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A B S T R A C T

Epidemiological population studies impose information about a set of sub-
jects to characterize disease-specific risk factors. Population studies com-
prise heterogeneous variables (features) describing the medical condition as
well as demographic and lifestyle factors. The data are analyzed using a pri-
ori defined hypotheses to find statistically significant correlations between
features (associations). Modern population studies incorporate medical im-
age data. The statistically driven epidemiological workflow only allows to
determine associations between image-derived metrics, such as distances ex-
tracted from landmarks of the segmentation model.

This thesis proposes visual analysis techniques for both explorative and con-
firmative analyses of population study data. Methods for analyzing image-
centric population study data with focus on assessing influences of organ
shape are proposed. To account for epidemiological key requirements such
as reproducibility and statistical resilience of results, the epidemiological
workflow is analyzed and divided into different steps. Based on this analy-
sis, an Interactive Visual Analysis (IVA) approach is proposed that enables
epidemiologists to examine both image-based as well as non-image data,
e.g., sociodemographic features and attributes derived from the image data.
The new framework enables hypothesis validation and generation by in-
corporating human pattern recognition as well as data mining methods.
Using all reliable information from the image segmentation linked to non-
image features aims to unveil associations by applying an iterative analysis
approach.

Additionally, methods for the explorative analysis of large-scale popula-
tion study data to derive new hypotheses about the data are proposed. For
medical image data, this is achieved by creating shape-based clusters of
subjects, which can then be related to other non-image features. For explo-
rative analyses of non-image features, novel techniques to derive overview
visualizations for data sets with many features are proposed, which can be
customized by including expert knowledge.
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Z U S A M M E N FA S S U N G

Epidemiologische Bevölkerungsstudien erheben Informationen über eine
Menge von Probanden, um krankheitsspezifische Risikofaktoren zu beurteil-
en. Bevölkerungsstudien beinhalten heterogene Variablen (Features), welche
den medizinischen Zustand sowie demographische Faktoren und Informa-
tionen zu den Lebensumständen eines Probanden erfassen. Die Daten wer-
den durch a priori festgelegte Hypothesen mit dem Ziel analysiert, statis-
tisch signifikante Korrelationen zwischen Features (Assoziationen) zu finden.
Moderne Bevölkerungsstudien beinhalten ebenfalls häufig medizinische Bild-
daten. Der durch den Einsatz von statistischen Mitteln gekennzeichnete epi-
demiologische Arbeitsablauf erlaubt es lediglich, Assoziationen zwischen
abgeleiteten Bildmetriken, wie z.B. Distanzen zwischen bestimmten Land-
marken eines Segmentierungsmodells, zu bestimmen.

Diese Arbeit stellt visuelle Analysemethoden sowohl für die explorative als
auch die hypothesengesteuerte konfirmative Analyse von Bevölkerungsstu-
diendaten vor. Sie schlägt Methoden vor, mit denen bildbezogene Bevöl-
kerungsstudien mit Bezug auf die Form bestimmter Organe und Gewe-
betypen untersucht werden können. Die für die Epidemiologen wichtigen
Anforderungen, wie das Erlangen von reproduzierbaren und statistisch be-
lastbaren Ergebnissen, werden durch das Identifizieren einzelner Arbeits-
schritte der epidemiologischen Analyse definiert.

Basierend auf diesen Anforderungen wird ein interaktiver visueller Ana-
lyseansatz (IVA) vorgestellt, der es Epidemiologen ermöglicht, sowohl bild-
basierte- als auch Nichtbilddaten, wie soziodemografische Features, gemein-
sam zu analysieren. Das entstehende System erlaubt sowohl die Validierung
als auch die Generierung von Hypothesen, indem es die menschliche Mus-
tererkennung sowie Methoden der automatisierten Datenauswertung mit-
einander verknüpft. Das Verbinden von verlässlichen Aspekten der Bild-
Segmentierungsmasken mit Nichtbild-Features erlaubt es, neue Assoziatio-
nen in einem iterativen Analyseansatz herauszuarbeiten.

Zusätzlich werden Methoden für die explorative Analyse von komplexen
Bevölkerungsstudiendaten vorgestellt, um neue Hypothesen zu generieren.
Dies wird für medizinische Bilddaten durch das Bilden von formbasierten
Gruppen erreicht, die dann in Bezug mit Nichtbild-Features gebracht wer-
den können. Die auf Nichtbild-Features basierende explorative Analyse wird
durch neue Überblicksvisualisierungstechniken ermög-licht, die durch das
Einbinden von Expertenwissen an Problemstellungen angepasst werden kön-
nen.
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Part I

P R E L I M I N A R I E S





1I N T R O D U C T I O N

The analysis of population study data follows a strict hypothesis-driven
pipeline, which was employed over many years using reliable statistical
methods. Hypotheses are formulated based on research results or clinical
observations, translated into hypotheses, which are then statistically evalu-
ated. Population studies increase in size over the years to cover a wide range
of diseases and hypotheses. This wide scope of features provides new op-
portunities, leaving the standard hypothesis-driven pipeline. By employing
visual analysis techniques, the data complexity can be used as advantage to
conduct explorative analyses to generate new hypotheses. Confirmative anal-
yses may be conducted with a wider range for features in mind, to assess
their influence w.r.t. a specific disease or condition. Both approaches require
new analysis techniques combining proper overview visualizations showing
results of analytics algorithms, which derive potentially overlooked relation-
ships in the data.

Analyzing medical image data as part of large-scale population studies
adds a new dimension of complexity to the problem. The data has to be
annotated and quantified in order to analyze it with standard statistical
methods. Here, visual analysis can include shape variance visualizations to
allow for comparisons between subject groups without removing informa-
tion by summarizing it into abstracted metrics, such as volume or diame-
ter. Additionally, explorative analysis of medical image data can be enabled
by clustering the annotated models. This provides experts with completely
new ways of analyzing their data. Diseases can be related to shape-specific
differences between subjects. Subjects of shape-based clusters may share in-
teresting similarities compared to the overall population in the study. This
thesis provides an overview of the applicability of existing methods w.r.t.
population study analysis. The main goal is to provide explorative and con-
firmative analysis techniques for data sets with or without medical image
data.

The work presented in this thesis was supported by the priority program
“Scalable Visual Analytics” (DFG SPP 1335) of the German Research Coun-
cil. The project “Visual Analytics in Public Health” aims to provide flexible
analysis methods for the data derived in the “Study of Health in Pomerania”
(SHIP) [270]. The project also involves the Image Processing group of Klaus
Tönnies at the University of Magdeburg as well as the Institute of Commu-
nity Medicine at the University of Greifswald. The analyses methods are
required to scale between different research questions of different subsets of
the same data pool, which may include heterogenous data types. We try to
answer the question how visualizations change as the number of research
questions increases. Additionally, do the visualizations change as the num-
ber of investigated subjects increases? Special emphasis was put to include
medical image data into a visual analysis workflow. Medical data is acquired
in large-scale population studies, but they are still hard to assess as part of
explorative or confirmative analysis sessions. The development of the meth-
ods in this thesis was carried out in a thorough cooperation with Henry
Völzke, leader of the SHIP and specialist in internal medicine, as well as PD
Dr. Katrin Hegenscheid, radiologist and responsible for the SHIP Magnetic
Resonance Imaging (MRI) data acquisition. Both experts are affiliated with
the Ernst Moritz Arndt University Greifswald.

3



4 introduction

This thesis tackles the following challenges:

• Derive hypotheses about complex diseases using a explorative data-
driven Visual Analysis approach on large-scale population study data.

• Combine medical image data and non-image information to validate
and generate hypotheses based on shape variance of organs and tis-
sues.

• Establish a Visual Analysis workflow for epidemiological data, which
combines medical visualization, information visualization and data
mining methods.

Therefore, this thesis is organized as follows:

• Chapter 2 covers basics in epidemiology to provide the necessary back-
ground for the methods developed in the later chapters. It is intended
as a brief introduction into the field, which provides the necessary
vocabulary and an overview of the applied workflows and analysis
pipelines as well as different study types.

• Chapter 3 provides the current state-of-the-art in visualization of sta-
tistical results, as well as Visual Analytics and Interactive Visual Anal-
ysis and provides possible application areas in population study data
analyses.

• Part ii starts with an extension to the population study data analysis
pipeline using Visual Analytics and Interactive Visual Analysis meth-
ods. The purpose is to categorize the methods proposed in this thesis.
The categories are either support of explorative or confirmative analy-
ses and the use of image data.

• Chapter 4 provides methods for joint analyses of medical image data
with non-image features, such as lifestyle factors or results of medical
examinations. It covers aspects of deriving data structures suitable for
shape comparisons as well as information visualization of non-image
features with augmented image data. The visualizations presented in
this section usually comprise physical views representing spatial data.
Explorative analysis is enabled by applying clustering methods on
both image and non-image data.

• Chapter 5 focuses on analysis methods without spatial views. It pro-
vides Visual Analytics tools for providing overview visualizations, which
include domain knowledge by encoding it using regression models. It
also proposes the Decision Tree Quality Plot, which assesses the pre-
dictive quality of a set of features w.r.t. the whole data set.

• Part iii and Chapter 6 conclude the thesis by giving a summary of the
contributions and discussing and ranking future work in the field.

Most sections in Part ii are based on conference and journal publications.
Therefore, each section will contain a detailed description of the contribu-
tions per author to clarify the own impact and contributions.



2E P I D E M I O L O G I C A L B A C K G R O U N D

“Epidemiologists are detectives who research the causes and consequences of illness
and disease.” – Career description on innerbody.com

Epidemiology assesses the spread, causes and effects of health-related condi-
tions. It aims to characterize health and disease by determining risk factors.
These risk factors can then be used to determine optimal treatment, develop
preventive medical checkups and to give recommendations for a healthy
lifestyle. They can also be used to extract high-risk groups for diseases. Fea-
tures defining these groups act as diagnostic markers.

This chapter provides an overview of the most important terms in epi-
demiology as well as a summary of the involved experts, their workflow
and the data basis.

2.1 important terms

Since the focus of epidemiology is on characterizing health and disease con-
ditions, the field developed metrics to assess these terms.

Prevalence and incidence are two metrics depicting how often a certain
disease (or clinical events in a wider definition) occurs in a specified pop-
ulation. Clinical Events include diagnoses of severe diseases, for example
cerebral strokes or heart diseases. The prevalence denotes the percentage of
people suffering from a disease at a given point in time. More precisely, point
prevalence indicates prevalence at one time point and period prevalence states
prevalence over a period of time. The latter is harder to interpret. Hence,
prevalence is often synonymous for point prevalence. It is depicted as ratio
between a healthy and diseased population size in percentage. For example,
the prevalence of a disease affecting 50 people out of a population of 1300
would be ≈ 3.85.

The incidence represents how many people newly get diagnosed with a
disease in a certain interval, usually one year. High prevalence is usually
associated with high economic costs. Population-based studies analyze dis-
eases with a high prevalence, such as widespread diseases, i.e., diabetes or
back pain. A rare disease, such as amyotrophic lateral sclerosis, may have a
prevalence of 5 from 100,000 [296]. Thus, even in a large population-based
study probably no individual suffers from this disease. Dividing the incidence by
a time frame and the number of subjects in the group yields the absolute
risk (also called incidence rate). It is used to determine the risk per subject
group of developing a disease and makes their risks comparable. As an ex-
ample, a study related to risk for cardiac diseases may investigate angina
pectoris, myocardial infarction, atrial fibrillation depending on attributes,
such as age and gender. According to Preim et al. [296] “relative risk (RR)
characterizes the increased risk of an individual being exposed to a certain
risk factor, e.g., smoking, excessive weight, or alcohol abuse. It is based on
a comparison with a control group not exposed to that risk factor. A value
of RR < 1 represents a factor that protects, e.g., moderate physical activity.”
Insightful observations are often combined effects of several parameters. A
certain factor may be protective for some people and is involved with an
increased risk for others. The combined risk may be significantly smaller or
larger than could be expected from individual factors. Another important
metric is the odds ratio (OR) [23], which is a measure of effect size, depicting

5
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6 epidemiological background

Table 1: Fictional example of the relationship between smoking status and having a
heart attack. The Relative Risk is calculated as: RR =

140/(140+1780)
77/(77+7620) ≈ 7.28.

This indicates a 7.28 times higher chance of smoking subjects to suffer from
a heart attack. The Odds Ratio is denoted as: OR = 140∗7620

77∗1780 ≈ 7.7. This
indicates that subjects who smoke are 7.7 times more likely to have a heart
attack than non smoking subjects [23].

smoking not smoking

heart attack 140 77

no heart attack 1780 7620

the association strength between two binary features. A fictional example of
relative risks and odds ratios can be seen in Table 1.

Statistical correlations are prone to confounding, meaning that the asso-
ciation of two epidemiological variables is influenced by a third variable,
which needs to be isolated (see Fig. 1). As stated in the VAST’14 publi-
cation [293], “a famous example is the association between shoe size and
mortality, where it can be observed that people with larger shoe size have
a smaller life expectation. The shoe size is actually associated with gen-
der, where women have smaller feet and also a longer life expectation.
Gender therefore acts as confounder for this analysis.” Age is included as

Exposure Outcome

Confounding Variable

Figure 1: Exposure (e.g., smoking) as well as outcome (e.g., heart attack) are associ-
ated with a confounder (e.g., age).

confounder in almost any epidemiological analysis, since most diseases
are more likely for older people. It also influences the general body con-
dition and thereby almost all features acquired through cohort studies. Con-
founders have to be selected by epidemiologists specific to the investigated
condition [74]. One possibility to accomplish this are directed acyclic graphs,
which allow for displaying causal structures in an epidemiological data
set [228, 241]. Each variable is represented as node in the graph, influences
are encoded via edges. A path is denoted as causal, when it contains only
directed edges from the exposition feature to the outcome. The possibilities
of handling confounders are twofold:

i The confounding effect is already considered in the design phase of
the study, which includes randomization of the subjects (e.g., creating
comparable groups w.r.t. known and unknown confounders), or re-
striction of specific subgroups (e.g., only including males or females to
eliminate gender confounder). Note that restriction is very limited in
large-scale population studies, which are queried towards many dif-
ferent diseases.

ii The second method includes controlling at the statistical analysis stage,
e.g., by creating groups according to the confounding feature.

Details are described in Section 2.6.
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2.2 study types & design

Epidemiological data are derived from various study types. The study type
is chosen depending on the underlying question. Four basic study designs
are defined in epidemiology [197]:

• Incidence studies aim to acquire exposures and outcomes for all popu-
lation members. These studies are called cohort studies or follow-up
studies. They include data acquisition at several time points.

• Incidence case-control studies aim to study the causes of a specific disease
over a period of time. Information about exposed and not exposed
subjects are derived and shown using odds ratios. In comparison to
the other study types, case-control studies are less expensive due to
their focus.

• Prevalence studies aim to analyze the prevalence of a disease at a spe-
cific point in time. Causations are harder to assess due to the missing
time frame. Differences in disease progressions are difficult to deter-
mine.

• Prevalence case-control studies are, similar to incidence case-control stud-
ies, less complex than standard prevalence studies, due to focusing on
a specific outcome.

This work is focused on analyzing single time points of cohort studies. A
group of subjects (the cohort) is observed over time, usually in fixed in-
tervals. The subject number decreases between each time step as subjects
decease or stay away from the next acquisition dates. These data impose
the most potential for interactive visual analysis techniques, since they have
a vast variety of features and are acquired with a broad spectrum of dis-
eases (outcomes) in mind. Deriving data-driven insight into epidemiological
questions is arguably most promising for cohort study data due to the wide
scope of acquired data.

Designing epidemiological studies requires professional planing and a
thorough understanding of the investigated disease or condition. Choosing
the proper study type is, as described above, the crucial first step. Further
design strategies are then motivated by excluding different error types:

• Random errors can occur when the biological diversity of a popula-
tion is not representative. For example, conducting a study in a rural
area may lead to populations with above-average genetic similarities
due to high relationship degrees. Random errors can also occur due
to measurement errors in the data collection. Random errors are not
systematic.

• Sample size errors occur when the number of subjects are not suffi-
cient to derive statistical significant conclusions [158]. The sample size
depends on the prevalence of the investigated disease in large-scale
population studies. Case-control studies require fewer subjects, since
one group is defined by diseased patients.

• Systematic errors (bias) are systematic deviations from the truth. Causes
comprise distortion by selection, where selected subjects differ from non-
selected (e.g., subjects participating in a study because they want to
have a check up due to malaise). Other causes comprise information
bias, where measurements (e.g., determination of a disease) are inaccu-
rate. This can be caused by different monitoring stations (e.g., multiple
imaging stations with different calibrations).
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2.3 epidemiological experts

Epidemiology is an umbrella for an interdisciplinary collaboration of ex-
perts. Physicians are involved in formulating epidemiological questions as
results of day-to-day practice or scientific research. Physicians focusing on
epidemiology usually have an above-average understanding of statistics.
Most physicians conduct epidemiological research next to their activity as
medical doctors. This is accompanied by a very sparse time window for this
occupation, requiring efficient yet flexible methods to accomplish the work.

Designing epidemiological studies also includes the collaboration of physi-
cians with different specializations, depending on the investigated condi-
tions. Incorporating genetic information requires consultation with geneti-
cists, deriving medical image data includes radiologists, and so forth.

Statisticians are required at many stages of epidemiological analyses. They
are essential for designing studies to be as bias-free as possible. Data storage
and analyses are carried out by statisticians. They are responsible for sta-
tistically validating epidemiological hypotheses to derive final conclusions
whether the data supports a certain assumption or not.

These analyses, however, require statistically evaluable epidemiological
variables. Most measurements already yield numerical or categorical vari-
ables, which can be evaluated in such a way, e.g., gender, BMI or education
level. Others need to be extracted using a post-processing step based on the
measured data, such as analysis of medical image data. These data can be
extracted by radiologists, but this is expensive and prone to inter- and intra-
observer variability. Another approach is consulting computer scientists for
writing algorithms to extract the information of interest.

Successful epidemiological research was always driven by an interdisci-
plinary collaboration of experts to derive insight into the difference between
health and disease. The collaboration is guided by a strict analysis workflow,
which is described in the following section.

2.4 epidemiological analysis workflow

In this section, the process of designing and conducting an epidemiological
study is neglected. The focus of this work lies on extending the analysis
workflow for epidemiological data.

The workflow herein described was presented in the VAST’14 paper [293].
Epidemiologists follow a workflow mainly driven by statistic tools to vali-
date hypotheses about disease-specific risk factors. Following
Thew et al. [254], the workflow can be characterized as follows:

1. A hypothesis is derived from observations made by physicians in their
daily routine.

2. A set of features depicting conditions affected by the hypothesis is
compiled accordingly. Often, for specific diseases and associated hy-
potheses, dedicated epidemiological studies are designed. Large-scale
population studies can be used when the prevalence of the investi-
gated condition is high enough in the population, since subjects are
invited without the focus on a specific disease.

3. Confounding features are identified and taken into account (for exam-
ple using stratification). This is a complex step involving both medical
expert knowledge as well as statistical analysis. Confounders have to
be compiled specific to the investigated disease, since each condition
has individual influencing factors, which, if not taken into account,
will introduce a bias into the analysis, rendering the analysis inaccu-
rate.
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Observations Hypothesis Statistical AnalysisFeature List

Figure 2: The classical epidemiological analysis starts with observations of clinicians
in their day-to-day practice. These observations are translated into hypothe-
ses, which are then depicted using a feature list derived from a epidemio-
logical study. Statistical analyses determine whether the features support
the hypothesis or not.

4. Statistical methods, such as regression analyses, assess the association
of selected features with the investigated disease. This last step is usu-
ally carried out by statisticians and is the final step of the analysis. The
analysis can also be inconclusive, e.g., by having a too small sample
size.

The workflow is depicted in Figure 2. Reproducibility of results is an epi-
demiological key requirement. It is difficult to achieve, since many physi-
cians are involved when thousands of test persons are examined and inter-
viewed. Thus, both intra- and inter-observer variability needs to be low for
all aspects of a population study examination. Longitudinal studies require
the acquired attributes to be comparable for evaluation. If the data acquisi-
tion process changes, an information bias is introduced to the data, hamper-
ing inference in and between acquisition cycles. This is also a methodological
key requirement when analyzing the data. All conclusions derived through
the data have to be reproducible and statistically valid. If a result does not
meet the requirements, the conclusion will not be accepted in the epidemio-
logical community [296].

The chosen hypothesis directly influences the analysis of the underlying
features. Which information is extracted from the medical image data also
dependents on the underlying hypothesis. If, for example, a hypothesis in-
cludes the analysis of the average volume of the spine vertebrae, different
measurements have to be conducted compared to an analysis including the
overall curvature of the spine canal.

2.5 epidemiological data

Epidemiological data are highly heterogenous and incomplete. Information
about medical history and examinations, genetic conditions, geographical
data, questionnaire results and image data yield a complex data space for
each subject. For ethical, legal or medical reasons, some features cannot
be gathered for each study participant. An obvious example are women-
specific questions about menstrual status or number of born children. Follow-
up examinations or questions about conditions like medications taken after
a diagnosed disease also yield features only available for a small number of
subjects.

Indicators for medical conditions as well as questions about a subject’s
lifestyle are also often dichotomous–they have two manifestations (Yes or No).
Dichotomous data can also be derived by aggregating features to yield only
two manifestations (e.g., subjects younger or older than 50 years). Medical
examinations mostly comprise categorical (e.g., levels of back pain) and con-
tinuous values (e.g., age or body size). The distributions of features are also
heterogenous. Features indicating rare conditions are sparse.

data acquisition techniques and data types Data acquisition
for population study data is usually carried out by inviting participants to
a clinic or center of the study. The acquisition process duration depends on
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Figure 3: Representation of three features of different type. (left) Numerical feature
Triglyceride Levels represented using a histogram. (middle) Dichotomous
feature Gout Disease. (right) Ordinal feature Pain Levels.

the number of derived features as well as the accuracy of the examinations.
The data acquisition is carried out using different techniques:

• Expert-guided questionnaires are suitable to assess lifestyle factors, cur-
rent medications, nutrition and sporting features. They are also used
for a psychological assessment as well as for judging pain levels. The
experts are trained to derive standardized answers, which is not al-
ways possible, e.g., due to different pain tolerances.

• Laboratory analyses allow to extract features about the genetic condition
of a subject as well as information from body fluids, such as blood or
urine. These features are acquired using standardized methods also
used in the clinical day-to-day practice.

• Medical examinations are incorporated to diagnose diseases and condi-
tions. They are also used to extract medical parameters, such as heart
rate or blood pressure. Just like laboratory analyses, these features are
standardized and can easily be compared.

• Medical image extractions are carried out to allow for comparisons of
inner-body structures. These data are particularly hard to analyze and
to compare, as they need a prior segmentation of the structure of in-
terest. Also, acquisition protocols often differ between departments,
requiring a strict standardization and calibration of the incorporated
machines.

The derived data consist of different data types. These statistical features
can usually be categorized as follows:

• Numerical data are extracted from metric features, such as body weight,
blood fat levels or triglycerides (Fig. 3, left). Numerical features com-
prise of different distributions. The distributions have an impact on the
statistical methods later used in the statistical analysis. Many statistical
methods, such as Pearson’s R, expect normally distributed features.

• Nominal data are categorical data with no inherent ordering of the man-
ifestations. These data are often used to describe lifestyle factors, such
as marital status or field of occupation. A special kind of nominal data
are dichotomous (binary) features, which only assume two possible
values. These are very common in epidemiological data, since they are
used to describe presence or absence of clinical event. Often, dichoto-
mous features lead to follow-up questions. For example, “Are you di-
agnosed with gout disease” (Fig. 3, middle) may lead to the follow-up
question “Which treatment do you receive for gout disease?”.

• Ordinal data are categorical data with an inherent ordering of the man-
ifestations. Examples are income or pain level (Fig. 3, right). These
data are also often incorporated to depict data about lifestyle or med-
ical history. They are also used to depict consumption behavior, such
as the alcohol intake or amount of consumed meat.



2.5 epidemiological data 11

Another important data type, which is harder to analyze than the afore-
mentioned, are spatial data. These data may be extracted either by questions
yielding geographical data, such as home or work address. Geographical
data are hard to assess using standard statistical methods. Therefore, this
data is often neglected in the analysis. This work does not focus on analyz-
ing geographic data, but rather focuses on another spatial data type, medical
image data.

image acquisition Imaging techniques involving ionizing radiation
for the subject are not suitable for ethical reasons. Therefore, Magnetic Res-
onance Imaging (MRI) is the main method for collecting population study
imaging data. The image quality is a trade-off between accuracy and afford-
ability [208]. This often yields image resolutions inferior to those of clini-
cal day-to-day practice, which makes their analysis more challenging. The
equipment used to gather medical image data is kept, if possible, on the
initial software and hardware version during a longitudinal study to ensure
comparability in and between acquisition cycles.

image analysis Decisions have to be made on how image data are com-
pared and quantified. The use of segmentation masks enables a morphometric
analysis using derived metrics, e.g. volume, largest diameter or aspect ratio.
As stated in the VAST’14 publication [293], “reliable and efficient segmen-
tation techniques for these data are not available in general, epidemiolo-
gists are forced to measure the data by hand, which is a very tedious work
with respect to the number of necessary landmarks and the number of sub-
jects. Information derived by landmarks, such as top and bottom point of a
vertebra, are by far not as expressive and versatile as segmentation masks
describing its whole shape. They are also prone to a high inter-observer vari-
ability and are hard to reproduce. This gains even more importance when
analyzing multiple time steps. Morphometric information from landmarks
comprises thickness, diameter or length of a structure as well as grey value
distribution in an area (used for determining the type of tissue).” Fully- or
semi-automatic annotation techniques, however, show already promising re-
sults for different organs and structures, e.g. in MRI scans of the liver [80],
kidney [81] and spine [213]. The methods are, however, custom-tailored to
the provided image data and consist of detailed assumptions and domain
knowledge about the target structure shape, its variance, as well as expected
intensity values. Therefore, they will likely have to be adapted to work for
other structures, data resolutions and sequence settings.

data sources Epidemiological recommendations are only as good as
the data they are based on. Hence, multiple large projects have started
worldwide to gather a substantial amount of health data. The Rotterdam
study [109], which started in 1990, employed also non-invasive imaging data,
primarily ultrasound and MRI data. Petersen et al. [202] report on six studies
involving cardiac MRI from at least 1,000 individuals in population-based
studies. These high-dimensional data allow for answerering analysis ques-
tions, such as “How does the shape of the spine change as a consequence of age,
life style and diseases?” The National Cohort in Germany aims to gather data
for 200,000 subjects in acquisition cycles of 4-5 years [46]. Other important
studies are the National Lung Screening Trial, which analyzed approximately
54,000 subjects in a two year time span using either a low-dose helical com-
puted tomography (CT) or a single-view chest radiography [253].

Policies exist to decide who gets access to a subset of the data, strictly
anonymized, where the collection of data should make it impossible to in-
fer the person’s identity. Scientists have to write proposals to get access to
the data. Each requested study feature has to be reasoned in detail. Ethics
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committees evaluate these proposals. Requesting large sets of features for
explorative analyses will most likely be an unusual request for the commit-
tees. Therefore, scientists have to make sure that the use of explorative anal-
ysis approaches is comprehensible to the scientists involved in the decision
making.

The current trend of open science and open data sets yields also freely
available data sets. The UK Biobank [289] study in the United Kingdom,
with information about genetic predispositions as well as lifestyle and med-
ical features, made its dataset available in March 2012.

The Global Health Data Exchange created by the Institute for Health Met-
rics and Evaluation at the University of Washington is a catalog for popula-
tion and health data and provides a web service for the data sets.1

missing data Data are maybe missing, since epidemiological data are
incomplete. Subjects may decline answering certain questions, e.g., regard-
ing their alcohol consumption behavior. Other features can only be acquired
for a specific subject group, such as women-specific questions. Some fea-
tures are follow-up questions, such as reason of retirement, or treatment of
a specific disease. Imputations in epidemiological data are largely avoided
due to the risk of introducing a bias into the data. Other features may be
logically imputed. One feature could, for example, capture whether the sub-
ject is or was a smoker. A follow-up question regarding the number of years
smoking will then only assume values for subjects who answered the prior
question positively, leading to a sparse feature. Since the other subjects did
not smoke, the feature for them could be imputed with 0 years.

2.6 statistical analysis in epidemiology

Statistical analysis is the essential step in epidemiology, which translates the
data and hypothesis input into medical knowledge. These conclusions can
have a wide range of results with huge impact, e.g., a new risk score for a
specific disease. Other epidemiological results may even disprove common
medical knowledge, such as empirical information about the volume of the
liver. The major impact requires the statistical analysis of epidemiological
data to be strict and precise. There is no singular method suitable for all
tasks. Choosing the proper statistical test for a specific task is strongly de-
pendent on the underlying hypothesis and the expected outcome. These
steps are usually carried out either by statisticians or physicians with a
strong background in statistics.

statistical hypothesis testing Statistical hypothesis testing (syn-
onymous with confirmatory data analysis) expects the underlying medical hy-
pothesis to be modeled using a set of random variables [130]. These vari-
ables can then be used to validate the hypothesis as a statistical hypothesis.
Afterwards, a statistical test determines a test statistic, which is a numer-
ical summary of the data set. The test result is statistically significant if
the hypothesis is unlikely to occur solely based on a sampling error. The
respective significance level is denoted using α and is usually set to 5% or
1%. An analysis involves formulating the hypothesis itself and the alterna-
tive null hypothesis, which usually states no associations between observed
variables. The statistical test can then be depicted using a p-value. It com-
prises of a continuous statistic ranging between 0 (null hypothesis rejected)
and 1 (provided data fails to doubt the null hypothesis). It is also important
to understand that the p-values do not indicate the statistical probability of
the null hypothesis to be true. The test data provides not enough evidence to

1 ghdx.healthdata.org

http://ghdx.healthdata.org/
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Figure 4: Plot of the probability density of an outcome. A low p-value denotes a
very low chance that a random sample was drawn at the edges of the
distributions.

doubt the null hypothesis. The p-value can be one- or two-sided [12]. A one-
sided p-value states the probability of deriving a result as least as extreme
as the observed one direction of the distribution. Therefore, one-sided p-
values are divided into lower one-sided and upper one-sided, stating the
probability of observing a result either lower or larger than the relative risk
(Fig. 4). Two-sided p-values are the sum of the upper and lower p-values
and are more conservative than one-sided p-values. The null hypothesis
can then be rejected when the p-value is below the specified significance
level α [217]. If the null hypothesis is rejected because the α is set too high
(statistical test observes significant difference, but in reality there is none),
statisticians speak of a type I error. The p-value can therefore be seen as
equivalent notation of the probability of a type I error to happen. With an
increasing number of tests carried out on the same data, the probability of
encountering a type I error increases. Carrying out 10 tests with a α of 5%
yields 1− (1− α)10, a 40% chance of a type I error [268]. One way to avoid
this problem is increasing the α with each step ( α

numberOfTest ), which is
called Family-Wise-Error-Rate (FWER) [237].

The opposite case, where the test statistic indicates no difference whereas
a difference does in fact exist, is indicated as type II error. Type II errors can
be avoided by increasing the statistical power of a test, e.g., by increasing the
number of study participants [217]. In good statistical practice, results are
not reported solely based on p-values, but rather highlights the complete
analysis pipeline, from the design phase, generating and tidying the data to
creating the test statistics with information on the underlying method [149].
Effect sizes are also important to quantitatively describe the strength of a
statistical phenomenon [129].

Which statistical test is chosen depends strongly on the underlying data
type. If the test involves categorical data, usually the chi-squared goodness-
of-fit test is used. For numerical features, t-tests are usually applied.

regression models This paragraph is based on the Regression Anal-
ysis subsection of the VAST’15 publication [295]. Regression analysis is the
most important statistical tool when analyzing epidemiological data. A re-
gression analysis assesses the influence of one or more (independent) features
to one target (dependent) feature. The regression model yields a function de-
scribing the target feature by weighting the independent features. Different
metrics, such as the weightings itself and associated p-values, describe the
resulting function (the model). R2 values describe the quality of fit. In other
words, how well the dependent features describe the target feature. The
value ranges between [0, 1], where 1 encodes a perfect fit.

Regression Analysis Notation. Regression formulas are usually denoted
as follows:

Dependent ∼ Independent1 + ... + Independentn (1)
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An example of a regression formula would be KidneyDisorder ∼ Smoking+
Obesity. The most commonly used regression operators comprise:

• +,− inclusion/exclusion of the variable (e.g., x± y),

• : inclusion of interactions between the variables (e.g., x : y),

• ∗ inclusion of the variables as well as their interactions (e.g., x ∗ y)

• | (conditioning) inclusion of variable x, given y (e.g., x|y)

The class of the target feature restricts the regression type. Different regres-
sion types are available. The focus in this thesis lies on the following [196]:

Linear Regression for Continuous Target. The basic type is the linear
regression, creating a linear mapping from the space comprising the inde-
pendent features to the dependent features. The dependent variable has to be
of a continuous type.

Logistic Regression for Dichotomous Target. Logistic regression implies
a dichotomous target variable. The target is described by fitting a logistic
function. Logistic models, as opposed to linear models, do not allow for
extracting an R2 quality-of-fit value. Therefore, pseudo-R2 values are ex-
tracted, such as the Nagelkerke R2, which mimics the behavior of the R2 [182].
Nagelkerke R2 compares the relationship between the likelihood function de-
scribing completely independent variables with the actual correlation of the
variables. It is intended to agree with the R2 when both metrics can be cal-
culated. The two metrics cannot be compared directly, as Nagelkerke R2 only
mimics the R2 of linear regression models.

handling confounding features As described in Section 2.1, the
best way to handle confounding features is to avoid confounding in the
study design phase. Often, this is not possible. Either the data set needs to
be queried towards different diseases with different confounders, or some
confounders become apparent during the analysis phase. If a confounder
needs to be considered during the analysis, various methods are available:

• Stratification is the process of dividing the subjects into different groups.
If, for example, the confounding effect of smoking needs to be re-
moved when analyzing the effect between lung cancer and atmospheric
pollution, the subjects may be stratified according to their smoking
status. Then, the analysis is carried out for each group (“strata”) [148].
Since these stratas can comprise different amounts of subject sizes, sim-
ple weighted sums will be more precise on groups with larger subject
counts. Therefore, weighting schemes, such as the Mantel-Haenszel
method are used to consider these differences in the strata size to as-
sess the effect influence [131]. Stratification requires more subjects in a
study for each considered confounder.

• Multivariate analysis is the alternative approach when a higher amount
of confounders needs to be considered (usually more than 1-2). This
approach incorporates the analysis in statistical regression models,
such as logistic regression, or multiple linear regression. In this case,
the confounders are considered as covariates of an adjusted analysis.
The confounding features are added into the regression formulas to
be considered properly.

More advanced and newer methods of handling confounders include find-
ing confounding features using causal graphs based on directed acyclic
graphs [85] or marginal structural models [219].
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2.6.1 Statistical Processors and Data Wrangling

Most statistical processors applied in epidemiology are enterprise tools with
proprietary data formats. For basic calculations, physicians often employ
Microsoft Excel2, because they know the application and it is often pre-
installed on their desktop computers. More specialized analyses are carried
out using statistical processors, such as SPSS3 or STATA.4 These tools already
include many convenient functions for creating statistical visualizations to
communicate the results [174]. Each of these tools has their own proprietary
format. This makes it hard to export the data into an open format. Most pro-
cessors only allow to export the data as character separated values (CSV). In
most cases, however, the values themselve are represented using IDs, such
as different answer possibilities to a question. For example, the question
“Did you experience back pain in the past three months?” may have three out-
comes: 1 - Yes, 2 - No, and 3 - unknown. The structure translating the IDs to
their values is called a data dictionary. Both, SPSS and STATA support data
dictionaries in their own data formats, but the export into open formats is
not standardized and in some cases not even possible. This makes it hard
to process data of these formats. Hence, data wrangling is a challenge when
analyzing epidemiological data. Graphic data representation is largely in-
corporated to present results rather than deriving insights into the data.

The situation improves with increasing popularity of open scientific plat-
forms.

Languages, such as Julia or Python, compete with proprietary commer-
cial projects, such as MATLAB. In statistics, R is a popular and free alterna-
tive to the established commercial solutions. However, it lacks the sophisti-
cated user interfaces of SPSS or STATA and users are required to write com-
mands in order to conduct statistical analyses. This refrains many medical
experts without command line experience and is one explanation why the
rather expensive commercial solutions are still around. The included fea-
tures and methods of open solutions, such as R, can compete with the com-
mercial competitors. New methods for statistical calculations are usually
implemented in R as proof of concept.

data wrangling Converting data into a proper format is the first step
when analyzing data from population studies. Large population studies usu-
ally incorporate quality control steps, which make sure that the data is in a
proper format for further analyses. Since the data acquisition is performed
manually, errors may happen. Data wrangling allows to export the data
into a proper structure and to find errors. To strengthen their academic im-
pact, large population studies apply quality control protocols to minimize
the risk of making mistakes. Often, these controlling measures are put in
place after the data was acquired. Alternative approaches incorporate con-
tinuous monitoring using regression analyses to identify problems, such
as defective equipment or systematic bias of a data acquisition expert [94].
The same quality control standards require the data to be converted into
a proper format, assign error codes if necessary and follow the predefined
data dictionary. Hence, the data munging step, which converts raw data into
a usable format, is usually not necessary for epidemiological studies. Tools,
such as OpenRefine, are nevertheless useful to detect errors that may have
been undiscovered in the quality control [91]. This also potentially detects
errors occurring by converting data into different formats.

2 Owned by Microsoft; https://products.office.com/excel
3 Owned by IBM; http://ibm.com/software/analytics/spss/
4 Owned by Stata Corp.; http://www.stata.com/

https://products.office.com/excel
http://ibm.com/software/analytics/spss/
http://www.stata.com/
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2.7 the study of health in pomerania (ship)

This section is based on subsection 2.3 of the VAST’14 publication [293]. Af-
ter the pioneering Rotterdam study (starting in 1990), several MR imaging
study initiatives have evolved. They slightly differ in clinical focus, acquired
data and epidemiological research questions. Starting in 1997 with a cohort
consisting of 4,308 subjects, the SHIP, located in Northern Germany, aims to
characterize health and disease in the widest range possible [270]. Data is
collected without focus on a group of diseases. This allows the data set to be
queried regarding many different diseases and conditions. Subjects were ex-
amined in a 5-year time span, continuously adding new parameters includ-
ing MRI scans in the last iteration [100]. The MRI protocol features a rich
number of sequences. A second cohort, SHIP-Trend, was established in 2008.
The protocols for examining the subjects between SHIP and SHIP-Trend re-
mained the same, making them comparable. The overall examination time
for each person attending the study is two days. A Brazilian cohort named
SHIP Brazil is currently established in an area of Pomeranian emigrants.
With the standards of the SHIP, the new cohort will allow to analyze differ-
ences of risk groups and factors between continents.



3S TAT E O F T H E A RT

This chapter introduces the technical foundations necessary for the methods
proposed in the later chapters. It starts with basic visualization and analysis
techniques used in complex analysis systems, which are described after-
wards. These systems, however, are often not applied to population study
data. Therefore, the focus lies on putting them into the context of population
study data analyses to show which parts can be applied to solve problems
in the application domain of this thesis.

3.1 foundation for visual analysis systems

Interactive visual analysis systems combine visualization, data mining tech-
niques as well as interaction design. In this chapter, techniques are pre-
sented, which are incorporated in these systems.

3.1.1 Visualization of Statistical and Continuous Data

Epidemiological results are usually communicated using statistical standard
diagrams or tables. Graphical representations of single features are usually
bar charts (categorical data) or line diagrams (continuous data). The visual-
ization quality is hard to assess and often subject to personal preferences of
the domain expert. Tufte [259] proposed two quality measures for informa-
tion visualizations. The data-ink ratio is defined as:

data-ink ratio =
data-ink

total ink used to draw graphic
(2)

It measures how much visual information does not represent data. A well-
designed graphic should avoid non-data ink as much as possible to steer the
user’s focus on the data. The goal is a data-ink ratio close to 1, where ink
is only used to represent data. Examples for bad data-ink ratios are plots
with lots of additional visual clutter to fit it into a specific design. When a
line chart displays the development of the oil prices, displaying barrels in
the visualization does not add any information value. Tufte refers to this as
“chart junk”. The second measure is data density, which is defined as:

data density =
number of entries in data matrix

area of data graphic
(3)

This metric is solely focused on the space used by a visualization. Small
visualizations showing many data elements are preferred. These two metrics
are guidelines in choosing visualizations showing the same data types. It
can also be used as orientation for creating new visualizations as well as
simplifying them. A large pie chart, for example, may have a data-ink ratio
of 1, but a very low data density, since the amount of encoded information
is very low.

basic visualizations of epidemiological data Histograms and
bar charts are the most basic way of a graphical representation of the dis-
tribution of numerical data. Introduced by Karl Pearson, the histogram
is created by making equidistant range bins, counting the number values
falling into that bin and mapping the count on the height of a bar (see
Fig. 3 left) [199]. Therefore, each bin represents a range of data. The larger
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Figure 5: Box plot representation of two variables age and body size (left). Age in-
cludes three outliers, denoted using circles. Two examples of enhanced
box plots (right). (a) Tufte’s redesigned box plot. (b) A violin plot shows
additional information about the distribution of the variable by mapping
the distribution of the plot diameter.

the bin size, the more variance information gets lost in this plot. Too small
bin sizes yield a very flat height profile, which makes it hard to spot trends
or major differences. Bar charts follow the same paradigm for categorical
data. Since there are no bins, each bar in a bar chart represents the count
of a distinct value (see Fig. 3 middle, page 10). Due to the similar encod-
ing between bar charts and histograms, bar charts usually leave whitespace
between each bar, to distinguish them from histograms.

Box plots are used to visualize a continuous variable and include mea-
sures about distribution and the dispersion degree [138]. The box itself is
defined by the lower and upper quartile of the distribution. The mean is
denoted as line inside of the box. The box plot is best used if the data is
normally distributed. An asymmetric box plot with many outliers indicates
that the variable follows a different distribution.

The box plot can be altered to be simplified or encode more information.
Tufte’s redesign of the box plot focuses, for example, on decreasing the ink-
to-data ratio and reduces it to two lines to define the space below the lower
quartile and above the upper quartiles [259]. The median is denoted using
a circle in between the whitespace spanned between the lines. The plot can
be seen in Figure 5, right (a). This simplified drawing method allows for
better comparison of bar charts sharing the same dimension. The violin plot
is an extension of the standard box plot, incorporating a kernel density plot
showing the probability density (Fig. 5 right b) [108]. Basically, it is a box
plot overlaid with a kernel density estimation. A marker denotes the median;
the lower and upper quartile ranges are also represented in the same way
as in a box plot. Often, multiple box plots next to each other are used to
compare variables for different subject group to assess differences. These
collections of bar charts are called forest plots. They usually also denote
different statistical measures for comparison, such as statistical power [150].

Scatter plots are used to depict bivariate relationships between numeri-
cal variables. Often, a line of fit is also drawn to depict the course of the
distribution (a regression line). Multiple groups can be denoted by dying the
data points or encoding them using different graphical primitives (e.g., one
group as �, the other as 4). Scatter plot matrices are used to relate a set of
variables in bivariate plots by displaying them in a matrix, where each row
and column represents one variable. This plot shares the same problem of
most plot matrices to get very confusing and cluttered with many variables.

Scatter plots are prone to overplotting for a large number of subjects
(Fig. 6). Hence, box plots are used more frequently to assess numerical fea-
tures.
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Figure 6: Scatter plot of body weight (kg) and waist circumference (cm) for 4,406

subjects of the SHIP-Trend-0 cohort. Each data point is rendered with a
low opacity to counteract overplotting. Hotspots appear opaque, while out-
liers are nearly transparent. The axes show information in a box plot using
Tufte’s design shown in Fig. 5. The red square on the axis denotes the vari-
able mean. The plot was generated using R with adapted code provided
by Murdoch [181] and Piwek [204].

Line charts visualize time-dependent variables. Similar to a scatter plot,
they show a bivariate variable relationship, whereas one variable is usually
the time. The values of the variables are connected via lines to highlight
the course. Similar to scatter plots, distinct groups can be mapped to color
or point shape. A special version of line charts popular in epidemiology
are Kaplan-Meier plots, which assess the probability of a subject not to be
affected by an event (Fig. 7). The plot is often used to depict survival rates
over time. The crosses in the curve marks an event (e.g., a patient dies). The
dashed lines indicate the confidence intervals of the curve, as the statistical
power sinks with each missing patient from the group. The more events
occur (patients pass away), the larger is the confidence interval indicated by
the dashed lines.
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Figure 7: Kaplan-Meier plot depicting the survival probability for a population.
Adapted from Preim et al. [296].
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Figure 8: Relationship between the dosage of the drug and their influence on the

cholesterol level on patients w.r.t. gender with an interaction plot. (a) Asso-
ciation with gender. (b) Interaction with gender. (c) Association and inter-
action with gender.

A special version of line charts are range plots, where each data point
consists of range data [174]. The data range is mapped by replacing the data
point with a line representing its range.

Pie Charts, introduced by Wiliam Playfair, display variable shares. This
chart, however, should only be used with a small number of variable man-
ifestations or shares. A rule of thumb is a maximum of seven subdivi-
sions [58]. Otherwise, the chart tends to be cluttered.

Recent publications urge scientists to use visualizations that show the data,
such as scatter plots, box plots and histograms. Results are most frequently
communicated using bar and line graphs, which do not allow readers to
evaluate the data [275]. Visualizations should be used to facilitate a com-
plete representation of the data.

visualization of associations and interaction terms An as-
sociation is also called correlation, meaning that the values of a variable are
linked to a second variable. Associations can be calculated using Pearson’s
R for continuous variables and using Chi-Square tests for categorical data.
For a mixture of continuous and categorical data, a one-way analysis of
variance (ANOVA) or logistic regression can be conducted. An interaction is
defined as relationship of at least three variables, where the influence of two
variables on a third variable is not additive, meaning that the third variable
influences the relationship [51]. In other words, the effect on the third vari-
able is not constant, it varies depending on the value of the third variable.
An example would be the relationship between the dosage of the drug and
their influence on the cholesterol level on patients w.r.t. gender (Fig. 8). Here,
the relationship between the variables is depicted as correlation coefficient
using a line. Interaction effects between three or more numerical features are
harder to assess, as they cannot be displayed as simple lines. An approach
for displaying this data is drawing 3D surface plots, as seen in Fig. 9, or 2D
contour plots, where linear prediction is mapped onto color [143].

visualizing multidimensional continuous data Visualization
of multidimensional data aims at emphasizing variable relationships. Par-
allel coordinates [118] are a popular tool for visualizing multidimensional
continuous data. Each variable is represented using a vertical bar with at-
tached scale ticks. Standard parallel coordinates display each subject as edge
connecting the bars and assuming the values of the represented data item.
This allows for comparing the relationship of adjacent dimensions. Reorder-
ing the variables can be supported by using drag and drop of their respec-
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Figure 9: Result of a multiple linear regression of three continuous variables dis-
played using a plane. The underlying data set comprises fuel consump-
tion and 10 aspects of automobile design and performance for 32 automo-
biles [103]. Wt measures the weight in lb/1000, mpg the miles per gallon
and disp the displacement (in3). Miles per gallon (mpg) is also color-coded.
The plot was created using the Plot3D R package from Soetaert [244].

tive axes. Brushing variable ranges usually sets a high transparency value
for not-brushed items, allowing to assess the brushed items in context of
the whole data set. Parallel coordinates become very cluttered with increas-
ing number of represented items. One strategy for minimizing this effect
involves animation by sequentially drawing the items [288]. They are often
color-coded by ID to allow a better distinction. Reduced opacity allows to as-
sess the relationship for plots with many items. Clutter can also be reduced
by bundling similar curves, similar to edge bundling for graph visualiza-
tions [288, 102]. Another solution to cluttered views is replacing the edges
with a density plot, which highly increases the plot’s readability [102].

Plot matrices allow, similar to parallel coordinates, for pairwise assess-
ment of variables. Examples can be found later in the thesis in Figure 53

on page 124. They are based on Tufte’s idea of small multiples [259], where
a series of similar graphics that use the same axis and scales, allow for fast
and easy comparison [78]. The comparability is a trade-off between avail-
able space and rendering resolution. Scatter plot matrices arrange variables
as x- and y-position, displaying all pairwise combinations in a matrix. In
contrast to parallel coordinates, plot matrices allow to compare all bivariate
variable combinations, instead of only adjacent ones. Often, additional in-
formation, such as the correlation coefficient are also included into the plots.
Brushing and linking in this plot is efficient in observing the behavior of a
selection in other views. Plot matrices require much space and are therefore
only suitable for a small amount of variables. Plot matrices are not restricted
to scatter plots.

Generalized pairs plots for example, allow a paired analysis of numerical
and categorical data [65]. The visualizations are determined by the variable
type combination. Since the plots are mirrored along the matrix diagonal,
generalized pairs plots allow for different visualizations above the matrix
diagonal to highlight different aspects of the data. For example, the combi-
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Cheese, limburger
Pork, cured, ham with natural juices, spiral slice, boneless
Pancakes, special dietary, dry mix
Fish, herring, Pacific, flesh, air-dried, packed in oil (Alaska Native)
Crackers, wheat, low salt

WORTHINGTON FriPats, frozen, unprepared
Milk, fluid, 1% fat, without added vitamin A and vitamin D
Lamb, domestic, shoulder, blade, separable lean and fat
Lamb, Australian, imported, fresh, leg, whole
Beef, rib, small end (ribs 10-12), separable lean only,

Figure 10: Parallel coordinates plot for 7.637 food products categorized by color
and displayed using selected contents. Screenshot taken from web-
implementation of Chang [37]. The use of the image was kindly granted
by Kai Chang.

nation of categorical and numerical variable can be displayed as box plots
below the diagonal and as line plots above the diagonal to check for Gaus-
sian distribution. Generalized pairs plots are incorporated in Section 5.3 and
an example can be found in Figure 53 on page 124.

The screen space requirements of parallel coordinates and plot matrices
strongly limit their application in the epidemiological application domain
if the variable space is not reduced by either an expert selection of features
based on a hypothesis or by automatic dimension reduction algorithms.

3.1.2 Spatial Analysis of Health Data

A map depicting deaths from cholera was the first graphic in modern epi-
demiology (Fig. 11). In 1854, John Snow, a famous physician at that time,
collected information about deaths from cholera to prove that it is a wa-
terborne disease, contrary to the assumption at that time, that it is airborne.
Using this technique, he spotted a cluster of diseased people in Broad Street,
around a pump. With this observation at hand, he convinced the local rep-
resentatives to put down that pump, which led to an immediate halt of the
cholera outbreak in this area. Referring to these events, John Snow is now
credited as father of modern epidemiology. Since then, spatial analyses have
always been an integral part of epidemiology, especially for analyzing the
spread and contraction type of diseases. A famous example are the Google
Flu trends, where Google uses aggregated search data about health infor-
mation to estimate flu activity by using the associated spatial location of the
users [47]. They built a flu surveillance system, which monitors the flu ac-
tivity in real time and compared the behavior with usual flu seasons to spot
large outbreaks. This approach, however, only works because of Google’s
popularity and hosting of the most popular internet search engine. Hence,
they compensate the data poor quality with a huge amount of data points
available. Analyzing a pandemic yields unstructured data mostly acquired
from different data sources, such as hospitals and social networks. The im-
portance of this analysis is reflected as the VAST’10 created a challenge to
analyze a pandemic data set-based on internet search terms w.r.t. origin of
the disease, disease development and spotting of genetic mutations of the
disease.
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Figure 11: Example of a spatial visualization in epidemiology. John Snow’s so-called
ghost map marks the birth of modern epidemiology. Each point on the
map represents a patient diseased from cholera. John Snow observed a
cluster around a pump in Broad Street (marked with a ◦). Shutting it
down led to an immediate stop in the cholera spread in this area. John
Snow indirectly proved that cholera disease is waterborne. The image is
in the public domain due to its age.
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Elliott et al. [63] define three different types of studies:

• Disease Mapping: Disease maps are a visual representation of geo-
graphic data to provide an overview of the spatial distribution of a
specific disease. These visualizations can identify hot spots with high
risk and are most prominently used in analyzing pandemic data to
steer resources to the regions that need the most help.

• Geographic correlation studies: Closer to the goal of large-scale pop-
ulation studies are geographical correlation studies that aim to spot
different health outcomes based on other non-spatial data, such as
socio-demographic features (e.g., nutrition, sporting activities or in-
come) or medical features.

• Clustering, disease clusters and surveillance: Clustering in this con-
text can yield spatial groups of subjects with similar characteristics
w.r.t. a disease. Beale et al. [17] point out that small subject groups
for specific areas, especially when further divided, e.g., by diagnos-
tic categories or gender, potentially leave not enough samples for the
clustering algorithm to work.

Elliott et al. [63] also specified future challenges in spatial epidemiology:

• Data availability and quality, which is focused on epidemiological
analysis outside of the quality control standards of population stud-
ies. The acquired data has to contain accurate health information to
allow medically reliable conclusions. The data quality can differ be-
tween time points or geographic locations, which may yield false con-
clusions.

• Data protection and confidentiality aim to protect the privacy of sub-
jects when analyzing public health data. For example, when acquiring
data from different data sources, the risk of identifying a person by
triangulating the data increases. To protect privacy, most population
studies do not provide the exact address per subject, but rather the
region they live in.

• Exposure assessment and mapping describe the problem that spatial
data has to be abstracted to aggregate similarities of subject, e.g., the
size of tiles, which are used to divide a map. If chosen poorly, the size
can highly impact the outcome by being too large or too small.

The first two challenges are easily transferable to all epidemiological stud-
ies. The quality assurance departments of large-scale population studies
underline the importance to produce bias-free and comparable results and
identify error sources. The exposure assessment and mapping step can be
transferred to the medical image data domain, where similar problems oc-
cur when raw image data is abstracted to segmentation masks and metrics,
such as volumes or diameters. Choosing different measures highlights dif-
ferent aspects of the data, which may lead to inconsistent results. Hence, it
should be clearly communicated, which information is actually encoded in
a visualization to reduce the risk of deriving false conclusions.

visualization techniques The two major methods for visualizing
spatial data in epidemiology are choropleth and isopleth maps [216]. Choro-
pleth maps are divided using geographic information, which is not directly
related to the acquired data, such as postal code areas, city districts or states.
The areas are color-coded according to total occurrences of an event, such
as disease prevalences in the specific regions. Since the areas usually consist
of different population densities, the data needs to be normalized w.r.t. area
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size and population to avoid a biased visualization. It is the most common
geographical visualization in epidemiology, even though it is not without
drawbacks. Since the areas are not created data-driven, changes along the
borders may implicate false conclusions. This underlines the last challenge
identified by Elliott et al., as described above. Additionally, the color of small
areas may be harder to perceive than the color of larger ones. Different sub-
ject counts in the areas may also bias the data. Choropleth maps are often
falsely denoted as heat maps, since they often use transfer function mapping
values on a scale from red to yellow to green.

Isopleth maps are familiar to most users as representations of tempera-
ture or rainfall information in weather forecasts. The map is overlaid with
color-coded areas spanned by contour lines (lines of equal value, “isopleths”).
These contour lines are calculated for data over a certain area, such as pop-
ulation density. Ranges with similar values are coded with the same color.
The data is interpolated to cover space without data. This requires a large
amount of evenly distributed data to be truthful.

Less prominent are proportional symbol maps, which plot information
about specific areas on the map on geometrical primitives. For example, the
population of cities mapped on the diameter of a circle positioned on the
location of each city. John Snow’s ghost map is a dot map, where the occur-
rence of an event is mapped on a geometrical primitive, such as a dot or a
line at the occurrence location. These maps are used best for spotting spa-
tial patterns [16]. Appropriately sizing the dots is crucial to avoid cluttered
maps for large data sets. Dasymmetric maps are a fusion between choropleth
and isopleth maps. The areas reflect the number of residents and therefore
better display the population distribution [243].

Integrated methods for analyzing spatial data in a visual analysis frame-
work are presented by Robinson [220]. They combine multiple views, such
as scatter plots, parallel coordinates and line charts. Using brushing and
linking, variable ranges can be selected in the views and updated in other
views. Carr et al. [34] link small multiples of choropleth maps with box
plots line chart visualizations of non-spatial data, called linked micromap
plots. Small multiples are popularized by Tufte [260] and describe a series of
similar graphs or plots with same scales and axes, which facilitate easy com-
parability. The second visualization proposed by Carr et al., conditioned
choropleth maps, is used to display data w.r.t. two continuous explanatory
variables for hypothesis generation. They divide the continuous variables
into three ranges and display the combination of each range using a choro-
pleth map, yielding a matrix of nine maps.

3.1.3 Shape-Variance Analysis

Shape variance analysis aims to visually compare structure and form of an
object. In medical applications, it is often used to compare representations
of tissue by incorporating different modalities, such as CT, MRI or fMRI.
In epidemiology, shape variance analysis is focused on displaying popula-
tion variances or groups with shared characteristics. For example, medical
experts might be interested in the mean shape of the male and female liver.
Epidemiologists want to derive shape descriptors that are quantitative mea-
sures of shape differences. This is, however, not part of the epidemiological
day-to-day practice, as both annotation and analysis methods are not gener-
ally available. Major questions regarding the shape of organs in epidemiol-
ogy are:

• Which different shape groups exist within the population or specific groups
(e.g., divided by gender or smoking status)? This is referred to as the
analysis of variation [28]. This information is of high interest to eval-



26 state of the art

uate existing clinical knowledge. For example, a variance analysis of
the liver could extract liver shape groups, which can then be compared
to the existing textbook knowledge, which then needs to be updated
based on the new data [179]. Verifying this knowledge is one major
reason for population studies to include medical imaging, because it
also allows to assess regional differences in these averages (e.g., Euro-
pean and East Asian livers).

• Where are the major shape differences/similarities between two groups lo-
cated? This is referred to as comparative analysis [28]. The focus of this
analysis is to spot structural differences between groups, e.g., analysis
of the spine for subjects with or without back pain. Observed struc-
tural differences are translated into hypotheses regarding the struc-
tural change, which can then be statistically evaluated based on suit-
able image-derived metrics.

Building upon the works of Pagendarm and Post [192], Busking defined a
comparative visualization pipeline [28], which builds upon the standard vi-
sualization pipeline. The domain matching step converts data in a common
representation to be comparable. The differences are determined in the com-
parison filtering step, which are then visually represented in the comparison
mapping step. The final composition step usually involves the rendering step
to produce the final image.

Miller presented principles of computational anatomy in a survey [173]:

1. Construct (automatically) a representation using points, curves, sur-
faces and sub-volumes from the image data,

2. compare these representations and

3. statistically verify the anatomical shape and structure to infer knowl-
edge about the disease and underlying structural responses.

shape analysis methods This thesis employs shape variance visual-
izations based on Statistical Deformation Models (SDMs) and Statistical Shape
Models (SSMs) that capture different shape aspects.

SDMs represent information about a collection of 2D and 3D images by
incorporating deformation fields, which are usually created by a nonlinear reg-
istration of different models. This yields a data structure, where each voxel
is associated with a distribution function, capturing information about the
voxel variance. This information can be directly extracted from registering
image data without the need of a prior segmentation [226]. The ITK-based
elastix toolbox [133] is a popular solution for creating these data by pro-
viding a rich set of registration methods.

SSMs capture shape information of object models by extracting surface
grids [207]. Therefore, information is captured about the structure bound-
ary. Deformation information inside of the structure are not covered, this
requires an SDM. Due to the missing volume deformation information,
SSMs are easier to visualize compared to SDMs. For medical image data,
this requires a prior segmentation of the structure of interest. To create
SSMs, the correspondence problem between points of different meshes has
to be solved. One method to do this is the Growing and Adaptive Meshes
(GAMEs) algorithm, which creates a set of meshes with corresponding mesh
points for each provided object instance [70].

The decision whether to use SSMs or SDMs depends on the organ or tis-
sue of interest as well as the underlying hypotheses. SSMs allow for compar-
ing surface structures and are well-suited for displaying shape variances of
tissue with low elasticity, such as bones. If segmentation masks are available,
SSMs can be compared using the GAMEs algorithm or similar approaches.



3.1 foundation for visual analysis systems 27

Detail10
FA

max0
||d||

Overview Focus

Figure 12: Three abstraction level visualization of anatomic covariation of mouse
mandibles proposed by Hermann et al. [104]. The overview shows in-
formation about non-trivial covariation patterns together with the shape
(left). A user-defined point displays the underlying covariation patterns
corresponding to it (middle). By dragging the point, directional depen-
dencies of covariation can be uncovered (right). The image is courtesy of
and kindly provided by Max Hermann.

SDMs allow for comparison of a whole tissue structure and are not restricted
to the surface. This allows to highlight different densities or tissues inside
of a structure. Hence, SDMs comprise of a high information density, which
leads to more complex visualizations compared to SSMs. SDMs should be
applied when the composition of a structure is of interest, not its shape.

statistical shape model methods and applications Ferrarini
et al. [71] applied the GAMEs algorithm to an epidemiological dataset, yield-
ing SSMs. The model is then used to visualize inter-subject differences by
mapping the differences along the mesh normal to color. They found differ-
ences in the hippocampus and thalamus for Alzheimer’s disease patients
compared to healthy subjects, which matches with textbook knowledge.
Chou et al. follow a similar approach for Alzheimer’s disease by plotting
p-values in ventricle surfaces to map disease-associated values directly on
a 3D tissue representation [40]. To create the SSMs, they first registered all
subjects into one space. Then, surface meshes were mapped into the subject
scans using fluid registrations, which yield the different mesh models. The
differences were then encoded using color.

Styner et al. [251] present a similar approach for analyzing statistical
shape models by converting segmentations of the brain into spherical har-
monic descriptions which are then converted into a triangulated surface.
Similar to Ferrarini et al. [71], they map differences to color, but also sup-
port the visualization with an arrow glyph indicating the direction of the
difference. Hermann et al. [104] employ SSMs to identify local deforma-
tion changes by investigating shape-related differences on rodent mandibles
(Fig. 12). User-specified regions of interest are mapped to associated anatomic
covariation using tensor visualization. Specifying a change in shape of a cer-
tain area by the user shows how other parts of the model would react using
covariance tensors. Covariance tensors indicate how a model is deformed
according to user-specified deformations. The user specifies a deformation
of interest and showing corresponding changes in the shape using covari-
ance tensors. This method enables rapid hypothesis validation and is able
to reproduce textbook knowledge about rodent mandibles.

Lamecker et al. [142] use animation as a different method for comparing
SSMs of the liver and the pelvic bone, but unfortunately they do not go into
detail on trade-offs of the approach. Busking et al. [30] present methods
for comparing two shapes as SSMs, which in an epidemiological context
could for example be the average of two distinct groups. They map differ-
ences on different visual parameters, e.g., by intersecting surfaces overlaid
by contours to highlight intersections between the objects. Busking et al.
solve the occlusion problem by rendering the larger object semi-transparent



28 state of the art

with opaque glyphs on it, which cast shadows on the smaller object. The
conducted user study favors the difference mapping using glyphs over a
different approach, where occluded space between objects was filled with
fog. The latter approach, however, seemed to be too abstract for the users.

statistical deformation model methods and their applica-
tions Caban et al. [31] investigated the suitability of four different vari-
ance visualizations of SDMs. Likelihood volumes map the density function
of the distribution to color. The deformation grid shows the density function
directly, but results in a cluttered view for multiple layers and is therefore
suitable for 2D views only. Line-based glyphs generate a variation glyph
as line for each voxel to display variance. This technique was found useful
when combining it with the selection of a region of interest. The user study
conducted by Caban et al. favored spherical glyphs, where the variance is
mapped on a sphere. The sphere mapping was preferred by users because
it introduces less clutter to the visualization than the other methods and re-
duces the amount of occlusion. Klein et al. [132] applied elastix to obtain
a B-spline registration of whole brain volumes to cluster on the resulting
dissimilarity matrix retrieved from the SDMs. They could divide healthy
patients from those with dementia disease. Rueckert et al. [225] utilized
SDMs to construct an average anatomy of a structure, which also includes
the variability across a population.

The distribution of shapes in a SSM space derived from a PCA is plotted
by Busking et al. [29] in a 2D-projected plane of the space. This projection is
used to visualize the range of different variation modes. Interpolated views
can be created by the user in a separate view as well as comparisons in a
contour view. Interpolation is carried out by mesh morphing. The distance
to the mean shape is color-coded. Differences between structures are high-
lighted using color mapping of the difference to the mean shape, but are
rather hard to recognize due to small renderings of each subject in the shape
space. Via mesh morphing interpolated views can be created by the user in
a separate view as well as comparisons in a contour view. The contour view
itself allows for rapidly parsing through a single 2D slice of all subjects.

Hermann et al. [105] visualize SDMs using 3D image warping in GPU
raycasters. They employ the term shape ensemble analysis. They employ group
mean shape visualizations that allow to display differences between groups
as well as likelihood volumes for variability overviews. Detailed variation
is shown using streamline visualizations and requires the user to specify
regions of interest.

3.1.4 Set/Categorical Data Visualization

A set is a collection of unique objects, denoted as set elements [32]. The set
elements are not ordered within a set. Sets can contain overlapping set el-
ements. One example of sets in clinical studies are subjects divided into
healthy and pathological groups to assess the differences. Clustering algo-
rithms usually create sets by grouping the subjects. In public health data,
sets can also be derived through different feature manifestations, such as
subjects with a specific condition or within a pathological range of features.
Different analysis moments can also be viewed as sets. The basic way for
representing set data in epidemiology are contingency tables (Table 2). By
defining categorical variables as rows and columns, the count of the sub-
jects of each possible combination is printed in the table. It is incorporated
in most epidemiological scientific papers, because it is a truthful way of pre-
senting the data. Its lack of visual encoding makes it hard to depict trends
or hot spots based on contingency tables. Hence, they are suitable for commu-
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Table 2: Contingency table of body size related to gender and back pain.

Gender Male Female

Back Pain Yes No Yes No

Body Size (cm)

139 - 153.5 0 0 149 101

153.5 - 170 286 262 1609 960

170 - 186.5 1341 1123 435 245

186.5 - 203 137 78 0 1

A = {1, 2, 3}
B = {1, 4}
C = {5, 6}

1

2, 3

4

5, 6

Euler Diagram

1

2, 3

45, 6

Venn Diagram

Sets

Figure 13: Example of a Venn and Euler diagram for a collection of three sets.

nicating epidemiological results or for cross-checking information observed
in graphical plots. Alsallakh et al. [8] and Freiler et al. [75] point out that
set-based data is usually not seen as elementary data type in the InfoVis
literature and community. Hence, the understanding of their characteristics
and visualization challenges is not as well known as for other types, such
as graphs or hierarchies [8].

venn and euler diagrams Venn and Euler diagrams are the most
popular visualizations for set-based data. They map each set on a circle or
oval as seen in Fig. 13 [15]. Venn diagrams belong to the Euler diagram
class, but show all possible set intersections, even though the data does not
contain such intersections. Hence, the visualization gets cluttered for large
group numbers. Both diagram types can be drawn with different restriction
aesthetics, such as smooth curves, elliptical and polygonal shape or region
shading. Most modern set visualizations are based on Euler diagrams [8].
By mapping the cardinality (the number of elements in a set) on the area
of the visual representation, Euler diagrams become area-proportional. These
diagrams, however, are hard to align and are often not well comprehensible.
Area-proportional circle-based Euler diagrams are hard to create, usually el-
liptical representations have to be incorporated. Enhancing Euler and Venn
diagrams with glyphs allow for a different way to display the cardinality as
well as additional information mapped on the glyph [8].

Apart from their intuitive representation of sets, Venn and Euler diagrams
get cluttered fast for complex sets with many variables. Therefore, their
use in the epidemiological application domain is limited. Overlays can con-
tribute additional information to these diagrams, such as plotting elements
on a geospatial reference [170] on a map or sorting them along a time
line [45]. In this case, polygonal shapes have to be used to visualize each
set. Overlays, however, are limited w.r.t the number of elements they can
represent. The layout may also lead to unwanted artifacts, such as overlaps
or crossings [8].



30 state of the art

Figure 14: Radial sets visualization of a movie database designed to show overlaps
in genres. The bars in each set represent the number of genres of a movie.
The selected science fiction category shows that they mostly share the
action, thriller or horror genre [145].

node-link diagrams Node-link diagrams as well as matrix-based tech-
niques are well suited to show relationships between either sets or set ele-
ments. Node-link diagrams are usually graphs, often in circular layouts to
preserve the context when displaying different relationships [7, 139]. Each
set can be represented as node, shared elements are indicated using an edge.
If, for example, each diagnosed disease in an epidemiological data set is
viewed as an individual set, the lines would indicate the co-occurring dis-
eases. This may yield cluttered views due to large interconnected disease
patterns. Applying fisheye views and color-blending can be used to reduce
the clutter [231]. The cardinality of each node is hard to depict in node-link
diagrams. Radial sets render nodes as histograms of the containing elements
by degree (Fig. 14) [7]. The degree of an element equals the number of sets
that it contains. The histogram shows the number of elements ordered by
their degrees of the containing sets. The cardinality is mapped on the size of
the node. Selecting a node or a specific cardinality subset highlights the con-
nections. Circos is a popular tool for creating a node-link diagram, where
sets represented using circular nodes are connected using ribbons [139]. It is
freely available and can be extended by various visualizations, such as his-
tograms or bar charts. It is particularly popular for visualizing connections
in genomic data due to its high data-to-ink and data density ratio.

Node-link diagrams are well suited for showing element relationships as
well as highlighting clusters of similar relationships. The diagrams get clut-
tered for complex relationship patterns, resulting in many edge crossings,
which render the edges hard to trace. Complex Circos visualizations for ex-
ample are hard to comprehend without the ability to highlight ribbons of
interest. For epidemiological data they are well suited for displaying the
co-occurence of indicators, such as simultaneously occurring diseases.
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Figure 15: Mosaic plot of the titanic data set [54], displaying three variables: pas-
senger gender, booked class and survival status. Differences in diseased
status can be observed in gender as well as in class. The image was created
using the vcd R package [171].

matrix-based visualizations Matrix-based visualizations aim to
show set memberships using matrix representations [8]. The adjacency ma-
trix introduced by Bertin shows which elements share sets by color coding
the respective entry in a resulting heat map [20]. Heat maps plot each entry of
a matrix to color using a transfer function, which is usually defined by the
global minimum and maximum value. Heat maps are usually employed to vi-
sually highlight values to spot potentially interesting combinations. Matrix-
based visualization approaches of sets share the disadvantages with Venn
diagrams by displaying all possible intersections. Hence, the adjacency ma-
trix is mostly sparse, which wastes space in the visualization.

Matrix-based visualizations usually scale very well and are
therefore suited for large epidemiological data. The complexity of the de-
picted relationships, however, is limited. Spotting interesting relationships
often depends on the matrix sorting.

aggregation-based techniques Aggregation-based techniques in-
corporate quantitative representations for sets [8]. They are suited for large
sets, where the rendering of individual elements would yield a cluttered
view. Interactive bar charts allow for comparison of the elements of a se-
lected set w.r.t all elements in the data [7]. The bars in the radial set plot
shown in Figure 14 utilize this technique to display the shares of science
fiction movies in other genres. Therefore, radial sets are also categorized as
aggregation-based technique. Set’o’gram stack bar charts represent the sub-
ject counts based on their degrees [75]. This technique is incorporated in
the radial sets as representation of the nodes. Combining this technique with
interactive bar charts allows for a selection of granular subsets [8]. Mosaic
plots allow to display two or more multiple categorical variables to detect
relationships [110]. They follow the same paradigm as bar charts, by assign-
ing each bin that represents all possible manifestation combinations of the
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Figure 16: Parallel Sets visualization of the titanic data set shown in Figure 15. Per-
ished female adults of the second class are highlighted and represent
1% of the whole population. The plot gets cluttered with an increasing
number of categorical variables, as more combination possibilities are
introduced. These increase the visual complexity of the plot. The plot
was created using the web-based implementation of parallel sets by Jason
Davies [53].

variables a size representing its count. Other than the scatter plot for nu-
merical data, the mosaic plot allows for the comparison of more than two
variables. Depending on the number of variables and their manifestation
count, the mosaic plot can get visually cluttered. It is recommended not to
use more than three to four variables. Mosaic plots do not allow to display
confidence intervals [110]. Double-Decker plots employ mosaic plots to show
the overlap of a selected set in all mosaics [111]. Similar to interactive bar
charts, the share of the selected set is denoted using color proportional to
its cardinality. Mosaic matrices show the pairwise combination of variables
using mosaic plots in a plot matrix [77]. Each panel in the matrix shows the
bivariate association between the variables. It is hard to assess the combina-
tion of associations of more than two variables using a mosaic matrix. This is
the strength of parallel coordinates and parallel sets. Parallel coordinates can dis-
play categorical data. The resulting plots, however, suffer from overplotting,
as most data entries pass through a small amount of points. Hence, parallel
coordinates should not be used for displaying categorical data. Parallel sets
adopt the idea of parallel coordinates for categorical data (Fig. 16) [18, 136].
Each variable is represented using a set of adjacent lines. Each manifestation
is represented by a line; the percentage of subjects exhibiting the manifesta-
tion is mapped to the line width. Lines between adjacent variables represent
co-occurring manifestations. Lines are rendered semi-transparent to avoid
occlusion. Most parallel sets employ highlighting using lines, which renders
the selected manifestation opaque. As seen in Figure 16, parallel sets get
cluttered with an increasing number of variables. The clutter also depends
on the number of variable manifestations and their interconnectivity with
the manifestations of other variables. More than four variables usually yield
a cluttered view [8]. Hence, they are only applicable to explorative popula-
tion study analysis systems for a restricted number of categorical features.
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3.1.5 Data Mining

Data mining is the automatic extraction of valuable information from raw
data [128]. The tasks are divided into predictive (classification) and descrip-
tive (pattern mining) [193]. Predictive methods, such as classification or cal-
culation of regression models, aim to categorize new values, as they are
introduced into the model. Usual methods for this approach comprise de-
cision trees, support vector machines or neural networks. Descriptive tasks
aim to detect patterns, correlations, clusters and outliers. This is the focus
of clustering algorithms.

requirements Most clustering techniques expect categorical variables
as input [184, 186]. Numerical variables, such as age or body size, may be
discretized into bins of equal size or using quartiles/quintiles. Therefore,
results derived using data mining methods have to be analyzed with care to
avoid any bias introduced by the discretization. Derived correlations have
to be statistically evaluated in order to be of epidemiological value. Data
mining methods act as data-driven analysis of epidemiological data and en-
hance the classical hypothesis-driven approach. An additional challenge in
data mining is the parametrization of the incorporated algorithms. Many
methods expect input information, such as the number of clusters or sen-
sitivity values to avoid reaching local minima. Strongly varying results de-
pending on small changes in the input parameters weaken the confidence
of medical experts in the results of the clustering algorithm. Good default
values, which produce results that are robust to parameter changes are de-
sirable.

techniques Data mining in epidemiology mostly aims to find separa-
tions between subject groups with different outcomes, i.e., different diseases.
Hielscher et al. [107] and Niemann et al. [186] study how the similarity
among cohort members contributes to improving the separation between
members with and without the outcome. Niemann et al. [186] present an in-
teractive data mining tool for the assessment of risk factors of hepatic steato-
sis, the fatty liver disease. Classification rules derived using data mining
methods can be analyzed interactively with their tool and highlight poten-
tially overlooked variables. Subjects were divided into males and females
and afterwards analyzed using decision trees. The latter is a classification
method, which identifies predictive feature ranges w.r.t. the outcome vari-
able and constructs a decision tree based on variable thresholds to separate
the classes. The hepatic steatosis indication variable was derived from ul-
trasound images from an experienced radiologist. The decision tree yields
features that separate females older than 52 years (the average entry age of
the menopause) as well as males.

Hielscher et al. [107] model subject similarity by finding its k nearest neigh-
bors (kNN) in the feature space. The kNN classifier is trained on a parti-
tioned data set to exclude obvious similarities, such as gender. This way,
they identified different separation strategies for males and females. Nie-
mann et al. [187] improved the classification performance by generating
features (called evolution features) that describe latent temporal information
across the study waves. This approach allows to correlate feature differences
between acquisition cycles with disease markers. Experts may define un-
healthy (“predictive”) feature change ranges, such as an unhealthy increase
of body fat percentage and its relationship to heart conditions. The subjects
are clustered at each time step. Transitions between clusterings are moni-
tored to highlight cluster splits and cluster merges. One extracted finding
was the association between restless legs syndrome (an indicator of sleep
disorder) and non-alcoholic fatty liver disease. The features, however, are
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still discretized. Hielscher et al. [106] show that the sequence of recordings
for some assessments is more informative than the single recording in one
acquisition wave. Since new acquisition protocols are added into large pop-
ulation studies with each wave, sequences of recordings are often not avail-
able. The analysis complexity is increased, since these additional conditions
need to be considered. Niemann et al. [185] also concluded that subspace
clustering for epidemiological data is hard to apply, since interesting sub-
spaces are hard to find. Setting parameters is an important issue, as they are
mostly not intuitive to the medical expert. Prior knowledge is hard to incor-
porate as it does not directly translate into parameter settings. Niemann et
al. also concluded that the mix of heterogenous data types does not fit the
design of the algorithms used, such as the PCA.

Data Mining methods also allow to derive information from complex infor-
mation sources, which can then be clustered w.r.t. a specific target disease.
Roque et al. [222] apply text mining methods to electronic health records
to discover disease correlations. They search for keywords from the inter-
national classification of diseases provided by the WHO. Hierarchical clus-
tering is incorporated to divide patients into groups. The information has
to be treated with care, as clinical data includes many biases introduced
by different diagnosis protocols between doctors and different diagnostics
equipment. The text mining based on keywords itself is also prone to errors.
Large amounts of data minimize these biases, but are often hard to achieve
because confidentiality and privacy concerns lead to restricted data access.

3.2 concepts of visual analytics and interactive visual anal-
ysis

This section describes the concepts and techniques of Visual Analytics and
Interactive Visual Analysis and highlights differences and similarities of the
approaches.

3.2.1 Visual Analytics

Visual Analytics (VA) combines data analytics techniques with interactive
data visualization to derive insights into complex data sets [128]. Therefore, it
is an umbrella for a number of scientific disciplines, such as information an-
alytics, geospatial analytics, statistical analytics, knowledge discovery, cog-
nitive and perceptual science, interaction design, and more. VA solutions
are integrated systems designed for specific application domains. This elim-
inates the need of switching between tools and allows for a smooth analysis
workflow. Therefore, designers of VA systems need to find out as much as
possible about user, task and context to ensure a good suitability for the
system. Meyer et al. [172] state that the creation process of interactive vi-
sualizations is well understood, but the process of the human reasoning to
derive conclusions based on these visualizations is not. The methods have to
scale with different complexity levels of both the reasoning and underlying
data. To allow for these different levels, Keim et al. [127] define the Visual
Analytics Mantra, which is divided into four different steps:

1. Analyze First: The data are analyzed first using data mining tech-
niques to extract and rank information or group data items. The anal-
ysis algorithms at this stage usually rely on an empirically derived
parametrization.

2. Show the Important: The result of the analyze first step is the input for
the initial data visualization. It shows information relevant to the user
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to enable decision making. Often, overview visualizations provide the
user with a mental map for the data. This incorporates highlighting
hot spots in the data to steer the user’s attention.

3. Zoom, Filter and Analyze Further: Overview visualizations often al-
low for zooming into the data, yielding a detailed view of the data
subset. Other interaction facilities allow for brushing data to show in-
formation for a subset only, e.g., female subjects. Based on the refined
selection, analytics methods can be applied, for example, to derive new
information about a data subset or to automatically group them.

4. Details on Demand: Detailed information about data subsets, such
as summarizing statistics, or values of single data record entries are
shown on demand. This may be necessary for viewing a particularly
interesting group or individual data records.

These steps are implemented in iterative analysis workflow loops. New in-
sights into the data trigger new questions, which yield new analysis steps
with either different methods, different parametrizations of the analysis
method or the analysis of a specific data subset. A Visual Analytics system
usually provides means for an explorative data analysis and for verifying
existing hypotheses.

designing visual analysis methods Designing Visual Analysis
Methods requires a thorough requirements analysis. The users of Visual
Analysis systems are usually no computer scientists. Hence, the system has
to incorporate the application domain terminology. At the same time, trade-
offs of the applied analysis algorithms have to be communicated to the user
through the visualization to avoid false conclusions. An alternative is the
pair analysis approach, where a computer scientist and a domain expert use
the visual analysis system and combine their knowledge. The approach will
be explained later in Section 3.2.3. A good visual analysis system should:

• exploit the human pattern recognition system by using suitable visual
representations and appropriate representations of connections,

• reduce the search for interesting data points by using dense visual
representations,

• allow users to perceive a large number of potentially interesting events
to classify them,

• provide means for manipulation for both the data as well as the param-
eter space of the analytics methods.

Lammarsch et al. [144] describe how the user is included into the Visual
Analytics process (Fig. 17). Domain knowledge of the user in combination
with observations and research results provides the hypotheses that are val-
idated to formulate models. These models can then be investigated using
visual analysis techniques. This yields insights which then again influence
the domain knowledge and trigger new analyses. Most VA tools incorporate
various visualization techniques using multiple coordinated views. This allows
to apply different perspectives on the data derived by visualizations, which
highlights different characteristics. User interaction with views, such as se-
lection of a data subset (brushing), is commonly propagated over all other
views (linking) [62]. This allows for a quick assessment of trends and pat-
terns by brushing various variable ranges and analyzing the result in views
displaying other aspects of the data. Views displaying spatial data, such as
geographical or medical image information, usually also incorporate inter-
action techniques allowing to select the section of data shown (panning) as
well as its level of detail (zooming).
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Figure 17: Visual Analysis process inspired by Lammarsch et al. [144] and Keim et
al. [128]. It defines a model as a representation of system entities, phe-
nomena, processes and hypotheses as models whose outcomes are not
compared with real-world data (validation).

Baldonado et al. provide guidelines for designing systems with multiple
views [14]. The design process is described as a trade-off. One view showing
much information can potentially confuse the user. Multiple views with
less information have to be cognitively connected to be comprehensive. The
cognitive workload is determined by

• the system learning curve,

• the amount of information the user has to memorize,

• the complexity of comparing data, and

• the cost of changing contexts.

Additionally, multiple views usually involve more computation time and
require more screen space. Baldonado et al. propose rules for designing
multiple views [14]. Views have to cover diverse aspects of the data and
complement each other. Complex data has to be decomposed to support
visual divide-and-conquer approaches, while the number of views should
be as low as possible to reduce the cognitive load of creating the connec-
tion. Views should be self-evident by including visual clues highlighting
the connections as well as consistently mapping data points. Attention man-
agement and guidance are applied to steer the users’ attention to the right
view at the right time. An important design lesson of Baldonade et al. is
reducing the information depicted in each view as much as possible as well
as minimizing the number of views. Reducing the cognitive workload of the
users allows them to focus on solving the underlying problems rather than
using it all to create the context out of many cluttered visualizations.

A typical VA example are the “cross-filtered views” proposed by Weaver
et al. [272]. They incorporate multiple views, which transform the data
by mapping elements to visual variables and group elements. The visual
representation needs to be brushable in order to link the selection among
the views. The representation applied by Weaver et al. ranges from simple
lists to maps, small multiple views, histograms and bar charts. The context
greatly influences the design of the system, yielding different views for an-
alyzing, e.g., a movie database compared to a baseball game data set. It
underlines the necessity of custom building systems with the users, tasks
and contexts of the application domain in mind. Weaver et al. also abstract
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Figure 18: Interactive Visual Analysis interaction levels adapted from Konyah et
al. [135]. Brushing and linking (I) is combined with a logical combina-
tion of brushes from different views (II). At the third level (III), analytics
methods derive new attributes, group subjects, and allow for advanced
brushing techniques, which go beyond simple binary range selection.

features by deriving descriptive metrics from them to provide aggregated
views. This method is well suited for providing an overview visualization
over the data and fit the first and second step of the VA Mantra.

Van den Elzen and van Wijk [266] provide an alternative approach to
multiple linked views by combining small multiple visualizations with large
singles. The core idea is to comprehend the analysis workflow by perform-
ing splits. Splits are divided into filtering, reducing a selection attribute into
a defined range; mapping, to choose an appropriate visualization for a given
parameter combination; and analytics, to perform clustering and assess the
influence of individual parameters. The result of a split is rendered using
small multiples. A mapping split, for example, creates small multiples of the
data using different visualizations, such as scatter plots, parallel coordinates,
bar charts or radial plots. The user can then choose the preferred visualiza-
tion, which renders them as a large single. This can then be investigated
in detail and new splits can be applied. One big advantage is the analysis
history, which is created by continuously displaying new plots right of the
canvas area. This yields an analysis time line that can be used to compre-
hend how many steps were taken to derive an insight. It can also be used to
return to a prior state of the analysis and move on from there.

The data-ink ratio as well as the data density measures of Tufte (see
Sec. 3.1.1) are important guidelines for incorporating clutter-free visualiza-
tions that focus on the data. Tufte proposes a set of rules for designing good
visualizations [259]: (1) Above all else show data, (2) Maximize the data-ink
ratio, (3) Erase non-data-ink, (4) Erase redundant data-ink, (5) Revise and
edit. The data density can be increased by shrinking down visual elements
without losing legibility or information.

Mackinlay [160] proposed expressiveness and effectiveness as design princi-
ples for visualizations. A visualization is expressive when it communicates
the data, but the design does not force certain conclusions. Mackinlay re-
quires a visualization to be effective–when choosing between two visualiza-
tions, the representation which can be perceived faster is chosen.

3.2.2 Interactive Visual Analysis

Interactive Visual Analysis (IVA) [273] focuses on the pattern recognition
system of the human visual perception. It has a very strong methodologi-
cal relationship with VA; both disciplines heavily intersect each other. IVA
is usually employed for data, which incorporates 3D spatial data, such as
medical images or vector fields as well as non-spatial data associated with
them. In the visualization community, these data are typically displayed us-
ing scientific visualization techniques (SciVis), such as volume rendering or
flow vizualization. VA is primarily focused on data without 3D spatial data,
such as surveillance information. This thesis combines workflows presented
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in VA as well as IVA, because herein VA and IVA are seen as different per-
spectives on the same problem.

IVA incorporates multiple linked views of visualizations, which are com-
bined using brushing and linking. The analysis is iterative, insights into
the data yield new questions and hypotheses, which can be analyzed fur-
ther. The means of interacting with the views is divided into four different
levels [273, 135]:

1. Show and Brush (Fig. 18 I). Brushing and linking is the basic IVA level.
Relationships between variables represented in different tools can be
highlighted well using this interaction technique. At least two linked
views are required for this analysis type.

2. Relational Analysis (Fig. 18 II). Brushing and linking combined with
logical operators yield the second IVA level. Multiple brushes can be
put in relation using AND, OR as well as NOT statements. This allows
for advanced queries in the data, for example in a weather data set
only regions with low humidity and warm temperatures.

3. Complex Analysis (Fig. 18 III). Computational analyses are integrated
in the third level, which yield new dimensions, statistical metrics as
well as data clusters. By incorporating the newly derived information
with the existing data, more complex relationships can be investigated.
Advanced brushing techniques, such as angular brushing, can also
be incorporated. They show only data points that exhibit a specific
correlation described by their angle in a parallel coordinate view [96].

4. Proprietary Analysis. An application developed for a data set or an
application domain achieves the fourth and highest IVA level. This
incorporates the integration of application-specific feature definitions.

In the IVA context, data are characterized by a combination of independent
variables, such as space and/or time, and dependent variables, like temper-
ature or pressure. Two kinds of views are employed to inspect the data:

• physical views [190], e.g., volume rendering, show information in the
context of the spatio-temporal observation space [189], while

• attribute views, such as scatter plots and parallel coordinates, show
relationships between multiple data attributes.

These views are employed using different IVA patterns [190]:

• Local Investigation is defined as the result of brushing independent
variables mapped on a dependent view. This allows to examine charac-
teristics for regions of interest or time frames. For medical image data,
derived metrics could for example be displayed in a separate attribute
view for all subjects.

• Feature Localization can be derived by brushing data points of de-
pendent variables (e.g., temperatures) to see which independent data
points in the physical view exhibit these values. This allows to locate
entries in the data set with a specified set of features, such as regions
of the bone with a very low density, indicating a mineral deficiency.

• Multivariate Analysis is conducted by brushing independent vari-
ables and observing connections to other independent variables. This
employs standard brushing and linking behavior of information vi-
sualization views without spatial references. Depending on the em-
ployed IVA level, brushing can be used to identify correlations of dif-
fering complexities.
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iva techniques IVA systems are usually applied when heterogeneous
data types have to be analyzed simultaneously. This is usually achieved
by connecting different views specialized for either numerical or categori-
cal data, set connections or spatial information. Therefore, basic visualiza-
tions become IVA tools by employing multiple view systems as well as
brushing and linking facilities. An example are Set’o’grams [75] (see Subsec-
tion 3.1.4), which allow for highlighting related blocks by selecting a stacked
bar chart. Multiple Set’o’grams allow for linking the selections among these
plots, which already enables a relational analysis. The visualization is imple-
mented in ComVis [168], a coordinated multiple view system, which also
includes other visualizations, such as histograms, scatter plots (enhanced
by point size encoding of value frequency) and parallel coordinates. The
Radial Sets presented in Subsection 3.1.4, which represent relationships be-
tween sets using connecting arcs in a graph-based radial visualization, are
included in the “Contingency Wheel” visual analysis tool [6]. A bar chart
contains the columns of the underlying contingency table data and shows
their frequency. The contingency wheel shows the distribution of the table
data. The data itself is also displayed using a separate contingency table. The
items of a selection can be seen using an element list. Data can be selected
in all views to highlight their distribution using all other views. Additional
text-based queries as well as combining selection using union or intersection
modifiers allow for complex analysis in the sense of the IVA terminology.

Another approach is the simultaneous representation of heterogeneous
data types in one plot, which includes brushing and linking. Parabox mixes
concepts from parallel sets, parallel coordinates and box plots [61]. Each
dimension is represented using a vertical bar. Continuous variables are vi-
sualized using brushable box plots. Analogous to parallel coordinates, lines
highlight individual entries. Categorical variables are represented as circles
for each manifestation indicating their cardinality. Highlighting a categor-
ical manifestation renders a second set of box plots on top of the now
grayed out plots for the whole data set, allowing to investigate the differ-
ences. Box plots can be brushed as well. The visualization itself is embedded
into a commercial visual analysis tool Advisor Solutions Data Analyst.1

Another example of a visual analysis using a complex single visualization
are Generalized Plot Matrices (GPLOMs) [116]. Similar to generalized pairs
plots presented in Subsection 3.1.1, they enhance plot matrices to categori-
cal data by pairwise displaying them using a plot matrix grouped by type
combination. Continuous variable pairs are displayed using scatter plots,
categorical pairs using heat maps and mixed types using bar charts. They
are useful to gain an overview of numerous variables and their distributions.
Visual elements, such as bars, heat map tiles or scatter plot entries can be
highlighted to show their correspondence in the other plots. Textual queries
and categorical manifestation selection allow for filtering.

Just like SPLOMs, GPLOMs require a lot of screen space. An experimental
implementation for 54 variables yielded a plot of 20, 000× 20, 000 pixels. The
scatter plot diagnostics (“Scagnostics”) proposed by Tukey and Tukey yields
a set of measures of scatter plot aspects, such as outlier proportion, data den-
sity or scatter plot shape [261]. Wilkinson et al. reduced the computational
complexity of Scagnostic measures using Delaunay triangulation to allow
their calculation for many plots with numerous data points [278]. They em-
ployed Scagnostic measures to order scatter plot matrices. Albuquerque et
al. [5] map Scagnostic measures to color in order to steer the user’s attention
to interesting plots in the matrix. By selecting the appropriate metrics, the
user can find plots showing desired behavior. Using brushing, the system al-
lows to create subgroups, which are described using regression models. The

1 Owned by ADVIZOR Solutions, Inc.
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technique was applied to a synthetic data set containing 30 dimensions of
900 samples as well as a food composition data set consisting of 18 attributes
for 722 samples. In the synthetic data set it could be shown that reordering
based on different metrics highlighted well-defined clusters. Similar results
are achieved in the food data set, where the clumpy Scagnostic measure
yields a plot displaying Manganese and Vitamin C, where two clusters were
observed. Brushing the clusters and applying other Scagnostics allowed to
assess the clusters further.

The Table Lens [214] adds a focus and context fisheye view to large tables.
Numerical variables are depicted by bar charts. Categorical data elements
are represented using shaded, colored and positioned points. Selected rows
(focal area) show their data using the visual mapping as well as a textual
representation. Relationships between variables can be depicted by sorting
the tables and observing distribution patterns in other variables. Elements
with the same categorical manifestations can be highlighted to observe their
behavior when the table is sorted for other variables. New variables can be
added using variable mutations defined using a spreadsheet formula input.
The strength of the Table Lens is employing the list view, which is already
familiar to most users, with simple, yet powerful visualizations that allow
for observing relationship patterns.

The problem of solutions incorporating a single view showing complex
data relationships is the large visual complexity with increasing number of
dimensions as well as the increasing screen space (with exception of Table
Lens). Typical IVA applications also employ views for domain and range
variables by employing different views.

iva applications WEAVE (Workbench Environment for Analysis and
Visual Exploration) was one of the first IVA tools with focus on domain and
range variables, proposed in 2000 by Gresh et al. [86]. They link statistical
variables into the physical 3D spatial view using color. It contains various
visualizations for range features, such as parallel coordinates, histograms
and scatter plots. They employ cardiac simulation data and provide a tensor
visualization of the blood flow next to 3D renderings of the heart surface.
Emphasis was put on the extensibility of the tool to data of other application
domains. Advanced brushing as well as analytics methods are not applied.
Hence, WEAVE employs the first IVA level.

Konyha et al. [135] apply IVA methods to assess multiple measurements
and simulation runs regarding the same physical entity families of curves. The
curves are associated with scalar parameters, which yield the range features.
Emphasis is put on advanced brushing facilities, which allow for the selec-
tion of groups with complex rule sets. They employ multiple views with
logical brushing, angular brushing as well as similarity brushes. Synthetic
data are derived using attribute mutation. The authors point out that the
mutation of new variables increases the complexity of the analysis. The new
variables have to be comprehensible for the user, which requires a good un-
derstanding of the underlying analytics method. Otherwise, the analysis is
not effective.

Blaas et al. [22] analyze multi-field medical data, using linked physical
and feature space views. These are data from different data sources, which
capture different aspects. For medical image data, these information are
usually registered to create the context. In this thesis, it is classified as an
IVA method. The physical space view is used to display the domain vari-
ables. Corresponding range variables are visualized in the feature space
view, which is additionally reduced using a PCA. The feature space features
that are visualized using scatter plots and histograms are projected into the
physical view using color encoding. The system itself uses a grid system
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that allows to plug in different views, depending on the current analysis
task.

Oeltze et al. [188] analyzed perfusion data using IVA tools. The data was
acquired using dynamic contrast-enhanced MRI, where signal intensities
over time encode contrast agent accumulation. Plotting per voxel the inten-
sities over time yields so-called time intensity curves. Multiple descriptive
parameters are derived from these curves. A PCA is applied to reduce the
parameter number and minimize correlations. Oeltze et al. understand fea-
tures as regions and events, such as regions affected by an ischemic stroke.
Thereby, feature localization is achieved by searching the 3D domain repre-
sentation, which visualizes range features using color coding. Multi variate
analysis is carried out by brushing attributes in range views and observ-
ing the change in other range views via linked views. Brushing features in
the range views and observing the changes in the 3D domain visualization
yields local investigation. Via advanced brushing, the system allows the se-
lection of flow with very specific characteristics. Hence, complex hypotheses
can be investigated.

The paper is a good example of the strong link between IVA and VA.
The workflow presented by Oeltze et al. [188] can also be fitted into the
VA mantra. The data is preprocessed in the analyze first step, which yields
the representation of the most important features using the domain and
range views. These can then be brushed further to derive details. Hence, one
can argue that IVA focuses on describing the method complexity using the
different levels. Also, it distinguishes between domain and range variables,
requiring a physical view and associated information. VA emphasizes the
analysis workflow and which methods are suitable in different stages of the
analysis cycle.

3.2.3 Cooperative Visual Analytics and Evaluation

Most visual analysis systems are designed with one active user in mind. Co-
operative Visual Analytics focuses on multi-user interaction, either on one
or multiple locations. Emphasis has to be put on inter-user communication
and synchronization. By combining different expertises and supporting dis-
cussions about the displayed data, the cooperation works best on new data.
Social interaction leads to refined strategies in the data evaluation [98]. Co-
operative Visual Analysis can be supported through appropriate hardware,
such as larger monitors or multiple input devices allowing all experts to
interact with the system (e.g., using tabletop systems). Remote sessions are
best carried out using web-based applications, allowing for quick and easy
setup. Communication can be carried out using existing Voice over IP solu-
tions. To support a steady and easy exchange of ideas and a fast communica-
tion loop, the requirements have to be systematically analyzed [98]. Artifacts
supporting the information exchange have to be retrieved. The focus lies on
an asynchronous cooperation, where an analyst creates results that act as
starting point for an exploration by a second analyst.

Shneiderman [240] describes education goals with computing technolo-
gies as “collect (gather information and acquired resources), relate (work
in teams), create (develop ambitious projects) and donate (produce results
that are meaningful to someone outside the classroom)”. This set of goals
is translated into specific tasks to help people to be more creative. Since
collaborative work is a highly creative process, these tasks are relevant to
the cooperative analytics. Important are “visualizing data and process to un-
derstand and discover relationships, consulting with peers and mentors [...],
thinking by free associations to make new combinations of ideas, exploring
solutions [...], composing artifacts and performances [...], and reviewing and
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replaying session histories to support reflection, and disseminating results to
gain recognition and add to the searchable resources.” Isenberg et al. [120]
summarize and substantiate these steps by proposing three different levels
of collaborative analysis engagements.

• Viewing is achieved by presenting static or animated plots and is also
suitable for larger audiences. The discussion can only be focused on
the displayed information, since the presented information cannot be
adapted as a result of new questions or hypotheses.

• Interacting/Exploring allows users to select subsets of the data and
choose alternative views, usually using a jointly used visualization
software. This can be carried out using chat, comments or email, or
co-located in one room.

• Sharing/Creating is the highest collaborative level, which allows to
create, upload and share new datasets and visualizations.

The methods presented in this thesis are evaluated using collaborative analy-
sis using the first two engagement levels viewing and interacting/exploring.
According to Isenberg et al. [120], the analysis is distributed, meaning that
the experts are not co-located, which requires means of communications
build into the system. This can be achieved by providing screen-sharing
facilities as well as means of pointing to interesting areas to avoid commu-
nication overhead caused by synchronizing the focus of the experts.

pair analytics Pair analytics is a variant of cooperative analysis [11]. It
focuses on a two-user context, where one user has a computer science back-
ground and the other one is from the specific application domain. The latter
has the high-level control, whereas the computer scientist has deep knowl-
edge of the underlying analysis method and the usage of the system. This
allows both experts to focus on their strengths. The domain expert does not
have to learn the visual analysis framework interface. The approach requires
that the domain expert knows the limits of the visual analysis framework
and the computer scientist has good knowledge of the requirements and
targets in the application domain. Arias et al. also argue that the role allo-
cation is dynamic; in some cases, the computer scientist could also take the
lead by triggering automated analysis steps or showing alternative visual-
izations [11].

Another major advantage of pair analytics is the communication neces-
sary to capture the mental models of both users. Similar to the think aloud-
technique, where a user comments on his or her reasoning, all comments
are recorded and evaluated together with the software input logs. However,
the think aloud technique is limited, for example when a user focuses on
a complex task, which usually leads to little or no commentary. The coop-
eration can be supported and steered by hard- and software. Facilities to
highlight, annotate and save interesting areas are of high importance.

evaluation of visual analysis systems The Joint Action
Theory [42] is an established method for structured evaluation of knowl-
edge discovery processes. It discriminates action that show, flag or charac-
terize something, navigate to a position, or confirm an action. They were
applied by Arias et al. [11] to evaluate pair analytics sessions. The insights
derived through this modality are manifold. The associated effort on eval-
uating audio/video recordings and interaction protocols, however, is very
time-consuming.

Lam et al. [141] summarize seven evaluation scenarios for information vi-
sualization systems: They distinguish scenarios for understanding the data
analysis:
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• Understanding Environments and Work Practices (UWP),

• Evaluating Visual Data Analysis and Reasoning (VDAR),

• Evaluating Communication Through Visualization (CTV),

• Evaluating Collaborative Data Analysis (CDA),

as well as scenarios for understanding visualizations:

• Evaluating User Performance (UP),

• Evaluating User Experience (UE),

• Evaluating Visualization Algorithms (VA).

It should be the goal to evaluate all aspects highlighted by Lam et al. [141],
but due to time and personal limitations emphasis has to be put on certain
aspects. Hence, the methods are focused on UWP, VDAR and UE.

Understanding the environment and work practices (UWP) of the applica-
tion domain is a key aspect to provide methods that are incorporated into
the day-to-day practice. It summarizes the requirement analysis by under-
standing as much as possible about the user, task and context of a domain.
As Lam et al. [141] state, “studies that involve the assessment of people‘s
work practices without a specific visualization tool typically have the goal
to inform the design of a future visualization tool.” The methods for UWP
are field observations, to observe current work practices and how visualiza-
tions are already used, interviews as well as laboratory observations, to allow
for a controlled study situation. As stated in Chapter 2, Thew et al. [254]
already provide substantial prior work regarding a UWP evaluation of the
epidemiological application domain.

The methods in this thesis evaluate visual data analysis and reasoning
(VDAR). It assesses the ability of a visualization tool to support reasoning
about the data. More precisely, the facilities of a method to provide means of
exploring the data, supporting knowledge discovery, generating new hypotheses
and leading to decisions are analyzed. According to Lam et al. [141], these
tasks are particularly hard to standardize and to quantify. For this reason,
evaluations are usually field studies in the form of case studies. Domain ex-
perts are observed as they solve evaluation problems using the proposed
methods. Data about the evaluation can be derived using the think-aloud
technique, where the user is asked to comment on her train of thought. Cap-
turing the evaluation on video allows a detailed assessment of each session.

Lam et al. [141] argue that collecting data over a longer period of time
with participants regarding their analysis problems is an additional way to
derive VDAR insights. Methods comprise logging and self-reporting, e.g.,
using a diary technique where domain experts compile their experiences
in a short text passage on a daily basis. Long-term case studies are Multi-
dimensional In-depth Long-term Case studies (MILCs), where logging, inter-
views, surveys and observations are combined. This time-consuming evalu-
ation approach often yields a thorough view on the suitability of a method.
The evaluations conducted in this thesis are focused on case studies, since
the schedules of the domain experts did not allow for intensive longitudinal
evaluation strategies.

3.2.4 Data Mining Visualization

Ferreira de Oliveira and Levkowitz categorize data mining visualization ap-
proaches as follows [55]:
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• Visual data exploration for mining is mostly carried out using par-
allel coordinates or scatter plot matrices. The features of a system
include filtering, querying and brushing data. These aspects are dis-
cussed in detail in Section 3.2.1.

• Visualization of mining models conveys the results of mining al-
gorithms. The result of a clustering or classification algorithm can
be visually processed and validated by the user. Examples are self-
organizing maps [134] to display results of a neural network, dendo-
grams displaying results of a hierarchical clustering or the visualiza-
tion of a decision tree [67].

• Visual data mining combines the prior two approaches into integrated
frameworks [279]. This allows to both tune parameter selection and
data exploration. In this approach, the visualizations are an integral
part of the mining algorithm. Puolamäki et al. [209] provide an over-
view of visually controllable data mining methods for more detail on
this matter.

visualization of association rules Detecting association rules is
one of the most popular goals of data mining methods [88]. Such analy-
ses often yield a vast amount of association rules. Applying appropriate
visualization methods to these data aims to discover the interest rule sets.
Association rules are automatically generated insights into variable connec-
tions. Visualizations can help to provide a concise view on the results to
assess their importance. Certain rules may for example incorporate associa-
tions which are already known to the user. This can only be assessed by a
medical expert, since it is hard to model complex medical knowledge. Asso-
ciation rules are denoted as if-then rules (A→ B). A denotes the right hand
side (RHS) of items in a rule, B the left hand side (LHS) items.

A basic association rule visualization is a scatter plot of two interest mea-
sures (typically support, which is the proportion of transactions showing the
given association in the data, and confidence, which can be summarized as
probability of finding the RHS rule under the condition of the LHS) as axis
dimensions. This allows to display and compare a large amount of rules as
points in the scatter plots. Labeling the data points, however, is hard due
to overplotting. Graph-based visualizations display items as vertices and as-
sociation rules as directed edges. Interest measures can be mapped to edge
color or arrow width [88]. Graph-based visualizations of association rules
become cluttered as the number of rules increases. Yang et al. [282] employ
parallel coordinates to display associations. The items are displayed on the
y-axis as nominal values. The x-axis shows the position of the item in a
rule. Hahsler and Chelluboina [88] propose a matrix visualization of asso-
ciation rules, where relationships are encoded on the data points between
data items. The rows denote the RHS of the rules, the columns the LHS.
Interest measures are plotted on the point diameter and color. Sekhavat and
Hoeber [234] employ linked matrix, graph and detail views to analyze as-
sociation rules. The matrix acts as overview of all rules. Selected items are
represented in the graph view. Details on demand are shown in the detail
view. The resulting system was evaluated with data sets containing a vary-
ing amount of association rules with a constant number of items (39). The
study, containing twelve participants, showed that the visual analysis sys-
tem scales well with the number of association rules.

visualization of clustering results Clustering algorithms are of-
ten seen as black boxes by domain experts. Lack in understanding of the
functionality of a method weakens the confidence in its results. Hence, clus-
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tering result visualization aims to illuminate this black box to make the
results comprehensible.

Seo et al. [235] use a multiple coordinated view system to analyze hier-
archical clustering results of genome data. The hierarchical clustering ap-
proach avoids to set a cluster size prior to the analysis, which is most often
not intuitive and already introduces assumptions about the data into the
analysis. Hierarchical clustering yields results for any cluster size, but has
the trade-off of being complex and hard to analyze. Seo et al. provide a sys-
tem, which enables an overview using a dendrogram over all the data in
order to locate all hot spots. These structures can then be queried, e.g., by
restricting the number of clusters. They incorporate scatter plots using coor-
dinated displays to show features and color code cluster affiliation. They in-
corporate reordering of the scatter plot matrix to show variables first, which
are most relevant to the clusters. They also include a gene ontology browser
to quickly look up interesting results.

Seo et al. [236] also introduce Graphics, Ranking, and Interaction for Dis-
covery (GRID) principles as guidelines for an analysis approach. Graphical
and statistical methods are integrated into a framework, which allows to
visualize features using histograms, boxplots and scatter plots as well as de-
tection criteria using 1D or 2D axis-parallel projections. To ensure compre-
hensive explorative analyses, their first recommendation is analyzing every
dimension first in 1D visualizations. Then, relationships between variables
should be highlighted with 2D plots as well as statistical summaries. 2D rela-
tionships are visualized using heat maps. Observed relationships are then
ranked by the user.

Choo et al. [39] present the iVisClassifier. It visualizes results of a linear
discriminant analysis (LDA). The LDA is a user-guided dimension reduc-
tion method. The dimensions extracted from this method are usually hard
to assess. They are hard to comprehend for the user, because it is not clear
which information they represent. They incorporate a cluster data set re-
trieved from an automatic face recognition algorithm. The iVisClassifier em-
ploys a visual analytics approach for this by incorporating multiple views
by combining a parallel coordinate plot, which contains all dimensions ex-
tracted from the LDA together with scatter plots. They incorporate a filter-
ing processes in the different plots to allow for a drill-down to points of
interests. The system is restricted to processing numerical data only.

Cao et al. [33] present DICON, an icon-based cluster visualization sys-
tem displaying statistical cluster information. The cluster size is mapped
on the size of the glyph. The glyph shape is defined by the distribution
of the underlying data. Categorical features, such as diseases, are mapped
to the glyph color. Additionally, they introduce a layout algorithm to align
the icons w.r.t. other variables. Judging from the interviews they conducted,
the domain experts used the system primarily to define cohorts using the
included drag and drop capability. The tool can be used to visualize multidi-
mensional clusters of population study participants using an icon represen-
tation for the clusters, which is based on a treemap. Similar clusters appear
as similar looking icons.

Turkay et al. [262] incorporate a visual analysis method to analyze structural
changes of clusters changing over time. They introduce the temporal clus-
ter view to assess the structural quality of clusters and the type of structural
changes, which are called structural signatures and are defined by cluster co-
hesion and homogeneity. They use silhouette coefficients as clustering struc-
ture metric. The proposed interactive visual analysis tool consists of two
major linked views. The cluster view displays the cluster quality and struc-
tural changes by encoding each cluster as axis in a parallel coordinate view.
Rectangles on these axes represent clustering moments, curves between the
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Figure 19: VA system of Raidou et al. [212] for visualizing heterogeneous tumor tis-
sue. It is divided into image space (left) and feature space features (middle
and right). The scatter plot in the middle is a 2D projection of the param-
eter space, which can be used for brushing features of interest. The views
on the right can be used to assess details on the clusters using heat maps,
parallel coordinates, bar charts and other views. Image is courtesy of and
kindly provided by Renata Raidou.

axes represent data items. The temporal signature view visually summarizes
statistical properties of the clusters over time to reveal structural changes. It
is calculated for a selected group, which must not necessarily belong to a
singular cluster and displays the maximum and minimum average distances
between the elements as well as the standard deviation, which encodes ho-
mogeneity. This view is used to evaluate temporal variations of a single or
a group of clusters. The selection is carried out using brushing.

Raidou et al. [212] incorporate a visual analytics approach for heteroge-
neous tumor tissue (Fig. 19). The goal is to characterize different tissue types
based on data derived from medical image data to develop a targeted treat-
ment. The data is divided into image space and feature space variables. The
main view is a 2D scatter plot feature space of image-derived tissue char-
acteristics. Detailed analyses of local structures of the feature space can be
conducted in separate views. They incorporate a dimension reduction us-
ing the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm to
project the N-D feature space derived from the imaging to a 2D space for
the scatter plot. The data points can then be brushed in the scatter plot and
are linked to their spatial location in the medical image data. Correlations
between variables are visualized using Pearson’s p-value mapped on a heat
map. Parallel coordinates are used to display multiple variables in one plot.
A separate cluster view encodes three cluster measures on a glyph using
opacity (cohesion), arrow glyph size between spheres (separation) and color
(average silhouette coefficient).

parameter space analysis using regression models This para-
graph covers work related to the Regression Heat Map Section 5.4. It was
previously published in the VAST’15 publication in Section 3 [295]. Sedlmair
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et al. [232] present a taxonomy of parameter space analysis. It includes an ab-
stract application domain-independent data flow model, navigation strate-
gies for exploring parameter spaces as well as a characterization of analysis
tasks. Using the taxonomy, approaches can be classified to find works with
similar problems, derive new design ideas and evaluate ideas. Based on their
input parameter taxonomy, some methods proposed in this thesis visualize
model parameters based on environmental parameters in a global-to-local naviga-
tion strategy (see Section 5.4). There, a fitting task by aiming to find models
well suited for describing the input data is shown. Mühlbacher et al. [180]
provide a framework for qualitative analyses of relationships and ranking
features for numerical target features with regression models. Correlations
between features with the target yield an ordered matrix plot, where feature
combinations are used to depict models of interest. The visualization allows
to assess different model complexities. Existing regression models can be
validated and compared using 3D views and 2D slice views. Mühlbacher et
al. focus on a smaller number of features, which can be assessed in more de-
tail, yielding a plot matrix view, while we cover more features by abstracting
the models.

Similarly, Piringer et al. [203] propose methods for visualizing regression
analysis results and properties for developing car engines. Their main goal
is to assess the pairwise influence of independent features w.r.t. the target
feature using a plot matrix displaying models as contours. They also incor-
porate 3D visualizations for each pairwise combination, but mainly because
of their popularity with the target domain engineers. Linked views of model
deviations allow to select outliers. This limits the method to comparing a
few models at once, as the plot matrix becomes complex with increasing
feature number. The main difference is their focus on analyzing one com-
plex model in detail, yielding extensive plots. They focus on metric features,
while this work processes categorical data as well. Guo et al. [87] present
multi-space visualizations to find linear relationships in the data with fo-
cus on extracting groups of best fit. The data space is visualized using a
scatter plot matrix. Linear models are calculated by defining dependent and
independent features. The model view allows for assessing different models
by color-coding distances to the line-of-fit. The model parameters can then
be fine-tuned using line graphs, histograms and model projections. Chan et
al. [36] propose the Regression Cube, an extension of the 2D scatter plot repre-
sentation of a linear regression model (incorporating solely metric features)
to a 3D Cube. They group subjects using a set of interaction techniques as
well as clustering algorithms to calculate sub-groups, which can then be
compared using their cube representation. Similar to Piringer et al. [203],
they focus on highlighting details of the included models rather than com-
paring models consisting of different features. Insight is derived by subject
grouping, which spawns new cube correlations and therefore allows drilling
down to the data. Piringer et al. [203], Guo et al. [87] and Chan et al. [36]
focus on finding and tuning a model for a specific relationship.

The 3D Regression Heat Map, which is proposed later in this thesis also in-
corporates regression models. But instead of analyzing one complex model
in detail, a large number of models in terms of different features is processed
in the 3D Regression Heat Map. Ahmadi et al. [2] define the Sparse Regression
Cube, which partitions sparse high-dimensional data into subspaces, which
are then described by their most reliable linear regression model. Their goal
is to find most fuel-efficient roads connecting two user-defined landmarks.
They focus on an algebraic representation for efficient regression model cal-
culation to find the best fit for a subspace.

data mining tools Numerous tools provide state-of-the-art data min-
ing methods. Weka [90] is an open source framework for preprocessing,
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Figure 20: Manhattan plot showing 16,470 SNPs (Single Nucleotide Polymorphism,
variation of a single base pair of a DNA string) of 22 chromosomes along
the x-axis and their association p-values along the log scaled y-axis [265].

visualizing and mining data. Due to its popularity in the data mining com-
munity it contains a large collection of various machine learning algorithms.
Rudimentary visualization systems allow for displaying data in a plot ma-
trix as well as plotting results from mining algorithms, e.g., with dendo-
grams or decision trees. Rapidminer [112] is a proprietary machine learning
environment similar to Weka, but it also allows to define analysis workflows
by connecting graphical representations of modules. KNIME [19] is an open
source software, which also allows to create workflows that integrate in-
teractive views on the data and on data models. Preferred programming
languages with many implemented techniques are R [211] and MATLAB.

Data mining methods are an integral part of Visual Analytics and Interactive
Visual Analysis techniques, which are discussed in the following section.

3.3 visual analytics and analysis in epidemiological and pub-
lic health data

The concepts described by VA and IVA are well suited for analyzing com-
plex health data, ranging from public health information and biological data
to epidemiological study data. Usually, complex relationships of variables
are analyzed with focus on a specific disease or condition. The goal is to
provide better diagnostic tools by either deriving potential risk factors or
indicators. Efficient treatment can be determined by comparing different
treatment methods and pathways. The visual exploration of such large in-
formation spaces can be superior to an algorithmic analysis if implemented
correctly to exploit the human pattern recognition system. A good example
are Manhattan plots, which are a scatter plot type incorporated for analyz-
ing genome data (Fig. 20). It associates a phenotype, which usually represents
a disease, with a set of alleles. The goal is to identify the alleles that are asso-
ciated with the phenotype. The plot maps the alleles on the x-axis and their
associated p-values on the y-axis. A logarithmic scale is usually applied to
the y-axis to not distort the plot by alleles with high p-values. The visu-
alization allows for fast detection of alleles with high associations. These
associations can then be analyzed in further detail.

Health data analysis is not fully automated, because most analytics meth-
ods can only find associations. These associations, however, always have to
be assessed by a domain expert, as correlation does not imply causation. This
underlines the strength of VA/IVA systems. They put the expert in charge
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Figure 21: The Gapminder plots the life expectance in years against the income per per-
son on a logarithmic scale for countries for the year 2013 using a scatter
plot. The dot size indicates the total population of the country, whereas
the color shows the geographic region. The Gapminder can be used to
visualize a total of four numerical health variables simultaneously using
the x- and y-axis as well as point color and size. The image was kindly
provided by Anna Rosling Rönnlund.

of both the analysis methods as well as the evaluation of the results. The ex-
pert can be supported in the decision making about the data by exploiting
the knowledge, the visual pattern recognition as well as the methodological
background.

3.3.1 Visual Analysis of Biological and Public Health Data

This section covers two visual analysis systems, that have a major impact
on the analysis of public health data. Gapminder was one of the first visual
analysis tool that was used to educate a large audience of people using
health related issues with visualizations. Caleydo and its open structure is
home to a wide variety of scientific analysis methods and is very popular in
the visual analysis community.

gapminder The Gapminder proposed by Rosling et al. [223] is probably
the most popular visual analysis system of public health data (Fig. 21). Its
goal is to communicate statistical data to large audiences. It incorporates data
sets depicting various variables for countries over time. Data sources are
open data sets provided by different organizations, such as the World Bank,
the World Health Organisation (WHO), the United Nations (UN), Lancet,
Forbes and more. The core of the visualization system is a scatter plot. The
variables represented by each axis can be adapted using drop-down menus.
Each data point encodes a country. The point size initially shows the pop-
ulation size, but can be adapted to show any other variable in the data set
using a drop-down menu. The points are color-coded by continent, but can
also encode numerical variables using color scales. Points can be marked,
which reduces the opacity of all non-selected data points. Different points
in time are shown by animating the plot. Therefore, Gapminder incorporates
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Figure 22: Domino plug-in [84] for Caleydo displaying a glioblastoma multiforme
data set. Similar to parallel coordinates, each dimension is connected via
lines representing subjects. Each dimension is visualized using an appror-
iate visualization. The age of each subject when glioblastoma multiforme
was diagnosed is represented using a box plot. The microRNA, which
represents unencoded RNAs playing an important role in the gene regu-
lation, are represented using a heat map. The time to death is encoded
using a time plot on the right.

a movie control panel metaphor by providing start/pause and stop buttons,
which shows the plot for each point in time for a short duration, creating an
animation. The current point in time is depicted as date in the background
of the visualization. The animation visually depicts global developments
as well as the change in individual countries. The latter can be addition-
ally highlighted by selecting the countries and activating the trail function,
which connects the current position of the selected data entry with its prior
values.

Besides its good visualization of relationships between country features,
the Gapminder owes its popularity to two factors. First, during popular TED
conferences in 2006 and 2007, Rosling held energetic talks using the Gapmin-
der to narrate the stories behind the data and popularized the tool. Rosling
and his colleagues still give such talks and workshops, which increases the
visibility of the tool. The second advantage is the public availability of the
Gapminder. It is available as website and can be used without any prior
installation. It is very easy to use as it has few but well explained interface
elements. Also, the user is not required to manually load any data. Easy and
open access further extends the visibility.

The Gapminder is mostly limited to communicate data results. It can be
used as analysis tool, but its lack to open data sets provided by the users pre-
vents this. No analytics algorithms are implemented, the analysis is solely
visual. Rosling et al. renounce multiple views and therefore do not employ
linking techniques. Thus, it does not reach the first IVA level.

caleydo Caleydo [151, 249] is a good example of a visual analytics frame-
work, which started as software for analyzing genomic data, but is now
extended to act as framework for many different techniques suitable for var-
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ious data sets. The goal of Caleydo is to combine the visualization of gene
expression data with the corresponding gene pathways. Side-by-side rela-
tionship views of pathways are possible, but are hard to comprehend, as
the cognitive workload of putting them into relation is too high. Caleydo
uses visual linking between different views, connecting corresponding data
items on selection with lines. Still, the user can only analyze a few pathways
simultaneously, as they use up much screen space. This problem is tack-
led by arranging views in a 3D space, which places each view in a square
bucket-like fashion. Gene expression data can be visualized using parallel
coordinates and heat maps. Analytics methods can be applied to cluster
data. A web browser allows to display details for selected genes. One of
Caleydo’s strengths lies in its visual linking, where subset selection and de-
tails on demand views are propagated among views by connecting the data
items using visual cues [151, 249].

Caleydo is built upon the Eclipse framework and acts as foundation for
new visualization techniques, which are integrated using a plug-in system.
The enRoute [195] extension allows for visual analysis of sub-paths selected
in a pathway view. The sub-path is then displayed in context with the data
set using a list view containing a small multiple representation using his-
tograms, bar charts, box plots and other plots. The small multiples can be
brushed to highlight changes in other views.

StratomeX [152, 250] is a Caleydo plug-in, which displays data sets as
columns. Each row represents a data set and data subtypes as individual
bricks of the column. Each brick can be analyzed in detail using an expan-
sion view. Pathways can be used to analyze subtypes. By adding multiple
data sets and, hence, multiple columns, the distribution between each subset
is denoted using ribbons similarly to parallel sets. Using StratomeX, Turkay
et al. [264] applied their dual analysis approach (see Section 3.2.1) to charac-
terize cancer subtypes. This underlines the flexibility of the open framework,
which allows to integrate and combine different methods.

Domino [84] is a Caleydo plug-in for visualizing heterogeneous data and
to derive subsets (Fig. 22). Variables can be added via drag and drop to
a canvas area. Visualization techniques appropriate for the data type can
be selected. The visualizations are visually linked using lines or ribbons.
Combinations of features can also be applied, yielding an appropriate vi-
sualization such as a scatter plot for two numerical features. The authors
show that the versatility of this technique allows users to create many estab-
lished visualization techniques, such as scatter plot matrices, parallel sets,
and even complex systems, such as StratomeX. Using Domino, visualiza-
tion systems custom-tailored for a specific data set can be easily created.
Subsets based on complex rules can be derived using brushing and linking.
Domino shows how the Caleydo framework can also be used for data sets
other than genomic data.

Most publications in visual analysis and visual analytics of health data im-
plement their own framework. The solutions are isolated applications with
little functionality provided to load external data sets of open formats.

3.3.2 Visual Analysis of Population Study Data

With their increasing complexity and heterogeneity, population and cohort
studies are of high interest for the visual analysis community. Methods for
the exploration of cohort data are described first in this section, followed by
techniques analyzing event sequence data.
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cohort comparisons Gotz et al. [82] hold a patent since 2014 on It-
erative Refinement of Cohorts Using Visual Exploration and Data Analytics. It
describes a system for creating sub-groups of existing cohorts using visual
filters. They describe analytics as a way to modify the cohort as well as ex-
panding it. The patent is based on their CAVA (Cohort Analysis via Visual
Analytics) system [285, 286], which describes a visual analytics system for
cohort study data.

CAVA does not solely focus on epidemiology. The data are clinical data
sets and therefore the cohort consists only of diseased subjects. Therefore,
conclusions of found relationships w.r.t. the general public have to be drawn
with care. Three different artifact types, cohorts, views and analytics are
used to derive insights into the data. All three artifact types are part of a
panel in the system. A list shows the available cohorts for analysis. A cohort
can be dragged and dropped to the view panel, which depicts all available
visualizations as icons. The demographic view, for example, shows the gen-
der and age distribution of a cohort as well as disease indicators, using
histograms, pie charts and mosaic plots. Available views also comprise a
table view as well as a flow diagram of patient symptoms over time and
small multiples of histograms to compare treatments. Unfortunately, the de-
scription of CAVA does not go into detail on the design of those views, how
the information is encoded and how they deal with heterogenous variables.
The views support brushing and linking, whereas a brush can be applied
as filter, which only shows the current selection. This way, the cohort can be
refined manually. A history of the selection is kept and can be used to re-
store prior selections. Cohorts can also be dragged and dropped on entries
of the analytics list, which creates a popup window to specify the analytics
parameters. CAVA distinguishes two types of analytics. Interactive analytics
blocks all user interaction until the interaction is complete, such as BMI cal-
culation. Batch analytics, such as risk stratification, runs asynchronous and
allows the use of the system while the calculation is in progress. The analyt-
ics then yields further variables and cohorts, which can be analyzed further
using the views. The authors do not elaborate in detail on how diseases are
modeled or if and how confounders are considered.

COQUITO by Krause et al. [137] is a tool that allows users to apply tem-
poral constraints as queries to a population data set (Fig. 23). The resulting
cohorts are displayed using COQUITO, whereas categorical and ordinal fea-
tures, such as gender or age, are displayed using bar charts. Treemaps show
the share of diagnoses and procedures for each subject. Each query reduc-
ing the number of subjects is displayed using a graph, where each node
represents the result of a query. Circles around each node represent the
overall number of subjects contained after applying the query. A search bar
allows to locate additional event constraints. The event changes as well as
demographic information after each selection are visualized using the im-
plemented plots, allowing to visually comprehend the query results. The
main use of the tool is to provide experts with a visual query tool to quickly
obtain a specific group of subjects for further analyses.

compare event sequences The flow diagram of CAVA aims to high-
light event patterns. It is derived from the Outflow method of Gotz and
Wongsuphasawat [280]. The goal of this visualization is to derive subject
groups with interesting temporal event progressions (sequence of symptoms
or diagnoses). These events are represented using a directed acyclic graph.
This graph is represented using the Outflow graph, which is very similar
to parallel sets by mapping sets of symptoms to rectangles, the amount of
subjects comprising the set to the rectangle size and the flow of subjects to
adjacent sets as ribbons.
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Figure 23: Screenshot of the COQUITO tool of Krause et al. [137]. It allows for a
fast selection of desired groups of subjects based on temporal events. The
resulting cohorts can be explored using the various plots. The data set is
filtered using a search bar of events on the right. Information about gen-
der and age is displayed using bar charts. A treemap displays diagnoses
for the currently selected group. The screenshot was kindly provided by
Josua Krause.

The CareFlow of Perer and Gotz [201] employs the Outflow visualization
for treatment plans instead of diagnoses. Here, the color encodes the health
condition of the patients after the treatment. It can therefore be used to
identify desirable care plans.

Wang et al. [271] propose Lifelines2 for temporal summaries of the preva-
lence and temporal ordering of events. Lifelines2 encodes each event as col-
ored triangle along the time line. The user can display temporal summaries
of event-associated readings, such as the distribution of creatinine levels
among subjects. Temporal summaries can be derived at different granulari-
ties (year, month, week, day, etc.). They can also be used for filtering using
brushing facilities. The summaries of events can also be used to filter tem-
poral ranges, e.g., by selecting a specific range in a creatinine test result for
subjects with a diagnosed disease. Lifelines2 only handles point event data
and not interval data with a start and end point [271].

Eventflow by Monroe et al. [177] addresses this problem and extends Life-
lines2 to interval data. Monroe et al. aggregate hospital event data into a
2D view, where the x-axis encodes time and the y-axis encodes the number
of records. Events are color-coded and mapped to rectangles, which stack
for subjects with identical event progressions. The length of the rectangles
reflect the event length. The events also include death of patients, hence
treatment sequences with a fatal outcome can be identified. This represen-
tation can grow complex due to the high number of different treatment se-
quences and health-related events. In order to analyze specific hypotheses,
the user can remove events to reduce the complexity of the visualization.
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Figure 24: CohortComparison (CoCo) [164, 165] visualizes two data sets of subject
pathways in a hospital. One subject group has a fatal outcome. CoCo
encodes events using colors and also shows total dataset statistics using a
table. The centered panel allows to compare pathways for both data sets
and highlights differences in details-on-demand, such as differences in the
duration. Reviewed event sequences are encoded gray in a minimap and
keep track of the observation space. The user can sort and filter results
by event sequence length, event types, sample size, and significance using
the right panel. The image was kindly provided by Sana Malik.

Groups with specific sequences can be queried. Event progressions can be
replaced in order to simplify the data set by aggregating similar events into
an umbrella event. Sequences can be queried in order to show detailed in-
formation, such as the exact number of subjects. Uninteresting sequences
can be removed to simplify the visualization even further.

MatrixWave by Zhao et al. [287] uses heat maps, which display the pair-
wise occurrence of sequences. They connect these heat maps in a zick-zack
pattern, which allows for tracing the different sequences. The visualiza-
tion leaves room for all potential event sequences, which requires a lot of
space. In most data sets, the observed sequences then require a small sub-
set of elements in these visualizations. They are suitable for very large and
complex event sequence data. With CohortComparison (CoCo), Malik et
al. [164, 165] aim to provide means of comparisons between subjects with
different sequences (Fig. 24). Therefore, various metrics are calculated for
subject groups, such as the number of subjects, survival rate, details about
the events, such as prevalence, order, co-occurrence as well as total time or
duration between events. CoCo includes a selection, filtering and sorting
of such metrics, which are then visualized using back-to-back bar charts
to pairwise display differences between the groups. Groups can be sorted
by p-values or sequence length. Total statistics, such as number of subjects,
unique sequences, minimum and maximum size of a sequence are encoded.
By querying for specific subgroups, complex groups can be compared to
each other to assess the effectiveness of sequences.

Analyzing event data shows high potential for epidemiological data. Epi-
demiologists can identify pathological pathways leading to a condition. Most
epidemiological reasoning rests upon total values and states, such as the ad-
ditive effect of asbestos exposure and smoking to lung cancer. Event data
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analysis may also yield a much higher risk for subjects who transitioned
from non-smoker to heavy smoker in a small time frame and are exposed to
asbestos. This analysis requires several moments of subject data. The popu-
lation study data discussed in this work is based on three moments, where
many features are added through updated acquisition protocols in later mo-
ments. This thesis focuses therefore on the latest acquisition moment, which
also comprises of medical image data.

3.3.3 Analysis of Pandemic and Clinical Data

Analyzing contagious diseases and pandemics imposes different require-
ments on analysis systems. Marathe and Vullikanti [167] elaborate on the
challenges and the future in this field. They suggest the triangulation of
various data sources, such as digital social network information, clinical
data, census data as well as activity and movement data acquired from
surveillance systems to track pandemic sources and characterize infection
pathways. The gathered data are then included into graph models, such as
Markov chains. The results are information about pandemic risk, vulnerable
populations, available interventions, implementation possibilities as well as
pitfalls and public understanding [73]. The complex models can then be uti-
lized to simulate various outbreak scenarios and see how the system reacts.
The results are used to adapt policies, assess social responses and employ
forecasting methods. Marathe and Vullikanti propose easy data availabil-
ity for querying the data using advanced analysis systems. In reality, these
triangulations are hard to conduct, as most institutions and corporations
gathering data are bound to legal and ethical confidentiality measures. Pro-
viding large networks containing sensitive information imposes the thread
of its abuse. Hence, preventive mechanisms have to be incorporated. Un-
fortunately, Marathe and Vullikanti do not elaborate in detail on how the
models are steered and analyzed.

Systems for analyzing such data focus currently on visual exploration of
the data. Livnat et al. [156, 155] propose Epinome, an epidemiological VA
workbench. They focus on identifying characteristics of a pandemic out-
break. The target group are not clinicians, but public health officials. There-
fore, the VA system uses different visualizations than CAVA. A geographic
information system (GIS) shows features in a spatial context of a choropleth
map. Line plots show information about the disease incidence. A contin-
gency table view displays all data entries for detailed analysis of individual
records. Similar to Gapminder [223], Epinome incorporates a movie control
panel metaphor by providing start/pause and stop buttons, which stepwise
show data associated with a specific time interval. The filtering and linking
works differently than in most other VA applications. Dragging and drop-
ping a value (e.g., gender = female) into a view shows the filtered value
automatically, but does not apply the filter to all other views. Dropping a
feature in the workspace creates a filter over all views, which is called a
workspace level filter. This simple yet powerful method allows for assessing
specific subgroups in one view, while filtering it in another view containing
all subjects and observe changes. They call the approach loosely coordinated
multiple views. Users rated the system highly useful for the analysis of public
health data. The approach of Livnat et al. to provide different filters, “which
empower users to explore different hypotheses in adjacent views yet still ap-
ply global filtering” [156] is well applicable for a population study scenario,
as it adds even more flexibility to the VA than classic brushing and linking.
Handling all visual representations of variable manifestations as draggable
objects for filtering is a powerful way of adding interactivity without bloat-
ing the interface.
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Figure 25: Heat map patterns inspired by Chui et al. [41]. The incidence decreases
over time in pattern A and is age-dependent in pattern B. Pattern C is
a combination of A and B. Pattern D shows a horizontal striped pattern
described as seasonal relationship. Pattern E depicts the age-cohort effect,
which indicates that the outcome is seasonal and age-dependent. The last
pattern F highlights several hotspots, which can indicate a disease out-
break.

Chui et al. [41] propose an alternative approach by providing a fixed num-
ber of multiple linked views, which they refer to as multi-panel graphs. This
term chosen by the authors may lead to confusion with the mathematical
construct. It has nothing in common with it but the name. Similar to Livnat
et al. [156], Chui et al. focus on public health records from hospitalizations
of contagious diseases of several thousands of subjects. The VA system aims
to highlight the interactions between age, gender, time and the disease. In
epidemiological terms, age and gender are considered a confounder (see Sec-
tion 2.4). The system consists of three visualizations.

• The outcome pyramid shows relationships between age and gender by
plotting vertically juxtaposed histograms for males and females along
the age axis. The histogram shape allows to infer the distribution,
asymmetrical histograms highlight a difference in gender, spikes high-
light age-dependent risk groups.

• A time series plots is a histogram showing the incidence along the time
line, since the prevalence is often highly dependent on subject age.

• To capture this information, Chui et al. propose a so-called image plot,
which is a heat map. The position of each heat map tile is defined by
the age and time, the contrast maps the disease incidence. Different
patterns of the heat map were identified by the authors and can be
seen in Figure 25.

Using these different patterns, different relationships and influences can
be assessed. The authors showed for example that the seasonal pattern for
influence can be easily spotted. The multiple views do not support brushing
and linking, the domain expert works with static visualizations. The method
is well suited for assessing the influence of confounding variables in a data
set. Multi-panel graphs visualization types can be easily constructed using
statistical visualization packages. The approach cannot be customized to
specific hypotheses. Missing brushing and linking does not enable drilling
down approaches for large data sets.

Multi-panel graphs and the Epinome underline various aspects essential for
epidemiologists. It is desirable to provide the user with a system that can be
adapted based on the current hypothesis. This includes brushing and link-
ing as well as creating new views for feature combinations, which ideally
can show various subgroups. Confounding variables have to be identified
and considered accordingly to avoid false conclusions. This can be achieved
by visualizing feature combinations dependent on a third variable, e.g., by



3.3 visual analytics and analysis in epidemiological and public health data 57

heat maps. Data acquired from hospitalizations and clinical standard pro-
cedures have to be analyzed with care, as they are likely to be produced
by different physicians in different clinics, which makes a systematic error
(bias) likely. Hence, results need to be cross-checked with other data sources
and population studies.

3.3.4 Combining Medical Image Data With Non-Image Data

This subsection was published in the VAST’14 paper in Section 3 “Prior
and Related Work” [293]. Medical image data is analyzed concurrently with
non-image data in multiple view systems, such as WEAVE discussed in Sec-
tion 3.2.2. Turkay et al. [263] incorporate the idea of deriving descriptive
metrics to create deviation plots. Descriptive metrics are calculated for con-
tinuous variables derived from MRI scans of a cognitive aging study as well
as sociodemographic data. The MRI scans are divided into 45 parts to de-
rive information for specific regions of the brain. These metrics include the
mean, standard deviation, median, inter-quartile range, skewness and kurto-
sis. The authors then incorporate scatter plots of two types. Standard scatter
plots allow for comparing two variables, such as age against education level.
Each data point represents a subject. Deviation plots display metrics, such
as skewness against kurtosis. Hence, each data point in this plot represents
a variable. The two plots incorporate different backgrounds to make them
preattentively distinguishable, yellow for deviation plots, blue for standard
scatter plots. By employing brushing and linking with these simple plots,
the system becomes very powerful and was successfully applied to analyze
epidemiological hypotheses about the data. Turkay et al. call the visualiza-
tion of data items as well as descriptive metrics for dimensions dual analysis.

Steenwijk et al. [246] propose a relational database to organize cohort
study data for a visual analysis based on linked views such as parallel coor-
dinates, scatter plots and time plots. Information about medical image data
is incorporated via mappers, which extract comparable metrics about the
data. Medical image data can be displayed individually for subjects, e.g., for
analyzing outliers.

Angelelli et al. [9] focus on the data organization for an interactive visual
analysis of heterogeneous cohort study data. The proposed data-cube model
facilitates the seamless integration of image-based and non-image data. In
a demonstration of the model, brain image data was integrated into the
analysis by first segmenting brain regions and tracking neural pathways and
then deriving attributes from both, e.g., volume and fractional anisotropy. A
multiple coordinated view framework then linked spatial and non-spatial
data views.

3.3.5 Commercial Analysis Systems

Various commercial Visual Analytics systems, such as Spotfire2, Qlik View3

or Tableau4 are capable of analyzing epidemiological data without the need
of writing any code. The systems are focused on business intelligence to al-
low companies to adapt the commercialization of their products to specific
markets. Emphasis is put on highlighting relationships using connected in-
teractive visualizations as well as basic analytics methods. Most recently,
these systems are also adapted by journalists to provide readers in digital
issues of magazines and newspapers with means to analyze presented data
themselves to derive conclusions. Hence, commercial analysis systems are

2 Owned by TIBCO Software Inc., spotfire.tibco.com
3 Owned by QlikTech, qlik.com
4 Owned by Tableau Software, tableau.com

http://spotfire.tibco.com/
http://www.qlik.com/
https://www.tableau.com/
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well suited for creating dash boards, which are a set of information visual-
izations highlighting specific aspects of the data [161]. Creating those dash-
boards to derive valuable insights, however, requires background knowl-
edge in visualization and statistics to rule out errors introduced by the im-
proper use of visualizations for a specific task.

The main disadvantage of commercial visual analysis systems, besides
their cost, is that they are proprietary systems. The code cannot be accessed.
APIs for enhancing specific views or adding new views are limited and of-
ten require more training than building a system from scratch specifically
designed to a task, given the proper set of skills. Enhancing existing visu-
alizations is often not possible. Additionally, the systems are bloated with
many functionality, which is not of interest for the domain expert. It dis-
tracts them from the main task of analyzing the data. In epidemiology, the
target user group for commercial visual analysis systems is not clear. The
computer scientists and statisticians usually have the relevant skills to repro-
duce the provided functionality with tools such as R or web-based visualiza-
tion methods. The clinicians do not have the time to learn the user-friendly
but still complex systems to derive the insights they are looking for. Com-
mercial visual analytics systems are well suited for prototyping new ideas
for multiple view analyses, but the price tag usually prevents their appli-
cation. This may, however, change with the introduction of free entry-level
versions of the systems, such as Tableau Public.5

An alternative approach of commercial systems in epidemiology are per-
sonalized medical apps. Regierer et al. [215] show how the virtual patient
can be described using anatomical, physiological and molecular models. Vir-
tual patients are the basis of computational analysis and comparison with
real patients to allow for a fast and precise diagnosis as well as the optimal
treatment plan. The EU project Information and Communication Technol-
ogy for the Future of Medicine (ITFoM) aims to implement personalized
medicine by 2025 with 160 academic and industrial partners [215]. There
are, however, already personalized medical solutions available to the pa-
tients [252]. 23andMe is a personal genomics service, which provides pa-
tients with genome analysis based on a saliva sample. The service is pri-
vate and will not be ordered and supervised by a doctor. The service was
praised by the public media and was even named the invention of the year
in the Time magazine in 2008 [92]. Customers can download the raw ge-
netic information from the site. They can also order additional information,
such as information about their ancestors and close relatives. Until Novem-
ber 2013, the service also allowed customers to assess inherited traits and
genetic disorder risks. As a result of potentially lethal false-positive and
false-negative test results, the U.S. Food and Drug Administration (FDA)
prohibited 23andMe to sell these tests [10]. The customers were left alone
with the results and were not able to precisely assess the risk of their diagno-
sis. One example are mutations in BRCA genes, which are associated with
breast or ovary cancer. The German ethics board urges the EU to prohibit
private gene tests [49].

Other services such as patientsLikeMe.com [277] rely on self-reporting
data to analyze disease progression w.r.t. the underlying treatment and pre-
scribed medications. The basic question they try to answer is: “Who is sim-
ilar to me and which medical conditions do they have?”. The advantages
include the data inflow speed as well as a good access to patients for med-
ical scientists. Results, however, still need to be cross-checked with a clin-
ical study [277]. Various biases are introduced in such services. Patients
investing time in these services first need to be familiar and comfortable

5 public.tableau.com

patientsLikeMe.com
https://public.tableau.com/
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with computers and potentially have a higher than average health aware-
ness. Additionally, self-reported responses from medications are inherently
subjective. For this reason, these information are assessed expert-guided
in large-scale population studies. Issues are raised with subjects experi-
menting with drugs based on information gathered from services such as
patientsLikeMe.com [224]. These are often patients who exhausted all treat-
ment options, but do not qualify for clinical trials. Additionally, privacy
issues are raised when health data is gathered by cooperations whose sole
business model is to monetize this information.

Smartwatches and fitness wearables, such as the Apple iWatch or the Jaw-
bone UP are being widely adopted, yielding data sources for lifestyle factors,
such as sporting activities or nutrition as well as medical information, such
as the heartbeat or sleep cycles. Most applications employ this information
to provide fitness plans and guides for the users. For example, the user
can compare their sporting activities to other users. Smart coaches allow
the system to give recommendations to the users based on their lifestyle to
live a more healthy life. While these data sources show much potential for
gathering information about diseases, no application monitoring causes and
effects for specific diseases are available for these devices to the date of this
thesis.

3.4 big data in epidemiology

Big data is denoted as data that cannot be assessed using standard data
processing techniques, because it exceeds the processing capacity of conven-
tional database systems. Often, big data is the result of triangulating mea-
sured data from different sources to create extensive data sets. Users are
interested in hidden patterns and relationships within the data to explain
various phenomenas. The monetization of such data is the foundation of
large cooperations, such as Facebook, which provides special target adver-
tising custom-tailored to each user. Online shopping sites, such as Amazon,
assess the shopping behavior of their clients to provide better product sug-
gestions. Big data gained so much momentum that the U.S. government
announced the Big Data Initiative in 2012, which gave $200 million to asso-
ciated research projects [274]. In this thesis, population studies in the sense
of epidemiological data are not seen as big data.

Big data is characterized using the four major aspects:

• Volume. Having more data beats having better models is one basic
principle of big data analysis. The volume inherently yields one of
the largest challenges for computer infrastructures. As the data sets
cannot be processed by standard databases, alternative storage and
analysis methods have to be applied. Apache Hadoop for example dis-
tributes computing problems to multiple connected servers to process
the data. Population and cohort study data usually have a vast amount
of features from the different assessments described in Section 2.5. The
number of subjects, however, is often limited to a couple of thousands
due to financial and temporal restrictions. The data sets measure a
couple of megabytes. When taking raw sensor information from the
medical image data or laboratory equipment into account, the data
size rapidly grows into terabyte scale. The use of this raw data for the
analysis, however, remains questionable.

• Velocity. The information retrieval speed is denoted as velocity. The
system has to be capable to react to the new data, process and store
it. For example, analyzing geospatial data from smartphones involves

patientsLikeMe.com
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processing multiple position updates per second, depending on the
underlying application task. The velocity of population study data is
minimal. Cohort study data are usually acquired in cycles of years.
Hence, velocity does not apply to this type of data.

• Variety. Data is usually complex and unstructured and therefore not
ready for processing at arrival. For example, raw feeds from GPS sen-
sor data need to be converted in a proper format to be processed effi-
ciently. Social network relationships may be translated and integrated
into graphs. A principle in big data is when you can, keep everything, as
it potentially contains useful information that can be incorporated in
the analysis. In cohort study data, variety is given due to many differ-
ent data acquisition modalities. The data inflow is carefully monitored
by quality control experts to avoid any acquisition bias. This involves
manual work, which can be replaced using big data methods.

• Veracity. Veracity determines the uncertainty of the data. In other
word, data entries or even whole dimensions are described with an un-
certainty value. The reasons for this range from either a low quality in
the data cleaning step leading to unreliable entries or quantifications,
to personal motives of subjects to knowingly or unknowingly lie. This
may be due to an ambiguously formulated question or a question re-
garding personal habits, such as alcohol intake, nutrition or sporting
activity.

Efforts are put in conducting epidemiological studies with a large number
of participants from multiple data sources [256]. Counter arguments are
made that even large-scale cohort studies could lead to false results, which
were disproved by randomized trials [38]. Selection bias as well as residual
confounding can still be a problem for studies with large attendance. Addi-
tionally, it is possible that “extremely large studies may be more likely to
find a formally statistical significant difference for a trivial effect that is not
really meaningfully different from the null” [119]. To summarize the points
why population study data is not yet to be considered as big data:

1. They can be processed by classic statistical approaches and can be
stored in standard databases.

2. They comprise a very low velocity.

3. The strictly controlled data acquisition process ensures a very high
veracity.

However, visualization techniques applied for big data can, in some cases,
be applied to population study data. A scatter plot for over 2,000 subjects
may for example suffer from overplotting. Liu et al. [154] propose binned
visualizations, where the visualization space is divided into hexagonal or
rectangular bins, which are then color-coded depending on the aggrega-
tion of the containing subjects (total count, sum, average, min/max). This
metaphor can be adapted by employing other existing visualizations that
use binning, such as heat maps, choropleth maps, line plots, histograms
and bar charts.
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Parts of this introduction are based on

Paul Klemm, Steffen Oeltze-Jafra, Kai Lawonn, Katrin Hegen-
scheid, Henry Völzke, and Bernhard Preim. Interactive Visual
Analysis of Image-Centric Cohort Study Data. IEEE Trans. on Vi-
sualization and Computer Graphics, 20(12):1673-1682, 2014.

The epidemiological workflow was characterized together with our clinical
experts Katrin Hegenscheid and Henry Völzke. Steffen Oeltze-Jafra, Kai La-
wonn and Bernhard Preim provided valuable discussions on how the IVA
principles can be adapted to the epidemiological workflow.

This part extends the epidemiological workflow described in Section 2.4
with VA/IVA methods and gives methodological recommendations based
on scientific questions on population study data sets.

The epidemiological workflow emphasizes the reproducibility and statis-
tical integrity. Introducing the IVA principle to the epidemiological domain
aims to compensate the weaknesses of the existing workflow rather than
replacing it (Fig. 26). In the current state, the workflow treats the data like
a black box. Statistical tests on variables associated to a hypothesis yield a
value for deciding whether the data supports the hypothesis. Variables not
included in the analysis may potentially support the chosen hypothesis by
discriminating the population in the expected way, but are not highlighted.
This becomes even more important when the workflow is adapted to the
analysis of the medical image data, where domain experts have to identify
landmarks tediously to derive measures, such as diameters. This leaves out
the majority of information in the image data by abstracting it to single val-
ues. Considering all of the available data potentially makes those results
more trustworthy and could also identify possible anatomical confounders–
arguably an epidemiolgical research result in itself.

IVA tries to illuminate the black box by making the domain experts part
of an iterative variable selection process (see Fig. 26 b). Pearce and Merletti
[198] pointed out that methods are needed which can cope with this com-
plexity and allow for the search of underlying causes of a certain condition
or disease. According to them, “risk factors for disease do not operate in isolation
but occur in a particular population context”. IVA also aims to project back into
the hypothesis formulation step to amplify hypothesis generation. This has
to be handled with care, since overfitting of expectations to the data is an
imminent danger [263].

While the methods differ depending on the type of the underlying data
and the nature of the investigation (detailed further below), the analysis cy-
cle remains the same. The entry point of the cycle, however, depends on
the type of the hypothesis and exploration. Figure 27 displays the analysis
cycle, which is similar to the IVA workflow described in Section 3.2.2. The
initial variable listing step, either user-driven or carried out using data min-
ing techniques acts as input for the visualizations. In the sense of Keim’s
VA Mantra, the visualization can also contain the vast amount of variables
as part of an overview visualization to highlight hotspots. The visualization
may then lead to various decisions. The user may iterate on the variable
selection step, because the expected behavior is not seen in the plot, or addi-
tional variables may need to be assessed to check a new hypothesis derived
through new insights. This refers to the Zoom, Filter and Analyze Further and
Details on Demand step in Keim’s VA Mantra. This also incorporates the intro-
duction of new linked views. Brushing elements yields updates in all other
views. This can either be used to inspect how the variables represented by
the views are connected or to create detailed groups which can then be an-
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Figure 26: The standard epidemiology workflow consists of four steps (a). IVA tools
complement parts of this workflow instead of replacing them (b). The
combination of statistical and interactive analysis shows promising poten-
tial to unveil information in the data. We call the iterative red highlighted
part IVA Loop, described in detail in Figure 27. Image from [293].

Figure 27: Detailed IVA Loop as extension from Figure 26. Usually starting with a
selection of a variable of interest (user-driven or via data mining tech-
niques), the data are mapped using a visualization technique appropriate
for the selected data types. The data are visualized and can be brushed,
yielding new groups to be investigated using further variables. Note that
adjacent steps are directly connected via feedback loops, allowing for an
iterative refinement and giving as much freedom to the user as possible.
Image from [293].



alyzed further. For the latter, the user most likely has a hypothesis about
the selected subgroup. To assess the hypothesis, he or she may add new
variables to the analysis and observe the behavior of the subgroup. Also,
the analysis for different groups can account for confounders, for example
when investigating gender or age groups. This step can also be carried out
automatically by a data mining algorithm, which yields variables depicting
a distribution difference of the group compared to the whole subject set.
Note that the workflow does not rule out the necessity of conducting sta-
tistical analysis to verify the findings. Without these and cross-references
with other studies, the finding will not be accepted in the epidemiological
community. This is, however, not the focus of this thesis.

As described in Section 3.2.2, IVA consists of different analysis levels.
Their implementation, however, strongly depends on the underlying data
and the analysis type and will be discussed in detail in the following chap-
ters as part of the method designs. The methods proposed in this thesis
achieve the fourth IVA level of proprietary analysis, where applications
are custom-built w.r.t. the application domain and underlying questions in
mind.

All methods presented in this thesis are based on enhancing the variable
listing step, as seen in Figure 26. The methods can be distinguished using
two criteria.

1. Is the analysis hypothesis-free (explorative) or hypothesis-based
(confirmative)? A confirmative approach requires means of quickly se-
lecting the features of interest for the investigated hypothesis. Hence,
the variable selection step in Fig. 26 is carried out manually, leading
to visualizations which can then be further assessed. This is the clos-
est approach to the classical epidemiological workflow. An explorative
analysis requires either an overview visualization over all available fea-
tures in a data set or a data mining method extracting the important
variables. The analysis requires the user to specify a phenotype (target
disease or condition) he or she is interested in. An overview visual-
ization can display hotspots correlating with the target. The analysis
starts at the Visualization step in Figure 27. Data mining algorithms can
identify specific risk groups as well as parameters related to the target.
Analogous, the analysis starts at the Variable Selection step in Figure 27.
The first one uses the visual system of the human as pattern recogni-
tion method to identify these features, the latter automates this task.
Which method is chosen depends on the preference of the user as well
as the suitability of the methods to observe patterns of different com-
plexities, such as linear, quadratic or higher dimensional relationships.
New questions will arise throughout the analysis process, regardless
of how it started. As a result, the borders between explorative and con-
firmative analysis become more and more blurry as the investigation
progresses. The proposed IVA workflow is therefore cyclic. Another
consequence is the projection of the workflow back into the hypothe-
sis step, as new insights are derived through the analysis, which lead
to new questions. A good IVA system also reacts to the current analy-
sis phase and proposes useful information to the conducted analysis.
If the user, for example looks at a plot of features, the system might
suggest features that correlate with the current investigated features,
which can raise new questions [293].

2. Which data types are involved in the analysis? The involved data
types restrict the number of suitable visualization and data mining
methods. Most data mining methods, for example, expect categori-
cal variables and do not work well with numerical data (recall Sec-



Table 3: The methods proposed in this thesis are categorized whether they contain
spatial medical image data or not. The data incorporated by the methods
listed in the second column include parameters derived from medical image
data, such as ratios between tissue types or diameters of segmented tissue.
The methods analyze these data, but do not treat the image-derived features
in any special way.

Explorative (Hypothesis-Free) Analysis Confirmative (Hypothesis-Based) Analysis

Contains Medical Image Data

Chapter 5: Image-Centric Data Analysis

• Segment the image data [290, 291, 296,
297] (Sec. 4.2)

• Clustering of segmentation masks [291]
(Sec. 4.4)

• Shape variance visualization of subject
groups [290, 293] (Sec. 4.3, 4.5)

Chapter 5 Image-Centric Data Analysis

• 2D information visualizations aug-
mented with 3D image data [293]
(Sec. 4.5)

• Extract correlations for subgroups [293]
(Sec. 4.5)

• Automatic shape-based clustering for se-
lected subgroups [291, 293] (Sec. 4.4, 4.5)

Contains No Medical Image Data

Chapter 6: Data-driven Analysis of

Sociodemographic, Medical and Lifestyle Factors

• Extract Decision Tree Quality Plot [294]
(Sec. 5.1)

• Retrieve subject groups from clustering
algorithms [292] (Sec. 5.2)

• Overview visualization using 3D regres-
sion Heat map [295] (Sec. 5.4)

The classical epidemiological workflow applies.

Support the workflow by modeling hypotheses:

• Compile a set of linked visualizations
depicting the variables of interest [293]
(Sec. 4.5)

• Describe the hypothesis using regres-
sion notation [295] (Sec. 5.4)

tion 3.1.5). The major distinction made in this thesis is whether the
data involves medical image data. As shown in Chapter 4, the con-
current analysis of spatial image data with non-image data requires
different approaches with a distinct set of visualization as well as data
mining algorithms in contrast to methods without spatial data, as de-
scribed in Chapter 5.

Almost all scientific publications associated with this thesis propose meth-
ods for both explorative and confirmative analysis approaches. According
to the criteria described above, the methods proposed in this thesis can be
distinguished as follows. Table 3 categorizes the methods proposed in this
thesis according to the analysis approach and the involvement of spatial
medical image data. It is worth noting that all publications associated with
this thesis comprise medical image features. Chapter 4: Image-Centric Data
Analysis focuses on publications, where medical image data is processed di-
rectly without converting it into numerical or categorical features [291, 293,
296, 297]. The focus of these methods is the concurrent visualization and
analysis of spatial image data with non-image data. They tackle one major
task, which epidemiologists could not solve until now–the calculation of
mean shapes and models of specific tissues w.r.t. other variables. For exam-
ple, what defines the mean shape of the spine of males and females and
which other parameter influence it? What are the differences of this shape
to the global average shape or to other shape classes?

Chapter 5 includes features derived from medical image data. This is a re-
sult of the focus of the clinical partners providing the data sets. The methods
presented in Chapter 5 [292, 290, 295], however, do not treat those features
in any special way. They might as well be data derived from other exam-
inations. The image-derived features often constitute the target phenotype
of the data. If, for example, the phenotype is the mean curvature of the
spine, the analysis aims to find features correlating with the curvature. Epi-
demiologists already comprise a rich set of statistical methods to analyze
data when they already have a hypothesis about the data and the data is



only of categorical or numerical type. In the proposed data-driven analysis
approach, this analysis can be supported by offering the domain experts
with an IVA tool of multiple linked views, which may lead to new insights
and new questions. One example of such a hypothesis would be: Smoking
habits are associated with back pain. The user then moves on to investigate
the feature indicating whether the subject smoked as well as the phenotype
feature back pain. Hence, the IVA system displays a suitable information vi-
sualization for this relationship, such as a mosaic plot (since both variables
are ordinal). Maybe there are multiple features indicating the smoking be-
havior of a subject, such as age when started smoking, number of years smoking
and number of cigarets per day. A plot matrix of the selected features allows
for assessing their influence with the investigated phenotype. In these situ-
ations, visualizations are superior to classic statistical analysis, because the
information is presented in a cognitively feasible way. The statistical analy-
sis, however, still has to be carried out using dedicated statistical processors,
such as R, SPSS or STATA, to quantify the hypotheses.

The following chapter covers the methods incorporating spatial medical
image data.





4I M A G E - C E N T R I C D ATA A N A LY S I S

The introduction of this chapter is based on the VAST’14 publication, Sec-
tion 1 “Introduction” [293] as well as Section 4.1. “Medical Image Analysis”
of Preim et al. [296]. Large-scale population studies often include medical
image data. The concurrent analysis of image data and non-spatial epidemi-
ological factors requires techniques that reach beyond standard statistical
methods. For instance, segmentation of the image data is required for an
analysis of anatomical structure and of possible correlations between this
structure and epidemiological factors. Semi-automatic segmentation tech-
niques are promising but also challenging, since the employed modalities,
such as magnetic resonance imaging (MRI) and ultrasound, are subject to
inhomogeneity and noise.

Compiling a list of features for tests of statistical resilience based on
experience-driven hypotheses leaves out other features in the data which po-
tentially interact with a disease. This also applies to the chosen landmarks
used to quantify medical image data information. Also, only a small sub-
set of features can be concurrently analyzed. The standard workflow lacks
methods for automatically identifying correlations possibly buried deep in
the data or overseen by the expert. Also, only a small subset of factors can
be concurrently analyzed.

One major purpose of incorporating medical image data in population
studies is to quantify the underlying anatomy, e.g., using volumes, diame-
ters, or spatial relations. Quantifications are of special interest for diagnos-
tics, as mean values can be established for each patient derived from the
mean of similar subjects. Similarity can be defined using age groups or gen-
der, but also based on the influencing factor of the investigated condition.
For example, the liver fat value of an alcoholic patient could be compared
to other subjects with similar conditions to assess the disease severity. Addi-
tionally, variations can be associated with pathologies. For example, it may
be detected which spine shapes are associated with strong back pain. MRI
data is of special interest for epidemiologists, since it does not emit harming
radiation to the patient and still allows whole body scans [296].

4.1 the spine data set

The methods proposed in this chapter are applied to a spine data set com-
piled to analyze lower back pain. Therefore, this section aims to give an
overview of the disease as well as the data set.

lumbar back pain Back pain is one of the most common diseases in
the Western civilization [267]. It is focused on the lumbar spine, as seen in
Figure 28. While the understanding of genetic mutations regarding back dis-
orders made progress, the correlations with different environmental factors
as well as physical stress are not sufficiently understood. There are no corre-
lations between degenerative changes of the intervertebral disc and adjacent
vertebrae [69]. The main aging effect of the spine is the reduction of bone
minerals and the development of degenerative diseases (osteoporosis) [194].
This yields a loss of height for the vertebral body, resulting in a dented sur-
face, which may lead to herniated discs. The elasticity of the intervertebral
discs is reduced with age. Lordosis defines the inward angle of the spine,
which can be seen as the typical ’S’ shape when seeing the subject from the

69
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L1

L2

L3

L4
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Figure 28: The highlighted lumbar spine consists of 5 bones. They are denoted as L1

starting with the top vertebra and ending with the L5 vertebra. Between
the vertebrae lie the intervertebral discs, which buffer the movement-
induced positional changes of the vertebrae. Lower back pain, the most
common back pain type, is related to the structural changes of the lum-
bar spine. No clear single cause of lumbar back pain is known [35]. It
is believed to be a result of skeletal and muscle issues, such as sprains or
strains. Other risk factors comprise obesity, smoking, weight gain through
pregnancy, stress, low physical activity, poor posture or sleeping posi-
tion [238]. Possible physical causes include osteoarthritis, vertebra disc
degeneration, broken vertebrae or spinal disc herniation [13]. Due to
changes in posture and center of gravity, pregnancy shows a strong cor-
relation with lumbar back pain, as nearly 50% of pregnant women report
lumbar back pain [163]. The image is provided by the blausen.com staff
under the Creative Commons Attribution-ShareAlike License [245].

side (sagittal plane). Scoliosis is a c-shaped deviation of the spine when the
subject is viewed facing towards the observer (coronal plane). The spinal
alignment and its shape are associated with lumbar back pain. The shape
also seems to be influenced by age [230].

Manek et al. [166] reviewed the progress made in understanding causes
of back pain and present influencing factors like age, gender, weight and
different lifestyle aspects, such as smoking behavior and work conditions.
Tucer et al. [258] conclude that depression is one of the independent risk
factors for experiencing low back pain, although their analysis is based on
surveys of the subjects and does not rest upon clinical analysis. Van Tulder
et al. [267] conclude that the value of such identified risk factors as prog-
nostic value remains low. No factor arose as strong indication for back pain
through many different studies. Epidemiological analysis of lumbar back
pain, such as the work of Harreby et al. [95], is largely focused on non-
image information. Harreby et al. identified a risk group of female subjects
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who smoke and have heavy jobs with a 46% probability of back pain. In
comparable studies, only a few shape-related variables are included [147].

Lang-Tapia et al. [147] used a non-invasive method for analyzing spine
curvature using a so-called “SpinalMouse”. They correlated spine curvature
with age, gender and body weight. They did not observe correlations be-
tween lumbar spine deformation and body weight.

Determining risk factors in this area can lead to [74]:

• a better understanding of effects of preventive measures, such as occu-
pational health and safety regulations,

• prognostic features for diagnosis and treatment of lumbar back pain,
and

• determination of particularly affected risk groups.

Characterizing the healthy aging process of the spine is a long-term goal
for determining age-normalized probabilities for spine-related diseases by
incorporating individual risk factors. As described above, however, no single
factor for strong back pain arose throughout many studies.

the data set The data set comprises 127 features describing diagnosed
diseases, lifestyle factors, women-specific factors, pain indicators, laboratory
values and somatometric features for 6,753 subjects (4,420 from SHIP-Trend-0

and 2,333 from SHIP-2). Since data acquisition protocols between these two
cohorts are identical, the features between the two cohorts are comparable.
The data contains 30 metric, 7 nominal, 29 ordinal and 62 dichotomous fea-
tures. Somatometric features include measures of the human body, such
as body height, weight and body fat percentage as well as gender. These
measures are reliable and complete. Other features, such as pain indicators
or lifestyle indicators (e.g., physical activity) are more subjective and less
reliable. There are also features missing for each subject, such as features
building upon each other (e.g., “Do you have high blood pressure? Which
medication is prescribed against it?”). Therefore, some manifestations are
sparsely populated, which makes statistical evaluation challenging.

The image data was acquired for each subject on a 1.5 Tesla scanner (Mag-
netom Avanto; Siemens Medical Solutions, Erlangen, Germany) by four
trained technicians in a standardized way. The spine protocol consisted of
a sagittal T1-weighted turbo-spin-echo sequence (1.1× 1.1× 4.0 mm voxels)
[101]. The lumbar spine was detected in the image data using a hierarchi-
cal finite element method by Rak et al. [213]. The tetrahedron-based Finite
Element Model (FEM) is initialized with three clicks on a vertebra – the
center to initialize the position, as well as the top and bottom to determine
the rough height of the model. Initial rough segmentations are then refined
with a model-driven segmentation to finalize the data-driven correction step.
The model uses a weighted sum of T1- and T2-weighted MR images to de-
tect the lumbar spine shape. Once registered, it captures information about
the shape of the lumbar spine canal as well as the position of the L1-L5

vertebrae. Due to incorrect initialization, strongly deformed spines, contrast
differences and artifacts, the model was not able to detect lumbar spines for
all subjects. Therefore, 2,540 tetrahedron models of the lumbar spine were
obtained.

The epidemiologists are interested in the influence of the shape of the
spine and its influence on back pain. Which deformation levels are healthy
and which may indicate pathologies? Additionally, they are interested in
other factors, which may influence back pain together with the shape of
the spine. These factors include smoking behavior, nutrition, heavy phys-
ical work or medications. Characterizing the boundaries of healthy shape
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changes of the spine shape is of great interest for epidemiologists. It al-
lows them to infer pathological shape ranges associated with back pain
and potential diseases. The vision of epidemiologists is a set of clinically
measurable data, which is then compared to reference values to indicate
pathologies.

4.2 image segmentation

The methods proposed in this thesis are not designed to help image segmen-
tation for population study data. The foundations are, however, discussed
here briefly, since the segmentation is part of the workflow and the founda-
tion for the methods presented in this chapter.

The quality of medical image data assessed in the context of a population
study data is often inferior to the clinical standards due to cost and time fac-
tors. Therefore, many standard tools for image quantification will not work
for the data or yield inaccurate results. Therefore, epidemiologists often seg-
ment medical image data derived from population studies by hand, which
is a time-consuming and tedious work. The fact that this effort and associ-
ated costs are accepted underlines the scientific importance of the results.
Manual segmentations are acceptable in clinical settings, such as radiation
treatment planning. They are, however, not suitable for large-scale popula-
tion studies. The inter and intra-expert variability of segmenting the data is
too high. Also, for cohort studies, which comprise multiple waves, follow-up
data has to be assessed.

In order to make the results comparable, the segmentation has to be car-
ried out in exactly the same conditions with the same experts, or it has
to be done again from scratch. Segmentations are still carried out by hand
because of the poor availability of standardized segmentation methods suit-
able for a wide range of image modalities and settings. Hence, most image
segmentation algorithms are custom-tailored solutions based on the under-
lying image acquisition sequence and the structure of interest for the expert.
This often includes the fine tuning of numerous parameters of different im-
age filters and pattern recognition algorithms to the data, which is usually
carried out by a computer scientist. Even after that, segmentation algorithms
still require user input, such as setting landmarks to initialize the underly-
ing model or to correct segmentation errors.

One example are the FEMs of Rak et al. [213], which are used to detect the
lumbar spine shape in MRI scans as described above. Fully automatic meth-
ods, such as the liver segmentation of Gloger et al. [80] often follow a set
of concurrent detection and localization steps. The approach can be reused
and recombined for other applications, such as MRI data of the kidney [81].
For more details on image segmentation algorithms in the epidemiological
application domain, see the survey paper of Tönnies et al. [297]

data storage The non-image data is stored and accessed as ASCII-
encoded text files in open formats, such as JSON or CSV. Other scientists
can use the methods proposed in this thesis with their own data without
having to convert the data into a specific database scheme. Major advan-
tages of databases comprise sophisticated methods for structuring the data
and provide fast subject filtering using queries. The statistical language R,
which is an important tool in this thesis, already has libraries optimized for
fast access, such as dplyr [276]. Fast and efficient filtering libraries are also
available for Javascript, such as Crossfilter [117]. Therefore, fast filtering can
be achieved in both languages without utilizing a database back end. The
major performance bottlenecks are the complex calculations in the various
analytics methods incorporated in this thesis. Hence, no database systems
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are applied. A database should be employed when data filtering steps be-
come a performance issue. Incorporating a suitable database scheme also
allows the combination of different data sources, such as observed and sim-
ulated data.

4.3 example of image segmentation by dissimilarity analysis

using shape deformation models

This section is based on

Paul Klemm, Steffen Oeltze, Katrin Hegenscheid, Henry Völzke,
Klaus D. Tönnies, and Bernhard Preim. Visualization and explo-
ration of shape variance for the analysis of cohort study data.
In Proc. of the Vision, Modeling, and Visualization Workshop, pages
221-222, 2012.

The image analysis workflow was developed jointly with Klaus D. Tönnies,
Bernhard Preim and Steffen Oeltze. Katrin Hegenscheid and Henry Völzke
provided the technical details on the epidemiological workflow and associ-
ated hypotheses and problems. Steffen Oeltze helped with questions regard-
ing the MeVisLab [218] related implementation issues.

At the beginning of the work covered in this thesis, no image segmentation
results were available for the given data sets. Therefore, approaches for de-
riving the image data as well as creating shape variance visualizations were
investigated. The results are described in this section, which presents two
methods for creating data structures suitable for shape variance analysis and
provides suggestions for their visualization. A pipeline for analyzing shape

Var(       )

Create Groups

Calculate Shape Variance Visualize Results

Mapping

Calculate User Input

Registration → Dissimilarity → SSM/SDM

Attribute Selection → Define Groups

Socio-Demographic/
Medical Attribute Data Medical Image Data

Comparative Visualizations

Figure 29: Workflow for the shape variance analysis of population study data. As
a first step of the shape variance analysis, the user can define popula-
tion groups using the different data types. Alternatively, this can be car-
ried out automatically using data mining algorithms. With the selected
groups the shape visualization model is then calculated as basis for the
following visualization comparing the structures to reference groups. The
visualization-derived insights directly influence the user-supported hy-
pothesis generation.

variance population study data is shown in Figure 29. It is derived from the
IVA analysis workflow, but displays the necessary steps for analyzing image
data using shape deformation models based on dissimilarity. This does not
only involve segmenting the tissue in each data set, but also requires corre-
spondences between each segmentation instance. The latter is required for
determining differences between subjects and groups. The shape variance
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analysis step comprises two different approaches toward creating structures
that allow for the visualization of inter-object differences. They arise from
different requirements given by the underlying image data and the shape of
the structure of interest.

Figure 30: Visualization of five liver meshes generated from GAMEs algorithm using
ShapeSpaceExplorer from Busking et al. [29]. The currently selected shape
in the space (cursor-icon) is mapped via mesh morphing on the reference
mesh. The color scale indicates the amount of deformation to the under-
lying reference.

establish point correspondences for existing segmentation

masks If segmentation masks already exist for the structure of inter-
est, the problem remains to establish inter-subject point correspondences.
The growing and adaptive meshes (GAMEs) algorithm of Ferrarini et al. [70]
allows to create shape distribution models of such masks. Prior to this
step, however, the segmented structures have to be registered onto each
other. This is carried out using the elastix toolbox [133]. The GAMEs al-
gorithm yields a surface mesh for each segmentation instance, where the
mesh points correspond between all instances. This structure can be used
to calculate a shape distribution model, which can be visualized using the
ShapeSpaceExplorer tool from Busking et al. [29] (see Section 3.1.3). The
tool requires one of the created meshes as the basis for the mesh morphing
algorithm which interpolates between the different volumes (see Figure 30).
This space allows to navigate the different shapes, while the object space
is a morphed representation of the currently selected object in shape space,
showing the amount of local deformation to the reference volume.

derive comparable volume data using non-rigid registration

Statistical Deformation Models (SDMs) capture deformation a model of the
whole volume instead of only the surface (recall Section 3.1.3). SDMs are
derived from MRI scans of the spine. Cuboid blocks containing the single
vertebrae were manually cut out of a reference data set. Then, the reference
models were aligned on each data set using affine registration of the elastix
toolbox (B-spline grid size of 16 voxels and 500 gradient descent iterations).
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Figure 31: Sagittal MR images of the lumbar spine for three different subjects. The
red pictured reference cuboid block of the L4 vertebra was first aligned
via affine registration to the counterpart in the data set and then deformed
using B-spline registration.

Since always the same reference model is deformed, the voxels of the result-
ing models are comparable (Fig. 31).

Figure 32: Four different visualization techniques for a deformation field of a L4

vertebra. (a) Visualization of a B-spline registered L4 vertebra. (b) Defor-
mation field rendered with glyphs and (c) streamlines. (d) Visualization
of the Jacobian determinant. Figure adapted from [290].

The resulting data model can be visualized using different techniques,
such as glyphs and streamlines, as presented in Figure 32 (b) and (c). The
Jacobian determinant of the deformation field which describes the local ex-
pansion and compression can be seen in Figure 32 (d). Another possibility is,
similar to the ShapeSpaceExplorer approach, the deformation of a reference
object using morphing algorithms as the user specifies its parameters. As it
becomes clear which deformation is associated with a disease, quantifying
metrics for these deformations can be derived. These metrics can then be
assessed using the standard epidemiological pipeline.

The following section describes a system which employs SDMs to create sub-
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ject groups based the shape of their lumbar spine canal. Section 4.5 shows
how SDM data is visualized concurrently with non-image data.

4.4 example of image segmentation and processing on lum-
bar spine variability

This section is based on

Paul Klemm, Kai Lawonn, Marko Rak, Bernhard Preim, Klaus D.
Tönnies, Katrin Hegenscheid, Henry Völzke, and Steffen Oeltze.
Visualization and Analysis of Lumbar Spine Canal Variability in
Cohort Study Data. In Proc. of the Vision, Modeling, and Visualiza-
tion Workshop, pages 121-128, 2013.

Katrin Hegenscheid and Henry Völzke provided the underlying data as
well as the domain knowledge regarding lumbar back pain and potential
associated risk factors. They also provided the medical knowledge required
for the evaluation of the results. Marko Rak and Klaus D. Tönnies provided
the tetrahedron-based segmentation models of the lumbar spine, which are
the foundation for further analyses. Kai Lawonn helped with abstracting
the tetrahedron models to line segment representation and the underly-
ing MATLAB1 implementation. Steffen Oeltze provided the clustering algo-
rithm used for the shape-based grouping of subjects. He also provided major
contributions to the VTK-based implementation of the group visualizations.
The technical details were developed and discussed in detail together with
Bernhard Preim, Kai Lawonn and Steffen Oeltze.

The methods in this section show how information from medical image data
can be extracted and incorporated with non-image parameters. The Interac-
tive Visual Analysis presented in Section 4.5 incorporates these information
and enhances them.

In this section, an approach for the reproducible analysis of the lumbar
spine canal variability in a population is proposed. It is based on the cen-
terline of each individual canal, which is derived from a semi-automatic,
model-based detection of the lumbar spine. The centerlines are clustered
to form groups with low intra-group and high inter-group shape variabil-
ity. The clusters are visualized by means of representatives to reduce visual
clutter and simplify a comparison between subgroups of the population.
Special care is taken to convey the shape of the spinal canal also orthogonal
to the view plane. The approach is demonstrated for 490 individuals drawn
from the SHIP data presented in Section 4.1. The reason why it was only
performed on a subset of the data is that not all data was available at that
time. Also, the automatic detection failed for several subjects due to wrong
initializations and failed preprocessing steps. Preliminary results of investi-
gating the clusters with respect to their associated socio-demographic and
biological factors are presented. The contributions are:

• generation of groups of individuals sharing a similar shape of the lum-
bar spine canal,

• visualization of these groups by means of representatives,

• illustration of 3D shape in a 2D view.

While the processing of the 490 data sets represents first results, expected be-
havior like decreasing spine curvature with increasing subject body height
was observed. Unexpected clusters of unusual shape, which are now subject
to further epidemiological analysis, were found.

1 Owned by The MathWorks, mathworks.com

http://mathworks.com
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4.4.1 Detection of the Lumbar Spine

Figure 33: The layered finite element model consists of more than 2,000 tetrahedrons
(left). The spine canal center line is indicated by the dashed line. The
model uses the image-induced potential field to align itself to find a local
minimum after the initialization (right). Image from [291].

A hierarchical finite element method according to Rak et al. [213] was ap-
plied to create the detection mask. FEMs of vertebrae and spinal canal are
connected by a bar-shaped FEM (Fig. 33). The model comprises a fixed num-
ber of points which are pairwise relatable between instances of the model.
Hence, correspondences between lumbar spine representations of different
data sets can easily be established. The model is placed in the scene using
an empirically chosen initialization point. The force acting on the model
stems from aggregation of loads, which are derived from a potential field
resulting from a weighted sum of the T1- and T2-weighted MRI data, see
Rak et al. [213]. After detecting all spines, the models are registered using
the Kabsch Algorithm [125], which is designed to minimize the root mean
squared deviation between paired sets of points. The weights are gathered
empirically, where the vertebrae appear as dark spots (and local minimum).
For the detection of the spinal canal the images need to be smoothed. The
model-based detection captures information about the spine canal curvature
as well as the alignment of the vertebrae. It is not meant to capture informa-
tion about vertebrae deformation and differences in spine canal extent.

4.4.2 Analysis of Lumbar Spine Canal Variability

The variability of the lumbar spine canal is investigated based on the de-
formed and registered models of the detection step. Since the primary inter-
est is on the curvature of the spine, the analysis focus lies on the spinal canal.
Centerlines capture curvature and are simpler to handle than the tetrahedral
mesh. Agglomerative hierarchical clustering is carried out to form groups
that exhibit low intra-group and high inter-group shape variability. The clus-
ters are visualized by means of representatives to reduce visual clutter and
simplify a comparison between groups of the population.
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Centerline Extraction

The centerline extraction was carried out together with Kai Lawonn. In this
subsection, the computation of the centerline cS of the lumbar spine model
S is described. The model is given as a cylindrically shaped tetrahedral
mesh. The axis of rotation is aligned to the z-axis. Therefore, the parametric
curve c(t) = p0+ t · vz is used, where the z-component lies in [hmin,hmax].
Here, hmin and hmax are the minimal and maximal height of the mesh,
respectively. The parametric curve c(t) can be written as:

c(t) =

 0

0

hmin


︸ ︷︷ ︸

p0

+ t ·

 0

0

hmax − hmin


︸ ︷︷ ︸

vz

, t ∈ [0, 1]. (4)

The intersection points of the parametric curve with the faces of the tetra-
hedra τ ∈ S are determined from the undeformed lumbar spine model S0.
Thus, the vertices are combined to obtain the triangles and faces and assess
the intersection points with the curve. For this, the vertices v0, v1, v2, v3 of
every tetrahedra τ = {v0, v1, v2, v3} are incorporated and solve the following
matrix equation:

(
vk vl vm vz

1 1 1 0

)
·


α

β

γ

−t

 =

(
p0

1

)
, (5)

with different permutated k, l,m ∈ {0, 1, 2, 3} for the four faces of the tetra-
hedra. The equation combines the parametric curve with the triangle face
according to barycentric coordinates to obtain the intersection point. If a
positive solution α,β,γ > 0 is obtained, the considered curve point lies in
the interior of a triangle of τ. Thus, the corresponding tetrahedron with
its triangle and their barycentric coordinates is assigned to the curve point
pi = p0 + t · vz. If one curve point lies on the boundary of a triangle, i.e.,
one of the coordinates is equal to zero, only one tetrahedron to the curve
point is assigned. Using these values, the centerline of every deformed lum-
bar spine model is obtained by applying the stored barycentric coordinates
to the corresponding tetrahedron. Having one intersection point pi of the
undeformed lumbar spine model with the assigned tetrahedra τ, the corre-
sponding triangle face vk, vl, vm, and the assigned barycentric coordinates
α,β,γ, the new point p ′i is extracted of the deformed lumbar spine model
by applying:

p ′i = αvk + βvl + γvm. (6)

Hence, the new centerline is derived.

Centerline Clustering

The centerline clustering was carried out by Steffen Oeltze-Jafra.
To cluster the centerlines, an agglomerative hierarchical clustering (AHC)

approach is employed. It has been demonstrated that AHC delivers mean-
ingful results in the clustering of other plane and space curves, such as fiber
tracts from Diffusion Tensor Imaging (DTI) data [176], streamlines from flow
data [283], and brain activation curves (time series) from functional Mag-
netic Resonance Imaging (fMRI) data [153]. Furthermore, it is flexible with
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Figure 34: Spinal canal centerlines of 242 female subjects clustered with agglomera-
tive hierarchical clustering using four different proximity measures and a
technique for automatically computing the cluster count. Single link and
average link suffer from the chaining effect (single large cluster), com-
plete link produces compact, tightly bound clusters and Ward’s method
is biased towards generating clusters of similar size. The difference in cen-
terline shape also occurs orthogonal to the view plane. Image adapted
from [291].

respect to cluster shape and size (non-convex clusters are possible). AHC
relies on the difference/similarity between data entities. Thus, a definition
of centerline similarity is the prerequisite for AHC of centerlines.

Similarity is often evaluated by a distance measure. General requirements
for such a measure are positive definiteness and symmetry. An example
that has been successfully employed for clustering fiber tracts and stream-
lines [176, 283] is the mean of closest point distances (MCPD) proposed in [48].
For two centerlines ci and cj with points p, the MCPD is computed as:

dM(ci, cj) = mean(dm(ci, cj),dm(cj, ci)) (7)

with dm(ci, cj) = meanpl∈ci min
pk∈cj

‖pk − pl‖

cluster proximity In advance, AHC requires the computation of all
pairwise centerline distances and their storage in a quadratic and symmet-
ric distance matrix M. The algorithm operates in a bottom-up manner. Ini-
tially, each centerline is considered as a separate cluster. The algorithm then
iteratively merges the two closest clusters until a single cluster remains. The
merge step relies on M and a measure of cluster proximity. Various cluster
proximity measures have been published, among which single link, complete
link, average link and Ward’s method [193] are the most popular ones. In sin-
gle link, the proximity of two clusters is defined as the minimum distance
between any two centerlines in the different clusters. Complete and average
link employ the maximum and the average of these distances, respectively.
Ward’s method aims at minimizing the total within-cluster variance at each
iteration. It defines the proximity of two clusters as the sum of squared
distances between any two centerlines in the different clusters (SSE: sum
of squared errors). The focus lies on automatically computing a reasonable
number of clusters k before elaborating on the most suitable proximity mea-
sure for the epidemiological application. This computation helps in provid-
ing a good initial visual summary of the variants in spinal canal shape and
facilitates a reproducible analysis.
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number of clusters Salvador and Chan propose a method for auto-
matically computing the number of clusters in hierarchical clustering algo-
rithms [227]. Their L-method is based on determining the knee/elbow, i.e., the
point of maximum curvature, in a graph that opposes the number of clus-
ters and a cluster evaluation metric. The knee is detected by finding the
two regression lines that best fit the evaluation graph, and then, the number
of clusters that is closest to their point of intersection is returned. Locating
the knee depends on the shape of the graph, which again depends on the
number of tested cluster numbers k. Salvador and Chan recommend using
a full evaluation graph, which ranges from two clusters to the number of
data entities. Starting with the full graph, the L-method is carried out itera-
tively on a decreasing focus region until the current knee location is equal
to or larger than the previous location. As evaluation metric, the proximity
measure used by the different link versions of AHC is applied. Furthermore,
the evaluation is not based on the entire dataset but only on the two clusters
that are involved in the current merge step.

evaluation of cluster proximity measures In an informal eval-
uation based on 16 datasets, the AHC was tested with the four proximity
measures and the L-method. The 16 datasets represent the complete set of
centerlines (n = 490) and epidemiologically relevant subsets derived accord-
ing to gender, age, e.g., 20-40, 41-60 and 61-80, body weight and body height.
For each dataset, the four proximity measures are applied and all clustering
results are visualized side-by-side. A visual inspection of the results con-
firmed textbook knowledge with regard to the strengths and weaknesses of
the proximity measures [193] (Fig. 34 shows an exemplary scenario).

In single link clustering, the chaining effect could be observed for every
dataset. Here, a single large cluster arises containing almost the entire set
of centerlines. This cluster contains very dissimilar centerlines but they are
connected by a chain of similar ones via some transitive relationship. For the
majority of datasets, average link failed to avoid this effect. Instead, strong
outliers were represented as individual clusters while the remaining center-
lines, being dissimilar and still comprising outliers, were grouped in a single
large cluster. Complete link clustering produced small, compact, and tightly
bound clusters. Ward’s method was biased towards generating clusters with
similar size. These clusters showed less diversity than the ones generated by
means of complete link. In summary, due to the chaining effect of single
link and average link, and the arbitrary assumption of similar cluster sizes
in Ward’s method, the complete link is favored as a proximity measure.

The bottleneck of AHC in terms of time complexity is the computation
of M, in particular when a multitude of closest point distances must be cal-
culated (Eq. 7). However, the total number of centerlines (n = 490) and the
number of vertices per centerline (v = 93) are relatively small. Furthermore,
the computation has been parallelized and the matrix must be computed
only once and may be stored. The computation of M based on the complete
set of centerlines, i.e. the entire population, can be considered as the worst
case. On a 3.07 GHz Intel 8-core PC with 8 GB RAM and a 64 bit Windows
operating system, the computation took 7.9 s. The L-method for determin-
ing the number of clusters took 24.2 s and represents the bottleneck in pro-
cessing the data. This is due to the multitude of computations required for
finding the two best fit regression lines but may be mitigated by cutting off
unlikely high numbers of clusters from the full evaluation graph [227].

The clustering implementation is based on the AHC algorithm and the
proximity measures being part of MATLAB’s Statistics Toolbox (MathWorks,
Natick, MA, U.S.). The source code of the L-method is provided by A.
Zagouras as part of MATLAB Central’s file exchange [284].
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Visualization of Clustered Centerlines

Figure 35: Visualization of the hierarchical agglomerative clustering results. Initially,
all centerline clusters are closely intertwined (left). To simplify their in-
terpretation, they are translated along the coronal axis and lined up at
equidistant locations (right). The annotations illustrate typical medical
view planes/axes: sagittal (S), coronal (C), and transversal (T). The de-
fault viewing direction ~v is parallel to the sagittal axis (as can be seen in
the right view). Image from [291].

A standard medical view for inspecting the spine in MR images is the
sagittal view with the vertebrae located to the left of the spinal canal (Fig. 33,
right). Hence, it is chosen as the default view for the presentation of the clus-
tering results. Initially, all centerlines and hence also the clusters are closely
intertwined in space due to the co-registration of all spine detection results
(Fig. 35, left). In order to get a better overview of the individual clusters, they
are translated along the coronal axis and lined up at equidistant locations
(Fig. 35, right). The centerlines are visualized with GPU support as illumi-
nated streamlines with halos [68]. The halos improve the visual separation
of individual lines. Before the centerlines are translated, the barycenter B
of the entire bundle of lines is computed (Fig. 35, left). It will be used for
positioning visual hints in the scene.

cluster representatives In order to simplify the interpretation of a
cluster, to further reduce visual clutter, and to improve a visual compari-
son of clustering results between groups, e.g., younger and elder subjects,
a representative centerline for each cluster is computed. This is inspired by
the computation of a representative fiber tract for a bundle of fibers derived
from DTI trajectography data [26]. Here, the fiber with the smallest sum of
distances to all other fibers, i.e., the centroid fiber, of the bundle is chosen.
Since all pairwise centerline distances are stored in M, the selection of a cen-
troid centerline is straightforward. Each such centroid is then visualized by
a ribbon whose width is scaled according to the size of the corresponding
cluster (Fig. 36). Please note that the location of the vertebrae corresponding
to this centroid centerline is intentionally not indicated since the ribbons are
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Figure 36: Spinal canal centerlines of all subjects (n = 490) clustered with agglomer-
ative hierarchical clustering employing complete link. For each cluster, a
representative centerline is visualized as a ribbon. Ribbon width encodes
cluster size. Ribbon color encodes the distance to a view-aligned, highly
transparent, sagittal plane passing through the barycenter B of the orig-
inal centerline bundle (Fig. 35, left). The sequence of a ribbon’s intersec-
tion with the plane supports an assessment of its curvature (upper inset).
Shadow projections reveal how far a representative extends to either side
of the plane (lower inset). Image from [291].

representative for the course of the spinal canal but not necessarily for the
vertebrae location.

visual hints The curvature of the spinal canal along the coronal axis
is perceived well in the sagittal view. However, the curvature along the
sagittal axis, i.e., the viewing direction, is only deducible by rotating the
scene. Hence, the sagittal view is augmented by three visual hints improv-
ing the curvature perception. (1) A highly transparent sagittal plane passing
through B is added to the scene. The position of the ribbon parts with re-
spect to the plane (in front/behind) and the visible intersections of ribbons
and plane support the differentiation between spinal canals being mostly
bended towards the viewer from those being bended away (Fig. 36, upper
inset). (2) The ribbons are colored according to their distance to the sagittal
plane. A diverging color scale is used to distinguish between parts in front
of the plane (blue), close to the plane (white), and behind the plane (red).
(3) A transversal plane is positioned below the ribbons and a light source
is positioned above them. Shadow projections are computed and drawn on
the plane. They provide an estimate of how far the representatives extend to
either side of the plane (Fig. 36, lower inset). In some cases, the projections
revealed subtle differences in shape, which could hardly be inferred from
the other two hints.
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measurement and interaction In order to facilitate a more quanti-
tative analysis of the centerlines and to support a comparison of individual
representatives, a vertical and a horizontal axis including tick marks are
added to each cluster representative (Fig. 36). All axes are located within
the sagittal plane (1). An initial pair of axes running through B has been
computed based on the entire set of centerlines and then copied and trans-
lated together with each cluster along the coronal axis (Fig. 35). The vertical
axes are assigned a unique cluster color to interrelate the representatives
and the cluster size legend.

The interaction with the visualization exceeds standard 3D scene naviga-
tion. Individual representatives may be picked by the user and all center-
lines of the corresponding cluster are visualized. The measurement of the
spine based on neuralgic points is of crucial importance and has a long tradi-
tion in orthopedics. Hence, two measurement widgets have been added for
measuring distances and angles (Fig. 37). Both widgets are bound to the ge-
ometry of the ribbons in order to simplify measurements in 3D space. The
visualization has been implemented in C++ and the Visualization Toolkit
(Kitware, Inc., Clifton Park, NY, U.S.).

Figure 37: The prototype comprises of various interaction facilities. The user may
pick a cluster representative, i.e., a ribbon, causing the corresponding clus-
ter to be visualized (centerlines with red and yellow halos). Widgets for
measuring distances and angles facilitate a quantitative analysis of the
spinal shape. Image from [291].

4.4.3 Results & Discussion

In this section, preliminary results combining the shape visualization with
associated population study data are presented. As seen in Fig. 36, the clus-
tering step is a good way to detect outliers in the data as clusters with very
few subjects that have an unusual shape. This can be utilized for finding
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pathological spine shapes–even for subjects that do not have a diagnosed
back disorder. The technique scales well regarding the number of input cen-
ter lines. It is possible to generate an overview for hundreds of subjects as
well as for smaller subsets, e.g., subjects that share certain similar attributes.
A subset visualization can be applied to detect if the different shape clusters
imply a significant difference in associated variables of interest. Does, for ex-
ample, a physically demanding job correlate with an extraordinary curved
spine?

The clinical partners expected the lumbar spine to be more straight along
the coronal axis for tall people, while being more sinuous (“lordosis”) with
decreasing body height. To check the results for medical plausibility, subsets
of the data based on body height are created. For each cluster the distance to
the arithmetic mean of age, body height, and weight is calculated. The means
of the absolute lordosis curvatures K are computed using the Frenet formu-
las [76].

While the mean curvature K for people sized 150 – 160 cm is 38.99 · 10−4
(σ = 9.99 · 10−4), it gets smaller the larger the subjects are, being at 34.59 ·
10−4 (σ = 9.98 · 10−4) for 160 – 170 cm and at 31.95 · 10−4 (σ = 8.88 · 10−4)
for 180 – 190 cm tall people. The expected differences in the distinct groups
could not only be confirmed; also clues can be given for groups which share
similar curvature. When looking at subject groups of body height 150 –
160 cm, 160 – 170 cm and 170 – 180 cm a cluster of subjects who are about
10 years older than the rest of the group could always be observed. They
all presented a lordosis shape as well as an “S” shape in sagittal direction
("scoleosis", see Sec. 4.1). Since a cluster showing the same characteristics was
found in distinct subject groups, it is subject of further investigation.

This finding is an example of how a clustering result can create groups
related by shape in order to find other correlations in the associated socio-
economic and medical attribute parameters. It can also serve as starting
point for a visual analytics tool to detect risk factors. This finding is an
example of how the clustering step can also support a hypothesis generation
step by creating subject groups with similar shape characteristics which can
then be projected back to the associated subject data to find new correlations.
It can also serve as starting point for a visual analytics tool to detect risk
factors.

The visualization aims for a visual comparability of the clusters. Addi-
tionally statistically reliable shape-describing features would enhance the
method by making statistical calculation applicable to deformation informa-
tion. This can be achieved by storing the curvature and position of several
fixed points in the FEM. While the visualization allows for the characteri-
zation of the lumbar spine curvature, it is currently not possible to predict
information about spinal canal narrowings, which can also be an indicator
for pathologies like spinal stenosis. This is also the case for a vertebrae de-
formation, which is an indicator for osteoporosis.

4.4.4 Summary and Conclusion

Applying the analysis of medical image data associated with non-image
data in a population study context is both promising and challenging. The
multitude of subjects requires robust yet precise and at least semi-automatic
detection and segmentation algorithms which capture the shape of a struc-
ture of interest over a large space of subjects. Subjects with morphologically
manifested pathologies render the automatic and semi-automatic detection
and segmentation of the image data difficult. Assessing the resulting infor-
mation space demands visualizations that map relevant information among
large groups of subjects.
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The goal of the following section is to include more shape descriptors and
apply the technique to all population study subjects. This allows for a statis-
tically reliable comparison of clusters. With the methods presented in this
section, only the overall curvature and torsion is calculated. Those can be
misleading metrics, since coronal as well as sagittal deformation can induce
a large curvature. Healthy and pathological subjects can be analyzed based
on their shape differences. Those and other shape-describing metrics can
be transferred to the population study data dictionary. Information about
vertebrae alignment is also of great interest.

The presented approach implements a pipeline for analyzing the lumbar
spine canal in order to correlate its shape to other variables associated with
the population study. This was done using an association to body height,
gender, age and weight. While this was a first step to confirm the expected
shape in different subject groups, it has to be enhanced to be applicable to
all data variables measured in the population.

In the following section, a web-based visual analytics framework is pre-
sented that allows for information visualization on non-image data in com-
bination with complex data set queries including the shape of structures.
This also allows for complex queries based on the shape of tissue types,
which are hard to recreate using classic statistical processors. It provides
the epidemiologists with a fast and effective way to analyze their data sets
exploiting the potential that lies beneath the numbers. The abstraction of
complex data models of the lumbar spine as well as the agglomerative hi-
erarchical clustering technique serve as image-based input for the methods
developed in the following section.

4.5 integrating image data with non-image visualizations

This section is based on

Paul Klemm, Steffen Oeltze-Jafra, Kai Lawonn, Katrin Hegen-
scheid, Henry Völzke, and Bernhard Preim. Interactive Visual
Analysis of Image-Centric Cohort Study Data. IEEE Trans. on Vi-
sualization and Computer Graphics, 20(12):1673-1682, 2014.

Steffen Oeltze-Jafra, Kai Lawonn and Bernhard Preim helped with adapting
the IVA methodology to the epidemiological application domain. Steffen
Oeltze-Jafra provided valuable input on how to define range and domain
features in this domain. Katrin Hegenscheid and Henry Völzke provided
the data, research questions, hypotheses and background knowledge to the
application domain. They are also the evaluating experts and provided im-
portant input for improving the iteratively designed prototype.

An IVA approach [255] for the combined analysis of image and non-image
data is proposed. It is an implementation of the workflow described in the
introduction of Part ii. Visual queries and direct feedback of Visual Ana-
lytics systems allow for a fast exploration of the data space incorporating
many different variables. Intended as an extension to the well-established
epidemiological tools it provides a way to rapidly validate hypotheses and
to trigger hypothesis generation using data mining methods, such as cluster-
ing. Hypothesis generation gains importance since the number of epidemiolog-
ical variables increases and the focus shifts towards more complex relations
involving more than two variables. The contributions are:

• an IVA workflow for population study data to allow both hypothesis-
driven analysis and hypothesis generation,



86 image-centric data analysis

• visualization techniques that incorporate both information visualiza-
tion and 3D rendering of organ shapes as well as combining them
with epidemiological graphics and key figures,

• highlighting subject groups and variable associations using shape-based
clustering and statistical contingency measures.

• an implementation of the presented methods in a web framework
based on WebGL, D3.js and NodeJS.

The approach is applied to a data set compiled to analyze lower back pain
and aiming to determine variables that indicate pathological changes. This
data set comprises 127 variables and 2 sequences of MRI data from 6,753

subjects. The presented method is implemented using modern web tech-
nologies, such as WebGL, D3.js and NodeJS to make them easily accessible
for the domain experts to enable a fast feedback loop.

Some methods used in this section are not restricted to analyze image-based
data, such as the contingency matrix or the pivot table. They could also be
discussed in Chapter data-driven visual analysis of sociodemo-
graphic , medical and lifestyle factors, since they mostly repre-
sent non-image data or image-derived metrics. The methods are incorpo-
rated in this chapter, because it is part of the analysis workflow, which is
specifically designed to analyze epidemiological hypotheses focused on, but
not restricted to image data. The important related work for this method can
be found in Section 3.3.4.

4.5.1 Image-Centric Population Study Data in an Interactive Visual Analysis
Context

In this section, the implementation of the IVA principle on population study
data is presented. As described in Section 3.2.2, IVA comprises different
analysis patterns, depending on the type of the conducted analysis as well
as the underlying data type.

domain and range variables As stated in Section 3.2.2, data are
characterized by a combination of independent variables, such as space
and/or time, and dependent variables, like temperature or pressure. These
are viewed either using physical views, which usually employ volume ren-
dering to display spatio-temporal behavior, as well as attribute views, such
as scatter plots, which show relationships between data attributes associated
with the spatio-temporal observation space. Transferred to epidemiological
data, the residential area of population members could be interpreted as
space, the different assessment cycles of a longitudinal study as time, and
the image and non-image data as dependent variables. This method neglects
geographical and temporal aspects. Instead, an abstract model is employed,
which considers the subjects as living in a joint image space where each of
them is represented by a segmented organ or structure. For instance, the
lumbar spine is segmented over all subjects and all lumbar spines are co-
registered spanning a joint space. Then, two types of dependent variables
exist:

1. the socio-demographic data and medical examination results and

2. variables derived from the segmented structures, e.g., spinal curvature
or misalignment of the vertebrae.

An alternative of the image space would be the shape space generated by
extracting the major modes of variation from all segmentation results as
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presented by Busking et al. [29], which is incorporated in Section 4.3. Based
on this model, the three analysis patterns of IVA can be employed.

Local Investigation refers to the inspection of dependent variables with
respect to subsets of the image or shape space. For instance, the epidemi-
ologist selects several lumbar spines with a common characteristic in the
image or shape space and inspects the associated dependent variables in an
attribute view [104]. The selection step requires dedicated interaction tech-
niques for defining a subset. Alternatively, derived shape-related variables
opposed in an attribute view or automatic techniques for shape clustering
may be employed, as presented in Section 4.4. Clustering algorithms can be
used to investigate associations between shape groups and other non-image
variables. Analysis of outliers can indicate segmentation errors or a group
of subjects sharing a pathology.

Feature Localization refers to the search for structures in the image or
shape space with a defined characteristic. The epidemiologist may be in-
terested in all female subjects with lower back pain and wishes to see the
corresponding spines in a physical 3D view.

Multivariate Analysis refers to an investigation of multi-variate proper-
ties of the dependent data by specifying a variable in one attribute view
while analyzing the value distribution with respect to other variables in
other attribute views. Epidemiologists may define a variable in a scatter plot
of the body mass index (BMI) and age to inspect the result in a histogram of
body height. These associations may also be summarized using pivot tables,
which are widely used in epidemiology.

4.5.2 Data Preprocessing

Transformation operations on the data to prepare it for an IVA system are
denoted as data preprocessing.

non-image data Data obtained using questionnaires or medical tests
are often stored using statistical packages such as SPSS, which have a pro-
prietary data format with limited export capabilities. Exporting the data
in the respective tool to a CSV file and then converting it to file types that
are easily manageable, such as JSON, makes it readable for modern program-
ming languages. This can be achieved by using data wrangling tools such as
OpenRefine2, which also validate the data (find missing data, clean up bad
formatting, transform scales). A data dictionary stores information about
each manifestation of a variable, such as a detailed description, its meaning
as well as the unit of measurement. Exporting the data dictionary, which
stores information about each manifestation of a feature, is also an impor-
tant step to get a detailed description of data variables and the meaning and
unit of measurement of their values. Missing data are denoted using error
codes indicating their cause ranging from ethical to medical and personal
issues. Therefore, these are also included as error codes which have to be
marked as such in the data dictionary. It is important to not simply inter-
polate missing features, because it imposes a high change of introducing a
new bias into the data. SPSS allows to store the data dictionary as part of
its proprietary format. In order to export it to an open format, we choose
to include the description, range and unit of measurement in a structured
JSON file, where the variable ID acts as reference, which allows for linking
between the CSV and JSON file.

image data Information about anatomical structures, such as diameter
or volumes, is extracted from the image data. This is either done manually

2 Developed by Google, Open Source; openrefine.org

http://openrefine.org
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by expert setting, landmarks or a (semi-)automatic detection, registration
and segmentation. These algorithms have to deal with a large inter-subject
variability of the anatomical structure [296]. Grey value comparison is used
to measure the quantity of fat, water and–application-specific–the iron con-
tent (liver) or the distribution of grey and white brain tissue. Morphometric
variables are derived to allow for statistical comparison of the tissue, which
incorporates mostly positions, diameters, volumes as well as distances and
alignment to other structures [123]. For more details, see Section 4.2.

4.5.3 Analysis Workflow

The proposed IVA workflow consists of three major steps, as illustrated
in Figure 27: Variable selection, visualization and brushing. A hypothesis-
driven analysis usually starts with the selection of variables or shape groups
derived from a shape-based clustering. Hypothesis generation with focus
on image data starts with a shape-based clustering or an overview visualiza-
tion of all variables. The variable is mapped using an automatically chosen
visualization appropriate for its data type (described in detail in the follow-
ing section). The visualization techniques have to combine both image- and
non-image data to set domain and range data in relation to each other. In
our system, the visualization can either be brushed or new variables can be
added to the analysis. Brushing methods are subdivided using the differ-
ent IVA levels presented in Section 3.2.2. In this method, brushed regions
are treated like categorical variables, as they divide the subject space in the
same way. Selecting variables also triggers a multivariate analysis using con-
tingency values (described in the following section) to highlight associated
variables. A sample workflow using interaction and visualization techniques
described in the next section can be seen in Figure 38.

4.5.4 System Design and Implementation

The suitability of visualization techniques for epidemiological data depends
on their ability to compare multiple data variables while highlighting asso-
ciations. The methods have to reflect the routines that epidemiologists take
into their research. Visual evaluations of data are therefore as important as
methods allowing for numerical data analysis. In the following sections the
different parts of the system are presented.

Design and Visualization Techniques

The epidemiological experts Katrin Hegenscheid and Henry Völzke are
located in Greifswald, while the methods were developed in Magdeburg.
Therefore, it became clear early that the communication and exchange of
software has to be focused on web technologies to facilitate rapid feedback
cycles. By running the prototypes on server machines, software exchange
became as easy as sharing a weblink, giving the opportunity to include the
clinical experts in the development process with little effort. Incorporating
the IVA workflow for image-centric population study data requires overview
visualizations as well as multivariate visualizations that bring image-derived
information in context to non-image variables.

The focus on web technologies is not without trade-offs. Classical UI el-
ements, such as the menu bar or custom right-click menus, are technically
possible, but not common in this domain. In favor of a clean layout, the sys-
tem was designed without such components. Since the previously described
IVA workflow allows for many different ways to analyze the data, the inter-
face was designed in a minimalistic manner, treating the resulting space as
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Drag and Drop

Figure 38: Workflow of introducing new features into the canvas area. (Top) Screen-
shot from the front end, which is divided as follows: (a) The sidebar con-
taining all variables as well as the groups defined in the analysis process;
(b) the canvas area where variables can be added via drag and drop and
the visualization is chosen automatically according to the data type; (c)
the interactive pivot table showing the exact numbers for each displayed
variable combination; (d) buttons to open panes containing the contin-
gency matrix, contingency pane and pivot table. The data displayed is
used to analyze the lumbar spine. Dropping the gender parameter on the
already plotted body size container creates a mosaic plot combining both
variables (bottom). In a prior step, the user selected all subjects with diag-
nosed thyroid disorder. Their shares are denoted in the bar chart as blue
and the mosaic plot as dark shade. Subjects between 153.5-170 cm body
size are more affected by thyroid disorder (box plot) and are mostly fe-
male (mosaic plot). Distance to the mean mesh of subjects with thyroid
disorder is encoded as red for x-axis, blue y-axis and green z-axis. Image
adapted from [293].
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canvas for the data. The workspace was divided into four major parts, as
illustrated in Figure 38 and 39.

• The sidebar, which contains all epidemiological variables. The cluster
results group variables like categorical variables and are part of the
sidebar as well (Fig. 38 a).

• The canvas holding all visualizations. Elements can be added, arranged,
resized and removed freely (Fig. 38 b).

• The interactive pivot table gives detailed numerical information of the
variables in the canvas view. This view on the data is familiar to epi-
demiologists (Fig. 38 c).

• The contingency view depicts relations for variables in the canvas in a
contingency matrix (Fig. 39) and a contingency list.

The design of the system follows Tufte’s design principles for good visual-
izations (see Sec. 3.2.1). Therefore, the number of user interface elements is
minimized to allow the user to focus solely on the visualizations. This is
achieved by facilitating most of the interactions using drag and drop me-
chanics. The system does not use context menus to avoid hiding function-
ality from the user. Also, no menu bar is incorporated. The visualizations
themselve have as little descriptive labels as possible to maximize the data-
ink ratio.

system layout Several layouts were tested with this prototype. The ini-
tial idea was to make all components freely arrangeable and resizable on
a large canvas area. This idea was soon dropped, since domain experts re-
ported a cluttered workspace, which required a lot of scrolling. The introduc-
tion of separate panes for the contingency matrix, pivot table and sidebar,
displayed with a mouse click on the corresponding button and sliding on
top of the canvas was considered more feasible (Figure 38 shows the system
with reeled-out pivot table pane). All user-generated visualizations are part
of the canvas and can be arranged freely.

sidebar Only the sidebar is visible at system start. It categorizes all vari-
ables into different types, for example somatometric (measurements of the
human body dimensions), disease- or lifestyle-related, pain indicators and
laboratory data (Fig. 38 a). It also contains subject groups defined by auto-
mated shape clustering. Groups are treated like categorical variables. Vari-
ables can be dragged from the sidebar into the canvas area for a feature
localization, which works as follows. This triggers an adaptive feature visu-
alization suitable for the current data type.

adaptive variable visualization The visualization type, inspired
by GPLOMS (see Sec. 3.2.2), is dynamically chosen based on the variable types
and number to allow for multivariate analysis. Categorical data are either
mapped to bar charts (single variables) or mosaic plots (multiple variables).
Figure 38 describes this dynamic adjustment. Continuous data can be visual-
ized using scatter plots (two variables) or parallel coordinates (multiple vari-
ables), but in epidemiology, this data type is usually categorized into ordi-
nal groups of equal size. Since the number of categories often depends on the
hypothesis, the discretization steps can be adapted dynamically. Too many
groups potentially generate sparse bins not suited for statistical evaluation.
Not enough groups overgeneralize information. Adaptive discretization is
an option, but imposes possible overfitting to the data. Conclusions based
on statistical relationships derived from groups already biased by variable
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smoked cigarettes per day

spine attrition yes
no

gender
weight

size

Figure 39: Contingency matrix of 129 variables (127 data set variables, 2 clus-
ter results) showing 16,641 combinations. Similarity is calculated using
the Cramér’s V contingency value. Color brightness encodes association
strength. Moving the mouse over an entry enlarges the variable names for
better readability. The enlarged excerpt shows associations for shape clus-
ters of subjects with and without diagnosed spine attrition, which show
associations between gender, weight, body height and smoking behavior.
The contingency pane is not shown here. Image from [293].

distribution are heavily influenced by the used discretization. Therefore, the
convention to use bins of equal size is applied.

Following Tufte’s concept of small multiples [259], information derived
from the medical image data are incorporated into the plot by including
color-coded mean shapes for each manifestation (Figure 38 b). The 3D plots
can be navigated using standard mouse input, the camera is synchronized
between all views to enable direct comparison. The distance from a group
mean shape is mapped to the global mean using color. This allows to as-
sess local shape changes (Fig. 38) and is an important information to the
epidemiologist. Until now, epidemiologists were not able to inspect shape
differences based on non-image variables. Dropping a variable on an ex-
isting plot adapts the visualization dynamically to allow for comparison
(Fig. 38 right).

To support feature localization, subject groups can be brushed via a double-
click on its representative in the visualizations. Holding down the shift key
allows users to select multiple manifestations. Brushed groups act as refer-
ence for the shape visualization, calculating distances based on the mean
shape of the brushed selection. This allows to highlight distances between
subjects. The share of subjects of this subgroup is linked to all other views
(Fig. 38 left). If the user selects all female subjects in a visualization of gender
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distribution, all other displayed meshes are color-coded with their distance
to the female mean and the share of female subjects is highlighted in the
information visualization. Brush selections are propagated to all visualiza-
tions allowing for fast feature querying.

pivot tables Pivot tables are frequently used to present the data in epi-
demiological publications. Epidemiologists are used to perform multivariate
analysis of groups based on table representations. Thus, an interactive pivot
table was introduced. These tables clearly convey the subject count in each
group (see Figure 38 c). However, they quickly get confusing when they are
divided into many subgroups. This problem was tackled by making the or-
der and number of displayed variables adaptable. This also applies to the
assignment of row or column variables. Another way to avoid clutter is the
user-driven selection of displayed variables. To allow for better comparison
with respect to variables, the values of each cell can also be displayed as
percentage of the variable represented of either the row or column.

automated variable suggestion using a contingency matrix

Highlighting potentially interesting associations in the data set is one major
benefit of the IVA-powered approach and is part of the multivariate analysis
pattern for analyzing variables outside the shape space. Turkay et al. [263]
used the approach to calculate statistical key figures based on the distri-
bution functions of each variable derived from the image data. Since the
majority of the data are categorical variables, different solutions have to be
employed. The Cramér’s V contingency coefficient can be used to calculate
correlations between categorical variables [52]. It is based on Pearson’s X2

distribution test [200], which uses contingency tables holding the counts of
subjects for all possible manifestations of two variables. Cramér’s V is de-
fined as:

V =

√
X2

N(k− 1)
, (8)

where X2 equals Pearson’s chi squared, N is the total number of observations
and k is either the row or column count, depending on which one is lower.
V yields values between 0, meaning that two variables are completely inde-
pendent, and 1 indicating that they are the same. Cramér’s V does not allow
to infer the dependency direction.

It shares the same restrictions as Pearson’s X2. The expected counts in the
contingency table have to be larger than five for 80% of the entries and no
expected value must be smaller than one [44]. Some manifestations and vari-
able combinations, which are only exposed by small subject groups, cannot
be assessed with this technique. They cannot be included into the epidemi-
ological analysis, since statistical validation needs a minimum count to be
valid. The contingency matrix highlights correlations between all variables.
This aims to highlight variables possibly associated with the focused hy-
pothesis and to trigger new hypotheses. Contingency is visualized using
an interactive contingency matrix with association power mapped to color
brightness. The distinction whether an association is a confounder or an ef-
fect depends on the context defined by the hypothesis and is a decision to
be made by the domain expert. The contingency matrix visualization is an
overview visualization–something the epidemiological community lacks and
is in great need of.

contingency pane Dropping a variable into the canvas area adds an
entry for each manifestation of it to the contingency matrix. Testing sessions
revealed that it was tedious to open the matrix every time a new variable
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is added. As a consequence, the contingency pane, a table containing corre-
lating variables for the last added visualizations in descending order of the
Cramér’s V value was added. Contingency pane entries can be dragged and
dropped into the canvas area just like variables in the sidebar.

initialization and clustering Using variable suggestion allows to
initialize the system with a set of potentially interesting visualizations. After
testing and domain expert feedback, this idea was dropped. Reasons for this
are twofold. Very often, high correlations are obvious, such as gender with
menstrual status. Also, it was observed that the variables of interest are
dependent on the specialization of the domain expert.

Subject clustering is triggered automatically as local investigation for a vari-
able after it was added to the canvas by the user. The clustering method and
parameters are transfered from Section 4.4. A status indicator at the bottom
of the screen keeps the user informed about the pending clustering result,
since the process can take up to ten seconds. Clustering results are listed
in their own category in the sidebar. Since a clustering process can take a
couple of seconds, a status indicator at the bottom of the screen keeps the
user informed.

Implementation

Three.js

D3.js

PivotTable.js
WebsocketsBo

ot
st
ra
p

Figure 40: Overview of the technologies incorporated in the prototype. The front end
solution (left) uses HTML5/CSS3, WebGL and SVG to display the data.
The NodeJS-based back end (right) stores all image and non-image data
and transfers it to connected clients. All computation-heavy operations,
such as calculation of mean shapes or distances, as well as statistical pro-
cessing are performed on the server side to keep hardware requirements
of client systems low. Client-server communication is accomplished via
the Websocket protocol. Image from [293].

In this section, the implementation of the presented methods using open
web standards is discussed. To provide a fast communication loop between
method development and expert input, modern web technologies are em-
ployed. In addition to the obvious advantages of web technologies, the fol-
lowing aspects are crucial for this work:

• No additional software needs to be installed, most people use a decent
state-of-the-art web browser, even on mobile devices.

• The client-server structure allows for employing heavy computation
on a server machine and transferring results to the client.

• Disk-space demanding image data remains on the server and elements
can be transferred on demand.

• Since image data for thousands of subjects requires hundreds of giga-
bytes disk space, it can remain safely on the server and elements can
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be transferred on demand. High confidentiality standards of the data
are met by a password protecting the access.

• Recent developments in WebGL applications running in browsers with
near-native performance result in many open source libraries, which
are well documented and driven by active communities. WebGL is used
for rendering shape information.

These advantages do not come without drawbacks. Sophisticated libraries
and languages, such as the Visualization Toolkit (VTK) 3 or R4 for statis-
tics, are either not available at all or only accessible through complex client-
server systems. Therefore, many standard methods had to be written from
scratch. The back end is realized using NodeJS5, which is based on the
Google V8 Javascript runtime environment. Due to its event-driven non-
blocking I/O model it is fast and responding even with heavy workload,
such as mesh processing. Non-image data for all subjects including the data
dictionary is stored in a JSON file on the server. Image data are available
as raw DICOM files. Segmentation masks of anatomical structures are rep-
resented as meshes, suited for comparing subjects. The requested data are
transmitted when a client connects. The server performs heavy statistical
tasks, such as calculation of Cramér’s V values for all variable combinations
in order to keep the computation time on the client as low as possible.

The front end is created using Bootstrap6 as foundation for the layout
and basic UI elements using HTML5, CSS3 and Javascript. Information vi-
sualizations such as scatter plots and bar charts are created using the pop-
ular Data-Driven Documents (D3.js) library [24], which works well for at-
taching data to visible elements like vector graphics and provides power-
ful transformation and mapping tools. The pivot table implementation uses
PivotTable.js.7 Three.js8 allows GPU-accelerated data rendering using
WebGL. The WebSockets protocol handles the client-server communication.
Since the employed clustering algorithms are written in MATLAB, they are
accessed using the NodeJS server. This is accomplished by converting it to a
parameterized standalone console application, spawned by NodeJS on client
request. The result is read from the console output and is returned to the
client. All parameter-steered console applications can be incorporated in
this context. Figure 40 summarizes the incorporated technologies.

4.5.5 Application

This section describes how the presented IVA workflow is used in the epi-
demiological application. A qualitative evaluation was conducted with two
domain experts on the lumbar back pain data set, described in Section 4.1.
Characterizing the healthy aging process of the spine is a long-term goal
for determining age-normalized probabilities for spine-related diseases by
incorporating individual risk factors. The assessment of the spine shape po-
tentially yields new risk factors for these diseases. These shape-related risks
can then be translated into metrics, which can be statistically assessed.

Data Preprocessing

non-image data To ensure a fast and easy data access outside of sta-
tistical processors like SPSS, the data was exported to the JSON file format.

3 Developed by Kitware Inc; vtk.org
4 Open Source; r-project.org
5 Developed by Joyent Inc, nodejs.org
6 Developed by Twitter, getbootstrap.com
7 Developed by N. Kruchten, nicolas.kruchten.com/pivottable
8 Originally developed by R. Cabello, threejs.org

http://vtk.org
http://r-project.org
http://nodejs.org
http://getbootstrap.com
http://nicolas.kruchten.com/pivottable
http://threejs.org
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Since it lacks export methods for data dictionaries, SPSS is incorporated to
export the data to the SAS v9+ format, which saves the data labels, and ex-
ported the data values as non-labeled CSV. A short script combined both
data sources to a JSON file. The data types had to be transferred manually.
Each variable is stored as an object containing information about:

• the data as array of values; categorical data and error codes are stored
using IDs,

• the data type (continuous, nominal, ordinal, dichotomous),

• a detailed description of the feature, and

• the data dictionary translating value or error IDs to values.

Each feature is stored as an object containing:

• the data as array of values–categorical data and error codes are stored
using IDs,

• the data type (continuous, nominal, ordinal, dichotomous),

• a detailed description of the feature, and

• the data dictionary translating value or error IDs to values.

Continuous variables are discretized to allow for Cramér’s V contingency
coefficient assessment. Following epidemiological publications, the number
of groups is set to five (the quintiles) to allow for contingency assessment.

image data The lumbar spine was detected in the image data using a
hierarchical finite element method by Rak et al. [213], as presented in Sec-
tion 4.4. This semi-automatic method requires the user to initialize the FEMs
with a click on the L3 vertebra. Two user-defined landmarks on the top and
bottom of the L3 vertebra describe an initial model height estimation. The
model uses a weighted sum of T1- and T2-weighted MR images to detect
the lumbar spine shape. Once registered, it captures information about the
shape of the lumbar spine canal as well as the position of the L1-L5 ver-
tebrae. Due to incorrect initialization, strongly deformed spines, contrast
differences and artifacts, the model was not able to detect lumbar spines for
all subjects. A total of 2,540 tetrahedron models were obtained of the lum-
bar spine. Using the methods from Section 4.4, the centerline of the lumbar
spine canal was extracted, which captures information about lordosis and
scoliosis (the medical terms for spine curvature).

Shape Visualization and Clustering

The tetrahedron-based detection model consists of corresponding grid points
for each structure instance. This allows to calculate shape distance and sim-
ilarity. This information is used to calculate mean shapes as described in
Section 3.1.3. The shape distance between meshes is mapped to color (recall
Fig. 38). For dichotomous variables, the color represents distances between
mean shapes of the two groups, for variables with more than two manifes-
tations it encodes the distance to the global mean shape of all subjects.

Shape-based clustering is carried out via agglomerative hierarchical clus-
tering of the spine canal centerlines (recall Section 4.4). Since the “correct”
number of clusters in a given group is unknown, an estimate is computed
by means of the knee/elbow method [227].
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a

b
Figure 41: Screenshots from the hypothesis-free analysis. (a) Mean curvature of lum-

bar spine canal plotted against the mean shape of 58-74 years old female
subjects (light-blue bars). Note the high amount of this subject group rel-
ative to the total count in the third group. The last group contains four
outliers. (b) Clustering of all subjects yields seven groups, whereas clus-
ter 4 assembles the mean. The light blue bars indicate the share of females
in the group. Image adapted from [293].

Participants, Setup and Procedure

Inspired by Lam et al. [141], an investigation of Visual Data Analysis and
Reasoning (VDAR) was conducted. This approach aims to characterize the
system’s ability to explore data, discover knowledge, generate hypotheses
and help formulating decisions. Since it is hard to quantify these outcomes,
Lam et al. suggest case studies for the VDAR by applying the think-aloud
protocol to understand the domain expert’s observations, inferences and
conclusions when using the system.

The participants are two epidemiological domain experts. HV and KH
are physicians with focus on epidemiological research. HV is a specialist
in internal medicine (23 years of experience) and head of the SHIP, KH a
radiologist (9 years of experience) and responsible for the SHIP MRI data
acquisition.

setup Due to the large geographical distance between the participating
institutes, the evaluation was done completely web-based. The experts ac-
cessed the prototype by entering the weblink into their browser. User in-
put was observed using screen-sharing. Communication was enabled via
webcam-supported Voice over IP. The total setup time including installing
the screen-sharing application was about five minutes. Video recordings of
the sessions allowed a detailed evaluation afterwards.
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procedure At first, the computer scientist controlled mouse and key-
board of the participants’ PC and demonstrated the basic functionalities
of the system. This included the contingency matrix, the correlation view,
how to introduce feature visualizations, how the color coding of differ-
ences works, and the pivot tables. As they understood the concepts, the
computer scientist handed over the mouse and keyboard control and only
observed from this point on. The epidemiologists were given two tasks: one
hypothesis-free analysis of the data and one starting with an assumption.
For each case, an analysis was conducted with each expert.

Case 1: Hypothesis-free Analysis

Analyzing the data set without prior hypothesis requires a starting point giv-
ing an overview of the data [239]. With the herein presented method, there
are two ways to achieve this. Performing a multivariate analysis by viewing
the contingency matrix (sized 127× 127 tiles) or a shape grouping step using
shape-based clustering. The first was chosen by both experts. Before, they
were not able to look at all variables in the context of each other. To cite one
expert, the contingency matrix “illumunates the data black box”, making it
possible to look at the data unbiased of assumptions.

analysis 1 The radiologist (KH) was looking for correlations with shape-
related variables in the data, finding that spine curvature correlates with leg
pain, age, body height and hormone replacement therapy status. Due to the dense
mapping of information in the contingency matrix, KH suggested to make
this visualization full screen.

After this initial overview, KH performed a multivariate analysis by intro-
ducing variables, such as age, waist circumference, weight or lumbar spine canal
curvature as bar chart views into the canvas area and selected subgroups to
see how they are distributed and if they could observe unusual behavior in
the mean shapes. This pointed out problems with the used categorization
method splitting numerical variables into equally-sized ordinal bins. If a
variable contains outliers, such as waist circumference (e.g., by subjects with
morbid obesity), this approach leads to sparse categories, making it hard to
calculate associations. The proposed expert solution for this is categoriza-
tion using quartiles/quintiles and is described in detail later in this section.

A multivariate analysis using the Cramér’s V contingency values for subjects
with strong lumbar spine curvature showed that these subjects are primarily
females between 58-74 years who also report pain radiating from their back
into other body regions (Fig. 41 a).

analysis 2 HV also started with a multivariate analysis using the con-
tingency matrix to analyze non-image variables, such as age-associated pa-
rameters like income, blood fat values or number of born children, but found no
associations of interest. Therefore, he applied the local investigation pattern
by a shape grouping step using shape-based clustering via dragging All sub-
jects from the sidebar into the canvas area, triggering the shape clustering
(Fig. 41 b).

Cluster 4 represents subjects with average shape. Other shapes differ with
respect to size, such as cluster 2, 3, 7, whereas the last one and cluster 5 also
represent a more straight spine, which is usual for subjects with larger body
size. Cluster 1 and 6 contain outliers, characterized by their unusual shape
and small number. Cluster 2 contains the second largest number of elements
and was therefore of special interest. To get an overview of the suggested
variables, the user opened the contingency pane (not shown here) to per-
form a multivariate analysis by looking at Cramér’s V contingency values of
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all clusters, revealing a correlation with gender (0.29) and body size (0.24).
Therefore, another multivariate analysis was carried out by dragging the gen-
der variable to the canvas and selecting all female subjects (Fig. 41 b). Cluster
1 contained primarily female subjects. The contingency table showed contin-
gency values ordered by magnitude shows correlations with leg fatigue (0.45),
physically heavy work (0.43), body weight (0.32), dyspnoea (0.3) and headache in-
tensity (0.3). No correlation with back pain was showed in the contingency
table. Since it is a pain indicator, headache was of special interest and was
further investigated by incorporating a pivot table setting headache intensity
in relation to cluster affiliation. It was found that cluster 1 subjects report
heavy headaches more frequently than other subjects (9.26% of subjects com-
pared to 1.34% - 3.53% in the other clusters). Another multivariate analysis
using a pivot table set gender and employment status in relation to cluster-
ing affiliation. It shows that cluster 2 contains mostly women and also has
a larger unemployment rate, while the overall employment rate of women
and men in the data set is almost exactly 50% (students and pensioners are
not counted as employed). While all observed features seem to be plausible
associations related to back pain, the values indicate that cluster 2 contains
subjects with chronic back pain radiating to the legs. Metabolic parameters,
such as blood fat and blood sugar, are also possibly associated features. The
employment status is a feature relating to many different lifestyle factors
such as income or nutrition as well as age, and might act as confounder.

The experts emphasized the importance of methods providing an overview
of the data for hypothesis generation. With the presented IVA approaches
they were quickly able to confirm medical knowledge and to elaborate new
hypotheses. These hypotheses are focused on the correlations observed to-
gether with shape-based correlations. Namely, the correlation of a cluster
containing females and their high share of reports of headaches provides an
interesting subject group for further analyses. Also, the high share of back
pain reports for the subject cluster with an unusually high unemployment
rate may be analyzed further to see if employment status is a predictive
factor for specific subject groups. One observation was that the domain ex-
perts are more likely interested in variables they are familiar with and have
personal clinical experience with.

Case 2: Hypothesis-driven Analysis

If the user proposes a hypothesis about a relation between a non-image
variable and shape, the workflow slightly differs from the hypothesis-free
analysis. The starting point follows the feature localization pattern, where
a variable of interest is selected by dragging it into the canvas area and
viewing the subjects’ distribution as well as their shape differences.

analysis 1 Hypothesis: “Back pain is associated with age and lumbar spine
shape”. To validate this hypothesis, a feature localization was performed by
combining the dichotomous variable “Did you experience back pain in the last
three months?” with age in a mosaic plot by dropping both variables on the
canvas area (Fig. 42 a). HV was not able to observe the expected effect in
the visualization. Reasons for this are twofold. Age influences the lumbar
spine shape, while the differences between subjects with and without back
pain are small. The major differences seen in the visualization are therefore
related to the age variable, masking differences related to the back pain pa-
rameter. The second explanation is the commonality of back pain in our
society. As seen in Figure 42 (a), subjects reporting back pain are the major-
ity, which makes it difficult to extract parameters that reliably describe back
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pain. A multivariate analysis using the contingency table showed a strong
association between back pain with both gender (0.37) and body height (0.35).
Body height was explained as a confounder for gender, since female subjects
on average are smaller than male subjects. The analysis solely based on
shape-accentuated body height differences in gender, which clouded the dif-
ferences of back pain.

The epidemiologists pointed out that they would like to see a more intu-
itive and fast way to select subgroups based on different variables to make
full use of the analysis capabilities, as discussed in the Section Further Feed-
back and Lessons Learned.

analysis 2 Hypothesis: “Back pain is related to lumbar spine deformation”.
The previously discussed analysis questions the suitability of the lumbar
spine segmentation for analyzing back pain, leading to this analysis. There-
fore, the dichotomous variable “Did you experience back pain in the past three
months?” is dropped into the canvas area. Figure 42 (b) shows the results
of the automatically triggered shape-based clustering for subjects with and
without back pain. The clustering algorithm finds only three homogeneous
clusters close to the global mean shape for subjects reporting no back pain.
The cluster analysis for back pain yields six diverse clusters with pathologi-
cal shape classes. Cluster 5 represents most of the subjects and is similar to
the global mean shape. Cluster 1 and 2 represent a hyperlordosis, a strong cur-
vature of the lumbar spine, while cluster 3 and 4 represent a more straight
shape. A multivariate analysis using the pivot tables puts gender and strong
back pain in context to cluster affiliation (Fig. 42 b). It shows that subjects
in cluster 1, 2 and 6 reported strong back pain (cluster 1 14.57%, cluster 2

15.08%, cluster 6 19.57%, compared to 6.74% - 13.13% in the other clusters),
while at the same time they also have a considerably higher share of females
(cluster 1 81.46%, cluster 2 65.87%, cluster 6 70.06%, compared to 20.79% -
53.08% in the other clusters). To check for unusual correlations, the expert
used the Cramér’s V contingency table. It depicted strong associations with
body fat (0.32), body weight (0.3) and high blood pressure (0.27) for cluster 1,
alcohol consumption (0.32) and attentiveness disorder (0.28) for cluster 2, and
strong need of sleep (0.26) for cluster 6. For the experts, these observations
are a starting point for a number of new hypotheses about possible relation-
ships, for example the association between overweight and cluster 1.

In summary, it can be stated that the hypothesis-driven analysis leads to
hypothesis generation by design of the framework. It is not suited and in-
tended to statistically validate hypotheses. It rather triggers the analysis of
potentially associated variables with a pathology of interest.

further statistical analysis of the observed relationships

The following analysis is available open source R Markdown document.9 The
evaluation shows that there are no obvious relationships between spine shape
and back pain. It, however, yields several features that are associated with
certain subgroups derived through shape-based clustering. These features
are now assessed in a follow-up statistical analysis for potential relation-
ships with back pain. The data basis is the same subset of subjects, namely
those who comprise a detection model for the lumbar spine (2,540 subjects).
The target feature is always the binary (dichotomous) answer to the ques-
tion “Did you experience back pain in the past three months?” and is referred to
as back pain in this paragraph. The analysis was carried out for all subjects

9 http://paulklemm.github.io/StatisticalReview/VAST14_Statistical_Review.html
https://github.com/paulklemm/StatisticalReview

http://paulklemm.github.io/StatisticalReview/VAST14_Statistical_Review.html
https://github.com/paulklemm/StatisticalReview
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Figure 43: Mosaic plot of back pain and attentive disorder and increased need of sleep.
Subjects with higher attentive disorder and increased need of sleep report back
pain more frequently. The colors represent the residual level of each com-
bination. Blue means that there are more observations in a cell than ex-
pected given a null model (referred to as independence of the features).
Red means there are fewer observations than expected. Therefore, sub-
jects with no attentive disorder and normal sleep behavior seem to have less
reports of back pain as expected, while subjects with attentive disorder and
increased required sleep show also increased back pain reports.

as well as subjects older than 60 years due bone erosion in the spine vertebrae
for older subjects.

In order to assess the association between the continuous feature age and
the categorical feature back pain, an analysis of variance (ANOVA) is con-
ducted. It explains the variance of a target feature (in this case back pain) with
one or more independent features. In the R implementation of the ANOVA,
a linear model is used for predicting each subject group (“Strata”) depend-
ing on the categorical target. An ANOVA calculates parameters called F
statistics, comparing the variation between the strata. The F statistic can be
depicted as F statistics = between−group variability

within−group variability . This statistic can
be used to see if the between-group variability dominates over the within-
group variability. The null hypothesis for this test states that age does not
influence back pain and yields an equal distribution. The alternative hypoth-
esis suggests that the distributions are not equal and suggests a relationship
between age and back pain. The ANOVA yields an F-value of 0.009 with a
p-value of 0.923. A p-value below 0.05 is the general standard to accept the
alternative hypothesis. Since the p-value of age and back pain is above this
threshold, the alternative hypothesis has to be rejected. Note, that this result
is not a prove that the null hypothesis is true. Another association metric are
the odds ratios (OR), which analyze the proportion of two dichotomous fea-
tures, mostly a risk factor and a disease outcome (see Section 2.1). A odds
ratio calculation requires a 2 × 2 contingency matrix. Therefore, age is di-
chotomized into two groups for the analysis. Subjects older than 60 years
have an OR of 0.93 for back pain, subjects older than 70 years have an OR of
1.04. Both values are near to 1, meaning that there are only slight differences
w.r.t. the back pain.

The association of body fat with back pain can be observed in the data with
a high F-value of 24.33 and a very low p-value of 8.64e−7. For subjects older
than 60 years, the effect can be still observed with an F-value of 5.699 and
a p-value of 0.0172, but it is less powerful. The World Health Organization
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(WHO) does not provide clear obesity levels w.r.t. body fat percentage [221].
To determine obese subjects based on body fat percentage, thresholds values
from Romero-Corral et al. [221] are incorporated, who correlate obesity to
cardiometabolic dysregulation and cardiovascular mortality. The chosen cut-
off is 22.15% for men and 33.3% for women. These values are incorporated
to calculate the OR for obese men and women w.r.t back pain based on body
fat percentage. The OR for obese men to have back pain is 1.29, for obese
women 1.13. This indicates that obese men suffer more likely from back pain
than obese women.

The ANOVA of back pain and body mass index, which is calculated as
BMI = body weight in kg

(body size in meter)2
[210], shows no correlation in the data with

an F-value of 3.354 and a p-value of 0.0672. For subjects older than 60 years,
the alternative hypothesis is rejected with an F-value of 0.014 and a very
high p-value of 0.906. Similarly, the data does not support a relationship be-
tween body weight and back pain with a low F-value of 0.021 and a p-value of
0.884. The group of subjects older than 60 years shows an F-value of 3.72 and
a p-value of 0.0541, which is still above the 0.05 threshold. The WHO defines
obesity based on a BMI above 30 independent of gender [281]. The OR of
subjects with a BMI above 30 and back pain is 1.22 and shows a relationship
between obese subjects and back pain.

Since high blood pressure is a categorical feature as well, the Cramér’s V
value was calculated for the target back pain. This value, calculated for all
subjects, yields no sign of correlation with a low value of 0.065 and also for
subjects older than 60 years with a value of 0.077. Similarly, the alcohol intake
in the last 12 months shows a low correlation with back pain with a Cramér’s
V value of 0.058. Subjects older than 60 years, however, show a low corre-
lation with a value of 0.108. Attentiveness disorder shows a low correlation
with back pain with a Cramér’s V value of 0.162 for the whole population
and 0.216 for subjects older than 60. Similarly, increased need for sleep shows
a correlation with back pain with a Cramér’s V value of 0.186 and 0.204 for
subjects older than 60 years. As seen in Fig. 43, the reports of back pain
increase as attentive disorders as well as the increased need for sleep.

Even though the extracted features are influenced by lumbar spine shape,
the relation between them and back pain is, with exceptions, low. This is,
however, not unexpected, since the analysis was carried out on features that
are extracted solely based on the shape, and does not include any pain indi-
cators. A thorough analysis conducted in Section 5.1 will provide a deeper
analysis of shape-related features as well as their influence on back pain
using hierarchical clustering.

Further Feedback and Lessons Learned

Both domain experts rated the IVA approach positively. KH emphasized
the way the image data are included into information visualizations, which
comes much more natural to her due to her background in radiology. Great
potential is also seen in communicating insights efficiently using the pre-
sented visualizations. Epidemiological publications often present data as
lists containing results of statistical analyses. This representation reaches
its limit for showing shape variance information for anatomical structures.
Here, the epidemiologists see a great potential for communicating influenc-
ing factors of non-image data on shape information. The resulting plots can
also be part of a final report to graphically underline results. The herein
presented data-driven analysis approach may also be supported through
videos of analysis sessions, which document the train of thought and rea-
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soning process. This highlights the benefits of this approach and also allows
to spot potential mistakes and questionable assumptions.

multivariate analysis is most important for hypothesis gen-
eration Both experts emphasized the potential of the multivariate anal-
ysis capabilities of the contingency matrix for gaining insight into a large
amount of variables simultaneously. It is also useful to verify established but
still controversial risk factors, such as the metabolic syndrome for coronary
heart disease and whether the data set provides more suitable risk factors.
Creating contingency matrices for subgroups, such as different age bins, can
help to characterize the aging process by deriving age-specific risk factors.
Multivariate analysis can be improved by more ways of brushing the data
as well as creating subgroups for comparison as a result of the hypothesis-
driven analysis case. Too small variable ranges yielding sparse groups could
hinder the calculation of statistical resilient measures, since they require a
minimum amount of subjects exhibiting the selected variable ranges.

segmentation quality is crucial KH pointed out a unusual strong
similarity of the L3 vertebra throughout the population. She would expect
a higher shape variability of the vertebra. The medical explanation is that
it represents an angular point of curvature of the lumbar spine. A second
explanation is the use of the L3 vertebra as initialization point of the lumbar
spine model. The experts also emphasized that associations related to shape
strongly depend on the segmentation quality. The lumbar spine model used
in this case study captures deformation of the spine canal well, but lacks
precise definition in vertebrae height and shape. Since deformation of the
spine canal is the last stage of pathological lumbar spine deformation and
is preceded by vertebrae deformation, the system would strongly benefit
from more precise segmentation results capturing these prior changes. For
the visual comparison, KH proposed an abstraction of the representation
into landmarks, such as centers of the vertebrae and cardinal points of the
lumbar spine canal.

usage of different categorizations depending on expected

outcome Categorizing numerical variables into equally sized ranges pos-
sibly creates sparse categories due to outliers, for example when analyzing
body weight. These outliers are only of high interest for finding pathological
subjects. The experts therefore suggested two modes of the tool. The outlier
mode still creates categories of equal ranges, producing sparse categories
for outliers. Balanced categories are created in the second mode, which uses
quartiles or quintiles to set borders between categories.

web technologies are well suited for rapid feedback The
web-based approach for both implementing the prototype and getting feed-
back via Voice over IP conference calls worked very well. Since the software
does not need to be compiled, small changes can even be made on the fly
during a testing session. All the data as well as associated medical images
remains on the server machine and has not to be moved tediously using
external hard disks. This approach is well suited for the VDAR approach to
assess user thought processes using the think-aloud technique.

4.5.6 Summary and Conclusion

An IVA framework for the analysis of image-centric epidemiological data
was proposed in this section. Hence, the framework allows the hypothesis-
driven analysis and hypothesis generation. The visualization of multivariate
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data using multiple connected views allows users to get fast visual feed-
back about subject groups. Brushing and linking allows to adapt the data
to formulated hypotheses. The use of pivot tables is familiar to epidemiolo-
gists while embracing the power of interactive adjustment of the shown vari-
ables. The automatic suggestion of correlations using contingency methods,
such as Cramér’s V, triggers hypothesis generation by highlighting correlations
potentially overlooked by the experts. Shape-based clustering assesses the
variability of an anatomical structure in the context of non-image variables,
such as disease indicators or lifestyle factors.

Epidemiologists are for the first time able to assess shape information of
the lumbar spine and its influence on diseases. Findings from analyzing
lumbar back pain using the IVA approach range from deriving shape-based
groups of subjects to detailed descriptions of variables potentially associated
with the disease, such as waist circumference, alcohol consumption and at-
tentiveness disorder. The future work regarding this system comprises:

• shape brushing methods to intuitively query subjects using image
data,

• the inclusion of more statistical methods and views that are familiar
to the epidemiologists (odds ratios, box plots), or

• adapting the shape visualization to explore other organ data with dif-
ferent variance type (such as texture of liver or white/gray matter
distribution in the brain).

To reduce the number of false positive findings, the data space can also
be randomly cut in half. Then, the hypothesis can be cross-validated for
statistical soundness. This requires a large number of subjects, especially if
the investigated features are rare and only presented by a few subjects.

As the number of image-centric population studies, participating subjects,
gathered variables and imaging modalities rises, and advances towards com-
parability between population studies are made, the gap between data com-
plexity and analyzability increases. The methods proposed in this section
focus on closing this gap, allowing the domain experts to dig deep into the
data and potentially obtain unexpected findings.
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S O C I O D E M O G R A P H I C , M E D I C A L A N D L I F E S T Y L E
FA C T O R S

This section focuses on IVA methods for analyzing data without a spatial
(physical) relation. Physical views are absent in the methods presented in
this chapter (recall Section 3.2.2). The workflow is specialized to focus on
the IVA pattern of multivariate analysis, where independent variables and
their connections are investigated.

The presented methods tackle different epidemiological problems.
Section 5.1 and 5.2 incorporate machine learning algorithms to support hy-
pothesis generation for population study data. Section 5.1 focuses on the
analysis of metrics derived from the medical image data, which was also
used in the prior chapter. It provides an answer to the question which non-
image features can be predicted using solely the information of the image-
derived metrics. While this is primarily a method to derive features that are
associated with a set of target variables, it can also be used to investigate hy-
potheses. This can be achieved by dividing the data set according to features
of interest (such as different age levels), as well as restricting the set of target
features. In Section 5.2, the suitability of different clustering algorithms for
epidemiological data is investigated.

Section 5.3 and 5.4 employ overview visualizations for feature correlations
to derive insight into the data. Section 5.3 employs a purely visual method
for conducting an explorative hypothesis-free analysis of a data set by pro-
viding interactive plot matrices. The 3D regression heat map presented in
Section 5.4 employs an overview visualization using regression models of
pairwise feature correlations with a specified target feature, which mostly
indicates a disease or condition. The target can also be any feature in the
data, but in epidemiology the target is usually a disease indicator. By pro-
viding means of adapting the underlying regression formulas, hypotheses
can be integrated into the system, supporting a confirmative analysis.

5.1 decision tree quality plot

This section is based on

Paul Klemm, Sylvia Glaßer, Kai Lawonn, Marko Rak, Henry
Völzke, Katrin Hegenscheid, and Bernhard Preim. Interactive Vi-
sual Analysis of Lumbar Back Pain - What the Lumbar Spine
Tells About Your Life. In Proc. of Information Visualization Theory
and Applications, pages 85-92, 2015.

Marko Rak provided the detection masks of the lumbar spine. Katrin Hegen-
scheid and Henry Völzke provided the data as well as the epidemiological
background knowledge together with associated problems and hypotheses.
Sylvia Glaßer, Kai Lawonn and Bernhard Preim provided fruitful discus-
sions for developing the idea and concept of the publication as well as the
incorporated error term.

The methods presented in this section were developed to conclude the anal-
ysis of the spine data set, which was already incorporated to validate the
methods developed in the prior chapter. It aims to determine which features
can be directly correlated with the information encoded in the detection
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masks. The resulting method and the IVA method displaying the results,
however, can be employed to any kind of data set.

The initial goal is to extract possible associations between spine shape
and back pain characteristics. For this purpose, classification algorithms
are combined with data visualization techniques. Then, Interactive Visual
Analysis (IVA) highlights mutual dependencies between image-derived data
and back pain-related variables. The focus lies on highlighting new correla-
tions and triggering hypotheses generation rather than statistically validating
complex epidemiological correlations. The contributions of the method pre-
sented in this section comprise:

• an IVA workflow for back pain analysis based on image-derived vari-
ables of 2,240 subjects,

• the identification of lumbar spine shape properties potentially associ-
ated with back pain,

• the detection of associations between image-based, socio-demographic
and medical variables for hypothesis generation,

• the identification of the most important variables via classification
methods using a novel Decision Tree Quality Plot.

5.1.1 Data Preprocessing

Transversal

Sagittal
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a b
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Figure 44: (a) Finite element model (FEM) of the lumbar spine (left), capturing the
L1-L5 vertebrae and the lumbar spine canal (right). The purple dashed
line describes the lumbar spine canal centerline with 92 points. (b) The
weighted sum of curvature and torsion is extracted for all 92 points (white
dashes) and the curvature angle (α) for each projection axis to assess their
information gain. Image from [294].

All categorical variables are converted into binary dummy variables, indicat-
ing the presence or absence of a categorical variable manifestation. For ex-
ample, a pain indicator variable ranging from 1 - no pain to 4 - large pain is
transformed into four dichotomous variables to determine which manifes-
tation can be described best using the image-based variables.

Foundation for the image data analysis are the finite element models de-
rived through the method of Rak et al. [213]. The centerline representation,
which was derived in Section 4.4, was applied to the models. The follow-
ing metrics were calculated from the model (Fig. 44 b) using the Frenet
frame [76]:
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• Mean Curvature is defined as the average curvature of all points de-
scribing the centerline:

∑I
i=1

curvaturei
I . The mean curvature is referred

to as curvature.

• Mean Torsion (how sharp a curve is twisting out of the curvature plane)
is defined as the average torsion of all points describing the centerline:∑I
i=1

torsioni
I . The mean torsion is referred to as torsion.

• Curvature angle α is the angle defined by the middle point of the spine
canal centerline as vertex and the line connecting middle point and
top/bottom point as sides.

These metrics are also extracted in the sagittal, coronal and transversal pro-
jection of the model, yielding 9 image-derived variables. In the next section,
the conducted experiments that assess the influence of the lumbar spine
shape to lower back pain are presented.

5.1.2 Experiments and Preliminary Results
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Figure 45: Correlation of age and gender regarding the lumbar spine size visualized
with the bar chart augmented with the image data presented in Section 4.5.
The bar chart shows subjects divided into four different age groups (x-
axis) and their subject count (y-axis). Each bar contains the mean lumbar
spine of the respective group. The shape color encodes the distance (red
for x-axis, blue for y-axis, green for z-axis) to the overall male (top chart)
or female (bottom chart) mean shape. The dark gray share of each bar
encodes the portion of male (top chart) or female (bottom chart) subjects.
Image from [294].

In this section, the image-derived variables are analyzed w.r.t. the di-
chotomous back pain indicator using a generalized pairs plot and all non-
image variables by determining correlations. Spine shape is influenced by
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several somatometric variables. Larger people (independent of gender) also
have a longer spine with a straighter shape. Since men are on average taller
than women and people of old age shrink due to bone erosion, gender and
age are also risk factors (Fig. 45). Women have a higher life expectancy than
men and hence a higher share in the old age group. Also, women are on
average smaller than men, hence the larger shape similarity with older sub-
jects. Large body weight increases the spine load, resulting in a bent shape. To
assess their influence, they are taken into account when spine curvature and
torsion is correlated with non-image variables. Since the gender encodes body
size, subjects are divided into body size groups. Discretizing metric variables
using quartiles avoids small outlier groups.

generalized pairs plot analysis As first experiment the shape vari-
able was correlated with the dichotomous back pain indicator using a gen-
eralized pairs plot (recall Sec. 3.1.1). The metric image-derived variables are
pairwise visualized using scatter plots on the left side of the matrix diago-
nal. The combination of the image variables with back pain is visualized as
histogram in the last row and as box plot in the last column. The projections
to the transversal planes attract attention as they have many outliers. The
conclusion is that curvature is not as reliable on the transversal plane as it is
on the other planes, which was also confirmed through a principal compo-
nent analysis (see supplementary material at ivapp15.dnsalias.com). The
generalized pairs plot shows similar distributions of subjects with or without
back pain with respect to the shape variables in all sub-plots. The plot is
discussed as part of the visualization of population study data using plot
matrices in Section 5.3 and can be seen in Figure 53.
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Figure 46: Scatter plot with augmented bar charts for combinations of the first three
principal components of the image-derived features. The left plot shows
the combination of the first and second principle component, the right
plot shows the second and third component. No clear distinction can be
made.

principal component analysis The analysis of the principal compo-
nents of the image-derived features support the observations made through
the generalized pairs plot analysis. The first three principal components of the

ivapp15.dnsalias.com
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features cover 75% of the variance in the nine image-derived features (recall
Section 5.1.1). As seen in Figure 46, no clear distinction between back pain
and no back pain can be found.

heterogenous correlations The focus was then expanded on corre-
lations of image-derived variables with all other non-image variables. Differ-
ent correlation metrics depending on the type of the individual variables are
used to derive correlations between all variables in the data set. The method
uses the following correlation metrics for the different type combinations:

• Pearson product-moment for two continuous variables,

• Polyserial correlation for one continuous and one categorical variable,
and

• Polychoric correlations for two categorical variables.

All values are scaled between 0 (no correlation) and 1 (perfect correlation).
About 67 variables are too sparse for calculating correlations (less than ,
for example treatment of diabetes or medication against high blood pressure are
omitted, since they are not statistically resilient. The resulting contingency
matrix is displayed using a heat map, encoding correlation values with
color brightness, with white for 0 and dark blue for 1. The contingency
matrix is calculated for all size groups and searched for correlations be-
tween image- and non-image variables. The resulting contingency matrices
show no strong correlation with image variables (see experiments page at
ivapp15.dnsalias.com). Only weak correlations could be found for mean
curvature with gender (0.42), body size (0.39) and number of born children (0.29).
One surprising result was the small correlation of torsion with Parkinson’s
disease (0.24). Other than that, torsion correlated with almost no variables
(values between 0 and 0.05).

Figure 47 shows a heat map representation of all numerical features of the
data set derived through the Pearson correlation coefficient. It underlines
the strong correlations between the image-derived metrics themselves. The
heat map for all features is not shown, because it is hard to interpret without
the support of interaction to identify the feature combination of each tile in
the view. The observations derived through this analysis lead to the decision
to incorporate classification techniques to assess the influence of the image-
derived variables.

5.1.3 Interactive Decision Tree Quality Plot Design

As described before, correlation coefficients fail to infer back pain status
based on lumbar spine canal curvature and torsion. The plot relies on predic-
tive classification to obtain a complex rule set on how combinations of the
image variables explain non-image variables. Decision trees are used to cre-
ate predictive models. These models are built w.r.t. all input variables and
capture more complex relationships than correlation coefficients. Leafs of a
decision tree represent class labels, branches represent variable conjunctions
leading to the class labels. Decision trees are easy to understand and to read.
Too many branches impose overfitting to the data [175]. As a rule of thumb,
we’ll consider a tree with more than 10 rules overfitted.

the c4 .5/c5 .0 algorithm The C4.5 algorithm builds decision trees
based on information entropy on a data set. Such a calculation requires a
numeric or categorical target variable. C5.0 is developed to produce smaller
decision trees than C4.5 and to improve the execution time. Here the R im-
plementation of C5.0 [140] is used. Categorical attributes with more levels

ivapp15.dnsalias.com
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are biased with more information gain in a decision tree [56]. Creating a
dummy variable by converting each manifestation of a categorical variable
into a dichotomous variable bypasses this problem. In the following analy-
sis, the focus lies on the complexity of decision trees and the classification
accuracy.

creating decision trees The decision tree has to be created for ev-
ery non-image variable to analyze which one of them can be predicted by
image-derived variables. Note that the target features do not have to be
dichotomous in order to be classified using a decision tree. Since 134 non-
image variables are available, the calculation yields the same amount of
trees. Further subdivision, e.g., by quantiles of body mass index, increases the
number to 536 trees. The results of the classification have to be abstracted
to keep the mental effort of interpreting the data low. In other words, the
results of such a large amount of decision trees have to be abstracted to be
comprehensible.

decision tree quality plot The Visual Analytics mantra of analyzing
first, show the important and analyze further (recall Sec. 3.2.1) acts as guideline
for designing the plot. A first analysis step was performed by applying the
classification algorithm to the data. The optimal classification uses a few
rules to precisely predict the target variable. Therefore, small trees with a low
classification error are desirable. The two measures form the axes for a scatter
plot of the classification results. This Decision Tree Quality Plot is the central
element for the interactive analysis of decision trees.

the error term Calculating the mean classification error is imprecise
for non-uniform distributions. For example, if a variable indicating a disease
is negative for 90% of the subjects and the classifier simply assigns all sub-
jects to not ill, it yields a mean error of 10%, even though it is very imprecise.
Based on this, a summary error based on the weighted mean is incorpo-
rated, which incorporates the discriminative power of each manifestation
and is denoted as follows:

totalError = 1−
M∑
m=1

correctlyClassifiedm
M ·Nm

(9)

M represents the set of manifestations of each variable. Nm denotes the
number of subjects in manifestation m. The error represents the share of
incorrect classifications and denotes perfect classification with 0 and always
wrong with 1. Only results below 0.5 are displayed, a value below 0.25 repre-
sents a good classification. It allows for comparability of error rates between
variables with different manifestation count.

attribute mapping The Decision Tree Quality Plot axes are defined by
tree size and the previously described error metric. This allows to visualize a
multitude of classification results in one plot. Classification and comparison
of variables for subject groups (e.g., male and female subjects) in one plot
can be achieved by color coding group affiliation on the data points. Many
variables are sparse, such as medication of diabetes or reason of early retirement.
The classification algorithm may produce higher accuracy for variables with
less subjects due to the small sample size, making these results less reliable.
Therefore, a way to adjust the minimal number of subjects for each variable
using a slider is provided. The initial value is empirically set to 100, marking
a good trade-off between sparse variables and statistical informative value.
Furthermore, the number of subjects associated with a variable is mapped to
the diameter in the Decision Tree Quality Plot. This allows instant reliability
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assessment of the result. A square root scale is applied for the tree size axis
to highlight decision trees with few decision rules. Outlier results with large
decision trees would otherwise distort a plot with linear scale.

dummy variables Dummy variables convert a categorical variable with
multiple manifestations into several dichotomous variables. Each dichoto-
mous variable encodes the presence of a manifestation. For example, a pain
indicator variable ranging from 1 - no pain to 4 - large pain is subdivided
into four dichotomous variables. One subject can only have one of these
variables set to true. This is useful for the classification, because it allows to
determine which manifestation of a variable can be predicted best using the
image data variables.

decision tree quality plot interaction The visualization pro-
vides a good overview of the classification results. Details-on-demand are dis-
played by clicking on an entry in the visualization, which then displays the
corresponding decision tree in detail. This allows to sequentially analyze the
classifications. Controls for adjusting the maximum classification error and
minimum subject count for a variable are provided. This gives the user con-
trol to abstract or refine the displayed information. The subject subdivision
is controlled by the selection of variables, such as gender or employment status.
Metric variables, such as body size, are discretized using their quantiles. This
allows users to assess the influence of a variable to the classification process.

implementation All analyses are carried out using R, a widely used
programming language for statistical calculations and visualizations. The in-
teractive visualizations are realized using the ggvis1 package. As opposed
to the standard R plots, ggvis allows to adjust visualization variables us-
ing user interface controls, such as sliders. In order to make the train of
thought comprehensible, RMarkdown is incorporated, which allows to create
reports by combining R with the Markdown syntax. R Shiny2 is incorporated
to make the report available as dynamic web application. It allows users to
combine the power of static R Markdown reports with dynamically parame-
terized ggvis plots. Furthermore, calculations based on a prior data selec-
tion can be redone within the report. The web-based approach allows users
to quickly exchange results with the collaborating epidemiological experts.
They can use the technique without installing any software. Exchanging
the prototype becomes as easy as exchanging a hyperlink. The prototype is
available at ivapp15.dnsalias.com.

5.1.4 Results

In this section, it is shown which non-image variables can be predicted us-
ing the 9 image-derived variables. Subject groups are created to assess the
influence of variables affecting the lumbar spine shape. The groups are:

• All subjects,

• subdivision into male and female,

• subdivision by Body Mass Index quantiles (BMI = m
l2

where m is the
body mass in kilogram and l is the body size in meter), yielding the
groups (17, 24.7] (24.7, 27.4] (27.4, 30.5] (30.5, 48],

• subdivision by size quantiles, yielding the groups (139, 164], (164, 171],
(171, 177], (177, 202].

1 Developed by RStudio, Inc; ggvis.rstudio.com
2 Developed by RStudio, Inc; shiny.rstudio.com

ivapp15.dnsalias.com
ggvis.rstudio.com
shiny.rstudio.com
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Each group is plotted twice. The first plot shows all original variables, the
second all categorical variables transformed into dichotomous dummy vari-
ables. The shown mutual dependencies aim to amplify hypothesis generation.
Dedicated statistical analysis of these results of this work. The resulting
plots can be seen in Figure 48.

all variables Results for all variables can be found in Fig. 48 (a). The
majority of non-image variables cannot be automatically classified based
on the image variables. This is reflected in the large amount of variables
classified with an error above 0.6.

None of the pain indicators can be reliably classified using the image-
based variables. The only variable reliably classified in this group is gender,
which can be classified with an error of 0.31 using 7 rules and incorporates
only curvature- and curvature angle-related variables. The distinction lies in
the average difference in body size between male and female subjects. Medi-
cation for high blood pressure is classified for 1,058 subjects with an error of
0.47 solely based on coronal mean curvature. A high share of medicated sub-
jects were correctly classified (796 of 1, 058). The majority of non-medicated
subjects are false-positive classified (262 of 1, 058), yielding a poor quality of
the classifier w.r.t. epidemiological research. The four body size groups could
be classified with an error of 0.48, but the decision tree comprises 71 rules
and imposes overfitting. The dummy variable analysis yields a result simi-
lar to the blood pressure medication. Variables, such as subject size 139-164 cm,
between 64 and 90 years of age or nutrition-related variables are dominantly
populated by one manifestation. The classifier neglects the other groups and
yields an error below 0.5.

gender groups Results for subjects divided by gender can be found in
Fig. 48 (b). Classifications using groups divided by gender do not produce
satisfying results. Only hypothyroidism could be classified for male subjects
with an error of 0.24 for 110 subjects using the mean curvature and curvature
angle. Since there are only 30 male subjects diagnosed with hypothyroidism,
the statistical power of the result is reduced. The dummy variable analysis
showed that female subjects of 139-164 cm body size could be discriminated
using the mean curvature and curvature angle, with an error of 0.38.

body mass index groups Results for subjects divided by BMI can be
found in Fig. 49 (a). Gender could be classified for each BMI group using
mean curvature and curvature angle. The error varies between 0.31 (BMI of
30.5− 48, 4 decision rules) to 0.39 (BMI of 24.7− 27.4, 5 decision rules). The
starting age of smoking could be classified well with an error between 0.25
and 0.32 for all BMI groups, except for subjects with a BMI of 30.5− 48. The
result is overfitted to the data due to tree sizes between 14 and 16. Some
variables, such as body size, can be classified with an error of 0.3 to 0.36
using large decision trees with over 20 rules. Using mostly mean curvature
and curvature angle, the leg pain level can be classified using 14 rules with
an error of 0.46 for obese subjects (BMI higher than 30). This result also
imposes overfitting. Subjects experiencing pain in the last seven days can also
be classified for this group using the same variables with a tree consisting
of 8 rules and an error of 0.35. Obese subjects are prone to back and leg pain
due to a more stressed lumbar spine. The stress-induced spine deformation
seems to directly influence the pain levels for these subjects. The dummy
variable analysis shows many results using a decision tree with one rule
based on mean curvature or curvature angle with an error between 0.35 and
0.47.
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size groups Results for subjects divided by body size can be found in
Fig. 49 (b). Many previously described results are influenced by subject size.
Differences between male and female subjects can be explained by the average
body size difference. For example, large subjects are already characterized by
their rather straight spine. The question is whether the inter-group spine
variability parameter is sufficient for predicting other variables or not. Di-
viding subjects into body size groups potentially highlights classifications not
influenced by body size.

Large Decision Trees. Back pain-associated variables can be predicted for
various size groups, but universal rules could not be extracted. Radiating
back pain could be predicted with an error of 0.39 using 23 rules for subjects
between 171− 177 cm body size with torsion and mean curvature. For subjects
sized 177− 202 cm the error increases to 0.47 using 20 decision rules. There
are several decision trees for laboratory values, e.g., alanine aminotransferase
value (relevant for diagnosis of liver or gallbladder illness) in the blood
can be predicted with an error of 0.4 (139− 164 cm) to 0.36 (164− 171 cm).
Similar values can be observed for cholesterol or age. Due to the large decision
trees, these results are not usable and impose overfitting to the data.

Small Decision Trees. The dummy variables show several variables pre-
dicted using only one decision rule with an error between 0.42 and 0.47.
Most of these variables have a dominant manifestation and the classifier
shows a low detection precision for the second manifestation. These vari-
ables include nutrition, thyroid disorder and social problems induced by back
pain.

5.1.5 Summary and Conclusion

This section provided a comparative analysis method of decision trees in-
dependent of the variable manifestation count using a novel Decision Tree
Quality Plot. The method is applied to gain insight into the predictive power
of 9 image-derived variables for 134 non-image variables with focus on back
pain. The analysis was performed for subject groups of gender, BMI and body
size to assess their influence on the lumbar spine shape.

The methods presented herein may be applied to comprehensive epidemi-
ological data sets to investigate mutual dependencies among variables and
to generate hypotheses on potential associations and subgroups. These hy-
potheses, however, have to be substantiated by dedicated statistical analyses
and replication in independent populations.

predictive power of image-derived variables The presented re-
sults indicate that torsion, curvature and curvature angle of the lumbar spine
at the presented precision are not sufficient to predict lumbar back pain in
the SHIP data set. This method allows to assess their discriminative power,
which is largely limited to separating male and female subjects, nutrition
variables as well as different disease indicators. The C5.0 algorithm proved
to be an effective tool for evaluating a set of derived metrics regarding their
suitability to classify non-image variables. Over-fitting to the data indicated
by complex decision trees has to be taken into account as well. The pre-
sented method only captures linear relationships between variables. To take
more complex associations into account, methods such as regression analy-
sis have to be incorporated.

applicability Methods supporting hypothesis generation based on im-
age information are new to the application domain. They are an addition
to the standard epidemiological workflow, as they highlight new and possi-
bly unknown relationships. Classification methods based on decision trees



5.1 decision tree quality plot 117

have proven to be useful for assessing the discriminative power of a variable
set. Their ability to consider variable combinations makes them more power-
ful than correlation coefficients calculated for each variable. This advantage
comes with a much more complex output, the results are more challenging
to assess and to abstract. The method to plot derived metrics and custom-
tailored error measures proved to be effective. Huge result spaces could be
navigated fast using the Decision Tree Quality Plot. Therefore, the method
is applicable not only for deriving information based on image data, but on
all potential target variables.

89°

89°
42°47°

a b

c

Figure 50: Potential features for covering detailed aspects of pathological spine de-
formations. (a) Dented vertebrae are a sign of heavy stress and bone ab-
sorption. (b, c) The spine canal shape can be used to characterize scoliosis
(curvature sagittal) and lordosis (curvature coronal) as well as the Cobb
angles [43]. (c) Spine canal thickness is associated with herniated disks.

proposed features Pathological deformation of the lumbar spine is
usually the last stage back pain. The deformation is associated with very
strong lower back pain. Earlier signs of pathological change have to be cap-
tured in order to derive better predictive models.

A very early sign of pathological deformation is the bone resorption in
the center of a vertebra. It changes from being block-shaped to be dented in
the center (Fig. 50 a). This information can be obtained by segmenting the
whole vertebra or the top and bottom point of each vertebra center. Another
valuable variable would be the spine canal thickness (Fig. 50 c). Low spine
canal thickness can be an indicator for an impending herniated disk. Both
surface texture of the vertebra and thickness of the spine canal are used to
diagnose herniated disks. The overall spine canal shape is also of interested,
since scoliosis and lordosis can be characterized more precise by deriving
the Cobb angles [43] from this shape (Fig 50 b, c).

outlook Combining the power of statistical analysis, visual analytics
and classification techniques is essential for analyzing increasingly complex
heterogenous population data. These methods do not aim to replace the tra-
ditional epidemiological workflow, but rather complement the weak points
of standard statistical methods. The Decision Tree Quality Plot provides a
novel way to gain insight into these complex data sets and amplifies hypoth-
esis generation.
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In the following section, additional clustering methods are presented,
which are well suited for application in population study data.

5.2 clustering of population study data

This section is based on

Paul Klemm, Lisa Frauenstein, David Perlich, Katrin Hegenscheid,
Henry Völzke, and Bernhard Preim. Clustering Socio-Demographic
and Medical Attribute Data in Cohort Studies. In Proceedings des
Workshops Bildverarbeitung für die Medizin, pages 180-185, 2014.

The implementation of the clustering techniques was carried out by Lisa
Frauenstein and David Perlich as a scientific student project. Katrin Hegen-
scheid and Henry Völzke provided the data and the required epidemiolog-
ical background knowledge. The concept was developed together in discus-
sions with Lisa Frauenstein, David Perlich and Bernhard Preim.

In this section, the exploratory data analysis approach is enhanced by au-
tomatically generating subject groups using clustering algorithms based on
non-image and image-derived data. The basis of this work is the lumbar
back pain data set presented in Section 4.1. Instead of grouping subjects
based on the shape of the spine, as presented in Section 4.4, the clustering
is now focused on all non-spatial information about each subject. Determin-
istic cluster results are a major requirement to ensure statistical resilience.
Clustering subjects aims to reveal undiscovered correlations.

This section covers a feasibility study of clustering techniques for the SHIP
data set. The methods developed herein were not tested in analysis sessions
with epidemiologists. The black box character of clustering techniques is not
popular with epidemiologists, as they are primarily interested in character-
izing relationships. The contributions comprise:

• Assessing three clustering methods (k-Prototypes, DBSCAN and hi-
erarchical agglomerative clustering) for their suitability in population
studies,

• Incorporating the clustering methods in a web-based Visual Analytics
framework for browsing population study data.

5.2.1 Clustering Workflow and Prototype

In this section, a Visual Analytics prototype is described, which is used to
analyze the clustering results, followed by a brief overview of the incorpo-
rated clustering methods.

va prototype To explore the clustering results, a Visual Analytics sys-
tem was developed, which comprises multiple views for ordinal and metric
variables and supports brushing and linking. The web-based application
was implemented using HTML5, CSS and Javascript/jQuery with support
of D3 [24]. The user can select a set of variables from a categorized list, sim-
ilar to the method presented in Section 4.5, and add them onto the canvas
area. The prototype of the system can be seen in Figure 51.

To trigger the clustering, the user selects either all parameters of a data
set or a subset from a list. Due to missing values, the system immediately
displays the number of subjects that are omitted in the clustering step given
the current attribute selection. The selection of the clustering method and
its parameters closes this process, which returns computed groups that are
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Figure 51: The clustering result is embedded within the Visual Analytics framework.
It displays 2, 333 subjects of the SHIP-2 cohort from the spine dataset and
contains 179 features. A k-Prototypes clustering with k = 3 results in
three color-coded clusters. All subjects with body weight above 120 kg
are brushed using parallel coordinates and highlighted in the scatter plots
with red circles. One subject of cluster two is selected in the list view,
which increases its opacity in the parallel coordinates and its radius in
the scatter plots. Image from [292].

rendered as seen in Figure 51. The user can re-run the clustering at any given
time and can also add new plots to further investigate feature associations.

clustering methods Clustering methods divide the space spanned by
data elements so that it maximizes the distance between groups and mini-
mizes the within-groups variance [93]. Characteristic for population study
data is that not every assessed subject has data for every attribute. The clus-
tering process needs to account for missing data, as described in Section 4.1.
This problem is tackled by displaying the number of omitted data elements
upon the current attribute selection designated for clustering.

Measurement of Distance. Clustering heterogeneous data attributes at
the same time requires distance measurements that consider different data
types [114]. The similarity between numerical attributes is calculated using
the Euclidean distance. Ordinal attribute values are compared in a binary
fashion, having distance 0 when they are identical and distance 1 otherwise.
The factor γ can be used to weight elements [114]. Three different cluster-
ing techniques were applied. Each clustering technique was chosen because
it shows unique characteristics, which potentially makes them suitable for
epidemiological analysis.

k-Means and k-Prototypes. The algorithms k-Means and k-Prototypes
were chosen because they are well suited for numerical features due to their
Euclidean distance function. Dividing the data into k clusters using ran-
domly generated centroids, each data point is iteratively attached to its clos-
est centroid. K-Prototypes [115] enhances k-Means to allow for the cluster-
ing of ordinal and scalar attributes using the previously described weighted
distance. A centroid can additionally be described for each attribute by the
most common value of its cluster. The random initialization of centroids ren-
ders the k-Prototypes clustering results non-deterministic. This is not suit-
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able for epidemiological applications where reproducibility of all results is
required. Therefore, the initial centroid positions are computed by placing
centroids near values that are close to each other.

DBSCAN. The DBSCAN clustering algorithm was chosen because it po-
tentially finds clustering results of arbitrary shape. Density-Based Spatial
Clustering of Applications with Noise computes clusters based on object
density. Elements are density-connected when they are reachable by a chain
of dense objects. Density-connected elements form a cluster. Outliers are ob-
jects that are not associated to a cluster via density. DBSCAN is steered by
parameters that define the distance between neighbors (ε) and the number
of neighbors that a “dense” element must comprise (minPts). The method
is independent of a predefined cluster number and accounts for outliers.

Hierarchical Agglomerative Clustering. This clustering technique was
chosen, because it calculates clustering results for a large number of clus-
ters and therefore scales well with a dynamic setting of cluster size. The
stepwise aggregation of the closest elements into a cluster yields a dendro-
gram whose levels represent clusters. By varying the minimum similarity,
the desired number of clusters is obtained. The method is known to be
outlier-prone.

5.2.2 Results

The difficulty of comparing cluster results in this application domain is
twofold. First, the accuracy of the result cannot be measured due to miss-
ing ground truth. Second, the presented clustering methods have different
parameters, which have a strong impact on their results. The difference in
the results is minimized by focusing on the same numerical and categorical
parameters.

Table 4: Dice’s coefficients for clustering results of k-Prototypes and DBSCAN.

Cluster Number Algorithms Dice’s Coefficient

2 k− Prototypes/DBSCAN (ε = 1.3) 0.634

k− Prototypes/DBSCAN (ε = 1.4) 0.655

k− Prototypes/DBSCAN (ε = 1.5) 0.657

3 k− Prototypes/DBSCAN (ε = 0.9) 0.720

k− Prototypes/DBSCAN (ε = 1.1) 0.644

k− Prototypes/DBSCAN (ε = 1.2) 0.646

6 k− Prototypes/DBSCAN (ε = 1.0) 0.406

K-Prototypes was tested in a range of two to ten clusters. The cluster sizes
range from 94 to 487 subjects (from a total of 2333 subjects). No overly large
or small clusters are computed.

DBSCAN’s parameter minPts equals the minimum cluster size. Since epi-
demiologists are interested in larger groups of subjects, this value needs
to be fairly high. Ester et al. [66] argue that the impact of minPts is little
above a certain threshold. This value is set empirically to 50, which pro-
duces roughly size-balanced clusters. Parameter ε defines the size of an ob-
ject’s neighborhood. Set low, ε leads to many small outlier clusters, which
is not desired. An ε-value between 0.6 and 0.8 classifies 1602 subjects as
outliers and is therefore not reasonable. Parameter ε set to 0.9 to 1.2 results
in balanced clusters.

Hierarchical Agglomerative Clustering creates very unbalanced trees for the
data. Many clusters only contain one element. Complete-Linkage produced
the best results in terms of cluster size, but still yields one large cluster
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containing almost all subjects. Hence, this method was discarded for use on
the data.

comparison using dice’s coefficient Dice’s coefficient [57] is in-
corporated to compare the clustering results under use of different param-
eters. It is defined as 2(A

⋂
B)

|A|+|B|
, where A and B are the clusters to compare,

and A
⋂
B is the amount of elements in A and B. Dice’s coefficient is 0

for disjunct and 1 for identical clusters. Since the hierarchical agglomera-
tive clustering results are not plausible, only k-Prototypes and DBSCAN are
compared. The results for clusters with size 2, 3 and 6 for DBSCAN with
corresponding k-Prototypes results can be found in Table 4. While Dice’s
coefficient for 2 to 3 clusters is close to 0.65, it is only at 0.4 for 6 clus-
ters. Cluster results are similar, while there is a decreasing similarity for an
increasing cluster number. This reflects the missing ground truth problem–
these results are only an expression of similarity, not plausibility. The latter
can only be determined in the context of epidemiological reasoning whether
the groups represent meaningful correlations.

Figure 52: Information window for a clustering resulting from the k-Prototypes al-
gorithm. The clustering parameters yield a reproducible clustering result.
The distribution of metric parameters in the cluster is displayed using
box plots. The most frequent value of each ordinal parameter is displayed
using percentage statements. Image from [292].

visualization of clustering results Enhancing the Visual Ana-
lytics framework by clustering capabilities for automatic grouping was a key
motivation for this work. Each group is rendered using a different color and
can therefore be differentiated in the linked plots (Fig. 51). An additional
information window is introduced, which contains statistical information
associated to each cluster (Fig. 52).
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5.2.3 Summary and Conclusion

This section focused on three methods for clustering epidemiological popu-
lation study data to compute groups that capture data interactions. Linked
to Visual Analytics systems, these methods provide an alternative way of
gaining new insight into the complex interactions in these high-dimensional
data sets. The methods k-Prototypes and DBSCAN are appropriate for the
data. Hierarchical agglomerative clustering produced unbalanced cluster
trees, yielding huge clusters containing almost all subjects and is therefore
not suitable for the research. The clustering results are strongly dependent
on the chosen variable types and the distance measure. Future extensions
comprise better cluster group comparison to amplify hypothesis genera-
tion by highlighting influential parameters. Usability would benefit from
automatic parameter designation using quality criteria. Missing data can
be tackled with imputation [59]. For k-Prototypes, k could be derived by
a knee function that plots the cluster number to a cluster quality measure-
ment [227], as used in Section 4.4 and 4.5.

At the end, it falls to the user to validate the data for plausibility. A
clustering-based automated grouping step can only highlight certain depen-
dencies in the data set. It is no alternative to the classical epidemiological
workflow, but rather an enhancement of the available tools, providing a dif-
ferent point of view.

The problem with clustering non-image data lies in the black box charac-
ter of the algorithms. Epidemiologists want to characterize relationships
that are obscured in the automatic clustering process. Clustering techniques,
however, are well suited for an explorative analysis, where the clustering re-
sult can be used as input for a visual analysis, which searches for distinctive
features.

5.3 plot matrices

This section provides an interactive plot matrix for use with population
study data to assess their suitability for this application domain. Plot ma-
trices, described in the related work under Section 3.2.2, are an efficient
method for gaining insight into pairwise relationships of variables. Their
structure is similar to a heat map (recall Fig. 47), except that the combi-
nation of variables is not encoded as a numerical value which is encoded
through color, but as actual plot renderings. Figure 53 shows a generalized
pairs plot calculated using the GGally package [229] for R to assess the influ-
ence of image-derived features of the lumbar spine on back pain. The plot
contains many information about feature combination, such as correlation
coefficients or scatter plots. The distinction between the groups back pain
and no back pain is made apparent using bar charts, histograms as well as
by color-coding the entries in the scatter plots and as individual correlation
coefficients. The plot underlines the conclusion that no relationship between
the extracted features and back pain can be identified. A generalized pairs
plot in the experimental results found under the link ivapp15.dnsalias.com

can be colored according to a target phenotype, such as back pain, age
groups, gender. With this exception, the generated plots are static, hence,
items can neither be highlighted nor brushed.

Generalized Plot Matrices (GPLOMs) [116] (recall Section 3.2.2) are suited
for categorical and continuous variables. To reduce the complexity of sup-
porting interaction between a large number of different visualization types,
GPLOMs are restricted to scatter plots, heat maps and bar charts. GPLOMs,
however, are restricted to brushing categories; quantitative variables cannot

ivapp15.dnsalias.com
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be filtered at all. Additionally, only single categories can be filtered and high-
lighted at a time. Also, the proposed plots do not allow adding or removing
variables. Variables can also not be hidden without applying a filter. This
means that analysts are not able to pick only certain variables of interest.
Focusing without filtering is therefore not possible. Scatter plots included
in GPLOMs also often suffer from overplotting for a large number of en-
tries. Since categorical features are mapped on color, each data point cannot
simply be drawn semi-transparent, because it would yield a lot of different
merged and potentially confusing colors.

5.3.1 Enhanced GPLOMs

The implementation of GPLOMs presented in this section does not contain
all features presented by Im et al. [116]. For example, bendy highlights, tex-
tual search and the infobox (with kernel density estimation) are not imple-
mented. The implementation aims to enhance filtering techniques to allow
for applicability of this technique in an epidemiological context. The source
of the prototype is available as open source repository.3

interface overview The user interface of the enhanced GPLOM pro-
totype is shown in the annotated screenshot seen in Figure 54. The GPLOM
is a lower triangular matrix filled with three plot types: heat maps, his-
tograms and scatter plots. Each row and column is labeled according to the
variable it belongs to. The variable selection menu in the upper top right
corner is used to select, add and remove variables. The current filter criteria
are located on the left. Hovering the mouse over various elements shows
additional information about the variables and the highlighted entries as
tooltips and labels.

Heat maps are drawn for categorical variable pairs. They contain compart-
ments for each combination of categories and color them according to the
number of data points found in each. The darker the colors, the higher the
frequencies. Hovering the mouse over a compartment shows a tool tip re-
vealing what categories it belongs to and how many data points it contains.
The color mapping (lightness) is scaled for each heat map and selection,
which means that colors are not comparable between different heat maps or
before and after a filter is applied.

Histograms are drawn for a categorical variable plotted against a quan-
titative variable. The original GPLOM implementation allows to select a
defined aggregation function (min, max, average, sum, count). The proto-
type currently only supports sum aggregation. The bar’s height is scaled
between zero and the histogram’s maximum. Comparing bars between his-
tograms is therefore not possible. Hovering over a histogram reveals the
categories each bar belongs to.

Scatter plots are used for two quantitative variables. Their bounding
boxes are scaled to each variable’s global minimum and maximum. This
allows for comparisons between scatter plots that are on the same row or
column. Each point is a black circle with a radial transparency gradient. If the
semi-transparent points overlap, the resulting point is darker, which makes
it possible for the analyst to identify overlaps and their magnitudes.

filtering and highlighting Improved filtering and highlighting ca-
pabilities impose the major improvement over standard GPLOMs.

Show & hide variables. Variables can be introduced into the matrix using
a selection menu. This simple yet effective enhancement allows to reduce the

3 https://github.com/rbyte/F-GPLOM

https://github.com/rbyte/F-GPLOM
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Figure 54: Annotated user interface of the enhanced GPLOM prototype. Five vari-
ables (age, gender, heavy work - duration, heavy work - weight, sports in winter)
are selected using the variable selection box (a). A selection is indicated
using the blue data items for the lifestyle variable sports in winter. The slid-
ers are depicted using triangles. A slider turns from gray to black when
it is used to filter the data. The filter status can be seen in the filter bar on
the top (b). Only items inside the age filter are displayed in each plot (b,
c). Data groups as well as individual points can be highlighted using tool
tips. Image adapted from [83].

visual complexity of the GPLOMs, which get very cluttered and unreadable
with a large number of displayed variables.

Range sliders are used to filter quantitative variables. The sliders allow
the definition of an upper and lower boundary for each variable. In other
words, they allow to filter the data. Values outside of the defined range are
excluded. The sliders are also employed for categorical variables to allow
for selection of multiple categories for filtering and highlighting. Sliders
are provided for each row and column and are located next to the variable
labels. All variables, except for the outer ones, are represented on both axes.
Hence, a pair of sliders has a corresponding pair of siblings on the adjacent
axis, except for the two variables. Pairs of sliders change synchronously. The
relationship between rows and columns is visualized using so called bendy
highlights in GPLOMs.

Associative highlighting is incorporated by dragging sliders and propa-
gates the selected range over all plots, similar to brushing and linking. Fig-
ure 54 shows the variable sports in winter being highlighted. Sliders are gray
in their default position, a range that includes everything. They turn blue
if they are dragged, which visually hints their active state. Points in scatter
plots are highlighted blue if they belong to the defined range. Histograms
are analogously overlaid by blue bars. Heat maps highlight proportions blue
with saturation encoding the proportion.
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Two Filter Stages. Highlighted variables are added to the filter criteria list
with a blue background colour. The list features two stages: highlighted filters
and applied filters on variables. Highlighted filters can be applied by clicking
a blue list item. The background turns gray and the sliders black to indicate
the change. In the example in Figure 54, “age” is filtered. Data outside of this
filter range are excluded entirely. Sports in winter is only highlighted in blue,
but still included in all computations. This distinction between highlighted
and applied filter criterion imposes two advantages:

1. Multiple criteria can be defined for highlighted selections. This allows
analysts to perform fine-grained comparisons between the current se-
lection (gray) and a specified subset (blue). The subset can now contain
criteria on quantitative variables and multiple categories from categor-
ical variables.

2. Applied filters can easily be highlighted by clicking the gray list items.
Filtered variables are also not hidden automatically. This allows ap-
plied filters to be altered by adjusting the black sliders. In addition,
context is preserved. Variables can always be included or excluded us-
ing the variable selection menu, but this does not affect the filter list,
which keeps a record of the steps taken so far in narrowing down the
dataset.

5.3.2 Discussion

The prototype still has many issues and problems. It does not implement all
GPLOM features. For example, bendy highlights could make the relations
between columns and rows clearer. A textual search can reduce time needed
for a visual search and letting the user change the histogram aggregation
function enables important changes of perspective on the data. GPLOMs
are not custom-tailored for epidemiological studies. It was assumed that the
core requirements can be generalized. This may not be the case.

If all variables of the lumbar spine dataset are viewed at once, the GPLOM
is too complex to read and takes up large amounts of screen space. The im-
plementation allows for selecting a variable subset. Therefore, no complete
overview is provided.

dataset-related issues The dataset contains error codes. They are
used to include various meta information, for example, that a question was
not answered. In categorical variables, those error codes are simply coded
as additional categories. In quantitative variables, fields with error codes
are ignored. Both approaches may be inappropriate. Possible solutions are
handling error codes separately, ignoring error fields by default or grouping
error codes into one category.

Binning of quantitative variables, such as age in years, imposes another
problem. Those variables are coded as ordinal categorical, but this does not
reflect their quantitative nature. Their high cardinality may make plots hard
to read. The higher the cardinality, the smaller is the impact of overplotting.
It may therefore be better to encode them as quantitative.

Another property of the dataset are the numerous dichotomous variables.
Currently, the prototype codes them as nominal categorical variables with
cardinality two. A possible improvement may be to use mosaic plots or
violin plots instead.

further enhancements of the plots An important drawback are
the missing axis labels for each plot. Category names, ranges and numbers
cannot be retrieved by checking labels and tooltips. Directly including this
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information leads to cluttered views. Important key values, like domain
boundaries for scatter plots, or the baseline and maximum of histograms
should be included in future implementations.

Matrix Diagonal Histograms. Compared to the original generalized pairs
plot, our GPLOM does not include a matrix diagonal for displaying a one-
variable histogram. Its inclusion may improve the visualization. However,
it is important to include visual clues to indicate that those histograms on
the diagonal show something completely different than the ones that plot
a categorical against a quantitative variable. This can be indicated using a
different background color of the plot [263].

Variable Order. The order of variables and nominal categories is another
issue worth considering further. Currently, the prototype orders them arbi-
trarily. It is useful to order variables by similarity, so that proximity reflects
similarity. This requires a measure for similarity, such as correlation. Johans-
son et al. [124] proposed including correlation coefficients into each plot.

enhanced heat maps , scatter plots and histograms Heat maps
encode the proportion of highlighted items in a compartment to saturation.
This imposes a dense coding, since lightness is already used for overall com-
partment frequency. The main drawback is the difficulty to visually quan-
tify color differences. Another problem is that blue saturation may have an
impact on the perceived lightness of a color. In addition, the local scaling
renders different heat maps incomparable. However, a per row or global
scaling may hide (local) details. If the two variables have a low cardinality,
mosaic plots may be a better choice. But this would degrade the advantages
of the heat map alignment and render bendy highlights useless. Another
suggestion for improving heat maps is to allow highlighting and filtering
through hovering, clicking and dragging over compartments and areas.

Histograms are generally easy to read. The data density of the histogram
is directly linked to the variable cardinality. This visual data density could
be equalized by giving each histogram bar a fixed amount of space. This
change would also affect the display of the heat map, which would have an
even spacing. The problem with this approach may be that variables with a
huge number of categories take up too much space. Limits on the space for
each variable could solve this. Due to the local scaling of each histogram’s
bar height, multiple histograms are not directly comparable. This may be
desirable on a per row basis. A general problem of histograms is that they
hide the distribution of the data points for each category. This can only be
alleviated by using a different plot, for example showing side-by-side the
kernel density distributions using a line chart. Providing the analyst with
the option to switch between multiple types of plots is worth considering.

The performance of the interface degrades with the number of points
plotted in each scatter plot. To counter this effect, each scatter plot only
shows a random selection of 100 points. This imposes the drawback that
whenever the scatter plot is redrawn, the random selection changes, which
causes flickering. Future implementations have to improve the scatter plot
performance.

filtering and highlighting Effects between variables can be com-
plex. If those effects only occur under certain preconditions, filtering and
highlighting may help to reveal the relevant subsets, if the defining criteria
for such a subset are sufficient. The combination of different criteria, defined
using ranges, allows to select fine-grained subsets. However, there are still
limits. For example, selecting an area in a scatter plot is limited to a rectan-
gle, no individual points can be selected and unions or exclusions are also
not supported. All filtering is currently based on one-dimensional range in-
clusion and set intersection. More diverse options require enhanced user
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interface utilities (see advanced filtering in Section 3.2.2). The authors of the
GPLOM mentioned that associative highlighting lacked clear affordances
and was rarely used. The sliders provide those affordances. However, that
items in the filter list can be clicked is still not obvious. Another improve-
ment of the associative highlighting could be allowing the analysts to set
colors for each filter criterion and group criteria. Different groups could
then be highlighted in different colors and intersections as a mixture of the
two colors. A major problem occurs when a filter range is defined through
dragging the sliders of a quantitative variable on the y-axis. Because the
sliders are aligned with a row and the histogram’s blue overlay bars are
interactively responding to the sliders’ movements, a confusing cause-effect
connection is visible. This is due to the fact that the histogram bars hide the
distribution of the data points inside each category. The slider domain and
the histogram height domain are not the same.

5.3.3 Summary and Conclusion.

GPLOMs with enhanced filtering mechanisms allow for displaying hetero-
geneous population study data on a small scale. The herein presented en-
hanced method is prototypical; hence the many suggestions for enhancing
it.

GPLOMs allow for a better overview than standard bivariate plots and
can be used for an explorative analysis of a small set of variables. Whether
the proposed interface is suitable is therefore a question left open for the
epidemiologists to answer. A study could provide insights into whether the
tool is preferred and how suitable it is for the task. In particular, it has to
clarify whether the proposed additions actually make it easier to find pat-
terns and understand the dataset or not. Various problems and drawbacks
have been discussed and suggestions have been made for future research.

5.4 3d regression heat map

This section is based on the publication

Paul Klemm, Kai Lawonn, Sylvia Glaßer, Uli Niemann, Katrin
Hegenscheid, Henry Völzke, and Bernhard Preim. 3D Regres-
sion Heat Map Analysis of Population Study Data. IEEE Trans.
on Visualization and Computer Graphics, 22(1):81–90, 2016.

Katrin Hegenscheid and Henry Völzke provided the data and the epidemi-
ological background knowledge as well as the underlying hypotheses. They
also conducted in the evaluation of the method. The concept was devel-
oped in meetings with Kai Lawonn, Sylvia Glaßer and Bernhard Preim. Uli
Niemann provided the idea of the correlation-based feature selection and
helped with the implementation of this dimension reduction step. He also
conducted the evaluation for the hepatic steatosis data set.

Testing features for associations with diseases using regression models is
one of the most important epidemiological tools. Using regression analysis
to assess the statistical resilience of a hypothesis rarely involves more than
three features due to the higher dimensional problem and the required subject
count. Due to the amount of data and only limited overview visualizations,
possible correlations may be missed. Explorative analyses and overview vi-
sualizations of the data set, as presented in prior work (see Section 4.5), are
not tailored to a specific target feature. They mostly highlight correlations
between features that are known to the domain expert (e.g., correlation be-
tween body size and spine shape). The regression analysis, which is familiar
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to the domain experts, is incorporated in overview visualizations to support
a hypothesis-free analysis or an analysis w.r.t. a specific disease or hypothe-
sis. For this purpose, template regression formulas are provided, which are
applied to all potential feature combinations. Since the notation is familiar
to epidemiologists, they can rapidly include their domain knowledge into
the analysis process. Difference views between regression formulas allow to
assess the influences of individual features on the process. The contributions
are:

• An overview visualization design based on feedback of epidemiolog-
ical domain experts to support hypothesis generation w.r.t. a target
feature using regression models.

• Incorporation of prior domain knowledge by using freely adjustable
regression formulas.

• Metrics selection for analyzing regression models and for details-on-
demand representations.

• An open-source web application that can be used with data of different
application domains.

The difference of the presented approach in comparison with related work
and prior methods is twofold.

1. The focus lies on the large-scale analysis of a vast number of linear
and logistic regression models by assessing their quality-of-fit using
descriptive metrics.

2. The analysis is conducted w.r.t. a target feature and incorporates ex-
pert knowledge via the regression model definition rather than subdi-
viding the underlying data.

5.4.1 3D Regression Heat Map

The 3D Regression Heat Map is designed to provide an overview visualization
to support hypothesis generation. Hence, it is associated with step 1 and 2

of the epidemiological workflow (recall Chapter 2). Relationships observed
using such techniques are subject of detailed statistical testing by statisti-
cians with background in epidemiology using statistical processors, such as
SPSS.

Iterative Design Based on Expert Feedback

The 3D Regression Heat Map design was developed iteratively based on feed-
back of epidemiologists by using the prototype in joint analysis sessions
on their data sets. The idea emerged from analysis sessions of a previous
project, which contained a 2D heat map showing pairwise feature corre-
lations based on Cramér’s V contingency values [293]. It allowed them to
reproduce their knowledge about relationships by observing correlations
they would expect as well as discovering new correlations. In epidemiology,
these relationships are also of interest, but rather w.r.t. their explanatory
power on the target feature. This target often indicates the presence of the
investigated disease. The domain experts wanted to model knowledge about
the investigated condition, such as confounding features (e.g., age or gen-
der). For explorative analysis, they preferred an approach which highlights
associations w.r.t. various target features to both check for medical sound-
ness of the data as well as detecting unexpected relationships. Additionally,
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due to the sensitive nature of population study data, the data has to be han-
dled securely. Technical measures to enable a secure transfer and storage
are described in Section 5.4.2.

Regression analysis is the statistical tool of choice for analyzing relation-
ships in epidemiological data. A regression model is based on expert knowl-
edge. There is no rule how to apply models to a given set of features. Thus,
they have to be applied with care.

Regression Heat Map Description Using Regression Formula Notation

Expert knowledge modeling is carried out using regression formulas. The for-
mula input influences the type of the chosen regression method as well as
the independent features describing the target.

Since it is the goal to associate the regression analyses with an overview vi-
sualization, all possible combinations of (two or more) independent features
describing a target are of interest. This is achieved by introducing dynamic
variables X, Y and Z into the regression notation. The method replaces the
dynamic variables with all features in the data set. In a data set with n (e.g.,
100) features, the regression formula

Cancer ∼ X+ Y (10)

yields n2 (10,000) regression models, describing all combinations of two
features describing Cancer. This notation is natural to anyone familiar with
regression analysis, since it is the standard way of expression. With simple
adjustments to the formula, different results can be achieved:

• Z ∼ X+ Y calculates all combinations of two features w.r.t. all possible
target features.

• Cancer ∼ X+ Y+BodyWeight includes the BodyWeight feature into
all regression models as feature with Cancer as target.

• Cancer ∼ X+ Y + Z calculates all combinations of three features w.r.t.
the Cancer target.

The problem with this approach lies in its complexity. The number of cal-
culated regression models exponentially increases for each dynamic vari-
able added. A data set with 100 features and the formula Z ∼ X+ Y yields
1,000,000 regression models. Assuming a 50 ms computation time for a re-
gression analysis, the calculation lasts roughly 14 h. Therefore, the compu-
tational complexity needs to be reduced. An approach for this is presented
in the following section.

Target-Variable-Dependent Dimension Reduction

In epidemiological studies, manifold recordings lead to an abundance of
features and thus a high-dimensional feature space. In general, many of
them exhibit a low or no correlation at all w.r.t. the target feature. Identifying
irrelevant features and excluding them from the feature space considerably
reduces computational costs and yields a comprehensible 3D Regression Heat
Map representation. The correlation-based feature selection (CFS) [89] aims
to find a feature subset that maximizes the merit value MF, which is the ratio
between the average feature-class and feature-feature dependencies in the
feature set F. The dependency of a set of features utilizes the entropy-based
information gain to measure the explanatory power w.r.t. the target feature.
Starting with an empty set of features F, the CFS algorithm iteratively adds
the feature f to F that leads to the highest new merit value MF∪f and halts
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when no feature is left that would increase the merit. For example, if the body
weight has a strong explanatory power w.r.t. the target, it is likely that BMI
or waist circumference exhibit similar correlations to the target. However, they
strongly correlate with each other. The CFS algorithm will select the feature
which has the largest explanatory power and discards the other features.

The CFS algorithm is applied for each target feature in a regression for-
mula with dynamic variables. The formula Cancer ∼ X+ Y would yield one
initial CFS information space reduction. For Z ∼ X+ Y the CFS algorithm
is applied to the data every time Z is replaced with another feature. Since
the CFS algorithm performs linear, it is also well suited for data with many
features.

The number of features calculated by the CFS algorithm is dependent
on the information entropy in the data. In the given epidemiological data
sets, a number of 10 to 30 features is usually observed. The number of se-
lected features using the CFS algorithm reflects their information entropy
on the target. A large list of features is an expression of low correlation to
the target feature. The trade-off involved using the CFS algorithm is the po-
tential removal of interesting features for the domain expert. This problem
is discussed in the next subsection as part of the 3D representation of the
regression results.

With this method, interesting regression models are derived in a reason-
able time span (seconds to minutes instead of hours). The next section shows
ways of abstracting the results to make them visible.

Abstracting Regression Results
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Figure 55: Overview visualization using a 2D heat map of the formula Z ∼ X +

Y, where Z assumes the feature age (a). The R2 metrics extracted from
the regression model are mapped to color saturation (a saturated color
indicates a strong correlation). Now, Z is set to all features n and yields n
2D heat maps (b). These represent the slices in the 3D Regression Heat Map.
The metric describing the regression model of each slice voxel is mapped
on opacity in the 3D view later on, reducing the occlusion of other values.
Image from [295].

The goal of an overview visualization is to provide a comprehensive view on
the data (raw or using descriptive metrics [21]), which is easy to understand.
As described in the previous work [293], correlation values scaled between
0 (no correlation) and 1 (perfect correlation) can be encoded with color in a
2D heat map. Regression models are more complex, having many associated
describing metrics. For the 3D Regression Heat Map analysis quality-of-fit of
the resulting model is of high interest. This allows to infer the predictive
quality of the independent features included in the model. The R2, adjusted



132 data-driven visual analysis of sociodemographic , medical and lifestyle factors

R2 and AIC (Akaike information criterion) metrics allow for this kind of
assessment. The adjusted R2 includes a penalty function for adding new in-
dependent features in the regression analysis. More independent features,
even if they only contain noise, yield more potential information for creat-
ing the model and therefore should increase the R2. The penalty function
counteracts this effect by weighting the R2 value with the number of inde-
pendent features. This may even lead to negative R2 values. This abstraction
follows the design guidelines of hierarchical aggregation visualization pro-
posed by Elmqvist and Fekete [64]. The results are abstracted in a way that
they do not clutter the view with too many visual elements, allow for a
visual summary of the underlying data, and can be discriminated using a
simple visual representation. At the same time, the visualization stays inter-
pretable, as details of each model can be accessed on demand.

2d (slice) view Since R2 is scaled between [0, 1], it allows for compar-
ison between regression models. The same 2D heat map can be applied by
translating the R2 values to color saturation (Fig. 55 a). This encodes a 2D
regression square for dynamic variables X and Y (e.g., Age ∼ X+ Y). Based
on expert feedback on early versions of this view, the amount of features
used to compare regression models was extended. Therefore, these experts
can investigate the heat map with emphasis on specific aspects of the model.
Adjusted R2 can be represented in the same way, since they are also scaled
between [0, 1]. AIC values have to be normalized in order to map them on
color saturation. The resulting scale may be distorted by outliers derived
from poor regression models. To tackle this problem, a slider input is pro-
vided, which maps the transfer function of the metric to color saturation
based on user-selected ranges. Outliers can be cut off to emphasize ranges
of interest. Small AIC values indicate a good model. Hence, the transfer
function color mapping is inverted, assigning low AIC features to saturated
colors. To include users unfamiliar with these metrics, the Regression Heat
Map is set by default to show R2 values.

3d view Introducing Z creates a 3D heat map (Fig. 55 b). The selected
metric (by default set to R2) of each heat map entry (voxel) is mapped to
opacity to reduce the overlap. Object size is not used to encode information
because it would result in a cluttered view. Epidemiologists argued that the
visualization of descriptive metrics derived from different regression meth-
ods (e.g., Z ∼ X+ Y) is misleading, as they can be compared relatively, but
not in precise numbers. Therefore, metrics of different regression methods
are mapped to distinct colors (i.e., orange for linear regression and blue
for logistic regression). Thus, the visualization can be easily extended using
other regression types. For 3D Regression Heat Maps with a fixed target fea-
ture, e.g., Cancer ∼ X+ Y + Z, no such encodings are required and the z
dimension can be compared directly. As mentioned previously, the feature
reduction using the CFS algorithm potentially removes important features.
The z dimension of the visualization contains all features of the data set,
allowing to assess their influence. The x and y dimensions are restricted to
the features extracted from the CFS algorithm.

The goal is to create an overview visualization for a data set. Addition-
ally, expert knowledge can be incorporated in the visualization by adapting
the underlying formulas. These two approaches do not exclude each other,
they rather underline the difference in purpose of the chosen formula. The
different analysis approaches require different starting points using the 3D
Regression Heat Map.
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Figure 56: Different workflow types using the 3D Regression Heat Map. [1.AF] The
workflow starts by declaring a formula to specify a hypothesis, or to use a
predefined formula for a hypothesis-free analysis. [2.SI] The 3D Regression
Heat Map is then visualized. The user has the option to either to adjust the
formula, adjust the transfer function or to derive details-on-demand on
models. [3.ZF] Insights into the data yield either an adjustment of the
current formula or a selection of a difference view. The latter is used to
compare 3D Regression Heat Maps. [4.DD] Details about features using the
2D heat map representation yield insights and hypotheses about feature
relations.

The 3D Regression Heat Map is well suited for different workflow analysis
techniques, based on the Visual Analytics (VA) Mantra of Keim et al. [126]:

1. Analyze first [1.AF]. Choosing an initial regression formula triggers
the 3D Regression Heat Map calculation, filtering the dimensions of the
dependent feature through the CFS algorithm.

2. Show the important [2.SI]. The 3D visualization acts as an overview
of the whole data set. Here, regression models with large regression
metric values can be spotted fast, steering the user’s attention to the
respective slice.

3. Zoom, filter and analyze further [3.ZF]. The slices of interest can then
be analyzed using the 2D heat map of the slice.

4. Details-on-demand [4.DD]. Precise information about the individual
regression models (coefficients, associated confidence intervals and p-
values) can be retrieved based on the data point representatives (e.g.,
in a hover modal on a currently selected data point).

The squared bracket abbreviation is incorporated for each step to denote
the affiliation to the system design section later on. As shown in Fig. 56, the
workflow is highly iterative. Observations in the 2D heat map or simply the
CFS-based features can trigger new analyses by adjusting the underlying
regression formulas. This can be carried out either to refine the current for-
mula based on observations, or to create a new 3D Regression Heat Map for
a difference view.

hypothesis-free and hypothesis-based analysis Early analysis
sessions yielded two approaches of analyzing the data. The classic approach
is hypothesis-based, where the expert already knows the data and potential
associations (e.g., reproducing knowledge about hepatic steatosis risk fac-
tors based on known risk factors). The hypothesis-free analysis allows users
to derive new insights, such as identifying confounding features or poten-
tial targets (e.g., deriving risk factors for breast cancer-associated features).



134 data-driven visual analysis of sociodemographic , medical and lifestyle factors

Hypotheses about the data are reflected using input formulas. Using the oper-
ators, dynamic variables and data set features, many different assumptions
can be expressed. To support the hypothesis-free analysis, default formula are
provided:
Z ∼ X + Y. It represents all possible combinations of two independent

features w.r.t. all features in the data set, since the features of interest are not
known prior to the analysis. Each slice represents a different target feature.
It is therefore suitable for an exploratory analysis.

Hypotheses about the data are easily built up by relating dynamic vari-
ables with the regression operators. Furthermore, static features can be
added for each regression formula. Here are a few examples:

• Cancer ∼ X+ Y + Z is the formulation of a hypothesis where the spe-
cific feature Cancer is analyzed. All combinations of three independent
features with the target are analyzed through this 3D Regression Heat
Map.

• Cancer ∼ X + Y + Z + feature1 : feature2 encodes more assump-
tions. This formula models the hypothesis of an interaction between
feature1 and feature2 (denoted with ‘:’) being relevant for the target
feature, but it is not clear how other feature combinations influence
the result. Therefore, this interaction is incorporated for all X, Y and Z
values as independent features.

• Cancer ∼ X+Y+Z subtracted with the regression metric from Cancer ∼

Age excludes the confounding effect that age has in view of the tar-
get Cancer feature. This is achieved through 3D Regression Heat Map
comparison.

3d regression heat map comparison Comparisons were introduced
later in the project. Epidemiologists with focus on statistics pointed out that
comparing outcomes of different formulas is suitable for removing the effect
of possible confounding features. 3D Regression Heat Maps can be compared
by creating difference views. One formula acts as reference. The absolute
difference in the regression metric values with the second formula is calcu-
lated. For example, it can be utilized for comparing the influence of a single
feature on the complete result (e.g., Z ∼ X+ Y and Z ∼ X+ Y + Income).

5.4.2 System Design

The system is designed to be openly accessible and easy to use. With open
formats as input interfaces, the application can be extended to non-epidemi-
ological data sets. The focus lies on creating an overview visualization and
gaining insight into relationships of the data, which triggers further analyses
with other (statistical) tools. This is, however, out of the scope of this work.
Therefore, the system has to be intuitive and comprehensive in order to be
adapted by domain experts.

Using web-based technologies offers various advantages w.r.t. the collab-
oration with epidemiologists. They usually have little time to wrangle soft-
ware. A web-based approach has no set-up time besides loading up the data
set and can be carried out with any computer connected with the web. Even
small changes can be implemented based on feedback of domain experts
directly during analysis sessions. By providing a service using a website it
has a much larger chance of being tested and potentially adapted by a broad
user base. Web technology is based on a client-server architecture. It allows
for outsourcing computationally heavy tasks on server clusters and transfer-
ring results to the client device. This architecture is also prone to security



5.4 3d regression heat map 135

a

b

c

Anxiety/Depression

Arthrosis

Sprine Attrition

Breastfed Children

Regular Cycle

Mamma-Left Lesion

Mobility

Problems Daily Activities

Mamma-Right Volume

Sampling

Anxiety/Depression

Arthrosis

Sprine Attrition

Breastfed Children

Regular Cycle

M
am

m
a-Left Lesion

M
obility

Problem
s Daily Activities

M
am

m
a-Right Volum

e

Sam
pling

Pain/DiscomfortZ-Dimension

Z ~ X + Ynone

Regression Metric R²

Figure 57: Breast density data set loaded into the prototype. (a) Using the formula
input, the user specifies the dependent feature and calculation rules. (b)
3D heat map showing values above the matrix diagonal as overview. The
values of the currently selected slice are mirrored and represented as or-
ange data points on the slicing plane. (c) 2D heat map of the selected slice
for feature Pain/Discomfort. Image from [295].

issues, such as the storage of confidential data, especially in the epidemi-
ological context. Therefore, technical measures have to be incorporated to
ensure a secure workflow.

System Paradigm and Components

Epidemiologists will not adapt complex systems that require substantial
training and time. Therefore, the 3D Regression Heat Map design focuses on a
clean appearance, reducing the amount of user interface elements as much
as possible. This allows for a fast learning of the system. The prototype
consists of three components:

• The file upload section starting the analysis with providing a comma-
separated value (CSV) file [1.AF].

• The Regression Heat Map visualization consisting of the 2D heat map as
well as a 3D representation of all regression models with facilities to
change the represented regression metric and its range [2.SI].
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• The formula editor allows formula input w.r.t. a hypothesis or to con-
duct a hypothesis-free analysis. It also allows to select a reference for-
mula for creating difference models [1.AF, 3.ZF].

file upload and classification [1 .af] Popular analytics tools, such
as WEKA [90], owe part of their success to their support of open file types.
To allow other users even outside the epidemiological application domain to
access the tool, standard ASCII-based CSV files are incorporated. The first
line in a CSV file represents all features (columns) of the data set. Each line
after that represents one subject (row) and its feature manifestations. Using
a check box, the user can disable the CFS preprocessing step, which is useful
for small data sets where the user does not want to reduce the number of
features.

Encoding via CSV Files. Encoding variable types in CSV files is not stan-
dardized. However, the correct variable type classification has to be ensured
by enforcing several basic standards. All categorical values have to be en-
closed by quotation marks. Continuous variables are denoted as digits with-
out enclosing quotation marks. Although this seems obvious, many popu-
lation study data sets encode categorical features using ID values that are
denoted in a data dictionary. Variables with only two manifestations are clas-
sified as dichotomous, leading to three possible data types: numerical, cate-
gorical and categorical/dichotomous. Missing values are denoted by using
no character at all, a whitespace, or an empty quotation mark encapsulated
string.

Data security issues are raised by uploading data into an online service
such as the prototype. The use of epidemiological data is preceded by a de-
tailed description of the analysis purpose and has to be approved by ethics
committees. Preventive steps have to be taken to restrict access to unautho-
rized subjects. A SHA-256 hash is calculated to derive the data set name
using the data contents and disable directory listings on the web server to
avoid data set downloads. Data sets are deleted from the server after closing
a session.

formula editor [1 .af , 3 .zf] After uploading the data, the user can
specify a formula or use the default (Z ∼ X+ Y). Entering a formula is fa-
cilitated via text input. On formula input, a context panel displays all data
set features as well as the available operators and their function. This al-
lows to comprehend the function of the underlying formula for users with-
out statistical background about regression analysis and its notation. Auto-
completing input features also simplifies the approach and works as spell
check of feature names.

Formula validation is carried out directly on input. The text input con-
taining the formula is marked using a red halo to indicate invalid input,
which turns green for valid formulas. This prevents processing errors on
the statistical processor back end. Confirming a formula triggers the Regres-
sion Heat Map calculation, which is preceded by determining all required
formulas. These are then divided by the number of available statistical back
end processors, driving a cloud computing-based approach. In theory, the cal-
culation duration is reduced by a factor of 2 by every statistical processor. In
practice, data transmission and differences in machine specifications always
influence the speed.

Difference heat maps can be generated for each formula added to the
system. Using a drop-down menu it can be selected as reference. Since all
cells in the heat map are represented using regression metric values, the
difference is the absolute difference of the regression metric for each cell.
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3D Regression Heat Map Visualization [2.SI].

The visualization and interaction with the 3D Regression Heat Map is the
core of the prototype. Results from the statistical processors are uploaded
into the visualization slice by slice. This allows to assess the data as soon as
parts of the calculations are finished while the rest is still in progress.

usage of a regression prism for information reduction Fig-
ure 55 shows that all values are mirrored along the diagonal of the 2D
heat map matrix. This is due to the symmetry of basic regression opera-
tors. Therefore, half of the results can be discarded to reduce visual clutter
and repetition, yielding a Regression Prism. This opens up space for display-
ing additional information. Along the diagonal, X and Y represent the same
feature, Z ∼ X + Y turns into Z ∼ X because the regression automatically
ignores doublings. The diagonal therefore acts as reference on how strong
the correlation for the given row (or column) feature is.

selecting and scaling the descriptive regression metric The
feedback made apparent that other features are of interest for analyzing re-
gression models too. Hence, UI elements for controlling them were intro-
duced. The descriptive metric shown in the 2D/3D view can be selected
using a drop-down menu. The default selection is R2. AIC displays model
quality. Adjusted R2 values are only available for linear regression. Logis-
tic regression results are represented via R2 values in this mode. As they
are visually distinguished using color, confusions are avoided. The transfer
function of the color intensity (2D) and opacity (3D) can be adapted using a
slider input. This allows to filter models with desired features, such as only
very high R2 values.

3d prism as data mini-map In early prototype versions, the 3D prism
acted as starting point for the data analysis without the implementation of
a separate 2D view. Slices were shown using cutaway planes. This approach
was not popular among epidemiologists, because the complexity of the vi-
sualization overwhelmed them. The 3D Regression Heat Map representation
was redesigned to act as an overview of the whole data set. It serves as
a function similar to a mini-map, guiding the attention to points of inter-
est in the data. It also gives context information about adjacent data values
when using the 2D heat map. The distinction between overview and details-
on-demand using two different representations was well received with the
domain experts. The displayed prism shows values above the matrix diago-
nal. For formulas with a dynamic target feature (e.g., exploratory analysis
using Z ∼ X+ Y), the color encodes the absolute regression metric values
(Fig. 57 b). Applying this strategy to a formula containing a static target
(e.g., Cancer ∼ X+ Y + Z) yields many occlusions, since the CFS algorithm
creates the same feature space for every slice. For such formulas, the 3D
view encodes every data element as absolute difference between its regres-
sion metric values and the global mean along the z-axis. This highlights
slices with unusually low or high results (Fig. 59). Variables are ordered the
same way in the 2D and 3D heat map to preserve the mental model and
make them visually analogous.

tackling the disadvantages of 3d information visualization

3D information visualizations are criticized for introducing occlusions and
interaction problems. These are often not balanced out by the advantages
of using the third dimension for visual mapping. The goal is to minimize
these problems. The regression metric (e.g., R2) values are mapped on data
point opacity, highlighting large values in the prism, which guides the focus
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to the respective slices. The visualization is sparse, since the majority of the
regression models yield (depending on the data set and the chosen formula)
low R2 values. Overlapping is still an issue, but greatly reduced in its effect
to the visualization readability.

Transformation of the 3D heat map is restricted to the y-axis (horizontal
only), preserving the mental map to position individual features. The 3D
heat map is always oriented according to the 2D representation, allowing
for an easy mental combination of them. Allowing more degrees of freedom
was confusing to the users and also did not add value to the visualization.

3d heat map slice selection [3 .zf] In order to Zoom, Filter and Ana-
lyze Further, the user has to navigate to different slices of interest. Two ways
of achieving this are proposed.

• The slicing metaphor from 3D volume data is applied. In medical
volume renderings, slicing views are common to view details on a se-
lected plane in the scene. This technique for selecting 3D heat map
slices is employed (e.g., by moving a plane via vertical mouse input
while pressing the right mouse button). However, the whole 3D ob-
ject is still displayed instead of cutting away information. Early pro-
totypes only provided this method to select a slice of interest, which
was inefficient when the user was looking for a specific slice. Hence,
an additional method was implemented.

• Selecting the slice using a drop-down menu containing the feature
names provides fast access to plane selections when the user already
knows the slices of interest.

The currently selected slice is displayed as a semi-transparent gray plane.
Early prototypes rendered the whole 3D Regression Heat Map, which made
it hard to assess the position of the plane. Since the regression metrics are
mirrored along the diagonal, the space available from visualizing only the
prism generated from the upper half of the heat map diagonal is used to
display the 2D heat map of the currently selected plane. The regression
metric values are projected on this plane to provide an occlusion-free view.
This allows to easier identify the current slice.

2d heat map slice visualization [4 .dd] The 2D heat map (Fig. 57

c) shows all values below the matrix diagonal of the current slice. It creates
an optical equivalence with the 3D heat map. To reduce visual clutter, the
2D view only shows dimensions which are retrieved through the correlation-
based feature selection. The free space above the matrix diagonal is used to
display the 3D heat map.

The purpose of this view is the detailed assessment of the underlying
regression models. By hovering over a data entry in the plot, a tooltip dis-
plays detailed information about a model’s coefficients, associated p-values,
confidence intervals, F-statistics and AIC values. It also contains a scatter
plot of the model residuals, which shows the difference between the observed
data points with the fitted values. Epidemiologists use such plots to validate
models w.r.t. the model assumptions, such as homogeneity, normality and
independence [146].

5.4.3 Implementation

Web-based technologies are the basis for the prototype. The ongoing tran-
sition of open-science software into the web spawned numerous projects,
making state-of-the-art algorithms available in this domain.
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Figure 58: Overview of the technologies incorporated in the 3D Regression Heat Map
prototype. The front end (left) is realized with HTML5/CSS3/Javascript
and different Javascript libraries, such as Angular.js, Three.js and D3.js.
The web server (right) is written using Node.js and hosted on Heroku. R
and OpenCPU constitute the statistical back end (top) to compute the 3D
Regression Heat Maps. Additional statistical back ends can be attached to
the system to decrease the computation time. Image from [295].

front end The front end is created using HTML5, CSS3 and Javascript.
Angular.js abstracts web application into models and views, allowing for a
responsive way to combine HTML and Javascript. It is easily expandable by
forcing developers to write modularized code. The page layout is handled
using Twitter Bootstrap, which also provides a rich set of user interface
elements. The 2D heat map is implemented using the D3.js [24] information
visualization library. It provides fast and easy methods for binding data to
graphical elements. The 3D plot is created using the WebGL-based Threejs

library. Different ways for displaying the cube were tested, including volume
rendering, cube primitives for each data point and shader-based solutions.
Open source volume rendering methods are available but do not satisfy the
requirements. Creating a cube primitive for each data point resulted in non-
interactive frame rates for data sets larger than 30 features (creating 30

3

cube primitives). Therefore, a shader-based solution was incorporated by
rendering the cube as a sprite-based particle system, allowing to customize
color and opacity of every data point. It is also the fastest tested solution.

back end Two server structures serve as back end. The web server is
written in Javascript using Node.js, running on Googles V8 Javascript run-
time environment. It is hosted on Heroku4, a cloud application platform. The
statistical computations are performed on the second structure. They rely on
the statistical programming language R.5 It is widely adopted in the statisti-
cal analysis community, yielding a rich support of state-of-the-art statistics
algorithms as well newly published methods. OpenCPU is an R package and
provides an API for accessing it via HTTP calls [191]. This way, any com-
puter which runs R can be turned into a statistical processor for the project.
The back end functions necessary for all cube calculations are provided via
an R package. It uses multi-core optimization to use all machine CPUs to
speed up the calculation process. The server workload balances are man-
aged by the front end code.

access and source A running instance of the 3D Regression Heat Map
prototype can be found at regressionheatmap.herokuapp.com. The source

4 Owned by Salesforce.com, heroku.com
5 Open Source; r-project.org

https://www.angularjs.org/
http://threejs.org
http://d3js.org/
http://nodejs.org
https://www.heroku.com/
http://r-project.org
https://www.opencpu.org/
https://www.angularjs.org/
http://d3js.org/
https://www.opencpu.org/
http://r-project.org
http://r-project.org
http://regressionheatmap.herokuapp.com/
https://www.heroku.com/
http://r-project.org
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for the prototype is freely available at Github.6,7 Instructions and code to
setup running the statistical back end through a Ubuntu server using OpenCPU

are included in the repository. The front end can be deployed using Heroku

by cloning the repository into a Heroku app.

5.4.4 Application

In this section, the application of the 3D Regression Heat Map to two epidemi-
ological data sets is described. The hepatic steatosis data set was analyzed
using data mining algorithms, yielding risk groups, which are now analyzed
further. Prior results from the analysis are reproduced as proof-of-concept
of the method. The female breast density data set is the basis for an explo-
rative analysis w.r.t. the influencing parameters of the breast cancer-related
parenchyma tissue ratio.

Both data sets are unusual for epidemiological analysis regarding their
feature extent. Usually, only a few features depicting a hypothesis are com-
piled into a data set to assess them using statistical tools. The herein used
data sets comprise several hundred features. The method focuses on data
exploration and knowledge extraction and requires a wide scope of sociode-
mographic, medical and lifestyle features.

Participants, Setup and Procedure

The knowledge discovery capabilities of a system are difficult to measure.
The Visual Data Analysis and Reasoning (VDAR) technique proposed by Lam
et al. [141] is focused on the characterization of a system’s ability to generate
hypotheses and explore the data in order to extract information. VDAR can
be carried out based on case studies using thinking-aloud techniques to
comprehend the user’s reasoning and thought process. VDAR is employed
for analyzing the system.

participants , setup and procedure A web-based analysis is con-
ducted by using an online meeting software, which features voice chat
as well as screen-sharing. Starting an analysis using these techniques took
about 5-10 minutes of setup time. The sessions started with an initial over-
view of the system, showcasing its features and functionality. Afterwards,
the experts used the system on their own computers. The screen-sharing
function was still used to observe the actions of the experts. All sessions
were video-recorded to be processed later on. The analysis was conducted
with three participants. KH, a clinician (10 years of experience) with focus
on epidemiological research, is the domain expert for the breast density data
set. She is a radiologist responsible for the SHIP-MRI acquisition and also
for the mammography analysis. The hepatic steatosis data set is analyzed
by UN, a data scientist responsible for prior analysis of the data. The third
participant is TI, a statistician with focus on epidemiology (8 years of expe-
rience), who assesses the statistical reliability of the tool and the underlying
methods without a focus on a specific data set.

The Hepatic Steatosis Data Set

The data set used by Niemann et al. [186] to identify predictive features
w.r.t. the reversible hepatic steatosis disorder is employed. The dichotomous

6 R-based back end:
github.com/paulklemm/regression-heatmap-r-package

7 Front End and Node.js Webserver:
github.com/paulklemm/regression-heatmap-prototype

http://www.ubuntu.com/
https://www.opencpu.org/
https://www.heroku.com/
https://github.com/paulklemm/regression-heatmap-r-package
https://github.com/paulklemm/regression-heatmap-r-package
https://github.com/paulklemm/regression-heatmap-prototype
https://github.com/paulklemm/regression-heatmap-prototype
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target feature is derived from the liver fat concentration measured using
MRI scans. Liver fat concentrations of no more than 10% are mapped to the
‘negative’ class; values greater than 10% are mapped to the ‘positive’ class
to indicate absence or presence of the disease. The data set contains labels
for 578 participants. The MRI scans for each subject are only available in
SHIP-2.

Apart from the target feature, the data set contains 199 features compris-
ing sociodemographic features (e.g., gender, age), consumption behavior
(e.g., alcohol and tobacco), laboratory data (e.g., sera concentrations), and
two features depicting the liver ultrasound. The acquisition wave is denoted
using the appendix; 85 features with appendix s0 denote their affiliation to
SHIP-0 (first study moment), 50 features for s1 and 55 for s2, alongside with
10 time-independent Single Nucleotide Polymorphisms (DNA base pairs).
Niemann et al. [186] show different class distributions of liver fat concentra-
tions of women and men. For women, an association between age and liver
fat was identified. An appropriate cut-off value of 52 years, which is the
approximate entry age for the menopause was set, yielding the most homo-
geneous class distribution within the resulting subsets. Based on these ob-
servations, the analysis was performed on three populations: males, females
(all ages) and females older than 52 years.

The Breast Density Data Set

The breast density data set was compiled to find associations between the
parenchyma tissue proportion in the female breast compared to other fea-
tures in the data. Breast density is denoted as the ratio between parenchyma
and cellular connective tissue and has been shown to be associated with
breast cancer. Studies describe a four to five times increased risk of getting
breast cancer for participants with a breast density above 50% [169].

The data comprises 1,186 female subjects (368 from SHIP-2, 818 from
SHIP-TREND-0 cohort). It contains 231 features, holding information about
somatometric features (e.g., body size and weight) consumption behavior,
personal and medical history (e.g., occupation and prior diseases), women-
specific features (e.g., number of born children and contraception type) as
well as mammography features (e.g., fat content and parenchyma tissue pro-
portion to volume). The latter were derived from MRI data for each subject,
which was manually segmented by radiologists [100, 121].

The data of each cohort were presented as individual SPSS files. All fea-
tures related to the mammography attributes were stored in an additional
file. The SPSS data sets were converted to CSV and used R to merge the data
sets together using their ID. All features were renamed to be self-explaining,
e.g., chro_09a is now denoted as Disease_Osteoporosis. This avoids the need
of defining a separate data dictionary file for translating the feature names.

Case 1: Hypothesis-Driven Analysis of the Hepatic Steatosis Data Set

Each analysis step is related to the VA Mantra (recall Sec. 5.4.1). The anal-
ysis goal was reproducing results with the herein presented visual analysis
framework that are in accordance to the data mining-based results presented
by Niemann et al. [186]. Therefore, UN started the [1.AF] step using the di-
chotomized MRI fat liver concentration and the formula mrt_liverfat_s2 ∼
X+ Y + Z for male subjects. The [2.SI] step using the 3D heat map locates
hotspots at the end of the heat map (Fig. 59 left). The Zoom, Filter and An-
alyze Further Step [3.ZF] was realized by slicing through the 3D heat map
using the mouse input to inspect the hotspots. Analyzing the 2D heat map
[4.DD] revealed high correlations for somatometric features, hepatic steato-



5.4 3d regression heat map 143

sis indicator features as well as laboratory values, such as creatinine (used
as renal retention parameter) and uric acid (used as gout and diabetes risk
factors) magnitudes. Similar results were present for analyzing the female
groups. UN could reproduce most results. Some features exhibit lower cor-
relations, e.g., creatinine magnitudes. A slight influence of age on the target
feature could be observed for women (R2 of 0.09 for females compared to
0.02 for males). Relationships not described by Niemann et al. [186] were
found, such as enzymes indicating liver dysfunctions, e.g., aspartate amino-
transferase. Due to the difference between the regression model approach
and the decision tree approach presented by Niemann et al. [186], a com-
plete matching set of correlating features is not expected.

analysis of non-discretized target feature Since the herein
presented method can assess numerical target features, the analysis was
conducted again for the non-dichotomized target using the same formula.
The 3D heat map showed lower R2 values in general. However, the anal-
ysis is now based on linear regression and the R2 values cannot be com-
pared directly. The correlation hotspots matched with the ones from the
dichotomous target, but were generally lower (R2 of 0.37 for somatometric
features as opposed to 0.58). One possibility is that the bias introduced by
dichotomizing the fat liver content enforces the findings of liver diseases,
while using the numerical features is less expressive.

interleukin-6 correlation with liver fat During the analysis,
one hotspot was always observable in the [2.SI] and [3.ZF] steps, incorpo-
rating a high Interleukin-6 (IL-6, regulates the inflammation reaction of the
body) correlation with liver fat values (R2 of 0.8, see Fig. 59b). The corre-
lation was high for both the dichotomized and continuous target feature.
The literature described relations between IL-6 and liver cancer [97] as well
as chronic liver diseases [247]. For mice, strong effects of IL-6 with hepatic
steatosis were described [113]. The finding is subject to further analysis.

Case 2: Hypothesis-free Analysis of the Breast Density Data Set

The analysis aims to find relationships on the breast density data using
mammography analysis features. Relationships between the share of paren-
chyma tissue on the overall breast volume are of high interest [169]. The
[1.AF] was started by KH using the default formula for hypothesis-free
analysis (Z ∼ X + Y). At first, she was interested in correlations with the
parenchyma tissue percentage, which was selected through the drop-down for
the z-axis [2.SI]. She observed strong correlations with age, body fat percent-
age, hip and waist circumference as well as menstrual period or pregnancy status,
as expected (Fig. 59 right). Women with higher body fat also have a larger
breast density percentage, which also correlates with other somatometric fea-
tures. Age is a strong influencing factor, as breast tissue and subsequently
the parenchyma tissue degrades over time. KH proceeded using [3.ZF] and
[4.DD] to check for relationships for different target features, such as cur-
rent hormone replacement therapy, BI-RADS (classification of the mammogra-
phy findings) as well as different diseases, such as diabetes or gout. She ob-
served relationships matching her expectations and expert knowledge. One
unexpected relationship was observed between breast lesions and menstrua-
tion cycle w.r.t. spiral contraception (R2 of 0.77). KH proceeded with a detailed
analysis of the parenchyma tissue.

detailed breast parenchyma analysis The analysis was conducted
by calculating the formula Parenchyma_Percentage ∼ X + Y + Z [1.AF].
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Using the 3D heat map, KH observed several hotspots [2.SI]. Navigating to
them using the slicing facility of the 3D visualization [3.ZF] highlighted fea-
tures of high influence, such as image-derived features, as glandular tissue
density and parenchyma segmentation metrics. Also, strong correlations were
observed in the diabetes slice, confirming expectations of KH w.r.t. its strong
influence on the parenchyma tissue. A surprising finding was the strong
correlation with kidney disorder (R2 values around 0.9). The [4.DD] analysis,
however, showed only 8 subjects with this disease. Too few subjects impose
the risk of a biased finding. The correlation was noted and will be further
investigated using an extensive data set. Lastly, KH assessed the influence of
contraception-related features, such as the use of birth control pills or the spi-
ral, but found no significant correlations with the parenchyma tissue. Other
consumption behavior features, such as alcohol intake also yield no elevated
R2 values. KH remarked that these features are suspected to have an im-
pact on the parenchyma tissue, but they are less reliable, since they are
self-reported.

further statistical analysis of the observed relationships

The following analysis is available as open source and incorporates a R

Markdown document.8 Similar to the detailed statistical analysis conducted in
Section 4.5.5, this paragraph aims to statistically evaluate the new hypothe-
ses using standard statistical methods. The analysis is carried out using
R. The data basis is the same data set as used in the 3D Regression Heat
Map prototype, comprising of 1186 subjects with 231 features. The target
is the continuous feature parenchyma tissue percentage and is referred to as
parenchyma tissue in this section.

At first, the relationship between parenchyma tissue and kidney disorder is
analyzed using an ANOVA, since the latter is a categorical feature. Even
though there are differences in the resulting box plots (see the R Markdown

document), the ANOVA yields a low F-value of 2.664 and a p-value of 0.103.
Therefore, the alternative hypothesis, which suggests that there is a correla-
tion between parenchyma tissue and kidney disorder has to be rejected.

The relationship between parenchyma tissue and diabetes, which was ex-
pected by KH, is confirmed by the ANOVA with an F-value of 12.6 and a
p-value of 0.0003. Similarly, the expected relationship between parenchyma
tissue and hormone replacement therapy is confirmed with a very high F-value
of 43.58 and a low p-value of 6.14e−11. The classification of the mammogra-
phy finding (BI-RADS) is defined as categorical feature for both breasts. BI-
RADS [60] is a classification of the mammography results, ranging from “1

- no pathological findings” to “5 - highly suggestive of malignancy”. There
is also an additional level “6: Known biopsy - proven malignancy”, but it is
not included in the breast cancer data set. Therefore, two ANOVAs have to
be conducted to assess the relationship with parenchyma tissue. The F-value
for the left breast is 2.549 with a p-value of 0.0383, being barely under the
0.05 mark. The F-value for the right breast is 5.089 with a p-value of 0.0004.
The differences between these results are noticeable. An explanation can be
found in the plots depicted in Fig. 60 for the BI-RADS classification for both
sides. There are less higher classifications for the left breast compared to the
right one. Therefore, the difference may be explained only by chance, since
the sample size is very small. Also Fig. 60 shows seemingly a decrease of
the parenchyma tissue share for higher BI-RADS classifications.

The feature lesion size is divided into the three categories “none”, “small
focus (< 5 mm)” and “large focus(> 5 mm)”. The ANOVA of lesion size with

8 HTML version of the statistical analyses
http://paulklemm.github.io/StatisticalReview/VAST15_Statistical_Review.html
Repository of the statistical analyses
https://github.com/paulklemm/StatisticalReview

http://paulklemm.github.io/StatisticalReview/VAST15_Statistical_Review.html
http://paulklemm.github.io/StatisticalReview/VAST15_Statistical_Review.html
https://github.com/paulklemm/StatisticalReview
https://github.com/paulklemm/StatisticalReview
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Figure 60: Plots for the BI-RADS five-level mammography finding feature against
the parenchyma tissue share. The left plots comprise the mean share for
each BI-RADS class as well as the confidence intervals and the number
of women per class. The box plots on the right depict the distribution in
each class. Note that there are less women in class IV and V for the left
breast (46) compared to the right breast (68). Therefore, the distribution
cannot be reliably described, yielding differences in the ANOVA result.

parenchyma tissue, however, yields no significant correlation with an F-value
of 1.508 and a p-value of 0.222. Similarly, the ANOVA for parenchyma tissue
and spiral contraception shows no correlation with a very low F-value of 0.226
and a p-value of 0.632. Therefore, a correlation between contraception, lesion
size and parenchyma tissue is not supported by the data.

Further Feedback and Lessons Learned

The presented method was well received among the domain experts. For
the first time, they were able to derive an overview visualization custom-
tailored to underlying assumptions. KH noted the ease of use, which “con-
verts data sets into a feasible form”. She highlighted the efficiency of combining
fast target feature selection with visually highlighting interesting results, en-
abling rapid analysis cycles. To get nearly similar results, she had to spend
hours using SPSS and potentially missed interesting hotspots during this
process. TI highlighted the ability to simultaneously analyze thousands of
regression models while maintaining little time expenses for rating them.

extracted hypotheses have to be investigated further Re-
sults of complex statistical computations are mapped in comprehensive vi-
sualizations. Agreeing with TI’s feedback, each finding and hypothesis has
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to be confirmed using a dedicated statistical analysis. An accompanying
search for correlations potentially highlighting confounders can be carried
out using the herein presented method. Statistical validation of an epidemio-
logical result still has to be carried out by statisticians using their respective
tools. TI commented on the possibility of adding more regression types to
model different correlation types.

overview visualizations are preferred over black-box meth-
ods Explorative analysis based on the data gains importance in epidemi-
ology with increasing data set complexity. Results from automatic ‘black-
box’ methods, such as data mining algorithms, are more often obscure to the
experts. Findings and hypotheses derived through overview visualizations,
however, are met with more confidence, because the users actually observed
the behavior themselves. The participation and steering of the analysis us-
ing human pattern detection and expert knowledge is preferred. Observing
expected correlations matching the expert knowledge strengthens the confi-
dence in the method and, subsequently, in the hypotheses generated from
unanticipated relationships.

using non-discretized features reduces the information bias

Discretization reduces the information space and introduces bias into the
data and is therefore avoided in epidemiological research whenever pos-
sible. In contrast to many data mining algorithms, the method presented
in this section allows to use the concurrent analysis of heterogeneous data
types. Investigations of the hepatic steatosis data set with both numerical
and dichotomized liver fat values showed comparable results. The overall
explanatory power on the numerical feature was lower, supporting the hy-
pothesis that the dichotomized target feature already models knowledge to
bias the data w.r.t. the expected result.

attention steering is crucial Important events have to be high-
lighted in overview visualizations to direct the user’s attention to interest-
ing parts of the data. Poor guidance potentially leads to overlooked rela-
tionships. The 3D heat map acts as mini-map visualization and has proven
to be useful for this purpose, e.g., for highlighting differences rather than
displaying absolute values (Fig. 59).

5.4.5 Summary and Conclusion

A technique for knowledge discovery in population study data sets with
user-defined target features was presented. Dimension reduction using the
target restricts the analysis to the most important features. Hypothesis-free
analysis employs default regression models. Modeling expert knowledge
using regression formulas allows users for a hypothesis-based investigation.
A 3D Regression Heat Map allows to assess hotspots in the analysis by ab-
stracting regression models using a quality-of-fit measure. These can then
be analyzed further using the 2D plot for each 3D heat map slice. Details-
on-demand for each model allow for a detailed assessment of regression
models. The approach was successfully applied to find correlations in a
hepatic steatosis as well as a breast density data set. The method was well
received by the clinical partners.

One limitation of the proposed method is that the regression metrics al-
ways only capture a part of the underlying model. The analyst has to keep
the aspects of the respective metric in mind to avoid false conclusions. The
analysis is limited to three dynamic variables representing the 3D Regression
Heat Map dimensions. Investigating more dynamic variables can be achieved
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by projecting the high-dimensional space into a three-dimensional represen-
tation. This, however, increases the cognitive load and complexity of the
analysis substantially and needs to be accompanied by techniques that sim-
plify this approach. Static features can be added using the formula input
without increasing the complexity of the visualization.

As a next step, more regression types, which model different kinds of
correlations can be introduced in the analysis. Another possibility is the
extension of the 3D heat map to time-dependent data by expanding the
difference heat map approach. All associated code is published as open
source. Also, a freely accessible analysis platform open to heterogenous data
types is provided. The goal is to open up knowledge discovery to a diverse
group of domain experts to allow them to derive insight into their data.
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6S U M M A RY & O U T L O O K

6.1 summary

Epidemiology aims to characterize health and disease conditions in defined
populations. Insights into risk factors allow to characterize disease-specific
high-risk groups [74]. Furthermore, the insights can be used to derive rec-
ommendations regarding a healthy lifestyle or to provide information about
widespread diseases. During the standard workflow, physicians derive hy-
potheses from observations and research. The hypotheses are depicted us-
ing epidemiological features and are then statistically analyzed. Large-scale
population studies collect large data sets to allow for queries with numer-
ous diseases and hypotheses in mind. Analyzing medical image data as
part of these population studies is challenging. The data has to be labeled
and quantified (e.g., annotating the liver, knees or breast tissue) to allow
for statistical tests of correlations with diseases. As the epidemiological data
sets get larger, data-driven analysis approaches are required to utilize their
complexity.

This thesis contributes a data-driven Interactive Visual Analysis approach
for population study data and methods for the workflow application by
combining new and existing visualizations with data mining techniques.
The workflow is meant to be an enhancement of the classical epidemiologi-
cal analysis pipeline. Confirmative analysis approaches, where existing hy-
potheses can be verified, as well as explorative, hypothesis-free analyses are
supported. The contributions of this thesis are summarized in the following
paragraphs.

classification of existing visual analytics and interactive

visual analysis methods A vast variety of Visual Analytics and In-
teractive Visual Analysis methods is available for numerous applications.
This thesis aims to structure and categorize them to assess their suitabil-
ity for population study data. Emphasis is put on analyzing medical image
data, where structures of interests need to be segmented before they can be
analyzed further. Different methods for creating shape variance models are
described.

interactive visual analysis of image-centric population study

data A workflow based on Visual Analytics and Interactive Visual Anal-
ysis for population study data is proposed. It incorporates different interac-
tion complexity levels as well as the appropriate visualization type depend-
ing on the current analysis phase.

Hypothesis-based. The classical hypothesis-based confirmative analysis
can be supported using Visual Analysis methods by providing fast and ef-
ficient ways of analyzing bivariate or more complex variable relationships
using an integrated framework. Augmenting medical image data with non-
image visualizations allows users to assess shape differences w.r.t. a target
condition. It also allows users to analyze the influence of confounders, such
as age or gender, to the structure of interest.

Hypothesis-free. For hypothesis-free analyses, overview visualizations
are suitable to show hotspots in the data. Overview visualizations for shape-
based analysis of medical image data can be carried out by applying cluster-
ing algorithms to derive shape groups. Augmenting overview visualizations
of shape variances with non-image variables, such as binary disease indica-
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tors, provide a simple yet powerful way of analyzing local and global shape
influences.

data-driven analysis of sociodemographic , medical and life-
style factors Non-image hypothesis-based analyses are the focus of
classical epidemiological analyses. Statisticians know a vast variety of well-
established methods, such as regression analyses, which can be incorpo-
rated to analyze data variables w.r.t. diseases. These methods, however, fail
for explorative analyses, where new relationships are derived through the
data. Hence, this thesis focuses on combining the established methods, such
as regression analyses, with clustering techniques and overview visualiza-
tions, to trigger hypothesis generation by observing new relationships. This
is achieved using the 3D regression heat map, which allows epidemiologists
to define relationships of interest using regression notations, which are then
applied to all variable combinations to find the relationships. The Decision
Tree Quality Plot incorporates clustering techniques to assess the predictive
power of a set of variables towards all other variables in a data set. The
Interactive Visual Analysis workflow replaces the “variable listing” step in
the epidemiological pipeline, which follows after formulating a hypothesis,
which is then statistically validated. This allows experts to find new rela-
tionships, which project back into the hypothesis formulation step. It also
means that these new results still have to be investigated using standard
statistical methods in order to be verified.

6.2 future work

There are many ways to extend the work presented in this thesis. The fol-
lowing sections cover selected aspects.

Collaborative Visual Analysis using Web-Based Technologies

Collaborative Visual Analysis between two domain experts (compare pair
analytics in Sec. 3.2.3) allows to combine knowledge of different experts in
joint analysis sessions. This does not only compensate the lack of knowl-
edge from the field outside of the expert scope, but also triggers new ideas
by communication between the experts. The interactive visual analysis meth-
ods presented in this thesis are all developed with this concept in mind and
are implemented using web technologies. This allows for a fast exchange of
software and enables online pair analysis sessions. Using Voice over IP and
screen-sharing solutions, pair analytics sessions can be conducted with little
setup times. As the number of experts and different locations increases, this
solution becomes less attractive due to delay in voice transmission and lags.

The systems described in this thesis already use many advantages of web
technologies. Heavy computations, such as the regression analyses in the
3D Regression Heat Map (recall Sec. 5.4), are outsourced to dedicated clus-
ters of computers. The user’s machine only needs to render the results. This
approach also extends to server-side segmentation of images, as described
by Jacinto et al. [122]. Responsive web-design even allows experts to use
the system on mobile devices. Context menus, however, opened via mouse-
over events, are not easy to facilitate. These, however, are possible with the
advent of modern touch-pressure sensitive devices. Redesigning the visual
analytics systems with these technologies in mind might increase the visibil-
ity of such techniques due to easy access and simple intuitive usability. In
their taxonomy for visual analysis, Heer and Shneiderman [99] distinguish
different steps in the analysis, namely data & view specification, view manipu-
lation and process & provenance. They divide the latter in the following steps:
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• record to investigate the analysis history,

• annotate to document findings,

• share to enable collaboration and

• guide users through the analysis.

The point of these four tasks is documenting the analysis process for either
future analysis or sharing it with collaborators. They state that in order “[...]
to support the analysis life cycle fully, visual analytics tools should support social
interaction” [99]. This can be supported using a synchronous analysis either
co-located at the same system or remote via web technologies by including
multiple input devices or supporting multiple screens [120]. Vogt et al. [269]
suggest large screen spaces to display many views and data entries using
visual exploration tools for co-located pair analytics. For remote sessions,
this may be achieved by incorporating additional means of communications,
such as facilities to point to coordinates on the collaborator’s screen. Social
interactions for asynchronous analysis [120] can be achieved via exporting
functions of views as images or whole datasets, e.g., using a bookmark fea-
ture [99]. Morton et al. [178] conclude that online visual analysis platforms,
such as Tableau or Many Eyes1, until now are only suitable to enhance the
visibility of a method or a data set. They observed, “[...] that authors tend to
bring their own data and do not leverage the contributions of content from other
authors” [178]. Al-Hajj et al. [4] show that pair analytics sessions between
subject matter experts and visual analytics experts work well for assessing
injury information and that clinical experts value the analysis sessions.

Providing means for saving insights and states of the current analysis is a
promising extension to the described methods. Mahyar et al. [162] describe
a clear need for note taking as part of collaborative analyses. For analyses
involving multiple experts, collaborative and personal note taking should be
supported. The authors suggest a notebook model where individual notes
can be compiled into a chronological history associated with system states.

Shrinivasan and van Wijk [242] propose the knowledge view for storing
insights derived through the analysis using a mind map metaphor. Each in-
sight can be stored using a short note on its content. The system saves the
state of each note to resume to the analysis at these points. This does not
only allow users to save analyses to resume them in a later step, but it also
allows them to share states with other scientists for verification and compar-
ison. Analysis sessions become more comprehensible, as the steps taken to
derive a specific insight are recorded. This also allows experts to identify po-
tential over-adaptation of expectations to the data set by applying too many
dimension reductions or only analyzing subsets which support the current
hypothesis. Extending the knowledge view of Shrinivasan and van Wijk
and adapting it to the epidemiological application domain shows much po-
tential. The knowledge view may also save figures, tables and other useful
information about the data, which can be incorporated by epidemiologists
to publish their findings.

Uncertainty Visualization

Epidemiological data is based on measures, simulations (e.g., simulate the
spread of a contagious disease) or data derived by interviews. All modalities
are associated with specific uncertainties. Measurements, for example, are
prone to noise. Simulations are restricted by model assumptions. Interview
question can be misunderstood or subjects may deliberately make false state-
ments. Questions about alcohol or tobacco consumption, for example, may

1 Owned by IBM, www-01.ibm.com/software/analytics/many-eyes/

http://www-01.ibm.com/software/analytics/many-eyes/
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be inaccurate due to the fear of subjects of being judged. Biased answers
prohibit the transfer of results of the population study to be transferred to
the whole population. In the methods presented in this thesis, this fact is
not considered. There are two reasons for that. First, the uncertainty has to
be measured. This proves to be difficult, since there are no gold standard
populations available that can be used as reference. Another possibility is
including a binary flag, which marks potentially imprecise features. Second,
if the uncertainty is measured, it has to be displayed, which substantially
increases the plot complexity. Uncertainty adds a new dimension to the vi-
sualization [27]. Imagine, for example, a scatter plot of two numerical mea-
sures, where each subject in the population is represented using a dot and
also includes confidence intervals of the accuracy for each feature. Even for
a small number of subjects, this plot contains many visual clutter and is
likely not helpful.

In recent years, however, uncertainty visualization gained importance [27,
206, 205]. As Brodlie et al. [27] point out, uncertainty can be really complex
and consist of different descriptions. It might be defined as [27]:

• probability density function, where each data point is a random variate,

• multivalue data, where multiple values are derived for each data point,

• bounded data, where the value is inside finite bounds.

Brodlie et al. [27] provide different visualization ideas in their overview.

• Juxtaposition of plots displays the uncertainty in a separated plot, which
reduces the visual clutter. The user, however, has to mentally map
the corresponding data points. This can be supported by visual con-
nections that are drawn on demand, for example using mouse-over
events.

• Overlaying variance information imposes a similar approach as the jux-
taposition, reducing the amount of visual clutter as much as possible.
It can also be incorporated on demand. For example, inaccurate seg-
mentation results can be overlaid with the variance at each data point
on demand to assess the uncertainty. Aierts et al. [1] show that jux-
tapositioned plots are better suited for displaying uncertainty than
toggling overlays.

• Color coding uncertainty can be incorporated for both non-image and
image data. Uncertainty in surface meshes can be color-coded using a
scale ranging from confident to uncertain. Data points in non-image
plots can be colored using the same concept.

• Animating uses time as additional visualization dimension to contin-
uously show the ranges of each data point. Lundström et al. [157]
propose probablistic animation for medical image data, where clas-
sification uncertainty is displayed by incorporating a sensitivity lens.
Animation, however, has to be incorporated with care and should be
minimized as much as possible, since attention steering will become
more complicated when there is much movement on the screen.

• Sound encodings for uncertainty information are proposed in several
works in the 90s. To the knowledge of the author, there are no recent
works of visualizations incorporating sound. Sound is a local feature
as additional information on a selected data point and therefore it
is difficult to properly include it into data visualization. The lack of
research in this area, however, leaves much room for future work in-
corporating sound in uncertainty visualization.
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The overall approach for uncertainty visualization should be displaying the
information on demand. For example, when a correlation between features
is displayed, the visualization needs to show the user that there is uncer-
tainty in the data which may affect the conclusion. Therefore, the visualiza-
tions need to reflect the uncertainty in the data in a proper way to be helpful
and truthful.

Uncertainty in epidemiology is also associated with clustering or classifi-
cation techniques. The group affiliation of a subject can also be expressed us-
ing probabilities rather than binary statements. Fuzzy clustering and fuzzy
classification approaches can be applied to determine the probabilities. It is
also possible to set input ranges instead of single values as input parameters
to determine the influence of the parameter changes and their range [248].
The different results can also be used to fit probability distributions to dis-
play uncertainty at a boundary of a cluster, e.g., through the boundary thick-
ness. Alternatively, possible manifestations can be displayed directly. This
uncertainty visualization type is referred to as Noodle Plot and is popular
in meteorology, but also in climate research to showcase different scenarios.
The ensemble data are derived from simulations with slight changes in the
input parameters. These plots get cluttered very soon, since each simulation
model, which is complex in itself, needs to be represented.

Time-Dependent Analysis

The methods presented in this thesis work for one acquisition cycle of a
population study. Cohort studies, such as the SHIP, comprise multiple ac-
quisition cycles of several years. The acquisition equipment and protocols
for existing features remain the same to ensure comparability between cy-
cles. Often, new features are introduced to the study to broaden its scope.
For the SHIP, for example, MRI data are included in the third cycle ‘SHIP-2’.
Therefore, the majority of this work is focused on the ‘SHIP-2’ moment. Con-
sidering multiple points in time for the analysis imposes many challenges
and opportunities for future work. The main questions are:

• How to detect subpopulations that differ in risk exposure over time?
How to monitor the evolution of these subpopulations to predict their
evolution and to identify the factors affecting this evolution?

• How to explain these subpopulations to the medical expert so that she
or he can understand, explore and exploit the findings?

Incorporating medical image data for multiple moments w.r.t. diseases
shows much potential. Instead of comparing whole differences between
healthy and diseased subjects, the morphological changes between cycles
can be analyzed and visualized. This, however, requires sophisticated de-
tection and segmentation algorithms, which only capture morphological
changes between the acquistion cycles. This is a very difficult task. The algo-
rithm has to consider posture changes of the subject in the MRI as well as
slight changes in the magnetic field. This becomes apparent for soft tissue,
such as the liver, which may change even through slight posture changes,
rendering the morphometric comparison difficult. It has to be clear which
information represents morphological changes. For rigid structures, such
as bones, the problem is less prominent. Changes in posture, however, can
still have a strong influence on the metric measuring position and angles
between structures, for example the lumbar spine canal shape.

Visualization techniques of medical image data for multiple time points
may be augmented with plots of non-image visualization, similar to the
method presented in Section 4.5. Standard plots, such as bar graphs, usually
display one feature along the time scale in a two-axis visualization. Layered
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area charts, as extension to line plots, can be used to compare data that
share the same units [3]. Radially distributed line plots allow for comparing
a number of univariate time-dependent features [257]. They are, however,
hard to compare and the plot takes up a large amount of space. This in-
corporation of time-dependent image and non-image data is well suited for
hypothesis-based analyses.

Clustering techniques for longitudinal data are a promising way to de-
rive new hypotheses. This allows, for example, to assess differences in the
evolution of healthy and diseased subjects. There are two ways to achieve
this.

(i) Subjects are clustered at each discrete time step, yielding a group affil-
iation for each subject at each acquisition cycle. The features defining
these clusters can then be further analyzed. Also, changes in the clus-
ter affiliation between each time step can be analyzed. For example,
clusters may split into several clusters, or a number of clusters merges
into a bigger one. The features, which are responsible for these events,
may indicate relevant changes w.r.t. the target disease.

(ii) Subjects are clustered along the time line. This yields one set of distinct
clusters for the whole data set. The clustering does not incorporate
total feature values, but differences (gradients) of them between each
point in time. For example, subjects may be clustered because they
highly increase the number of smoked cigarettes per day in between
the acquisition cycles.

The two approaches require a distinct set of visualizations to comprehend
the results. Analyzing the cluster transitions produced by clustering the sub-
jects at each acquisition cycle (i) requires visualizations that highlight these
transitions and the associated feature changes. One way to achieve this is
by displaying a parallel coordinate per wave, where the cardinality of each
cluster is represented using a bar. Subject transitions between the acquisition
cycles can then be visualized using arcs between the bars, similar to parallel
sets. The visualization of clusters with similar evolution paths (ii) has to pro-
vide means for comparing gradients of numerical features between clusters
as well as differences in categorical features. The latter can be visualized us-
ing binary change flags, which indicate a change in the categorical features
(e.g., transition from non-smoker to smoker).

Narrative Visualizations

A consequence of epidemiological findings is providing the public with up-
dated information on a healthy lifestyle. Visualizations can help commu-
nicating the results to a broad audience. Large newspapers increasingly
incorporate information visualizations in digital issues to provide readers
with the opportunity to investigate the underlying data as supplementary
material to the articles [72, 233]. The requirements for these narrative visual-
izations vastly differ from standard visualizations. The methods presented in
this thesis are custom-built for epidemiologists, a very specific target group.
They have an extensive knowledge of the medical conditions represented in
the data and also a solid statistical background. Even with this background
in mind, the visualizations and the incorporated data mining techniques
have to be explained to the domain expert. The whole point of the pair an-
alytics approach is that the expert with the domain knowledge has a visual
analysis expert assisting the analysis by explaining phenomena, changing
views and conducting interactions with the system. Narrative visualizations
on the other side have to work for a broad audience, where one has to as-
sume the worst case of very little experience both in epidemiology as well
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as visual analysis. In order to be a valuable addition that supports the nar-
rative, visualizations have to be clear, truthful and easy to learn. The use
of optically pleasing colors that match the design of the digital platform as
well as layout restrictions, imposes additional requirements which further
reduce the design space for the visualizations.

In the 1920s, Otto Neurath aimed to enable citizens to participate in so-
ciety and politics-related questions by educating them using pictographic
statistics, so-called Isotypes [183]. In a pursue to create a universal pictorial
language, Neurath encoded statistical information into easily understand-
able pictographics. The number of workers, for example, was mapped to
minimalistic representations of humans. Combining the representation with
other symbols, for example that of a factory, allowed to create contexts and
encode different information. Neurath argued that numbers should not be
provided in detail in favor of remembering the pictures instead of num-
bers. In modern narrative visualization, Isotypes are known as pictograms.
The combination of pictograms allows to encode many features without re-
quiring too much explanation. Designing proper pictograms and systems
incorporating them, however, is still open research [72], even though there
are rudimentary design suggestions available [233].

First approaches for providing results of epidemiological studies is the UK
Longevity Explorer (Ubble) [79], which incorporates information of the UK
Biobank study. Ganna and Ingelsson investigated 655 demographic, health
and lifestyle features and associated the five-year death rate. The goal was
to see how accurate a variable can predict the five-year death probability.
Similar to the Decision Tree Quality Plot proposed in Section 5.1, the results
are represented using an interactive scatter plot, which is available online.2

In the accompanying text on the homepage the authors state that the service
is intended both for people who want to investigate health-related issues
and for scientists. A lay summary is also available on the homepage, which
explains the displayed results without assuming a background in statistics
and epidemiology. They also provide a risk calculator, which incorporates a
couple of questions to detect similar subjects in the population and derive
the risk of dying in the next five years.

A modern trend in the information age is self-quantification. People em-
ploy a wide variety of tools, such as fitness bands, tracking apps, smart-
phone journals, smart watches to quantify information about their life. The
information consist of a wide variety of fields, e.g., fitness, nutrition, health
status, mobility. An important aspect of collecting these information is eval-
uating and sharing them to develop and establish healthier habits. People
like Nicholas Felton3 experiment with new techniques to provide people
with better insights into their data and correlating different entries. In order
to employ this information for a large-scale comparison between multiple
subjects, the analyses have to be strictly standardized to minimize acquisi-
tion biases. Otherwise, correlations are most likely showing different data
acquisition habits rather than differences in their physique or habits.

Communicating health-related risk factors to people has to ensure the
proper understanding of the information. The example of 23andMe, as men-
tioned in Section 3.3.5, shows that displaying information without the ac-
companying consultation of a physician can be dangerous and lead to ques-
tionable and dangerous decisions. This is an aspect that is often conveniently
overlooked by visualization experts. A proper way to achieve this may be
employing techniques used in journalism to tell “data stories” [233]. The
main aspect here is the explaining text, which is accompanied with infor-
mation visualizations. A good example is the New York Times article “Tax
Day: Are You Receiving a Marriage Penalty or Bonus?”, which allows to input

2 ubble.co.uk
3 felton.com

http://ubble.co.uk/
www.felton.com
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own information, but then steers attention to the accompanying text [50].
Other articles already have the character of web-apps, by employing many
linked views that allow to assess many dimensions and relationships. A
good example of this is the “Is It Better to Rent or Buy?” article, where users
can assess the cost effectiveness of buying a home [25]. “Scientific story-
telling” [159] tries to communicate scientific results to broad audiences. It
requires a skillful selection of appropriate bits of data, accompanying expla-
nations and intuitive visualizations that do not overwhelm the reader.

6.3 future potential

As the previous section highlights in detail, there is a vast variety of future
work to be done. Herein suggested is the focus on incorporating multiple
time steps. Employing visual analytics methods for proper use of feature
gradients along the time dimension shows great potential for deriving new
hypotheses. It is also a promising way to describe risk factors. Risks can
be described as changes in the medical condition, personal decisions and
lifestyle factors. Employing Interactive Visual Analytics methods for the
joint analysis of multiple time steps of medical image data with non-image
features to highlight structural changes with disease indicators is a promis-
ing research area with little published work.

Communicating epidemiological results is key to help people to live a
healthier life. This can be carried out using narrative visualizations. An
even more promising way of accomplishing this is employing risk factors
into personal assistance systems, which are integrated into wearables and
smartphones. This way, people more consciously perceive the consequences
of their lifestyle decisions, which may lead to behavioral changes to improve
their health. Another related direction of future work is employing the in-
formation collected using these new wearables as additional input for the
population study data. This requires a strict quality control of the involved
machines, which may render this endeavor impossible. The approach, how-
ever, has to be evaluated. Alternatively, these data sources can compile a
second, much larger control population, which can be used to cross check
epidemiological findings as long as the related features are included in the
self-quantification. But even then the data suffers from a selection bias, since
self-quantification will arguably more likely be carried out by technology-
affine people. Therefore, results in these populations have to be analyzed
with care. The large numbers, however, may counteract this effect.

With population studies growing in both the number of participants and
assessed features as well as additional data sources from social networks,
self-quantification and other data sources, the need of proper analysis tools
increases. People demand self-reflection based on their data. They want to
know whether they live a healthy life or not. Clinicians want to assess risk
factors for diseases and effective treatment plans to develop new or refined
diagnoses and treatment methods. To allow for this, novel data represen-
tation and analysis techniques have to be employed. The purpose ranges
from conducting explorative analyses, which may lead to new hypotheses,
to communicating epidemiological results. Employing visualizations to al-
low for reasoning about the available data and guiding experts as well as
the general public to the right direction is a promising way to go. This thesis
gives an overview of the challenges in this area and provides techniques for
analyzing the vast information space of large-scale population studies.
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