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genehmigt durch die Fakultät für Verfahrens- und Systemtechnik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Priv.-Doz. Dr.-Ing. Gábor Janiga
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Abstract

The accurate description of multiphase chemical reactors is essential to improve

existing applications and design new configurations. Nevertheless, a detailed simula-

tion of a full multiphase reactor is a complex problem that involves the description

of distinct modeling levels. Despite of the increasing computing power and the ad-

vances in modeling, there is a need for efficient simulation techniques, robust models

and practical coupling methodologies for the simulation of multiscale reactors of

industrial interest.

In this thesis, techniques and methodologies that assist the simulation of multi-

phase chemical reactors have been developed and tested. The main results presented

in this work are the following: (i) technique for the reconstruction of distribution

from a finite number of moments, (ii) methodology for model parameter optimization

using multi-objective optimization and (iii) methodology for the multiscale coupling

of multiphase reactors.

Quadrature-based method of moments are commonly used to solve population

balance equations (PBEs). With this method only a small number of moments

of the underlying distribution are tracked. The developed adaptive reconstruction

technique using splines allows to retrieve distributions from a finite set of moments

without prior knowledge on the shape of the distribution; only the initial moments

and a rough estimation of the domain are needed.

Another tool explored in this work is the multiobjective optimization, which

has been used for the optimization of model parameters. It is a methodology that

has not been well explored in this realm. In many practical situations, however,

multiobjective optimization may deliver more robust and general applicable set of

parameters compared with single objective optimization. This methodology has

been applied for the optimization of the realizable k − ε turbulence model and for

the optimization of kinetic and model parameters of a catalytic chemical reaction

network.

Finally, a batch crystallization reactor has been simulated. The distinct modeling

levels, e.g., fluid dynamics, population balance, growth kinetics, are coupled within

the Euler-Euler framework. Nevertheless, the brute-force 3-D simulation leads to

unaffordable computing time. Motivated by that, a methodology combining 3-D

and 0-D simulation has been elaborated. The developed methodology considers the

mixing and the crystal growth separately but uses the local information of the flow

for a detailed description of the crystal growth.
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Kurzfassung

Die genaue Beschreibung von mehrphasigen, chemischen Reaktoren ist von wesentlich-

er Bedeutung für die Optimierung von bestehenden Anwendungen und für den En-

twurf von neuen Konfigurationen. Dennoch ist eine detaillierte Simulation des

gesamten Reaktors ein komplexes Problem, das die Beschreibung verschiedener

Modellierungsebenen beinhaltet. Trotz der zunehmenden Rechenleistung und der

Fortschritte in der Modellierung besteht weiterhin ein Bedarf an effizienten Simula-

tionstechniken, robusten Modelle und praxistauglichen Kopplungsmethoden für die

Simulation von industriellen Reaktoren.

In dieser Arbeit wurden Techniken und Methoden entwickelt und getestet, die die

Simulationen von mehrphasigen, chemischen Reaktoren unterstützen. Die wichtig-

sten Ergebnisse in dieser Arbeit betreffen folgende Gebiete: (i) Rekonstruktion

der Verteilung aus einer finiten Anzahl von Momenten, (ii) Anpassung der Modell-

parameter mit Mehrzielfunktion Optimierung und (iii) mehrskalige Kopplung von

mehrphasigen Reaktoren.

Quadratur-basierte Momente Methoden werden häufig verwendet, um Popula-

tionsbilanzgleichungen (PBs) zu lösen. Mit dieser Methode werden nur eine kleine

Anzahl von Momenten der zugrundeliegenden Verteilung verfolgt. Die entwickelte

adaptive Rekonstruktionstechnik erlaubt es, mittels Splines, Verteilungen aus einer

endlichen Menge von Momenten abzurufen, ohne vorherige Kenntnisse über die Form

der Verteilung. Lediglich die anfänglichen Momente und eine grobe Schätzung des

Wertbereiches werden benötigt.

Ein weiteres Werkzeug, das in dieser Arbeit untersucht wurde, ist die Optimierung

von Mehrzielfunktionen. Dies wurde für einzelne Modellparameter angewendet. Es

handelt sich dabei um eine Methode, die in diesem Bereich noch nicht gut unter-

sucht wurde. In vielen praktischen Anwendungsfällen liefert die Mehrzielfunktion

Optimierung jedoch robustere und besser verallgemeinerbare Sätze von Parametern

im Vergleich zu der Einzielfunktion Optimierung. Diese Methodik wurde für die

Optimierung des realizable k − ε Turbulenzmodells und für die Optimierung der

Modell- und Kinetikparameter eines katalytischen, chemischen Reaktionsnetzwerkes

angewandt.

Schließlich wurde ein diskontinuierlicher Kristallisationsreaktor simuliert. Die

unterschiedlichen Modellierungsebenen (z.B. Fluiddynamik, Populationsbilanzgle-

ichungen, Wachstumskinetiken) wurden im Euler-Euler-Rahmen gekoppelt. Den-

noch führten reine 3-D-Simulationen zu unerschwinglichen Rechenzeiten. Dadurch

motiviert, wurde eine Methodik erarbeitet, die die 3-D und die 0-D-Simulation

v



kombiniert. Die entwickelte Methodik, betrachtet das Mischen und das Kristallwach-

stum separat, nutzt aber die lokalen Informationen der Strömung für eine detaillierte

Beschreibung des Kristallwachstums.
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Nomenclature

A list with the most relevant symbols is included here. In order to follow standard

notations, a few symbols may represent more than one quantity.

Latin symbols

d10 median mean diameter [m]

d32 Sauter mean diameter [m]

D diffusion coefficient [m−2 s]

EA activation energy [kJ/mol]

g gravity [m s−2]

G particle growth rate [m s−1]

h characteristic length [m]

kd diffusive mass transfer coefficient [m s−1]

ks surface integration coefficient [m s−1]

kV volume shape factor [-]

L abscissas of the quadrature approximation [m]

n(ξ,x, t) number-based density function [s−1]

np number of phases [-]

N number of quadrature points [-]

Nobj number of objective functions [-]

Nparam number of parameters [-]

p pressure [Pa]

Re Reynolds number [-]

Sc Schmidt number [-]

Sh Sherwood number [-]

Sk source term [-]

t time [s]

T temperature [K]

rj reaction rate [mol s−1]

ui instantaneous velocity [m s−1]

xi



u
′
i fluctuation velocity [m s−1]

Ui mean velocity [m s−1]

uq mean velocity vector of the qth phase [m s−1]

uslip slip velocity [m s−1]

xi space coordinate [m]

Greek symbols

α volume fraction [-]

ε turbulent dissipation rate [m2 s−3]

µ dynamic viscosity [kg m−1 s−1]

µk kth moment of a distribution

ν kinematic viscosity [m2 s−1]

νT turbulent eddy viscosity [m2 s−1]

ξ internal coordinate vector

ρ density [kg m−3]

τ Reynolds stress tensor [Pa]

ω weight of the quadrature approximation [-]

Abbreviations

CFD Computational Fluid Dynamics

DQMOM Direct Quadrature Method of Moments

GA Genetic Algorithm

NDF Number-based Density Function

NSGA-II Non-dominated Sorting Genetic Algorithm-2

PBE Population Balance Equation

PSD Particle Size Distribution

QBMM Quadrature-based Method of Moments

QMOM Quadrature Method of Moments

RANS Reynolds-averaged Navier–Stokes

UDF User-defined function

xii



Chapter 1

Introduction

A chemical reactor is a very complex system where phenomena with distinct time

and length scales coexist and influence each other. The accurate description of this

complex system requires different modeling levels. For instance, the simulation of a

crystallization reactor involves the fluid dynamics modeling, the particle properties

evolution modeling and the crystallization kinetics modeling (see Fig. 1.1). For the

description of each of these modeling levels, specialized submodels are required.

There is a need for better models and techniques that support the simulation

of complex chemical reactors. This thesis tackles some of these issues, providing

methodologies and techniques that assist the simulation of chemical reactors and

testing it in applications of industrial interest. Considering the modeling levels

involved in the description of chemical reactors, the methodologies and techniques

developed in this work have the following applications:

• Fluid dynamics modeling: the accurate prediction of turbulent flows is a funda-

mental issue to improve existing applications and develop new configurations.

Numerical simulations based on Reynolds Averaged Navier-Stokes (RANS)

models are still widely used today for practical engineering problems. RANS

models have been usually calibrated based on simple flows but are applied in far

more complex geometry. For a particular flow, it is known that the prediction

can usually be improved by adjusting the model parameters. A methodology

for the determination of optimal and generally applicable parameters would

be a valuable tool.

• Particle properties evolution modeling: moment-based quadrature method of

moments are a popular approach to solve the population balance equations

(PBE). Nevertheless, with such methods only the moments are tracked and no

information about the shape of the distribution can be derived. A technique

that supports the reconstruction of distributions considering only a finite set

1



of moments would find applications in many fields.

• Kinetics modeling: in many practical situations a single set of parameters

should fit a model to different experimental conditions or fit different models

simultaneously. In such cases, a multi-objective optimization would be a far

more valuable tool for the determination of optimal model parameters.

Within the framework of the computational fluid dynamics (CFD) it is possible to

use specialized models at distinct modeling levels and exchange information between

the different scales. For instance, in crystallization the local conditions of the flow

influences the evolution of the particles properties which in turn affects the spatial

distribution of the particles in the reactor, creating a complex network. Nevertheless,

the simulation of phenomena with very different temporal and spatial scales leads

to further complexities. Therefore, a methodology to track the particle properties

evolution while considering a detailed fluid dynamics description is needed.

Figure 1.1: Multiphase chemical reactor, showing the distinct modeling levels.

1.1 Thesis outline

Distinct topics have been addressed in this thesis and some chapters can be seen as

a topic on their own. A mind map of the topics addressed in this thesis is showed

in Fig. 1.2.
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CHAPTER 1

Multiphase
reactor

(Chapter 6)

Growth
kinetics

3-D/zero-D
coupling

Multiphase
modeling

(Chapter 2)

QMOM

Reconstruc-
tion

CFD +
QMOM

Multiobjective
optimization
(Chapter 3)

Opt.
turbulence

model
(Chapter 4)

Opt.
reaction
model

(Chapter 5)

Figure 1.2: Mind map of the topics addressed in this thesis.

The thesis is structured as follows:

Chapter 2 (Methods to simulate polydisperse multiphase flows): describes the

methodology for the simulation of multiphase follows using the Euler-Euler mul-

tifluid framework. The quadrature method of moments (QMOM), as well as its

coupling with CFD is discussed. Finally, a novel technique for the reconstruction of

distributions based on a finite set of moments is discussed.

Chapter 3 (Methodology for model parameter optimization using multi-objective ge-

netic algorithm): describes a methodology for the optimization of model parameters

using multi-objective optimization. The advantages of multi-objective optimiza-

tion, basic concepts and the coupling between simulation software and optimization

algorithm are discussed. The presented methodology is employed for the model op-

timization of a turbulence RANS model (Chapter 4) and for the model optimization

of a chemical catalytic reaction network (Chapter 5).

Chapter 4 (Model Optimization for Turbulent Flows): describes the optimization of

the realizable k− ε turbulence model parameters using multi-objective optimization.

The optimized model is also tested in four independent configurations.

Chapter 5 (Model Optimization for Chemical Reactions using Global Model Struc-

ture): describes the optimization of mechanism and parameters of catalytic reactions

3



using multi-objective optimization

Chapter 6 (Simulation of a Multiphase Chemical Reactor): investigates a full multi-

phase crystallization reactor involving distinct modeling levels. The methodology to

simulate polydisperse multiphase flows described in Chapter 2, as well as the devel-

oped distribution reconstruction technique are applied. Furthermore, the optimized

RANS turbulence model (see Chapter 3 and Chapter 4) is employed. Details on the

growth kinetics are elaborated in this chapter. A methodology to track the particle

properties evolution while considering a detailed fluid dynamics description is also

discussed in this chapter.

Chapter 7 (Conclusions and Outlook): finalizes the thesis with a discussion on the

topics developed and discusses perspectives to further works.
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Chapter 2

Methods to simulate polydisperse

multiphase flows

2.1 Introduction

Polydisperse multiphase flows are characterized by a disperse phase distributed as

small discrete elements in a continuous phase. Such flows are present in many

environmental and industrial applications, being often realized in chemical reactors

(e.g., crystallizers, fluidized beds, emulsions).

The discrete elements in the disperse phase (or phases) can be solid particles,

drops or bubbles — note that the term “particles” is used in this work as a general

reference to solid particles, drops or bubbles. These particles are mostly not identical,

they may differ due to several properties, e.g., size, shape, temperature, composition,

leading to polydisperse multiphase flows.

In multiphase flows, particle-particle interactions and also interactions with the

continuous phase occur. A modeling framework that accurately describe polydis-

perse multiphase flows should consider the modeling of the multiphase flow and the

evolution of the properties of the dispersed phase.

In practical engineering applications, a microscopic detailed description of the

interfaces between the disperse and the continuous phase is not required. Thus,

the macroscopic continuum description provided by the Eulerian multiphase model

is suitable for most practical cases. In the Eulerian multiphase model, averaged

mass and momentum equations are derived for each phase (more details are given in

Section 2.2). The averaging procedure introduces interphase exchange terms, which

need to be modeled bringing the microscale and mesoscale physics into account. Nev-

ertheless, particle-particle interactions are not considered in the Eulerian multiphase

model. A detailed description on the derivation of the Eulerian multiphase model

can be found in Ishii and Hibiki (2006).
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The models that describe the disperse phase are based on the solution of the

population balance equations (PBE), see Ramkrishna (2000). The PBE describes

in terms of number-based density function (NDF) information about the properties

of the disperse phase. For instance, the evolution of particle size in crystallization

processes accounting for all the physical phenomena that may occur, e.g., nucleation,

growth, aggregation, breakage. As it is discussed in Chapter 6, the description

of the particle size distribution (PSD) in crystallization processes is fundamental

to determine the quality of the process. In order to describe spatial gradients

and account for the influence of local conditions of the flow in the properties of

the particles, the CFD model and the PBE should be coupled. However, classical

numerical methods to solve the PBE, such as Monte Carlo methods (Gillespie (1972);

Shah et al. (1977)) and sectional or class methods (Geldard and Seinfeld (1980);

Hounslow et al. (1988)) are computationally very intensive to be coupled with CFD

for solving engineering problems of practical interest.

Quadrature-based method of moments (QBMM) has gained popularity as an

efficient technique to solve population balance equations. Following the quadrature

method of moments (QMOM) of McGraw (1997), numerous similar methods have

been published, e.g., direct quadrature method of moments (DQMOM), conditional

quadrature method of moments (CQMOM), sectional quadrature method of moments

(SQMOM), adaptive direct quadrature method of moments (ADQMOM).

In quadrature-based methods, the PBE problem is written in terms of the mo-

ments of density functions and it is approximated by a set of Dirac delta functions.

The quadrature method of moments (QMOM) (McGraw (1997)) is employed in this

work; QMOM and its coupling with CFD is explained with details in Section 2.3.3.

The main drawback of QBMM, comparing with classical numerical methods to

solve the PBE, is that the quadrature method does not preserve the shape of the

number-based density function (NDF); nevertheless, the NDF can be approximated

based on the information of the first moments. A review on techniques to reconstruct

distributions from a finite set of its moments are discussed with details in Section 2.4,

along with a novel method introduced by the author in de Souza et al. (2010).

2.2 Eulerian multiphase model

The Eulerian multiphase model describes the flow as an interpenetrating continua.

It is defined by the averaged conservation equations for mass and momentum; these

averaged equations are solved for each phase at every point in space and time during

the simulation. The Eulerian multifluid model implemented in the commercial

software ANSYS Fluent 14.0 is used in this work. The formulation of the model

6



CHAPTER 2

includes the concept of volume fraction of phase q, given by:

αq =
Vq∑np
q=1 Vq

, s.t.

np∑
q=1

αq = 1 (2.1)

with Vq being the volume of phase q in each grid cell. The continuous phase is

referred by the index q = 0 and the disperse phases are denoted by q = 1, ..., np.

The averaged conservation equations of mass and momentum read as follows:

∂αqρq
∂t︸ ︷︷ ︸

transient

+∇ · αqρquq︸ ︷︷ ︸
convective

=

np∑
p=1

ṁpq︸ ︷︷ ︸
interphase

mass
exchange

(2.2)

and

∂αqρquq
∂t︸ ︷︷ ︸

transient

+∇ · αqρququq︸ ︷︷ ︸
convective

= −αq∇p︸ ︷︷ ︸
pressure

+αqρqg︸ ︷︷ ︸
body

−∇ · (τ q)︸ ︷︷ ︸
shear

+

np∑
p=1

( Rpq︸︷︷︸
interphase

force
exchange

+ ṁpquq︸ ︷︷ ︸
interphase

force
exchange

)

+αqρq(Flift,q + Fvm,q︸ ︷︷ ︸
lift and

virtual mass force

) (2.3)

where ρq and uq represents the density and velocity of phase q, respectively. The

term ṁpq describes the mass exchange between phase q and the other phases p. In

Eq. (2.3), τ q is the stress-strain tensor. The pressure field p is assumed to be the

same for all the phases.

The Eq. (2.3) must be closed with appropriate expressions for the interphase

force Rpq, with Rpq = −Rqp and Rqq = 0. In ANSYS Fluent 14.0 the interphase

momentum exchange is expressed as:

np∑
p=1

Rpq =

np∑
p=1

Kpq(up − uq) (2.4)

where Kpq (= Kqp) is the interphase momentum exchange coefficient.

The momentum exchange between the phases is based on the value of the ex-

change coefficient Kpq, which can be written in the following general form:

Kpq =
αqαpρpf

τp
(2.5)

where f is the drag function, defined differently for the different exchange coefficient

models and τp, the “particulate relaxation time”, is defined as
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τp =
ρpd

2
p

18µq
(2.6)

where dp is the characteristic diameter of the disperse phase p.

The well-established drag model of Schiller and Naumann is employed in this

work, see Schiller and Naumann (1935):

f =
CDRe

24
(2.7)

where

CD =

{
24(1 + 0.15 Re0.687)/Re Re ≤ 1000

0.44 Re > 1000
(2.8)

and Re is the Reynolds number calculated based on the relative velocities between

the phases.

2.3 Population balance equation and quadrature-

based method of moments

2.3.1 Population balance equation (PBE)

The evolution of the properties of the disperse phase is obtained using population

balance equations (PBE). The PBE describes in terms of number-based density

function (NDF) information about the properties of the dispersed phase. The NDF

n(ξ, x, t) is a function of internal and external coordinates. The internal coordinates

ξ refer to intrinsic properties of the disperse phase, e.g., particle size, surface, volume.

The external coordinates refer to the spatial location x and time t. The PBE can

be formulated as a transport equation of the NDF, as given by Eq. (2.9):

∂n(ξ, x, t)

∂t
+
∂uin(ξ, x, t)

∂xi
+
∂ξ̇n(ξ, x, t)

∂ξ
= Sξ (2.9)

The PBE thus contains a transient term; a convection term, with ui being the

velocity vector of the particulate system; a term that accounts for continuous changes

(e.g., growth), with ξ̇ being the continuous rate of change of the internal coordinate

ξ; and a discontinuous jump function Sξ (e.g., breakage, aggregation). An additional

diffusive-flux should be added in the cases of very small particles (less than one

micron) to account for the Brownian motion.

In this work only univariate cases are considered, with ξ = L referring to the

particle length. It is also useful to define here ξ̇ = GL as the continuous rate of

8



CHAPTER 2

change of particle length.

2.3.2 Quadrature-based method of moments

Before we discuss with further details about quadrature-based method of moments,

let us derive an integral quantity for the NDF known as moments, as well as their

transport equations.

The definition of the k-th moment µk(ξ) of the function n(ξ, x, t) is given by:

µk(ξ) =

∫ ∞
0

ξkn(ξ, x, t) dξ, k = 0, 1, 2, . . . (2.10)

Applying the moment transformation, Eq. (2.16) to Eq. (2.9), the moment-

transport equation is obtained:

∂µL,k
∂t

+
∂uiµL,k
∂xi

= kGk−1µk−1 + Sk (2.11)

where the particle-growth rate can be defined as:

GL,k =

∫∞
0
GLnLL

kdL∫∞
0
nL(L)LkdL

(2.12)

and applying moment transformation to the source term Sk gives:

Sk =

∫ ∞
0

SLL
kdL (2.13)

Note that Eq. (2.11) is closed only in very particular cases, for instance, when

the particle-growth rate (GL) is size-independent. In most applications, an accurate

description would require more complex kernels (e.g., size-dependent particle-growth

rate); in this case the moment-transport equation of order k would involve moments

of order higher than k, creating a closure problem.

A solution for the closure is obtained approximating the NDF by an N -point

Gaussian quadrature as given by the following equation:

n(ξ, x, t) ≈
N∑
q=1

ωq(x, t)ξ(x, t) (2.14)

where N is the number of delta functions, ωq(x, t) and ξ(x, t) correspond to the

quadrature weights and the abscissas, respectively. Usually, just a few number of

moments need to be tracked. In most cases 4 to 6 moments are sufficient to estimate

physical properties of interest and get a good approximation of the shape of the

distribution, as illustrated in Fig. (2.1). From the quadrature theory it is implied

that if 2N moments are given, the calculated N -point quadrature (N -weights and
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N -abscissas) delivers the exact moments up to degree 2N − 1 (first 2N moments).
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Figure 2.1: PDF with respective weights and abscissa (a) Gauss distribution, 2-point
quadrature (b) Gauss distribution, 3-point quadrature (c) Two-peak distribution,
2-point quadrature (d) Two-peak distribution, 3-point quadrature.

There are several algorithm that can be used for the calculation of weights and

abscissas; as listed by Thein (2012) the product-difference algorithm (PDA) (Gordon

(1968)), the long quotient-modified difference algorithm (Wheeler (1974)), Golub-

Welsch algorithm (Golub and Welsch (1969)) and the Newton method. McGraw

(1997) suggested the PDA as a suitable moment-inversion algorithm to be used with

QMOM. However, Marchisio and Fox (2013) pointed that the Wheeler is more stable

when calculating high-order quadrature approximations comparing with the PD

algorithm and it also has the advantage to be able to calculate weights and abscissa

for distribution with zero mean (a case where the PDA algorithm is known to fail).

The Gaussian quadrature is the core of quadrature-based method of moments,

firstly used in the quadrature method of moments (QMOM) introduced by McGraw

(1997). Along with the QMOM, the direct quadrature method of moments (DQ-

MOM) (Marchisio and Fox (2005)) is the most prominent and well tested quadrature-
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based method. QMOM is used in this work and its coupling with CFD is discussed

in more detail in the next subsection.

2.3.3 CFD-PBE coupling

The coupling between the CFD code and the PBE (QMOM) solution is accomplished

by relating the results of QMOM with the Eulerian multifluid model. An import

result from QMOM is the characteristic Sauter mean diameter (d32 = µ3/µ2), which

is used in the multifluid model for the calculation of interfacial properties (e.g., drag

force).

Another important result from QMOM is the third-order moment, which is

related to the volume fraction occupied by the disperse phase as given in Eq. (2.15):

αdisperse = kV

N∑
q=1

wqL
3
q (2.15)

where kV is the volumetric shape factor (for spherical particles kV = π
6
).

Figure 2.2: CFD-PBE scheme.

The scheme in Fig. 2.2 shows that at each grid cell there is a volume faction of

the disperse phase, which is correlated to a certain distribution. These distributions

are transported in the domain with the velocities calculated by the multifluid model.

In the current QMOM implementation all the particles share the same velocity field.

2.3.4 Solution algorithm for CFD-PBE (QMOM)

The built-in implementation of QMOM in the commercial software ANSYS Fluent

14.0 is used in this work. The algorithm for the solution of QMOM-multifluid
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(two-fluid) is described in the following sequence of steps:

1. Input of initial values: moments, volume fraction of the disperse phase

2. Solution of the multifluid equations, using d32 obtained from the moments

3. Solution of the moment-inversion algorithm PDA to generate QMOM values:

weights and abscissas

4. Evaluation of source terms Sk and growth rate Gk.

5. Solution of the moment transport equations, using velocity field obtained from

the multifluid model

6. Loop over steps 2 to 5 for each time step

2.4 Reconstruction of a distribution from a finite

set of moments

This section is written based on the following paper:

L. G. M. de Souza, G. Janiga, V. John, D. Thevenin. Reconstruction of a distri-

bution from a finite number of moments with an adaptive spline-based algorithm,

(2010). Chemical Engineering Science (65), 269-277.

Moment-based methods to solve population balance equation directly deliver

information about the moments of a distribution, nevertheless, in many cases it would

be useful to have information about the shape of the underlying distribution. In fact,

the problem of reconstructing a scalar-valued function f(t, ξ) from a finite number

of its moments, the so-called “finite moment problem”, arises in many scientific and

technical applications, e.g., image processing, magnetic imaging, molecular physics

or chemical engineering.

The i-th moment µk(t) of the function f(t, ξ) : [0,∞) → R depending on time

and on a one-dimensional, so-called internal coordinate ξ (typically, a length scale)

is classically defined by

µk(t) =

∫ ∞
0

ξkf(t, ξ) dξ, k = 0, 1, 2, . . . (2.16)

Since a majority of practical applications still only consider mono-variate problems

at present, the developed formulation will be restricted to such cases, involving a

single internal coordinate (ξ).
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From the mathematical point of view, the finite moment problem is a severely ill-

posed problem. It has been studied in the mathematical literature almost exclusively

from the theoretical point of view (see John et al. (2007) for a review of the most

important results). In principle, there is no unique solution for this problem and all

moments up to infinity should be known to reconstruct the function.

Nevertheless, there are usually constraints on the domain and on the range of

f(t, ξ) due to the underlying physics of the application. A typical example is the

reconstruction of Particle Size Distributions (PSD) when considering particulate

processes like crystallization, precipitation, etc. The particle size (ξ coordinate) is

always positive, and there is always a maximal possible size, at most the reactor

size, usually even much smaller. Thus, the domain spanned in the ξ-direction by

f(t, ξ) is only an interval within the positive real numbers. Furthermore, a PSD

should have only non-negative values, hence the range of f(t, ξ) is only a subset

of the non-negative real numbers. Even if these limitations sound trivial from an

engineering point of view, they are indeed sufficient from a mathematical point

of view to simplify tremendously the complexity of the finite moment problem as

recognized also for instance by Strumendo and Arastoopour (2008).

Usually, the moments µk associated with the distribution are determined using

numerical simulations or advanced experimental techniques. Note, however, that

corresponding measurements are extremely difficult, in particular if a high accuracy

is required, as documented for example in Allen (1997). As a consequence, only very

few moments are usually determined experimentally, mostly in an indirect manner.

In practice, only the mean particle size and the particle number concentration can be

measured with a relatively high accuracy, even if some set-ups deliver an estimation

of the complete PSD (e.g., Ba ldyga and Orciuch (2001); Marchisio et al. (2002)).

This demonstrates the importance of a robust reconstruction method that is able

to deliver a good approximation of the underlying distribution with only limited

information input.

The situation is not quite as difficult when the moments are determined from

numerical simulations. Indeed, very popular numerical techniques like Method of

Moments (MOM), Quadrature Method of Moments (QMOM) and Direct Quadrature

Method of Moments (DQMOM) directly deliver the moment values. In principle,

it is possible to consider as many moments as the user wishes. But the cost of the

numerical simulation of course increases rapidly when considering more moments.

Furthermore, the mathematical system becomes very badly conditioned for higher-

order moments. As a consequence, results found in recent publications deliver a

larger but still limited number of moments. For instance, two (Schwarzer et al.

(2006)), three (Diemer and Olson (2002)), four (Wei et al. (2001)), five (Öncül et al.
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(2009)) or even for test purposes up to eight moments (Fan et al. (2004)) have been

considered for coupled simulations involving particles in a turbulent flow.

2.4.1 Techniques to reconstruct a distribution from a finite

set of its moments

For practical engineering purposes, the usual method for reconstructing a function

from a small number of its moments is based on an a priori knowledge of the

solution. Using this information (e.g., a Gauss shape, or a Poisson distribution), a

strong ansatz is made for the shape of f(t, ξ) and the known moments are just used

to fit parameters in this ansatz. This fitting is a fast and very easy computation.

Nevertheless, this approach is restricted to functions with simple shapes. Even more

troublesome is the fact that you need in principle to know the solution before you can

get it back, which is obviously not very satisfactory in general (see John et al. (2007)

for a more detailed discussion of the advantages and drawbacks of this approach).

A direct reconstruction is only possible if the number of known moments is equal

to the number of parameters in the ansatz. As an additional difficulty, the shape of

the function needed to reconstruct is often time-dependent in practical applications,

f(t, ξ). It is then not clear if the presumed shape is suitable for all times.

One very known method to reconstruct distributions from a finite set of moments

is the maximum entropy method (MEM). The MEM provides, indeed, an elegant

means to solve the finite moment problem. Although a considerable amount of

information on this method can be found in literature, the MEM has been rarely

applied in the context of chemical engineering to reconstruct PSD.

In order to compute a reconstruction, MEM starts from a so-called prior distri-

bution chosen by the user and applies a finite number of explicit constraints. As

a consequence, the shape of the reconstruction is not completely prescribed, but

the results still depend on the choice of the prior distribution. Theoretically, as the

number of available moments increases, the results of MEM should become more

and more independent from the prior distribution. Nevertheless, the limited number

of moments usually tracked in moment-based methods may not be enough for a

satisfactory reconstruction using MEM.

Further possible techniques to reconstruct a distribution from a finite set of

moments include also discrete methods based on a time-dependent update of the

distribution (e.g., Giaya and Thompson (2004)). Basically, in this method the form

of the PSD can be recovered using information about the growth and nucleation

time trajectories. Obviously, the method requests a number of assumptions and can

only be applied considering a very simple growth and nucleation kinetics.
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In John et al. (2007), a reconstruction approach was presented, which does not

require any information on the shape to be reconstructed nor on the spatial extent

(ξ coordinate) of the function f(t, ξ). The unknown function is represented by a

spline defined on an underlying grid. An arbitrary number of moments can be used

for the reconstruction, and the real ξ-domain is identified iteratively during the

reconstruction.

The standard approach presented in John et al. (2007) was very successful for

many different distributions, but suffered from major drawbacks:

1. it cannot really reconstruct non-smooth distributions;

2. even smooth functions are not always well reconstructed, in particular when

they involve several peaks (lack of generality).

As a whole, this means that the original procedure is not general enough. An in-depth

analysis of the spline-based reconstruction process has shown that a tremendous

progress could be obtained by placing the underlying grid points in an optimal

manner. The main issue consists in finding appropriate criteria for an optimal

distribution of the grid points. This issue has been addressed by the author in

de Souza et al. (2010); the most prominent numerical results are discussed in the

next subsections.

2.4.2 The adaptive spline-based reconstruction algorithm

The reconstruction of particle size distributions (PSD) as found in process engineering

is our major purpose, in particular for non-homogeneous conditions in space. Thus,

the usual constraints on the domain (internal coordinate ξ) and the range of the

function f(t, ξ) to be reconstructed apply as described in the introduction: the

particle size is positive and bounded; the PSD f is nonnegative everywhere.

Let the first L moments of f(t, ξ) be given at some time. An initial interval [a, b],

which should contain the real range of f(t, ξ), is divided into n sub-intervals [ξi, ξi+1],

i = 1, . . . , n, with a = ξ1 < ξ2 < . . . < ξn+1 = b. As in John et al. (2007), splines

(piecewise polynomials with compatibility conditions at the nodes ξi, i = 2, . . . , n)

of order 3 are used in the reconstruction. For such a cubic spline, there are in each

interval 4 unknown coefficients of the cubic polynomial leading altogether to 4n

unknowns. From the boundary conditions at x1 and xn+1 and the compatibility

conditions at ξi, i = 2, . . . , n, one obtains 3n+ 3 equations. The missing L = n− 3

equations come from the known moments of f(t, ξ). Altogether, one has to solve in

the spline-based reconstruction with cubic splines linear systems of equations of size

4n× 4n.
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The spline-based reconstruction algorithm from John et al. (2007) is an iterative

process. Given a mesh ξ1 < ξ2 < . . . < ξn+1, one iteration looks as follows:

1. Solve the resulting linear system of equations.

2. Check if the interval [ξ1, ξn+1] for computing the reconstruction can be reduced.

This step is crucial for finding a good interval, which contains the real domain of

f(t, ξ). In this step, the absolute values of the current reconstruction in the sub-

intervals at the boundaries [ξ1, ξ2], [ξn, ξn+1], are compared with the maximal

value of the current reconstruction. If, for instance, the values in [ξ1, ξ2] are

negligibly small compared to the maximal value, the new left boundary for the

reconstruction is set to be ξ1 := (ξ1 + ξ2)/2. The same procedure is performed

for the right boundary. If the interval has changed, the nodes are redistributed

in an equidistant manner. Go to step 1.

3. Regularize the solution of the linear system of equations. If there is no recom-

mendation to reduce the interval in step 2, but the reconstruction has local

values which are exceedingly negative, the solution of the linear system will

be regularized. This is done by removing subsequently the smallest singular

values of the system matrix. After each such removal, it is checked again if the

interval for the reconstruction can be reduced, i.e., step 2 is performed.

The algorithm stops if all values in the nodes and in the midpoints of the sub-intervals

are almost non-negative and if no reduction of the interval for the reconstruction is

recommended.

The regularization of the linear system removes first the smoothness of the second

derivative in the nodes. Thus, the recommended reconstruction will be often not

twice differentiable (the second order derivative of the PSD is a piecewise linear but

discontinuous function). This is not an issue for engineering purposes.

The procedure for an adaptive redistribution of the nodes needs some starting

guess about the shape of the expected solution. This is a classical requirement for

adaptive methods, e.g., for the solution of partial differential equations. For this

reason, the adaptive procedure starts only after the spline-based reconstruction has

finished computing a first approximation of the solution on an equidistant grid using

the original algorithm of John et al. (2007), which does not require any starting

guess. The adaptive algorithm developed in de Souza et al. (2010) consists of the

following steps:

1. Compute the second-order derivative of the current approximation. The key

observation for choosing the initial nodes of the adaptive grid is that, if f(t, ξ)

changes the sign of its curvature quickly, as at narrow peaks, then it is not
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possible to represent this region with a cubic function in one interval. This

is because a cubic function can lead only to one single change of the sign of

the curvature in one interval. In fact, the original algorithm always leads to

very bad results if more than one change of the sign of the curvature of f(t, ξ)

occurs in one sub-interval (see for instance later Fig. 2.5). For this reason,

we decided to place nodes at all points where the second-order derivative of

the current reconstruction either changes its sign from a positive to a negative

value, or vice versa.

2. Compute the first-order and derivative of the current approximation. Nodes

are also placed in those sub-regions where the absolute value of the first-order

derivative is large, i.e., where the solution is steep. This idea resembles the well-

known gradient indicator in adaptive methods for partial differential equations.

For choosing the next nodes of the adaptive grid, the first-order derivatives of

the spline at the points of the current grid are thus evaluated. The obtained

values are ordered with respect to their size (absolute value) and then grouped

into so-called windows. The default number of windows is set to be equal

to the number of nodes that still need to be chosen. In the first window all

the points with the largest derivative values are gathered, but only those that

have a minimal prescribed distance from the nearest node are finally accepted

within the new list of nodes. Excessive clustering of nodes is avoided in this

way. This procedure is applied until the appropriate total number of nodes

has been obtained, which is given by the order of the spline and the number

of known moments.

3. Enlarge the domain. Numerical tests have shown that it is useful to slightly

enlarge at first the range identified by the original, equidistant algorithm of

John et al. (2007) and to compute iteratively a new domain with the adap-

tively distributed nodes. For this purpose, the coordinate of the node ξn+1 is

multiplied in practice by 1.2 (20% increase).

4. Go to step 1 of the original algorithm using the new distribution of the nodes.

Now, the original algorithm of John et al. (2007) is performed again. After this,

a new distribution of the nodes is computed with the adaptive procedure, and so

on. For all the cases presented in this paper, three node redistributions have been

required at most before finding the final solution.

An approximation f (k−1) is considered to be the final approximation of f(t, ξ) if:
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• the error associated with all moments is sufficiently small

max
i=0,...,L−1

∣∣relative error in ith moment of f (k−1)
∣∣ < tol,

• and the approximation on the next adaptive grid leads to a growing mean error

L−1∑
i=0

∣∣relative error in ith moment of f (k−1)
∣∣

≤
L−1∑
i=0

∣∣relative error in ith moment of f (k)
∣∣ .

The workflow of the adaptive spline-based reconstruction algorithm is presented

in Fig. 2.3.
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Figure 2.3: Workflow of the adaptive spline-based reconstruction algorithm.
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2.4.3 Results and discussion

The spline-based reconstruction algorithm using equidistant grids has already shown

excellent results for smooth distributions with a slowly changing sign of the PSD

curvature (John et al. (2007)). Therefore, we concentrate here on the cases where

the reconstruction was not really successful.

The chosen examples (values of all moments) come from crystallization appli-

cations, the data for all these test cases can be found in John et al. (2007). The

adaptive algorithm has been implemented as a MATLAB script. The number of

iterations needed to get the final distribution depends of course on the example

considered and on the number of known moments. However, the computation time

was less than 120 s on a standard PC for all simulations carried out up to now,

including a graphical representation of all intermediate solutions. If necessary, this

duration could be tremendously reduced by suppressing graphical outputs, writing

a dedicated code instead of using MATLAB, optimizing further the algorithm and

using a faster computer.

Multi-peak, smooth distributions

Figures 2.4(a)-(f) present a comparison of the results obtained with the original

(equidistant) and the adaptive algorithm for the smooth distribution with two peaks,

one of them being considerably narrower than the other one. The reference distribu-

tion has been obtained numerically by solving directly the full population balance

equations. Such a distribution with two peaks is typical of crystallization applica-

tions, for which seeds are employed initially, so that finally both seed crystals and

newly nucleated crystals will be found at different sizes. More information on that

topic can be found for example in Qamar et al. (2006), or for a more general picture

in Lorenz et al. (2006).

As already shown in John et al. (2007), the original approach is not able to resolve

the changing sign of the curvature for the first, narrow peak and thus leads globally to

a poor result. The adaptive algorithm is in most cases able to find suitable positions

for the nodes, leading to an excellent reconstruction of the reference distribution.

As explained in the introduction, only a limited number of moments are usually

known. It is therefore important to check how many moments are really needed for

a good reconstruction of the PSD. For this purpose, a systematic study showing the

results for three up to eight moments is presented.
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Figure 2.4: Reconstruction of a two-peak distribution, comparison of equidistant
and adaptive algorithm using (a) three moments (b) four moments (c) five moments
(d) six moments (e) seven moments (f) eight moments.

Visually, results obtained with four to eight moments (documented respectively

in Fig. 2.4(b)-(f)) can be considered as good to very good. On the other hand,

the reconstruction using just three moments does not resolve the peaks with high

precision. This is due to the lack of information when using such a small number of

moments.
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A quantitative evaluation of the reconstruction quality is presented in Table 2.1

(standard algorithm) and Table 2.2 (adaptive algorithm). Different methods and

parameters have been used in order to quantify precisely the quality of the recon-

struction. First, the norm of the global error is defined as:

Norm =

∑xmax
0 |frec(x)− fref (x)|∑xmax

0 |fref (x)|

The correlation coefficient (Corr) between the reconstructed and the reference

curve is furthermore computed using the built-in MATLAB function corrcoef.

For many practical purposes, the position and the height of the peaks observed in

the PSD are essential pieces of information. Consequently, measuring the accuracy

of the procedure for both quantities is also interesting, even if they do not describe

the quality of the whole reconstruction. The corresponding errors are defined in the

following equations:

Relative height difference (∆Hrel):

∆Hrel =
|frec(xrec,peak)− fref (xref,peak)|

|fref (xref,peak)|

Relative position difference (∆Lrel):

∆Lrel =
|xrec,peak − xref,peak|

xref,domain

The relative negativity

Neg =
min (frec)

max (frec)

has also been quantified, since in some cases slightly negative values allow to obtain

much better reconstructions. It is interesting to know how much this will affect the

results.
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Table 2.1: Quantitative evaluation of the smooth distribution reconstruction using
the standard algorithm.

Case Norm [%] Corr [%] Neg [%] ∆Hrel [%] ∆Lrel [%]

3 mom 95.8 17.8 0
left peak 43.8 11.6

right peak 38.2 21.2

4 mom 98.8 9.3 0
left peak 41.3 14.8

right peak 64.3 24.8

5 mom 107.6 9.5 0.14
left peak 42.1 14.8

right peak 60.4 29.4

6 mom 104.9 12.1 0
left peak 43.4 14.2

right peak 62.3 31.4

7 mom 102.5 13.2 0
left peak 43.5 14.0

right peak 58.1 27.8

8 mom 101.9 12.2 0
left peak 41.5 13.2

right peak 59.0 26.7

It can be seen clearly in Table 2.1 that the original algorithm of John et al. (2007)

using an equidistant grid cannot produce the right solution. Even when considering

more and more moments, the reconstruction quality does not increase measurably.

On the other hand, the adaptive algorithm (Table 2.2) fully exploits the supple-

mentary information. With only three moments, the reconstruction is inaccurate.

But, for four and more moments, the reconstruction quality is good up to excellent.

Using more moments, the reconstruction quality increases further, but only slightly

since the solution obtained with four moments is already good.

Table 2.2: Quantitative evaluation of the smooth distribution reconstruction using
the adaptive algorithm.

Case Norm [%] Corr [%] Neg [%] ∆Hrel [%] ∆Lrel [%]

3 mom 107.1 5.0 0
left peak 27.6 9.9

right peak 67.3 19.0

4 mom 19.0 96.9 0.52
left peak 5.3 2.2

right peak 21.9 1.4

5 mom 17.2 97.8 0.73
left peak 12.9 1.8

right peak 11.2 1.8

6 mom 16.2 96.5 0
left peak 5.6 1.0

right peak 4.8 1.8

7 mom 12.8 97.2 0
left peak 1.3 1.3

right peak 3.9 0.8

8 mom 15.8 95.4 0
left peak 9.1 1.7

right peak 4.5 1.8

23



Multi-peak, non-smooth distributions

The second example considers a non-smooth distribution with two peaks. The first

peak is extremely narrow and drops suddenly from its maximal value to zero. This

distribution corresponds again to a preferential crystallization process, described in

more details in Elsner et al. (2005).
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Figure 2.5: Reconstruction of a two-peak distribution with steep gradient using five
moments, comparison of equidistant and adaptive algorithm.

The original algorithm on an equidistant grid completely fails for this application,

as already shown in John et al. (2007). On the other hand, Fig. 2.5 demonstrates

that the adaptive algorithm is able to give a rather good reconstruction for this very

difficult case. The height and the position of both peaks are reproduced with good

precision and even the steep gradient at the end of the first peak is relatively well

resolved. The price to pay for this good resolution is a slightly negative value of the

PSD for a short range behind the sharp peak. Since splines are intrinsically smooth

functions, it cannot be expected that they will allow directly an exact description

of a non-smooth PSD. This drawback is however in practice of minor importance

compared to a correct estimation of the peak magnitudes and positions.

The quality of the reconstruction is quantified in Table 2.3. The comparison shows

again the clear improvement of all indicators when using the adaptive algorithm.

This shows that the adaptive spline-based reconstruction algorithm described in

Section 2.4.2 is also able to automatically take into account a local non-smooth
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behavior of the distribution to reconstruct.

Table 2.3: Quantitative evaluation of the non-smooth distribution reconstruction
using five moments.

Case Norm [%] Corr [%] Neg [%] ∆Hrel [%] ∆Lrel [%]

standard 135.3 19.1 9.5
left peak 69.4 16.9

right peak 35.4 31.5

adaptive 35.7 80.2 5.3
left peak 11.0 0.2

right peak 16.8 2.9

Robustness of the reconstruction

As already explained in the introduction, the developed reconstruction process must

be as robust as possible. When considering experimental measurements, the uncer-

tainty is not negligible. It must be checked that the predicted distribution is not

impacted too strongly by such inaccurate inputs.

Even when considering results of numerical simulations, the shape and extent of

the distribution are usually very poorly known at first. Therefore, the reconstruction

must be able to work efficiently with a very low level of starting information.

Both issues have been checked separately, first by modifying the input moments

by a certain percentage, thus mimicking a possible (measurement) error. In a second

step, the size of the (guessed) initial domain has been varied over an order of

magnitude, in order to quantify its impact.

The effect of an error in the moments has been first investigated. Systematic as

well as random errors have been introduced in the original moments and the final

distribution obtained can be seen in Fig. 2.6(a)-(b) respectively.

When considering systematic errors, all moments are modified by multiplying or

dividing them with the same factor, e.g. 1.3 for 30% relative error. As demonstrated

in Fig. 2.6(a), such systematic errors fortunately do not have a very large impact

on the reconstruction. Even when a large relative error of 30% is applied, the shape

of the distribution remains very similar and the position of the peaks is still very

well predicted. This is undoubtedly related to the fact that the coupling between

function and moments (Eq. 2.16) is linear.

Random errors have a larger impact on the shape of the distribution (Fig. 2.6(b)).

For random errors, each moment is again multiplied or divided by the same factor (e.g.

1.1 for 10% relative error), but a random process is called to decide for each moment

individually if a multiplication or a division should take place. As a consequence,

some moments will be increased while some others reduced in a random manner.
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Here also, the adaptive algorithm has been able to deliver a reconstruction of

acceptable quality. In fact, the algorithm works indeed very well and delivers the

correct moments with a very high accuracy. The observed discrepancies are directly

connected to the random modification of the moments. Even a small change in the

moments leads to a considerably different distribution. This illustrates the need for

an accurate determination of the moments. The needed level of accuracy certainly

constitutes a real challenge, in particular for experimental measurements.
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Figure 2.6: Reconstruction of a two-peak distribution using four moments (a) with
systematic error (b) with random error.

Altogether, the reconstructions obtained with the adaptive algorithm are of a

much better quality and considerably more robust than the original results using an

equidistant grid for all configurations tested up to now, without any exception.

2.4.4 Conclusions

In this section, the adaptive spline-based algorithm for the reconstruction of distribu-

tions from a finite set of moments introduced by the author in de Souza et al. (2010)

has been presented. The algorithm shows a considerable improvement comparing

with the original equidistant-grid algorithm (John et al. (2007)), which failed to re-

construct distributions with a quickly changing curvature or with local non-smooth

behavior. The needed computing time is still very small (expressed in seconds,

without optimizing the process), so that it would be probably possible to use this

algorithm for process control.

The numerous tests carried out during the development of this procedure reveal

following features:

• For a really accurate reconstruction of a two-peak, smooth distribution, four
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moments should be known. A reconstruction with only three moments is

already possible, but will lead only to a semi-quantitative description.

• It is not necessary to know the domain of the function to reconstruct with

a high precision. A first guess with only the right order of magnitude (i.e.,

knowing only the typical size of the largest particles) is fully sufficient to start

the process. A good initial guess is twice the real domain of interest, if known

in advance.

• When more moments are known, the accuracy of the reconstruction increases

as expected.

• To reconstruct accurately a non-smooth distribution, more moments are needed

than for a smooth distribution. As a rough recommendation, one moment more

should be known for each non-smooth event compared to a smooth distribution

with the same number of peaks.

• The reconstruction process is robust enough to tolerate some error in the mo-

ment values. Nevertheless, these errors must of course be minimized, since a

random error of 10% might already lead in reality to a considerably different

distribution.

Since its publishing, the developed algorithm has been successfully applied to recon-

struct distributions in different scientific applications, for instance, quantum physics

(Slater (2011)), process control (Soltanzadeh and Dumont (2012)) and pharmaceuti-

cal process (Mortier et al. (2014)).

2.5 Summary

In this chapter, the methods to simulate polydisperse multiphase flows have been

presented. The described methods are later employed for the simulation of a full

multiphase chemical reactor.

The Eulerian-Eulerian approach has been chosen as it is the most appropriate

framework for the computation of dense flow, which is common in practical industrial

applications. Thus, the continuous and disperse phase are described using the

Eulerian approach. The model to simulate the multiphase flow, as well as the model

to describe the evolution of the particles properties have been discussed. As such,

the Eulerian multifluid model together with the required constitutive relations are

outlined. In order to get a correct description of the disperse phase the quadrature
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method of moments (QMOM) is applied to solve the population balance equation;

the coupling between CFD and QMOM is explained with details.

Finally, a reconstruction technique was presented, which allows to recover the

shape of a distribution from a finite set of moments; this technique can be used as a

tool to analyse the information obtained with the moment-based methods.
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Chapter 3

Methodology for model parameter

optimization using multi-objective

genetic algorithm

In this short chapter, a methodology for the optimization of model parameters us-

ing multi-objective optimization is described. The advantages of multi-objective

optimization, basic concepts and the coupling between simulation software and opti-

mization algorithm are discussed. The presented methodology is later on employed

for the model optimization of a turbulence RANS model (Chapter 4) and for the

model optimization of a chemical catalytic reaction network (Chapter 5).

3.1 Introduction

A mathematical model often requires calibration to fit a particular condition. Even

when very complex physical and chemical models are employed, there are usually

empirical, semi-empirical or pure numerical parameters that need to be tuned.

The optimal parameter set should minimize the difference between experimental

data and simulation results. In principle, many algorithms could be applied to

solve this optimization problem. Gradient-based algorithms, e.g., Newton’s method,

Steepest-Descent, Levenberq-Maquardt, yield an accurate local minima or maxima,

but depend strongly on the starting values of the parameters. Metaheuristic op-

timization algorithms, e.g., Genetic Algorithms (GA), Simulated Anneling (SA),

Particle Swarm Optimization (PSO), provide an effective global search, but do not

guarantee finding the global minima or maxima.

In multi-variable and non-linear optimization problems, which is often the case

in complex systems, an effective global search is needed. Metaheuristic algorithms

have become a popular approach to solve this class of optimization problems as they
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provide an effective search in the variable space and are less prone to premature

convergence to a suboptimal solution.

There are numerous articles applying metaheuristic algorithms for model parame-

ter optimization, e.g., reaction kinetics parameters (Polifke et al. (1998), Elliott et al.

(2005) , Park et al. (2010)), coalescence model parameters (Hasseine et al. (2006)),

heat transfer coefficient (Tesch et al. (2009)). However, most of them consider only

a single objective function.

In most practical situations, a multi-objective optimization would be a far more

valuable tool for the determination of optimal model parameters. For instance: when

the same set of parameters should be used to fit a model to different experimental

conditions or configurations; when the same set of parameters should be used to fit

different models and give optimal prediction for distinct quantities. Multi-objective

optimization accounts for a trade-off between concurrent objectives, increasing the

robustness of the model and reducing ad hoc fitting.

Multi-objective optimization has gained popularity in engineering optimization

problems, see Rangaiah and Pandu (2008) and Janiga (2011) for a broad range of

applications in chemical engineering and computational fluid dynamics, respectively.

Nevertheless, its use in model parameter optimization has remained relatively poorly

explored, being only recently addressed with more details in Rangaiah and Bonilla-

Petriciolet (2013).

3.2 Multi-objective optimization

Multi-objective optimization deals with the problem of optimizing (i.e., maximizing

or minimizing) more than one objective function simultaneously. The optimization

problem can be stated as follows:

min fi(θ) ∀ i = 1, 2..., Nobj

subjected to:

θj ∈ [θj,min; θj,max] j = 1, 2..., Nparam

where Nobj is the number of objectives and Nparam is the number of parameters.

The objective functions are given by fi and the parameter vector is given by θj. The

constraint [θj,min; θj,max] defines a feasible set of parameters.

The objective functions are usually conflicting, and in most cases there is not a

single solution that optimizes all the objectives simultaneously. There are different
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approaches to solve multi-objective problems. A common practice is to weight the

objectives and combine them together into a single objective function. In this manner

the problem is reduced to a single objective optimization. This approach, however,

introduce an artificial ordering in the objectives and leads to suboptimal results.

A more elaborated approach is based on the Pareto concept, which formalizes

the trade-off between concurrent objectives; no artificial weight or combination into

a mono-objective function is needed. Genetic algorithms are well suited to solve

multi-objective problems since the Pareto strategy can be easily integrated in the

optimization algorithm loop. In genetic algorithms (Goldberg (1989)), a randomly

generated population of solutions (also called individuals) evolves towards better

solutions. It uses mechanisms inspired by genetics and evolution theory, such as

inheritance, mutation and crossover to obtain the solutions along the generations.

As in evolution theory, the fittest individuals are favored in the selection procedure.

Most of the multi-objective GAs consider the Pareto dominance criterion for the

classification of the individual fitness. Nevertheless, there are considerable differences

on the fitness assignment depending on the algorithm. A comprehensive overview

on the most popular multi-objective GA is given by Konak et al. (2006).

3.3 Basic concepts

In order to better understand multi-objective optimization problems using genetic

algorithms and its applications in model parameter optimization, some basic concepts

are first explained.

3.3.1 Pareto optimality

Considering the scenario involving the simultaneous optimization of Nobj, possibly

contradicting objectives, the determination of an optimal solution is not a trivial

task. Usually it is not possible to find a solution that optimize all the objectives

simultaneously. When dealing with two or more objectives, a given solution may

perform optimal for one objective, but poorly for another. Therefore, a compromise

should be found.

The Pareto concept formalizes the trade-off between concurrent objectives. The

rank between all the individuals is established based on the the number of solutions

that each individual dominates. In Pareto-based approaches (Goldberg (1989)), the

solution A is said to dominate solution B if and only if for all the objectives, the

solution A is at least in one objective better than B and not worse in any objective

function.
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A solution is Pareto-optimal if it is not dominated by any other solution. The

Pareto-optimal solution cannot be improved in any of the objectives without wors-

ening at least one of the other objectives. A set of Pareto solutions constitutes the

Pareto front and may contain infinite number of solutions, see Fig. 3.1.

The challenge of multi-objective algorithms is to describe well-distributed solu-

tions close to the true Pareto, within the region of interest.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pareto Front

Dominated
Solutions

f1

f 2

Figure 3.1: Pareto front for two contradicting objective functions.

3.3.2 Decision making

From the mathematic point of view, all solutions in the Pareto are of the same

quality. The process of choosing between one of the optimal solutions usually

requires preferential information of the decision maker; this process is called decision

making.

In engineering applications, the decision-making criterion is normally based on

an economic decision. In the case of model parameter optimization of physical or

chemical models, the most important aspects are the fitting quality and statistical

properties of the model.

Nevertheless, the choice of the final solution generally involves the trade-off

of certain criteria (objectives) for others. Mathematical tools that help in the

decision making process are investigated in the field of multi-criteria decision-making

(MCDM), see Sean and Yang (1998).

The following MCDM methods have used in this work:

1. Weighted sum method. It is the simplest and most known MCDM. In this
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method, the objectives are linearly combined using some prescribed weights.

Thus, the final problem reduces to a single objective optimization within the

Pareto optimal solutions.

2. Aspiration levels method. In this case each objective is compared to a thresh-

old. The solutions that perform worse than a given threshold are filtered out

reducing the subset of interesting Pareto solutions. This threshold can be

made tighter until only very few solutions (or only one solution) remain, see

Lotfi et al. (1992).

3. “Best of the worst” or Maximin/Minimax strategy. For each Pareto solution,

the worst objective is determined. Then, the best within the worst objectives

is selected. As the objectives usually have different unities and scales, the

normalization of the objectives is needed in order to obtain comparable values.

3.4 Coupling simulation software with optimiza-

tion algorithm

The calculation of the mathematical functions is usually done in specialized simu-

lation softwares, e.g., ANSYS Fluent, OpenFOAM, Matlab. To couple simulation

softwares with optimization algorithm implies building an interface to control and

exchange data between the softwares in an automatic manner.

There exist a few optimization softwares that provide a flexible interface, state-

of-art optimization algorithms libraries, fast communication between the softwares

and offer the possibility for parallelization of the simulations. In this work, we have

used the in-house software OPtimization ALgorithm (OPAL) and the commercial

software ModeFRONTIER for the optimizations. Although there are significative

differences between the softwares, a general optimization loop is proposed in Fig. 3.2.

A general optimization loop can be described in three main steps:

1. Optimization strategy: In this step the optimization algorithm is set up, e.g.,

MOGA, NSGA-II. The main parameters to be defined are: initial population

size, number of generations, number of objective functions, number of design

variables (parameters), design variable constraints (parameter range). In model

optimization the parameter range can be defined based on the values usually

adopted in literature. Other important multi-objective GA settings include:

mutation probability, mutation magnitude and crossover probability.

2. Computation of mathematical functions: Depending on the complexity of the

problem this step may require several simulation softwares. For the cases
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considered in this work the commercial software ANSYS Fluent and MATLAB

have been used for the simulation and evaluation of the objective functions.

The model is treated as a “black box”by the optimizer. The model parameter

input is generated by the optimization algorithm. The output of the model is

an integral quantity or a profile that should be compared with the experimental

data for the calculation of the objective function.

3. Analysis of the results: As already mentioned, the result of a multi-objective

optimization is usually not a single optimum, but a set of optimal solutions.

In this last step, a decision-making process is needed in order to choose a final

solution within the Pareto optimal set.

Figure 3.2: Diagram showing a general optimization loop.

3.5 Summary

In this chapter, a methodology for model parameter optimization has been described.

The advantages of multi-objective optimization, basic concepts and the coupling

between simulation software and optimization algorithm have been discussed.

Multi-objective optimization is clearly a valuable tool for the determination

of optimal model parameters, as it accounts for a trade-off between concurrent

objectives, increasing the generality of the model and reducing ad hoc fitting.

The presented methodology is employed for the model optimization of a turbu-

lence RANS model and for the model optimization of a chemical catalytic reaction

network in Chapter 4 and Chapter 5, respectively.

In model parameter optimization the decision-making criterion is not based on

economic decisions, as it is usually the case in engineering application. The fitting

quality has been used in the decision making-process. Nevertheless, in future works,

more advanced statistical analysis could be integrated.
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Chapter 4

Model optimization for turbulent

flows

This chapter is written based on the following paper:

L. M. de Souza, G. Janiga, D. Thévenin. Multi-objective optimisation of the

Model Parameters for the Realizable k − ε Turbulence Model, (2015). Progress in

Computational Fluid Dynamics, in press.

4.1 Introduction

The accurate prediction of turbulent flows is a fundamental issue to improve existing

applications and develop new configurations. A detailed level of prediction can in

principle be obtained with Direct Numerical Simulation (DNS), but limitations in

computer power restrict its application to simple configurations and low Reynolds

numbers. Large Eddy Simulation (LES) is now applicable for many research problems

but simulation times are still prohibitive for many industrial applications, Fröhlich

(2006). Therefore, numerical simulations based on Reynolds Averaged Navier-Stokes

(RANS) models are still widely used today for practical engineering problems (Spalart

(2000, 2010)), see also Spalart (2009) for an interesting text on “RANS modelling

into a second century”.

In RANS models, closure parameters (sometimes misleadingly called “constants”)

are introduced in order to replace unknown correlations appearing during the aver-

aging process. These parameters are usually determined in a semi-empirical manner

based on basic flow configurations and on simplifying assumptions, for instance by

considering the properties of homogeneous isotropic turbulence. Afterwards, these

models are applied for quite different and far more complex configurations. For a

particular flow, it is known that the prediction can usually be improved by adjusting

the model parameters, at the cost of generality. Consequently, a large span of model
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parameter values have been tested in the scientific literature, derived from the own

experience of the user on a trial-and-error basis, from values measured in a particular

experiment or, less often, obtained by single-objective numerical optimization, as

discussed later.

The determination of suitable model parameters for engineering turbulence is

indeed a formidable task. It is easy to change one parameter in order to observe

consequences concerning some specific turbulent quantity of the flow. But the

simultaneous modification of several parameters of a turbulence model in order to

increase accuracy for a variety of configurations rapidly becomes an intractable issue.

If all the model parameters are changed in a systematic manner, then the number of

possible combinations would yield an enormous and unnecessary computational effort

when attempting to explore the model parameter space. In that case, numerical

optimization techniques may help speeding up the search procedure in order to find

the best possible combination of model parameters with a minimum computational

load.

In this chapter, the objective is to determine optimized but generally appli-

cable model parameters for the prediction of turbulent quantities. In order to

ensure generality, four widely-used canonic flow configurations are considered si-

multaneously in the optimization: channel, backward facing step, jet and flow over

a periodic hill. High-quality experimental data available from scientific articles,

ERCOFTAC (http://cfd.mace.manchester.ac.uk/ercoftac/) and QNET (http://qnet-

ercoftac.cfms.org.uk/) databases are available as reference. The test cases considered

are classically retained as benchmark for development and validation of turbulence

models. The underlying characteristics allow to investigate the behavior of the model

under very different conditions. The optimization problem thus involves several con-

current objectives that must be fulfilled simultaneously. The multi-objective genetic

algorithm implemented in the in-house computer package OPAL (Thévenin and

Janiga (2008)) has been used for optimization.

The present study considers only the realizable k − ε turbulence model. The

four adjustable parameters of this model have been therefore selected as the four

design parameters of the optimization procedure, as described in what follows. The

initial range for each parameter spans the corresponding values published in the

literature. The differences between selected quantities obtained with this model

and those measured experimentally are quantified using the Euclidian norm. The

objective of the optimization is to minimize simultaneously all these differences.
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4.2 The closure problem

The closure problem arises from the averaging procedure of the Navier-Stokes equa-

tion. In the conservative form the Navier-Stokes equation is written as follows:

ρ
∂ui
∂t

+ ρ
∂ujui
∂xj

= − ∂p

∂xi
+
∂(2µsij)

∂xj
(4.1)

being the strain rate tensor sij given by,

sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (4.2)

Considering that the instantaneous velocity is expressed by ui(x, t) = Ui(x, t) +

u′i(x, t), where u′i(x, t) is the fluctuating velocity and Ui(x, t) the mean velocity. The

time-averaged Navier-Stokes equations reads:

ρ
∂Ui
∂t

+ ρ
∂(UjUi + u′ju

′
i)

∂xj
= −∂P

∂xi
+
∂(2µsij)

∂xj
(4.3)

The instantaneous and the time-averaged equations, respectively Eq. (4.1) and

Eq. (4.3), are very similar; with the instantaneous quantities being substituted by

mean quantities in the time-averaged equation. Another difference is the correlation

u′ju
′
i, which appears in Eq. (4.3).

The fundamental problem in RANS modeling is the description of τij = u′ju
′
i,

which is referred as the Reynolds stress tensor. The averaging process has produced

new unknows, but has not generated new equations. There are at this point more

variables than equations; therefore, the system is not closed. The task in turbulence

modeling is to find approximations to describe the Reynolds stress tensor τij.

It is possible to derive equations for the Reynolds stress tensor or other turbulent

quantities, for example, the turbulent kinetic energy k. This can be done after a

large number of algebraic manipulation of the Navier-Stokes equation. However,

such procedures generate new unkown correlations and can not balance the number

of unknows and equations.

4.3 Two-equation RANS models

The Boussinesq assumption serves as basis for the RANS modeling. Boussinesq

postulated that the Reynolds stress tensor in turbulent flows τij could be described

analogously to the viscous stress in laminar flows. The equation of τij for incom-

pressible flows is given by:
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τij = −2νTSij −
2

3
kδij (4.4)

The second term on the right-hand side has been introduced in order to avoid

unphysical results; δij is the so-called Kronecker delta, which is 1 if i = j and 0

otherwise. The mean stress rate Sij reads:

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(4.5)

Note that the turbulent eddy viscosity νT , different from the molecular viscosity,

is not a property of the fluid. It changes from point to point depending of the state

of turbulence in a specific point. The question is how to determine the turbulent

eddy viscosity νT .

Perhaps the most controversial aspect in RANS modelling is the description of

the turbulent eddy viscosity. One can argue that the closure relation of this term

is based just on dimensional analysis and not on fundamental physics. Nonetheless,

dimension analysis has been historically a powerful tool for deducing properties of

turbulent flows.

There is no fundamental reason for νT to depend only upon a particular turbu-

lence quantity or quantities. Distinct approaches have proven their applicabilities,

e.g., zero-equation model (e.g., Mixing length), one-equation model (e.g., Spalart-

Allmaras), two-equation models (e.g., k − ε, k − ω). The two-equation models are

the most successful. While algebraic models and most one-equation models need to

prescribe the turbulence length scale based on some flow dimension, two-equation

models automatically provide the turbulence length scale or equivalent being there-

fore called “complete”models.

The turbulent eddy viscosity νT can be regard as the product from a velocity

scale u(x, t) and a length scale l(x, t):

νT ∝ ul (4.6)

Hence, for the complete specification of νT we need to describe a velocity scale,

which is usually done based upon the turbulence kinetic energy k. However, there

is a large arbitrariness in the choice of the second quantity. Based on dimensional

analysis, any quantity which can be stated as a product between k and l, in principle,

can be used. Authors have adopted many different variables to describe the length

scale, e.g., dissipation rate (ε), specific dissipation rate (ω). Yet, these distinct

formulations are theoretically equivalent.

The derived equation for k, obtained from algebraic manipulation of the Navier-
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Stokes equation, is given by:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui
∂xj
− ε+

∂

xj

[
ν
∂k

∂xj
− 1

2
u′iu
′
iu
′
j −

1

ρ
pu′j

]
(4.7)

In Eq. (4.7) the unsteady and convection terms are given on the left-hand side.

On the right-hand side the first term is called Production (Pk) and describes the

rate of turbulent kinetic energy transfer from the mean flow to the turbulence. The

dissipation rate (ε) is the rate with which turbulence kinetic energy is converted

into thermal energy. The term ν ∂k
∂xj

represents the molecular diffusion. The triple

velocity correlation is usually referred as turbulent transport and the last term on

the right-hand side is the pressure diffusion.

The exact derivation of equations for turbulent quantities from the Navier-Stokes

equation yields unknown double- and triple-velocity correlations. Wilcox (2001)

points out that the modeling of the physics is more important than the modeling of

the differential equations, and therefore, the term-by-term modeling is not the most

appropriate approach. The modeled version of turbulence kinetic energy in Eq. (4.7)

assumes the form:

∂k

∂t
+ Uj

∂k

∂xj
= τij

Ui
xj
− ε+

∂

∂xi

[
(ν +

νT
σk

)
∂k

∂xi

]
(4.8)

where τij is given by Eq. (4.4). Note that the unsteady term, convection and

molecular are exactly represented, while the remaining terms are modeled using

closure approximations.

In Appendix A, the most popular two-equation models are shown, as well as their

standard closure approximations. The equation for the turbulent kinetic energy is

similar for all the given models, nevertheless, distinct closure constants are used.

Major differences are observed in the second transport equation, where new terms

and auxiliary relations are introduced.

4.4 The realizable k − ε turbulence model

The k − ε model has been developed by several contributors, starting from early

efforts of Chou (1945) and Harlow and Nakayama (1968), but most prominently

in the 70s by Hanjalić (1970), Jones and Launder (1972) as well as Launder and

Spalding (1974). Its standard form is now usually credited to Launder and Sharma

(1974). Since then, many different and extended formulations have been published.

The realizable k − ε model was first proposed by Shih et al. (1995) and has soon

become very popular. In general, it provides superior predictions for flows involving
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rotation, boundary layers under strong adverse pressure gradients, separation and

recirculation.

The realizable k − ε model differs from the original one in two main respects.

First, it involves a new formulation for the eddy turbulent viscosity. Second, it uses

a modified equation for the dissipation rate (ε), while the equation for k remains

exactly the same as in the standard model. The corresponding transport equations

for k and ε read:

∂k

∂t
+ Uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk + Pb − ε (4.9)

∂ε

∂t
+ Uj

∂ε

∂xj
=

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ C1Sε− C2

ε2

k +
√
νε

+ C1ε
ε

k
C3εPb (4.10)

where the term Pk accounts for the turbulence kinetic energy production due to

mean velocity gradient as it appears in Eq. (4.7) and the term Pb is the turbulence

energy production due to buoyancy. In the ε equation, a new source term Sε has

been introduced together with the parameter C1. The new parameter C1 has been

described by Shih et al. (1995) as follows:

C1 = max

[
0.43,

η

η + 5

]
(4.11)

with η = sk
ε
, s =

√
2sijsij

The last term on the right-hand in Eq. (4.10) does not appear in the original

formulation of Shih et al. (1995), but is adopted in the implementations such of the

commercial Software ANSYS Fluent.

The eddy viscosity reads as in the standard model:

νT =
Cµk

2

ε
(4.12)

In the realizable k−ε formulation, the eddy viscosity model satisfies the so-called

realizability constraints. This means that the models should have positive value for

the normal Reynolds stresses and also respect the Schwarz inequality for the shear

stresses.

From the expression for the normal Reynolds stress in an incompressible flow

(see Eq. 4.4), note that the result of the normal stress, u′ju
′
j, which is a positive

quantity, becomes negative when the strain is large enough to satisfy the inequality

in Eq. (4.13).
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k

ε

∂Uj
∂xj

>
1

3Cµ
(4.13)

In the same way, the Schwarz inequality for shear stresses ( uiuj
2 ≤ u2

iu
2
j) is

violated for very large strain rate.

This inconsistency in the model can be mitigated using a variable value for Cµ.

Experiments as well as DNS data suggest that the value for Cµ changes depending

on the flow (Pope (2000)). Supported by the work of Reynolds (1987), Shih et al.

(1995) elaborated a formulation for Cµ as follows:

Cµ =
1

A0 + As
U(∗)k
ε

(4.14)

with U (∗) =
√
sijsij + Ω̃ijΩ̃ij, Ω̃ij = Ωij − 2εijkωk, Ωij = Ωij − εijkωk, where Ωij is

the mean rate-of-rotation tensor and ωk is the angular velocity. The parameter As

is given by:

As =
√

6 cosφ (4.15)

with φ = 1
3

arccos (
√

6W ), W =
sijsjkski

S̃
, S̃ =

√
SijSij

The commonly accepted model parameters for the realizable k − ε description

are presently: Cµ (given by Eq.(4.14)), A0 = 4.04, C1 (given by Eq.(4.11)), C2 = 1.9,

σk = 1.0 and σε = 1.2 (Shih et al. (1995)) and Cε1 = 1.44, see ANSYS Inc. (2011).

4.4.1 Determination of the model parameters

The closure parameters in RANS model have been introduced in order to replace

unknown double and triple correlations by algebraic expressions. A traditional way

to determine the closure parameters consists in applying the general equations to

simple, canonical flows so that several terms in the transport equations can be

simplified and only one or two coefficients remain in the resulting equation. The

next step is the comparison with theory, experimental data or DNS, to determine

those coefficients, as exemplified in what follows.

Determination of constant C2

The value of C2 for the realizable k − ε model has been determined experimentally

by considering the decay of isotropic turbulence behind a grid at high Reynolds

number, see Shih et al. (1995). The experiment consists of a uniform flow past a
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grid. Considering Ui = Ui,0 and Uj = Uk = 0 and neglecting turbulent diffusion in

the streamwise direction, the equation for k reduces for a uniform flow to:

Ui,0
dk

dxi
= −ε (4.16)

and the equation for ε can be written as follows:

Ui,0
dε

dxi
= −C2

ε2

k
(4.17)

Combining both and eliminating dε
dxi

and ε, we obtains:

k
dk2

dx2
i

= −C2

(
dk

dxi

)2

(4.18)

The analytical solution for this equation shows that the decay of k obeys a power

law, k = αx−ni , with α being a constant depending on the particular experiment and

n being:

n =
1

(C2 − 1)
(4.19)

Experiments by Batchelor and Townsend (1948) yield the value n = 1, whereas

Mohamed and Larue (1990) obtained values n in the range between 1.08 and 1.3.

The latter range allows C2 to assume a value in the span C2 ∈ (1.77; 1.93). The

recommended value of 1.9 corresponds to n = 1.11. Yet, it is possible to find in the

scientific literature values between 1.68 (for instance Sarkar et al. (1997)) and 2.0

(see Duynkerke (1988)).

The parameters Cε2 in the standard k− ε and C2 in the realizable k− ε model are

equivalent and calibrated using the same simple flows. We refer to C2 when dealing

with the realizable k − ε model and to Cε2 when using the standard version.

Determination of constant Cε1

A relation between Cε1 and C2 can be determined based on the homogeneous turbu-

lent shear flow behind a grid. For this kind of flow, Ui = Ui,0(xj), Uj = Uk = 0 and
∂
∂xi

= ∂
∂xj

= 0. Under these considerations the k-equation becomes:

Pk − ε = 0 (4.20)

and the equation for ε can be written as:
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Cε1
ε

k
Pk − C2

ε2

k
≈ 0 (4.21)

Substituting Eq.(4.20) in (4.21), one obtains Cε1 ≈ C2 = 1.9, using the previously

recommended value for C2. Nevertheless, the conventional value for Cε1 is set to

1.44, following Launder and Spalding (1974).

A homogeneous turbulent shear flow has been investigated in Tavoularis and

Corrsin (1981). There, diffusion effects can be neglected and the equation for k

reads:

Ui
dk

dxi
= Pk − ε = ε

(
Pk
ε
− 1

)
(4.22)

From their experimental data it is possible to derive that Pk
ε

and ε
k

are almost

constant. Thus, the equations for ε and k can be written as follows:

( ε
k

)
Ui
dk

dxi
= Ui

dε

dxi
= −Cε1

ε

k
Pk − C2

ε2

k
(4.23)

Combining Eqs. (4.22) and (4.23):

Cε1 = 1 +
ε

Pk
(C2 − 1) (4.24)

From the experiments of Tavoularis and Corrsin (1981) and Harris et al. (1977)

the value of ε
Pk

can be determined. If ε
Pk

= 1, one obtains Cε1 = C2. The popular

value Cε1 = 1.44 is obtained when ε
Pk
≈ 0.5.

Recently, Goebbert et al. (2011) used dissipation energy analysis from DNS

simulation to obtain theoretical values of the C2 and Cε1 constants for different

Reynolds number. The range obtained was C2 ∈ [0.57, 1.64] and Cε1 ∈ [0.425, 1.20],

with the theoretical values approaching the semi-empirical ones for high Reynolds

number.

Determination of constants Cµ and A0

The eddy viscosity formulation in the realizable k − ε models allows for a variable

parameter Cµ, satisfying the realizability constraints. A new unknown A0 is intro-

duced in the model. In Shih et al. (1995) the value for this constant is calibrated

using simple flows (homogeneous shear flow, boundary layer). The finally proposed

value A0 = 4.04 corresponds to Cµ = 0.09 in the inertial sublayer and Cµ = 0.06

in the case of homogeneous shear flow. These are close to values presented in Pope

(2000), where DNS results combined with the relation Cµ = νT ε
k2

show that Cµ is close
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to 0.09 except near the wall where it decays. To our knowledge, no other alternative

value for A0 can be found in the literature.

Determination of constants σk and σε

The values for the parameters σk and σε can be calibrated based on the analysis of

the logarithm region in a boundary layer flow. In Launder and Spalding (1972) an

analysis revealed that σk may assume values between 0.5 (free stream flow) and 1.75

(near-wall flow). For pipe flows values have been found in the range from 0.7 up to

1.0 depending on the Reynolds number. Finally, Launder and Spalding (1972) have

suggested as most probable value σk = 1.0.

An analysis of the log-law layer (Libby (1996)) leads to following relation:

σε =
κ2

C2C
1/2
µ − Cε1

(4.25)

considering the von Kármán constant κ in the range [0.40, 0.41]. This relation,

however, is not verified by the conventionally accepted parameter values. It might

be interesting to mention here that even the value of the von Kármán constant,

one of the most important constants in fluid dynamics, is not known precisely, with

scientists defending values from 0.37 to 0.436, see Spalart (2009).

In the work of Hoffman (1975), the behavior of the k − ε model is examined at

the turbulent/non-turbulent interface to determine a limit value for the turbulent

diffusion coefficients σε and σk. This analysis leads to the relation σk = 2
n

and

σε = 3
n
, where n is the exponent of the mean streamwise profile, which should then

be determined by experiments. For n = 2, one obtains σk = 1 and σε = 1.5, thus

very close to the standard values. However, Nee and Kovasznay (1969) have observed

in their experiments a close fit to n = 1, which would deliver σk = 2 and σε = 3.

Two other arguments can be found in the literature to justify values for σk

and σε. Firstly, in the direction away from the boundary layer the dissipation rate

should be vanishing faster than the rate of turbulent kinetic energy. This requires

σk smaller than σε to satisfy the realizability of the model. Secondly, boundary

edges of turbulent kinetic energy appear to extend further than the mean velocity

profiles. This implies σk less than unity. Including these recommendations the values

proposed by Chen and Kim (1987) are: σk = 0.75 and σε = 1.15.

Determination of constant Cε3

It is also possible to find in the literature some references regarding the parameter

C3ε (see Henkes and van der Flugt (1991)). This parameter is related to the degree
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in which ε is affected by buoyancy. Generally, this parameter is defined assuming

the following relation:

Cε3 = tanh
∣∣∣v
u

∣∣∣ (4.26)

where the component v is the velocity of the flow parallel to the gravitational vector

direction and u is the velocity component perpendicular to the gravitational vector.

4.4.2 Overall values in literature

To summarize, since the publication of the standard form of the model in the early 70s,

numerous parameter sets have been proposed. Table 4.1 provides a corresponding

overview.

An independent estimation of the model parameters has been discussed by Qian

and Cai (2001) in order to find a best set of constants for the k − ε model. The

corresponding optimization problem was solved in this case applying the Newton-

Raphson scheme, investigating three configurations: channel flow with Reynolds

number 388 000, backward facing step (BFS) with expansion rate 1.5 and Reynolds

number 44 000 and BFS with expansion rate 1.125 and Reynolds number 36 000.

This differs from the present work, as the parameter estimation has been performed

separately for each cases. The authors finally do not come up with a single, best

set of model parameters. Moreover, some of the optimal values differ strongly from

the conventional values (see Table 4.1), which might be surprising for such a well-

established model.

Different values of Cµ can be found in the literature for the standard k− ε model.

In many cases this parameter is tailored for a certain application in order to mitigate

some other deficiency of the model. For example, Bottema (1997) shows that the

turbulence overproduction in front of an obstacle can be mitigated by specifically

tuning the standard k − ε model for boundary layer flows. A theoretical relation

between an inactive turbulence parameter and Cµ is established, resulting in a value

of Cµ = 0.03.

In Darbandi et al. (2006), a modified k − ε turbulence model was applied for

the simulation of a multi-element airfoil (NACA 0012). Optimized values for Cε1

and C2 were obtained using a single-objective simplex optimization algorithm. The

improved model showed better preditions for the pressure coefficient (CP ) at different

attack, Mach and Reynolds numbers. Nevetheless, this is a tailored solution for a

particular case and the application of such model for different geometries were not

considered.

45



As a consequence, we decided to consider again this question using an efficient,

multi-objective parameter optimization involving a broad variety of canonical flows

in order to ensure a suitable generality of the results.

Table 4.1: Parameter values found in the literature for the k− ε model family. Note
that Cµ is variable in the realizable k − ε. Therefore, it is not considered in the
present optimization. All parameters are dimensionless.

Cµ Cε1 C2 σk σε Author

0.07 1.45 2.0 1.0 1.3 Hanjalić (1970)
0.09 1.55 2.0 1.0 1.3 Jones and Launder (1972)
0.09 1.44 1.92 1.0 1.3 Launder and Sharma (1974)
0.09 1.0-2.0 1.5-3.0 Hoffman (1975)

1.15 1.90 0.75 1.15 Chen and Kim (1987)
1.83 1.0 Duynkerke (1988)
1.9 1.0 1.2 Shih et al. (1995)

0.03 Bottema (1997)
0.088 1.391 1.826 1.0 1.3 Qian and Cai (2001)
0.554 1.416 1.672 1.0 1.3 Qian and Cai (2001)
0.102 1.180 1.513 1.0 1.3 Qian and Cai (2001)
0.01-0.17 Pope (2000)

0.425-1.20 0.457-1.64 Goebbert et al. (2011)

4.5 Selected test cases

The four test cases considered for the optimization are standard benchmarks for

development and validation of turbulence models. The experimental data have

been collected from the ERCOFTAC database, QNET database and peer-reviewed

articles. The selected flows include wall-bounded flows and boundary-free flows

at high Reynolds number; these test cases present distinct flow phenomena, e.g.,

separation of the boundary layer over a sharp edge, separation of the boundary layer

over a curved surface, recirculation, reattachment, free shear layer; such distinct

underlying characteristics allow to investigate the behavior of the model under very

different conditions.

For each configuration a relevant turbulent quantity, later called assessment

parameter (AP), is considered as objective function for the optimization. Details

about the CFD simulations, as well as mesh independence study are discussed in

Section 4.6.
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4.5.1 Channel flow

The experimental data for the channel flow was obtained from El Telbany and

Reynolds (1981). Measurements of mean velocities, fluctuation velocities, as well as

derived quantities such as the turbulence kinetic energy, are available for several flat

channels configurations.

The measurements are given in the midplane close to the exit of the channel

(x = 60h, see the dashed line represented in Figure 4.1), where the flow is assumed

to be fully developed.

Schematic view of the channel geometry is shown in Figure 4.1; overall charac-

teristics of the considered configuration are presented in Table 4.2. The turbulence

kinetic energy was chosen as assessment parameter for the channel flow.

Figure 4.1: Channel geometry scheme.

Table 4.2: Overall characteristics of the channel flow.

Flow parameters

Channel height (h) 0.033 m
Channel length (L) 2.440 m
Average velocity (Ua) 14.55 m/s
Reynolds number (Re2h) 64 600

4.5.2 Backward-facing step

The backward-facing step (BFS) is a classical example of flow separation and reat-

tachment. The data for this test case was taken from the experiments of Ruck and

Makiola (1993) and is available on the ERCOFTAC database website. Velocity data

measurements are available at several locations after the step (see dashed lines in

Figure 4.2), which allows the calculation of integral quantities, e.g, reattachment

length.

The characteristics of the selected configuration are given in Table 4.3 and the

geometry scheme is shown in Figure 4.2. The reattachment length after the step

was chosen as assessment parameter for the optimization.
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Figure 4.2: BFS geometry scheme.

Table 4.3: Overall characteristics of the BFS.

Flow parameters

Step height (h) 0.025 m
Step inclination angle 90◦

Expansion rate (ER) 2
Reference velocity (U0) 42.34 m/s
Reynolds number (Reh) 64 000

4.5.3 Free jet

The reference experimental data for the round free jet flow was obtained from

Modaress et al. (1982). It is an example of free shear flow, which includes velocity

decay and spread along the axial distance. Details about the experimental geometry

and flow parameters are shown in Figure 4.3 and Table 4.4, respectively.

The assessment parameter for this case is the jet spreading rate, which was

calculated based on measurement data of axial velocity (Uaxial) along the axis and

its radial evolution at (x = 40r).

Figure 4.3: Jet flow geometry scheme.
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Table 4.4: Overall characteristics of the jet flow.

Flow parameters

Injector diameter (d) 0.02 m
Diameter of the chamber (D) 30d
Velocity on the axis (U0) 13.4 m/s
Primary velocity profile (U(r)) U0(1− 2 r

d
)1/66

Primary intensity of turbulence (u′) U0(0.04 + 0.1( r
d
))

Secondary velocity (Us) 0.05 m/s
Secondary intensity of turbulence (Us) 0.1
Reynolds number (Red) 18 350

4.5.4 Flow over periodic hill

The test case of the flow over a periodic hill was taken from the ERCOFTAC QNET

database. The data is from experiments at the Laboratory for Hydromechanics of the

Technical University of Munich (Rapp (2009)). It exhibits complex flow phenomena

such as separation from a curved surface, recirculation and natural reattachment.

Details about the geometry and characteristics of the flow are shown in Figure 4.4

and Table 4.5, respectively. The reattachment length after the hill was chosen as

assessment parameter for the optimization.

Figure 4.4: Periodic hill geometry scheme.

Table 4.5: Overall characteristics of the flow over a periodic hill.

Flow parameters

Height (H) 3.035h
Hill height (h) 0.05 m
Reference velocity (Ub) 0.59 m/s
Reynolds number (Reh) 37 000
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4.6 Details of the CFD simulations

All cases have been set up using the commercial software FLUENT 6.3. To increase

the accuracy of the simulation, all cases have been computed with double precision.

The second-order, upwind interpolation scheme and the default pressure-velocity

coupling method (SIMPLE) have been systematically employed for pressure-velocity

coupling. Sufficiently low residual thresholds have been imposed for continuity, u, v,

k and ε residuals; convergence has been associated with normalized residuals below

10−6 for all those quantities.

Boundary conditions were chosen to approximate experimental conditions as

close as possible. Values for k and ε, when not given at inlet, were calculated from

classical correlations.

The standard wall function was systematically adopted in this work for all the

simulations. Studies using the near-wall treatment were not considered in this first

investigation, but will be subject of further works.

4.7 Multi-objective optimization

The in-house optimization code OPAL (OPtimization ALgorithm, described for

instance in Thévenin and Janiga (2008) and Hilbert et al. (2006) was used to perform

the optimization. The CFD simulations were performed in FLUENT while the

objective functions were evaluated in MATLAB. As described in Chapter 3, in

OPAL the optimization loop is performed in an automatic manner, the schematic

representation of the optimization loop is shown in Figure 4.5.

Figure 4.5: Diagram showing the optimization loop. A C program is used for the
automatization of the loop.

The specific multi-objective optimization problem can be formulated as:
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min fi(θ) ∀ i = 1, 2..., Nobj

subjected to:

xj ∈ [θj,min; θj,max] j = 1, 2..., Nparam

where Nobj = 4 is the number of objective functions (four test-cases) and Nparam = 4

is the number of model parameters to optimize. Limit values for the parameters θ

have been set based on the values found in the analysis of the literature (see Ta-

ble 4.1). The retained parameter range is given by (Cε1 ∈ [1.15; 1.55]; C2 ∈ [1.51; 2.0];

σk ∈ [0.75; 2.0]; σε ∈ [1.0; 3.0]). The objective functions (difference between CFD re-

sults and reference data) have been calculated using the Euclidean norm and should

be minimized.

Altogether, 620 designs (parameter sets) have been evaluated. The total com-

puting time for the optimization was around 12 days using a single PentiumIV PC

(2.7 GHz/2 GB memory).

The settings used in the multi-objective optimization algorithm are summarized

in Table 4.6. For further details, the reader is referred to Hilbert et al. (2006) and

Thévenin and Janiga (2008).

Table 4.6: Settings for the Multi-objective optimization algorithm.

Settings for MOGA

Initial population size 40 (SOBOL)
Number of generations 30
Average offspring 10
Crossover offspring 10
Mutation probability 95%
Mutation magnitude 50 %

(×0.9 at each generation)

4.8 Independent configurations

The optimized parameters have been tested in four additional configurations, which

were not included in the optimization. A brief description of the selected configura-

tions is presented in the following subsections.
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4.8.1 Savonius turbine

The unsteady flow around a vertical-axis (Savonius) wind turbine was investigated

by Mohamed (2011). Torque and power coefficients (Cm and Cp, respectively) was

compared with the experimental measurements of Hayashi et al. (2005). Sketch of the

geometry and computational domain are shown in Figure 4.6. Overall characteristics

of the flow are given in Table 4.7.

Figure 4.6: Sketch of the geometry and computational domain for the Savonius wind
turbine.

Table 4.7: Overall characteristics of the Savonius wind turbine and selected assess-
ment parameters.

Flow parameters Assessment parameters

Rotor diameter (D) 0.33

Cp,Cm
Bucket diameter (d) 0.184 m
Bucket rotation angle (a) 30◦

Speed ratios (λ) 0.3-1.2

4.8.2 Airfoil wake

The incompressible flow around a conventional airfoil (DSMA661) at zero angle of

incidence was simulated. The velocity profile in the wake of the airfoil was com-

pared with the experimental data of Nakayama (1985) described in the ERCOFTAC

database. The geometry sketch and computational domain are shown in Figure 4.7.

Overall characteristics of the flow are given in Table 4.8.
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Figure 4.7: Sketch of the geometry and computational domains for the airfoil wake
test case.

Table 4.8: Overall characteristics of the airfoil wake test case and selected assessment
parameter.

Flow parameters Assessment parameter

Chord length (C) 0.610 m

U profile across the wake
Angle of attack 0◦

Reference velocity (Uref ) 30.5 m/s
Turbulence intensity 0.02
Reynolds number (ReC) 120 000

4.8.3 Flow around building

The flow and turbulence in the wake of an airport building were investigated. The

experimental data for this configuration was obtained from the QNET database.

The geometry sketch and computational domain are shown in Figure 4.8. Overall

characteristics of the flow are given in Table 4.9.

53



Figure 4.8: Sketch of the geometry and computational domain for the flow around
building.

Table 4.9: Overall characteristics of the flow around a building and selected assess-
ment parameter.

Flow parameters Assessment parameter

Height (H) 37 m

U at the runway
Wind direction 0◦

Reference velocity (U) 2 m/s
Reynolds number (Reh) 5× 106

4.8.4 Square duct with 180◦ bend

The flow through a square duct was investigated. The experimental data for this

configuration was obtained from the experiments of Choi et al. (1989) available

ERCOFTAC database. The geometry sketch and computational domain are shown

in Figure 4.9. Overall characteristics of the flow are given in Table 4.10.
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Figure 4.9: Sketch of the geometry and computational domain for the square duct
with 180◦ bend.

Table 4.10: Overall characteristics of the square duct with 180◦ bend flow and
selected assessment parameter.

Flow parameters Assessment parameter

Height (H) 0.0889 m

Centerline streamwise velocity
Centerline curvature radius (Rc) 3.357H
Inlet bulk axial velocity (WB) 11 m/s
Reynolds number (ReWb

) 56 690

4.9 Results and discussion

Optimal parameter values were manually selected from the optimal set (Pareto

solutions). As shown in Figure 4.10 the Pareto set consisted of very distinct designs.

The procedure to identify a single optimal solution screened a set of Pareto designs

based on the comparison with the standard model, i.e., solutions with better or

equally good predictions for the 4 test cases were selected. From these pre-screened

solutions the optimal set was chosen as being that with the parameter values closest

to the recommended values from the literature.
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Figure 4.10: Parallel coordinate plot. Each line is associated with a different design
and connects the values of the parameters (4 vertical axes on the left) and the
objective function of each test cases (4 vertical axes on the right).

The parameters obtained in this manner (Table 4.11) differ by less than 5% from

the standard values.

Table 4.11: Optimal parameter values for the k − ε model.

k − ε Model Cε1 C2 σk σε

Realizable (standard) 1.44 1.9 1.0 1.2
Realizable (optimized) 1.37 1.89 1.02 1.14
Relative difference [%] 4.64 0.25 0.25 4.79

The obtained optimized realizable k − ε model was then compared with the

RNG, standard and realizable k− ε models for all considered test cases. The results

are presented in Figure 4.11 and in Tables 4.12 to 4.14. The best predictions are

systematically obtained with the optimized model, both the standard and optimized

realizable models performing equally well for the flow over a periodic hill.
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Figure 4.11: Turbulent kinetic energy (TKE) scaled with the effective friction veloc-
ity.

Some of the known deficiencies of the standard k − ε model such as the over-

prediction of the reattachment length for the BFS and the underprediction of the

spread rate for the round jet have been mitigated with the new set of parameters.

The turbulent kinetic energy k shows also a sensible improvement for the channel

flow, especially in the center part of the channel.

The best result for the prediction of the reattachment length in the case of

the periodic hill was obtained by the realizable k − ε with the conventional set of

parameters. However, the optimized model can still predict the reattachment length

within less than 1% relative difference from the experimental result, a value probably

well within the experimental uncertainty.

Table 4.12: Reattachment length for the BFS case.

Model Reattachment length Relative difference
[cm] [%]

Experiment 20.97 -
Standard 15.91 24.11
RNG 17.98 14.23
Realizable 18.54 11.58
Optimized 18.67 10.96
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Table 4.13: Spread rate values for the jet flow case.

Model Spread rate Relative difference

S =
dy1/2
dx

[%]

Experiment 0.1047 -
Standard 0.1142 9.07
RNG 0.1309 25.02
Realizable 0.1130 7.92
Optimized 0.1121 7.06

Table 4.14: Reattachment length for the periodic hill case.

Model Reattachment length Relative difference
[cm] [%]

Experiment 17.7650 -
Standard 12.9335 27.19
RNG 18.3835 3.48
Realizable 17.8330 0.38
Optimized 17.9355 0.95

In a final step, the general applicability of the optimized realizable k − ε model

is further tested by considering four different configurations. The optimal parameter

set has first been tested in a more complex and completely independent configuration,

the unsteady flow around a vertical-axis (Savonius) wind turbine investigated by

Mohamed (2011). Geometry and boundary conditions are shown in Figure 4.6.

The values of torque coefficient (Cm) and power coefficient (Cp) for the two-blade

Savonius rotor are investigated and compared with experimental data from Hayashi

et al. (2005) for a standard range of operation (see Fig. 4.12). Here again, the

optimized model shows the best overall predictions for torque and power coefficients

over a wide range of speed ratios compared to experimental measurements.
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Figure 4.12: (a) Torque coefficient for the Savonius turbine (b) Power coefficient for
the Savonius turbine.

Flow and turbulence in the wake of an airport terminal building were then

investigated. The experimental data for this configuration was obtained from the

QNET database. A simplified 2D profile of the terminal building was employed for

the simulation, see Figure 4.8. This is a plausible simplification since the length of

the building is much greater than its width and height. Furthermore, the surrounding

area is well open with buildings of low heights.

The building is located near one of the runways of the airport. The influence of

the building onto the runway was investigated. The velocity deficit and turbulence

intensity excess, as well as velocity and kinetic energy profile over the runway, were

analyzed for this purpose.

Simulations considering the computational domain with and without the building

have been performed. This is important in order to quantify the influence of the

building on the runway. Moreover, it allows to investigate the rate of production of

turbulence caused by the building. In Fig. 4.13(a), the velocity on the runway at

different heights is compared. The predictions of the realizable and the optimized

model are almost identical. Both models deliver reasonable agreement for the velocity

profile in the case without the building. However, they predict prematurely the

reattachment of the flow behind the building, as shown in Fig. 4.13(a).

Both models also failed to predict the turbulent kinetic energy profiles for the

simulated flows. Although the comparison of the k profile in Fig. 4.13(b) can not

be done directly, because the experimental and the given boundary profiles for k

obviously differ, the plot shows that the production of turbulent kinetic energy is

four times higher in the CFD compared with the measured data. This confirms the

well-documented excessive production of k by the k − ε model in flows with high
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strain rates.
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Figure 4.13: Plots of the flow around a building (a) Comparison of velocity profiles
U/U0 with experimental data. (b) Comparison of turbulent kinetic energy profiles
k/U2

0 with experimental data.
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Figure 4.14: Comparison of the normalized velocity profile in the wake of an airfoil.

The incompressible flow around a conventional airfoil (DSMA661) at zero angle

of incidence was simulated in a third step. The velocity profile in the wake of the

airfoil was compared with the experimental data of Nakayama (1985) described in

the ERCOFTAC database. Computational domain and boundary condition for the

test case considered are shown in Figure 4.7.
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Both turbulence models have been able to predict with an excellent accuracy the

mean velocity in the wake of the airfoil. They lead to the same accuracy, as shown

in Figure 4.14.

Another flow of practical importance but with very different turbulence prop-

erties is the flow through square ducts. A 3D simulation of a square duct with

a 180◦ bend (depicted in Figure 4.9) was therefore performed in a last step. The

streamwise velocity profile in the centerline of the duct at different angular positions

was compared with the experimental data of Choi et al. (1989) contained in the

ERCOFTAC database.

The flow pattern predicted by the realizable model with the standard constants

and the optimized model are again almost identical for the streamwise velocity

profiles at all angular positions, as can be seen in Figure 4.15.
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Figure 4.15: Comparison of streamwise velocity profiles at different angular positions.
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4.10 Conclusions

The developed optimization methodology described here has been proved to be a

valuable tool to improve the parameters of the realizable k − ε turbulence model.

Slightly improved predictions were consistently obtained for all test cases considered,

even though the optimized parameters do not differ much from the conventional

values. The optimal parameter set has been afterwards tested for four independent

configurations. The optimized model could predict the torque and power coefficients

for the vertical-axis wind turbine with a better accuracy than the realizable k − ε
model with the standard constants. For all other cases, it performs equally well.

Limitations of the framework of the realizable k − ε still exist. In flows where the

original model performs well, the optimization has improved the results, whereas in

flows where the original results are qualitatively different, tuning of the coefficients

is not helpful.

It is clear that the standard constants used in the realizable k − ε have been

already well calibrated over decades and thus deliver robust results for a broad range

of applications. Nevertheless, it has been shown that it is possible to fine tune further

these parameters thanks to an efficient optimization methodology.

The suggested values for the realizable k − ε model constants are Cε1 = 1.37,

C2 = 1.89, σk = 1.02 and σε = 1.14. Employing these parameters does not lead

to any increase in computational cost, but should lead to a slightly improved or at

least to the same level of accuracy. These optimized values will be employed for the

reactor simulations in chapter 6.
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Chapter 5

Model optimization for chemical

reactions using global model

structure

This chapter is written based on the following paper:

L. G. M. de Souza, H. Haida, D. Thévenin, A. Seidel-Morgenstern, G. Janiga.

Model selection and parameter estimation for chemical reactions using global model

structure, (2013). Computers and Chemical Engineering (58), 269-277.

5.1 Introduction

In chemical kinetics studies, usually after the determination of the reaction network,

several kinetic models are investigated in order to characterize the reaction kinetics

with the best possible accuracy. Each model describes a different possible mechanism.

Hence, the selection of one specific model induces also the choice of a particular

mechanism (Warnatz et al. (2006)).

In complex reaction systems such as those found in heterogeneous catalytic

reactions, the number of plausible models is very large. This is even the case for

systems with a relatively small number of reactions and components (Xu et al. (1988)).

Considering the different possible model concepts, e.g., Eley-Rideal (ER), Mars-Van

Krevelen (MVK), Langmuir-Hinshelwood and Hougen-Watson (LHHW) and different

mechanisms for adsorption of reactants and products, the investigation of all possible

kinetic models constitutes a formidable task. Therefore, only a restricted subset of

models are usually evaluated in detail (Ozdemir and Gultekin (2009); Marvast et al.

(2011)).

Often, the rivaling models are analyzed separately or sequentially. The latter

practice is particularly useful in the case of complex reaction networks. Nevertheless,
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the investigation of a very large number of models is usually too time-consuming as

the parameter estimation needs to be performed for each model.

In most cases the values for all kinetic parameters, such as activation energies,

are reported in the literature with a prescribed level of precision. However, some

kinetic constants may be poorly known and the documented values may span several

orders of magnitude in some cases.

In the present work, a global search within the plausible models and parameter

sets has been developed. For this purpose, the formulation of a general and flexible

global model is important. This superstructure model involves real-value and discrete-

value parameters, where the real-value parameters describe the kinetic parameters

and the discrete-value parameters are related to different model concepts and reaction

orders.

The genetic algorithm NSGA-II implemented in the software modeFrontier 4.2.1

(ESTECO s.p.a., Italy) is applied for the optimization. The original NSGA-II

algorithm has been developed by Deb et al. (2002). With this algorithm it is possible

to treat continuous (real-coded) and discrete (binary-coded) variables simultaneously.

The kinetic coefficients and model mechanisms are simultaneously considered as

decision variables. This allows an automatic global search within a large number of

possible reaction mechanisms.

Superstructure-based optimization has already been applied to other problems

in chemical engineering, mostly for the determination of optimal process structures

and process parameters (e.g., Yeomans and Grossmann (1999); Kawajiri and Biegler

(2006); Kaspereit et al. (2012)). Process optimization with a view toward control

has been also extensively considered (e.g., Schwerin et al. (2000)). In the majority of

these cases the optimization problems were solved using Mixed-Integer Non-Linear

Programming (MINLP). However, in cases where the parameters are not known with

a sufficient precision (as in reaction kinetics) a global search appears to be a more

robust technique.

The distinct treatment of real-value and discrete-value parameters in the GA is

crucial for the efficiency of the optimization algorithm when solving mixed-integer

optimization problem. As pointed out by Elliott et al. (2004), binary encoding

may affect negatively the quality of the result when applied to multi-dimensional

optimization problems, this being the rule for reaction parameter optimization. As

a result, premature convergence of the population to a non-global optimum, slow

convergence rate and difficulties to reach fine local tuning have been documented.

The observed difficulties in performing local tuning when using binary encoding arise

mainly because of the Hamming cliff effect (Elliott et al. (2004)).

The real-coded or floating-point (FP) implementation makes it possible to apply
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the optimization to larger domains without sacrificing precision. Another benefit

is the possibility to perform local tuning in the objective space. Real encoding

produces in general better results for numerical optimization than binary encoding

(Michalewicz (1996)). On the other hand, the real-coded or floating-point genes

are not the optimal treatment for discrete variables as they require truncations

and rounding procedures. Therefore, the best approach for solving mixed-integer

optimization problems using GA is to consider a distinct formulation for the binary-

coded and for the real-coded variables.

This is the approach retained in the present study. The binary-coded variables

are treated using the classical genetic operators for binary encoding, while for the

real-valued variables the Simulated Binary genetic operators proposed by Deb and

Agarwal (1995) are applied, avoiding the typical drawbacks of coding real-valued

variables in finite length strings.

The methodology developed in Chapter 3 is applied to the model optimization of

the partial oxidation of the ethane reaction network (Joshi (2007)). The robustness

of the automated methodology and the quality of the obtained results are compared

with that presented in Joshi (2007), where an exhaustive and time-consuming analysis

of hundreds of models have been performed manually. However, the optimization

procedure in Joshi (2007) did not include the model parameters (discrete-value

variables) and the optimization was performed only for the kinetic parameters (real-

valued variables). The present work is therefore considerably more general.

5.2 Generalized kinetic model for heterogeneous

catalytic reactions

The formulation of a general and flexible global model is an important point for

the elaboration of a procedure allowing an automatic search within the possible

models and parameter sets. The generalized model is able to describe the different

mechanisms possible with the Eley-Rideal (ER) and the Langmuir-Hinshelwood

Hougen-Watson model (LHHW). Considering an irreversible heterogeneous catalyzed

reaction A + B
rj−→ C + D, a generalized kinetic model expression can be written

as follows:

rj =
kj,∞ exp

(
−EA,j
R̃T

)
(KApA)αA (KBpB)αB(

1 +
∑N

i φ
I
i (Kipi)

αi
)γI (

1 +
∑N

i φ
II
i (Kipi)

αi
)γII (5.1)

The generalized model contains kinetic parameters and model parameters. The

kinetic parameters are continuous variables, while the model parameters are repre-
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sented by discrete variables.

In Eq. (5.1), the pre-exponential factor kj,∞, the activation energy EA,j and

the adsorption equilibrium constant Ki are the kinetic parameters for all reactions

(j = 1, ...,M) and species (i = 1, ..., N) involved. They are free adjustable parameters

within an appropriate physical range. The constants R̃ and T are the universal gas

constant and the temperature, respectively.

Different reaction mechanisms can be represented by the model parameters

αi, φ
I
i , φ

II
i , γ

I and γII . For instance, the exponents αi describe either molecu-

lar or dissociative adsorption. Setting αi = 1 corresponds to choosing molecular

adsorption while setting αi = 0.5 means a dissociative adsorption. Each reactant

and product can adsorb according to a different mechanism.

The components may adsorb on the catalyst surface and inhibit the reaction

rate. This is taken into account through the switching parameters φIi and φIIi . The

values allowed for these parameters are either 1 or 0, meaning that the component

is adsorbed or not, respectively. In order to account for non-competitive adsorption

mechanism, the values of φIi and φIIi are set to be always opposite. In this manner

components appearing in one site will not appear on another site. Nevertheless, the

generalized model also accounts for competitive adsorption.

The exponents γI and γII allow to account for single and dual-sites. The values

for the parameter γI is either 1 or 2 and the values for the parameter γII is 0 or

1. For example, if γI = 1 and γII = 1, the non-competitive dual-site mechanism is

enabled. Alternatively, if γI = 2 and γII = 0 the competitive dual-site mechanism

is considered.

Although it does not rely on a completely rigorous derivation, Eq. (5.1) offers

a general structure for the generation of a large amount of different mechanisms

found in the reaction engineering literature. The described model parameters and

mechanisms are summarized in Table 5.1.
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Table 5.1: Description of the model parameters and mechanisms.

Parameter Values Description

αi =

{
1
0.5

αi = 1 (Molecular adsorption)
αi = 0.5 (Dissociative adsorption)

φIi =

{
0
1

φIi = 0 (Not Adsorbed)
φIi = 1 (Adsorbed)

φIIi =

{
0
1

φIIi = 0 (Not Adsorbed)
φIIi = 1 (Adsorbed)

γI =

{
1
2

if
(
γI + γII

)
= 1 (Single-Site)

γII =

{
0
1

if
(
γI + γII

)
= 2 (Dual-Site)

5.3 System under investigation

The developed methodology has been applied to the partial oxidation of ethane

reaction network. This system has been previously studied experimentally within

a collaborative research group at the University of Magdeburg using a supported

vanadium oxide catalyst in a laboratory-scale fixed bed reactor (Seidel-Morgenstern

(2010)). A wide range of experimental conditions have been investigated. With

these results, a reaction network has been proposed. All these results have been

documented in Joshi (2007).

Based on this study, the finally proposed network consisted of 6 reactions and 6

components (Klose et al. (2004)):

R1 : C2H6 + 0.5O2 → C2H4+H2O

R2 : C2H6 + 2.5O2 → 2CO + 3H2O

R3 : C2H6 + 3.5O2 → 2CO2 +3H2O

R4 : C2H4 + 2O2 → 2CO + 2H2O

R5 : C2H4 + 3O2 → 2CO2 +2H2O

R6 : CO + 0.5O2 → CO2

The rank of the corresponding stoichiometric matrix is 3, indicating that three

key components are sufficient to represent the system. Knowing the partial pressure

of these components it is possible to obtain the partial pressure of all the components

present in the system.

In Joshi (2007), an exhaustive and time-consuming fitting procedure has been

performed for hundreds of different models. Much less models are usually investigated
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in the scientific literature. Therefore, an automated and robust approach would be

very useful to derive as efficiently as possible optimal reaction networks for complex

systems.

The parameters for the ethane oxidation and its intermediates ethylene and CO

were estimated in Joshi (2007) with a stepwise manner, e.g., (i) at first kinetic

parameters have been estimated only for CO oxidation (reaction R6), considering 60

models; (ii) in a second step kinetic parameters were estimated for 244 models in order

to describe the ethylene oxidation (reactions R4, R5 and R6) and (iii) the parameters

for the whole ethane oxidation reaction network were estimated (reactions R1 to R6),

keeping fixed the parameters already estimated in reactions R4, R5 and R6; finally,

344 models have been evaluated in this last step. As discussed in Joshi (2007), the

parameter estimation for the ethane oxidation network has been carried out using

the pattern search method and the Levenberq-Maquardt method, considering always

a single objective function.

In the present work, ethane oxidation is still described by the 6 reactions dis-

cussed previously. However, the parameter estimation is now obtained for the whole

network in a single step using multi-objective optimization. Thus, a stepwise, te-

dious and error-prone approach is not required anymore. The developed, automatic

methodology for model and parameter optimization is presented in what follows.

More details about the investigated system can be found in Joshi (2007).

The same experimental data is used for the fitting of the complete ethane network

as in Joshi (2007). The data set contains Nexp = 533 experimental points with

temperature varying from 460◦C to 610◦C. Different volumetric flow rates and

catalyst mass have been used but keeping a constant gas hourly space velocity

(GHSV). The inlet concentrations of ethane and oxygen have been varied as well.

5.3.1 Modeling

In order to obtain results comparable with those of Joshi (2007), the same simplifi-

cation has been adopted, where the individual reaction rates (rj) were expressed as

function of the averaged partial pressures. This is a realistic assumption considering

the small dimensions of the system and low conversion levels of ethane in a diluted

feed stream. This also led to nearly isothermal conditions in the reactor. Moreover,

since only powder catalysts have been used, the intra-particle mass transfer is not a

limiting factor (Seidel-Morgenstern (2010)). A Matlab code was written taking into

account these simplifications.

The modeled net rate of production of a component (Marin and Yablonsky (2011))

is related to the individual reaction rates rj and the stoichiometric coefficient υij as

follows:
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Ri =
M∑
j

υijrj i = 1, ..., N (5.2)

The individual reaction rates rj can not be measured in the experiments. Never-

theless, the net rate of production of a component can be calculated by the following

equation:

Rexp
i =

pin
i − pout

i

mcatR̃T
V̇ (5.3)

where pin
i and pout

i are the partial pressure at the inlet and outlet, respectively V̇

is the volumetric flow-rate, mcat is the mass of the catalyst and R̃ and T are the

universal gas constant and the temperature, respectively. The overall reaction rate

has dimensions mol.kgcat
−1.h−1.

In this manner the overall reaction rates delivered by experiments and simulation

can be compared.

5.4 Reparametrization

The effective rate constant keffj has been introduced in order to reduce the well

known, strong correlation between the pre-exponential factor kj,∞ and the activation

energy EA in Equation (5.1). The reparametrized Arrhenius equation reads:

keffj = keffj,ref exp

[
−EA,j
R̃

(
1

T
− 1

Tref

)]
(5.4)

the reference temperature is given by the center of the experimental range as follows,

Tref =
1

2
(Tmin + Tmax) (5.5)

and keffj,ref is defined as,

keffj,ref = kj,∞ exp

(
−EA,j
R̃Tref

)
(5.6)

5.5 Optimization methodology

The optimization procedure developed in this work can be applied in principle to

many different heterogeneous catalytic reaction systems. For the case considered here,

the mixed-integer (Bertsimas and Weismantel (2005)), multi-objective, concurrent

optimization can be formally written in the following manner:
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min OF
(
keffj , EA,j, Ki, αi, φ

I
i , φ

II
i , γ

I , γII , pi,k, Tk

)OLS
i=C2H6,C2H4, CO2

(5.7)

subjected to: Real-value constraints:

keffj ∈
[
keffj,min, k

eff
j,max

]
j = 1, ...,M (5.8)

EA,j ∈ [EA,j,min, EA,j,max] j = 1, ...,M (5.9)

Ki ∈ [Ki,min, Ki,max] i = 1, ..., N (5.10)

Discrete-value constraints:

αi ∈ {0.5, 1} i = 1, ..., N (5.11)

φIi ∈ {0, 1} i = 1, ..., N (5.12)

γI ∈ {1, 2} (5.13)

γII ∈ {0, 1} (5.14)(
γI + γII

)
≤ 2 (5.15)

Note that 3 concurrent objective functions (OFOLS
C2H6

, OFOLS
C2H4

and OFOLS
CO2

) need

to be minimized simultaneously. This treatment is adopted as an alternative to

the traditional stepwise parameter estimation procedures used in chemical reaction

networks (Joshi (2007); Jiang et al. (2010); Stewart et al. (1992)).

Altogether, 29 decision variables are considered for the optimization. The kinetic

coefficient parameters are represented using 17 real-value decision variables, and

the model parameters are further associated to 12 discrete-value decision variables.

A constraint,
(
γI + γII

)
≤ 2, is added to the problem so that only single-site and

dual-site are allowed to exist.

Since H2O appears only as a product and no reliable measurements concerning its

partial pressure are available, this component was not included in the rate expressions,

reducing the considered number of species to N = 5.

The real-value decision variables for the ethane reaction network consist of 6

effective rate constants keffj , 6 activation energies EA,j and 5 adsorption equilibrium

constants Ki. The feasible range retained for the kinetic parameters were chosen

around the optimal values found by Joshi (2007) but keeping a wide range of possible

variations.

70



CHAPTER 5

For the reaction network finally considered (N = 5 components) the number of

discrete-value variables αi, φ
I
i and γI,II sum up to 12. The parameters φIIi are not

directly included as design parameters, as their values depend on the values of φIi

according to the following conditional expression:

φIIi =

{
0 if φIi = 1

1 if φIi = 0
(5.16)

The objective functions are calculated using the ordinary least-square (OLS)

difference between the values of the experimental overall reaction rate Rexp
i and the

modeled one Rmodel
i . Objective functions were evaluated for the three accurately

measurable key components: Ethane, Ethylene and Carbon Dioxide. They can be

written as follows:

OF (θ, pi,k, Tk)
OLS
C2H6

=

Nexp∑
k=1

(
Rexp

C2H6 ,k
−R(θ, pC2H6 ,k ,T k)model

C2H6 ,k

)2
(5.17)

OF (θ, pi,k, Tk)
OLS
C2H4

=

Nexp∑
k=1

(
Rexp

C2H4 ,k
−R(θ, pC2H4 ,k ,T k)model

C2H4 ,k

)2

(5.18)

OF (θ, pi,k, Tk)
OLS
CO2

=

Nexp∑
k=1

(
Rexp

CO2 ,k
−R(θ, pCO2 ,k, Tk)

model
CO2 ,k

)2

(5.19)

where Nexp = 533 is the number of experimental observations for the data set

considering the full ethane reaction network.

Taking into account all the possible combinations of the discrete model param-

eters, a total of 1544 different models can be derived for this specific system from

the generalized kinetic model. The optimization algorithm searches within all these

possible models, simultaneously estimating the best set of kinetic parameters for the

studied system.

Table 5.2: Settings employed for the optimization algorithm NSGA-II.

Settings for NSGA-II

Number of Generations 40
Initial Population 290
Total Number of Designs 11600
Crossover Probability [0.0, 1.0] 0.9
Mutation Probability [0.0, 1.0] 1.0

Details about the NSGA-II settings are shown in Table 5.2. Standard values have

been adopted for the genetic operators. The Uniform Latin Hypercube distribution
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has been used for the generation of the initial population. An automatic scaling for

the mutation probability is implemented, increasingly stabilizing the population at

each generation by decreasing the mutation amplitude. The total computing time for

the complete optimization process using a standard desktop PC (Intel Core i5-2500,

3.30 GHz, 8 GB RAM, 64 bit) is about 120 minutes.

The optimization procedure has been implemented using the commercial software

modeFrontier 4.2.1 (ESTECO s.p.a., Italy) while the model evaluation has been

coded in Matlab R2011a (The Mathworks Inc., Natick, Massachusetts, USA). The

Matlab integration mode in modeFrontier has been used for a fast connection between

both softwares. The optimization loop is showed in Fig. 5.1.

Figure 5.1: Diagram showing the optimization loop.

5.6 Results and discussions

A selected region of the obtained Pareto solutions (corresponding to ρ2
i > 0.90) is

shown as a 3-D scatter plot in Fig. 5.2. For the sake of comparison, the optimal

solution obtained by Joshi (2007) using a manual procedure is also plotted (black

circle). It can be seen from Fig. 5.2 that the Pareto solutions obtained with the

automatic procedure presented in this work are, in terms of Pareto optimality, of

the same quality as the optimal solution found manually by Joshi (2007).
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Figure 5.2: 3-D scatter plot from a selected region of the Pareto solution showing
the values of the three objective functions, Eqs.(5.17) to (5.19).

However, the automatic optimization is completed within 120 minutes and can be

immediately applied to different systems, while a manual approach requires months

of error-prone comparisons for the same level of quality.

The selected region of the Pareto front contains indeed 17 designs. However, only

nine distinct models (M1 to M9, represented by colors in Fig. 5.2) finally remain in

Fig. 5.2 when looking at the underlying model parameters (Fig. 5.3). The reason

for that is the presence of solution clusters. One classical issue associated to multi-

objective optimization algorithms is to avoid clustered regions in order to obtain a

uniformly distributed representation of the Pareto front.

An analysis of the model parameters for (M1,. . . ,M9) shows that all these models

share some common features. For instance, the dual-site and competitive adsorption

mechanisms are used identically by all the selected designs, as shown in Fig. 5.3.

Nevertheless, the models (M1,. . . ,M9) represent a great variety of underlying mech-

anisms. Joshi’s optimal model and the model M7 rely on the same mechanisms,

but use a quite distinct parameter set, as shown when plotting the coordinates in a

parallel coordinate diagram (Fig. 5.4).
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Figure 5.3: Model parameters for the models (M1,. . . ,M9) associated to the optimal
solutions shown in Fig. 5.2.
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Figure 5.4: Parallel coordinate plot showing the kinetic parameters for the selected
solutions.

Very often in practice, a single optimal design is chosen more or less arbitrarily

by the user from the set of non-dominated solutions. As a better alternative, the
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coefficient of determination (ρ2
i ) is a meaningful statistical property to differentiate

between alternative models and is therefore applied here as additional decision-maker.

The definition of ρ2
i reads:

ρ2
i=C2H6,C2H4,CO2

= 1−
OF (θ, pi,k, Tk)

OLS
i∑Nexp

k=1

(
Rexp
i,k − 1

Nexp

∑Nexp

i=1 Rexp
i,k

)2 (5.20)

It is important to find an optimal solution with a good compromise between all

the 3 objectives, Eqs. (5.17) to (5.19). Therefore, only solutions with all ρ2
i > 0.90

were retained in Fig. 5.2. The solution M5 (red color, Fig. 5.2) corresponds to the

design with the highest averaged value of ρ2
i . Another optimal solution, M6 (green

color) has also been included for further comparisons, using as criterion the ”best of

the worst” strategy, i.e., maximizing for the worst objective.

The parallel coordinate plot in Fig. 5.4 shows the kinetic parameter values for

the selected designs. Each polyline represents one different optimal design, including

along the horizontal axis all the 17 real-value design variables simultaneously. The

lower and upper bound values considered in the optimization are shown in the

parallel plot for each parameter (vertical axes). The optimal parameters found by

the present optimization differ considerably depending on the specific model (look

at the range covered). Furthermore, they are indeed quite different from the values

retained by Joshi (2007), solution plotted in black in Fig. 5.4.

The objective functions and the ρ2
i values for the optimal solutions are summa-

rized in Table 5.3. Remember that the OF (θ, pi,k, Tk)
OLS
i values must be minimized

while the ρ2
i values should be maximized. It is again visible that the solution ob-

tained manually by Joshi (2007) is of high quality and belongs to the Pareto set.

However, the solutions corresponding to models M5 and M6 (Table 5.4) obtained

automatically and within a short computational time are equally optimal in the

sense of Pareto. The parity plots obtained with the three models and shown in

Fig. 5.5 confirm this statement.

Table 5.3: Objective functions (OFOLS
i ) and coefficient of determination (ρ2

i ) values
for the selected optimal solutions M5 and M6.

Joshi (2007) M5 M6

OF (θ, pi,k, Tk)
OLS
C2H6

8.5955 12.9420 24.3331

OF (θ, pi,k, Tk)
OLS
C2H4

5.4134 5.2537 10.4000

OF (θ, pi,k, Tk)
OLS
CO2

2.8121 1.7901 1.6155

ρ2
C2H6

0.9762 0.9642 0.9327

ρ2
C2H4

0.9640 0.9650 0.9307

ρ2
CO2

0.8730 0.9192 0.9270
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As it is shown by the Pareto plot in Fig. 5.2, it is not possible to obtain an

improvement in any of the objectives without impacting negatively at least one of

the concurrent objectives. For example, comparing with Joshi’s model the solution

M5 shows better OFOLS
i for two of the objectives, but loses for the third objective

(check the values in Table 5.3). The coefficient of determination (ρ2
i ) may give a

better idea about the quality of the solutions (see again Table 5.3). One may notice,

for instance, that M5 and M6 present ρ2
i > 0.919 for the three objectives, which is

not the case of Joshi’s solution.
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Figure 5.5: Parity plot for the net rate of production of (a) C2H6, (b) C2H4 and (c)
CO2 for the 533 experimental points.
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Table 5.4: Reaction rate equations for the optimal model of Joshi (2007) and for the
selected optimal models M5 and M6.

Model Reaction Rate

Joshi (2007) denominator r1. . . r6(
1 +KC2H6pC2H6 + (KO2pO2)0.5

)2

numerator
r1 r2

keff1 (
−EA,1
R̃T

)KC2H6pC2H6 (KO2pO2)0.5 keff2 (
−EA,2
R̃T

)KC2H6pC2H6KO2p
0.5
O2

r3 r4

keff3 (
−EA,3
R̃T

)KC2H6pC2H6 (KO2pO2)0.5 keff4 (
−EA,4
R̃T

)KC2H4pC2H4 (KO2pO2)0.5

r5 r6

keff5 (
−EA,5
R̃T

)KC2H4pC2H4 (KO2pO2)0.5 keff6 (
−EA,6
R̃T

)KCOpCO (KO2pO2)0.5

M5 denominator r1. . . r6(
1 +KC2H6pC2H6 + (KO2pO2)0.5 +KCO2pCO2

)2

numerator
r1 r2

keff1 (
−EA,1
R̃T

)KC2H6pC2H6 (KO2pO2)0.5 keff2 (
−EA,2
R̃T

)KC2H6pC2H6KO2p
0.5
O2

r3 r4

keff3 (
−EA,3
R̃T

)KC2H6pC2H6 (KO2pO2)0.5 keff4 (
−EA,4
R̃T

)KC2H4pC2H4 (KO2pO2)0.5

r5 r6

keff5 (
−EA,5
R̃T

)KC2H4pC2H4 (KO2pO2)0.5 keff6 (
−EA,6
R̃T

) (KCOpCO)0.5 (KO2pO2)0.5

M6 denominator r1. . . r6(
1 +KC2H4pC2H4 + (KO2pO2)0.5 +KCOpCO

)2

numerator
r1 r2

keff1 (
−EA,1
R̃T

)KC2H6pC2H6 (KO2pO2)0.5 keff2 (
−EA,2
R̃T

)KC2H6pC2H6 (KO2pO2)0.5

r3 r4

keff3 (
−EA,3
R̃T

)KC2H6pC2H6 (KO2pO2)0.5 keff4 (
−EA,4
R̃T

)KC2H4pC2H4 (KO2pO2)0.5

r5 r6

keff5 (
−EA,5
R̃T

)KC2H4pC2H4 (KO2pO2)0.5 keff6 (
−EA,6
R̃T

)KCOpCO (KO2pO2)0.5

Although the quality of the results obtained with the three models (Joshi (2007);

M5; M6) is very similar, there are significant differences in the structure of these

models. The main difference lies in the formulation of the denominators for the

rate equations. All three selected models consider competitive adsorption with

dissociative adsorption of oxygen. The component C2H6 is assumed to adsorb on the

catalyst surface in Joshi’s model as well as in M5. In fact, M5 becomes very similar

to Joshi’s model in the case of very small concentrations of CO2. At the opposite, a

quite distinct mechanism is assumed in M6, for which C2H6 does not adsorb on the

surface of the catalyst, while C2H4 and CO act as inhibitor for the reaction rate.
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The optimal kinetic parameters of the three selected models differ considerably

(Fig. 5.4). The optimal values of the activation energies (EA) for Joshi’s model, M5

and M6 are compared directly in Table 5.5.

Table 5.5: Values of the EA,j parameters for the optimal model of Joshi (2007) and
for the selected optimal models M5 and M6.

Parameter Joshi (2007) M5 M6

EA,1 126441.1 121162.6 142108.5
EA,2 122839.2 151383.6 140889.9
EA,3 122839.2 82698.56 83620.52
EA,4 72693.76 89725.68 21646.98
EA,5 51026.79 106382.5 108709.5
EA,6 156414.9 97726.88 95021.34

5.7 Conclusions

The developed methodology appears to be a very effective way to evaluate and to

identify complex reaction mechanisms in an automatic and flexible manner. For the

system investigated in this study, the quality of the results finally obtained is similar

to that obtained by Joshi (2007) using a tedious and error-prone manual optimization

during many months. While recognizing clearly the quality of the solution found in

Joshi (2007), which is one prominent member of the optimal Pareto set, the present

methodology allows the investigation of a much larger number of plausible model

mechanisms in a fully automatic manner and has been completed in two hours on a

standard PC.

The developed optimization framework is very flexible, so that it could be easily

applied to any other heterogeneous catalytic reaction system as well as to fur-

ther mechanisms. To the knowledge of the authors this is the first time that a

superstructure-based automatic optimization has been applied to optimize kinetic

models for a catalytic system.
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Chapter 6

Simulation of a multiphase

chemical reactor

In this chapter, a crystallization reactor is investigated. The simulation of this

complex multiphase system involves distinct modeling levels, e.g., the fluid dynamics,

the particle properties evolution and the crystallization kinetics.

The methodology developed to simulate polydisperse multiphase flows described

in Chapter 2, as well as the distribution reconstruction technique of Section 2.4 are

employed. Furthermore, the optimized RANS turbulence model (see Chapter 3 and

Chapter 4) is also applied. Details on the growth kinetics are elaborated in this

chapter.

The simulation of phenomena with very different time and length scales leads

to further complexities. Therefore, a methodology to track the particle properties

evolution while considering a detailed fluid dynamics description has been established.

Details on simulation and methods are discussed in the next sections.

6.1 Crystallization: a multiscale problem

Crystallization refers to the process of formation of solid crystals from a solution.

During crystallization mass transfer occurs from the liquid solution to the pure solid

crystalline phase. Crystallization is widely employed as a separation and purifi-

cation technique for the production of a variety of chemical, e.g., pharmaceutical,

agricultural, flavor, fragrances and other chiral products.

In order for crystallization to occurs, the solution should be supersaturated. The

supersaturation is the difference between the existing concentration and the solubility

concentration at a given temperature. The supersaturation is the driving force for

the crystal growth and nucleation; depending on the supersaturation degree one

of these mechanisms will be dominant. For a well-controlled crystal growth, it is
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essential to know the solubility curve and the width of the so-called “metastable

zone”(see Fig. 6.1), which is the region adjacent to the solubility curve where the

crystal growth is assumed to be the dominant mechanism.
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Figure 6.1: Illustrative solubility curve. Also showed in the figure: undersaturation,
supersaturation and metastable zone.

In a crystallization process, the particle size and crystal shape are import criteria

to evaluate the final quality of the product. The particles may undergo several

phenomena, e.g., nucleation, growth, aggregation, breakage, which are directly in-

fluenced by the local flow condition. The accurate description of these phenomena

involves the following modeling levels (or subproblems), see Kulikov (2010):

1. The fluid dynamics subproblem, which describes the particle transport in the

reactor, as well as the local flow properties, e.g., slip velocities, turbulent

kinetic energy.

2. The population balance subproblem, which describes the particles properties

evolution.

3. The crystallization kinetics subproblem, which describes the nucleation and

growth rate of the crystals.

The modeling methodology for (1) and (2) has already been discussed in Chap-

ter 2. In the next subsection, the focus is the description of (3) the crystallization

growth kinetics, which is the most relevant phenomenon in crystallization. All these

subproblems (1)-(3) are interrelated and should be coupled through variables that

are transferred between the distinct modeling levels.
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6.2 Crystal growth kinetics and interplay with

fluid dynamics

The major phenomenon in crystallization is the particle growth due to the mass

transfer from the solution to the solid phase. The growth kinetics is commonly

described by two main mechanisms: the transport of the solute molecules from the

bulk of the solution through the boundary layer by diffusion and the integration into

the crystal lattice, like in a diffusion-reaction framework.

Thus, the global growth kinetic is given by the slowest mechanism. The growth is

said to be diffusion-limited if diffusion is the slower mechanism, or integration-limited

if surface integration is the slower mechanism.

A general expression for the growth kinetic is typically given by:

G =
dL

dt
= ktotal

(
c− c∗

c∗

)ng
(6.1)

where ng is the kinetic order; c is the solute concentration and c∗ is the solute

saturation concentration; ktotal is the total (overall) growth rate constant, it combines

the diffusive mass transfer coefficient (kd) and the surface integration coefficient (ks).

It is only possible to derive analytical relations for ktotal when ng = 1 or ng = 2.

In a first order growth kinetic (ng = 1) the following relation can be obtained (Goede

and Rosmalen (1990)):

ktotal =
1

1
kd

+ 1
ks

(6.2)

This simplified relation is used in the present study.

In most cases, the lumped model (Eq. (6.1)) describes the particle size evolution

with good accuracy. Nevertheless, no information about the dominating growth

mechanism can be derived. It is generally accepted that the kinetic order ng = 1

represents a case of exclusively diffusion-limited growth, while ng = 2 represents a

case of exclusively integration-limited growth. Most crystallization systems are better

described with ng in the range between 1 and 2, indicating that both mechanisms

are relevant. As discussed later in Section 6.7.2, experiments have delivered a value

of ng = 1.4 for the present conditions.

6.2.1 Slip velocity and the diffusive mass transfer coefficient

(kd)

Considering the relation kd ≈ D/δ from Mullin (2001), kd depends on the the

diffusion coefficient D and on the boundary layer thickness δ, which is strongly

influenced by the local slip velocities.
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With the Eulerian-Eulerian modeling approach (see Chapter 2) it is possible

to evaluate local slip velocities, which can be used for the calculation of the local

diffusive mass transfer (kd) coefficient based on a Sherwood-type relation:

Sh = a+ bRecScd (6.3)

where Sh = kdl/D is the Sherwood number (Sh), Re = uslρ/µ is the Reynolds

number involving us, the particle slip velocity and l, the particle diameter. Sc =

µ/ρD is the Schmidt number.

In Fig. 6.2 the Sherwood number calculated by three different correlations is

plotted against the slip velocity. The Sherwood correlation of Frössling (Froessling

(1938)), Ranz (Ranz and Marshall (1952)) and Friedlander (Friedlander (1957)) are

given by Eqs. (6.4a), (6.4b) and (6.4c), respectively

ShFrossling =2 + 1.10 Re1/2Sc1/3 Re > 1 (6.4a)

ShRanz−Marshall =2 + 0.6 Re1/2Sc1/3 0 < Re < 200 (6.4b)

ShFriedlander =0.99 Re1/3Sc1/3 Re < 1 (6.4c)

Note that these are empirical relations fitted based on mass transfer experiments

for single spheres. All tested correlations show similar trends. The Friedlander

correlation is used in this work as it is reportedly more accurate for very low Reynolds

number. A more rigorous approach would involve the measurement of the thickness

of the concentration boundary layer for a single potassium aluminium sulfate crystal

at varying flow velocities, see Liiri et al. (2006). This might be worth to investigate

in future studies.
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Figure 6.2: Sherwood number correlations, as function of slip velocities.

6.3 Studied system: batch cooling crystallization

reactor

The studied system is a batch cooling crystallization reactor. The experimental data

has been obtained from the group “Physical and Chemical Foundations of Process

Engineering”at the Max Planck Institute in Magdeburg. Relevant experimental

details are described in this section. For more information please refer to Temmel

et al. (In press, 2016).

6.3.1 Experimental details

The experiments were conducted in a double jacked stirred tank reactor. The system

is equipped with temperature (T) and concentration measurement (refractive index

probe, RI) devices for the liquid phase. For the analysis of the solid phase an online

microscope (OM) and a non-classifying bottom outlet was used, see experimental

scheme in Fig. 6.3.
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Figure 6.3: Sketch of the experiment set-up.

Crystallization of potassium aluminium sulfate (KAL(SO4)2) has been consid-

ered. Operating conditions for the selected experiment are given in Table 6.1. The

original experiment investigated the crystallization and the dissolution processes.

Nevertheless, in this chapter only the data for the crystallization process has been

considered.

Table 6.1: Operating conditions for the selected experiment.

Property Value

Mass of water (in the initial solution) 20 [kg]
Mass of KAL(SO4)2 (in the initial solution) 4 [kg]
Mass of KAL(SO4)2 (solid) 0.1 [kg]
Temperature ramp −10 [K/h]
Tini 307 [K]
Agitation speed 300 [rpm]

6.3.2 Physical properties and measured data

The physical properties for the liquid phase (continuous phase) and the solid phase

(disperse phase) are given in Tables 6.2 and 6.3, respectively.
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Table 6.2: Properties of the liquid phase (continuous phase).

Property Value

Density (solution) 1077 [kg/m3]
Dynamic viscosity (solution) 1.1733× 10−3 [N s/m2]
Saturation concentration (solubility curve) 5.06 + 0.23T + 7.76× 10−3T 2

−2.43× 10−4T 3 + 4.86× 10−6T 4 [wt-%]
Diffusion coeff. (KAL(SO4)2 in water) 3× 10−10 [m2/s] at 300K

In fact, the density and viscosity values of the liquid phase vary slightly during

the crystallization process. Only the average values for the density and viscosity are

given in Table 6.2. These values are used as constant flow properties for the CFD

simulation.

A small volume variation of the reactor during the crystallization process is

expected. Nevertheless, the reactor volume is considered constant during the CFD

computations. The volume variation is estimated to be approximately 0.1%, as

showed in Appendix A.2, and is thus negligible.

Online measured data for concentration and temperature are given in Fig. 6.4.

These information together with the saturation concentration are required to calcu-

late the supersaturation values, which is the driving force for crystallization.
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Figure 6.4: Online measurements during the crystallization process (a) temperature
(b) concentration.
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Table 6.3: Properties of the solid phase (disperse phase).

Property Value

Density (KAL(SO4)2 crystals) 1750 [kg/m3]
Crystal shape factor (KAL(SO4)2 crystals) 1/3

Online measurements of the particle size using the online microscope (OM) have

been considered. The measured distributions are showed in Fig. 6.5 in terms of mass

density distribution (q3) and number density distribution (q0). Fig. 6.5(a) represents

a two-peak distribution. The left (smaller) peak was most probably generated by

nucleated crystals while the right peak evolved from the initial seed distribution.

Note that in terms of mass the nucleated crystals do not represent a significative

percentage. As the main focus of this study is the investigation of the growth

mechanism, a filtered distribution disconsidering the nucleated crystals has been

generated (see Fig. 6.6) for the later comparison with the QMOM and CFD-QMOM

simulations.

(a) (b)

Figure 6.5: Measured distributions represented in terms of (a) mass density distri-
bution and (b) number density distribution.
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Figure 6.6: Filtered number density distribution, without nucleated crystals.

6.4 Reactor geometry

The 3-D geometry of the stirred tank reactor was created using the CAD-software

Siemens PLM NX7. The geometry was built according to original drawings and only

minor details were neglected, i.e., slight impeller curvature, outlet connection and

measurement instruments. The vertical cylindrical vessel, draft tube with baffles

and three-blade propeller are depicted in Fig. 6.7 and the assembled geometry is

given in Fig. 6.8.

(a) (b) (c)

Figure 6.7: Stirred tank reactor geometry (a) Vertical cylindrical vessel (b) Draft
tube with baffles (c) Three-blade propeller.
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Figure 6.8: Assembled 3D geometry.

Dimensions of the reactor elements are given in Table 6.4. A detailed sketch of

the reactor geometry can be found in Henneberg (2014).

Table 6.4: Dimensions of reactor elements.

Reactor element Value

Vessel height (at working volume) 0.35 [m]
Vessel diameter 0.31 [m]
Draft tube diameter 0.19 [m]
Propeller number of blades 3
Propeller diameter 0.09 [m]
Propeller blade pitch 60◦

6.5 Reactor mesh and boundary conditions

The mesh for the 3-D stirred tank reactor was created using the software ANSYS-

ICEM 14.0. Unstructured mesh with tetrahedral elements was used in most part of

the domain, see Figure 6.9. At near-wall, prism layer elements were generated. Due

to the small distance between the propeller and the draft tube it was not possible

to generate enough number of prism layers there. Therefore, pentahedral elements

were used in this region.
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(a) (b)

Figure 6.9: Reactor mesh (a) Clip plane of the reactor mesh (front view) (b) Clip
plane of the reactor mesh (top view)

The mesh for the steady zone and the mesh for the rotating zone were created

separately and merged. Non-conformal interfaces between these two zones were

generated. In non-conformal interfaces the grid lines do not match. Nevertheless, it is

important to create interfaces with similar amount of elements to reduce interpolation

errors. The employed boundary conditions are shown in Fig. 6.10.

An extensive grid dependency study for the considered reactor is decribed in

Henneberg (2014). The most important characteristics of the finally retained config-

uration are given in Table 6.5.

Table 6.5: Reactor mesh properties.

Property Value

Total number of grid cells 712319
Minimum orthogonal quality 0.32
Maximum aspect ratio 13.37
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Figure 6.10: Boundary conditions.

6.6 CFD simulation: hydrodynamics (single phase)

Two approaches were initially considered for the simulation of the flow: the multiple

reference frame (MRF) and the sliding mesh model (SMM). The MRF approach

assumes that an assigned cell volume (moving zone) moves at a constant rotation

speed, yet the mesh remains fixed. The MRF is also know as “frozen flow approach”.

The SMM approach accounts for the relative motion of standing and moving zone.

This approach is computationally more demanding than the MRF, as the mesh

moves with the time. But it is also more accurate.

The overall flow pattern and velocity magnitude computed with MRF and SMM

approaches are very similar. In both simulations the propellers produced an axial

flow. Nevertheless, the vortex pattern around the propellers show visible differences

(see Fig. 6.11), that implies residence time.

The gap between propeller and draft-tube is very small, which leads to a strong

interation between these components. It is reported in the literature that in this

case the SMM delivers more accurate results (Bakker et al. (2009); Tabor et al.

(1996) and Deglon and Meyer (2006)). The SMM has thus been employed for all

simulations in this work, in spite of its higher computational cost.
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(a) (b)

Figure 6.11: (a) MRF simulation (b) SMM simulation.

All CFD simulations employed the realizable k − ε RANS model with the op-

timized constant set (see Chapter 4). In the near-wall regions the standard wall

function has been selected.

6.7 QMOM (0-D approach)

The 0-D (zero dimensional) simulation considering only the population balance

modeling is an important step towards the coupled CFD-QMOM simulation of the

multiphase reactor. This step is necessary in order to evaluate qualitatively and

quantitatively the results obtained with QMOM.

The 0-D approach describes the reactor as an homogeneous system; local fluid

dynamics information is not considered.

6.7.1 Initial distribution

The initial seed distribution in terms of number density function (NDF), as well

as the computed weights and abscissas are showed in Fig. 6.12. Three quadrature

points are used to describe the distribution. In this manner the first six moments

can be accurately described, see Section 2.3.1. In Table 6.6 the initial six moments

and characteristic diameters are given.
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Figure 6.12: Weights and abscissas of the normalized NDF.

Table 6.6: Moments and characteristic diameters of the initial distribution.

Property Value

Moments of the normalized distribution µ0 = 1.0
µ1 = 2.945000× 10−4

µ2 = 8.967175× 10−8

µ3 = 2.814088× 10−11

µ4 = 9.078798× 10−15

µ5 = 3.004811× 10−18

Median diameter (d10) 294× 10−6 [m]
Sauter diameter (d32) 313× 10−6 [m]

6.7.2 Modeling

The lumped model presented in Eq. (6.1) is employed for the calculation of the

growth rate kinetic. The values for the model parameters are obtained from Temmel

et al. (In press, 2016), where the model has been fitted and tested for different

experiments. The employed parameter values are given as follows: ktotal = 6× 10−6

[m/s], ng = 1.4 and EA = 4.5× 10−7 [kJ/mol].

The measured concentration and temperature profiles given in Fig 6.4 are used

for the calculation of the supersaturation concentration.
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In this work, the idea is to study the crystal growth and the interplay with the

fluid dynamics. Therefore, only the growth phenomenon have been considered. As

showed in Fig. 6.5(a) the mass of the nucleated crystals is very small compared with

the mass of the seeds.

The QMOM algorithm, which includes the ODEs for the solution of the moments

equation and the Product-difference algorithm (PDA) for the computation of weights

and abscissas have been implemented in MATLAB. In the considered case three-

point quadratures are used to represent the distribution. Therefore, six moment

equations have to be simultaneously solved.

6.7.3 Results

The evolution of the median particle size with time is given in Fig. 6.13. The

comparison between experiment and simulation shows that the QMOM is an accurate

approach for the description of the crystal growth. Futhermore, the simple lumped

model can quite accurately describe the growth kinetics.
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Figure 6.13: Particle median diameter evolution; comparison between experiment
and 0-D QMOM simulation.
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6.8 CFD-QMOM (3-D brute-force approach)

The 3-D (three dimensional) simulation considering the full multiphase reactor mod-

eling is discussed in this Section. In this comprehensive simulation the distinct

modeling levels have been coupled within the Euler-Euler multifluid framework. The

CFD-QMOM model implemented in ANSYS Fluent 14.0 is used together with an

implemented user-defined function (UDF).

6.8.1 CFD-QMOM (mixing dynamics)

The evaluation of the moment transport in the absence of any size changing mecha-

nisms, e.g., growth, nucleation, breakage, aggregation, is important for the verifica-

tion of the stability of the CFD-QMOM algorithm.

The CFD-QMOM implementation in ANSYS Fluent 14.0 considers that all the

moments are transported with the same velocity. Nevertheless, in regions close to

boundaries, to interfaces or when the volume fraction of the disperse phase tends to

zero the CFD-QMOM may still deliver unphysical results.

When no source term is considered in the moment transport equation, the char-

acteristic diameter should remain constant. Figure 6.14 shows the Sauter mean

diameter at the initial time and at time 1.5s. The Sauter mean diameter remains in-

deed constant in the whole domain (note the color scale), showing that no unphysical

processes occur.

As expected, the volume fraction assumes different values in the domain but the

ratio between the moments in each cell remains constant, see Fig. 6.15.
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(a) (b)

Figure 6.14: Sauter mean diameter contour plot: (a) initial condition, (b) at time
1.5s. Note that the color scale corresponds to size modifications in nanometers,
showing that the diameters remain indeed constant
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(a) (b)

(c) (d)

Figure 6.15: Moments contour plot at time 1.5s (a) µ0 (b) µ1 (c) µ2 and (d) µ3.

6.8.2 Models used in ANSYS Fluent

The employed models are as follows:

• Fluid dynamics modeling: optimized realizable k − ε turbulence model, Euler-

Euler multifluid, Schiller-Naumann drag model

• Particle properties evolution modeling: quadrature method of moments (QMOM)

• Kinetics modeling: growth kinetic model

These are mostly built-in models from ANSYS Fluent 14.0. The additional

growth kinetic model was implemented via a user-defined function (UDF). It takes
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into account the local slip velocity for the estimation of the diffusive mass transfer

coefficient (kd) as described in Section 6.2.

Fig. 6.16 shows a diagram with the most important variables exchanged between

the distinct modeling levels.

Figure 6.16: Diagram showing the link between the modeling levels.

The liquid phase (continuous phase) was treated as a homogeneous continuum.

Thus, the supersaturation concentration is uniform in the domain, but changing with

time according to the measured profile. Nevertheless, it is also possible to calculate

the supersaturation concentration based on the information of the mass balance in

the reactor.

6.8.3 Results

The contour plot of the volume fraction and the Sauter mean diameter of the disperse

phase at time 1.5s is given in Fig. 6.17. The simulation time is still too short to

observe significative changes in the particle diameter, since the whole process takes

about 3000s. Nevertheless, smaller particle already tend to be found in the bottom

of the reactor. This is a region with low velocity and prone to form recirculation

zones, which might explain the slower growth rate.

Simulating 1.5s (physical time) of the process takes approximately 4 days on 24

cores (4 intel 6-core computers) Intel(R) Xeon(R) CPU 3.50GHz. Considering the

long duration of the crystallization process which takes approximately 3000s (physical

time), the CFD 3-D brute-force simulation of the full crystallization process leads

to an intractable computing time (more than 20 years). Motivated by this, a novel

methodology combining the 3-D and the 0-D simulation has been elaborated.
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(a) (b)

Figure 6.17: (a) Volume fraction and (b) Sauter mean diameter of the disperse phase,
at time 1.5s.

6.9 Coupled 3-D/0-D simulation

The phenomena in a crystallization reactor have very different time and length scales.

For instance, while the transport and mixing of the particles in the reactor occurs

in a couple of seconds, the crystal growth is a much slower process. In general, the

duration of the crystallization process in a batch reactor ranges from some minutes

to a few hours. The large difference of time scales prevents any use of the CFD

3-D brute-force approach for the simulation of a long time span in this multiscale

chemical reactor, as shown in Section 6.8.

CFD-based “multicompartment”, “network-of-zones”or “multi-zone”are practical

approaches to simulate multiphase chemical reactors (Bezzo et al. (2005); Delafosse

et al. (2014)), while still considering the different modeling levels, e.g., fluid dynam-

ics, population balance, growth kinetics. In the “multi-zone”approach the domain is

divided into a limited number of interconnected zones in which the flow properties

are assumed to be homogeneous. In the classical approach the CFD calculation is

performed normally only once, before the start of the reduced simulation. In more

elaborated approaches the CFD calculation is performed more frequently. Neverthe-

less, the main difficulty is still the definition of the zones in a way that they represent

a perfectly mixed region. Therefore, there is still a need for methodologies that ac-

count for the correct local flow condition and mixing in an integrated multiscale

chemical reactor modeling approach.
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6.9.1 Methodology

The 3-D/0-D simulation approach developed in this work takes into account the

mixing process, as well as the local condition of the flow for the simulation of

the particle growth in the crystallization reactor. Knowing that in a batch stirred

tank reactor the mixing process is relatively fast compared with the duration of

the crystallization process, the simulation procedure is divided in two parts: the

simulation of the mixing process and the simulation of the crystal growth.

The mixing process is again simulated in ANSYS Fluent 14.0. The 3-D CFD-

QMOM model (see Section 6.8) is employed in this step. Only the sufficient amount

of time to obtain a good mixing in the reactor is simulated. This represents just a

short time of the real process, but it still takes a long simulation time. In a following

step, the obtained local flow condition is frozen and used for the calculation of

the particle size evolution in each grid cell. A 0-D QMOM model implemented in

MATLAB is used in this step. The temporal discretization for solving the population

balance equations is much larger than the temporal discretization used in the CFD

calculation, see Fig. 6.18. In this manner, a large time of the real process can be

simulated at low computational cost.

The coupling variables to be transferred between the two simulations are depicted

in Fig. 6.18. The number of intermediate steps (np) should be chosen depending

on the problem and the available computing power. The solution using the coupled

3-D/0-D methodology approaches the solution of the 3-D brute-force CFD simulation

when increasing of the number of intermediate steps.

Figure 6.18: Simulation procedure for the coupled 3-D/0-D simulation.
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6.9.2 Mixing time

The mixing time required to achieve a periodically unsteady flow condition in the

reactor is a relevant parameter for the coupled 3-D/0-D simulation approach since it

will strongly constrain the overall computational cost. For this purpose, the needed

time has been evaluated.

The simulation set-up follows that described in Section 6.8. The variance (V ar)

of the volume fraction of the disperse phase (Eq. (6.5)) has been employed to quantify

the mixing degree.

V ar =
1

Ncell

cells∑
(αd)

2 (6.5)

The variance plot (Fig. 6.19) shows that after approximately 1s the reactor starts

to converge to a periodically unsteady flow condition, which is consistent with the

results of Ali et al. (2015), where the Euler-Lagrange approach Discrete Element

Method (DEM) was used to simulate the same reactor but with different crystal

seeds.

In Fig. 6.20 the volume fraction of the disperse phase is showed at four different

times. Note that at times 3s and 4s the volume fraction contour plots are qualitatively

very similar. Based on that, a physical time of 3s has been chosen as the recommended

mixing time for all full 3-D CFD-QMOM simulations.
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Figure 6.19: Variance of the volume fraction of the disperse phase in the stirred tank
reactor as function of time.
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(a) (b)

(c) (d)

Figure 6.20: Volume fraction of the disperse phase at different times (a) 0.75s, (b)
1.5s, (c) 3.0s and (d) 4.0s.

6.9.3 Results

The results of the simulations using the coupled 3-D/0-D methodology are presented

in this Section. The simulation loop follows the procedure illustrated in Fig. 6.18.

Evolution of the particle size

The evolution of the particle size during the crystallization process is showed in

Fig. 6.21. Experimental and simulation results are compared for the median mean

diameter d10 = µ1/µ0.
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Three intermediate steps have been chosen for the coupled simulation. Thus, a

full 3-D CFD-QMOM evaluation is performed at times 0s, 1440s and 2880s.

Parameters for the growth kinetic have been obtained from Temmel et al. (In

press, 2016) as shown in Section 6.7.2. Nevertheless, the analytical relation for ktotal

(Eq. (6.2)) has been employed in this computation. In this manner, the diffusive

mass transfer coefficient (kd) has been computed in each cell based on the value of

the local slip velocity. The surface integration coefficient (ks) has been kept constant

during the simulation; it has been estimated based on the value of ktotal obtained

from Temmel et al. (In press, 2016) and on the computed value of kd at the initial

time.

Although the simulation predicts the correct trend (see Fig. 6.21), the results

deviate from the experiment increasingly so with time. This is mostly because of the

inaccurate estimation of the surface integration coefficient (ks). A more advanced

approach should consider a dynamics adaptation of ks or an iterative method to

recalculate the value of ks.

0 1,000 2,000 3,000
2.5

3

3.5

4

4.5

5

5.5

6
·10−4

time [s]

m
ed

ia
n

m
ea

n
d

ia
m

et
er

[m
]

3-D CFD-QMOM
experiment

Figure 6.21: Median mean diameter evolution in the whole reactor; comparison
between experiment and coupled 3-D/0-D simulation.
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Volume fraction and Sauter mean diameter

The contour plot of the volume fraction and the Sauter mean diameter in the stirred

tank reactor at three different times are given in Fig. 6.22. As expected, the overall

values for the volume fraction of the disperse phase, as well as the Sauter mean

diameter increase with time.

The volume fraction of the disperse phase is well distributed in the stirred tank

reactor, with smaller values along the shaft and larger values in the region at the

bottom of the reactor.

The bottom of the reactor is a region with small velocity magnitude. This is

causing the deposition of the disperse phase and slower particle growth due to the

low slip velocities.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Contour plot of the volume fraction of the disperse phase (left) and
Sauter mean diameter (right) at (a) and (b) starting step 1, (c) and (d) intermediate
step 2, (d) and (e) final step 3.
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Number density function (NDF) reconstruction

The number density function (NDF) reconstruction at a specific point is showed in

Fig. 6.23. The chosen point is located approximately where the sample for the online

microscopy analysis has been collected. The reconstruction of the distribution was

done using the spline algorithm described in Section 2.4.

The initial distribution was accurately retrieved using only the information of

the first six moments. At the final time, the reconstructed distribution presents a

smaller particle size than the experimental result. This deviation is not an issue of

the reconstruction algorithm, but of the growth kinetics which has lead to a smaller

final particle size compared with the experiment (see Fig. 6.21).

Furthermore, the experimental result shows a broader final distribution which

is related to the so-called “growth rate dispersion”phenomenon. This phenomenon

is caused by the crystal-dependent growth rate. Although the considered model

takes into account the different slip velocity in the reactor to calculate the growth

rate, it considers that at a specific cell all the particles are subjected to the same

slip velocity. Other quadrature-based method of moments (QBMM) might take into

account distinct velocities at different quadrature points, allowing size-dependent

growth-rate models. This will be subject of future works.
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Figure 6.23: Number density function (NDF) reconstruction and comparison with
experiment. Distributions at the initial time (left peaks), distributions at the final
time (right peaks).

Slip velocity

The contour plot of the slip velocities for the three CFD-QMOM steps are given in

Fig. 6.24. For each intermediate step, the slip velocities have been computed after

the simulation of 3.0s mixing period. The slip velocities present a large range of

values depending on the location in the domain. In general, the slip velocities are

higher at the region close to the propeller and smaller in the regions close to the

walls. As expected, the slip velocities increase with the increase of particle size.
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(a) (b)

(c)

Figure 6.24: Contour plot of the slip velocities at times (a) 0s (starting step), (b)
1440s (intermediate step) and (c) 2880s (final step).

In Fig. 6.25, the cumulative mass distribution (Q3) shows the mass percentage

of particles up to a specific slip velocity. The median slip velocity values at times

0s, 1440s and 2880s are 0.0178m/s, 0.0258m/s and 0.0316m/s, respectively. The

median slip velocity value corresponds to the value for which the cumulative mass

distribution function is 0.5.
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Figure 6.25: Cumulative mass distribution (Q3) of the slip velocities at three different
times (initial, intermediate, final).

Diffusive mass transfer coefficient (kd) and surface integration coefficient

(ks)

The cumulative mass distribution (Q3) of the diffusive mass transfer coefficient (kd)

at three different times is showed in Fig. 6.26. Note that the kd value initially

increases with time, which is directly related to the increasing value of the slip

velocity. However, at the final time the value of kd decreases, which is an effect of

the increase of the particle size.

The median kd values at times 0s, 1440s and 2880s are 1.3510×10−5m/s, 1.5902×
10−5m/s and 1.5565× 10−5m/s, respectively.
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Figure 6.26: Cumulative mass distribution of the kd in the 3-D stirrer reactor at
three different times (initial, intermediate, final).

Mass balance

During the crystallization process the solute mass is transfered from the continuous

phase to the disperse phase. The mass balance for the solute in the continuous

and disperse phase is plotted in Fig. 6.27. The result is as expected, and the total

amount of the solute mass remains constant.
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Figure 6.27: Solute mass balance in the reactor.

A comparison between the measured and the calculated supersaturation concen-

tration (S) is showed in Fig. 6.28. The measured supersaturation concentration has

been employed for the modeling. Although the calculated supersaturation concentra-

tion follows the same dynamics as the experimental supersaturation concentration,

there is an increasing deviation between the values with time.

The nucleation has not been considered in the modeling. As showed in Fig. 6.5

the mass percentage of the nucleated particles is very small, but it increases with time.

This probably explains the increasing deviation in the values of the supersaturation

concentration.
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Figure 6.28: Supersaturation concentration (S).

6.10 Conclusions

Three approaches have been employed for the simulation of the batch crystallization

reactor. Firstly, the quadrature method of moments 0-D (QMOM) is used to solve

the population balance together with a lumped model for the description of the

growth kinetic. This approach considers the crystallizer as a homogeneous system.

The lumped growth model describes the evolution of the median mean diameter

accurately. Nevertheless, with this approach no additional information about the

process (e.g., spatial inhomogeneities, diffusive mass transfer coefficient (kd)) can be

derived.

Secondly, the 3-D CFD brute-force approach considered the unsteady fluid dy-

namics in the reactor coupled with the quadrature method of moments (QMOM).

The implemented growth kinetic model takes into account the local slip velocity.

This approach describes with details the volume fraction and particle size distribu-

tions in the reactor. Futhermore, it is possible to obtain values for the diffusive mass

transfer coefficient (kd) in the reactor. However, considering the duration of the

crystallization process, the 3-D CFD brute-force approach leads to an intractable

computing time (several years).

Thirdly, the developed 3-D/0-D approach divides the simulation in two parts:

111



the simulation of the mixing process and the simulation of the crystal growth. The

exchange of information between these parts occurs at every intermediate steps. In

this manner, the local flow information is used for the computation of the crystal

growth during the whole crystallization process. The crystal growth is computed

in every grid cell of the reactor. Thus, no zoning procedure is required as in the

traditional “multi-zone”approaches.

With the developed methodology it is possible to investigate the volume fraction,

particle size distribution, slip velocities and diffusive mass transfer coefficient (kd)

in the reactor at different times. This gives insights about the growth mechanisms

and it is an important step towards the design and optimization of crystallization

reactors.
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Chapter 7

Conclusions and outlook

The simulation of multiphase chemical reactors is a complex multiscale problem.

In order to accurately describe the involved phenomena, distinct modeling levels

are required. Despite of the advances in modeling techniques and computational

power, there is a need for efficient simulation techniques, robust models and practical

coupling methodologies for the simulation of multiscale reactors of industrial interest.

In this work, techniques and methodologies that support the simulation of multi-

phase chemical reactors have been developed and tested, which include (i) technique

for the reconstruction of distribution from a finite number of moments, (ii) method-

ology for model parameter optimization using multi-objective optimization and (iii)

methodology for the multiscale coupling of multiphase reactors. The most relevant

conclusions and outlook are discussed in the next paragraphs.

A popular method to solve PBEs is the so-called quadrature method of moments

(QMOM). With this method it is possible to track the evolution of the particle prop-

erties considering only the initial moments of the underlying distribution. Neverthe-

less, it does not allow a straightforward reconstruction of the underlying distribution.

The developed adaptive reconstruction technique using splines allows to retrieve

distributions from a finite set of moments without prior knowledge on the shape of

the distribution; only the initial moments and a rough estimation of the domain

are needed. The algorithm is able to describe multi-peak distributions which are

common in chemical engineering applications. Moreover, since its publication the

developed algorithm has been applied to reconstruct distributions in different areas,

e.g., pharmaceutical process, process control and quantum physics.

Another tool explored in this work is the multiobjective optimization, which

has been used for the optimization of model parameters. It is a methodology that

has not been well explored in this realm. In many practical situations, however,

multiobjective optimization may deliver more robust and general applicable set of

parameters compared with single-objective optimization. This methodology has
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been applied for the optimization of the realizable k − ε turbulence model and for

the optimization of kinetic and model parameters of a catalytic chemical reaction

network.

The optimized realizable k − ε turbulence model improved the predictions or at

least delivered results of the same level of accuracy as the standard model for all

the tested configurations, even though the optimized parameter set does not differs

much from the conventional values. Furthermore, the new recommended values does

not lead to any increase in the computational cost.

The superstructure-based optimization applied for the optimization of model and

kinetic parameters of a catalytic chemical reaction network appears to be an effective

way to derive reaction mechanisms and optimal parameter sets in an automatic

and flexible manner. Furthermore, the optimized parameter was fitted to distinct

experiments simultaneously, leading to a generally applicable parameter set.

Finally, a batch crystallization reactor has been simulated. The Euler-Euler

multiphase framework has been employed for the description of the distinct modeling

levels, e.g., fluid dynamics, population balance, growth kinetics. Furthermore, the

developed technique for the reconstruction of distributions from the moments, as

well as the optimized set of constants of the realizable k − ε turbulence model

have been integrated in the simulation of the crystallization reactor. However,

it is computationally unaffordable to simulate the whole crystallization process

considering the time step needed for the accurate description of fluid dynamics.

Motivated by this, a methodology combining 3-D and 0-D simulations has been

elaborated. The developed methodology takes into account the local condition of the

flow, as well as the mixing process. It considers the mixing and the crystal growth

separately but uses the local information of the flow for a correct description of the

crystal growth. The exchange of information occurs at each “intermediate step”,

which can be chosen according to the available computing power. With the increase

of “intermediate steps”, the method delivers results comparable to a 3-D brute-force

CFD simulation.

An important aspect investigated in the modeling was the use of local slip ve-

locities for the calculation of the crystal growth rate. It is well accepted that the

crystal growth happens due to two mechanisms, i.e., integration and diffusion. In

highly agitated systems it is usually assumed that the diffusion is not the limiting

mechanism. Nevertheless, in a stirred tank reactor the flow conditions are inhomoge-

neous and the slip velocities and crystal size vary depending on the location in the

reactor. This issue has been investigated and values for slip velocities and diffusion

mass transfer coefficients could be estimated.

Certainly, much more could be added to the developed techniques and method-
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ologies. Further studies could, for instance, extend the reconstruction algorithm

to describe multi-dimensional distributions. It would be also interesting to test

the capabilities of the Kriging method to describe multi-dimensional distribution.

Nevertheless, iterative reconstruction methods can only be used as a post-processing

technique. The direct use of iterative reconstruction techniques in moment-based

methods would increase drastically the computing time, considering that the re-

construction should be done in every grid cell and time step. Thus, non-iterative

reconstruction algorithm would find an even larger application.

The methodology for model parameter estimation using multi-objective algorithm

could be applied to further RANS turbulence models. In this class of models the

constants have been usually determined based on simple flows. An optimization

considering several geometries simultaneously would lead to more robust parameter

sets. It would be interesting to add a rotating geometry test case to the optimization

loop as it involves flow characteristics that do not appear in the channel, BFS, jet

and flow over hill test cases.

It would be also interesting, in the case of multi-objective parameter estimation,

to include some additional statistical analysis in order to quantify other aspects

beyond the fitting quality.

Further improvements could also be added to the coupled 3-D/0-D simulation

approach. For instance, the particle velocity history or the slip velocity distribution

in the reactor could be integrated in the simulation loop rather than to rely on the

frozen local flow information for the computation of the crystal growth. Moreover,

in the current implementation the calculation of the slip velocity is based only on

the Sauter mean diameter value. Other quadrature-based methods or a simple

interpolation method could be used in other to calculate slip velocities based not

only on a single diameter value.
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Appendix A

Appendix

A.1 Two-equation RANS models

The multi-objective optimization methodology employed in Chapter 4 can be applied

in a straightforward manner for the optimization of other RANS models. The most

popular two-equation RANS models and their constants are given in Tables A.1 and

A.2.

Table A.1: Popular two-equation k − ε turbulence models.

Model Model Equations, Closure Constants and Auxiliary Relations

Standard k − ε Kinematic Eddy Viscosity:

νt = Cµ
k2

ε
Turbulent Kinetic Energy:
∂k
∂t + Ui

∂k
∂xi

= ∂
∂xj

[(
ν + νt

σk

)
∂k
∂xj

]
+ Pk + Pb − ε

Dissipation Rate:
∂ε
∂t + ∂

∂xi
(εui) = ∂

∂xj

[(
ν + νt

σε

)
∂ε
∂xj

]
+ C1ε

ε
k (Pk + C3εPb)− C2ε

ε2

k

Closure Constants:
Cµ = 0.09, σk = 1.0, C1ε = 1.44, C2ε = 1.92, σε = 1.3

RNG k − ε Kinematic Eddy Viscosity:

νT = a1k
max(a1ω,SF2)

Turbulent Kinetic Energy:
∂k
∂t + Ui

∂k
∂xi

= ∂
∂xj

[(
µ+ µt

σk

)
∂k
∂xj

]
+ Pk + Pb− ε

Specific Dissipation Rate:
∂
∂t(ε) + ∂

∂xi
(εui) = ∂

∂xj

[(
ν + νt

σε

)
∂ε
∂xj

]
+ C1ε

ε
kPk − C

∗
2ε
ε2

k

Closure Constants and Auxilary Relations:
Cµ = 0.0845, σk = 0.7194, σε = 0.7194
Cε1 = 1.42, Cε2 = 1.68, η0 = 4.38, β = 0.012

C∗2ε = C2ε +
Cµη3(1−η/η0)

1+βη3
, η = Sijk/ε
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Table A.2: Popular two-equation k − ω turbulence models.

Wilcox k − ω Kinematic Eddy Viscosity:

νT = k
ω

Turbulent Kinetic Energy:
∂k
∂t + Uj

∂k
∂xj

= Pk − β∗kω + ∂
∂xj

[
(ν + σ∗νT ) ∂k

∂xj

]
Specific Dissipation Rate:
∂ω
∂t + Uj

∂ω
∂xj

= αωk τij
∂Ui
∂xj
− βω2 + ∂

∂xj

[
(ν + σνT ) ∂ω

∂xj

]
Closure Constants and Auxilary Relations:
α = 5

9 , β = 3
40 , β

∗ = 9
100 , σ = 1

2 , σ
∗ = 1

2 , ε = β∗ωk

Wilcox modified k − ω Kinematic Eddy Viscosity:

νT = k
ω

Turbulent Kinetic Energy:
∂k
∂t + Uj

∂k
∂xj

= Pk − β∗kω + ∂
∂xj

[
(ν + σ∗νT ) ∂k

∂xj

]
Specific Dissipation Rate:
∂ω
∂t + Uj

∂ω
∂xj

= αωk τij
∂Ui
∂xj
− βω2 + ∂

∂xj

[
(ν + σνT ) ∂ω

∂xj

]
Closure Constants and Auxilary Relations:
α = 13

25 , β = β0fβ, β
∗ = β∗0fβ∗ , σ = 1

2 , σ
∗ = 1

2 , β0 = 9
125

fβ = 1+70χω
1+80χω

, χω =

∣∣∣∣ΩijΩjkSki(β∗0ω)
3

∣∣∣∣ , β∗0 = 9
100

fβ∗ =

{
1, χk ≤ 0
1+680χ2

k

1+80χ2
k
, χk > 0

, χk ≡ 1
ω3

∂k
∂xj

∂ω
∂xj

, ε = β∗ωk, l = k
1
2

ω

A.2 Reactor volume variation

For the CFD computations in Chapter 6 the volume of the reactor was considered

constant. Nevertheless, a certain variation of the reactor volume occurs as the liquid

phase density changes with time. Measurements of the height or volume of the

reactor during the experiment are not available. Therefore, the volume estimation

have been done based on the concentration, temperature and density values of the

liquid phase.

The assumption for the calculation of the reactor volume include: (i) water is

not present in the solid phase (ii) the concentration of the potassium alum in the

liquid phase is considered homogeneous in the reactor.

The density of the liquid phase was calculated using the measured concentration

and temperature values. The dependency of concentration, temperature and density

of the potassium alum were obtained from Mullin et al. (1965) and interpolated in

MATLAB using the fit poly23 function, see Fig. A.1.

Properties of the liquid and solid phases at the initial time and final time are

given in Table A.3. The variation of the reactor volume with time is given in Fig. A.2.
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Note that the volume variation between the inital and final time is only around 0.1%.
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Figure A.1: Measurements from Mullin et al. (1965) for concentration, temperature
and density dependency. The blue dots represent the experimental values.
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Figure A.2: Volume variation within the reactor.
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Table A.3: Properties of the liquid and solid phases at initial and final time of the
crystallization batch.

Properties Initial time Final time

temperature [◦C] 33.96 28.49
saturation concentration [g/gwater] 0.1877 0.1549
concentration [g /gwater] 0.19629 0.1547
mass of water in the liquid phase [g] 20× 103 20× 103

mass of KAL(SO4)2 in the liquid phase [g] 3.93× 103 3.09× 103

mass of KAL(SO4)2 in the solid phase [g] 0.17× 103 1.01× 103

density of the liquid phase [g/L] 1084 1068
density of the solid phase (KAL(SO4)2) [g/L] 1750 1750
reactor work volume [L] 22.1621 22.1851
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Geophysik, 52:170–216, 1938.
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W. Polifke, W. Geng, and K. Döbbeling. A hybrid genetic algorithm for the esti-

mation of parameters in detailed kinetic models. Combustion and Flame, 113:

119–135, 1998.

Stephen B. Pope. Turbulent Flows. Cambridge University Press, Cambridge, first

edition, 2000.

S. Qamar, M.P. Elsner, I.A. Angelov, G. Warnecke, and A. Seidel-Morgenstern. A

comparative study of high resolution schemes for solving population balances in

crystallization. Computers & Chemical Engineering, 30:1119–1131, 2006.

Weiqi Qian and Jinshi Cai. Parameter estimation of engineering turbulence model.

Chinese Journal of Mechanical Engineering, 17(4):302–309, 2001.

D. Ramkrishna. Population Balances. Academic Press, San Diego (CA), 2000.

127



Rangaiah and G. Pandu. Multi-Objective Optimization : Techniques and Applications

in Chemical Engineering. Singapore, World Scientific, 2008.

G. P. Rangaiah and A. Bonilla-Petriciolet, editors. Multi-Objective Optimization

in Chemical Engineering: Development and Application. John Wiley and Sons,

Chichester, 2013.

W. E. Ranz and W. R. Marshall. Evaporation from drops part I). Chemical

Engineering Progress, 48:141–146, 1952.

C. H. Rapp. Experimentelle Studie der turbulenten Strömung über periodische
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