map. Thus, it is independent of the particle model and the underlying equation

of motions. The field can be equivalently computed from the magnitude of the first

derivative of a massline2, released at (x, t), i.e., the massline’s stretching:

FTMS(x, t, τ, r) =
1

|τ |
ln

∣∣∣∣∣∣∣∣dm(r)

dr

∣∣∣∣∣∣∣∣ (11.2)

An example for an FTMS field is given in Fig. 11.3 for the DOUBLE GYRE [SLM05]. Similar

to (inertial) FTLE, FTMS is defined only for particles that do not leave the domain.

1 The response time linearly depends on diameter, density and viscosity. Since we keep density and

viscosity constant, our experiments show diameter variation only. It would be possible to expand the

definition of FTMS from response time to diameter. Defining FTMS via response time, however, is

more general and thus we preferred it.
2 Recalling Chapter 10, masslines are assembled by releasing particles from the same location at the

same time, but with varying mass:

m(r) = φτt (x, r)

Masslines are parameterized by particle mass, which is included in the particle response time r, and

are continuous if the mass partial of the flow map is continuous.
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11.1. Finite-Time Mass Separation

FTMS: 0 1.4

Figure 11.3.: Finite-Time Mass Separation (FTMS) of the DOUBLE GYRE for inertial

particles with diameter dp = 99µm at t = 0 and τ = 9.95.

At a certain time t, the parameter space of the FTMS scalar field is two-dimensional;

it is spanned by response time r and integration duration τ . Due to the dependence

on response time r the exploration of inertial particles in inherently more challenging

than the exploration of traditional massless particles. Eventually, our task is to study

the impact of r, rather than the selection of a particular value for it. In the following, we

propose a guided way that enables the user to first slice in time to find an interesting

starting point for the exploration of r. Once a starting point is found, the spatio-

temporal evolution of inertial particles can be observed in additional views that are

described in Section 11.2.

For an overview, it is interesting to identify for every space-time location, the response

time r∗ with largest separation, with r∗ ∈ [rmin, rmax]:

r∗ = arg max
r

FTMS(x, t, τ, r) (11.3)

Fig. 11.4 shows its corresponding diameter. As an inset in the bottom right corner, we

visualize the respective separation:

maxFTMS(x, t, τ) = FTMS(x, t, τ, r∗) (11.4)

The response time interval [rmin, rmax] is sampled by a Halton sequence [Hal60] to

progressively refine the solution, as visualized in the accompanying video of the corre-

sponding paper [GT15]. The computation is terminated by the user or after a certain

number of iterations. The bounds of the interval are specified by the user as well or

might be determined by the underlying equations of motion.

Depicting the maximal separation condenses the information into a visualization

that only depends on duration τ , which can be explored by an animation. Of course,
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dp : 20µm 200µm

maxFTMS
0 1.4

Figure 11.4.: Maximal Finite-Time Mass Separation (maxFTMS) in the DOUBLE GYRE

at t = 0 after duration τ = 9.95.

this only provides an overview and might not necessarily extract the most interest-

ing separation event. At longer integration time several events might occur and if

they exhibit similar separation strength it becomes less clear which to show, see later

Section 11.4.5. For this reasons, maxFTMS cannot replace the detailed inspection of

the two-dimensional parameter space. Providing the largest separation at a location,

however, serves as a starting point for further investigations. Other separating masses

can be observed in the views that are described next.

11.2. Comparative Visualizations

Once a spatio-temporal seed point is found, we investigate the behavior of differently-

sized inertial particles released at this location.

11.2.1. Qualitative View

The mass-dependent flow map φτt (x, r), as introduced in Section 10.1, has four param-

eters. Varying one of them and keeping the others constant produces the four classes

of integral curves that we have described in Chapter 10. Among those is the massline,

which connects the locations that were reached by differently-sized inertial particles,

i.e., particles with a varying response time r, chosen from an interval [rmin, rmax]. Vary-

ing two of the parameters similarly produces integral surfaces. In our visualization, we

vary the response time r and integration duration τ to depict the temporal evolution
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dp : 20µm 200µm

x

y

t

Figure 11.5.: Space-time domain of the DOUBLE GYRE in which inertial particle trajec-

tories form a mass-path surface. The purple line is a massline, the green line depicts

the trajectory of the most separating inertial particle, here with dp = 99µm, τ = 9.95

and seed point (x, t) = (0.45417, 0.5675, 0).

of the massline, which forms a mass-path surface in space-time as shown in Fig. 11.5.

Thereby, the red and green axes are spatial dimensions and the blue axis corresponds

to time.

We color-code the particle diameter on the surface and illustrate individual trajectories

by an adaptive stripe pattern, as in [HGH∗10]. The stripe spacing and the insertion

of lines in between them are an indicator for separation. The front line of the surface

is a massline (purple). It depicts the location of inertial particles after the currently

selected integration duration. The user can further select a certain particle diameter

for closer inspection. We highlight its corresponding particle trajectory by a green line.

Color-coding, stripe patterns and highlighting selected lines are all implemented in the

pixel shader of the surface. Alternatively, separation on a manifold could be visualized

by space-time LIC as in [BSDW12].

11.2.2. Quantitative View

Another aspect is the mass distribution along a massline. Visualizing its temporal

evolution can likewise show separation. Thus, in an additional view, we plot the

integration duration τ of inertial particle trajectories vs. a specified distance measure,

which measures the difference to a reference particle. Again, we color-code trajectories

by their diameter. In these plots, a uniform sampling of the response time interval

shows separation between the lines by their vertical distance.
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11. Finite-Time Mass Separation for Comparative Visualizations of Inertial Particles

Euclidean Distance: Bordás et al. [BBK∗08, Bor11] measured the distance between

experimentally traced particles by Euclidean distance, which was also used to com-

pare experimental and simulated [OOG08] particle positions. Since experiments are

conducted with a finite number of differently sized particles, there is no information

on the behavior of particles with masses between them. Since our trajectories stem

from a simulation, we can simulate particle sizes in-between. For each inertial particle,

we measure the distance to the smallest inertial particle (r = rmin):

εEuclidean(r) = ||φτt (x, r)− φτt (x, rmin)|| (11.5)

Fig. 11.6a gives an example for the space-time domain shown in Fig. 11.5, illustrating

the split of particles that hit the domain boundary. It might not always be possible

to attribute a separation in the plots to a single prominent event. Similar to FTLE, a

strong separation might also occur due to accumulation of multiple (possibly smaller)

events. After all, FTMS is an integration-based measure, too. However, if sudden

changes occurs, they are likely worth to look at. While the Euclidean distance measure

can capture periodicity of events, e.g., recurring proximity, it suffers especially at

longer integration times from occlusion and cluttering, which is demonstrated later in

Section 11.4.3.

Arc length Distance: To overcome the limitations of the Euclidean distance measure,

we propose to measure the arc length of the massline that connects the two particles.

εArclength(r) =

∫ r

rmin

∣∣∣∣∣∣∣∣dm(s)

ds

∣∣∣∣∣∣∣∣ds (11.6)

Such connecting massline exists only iff the particles were seeded at the same location

at the same time. In contrast to Euclidean distance, this measure accommodates for

the behavior of the masses in between and it monotonically increases with increasing

response time, which avoids occlusion since no overlap occurs in the plot. For plotting

this measure, we use two different normalizations. We either normalize the error by

the integration duration εArclength(r)
τ to account for the growth of the line over time (as

in Fig. 11.6b), or we use the relative position εArclength(r)
εArclength(rmax) to display the evolution of

the distribution of masses along the massline (see Fig. 11.6c).

11.3. Implementation

Interaction is a crucial aspect in exploration tasks, which requires fast updates on

parameter changes. The integration of inertial particles according to Eq. (9.5), the

computation of the mass-path surface in the domain view and the distance plots are
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(a) Euclidean distance.
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(b) Absolute arc length distance.
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εArclength(rmax)
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(c) Relative arc length distance.

Figure 11.6.: Distance plots over time in the DOUBLE GYRE, showing the temporal evo-

lution of the difference to the smallest inertial particle (r = 20µm). As in Fig. 11.5, with

selected diameter dp = 99µm, τ = 9.95 and the seed point (x, t) = (0.45417, 0.5675, 0).
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11. Finite-Time Mass Separation for Comparative Visualizations of Inertial Particles

all implemented on the GPU, which comfortably achieves interactive frame rates. The

maxFTMS field, however, is precomputed, which takes several minutes as listed later

in Section 11.4.4. We discretize the space-time domain of the maxFTMS field onto a

regular grid and progressively sample the mass range. The resolution of the regular

grid is given later in Section 11.4.4. On the GPU, we therefore release inertial particles

in the domain and integrate FTMS for the given time interval. In every time slice of

the maxFTMS field, we check if the currently considered mass has larger separation

than any previously processed mass and store it if this is the case. Finally, the field is

stored as a 3D voxel grid (two spatial dimensions and time), with two entries per cell:

the maximal mass and its separation. At runtime, the precomputed maxFTMS and

FTMS fields can both be streamed to the GPU for interactive display.

As shown earlier, FTMS can be obtained from the magnitude of a massline’s tangent.

For computing the FTMS value, we do not have to integrate and refine a full massline

to obtain a good estimate of its tangent. We have better control over the discretization

error, if we stay local to the mass(es) that should be evaluated. Computing the response

time partial in FTMS by first-order approximation (central differences) with step size h

results in an error of order h. That is, we can place the computational power exactly

where we need it rather than refining a full curve and only requiring tangents at several

locations. For the distance plots, however, we use the arc length of a massline. Here, a

refinement is clearly in order.

11.4. Results and Evaluation

We tested our method on a number of analytic and one real-world data set, which

are briefly described in the following. In advance, one general note on the units: all

domain sizes are assumed to be in meters and time is in seconds3.

Throughout this chapter, the (dynamic) viscosity is set to µ = 1.532 × 10−5 kg/(m s)

(air), and we assume gravity-free environments g = 0. For the particles, we used

the density of dry sand ρp = 1600 kg/m3. The particle diameter dp varies between

dp = 10µm and dp = 500µm. Given these parameters, particle response time r is in

our experiments in the range r ∈ [0.00058, 1.45].

Double Gyre. The unsteady 2D DOUBLE GYRE [SLM05] became a well-known bench-

mark data set for the study of particle separation by means of FTLE. We used the

3 Checking if the length scale assumption dp � ηk holds in the analytic fields is an exercise of calculating

the Kolmogorov length scale ηk, see Eq. (9.4). For the Duffing-based fields, we obtain ηk around

1− 2mm and in the Double Gyre ηk = 5mm, which is larger than the particle sizes we used.
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analytic form given in Section 7.4, here in the longer temporal domain [0, 30]. Ex-

amples are shown in Fig. 11.2 for τ = 17 and throughout Sections 11.1 and 11.2 for

τ = 10.

Forced Duffing Oscillator. The FORCED DUFFING oscillator in an example for a dy-

namical system that experiences chaotic behavior [HS11]. It can be described and

visualized as an unsteady 2D vector field of the form:

u(x, y, t) =

(
y

x− x3 + 0.1 sin t

)
(11.7)

here, in the domain D × T = [−2, 2]2 × [0, 20]. In Fig. 11.7a, we show the maxFTMS

field and select a seed point. At this seed point, particles with diameter dp = 64µm

show largest separation. For this diameter, we depict the FTMS field in Fig. 11.7b. In

the space-time domain in Fig. 11.7c, a mass-path surface is released from the seed

point. The trajectory with diameter dp = 64µm is highlighted and turns out to run

toward a separation point, i.e., a saddle in the inertial dynamics that causes particle

separation. The temporal evolution of the massline particles’ distance to the smallest

inertial particle is shown in Fig. 11.7d, indicating the separation event as well.

Forced-Damped Duffing Oscillator. A more general form of the oscillator is the

FORCED-DAMPED DUFFING oscillator [HS11], which can likewise be described as an

unsteady 2D vector field:

u(x, y, t) =

(
y

x− x3 − 0.25y + 0.4 cos t

)
(11.8)

here, in the domain D × T = [−2.5, 2.5]2 × [0, 20]. Fig. 11.8a depicts the maxFTMS

field at τ = 10.14. At the selected point, a particle with diameter dp = 69µm shows

the largest separation. The corresponding FTMS field is shown for this diameter in

Fig. 11.8b. From the selected point inertial trajectories are released, which assemble in

space-time a surface, see Fig. 11.8c. The trajectory with largest separation is shown on

the surface, as well as in the distance plot in Fig. 11.8d.
4 A note on the choices of τ in the visualizations: As described in the implementation section, we

precompute the maxFTMS sequences, i.e., we discretize the τ range. In the Figs. 11.7 and 11.8, the

ranges were discretized slightly differently and we simply snapped to the time step closest to τ = 10.

For reproducibility, we named the actual value, even if τ = 10 would look very similar. It might

seem that we chose τ = 10 rather frequently, but this is because the images often show purposefully

different aspects of the very same setting, e.g., Figs. 11.3, 11.4, 11.5 and 11.6 all share time, integration

duration and seed point, and illustrate the same data set. The integration duration was set to about 10

because in our examples this was often around the first strong separation event, which we wanted to

inspect. The video of the corresponding paper [GT15] shows coherent animations of the integration

duration and thereby other values.
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(a) At selected point, dp = 64µm has max. separa-

tion (maxFTMS).

0 1.4

(b) FTMS value for dp = 64µm is indeed high.
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(c) Trajectory with maximal separation on the mass-

path surface.
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(d) Massline arc length-based distance plot to a ref-

erence particle.

Figure 11.7.: FORCED DUFFING data set at integration duration τ = 10.45. The seed

point is at (x, t) = (1.294, −0.22133, 0).

Square Cylinder. The SQUARE CYLINDER flow, as described in Section 4.4, is a 3D

time-dependent flow around an obstacle. It is quite uniform along one dimension,

which allows to select one slice and treat it as 2D unsteady flow. As visible in the

maxFTMS field in Fig. 11.9a, large separation occurs for particles that flow toward the

obstacle and for particles that enter the vortices of the von Kármán vortex street, since

there, rotational movement amplifies the effects of inertia, leading to separation. The

latter can be seen by the alternating and periodic separation fronts, running toward

and past the obstacle. When selecting one seed point, both the space-time domain

in Fig. 11.9b and the distance plot in Fig. 11.9c show multiple separations along the

massline. After integration time τ = 64, the strongest separation arises for a diameter

dp = 380µm, which is highlighted.
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(a) At selected point, dp = 69µm has max. separa-

tion (maxFTMS).

0 1.4

(b) FTMS value for dp = 69µm is indeed high.
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path surface.
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(d) Massline arc length-based distance plot to a ref-

erence particle.

Figure 11.8.: FORCED-DAMPED DUFFING data at integration duration τ = 10.1 and seed

point (x, t) = (−1.42613, −1.41141, 0).

11.4.1. Comparison between Inertial FTLE and FTMS

Inertial FTLE depicts the separation due to spatial variation of the seed point. The

separation due to a varying mass is shown by FTMS. Frequently, both measures have a

high correlation, but we observed distinct features that are visible in FTMS only. For

instance, in Fig. 11.10, we see valley lines in FTMS, which do not appear in IFTLE.

They may even cross an IFTLE ridge. This means, if a separation of nearby particles

occurs, particles with different mass that were released from the same location may

still stay together – and, vice versa. In fact, there are two sources of separation to con-

sider: varying mass (FTMS) and variation of the seed point (IFTLE). When studying

the differences between masses, FTMS is more suitable. Further, we found in this
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dp : 10µm 500µm
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(a) Maximal separation at selection for dp = 380µm.
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(b) Trajectory with maximal separation on the mass-path surface.
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(c) Massline arc length-based distance plot.

Figure 11.9.: SQUARE CYLINDER data set at integration duration τ = 64 and seed point

at (x, t) = (7.664, 3.77067, 40).
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IFTLE
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1.4

FTMS
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Figure 11.10.: Comparison between inertial FTLE (IFTLE) and FTMS for diameter

dp = 99µm at t = 0 and τ = 9.95. A corresponding point is selected, showing that

ridges in IFTLE and FTMS frequently correlate. However, notice the absence of the

white valley lines in IFTLE that even cross ridges.

example that the separation due to varying mass is stronger, as visible by the color map.

Generally, the computational complexity of FTMS is lower compared to IFTLE, since

only halve the number of trajectories are integrated (or third in 3D).

11.4.2. Low and High Values in FTMS

FTMS depends on the particle response time, which is determined by the particle size.

In Fig. 11.11, we examine this dependence by observing FTMS for different particle

sizes at the same seed point. For a particle with diameter dp = 89.9µm the seed point

has a low FTMS value, i.e., we have low separation. In the space-time domain, this

relates to a trajectory that is located in the fold of the mass-path surface. In this data set,

this is a place of particularly low separation. In the difference plot, the low separation

leads to a strong color gradient. For another diameter dp = 73.2µm the very same
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Figure 11.11.: Comparison of different masses that cause small and strong separation,

released from the same seed point in the FORCED DUFFING data set at integration

duration τ = 10.45. The seed point is at (x, t) = (1.00496, 0.43565, 0).
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11.4. Results and Evaluation

seed point has a high FTMS value. In both space-time domain and difference plot the

separation becomes apparent, as the selected trajectory runs toward a saddle, causing a

separation. As shown by diameter dp = 100µm, a high FTMS value does not necessarily

relate to saddle-like separation. Similar to FTLE, a difference can also occurs due to

shearing. Another example for a saddle-like separation was shown in Fig. 11.7.

11.4.3. Comparison between Distance Plots

Section 11.2.2 introduced two distance measures between differently sized particles:

Euclidean distance in Eq. (11.5), and the arc length of the connecting massline in

Eq. (11.6). In the following, we compare them in more detail at longer integration time.

In Fig. 11.12a, the Euclidean distance between differently-sized inertial particles and

the location of a reference particle is shown in the DOUBLE GYRE sequence. In this data

set, particles are confined in a closed domain and repeatedly flow against a wall, which

causes them to split up. These periodic separation events, as well as the recurring

particle proximity can be seen in the Euclidean distance plot. However, the longer

particles are integrated the more chaotic the distance plot becomes, due to massive

occlusion and clutter.

For this reason, we proposed the usage of the arc length distance along the connecting

massline to measure the distance to a reference particle, here, the smallest inertial

particle. Fig. 11.12b depicts the temporal evolution of the relative position of a mass

along the massline. This plot shows separation events clearer, because occlusion can-

not occur. But, as arc length increases over time, separation events become relatively

less prominent. At a certain time, multiple masses can experience separation, which is

likewise visible.

11.4.4. Performance

We used an Intel Core i7-2600K CPU with 3.4 GHz and 24 GB RAM, and an Nvidia

Quadro K5000 GPU with 4 GB VRAM. The computation time of the maxFTMS field

is in the order of minutes and depends on spatial resolution, integration duration

and the number of sampled masses. We precompute the sequence on the GPU (see

Section 11.3) and store it to disk. Preprocessing timings of the maxFTMS time series

are listed in Table 11.1. For the DOUBLE GYRE the preprocessing of the full time and

mass range took less than two minutes. The FORCED DUFFING had twice the spatial

resolution and thus took roughly twice as long. In the FORCED-DAMPED DUFFING,

we increased the number of samples in the mass dimension. In our implementation,

the sampling of masses is serialized, which linearly increases the number of com-
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t

εEuclidean

0 80
0

1
2

dp : 20µm 200µm

(a) With Euclidean distance periodic events are visible. But, it becomes cluttered with longer

integration duration.

t

εArclength(r)
εArclength(rmax)

0 80
0

1
dp : 20µm 200µm

(b) The arc length difference appears more organized and splitting events are better visible.

Figure 11.12.: Periodic events for a long time range in the DOUBLE GYRE: Eu-

clidean (top) clutters eventually. Integration duration τ is in [0, 80], seed point at

(0.83087, 0.28715, 0).
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11.5. Summary

Data set X Y T M maxFTMS (min.)

DOUBLE GYRE 800 400 200 128 1.68

FORCED DUFFING 800 800 200 128 4.75

F-DAMPED DUFFING 800 800 100 512 18.26

SQUARE CYLINDER 800 400 200 256 61.20

Table 11.1.: Space-time resolution of the maxFTMS gridX×Y ×T , number of sampled

masses M and the computation time of maxFTMS in minutes.

pute kernel invocations. Thus, with four times more masses, the computation time

increases by factor four. It can further be seen that the smaller temporal resolution

had computationally almost no effect. This is because it only reduced the number of

max() operations due to fewer time slices. The dominating factor is the fourth-order

Runge-Kutta integration of Eq. (9.5), which took in both Duffing oscillators roughly

the same time. The integration duration was given in the data set descriptions in

Section 11.4. The SQUARE CYLINDER flow was the slowest, since here flow vector values

are sampled from a 3D texture (2D unsteady), rather than being evaluated analytically.

In this case, the runtime is bound by fetches from texture memory.

11.4.5. Limitations

For long integration times, strong separation may occur for multiple masses, as shown

in Section 11.4.3. The maxFTMS field depicts only the mass with strongest separa-

tion. If multiple masses have an equally large separation, an effect comparable to

z-fighting [AMHH08] occurs, see Fig. 11.13. The longer the integration, the more likely

this artifact becomes.

Also, the mass with maximum separation might not necessarily be the mass that is most

interesting, because separation might also happen due to shearing – an artifact known

from FTLE. However, while further local maxima of other masses might be hidden

behind the global one, our method allows to rule out areas in which no separation

occurs at all.

11.5. Summary

In this chapter, we presented an approach to a comparative visualization of inertial

particle trajectories. For this, we introduced the Finite-Time Mass Separation (FTMS),

a scalar field that measures the separation of inertial particles that were released from

the same location but with slightly different mass. By extracting for every location in

207
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dp : 20µm 200µm

Figure 11.13.: Multiple masses exhibit a similarly strong separation after integration

duration τ = 30 in the DOUBLE GYRE.

space-time the mass that induced the largest separation, we provided a guiding tool

that allows to quickly locate seed points and masses at which differences in inertial

particle trajectories can be observed. In additional coordinated views, we displayed

inertial particle trajectories at a specified seed point in space-time by integral curves

and surfaces. Moreover, we plotted differences to a reference particle over time to

observe the mass distribution and the temporal evolution of possibly further separation

events.

The next step for future work is the third spatial dimension. Conceptually, the definition

of FTMS and the plot view directly carry on into 3D. In the domain view, time cannot

be visualized by a spatial axis anymore, which relates to the problem of visualizing

path surfaces in 3D, i.e., occlusion and self-intersection become more prominent

visualization problems. Also, the depiction of the maxFTMS field needs an extension.

It probably reduces to a volume rendering problem, in which two attributes should be

shown: the maximum separation and the corresponding mass. In 3D, the computation

of the maxFTMS field would be quite expensive. An acceleration of its computation

therefore seems a worthwhile topic for future work.

As for IFTLE, we focused on the conceptual differences to FTMS and at times referred

to it to show where the two are conceptually similar. We have indicated that visual

differences exist mainly to spur further research in this direction. Developing a deep

understanding of the relations to IFTLE opens up further questions. For instance,

in which ways do they agree/disagree from a physical point of view, and can the

agreement be calculated?
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11.5. Summary

Studying the relation with IFTLE possibly includes the definition of a unified separation

measure that accounts for both spatial and mass variation. Currently, we see this rather

as a long-term goal. If we see a separation in a combined measure, we would still

like to understand which of the two caused the separation: mass variation or spatial

variation. Before combining the two concepts, we should probably first understand

the two components separately. IFTLE is known to the CFD community for six years

and was already applied in practice [SPH11]. Yet still, even for IFTLE there are still

open questions, e.g., there is no method that reliable finds attracting ILCS (requires

backward integration) for “larger” particles. In this chapter, we introduced mass

separation (FTMS) and took a first step toward the relations between the two. Of

course, there is much more to study on both IFTLE and FTMS, and a combination of

the two measures is certainly part of it.

Another aspect to study is the comparison of trajectories that were computed from

different particle models or other equations of motion to see if certain simplifying

assumptions can actually be made. Also the comparison of simulated and measured

trajectories is an important task. Both require different distance measures, as for those,

there are no connecting masslines.
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12
Chapter 12.

Inertial Steady 2D Vector Field

Topology

The following chapter extends traditional steady 2D vector field topology to the inertial

case and visualizes the asymptotic behavior of inertial particles for varying initial

conditions. It is based on the publication:

T. Günther and H. Theisel

Inertial Steady 2D Vector Field Topology

Computer Graphics Forum (Proc. Eurographics) 35, 2 (2016), 455–466.

Vector field topology is a powerful tool to study asymptotic flow behavior and com-

pactly describe fluid dynamics. Traditional vector field topology in flow visualization

considers the motion of massless tracer particles of zero size in a fluid, and not the

motion of finite-sized objects immersed therein. In this chapter, we utilize that the

behavior of inertial particles is governed by a higher dimensional vector field, in which

inertial trajectories appear as tangent curves (cf. Eq. (9.5)). To capture the asymptotic

behavior of inertial particles, we conduct a topological analysis of the high-dimensional

flow and show that the location of the critical points can be efficiently computed in

2D. Among others, we found that sources cannot exist in inertial flows, which explains

the strong repelling behavior during backward integration. To visualize the asymptotic

behavior of inertial particles, we propose a glyph visualization that encodes for every

initial position and initial velocity the critical point that is reached in the limit. Fig. 12.1

gives an example. To obtain interactive rates, we compute the glyphs progressively

and adaptive to the current view. With this, we present a first step to extend traditional

vector field topology to the inertial case, and present a visualization that encodes the

possible outcome of varying initial conditions to an ODE. We apply our extraction and

visualization to a number of synthetic and real-world 2D steady flows, including the

potential field of a benzene molecule and magnetic fields of decaying magnetic rings.
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12.1. Inertial Topology

Figure 12.1.: Visualization of inertial critical points and a glyph-based visualization

of the asymptotic behavior of inertial particles. The sink (blue critical point) that

is reached by an inertial particle depends on its initial position x0 and the initial

velocity v0. The glyph location encodes x0 and the glyph disc color-codes the sink

that is reached for a certain v0. The glyph center represents v0 = 0 and the selected

glyph is enlarged in the bottom right corner, showing the seeds of inertial particle

trajectories. Left: BORROMEAN RINGS with particle diameter dp = 70µm and maximal

velocity vmax = 10m/s (occurs at glyph boundary), middle: DUFFING OSCILLATOR

with dp = 100µm, vmax = 5m/s, and right: NINE CP with dp = 70µm, vmax = 10m/s.

Inertial critical point types are listed in Table 12.1.

Notation: Since for inertial particles the direction of movement does not only depend

on the vector field u but also depends on the current particle velocity v, we denote

4D points/vectors as x̃, ũ where the first 2 components refer to the spatial locations

and the last 2 refer to the current particle velocity. Further, 02,2 denotes the 2× 2 zero

matrix, I2 is the 2 × 2 identity matrix, and 02 and 04 are the 2D and 4D zero vector,

respectively. For brevity, we omit the index when it can be inferred from context. We

denote the imaginary unit i, and Re(z) and Im(z) the real and imaginary part of a

complex number z.

12.1. Inertial Topology

We begin the topological analysis of the asymptotic behavior of inertial particles by

consideration of inertial critical points and separatrices.

12.1.1. Inertial Critical Points

In Chapter 9, we described the trajectories of inertial particles as tangent curves of

a high-dimensional vector field, which models both the rate of change of particle
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12. Inertial Steady 2D Vector Field Topology

position x and particle velocity v. For a steady underlying 2D flow u(x), the governing

4D vector field becomes:

ũ(x,v) =
d

dτ

(
x

v

)
=

(
v

u(x)−v
r + g

)
with

(
x

v

)
(0) =

(
x0

v0

)
(12.1)

where g is a gravity vector, x0 and v0 are the initial particle position and velocity, and r

is the particle response time. The 4× 4 Jacobian field of ũ(x) is:

J̃(x,v) =

(
02,2 I2

1
rJ −1

r I2

)
. (12.2)

We search for isolated first-order critical points of the inertial 4D flow from Eq. (12.1)

as locations where ũ(x,v) = 04. This gives v = 02 as the solution for the velocity

components and yields the following 2D condition for retrieving the location in the

spatial subspace:

u(x) + r g = 02 . (12.3)

Note that this is consistent with the massless case, since for r = 0 it retrieves locations

where u(x) = 02. For the special case of gravity-free environments, i.e., g = 02, we

have a one-to-one relation between the critical points of ũ and u: a critical point xc of

u corresponds to the critical point (xc,02) of ũ. In order to classify the critical points

of ũ, we conduct an eigenanalysis of J̃ at the critical points. The four eigenvalues f1,1,

f1,2, f2,1 and f2,2 of J̃ can be expressed in terms of the eigenvalues e1, e2 of J as:

fj,1 =
−1−

√
1 + 4 r ej

2r
, fj,2 =

−1 +
√

1 + 4 r ej

2r
(12.4)

for j ∈ {1, 2}. Note that the eigenvalues fj,1 and fj,2 that stem from the eigenvalue ej
are not necessarily complex conjugates. Using the common convention that the square

root of a number has a non-negative real part, we have Re(fj,1) ≤ Re(fj,2). The proof

of Eq. (12.4) is in a Maple sheet in the accompanying material of the corresponding

paper [GT16a]. Eq. (12.4) gives a simple relation between the eigenvalues of J̃ and J,

which allows a complete classification of fj,k based on ej . From Eq. (12.4) follows

fj,1 + fj,2
2

= − 1

2r
< 0 (12.5)

which entails interesting properties. It means that each pair of eigenvalues fj,1, fj,2 is

located diametrically opposite around the real-valued constant center−1/(2r) in the

complex plane. Since, the mean of two eigenvalues is negative, it follows

Re(fj,1) < 0. (12.6)

Hence, every inertial critical point in ũ must exhibit in at least two directions attracting

behavior (one for each pair). For Re(fj,2), both a positive or a negative sign is possible.

Here the condition is

Re(fj,2) = 0 ⇐⇒ Re(ej) = −r Im(ej)
2 (12.7)
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Im(ej)

Re(ej)Re(fj,2) < 0 Re(fj,2) > 0

Re(fj,2) = 0

− 1
4 r

Re(ej) = −r Im(ej)
2

Im(fj,1) = Im(fj,2) = 0

Figure 12.2.: A classification of the critical points in 4D. Each eigenvalue ej of the

massless Jacobian J leads to two eigenvalues fj,1, fj,2 of the 4D inertial Jacobian J̃.

Thereby, Re(fj,1) ≤ Re(fj,2) and Re(fj,1) < 0.

as shown in Appendix C. Thus, the locations at which the sign flips describe a parabola

in the complex plane. The remaining question is when fj,k have imaginary parts, i.e.,

indicate a swirling behavior. Eq. (12.4) gives that for Im(fj,k) = 0 the radicand must be

real and non-negative. This gives

Im(fj,k) = 0 ⇐⇒ Re(ej) ≥ −
1

4r
and Im(ej) = 0 (12.8)

for k ∈ {1, 2}. Fig. 12.2 illustrates the classification of fj,1, fj,2 depending on ej in

the complex plane. From this and the fact that e1 and e2 are either real-valued (on

the abscissa) or complex conjugates, we get a complete geometric classification of

all possible 4D inertial critical points, as shown in Table 12.1. There, the left-hand

side shows all possible 2D critical points with the following coding for the eigenvalues:

+/− /◦means positive/negative/zero real part, while i symbolizes the presence of an

imaginary part. The right-hand side depicts all possible 4D critical points that can be

deduced from the 2D points. Table 12.1 also shows the glyphs that we designed for

each of the 2D and 4D critical points, respectively. (The glyph design of 2D critical

points follows the common choices in the literature [Wei08].) Attracting nodes and foci

in 4D have an empty interior that is used later for color-coding an additional property.

Fig. 12.3 contains an extended classification overview of the inertial critical points,

including illustrations of the eigenvalues in the complex plane. Table 12.1 reveals a

number of observations of the behavior of the inertial critical points of ũ:

• ũ does not have sources (repelling critical points). All critical points have at least

two eigenvalues with negative real parts. Thus, during backward integration an

inertial particle cannot converge to a critical point, which explains topologically

the strong repelling behavior of inertial backward integration.

• The 4D counterpart of a 2D saddle is always a 1/3 saddle, i.e., a saddle with 1

repelling direction and 3 eigenvalues denoting attracting behavior. This obser-

vation is consistent with findings in related CFD literature [HS08], namely that

saddles stay saddles, though there eigenvalues have not been classified so far.

• For g = 0, every 4D sink corresponds to a 2D sink, but not reversely: a 2D
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massless CP (2D) → inertial CP (4D)

rep. node ++ → +−+− 2/2 saddle

rep. focus
++

→
+−+−

2/2 saddle
i i i i i i

center
◦ ◦

→
+−+−

2/2 saddle
i i i i i i

attr. focus

→
+−+−

2/2 saddle−− i i i i

i i
→

−−−−
attr. focus

i i i i

attr. node −−

→
−−−−

attr. focus
i i i i

→
−−−−

attr. focus
i i

→ −−−− attr. node

saddle +−
→ +−−− 1/3 saddle

→
+−−−

1/3 saddle
i i

Table 12.1.: Full classification of first-order inertial critical points in 2D flows.

Left: shows for all possible 2D critical points whether eigenvalues have posi-

tive/negative/zero real part (+/− /◦), and whether eigenvalues are complex (i). Right:

all possible 4D critical points that can be deduced from the 2D points. Zags at glyph

boundaries denote the presence of 2 or 4 complex eigenvalues, respectively.

attracting focus corresponds in 4D to either a sink or a 2/2 saddle. An example of

the latter is shown later in Fig. 12.4.

12.1.2. Inertial Separatrices

Similar to the massless case (cf. Section 9.3.1), asymptotic behavior can be studied for

inertial particles. All locations in the spatio-velocity domain D ⊆ IR2 × IR2 that reach

the same isolated first-order critical point p ∈ D after infinite forward integration form

a so-called ω-basin, which in dynamical systems is frequently referred to as stable set

of p:

ω(p) =

{(
xq

vq

)
∈ D : φτ (xq, r, vq)→ p as τ →∞

}
(12.9)
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Figure 12.3.: Classification of inertial critical points based on the eigenvalues e1, e2

of J. W.l.o.g., we assume that Re(e1) ≤ Re(e2). The eigenvalue e1 (•) belongs to the

eigenvalues f1,1, f1,2 (•) of J̃, and the eigenvalue e2 (•) belongs to the eigenvalues

f2,1, f2,2 (•). Each pair of eigenvalues fi,1, fi,2 is located diametrically opposite around

the real-valued constant center−1/(2r) (•), here shown for r = 0.5. For each possible

case, we show the eigenvalues in the complex plane, the type of critical point in the

massless and inertial case, and the eigenvalue conditions.
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Figure 12.4.: ω-basins of the underlying flow field u(x) (left) and projections of the 4D

ω-basins of inertial flow onto the spatial subspace for dp = 75µm (right). Note that in

the projection, the basins of inertial flow may consist of multiple pieces and that in

this example an attracting focus turned into a 2/2 saddle.

Since there are no sources in the inertial flow, backward integration has zero probability

to terminate in a critical point.

We are interested in the separatrices of the 4D inertial flow. They are 3-manifolds

starting at 1/3 saddles which follows from a direct generalization from the 2D and 3D

case: in 2D, separatrices are 1-manifolds (curves) starting from 1/1 saddles, while in

3D the separatrices are 2-manifolds starting from 1/2 saddles.

In 4D, the 2/2 saddles also indicate a separation but are topologically of less interest

because they only separate the particles converging towards the saddle (building a

2-manifold, i.e., a random particle has a zero probability to be on this manifold) vs.

particles passing by the saddle (an example for this is in Fig. 9.4). While the ω-basins

are connected components in 4D, their projection to the 2D spatial space can consist

of several unconnected components. Fig. 12.4 compares the resulting ω-basins of the

underlying 2D flow u(x) with the projections of 4D basins of the inertial flow with

initial velocity v0 = 0 for a gravity-free environment. Aside from response time r and

gravity g, the 4D basins depend on the initial velocity v0, as demonstrated in Fig. 12.5.

We would like to capture the impact of v0 in a single visualization, hence we design a

glyph that is explained in the next section.
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Figure 12.5.: Projections of the 4D ω-basins of inertial flow onto the spatial subspace

for dp = 75µm, vmax = 10m/s and different initial velocities. Left: v0 = (−5, 0)T and

right: v0 = (2, −6)T.

12.2. Glyph-based Visualization of Asymptotic Behavior

We set out to solve the following problem: For every possible location x0 in the domain:

show for every possible initial velocity v0 (up to a certain maximal speed), which sink

an inertial particle enters that is released at (x0, v0). Essentially, we need to visualize

a 4D scalar field (2D position + 2D velocity) that is computed by particle integration.

Even for a moderate discretization, a full precomputation is not feasible, since that

would exhaust too much computation time and memory.

Glyph Design. To avoid this problem, we design an interactive glyph visualization

that is rendered progressively and adaptive to the current view. Glyphs are frequently

applied in flow visualization, e.g., in [HLNW11, HSJW14]. See the recent reports on

glyph design by Ward [War08] and Borgo et al. [BKC∗13] for an overview. The idea of

our glyph is as follows: Every glyph represents a single spatial position x0. The glyph is

placed at its respective spatial position and we densely cover the domain with glyphs to

obtain a discrete sampling of the spatial domain. With this, we limit the computation

to this set of discrete spatial points, which reduces the 4D domain considerably.

Each glyph is disc-shaped and represents the v0 plane. Thereby, each pixel of a glyph

represents a discrete sample of the velocity domain. The angle represents the direction

and the distance to the center the magnitude, up to some upper bound vmax, which can

be adjusted interactively. The glyph concept is illustrated in Fig. 12.6. Each glyph covers
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x0

v0

v0

v = 0

|v| = vmax

detail view

main view

Figure 12.6.: Visualization concept. The location of a glyph in the domain corresponds

to an initial position x0. A point inside a glyph corresponds to an initial velocity v0.

Thereby, the glyph center corresponds to v = 0 and the boundary has |v| = vmax.

only a certain number of pixels, which reduces the set of velocities to consider again

considerably. We progressively add additional samples in every pixel for anti-aliasing

purposes over the course of multiple frames, but a rather good preview is obtained

with one sample already. The color of a glyph pixel encodes the sink that is reached

after integration from x0 with initial velocity v0. As color table, we used Kelly’s colors

of maximum contrast [GA10]. The size of the glyphs is specified in screen space and

is interactively adjustable. In the examples throughout the chapter, we set a typical

glyph radius of 15–20 pixels. We layout the glyphs on hexagonal grids, which delivers

the densest possible packing and reaches 90% screen space coverage. We set a glyph

spacing of one pixel to make the circles easier distinguishable.

Detail View. To support the exploration process, the user can select a glyph, for which

a close-up is presented in the bottom-right corner of the screen. In this detail view, seed

points of inertial trajectories can be added and removed by clicking on the close-up.

The clicked coordinate determines the initial velocity v0, and the selected glyph itself

represents the initial position x0. From there, inertial trajectories are integrated and

displayed in the main view. Fig. 12.7 gives an example. In addition, hovering over a

seed point in the detail view highlights the corresponding trajectory in the main view.

12.3. Implementation

In order to enable interactive response in the exploration of the 4D space of possible

initial conditions, we devise an efficient GPU-based computation of the glyph visu-

alization. In the following, we elaborate on the memory layout and the progressive

computation under constraint time budgets per frame.
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12.3. Implementation

Figure 12.7.: Glyphs show the asymptotic behavior of inertial particles that were re-

leased with dp = 75µm, vmax = 10m/s, and varying x0 and v0. Note that sink glyphs

contain the color of the corresponding ω-basin. The user is provided detail views of

selected glyphs in which seed points of inertial particle trajectories can be specified.
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12. Inertial Steady 2D Vector Field Topology

12.3.1. Glyph Memory Layout and Camera Navigation

We begin with glyph data layout on the GPU, and its update during camera navigation.

Data per Glyph Pixel. Each glyph covers a certain number of pixels and for each

of those pixels, we progressively generate subsamples that correspond to initial con-

ditions (x0, v0). We evaluate their color based on the classification of the sink that

they reach in the limit, and progressively accumulate the evaluated colors. Thus, each

pixel stores a floating point vector with four components, containing the accumulated

color (RGB) and the number of samples (A) generated so far. If a subsample is outside

the glyph, the color evaluates to the background color in order to anti-alias the glyph

boundary.

Texture Atlas and Glyph Data. We maintain a memory pool of glyphs that is orga-

nized as a texture atlas. Thereby, each entry stores the aforementioned glyph pixel

data of one glyph. In addition, we store in a buffer for each glyph its spatial position

in the domain (x0), the location of its contiguous pixel data in the texture atlas and a

counter that accounts for the number of pixels that have been processed in the glyph

so far. During rendering, we simply place the portion of the texture atlas that belongs

to a glyph on the screen at the respective domain location. Note that the texture atlas

needs to be recomputed whenever the size of the glyphs or a simulation parameter

(particle diameter, particle density, viscosity or gravity) is varied by the user.

Camera Navigation. Interaction requires a swift navigation of the camera, including

panning and zooming. During panning, we move the camera pixel-wise, so that a pixel

in the texture atlas always covers a full pixel on the viewport. This allows to make use

of the full potential of the texture atlas, because the accumulated pixel data of the

glyphs can be reused in the new view. Glyphs that leave the viewport are freed and

their texture atlas space can be assigned to newly appearing glyphs. (We compute the

placement of glyphs on the CPU and map the updated glyph data to the GPU.) During

zooming, we maintain the size of the glyphs. In order to preserve the dense covering

we scale the underlying coordinates. Zooming requires to reset the texture atlas, since

the initial position x0 of each glyph changes.

12.3.2. Progressive Computation

In the following, we explain how the progressive computation can be efficiently de-

ferred over multiple frames, and how previews can be generated.
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12.3. Implementation

Processing Order. As the integration-based evaluation of an initial condition is com-

putationally expensive, only a certain number of glyph pixels can be processed each

frame to maintain interactive response. The order in which the pixels of a glyph are

processed is pre-determined and stored in a randomized pixel permutation vector, in

order to obtain a roughly uniform sampling of the glyph. (The permutation repeats

when all pixels were processed to progressively add further samples for anti-aliasing.)

The procedure for each GPU thread goes as follows:

• Select the glyph (determines x0) and its next pixel to process (lookup in pixel

permutation vector).

• Take a low-discrepancy (quasi-)random sample inside the pixel to progressively

anti-alias the pixel. The location is determined via Halton sequences on the CPU

side and is for all pixels that are processed in an iteration the same.

• Convert the subpixel location ps in the disk to the initial velocity as v0 = vmax ·
(ps − pd)/rd, with pd being the center of the velocity disc and rd its radius.

• Integrate an inertial trajectory until it enters a sink (4D fourth-order Runge Kutta)

and lookup the color of the sink. If a trajectory leaves the domain or does not

terminate in a critical point, the kernel evaluates to gray.

Hole Filling. Since only a certain number of pixels can be processed each frame, we

need to fill the holes to generate adequate previews. In this work, we implemented a

Shepard interpolation among the already processed pixels on the GPU. For this, we

dispatch one thread group per glyph and load the already processed pixels in blocks to

shared memory, iterate block by block the pending pixels and sum up the weighted

distances to the processed pixels in shared memory. This method is simple and fast

enough. Alternative approaches would be multi-scale push-pull, (truncated) Gaussian

kernels or anisotropic diffusion (possibly heuristically in direction of the flow). A more

sophisticated and general sampling and reconstruction framework was described by

Frey et al. [FSME14]. Fig. 12.8 demonstrates results of our hole filling. In this example,

an iteration took 29ms with additional 6ms on hole filling (on average). Here, after 6

frames each pixel was processed once. The following frames add further subsamples

for anti-aliasing.

Detail View. In the detail view, the number of pixels is small enough to process each

pixel in the first iteration, which leaves no holes. Afterwards, we process in each frame

only a fraction of the pixels, which adds further subsamples for anti-aliasing. We found

that the extra time for generating more samples in the detail view is better spent on

filling holes in the main view. The time it takes to process a pixel depends on the data
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Figure 12.8.: Close-up on the selected glyph in Fig. 12.10a. Results of the hole filling

after a certain number of frames and total passed time (below the images). Here, for a

glyph with a radius of 25 pixels (2133 pixels in total), we process 400 pixels per frame.

set (average time to reach a sink) and the integration step size. In our experience it

typically takes less than 1.5 seconds to generate a sample for every glyph pixel on the

viewport. Further timings are listed later in Section 12.4.1.

Additional Query Type. Figs. 12.4 and 12.5 illustrate an additional query type, in

which we select one certain v0. In this case, no glyphs are needed and we compute for

every pixel on the screen, which sink is reached in the limit, when releasing an inertial

particle at the pixel. In contrast to the glyph visualization, here, a pixel depicts the

spatial domain. Again, we progressively generate more samples in each pixel to fight

aliasing. Technically, we split the domain into tiles of 8× 8 pixels, determine a pixel

processing permutation, and update every iteration a certain number of pixels. In the

hole filling step, we perform the Shepard interpolation per tile.

12.4. Results

We applied our glyph-based visualization to several synthetic and real-world data

sets. The real-world data sets also serve as synthetic testing ground, in which we

assume that the equations of motion hold. Generally, we assume all domain sizes

to be in meters and time in seconds. For all examples, we used as particle density

ρp the density of dry sand, i.e., ρp = 1600 kg/m3. If not mentioned otherwise, we

assume gravity-free environments. The diameter dp varies between dp = 70µm and

dp = 200µm. The surrounding medium was assumed to be air, thus the viscosity

was set to µ = 1.532·10−5 kg/(m·s). Given these parameters, response time r is in our

experiments in the range r ∈ [0.028, 0.232].

While the extraction and classification of inertial critical points is tailored to the un-

derlying equations of motion, our glyph-based visualization of asymptotic behavior

is independent of the equations of motion, as it is based on the abstract inertial flow
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map. This means, the glyph concept can be applied to any particle model.

Borromean Rings. Fig. 12.1 (left) shows a slice of the 3D BORROMEAN RINGS sequence

from Section 3.4. It contains a simulation of a magnetic field with field lines initially in-

terlocked in the shape of Borromean rings. Over time the rings decay and topologically

reconnect to two smaller magnetic knots that drift apart. For the purpose of generating

test data, we selected one slice that contains both swirling and non-swirling inertial

critical points, and show the trajectories of several manually seeded inertial particles

(black).

Forced-Damped Duffing Oscillator. The FORCED-DAMPED DUFFING oscillator is a

dynamical system that experiences chaotic behavior. Its analytic expression was given

in Section 11.4. The system served as test data for studying the separation of inertial

particles in terms of inertial FTLE (separation due to spatial variation) [HS11] and in

terms of FTMS (separation due to mass variation) in Chapter 11. As we observe steady

vector fields, we select a particular time slice t = 0 in the spatial domain [−2, 2]2. As

shown in Fig. 12.1 (middle), the flow contains two attracting foci, and a non-swirling

saddle. Dependent on the initial position and initial velocity, an inertial particle reaches

one focus or the other. In this example, we released seven inertial particles from the

same initial position, but with varying initial velocity. Their initial velocity is depicted

in the glyph detail view, and their trajectories are drawn in the main view. The glyph

tells for the respective initial conditions the asymptotically coherent regions distinctly

apart.

Nine Critical Points. The NINE CP data set is an analytic 2D flow that contains nine

non-swirling critical points: four sinks at (±1,±1), four saddles between them at (0,±1)

and (±1, 0), and a source at (0, 0). The flow is given as:

u(x, y) =

(
x (1− x)(1 + x)

y (1− y)(1 + y)

)
(12.10)

and we observe it in the domain [−1.5, 1.5]2. For g = 0, the inertial critical points

stay at the same locations, but their type changes, as shown in Fig. 12.1 (right). The

domain contains four ω-basins, in which we released several inertial particles at the

same location but with varying initial velocity.

Random Flows. We constructed several conservative flows as gradient vector fields

of a random scalar field. For this, we placed random scalars in [−1, 1] on a 12 × 12

(Figs. 12.4, 12.5, 12.7) or 14× 14 (Fig. 12.9) regular grid in the spatial domain [−1, 1]2,
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12. Inertial Steady 2D Vector Field Topology

(a) 5313 glyphs with a radius of r =

5 pixel.

(b) 1694 glyphs with a radius of r =

10 pixel.

(c) 559 glyphs with a radius of r =

20 pixel.

Figure 12.9.: Another random data set, containing the various types of inertial critical

points. Here, shown for varying glyph sizes, dp = 70µm and vmax = 10m/s. Several

inertial trajectories were interactively placed in the right image.

and bilinearly interpolated values in between. The flows exhibit a variety of critical

points and serve as explanatory examples, including a showcase for varying glyph sizes

in Fig. 12.9.

Trefoil Knot. The TREFOIL KNOT data set is another 3D magnetic field and is cour-

tesy of Candelaresi and Brandenburg [CB11]. It contains three interlocked magnetic

rings that decay over time. For demonstration purposes, we selected a 2D slice that

shows swirling patterns. It contains seven swirling and non-swirling attracting critical

points and their respective ω-basins are winding in the middle of the domain around

a swirling saddle. In Fig. 12.10, we seeded inertial trajectories at a glyph near the

aforementioned swirling saddle, and examine the influence of the gravity vector. We

selected initial velocities in the detail view of the selected glyph, which eventually reach

their respective attracting node or focus.

Benzene Molecule. The BENZENE data set contains the central z-slice of the analytic

approximation of a 3D potential field of a benzene molecule [ZSH96]. The vector field

is shown in Fig. 12.11 for varying dp and contains a large number of symmetrical inertial

critical points. For reference, we placed inertial particle trajectories in the domain,

and it can be seen that the inertia has great influence on their paths. With increasing

diameter, more inertial critical points exhibit swirling behavior, and the stronger is the

impact of the initial velocity on the critical point that is reached in the limit.
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(a) g = (0, 0)T: 1 , 1 , 5 ,

3 , 10 , 1 , 5

(b) g = (0,−1)T: 1 , 1 , 6 ,

2 , 12 , 0 , 6

(c) g = (−1, 0)T: 1 , 1 , 6 ,

3 , 11 , 2 , 4

Figure 12.10.: In the TREFOIL data set, spiral patterns occur in the glyphs, showing that

the magnitude of an initial velocity has great impact. Here, shown for varying gravity,

with dp = 70µm and vmax = 5m/s. Note that a change in gravity causes critical points

to move, change their type and appear/disappear.

(a) dp = 100µm: 30 , 42 ,

13

(b) dp = 150µm: 24 , 6 , 34

, 8 , 13

(c) dp = 200µm: 24 , 6 6 ,

36 , 13

Figure 12.11.: The BENZENE data set, contains a large number of inertial critical points.

Here, shown for varying dp and vmax = 20m/s. The inertial trajectories (black) were

released in all three experiments with the same initial position and initial velocity.

12.4.1. Performance

We used an Intel Core i7-2600K CPU with 3.4 GHz and 24 GB RAM, and an Nvidia

GeForce GTX 970 GPU with 4 GB VRAM. All results were rendered at a resolution of

800 × 800 pixels with 4×MSAA. Table 12.2 reports the numbers of extracted inertial

critical points for our test data sets, shows the glyph parameters that we set and lists

the computation timings. The glyph parameters include the number of glyphs on the
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12. Inertial Steady 2D Vector Field Topology

Inertial Critical Points Glyph Parameters Computation Time

Data Set
# attr. # 1/3 sad. # 2/2 sad. # glyphs # pixels # glyph CP extr. iteration hole filling

on viewport per glyph pixels per it. [inms] [inms] [inms]

Borromean, Fig. 12.1 1 0 1 1 3 0 2 907 801 50 0.49 50.6 5.36

Duffing, Fig. 12.1 0 0 2 1 0 0 0 907 801 32 0.47 51.7 6.37

Nine CP, Fig. 12.1 4 0 0 4 0 1 0 907 801 200 0.29 25.1 4.11

Random, Fig. 12.9c 0 1 15 2 38 10 8 559 1385 500 0.72 27.7 6.13

Trefoil, Fig. 12.10a 1 1 5 3 10 1 5 559 1385 400 1.28 27.6 5.90

Benzene, Fig. 12.11b 24 6 0 34 8 13 0 1655 373 373 0.74 20.3 —

Table 12.2.: This table summarizes the extraction results of inertial critical points,

reports the glyph parameters that we set (number of glyphs on the viewport, number

of pixels per glyph, and number of pixels per glyph that are processed each frame), and

lists the computation timings for the extraction of inertial critical points, the time it

takes to process one frame and the maximal time needed for the hole filling.

viewport and the number of pixels per glyph. Naturally, the larger the glyphs the less

glyphs fit on the viewport. The third entry in the glyph parameters column reports the

number of glyph pixels that we process each frame per glyph. This number balances

the quality of the preview for performance and was chosen so that roughly 20− 50 fps

were reached. Its setting depends on the data set, mainly on the average time it takes

an inertial particle to enter an attracting node or leave the domain, and the chosen

numerical step size. In the FORCED DUFFING for example, inertial particles follow a

rather long path, compared to the BENZENE data set, in which each glyph pixel could

be processed every frame. Here, hole filling was not even necessary. Hole filling takes

places until every glyph pixel was processed at least once. In the other data sets, this

was achieved after 3− 25 frames.

The extraction of inertial critical points takes almost the same time as for the massless

case, since only the field r g is added to u(x) prior to extraction. The extraction is a

root finding problem, for which we used a recursive subdivision of the spatial domain

up to an accuracy of 1 · 10−10. The hole filling cost grows with the number of already

processed pixels from close to zero up to the value given in the table, as the number of

pixels grows that are taken into account during Shepard interpolation. Reconstruction

kernels with local support can reduce this cost.

12.4.2. Limitations

We encoded the mapping of sink glyphs to their respective ω-basins by color. The

number of easily distinguishable colors is limited and our current table only supports

up to 20 colors (excluding black and white) [GA10]. For the BENZENE data set in

Fig. 12.11, we repeated the colors at 30% more brightness. Alternatively, textures

226



12.5. Conclusions

could be used to generate further distinguishable patterns. Currently, we use a random

permutation to determine the order in which the pixels of a glyph are processed. Frey et

al. [FSME14] used a multi-resolution capacity-constrained sample distribution, which

could be the basis for a more evenly distributed pixel processing permutation. Flows

with thousands or critical points are generally perceptually difficult for all topological

methods. Topological simplification addresses this problem, see Chen et al. [CML∗07]

and the references therein.

12.5. Conclusions

The chapter presented – to the best of our knowledge – the first approach to a topology-

based visualization of inertial flows. We conducted a full classification of critical points

in 2D steady inertial flow. We studied the relation between eigenvalues of the massless

2D Jacobian and the inertial 4D Jacobian. Among others, we made the observation

that in inertial flow, sources cannot exist. This explains the strong repelling behavior

of backward integration from a topological point of view, and is consistent with the

findings in related CFD literature [HS08]. In order to study the asymptotic behavior of

inertial particles, we developed a glyph that encodes for both varying initial position

and initial velocity, which sink is reached in the limit. We see potential use of this in

general dynamical systems theory. The motion of inertial particles is a subclass of this

large area, and studying topologically the possible outcome of initial conditions in

general dynamical systems (ODEs) seems very useful.

In future work, we look forward to extensions to 3D, i.e., a full classification of the 6D

critical points and the visualization of their separation manifolds. The 3D case poses

significant additional challenges concerning the rendering and visual representation

of the segmentation. As for an extension to unsteady flows, the same issues arise as in

the traditional massless case: due to the limited time range, asymptotic behavior can

usually not be observed. As an alternative, finite-time approaches have been proposed,

both in the massless and the inertial case. Aside from extensions to more general parti-

cle models, we also look forward to adaptations that allow for spatially and temporally

varying response times. Both will allow to reach out to further applications. The glyph

design can be evaluated by the principles of Borgo et al. [BKC∗13]. Finally, there are

many more concepts from traditional vector field topology that can be extended to

the inertial case, including saddle connectors, boundary switches, closed orbits etc.

The extraction of some of these features could be quite challenging, since backward

integration toward critical points is practically not possible.

227



13
Chapter 13.

Source Inversion by Forward

Integration in Inertial Flows

The following chapter presents an approach to the source inversion problem and is

based on the paper:

T. Günther and H. Theisel

Source Inversion by Forward Integration in Inertial Flows

Computer Graphics Forum (Proc. EuroVis) 35, 3 (2016).

Some problems in the area of inertial particle dynamics can be approached by direct

extension of methods from the massless case. Other problems and phenomena, how-

ever, are unique to inertial flows. A particular example is the so-called source inversion

problem, which arises in the source recovery of airborne or waterborne pollutions

based on the observation of dispersed pollutants. While these are typically modeled

along with diffusion processes as in Akçelik et al. [ABG∗03], Boano et al. [BRR05], El Ba-

dia et al. [BHDH05] or Chow et al. [CKC08], the source inversion problem is nontrivial

even when diffusion is neglected. So far – even with this simplification – a solution

to the source inversion problem could only be approximated [HS08], and it was not

possible to recover the initial velocity with which the pollutant entered the flow.

Given an observation from which a usual backward integration is started, the recovered

initial position and velocity of the inertial particle heavily depend on the observed ve-

locity that we started with. In fact, a slight change leads to a completely different initial

position. Fig. 13.1 illustrates the problem. Most often the recovered initial velocity is

extremely high and therefore implausible. Instead of prescribing the observed position

x and the observed velocity v, the idea of our approach is to prescribe the observed

position and an initial velocity v0: we assume that particles can start from any spatial

location but with a fixed initial velocity v0. Such assumption is justified, for instance,

when the pollutant is released from rest.
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(a) Inertial backward integration exhibits strong re-

pelling behavior.
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further
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(b) Our influence curves avoid this problem.

Figure 13.1.: Source inversion in left half of the DOUBLE GYRE for τ = 9 in (a): Start-

ing from a source, forward integration takes an inertial particle to an observation. A

backward integration, however, repels and does not reach the source (forward and

backward curves are for numerical reasons not identical). Slight variations of the ob-

servation (in the order of 10−8) lead to sooner repelling behavior. Backward integrated

curves exhibit extreme velocities (particles exit the domain on rather straight tracks)

and are therefore implausible. In (b), our influence curve connects all locations that

lead during forward integration to the observation, which allows to recover the source.

We formulate the following two problems to be solved in this chapter:

1 Given an observation point x, from which points c in the spatial domain will an

inertial particle integration with initial velocity v0 starting at time t pass through

x after finite integration time τ?

2 With which velocities v can such particle pass through x?

We show that for both problems the solutions are one-parametric sets of points (Prob-

lem 1) or vectors (Problem 2). In fact, we show that all solutions of Problem 1 form a

parametric curve c(τ), which we call the influence curve. It is the collection of all points

c in the spatial domain that have influence on x in the sense that inertial particles start-

ing from c pass through x. The main theoretical contribution of this chapter is to show

that all influence curves can be described as pathlines of one time-dependent vector

field h(x, t), i.e., they can be extracted by a simple massless integration. Furthermore,

the computation of h is based on forward integrated inertial particle trajectories only.

Therefore, the computation is much more stable than a backward integration.
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Figure 13.2.: Visualization of the initial positions (blue curves) of inertial particle

trajectories (green curves) that lead to the same location (small white sphere). At this

location, a glyph is placed that depicts the velocities (orange curves), with which the

inertial particles arrive. We solve the source inversion problem for left: TREFOIL and

right: WALL-MOUNTED CYLINDER.

The solution of Problem 2 is also a one-parametric family of vectors v(τ). This means

that for a given observation point x, inertial particles passing through it can have only

“a few” possible velocities.

For the visualization, we systematically place observation points in the spatial domain

and prescribe a user-defined initial velocity. After extraction, we interactively visualize

the influence curves and display the velocities observed at the observation points using

glyphs. As inertial particle trajectories converge to attracting manifolds in the spatio-

velocity domain [MBZ06, HS08], we additionally encode the rate of change of the

observed velocity along the influence curves, which gives a notion for the convergence

to the terminal velocity in the attracting manifold. With this, we present the first

solution to the source inversion problem that considers actual inertial trajectories.

We apply our method to a number of steady and unsteady flows in both 2D and 3D

domains. An example is given in Fig. 13.2.

Inertial Flow and Flow Map

In Chapter 9, we described the trajectories of inertial particles as tangent curves of

a high-dimensional vector field, which models both the rate of change of particle

position x and particle velocity v. Recalling for an unsteady underlying flow u(x, t)

in n-D with n = {2, 3}, the autonomous governing m-D vector field, with m = 2n+ 1,

becomes (cf. Eq. (9.5)):

p̂ =
d

dt

x

v

t

 =

 v
u(x, t)−v

r + g

1

 with

x

v

t

 (0) =

x0

v0

t0

 (13.1)
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where g is a gravity vector (if not mentioned otherwise we set g = 0), and x0, v0 and t0
are the initial particle position, velocity and time. Throughout the following chapter,

we set as particle density ρp the density of dry sand, i.e., ρp = 1600 kg/m3. The diameter

dp was set to dp = 300µm if not mentioned otherwise. The surrounding medium was

assumed to be air, thus the viscosity was set to µ = 1.532·10−5 kg/(m·s). Given these

parameters, r is in our experiments in the range r ∈ [0.058, 0.928].

In Chapter 10, an inertial n-D flow map φ was introduced that maps a given initial

condition (position, time, velocity) to the reached spatial location after integration. In

this chapter, we require flow map derivatives of the full inertial phase-space, thus we

consider the full m-D flow map of p̂ as

φ̂(x,v, t, τ) =

φ(x,v, t, τ)

ψ(x,v, t, τ)

t+ τ

 (13.2)

where φ denotes the location and ψ the velocity of an inertial particle after integration

duration τ when starting the integration at location x at time t with initial velocity v.

The gradient of φ̂ is a m×m matrix

∇φ̂(x,v, t, τ) =

φx(x,v, t, τ) φv(x,v, t, τ) φt(x,v, t, τ)

ψx(x,v, t, τ) ψv(x,v, t, τ) ψt(x,v, t, τ)

0T
n 0T

n 1

 (13.3)

where φx, φv, ψx, ψv are n × n matrices describing the partial derivatives of φ̂ with

respect to x, v, and φt, ψt being the start time partials.

13.1. Influence Curves

In the following, we define influence curves, describe a method to their efficient

extraction and propose a visualization that depicts both the curves and the observable

velocities.

13.1.1. Definition

We introduce the concept of the influence curve of an observation point x as a curve

containing all points from which inertial integration with initial velocity v0 and start

time t0 ends in x after a certain integration duration τ . That is, we prescribe the

observed location and the initial velocity. If not mentioned otherwise we set v0 = 0.

We define all influence curves as a family of parametric curves c(x, τ) so that

φ(c(x, τ),v0, t0, τ) = x (13.4)
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inertial pathlines with start time t0
and duration τ

(c(x, τ),v0, t0)

observed velocities

influence curve c(x, τ)

x

(φ, ψ, t0 + τ)

observed position

possible sources
for varying τ

Figure 13.3.: Given an observation x, the influence curve is the union of all locations

that lead an inertial pathline to the observation x. The velocity of arriving particles

(orange) is shown in a glyph at x. The glyph design is described later in Section 13.1.3.

for all x, curve parameterization τ and the family parameters v0, t0. Given a curve c,

we can compute the observable velocity of particles arriving at x as ψ(c(x, τ), v0, t0, τ)

for any integration duration τ . Fig. 13.3 illustrates influence curves.

13.1.2. Extraction

The family of all influence curves can be characterized as pathlines of an n dimensional

unsteady vector field h(x, t), starting at t = t0:

d c

d τ
= h(c(x, τ), t0 + τ). (13.5)

Fortunately, vector field h has a simple form:

h(x, t) = − φx−1

[
φv

(
u(x, t0)− v0

r
+ g

)
+ φt

]
− v0 (13.6)

where φx = φx(x,v0, t0, t − t0), φv = φv(x,v0, t0, t − t0) and φt = φt(x,v0, t0, t − t0)

are inertial flow map derivatives that can be computed by forward integration, cf.

Eq. (13.3). Note that Eq. (13.6) is the main theoretical contribution of this chapter. See

Appendix D for a derivation of Eq. (13.6). With this, influence curves can be extracted

via pathline integration in h.

The definition of h raises another question: How far can we integrate forward in h?

Integration in h stops, when inertial flow maps or the influence curve itself leaves

the domain or when the influence curve enters a critical point in h. The latter is only

expected for steady underlying flows u. Consider a steady 2D center u(x, y) = (−y, x)T

as shown in Fig. 13.4. While massless particles perfectly follow the circular motion,
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(a) LIC of u(x, y) = (−y, x)T. (b) Influence curves in a center.

Figure 13.4.: Inertial particles in a center flow, showing influence curves, inertial path-

lines (seeded from selected curve), as well as velocity glyphs (see Section 13.1.3).

inertial particles spiral outward due to inertia. In fact, inertial particles that move for a

longer period of time will be carried further outward. Consequently, influence curves

must spiral inward, since all inertial particles released from the influence curve must

reach the same observation point. Eventually, influence curves converge toward a

critical point of h. An example of this behavior in 3D is shown later in a steady flow in

Fig. 13.12.

13.1.3. Visualization

For computing an influence curve via pathline integration in Eq. (13.6), we have to

specify an observation point in the spatial domain from which the integration inh starts.

In our visualizations, we systematically place the observation points and compute

their corresponding influence curves. In 2D, the observation points are laid out in a

hexagonal pattern in order to achieve the densest possible packing. In 3D, we decided

to place them in a regular grid layout, as this makes the placement of axis-aligned clip

planes easier.

We visualize the influence curves in the spatial domain (in blue) for a certain time

range [0, τ ], which is reported later in Table 13.1 for all figures. Additionally, we place

a glyph at their observation point to depict the velocities with which the particles

arrive (in orange). The glyphs have a circle shape in 2D and a sphere shape in 3D. They

visualize the observed velocities in polar coordinates, with ψ = 0 in the center and
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up to a certain user-specified upper velocity magnitude vmax at the boundary of the

circle/sphere. The velocity of an arriving inertial particle is a point in the glyph and the

union of velocities of all arriving particles forms a curve. The 2D case has similarities

with the glyph designed in Chapter 12, though with the difference that here a glyph

encodes the observed velocity, whereas in Chapter 12 it depicts the initial velocity. In

the 3D case, we cull the front faces of the spheres to allow looking inside them.

For both the influence curve in the spatial domain and the corresponding observed

velocities in the glyph, we encode the change of the observed velocity with respect to

the curve parameter. In particular, we map 1/(1 + ∂ψ/∂τ) to line width and brightness.

The change in the observed velocity gives a notion for the convergence of the particle

velocity to the terminal velocity. The thicker and darker a curve segment the more

likely has the observed velocity converged to the terminal velocity, since over time

convergence gets slower. Note that this is only meant to give a notion for the conver-

gence. Inertial particles may shortly be driven away from attracting (spatio-velocity)

manifolds [SH09].

We allow the user to select a glyph by picking. For the selected glyph, we release

a user-specified number of inertial pathlines (in green) from the selected influence

curve. Then, all trajectories have in common that they reach the observation point.

This pathline depiction is related to the eyelet particle tracing of Wiebel and Scheuer-

mann [WS05], as they displayed pathlines that pass through a single point at different

times for massless flows in order to capture the unsteady behavior of a time-dependent

flow in a single steady image. In some cases, influence curves may clutter the view, es-

pecially in unsteady or in 3D flows. Thus, we allow the user to either show the influence

curve of the selected glyph only (Fig. 13.8, left) or of all glyphs (Fig. 13.8, right).

13.2. Implementation

In the following, we share insights and observations we made about the numerical

integration of the influence curves. Fig. 13.5 gives an example of the influence curve

vector field in the DOUBLE GYRE, precomputed at 256× 128× 128 in 100 minutes. In

this flow, (massless) tracer particles stay inside the domain; inertial particles, however,

do not. Due to inertia they might be dragged outside, depending on the particle

response time, i.e., diameter, density and viscosity. This means, flow maps might

leave the domain, and thus the influence curve field might not be defined at those

places. Undefined areas are shown in Fig. 13.5 in black. Thus in these areas, influence

curve integration stops and no further sources can be found. Also, influence curves

themselves might leave the domain. We further elaborate on source inversion in

bounded domains in Section 13.4.2.
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Figure 13.5.: Influence curve vector field h(x, y, t) in the DOUBLE GYRE. Left: Space-

time visualization of the influence curve vector field, containing several pathlines (i.e.,

influence curves). Right: Selected LIC slices, showing areas where h is undefined, since

particles left the domain (black) and where the magnitude is high (red).

Another observation we made is that even though the DOUBLE GYRE flow has a rather

moderate variation in the velocity magnitude, the influence curve field might have

places with extremely high magnitude (variation of up to factor 3000). Fig. 13.5 (right)

visualizes the magnitude by color-coding. In this example, high magnitudes occurred at

later integration times (τ > 9) close to the domain boundary, which causes numerical

difficulties. We found that an adaptive integrator is mandatory in order to integrate

through these areas. Thus, the influence curve integration in h is done using the

adaptive Runge-Kutta-Fehlberg method (RK45).

If the domain should be densely covered with influence curves, the vector field h can

be precomputed similar to [WT10a]. If only few influence curves are shown, like in our

glyph examples, a precomputation of h for all space-time locations does not pay off.

13.3. Results

We applied our method to a number of data sets. Note that some of them were studied

in related CFD literature [HS11, SBR16] and that the remaining mainly serve as syn-

thetic testing ground for source inversion problems, and that in all flows the spatial

units are assumed to be in meters and time in seconds. The visualization parameters

(vmax, t0 and τ ) are given for all figures later in Table 13.1.
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13. Source Inversion by Forward Integration in Inertial Flows

(a) dp = 200µm (b) dp = 300µm (c) dp = 400µm

Figure 13.6.: Visualization of all locations (blue curves) that reach the observation

points (centers of gray circles). Here, we show the impact of particle size dp in the

TREFOIL 2D data set, together with inertial pathlines (green curves) for a selected

glyph.

Trefoil. Our first data set is the TREFOIL from Section 12.4, which contains a sim-

ulation of the decay of magnetic rings. In Fig. 13.6, we selected one particular 2D

slice (steady, with velocity vectors projected into the 2D slice plane) and computed

the influence curves for particles with different diameters. In this example, we make

several observations that are in accordance with the behavior that is expected. First,

we see that the smaller the particles are, the faster they align with the flow. This can

be seen by the thickness and color of the lines, which represents the rate of change

in the final velocity. Small particles converge to the terminal velocity faster, which is

visible by the “drop shape” of the orange curves in the velocity domain, see Fig. 13.7.

For small particles, the orange lines begin very thin and have a noticeable blob at the

end, which represents the near-terminal velocity which almost all incoming inertial

particles have reached. Further, we see that inertia effects get stronger the larger the

dp = 100µm dp = 200µm dp = 300µm dp = 400µm

Figure 13.7.: Typically, the observed velocities (orange) are distributed in a characteris-

tic drop shape inside the glyphs.
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Figure 13.8.: A dense sampling of a 3D domain, such as in the TREFOIL flow, might lead

to cluttered influence curves. Left: only one influence curve is shown, right: all are

shown.

particles are, as the inertial pathlines (green) deviate stronger from the influence curve

(blue). This is expected, since larger particles have a higher response time, thus they

take longer to respond to changes in the underlying flow.

In Fig. 13.8, we applied our method to the same data set in the original 3D domain. In

the right image, patterns of coherent behavior emerge which relate to the underlying

magnetic ring structures. However, line depictions can get cluttered, thus we display

in the left image only a selected influence curve. Fig. 13.2 (left) contains a detail view

on one of the glyphs.

Forced-Damped Duffing. Next, we used the FORCED-DAMPED DUFFING oscillator

from Section 11.4, again, in the spatial domainD = [−2, 2]2. Fig. 13.9 depicts influence

curves for particles of different size and with varying gravity for the steady slice t = 0.

It can be seen that influence curves of smaller particles are longer than those of bigger

particles. This is due to the smaller response time of small particles. All particles were

released from rest and due to its larger response time, a large particle takes longer to

accelerate and thus travels in the same time a shorter distance, compared to a smaller

particle. An increase in gravity affects the course of inertial particles and thereby the

influence curves.
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(a) dp = 200µm, g = 0 (b) dp = 400µm, g = 0 (c) dp = 400µm, g = (0,−0.5)T

Figure 13.9.: Influence curves in the phase space of the FORCED-DAMPED DUFFING

oscillator for different particle sizes dp and gravity g. The larger the particles, the slower

their response to changes in the underlying flow. Thus, they take longer to accelerate

and as shown by the orange curves (observed velocity), they enter the observation

points with less speed than the smaller particles. With increased gravity (downward),

influence curves bend upward to accommodate the downward motion of inertial

particles.

Figure 13.10.: Influence curves for different initial velocities in the DOUBLE GYRE. Left:

v0 = (0, 0)T, right: v0 = (0, 0.15)T. When inertial particles are not released from rest

(right image), orange curves (observed velocities) no longer start at the glyph center.

Double Gyre. In Fig. 13.10, we extracted influence curves for different initial velocities

in the DOUBLE GYRE flow from Section 7.4. It can be seen that for v0 6= 0, the orange

line in the velocity glyph (depicting the observed velocities) does not start at the glyph

center. The impact of the initial velocity on the particle trajectories can be seen by the

green inertial pathlines.

Tornado. Fig. 13.11 depicts the synthetic TORNADO data set from Section 3.4 for two

different viewpoints. In 3D domains, glyphs occlude each other. Therefore, we allow

the user to place clip planes in order to explore inner structures. In this example,

we clipped away some of the glyphs to get a better view. The underlying flow has
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13.3. Results

Figure 13.11.: Influence curves in a steady TORNADO flow.

Figure 13.12.: Influence curves in a symmetric RAYLEIGH-BÉNARD convection are

separated into convection cells.

a relatively simple structure that is visible in the influence curves (blue) and their

observed velocities (orange).

Rayleigh-Bénard. Fig. 13.12 shows the steady RAYLEIGH-BÉNARD convection from

Section 3.4, i.e., a thin layer of liquid that is heated from below. In this flow, separate

convection cells are formed that rotate. Our visualization captures the symmetry of the

domain and it can be seen that at least for the chosen observation points, influence

curves are separated into the left and right halve of the domain. With ongoing influence

curve integration, the curves reach critical points in h, which are here inside the left-

most and right-most convection cells.
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13. Source Inversion by Forward Integration in Inertial Flows

Figure 13.13.: Influence curves (blue) in the unsteady wake of the 3D SQUARE CYLINDER

sequence.

Square Cylinder. The SQUARE CYLINDER flow was earlier described in Section 4.4.

Fig. 13.13 shows influence curves in the unsteady wake of the square cylinder. The two

left-most glyphs in the middle show relatively strong variation in the observed velocity.

The display of inertial pathlines (green) confirms the correctness of the extracted

influence curves (blue).

Wall-mounted Cylinder. In Fig. 13.14, influence curves are shown in the time-

dependent 3D air flow around the WALL-MOUNTED CYLINDER from Section 3.3.2. This

flow contains a laminar layer in the background and a turbulent layer in the foreground.

In laminar areas, influence curves are rather straight, whereas especially in turbulent

areas, observed velocities vary strongly. Still, curves are formed that can be extracted

by our method. A close-up on the selected glyph in Fig. 13.14 is shown in Fig. 13.2

(right).

13.4. Discussion

In this section, we discuss the corresponding solution in the massless case, source in-

version in bounded domains, an optional predictor-correct extension, the application

of influence curves to another problem, and we provide performance measurements.
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Figure 13.14.: Unsteady flow around WALL-MOUNTED CYLINDER. Behind the obstacle,

the flow is slow and turbulent.

13.4.1. Relation to Massless Case

In the massless case, our influence curve is equivalent to a backward-integrated streak-

line. In the inertial case, a backward-integrated streakline also originates from a point

x, i.e., starting inertial pathlines from the streakline in forward direction will end up

(spatially) at x. We can, however, prescribe either of two things: the initial velocity

(when starting from the streakline) or the observed velocity at x as in Chapter 10. In this

chapter, we prescribe the initial velocity. The other is often problematic, as it requires

inertial backward integration, which is difficult due to strong repelling behavior in the

high-dimensional spatio-velocity domain, cf. [HS08] and Chapter 12.

13.4.2. Source Inversion in Bounded Domains

For the argumentation, we use the analogy to massless streaklines. Since streaklines

represent individually advancing particle fronts, parts of a streakline might exit the

flow domain, letting the streakline decay into disconnected pieces. If the streakline

is integrated as a tangent curve (as in [WT10a]), the integration terminates when

the streakline leaves the domain and thus the disconnected pieces are not found.

This means in our context that influence curves cannot recover further sources if the

influence curve leaves the domain (even though it might reenter at a later time). In

the future, we would like to investigate how points can be efficiently found at which

an influence curve reenters the domain so that the integration can be continued. For

the integration in h, we can directly measure the integration error as E(c(x, τ)) =
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‖x− φ(c(x, τ),v0, t0, τ)‖2, since an inertial pathline that was released from influence

curve point c(x, τ) should reach the observation point x exactly. Based on this, we

would like to search the domain boundaries for reentry points.

13.4.3. Accumulating Errors

We described influence curves as tangent curves of a derived vector field. Generally,

tracing curves this way is subject to accumulating numerical errors. With influence

curves, however, this error can be measured (see Section 13.4.2), which allows for a

predictor-corrector approach. After each integration step, the error can be reduced

using Newton iterations. For the examples shown in the paper, the adaptive Runge-

Kutta-Fehlberg (RK45) produced small enough errors. Nevertheless, they could be

further reduced if the need arises.

13.4.4. Reachable Subspaces of the Spatio-Velocity Domain

In Chapters 10–12, the full phase space of possible particle positions and velocities

was considered. In this case, the observation of inertial particles becomes a mass-

dependent and time-dependent 4D or 6D problem, which poses challenges on both

the efficiency of the extraction methods and the visualization. Limiting the phase

space allows to reduce the typically high dimensionality of computations. Assuming

for instance that inertial particles are released from rest, we found in this chapter that

particles may reach a certain location only with a limited set of possible velocities.

Further, we have shown that the set of initial positions that lead to the same location

form a curve. Sudharsan et al. [SBR16] pointed out that the reachable subspace of the

phase space decreases the smaller inertial particles become. This is plausible, since

small inertial particles approach the terminal velocity faster and exhibit thus less varia-

tion than the larger particles. By a dense sampling of the domain with glyphs, we can

visualize the spatio-velocity subspace that can actually be reached by inertial particles.

Of course, a dense sampling with glyphs raises perceptual challenges, especially in 3D

domains, when occlusion plays a role.

13.4.5. Performance and Parameters

We used an Intel Core i7-2600K CPU with 3.4 GHz. The number of glyphs, the extraction

time of the influence curves (in seconds) and the respective parameters for vmax (maxi-

mal velocity shown in the velocity glyph), start time t0 (if unsteady) and integration

duration τ (parameterizing the curve in [0, τ ]) are listed for all data sets in Table 13.1.
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Data Set Glyphs Time vmax t0 τ

CENTER, Fig. 13.4 70 4.1 1 – 20

TREFOIL 2D, Fig. 13.6 180 3.1 1.2 – 2

TREFOIL 3D, Fig. 13.8 500 15.6 1.2 – 3

FORCED-D. DUFFING, Fig. 13.9 70 0.8 3.5 – 8

DOUBLE GYRE, Fig. 13.10 120 1.0 0.36 0 4

TORNADO, Fig. 13.11 147 5.4 5 – 3

RAYLEIGH-BÉNARD, Fig. 13.12 72 5.4 50 – 2

SQUARE CYLINDER, Fig. 13.13 8 14.9 2 10 14

WALL-M. CYLINDER, Fig. 13.14 72 69.9 11 0 10

Table 13.1.: Numbers of glyphs, extraction time (in seconds) and parameters used in

the figures, shown throughout the chapter: maximal velocity shown in the glyphs vmax,

start time t0 (for unsteady flows) and integration duration τ , parameterizing the curve

in [0, τ ].

The extraction time is determined by the efficiency of the inertial pathline integration,

which depends on the data set. In the analytic and simpler flows the influence curves

were computed in a few seconds. In unsteady 3D flows, the extraction took up to 70

seconds. Generally, the further we integrate in h, the more expensive the evaluation of

an integration step becomes, since the pathlines involved in the flow map gradients

have longer integration time τ . After extraction, the scene can be interactively explored

and inertial pathlines can be interactively released from selected glyphs.

13.5. Conclusions

In this chapter, we considered the source inversion problem of inertial dispersed

particles. Given an observation point and a certain initial velocity, we recovered all

locations that an inertial particle could originate from. We have shown that these

locations form a curve, which we called influence curve and we extracted them by

massless pathline integration in a derived time-dependent vector field. Thereby, all

computations were based on inertial forward integration only. After extraction, we

interactively displayed the influence curves in the spatial domain and placed glyphs

at the observation points, illustrating the velocities with which the inertial particles

arrived. With this, we presented the first solution to the source inversion problem

that considers actual inertial trajectories rather than operating on attracting manifolds

only [HS08].

Future work includes the search for filtering methods that allow to limit computations

(such as inertial vortex detection) to regions in the spatio-velocity domain that are
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reachable by inertial flow. Dependent on the application, seeding regions and possibly

varying initial velocities (modeled as probability distributions) play a role [GKKT13]

that could be applied to further filter influence curves. Further, we would like to

determine reentry points at which influence curves return back into the flow domain.
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Chapter 14.

Vortex Cores of Inertial Particles

The following chapter describes algorithms for the extraction of vortex corelines of

swirling inertial particles. The chapter is based on the publication:

T. Günther and H. Theisel

Vortex Cores of Inertial Particles

IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE Scientific

Visualization) 20, 12 (2014), 2535–2544.

For the purpose of understanding the swirling behavior of inertial particles, we extend

the local Sujudi-Haimes [SH95], its unsteady extension [WSTH07], and the integration-

based particle density estimation [WCW∗09] to the inertial case. While for massless

particles, the particle position only depends on the vector field, inertial particles

have their own velocity vector, which is affected over time by inertia. The integration

therefore requires to model position, current velocity and optionally time as state

variables, rendering the system 6D or 7D. Detecting the swirling behavior within this

high-dimensional space is accompanied by a large computation effort – at least for the

brute force search that follows from a direct extension of the Sujudi-Haimes method

from the massless case. However, we show that the search can actually be reduced to a

3D (or 4D) parallel vectors operation, if additional knowledge is carefully included. In

consequence, we found a method that is computationally as expensive as an extraction

of massless corelines, but can answer the same question for inertial particles. Moreover,

due to the rich set of long known extraction methods via parallel vectors [PR99], it is

easily integrated into existing visualization tools.

As a second strategy for finding core lines, we apply an integration-based particle

density estimation after a short integration span to inertial particles, in order to find

attracting structures that the local methods cannot correctly extract (not even for the

massless case). In the remainder of this chapter, we introduce the extraction methods
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and conduct a qualitative evaluation on a number of benchmark data sets.

Notation: Since for inertial particles the direction of movement does not only depend

on the vector field u but also depends on the current particle velocity v, we denote

6D points/vectors as x̃, ũ where the first 3 components refer to the spatial locations

and the last 3 refer to the current particle velocity. Similar considerations for time-

dependent flow fields give 7D points/vectors x̂, û where the additional last component

refers to time.

14.1. Cores of Inertial Swirling Particles

Even for massless particles there is no universal coreline extraction or vortex criterion.

Several approaches exist, all having their benefits and problems. The local methods

only work for static corelines or corelines that move along straight lines. Integration-

based methods, on the other hand, only detect attracting behavior. Though, at present,

these are the best-established approaches. However, none is directly applicable to

inertial particles, which is why we extend both approaches to the inertial case. In this

section, we will show that the extraction of vortex corelines of inertial particles reduces

to a parallel vectors operation in space (3D) for steady or space-time (4D) for unsteady

flows.

14.1.1. Local Methods in a Nutshell

Given a (steady or unsteady) flow field u with its spatial Jacobian matrix J, the (nec-

essary) local conditions for corelines are summarized in Table 14.1. Here, r is the

response time from Eq. (9.3), g is the gravity vector, and f = −J−1 ut (cf. Eq. (2.4))

is the feature flow field. Note that Table 14.1 only gives necessary conditions: the

extracted line structures have to be filtered by the presence of swirling motion, i.e., the

massless inertial

steady u ‖ Ju (u + r g) ‖ J(u + r g)

unsteady (u− f) ‖ J(u− f) (u− f + r g) ‖ J(u− f + r g)

Table 14.1.: Conditions for the presence of a core of swirling particle motion for mass-

less [SH95, WSTH07] and inertial particles: u denotes the vector field, J its spatial

Jacobian, f the feature flow field, r the response time, g the gravity vector. Note that in

addition, the extracted line has to approximately align with the parallel vectors and

that J must contain complex-conjugate eigenvalues.
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existence of complex eigenvalues of J and the tangent of the extracted coreline should

approximately align with the parallel vectors. In Table 14.1, the condition for the steady

massless case is the Sujudi-Haimes condition [SH95]. Its extension from [WSTH07] is

the condition for the unsteady massless case. The two conditions for the inertial case

(right-hand column of Table 14.1) are the main theoretical contributions of this chapter.

Fortunately, they do not depend on the current particle velocity v, leading to a simple

3D PV extraction which can be done by standard methods. Although the conditions for

inertial particles are extremely simple, their derivations are not. They are presented in

the subsequent sections 14.1.2 and 14.1.3. To extract attracting corelines we apply an

integration-based method that works in both steady and unsteady flows, as described

in Section 14.1.4.

14.1.2. Local Method for Steady Case

For steady flows, we generalize the well-established Sujudi-Haimes approach [SH95]

to inertial particles. Following (9.5), we consider the 6D steady vector field, in which

inertial particle trajectories are tangent curves:

ũ(x,v) =

(
v

u(x)−v
r + g

)
. (14.1)

Its Jacobian is the 6× 6 matrix

J̃ =

(
03,3 I3

1
rJ −1

r I3

)
. (14.2)

where 03,3 is the zero matrix, I3 the identity matrix, and J the 3× 3 Jacobian of u1.

The Jacobian J̃ characterizes the inertial particle behavior in both the spatial and the

velocity domain. Extending the Sujudi-Haimes approach to 6D, we search for all 6D

locations where ũ is parallel to a real eigenvector of J̃, i.e., we search for 6D locations

with

ũ ‖ J̃ũ. (14.3)

1 Eq. (14.2) is shown by computing the spatio-velocity gradient of Eq. (14.1) and simplifying:

∇ũ(x, v) =
(
∂ũ(x,v)
∂x

∂ũ(x,v)
∂v

)
=

(
∂v
∂x

∂v
∂v

1
r
∂u(x)
∂x
− 1

r
∂v
∂x

+ ∂g
∂x

1
r
∂u(x)
∂v
− 1

r
∂v
∂v

+ ∂g
∂v

)

=

(
03,3 I3

1
r
J− 1

r
03,3 + 03,3

1
r
03,3 − 1

r
I3 + 03,3

)

=

(
03,3 I3
1
r
J − 1

r
I3

)
= J̃

with ∂v
∂x

= 03,3, ∂v
∂v

= I3, ∂u(x)
∂x

= J, ∂u(x)
∂v

= 03,3, and since g is constant ∂g
∂x

= ∂g
∂v

= 03,3.
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Using the abbreviation

w =
u− v

r
+ g (14.4)

we get2

ũ =

(
v

w

)
, J̃ ũ =

(
w

1
r (Jv −w)

)
. (14.5)

From the parallelity (14.3) follows the parallelity in all projections to subspaces. Pro-

jecting (14.3) into the spatial subspace gives

v ‖ w (14.6)

which simplifies under the consideration of (14.4) to

v ‖ u(x) + r g . (14.7)

At the moment, this condition requires a particle velocity v at position x, which is

problematic. We cannot evaluate the condition without a brute-force simulation of a

large number of particles in order to observe the different velocities of particles passing

location x. We circumvent the problem of not knowing v by introducing another

condition: we project the condition (14.3) into the v subspace. Considering (14.5), this

gives the condition

w ‖ 1

r
(Jv −w). (14.8)

By inserting (14.6) into (14.8) we get

v ‖ 1

r
(Jv − v) (14.9)

which further simplifies to

v ‖ Jv. (14.10)

Finally, we combine the parallelity conditions of both subspaces by inserting (14.7)

into (14.10), which gives the final condition

(u + r g) ‖ J(u + r g). (14.11)

Note that (14.11) does not contain v any more: it can be solved in the spatial domain

only by applying standard 3D PV techniques.

For massless particles, the response time is r = 0. In this case, (14.11) becomes

u ‖ Ju, which is the parallel vectors expression of Sujudi-Haimes. Thus, the swirling of

massless particles is a special case of our generalized parallel vectors condition.

2 The expression in Eq. (14.5) for J̃ ũ is shown by expanding and simplifying:

J̃ ũ =

(
03,3 I3
1
r
J − 1

r
I3

) (
v

w

)
=

(
03,3 v + I3 w
1
r
Jv − 1

r
I3 w

)
=

(
w

1
r
(Jv −w)

)
.
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Figure 14.1.: For g = 0 inertial particles of any size have the same coreline. Left to right:

dp = 0µm (massless), dp = 100µm and dp = 200µm.

Condition (14.11) also reduces to u ‖ Ju if there is no gravity, i.e., g = 0. This means

that all inertial particles, regardless of their response time (i.e., diameter or density),

swirl in gravity-free environments around the same coreline. We demonstrate this

effect in Fig. 14.1. The trajectories of inertial particles change with a varying particle

diameter, but the coreline remains the same.

14.1.3. Local Method for Unsteady Case

For unsteady flows, we extend the cores of swirling particle motion of [WSTH07] to

inertial flows. For this, we consider the 7D inertial flow field (cf. Eq. (9.5))

p̂(x,v, t) =

 v
u(x,t)−v

r + g

1

 , (14.12)

Its Jacobian is the 7× 7 matrix3

Ĵ =

03,3 I3 03

1
rJ −1

r I3
1
rut

0T
3 0T

3 0

 (14.13)

3 Eq. (14.13) is shown by computing the gradient of Eq. (14.12) and simplifying:

∇p̂(x, v, t) =
(
∂p̂(x,v, t)

∂x
∂p̂(x,v, t)

∂v
∂p̂(x,v, t)

∂t

)
=


∂v
∂x

∂v
∂v

∂v
∂t

1
r
∂u(x, t)
∂x

− 1
r
∂v
∂x

+ ∂g
∂x

1
r
∂u(x, t)
∂v

− 1
r
∂v
∂v

+ ∂g
∂v

1
r
∂u(x, t)
∂t

− 1
r
∂v
∂t

+ ∂g
∂t

∂1
∂x

∂1
∂v

∂1
∂t



=

03,3 I3 03

1
r
J − 1

r
I3

1
r
ut

0T
3 0T

3 0

 = Ĵ

with ∂v
∂x

= 03,3, ∂v
∂v

= I3, ∂v
∂t

= 03, ∂u(x, t)
∂x

= J, ∂u(x, t)
∂v

= 03,3, ∂u(x, t)
∂t

= ut, and since g is

constant ∂g
∂x

= ∂g
∂v

= 03,3, and ∂g
∂t

= 03

249



14. Vortex Cores of Inertial Particles

where 03 is the 3D zero (column) vector and ut = ∂u
∂t is the t-partial of u. Following

[WSTH07], we use the coplanar vector operator for detecting vortex structures: we

search for 7D locations where we can find two real eigenvectors êi, êj of Ĵ such that

êi, êj , p̂ are coplanar, i.e.,

p̂ = β êi + γ êj (14.14)

for certain scalars β, γ. The eigenvectors of Ĵ are

(
ẽ1

0

)
, ...,

(
ẽ6

0

)
, ê7 =

 f

03

1

 (14.15)

where ẽ1, ..., ẽ6 are the eigenvectors of J̃, and ê7 is the eigenvector belonging to the

eigenvalue 0, i.e., the solution of Ĵ ê7 = 07. The explicit solution of this equation gives

the vector f as defined in (14.1.1). Note that it has been used elsewhere [WSTH07] to

track critical points in 3D unsteady vector fields. Considering the last components

of (14.15) and (14.14) gives j = 7 and γ = 1 in (14.14). Applying this to the first 6

components of (14.14) gives the condition4

ũ−

(
f

03

)
‖ ẽi (14.16)

where ẽi is a real eigenvector of J̃. Eq. (14.16) means that we have reduced the 7D

coplanar vectors problem to a 6D PV problem. Similar to Section 14.1.2, this is now fur-

ther reduced to a 3D PV condition which can be searched in 3D space only. Eq. (14.16)

can be rewritten as

ũ−

(
f

03

)
‖ J̃

(
ũ−

(
f

03

))
. (14.17)

4 Setting γ = 1 and subtracting ê7 on both sides reduces the seventh dimension to 0 = 0. Thus, the 7D

coplanarity condition reduces to a 6D parallel vectors operation:

p̂, êi, ê7 are coplanar⇔

(
ũ

1

)
= β

(
ẽ1

0

)
+ γ

 f

03

1

 set: γ = 1

⇔ ũ−

(
f

03

)
= β ẽi

⇔ ũ−

(
f

03

)
‖ ẽi
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Since5

J̃

(
ũ−

(
f

03

))
=

(
w

1
r (J(v − f)−w)

)
(14.18)

with w defined in (14.4), condition (14.17) can be projected into their x and v subspace

respectively:

v − f ‖ w (14.19)

w ‖ 1

r
(J(v − f)−w). (14.20)

From multiplying (14.4) by r and substituting in (14.19) we get

(v − f) ‖ (u− v + r g) (14.21)

To obtain a condition in which one side is independent of v, we add the left-hand side

(v − f) to the right-hand side of (14.21)

(v − f) ‖ (u− f + r g). (14.22)

Inserting (14.19) into (14.20) and multiplying the right-hand side by r gives

(v − f) ‖ (J(v − f)−w). (14.23)

Considering (14.19) again, we see that the w on the right of (14.23) is parallel to the

left-hand side and can thus be removed

(v − f) ‖ J(v − f). (14.24)

Inserting (14.22) into (14.24) gives the final condition

(u− f + r g) ‖ J(u− f + r g). (14.25)

Note that (14.25) does not contain v any more: it can be solved by applying a standard

PV extractor in 3D space and subsequently filtering the resulting lines by swirling

motion, i.e., the presence of imaginary eigenvalues of J.

For massless particles, i.e., r = 0, or in a gravity-free environment, i.e., g = 0, the

generalized Eq. (14.25) reduces to the parallel vectors condition of cores of swirling,

massless pathlines: (u−f) ‖ J(u−f), which was described in [WSTH07]. This is similar

to the steady case, shown in Section 14.1.2.

Appendix E contains a proof of the Galilean invariance of our method.

5 Eq. (14.18) is shown by expanding and simplifying:

J̃

(
ũ−

(
f

03

))
=

(
03,3 I3
1
r
J − 1

r
I3

) (
v − f

w

)
=

(
03,3(v − f) + I3w
1
r
J(v − f)− 1

r
I3w

)
=

(
w

1
r
(J(v − f)−w)

)
.
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14.1.4. Integration-based Method

Attracting corelines can be found for both steady and unsteady flows in a number of

different, yet quite similar ways: all have in common that they are integration-based.

One option is to apply the particle density estimation of Wiebel et al. [WCW∗09] to

inertial particles, which works as follows: To extract the attractors at time t, seed a

large number of particles at time t− τ on a regular grid that spans the entire spatial

domain. Note that inertial corelines are found at the accuracy of the resolution of

the seeding grid. Integrate all particles for a duration τ up to the time t. During this

time, the particles will converge to the attracting structures, thus their density will

increase near them and will eventually obtain its maximum directly on them. The

density can be obtained by rasterization of the particles into a second grid, which is

used for counting rasterized particles. Local maxima are found by inspecting each

density grid cell in turn in order to search for cells that have a higher density than

all adjacent cells. Optionally, the density field can be smoothed prior to the maxima

extraction if too many local extrema exist. For the tracking of attractors over time, the

procedure is repeated for a series of observation times. For each time step, attractors

are extracted and are connected over time by lines by using a correspondence heuristic,

e.g., by joining with the closest attractor of the previous observation time.

Another variant of the density estimation is to seed at each cell of a regular grid a small

group of particles and to await their contraction: if the particles within a group get

very close to each other, e.g., the maximum pairwise distance falls below a threshold,

an attractor is found at subgrid accuracy. Moreover, the full coreline can be found

by continuing the integration until the particles leave the (temporal) domain, since

they will stay on the attractor. Afterwards, identical lines have to be removed. In this

approach, the integration duration and the extent of the group’s seed structure should

be chosen carefully. The closer particles are seeded, the shorter the duration until

they contract. If they are seeded too far apart, the temporal domain might not be long

enough for the particles to collapse. For time-periodic fields, this is not a problem,

since the integration can be continued until an attractor is found. This is the approach

that we followed in this chapter.

A third option that was successfully applied to the massless case is to consider the

cores of swirling streaklines [WT10a]. For this a derived vector field is constructed, in

which streaklines are tangent curves. Then, the swirling in this derived vector field is

observed, which – for the massless case – reduced to a parallel vectors operation. This

strategy has a high computational effort, but an extension to the inertial case is worth

a study in future work.
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14.2. Results and Discussion

In the following, we show extraction results for a number of test data sets, as we alter

the gravity that acts on the inertial particles. Note that the gravity we choose in the test

cases is not the same as was used in the computation of the given vector field. They

need to be consistent in order to draw meaningful conclusions for the application. By

varying the gravity only in the particle motion, we obtain a different flow setting that,

given the gravity, coincides after running a new fluid simulation with the flow field that

was originally given. Thus, it is not possible to infer statements on the original field.

However, it allows us to generate more synthetic test data, in which we seed inertial

particles and extract their cores. The goal of our qualitative evaluation is not to come

up with new insights for the applications, but to show that given a flow and a gravity:

we can compute the cores of inertial particles.

Throughout the experiments, the (dynamic) viscosity is set to µ = 1.532×10−5 kg/(ms)

(air). For the particles, we used the density of quartz glass ρp = 2650 kg/m3. Since the

particle diameter dp varies between dp = 20µm and dp = 300µm the particle response

time r is in the range r ∈ [0.0038, 0.865].

Moving Center (2D unsteady). Weinkauf et al. [WSTH07] used an analytic unsteady

2D field to demonstrate their extraction of the centers of swirling (massless) pathlines.

They illustrated its construction, which is a linear interpolation over time between

two 2D centers. The flow is defined on the domain D×T = [−2, 2]2×[0, 4], with centers

located at (1,−1, 0)T and (−1, 1, 4)T:

u(x, y, t) =

(
−y + t

2 − 1

x+ t
2 − 1

)
. (14.26)

In this data set, the massless coreline is a line that travels on a straight line, thus Sujudi-

Haimes is known to work perfectly [WSTH07]. By using it, we find for this simple vector

field the family of corelines analytically as c(a, s) = ((a − s + 2)/2, (a + s − 2)/2, s)T,

with s being the parameter along the coreline, and a being the z-component of the

field. Setting a = 0 and a = 1 produces the cores reported in [WSTH07]. In the

inertial case, we have a = 1 + r gz. When varying gravity or mass, corelines might

move in an unanticipated direction. For this particular data set it turns out that both

gravity g = (0, 0,gz)
T and coreline tangent ∂c/∂s = (−1

2 ,
1
2 , 1)T are perpendicular to

the movement direction ∂c/∂a = (1
2 ,

1
2 , 0)T that arises when varying particle diameter

or gravity. Such perpendicularity is not generally the case.

In Fig. 14.1 we have shown that for no gravity, i.e., g = 0, all inertial particles regardless

of their size, swirl around a common coreline. If a certain gravity acts, the position
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14. Vortex Cores of Inertial Particles

(a) g = (0, 0,−4)T, left to right: dp = 0µm, dp = 100µm, dp = 200µm

(b) g = (0, 0,−8)T, left to right: dp = 0µm, dp = 100µm, dp = 200µm

Figure 14.2.: If a gravity force acts on the inertial particles, the position of the vortex

coreline (•) changes when varying the mass. The coreline of massless particles (•) is

shown as a reference.

of the coreline depends on the mass, as demonstrated in Fig. 14.2. Similarly, the

coreline moves when the mass is constant, but the gravity is varied, as apparent when

comparing columns of Figs. 14.1 and 14.2.

Beads Problem (2D unsteady). A benchmark data set for vortex coreline extraction

is the BEADS FLOW, which was described in Section 8.4. In this flow, no standard

visualization tool is able to detect the attracting coreline; neither LIC, pathlines, vector

field topology nor FTLE. It was shown that neither the tracking of the cores of swirling

streamlines over time nor the cores of swirling pathlines match the attractor [WT10a].

Only integration-based methods such as particle density estimation [WCW∗09] and

the cores of swirling streaklines [WT10a] are able to deliver the attracting line. Conse-

quentially, our local inertial methods from Sections 14.1.2 and 14.1.3 are not applicable,

here. Instead, we will use the integration-based method, introduced in Section 14.1.4.

An analytic approximation to this data set with similar properties was given in [WT10a].

It is defined in the domain D×T = [−2, 2]2×[0, 2π]:

u(x, y, t) =

(
−(y − 1

3 sin(t))− (x− 1
3 cos(t))

(x− 1
3 cos(t))− (y − 1

3 sin(t))

)
. (14.27)

In Chapter 10, we observed that inertial particles exhibit in the BEADS FLOW a mass-
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14.2. Results and Discussion

(a) Inertial particle trajectories with dp = 100µm.

(b) Inertial particle trajectories with dp = 200µm.

Figure 14.3.: In the BEADS FLOW, the integration-based particle density estimation

(•) successfully detects the attractor of the ascending and thereby converging inertial

particles, whereas the local method (•) fails.
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14. Vortex Cores of Inertial Particles

Figure 14.4.: The attracting corelines that were found in the BEADS FLOW by our

integration-based method are mass-dependent and assemble a surface. Here, this sur-

face is shown for dp = 100. . . 300µm in the extended domain D×T = [−3, 3]2×[0, 2π].

dependent swirling behavior. In Fig. 14.3a, we depict swirling inertial particles with

dp = 100µm and the coreline they attract to. It is shown that the core of swirling inertial

pathlines (our local method of Section 14.1.3) does not match the attractor. Next to it, in

Fig. 14.3b, we show the same for dp = 200µm. Since g = 0, the locally extracted coreline

(•) is the same for every mass. However, it can be seen that the integration-based

coreline (•) is mass-dependent and that for larger particles, the particles converge

slower onto the attracting coreline. More specifically, the attracting corelines have

a different, mass-dependent radius. In fact, the coreline changes continuously with

varying mass, which assembles a surface, shown in Fig. 14.4. On this surface, isolines

are depicted for dp = 100, 150, 200, 250, 300µm (from inside to outside). It is apparent

that the radius grows exponentially with increasing diameter.

Helicopter Descent (3D steady). The HART-II test by Yu et al. [YTvdW∗02] was a

major experimental cooperation program of rotorcraft engineers from Germany (DLR),

the Netherlands (ONERA) and the United States (NASA). Its main objective was to

study the analytical modeling capabilities of noise and vibrations that arise due to the

interaction of rotor blades with wake vortices. The velocity field data was acquired

experimentally by particle image velocimetry (PIV) in the German-Dutch Windtunnel

(DNW).
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14.2. Results and Discussion

Figure 14.5.: Vortices detaching from a helicopter in descent. Smaller particles get

closer to the corelines, whereas larger particles move on a larger orbit due to inertia.

Top dp = 0µm (massless), bottom: dp = 100µm.

We used and modified this data to better suit our visualization purposes. First, the in-

flow velocity (0,−0.11, 0)T was subtracted in order to make the wake vortices apparent.

(The y-axis is the forward flight direction.) A Galilean invariant method would find the

vortices with and without the inflow velocity, though in the original state they are not

visible to the eye. Consequentially, the velocity field had to be scaled (by factor 300)

in order to get the wind up to speed again, so that the gravity g = (−9.8065, 0, 0)T is

not acting overly strong. In Fig. 14.5, we released particles with dp = 0µm (left) and

dp = 100µm (right). The resulting corelines differ only marginally, though the inertial

trajectories exhibit a behavior that we have similarly experienced in the previous BEADS

FLOW. Larger particles appear to swirl around the coreline at a larger distance than

smaller or massless particles. This seems reasonable due to the acting inertia.

Delta Wing (3D steady). The DELTA WING data set is a simulation of a triangular

surface in upstream flow. As described in Section 5.5, the flow contains two large wake

vortices. The gravity is set to g = (0,−9.8065, 0)T. Originally, this vector field exhibits

very high wind speeds. Thus, the trajectories of inertial particles are nearly identical to

the massless case. In order to create benchmark data that showcases inertial corelines

that differ from the massless case, we scaled the vector field by 0.006. With this, gravity

is proportionally stronger. Pathlines and their corelines are depicted in Fig. 14.6.
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14. Vortex Cores of Inertial Particles

Figure 14.6.: Two large vortices detach from the DELTA WING surface. Due to gravity

inertial particles are forced into a lower altitude. The inertial corelines vary only

marginally. Top dp = 0µm , bottom: dp = 100µm.

Hurricane Bonnie (3D steady). In August 1998, a tropical wave emerged off the

coast of Africa and turned into a major hurricane, named Bonnie. Zhu et al. [ZZW02,

ZZW04] conducted a weather simulation of the northern hemisphere and we picked

one particular region of interest that features the hurricane. For this data set, we

explored what happens, if gravity is exaggerated. Therefore, we increased the gravity

up to g = (0,−40, 0)T, whereas the velocity field was scaled by 0.01, so that small

particles of different mass follow trajectories that are apparently different. In Fig. 14.7,

the hurricane is shown from the same camera view for two different masses, i.e., for

dp = 0µm (massless) and dp = 20µm. The increased gravity in the right image, forces

the inertial particles faster to the ground. The extracted corelines are shown, and it is

apparent that close to the ground the corelines still match. At higher altitudes, however,

they vary considerably.

Stuart Vortex (3D unsteady). Another analytic data set that was used in [WSTH07]

for the extraction of cores of swirling pathlines is the following variant of the STUART

VORTEX:

ū(x, y, z, t) =


sinh(y)/(cosh(y)− 1

4 cos(x− t)) + 1

−1
4 sin(x− t)/(cosh(y)− 1

4 cos(x− t))
z

1

 (14.28)
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Figure 14.7.: Corelines for different sizes of a particles. The difference is large to due

the high gravity. Left dp = 0µm (massless), right: dp = 20µm.

The vortex is moving constantly over time in x-direction to the right and the vec-

tor (1, 0, 0)T is superimposed on the spatial coordinates. We consider the domain

D×T = [−4, 4]×[−2, 2]×[−1, 1]×[0, 1]. For the inertial particles, gravity acts with

g = (0, 9.8065, 0)T (the y-axis goes down).

When only considering the streamlines of one time step the swirling cannot be faith-

fully observed. In Fig. 14.8 for instance, a center is visible that is not the core of swirling

particle motion, seen in Fig. 14.9a. However, taking the temporal derivatives into

account allows to extract the blue coreline, shown in Fig. 14.9a. This massless pathline

core can be found by standard PV extraction methods on the field u − f , as demon-

strated in Section 14.1.3. Fig. 14.9b shows a LIC of this field, revealing the core centers.

The inertial particles are subject to gravity and inertia, which affects the trajectories

considerably. In fact, a number of particles exit the domain because of them. First the

particles, released at the left hand side of the image, fall down, and are then uplifted

by the vortex above. The inertial particles exhibit a swirling behavior later down the

flow, which can be seen by the particles in Fig. 14.9c. The common center of rotation is

apparent by the translated coreline, found in the derived flow field in Fig. 14.9d. It is

noticeable that the massless and the inertial coreline differ.

The difference is clearer in the next time step, shown in Fig. 14.10. In the moving

STUART VORTEX flow, the vortices advance in x-direction. Since the flow is periodic, a

new coreline enters from the left in Fig. 14.10c. While the rotation of the newly entering

vortex is not very prominent in the particle visualization (as it is located shortly behind

the seeding line), the LIC visualization of the derived vector field u−f+r g in Fig. 14.10d

is clearly showing the streamline core that our method extracts.
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14. Vortex Cores of Inertial Particles

Figure 14.8.: Line integral convolution of the STUART VORTEX at t = 0. Streamlines

show a center at the top of the domain.

(a) Particles with dp = 0µm (massless) swirl around

the massless pathline core (•). It can be extracted

with [WSTH07] and is also a special case of our

method.

(b) In this image a LIC is utilized to illustrate the

vector field u− f + r g, in which we extract the core-

line (•) using the standard PV operator. Note that

for dp = 0µm the response time is r = 0, accord-

ing to Eq. (9.3). Thus, for the massless case we find

standard pathline cores in u− f .

(c) Inertial particles with dp = 50µm first fall due

to gravity and are then lifted up by the vortex. The

common center of rotation is at the inertial core-

line (•). The massless pathline core (•) is shown for

reference. It is clearly off.

(d) Here, LIC is used to depict the vector field u −
f + r g for dp = 50µm. Note that inertial particles

have their common coreline (•) later down the flow.

Figure 14.9.: The STUART VORTEX at time t = 0. Particles are seeded repeatedly at

the left border of the image. Essentially, this resembles a particle-based streakline

construction. Streaklines proved useful for the observation of swirling behavior of

particles [WT10a].
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(a) Particles with dp = 0µm (massless) and their

massless pathline core (•).
(b) LIC illustration of the vector field u− f + r g for

dp = 0µm (massless).

(c) For inertial particles with dp = 50µm a second

inertial coreline appears.

(d) The second vortex is apparent in the LIC of the

vector field u− f + r g for dp = 50µm.

Figure 14.10.: The STUART VORTEX at time t = 1. All particles and their vortices move to

the right over time. As the field is periodic, other vortices will enter from the left.

Square Cylinder (3D unsteady). The SQUARE CYLINDER sequence shows the develop-

ment of a von Kármán vortex street, i.e., a periodic shedding of vortices in the unsteady

flow around an obstacle. In this case, the obstacle is a confined square cylinder that is

positioned symmetrically between two parallel walls. The origin of the data set was

described earlier in Section 4.4.

Fig. 14.11a shows the von Kármán vortex street for massless particles. The pathline

cores are extracted by the parallel vectors operator on the field u− f , which is shown

via LIC in Fig. 14.11b. As shown in Fig. 14.11c, the inertial particles with dp = 50µm

are pulled down by the gravity with g = (0,−9.8065, 0)T and as a consequence, some

of them exit the domain at the bottom. The remaining particles are lifted up and

are trapped by the shed vortices. Their centers of rotation are shown in Fig. 14.11d,

together with the massless cores for reference. It can be seen that the inertial corelines

differ from the massless case. The inertial cores were extracted on the field u− f + r g,

which is visualized in Fig. 14.11d.
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(a) Massless particles form a von Kármán vortex

street in the wake of the square cylinder. The core-

lines of the shed vortices (•) are shown for dp =

0µm.

(b) For the massless case, pathline cores (•) are ex-

tracted by the PV operator in the flow u− f , which

is depicted here using LIC.

(c) Due to gravity, inertial particles, here with dp =

50µm, do not form a perfectly symmetric vortex

street. Their pathline cores (•) are shown to differ

slightly from the massless case (•).

(d) The cores of swirling inertial particles (•) are

extracted by applying the PV operator to the flow

u− f + r g. This flow is shown by LIC.

Figure 14.11.: Extraction results in the SQUARE CYLINDER sequence at time t = 88.

Particles are released on the left hand side of the domain.

14.3. Implementation and Evaluation

14.3.1. Coreline Extraction and Filtering

In Section 14.1, we have shown that the extraction of inertial pathline cores can be

reduced to a parallel vectors operation. Therefore, any of the existing PV extraction

methods can be used, see Peikert and Roth [PR99] for a comprehensive overview.

Because of this, our method can be easily integrated into standard visualization li-

braries. In fact, we implemented the extraction process in the visualization toolkit

Amira [SWH05b] by using existing standard modules. Only the integration of iner-

tial particle trajectories was precomputed in a separate tool, for which we used a

fourth-order Runge-Kutta integrator.

Peikert and Roth [PR99] have shown an analytic parallel vectors solution for triangles,

which is implemented in Amira and works as follows. First, a uniform grid is placed

in the domain. Its resolution is shown for our data sets in Table 14.2. Following the

recommendation of Weinkauf and Theisel [WSTH07], we used the resolution of the

data sets. For every grid vertex that has complex eigenvalues, i.e., exhibits swirling

behavior, the two vector fields are computed according to Table 14.1. Then, each face
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Figure 14.12.: The coreline extraction by parallel vectors creates a number of false

positives (•), which are usually filtered. In this image, the filtering by approximate

tangent alignment with the parallel vectors is disabled. The corelines are shown (•) in

the SQUARE CYLINDER for t = 94.2.

of the grid cells is subdivided into two triangles at which the locations of parallelity are

computed analytically. In a next step, the line segments of adjacent cells are merged if

the tangent is aligned and the end points are identical.

Afterwards, the resulting line set is further filtered to only contain line segments that

are tangential to the parallel vectors, which is standard procedure for Sujudi-Haimes.

Then, to fill in gaps, lines search near their endpoints for nearby segments to join with.

Eventually, lines are filtered by length by a threshold given in Table 14.2. An unfiltered

result is shown in Fig. 14.12.

Data Set Grid Resolution Filter Length

MOVING CENTER 64×64×64 —

BEADS FLOW 64×64×128 —

HELI DESCENT 192×262×309 13.5

DELTA WING 250×125×100 4.3

HURRICANE 64×64×64 8.0

STUART VORTEX 128×64×64 —

SQUARE CYLINDER 192×64×48 1.0

Table 14.2.: Grid resolutions used for the parallel vector operator and the used filter

lengths, given in the unit of the data set scale.
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14. Vortex Cores of Inertial Particles

14.3.2. Performance

Our test system is equipped with an Intel Core i7-2600K CPU with 3.4 GHz and 24

GB RAM. Table 14.3 lists the timings for the three steps in the extraction process.

Note that these steps are the same as for the massless Sujudi-Haimes [SH95] using

parallel vectors [PR99] and its unsteady variant [WSTH07]. For unsteady data, first

the feature flow field f is computed, which took for the grid resolutions that we used

less than two seconds. Then, the pathline cores are extracted in our derived vector

field, resulting in the inertial pathline cores. For this, the standard parallel vectors

module of Amira is used. In summary, this took less than a minute on all our test

data sets, most of them in a span of just a few seconds. The runtime depends not

only on the grid resolution, but also on the presence of swirling. The DELTA WING for

instance, has a high resolution, but only few voxels exhibit swirling behavior, i.e., have

complex-conjugate eigenvalues in the Jacobian, thus large portions of the domain can

safely be skipped. In the MOVING CENTER and BEADS FLOW, on the other hand, every

voxel has swirling behavior. For these two data sets, the runtime linearly scales with

the resolution. The extraction can be significantly accelerated, if parallel vectors are

computed in a region of interest, which can be found by manual inspection of the

parallel vector fields. In the SQUARE CYLINDER, for instance, this reduced the extraction

time from 13.67 s to 1.58 s. Finally, it is common to filter the extracted line geometry to

only keep lines that are approximately tangential to the parallel vectors. This step is in

the order of milliseconds. If the filtering was not required for a particular data set, we

left the entry in the table blank.

In general, the overhead for the consideration of inertial properties is compared to the

massless case close to zero. In its essence, only the constant vector field r g is added

prior to the standard extraction. The overhead of adding the field linearly depends on

the number of voxels. For our smallest data set (MOVING CENTER) the overhead is 0.327

milliseconds. In the largest data set (HELI DESCENT) the overhead goes up to 21.747

milliseconds. (The values are averaged over 500 measurements.) This corresponds to

0.002%–0.08% of the total extraction time (dependent on the data set).

Since all operations are local, the computation of the PV operator can be done itera-

tively per cell without memory overhead. In fact, the memory scales linearly with the

size of the output coreline set.

For the time-periodic BEADS FLOW, the integration-based method took about 1.1

seconds. Since all particles are attracted by the same coreline, we only had to integrate

one group of 5 particles. Once they converged, we continued the integration by one

time period to record the complete coreline.
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14.3. Implementation and Evaluation

Data Set Field f Coreline Filtering

MOVING CENTER — 15.21 s —

BEADS FLOW — 29.68 s —

HELI DESCENT — 57.18 s 2.27 ms

DELTA WING — 6.43 s 0.48 ms

HURRICANE — 1.49 s 2.49 ms

STUART VORTEX 1.87 s 7.79 s —

SQUARE CYLINDER 1.08 s 13.67 s 4.30 ms

Table 14.3.: Timings for the individual computation steps: Computation of the feature

flow field f (only for unsteady data), the extraction of the corelines in Amira, and the

runtime of the additionally applied filtering, if it was necessary.

14.3.3. Limitations

Even for the massless case, the existing vortex coreline extractors are not able to handle

all scenarios. The local cores of swirling particle motions method [WSTH07] only finds

corelines that are moving along straight lines (or not moving at all), as it is Galilean

invariant. Weinkauf and Theisel [WT10a] have shown that their extension of Sujudi

and Haimes to unsteady flows [WSTH07], does not reveal the apparent attractor in the

BEADS FLOW. The integration-based methods [WCW∗09, WT10a], on the other hand,

only detect attracting corelines. A simple data set in which none of the methods will

work is a center moving along an ellipse. As our techniques are extensions of existing

methods from the massless to the inertial case, they do not fill these gaps.

When considering time sequences, the coreline is extracted for each frame individually.

A problem of standard local PV extractors is that they do not explicitly enforce frame

coherence, which is apparent in the slightly oscillating corelines of the SQUARE CYLIN-

DER sequence in the accompanying video of the corresponding paper [GT14]. In fact,

we inherit this property from the massless case. If it is desired, a temporal smoothing

can be applied in a post-process. However, in this work, we preferred to display the

results as they were extracted.

Also Sujudi-Haimes cannot extract a coreline if a real eigenvalue is zero, i.e., detJ = 0.

This happens, for instance, in a center without movement in the non-swirling direction:

u(x, y, z) = (−z, 0, x)T. This case can be detected and then handled with 2D techniques,

since in the swirling plane, spanned by the eigenvectors to the complex-conjugate

eigenvalues, the velocity magnitude will vanish to zero at the coreline.

The advantage of the Sujudi-Haimes method in terms of computation effort is that it is
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14. Vortex Cores of Inertial Particles

a local method. As a consequence, it detects corelines without regarding if particles

could actually appear in a certain region of the flow. This, in turn, would actually

require an integration of a large number of particles from the inlet zones to see if

any of them is reaching the region in question. This has an implication for inertial

vortex cores. Particles of a certain size might never reach higher altitudes due to gravity.

Though, since our method is based on the local Sujudi-Haimes, vortex cores might be

extracted that are never visited by particles of a certain size. This means, an additional

(integration-based) filtering is in order. However, this filtering process is completely

orthogonal to the coreline extraction and the performance advantages of being local

are considerable.

14.4. Summary

In this chapter, we extended an established local vortex coreline extractor for massless

particles to the inertial case. The problem, actually in 6D or 7D (space, velocity and

optional time), reduces to a 3D or 4D parallel vectors operation, which can be solved

efficiently using standard implementations. The method is therefore easily added

to existing flow analysis tools. In fact, except for the integration of inertial particles,

we could implement all components in Amira [SWH05b] by using existing modules.

Moreover, we demonstrated the use of an integration-based extractor that detects

attracting corelines.

The particle model we used is designed for the prediction of small particles. If the ve-

locity magnitude is high compared to the acting gravity, the resulting inertial corelines

are quite similar for the masses considerable by the simplified inertial equations of

motion. In fact, differences are observable in particular for low wind speeds. For this

reason, we synthetically altered some of our test data to showcase the extraction of

mass-dependent corelines. Further sources for differences are additional forces, such

as buoyancy or drag, which are typically neglected for small particles. The local vortex

extraction methods we derived are dependent on the underlying equations of motion.

A derivation of a coreline extraction for more general particle models or finding even a

description that is independent of the underlying equations of motion are an avenue

for future research. Also the visual analysis of where and why differences occur is

interesting; not only for the analysis of vortex cores, but also for mass-dependent

integral curves. The approximations made by the underlying equations of motion lead

to a certain level of uncertainty. Considering the uncertainty of vortices and other

features of inertial flow in the spirit of [OT12] is also an interesting topic. A more quan-

titative evaluation, including inertial particles and fluids of different densities might

help to better understand the underlying physical effects. So far, we extended the
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14.4. Summary

local Sujudi-Haimes and the integration-based particle density estimation. Another

possibility to explore is to apply the streakline-based extraction method of Weinkauf

and Theisel [WT10a].
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15
Chapter 15.

Conclusions

This thesis contributed a number of approaches to geometry-based and feature-based

/ topology-based flow visualization.

In the first part, we formulated the line selection problem in 3D flows as an optimiza-

tion problem that balances the presentation of relevant information and occlusion

avoidance. Starting with an initial set of steady lines that covers the domain, all lines

are rendered with a varying opacity, which is subject to the minimization of a bounded-

variable least-squares problem. This way, we obtain view-dependent opacities for the

line segments, allowing a real-time free navigation while minimizing the danger of

missing important structures in the visualization. Since most approaches to line data

visualization focus on steady line fields, we extended our approach to sets of line fields

such that significantly larger sets of line representatives can be handled. Furthermore,

time coherence was addressed for animations, making this the first approach that

solves the line selection problem for 3D time-dependent flow. In surface-based flow

visualization, integral surfaces rapidly tend to expand, fold and produce vast amounts

of occlusion. While silhouette enhancements and local transparency mappings proved

useful for semi-transparent depictions, they still introduce visual clutter when sur-

faces grow more complex. Thus, we extended the concept of opacity optimization to

surfaces to obtain the first global approach to the occlusion problem. Starting with a

partition of the surfaces into patches, we compute per-patch opacity and interpolate

it for final rendering across the surfaces. There are a number of aspects that deserve

further research. At present, all our methods operate on a precomputed set of lines or

surfaces. Thus, when zooming into the domain, no further detail is added. The scala-

bility can still be improved and an inherent problem to all opacity-based approaches

is the limited depth perception, which could be treated by adding further visual cues.

Another unsolved problem is the selection of meaningful surfaces in unsteady flows.

The second part of the thesis was dedicated to novel rendering techniques for the
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visualization of unsteady flows. In this area, ridges in finite-time Lyapunov exponent

fields (FTLE) are frequently used as indicators for Lagrangian coherent structures,

i.e., separators that divide the domain into sets of similar flow behavior. The ridges

of Lagrangian scalar field may become arbitrarily thin, even though the underlying

vector field might be discretized. Typically, FTLE fields are discretized onto grids

and afterwards raycasted, which both introduce bias. We presented a progressive,

view-dependent Monte Carlo-based technique that avoids grid discretization and ray

marching errors completely, is consistent, and has a low memory consumption. Our ap-

proach is an application of rendering techniques for light transport in inhomogeneous

participating media. In the rendering literature, a number of acceleration strategies

exist that are applicable in our context as well. Another task related to unsteady flows

is the tracking of vortices. Instead of the frequently used Galilean invariance, which is

useful for translating vortices, we enforced a rotation invariance, i.e., the invariance of

a vortex under a uniform-speed rotation of the underlying coordinate system around

a fixed axis. We formulated a general approach to turn a Galilean invariant vortex

concept into a rotation invariant one by simply adding a closed-form matrix to the

Jacobian. In particular, we presented rotation invariant versions of the well-known

Sujudi-Haimes, λ2, and Q vortex criteria. An open challenge is the automatic selection

of the rotation center, which we currently have selected by hand.

In the third part of the thesis, we studied the motion of finite-sized objects carried by

fluids. Using the inertial flow map, we described mass-dependent trajectories in an

abstract way, which was used to extend common geometry-based concepts, such as

pathlines, streaklines, and timelines to the inertial case. Furthermore, we introduce

a new class of curves, called masslines, which effectively visualizes the separation of

masses. To further assess mass separation in 2D flows, we defined finite-time mass

separation, a scalar field that measures at each point in the domain how quickly inertial

particles separate when released from the same location but with slightly different

mass. Extracting and visualizing the mass that induces the largest separation provides

a simplified view on the critical masses. By using complementary coordinated views,

we additionally visualized corresponding inertial particle trajectories in space-time

by integral curves and surfaces. For a quantitative analysis, we plotted Euclidean and

arc length-based distances to a reference particle over time, which allows to observe

the temporal evolution of separation events. Using the fact that the trajectories of

inertial particles can be described as tangent curves of a higher dimensional vector

field, we presented a first approach to extend vector field topology to the inertial

case. We conducted a full classification of the first-order critical points of this higher

dimensional flow, and devised a method to their efficient extraction. Further, we

interactively visualized the asymptotic behavior of finite-sized particles by a glyph

visualization that encodes the outcome of any initial condition of the governing ODE,
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15. Conclusions

i.e., for a varying initial position and/or initial velocity. We found that in steady 2D

inertial flows, sources cannot exist, since at least two eigenvalues of the 4D Jacobian

have negative real parts. This has implications for the source inversion problem, which

is concerned with the recovery of the source of airborne or waterborne pollutions. If

an inertial particle is observed in space, it is very difficult to recover where it came

from, since inertial backward integration is extremely sensitive to slight changes in

the observed velocity. Assuming that inertial particles are released with a given initial

velocity (e.g., from rest), particles may reach a certain observation location only with a

limited set of possible observable velocities. We showed that the set of initial positions

that lead to the same location form a curve, which we extracted as tangent curve of a

derived vector field. Most importantly, the derived vector field only involves forward

integrated flow map gradients, which are much more stable to compute than backward

trajectories. Finally, we focused on the vortical behavior of inertial particles. We

developed two strategies for the extraction of the corelines that inertial particles swirl

around. The first is to deduce the local swirling behavior from the autonomous inertial

motion ODE, which eventually reduces to a parallel vectors operation. For the second

strategy, we use particle density estimation to locate inertial attractors. With this, we

were able to extract the cores of swirling inertial particle motion for both steady and

unsteady 3D vector fields.

Our research on the source inversion problem led us to the notion of influence curves,

which provided us a method to integrate inertial particles backward, though not quite

as a traditional initial value problem. Instead, we prescribed the terminal value of

the backward integration and constructed the path toward it. We intend to apply this

sort of backward integration to conduct a segmentation of the domain into regions

of coherent asymptotic behavior in backward direction. Further, we would like to

experiment with more general particle models. Some of our proposed visualization

concepts are independent of the underlying particle model, as they were formulated

based on the abstract flow map. The other techniques would have to be revised for

every new model. Using our proposed backward integration, we would like to study

the correlation of inertial backward FTLE with particle settling in forward direction. In

the CFD literature, there is evidence [SBR16] that the asymptotic behavior of inertial

particles differs among aerosols and bubbles. In this thesis, we only extended a few

of the many massless concepts that the visualization community has proposed over

the years. There are many more concepts to extend in the future, including dense /

texture-based methods or the extension of our rotation invariant vortices to the inertial

case.
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A
Appendix A.

Reformulation of Energy into Matrix

Notation

This section describes the reformulation of our energy minimization into a standard

quadratic programming problem of the form, as used in Section 3.2.4:

minimize E =
1

2
xTQx + cTx + const (A.1)

subject to 0 ≤ xi ≤ 1 (A.2)

with x = (α1, ..., αn)T being the vector of unknowns, i.e., the opacities. In the following,

we consider the terms of the energy individually, for each with bounded variables

0 ≤ αi ≤ 1.

Maximization of Opacity The energy term that maximizes the opacity is rewritten as

follows:

Ep =
p

2

n∑
i=1

(αi − 1)2 (A.3)

=
p

2
(x− 1)T(x− 1) (A.4)

=
p

2
(xTx− 2xT1 + 1T1) (A.5)

=
1

2
xT(p · I)x + (−p · 1)Tx + const (A.6)
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A. Reformulation of Energy into Matrix Notation

Removal of Occlusion Occlusions are removed by penalizing unimportant objects in

front of important ones. The corresponding energy is turned into matrix notation by:

Eq =
q

2

n∑
i=1

n∑
j=1

(αi(1− gi)λhijgj)2 (A.7)

=
q

2

n∑
i=1

αi · αi(1− gi)2λ
n∑
j=1

h2
ijg

2
j (A.8)

=
q

2
xT


. . .

αi · (1− gi)2λ
∑n

j=1 h
2
ijg

2
j

. . .

 (A.9)

=
q

2
xT


. . .

(1− gi)2λ
∑n

j=1 h
2
ijg

2
j

. . .

x (A.10)

=
1

2
xT(q ·W)x (A.11)

with the diagonal matrix Wii = (1− gi)2λ
∑n

j=1 h
2
ijg

2
j .

Removal of Background Clutter Unimportant objects behind important ones are

removed by minimizing:

Er =
r

2

n∑
i=1

n∑
j=1

(αi(1− gi)λhjigj)2 (A.12)

=
r

2

n∑
i=1

αi · αi(1− gi)2λ
n∑
j=1

h2
jig

2
j (A.13)

=
r

2
xT


. . .

αi · (1− gi)2λ
∑n

j=1 h
2
jig

2
j

. . .

 (A.14)

=
r

2
xT


. . .

(1− gi)2λ
∑n

j=1 h
2
jig

2
j

. . .

x (A.15)

=
1

2
xT(r ·V)x (A.16)

with the diagonal matrix Vii = (1− gi)2λ
∑n

j=1 h
2
jig

2
j .
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Spatial Smoothness To ensure continuity, the opacities are spatially smoothed:

Es =
s

2

n∑
i=1

n∑
j=1

aij
2

(αi − αj)2 (A.17)

=
s

2
(Dx)T(Dx) (A.18)

=
1

2
xT(s ·DTD)x (A.19)

Thereby, aij indicates adjacency between segments. The matrix D is the forward

difference operator, thus DTD becomes a Laplacian matrix. For line primitives, DTD

is tridiagonal. As an example, for a single line consisting of four segments, DTD

becomes:

DTD =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

 (A.20)

Temporal Smoothness The opacities can be smoothed over time, which is useful for

animated geometry.

Et =
u

2

n∑
i=1

(αi − α′i)2 (A.21)

=
u

2
(x− x′)T(x− x′) (A.22)

=
u

2
(xTx− 2xTx′ + x′Tx′) (A.23)

=
1

2
xT(u · I)x + (−u · x′)Tx + const (A.24)

with x′ = (α′1, ..., α
′
n)T being the corresponding opacities of the last iteration.

System Matrix Assembly Summing up the individual energy terms of the Eqs. (A.6),

(A.11), (A.16) and (A.19), and expressing them in the standard QP form (A.1) yields for

steady data:

Q = p · I + q ·W + r ·V + s ·DTD (A.25)

c = (−p, . . . ,−p)T (A.26)

For unsteady data (Section 4.3.2), we additionally apply the temporal smoothing from

Eq. (A.24):

Q = p · I + q ·W + r ·V + s ·DTD + u · I (A.27)

c = (−p− u · α′1, . . . ,−p− u · α′n)T (A.28)
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Appendix B.

Rotation Invariant Closed-Forms

In the following, we derive the closed-forms of the rotation invariant quantities that

have been given in Eqs. (8.7)–(8.9) as:

ur = u (B.1)

urt =
∂ur
∂t

= ut (B.2)

Jr = J +
1

d
R H RT (B.3)

For n = 2, we introduced in Section 8.1 a non-isometric domain deformation gp(x, t)

and its inverse hp(x, t)

gp(x, t) =

(
arctan y−y0

x−x0
‖x− x0‖

)
, hp(x, t) = x0 + y

(
cosx

sinx

)
(B.4)

along with its domain transformed vector field wp:

wp(x, t) = (∇hp(x, t))−1 · u(hp(x, t), t) (B.5)

Since hp is the inverse of gp the following identity holds:

hp(gp(x, t), t) = x (B.6)

In the following, we derive the closed-form expressions for the terms:

ur(x, t) = (∇gp(x, t))−1 ·wp(gp(x, t), t) (B.7)

urt(x, t) = (∇gp(x, t))−1 · ∂
∂t

wp(gp(x, t), t) (B.8)

Jr(x, t) = (∇gp(x, t))−1 · ∇(wp(gp(x, t), t)). (B.9)

By applying the chain rule to the identity (B.6), we get

∇(hp(gp(x, t), t)) = ∇hp(gp(x, t), t) · ∇gp(x, t) = ∇x = I (B.10)
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from which we get

(∇hp(gp(x, t), t))−1 = ∇gp(x, t) (B.11)

Evaluating the transformed vector field wp(x, t) at a transformed location gp(x, t) gives:

wp(gp(x, t), t) = (∇hp(gp(x, t), t))−1 · u(hp(gp(x, t), t), t) , (B.12)

which simplifies by inserting (B.11) and the identity (B.6) to

wp(gp(x, t), t) = ∇gp(x, t) · u(x, t). (B.13)

Inserting (B.13) into (B.7) yields:

ur(x, t) = (∇gp(x, t))−1 ·wp(gp(x, t), t) (B.14)

= (∇gp(x, t))−1 · ∇gp(x, t) · u(x, t) (B.15)

= u(x, t) (B.16)

Similarly, inserting (B.13) into (B.8) yields with application of the product rule and
∂
∂tgp(x, t) = 0:

urt(x, t) = (∇gp(x, t))−1 · ∂
∂t

wp(gp(x, t), t) (B.17)

= (∇gp(x, t))−1 · ∂
∂t

[∇gp(x, t) · u(x, t)] (B.18)

= (∇gp(x, t))−1 ·
(
03,3 · u(x, t) +∇gp(x, t) ·

∂

∂t
u(x, t)

)
(B.19)

= ut(x, t) (B.20)

The derivation of Jr(x, t) requires a few more steps. For n = 2, we intend to express

Eq. (B.9) in terms of

d = ‖x− x0‖ , r =
x− x0

d
=

(
x−x0
d

y−y0
d

)
, rp =

(
0 1

−1 0

)
r =

(
y−y0
d

x0−x
d

)
(B.21)

and the 2D matrices

R = (rp, r) =

(
y−y0
d

x−x0
d

x0−x
d

y−y0
d

)
, H =

(
−uTr −uTrp

uTrp 0

)
. (B.22)

First, we reformulate the factors in (B.9). The spatial gradient of gp(x, t) is

∇gp(x, t) =

(
y0−y
d2

x−x0
d2

x−x0
d

y−y0
d

)
(B.23)
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and its inverse is

(∇gp(x, t))−1 =

(
y0 − y x−x0

d

x− x0
y−y0
d

)
= R

(
−d 0

0 1

)
. (B.24)

Inserting (B.23) into (B.13) gives

wp(gp(x, t), t) =

(
−uT(

rp
d )

uTr

)
(B.25)

The spatial gradient of Eq. (B.25) then becomes

∇(wp(gp(x, t), t)) =

(
−uxT(

rp
d )− (

rp
d )x

T
u −uyT(

rp
d )− (

rp
d )y

T
u

ux
Tr + rx

Tu uy
Tr + ry

Tu

)

=

(
−1
d 0

0 1

)
·RT · J +

(
−(

rp
d )x

T
u −(

rp
d )y

T
u

rx
Tu ry

Tu

)
(B.26)

Substituting (B.24) and (B.26) in (B.9) yields:

Jr(x, t) = (∇gp(x, t))−1 · ∇(wp(gp(x, t), t)) (B.27)

= J + R

(
−d 0

0 1

)
·

(
−(

rp
d )x

T
u −(

rp
d )y

T
u

rx
Tu ry

Tu

)
(B.28)

= J +
1

d
R

(
d2 · (rpd )x

T
u d2 · (rpd )y

T
u

d · rxTu d · ryTu

)
(B.29)

Inserting r and rp from Eq.(B.21) in (B.29) gives:

Jr(x, t) = J +
1

d
R


d2 · uT

[
1
d2

(
y − y0

x0 − x

)]
x

d2 · uT

[
1
d2

(
y − y0

x0 − x

)]
y

d · uT

[
1
d

(
x− x0

y − y0

)]
x

d · uT

[
1
d

(
x− x0

y − y0

)]
y


= J +

1

d
R

1

d

(
m00 m01

m10 m11

)
(B.30)

with the coefficients of the matrix resulting from differentiation and subsequent sim-

plification:

m00 =
1

d
uT

(
−2(x0 − x)(y0 − y)

−(y0 − y − x0 + x)(y0 − y + x0 − x)

)

= −y − y0

d
uT

(
x− x0

y − y0

)
− x− x0

d
uT

(
y − y0

x0 − x

)
= −uTr(y − y0)− uTrp(x− x0) (B.31)
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m01 =
1

d
uT

(
−(y0 − y − x0 + x)(y0 − y + x0 − x)

2(x0 − x)(y0 − y)

)

= −x0 − x
d

uT

(
x− x0

y − y0

)
− y − y0

d
uT

(
y − y0

x0 − x

)
= −uTr(x0 − x)− uTrp(y − y0) (B.32)

m10 =
1

d
uT

(
(y0 − y)2

(x0 − x)(y0 − y)

)

= −y − y0

d
uT

(
y0 − y
x0 − x

)
= uTrp(y − y0) (B.33)

m11 =
1

d
uT

(
(x0 − x)(y0 − y)

(x0 − x)2

)

= −x0 − x
d

uT

(
y0 − y
x0 − x

)
= uTrp(x0 − x) (B.34)

Placing the simplified forms (B.31), (B.32), (B.33) and (B.34) in (B.30) gives:

Jr(x, t) = J +
1

d
R

1

d

(
−uTr(y − y0)− uTrp(x− x0) −uTr(x0 − x)− uTrp(y − y0)

uTrp(y − y0) uTrp(x0 − x)

)

= J +
1

d
R

(
−uTr −uTrp

uTrp 0

)
·

(
y−y0
d

x0−x
d

x−x0
d

y−y0
d

)
= J +

1

d
R H RT (B.35)

The derivation for n = 3 is similar.
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Appendix C.

Eigenvalues with Zero Real Parts in

the Inertial Spatio-Velocity Domain

To show the condition for Re(fj,2) = 0 in Eq. (12.7), we compute

Re(fj,2) = Re

(
−1 +

√
1 + 4 r (Re(ej) + i Im(ej))

2r

)
(C.1)

= Re

(
−1 +

√
1 + 4 r (−r Im(ej)2 + i Im(ej))

2r

)
(C.2)

= Re

(
−1 +

√
−(i− 2 r Im(ej))2

2r

)
(C.3)

where the step from (C.1) to (C.2) inserts the right-hand side of Eq. (12.7) and the step

from (C.2) to (C.3) factors the radicand. For brevity we substitute in Eq (C.3)

x = 2 r Im(ej) (C.4)

and thereby obtain:

Re(fj,2) = Re

(
−1 +

√
−(i− x)2

2r

)
(C.5)

With
√
−(i− x)2 = 1 + x i as shown later, Eq. (C.5) further reduces to:

Re(fj,2) = Re

(
−1 + 1 + x i

2r

)
(C.6)

Substituting Eq. (C.4) back into Eq. (C.6) gives:

Re(fj,2) = Re

(
2 r Im(ej) i

2r

)
(C.7)

= Re (i Im(ej)) = 0 (C.8)
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which proves the condition of Eq. (12.7).

In the following, we show that
√
−(i− x)2 = 1 +x i, which was used in the proof above.

The square root of a complex number z is commonly defined as
√
z =

√
|z| z+|z||z+|z|| . With

√
z =

√
−(i− x)2 we have:

z = −(i− x)2 = (−x2 + 1) + (2x) i (C.9)

|z| =
√

(−x2 + 1)2 + (2x)2 =
√

(x2 + 1)2 = x2 + 1 (C.10)

Then, the square root of our complex number becomes:

√
−(i− x)2 =

√
x2 + 1

−x2 + 1 + x2 + 1 + (2x) i

|−x2 + 1 + x2 + 1 + (2x) i|
(C.11)

=
√
x2 + 1

2 + (2x) i√
4 + 4x2

(C.12)

=
√
x2 + 1

2(1 + x i)

2
√
x2 + 1

(C.13)

= 1 + x i (C.14)
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Appendix D.

Vector Field in which Influence

Curves Appear as Tangent Curves

Recalling from Chapter 13, the family of all influence curves can be characterized as

pathlines of an n dimensional unsteady vector field h(x, t), starting at t = t0:

d c

d τ
= h(c(x, τ), t0 + τ). (D.1)

In the following, we derive the vector field, in which influence curves appear as tangent

curves (Eq. (13.6)):

h(x, t) = − φx−1

[
φv

(
u(x, t0)− v0

r
+ g

)
+ φt

]
− v0 (D.2)

where φx = φx(x,v0, t0, t − t0), φv = φv(x,v0, t0, t − t0) and φt = φt(x,v0, t0, t − t0)

are inertial flow map derivatives that can be computed by forward integration, cf.

Eq. (13.3).

We search for the unknown vector field h that fulfills

lim
∆τ→0

φ̂(x + ∆τ h, v0, t0, τ + ∆τ)− φ̂(x, v0, t0, τ)

∆τ
=

 0

vr

0

 . (D.3)

Eq. (D.3) means that moving the starting point of the inertial particle integration from

x to x + ∆τ h and increasing the integration time from τ to τ + ∆τ should not change

the location where the integration ends, while the change of the observed particle

velocity is vr. In the following, we construct x + ∆τh at time τ + ∆τ , i.e., the “next”

location on the influence curve. For ∆τ → 0 the flow map at τ + ∆t is constructed by

taking another “step” after the flow map at τ :

φ̂(x + ∆τ h, v0, t0, τ + ∆τ) = φ̂(x + ∆τ h, v0, t0, τ)

+ ∆τ p̂(φ̂(x, v0, t0, τ))
(D.4)
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The first summand of the right hand side contains the flow map at an infinitesimal

close location in direction h, which can be constructed from the flow map at x plus the

flow map derivative in direction h:

φ̂(x + ∆τ h, v0, t0, τ) = φ̂(x, v0, t0, τ)

+ ∆τ (∇φ̂(x, v0, t0, τ))

h

0

0

 .
(D.5)

The second summand samples the phase space p̂ after flow map integration. This is

the tangent of the curve at the reached location, which is also the flow map derivative

in start direction p̂ at t0:

p̂(φ̂(x, v0, t0, τ)) = (∇φ̂(x, v0, t0, τ)) p̂(x,v0, t0)

= (∇φ̂(x, v0, t0, τ))

 v0
u(x, t0)−v0

r + g

1

 (D.6)

Inserting Eqs. (D.5) and (D.6) into Eq. (D.4), and inserting Eq. (D.4) in turn into Eq. (D.3)

gives as condition for h:

lim
∆τ→0

∆τ (∇φ̂(x, v0, t0, τ))


h

0

0

+

 v0
u(x, t0)−v0

r + g

1




∆τ
=

 0

vr

0

 (D.7)

Expanding the flow map gradient∇φ̂ using Eq. (13.3) and considering only the first n

components of Eq. (D.7) (i.e., the spatial subspace) gives

φx (h + v0) + φv

(
u(x, t0)− v0

r
+ g

)
+ φt = 0 , (D.8)

which can be rearranged for h by inverting φx to obtain to Eq. (D.2).
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E
Appendix E.

Galilean Invariance of Inertial Vortex

Cores

We show that our local coreline extraction method from Section 14.1.3 is Galilean

invariant by first showing the Galilean invariance of the 6D unsteady acceleration

∇ũ · ũ + ũt. We follow closely the argumentation of Jan Sahner’s [Sah09] proof of

Galilean invariance of the 3D unsteady acceleration and Ronald Peikert’s proof of

Galilean invariance of the cores of swirling particle motion. The latter proof was also

given in full detail in the thesis of Jan Sahner [Sah09].

Given is a time-dependent 6D vector field ũ(x̃, t), in which inertial particle trajectories

arise as tangent curves. A Galilean transformation moves the 6D point x̃ at constant

speed in a constant direction c̃0, yielding the transformed location ỹ:

ỹ = x̃ + t c̃0 (E.1)

The 6D vector field ũ is transformed accordingly to w̃:

w̃(ỹ, t) = ũ(x̃, t) + c̃0 = ũ(ỹ − t c̃0, t) + c̃0 (E.2)

Since c̃0 is constant it follows that

∇w̃ = ∇ũ (E.3)

A vortex extraction method is called Galilean invariant if it detects structures that are

subject to Galilean transformations.

Galilean Invariance of 6D Unsteady Acceleration

In the following, we show that the acceleration ũt +∇ũ · ũ is Galilean invariant. First,

we rewrite the transformed acceleration in Leibniz notation:

w̃t +∇w̃ · w̃ =
d

dt
w̃|ỹ,t +∇w̃|ỹ,t · w̃(ỹ, t) (E.4)
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By applying the transformation from (E.2), we express the transformed vector field w̃

in terms of the vector field ũ in the original frame:

w̃t +∇w̃ · w̃ =
d

dt
(ũ|(ỹ−t c̃0,t) + c̃0) (E.5)

+∇(ũ|(ỹ−t c̃0,t) + c̃0) · (ũ(ỹ − t c̃0, t) + c̃0) (E.6)

Using the chain rule, we differentiate

d

dt
(ũ|(ỹ−t c̃0,t) + c̃0) = −∇ũ|(ỹ−t c̃0,t) · c̃0 +

d

dt
ũ|(ỹ−t c̃0,t) +

d

dt
c̃0 (E.7)

= −∇ũ|(ỹ−t c̃0,t) · c̃0 +
d

dt
ũ|(ỹ−t c̃0,t) (E.8)

with d
dt c̃0 = 0. By substituting (E.8) in (E.5), and using the identity∇(c̃0) = 0 in (E.6),

we obtain:

w̃t +∇w̃ · w̃ = −∇ũ|(ỹ−t c̃0,t) · c̃0 +
d

dt
ũ|(ỹ−t c̃0,t) (E.9)

+∇ũ|(ỹ−t c̃0,t) · (ũ(ỹ − t c̃0, t) + c̃0) (E.10)

Expanding (E.10) leads to:

w̃t +∇w̃ · w̃ = −∇ũ|(ỹ−t c̃0,t) · c̃0 +
d

dt
ũ|(ỹ−t c̃0,t) (E.11)

+∇ũ|(ỹ−t c̃0,t) · ũ(ỹ − t c̃0, t) +∇ũ|(ỹ−t c̃0,t) · c̃0 (E.12)

Now, the spatial directional derivative in c̃0 cancel out, thus we further simplify to:

w̃t +∇w̃ · w̃ =
d

dt
ũ|(ỹ−t c̃0,t) +∇ũ|(ỹ−t c̃0,t) · ũ(ỹ − t c̃0, t) (E.13)

We already expressed w̃ in terms of ũ. Also expressing ỹ in terms of x̃ by using the

identity in (E.1), yields:

w̃t +∇w̃ · w̃ =
d

dt
ũ|x̃,t +∇ũ|x̃,t · ũ(x̃, t) (E.14)

= ũt +∇ũ · ũ (E.15)

The unsteady 6D acceleration is therefore Galilean invariant.

Galilean Invariance of Inertial Vortex Cores

Eqs. (14.15) named the seven eigenvectors of the 7D Jacobian Ĵ. One of the eigenvectors

contains the feature flow field, which has always eigenvalue zero:

Ĵ ·

 f

03

1

 = 0
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E. Galilean Invariance of Inertial Vortex Cores

Splitting this matrix product into its spatial-velocity and time component gives:

∇ũ ·

(
f

03

)
+ ũt = 0 (E.16)

We will make use of this equality later.

In the following, we show that ũ−

(
f

03

)
and the acceleration∇ũ · ũ + ũt are colinear.

Let ũ−

(
f

03

)
be parallel to an eigenvector with real eigenvalue. Then, it is also parallel

to the acceleration:

ũ−

(
f

03

)
‖ ∇ũ ·

(
ũ−

(
f

03

))
(E.17)

= ∇ũ · ũ−∇ũ ·

(
f

03

)
(E.18)

= ∇ũ · ũ + ũt (E.19)

The step from Eq. (E.18) to Eq. (E.19) used Eq. (E.16).

Next, we show that the converse is also true. Let the acceleration be parallel to an

eigenvector with real eigenvalue. Then, it is mapped to the same one-dimensional

subspace as ũ−

(
f

03

)
:

∇ũ · (∇ũ · ũ + ũt) ‖ ∇ũ · ũ + ũt (E.20)

= ∇ũ · ũ−∇ũ ·

(
f

03

)
(E.21)

= ∇ũ ·

(
ũ−

(
f

03

))
(E.22)

Hence,∇ũ · ũ+ ũt and ũ−

(
f

03

)
are colinear. Thus, we inherit the Galilean invariance

of the 6D unsteady acceleration.
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HAMANN B., JOY K. I.: Illustrative rendering of vortex cores. In EuroVis -

Short Papers (2013), pp. 61–65.

[SP99] SADARJOEN I. A., POST F. H.: Geometric methods for vortex extraction. In

Data Visualization ’99, Eurographics. Springer Vienna, 1999, pp. 53–62.

[SP07] SADLO F., PEIKERT R.: Efficient visualization of Lagrangian coherent

structures by filtered AMR ridge extraction. IEEE Transactions on Vi-

sualization and Computer Graphics (IEEE Visualization) 13, 6 (2007),

1456–1463.

[SPH11] SAPSIS T., PENG J., HALLER G.: Instabilities on prey dynamics in jellyfish

feeding. Bull Math Biol. 73, 8 (2011), 1841–1856.

[SRWS10] SCHNEIDER D., REICH W., WIEBEL A., SCHEUERMANN G.: Topology

aware stream surfaces. Computer Graphics Forum (Proc. EuroVis) 29, 3

(2010), 1153–1161.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3D shapes. SIG-

GRAPH Comput. Graph. 24, 4 (1990), 197–206.

[Sta98] STALLING D.: Fast Texture-Based Algorithms for Vector Field Visualization.

PhD thesis, Freie Universität Berlin, 1998.

[Ste13] STEVENS B.: Introduction to UCLA-LES, 2013.

[STH∗09] SHI K., THEISEL H., HAUSER H., WEINKAUF T., MATKOVIC K., HEGE H.-

C., SEIDEL H.-P.: Path line attributes - an information visualization

approach to analyzing the dynamic behavior of 3D time-dependent flow

fields. In Topology-Based Methods in Visualization II, Mathematics and

Visualization. Springer, 2009, pp. 75–88.

[STWE07] SCHAFHITZEL T., TEJADA E., WEISKOPF D., ERTL T.: Point-based stream

surfaces and path surfaces. In Proc. Graphics Interface (2007), pp. 289–

296.

[SVG∗08] SCHAFHITZEL T., VOLLRATH J., GOIS J., WEISKOPF D., CASTELO A., ERTL

T.: Topology-preserving lambda2-based vortex core line detection for

flow visualization. Computer Graphics Forum (Proc. EuroVis) 27, 3 (2008),

1023–1030.

308



Bibliography

[SWH05a] SAHNER J., WEINKAUF T., HEGE H.-C.: Galilean invariant extraction and

iconic representation of vortex core lines. In Proc. Eurographics / IEEE

VGTC Symposium on Visualization (EuroVis) (2005), pp. 151–160.

[SWH05b] STALLING D., WESTERHOFF M., HEGE H.-C.: Amira: A highly interactive

system for visual data analysis. In The Visualization Handbook. Elsevier,

2005, pp. 749–767.

[SWS09] SCHNEIDER D., WIEBEL A., SCHEUERMANN G.: Smooth stream surfaces

of fourth order precision. Computer Graphics Forum (Proc. EuroVis) 28,

3 (2009), 871–878.

[SWTH07] SAHNER J., WEINKAUF T., TEUBER N., HEGE H.-C.: Vortex and strain

skeletons in Eulerian and Lagrangian frames. IEEE Transactions on

Visualization and Computer Graphics 13, 5 (2007), 980–990.

[TAB15] THOMAS S., AMIRAUX M., BAEDER J. D.: Modeling the two-phase flow

field beneath a hovering rotor on graphics processing units using a hybrid

vortex/CFD methodology. Journal of the American Helicopter Society 60,

2 (2015), 1–17.

[TB96] TURK G., BANKS D.: Image-guided streamline placement. In Proc.

SIGGRAPH (1996), pp. 453–460.

[The02] THEISEL H.: Designing 2D vector fields of arbitrary topology. Computer

Graphics Forum (Proc. Eurographics) 21, 3 (2002), 595–604.

[TKB12] THOMAS S., KALRA T., BAEDER J.: A hybrid CFD methodology to model

the two phase flowfield beneath a hovering laboratory scale rotor. Pro-

ceedings of the 42nd AIAA Fluid Dynamics Converence (June 2012).

[TLHD03] TONG Y., LOMBEYDA S., HIRANI A. N., DESBRUN M.: Discrete multiscale

vector field decomposition. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3

(2003), 445–452.

[TLKB11] THOMAS S., LAKSHMINARAYAN V. K., KALRA T. S., BAEDER J. D.: Eulerian-

lagrangian analysis of cloud evolution using cfd coupled with a sediment

tracking algorithm. In Proceedings of the American Helicopter Society

(Virginia Beach, VA, May 2011), 67th Annual Forum.

[TMWS13] TAO J., MA J., WANG C., SHENE C.: A unified approach to streamline

selection and viewpoint selection for 3D flow visualization. IEEE Trans-

actions on Visualization and Computer Graphics 19 (2013), 393–406.

[TRS03] THEISEL H., RÖSSL C., SEIDEL H.-P.: Compression of 2D vector fields

under guaranteed topology preservation. Computer Graphics Forum

309



Bibliography

(Proc. Eurographics) 22, 3 (2003), 333–342.

[TS03] THEISEL H., SEIDEL H.-P.: Feature flow fields. In Proc. Symposium on

Data Visualisation (2003), pp. 141–148.

[TSW∗05] THEISEL H., SAHNER J., WEINKAUF T., HEGE H.-C., SEIDEL H.-P.: Ex-

traction of parallel vector surfaces in 3D time-dependent fields and ap-

plication to vortex core line tracking. In Proc. IEEE Visualization (2005),

pp. 631–638.

[TWHS03] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL H.-P.: Saddle connectors

- an approach to visualizing the topological skeleton of complex 3D vector

fields. In Proc. IEEE Visualization (2003), pp. 225–232.

[ÜSE13] ÜFFINGER M., SADLO F., ERTL T.: A time-dependent vector field topol-

ogy based on streak surfaces. IEEE Transactions on Visualization and

Computer Graphics 19, 3 (2013), 379–392.

[ÜSK∗12] ÜFFINGER M., SADLO F., KIRBY M., HANSEN C., ERTL T.: FTLE computa-

tion beyond first-order approximation. In Eurographics (Short Papers)

(2012), pp. 61–64.

[USM96] UENG S.-K., SIKORSKI C., MA K.-L.: Efficient streamline, streamribbon,

and streamtube constructions on unstructured grids. IEEE Transactions

on Visualization and Computer Graphics 2, 2 (1996), 100–110.

[Vea98] VEACH E.: Robust Monte Carlo Methods for Light Transport Simulation.

PhD thesis, Stanford University, Stanford, CA, USA, 1998.

[vFWTS08] VON FUNCK W., WEINKAUF T., THEISEL H., SEIDEL H.-P.: Smoke surfaces:

An interactive flow visualization technique inspired by real-world flow

experiments. IEEE TVCG 14, 6 (November 2008), 1396–1403.

[VG05] VIOLA I., GRÖLLER E.: Smart visibility in visualization. In Proc. Compu-

tational Aesthetics (2005), pp. 209–216.

[VG12] VAN GELDER A.: Vortex core detection: Back to basics. In IS&T/SPIE

Electronic Imaging (2012), International Society for Optics and Photonics,

pp. 829413–829413.

[VGP09] VAN GELDER A., PANG A.: Using PVsolve to analyze and locate positions

of parallel vectors. IEEE Transactions on Visualization and Computer

Graphics 15, 4 (2009), 682–695.

[VKG04] VIOLA I., KANITSAR A., GRÖLLER E.: Importance-driven volume render-

ing. In Proc. Visualization (2004), pp. 139–146.

310



Bibliography

[VKP00] VERMA V., KAO D., PANG A.: A flow-guided streamline seeding strategy.

In IEEE Visualization (2000), pp. 163–170.

[VPB∗09] VERGNE R., PACANOWSKI R., BARLA P., GRANIER X., SCHLICK C.: Light

warping for enhanced surface depiction. ACM Trans. Graph. (Proc. SIG-

GRAPH) 28, 3 (2009), 25:1–25:8.

[vW93] VAN WIJK J. J.: Implicit stream surfaces. In IEEE Visualization (Washing-

ton, DC, USA, 1993), IEEE Computer Society, pp. 245–252.

[War08] WARD M. O.: Multivariate data glyphs: Principles and practice. In

Handbook of Data Visualization, Springer Handbooks Comp. Statistics.

Springer Berlin Heidelberg, 2008, pp. 179–198.

[WCW∗09] WIEBEL A., CHAN R., WOLF C., ROBITZKI A., STEVENS A., SCHEUERMANN

G.: Topological flow structures in a mathematical model for rotation-

mediated cell aggregation. Topological Data Analysis and Visualization:

Theory, Algorithms and Applications (2009), 1–12.

[Wei91] WEISS J.: The dynamics of enstrophy transfer in two-dimensional hydro-

dynamics. Physica D: Nonlinear Phenomena 48, 2-3 (1991), 273–294.

[Wei08] WEINKAUF T.: Extraction of Topological Structures in 2D and 3D Vector

Fields. PhD thesis, University Magdeburg, 2008.

[WGM∗08] WANG L., GIESEN J., MCDONNELL K. T., ZOLLIKER P., MUELLER K.: Color

design for illustrative visualization. IEEE TVCG 14, 6 (2008), 1739–1754.

[WHT12] WEINKAUF T., HEGE H.-C., THEISEL H.: Advected tangent curves: A gen-

eral scheme for characteristic curves of flow fields. Computer Graphics

Forum (Proc. Eurographics) 31, 2 (May 2012), 825–834.

[Wie04] WIEBEL A.: Feature Detection in Vector Fields Using the Helmholtz-Hodge

Decomposition. Diploma thesis, Univ. Kaiserslautern, 2004.

[WJE01] WESTERMANN R., JOHNSON C., ERTL T.: Topology-preserving smooth-

ing of vector fields. IEEE Transactions on Visualization and Computer

Graphics 7, 3 (2001), 222–229.

[WMHL65] WOODCOCK E., MURPHY T., HEMMINGS P., LONGWORTH S.: Techniques

used in the GEM code for Monte Carlo neutronics calculations in reactors

and other systems of complex geometry. In Proc. Conf. Applications

of Computing Methods to Reactor Problems (1965), vol. 557, Argonne

National Laboratory.

[WS01] WISCHGOLL T., SCHEUERMANN G.: Detection and visualization of closed

311



Bibliography

streamlines in planar flows. IEEE Transactions on Visualization and

Computer Graphics 7, 2 (2001), 165–172.

[WS05] WIEBEL A., SCHEUERMANN G.: Eyelet particle tracing - steady visualiza-

tion of unsteady flow. In Proc. IEEE Visualization (2005), pp. 607–614.

[WS11] WANG C., SHEN H.-W.: Information theory in scientific visualization.

Entropy 13, 1 (2011), 254–273.

[WSTH07] WEINKAUF T., SAHNER J., THEISEL H., HEGE H.-C.: Cores of swirling

particle motion in unsteady flows. IEEE Transactions on Visualization

and Computer Graphics (Proc. Visualization) 13, 6 (2007), 1759–1766.

[WT10a] WEINKAUF T., THEISEL H.: Streak lines as tangent curves of a derived

vector field. IEEE Transactions on Visualization and Computer Graphics

(Proceedings Visualization 2010) 16, 6 (November - December 2010),

1225–1234.

[WT10b] WONG O. D., TANNER P. E.: Photogrammetric measurements of an eh-

60l brownout cloud. In Proceedings of the American Helicopter Society

(Phoenix, AZ, May 2010), 66th Annual Forum.

[WTGP11] WEINKAUF T., THEISEL H., GELDER A. V., PANG A.: Stable feature flow

fields. IEEE Transactions on Visualization and Computer Graphics 17, 6

(2011), 770–780.

[WTHS04a] WEINKAUF T., THEISEL H., HEGE H.-C., SEIDEL H.-P.: Boundary switch

connectors for topological visualization of complex 3D vector fields. In

VisSym (2004), pp. 183–192.

[WTHS04b] WEINKAUF T., THEISEL H., HEGE H.-C., SEIDEL H.-P.: Topological con-

struction and visualization of higher order 3D vector fields. Computer

Graphics Forum (Proc. Eurographics) 23, 3 (2004), 469–478.

[WTHS06] WEINKAUF T., THEISEL H., HEGE H.-C., SEIDEL H.-P.: Topological struc-

tures in two-parameter-dependent 2D vector fields. Computer Graphics

Forum (Proc. Eurographics) 25, 3 (2006), 607–616.

[WTS∗07] WIEBEL A., TRICOCHE X., SCHNEIDER D., JANICKE H., SCHEUERMANN G.:

Generalized streak lines: Analysis and visualization of boundary induced

vortices. Visualization and Computer Graphics, IEEE Transactions on 13,

6 (2007), 1735–1742.

[WTS12] WEINKAUF T., THEISEL H., SORKINE O.: Cusps of characteristic curves

and intersection-aware visualization of path and streak lines. In Topo-

logical Methods in Data Analysis and Visualization II, Mathematics and

312



Bibliography

Visualization. Springer Berlin Heidelberg, 2012, pp. 161–175.

[WWSS10] WIEBEL A., WANG Q., SCHNEIDER D., SCHEUERMANN G.: Accelerated

streak line computation using adaptive refinement. Journal of WSCG 18

(2010), 17–23.

[XLS10] XU L., LEE T.-Y., SHEN H.-W.: An information-theoretic framework for

flow visualization. In IEEE Transactions on Visualization and Computer

Graphics (2010), pp. 1216–1224.

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-time concurrent

linked list construction on the GPU. Computer Graphics Forum 29, 4

(2010), 1297–1304.

[YIC∗10] YUE Y., IWASAKI K., CHEN B.-Y., DOBASHI Y., NISHITA T.: Unbiased,

adaptive stochastic sampling for rendering inhomogeneous participat-

ing media. ACM Transaction on Graphics (Proc. SIGGRAPH Asia) 29, 6

(2010), 177:1–177:8.

[YKP05] YE X., KAO D., PANG A.: Strategy for seeding 3D streamlines. IEEE

Visualization Conference (2005), 471–478.

[YTvdW∗02] YU Y., TUNG C., VAN DER WALL B., PAUSDER H.-J., BURLEY C., BROOKS

T., BEAUMIER P., MERCKER Y. D. E., PENGEL K.: The HART-II test: Rotor

wakes and aeroacoustics with higher-harmonic pitch control (HHC) in-

puts – the joint German/French/Dutch/US project. American Helicopter

Society 58th Annual Forum (2002).

[YWSC12] YU H., WANG C., SHENE C.-K., CHEN J.: Hierarchical streamline bundles.

IEEE Transactions on Visualization and Computer Graphics 18, 8 (2012),

1353–1367.

[ZHXC09] ZHANG L., HE Y., XIE X., CHEN W.: Laplacian lines for real-time shape

illustration. In Proc. Symposium on Interactive 3D Graphics and Games

(2009), pp. 129–136.

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RAMAMOORTHI R.,

ROUSSELLE F., SEN P., SOLER C., YOON S.-E.: Recent advances in adaptive

sampling and reconstruction for Monte Carlo rendering. Computer

Graphics Forum (Proc. Eurographics) 34, 2 (2015), 667–681.

[ZSH96] ZÖCKLER M., STALLING D., HEGE H.-C.: Interactive visualization of 3D

vector fields using illuminated stream lines. In IEEE Visualization (1996),

pp. 107–113.

[ZZW02] ZHU T., ZHANG D.-L., WENG F.: Impact of the advanced microwave

313



Bibliography

sounding unit data on hurricane prediction. Monthly Weather Review

130 (2002), 2416–2432.

[ZZW04] ZHU T., ZHANG D.-L., WENG F.: Numerical simulation of Hurricane

Bonnie (1998). part I: Eyewall evolution and intensity changes. Monthly

Weather Review 132 (2004), 225–241.

314





Declaration

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; ver-

wendete fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere

habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genom-

men. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für

Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation

stehen.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter

Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die

Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland

noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist

als Ganzes auch noch nicht veröffentlicht.

Magdeburg, den 30. Juni 2016

Tobias Günther


	Introduction
	Thesis Structure
	Notation

	Line and Surface Selection by Opacity Optimization
	Overview on Geometry-based Flow Visualization
	Introduction to Geometry-based Flow Visualization
	Vector Fields, Particle Motion and the Flow Map
	Numerical Integration
	Particle-based Visualization
	Integral Curves
	Integral Surfaces

	Challenges in Line and Surface Selection
	Steady Line Fields
	Unsteady Line Fields
	Steady Surfaces

	Related Work
	Line Selection in Steady Vector Fields
	Line Selection in Unsteady Vector Fields
	Surface Selection in Steady Vector Fields


	Opacity Optimization for 3D Line Fields
	Problem Setting and Error Function
	Details and Implementation
	Initial Line Set
	Fragment Linked List Construction and Rendering
	Computation of Occlusion Degrees
	Minimization of the Error Function

	Parameter Studies
	Choosing the Importance
	Optimization Parameters

	Results and Discussion
	Performance
	Limitations

	Summary

	Hierarchical Opacity Optimization for Sets of 3D Line Fields
	Hierarchical Opacity Optimization
	Hierarchical Polyline Representation
	View-dependent Adaptation of the Problem Size

	Processing Parametric Sets of Line Fields
	Enforcing Temporal Coherence in Opacity Values
	Inter-frame Interpolation of Opacity Values
	Hiding the Latency of the Solver

	Implementation and Technical Details
	Initial Line Set
	Matrix Setup Using the Hierarchy
	Decoupling Rendering and System Setup

	Results
	Visualization of Steady and Time-dependent Data
	Performance
	Discussion and Limitations

	Summary

	Opacity Optimization for Surfaces
	Problem Statement and Contribution
	Opacity Optimization for Surfaces
	Surface Partition
	Averaging and Interpolation
	Optimization
	Importance Function
	Computing Occlusion Degree on Fragment Level

	Usage and Parameters
	Input Surface Set
	Parameter Selection

	Details on Rendering and Solving
	Results
	Performance
	Discussion and Limitations

	Summary


	Progressive FTLE and Rotation Invariant Vortices
	Overview on FTLE and Vortex Concepts
	Finite-Time Lyapunov Exponents
	Domain Deformation, Galilean Invariance and Objectivity
	Domain Deformation
	Galilean Invariance
	Objectivity

	Challenges with FTLE Rendering and Vortex Tracking
	Systematic Bias in Finite-Time Lyapunov Exponent Renderings
	Vortex Tracking Beyond Equal-Speed Translations

	Related Work
	Consistent Volume Rendering
	Vortex Extraction


	MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields
	Monte Carlo FTLE Rendering
	Volume Rendering Equation
	Free Path Sampling

	Acceleration by Spatially-Varying Extinction Bounds
	Implementation
	Results
	Discussion
	Comparison with Ray Casting
	Timings, Cost and Memory Consumption
	Convergence
	Limitations

	Conclusions

	Rotation Invariant Vortices for Flow Visualization
	Rotation Invariance
	Rotation Invariant Vortex Measures
	Rotation Invariant Cores of Swirling Particle Motion
	Rotation Invariant Region-based Methods

	On the Construction of Test Data
	Results 
	Implementation and Evaluation
	Coreline Extraction and Filtering
	Performance

	Discussion and Limitations
	Summary


	Inertial Particles in Flow Visualization
	Overview on Inertial Particles
	Introduction to Inertial Particles
	Inertial Equations of Motion
	Relation to Massless Particles

	Challenges with Inertial Particles
	Inertial Integral Geometry
	Mass Separation
	Inertial Steady 2D Vector Field Topology
	Source Inversion in Inertial Flows
	Inertial Vortex Cores

	Related Work
	Steady 2D Vector Field Topology
	Source Inversion, Attracting Manifolds and Backward Integration
	Inertial Particles in Visualization


	Mass-Dependent Integral Curves in Unsteady Vector Fields
	Mass-dependent Flow Map
	Mass-dependent Integral Curves
	Implementation
	Results
	Performance

	Summary

	Finite-Time Mass Separation for Comparative Visualizations of Inertial Particles
	Finite-Time Mass Separation
	Comparative Visualizations
	Qualitative View
	Quantitative View

	Implementation
	Results and Evaluation
	Comparison between Inertial FTLE and FTMS
	Low and High Values in FTMS
	Comparison between Distance Plots
	Performance
	Limitations

	Summary

	Inertial Steady 2D Vector Field Topology
	Inertial Topology
	Inertial Critical Points
	Inertial Separatrices

	Glyph-based Visualization of Asymptotic Behavior
	Implementation
	Glyph Memory Layout and Camera Navigation
	Progressive Computation

	Results
	Performance
	Limitations

	Conclusions

	Source Inversion by Forward Integration in Inertial Flows
	Influence Curves
	Definition
	Extraction
	Visualization

	Implementation
	Results
	Discussion
	Relation to Massless Case
	Source Inversion in Bounded Domains
	Accumulating Errors
	Reachable Subspaces of the Spatio-Velocity Domain
	Performance and Parameters

	Conclusions

	Vortex Cores of Inertial Particles
	Cores of Inertial Swirling Particles
	Local Methods in a Nutshell
	Local Method for Steady Case
	Local Method for Unsteady Case
	Integration-based Method

	Results and Discussion
	Implementation and Evaluation
	Coreline Extraction and Filtering
	Performance
	Limitations

	Summary

	Conclusions
	Reformulation of Energy into Matrix Notation
	Rotation Invariant Closed-Forms
	Eigenvalues with Zero Real Parts in the Inertial Spatio-Velocity Domain
	Vector Field in which Influence Curves Appear as Tangent Curves
	Galilean Invariance of Inertial Vortex Cores


