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Preface

Before the contents of this postdoctoral thesis are presented, the author is briefly introduced and
the context of his work and his major contributions are described. A few comments are given on
the structure of this thesis and on each publication contained in the cumulative Parts I-V, including
where it was published and if the work was accomplished within a specific funded project. Finally,
the type-setting and formatting of the cumulated publications are explained and a statement on the
author’s contributorship is given.

This thesis surveys the research work of Steffen Oeltze-Jafra (né Oeltze) accomplished in the
years 2011-2015. After finishing his PhD project on the visual exploration and analysis of medical
perfusion data [164], Steffen pursued the idea of integrating visualization, data analysis, and explo-
ration techniques for the investigation of scientific data. He expanded his research by applications
from interventional neuroradiology, neurosurgery, molecular biology, and epidemiology.

Early visual data mining and visual analytics research mainly employed techniques from in-
formation visualization and focused on non-image data, either with no inherent spatialization or
a geo-spatial reference. Not at the least the work of Steffen Oeltze-Jafra conveys the potential of
visual analytics and of the related field interactive visual analysis in investigating scientific image
and simulation data from medicine and biology. The visual analytics approaches cumulated in
Parts I-IV of this thesis help domain scientists to broaden their accustomed data analysis strategies
from confirmatory to exploratory analysis and from hypothesis verification to hypothesis genera-
tion. The respective case studies demonstrate how insights can be extracted from image data and
associated as well as derived attributes by looping through the visual analytics process from raw
data to knowledge.

Chapter 1 serves as an introduction to the thesis at hand. It motivates the science of visual
analytics in a medical and biological context, gives an application-independent introduction to
visual analytics, equips the reader with medical and biological background knowledge, surveys
the publications cumulated in this thesis as well as related work, provides a short excursion into
further medical and biological applications of visual analytics, which have not been in the focus of
this thesis, and closes with a summary, a discussion, and a vision on challenges and future research
directions.

Part I comprises two publications dedicated to the visual analytics of cerebrovascular hemo-
dynamic data. An introduction to this medical part is given in Section 1.3. The research presented
in both publications was accomplished within an ongoing long-term collaboration with computa-
tional fluid dynamics engineers of the University of Magdeburg, Germany. Together, we seek a
better understanding of the mechanisms behind cerebral aneurysm rupture and prediction facilities
for the therapeutic outcome of aneurysm treatment. Chapter 2 equals a manuscript that was pub-
lished in IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG) in 2014 and
presented in the same year at the IEEE VIS conference (TVCG track) in Paris, France [168]. It
describes the study of different clustering techniques for the visual analysis of blood flow in cere-
bral aneurysms in the context of virtual stenting. This study was accomplished jointly with visual
computing researchers of the University of Magdeburg, Germany (one researcher transfered to
the Zuse Insitute, Berlin shortly before publication). Chapter 3 equals a manuscript that was pre-
sented at the IEEE VIS conference (SciVis track) in Chicago, Illinois, USA in 2015 and published
in IEEE Transactions on Visualization and Computer Graphics in early 2016 [171]. It presents
a clustering-based pipeline for the automatic detection and visualization of vortical blood flow in
cerebral aneurysms with a focus on embedded vortices. This pipeline was developed and evaluated
in collaboration with a cerebrovascular hemodynamics researcher from George Mason University,
Fairfax, Virginia, USA.
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Part II comprises three publications dedicated to the visual analytics of toponome data of
cells and tissues. An introduction to this biological part is given in Section 1.4. All publications
describe results of a long-term collaboration with a molecular biologist and a computer scientist
of the medical faculty of the University of Magdeburg, Germany. Together, we pursue an im-
proved understanding of cell structure and function based on protein topology, i.e. the toponome,
in fluorescence microscopy images of cells and tissues. Chapter 4 equals a manuscript that was
presented at the VisWeek (SciVis track) in Providence, Rhode Island, USA in 2011 and pub-
lished in the same year in IEEE Transactions on Visualization and Computer Graphics [166]. It
proposes a graph-based interactive visual analysis approach to studying protein topology. This
approach was developed in collaboration with two expert researchers in interactive visual analysis
of scientific data of the SimVis GmbH, Vienna, Austria (both are now with CD-adapco, Vienna).
Chapter 5 equals a manuscript that was published in the proceedings of the Eurographics Work-
shop on Visual Computing for Biology and Medicine (VCBM), Norrköping, Sweden, 2012 [167].
It describes visualization and exploration techniques tailored to the analysis of 3D toponome data.
The manuscript is based on a master’s thesis supervised by Steffen Oeltze-Jafra and the molec-
ular biologist [108]. Chapter 6 equals a manuscript that has been published in the proceedings
of the Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), Vienna,
Austria, 2014 [172]. It presents an approach for the in-place textual and symbolic annotation of
protein topology in 2D views. The manuscript is based on a bachelor’s thesis supervised by Steffen
Oeltze-Jafra and the molecular biologist [177].

Part III comprises five publications dedicated to the visual analytics of population study data.
An introduction to this epidemiological part is given in Section 1.5. The first three publications
in Chapters 7-9 present results of a long-term collaboration with epidemiologists and a radiologist
of the University of Greifswald, Germany and image processing researchers of the University of
Magdeburg, Germany. In the scope of the DFG Priority Program 1335 “Scalable Visual Analyt-
ics”, we jointly developed visual analytics approaches for the concurrent investigation of image
and non-image cohort data from the Study of Health in Pomerania (SHiP). Chapter 7 equals a
manuscript that was accepted for but has not been published yet in the proceedings of the Work-
shop Visualization in Medicine and Life Sciences (VMLS), Leipzig, Germany, 2013 [181]. The
manuscript is based on a short paper that was presented at the workshop within the scope of the
EG/VGTC Conference on Visualization (EuroVis). It surveys and provides visions on the visual
analytics of epidemiological cohort studies incorporating medical image data. The survey was
conducted in collaboration with a research expert in interactive visual analysis of cohort study data
from the University of Bergen, Norway. Chapter 8 equals a manuscript that was published in the
proceedings of the Workshop on Vision, Modeling and Visualization (VMV), Lugano, Switzer-
land, 2013 [112]. It proposes a clustering-based approach to the visual analysis of lumbar spine
variability in the SHiP cohort. Chapter 9 equals a manuscript that was presented at the IEEE VIS
conference (VAST track) in Paris, France in 2014 and published in the same year in IEEE Trans-
actions on Visualization and Computer Graphics [113]. It describes a web-based visual analytics
system for the concurrent investigation of image and non-image cohort study data. Chapter 10
equals a manuscript that was published in IEEE Computer Graphics and Applications (CG&A)
in 2014 and presented in 2015 at the IEEE VIS conference (CG&A track) in Chicago, Illinois,
USA [4]. It proposes a data organization model for the seamless integration of heterogeneous
cohort study data and their interactive visual analysis. This research was accomplished in a collab-
orative effort by neuroscientists of the University of Bergen, Norway and researchers in interactive
visual analysis of scientific data from the same university and the University of Magdeburg, Ger-
many. Chapter 11 equals a manuscript that was published in the proceedings of the Workshop
Bildverarbeitung für die Medizin (BVM), Aachen, Germany, 2014 [170]. It describes an approach
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to measuring the hippocampal substructure Stratum Radiatum/Lacunosum-Moleculare (SRLM) in
cohort study image data from ultra-high field 7-Tesla Magnetic Resonance Imaging (MRI). The
approach was developed and evaluated in a collaboration with neuroscientists of the medical fac-
ulty at the University of Magdeburg, Germany and of the German Centre for Neurodegenerative
Diseases (DZNE), site Magdeburg.

Part IV comprises two publications dedicated to the visual analytics of perfusion data. Since
these data were not in the research focus of the habilitation, only a brief introduction to this medical
part is given in Section 1.6.1. Chapter 12 equals a manuscript that has been published in the pro-
ceedings of the SPIE Conference on Medical Imaging, Lake Buena Vista, Florida, USA, 2013 [63].
It proposes a visual analytics approach to investigating brain tumor perfusion in longitudinal imag-
ing studies. The research was accomplished in the scope of the DFG Priority Program 1335
“Scalable Visual Analytics” and in close collaboration with physicians from the Rikshospitalet-
Radiumhospitalet Medical Centre, Oslo, Norway and the Municipal Hospital of Magdeburg, Ger-
many and research experts in interactive visual analysis of perfusion data of the University of
Bergen, Norway and the University of Magdeburg, Germany. Chapter 13 equals a manuscript that
was published in the proceedings of the Jahrestagung der Deutschen Gesellschaft für Computer-
und Roboterassistierte Chirurgie (CURAC), Innsbruck, Austria, 2013 [28]. It presents a method for
the evaluation of intraoperative ultrasound perfusion imaging in brain tumor surgery. The method
was developed and evaluated together with neurosurgeons of the University Hospital, Leipzig, Ger-
many and a medical imaging researcher from the Innovation Center Computer Assisted Surgery
(ICCAS), Leipzig, Germany.

Part V comprises two surveys which do not build on each other, are self-contained, and hence,
require no further introduction within this thesis. Chapter 14 equals a manuscript that was pub-
lished in Computers and Graphics in 2011 [191]. It surveys glyph-based visualization techniques
for spatial multivariate medical data and provides a taxonomy as well as guidelines for glyph de-
sign. The survey has been conducted in a collaboration of research experts in glyph visualization
from the University of Münster, Germany (the researcher is now with Ulm University, Germany)
and the University of Magdeburg, Germany. Chapter 15 equals a manuscript that has been pub-
lished in the proceedings of the Eurographics Workshop on Visual Computing for Biology and
Medicine (VCBM), Vienna, Austria, 2014 [172]. It surveys labeling techniques in medical visual-
izations and provides a taxonomy as well as usage guidelines.

The typesetting of all cumulated publications in Parts I-V has not been modified. The
manuscripts were included as they were reviewed and accepted. No changes have been made
to the texts and illustrations. Only header, footer, and page numbers were removed and replaced
by a chapter header and a running number.

Some final remarks are necessary concerning the authorship and contributorship of all cumu-
lated publications in Parts I-V. None of the papers has been authored solely by Steffen Oeltze-
Jafra. The main reason is that Steffen’s research is application-driven and inter-disciplinary. He
works together with domain scientists in collaborative projects. Furthermore, his research is as-
sisted by undergraduate and graduate students. It can be stated that Steffen Oeltze-Jafra con-
tributed significantly to all publications and often, even took the lead in the related projects. De-
tailed statements of author contributorship consensus were signed by each co-author of each pub-
lication. They are enclosed with the submitted version of this thesis but omitted in the public
version to protect the signatures from counterfeiting. The unsigned statements are available at
http://wwwisg.cs.uni-magdeburg.de/~stoeltze/contributorship.zip.

Steffen Oeltze-Jafra, February 17, 2016.

http://wwwisg.cs.uni-magdeburg.de/~stoeltze/contributorship.zip
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Chapter 1

Visual Analytics of Medical and
Biological Data

This chapter serves both as an introduction to this postdoctoral thesis and also, a survey of the
subsequent cumulative Parts I-IV. At the beginning of the chapter in Section 1.1, the science of
visual analytics (VA) is motivated in the context of medical and biological data. In Section 1.2, an
application-independent introduction to VA is given including a brief description of the scientific
disciplines contributing to it and a characterization of the highly-related field of interactive visual
analysis (IVA). The latter is included since several papers in the cumulative parts are attributable to
this particular field. Sections 1.3-1.5 are dedicated to the main types of medical and biological data
that have been analyzed in the majority of the cumulated publications: simulated cerebrovascular
hemodynamic data (Sec. 1.3), fluorescence microscopy data of cells and tissues (Sec. 1.4), and epi-
demiological population study data (Sec. 1.5). These sections describe the respective application
background, the data characteristics and their acquisition or generation, the standard data process-
ing workflow, the potential of VA in analyzing the data, and existing VA approaches. At the end of
this chapter, VA of further types of medical and biological data from other applications is briefly
reviewed including a short discussion of the respective seminal and very recent work (Sec. 1.6).
Each individual paper of the cumulative Parts I-IV is outlined and related to the respective state-of-
the-art within its corresponding Section 1.3-1.5, 1.6.1. The summary and discussion in Section 1.7
recapitulate and comment on the main contributions of the thesis at hand. A visual summary lists
the contributions per paper as well as the subset of scientific disciplines co-operating in VA that
these contributions can be attributed to (Tab. 1.1). The chapter is concluded in Section 1.8 by a
vision on future research directions in visual analytics of medical and biological data.

1.1 Motivation
A data explosion can be observed in many areas of science, industry, business, and public life.
At CERN’s Large Hadron Collider, 45 terabytes of sensor and machine data are generated per
second during experiments and a four-engine Boeing jumbo jet collects 640 terabytes of data from
its engines during a transatlantic flight [190]. Monitoring the trading activities at the New York
Stock Exchange (NYSE) produces 4-5 terabytes of data per day [68]. A rich source of information
for several companies, e.g., in the advertisement industry, is the social network data created and
shared by currently 320 million active users per month on Twitter [243] and 1.55 billion monthly
active users on Facebook [49].

In medicine and biology, researchers and practitioners are confronted with a steadily growing
data complexity paralleling new developments in image and non-image data acquisition. Hospitals
need to maintain thousands of electronic medical records protocoling for instance diagnostic pro-
cedures, drug prescriptions, and therapeutic measures [174]. Furthermore, medical image data are
acquired per patient at several occasions possibly employing multiple modalities, e.g., Ultrasound
(US), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Body parts can be
imaged at a very high resolution and also over time covering dynamic processes. Recent Dual
energy CT scanners create full body scans of≈ 20 gigabytes in 2-3 seconds and time-resolved live
scans, e.g., of organs in motion, with ≈ 5 gigabytes per second [224]. In predictive medicine, sim-
ulations of the outcome of pathologic processes or therapeutic interventions are performed besides
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2 CHAPTER 1. VISUAL ANALYTICS OF MEDICAL AND BIOLOGICAL DATA

imaging and create additional complex data, e.g., simulations of blood flow for planning endovas-
cular interventions [96] and kinetics of implants for surgery planning [204]. In biology, genome
sequencers generate tens to hundreds of gigabytes of data to decipher the genome [264]. High-
throughput electron microscopy can produce terabytes of streaming data [70]. Multi-variate data
with one slice or volume per antibody is acquired in robot-driven fluorescence microscopy [52].
Population studies in epidemiology collect data for thousands of subjects from questionnaires,
interviews, laboratory tests, Electrocardiography (ECG) monitoring, DNA sequencing, simple-
medical/dental/skin examinations, cardiopulmonary exercise testing, sleep monitoring, and more
recently, from medical imaging using non-invasive modalities such as US and whole-body MRI
[256]. Often, these studies are carried out over years in several waves generating longitudinal data.

For such complex data, it is impossible to design overview visualizations that convey all the
contained interesting patterns. Filtering and analyzing the data are required since Sheiderman’s
guide to visually exploring data “Overview first, zoom/filter, details on demand” [222] is not ap-
plicable here and raw data has very limited value. While fully automatic data analysis techniques
perform reliably for well-defined and well-understood problems, they must be combined with the
analyst’s knowledge and abilities in solving more fuzzy, complex, and opaque issues. This combi-
nation is at the heart of the field visual analytics, which has been defined accordingly by Keim et
al. [105]:

“Visual analytics combines automated analysis with interactive visualisations for an
effective understanding, reasoning and decision making on the basis of very large and
complex datasets.”

During the iterative visual analytics process, the analyst derives knowledge from the raw data by
modifying parameters of the data analysis techniques and steering the analysis process based on
the evaluation of intermediate results presented as interactive visualizations. This is reflected by
Keim’s extension of Sheiderman’s guide in the context of visual analytics “Analyse first, show the
important, zoom/filter, analyse further, details on demand” [104].

1.2 Introduction to Visual Analytics
At the beginning of this section, the visual analytics process from data to knowledge is detailed
(Sec. 1.2.1). Then, the building blocks of VA research, i.e. the different scientific disciplines
contributing to it, are described (Sec. 1.2.2). Finally, the VA-related field of interactive visual
analysis spanning a subset of these disciplines is introduced (Sec. 1.2.3).

Sections 1.2.1-1.2.2 are based on the book chapter "Visual Analytics" by Keim et al. [105]. The
corresponding VisMaster book provides an excellent comprehensive entry point to VA research.
Early visions and principles are described in the pioneering research and development agenda for
VA edited by Thomas and Cook [237]. Expanding frontiers and research trends are outlined by
leading scientists in a collection of articles edited by Dill et al. [37]. A survey of general visual
analytics techniques and applications, which does however attach little importance to the VA of
scientific image data, is given by Sun et al. [233]. The proceedings of the annual IEEE conference
on Visual Analytics Science and Technology (VAST) are recommend for an overview of very
recent VA research. They are accessible from the IEEE digital library [90].

1.2.1 The Visual Analytics Process
The visual analytics process tightly couples automatic data analysis techniques and visualization
methods through user interaction for deriving knowledge from data. A schematic overview of the
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process is given in Figure 1.1. It is based on the original scheme by Keim et al. [105] and has
been modified according to the scheme by Meyer et. al [146]. The latter more explicitly conveys
the importance of user interaction at all stages of the process. Data mining as the science of
data modeling and knowledge discovery is considered fundamental to automated data analysis and
hence, both terms are often used interchangeably [105].

Visualization

Knowledge

Models

Data

Mapping Visual 
Reasoning

Data mining
Knowledge 
Extraction

Transformation

Feedback loop Automated Data Analysis

Visual Data Exploration
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visualization
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Figure 1.1: The visual analytics process from raw data to knowledge via a tight coupling of automatic data
analysis and visualization techniques through user interaction. Adapted from [105; 146].

At first, the raw data may be transformed including the conversion into an organized logical
structure, the selection of data subsets, data cleansing, normalization, interpolation, and the merg-
ing of multiple heterogeneous sources. The analyst can then start either with (1) an automated
data analysis or with (2) visually exploring the data. A population study is used as the work-
ing example for explaining both ways in the following. The study collected socio-demographic,
lifestyle-related, and health-related attributes for thousands of subjects. (1) The analyst starts by
applying a clustering method to three selected attributes including the per cluster computation of
an “average” subject and of the subjects’ variance around the average. The clusters and the derived
information constitute a model of the data from which knowledge can be extracted. In order to
evaluate this model, it is visualized for instance by opposing the attributes in a 3D scatter plot
where each dot represents a subject and the dot’s color indicates the cluster index. Additionally,
the average subjects are highlighted. While rotating the plot, the analyst may discover a corrupt
cluster separation or average subject computation due to outliers. As a consequence, the param-
eters of the clustering method may be refined or a method which is less sensitive to outliers is
applied. (2) Alternatively, the analyst may start by visually exploring subsets of the data, e.g., by
means of a scatter plot matrix opposing multiple attributes in a pair-wise manner. Based on the
observation of subject clusters in individual plots, the analyst may reason about the existence of
distinct subpopulations. These hypotheses must be verified by building a model of the data using a
dedicated clustering method. This model is then visually evaluated and the findings are employed
for its iterative refinement by adjusting the parameters of the clustering method.

Knowledge is gained during the visual analytics process, e.g., the existence of subpopulations
(clusters) with distinct values for selected attributes. This knowledge may be fed back into the
process yielding, e.g., a selection of different input attributes or a subset of subjects. The entire
visual analytics process is characterized by alternating between visual and data analysis methods.
It facilitates both, the verification of an priori hypothesis as well as hypothesis generation.
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1.2.2 Building Blocks of Visual Analytics Research

Visual analytics combines technologies from many different scientific disciplines. An overview of
these disciplines is shown in Figure 1.2. It represents a slightly adapted version of the overview by
Keim et al. [105]. “Human-Computer Interaction” (HCI) has been added to the set of disciplines
to stress the importance of interaction and to acknowledge the increasing interest in exploiting and
promoting HCI research work in the realm of visual analytics [6; 266]. The design of interaction
techniques and user interfaces are key elements of HCI research finding broad applications in
visual analytics frameworks.

Infrastructure

Evaluation

Data 
management

Human perception
and cognition

Human-
computer

interaction

Data 
mining

Spatio-
temporal

data analysis
Visualization

Figure 1.2: Building blocks of visual analytics research. Visualization is at the heart being used by all
neighboring disciplines. Visual analytics solutions require an appropriate software infrastructure and their
effectiveness, efficiency, and user acceptance must be evaluated. Adapted from [105].

Visualization is at the heart of visual analytics. It serves not only the purpose of presenting
final results but also of monitoring and evaluating intermediate steps, for instance, in data gen-
eration, management, and mining. Visualization is often classified into scientific (SciVis) and
information visualization (InfoVis). While SciVis develops techniques for visualizing data with an
inherent spatialization, e.g., measured or simulated data from climate research, medical imaging,
and engineering, InfoVis focuses on visualizing data for which a spatialization must be chosen,
e.g., business data, social networks, and software structure. Visual analytics solutions employ the
best of both worlds and use for instance surface and volume rendering or flow visualization tech-
niques from SciVis [72] and standard plots, parallel coordinates, treemaps or graphs from InfoVis
[227].

The user interface and techniques for user interaction with both, the data analysis and the
visualizations, are critical components of each visual analytics system. Their development is part
of human-computer interaction (HCI) research [95]. In a visual analytics framework, often
different views on the data are organized as a coordinated multiple views system. Coordination is
achieved via linking & brushing [44], i.e., data items are selected in one view (brushing) and at
the same time highlighted in all other views (linking). Coordinated multiple view systems have
been surveyed by Roberts [189] with one focus on exploration techniques and another one on
user interfaces including window and display management strategies. Guidelines for the design
of multiple views on data are given by Baldonado et al. [260]. In particular for data with a
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spatial reference, linking & brushing is often coupled with f ocus+context visualization [75]. The
portion of the data within a flexible focus region is emphasized while attenuating but maintaining
the surrounding context, e.g., for spatial orientation. Interaction techniques in visual analytics
systems may be classified following the categories of interaction with information visualizations
suggested by Yi et al. [271]. For instance, interesting data items may be marked by brushing
(select) and highlighted in multiple views (connect), other data may be shown using panning and
zooming (explore), more or less detail may be displayed (abstract/elaborate), and visualization
may be restricted to data matching certain conditions (filter).

The investigated data in visual analytics is often very heterogeneous, i.e. it stems from multiple
sources with different data types (numerical, text, audio, video etc.), formats (RAW, DICOM, HDF,
etc.), variable types (nominal, ordinal, quantitative), and dimensions (1D,2D,3D,3D+ time,nD).
The focus of data management here is the generation of an integrated and consistent database
facilitating queries for automatic analysis and visual exploration. A crucial step is data cleans-
ing dealing with incorrect and missing data. In population studies for instance, participants may
refuse to answer specific questions in an interview or they may favor a more socially-accepted
answer, e.g., with respect to alcohol consumption, which is however in contrast to further available
information, e.g., given by liver function reading.

In data mining, methods for an automatic extraction of information from raw data are de-
veloped [71]. A multitude of conceptually different approaches exists. Classification methods
learn a model for classifying unseen data from labeled training samples. Examples are decision
trees, Bayesian Networks, Support Vector Machines, and lazy learners. If no a priori knowledge is
available, cluster analysis methods can be applied grouping data items based on mutual similarity
such that intra-group cohesion and inter-group separation are maximized. Examples are partition,
hierarchical, density-based, and spectral methods with their representative algorithms k-Means,
Agglomerative Hierarchical Clustering, DBSCAN [47], and Normalized Cuts [220]. Some of the
existing clustering algorithms are tailored to the identification of outliers, e.g., DBSCAN. Fur-
ther data mining approaches besides classification and clustering are pattern mining, dimension
reduction, and correlation analysis.

Investigating data with references in space and possibly time requires specific spatio-temporal
data analysis techniques. They aim at the detection of spatial patterns and relations and of tem-
poral patterns, trends, and correlations. For instance, suspicious lesions need to be identified in
digitally contrast-enhanced (DCE) MRI mammography data and their tissue heterogeneity must
be evaluated based on the spatio-temporal pattern of contrast accumulation [183]. If data of the
same phenomenon have been acquired using different devices or parameterizations, the datasets
need to be co-registered to a common reference. As an example, pre-operatively acquired MRI
data of a brain tumor must be aligned with intra-operative US data for evaluating tumor resection
surgery [28]. A crucial aspect of spatio-temporal data analysis is uncertainty originating from the
data generation and transformation (Fig. 1.1). Missing or interpolated data, multiple parameteri-
zations of the data generation device or algorithm, imperfectly aligned portions of data showing
the same phenomenon, and manual segmentations of a structure in image data are examples for
uncertainty that must be considered during analysis and conveyed by visualizations. The user’s
awareness of the involved uncertainties directly influences the confidence or trust in the analysis
results [195].

During the visual analytics process, the user needs to perceive and understand what is displayed
on a screen. The sciences of perception and cognition research the heavily complex sequence
from perceiving to making inferences. Cognitive psychology studies “how people perceive, learn,
remember, and think about information” [229]. Understanding visual perception is essential in
this context [225]. It represents the human ability to derive information from visible light reaching
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the eye, e.g., emitted by a computer screen. What is known about perception and cognition is
exploited in designing visualizations, user interfaces as well as interaction techniques and is hence,
also strongly related to HCI [261].

Visual analytics requires an efficient infrastructure for combining technology from many dif-
ferent disciplines in a way such that high interactivity is guaranteed during the entire analysis
process. Major issues in providing such an infrastructure are incompatibilities between imple-
mentations, the missing support for handling large amounts of data, e.g., stored in databases, and
accurate but time-consuming computations hampering interactivity. Hence, most visual analytics
solutions are custom-built stand-alone applications using in-memory data storage and achieving
sufficient computational performance through optimization for a specific type of data and a limited
set of tasks. Detailed requirements of visual analytics on software and hardware infrastructure have
been discussed by Fekete [50] and classified into requirements on data management, automated
data analysis, visualization including hardware, and workflow support for analysts. Furthermore,
open obstacles in meeting these requirements have been derived and hints on how to address them
in the future were provided.

The evaluation of methods and solutions in visual analytics is crucial to assess their effec-
tiveness, efficiency, and usability. A very active research community in this area strives for stan-
dardized approaches and solid generalizable results. Both are difficult to achieve due to the broad
scope of visual analytics and the complexity of its solutions. An overview of evaluation challenges
in visual analytics, current approaches, and recommendations are given by van Wijk [252]. For
instance, the user community addressed by visual analytics is very diverse and evaluation results
may not carry over, e.g., from laymen to experts. The tasks that need to be solved are often com-
plex and comprise several steps carried out in multiple iterations. For compound visual analytics
solutions, it is often difficult to attribute an analysis outcome to one of the components. Further-
more, visual analytics aims at providing insight which is however, ill-defined and therefore hard to
measure.

1.2.3 Interactive Visual Analysis

Interactive visual analysis (IVA) is a branch of data visualization whose methodology highly in-
tersects with the one of visual analytics. IVA builds upon visualization, interaction, and human
pattern recognition for investigating complex multidimensional and multivariate data. Its focus is
on data with an inherent spatialization, i.e. measured and simulated data, and automated data anal-
ysis is considered rather optional. IVA is hence tightly related to the visual data exploration part
of the visual analytics process (Fig. 1.1). IVA solutions are realized as coordinated multiple view
systems comprising two types of views [262]. Spatio-temporal or physical views show information
in the context of the data’s spatio-temporal observation space, e.g., by means of volume or surface
renderings. Range or attribute views show relationships between multiple data attributes, e.g., by
means of scatter plots or parallel coordinates. Both types of views employ f ocus+context visual-
izations and offer brushing facilities for feature specification. An interesting pattern spotted by the
analyst may hint at a feature, i.e. a distinct characteristic of the data, or alternatively, specific value
ranges of selected attributes are suspected to characterize a feature. In both cases, the interesting
data portions are brushed (focus) and visualized within their surroundings (context).

One can imagine the information that is hidden in data as a deep ocean [76]. Some information
is floating directly beneath the surface and is already accessible through base-level IVA. Other
information is buried deeper and their extraction requires more advanced techniques at a higher
level. This cascade of information retrieval is reflected by the four levels of IVA [262]:
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1. Show & Brush (level 1): This level utilizes at least one physical and one linked attribute
view. A potential feature is brushed in one view yielding a f ocus+ context visualization in
all linked view(s).

2. Relational analysis (level 2): At this level, multiple brushes from different views are com-
bined using logical operators. This facilitates a more sophisticated feature specification. For
instance, places at medium altitude exhibiting low temperature and high precipitation may
be extracted from a weather dataset.

3. Complex analysis (level 3): This level is tightly related to visual analytics since it integrates
computational data analysis methods for deriving synthetic attributes from existing ones.
For instance, the temporal variation of an attribute can be computed using derivatives or data
items can be clustered and cluster membership can serve as a new attribute. The third level
further integrates advanced brushing facilities such as angular brushing [77] and similarity
brushing [154].

4. Proprietary analysis (level 4): At this level, application-specific feature definitions, data
analysis methods or visualization techniques are integrated. Examples include local feature
detectors from flow field analysis [18] and tailor-made graph views for investigating fluores-
cence microscopy data [166].

At each IVA level, features may be specified interactively in physical or attribute space for further
investigation. The most important IVA feature specification patterns are [165; 262]:

Feature localization refers to the process of brushing a subset of data items in an attribute view
and emphasizing the corresponding spatial locations in a physical view. The emphasis re-
veals whether the selection represents a localized feature such as a specific brain part ex-
hibiting suspicious perfusion characteristics.

Local investigation refers to the selection of interesting spatial locations in a physical view and
inspecting the corresponding data items in attribute views. This restricts the analysis to a
region of interest such as a suspicious lesion in breast tissue.

Multivariate Analysis is characterized by brushing a subset of data items in one attribute view
and observing the selection in views showing different attributes. For instance, tissue with a
fast wash-in and wash-out of blood may be selected and its overall blood supply over time
may be investigated.

One of the first IVA systems named WEAVE has been presented by Gresh et al. [67] for the joint
investigation of measured and simulated cardiac data. It comprises a 3D view showing the heart’s
anatomy as well as histogram, scatter plot, and parallel coordinates [94] views for displaying data
attributes. The user may brush an interesting part of the heart’s surface in the 3D view (local
investigation) or interesting data values in an attribute view (feature localization) and assign a
color to the selection. This color is used then, for emphasizing the corresponding data items in
all other views. Inspired by WEAVE, Doleisch and Hauser et al. [39; 40] developed the SimVis
framework for interactive feature specification in computational fluid dynamics data. SimVis
started as a research prototype and evolved into a mature commercial system highly optimized
for IVA of very large data. It comprises a 3D view, histogram, scatter plot, parallel coordinates,
and a curve view for exploring time-dependent data attributes [154] (Fig. 1.3). SimVis has been
applied to and extended for data from a wide range of application areas, e.g., simulation data from
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engineering [123] and climate research [103], medical MRI perfusion data [165], and within this
thesis, medical US perfusion [28] (Chap. 13) and biological fluorescence microscopy data [166]
(Chap. 4). The very flexible IVA system ComVis has been developed by Matković et al. [138] for
the rapid prototyping and testing of new IVA paradigms and technology. ComVis comprises the
same types of views as SimVis and can easily be extended, e.g., by integrating more advanced
views tailored to the IVA of set-typed data [51], families of function graphs [117], or families of
surfaces [139].

(a) (b)

(c) (d) (e)

Figure 1.3: Interactive Visual Analysis of Ultrasound perfusion data in the SimVis framework [28]. A
physical view (a) and four linked attribute views (b-e) show different aspects of the data. Parallel coordinates
provide an overview of all perfusion parameters (b), a curve view conveys changes in tissue perfusion over
time (c), a histogram depicts the distribution of a selected perfusion parameter (d), and a scatter plot shows
the correlation between two other parameters (e). In a feature localization process, an interesting part of
the histogram in (d) is brushed (turquoise rectangle). The selection is highlighted in red within all attribute
views and colored according to a perfusion parameter in the physical view. The latter shows the selection
(focus) within the surrounding tissue (gray context).

1.3 Simulated Cerebrovascular Hemodynamic Data
This section provides context for the cumulated publications of Part I. It introduces cerebral
aneurysms including brief descriptions of their pathogenesis, diagnosis, and treatment, as well
as related medical research questions (Sec. 1.3.1). Following this, the role of aneurysm hemody-
namics in answering these questions, the generation of hemodynamic data, and parameters derived
from these data are detailed (Sec. 1.3.2-1.3.4). At the end of this section, the potential of visual
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analytics in investigating the hemodynamic parameters as well as existing approaches, including
the papers cumulated in this postdoctoral thesis [168; 171] (Chap. 2-3), are surveyed (Sec. 1.3.5).
To conclude, the relation to measured cardiac hemodynamics is outlined (Sec. 1.3.6).

The Sections 1.3.2-1.3.4 are based on very comprehensive introductions to the visual explo-
ration of simulated cerebrovascular and more general, of measured and simulated cardiovascular
hemodynamics by Neugebauer [157] and Gasteiger [55], respectively. More condensed introduc-
tions are provided by Preim et al. [180] and Vilanova et al. [254].

1.3.1 Cerebral Aneurysms
Cerebral aneurysms (also called intracranial or brain aneurysms) represent a cerebrovascular dis-
order which is characterized by a localized dilation of the weakened arterial wall. Their pathogen-
esis is incompletely understood but seems to be related to many factors such as the interplay of
hemodynamic stresses and degenerative changes of the arterial wall, inflammatory effects, genetic
predispositions, and exogenous factors, e.g., drinking and smoking [121]. The most common sub-
type saccular aneurysms and its morphological features are illustrated in Figure 1(b) on page 52
of Chapter 2. Typical is the balloon-like dilation (the aneurysm sac) with a narrow opening (the
aneurysm neck) [53]. Saccular aneurysms most frequently occur at the base of the brain, either
directly at or in the close vicinity of the vascular ring named Circle of Willis [54]. While some
aneurysms are found along straight vascular segments (side-wall aneurysm), most develop at arte-
rial branchings (bifurcation aneurysm).

The primary complication of cerebral aneurysms is a progressive weakening of the arterial
wall culminating in aneurysm rupture. The prevalence of unruptured aneurysms in the general
population has been estimated as ≈ 3.2% [255]. Most of them will never rupture and remain
clinically silent [248]. However, rupture causes subarachnoid hemorrhage (SAH), i.e. bleeding
into the subarachnoid space filled with cerebrospinal fluid, which represents a significant cause of
morbidity and mortality world-wide [30].

The diagnoses of most unruptured cerebral aneurysms are incidental findings. In case of SAH,
the rupture of a cerebral aneurysm represents a very likely cause and according evidence is explic-
itly investigated. If a patient enters the hospital with symptoms characteristic for SAH, CT imaging
is commonly used to exclude other causes [14]. If SAH has been confirmed, angiography images
are acquired to verify the hypothesis of a ruptured aneurysm. Often, CT angiography (CTA) is
applied since it can be conducted immediately after the CT imaging [244].

The primary goal of a therapeutic intervention is to stop blood flow into the aneurysm such that
rebleeding in ruptured aneurysms and the rupture of clinically silent ones are prevented. Surgical
clipping has been the standard therapeutic approach for decades [247]. After opening the skull
of the patient and cutting through the dura mater, the aneurysm is exposed and a self-closing
metal clip is attached to its neck. In unruptured or poorly accessible aneurysms, older patients or
those who cannot undergo surgery, minimally invasive vascular interventions provide an alternative
therapeutic option [184]. They reduce the burden during intervention as well as recovery time
and infection risk for the patient. While surgical clipping requires a neurosurgeon, minimally
invasive treatment may be performed by an interventional neuroradiologist. In coiling, compressed
platinum spirals (detachable coils) are inserted into the aneurysm via a microcatheter that is guided
through a small opening in the femoral artery. The coils unfold within the aneurysm sac causing
a stagnation of the blood flow ultimately inducing a thrombosis, i.e. the formation of a blood
clot. The deliberate clogging of the aneurysm is referred to as embolization. In patients with
complex aneurysms that cannot be filled with coils, deploying a self-expanding, high-profile, flow
diverting mesh tube (Flow-diverter stent) to the parent arteries in the close vicinity of the aneurysm
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provides a promising alternative to coiling (Fig. 1(a), p. 52, Chap. 2). The stent is also guided by a
microcatheter and expands with the help of an inner, inflatable balloon until it fits closely with the
vessel wall. The blood flow into the aneurysm is strongly diminished and decelerated triggering
embolization without inserting artificial material into the aneurysm sac.

Neugebauer collected medical and clinical research questions in an extensive literature review
and classified the results into four categories: questions related to the pathogenesis, growth, rup-
ture, and therapy of cerebral aneurysms [157]. The publications in the cumulative Part I of this
thesis are dedicated to answering questions in the context of aneurysm rupture [171] (Chap. 3)
and stent therapy [168] (Chap. 2). Since aneurysms do not inevitably rupture and surgical as well
as endovascular interventions may induce other complications for the patient, e.g., injury of the
vessel wall during stent insertion, a bulk of research aims at a reliable assessment of the risk of
rupture. In considering a stent therapy, it must be clarified whether the individual vascular and
aneurysmal morphology is eligible for stenting, which type of stent yields the best outcome, and
where for instance in a bifurcation, the stent shall be deployed. The following section illuminates
the relation of aneurysm hemodynamics to the risk of rupture and to stent therapy.

1.3.2 Role of Aneurysm Hemodynamics in Diagnosis and Treatment
It is an obvious conjecture that the interplay of a pulsating stream of blood and a potentially desta-
bilized wall is among the factors that effect the risk of aneurysm rupture. The hemodynamics
in cerebral arteries cannot directly be measured at a sufficiently high resolution due to the small
vessel diameter (1-3 mm at the Circle of Willis) and the limited resolution of today’s scanning
devices. Hence, Computational Fluid Dynamics (CFD) simulations of blood flow are conducted
based on patient-specific vascular and aneurysm geometry extracted from medical images [25].
Most studies draw conclusions regarding the role of hemodynamics from comparing simulation
results of ruptured and unruptured aneurysms and searching for significant differences. Their un-
derlying image data and aneurysm classification are retrieved from hospital databases and originate
in diagnosis and therapy.

Both, abnormally high [27] and low [269] shear stresses of the aneurysm wall have been related
to an increased risk of aneurysm rupture. This alleged contradiction is subject of an ongoing
debate between researchers [143]. Both results may be valid and depend on different mechanisms
of aneurysm growth and rupture. A higher consensus exists regarding the relation of qualitative
hemodynamic characteristics to aneurysm rupture. Complex flow patterns, which are unstable over
the cardiac cycle [20], as well as a focused influx into the aneurysm with a small region of impact
[23] have been related to an increased risk of rupture.

The simulation of aneurysm hemodynamics can contribute to the planning of stent therapy by
predicting the hemodynamical outcome of different stent types and locations. In virtual stenting, a
geometric model of the stent is deployed to the vascular geometry and integrated in the simulation
[96; 97]. The simulation results of different stent types and locations are then compared to find
the optimal patient-specific configuration, e.g., one that minimizes shear stresses and yields simple
and stable flow patterns. In the annual Virtual Intracranial Stenting Challenge (VISC), researchers
compete in predicting stenting success and aneurysm risk of rupture based on simulated hemody-
namics [86]. They are provided with real clinical cases and stent models and are expected to return
well justified treatment decisions and risk estimates, partially, within a time frame that would be
acceptable in real-world clinical treatment planning. Assessing a patient’s general eligibility for a
Flow-diverter stent may also benefit from simulations of aneurysm hemodynamics. For instance, a
local increase of pressure yielding an increased risk of rupture was observed in patient-individual
simulations of aneurysms that had ruptured after treatment with such a stent [24].



1.3. SIMULATED CEREBROVASCULAR HEMODYNAMIC DATA 11

CFD simulations of blood blow provide new insights into the hemodynamics of cerebral
aneurysms. They are not (yet) part of the clinical routine. In medical research, they are con-
ducted to better understand the causes of aneurysm initiation, progression, and rupture, to eventu-
ally define a rupture risk score for clinical routine use, and to predict the outcome of endovascular
interventions in the context of both, virtual stenting but also virtual coiling [66; 151]. The follow-
ing section describes the hemodynamic data generation pipeline from patient-specific image data
to CFD simulations of blood flow.

1.3.3 Hemodynamic Data Generation
Several pioneering papers have demonstrated the value of image-based CFD models of hemody-
namics for a single aneurysm case [74; 100; 228]. Efficient workflow pipelines were later presented
for the reliable, reproducible, and robust processing of data from large-scale studies [5; 25; 55].
While the implementations of individual pipelines differ, they all comprise the following five steps:

1. Medical imaging of the patient’s cerebral vascular tree.

2. Segmentation of the aneurysm and the vasculature in its vicinity.

3. Surface reconstruction from the segmentation result, surface enhancement, and extraction
of anatomical landmarks and geometric features.

4. Volume grid generation based on the surface mesh.

5. CFD simulation of blood flow on the volume grid considering boundary conditions and an
approximate fluid model of blood.

Gasteiger gives a very comprehensive overview of methods that have been proposed in litera-
ture for implementing each step [55]. The individual implementations employed throughout Part I
of this thesis are described in Section 2.3 on page 52 of Chapter 2 and in Section 2.4 on page 68
of Chapter 3. Based on the overview by Gasteiger [55], important general aspects of each step
are summarized in the following. Note that the pipeline steps are usually performed for a priori
known aneurysms. In a screening scenario, an aneurysm detection step could be integrated after
the medical imaging [81].

Medical imaging is typically conducted for aneurysm diagnosis or treatment in clinical rou-
tine. Depicting the patient-specific vascular and aneurysm morphology requires dedicated imaging
techniques yielding an enhancement of the vessel lumen. Either a contrast agent is injected, as for
instance in 3D-Rotational Angiography (3D-RA), Computed Tomography Angiography (CTA),
and Contrast-Enhanced Magnetic Resonance Angiography (CE-MRA), or magnetization proper-
ties of the flowing blood are exploited, as in Time-of-Flight Magnetic Resonance Angiography
(TOF-MRA). A well-defined boundary of the vessel lumen is required for a reliable subsequent
segmentation. However, it is often hampered by artifacts such as a blending of the aneurysm and
near-by vessels due to the partial volume effect or an inhomogeneous signal intensity distribution
in the lumen due to inconsistent contrast bolus accumulation. Solution strategies often require a
tedious manual post-processing of the segmentation or surface reconstruction result.

A myriad of segmentation techniques has been proposed for extracting the vessel lumen from
3D image data [126]. Intensity-based approaches as well as deformable models have been em-
ployed in the context of this thesis. Representatives of the former such as thresholding and region
growing are fast and easy to implement but sensitive to the above-mentioned artifacts. They result
in a binary voxel mask requiring a subsequent surface reconstruction step. Representatives of the
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latter such as active contours or level set segmentations deform an initial 2D contour or 3D surface
with respect to external forces derived from the image data, e.g., gradient information, and internal
forces controlling the degree of deformation, e.g., curvature. Deformable models are less sensitive
to blending and inhomogeneous signal intensity distributions within the lumen. Furthermore, they
obviate the surface reconstruction step and generate a segmentation at sub-voxel level. However,
they are computationally more expensive and their parameterization is challenging.

Surface reconstruction of the boundary of the vessel lumen is required if the segmentation
resulted in a binary mask. A straightforward approach is to apply the Marching Cubes (MC)
algorithm to the mask [130]. However, the resulting surface mesh comprises a vast number of
triangles among which many exhibit a bad quality, i.e. strongly deviate from being equilateral.
Furthermore, the surface suffers from stair-case artifacts due to the discrete nature of the image
data and the binary nature of the segmentation mask. Alternative approaches generate smoother
results by means of implicit surfaces [120; 217; 268]. Furthermore, they optimize triangle quality
either in a final remeshing step [216] or by controlling the quality during surface reconstruction
[268]. The number of triangles can be optimized by adapting the triangle density to local surface
curvature [268].

Different surface enhancement techniques may be required depending on the employed seg-
mentation and surface reconstruction approach. Mesh smoothing is necessary for instance to re-
move stair-case artifacts after an intensity-based segmentation and a MC-based surface reconstruc-
tion. Dedicated smoothing approaches preserve the volume of the mesh and instead of treating
the entire surface equally, identify and quantify stair-case artifacts to locally adapt the smoothing
strength [148]. The correction of surfaces which are erroneously connected due to blending arti-
facts requires tedious manual adjustments in a mesh processing software. To separate the aneurysm
and a blended vessel, the mesh is cut open, holes are filled, and the result is smoothed [149]. A high
quality of the surface mesh is necessary to achieve a high quality of the subsequently generated
volume grid which in turn is required by the CFD simulation to ensure convergence and mini-
mization of numerical errors [55]. Alliez et al. give an overview of local and global remeshing
approaches aiming at close to equilateral triangles, uniform vertex density, and curvature-adaptive
triangle sizes [3]. A pipeline for the optimization of vascular surface models in the context of CFD
simulations has been proposed by Mönch et al. [149]. It comprises mesh smoothing, the removal
of blending, remeshing, and several other steps such as an optimization of the in- and outlets for
the simulation.

Anatomical landmarks and geometric features are extracted by decomposing the optimized
surface model based on its centerlines [5] and the ostium surface [158] into aneurysm sac, near-,
and far-vessel domain [160] (Fig. 1(b), p. 52, Chap. 2). The decomposition results are used for
instance to restrict the visual exploration and analysis of blood flow to the aneurysm sac and the
near-vessel domain and to derive clinically relevant parameters describing aneurysm size, shape,
and spatial relations to the parent vasculature. The ostium surface is often utilized as seeding
geometry for integral curves thereby focusing the investigation on flow entering the aneurysm.

The volume grid generation for the subsequent CFD simulation is based on the optimized
surface mesh. The advancing layers method represents the most common approach which fills the
vessel lumen with unstructured tetrahedral elements starting from the surface and proceeding into
the lumen [199]. In order to capture also the small changes in flow speed at the vessel boundary, a
more fine-granular boundary layer of prism elements is recommended [198]. In virtual stenting, a
surface mesh of the stent is tightly fitted to the vessel surface and integrated into the volume grid
generation [97]. The resulting volume grids typically comprise 100,000 to 3,000,000 elements
without and 10,000,000 elements with stent [97]. The resolution of the grid is in the range of
0.02-0.08 mm volume diagonal of a cell [55].
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CFD simulations commonly model blood as incompressible Newtonian fluid, i.e. a fluid with
constant density and viscosity. While this is not true in theory, compression has low impact in
practice given the relatively small speed of blood flow and also, non-Newtonian effects seem to be
negligible, at least in larger arteries [218]. The corresponding model of blood flow can be described
by three-dimensional unsteady incompressible Navier-Stokes equations. Numerical solutions of
these equations under certain boundary conditions are approximated by means of finite element
formulations and a solver. Pre-defined boundary conditions comprise pressure profiles at inlets and
outlets, pulsatile flow speed, and no-slip boundary, i.e. zero velocity at the vessel wall. Unsteady
simulations run hours or even days and cover the entire cardiac cycle with a temporal resolution
in the range of 0.0025-0.005 sec yielding 200-400 time steps [55]. They result in a 4-dimensional
(4D) vector field from which further hemodynamic parameters are derived.

1.3.4 Hemodynamic Parameters
Hemodynamic parameters can be classified into quantitative and qualitative. While the former
are computed per grid point, element or region of the volume grid, the latter are derived from a
visual inspection of the blood flow pattern. The publications in Part I of this thesis are dedicated
to the visual analytics of this pattern. The computation of quantitative parameters and their role in
characterizing the hemodynamic environment in ruptured and unruptured cerebral aneurysms are
detailed in [26]. Qualitative parameters and their associations to aneurysm rupture are discussed
in [27]. Here, both classes are briefly summarized starting with the most important quantitative
hemodynamic parameters [55]:

• Velocity encodes flow direction and speed per grid point and time step by a vector ~v. All
other quantitative and qualitative parameters are derived from~v. SI unit: cm/s or m/s.

• Fluid Pressure q constitutes the scalar kinetic energy per unit volume of a fluid particle. It is
computed per grid point and time step. SI unit: Pascal (Pa).

• Wall Shear Stress (WSS) encodes the force tangential to the vessel wall exerted by the blood
flowing past. It is computed for each time step at grid points along the wall as the scalar
magnitude of the corresponding WSS vector~τwss. SI unit: Pascal (Pa).

• Oscillatory Shear Index (OSI) indicates flow disruption by the time average strength of tem-
poral deflection of ~τwss from the time-averaged WSS vector. Dimensionless scalar per grid
point along the wall.

• Volumetric flow rate Q represents the scalar amount of blood volume passing through a
predefined surface region per unit time. It is frequently computed at the ostium surface and
related to flow rates within the parent arteries. Unit: cm3/s or m3/s.

• Turnover time ToT encodes the average elapsed time of a blood flow particle from entering
to leaving a particular vessel region. A high value of ToT for the aneurysm region indicates
flow stasis promoting thrombus formation. Unit: seconds.

Qualitative hemodynamic parameters describe structures and properties of the blood flow pat-
tern. They are often derived in a visual inspection of the pattern mostly based on standard flow
visualization techniques such as integral curves and cut planes with color-coding or Line Integral
Convolution (LIC) [22]. The most important qualitative hemodynamic parameters are [55]:
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• Vortices represent regions of flow swirling around a straight or curved axis line which is
also referred to as vortex core line. In a large database of ruptured and unruptured cerebral
aneurysms (n = 210 [27]), more than 95% of the cases contain at least one vortex [171].
So-called embedded vortices consisting of an outer vortical layer flowing in one direction
along the vortex core line and enveloping an inner vortical layer flowing in the opposite
direction along the core line have been reported by Byrne et al. [19]. As part of this thesis,
an automatic detection and comprehensive visualization of this special type of vortex was
proposed (Chap. 3 [171]). An illustration and more detailed description of the formation of
embedded vortices are given in Figure 2(b) and Section 2.3 on page 68 of Chapter 3.

• Recirculation occurs when a forward stream of blood reverses and flows back into a sepa-
ration zone. Its relations to aneurysm growth and rupture have been investigated but remain
incompletely understood [223; 234].

• Inflow jet and impingement zone refer to the structure of high-speed, parallel inflow into
an aneurysm and the associated wall region of first impact. In a large-scale study, ruptured
aneurysms showed a more concentrated inflow jet and a rather small impingement zone as
compared to unruptured aneurysms [27]. An automatic approach to detecting and quantify-
ing the inflow jet and its impingement zone was proposed by Gasteiger et al. [56].

• Flow type can be laminar or turbulent. In laminar flow, particles move mostly parallel or in
a swirling motion along a common axis (vortices) while in turbulent flow, chaotic property
changes are observed. The Reynolds number indicates the flow type with very high numbers
(2300-2400) corresponding to turbulent flow. Since human blood flow exhibits rather small
numbers (200-400), it is commonly assumed to be laminar [55].

• Flow complexity and stability are related to the number of vortices and separation zones in
an aneurysm and to their persistence over the cardiac cycle. A flow is said to be simple if only
one vortex or separation zone exists. It is said to be stable if this vortex or separation zone
neither moves nor collapses and reappears over time. In the above-mentioned large-scale
study, simple and stable flow patterns were more frequently seen in unruptured aneurysms
while complex and unstable patterns were mostly observed in ruptured aneurysms [27]. In
a review of this study, a more quantitative assessment based on vortex core line detection
was proposed [20]. Flow complexity was expressed by core line length with multiple core
lines resulting in a high accumulated length. Flow stability was characterized by a new en-
tropy measure yielding high values in case of significant temporal changes of the flow field.
Ruptured aneurysms were associated with higher core line lengths and higher entropies.

The spatio-temporal hemodynamic data comprises a multitude of parameters such as scalar values,
vectors, and flow structures, e.g., vortices represented by vortex core lines. Dedicated visualization
and analysis approaches are required to derive knowledge from this complex data.

1.3.5 Visual Analytics: Potential and Approaches
Potential An ideal visual analytics solution should not only aim at gaining insights into the final
outcome of the hemodynamic data generation pipeline but also at determining the sensitivity of the
outcome with respect to adjustments of the many parameterizable pipeline steps (Sec. 1.3.3). Such
a sensitivity analysis requires the installation of feedback loops between knowledge generation
and each of the steps (Fig. 1.1). However, this is hampered by the partially necessary manual
interaction and the long duration of the steps.
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A possible solution could provide simulation ensembles. They represent a collection of sim-
ulation runs employing different parameter settings, not only of the CFD simulation but also of
the preceding steps such as segmentation and surface reconstruction. Approaches to the visualiza-
tion and analysis of simulation ensembles have been surveyed by Kehrer and Hauser [102]. Very
recent publications provide guidance in intelligently sampling the very large parameter space to
reduce the number of needed simulation runs [140] and allow the analyst to quickly identify local
variations in the outcome across individual runs [98].

The potential of interactive visual analysis in investigating spatio-temporal vector fields and
associated as well as derived parameters has been demonstrated based on the SimVis framework
(Fig. 1.3). Applications include automotive engineering [18], climate [103], and medical research
[274]. SimVis implements a coordinated multiple views system with tailor-made support for very
large unstructured grids [153] and for integrating local feature detectors, e.g., vortex extractors
[18]. The investigation of CFD simulations of aneurysm hemodynamics would strongly benefit
from both features.

Flow partitioning techniques decompose the flow into regions of common structure [201]. This
can be exploited for the investigation of aneurysm hemodynamics in multiple ways. Graphical rep-
resentatives of the regions can be computed and aggregated in a visual summary of the entire flow
or a subsequent visualization can be restricted to regions with specific properties, e.g., vortices.
The decomposition (“analyse first”) and the subsequent visualization of representatives or regions
with specific properties (“the important”) are in line with the first two steps of Keim’s visual ana-
lytics mantra “Analyse first, show the important, zoom/filter, analyse further, details on demand”
[104]. Many flow partitioning techniques are based on integral curves since in contrast to local
vectorial flow information, they represent continuous flow patterns traced over the domain. The
papers in Part I also focus on the decomposition of integral curve sets. In the following, poten-
tial strategies to achieve such a decomposition are described before published approaches in the
context of aneurysm hemodynamics are detailed.

Flow partitioning strategies can be classified into user-guided and automatic (Sec. 3.1-3.2,
p. 53, Chap. 2). Examples for user-guided strategies derive attributes from streamlines and path-
lines, such as box counting ratio, curvature, and torsion, and employ an interactive visual analysis
approach to filter the lines based on interesting values ranges of these attributes [219; 221]. Other
strategies filter the lines based on user-defined Boolean combinations of local curve properties,
so-called streamline predicates [202]. Filtering by pattern matching of a user-defined template
streamline with the overall set of lines has recently gained attention [127; 131; 235]. Multi-field
pattern matching facilitating the tracking of a template feature over time extends this idea to un-
steady simulation data [259]. All user-guided strategies can be employed for feature localization
representing one of the feature specification patterns of interactive visual analysis (Sec. 1.2.3).

Automatic flow partitioning strategies employ a data-driven approach to decompose the flow.
They utilize a clustering algorithm, such as k-Means, agglomerative hierarchical or spectral clus-
tering, to group integral curves based on a measure of similarity [29; 131; 132; 141; 192; 273].
Some approaches include the computation of cluster representatives and their aggregation in an un-
cluttered visual summary of the flow. Representatives can be streamlines located at cluster bound-
aries [273], the most dissimilar streamlines of a cluster [141], or the cluster centroid streamline
[29]. Partitioning approaches based on hierarchical clustering usually support browsing the gener-
ated hierarchy where each level corresponds to a specific number of clusters [131; 141; 273]. As in
many other application fields, this is beneficial in aneurysm hemodynamics since the correct num-
ber is unknown. A graph-based interface depicting relations among clusters and spatio-temporal
regions has been proposed for navigating a cluster hierarchy [132]. Probing vector fields with a
seeding rake and clustering the seeded streamlines on-the-fly represents a combined strategy of
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automatic and user-guided flow partitioning [141]. It can be employed in a local investigation
representing one of the feature specification patterns of interactive visual analysis (Sec. 1.2.3).

Approaches The number of proposed visual analytics approaches to investigating cerebral
aneurysm hemodynamics is rather small given the great potential of visual analytics. A likely
reason is that these data are rare just as the required collaborative efforts between medical doctors,
CFD engineers, and visualization experts. A few approaches are described in surveys of the visual
exploration of simulated blood flow [180; 254]. They are briefly recapitulated in the following
together with the most recent work. The majority of approaches does not incorporate multiple
linked views as it is common in visual analytics solutions. However, an automated analysis —
often, a flow partitioning approach — is combined with interactive visualizations for investigating
complex datasets, which is in line with the definition of visual analytics (Sec. 1.1).

Kuhn et al. [122] decomposed a vector field based on the local bending energy of streamlines
and a density function describing the local probability of certain energy values. The function is
evaluated over the simulation domain and its minima representing cluster boundaries are computed.
Based on an adjustable target number of clusters, cluster neighbors are then merged. Each final
cluster is labeled as vortical, laminar or turbulent based on an eigenanalysis of the Jacobian matrix
of representative cluster elements. The cluster regions are finally visualized by means of semi-
transparent surfaces yielding a quite abstract flow representation.

Gasteiger et al. [56] presented an automatic detection of inflow jet and impingement zone
inspired by streamline predicates. The inflow jet hits the aneurysm surface at the impingement
zone and is characterized there by a rapid loss of speed and a significant change in flow direction.
Hence, streamlines are traced into the aneurysm and multiple parameters are computed along the
way such as curvature, acceleration, and minimum distance to the aneurysm surface. Streamlines
exhibiting parameter values that are characteristic for the inflow jet are then employed in comput-
ing its bounding stream surface which in turn is utilized in a derivation of the impingement zone.
Inflow jet and impingement zone are then applied to focus the analysis, e.g., on the Wall Shear
Stress inside and in the vicinity of the zone. Later, van Pelt et al. developed comparative blood
flow visualizations for virtual stenting assessment incorporating the quantitative definitions of the
jet and its impingement [249].

Neugebauer et al. [159] introduced a system for the qualitative exploration of near-wall hemo-
dynamics. They were particularly interested in the relation of high surface curvature and a poten-
tially increased risk of aneurysm rupture as suggested by the investigation of cerebral aneurysms
exhibiting blebs [142]. In a first step, measures reflecting the surface curvature are computed
and automatic thresholding is employed to isolate regions exhibiting high values. The regions are
then ranked according to maximum curvature and at highly-ranked regions, streamlines are seeded
within the corresponding near-wall boundary layer. They depict the near-wall flow and may form
characteristic structures at known or potential rupture sites. The proposed system supports interac-
tive control over thresholding and seeding parameters as well as navigation and flow classification
facilities.

Glaßer et al. [62] proposed a combined visualization and analysis of wall thickness and Wall
Shear Stress. Since the thickness cannot be measured in vivo yet, they employed a dissected sac-
cular aneurysm phantom whose wall was measured using intravascular ultrasound (IVUS). The
hemodynamics were then generated from the IVUS data as described in Section 1.3.3. In a com-
bined visualization of inner and outer vessel wall, Wall Shear Stress is color-coded on the inner wall
and wall thickness is encoded by distance ribbons on the semi-transparent outer wall (Fig. 1.4(a)).
The visualization is linked to a scatter plot opposing both parameters. Brushing interesting value
ranges in the plot causes an emphasis of the corresponding wall parts (Fig. 1.4(b)). A surface clus-
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tering approach is integrated to decompose the inner aneurysm wall with respect to a custom risk
of rupture score built upon both parameters.

(a) (b)

Figure 1.4: Combined visualization and analysis of wall thickness (WT) and Wall Shear Stress (WSS) in
a side-wall aneurysm phantom. (a) WSS is color coded on the opaque inner vessel wall. Distance ribbons
encode WT on the transparent outer wall. A global (1) and a local (2) scatter plot oppose WSS and WT of
the entire wall and the currently visible part, respectively. A contour view (3) illustrates WT and is linked to
a widget (green rectangle) that can be dragged along the vessel centerline. (b) Brushing a scatter plot (right
arrow) results in a colored emphasis of the corresponding wall region (left arrow). Clusters of similar WSS
values are indicated along the wall by dark contour lines. Images are courtesy of Sylvia Glaßer, University
of Magdeburg.

Lawonn et al. [124] built upon the work of Glaßer et al. [62] and presented the combined vi-
sualization of wall thickness and blood flow animations. They encode the thickness on the outer
vessel wall using an adjustable discretized color scale (Fig. 1.5). The inner vessel-wall is super-
imposed using illuminated contours or image-based hatch strokes. Pathline segments depicting
the animated flow are drawn as arrow glyphs whose color encodes the distance to the vessel wall
based on a discretized scale. A white contour is added to glyphs with a very short distance to hint
at near-wall flow. Dynamic cutaway views revealing the flow as it is passing by the vessel and
aneurysm wall are automatically generated. The user can interactively adjust parameters of the
cutaway generation as well as the discretization of the color scales for wall thickness and distance
to the wall.

Figure 1.5: Animated pathline segments represented by arrow glyphs illustrate the flow inside a side-wall
aneurysm and its parent vasculature at three subsequent time steps. Dynamic cutaways reveal the inner flow
as it is passing by. Wall thickness is color-coded on the outer vessel wall using a discretized scale (bright
regions indicate a thin wall). The inner vessel wall is superimposed using illuminated contours. Images are
courtesy of Kai Lawonn, University of Koblenz.

Oeltze et al. [168; 169] compared multiple streamline clustering approaches in the context of
aneurysm hemodynamics and employed the best performing approach to compare different virtual
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stenting scenarios (Chap. 2). They conducted a quantitative evaluation of k-Means, agglomera-
tive hierarchical, and spectral clustering based on internal cluster validity measures. They further
proposed a visual summary of blood flow, which is composed of one representative streamline per
cluster, thereby reducing the visual clutter caused by the original dense streamline sets (Fig. 4(a-
b), p. 59, Chap. 2). The clustering was based on streamline geometry as well as application-
specific streamline attributes both yielding visual summaries that were beneficial in comparing
virtual stenting scenarios (Fig. 5-8, pp. 62-63, Chap. 2). The visual summaries were equipped with
various interaction facilities (Sec. 6.3, pp. 59-60, Chap. 2). The user may for instance, adjust the
number of clusters and display the original streamlines per cluster. Accompanying videos illustrat-
ing the approach are available at https://www.youtube.com/watch?v=-RVVgqDHzdc
and https://vimeo.com/102526517.

In a very recent work, Oeltze-Jafra et al. [171] proposed a clustering-based visual analysis
of vortical flow in cerebral aneurysm hemodynamics (Chap. 3). They focused their analysis on
embedded vortices forming around so-called saddle-node bifurcations (Sec. 2.3, p. 68, Chap. 3).
A pipeline for the automatic detection and visualization of vortices was presented and tailored
to embedded vortices. It incorporates steps for vortex core line extraction and enhancement, a
two-step clustering approach generating a coarse grouping of streamlines and an optional group
refinement, and the aggregation of custom cluster representatives in a visual summary of vortical
blood flow (Fig. 4, p. 70, Chap. 3). In terms of conveying the structure of an embedded vortex
and local flow direction, the resulting visual summaries clearly outperform conventional stream-
line displays (Fig. 1, p. 67, Chap. 3). The summaries were equipped with interaction techniques
developed in previous work [168] and a smart visibility strategy for investigating aneurysms with
multiple vortices (see the supplemental video at https://www.youtube.com/watch?v=
rAmjHC0zc0c). The pipeline was successfully demonstrated based on 17 aneurysm cases.

1.3.6 Relation to Measured Cardiac Hemodynamics
Another branch of medical research investigates cardiac hemodynamics with a focus on the aorta
distributing oxygenated blood to all body parts trough the circulatory system. Various vascular and
cardiac valve pathologies hamper the aortic hemodynamics. Examples are aneurysms and stenoses
(pathologic narrowing) of the aorta, an aortic dissection (separation of aortic wall layers), and a
bicuspid aortic valve (two of the original three valvular leaflets are fused). Investigating the hemo-
dynamics contributes to an understanding of the initiation and progression of these pathologies as
well as to a prediction of their outcome and the patient-specific selection of a suitable therapeutic
intervention.

The data generation pipelines of aortic and cerebral aneurysms hemodynamics differ consider-
ably since aortic flow can be directly measured using, e.g., 4D Phase-Contrast (4D-PC) Magnetic
Resonance Imaging (MRI). This is feasible due to the much larger diameter of the aorta as com-
pared to the arteries of the Circle of Willis (2.5-3.5 cm vs. 1-3 mm). However, the 4D-PC MRI data
suffers from various artifacts such as noise, phase distortions, and possibly phase wraps. Hence,
the pipeline of aortic hemodynamics integrates multiple artifact reduction steps between the imag-
ing and the vessel segmentation step (Sec. 1.3.3). It obviously lacks the volume grid generation and
CFD simulation steps. The pipeline results in phase images from which a 4-dimensional (3D+time)
vector field can be reconstructed. In contrast to simulated cerebral aneurysm hemodynamics, this
field is represented on a structured grid (image data). The hemodynamic parameters described in
Section 1.3.4 are crucial in both, the cerebral and the cardiac domain. Additional parameters such
as the regurgitant fraction denoting abnormal reflux of blood, e.g., from the aorta through the aor-
tic valve into the left ventricle, are derived. Comprehensive introductions to cardiac hemodynamic

https://www.youtube.com/watch?v=-RVVgqDHzdc
https://vimeo.com/102526517
https://www.youtube.com/watch?v=rAmjHC0zc0c
https://www.youtube.com/watch?v=rAmjHC0zc0c
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imaging including a discussion of typical imaging artifacts as well as of image processing steps
for artifact reduction and vessel segmentation are given by Gasteiger [55] and Köhler et al. [114].

The potential of visual analytics in investigating cerebral aneurysm hemodynamics also applies
to cardiac hemodynamics. The proposed approaches of both domains frequently pursue the same
goals, e.g., a flow decomposition and the analysis of vortical flow, and employ the same techniques
to achieve these goals. Peculiarities result particularly from the different input grid types and the
lower quality of the cardiac hemodynamic data caused by artifacts and the limited resolution of
the imaging. For instance, integral curves in measured data are rarely traced over the entire do-
main due to numerical instabilities yielding much shorter curves than in simulated data. However,
meaningful visual summaries of blood flow can still be generated based on these curves, e.g., with
the approach by Oeltze et al. [168] (Fig. 1.6). Köhler et al. [114] provide a comprehensive sur-
vey of approaches to the visualization of measured cardiac hemodynamics. Exemplary papers in
the realm of visual analytics are dedicated to vector pattern matching for vortex detection [79],
the clustering-based generation of sparse visual flow summaries [250], the detection of important
flow structures such as vortices based on line predicates [16; 115], and the clustering-based clas-
sification of vortices [145]. In a discussion of visualization challenges related to understanding
cardiac hemodynamics, van Pelt and Vilanova [251] suggested to “supplement the limited spatial
and temporal resolution of imaging data with physically based fluid simulations”. In joint work
with these authors, Hoon et al. [35] proposed an approach to harnessing the mutual benefits of both
and showed that a coupled investigation is more accurate and less sensitive to noise.

(a) (b) (c)

Figure 1.6: Clustering of pathlines representing vortical flow in an aorta. (a) Pathlines have been seeded
everywhere in the aorta and pre-filtered according to a vortex criterion [115]. (b) The spectral clustering
approach proposed by Oeltze et al. [168] is able to automatically separate the individual vortices as well as
outlier pathlines, e.g., the light blue and neighboring dark green cluster. (c) Cluster representatives provide
a visual summary of the vortical flow inside the aorta. The pathlines in (a) are courtesy of Benjamin Köhler.

1.4 Toponome Data of Cells and Tissues
This section provides context for the cumulated publications of Part II. It familiarizes the reader
with the toponome and with toponomics — the associated investigating discipline in systems bi-
ology, molecular cell biology, and histology [209] (Sec. 1.4.1). Following this, a dedicated robot-
driven fluorescence microscopy technique for imaging the toponome is described including aspects
of its clinical role in disease diagnosis and drug design as well as the explanation of frequent to-
ponome image data preprocessing (Sec. 1.4.2). Next, the analysis of the preprocessed toponome
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data is detailed including biological tasks, the workflow for accomplishing these tasks, and de-
rived requirements on an improved workflow support (Sec. 1.4.3). At the end of this section, the
potential of visual analytics in investigating toponome data as well as related approaches are out-
lined. Furthermore, the papers cumulated in this postdoctoral thesis [166; 167; 172] (Chap. 4-6)
are surveyed and their contributions to an improved workflow support are described. The Sec-
tions 1.4.1-1.4.3 are based on various articles of the Encyclopedia of Systems Biology [43]. Each
article is explicitly referenced at the appropriate position within the sections.

Visual analytics approaches have been developed for the investigation of a broad diversity of bi-
ological data including microscopy images [166], genome sequencing data [147], gene expression
data [36], and biological pathways and networks [59]. The thesis at hand focuses on microscopy
image data but gives a short excursion into visual analytics of other biological data at the end
(Sec. 1.6.3). The majority of image data in biology is acquired utilizing microscopy imaging.
The increasing complexity of these data is related to high resolution imaging of large samples,
streamed imaging, and the acquisition of multiple channels capturing individual properties of the
imaged sample. The focus of this section and of the publications in Part II is on the latter aspect,
i.e. the visual analytics of multi-channel microscopy data.

1.4.1 The Toponome and Toponomics
This section is based on introductions to the toponome and toponomics by Schubert [209] and
Oeltze et. al [166] (Sec. 2.1, pp. 85-86, Chap. 4). Cells represent the basic structural and func-
tional building blocks of all living organisms. Proteins are the basic modules of cells and exist
in a huge variety within cell membranes and nuclei. The cell can be considered as an apparatus
forming dynamic assemblies of clusters of different proteins (functional protein patterns) in order
to generate concrete cell functions [205; 208]. The mechanics and rules of this apparatus as well
as the functional master plan of cells are incompletely understood.

In the research field proteomics, the structure and functions of proteins are investigated. The
so-called proteome describes the entirety of proteins in a cell or organism at a given functional state
and a specific point in time. It is investigated based on immunoassays or using mass spectronomy,
both resulting in protein profiles from which many insights on the molecular function and structure
of proteins could already be inferred. However, the cellular function of a protein cannot simply
be derived from its molecular one or from structure since it depends on the spatial context of the
protein within a network of proteins inside the cell [205; 207; 208; 210; 211; 212]. This spatial
information cannot be extracted from proteome data.

Schubert et al. [205] hence introduced the concept of the toponome which also comprises pro-
tein topology inside cells and tissues. The toponome is defined as the “[...] spatial network code
of proteins and other biomolecules in morphologically intact cells and tissues.” [209]. The term
has been coined by Walter Schubert and is derived from the ancient Greek nouns “topos” (place or
position) and “nomos” (law). It acknowledges that cells adhere to topological rules when forming
protein networks. The difference in information encoded by proteome and toponome has been
illustrated by Schubert [209] (Fig. 1.7). While protein quantities derived from the proteome of
normal and abnormal cell samples may be very similar, the corresponding protein topology may
considerably differ having a strong impact in disease-related research. A diseased cell may be char-
acterized by protein rearrangement, e.g., on the cell surface, rather than by up- or downregulation
of proteins [209].

In toponomics, the inner structure, the biological code, and the semantics of the toponome are
investigated [205]. It has been shown that the toponome in cells is hierarchically organized [211].
It comprises protein clusters which are interlocked as a network. One or multiple contained lead
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Normal

Abnormal

Figure 1.7: Simplified illustration of
the difference in information encoded
by the proteome and the toponome for
a normal and an abnormal cell of the
same type. Extracting proteins and
their quantities from protein profiles
in proteomics shows no difference be-
tween the cells (left). However, tak-
ing protein topology into account in
toponomics, reveals protein rearrange-
ment, e.g., on the cell surface (right).
Adapted from [206].

proteins, characterized by an omnipresence in functionally relevant protein clusters, control the
topology of the clusters and their function as a network. This has been demonstrated by inhibiting
lead proteins using chemical agents [211]. Inhibition caused a disassembly of the corresponding
protein clusters which in turn yielded a strongly altered cellular function. Hence, the detection of
lead proteins in samples of abnormal cells or tissues is a crucial step in drug design searching for
potential target molecules in disease treatment. However, neither protein clusters nor lead proteins
can be derived or predicted from pure molecular protein profiles. Hence, the toponome must be
mapped in cells and tissues employing a dedicated imaging technique.

1.4.2 Imaging the Toponome and Data Transformation

Imaging Imaging the toponome builds upon the general principle of fluorescence microscopy:
specific molecules, so-called fluorochromes or fluorophores, absorb light of a particular wave-
length, which is then transformed into energy being released again as emitted light with longer
wavelength. In a fluorescence microscope, light is filtered by an exciter such that only radiation
with lower wavelengths passes, then hits a dichroic mirror and is reflected towards the sample on
the microscope stage [128]. Fluorochromes in the sample substance now absorb and emit light as
described above. The dichroic mirror is designed such that short-wavelength light arriving from
the exciter is reflected while light with medium to long wavelengths emitted by the fluorochromes
is transmitted. A final barrier filters the transmitted radiation such that only long-wavelength light
reaches the ocular.

Many substances are autofluorescent, i.e., no further preparation steps of the sample are nec-
essary. However, labeling of specific components in biological structures often requires dedicated
affinity reagents or tags, e.g., such that recognize individual proteins, which do not exhibit intrinsic
fluorescence. In order to induce a fluorescence response, these tags are conjugated to a fluorescent
dye and applied to the sample in a preparation step. Microscopic images then convey binding sites
of the tag. For instance, locations of a certain protein within a cell are visualized by means of a
fluorescence-conjugated tag that is known to bind to this type of protein.
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Traditional fluorescence microscopy is not suitable for mapping the toponome since the max-
imum number of tags recognizing proteins that can be simultaneously imaged in a sample is be-
tween five to ten [155]. This is due to the limited spectral separability of the fluorescence response
of multiple tags. Already at three tags, emitted wavelengths start to overlap hampering a separation
[128]. A possibility to overcome this limitation would be the application and imaging of tags one
after another with some sort of neutralization step in between to avoid any energy transfer into
the remaining steps. This exactly constitutes the basic idea of the robot-driven toponome imaging
system (TIS).

In TIS, the toponome is imaged in a cyclic procedure using multiple fluorescence-conjugated
tags recognizing proteins which are organized in a tag library [52]. A TIS robot applies the tags
one after another to a cell or tissue sample on the microscope stage. In each cycle, the fluorescence
response is registered by an epifluorescence microscope and recored by a charge-coupled device
(CCD) camera attached to it. Each cycle is concluded by a neutralization step in which the sample
is irradiated for 20 minutes with the excitation light causing a complete bleaching of the fluorescent
dye. The imaging yields a resolution in the nanometer range and can be carried out in 2D or in
3D by adjusting the focal plane of the microscope. It results in multi-channel fluorescence data
comprising an image or volume per tag/channel. The labeling and mapping of up to 100 proteins
in 100 cycles has been demonstrated [211].

Data Transformation Two main strategies in analyzing toponome data can be distinguished:
non-threshold-based and threshold-based [82]. The former employs the raw fluorescence data,
e.g., in segmenting the cells of a tissue sample [156], in highlighting local spatial similarities of
the multi-channel fluorescence response [214], and in clustering this response [89]. The latter
applies a unique threshold to each channel of the raw fluorescence data such that 1 represents
protein present and 0 protein absent (Fig. 1(a), p. 104, Chap. 6). Thresholding can be considered
a data transformation step in the sense of the visual analytics process (Fig. 1.1). The binarization
reduces data complexity and facilitates a clearer interpretation of protein presence but requires the
definition of reasonable thresholds, either by an expert [52; 211] or an automatic approach [9].
Within this thesis, only binary toponome data generated by either of the thresholding approaches
have been analyzed (Part II).

After binarization, a second data transformation step is carried out. First, the combinatorial bi-
nary code (protein pattern) is determined for each pixel or voxel by iterating over all data channels
(images or volumes) representing the different proteins. Second, the unique binary codes in the
data, which are also referred to as Combinatorial Molecular Phenotypes (CMPs), are computed
(Fig. 1(b), p. 104, Chap. 6). Depending on the inspected biology and the number of applied tags
recognizing proteins, hundreds to thousands of CMPs may exist. A simple technique for visual-
izing the toponome is the color-coded representation of the CMPs in a toponome map (Fig. 1(c),
p. 104, Chap. 6). It reveals the spatial clustering of identical protein patterns with these clusters
possibly corresponding to functional cell units, which are of crucial interest.

The clinical role of TIS imaging and investigating the toponome based on CMPs was demon-
strated in disease diagnosis and drug design [107]. For instance, distinct protein clusters were
found in normal skin and two skin-related diseases psoriasis and atopic dermatitis [211]. The
corresponding toponomes may serve as fingerprints based on which histologists can evaluate skin
samples. Specific CMP patterns that may serve as biomarkers in cancer screening and lead pro-
teins representing candidates for target molecules in drug development were determined based on
tissue and cell samples of colon cancer [12], prostate cancer [213], and rhabdomyosarcoma [211],
a malignant tumor of soft tissue in children and adolescents. In rhabdomyosarcoma analysis, it
was shown that inhibiting the lead protein stops and reverses as well as prevents malicious cell
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transformation [211]. The benefit of TIS in monitoring protein networks for a better understanding
of drug actions was demonstrated for the pain reliever and fever reducer dipyrone [129]. Very
recently, TIS was shown to improve the understanding of impaired immune surveillance by T lym-
phocytes in manifest human skin cancer [83]. Despite these promising results, TIS is so far not
used in clinical routine and has been installed at just a few research centers across the world.

1.4.3 Toponome Analysis

Compared to standard Ultrasound, CT or MR medical image data from clinical routine, toponome
data are rare and have been acquired for only a few diseases and drugs. In a novel application, often
little can be predicted regarding expected protein clusters and lead proteins. While the presence
of certain proteins can be presumed based on a priori biological knowledge, which also guides
the selection of affinity reagents for the experiment, protein topology may be mostly unknown.
Hence, the analysis of toponome data typically starts with a hypothesis-free visual exploration of
the extracted CMPs and involves multiple biological tasks. This section starts with an explanation
of these tasks and then, elaborates on the biological workflow aiming at their accomplishment. The
workflow description is given from a perspective before the contributions of this thesis to clarify
the starting point. It discloses various shortcomings from which requirements on an improved
workflow support were derived. These requirements motivated the work in Part II of this thesis
and are detailed at the end of this section.

Biological Tasks In interviews with toponome experts, observations of their daily work, and
reviews of their publications, the following tasks have been identified:

1. detection of selective CMP patterns,

2. comparison of CMP patterns,

3. discovery of lead proteins, and

4. identification and localization of co-mapping proteins.

In (1), CMP patterns are searched for that are specific to a certain cell or tissue region of the
sample instead of appearing anywhere in the data. This search is part of (2) the pattern comparison
between samples of healthy and diseased tissue, cells of different types, individual developmen-
tal stages of a cell’s life cycle or cells before and after drug administration. The results of (1)
and (2) contribute to an understanding of cell composition and function. Furthermore, patterns
that are selective for certain pathology, particular cell type or developmental stage of a cell may
serve as biomarkers in the screening for diseases. They constitute the basis for (3) lead protein
discovery. Lead proteins are omnipresent in functionally relevant units of a cell as indicated by
the corresponding CMPs. In rhabdomyosarcoma cells for instance, a specific protein was found to
be present in each CMP at cell extensions developing in the course of metastasis formation [211].
In (4), co-mapping proteins, i.e. those being mapped to the same pixel or voxel somewhere in
the data, are identified and localized. Co-mapping quantities are determined and the spatial distri-
bution of co-mapping is investigated. The spatial proximity of proteins provides no evidence but
suggests binding partners in protein-protein interactions [270].
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Biological Workflow The biologists accomplish these tasks in their in-house visual analytics
framework MultiCompare implemented as coordinated multiple views system employing link-
ing & brushing. In early versions, this framework comprised a table view, a toponome map view,
and a filter view (Fig. 2, p. 105, Chap. 6; filter view is not shown). In the course of the habilitation,
additional views and interaction facilities were added to MultiCompare as will be detailed in
Section 1.4.4. However, the following workflow description neglects these new features to clarify
the starting point.

Since MultiCompare does not support the handling of 3D toponome data, individual slices
are processed separately and the results are aggregated and matched externally. After 2D toponome
data has been loaded into the framework, the table view lists all CMPs as rows, sorted according
to frequency of occurrence from top to bottom, and all proteins as columns following their order
of acquisition (Fig. 2(a), p. 105, Chap. 6). Table entries equal 1 or 0 and indicate protein present or
absent, respectively. Each CMP is assigned a unique color which serves as its visual identifier in
all views of the framework. The toponome map view shows a background grayscale phase contrast
image which facilitates a rough visual separation of background, cell surface, and cell nucleus and
hence, provides a spatial reference for exploration (Fig. 2(b), p. 105, Chap. 6). The filter view
allows for the definition of a template CMP, which is then matched with the set of existing CMPs.
Each protein of the template can be set to 1, 0 or a wildcard symbol with the latter indicating that
both values are accepted.

The biologists familiarize themselves with the spatial domain of the data by inspecting the
phase contrast image. Then, they search for selective CMP patterns employing local investigation
representing one of the feature specification patterns of interactive visual analysis (Sec. 1.2.3). A
morphologically interesting focus region is defined in the background image using a rectangular
brush (Fig. 2(b), p. 105, Chap. 6). The CMPs inside the brushed region are computed, their corre-
sponding rows are highlighted in the table view, and the respective regions of the toponome map
are superimposed on the background image. Highlighting and superimposition both employ the
CMPs’ unique identifier color. In the toponome map view, the CMPs are superimposed inside but
also outside of the brushed region. The latter is required to evaluate if the CMP pattern is selec-
tive or appears anywhere in the data. If the pattern is not selective, the exploration proceeds and
a new focus region is defined. A new rectangular brush has to be created from scratch since the
existing one is neither draggable nor resizable. If a selective pattern is found, it is compared with
patterns of other cells or cell parts. Since no multiple brushes are supported, multiple instances
of MultiCompare must be opened for pattern comparison. The biologists then employ an ex-
tra plug-in for computing pattern similarities and differences based on stored copies of two CMP
tables, each with labeled rows indicating the respective pattern.

The table view is utilized for further investigating a selective CMP pattern regarding its con-
tributing CMPs and their proteins. Each protein column is checked for omnipresence of entries
equal 1 across all highlighted table rows to discover lead proteins. Furthermore, each highlighted
row is inspected for multiple entries equal 1 to identify co-mapping proteins. The location and spa-
tial distribution of the co-mapping proteins of a particular CMP can be observed in the toponome
map view by searching for the likewise colored regions. If the biologists are interested in spe-
cific co-mapping quantities or co-mapping proteins in the entire sample, not just a focus region,
they employ feature localization representing another one of the feature specification patterns of
interactive visual analysis (Sec. 1.2.3). They either select one or multiple CMPs exhibiting inter-
esting co-mapping proteins in the table view or define a template CMP using the filter view both
triggering an update of the toponome map view. The co-mapping quantities are displayed in the
status bar. In order to protocol the insights gained during an analysis session, the biologists create
screenshots of MultiCompare and integrate them in their laboratory book.
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Requirements on Improved Workflow Support The described workflow suffers from various
shortcomings from which the following requirements (R) on an improved workflow support were
deduced:

R1 Exploration and visualization of 3D toponome data. The slice-wise processing is extremely
tedious and error-prone. The comprehension of 3D structures is severely complicated by
mental aggregation of 2D slice information. A 3D visualization must offer interaction facil-
ities for focus region definition and for mitigating occlusion problems.

R2 Dynamic, flexible focus region. Redefining each new focus region from scratch significantly
slows down the detection of selective CMP patterns. It hampers the comprehension of pattern
changes between neighboring sample regions. Draggable and resizable regions was well as
a paralleling fluent update of all views are required.

R3 Multiple focus regions. The missing support for multiple focus regions strongly hampers the
comparison of CMP patterns. An elimination of this shortcoming requires techniques for the
visual separation of multiple CMP patterns in both, the table and the toponome map view.

R4 Hints on lead proteins. Manually searching for lead proteins in a CMP pattern is time-
consuming and error-prone since the table view is not restricted to the corresponding rows
of the pattern (Fig. 2(a), p. 105, Chap. 6). Tables often comprise hundreds to thousands of
CMPs requiring extensive scrolling. The likelihood of being a lead protein could instead
easily be computed per protein based on the percentage of CMPs it is registered for.

R5 Comprehensive overview of protein co-mapping. Manually searching for co-mapping proteins
of a CMP pattern is time-consuming and error-prone since entries of present proteins are
not highlighted in the table view (Fig. 2(a), p. 105, Chap. 6). An overview visualization of
protein co-mapping is required indicating also co-mapping quantities

R6 In-place annotation of CMPs and proteins. Visually matching CMPs in the table view with
their corresponding regions in the toponome map view and vice versa, e.g., in a fine-grained
investigation of a selective CMP pattern, requires the user to constantly move the focus of
attention back and forth between the views. Often, the views are displayed on separate
screens to gain maximum space. The investigation would strongly benefit from annotating
CMPs and their registered proteins directly in the toponome map or a 3D view (R1).

R7 Optimized CMP identifier colors. The matching mentioned in R6 is error-prone due to similar
colors assigned to different CMPs. Given the potentially high number of CMPs and the
limited ability of humans to reliably discriminate multiple colors, this is inevitable. However,
a CMP pattern of interest often comprises just a small subset of all existing CMPs and for
its identifier colors, a temporary increase in perceptual difference is required.

1.4.4 Visual Analytics: Potential and Approaches
Potential Toponome data constitute an instance of scientific multivariate data since they rep-
resent spatial structures and comprise multiple channels or attributes. Approaches to the visu-
alization and visual analysis of scientific multivariate data have been surveyed by Kehrer and
Hauser [102]. None of the reviewed visual analysis approaches offers dedicated support for bi-
nary data. However, many oft them build upon the interactive visual analysis methodology and
are implemented as coordinated multiple views system comprising a physical and various types of
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attribute views (Sec. 1.2.3). The workflow for analyzing toponome data is also realized in such a
system (Sec. 1.4.3). The surveyed approaches comprise analysis components, e.g., for computing
correlations between attributes or for dimensionality reduction. These components are designed
for processing quantitative data and require an adaptation for binary data analysis [33].

Most attribute views in interactive multivariate data analysis employ standard visualization
techniques intended for quantitative data, such as scatter plot and parallel coordinates. Binary data
require other abstract visualizations as for instance a matrix [80; 197], a graph [166], dedicated
glyphs [125], and other custom forms [118]. Matrix and graph are particularly well-suited for
representing co-mapping proteins. Entries equal 1 in an adjacency matrix and an edge between
two proteins indicate co-mapping pairs. Interesting patterns in matrices can be revealed by matrix
reordering [80]. Matrix representations are also applied in comparing multiple binary data sub-
sets [197]. This could be transferred to CMP patterns. Graphs can be coupled with glyphs for
encoding co-mapping quantities [166] and for showing protein relations derived from biological
pathways [34]. General graph properties can be determined using graph analysis methods and
local topology information can be extracted by means of graph signatures [265].

Physical views for visualizing scientific multi-variate data frequently apply glyphs or layering
techniques [102]. The latter encode each attribute in a separate layer and employ opacity modula-
tion or different rendering styles in a combined representation of these layers. None of the tech-
niques can cope with the high number of attributes in toponome data (up to 100 proteins [211]).
While at no spatial position all imaged proteins co-map, the maximum observed number may still
be in the double figures. The high local entropy of toponome data poses further challenges. In
contrast to larger homogeneous structures in medical images, phenotypically identical structures
in toponome data may cover only a few pixels. This together with the high number of attributes and
the binary nature of the data requires dedicated 3D visualization and exploration techniques [167].

As indicated in the paragraph on data transformation in Section 1.4.2, binarization of the raw
toponome data is a sensitive task requiring the careful fine-tuning of thresholds. Subtle differences
in thresholding may have a considerable impact on the subsequent data analysis (Sec. 1.4.3). Vi-
sual analytics methods may help the biologists in investigating this source of uncertainty and in
incorporating uncertainty in their toponome analysis workflow [135].

Approaches The approaches presented in Part II of this thesis are motivated by the requirements
R1-R7 on an improved workflow support for analyzing toponome data (Sec. 1.4.3). Their compli-
ance with these requirements is summarized in the following. All approaches have been integrated
into the coordinated multiple views framework MultiCompare to advance the visual analytics
of toponome data (Fig. 2, p. 105, Chap. 6).

Oeltze et al. [166] presented the interactive, graph-based visual analysis of toponome data
(Chap. 4). They focused on complying with requirement R5 and secondary with R1-R4, and
R7. They extended the SimVis framework described in Section 1.2.3 by a graph and a table
view (Fig. 3(b,e), p. 91, Chap. 4). The graph view was later integrated into MultiCompare by
Klemm [108]. It shows the proteins of the current CMP pattern as nodes and co-mapping protein
pairs as edges (R5). The edge width encodes co-mapping quantity (Fig. 3(b,d), p. 91, Chap. 4).
Lead proteins are indicated by the filling level of circular glyphs attached to the nodes of the graph
(R4). A circle is fully filled if the corresponding protein is registered for every CMP of the pattern
(Fig. 5, p. 92, Chap. 4). A resizable and draggable focus region can be defined in a scatter plot
opposing x-and y-coordinates of the cell sample (R2, Fig. 6, p. 92, Chap. 4). Focus region modifica-
tion triggers an update of all linked views, which is achieved at interactive frame rates by means of
parallel programming. SimVis allows for the definition of multiple features, e.g., CMP patterns,
by means of multiple brushes (R3). The graph representation of a feature then visually emphasizes
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the differences in comparison with the respective other feature (Fig. 7, p. 93, Chap. 4). SimVis
copes with both, 2D and 3D toponome data and its f ocus+ context volume rendering view shows
a CMP pattern in its spatial context (R1, Fig. 3(c), p. 91, Chap. 4). Interaction facilities besides
standard navigation are not provided. The color transfer function mapping can be parameterized
such that always the full range of available colors is employed in visualizing the current CMP
pattern (R7). However, this yields multiple colors for the same CMP during an analysis which im-
pairs its recognition. A supplemental video further illustrating the compliance with all mentioned
requirements is available at https://www.youtube.com/watch?v=nU9yLY7lXyM.

Oeltze et al. [167] introduced dedicated visualization and exploration techniques for 3D to-
ponome data (Chap. 5). They focused on complying with requirements R1 and R7 and secondary
with R2 and R6. The developed 3D view, its associated interaction facilities, and the proposed
CMP color assignment were developed within MultiCompare by Klemm [108]. The 3D view
is based on a focus+context ray-casting approach similar to SimVis (R1). However, instead of
mapping CMPs through a color transfer function, it directly employs the unique CMP colors com-
puted by MultiCompare (Fig. 3, p. 98, Chap. 5). In a close-up view of the sample, e.g., a
zoom in on a specific cell, the visual separability of the currently visible CMPs can be improved
on demand (R7). They are temporarily assigned a new set of identifier colors with a sufficient
perceptual difference (Fig. 5, p. 99, Chap. 5). Once the analysis continues, the original coloring
is restored. Similar to delineating a focus region in the 2D toponome map, a focus volume can be
defined directly in the 3D view by means of a resizable and draggable brush (R2, cf. Fig. 2(b),
p. 105, Chap. 6 and Fig. 7, p. 101, Chap. 5). On mouse hover in the 3D view, the visible CMP
under the mouse pointer is determined and the names of its co-mapping proteins are displayed in a
tooltip (R6). In order to mitigate typical occlusion problems in 3D, layering cell structures can be
successively peeled off (R1, Fig. 8, p. 101, Chap. 5).

More recently, Oeltze-Jafra at al. [172] proposed an interactive labeling method for annotating
toponome data (Chap. 6). They focused on complying with requirement R6 and secondary with
R2-R5. The labeling was developed within MultiCompare by Pieper [177]. The basic idea
was to employ a dynamic version of necklace maps [226] to provide in-place annotations of CMP
patterns within the toponome map (R6). A resizable circular focus region can be dragged across
the map (R1). Simultaneously, circular symbols strung on two surrounding necklaces label the fo-
cused CMPs and their proteins (Fig. 3, p. 107, Chap. 6). The color of a protein symbol encodes the
percentage of focused CMPs this protein is registered for. A distinct coloring indicates potential
lead protein candidates (R4, yellow and green in Fig. 3, p. 107, Chap. 6). Clicking on a protein
symbol highlights all symbols of co-mapping proteins and all symbols of CMPs this protein is reg-
istered for (R5). Clicking on a CMP symbol highlights all symbols of proteins registered for this
CMP. Multiple focus regions can be defined and their respective necklaces are organized in a sep-
arate, storable management view (R3, Fig. 6, p. 109, Chap. 6). The non-overlapping display there
simplifies a comparison of the necklaces, i.e. the represented CMP patterns. The management
view provides a means to structure and log the visual exploration of toponome data. A supple-
mental video further illustrating the compliance with all mentioned requirements is available at
https://www.youtube.com/watch?v=9sCSPctFRTc.

No further visual analytics approaches tailored to spatial, binary, multi-variate data are known
to the author of this thesis. However, Kölling et al. [116] presented a web-based visual analytics
tool for mining protein co-mapping in the raw fluorescence data. They employed self-organizing
maps for clustering the multi-channel fluorescence response and glyphs for visualizing the clusters.
Each glyph encodes the proteins’ average fluorescence intensity profile for that cluster. In a coor-
dinated multiple views system, toponome map views, a clustering results view, and a bookmark
list logging inspected clusters are synchronized.

https://www.youtube.com/watch?v=nU9yLY7lXyM
https://www.youtube.com/watch?v=9sCSPctFRTc
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A few other approaches related to the visualization and visual analysis of multi-channel 3D
microscopy data are briefly described in Section 3.2 on page 97 of Chapter 5. More recent work
in visual analytics of biological image data is dedicated to the investigation of kinetic changes
in cells deduced from fluorescence microscopy data [99], to the study of neuronal connectivity
derived from electron microscopy data [1; 11], and to the discovery of potential relationships in
digital histology image collections [38]. However, none of these approaches can readily process
neither raw nor binarized toponome data.

1.5 Epidemiological Population Study Data
This section provides context for the cumulated publications of Part III. It briefly introduces pop-
ulation studies in epidemiology (Sec. 1.5.1), describes specifics of the study data and their acqui-
sition (Sec. 1.5.2), and elucidates the standard epidemiological workflow for analyzing the data
(Sec. 1.5.3) as well as the potential of visual analytics (Sec. 1.5.4). Further details regarding
all these aspects are given in the work by Preim et al. [181] which corresponds to Chapter 7.
Since we submitted this work in February 2014, a short update on the most recent work in visual
analytics of population studies, including the publications cumulated in this postdoctoral thesis
[4; 112; 113; 170] (Chap. 8-11), is integrated in Section 1.5.4. The update focuses on visual ana-
lytics of population studies in epidemiology, and in particular, on those comprising the acquisition
of medical image data. Another scientific field frequently conducting such image-centric studies,
which however include considerably less individuals (n), is neuroscience. For instance in dementia
research, MRI data of the brain is acquired and hippocampal activity (n = 22 [133]) and morphol-
ogy (n= 9 [106]) are related to results of memory performance tests. The publication in Chapter 11
[170] was created in this context. Electronic health records stored in hospital databases provide
information about health-related events in patient populations. Unlike population study data, these
records are not compiled for the investigation of specific diseases or health-related effects and risks
but mainly for process optimization and quality control in health care. However, they provide an
invaluable source of information for epidemiologists, their investigation is a hot topic in visual
analytics, and the approaches developed there are transferable to population study data. Hence,
a brief introduction to the visual analytics of electronic heath records is given in Section 1.6.2
although these data have not been in the focus of this thesis.

1.5.1 Role of Population Studies in Epidemiological Research
A comprehensive introduction to epidemiology is given by Merrill [144] and a dictionary of epi-
demiological terms has been compiled by Porta et al. [179]. Epidemiology is a branch of medicine.
In contrast to clinical medicine, it does not focus on the diagnosis and treatment of a specific dis-
ease, such as a cerebral aneurysm, in a single patient (Sec. 1.3.1). Instead, epidemiology is a sci-
entific discipline investigating the occurrence and distribution of health-related events in defined
populations [179]. The term “defined population” refers to individuals sharing a common charac-
teristic such as gender, ethnicity, health condition or residential area (close to a nuclear plant or the
seashore etc.). Epidemiological investigations typically pursue at least one of the following goals:

1. determination of prevalence and incidence of diseases, i.e. number of diseased people at a
certain point in time and number of people falling ill within a specified time period,

2. identification and characterization of risk factors being casually related to changes in relevant
health conditions and based on that
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3. assessing per individual the risk of falling ill with a specific disease,

4. efficiency evaluation of preventive and therapeutic measures, and

5. determination of differences between healthy aging and pathologies in an early stage.

Exemplary results of such investigations are the linear relationships between cancer risks and
ionizing radiation dose [61] or nicotine intake [41], the U-shaped relationship between the risk of
dementia and alcohol consumption [193], and the J-shaped relationship between the risk of coro-
nary heart disease and alcohol consumption [31]. Further results prove that epidemiology is not
just a pure academic endeavor but has huge consequences, also for clinical medicine. Mildred Vera
Peters demonstrated that in treating early-stage breast cancer, breast-conserving surgery followed
by radiation therapy is as effective as radical mastectomy while at the same time having a much
lower emotional impact [175]. Tukenova et al. showed that radiation dose must be minimized in
treating cancer in children and adolescents since higher doses correlate with an increased late mor-
tality from sarcoma, carcinoma, and hematological malignancies [240]. A wide range of public
campaigns, screening recommendations, and treatment suggestions as for instance, passive smok-
ing protection, safer sex education, vaccination plans, breast and prostate cancer screening, and
suggestions for diabetes treatment, are all based on epidemiological research.

Population studies are the main vehicle of epidemiological research. They collect hundreds of
socio-demographic, lifestyle-related, and health-related variables for thousands of individuals in
a defined population by means of interviews, questionnaires, and various medical examinations.
Studies in modern epidemiological research, such as the Study of Health in Pomerania (SHiP)
[256], comprise laboratory tests of blood, urine, and DNA, sleep monitoring, electrocardiogram
(ECG) recording, and also medical imaging. In 2008, SHiP was the first study to even include
whole-body imaging [78]. The inclusion of medical imaging in a population study bears a great
potential since it facilitates a survey of the broad variability in vital organ anatomy and physiol-
ogy, an improved characterization of health and disease, and a differentiation between physical
effects of normal aging and pathologies. Due to ethical reasons, non-invasive imaging techniques
such as Magnetic Resonance Imaging (MRI) and Ultrasound (US) are commonly employed for
investigating a healthy population.

Epidemiological studies are often longitudinal, i.e. carried out in multiple waves over years.
If a defined population is traced over time, it is referred to as a cohort and its study is termed
cohort study [179]. The visual analysis of cohort study data in chapters 8-9 had to be restricted
to one wave due to a lack of medical image data for the remaining waves. Accordingly, the term
population study might have been more appropriate in the corresponding publications. Examples
for cohort studies which comprise medical imaging, so-called image-centric cohort studies [181],
are:

SHiP [256] Initial population: 4,308 adults of all age groups; Focus: explanation of health-related
differences between East and West Germany after the German reunion; Imaging: US, whole-
body MRI, contrast-enhanced MRI [78]

Rotterdam Study [84] Initial population: ≈8,000 adults older than 45 years; Focus: neurologi-
cal, cardiovascular, loco motor, and opthalmic diseases; Imaging: US, MRI including Diffu-
sion Tensor Imaging (DTI), resting-state functional MRI (rs-fMRI), perfusion MRI [92]

UK Biobank [2] Initial population: ≈500,000 adults aged between 40-69 years; Focus: diseases
with high prevalence in aging society such as cancer, heart diseases, stroke, diabetes, and
dementia; Imaging: brain, cardiovascular, and abdominal MRI, carotid US, and Dual-energy
X-ray absorptiometry (DEXA) of ≈100,000 participants [176]
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Norwegian Cognitive Aging Study [272] Initial population: 170 adults (120 female) aged be-
tween 46-77 years; Focus: understanding of relationship between brain anatomy, cognitive
function, and genetics; Imaging: MRI including DTI and rs-fMRI

German National Cohort [60] Initial population: ≈200,000 adults aged between 20-69 years;
Focus: understanding the causes of widespread diseases such as cancer, dementia, diabetes,
and cardiovascular diseases; Imaging: US including 3D-echocardiography and brain, car-
diovascular, and abdominal MRI of ≈30,000 participants

Honolulu-Asia Aging Study [58] Initial population: 3,734 Japanese-American men Focus: de-
mentia screening of an originally dementia-free population; Imaging: brain MRI [93]

The cumulated publications of Part III are largely based on the SHiP data pool (Chapters 8-9)
but also on data from the Norwegian Cognitive Aging Study (Chapter 10).

1.5.2 Specifics of Population Study Data and their Acquisition
All epidemiological instruments need to be applied in a highly standardized manner in order to
guaranty comparability of the data across subjects as well as over time. Standardization is a crucial
aspect already in the planning phase of a study. For instance, multiple physicians and nurses are
trained to perform a medical examination and the interpretation of results, e.g., the reading of
imaging data, exactly in the same way to minimize inter-observer variability. Vendors of medical
scanners are indentured to refrain any software or hardware updates being usually applied over
the lifespan of a device. This is to ensure the comparability of image data acquired at different
waves of a study. Standardization of the imaging including calibration of the scanner becomes
even more difficult if multiple devices at different institutions are employed. For instance in the
German National Cohort, imaging is distributed over five cities [60].

Epidemiological data are very complex and heterogeneous. Image data and derived data such
as segmentation masks even increase this complexity. The collected variables relate to physical
measures, such as blood pressure, heart rate or plasma glucose concentration, aspects of lifestyle,
such as drinking and smoking habits, socio-demographic factors, such as education level and oc-
cupation, and to visual, hearing, and cognitive function. Some variables have been collected only
at later waves due to technical advances or have been removed after a reevaluation of their relia-
bility. Other variables are only available for a subpopulation, e.g., childbirth status and menstrual
period of women, or are based on follow-up questions, e.g., the number of cigarettes smoked per
day is only recorded for individuals who smoke. The variables differ with respect to their data
type: nominal, ordinal, or quantitative. Examples are occupation, income level, and body height.
Dichotomous variables represent a subtype of nominal variables and assume only binary values.
Examples are gender and questions with the only possible responses being “yes” or “no”. The
data type of a variable determines the set of appropriate visualization techniques. Sophisticated
approaches are necessary for the joint analysis and visualization of variables with different types.

The analysis of epidemiological studies is hampered by unreliable and missing data. A clas-
sical example of the former are self-reports of drinking behavior and sexual practices, which tend
to be biased towards socially accepted answers. A good questionnaire design incorporates redun-
dant questions to counteract this effect. Study data may be incomplete due to individuals who
drop out of the study since they pass away or move. Further reasons may be the denial of an-
swering particular interview questions or the ineligibility for a certain imaging procedure, e.g.,
MRI due to claustrophobia. Missing data are a very critical issue and several guidelines such as
the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement
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exist recommending that cohort studies report on the amount of missing data, the reasons, and
the solution strategies [257]. Missing data can be handled up to a certain degree. Donders et al.
[42] demonstrate that straightforward techniques such as complete case analysis and overall mean
imputation introduce bias and discuss more sophisticated imputation strategies.

The handling of missing data is part of data cleansing and can hence be considered a data
transformation step in the visual analytics process (Fig. 1.1). Another common step, the conversion
of raw data into a logical structure, is not necessary in case of epidemiological cohort studies due
to the highly standardized and formalized data acquisition and subsequent data preparation and
quality control by experts. The data are comprehensively described by a data dictionary precisely
defining all variables and their value ranges. Visual analytics approaches still need to consider
outliers, potentially unreliable/uncertain data, and imputed data values.

1.5.3 Standard Epidemiological Data Analysis Workflow
The following description of the standard workflow in epidemiological data analysis is based on
discussions with collaborators and work observations by Thew et al. [236]. A schematic overview
of the workflow is provided in Figure 1(a) on page 152 of Chapter 9.

The workflow is driven by an a priori hypothesis, which often evolved from observations of
physicians in their clinical routine. For instance, the onset of a particular disease may be seen
more frequently in people with a specific lifestyle. In the course of verifying the hypothesis, either
a new population study is initiated or a large-scale study is analyzed retrospectively given that the
prevalence of the disease is high enough in the studied population. A list of variables potentially
related to the hypothesis is then extracted from the study data. Next up, subgroups of individuals
are defined by categorizing variables, e.g., age is divided into 20 years bins in order to determine
a per-group risk of falling ill with the disease. Larger groups increase the statistical significance
of the results as compared to determining risks for specific ages. Categorization yields typical
epidemiological statements such as people between 20 and 40 years have a 30% lower risk of
falling ill with the disease than people between 40 and 60 years.

From the list of variables, confounders must be identified and later considered when inter-
preting the results. For instance, the effects of alcohol consumption on a certain health condition
may be overestimated when the potentially confounding variables smoking and diet are neglected.
Without the control of confounders, wrong causal relationships may be derived from the associ-
ations of variables. As an example, a causal relationship between gingerbread consumption and
leg fractures may be derived from their positive correlation, e.g., gingerbread causes leg fractures,
when ignoring the confounding variable season. During winter time, gingerbread is included in the
range of products offered by food stores and more people go skiing yielding an increased number
of leg fractures.

In the final, most important step, associations between the variables and the investigated dis-
ease are determined using statistical methods such as regression analysis. The associations in-
dicate whether variables/factors influence the disease thereby confirming or disproving the given
hypothesis. The statistical significance of this influence (p-value) and the relative risk of falling
ill with the disease relative to a factor represent important outcomes of epidemiological research.
Visualization plays a minor role in the standard epidemiological workflow and is restricted to
conventional statistical plots such as histograms, box plots, and scatter plots. More sophisticated
graphical representations such a Kaplan-Meier curves and odds ratio plots are mainly employed
in disseminating epidemiological research results (Fig. 1-2, p. 125, Chap. 7).

Incorporating the analysis of medical image data of a population into the workflow poses ad-
ditional challenges [238]. The images itself are too complex to be fed directly into the standard
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analysis pipeline which is tailored to variables aggregated in data tables. However, epidemiologists
are not interested in the images themselves but in deriving numerical variables characterizing the
image data content and integrating these into the table for further processing. Example variables
are measures related to organ shape and size, angle, location, and neighborhood of structures, and
tissue density. The computation of these measures for data of a population requires robust, fully
automatic segmentation and quantification algorithms. Even semi-automatic approaches are un-
suitable and approximations instead of fine-granular segmentations are accepted. Rak et al. [187]
describe a rough detection of the lumbar spine by means of a hierarchical finite element model.
While the individual shape of the vertebrae is not captured by the model, their position and ori-
entation as well as the bending of the spinal canal are represented. The model-based detection
approach and its applications to cohort study data are detailed in Chapter 7 [181], pp. 129-132 and
Chapter 8 [112], respectively.

As part of this thesis, an automatic approach to sampling the thickness along a hippocampal
subfield, the Stratum Radiatum/Lacunosum-Moleculare (SRLM), was developed (Chap. 11 [170]).
The approach was evaluated based on a small population (n = 27) for which the hippocampus
and its subfields were manually segmented in ultra-high field 7-Tesla MR images. However, an
automatic segmentation of large-scale population study data seems feasible [91] and could be
coupled with the automatic thickness sampling in the future.

Reproducibility and statistical soundness are crucial aspects of the epidemiological workflow.
Running the workflow again on the same data must yield the same results and running it on data of
different study waves must yield contrastable results. All steps of the analysis must be monitored
and reported such that other epidemiologists can run the same workflow on a new cohort study
and compare their results to previous work. A crucial aspect of statistical soundness is the proper
consideration of the underlying data distribution. Several statistical methods are only applicable
to normally distributed data, which are less frequent than generally assumed. Different types
of statistical tests, such as normality tests, exist for verifying assumptions about the underlying
distribution.

1.5.4 Visual Analytics: Potential and Approaches
Potential Visual analytics bears a great potential in evaluating cohort study data by providing
a methodology for their visual exploration and automated analysis. Klemm et al. [113] propose
the integration of an interactive visual analysis step into the standard epidemiological workflow
(Fig. 1(b), p. 152, Chap. 9). In their coordinated multiple views system, variables can be added
or removed from the analysis via drag and drop and the definition of subgroups can be adjusted
interactively, both triggering an update of the statistical analysis (Fig. 3, p. 155, Chap. 9). Very
recently, Krause et al. [119] presented an approach to subgroup definition based on temporal
patterns of interest and pattern matching.

The data mining component of the visual analytics process facilitates a data-driven definition of
subgroups revealing more complex, hidden patterns. For instance, individuals may be clustered ac-
cording to variables derived from image data or socio-demographic and lifestyle-related variables
[109; 113]. The resulting clusters can then be interrelated with other variables. Klemm et al. [113]
clustered a SHiP subcohort regarding their spinal canal bending and related each cluster, e.g., to
self-reported back pain and the level of physically heavy work (Sec. 6, pp. 157-159, Chap. 9).

While the traditional epidemiological workflow requires an a priori hypothesis, visual analytics
supports hypothesis generation as part of an extended workflow. Turkay et al. [242] investigated
data of the Norwegian Cognitive Aging Study employing their dual analysis coordinated multiple
views framework. They demonstrated the generation of new hypotheses in pair analysis sessions
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with domain experts. Bernard et al. [10] recently presented a visual-interactive system for the anal-
ysis of prostate cancer cohorts and demonstrated its integration in an epidemiological workflow for
hypothesis testing and generation. Since reproducibility plays a crucial role in epidemiological re-
search, monitoring and protocoling the workflow is of utter importance. A suitable approach based
on a filmstrip metaphor has been proposed in the context of coordinated multiple views systems
by van den Elzen et al. [246]. It supports capturing all intermediate steps of an analysis process
which can then be revisited and adapted using a rewind and fast-forward navigation mechanism.

The potential of visual analytics in investigating cohort study data was realized by Gotz et
al. who hold a patent on the “Iterative Refinement of Cohorts Using Visual Exploration and Data
Analytics” [65]. The preamble of the pattern states: “A need exists for an integrated system that
combines visual exploration and data analytics to interactively visualize and refine cohorts, request
analytics on those cohorts, and make new discoveries.” Several claims on such a system are for-
mulated including the integration of methods for reducing a cohort using one or more visual filters,
for visualizing a cohort using selected views, for expanding a cohort by one or more analytics, and
for determining whether a cohort should be further modified based on, e.g., statistical measures.

Approaches Medical image data of a large-scale population provide a survey of the broad vari-
ability in vital organ anatomy and physiology and allow for an improved characterization of health
and disease as well as a differentiation between physical effects of normal aging and pathologies.
Klemm et al. [112; 113] investigated the SHiP data with a focus on lower back pain (Chap. 8-9).
They were interested in studying the shape variability of the lumbar spine, the relation of the vari-
ability to socio-demographic and biomedical factors, and the differentiation between pathologic
and aging-related spine deformations.

In order to analyze lumbar spine shape, a detection algorithm based on a hierarchical finite
element model was applied to MRI data of the spine scanning protocol [187]. The detection
resulted in the centerline of the spinal canal as well as position and orientation of the vertebrae
(Fig. 1, p. 145, Chap. 8). The subsequent analysis focused on the spinal canal bending, i.e. the
curvature of the centerline [112]. It is related to typical deformations such as lumbar hyperlordosis
(abnormal inward curvature in the sagittal plane), hyperkyphosis (abnormal outward curvature in
the sagittal plane), and scoliosis (abnormal S- or C-shaped curvature in the coronal plane). The
bending was approximated by the mean curvature and related to the SHiP variables body height,
gender, age, and weight. The reproduced textbook knowledge and a new potentially interesting
finding are discussed in Chapter 8, p. 149.

Later, Klemm et al. [110] computed associations between further image-derived variables,
such as spinal canal torsion and curvature angle along each projection axis, and non-image vari-
ables, e.g., pain indicators [110]. They trained decision tree classifiers to predict pain indicators
based on image-derived variables and compared the predictive power of different types of decision
trees by means of generalized pairs plots [45]. The results indicate that the tested image-derived
variables are not sufficient for characterizing lower back pain in the SHiP data. Better predictive
power may be achieved when incorporating information about the vertebrae, such as position, ori-
entation, shape, and distance between neighboring vertebrae. An interactive approach to decision
tree construction and analysis could further improve the prediction quality [245].

Klemm et al. [112] also investigated the grouping of SHiP participants according to spinal
canal bending (Chap. 8). They applied an agglomerative hierarchical clustering approach coupled
with a method for automatically computing the number of clusters to the centerline geometry [200]
(Fig. 3, p. 147, Chap. 8). One representative centerline was then computed per cluster and all rep-
resentatives were aggregated in a visual summary (Fig. 4, p. 148, Chap. 8). The summary adheres
to radiological viewing conventions by showing a sagittal view of the representatives. While this
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facilitates an easy assessment of bending within the sagittal plane (lordosis and kyphosis), special
depth cues were integrated to convey also bending orthogonal to it (scoliosis). Inspired by ortho-
pedics, manual measurement tools such as ruler and goniometer were integrated (Fig. 5, p. 149,
Chap. 8). Automatic measurements of characteristic distances and angles would be desirable and
could be integrated as derived variables in the analysis process.

In a follow-up work, Klemm et al. [113] developed a coordinated multiple views system and in-
tegrated the shape analysis and the centerline clustering (Chap. 9). By using the cluster ID as a new
variable, the association between a specific bending of the spinal canal and socio-demographic,
lifestyle- or health-related variables could be investigated. For instance, does spine shape corre-
late with age and lower back pain? The results of this hypothesis-driven analysis as well as the
generation of hypotheses in pair analytics sessions with a radiologist are described in Chapter 9,
pp. 158-159. Klemm et al. [109] extended their system by clustering techniques for mixed numeric
and categorical variables. They investigated three clustering algorithms and took special care of
missing data.

The coordinated multiple views system comprises several statistical plots for numerical vari-
ables, such as histogram, scatter plot, and parallel coordinates, and a mosaic plot for categorical
variables [73]. Klemm et al. [113] augmented the histogram and mosaic plot by interactive small
multiples of average lumbar spine shape. For instance in a histogram of body height, the mean
shape per bin is displayed and colored according to its deviation from the mean of the entire
population (Fig. 3(b), p. 155, Chap. 9). Each shape can be rotated and zoomed in on causing a
synchronized update of the other shapes.

Epidemiologists are very much interested in correlations between variables. Klemm et al.
[113] integrated a contingency view comprehensively displaying the correlation strengths of all
pairs of study variables as a matrix (Fig. 4, p. 156, Chap. 9). Specific measures for correlations
between variables of mixed types (numerical and categorical) were employed. The contingency
view inspired the 3D regression heat map view, which was very recently added to the system by
Klemm et al. [111]. It shows the results of a complex regression analysis as a regression cube.
The basic idea is that the epidemiologist specifies a dependent variable, usually a pathology. Then,
the correlations between all possible combinations of two or three independent variables and the
dependent variable are computed. Investigating the regression cube by means of a movable plane
assist in understanding how the dependent variable is effected when one independent variable is
varied (plane position) while the others are fixed.

Fekete [50] emphasized the importance of a data model fulfilling the specific requirements of
visual analytics, in particular very fast responses to queries and seamless integration of heteroge-
neous data. A model based on data-cubes was proposed by Angelelli et al. [4] and integrated in
a prototype for the analysis of the Norwegian Cognitive Aging Study (Chap. 10). The model and
an aggregation engine allow for a seamless integration of data entities with only partially overlap-
ping dimensions (Fig. 1, p. 162, Chap. 10). For instance, fiber tracts and cortical regions share
the IDs of subject and study wave but fractional anisotropy (FA) is only available for fiber tracts
and thickness measures have only been computed for cortical regions. Taking a scatter plot as
an example, how can FA and cortical thickness be compared across the subjects of a study? The
proposed solution employs a flexible and fast aggregation of these dimensions based on statistical
estimators. As a simple example, the mean of FA and cortical thickness values can be computed
across all fibers and cortical regions, respectively. The resulting values for each subject can then
be opposed in the scatter plot. A more fine granular analysis can be achieved by considering the
cortical region through which a fiber segment is passing, which is also stored in the data.

The data cube model and the aggregation engine are implemented as part of a prototypical
coordinated multiple views system. A 3D view shows the brain regions and fiber tracts of a tem-



1.6. FURTHER BIOMEDICAL DATA 35

plate brain (Fig. 2(g), p. 164, Chap. 10). The fibers have been grouped using a spectral clustering
approach [17] and a representative fiber is shown per cluster to reduce visual clutter. Once inter-
esting variable values have been brushed in one of the other views, the associated fibers and brain
regions are highlighted and values averaged over the selection are encoded by color or saturation.
Two case studies demonstrate the potential of the prototype in verifying as well as in generating
hypotheses (Chap. 10, pp. 165-167).

1.6 Further Biomedical Data
Visual analytics approaches for the investigation of many other types of data acquired within fur-
ther medical and biological applications have been presented in the past. A complete overview is
out of the scope of this postdoctoral thesis. In this section, short excursions into the visual analytics
of perfusion data (Sec. 1.6.1), electronic health records (Sec. 1.6.2), and omics data (Sec. 1.6.3)
are given. The former provides context for the cumulated publications of Part IV.

1.6.1 Perfusion Data

Perfusion data represent a specific type of dynamic image data characterizing the regional blood
flow in tissue. They facilitate early-stage detection and improved differentiability of diseases and
are acquired for the diagnosis of breast tumors, ischemic stroke, renovascular diseases, and early
detection and diagnosis of Coronary Heart Disease (CHD). Perfusion data characterize microcir-
culation through tissue capillaries which is in contrast to simulated cerebral and measured cardiac
hemodynamic data conveying the macrocirculation of blood through larger vessels (Sec. 1.3.2 and
1.3.6). Since the average diameter of capillaries (6 µm) is below the resolution of today’s medical
imaging devices, macroscopic parameters characterizing the microcirculation are derived from the
measured perfusion data. In perfusion imaging, either an injected contrast agent is traced over
time or magnetically labeled arterial blood water protons are employed as an endogenous tracer
in Arterial Spin Labeling (ASL). In time-dependent data from contrast-enhanced perfusion imag-
ing, plotting the recorded signal intensity over time yields a time-intensity curve that specifies per
voxel wash-in and wash-out of the contrast agent. Perfusion parameters, such as area under the
curve, peak enhancement, and time to this peak, characterize perfusion and are derived from the-
ses curves. The original spatio-temporal data and up to seven derived parameter volumes must be
integrated for diagnosis.

Oeltze gives a comprehensive introduction to perfusion imaging and data processing in the
context of ischemic stroke and breast tumor diagnosis [164]. Preim et al. [182] and Oeltze [164]
survey exploration, visualization, and visual analytics approaches for the investigation of perfusion
data. Pioneering work in terms of visual analytics has been accomplished by Grzesik et al. [69]
and Subramanian et al. [232] who both presented a coordinated multiple views system for the
interactive visual analysis of cerebral and breast tumor perfusion, respectively. Later, Oeltze et
al. [165] coupled a dimension reduction scheme with the SimVis framework described in Sec-
tion 1.2.3 to reduce the complexity of the perfusion parameter space. Glaßer et al. [64] proposed a
clustering-based visual analytics approach to investigating heterogeneity of breast tumor tissue.

In recent work, Glaßer et al. [63] presented a coordinated multiple views system for the inves-
tigation of longitudinal glioma perfusion studies (Chap. 12). A glioma is a malignant type of brain
tumor that arises from glial cells. Longitudinal studies monitor progression of the glioma in case
its removal would be associated with a considerable risk for the patient. Grading the tumor and
early identification of a potential transformation from low grade to high grade play an important
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role in treatment planning. Glaßer et al. introduced a pipeline for the co-registration of perfu-
sion data from different time steps of the study and dedicated views for monitoring the temporal
evolution of perfusion parameters and tumor growth (Fig. 3, p. 184, and Fig. 5, p. 185, Chap. 12).

Chalopin et al. [28] employed the SimVis framework for evaluating intraoperative ultrasound
(iUS) perfusion imaging in brain tumor surgery (Chap. 13). iUS perfusion imaging is a promising
tool in tumor resection control since it enables a more accurate depiction of the tumor border as
compared to B-mode ultrasound imaging. For evaluation, iUS perfusion data was co-registered to
preoperative Magnet Resonance Imaging (MRI) perfusion data. Then, perfusion parameters were
derived from both modalities and concurrently investigated in statistical plots as well as in the
spatial context of the tumor tissue (Fig. 2, p. 194, Chap. 13).

Raidou et al. [185] introduced a novel visual representation for comparing different phar-
makokinetic models of tumor tissue perfusion. These models are typically fit to time-intensity
curves reconstructed from Dynamic Contrast Enhanced (DCE) Magnetic Resonance Imaging
(MRI) data. Multiple parameters of the fitted model then characterize the tumor perfusion. To
study the variability of these parameters across the different models, a novel plot integrating par-
allel coordinates with cobweb charts has been designed and linked to 2D and 3D physical views
showing the image data.

In very recent work, Raidou et al. [186] presented a visual analytics tool for the exploration
of tumor tissue characterization. A 2D embedding view showing the dimensionality reduced pa-
rameter space of a fitted pharmakokinetic model constitutes the central component of the tool. It
facilitates the visual separation of tissue clusters with similar perfusion characteristics. Clusters
can be brushed and further inspected in a linked physical, multiple statistical, and a tailor-made
cluster analysis view.

1.6.2 Electronic Health Records
Electronic health records (EHR) stored in hospital databases detail patient-individual histories of
diagnosis and treatment. They are mainly compiled for patient care, hospital process optimization,
and quality control in health care. Examples of stored information are medical examinations and
tests, monitored vital signs, e.g., blood pressure, body temperature, and heart rate, medical image
data, diagnosis results, drug prescriptions, and therapeutic measures. Physicians can benefit from
this wealth of information in daily decision making. With the advent of digitized health records,
they became an attractive resource for clinical researchers searching for interesting patterns, e.g.,
complications after interventions correlated with specific prior symptoms. Just like population
study data discussed in Section 1.5], EHR data bear a great potential for epidemiologists in inves-
tigating specific diseases or health-related effects and risks. However, a combination of interaction,
exploration, visualization, and analysis techniques is required to gain insights from these complex
data thereby supporting physicians, clinical researchers, and epidemiologists. A multitude of vi-
sual analytics solutions for EHR data has been presented in the past [188; 263]. The workshop
on “Visual Analytics in Healthcare” annually provides a platform for the most recent work in the
field [87].

Rind et al. [188] surveyed visualization systems for exploring and querying EHR data. They
compared 14 systems in detail regarding the covered types of data, the support for multivariate
analysis, the number of EHRs that can be processed (one or many), and user intents. Additional
32 systems were described more compactly. Most systems focus on EHR data with no inherent
spatialization and solely apply techniques from information visualization. While medical image
data is stored for individual patients in an EHR database, their detailed visualization is of minor
interest in analyzing the database. Instead, clinicians may have derived quantitative attributes
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such as volumes, lengths, and distances from the image data to assess the severity of a disease
or the eligibility of a therapeutic option. These attributes are stored in the database and can be
incorporated into the analysis. This situation is identical to the investigation of epidemiological
population study data 1.5.3. Rind et al. conclude their survey by recommendations and future
research directions for developing EHR systems.

West et al. [263] very recently provided a systematic review of visualization approaches re-
ported for electronic health record data between 1996 and 2013. The focus of early approaches
was on the visualization and analysis of the complex EHR data of a single patient [178]. This was
later extended to multiple patients and larger numbers of events [258]. The most common interac-
tion techniques implemented in the reviewed systems are filtering, scaling, and zooming and the
most frequently used visual attributes are color and density. The most mature system for analyz-
ing EHR data is LifeLines[178] with its extensions and applications LifeLines 2 [258],
LifeFlow [267], and EventFlow [150]. West et al. conclude their review by challenges that
will drive future EHR-related visualization research.

The same interaction, exploration, visualization, and analysis techniques have been employed
in investigating both, EHR as well as population study data. Most existing systems are realized
as coordinated multiple views integrating data mining techniques for clustering, pattern detection,
and dimension reduction. However, there are two major differences that must be considered in
designing an analysis approach tailored to one or the other type of data. First, in contrast to
population study data, EHR data are not acquired in a highly standardized manner within the scope
of a specific study (Sec. 1.5.2). They comprise redundant, irrelevant, as well as subjective measures
challenging users in synthesizing information [21]. Additional data transformation steps such as
data cleansing may be necessary, e.g., to establish comparability between patients or between
results of one patient over time. If this is possible at all, at least such steps contribute to uncertainty.
Second, events in population studies are inherently synchronized across subjects and correspond
to the individual data acquisition waves. Events in EHR data are not necessarily predictable,
e.g., a heart attack, and must be synchronized between patients to facilitate a comparison, e.g., of
symptoms or drug intake within the immediate period before the heart attack [258].

1.6.3 Omics Data
The term omics refers to a collection of disciplines in modern systems biology that study the sum
of similar individual elements in a particular biological sample. Example disciplines investigate
the sum of all genes (genome) in genomics, the sum of all messenger ribonucleic acid (mRNA)
molecules (transcriptome) in transcriptomics, the sum of all proteins (proteome) in proteomics,
and the sum of all metabolites (metabolome) in metabolomics [88]. In toponomics, the entirety
of spatial protein networks (toponome) in a sample is investigated (Sec. 1.4). A broad variety of
applications for omics data exists in biomedical, agricultural, and environmental sciences ranging
from biomarkers for disease and drug design over crop plant improvement to the assessment of
environmental pollutants [8]. Dedicated omics technology is utilized to acquire the data [88]. In
genomics and transcriptomics, microarray technology is employed to simultaneously measure the
expression of thousands of genes. The measurement process results in image data that encodes
the expression level of each gene. Expression levels are then analyzed to determine differences
in DNA sequence between individuals and to detect abnormalities, e.g., chromosomal insertions
and deletions [88]. The most common method for the detection of molecules in both, proteomics
and metabolomics, is mass spectrometry. It is capable of measuring hundreds to thousands of
molecules in a single experiment. The resulting data are applied for identifying and quantify-
ing proteins and metabolites, for characterizing protein structure, determining protein-protein as
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well as protein-metabolite interactions, and in mapping metabolites and their associated chemical
reactions to metabolic pathways.

Omics data are huge and their analysis requires statistical as well as data mining methods,
e.g., for identifying outliers, clusters, and patterns [88]. The likelihood of false positives in the
measured data is highly demanding data validation. Mining and validation should both facilitate
the incorporation of expert knowledge during the data analysis process. Various omics data have
no spatial reference. Information visualization techniques are hence particularly suited to depict
these data. A plethora of visualization tools exists [57; 161]. Many visual analytics approaches to
investigating omics data have been proposed [231; 241]. A part of the most recent related work is
presented at the annual “Symposium on Biological Data Visualization” [85].

Turkey et al. [241] surveyed approaches integrating automated data analysis methods and inter-
active visualizations for the investigation of biomedical data. They presented a categorization with
respect to the level of integration (visualization as presentation, semi-interactive methods, tight
integration) and the analytical task (summarizing information/groups, classification/dependence,
prediction). Many of the surveyed approaches were dedicated to the visual analytics of omics data.
Sturm et al. [231] very recently extended the survey of Turkey et al. [241] by including more such
approaches. Furthermore, they introduced two additional categorization dimensions: visualization
technique (geometric, table-based, icon/glyph-based, pixel-based, graph) and data type (genomics,
proteomics, metabolomics, text, graph, image, multivariate data). The most common visualiza-
tion technique in genomics and transcriptomics is the heat map encoding up- and down-regulated
gene expressions by intensities of red and green. Graph representations are the main vehicle in
proteomics and metabolomics for depicting protein interaction networks and metabolic pathways.
Sturm at al. also elaborate on data mining approaches for different kinds of omics data. They
conclude their survey by a description of open problems and future goals of systems biology such
as the seamless integrated analysis from organs to molecules based on linking medical image and
all types of omics data.

1.7 Summary and Discussion

In medicine and biology, a steadily growing data complexity often paralleling new developments in
image and non-image data acquisition is observed. This complexity poses many challenges on data
processing, visualization, and exploration. It renders the design of overview visualizations, which
convey all interesting patterns contained in the data, impossible. Instead, automatic data analysis
techniques must be tweaked based on expert knowledge and combined with interactive visualiza-
tions for the retrieval of such patterns. This approach is at the heart of the field visual analytics. In
the visual analytics process, analysts derive knowledge from the raw data in feedback loops. They
modify parameters of the automatic data analysis techniques and steer the analysis process based
on the evaluation of intermediate results presented as interactive visualizations (Fig. 1.1). Software
solutions implementing this process build upon techniques from multiple scientific disciplines co-
operating in visual analytics such as visualization, data mining, and human-computer interaction
(Fig. 1.2). The field of interactive visual analysis is tightly connected to visual analytics since their
methodologies highly intersect (Sec. 1.2.3). It stresses the importance of interaction and human
pattern recognition, focuses on data with an inherent spatialization, i.e. measured and simulated
data, and considers automated data analysis rather optional.

In the realm of visual analytics, the postdoctoral thesis at hand contributes to the investigation
of complex data from clinical medicine, biology, and epidemiology. The visual summary in Ta-
ble 1.1 lists the main contributions per paper of the cumulative Parts I-IV as well as the subset of
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scientific disciplines co-operating in visual analytics that these contributions can be attributed to
(columns 2-3). The introductory and survey papers in Chapter 7 and Part V are not included in the
visual summary. The thesis at hand focuses on and contributes to:

• the combination of data mining and interactive visualizations for the visual analysis of sim-
ulated cerebrovascular hemodynamic data (Part I introduced in Section 1.3 and summarized
by rows 1-2 of Table 1.1),

• the interactive visual analysis of toponome data (Part II introduced in Section 1.4 and sum-
marized by rows 3-5 of Table 1.1),

• the joint visual analytics of image and non-image epidemiological population study data
(Part III introduced in Section 1.5 and summarized by rows 6-9 of Table 1.1), and

• the interactive visual analysis of perfusion data (Part IV introduced in Section 1.6.1 and
summarized by rows 10-11 of Table 1.1).

Short excursions on visual analytics of further types of medical and biological data from other
applications round out the thesis (Sec. 1.6.2, 1.6.3).

Simulated Cerebrovascular Hemodynamic Data Patient-individual Computational Fluid Dy-
namics (CFD) simulations of cerebrovascular hemodynamics are conducted to better understand
the causes of cerebral aneurysm initiation, progression, and rupture, to eventually define a rupture
risk score for clinical routine use, and to predict the outcome of endovascular interventions. The
complexity of the blood flow pattern and its stability during the cardiac cycle were both found to
be related to the risk of rupture. In treatment planning, they should be compared across differ-
ent configurations of a virtual intervention in order to determine the optimal configuration. The
blood flow pattern is commonly visualized by a dense set of integral curves resulting in so-called
spaghetti plots suffering from considerable visual clutter.

In Chapter 2, the reduction of visual clutter based on clustering streamlines followed by a
computation of cluster representatives and their aggregation in a visual summary of blood flow was
proposed (Tab. 1.1, row 1). Different clustering algorithms coupled with techniques for estimating
the number of clusters were quantitatively evaluated. An expert evaluation of the visual summaries
created by the best performing algorithm was conducted and the usefulness of the summaries in
comparing different configurations of virtual stenting was assessed. Triggered by one of these
comparisons, a hypothesis regarding thrombosis development favored by a specific blood flow
pattern was generated. In Chapter 3, the focus was on the uncluttered visualization of vortical
flow, in particular, of embedded vortical layers forming around saddle-node bifurcations (Tab. 1.1,
row 2). Flow complexity and stability are strongly related to the existence and number of vortices
and their persistence over the cardiac cycle. A pipeline for the automatic clustering-based detection
and visualization of (embedded) vortices was presented and evaluated in 17 cases studies.

Both chapters restrict the visualization and analysis to a single point in time of the cardiac cycle.
While this facilitates an assessment of flow complexity at this particular point, it does not indicate
flow stability. In fact, embedded vortical flow is known to collapse and reappear over the cardiac
cycle. The investigation of flow stability requires an evaluation of the overall unsteady simulation
data and dedicated techniques for tracking flow features over time [203]. The presented cluster
representatives very well indicate the overall shape of their cluster but fail to convey its spatial
extent. Hence, exploration facilities are offered for displaying the cluster’s original streamlines on
demand. Depth cues should be added to the representatives, e.g., indicating their distance to the
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Table 1.1: Main contributions per paper of the cumulative Parts I-IV. The subsets of scientific disciplines/building
blocks co-operating in visual analytics that these contributions can be attributed to are color-coded in column 2.
Visualization is at the heart of almost each paper and it is being combined with techniques from the surround-
ing disciplines. Some papers contribute or extend a software infrastructure and most comprise an evaluation of
the proposed approach. The individual disciplines and their cooperation in visual analytics are detailed in Sec-
tion 1.2.2. Brief listings of the main contributions of each paper are given in column 3. The visual reminders in
column 4 are meant to strengthen recognition of the papers. This table continues on the next page.
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aneurysm wall, to improve the perception of spatial relationships. The investigation of vortical
flow strongly depends on the approach used for vortex extraction. No algorithm or vortex criterion
are known to guarantee vortex detection [13]. The existing ones generate different results which
should be compared.

The CFD simulation of cerebrovascular hemodynamics is a pure research tool. Most clinicians
are neither familiar with these simulations nor with the techniques for visualizing their results. This
situation may change if the pipeline from patient-specific image data to simulated hemodynamics
is largely automated and simulations were shown to significantly contribute to a reliable risk of
rupture prediction. Ideally, the simulation results in a score based on quantitative and qualitative
hemodynamic parameters. This score is then used in clinical routine diagnosis for aneurysm grad-
ing together with other factors such as aneurysm size, wall thickness, and signs of inflammation.
The road to using CFD simulations in clinical treatment planing is a bit more advanced. Virtual
stenting was shown to assist decision making within an acceptable time frame before the real in-
tervention. Clinicians can test different stent types and positions for the stent and receive visual
feedback potentially including visualizations of the blood flow pattern and its changes after the vir-
tual intervention. In cardiac research, 4D Phase-Contrast (4D-PC) Magnetic Resonance Imaging
(MRI) is applied to measure primarily aortic hemodynamics (Sec. 1.3.6). The clustering-based re-
duction of visual clutter presented in Chapter 2 can be readily transfered to pathline visualizations
of these data (Fig. 1.6).

Toponome Data of Cells and Tissues Toponome data are acquired to identify protein networks
that are characteristic for a certain disease and to pinpoint lead proteins within these networks,
which may represent target molecules in drug design. In toponome imaging, multiple fluorescence-
conjugated tags recognizing proteins are applied to a cell sample or tissue probe and the respective
fluorescence response is recorded by a CCD camera attached to an epifluorescence microscope.
The resulting dataset comprises either an image or a volume per tag depending on whether the
acquisition was carried out in 2D or 3D. In a preprocessing step, the data is binarized resulting in a
combinatorial binary code (protein pattern) per pixel or voxel. If multiple proteins are registered in
a code, i.e. their entries are equal one, they co-map in space indicating protein-protein interactions.
The unique binary codes in the data are referred to a Combinatorial Molecular Phenotypes (CMPs).

In Chapter 4, the graph-based interactive visual analysis of protein co-mapping was presented
(Tab. 1.1, row 3). A graph represents the proteins as nodes and co-mapping pairs of proteins as
edges. Glyphs attached to the nodes encode protein quantities and may hint on lead proteins. The
graph is equipped with brushing facilities such that nodes of interest may be selected. The brushes
can be combined by logical operators thereby defining a template CMP that can be matched with
the data. The graph is integrated in a coordinated multiple views system. Previously, protein
co-mapping had to be derived from a tabular view of the CMPs comprising tens of columns and
hundreds to thousands of rows (Fig. 2(a), p. 105, Chap. 6).

In Chapter 5, a dedicated ray-casting approach for 3D toponome data was proposed (Tab. 1.1,
row 4). Along each ray, it determines the CMP closest to the camera and assigns its precomputed
unique identifier color to the pixel. In close-up views of the data, the set of precomputed colors
can be temporarily replaced by a perceptually optimized set that is computed only for the visible
CMPs. This increases the visual separability of cell or tissue parts with very similar identifier
colors. The 3D visualization of toponome data was integrated in a coordinated multiple views
system. Previously, 3D toponome data had to be processed slice-by-slice and 3D visualizations
were crafted in a separate program. The 3D view was equipped with a brushing facility and an
exploration technique for peeling off clusters of protein patterns to mitigate occlusion problems.
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In Chapter 6, an interactive labeling approach for the in-place annotation of protein patterns in
2D views was presented (Tab. 1.1, row 5). A resizable and draggable focus regions is surrounded
by dynamically updated symbols indicating the currently focused CMPs and their registered pro-
teins. A management view logs annotations of interesting protein patterns and arranges them in a
non-overlapping fashion to simplify their comparison. Two cases studies have demonstrated the
usefulness of the labeling approach in detecting lead proteins. Previously, the CMPs in a focus
region and their registered proteins had to be retrieved in a tedious and error-prone color-based
mental matching of the 2D view and a tabular view listing the CMPs (Fig. 2, p. 105, Chap. 6).

The visual scalability of the graph view and the labeling approach is limited by the avail-
able screen space and minimum requirements on the visual separability of nodes and edges and
the readability of symbol color and text, respectively. The perceptually optimized coloring of
toponome data works well for smaller numbers of CMPs. Its view-dependence however, yields
multiple colors for the same CMP hampering recognition during analysis. The interactive visual
analysis of toponome data is a biomedical research endeavor. Case studies have shown that it
can contribute to the disease-related generation of hypotheses regarding characteristic protein net-
works and contained lead proteins. Larger studies are necessary to verify such hypotheses. In the
long run, toponome imaging may enter clinical routine and be used by histologists to compare a
patient-individual toponome to a library of disease-specific ones.

Epidemiological Population Study Data Population studies are conducted in epidemiology to
investigate the occurrence and distribution of health-related events in a group of individuals sharing
a common characteristic. They are often carried out in waves over years (cohort study) and collect
hundreds of socio-demographic, lifestyle-related, and health-related variables for thousands of in-
dividuals. Recently, such studies also include medical image data posing many new challenges on
data analysis and visualization. Variables characterizing the phenomena of interest must be derived
from the image data by largely automated and robust algorithms. The joint investigation of these
variables and the non-image data reveals interrelations between measurable in vivo phenomena and
for instance, age, gender, socio-demographic background, lifestyle, and health consciousness. The
traditional epidemiological workflow is driven by an a priori hypothesis and focuses on a subset of
the data pool related to this hypothesis. It is mainly based on the statistical analysis of data tables
and employs non-interactive visualizations for the display of results. Interactive visual analysis
and visual analytics can complement the workflow by offering methodologies for the generation
of new hypotheses.

In Chapter 8, a clustering-based approach to studying lumbar spine canal variability in a cohort
was proposed (Tab. 1.1, row 6). The variability is assessed based on the bending of the spinal
canal. The spine is segmented in the image data of the cohort, the centerline of each spinal canal is
determined, and the centerline geometries are clustered. Visualizations of cluster representatives
are augmented with specific depth cues and measurement facilities. The clusters were related to
non-image variables in order to evaluate whether a distinct lumbar spine bending correlates, e.g.,
with physically heavy work or self-reports of lower back pain.

In Chapter 9, a web-based coordinated multiple views system for the integrated analysis of
image and non-image cohort study data was presented (Tab. 1.1, row 7). The system comprises
different views for quantitative and categorical data variables. It includes the previously described
clustering approach for a case study on lower back pain. A further approach to the integration of
image data into the analysis is realized by augmenting the histogram and mosaic plot view by 3D
shape renderings of the lumbar spine. A mean shape per subgroup of individuals is superimposed
on its representing element of the plot, i.e. bar or mosaic piece. The system was evaluated based on
two case studies demonstrating its potential in both, hypothesis verification as well as generation.
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In Chapter 10, a data-cube model was presented for the interactive visual analysis of hetero-
geneous cohort study data (Tab. 1.1, row 8). The model and an aggregation engine allow for a
seamless integration of data with only partially overlapping dimensions. For instance, ECG data
acquired at the multiple waves of a cohort study may be stored in one data-cube with the dimen-
sions subject ID, year, and ECG measurement values. The HDL cholesterol level may be stored in
a similar manner in another data-cube. The dimensions of both cubes partially overlap (subject ID
and year). However, the joint investigation of ECG data and HDL cholesterol level is hampered by
the former being time-resolved and the latter being instantaneous. It is not possible for instance,
to visually inspect the correlation of both at a selected study wave in a scatter plot. The ECG data
is hence aggregated, e.g., through categorization into normal, atrial fibrillation, atrial flutter, and
premature ventricular contraction, before it is correlated with the HDL cholesterol level, which
may also be categorized into risky, borderline, and protective. The data-cube model was imple-
mented in a coordinated multiple views prototype. A tailor-made, clustering-based atlas view of
brain regions and fiber tracts was added to the prototype for investigating a cognitive aging study.
An evaluation of the data model and the prototype based on two case studies showed their potential
in hypothesis verification and generation.

In Chapter 11, a semi-automatic approach to measuring the thickness of the hippocampal sub-
field Stratum Radiatum/Lacunosum-Moleculare (SRLM) was described (Tab. 1.1, row 9). While
the measurement is fully automatic, it requires a segmentation of the SRLM, which was so far
obtained manually. The approach was evaluated based on a smaller cohort (n = 27). The results
indicate that coupled with an automatic SRLM segmentation, the measurement can be applied in
large-scale cohort studies of mild Alzheimer disease or Mild Cognitive Impairment. These studies
should correlate thickness, e.g., with performance measures of recognition memory tests, since
a reduced thickness was observed previously in individuals with earliest cognitive symptoms of
Alzheimer disease.

Visual analytics and interactive visual analysis are relatively new concepts to epidemiologists.
However, with initial guidance by a computer scientist, they can exploit their potential in verifying
and generating hypotheses. The combination with statistics and statistical graphics turned out to
greatly increase the acceptance of these concepts. This is comparable to coupling new, colorful 3D
visualizations of medical data with the common gray-scale slice views in radiology. The definition
of subgroups or subcohorts is a frequent task in epidemiological workflows. The per subgroup
display of a mean shape or any other averaged phenomenon extracted from image data suits this
group-wise analysis. The integration of data mining techniques such as clustering facilitates a
data-driven definition of subgroups. However, the fine-tuning of clustering parameters represents
a hurdle since epidemiologists are in general no data mining experts. Aspects of preprocessing,
visualizing, and mining image data are often specific for an organ or structure of interest. General
approaches are required to prevent the development of many highly specialized visual analytics so-
lutions. A web-based visual analytics framework simplifies the collaboration with epidemiologists
over longer distances and in particular, shortens evaluation and prototyping cycles.

Perfusion Data Perfusion data characterize the regional microcirculation of blood through tissue
capillaries which is in contrast to simulated cerebral and measured cardiac hemodynamic data
conveying the macrocirculation through larger vessels. They facilitate early-stage detection and
improved differentiability of diseases and furthermore, serve disease monitoring and resection
control in surgery. In perfusion imaging, often a contrast agent is injected and works as a tracer of
the blood. The anatomical part of interest is then rapidly imaged at multiple time steps to capture
the wash-in and wash-out of the contrast agent. A time-intensity curve per voxel of the image
data describes this temporal behavior. Perfusion parameters, that are substitutes for physiological
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parameters such as regional blood flow, regional blood volume and capillary permeability, are
derived from these curves.

In Chapter 12, a pipeline for the co-registration of multiple time steps in longitudinal brain per-
fusion studies and a coordinated multiple views system for monitoring tissue perfusion in gliomas
were presented (Tab. 1.1, row 10). Tailor-made views depict the temporal evolution of perfusion
parameters and tumor growth. Based on a local correlation coefficient, tumor tissue heterogeneity
can be assessed in an additional view. It was hypothesized that this view may help in guiding
stereotactic biopsy. The system was evaluated based on four case studies.

In Chapter 13, a pipeline for the co-registration of perfusion data from intraoperative Ultra-
sound and preoperative Magnetic Resonance (MR) imaging was described (Tab. 1.1, row 11). An
interactive visual analysis approach was utilized in comparing the perfusion parameters derived
from both modalities.

The approaches presented in both chapters require a series of manual preprocessing steps and
the use of multiple tools. This is less critical in the comparison of Ultrasound and MR since this is
a pure research endeavor aiming at an evaluation of the former for resection control in brain tumor
surgery. However, monitoring gliomas in clinical routine demands a more automated realization
within a single tool.

1.8 Future Research Directions

Massive amounts of data with an increasing complexity will be generated in the future, not at
the least fostered by Big Data initiatives, also in medicine and biology. At the same time, the
human cognitive capability will remain constant [266]. Automatic data mining techniques are
certainly powerful in classifying, modeling, and summarizing data as well as in detecting anoma-
lies, associations, groups, and structures. However, the process of generating knowledge from
raw data in solving fuzzy, complex, and opaque issues will always require human interaction with
these techniques. Compounded by an increasing data size, this poses many challenges on human-
computer interaction including user interfaces [266]. Furthermore, it demands the development
of approaches making data mining more accessible to non-experts and helping them in finding an
optimal solutions without knowing details of the underlying algorithm. Related work in image
processing provides visual guidance through and abstraction of the parameter space of segmenta-
tion and clustering techniques [215; 239]. In order to optimally support an analyst’s work, be it a
clinician, medical researcher, biologist or epidemiologist, it is vital to better understand and sup-
port the human reasoning part of the visual analytics process (Fig. 1.1). Recently, a detailed model
describing how the analytical components, i.e. data, models, and visualization, support this knowl-
edge generation part has been proposed [196]. Future research may use this model in designing
new visual analytics applications. In order to recognize an analyst’s workflow, these applications
should adhere to the “human is the loop” rather than the “human in the loop” philosophy [46]. That
is, visual analytics approaches are more likely to get accepted when they are seamlessly fitted to
the workflow, e.g. of epidemiologists [113], instead of requiring analysts to adopt their strategies
to available tools.

Important research directions in visual analytics, which find applications and open up new
perspectives in medicine and biology, are uncertainty-aware visual analytics, predictive visual
analytics, progressive visual analytics, and pair analytics. Uncertainty-aware visual analytics sup-
ports the analyst in making informed decisions taking the inherent uncertainty of data and such
that is added by data preprocessing, analysis, and visualization into account [32]. Uncertainty in-
herent to the data either results from the acquisition process or the variability of the represented
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phenomenon [15]. Rather than just visualizing uncertainty, the reasoning under uncertainty must
be supported [135]. The analyst’s awareness of the involved uncertainties directly influences the
confidence or trust in the analysis results [195]. A visual analytics framework should quantify
and present the aggregated uncertainty of analysis results and the impact of uncertainty sources to
the analyst [32]. Predictive visual analytics has its origins in the business world where predictive
analytics is utilized to forecast economic developments, e.g., the rise and fall of prices. The pre-
dictive capabilities lead to a paradigm shift from solely reactive to proactive visual analytics [136].
Instead of reasoning on events that have already occurred, an analyst can forecast events thereby
triggering proactive measures. For instance in heath care, syndromic surveillance data can be ex-
ploited to detect regions in time and space with an abnormally high occurrence of events (hotspots)
and to predict the growth of these regions as well as new hotspots [136]. Progressive visual ana-
lytics enables analysts to investigate partial results of a time-consuming automatic analysis while
it is still running [230]. Analysts can act based on intermediate results and adapt parameters of
the analysis or prioritize subspaces of interest. In pair analytics, a domain expert and a computer
scientist collaboratively analyze the data [7]. The computer scientist knows the specifics of data
analysis and visualization and can tweak the corresponding parameters. The domain expert knows
how to fine-tune application-specific analytical components, can interpret intermediate analysis
results, and poses the relevant questions to proceed. The analysis can be performed at the same
(localized) or at separate (distributed) locations. As a consequence, the visual analytics system
must run on one or two workplaces each with an input device requiring synchronization and an
appropriate GUI-design. Recently, a field experiment methodology has been proposed for pair
analytics studies [101].

These important research directions in visual analytics are in the following related to the data
which has been investigated within this thesis. In addition, developments in the corresponding sci-
entific fields increasing data complexity and hence, further encouraging the design and utilization
of visual analytics approaches are briefly outlined.

Simulated and Measured Hemodynamic Data Sources of uncertainty in simulated and mea-
sured hemodynamics are the image acquisition process, yielding data that suffers from noise and
partial volume effects, and the individual steps of the respective hemodynamic data generation
pipeline, each requiring manual parameter adjustments (Sec. 1.3.3,1.3.6). In simulated hemody-
namics, simplifying assumptions of the fluid properties, the boundary conditions, and the simula-
tion model, as well as numerical inaccuracies add to the aggregated uncertainty. The exact impact
of these sources could be investigated in the visual analysis of vector fields resulting from en-
semble simulations [98]. The analysis and visualization of hemodynamic data have so far widely
neglected uncertainty. Analyzing the time-dependent evolution of flow features over all time steps
of unsteady CFD simulation data can be time-consuming. Instead of waiting for the final result,
a progressive visual analytics approach would facilitate the investigation of intermediate results.
This may lead to an adjustment of the analysis strategy or algorithm. Epidemiological population
studies may at some point include the simulation and/or measurement of hemodynamics. A visual
analytics approach should then support the joint investigation of non-image and simulation/image
data as shown in this thesis (Chap. 9,10). Monitoring a very large population over time will facili-
tate the generation of an atlas of typical blood flow patterns among which some may correlate with
a higher risk of aneurysm rupture [23]. Predictive visual analytics should then investigate the role
of the blood flow pattern and other cohort study variables in forecasting aneurysm rupture.

In the future, multiple developments will add to the complexity of simulated and measured
hemodynamic data. Intravascular imaging provides detailed information about the thickness of the
aneurysm wall which should be jointly investigated with the hemodynamics [62; 124]. In the car-
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diac domain, the limited spatial and temporal resolution of measured data will be complemented by
patient-individual CFD simulations [251]. Their ability to provide metrics which cannot directly
be measured such as the wall shear stress is highly appreciated [152]. Whole heart simulations,
i.e. including the heart chambers, coronaries, and valves, will contribute to an understanding of
intracardiac blood flow phenomena and to the diagnosis of a broader range of pathologies, e.g.,
ventricular septal defect or mitral valve diseases. Treatment planning will benefit from coupling
simulations of cardiac hemodynamics with mechanical simulations of implantations, e.g., tran-
scatheter aortic valve implantations [194].

Biological Multivariate Imaging Data Uncertainty of biological multivariate data results from
the measurement inaccuracies and the limited resolution of the respective imaging technique. The
uncertainty-aware visual analytics of toponome data has to consider an additional source of un-
certainty which is the binarization of the measured fluorescence response. The impact of this
binarization on the reasoning of biologists and the final outcome of the analysis must be inves-
tigated. In this course, an uncertainty of protein co-mapping should be computed and integrated
for instance, in the graph-based visualization presented in Chapter 4. Qualitative user studies with
biologists must then be conducted to evaluate the consequences of incorporating uncertainty [253].
Within the thesis at hand, toponome data were investigated in localized pair analytics sessions in-
volving a computer scientist and a molecular biologist (Chap. 4). The results achieved within the
investigated case studies demonstrate the potential of this strategy. The pair analytics approach
released the biologist from the need of understanding every detail of the analysis and visualization
techniques and allowed for focusing on the biological research questions. It offered the computer
scientist a deeper understanding of the biologist’s mindset, which helped in improving the visual
analytics system.

Recent developments in bioimaging will lead to a more frequent acquisition of biological multi-
variate imaging data. Examples of techniques recording N-dimensional intensity arrays represent-
ing the local mapping of molecules, residues or interaction patterns per pixel are Raman imaging
and Matrix Assisted Laser Desorption / Ionization (MALDI) imaging [116]. An increasing resolu-
tion of fluorescence microscopy may yield larger images per tagged protein in toponome imaging.
The resolution of conventional fluorescence microscopy is limited to ≈250 nm by the diffraction
properties of the light. Super resolution fluorescence microscopy with resolutions down to 10-
20 nm produces gigabytes of data in a single run [134]. Time-resolved toponome data of living
cells will pose additional challenges on a visual analytics approach [211]. The integration of to-
ponome data with other omics data and with medical image data is required to achieve one of the
future goals of systems biology namely the seamless integrated analysis of biological systems from
organs to molecules [163].

Epidemiological Cohort Study Data Various sources contribute to the uncertainty of epidemi-
ological cohort study data. Regardless of the applied acquisition technique, the study’s medical
image data suffer from noise and partial volume effects. Measurement inaccuracies, e.g. of blood
pressure, or unreliable self-reports, e.g. on eating and drinking habits, represent uncertainties in-
herent to the non-image data. The data transformation and also the data analysis itself further
contribute to the overall uncertainty. Examples are the padding of missing data with population-
derived statistics, statistical tests yielding measures of uncertainty, and fuzzy clustering techniques
for subgroup definition. In an uncertainty-aware visual analytics approach, these uncertainties
must be modeled, considered in the analysis, and conveyed in the visualizations. Predictive visual
analytics can contribute to forecasting the onset of a disease based on the evolution of socio-
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demographic, lifestyle-related, and health-related factors. In a retrospective analysis of cohort
study data, models can be build that describe how similar populations evolve and predict how they
will evolve in the future. For instance, decision trees classifying study participants with respect to a
target outcome, i.e. a disease reported in the last wave of a cohort study [162], can be interactively
constructed and refined [245]. Cohort study data are very complex and computations involving all
the hundreds of variables can be very time-consuming. The benefit of a progressive visual ana-
lytics approach has been demonstrated in investigating all correlations of possible variable pairs
with all possible target outcomes [111]. Instead of waiting for the whole computation to finish, the
analyst can inspect the results of one target outcome the moment they have been computed. Within
the thesis at hand, cohort study data were investigated in localized (Chap. 10) and distributed pair
analytics sessions (Chap. 9) involving a computer scientist and either a neuroscientist, a radiologist
or an epidemiologist. Multiple hypotheses were generated harnessing the pair analytics approach.
While quantitative evidence is lacking that neither the computer scientist nor the domain scientist
could have achieved the same results by oneself, there is reason to believe that more hypotheses
could be generated in shorter time by the collaborative effort.

One of the major joint developments in medicine and epidemiology is population imaging shift-
ing the focus from curative to preventive medicine. Forces are bundled to provide a pan-European
infrastructure for population imaging since more and more cohort studies include medical and also
biomolecular imaging [48]. Analyzing the acquired image and omics data requires dedicated pro-
cessing methods to extract structures of interest and derive meaningful parameters characterizing
them. Since population imaging may cover the entire human body, processing methods should be
as modular as possible instead of being tailored to a specific organ or structure. Ideally, domain
experts can compose the modules for the task at hand by themselves. The massive amounts of
data being acquired in population imaging will make visual analytics approaches indispensable. In
order to acquaint non-specialists with the data mining part and its parameters, abstractions guiding
parameter fine-tuning must be provided. Epidemiologists are accustomed to dividing a cohort into
subcohorts, e.g., by age or gender, prior to investigation and then, compute and compare statistics
of these subcohorts. The infrastructure as well as the data analysis and visualization components
of a visual analytics framework must support this subdivision strategy [109; 137]. So far, most
frameworks developed in the context of epidemiology and public health, facilitate the definition
and investigation of only a single subcohort at a time.
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Blood Flow Clustering and Applications in
Virtual Stenting of Intracranial Aneurysms

Steffen Oeltze, Dirk J. Lehmann, Alexander Kuhn, Gábor Janiga, Holger Theisel, Bernhard Preim

Abstract—Understanding the hemodynamics of blood flow in vascular pathologies such as intracranial aneurysms is essential
for both their diagnosis and treatment. Computational Fluid Dynamics (CFD) simulations of blood flow based on patient-individual
data are performed to better understand aneurysm initiation and progression and more recently, for predicting treatment success.
In virtual stenting, a flow-diverting mesh tube (stent) is modeled inside the reconstructed vasculature and integrated in the
simulation. We focus on steady-state simulation and the resulting complex multiparameter data. The blood flow pattern captured
therein is assumed to be related to the success of stenting. It is often visualized by a dense and cluttered set of streamlines.
We present a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by clustering
streamlines and computing cluster representatives. While individual clustering techniques have been applied before to
streamlines in 3D flow fields, we contribute a general quantitative and a domain-specific qualitative evaluation of three state-
of-the-art techniques. We show that clustering based on streamline geometry as well as on domain-specific streamline attributes
contributes to comparing and evaluating different virtual stenting strategies. With our work, we aim at supporting CFD engineers
and interventional neuroradiologists.

Index Terms—Blood Flow, Aneurysm, Virtual Stenting, Clustering, Evaluation.

F

1 INTRODUCTION

I NTRACRANIAL aneurysms, also referred to as cerebral
aneurysms, represent a pathological, balloon like dilation

of cerebral vasculature due to a weakness of the arterial
wall. They occur with a prevalence of about 2% in Western
Europe [1]. Their rupture is associated with a mortality rate
of ≈ 50%. Among other treatment options, stenting plays an
increasingly important role. In stenting, the flow is diverted
around the aneurysm by an expandable mesh tube (stent),
thereby reducing and decelerating its inflow (Fig. 1(a)).

The blood flow pattern is among the hemodynamical
parameters that are assumed to be related to the success
of stenting [2], [3], the development of thrombosis (blood
clotting, which is a desirable outcome of stenting) [4], and
the risk of aneurysm rupture [5]. A better understanding of
these relations may contribute to patient selection for flow
diverting stents. While they often lead to thrombosis and
reverse remodeling, adverse effects leading to late rupture
were also observed [3]. With the increased number of
treatment options and available types of stents, the need
for decision support is strongly increased.

Computational Fluid Dynamics (CFD) simulations,
which generate patient-specific hemodynamic data, are em-
ployed to better understand the effect of stents on aneurys-
mal hemodynamics and for predicting treatment success
[2], [6], [7]. In virtual stenting, different types of stents
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are modeled at different locations inside the reconstructed
vascular anatomy and integrated in the simulation. We
focus on steady-state simulations since major aspects of
aneurysmal hemodynamics may be inferred from steady
flow [8]. The simulation results in a complex multiparame-
ter dataset comprising several scalar and vectorial attributes.
The blood flow pattern captured therein, is often visualized
for investigation by a dense and cluttered set of streamlines
colored according to one of the scalar attributes.

We present a fully automatic approach for reducing
visual clutter and exposing characteristic flow structures
by grouping similar streamlines and computing group rep-
resentatives. We quantitatively evaluate three conceptually
different techniques for the grouping: k-means cluster-
ing, Agglomerative Hierarchical Clustering in four varia-
tions (single link, complete link, average link, and Ward’s
method), and Spectral Clustering. While each individual
technique has been applied to streamlines in 3D flow fields
[9], [10], [11], [12], the quality of their results has not
been compared before. The gained insight is valuable for
all applications employing streamline clustering.

Cluster representatives, which summarize the complex
blood flow, are derived from the clustering result. We adapt
a type of representative that is employed in clustering
fiber tracts of the human brain. In a qualitative expert
evaluation of visual blood flow summaries, we compare
the quantitatively best performing clustering techniques and
the corresponding representatives. Furthermore, we show
that clustering streamlines also based on domain-specific at-
tributes supports the evaluation of virtual stenting strategies.
For instance, clustering based on the local residence time
of blood flow within the aneurysm gives hints on potential
locations of thrombosis initiation.
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In summary, our contributions are:

• Quantitative evaluation of three conceptually different
streamline clustering techniques

• Visual summary of flow patterns and design lessons
• Expert evaluation of visual flow summaries
• Application-specific insight from clustering domain-

specific streamline attributes
• A tailor-made type of cluster representative

We aim at supporting CFD engineers in investigating sim-
ulation results. In a dense sampling of aneurysmal flow
by thousands of streamlines, they rely on filtering these
lines, a locally restricted streamline seeding or on global
hemodynamic parameters. Minor, local changes of the flow
pattern yet influencing the success of stenting, may remain
unnoticed. We further aim at supporting interventional
neuroradiologists in developing a patient-specific treatment
strategy. CFD results are not yet part of the clinical routine.
Hence, the physicians have little experience in investigating
flow data. Our visual flow summary simplifies the access
to flow data, it is easy to read, and it contributes to the
communication between CFD engineers and physicians. We
employ our approach amongst others to data of the Virtual
Intracranial Stenting Challenges in 2009 and 2010.

2 MEDICAL AND TECHNICAL BACKGROUND

This section briefly overviews the treatment of intracranial
aneurysms, introduces the research field virtual stenting,
and describes our data generation pipeline.

2.1 Treatment of Intracranial Aneurysms

Intracranial aneurysms usually develop somewhere at the
Circle of Willis. Their shape may be characterized as
saccular, fusiform or dissecting with saccular having by
far the highest prevalence [13]. The morphological features
of a saccular aneurysm are illustrated by Figure 1(b).
Most aneurysms remain undetected until rupture. While
surgical clipping has been the gold standard in treatment
for decades, the number of endovascular interventions is
increasing. They bear less intraoperative risk and may
be applied, e.g., by an interventional neuroradiologist, to
aneurysms which are difficult or impossible to reach for
a surgeon [14]. In coiling, the aneurysm is filled with
platinum coils to promote thrombosis, which may eventu-
ally seal the aneurysm. Self expanding, high-profile, flow-
diverting stents provide a promising alternative to coiling in
patients with complex aneurysms (Fig. 1(a)). They reduce
and decelerate the blood circulation into the aneurysm,
thereby causing a prolonged residence time, which in turn
promotes thrombosis formation [13].

Despite the progress in interventional techniques, the
associated risks persist, e.g., injury of the aneurysmal wall
during stent insertion. A detailed risk and benefit estimation
and a deeper insight into the hemodynamics of blood flow
that cause aneurysm development and rupture are necessary.

(a) (b)
Fig. 1. (a) Flow diverting stent and its deployment
(arrow indicates flow direction). (b) Morphological fea-
tures of a saccular aneurysm (bold) and subdivision of
the surrounding vascular domain (red lines).

2.2 Virtual Stenting
Virtual stenting (VS) is a collaborative effort between CFD
engineers, physicians, and computer scientists. Its main
objectives are supporting clinical decision making and stent
design. In the former, questions such as “Is the vascular and
aneurysmal morphology eligible for stenting?” and “Which
stent should be used and where should it be placed?” need
to be answered. In stent design, different properties, e.g.,
grade of mesh porosity and strut size, and their impact on
the hemodynamics of blood flow are investigated.

One challenge in VS is comparing results of different
CFD simulations, e.g., before and after stenting [6]. We
support a comparison by visual summaries of blood flow.
So far, it is often based on global values such as aneurysmal
inflow rate [15]. Sometimes, the aneurysm wall is colored
according to a hemodynamic parameter and presented in
a side-by-side view [6]. Streamlines are employed for
comparing flow patterns. They are often seeded on the
ostium and displayed side-by-side [2], [6], [16]. However,
either the entire set of lines is displayed leading to visual
clutter or representative lines must be selected manually.

2.3 Hemodynamic Data Generation Pipeline
We briefly summarize our hemodynamic data generation
pipeline (see [15], [17] for details). First, image data of
the aneurysm morphology including the vasculature in
the close surrounding are acquired, e.g., by 3D rotational
angiography or Computed Tomography (CT) angiography.
Next, the aneurysm and the vasculature are segmented via
thresholding. Afterwards, a surface mesh of the vessel wall
is reconstructed from the segmentation result and optimized
[18]. Then, the ostium is extracted [19]. It separates the
aneurysm from the parent vessel and approximates the
original vessel wall (Fig. 1(b)). It is frequently used to
explore the flow into the aneurysm, e.g., by seeding stream-
lines there [20]. Next, the stent geometry is modeled and
deployed to the vessel wall. Finally, a volume mesh is con-
structed based on the surface meshes of the vessel wall and
the stent using ANSYS IcemCFD (Ansys Inc., Canonsburg,
PA, U.S.). Fluid flow simulations are performed in ANSYS
Fluent 12 (Ansys Inc., Canonsburg, PA, U.S.).
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3 RELATED WORK ON PARTITION-BASED
FLOW VISUALIZATION

Flow visualization techniques have been categorized by
Post et al. [21] into direct, texture-based, geometric, and
feature-based techniques. Salzbrunn et al. [22] added the
class of partition-based techniques, which decompose a
flow field based on vector values, integral curve properties
or topological features. Blood flow clustering based on
vector values has been presented in the context of cardiac
blood flow [23]. However, we follow the arguments in [10]
and advocate the use of integral curves since they represent
continuous flow patterns traced over the domain instead of
a very local vectorial flow information. We briefly recapit-
ulate approaches for flow decomposition based on integral
curves and classify them into user-guided and automatic
partitioning. For State-of-the-Art reports on topology-based
decomposition and visualization of flow, see [24], [25].

3.1 User-Guided Flow Partitioning

The approaches in this class decompose a set of integral
curves guided by the user. Salzbrunn and Scheuermann
[26] propose combined Boolean predicates based on prede-
fined scalar quantities, which determine for each streamline
whether it has a desired property. Predicates on pathlines
are applied to the visual analysis of measured blood flow in
aortic aneurysms [27]. A residence time predicate is used
for evaluating blood clotting. In [28], a visual analytics
approach is proposed for filtering pathlines based on local
and global pathline attributes, e.g., curvature and Lyapunov
exponent. Pobitzer et al. [29] demonstrate the application
of dimension reduction to the set of attributes in order to
detect relevant, independent ones. Two other approaches let
the user specify interesting integral curves or curve parts
in observation instead of attribute space. Advanced virtual
probing of measured cardiovascular flow by seeding inte-
gral curves on a flexible probing geometry is presented in
[30]. Gasteiger et al. employ a lens metaphor for generating
focus-and-context visualizations of streamline parts [17].

The lens metaphor facilitates only a local and view-
dependent inspection of the flow pattern. It emphasizes or
attenuates all streamline parts inside the lens but it does
not reduce visual clutter with respect to the flow pattern.
Neither lens nor virtual probing deliver reproducible and
quantifiable results. Line predicates and the visual analytics
of pathline attributes require the user to define attributes and
attribute value ranges of interest in order to compose sets
of lines, which are homogenous with respect to a certain
attribute or a combination of attributes. Automatic flow
partitioning approaches employ a data-driven strategy for
creating such sets and are hence self-tuning with respect to
differences in the flow across aneurysms.

3.2 Automatic Flow Partitioning

Our work is strongly related to approaches, which automat-
ically partition a set of integral curves by means of cluster-
ing, i.e. grouping similar curves. These approaches differ in

the clustering technique and in the similarity measure. Chen
et al. propose a two-stage k-means clustering [9]. The initial
rough geometry-based partitioning is refined by taking vec-
tor and shape properties into account. Both stages are based
on Euclidean distance as the similarity measure. Cluster
representatives are the streamlines closest to the cluster
centroids. In [12], Agglomerative Hierarchical Clustering
(AHC) with average link has been used for partitioning.
The authors propose a similarity measure that facilitates an
interactive, cluster-based exploration of flow with seeding
rakes. A saliency-guided streamline seeding is followed
by AHC with single link in [10]. Streamlines at cluster
boundaries are displayed as representatives. Gasteiger et
al. employ local streamline properties to identify and group
lines that constitute the inflow jet, which is correlated with
aneurysm rupture [31]. Rössl and Theisel discuss a spectral
embedding of streamlines [11]. They demonstrate Spectral
Clustering (SC) in the embedding space and compare
various similarity measures. Similar to the clustering of
integral curves is the clustering of fiber tracts extracted from
Diffusion Tensor Imaging (DTI) data. In [32], fiber tracts
are partitioned by means of a specialized SC approach.
Three types of cluster representatives are investigated in
[33]. Moberts et al. evaluate three variants of AHC and four
similarity measures for clustering fiber tracts [34]. A new
similarity measure in conjunction with AHC using single
link is introduced in [35].

AHC, k-means, and SC are the most widely used tech-
niques for clustering streamlines (and fiber tracts). How-
ever, the quality of their results in this context has not
been individually assessed and compared. We quantitatively
evaluate the three techniques, including four AHC variants,
by means of internal cluster validity indices (Sec. 5.4). In
a qualitative expert evaluation of the best performing tech-
niques, we identify the most appropriate one for clustering
blood flow (Sec. 6.4). While the clustering in related work
is mostly restricted to streamline geometry and derived
geometrical attributes, we extend it to domain-specific
attributes. We adopt the idea of cluster representatives for
reducing visual clutter and assess the approaches in [33].

4 STREAMLINE GENERATION & SIMILARITY

In this section, we describe our generation of streamlines,
their properties, and our streamline similarity measures.

4.1 Domain, Tracing, and Line Properties
The input of the streamline generation is the volume mesh
from the CFD simulation (Sec. 2.3). It is represented as an
unstructured grid composed of tetrahedral cells. A vector is
stored at each cell point. Before streamlines are generated,
the mesh is manually cropped such that it contains only
the aneurysm and the near-vessel domain [20] (Fig. 1(b)).
This enables us to focus the analysis and strongly improves
the expressiveness of the clustering. It is very likely that
streamlines follow a similar course in the feeding vessel
(inflow) and they may also follow a similar course in a
draining vessel (outflow). However, depending on where
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they enter the aneurysm, their course may strongly differ
inside. If the far-vessel domain was also considered in
clustering, these differences would have less impact.

To assess the in- and outflow of the aneurysm, stream-
lines have been seeded on the ostium. The ostium is
represented by a triangle mesh whose vertices have been
homogeneously distributed such that the under- and over-
representation of flow parts are avoided [19]. The number of
vertices is adjusted such that the mesh resembles the former
vessel wall. Streamlines were traced in ParaView (Kitware,
Clifton Park, NY, U.S.). A 5th order Runge-Kutta method
has been employed with an integration step size that was
constantly adjusted according to an estimated error. The
tracing was carried out in backward and forward direction.
The resulting two lines were merged such that a linear
traversal of the vertices from in- to outflow is possible.

Line Properties: The streamlines differ in their num-
ber of vertices and in their length. The former has a strong
impact on the computational time of most inter-streamline
similarity measures. The similarity itself is strongly influ-
enced by streamline length. Two lines may follow a similar
course for a long time but then, one of them is terminated.
Most similarity measures assign a much higher weight to
the difference in length than to the similarity over a long
run. In all our datasets, a few lines follow a course very
similar to a large set of neighboring lines but are consid-
erably shorter. They occur close to the vessel wall due to
early termination of the integration. We consider them as
incomplete rather than incorrect data entities. Hence, the
clustering should group them with the streamlines having a
similar course. Still, we term them outliers in the following.

4.2 Geometry-Based Streamline Similarity
Geometry-based streamline similarity (or dissimilarity) is
often expressed by a distance measure. The choice of a
measure depends on the application. General requirements
are positive-definiteness and symmetry. A valid example
is the Hausdorff distance. However, this distance is very
sensitive to streamline length, since it outputs the maximum
of point-wise distances [11]. A less sensitive measure is the
Mean of Closest Point Distances (MCPD) [36]:

dM(si,s j) = mean(dm(si,s j),dm(s j,si)) (1)
with dm(si,s j) = meanpl∈si min

pk∈s j
‖pk− pl‖

Moberts et al. evaluate four similarity measures for clus-
tering fiber tracts and favor MCPD [34]. Yu et al. ap-
ply MCPD for clustering streamlines and report that the
clusters comprise important flow features [10]. In [11],
five similarity measures adopted from the clustering of
fiber tracts are evaluated for clustering streamlines. The
rather qualitative evaluation includes MCPD and shows no
drawbacks compared to the other measures. In [12], a new
similarity measure is compared to three other measures
including MCPD. The new measure performs one to two
orders of magnitude faster but no advantage in terms of
cluster quality is reported. However, MCPD is subjectively

rated as producing good quality clusterings. We adopted
MCPD and applied it to blood flow clustering. Initial tests
showed good results but also revealed that MCPD is still
too sensitive to streamline length, in particular when being
used with clustering techniques being sensitive to outliers
(Tab. 1). Very small-sized, outlier-corrupted clusters were
generated whose representatives distorted the flow sum-
mary. We further reduce MCPD’s sensitivity by replacing
the outer mean in Equation 1 by a minimum computation:

dM(si,s j) = min(dm(si,s j),dm(s j,si)) (2)
with dm(si,s j) = meanpl∈si min

pk∈s j
‖pk− pl‖

If two lines are very similar but one is shorter, dm from
the shorter to the longer line is chosen. The resulting high
similarity increases the chance of being assembled.

4.3 Attribute-Based Streamline Similarity
Besides streamline geometry, we employ streamline at-
tributes for clustering. They describe (1) the underlying
vector field, (2) line bending or (3) domain-specific aspects:

1 pressure, velocity magnitude, velocity gradient mag-
nitude, angular velocity, vorticity magnitude

2 curvature, torsion
3 distance to ostium, distance to aneurysm wall, local

residence time
In the following, we focus on the domain-specific attributes
(3) since their clustering revealed the most interesting
aspects. The distance to the ostium is computed in order to
separate flow structures that occur close to the aneurysm’s
neck from those that occur close to its dome (Fig. 1(b)).
The distance to the aneurysm wall is determined in order to
separate flow close to the wall from flow close to the center.
Both are inspired by discussions with a neuroradiologist
and by clinical research results such as a close correspon-
dence between near-wall flow and wall-shear stress. They
have been computed only at streamline vertices located
inside the aneurysm as the distance between the vertex and
its closest point (not vertex) on the respective surface.

The residence time of flow inside the aneurysm is crucial
in thrombosis formation [4]. We compute it by aggregating
partial timing results along each streamline. For each line
segment inside the aneurysm, the two associated velocity
magnitudes are retrieved from the data. Based on their
difference and the segment length, the partial residence
time is computed. If a line segment intersects the ostium,
the velocity is interpolated at the intersection point. While
the other streamline attributes are computed per vertex, the
residence time is a single scalar per line.

What is left is the definition of a streamline similarity
measure on the attributes. For the local residence time,
we employ the absolute difference of two scalars. For the
remaining attributes, we first compute a simple statistic that
approximates the attribute information along a streamline,
e.g., minimum, maximum, mean, or median. Since this
breaks down the information to a scalar value, we can apply
the same similarity measure as for the residence time.
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5 STREAMLINE CLUSTERING TECHNIQUES:
A QUANTITATIVE EVALUATION

This section is dedicated to the quantitative evaluation of
techniques often used for clustering streamlines (Sec. 3.2).
It starts with descriptions of Agglomerative Hierarchical
Clustering (AHC) and k-means based on [37] and an
introduction to Spectral Clustering (SC) based on [38].

5.1 Agglomerative Hierarchical Clustering
AHC starts with each streamline being a cluster and then,
repeatedly merges the two closest clusters until a single
cluster is formed. The resulting hierarchy is stored and may
be visualized by a dendrogram. All merge steps rely on
a squared, symmetric distance matrix M and a measure
of cluster proximity. In our case, M contains the pairwise
inter-streamline distances (Eq. 2). Various cluster proximity
measures have been published among which single link,
complete link, average link, and Ward’s method are most
popular. In single link, the proximity of two clusters is
defined as the minimum distance between any two points
in the different clusters. This approach can handle clusters
of arbitrary shape, it tolerates considerable differences in
cluster size but it is sensitive to outliers. Furthermore,
it is infamous for the chaining effect leading to clusters
containing very dissimilar elements which are connected
by a chain of similar elements via some transitive rela-
tionship. In complete link, the proximity of two clusters is
computed as the maximum distance between any two points
in the different clusters. Complete link is less susceptible
to outliers but tends to break large clusters and it favors
globular cluster shapes. Average link is an intermediate
approach between single and complete link. It also strives
for globular compact clusters [39]. The proximity of two
clusters is defined as the average proximity between pairs
of points in the different clusters. Ward’s method aims at
minimizing the total within-cluster variance. It defines the
proximity of two clusters as the sum of squared distances
between any two points in the different clusters (SSE: sum
of the squared error). Due to the SSE-based proximity,
Ward’s method favors globular clusters. It was shown to
prefer clusters with similar size and to be robust against
outliers in the context of 2D curves [40].

All AHC variants lack a global objective function to be
optimized (Tab. 1). They decide locally which clusters are
merged. These decisions cannot be undone such that bad
decisions, e.g., involving outliers, are propagated through-
out the entire clustering process. A strength of AHC is its
ability to rapidly generate different numbers of clusters k
by cutting the cluster hierarchy at respective levels. Further-
more, it is non-parametric except for k and the proximity
measure. Both strengths explain its frequent use when the
“correct” number of clusters is unknown. The user then
sequentially browses through the levels. Visually comparing
consecutive clustering results is simplified by the locally
restricted change (split/merge). AHC’s bottleneck in terms
of time complexity is the computation of M, which often
requires a vast number of Euclidean distance tests.

TABLE 1
Comparison of clustering algorithms with respect to

the type of objective function (OF) and the capabilities
to handle arbitrarily-shaped clusters, clusters of

significantly different size, and outliers.
Property Spectr. Agglomerative Hierarchical Clustering k-means

Clust. Single Compl. Avg. Ward

OF global local local local local global
Shape + + − − − −
Size o + − o o −

Outlier + − o o + −

5.2 k-means Clustering

k-means requires an a priori definition of the number of
clusters k by the user. Then, k initial cluster centroids are
chosen, often by a random selection of k data entities.
Each entity is now assigned to the closest centroid, e.g,
by comparing squared Euclidean distances. Finally, each
centroid is updated to the mean of its assigned data enti-
ties (which rarely corresponds to an existing entity). The
assignments and updates are repeated until the goal of a
global objective function has been achieved. For squared
Euclidean distances, the objective function usually aims at
minimizing the sum of the squared distances of data entities
to their cluster centroid (SSE).

Streamlines cannot be directly plugged into k-means
since the computation of their mean is undefined. Feature
vectors must be derived representing the lines in a new
n-dimensional space. A straightforward approach is to use
the 3D coordinates of their vertices. Since the number of
vertices varies (Sec. 4.1), each line must be equidistantly
resampled to a uniform number. We employ the average
number of vertices of all streamlines. A lower-dimensional
alternative has been proposed by Chen et al. [9]. Two scalar
streamline entropy measures together with the coordinates
of start-, middle, and endpoint of the line constitute an 11-
dimensional feature vector. Contrary to [9], we employ all
dimensions in a single clustering stage since the proposed
two stages hamper a user-defined choice of k. However, the
latter is required for our quantitative evaluation.

k-means is often computationally faster than AHC since
it does not require the computation of pairwise distances
between data entities. However, it is sensitive to outliers
and fails in handling non-globular clusters and clusters of
widely different sizes (Tab. 1). Its results are dependent on
the random initialization of the centroids. A “bad” choice
causes the algorithm to get stuck in a local minimum of the
objective function. We mitigate this problem by running
the algorithm ten times and choosing the result with the
minimum SSE.

5.3 Spectral Clustering

Spectral Clustering (SC) maps the original streamlines to
a spectral embedding space where each line is represented
by a point (Fig. 2). Key features of the mapping are the
preservation of local distance relations between nearby lines
and the enhancement of the data’s cluster properties, i.e. an
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(a) (b)
Fig. 2. (a) Spectral Clustering of streamlines in a
basilar tip aneurysm. (b) Spectral embedding of the
lines. The first three largest eigenvectors are shown.

improved cluster separability. In the following, we use the
terms distance and difference interchangeably.

SC can be formulated as a graph partitioning problem
[41]. Streamlines are represented by a weighted, fully-
connected, undirected graph. The nodes are the streamlines
and the edge weights are computed according to Equation 2.
The weights are then transformed from difference to affinity
such that similar streamlines have a high and dissimilar a
low pairwise affinity. Next, the graph is partitioned into
subgraphs. Shi and Malik [41] propose to use a normalized
cut which minimizes the sum of weights of the edges that
need to be removed (cut) and at the same time balances the
sum of edge weights of the partitions. While this problem
is NP hard, a relaxed version is solved by spectral graph
partitioning using Graph Laplacians.

Given a dataset S with n streamlines as a graph and a
number of clusters k, (1) the n× n distance matrix M is
computed by a pairwise application of Equation 2 to the
lines in S. The same matrix is employed for AHC (Sec. 5.1).
(2) Based on M, the n× n weighted adjacency matrix
of the graph is constructed by applying a function f to
the entries of M that gives high values in case of small
differences and converges to zero for high differences. The
resulting matrix W is referred to as affinity matrix. As f ,
the Gaussian similarity function is used:

f (mi j) = f (m ji) = exp(−(mi j)
2/(2σ2)) (3)

The parameter σ controls the width of f thereby steering
how rapidly the affinity falls off. (3) Next, a n× n diagonal
degree matrix D is constructed with each diagonal entry dii
being the degree of the node that represents streamline i in
the graph. The degree is computed as the sum of weights
of the edges incident to the node. (4) Now, the normalized
Graph Laplacian L is computed [41]: L = I−D−1W with
I being the identity matrix. (5) Then, the eigenvectors
and eigenvalues of L are determined. The eigenvectors
corresponding to the smallest k eigenvalues are used for
clustering. (6) Let U be the n× k matrix that contains
the k eigenvectors as columns. Each row i of U then
represents the coordinates of a point that corresponds to
streamline i in the Rk spectral embedding space spanned
by the eigenvectors. (7) In the embedding, clusters can be

detected, e.g., by k-means or an eigenvector rotation [42].
We employ the latter since it suggests an optimum number
of clusters based on a user-defined range for k. Since it
is based on the largest eigenvectors of L, we change the
formulation of L to:

L = D−1W (4)

Local scaling: Zelnik-Manor and Perona propose a
local determination of σ since a global value (Eq. 3) only
works well if all clusters are of the same density [42]. Since
we cannot guarantee this for our streamlines, we adopt their
local scaling. A local σi is computed for each line i based
on the difference between i and its N’th neighbor. A value
of N = 7 is reported to give good results [42]. However,
our experiments indicated that N must be adjusted to each
dataset. In very dense sets of streamlines, SC partially
failed to separate clusters. With increasing density, the local
neighborhood of a line contains an increasing number of
very similar lines. However, the number of neighbors with
an affinity� 0 should not be “too small and not too large”
for SC to work properly [38]. Based on ten datasets, we
identified N = 5% of the streamline count as appropriate.

SC strives for a globally optimal partitioning while AHC
is bound to locally optimal decisions (Tab. 1). It can
handle arbitrary cluster shapes while most AHC variations
and k-means favor globular shapes. SC with local scaling
considers the local streamline density. This is useful, e.g.,
if streamlines are seeded with a higher density close to the
aneurysm wall. Our implementation of SC is parameter-free
except for the range of values for k. Since the eigenvector
rotation computes all partitionings within this range, the
user can browse also the suboptimal results. SC is biased
towards clusters of similar size due to the balancing of
edge weights in the graph cutting. On the other hand,
this property makes it robust against outliers which was
acknowledged in the context of fiber tract length [35]. As
for AHC, the bottleneck of SC is the computation of M.

5.4 Quantitative Evaluation
We quantitatively evaluated four variants of Agglomera-
tive Hierarchical Clustering (AHC), k-means, and Spectral
Clustering (SC) for clustering streamlines. The evalua-
tion was based on five clinical cases together compris-
ing ten datasets and representing the prevailing types of
aneurysms: basilar tip and side-wall aneurysms. Three cases
were simulated without virtual stenting (two are shown in
Fig. 2(a) and 4(a)). Two cases have been simulated before
and after stenting, one of them with two types of stents in
two different positions (Sec. 7.1 and 7.2). The streamline
count was between 1138 and 2929. The evaluation was
restricted to geometry-based clustering (Sec. 4.2). For each
combination of clustering algorithm (n = 6) and dataset
(n = 10), streamlines were clustered with the number of
clusters being in the range [2,20] (n = 19). This resulted in
6×10×19 = 1140 partitionings.

Different measures for assessing the quality of a clus-
tering result have been proposed. In the absence of a
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Fig. 3. Average internal cluster validity measures
based on ten datasets. Spectral Clustering (SC),
four variants of Agglomerative Hierarchical Clustering
(AHC), and k-means are compared.

ground truth, e.g., external labels provided by an expert,
unsupervised measures of cluster validity are appropriate
[37]. They are also called internal validity measures since
they are purely based on information present in the data.
We employ four internal measures which together cover the
most important aspects of cluster quality [39]:
• Silhouette Width: Non-linear combination measure of

cluster cohesion and separation. Values are in the range
[−1,+1] and should be maximized.

• Connectivity: Local measure reflecting to which degree
the L most similar neighbors of a streamline are placed
in the same cluster. Values are in the range [0,+∞] and
should be minimized. We define L = 20.

• Hubert’s Γ Statistic: Measure of correlation between
the distance matrix M and an idealized distance matrix
(distance is 0 for streamlines in the same cluster and
1, otherwise). Values of the normalized statistic are in
the range [−1,+1] and should be maximized.

• Stability: Measure reflecting the stability and hence,
the significance of the clusters. Random overlapping
subsamples of the data are repeatedly drawn and
clustered using the same algorithm. We draw 20
subsamples. Their clusters are then compared to the
partitioning of the original data via the Adjusted Rand
Index whose values are in the range [−1,+1] and
should be maximized [43].

To ensure comparability of the algorithms, all measures
were computed in 3D streamline space although k-means
and SC cluster in different spaces, i.e. in feature vec-
tor space and in the spectral embedding. The first three
measures employ the similarity of two streamlines which
is inferred from the distance matrix M. Clustering by k-
means has been based on two types of feature vectors
(Sec. 5.2). The type based on streamline resampling consis-
tently achieved better internal measures, which is likely due
to the very sparse representation of the streamline course by
the other type (only three vertices). Hence, we restrict the
presentation of evaluation results to the former. For each
algorithm, the internal validity measures were averaged
over the 19 partitionings and the 10 datasets (Fig. 3).

Silhouette Width: AHC with single link exhibits a
very poor silhouette width (−0.47). This is due to the chain-

ing effect, which leads to a single huge heterogeneous clus-
ter containing almost every streamline (Sec. 5.1). Hence,
cluster cohesion as well as separation are small. Chaining
has been observed for all datasets and most numbers of
clusters. K-means performs better but sill exhibits a rather
low value (0.18). The reason is that simply resampling
all streamlines to a uniform number of vertices amplifies
differences in streamline length and position offset for oth-
erwise very similar lines. This counteracts our streamline
similarity measure, which has been tailored to tolerate these
differences (Eq. 2). As a consequence, similar lines are
assigned to different clusters. Complete link also achieves
a low silhouette width of 0.28. This is likely due to its
tendency to break large clusters leading to a low inter-
cluster separation between the resulting parts. This effect
could be observed on a sample basis. Average link, Ward’s
method and SC perform equally well and exhibit the highest
silhouette widths: 0.42,0.43,0.38.

The silhouette width is biased towards globular clusters
[39]. In case of elongated or concave clusters, algorithms
correctly identifying them, e.g., single link and SC, may be
assigned a lower silhouette width than failing algorithms.
Since the cluster shape in streamline space is not clear,
the silhouette width must be employed carefully. For fiber
tracts, the non-globular nature of clusters has already been
acknowledged [44].

Connectivity: Single link clustering by far achieves
the best connectivity value due to its proximity measure
which strives for a merge with the nearest neighbor. This
bias has already been acknowledged in [39]. The second
and third best connectivity values are achieved by average
link and Ward’s method. Complete link exhibits the worst
value of all AHC variants. It more often adds similar
neighbors of a streamline to another cluster, which may
again be due to the breaking of large clusters. This leads to
streamlines at the joint cluster border, which have similar
neighbors in both clusters. The connectivity of SC is worse
than for all AHC variants. However, this is to a great
extent caused by the functioning of the algorithms and the
way of computing connectivity. The computation adds the
highest penalty value if the most similar neighbor is not
in the same cluster. This rarely occurs in AHC since each
variant starts by locally aggregating the nearest singleton
clusters. SC aims at a global optimization and occasionally
adds the most similar line to another cluster. A preliminary
investigation revealed this phenomenon at the joint border
of closely spaced clusters. Due to the bias of connectivity
towards the AHC approaches, its usefulness in assessing
SC is questionable. The connectivity of k-means is worst
for the same reason as for the silhouette width.

Hubert’s Γ Statistic: Hubert’s Γ Statistic shows a
poor result for single link due to the chaining effect (0.04).
In the one large cluster, very dissimilar streamlines are
grouped together leading to negative correlation values.
The performance of k-means is considerably better (0.39)
but still worse than for the remaining algorithms since
the above-mentioned assignment of similar streamlines
to different clusters leads to negative correlation values.
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Complete link, SC, and Ward’s method reach similar results
on average (0.44,0.45,0.48). The highest value is measured
for average link by a rather narrow margin (0.52).

Stability: Single link’s stability (0.97) is not expres-
sive since the entire set of streamlines is always grouped
in a single cluster. Complete linked achieves the lowest
stability (0.59) due to the maximum computation in the
proximity measure (Sec. 5.1). Since random subsamples are
drawn from the original data to measure stability, different
streamlines are missing each time. While the maximum
computation is considerably affected by missing lines, the
average and the variance computation in Average link and
Ward’s method, respectively are less sensitive (0.79,0.74).
SC and k-means achieve the highest meaningful stability
values (0.82,0.85). Both apply a global objective function
and are hence, less sensitive to local changes than AHC.
However, the stability of k-means is dependent on the
number of runs (= 10, Sec. 5.2) and decreases to 0.72
for a single run. Even with a high number of runs, k-
means may generate different results if started several times
due to the random initialization of cluster centroids. The
result of all AHC variants is dependent on the order of the
input streamlines. If the proximity measure happens to be
equal for two pairs of clusters, the first encountered pair is
merged. However, we did not observe this problem.

Summary: Single link is not suitable for clustering
blood flow due to the chaining effect which requires
dedicated post-processing [10]. Complete link generates
better clusters but tends to break large clusters. This has
a negative impact on inter-cluster separation, which is
reflected by lower silhouette widths. Further, the clustering
results of complete link show a rather low stability. Sta-
bility becomes an important issue if the seeding density is
varied, e.g., along the ostium, or in interactively sampling
a region-of-interest by overlapping seeding regions, e.g.,
the aneurysmal near-wall region. In both cases, pairs of
similar streamlines that survive the modifications should
consistently be assigned to a joint cluster. K-means per-
formed particularly poor with respect to the silhouette width
and connectivity. Also, the stability of its clusters is less
predictable due to the random initialization. Average link,
Ward’s method, and SC performed equally well except for
the connectivity which is however biased towards AHC.
An extended evaluation may investigate the overlap of their
clustering results to gain further insight into their principles
of operation and the data.

Average link’s sensitivity to outliers was significantly
reduced by our adapted streamline similarity measure
(Sec. 4.2). While the original measure (Eq. 1) lead to
small-sized, outlier-corrupted clusters (< 6 streamlines) in
each dataset, this effect was only observed in three datasets
with the new measure. Ward’s method and SC proved to
be rather insensitive to outliers. Overall, we recommend
Average link, Ward’s method, and SC for clustering blood
flow. Visual blood flow summaries based on each of them
are qualitatively evaluated by domain experts in Section 6.4.

6 VISUAL SUMMARY OF BLOOD FLOW

This section is dedicated to the computation of cluster
representatives, their aggregation in a visual flow summary,
the interaction with the summary, the expert evaluation of
the summary, and our development environment.

6.1 Cluster Representatives
Displaying thousands of streamlines leads to a cluttered
visualization hampering particularly the interpretation of
inner flow structures (Fig. 4(a)). Cluster representatives
summarize the flow and show these structures (Fig. 4(b)).
In the context of clustering fiber tracts, different types of
representatives have been discussed [33]. O’Donnel et al.
employ Spectral Clustering and determine an embedding-
based representative for each fiber bundle in spectral em-
bedding space (Fig. 2(b)). The centroid of the bundle’s point
cloud is computed and the fiber closest to it is chosen. This
is feasible due to the high density and number of embedded
fibers (up to 25,000 per brain). In our case, the streamline
count is often < 3000. Furthermore, given a non-globular
cluster, e.g., banana-shaped, the streamline closest to the
cluster centroid may provide a weak representative.

As an alternative computed in the original 3D space, we
chose the streamline with the smallest average distance to
all other lines of the cluster. While often well representing
the clusters, this distance-based representative is prone to
outlier streamlines due to the outer minimum in the distance
measure (Eq. 2). A short outlier, running very similar to all
streamlines in its cluster, is assigned a small distance to
all of them. Longer streamlines are more likely to deviate
from the other lines in their cluster. Hence, the outlier is a
more likely candidate for representative selection.

O’Donnell et al. propose another approach for computing
representatives in 3D space [33]. For each cluster of fibers,
a local Cartesian grid is aligned with the cluster’s axis-
aligned bounding box. For each voxel of the grid, the
number of fibers that pass through is recorded leading to
a density volume. For each fiber, the density is integrated
along the line and the result is weighted with the fiber’s
length. The fiber with the highest value is the density-based
representative. Several problems occur in transferring this
approach to streamlines. The lines in a cluster may follow
the same course over a long range but extend beyond either
end of this range (Fig. 4(c), bottom). No line may exist that
faithfully represents the entire cluster. The lines may also
differ significantly in length. Furthermore, a few very long
lines may exist in helical flow. Hence, we consider only
density and for now neglect the weighting with length. Note
that length is still inherently considered, since longer lines
may accumulate more densities. The primarily density-
based representatives well indicate the densest parts of the
clusters which often occur in regions of helical or turbulent
flow being of high interest. In an initial flow summary and
in the remainder of this paper, we employ density-based
representatives. However, the user may change the flow
summary by modifying weights [0,1], which we assigned
to density, length, and distance. For instance, setting the
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(a) (b) (c) (d)
Fig. 4. (a) Full set of streamlines in a side-wall aneurysm. (b) Streamlines in (a) clustered according to geometry.
One representative is displayed for each cluster (n = 9). A prominent swirl in the center of the aneurysm and
laminar helical and complex flow below the ostium (transparent surface) are revealed (top, left, and right arrow).
(c) Examples for good (red) and amendable (yellow) representatives. Dots indicate parts of the cluster which
are not represented. (d) Flow around a cavity clustered according to local residence time. A selected cluster
is visualized by semi-transparent streamlines. Its attribute-based representative indicates only the lower branch
(bottom). A representation of cluster shape is obtained by further clustering based on streamline geometry (top).

weight of density to zero and the weight of length to
one leads to length-based representatives, which may better
illustrate the entire extent of the cluster.

If streamlines were clustered according to a streamline
attribute, we employ attribute-based representatives. For
each cluster, the mean of the attribute or of the statistic
that has been employed is computed and the line with an
attribute value closest to the mean is chosen (Sec. 4.3).
The representative then indicates the clusters attribute range
instead of its shape. Since the course of streamlines inside
a cluster may be rather heterogeneous, we conduct a further
partitioning according to streamline geometry (Fig. 4(d)).

6.2 Number of Clusters
A crucial question in generating the blood flow summary
is how many representatives should be displayed, i.e. how
many clusters must be computed? For blood flow data, the
“correct” number of clusters is not known. Agglomerative
Hierarchical Clustering (AHC) is well suited here since the
cluster hierarchy may be cut at consecutive levels in order
to interactively browse through a range of cluster numbers
(Sec. 5.1). Spectral clustering (SC) and k-means require
rerunning the algorithm each time. Merging and splitting
clusters in AHC occurs locally in space and is hence easier
to track visually. However, our practical experience with
highly intertwined 3D streamline clusters shows that it
is still difficult to grasp the change between consecutive
cluster numbers without visual guidance.

We aim at minimizing the workload of physicians by
making a “good guess” with respect to the number of
clusters. A default number increases the reproducibility
of our approach, which is a key requirement for entering
clinical routine. Further, it facilitates a more standardized
comparison of the flow before and after stenting and it
supports a categorization of blood flow patterns. A good
guess leads to clusters representing all significantly distinct
flow structures – overrepresented structures are tolerable
while missing structures are not – and each cluster is

homogeneous such that the representative indeed repre-
sents all contained streamlines. Translated into clustering
language, the inter-cluster separation and the intra-cluster
cohesion should be high. We couple the quantitatively best
performing streamline clustering techniques, AHC with
average link, AHC with Ward’s method, and SC (Sec. 5.4),
with state-of-the-art techniques computing the number of
clusters k that best satisfies both requirements.

Salvador and Chan propose the L-method for computing
k in hierarchical clustering algorithms [45]. The method is
based on detecting the knee in a graph that opposes numbers
of clusters and a cluster evaluation metric. Since the loca-
tion of the knee depends on the shape of the graph which
again depends on the number of tested cluster numbers,
a full evaluation graph, ranging from two clusters to the
number of data elements, is recommended. We compute
the full graph based on the evaluation metric suggested in
[45]. Zelnik-Manor and Perona propose an algorithm for
computing k in SC [42]. The algorithm iterates over a user-
defined range [a,b] for k and determines the optimal value.
The optimization is based on finding the optimal rotation
between the set of the first ki, i ∈ [a,b] largest eigenvectors
of the Graph Laplacian (Eq. 4) and the canonical coordinate
system. We empirically determined the range [4,20] for
detecting all relevant flow structures in ten datasets.

6.3 Visualization and Interaction

In the initial blood flow summary, cluster representa-
tives corresponding to the optimal partitioning are shown
(Fig. 4(b)). The user may inspect the suboptimal partition-
ings by browsing AHC’s hierarchy or SC’s range [a,b].
A representative can be picked causing the corresponding
cluster to be displayed. For browsing all clusters, the
user may scroll the mouse wheel. If the clustering was
based on a streamline attribute, the set of geometry-based
representatives per cluster is displayed after picking and
during browsing (Sec. 6.1).
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The streamline visualization is embedded in a surface
rendering of the vessel wall. The wall is reconstructed
from the unstructured grid of the CFD simulation. It is
rendered opaque with culled front faces. The opaque back
faces prevent a look through the aneurysm on lines in the
near-vessel domain. The ostium and the stent surface are
integrated. The ostium is rendered highly transparent.

Streamlines are rendered with GPU support as sets of
quads and halos are added to improve spatial perception
[46] (Fig. 4(a)). The halo color is either set to black or
encodes the cluster ID. The latter is useful to distinguish
clusters when the line color is modified according to a
streamline attribute. However, our collaborators criticized
the interference of halo and line color hampering the
readability of the attribute. We initially color all halos in
black and optionally allow an encoding of the cluster ID.

For visualizing the representatives, we evaluated stream
ribbons and tubes. While ribbons additionally show rotation
about the flow axis, color-mapped values are easier to read
from tubes during a change of the viewing perspective.
Our collaborators rated the readability as more important
and hence, we employ tubes. In order to illustrate the flow
direction, arrowhead glyphs are attached to the end of each
tube pointing in outflow direction. The tube radius encodes
the cluster size, i.e., the number of grouped streamlines.
Halos are added to the representatives and initially colored
in black. While this solves the color interference problem,
it hampers visually tracking a tube through the set of highly
intertwined representatives. Hence, we offer an optional
color encoding of the cluster ID. Alternatively, only the
halo of the representative under the pointer is colored
according to cluster ID during mouse hover and the other
representatives are rendered semi-transparently.

An important aspect is the coloring of streamlines and
representatives. In geometry-based clustering, streamline
color is modified according to a user-defined attribute.
In attribute-based clustering, the statistic that has been
employed for clustering is displayed per line, e.g., the
maximum or mean of the attribute (Sec. 4.3). Two ap-
proaches are implemented for coloring the representatives:
(1) simply copying the attribute values of the corresponding
streamline, and (2) averaging the attribute values over all
lines in the cluster. If the clustering has been based on
streamline geometry, we apply (1) for attributes being
defined as a series of values along each streamline and
(2) for single scalar attributes. Note that (1) provides a
reasonable approximation of the entire cluster for most flow
attributes since their change in value is similar across all
streamlines in the cluster due to the common underlying
flow pattern. If the clustering has been based on an attribute,
we directly apply (2) for single scalar attributes and for a
series of values, we average over the statistic that has been
employed in computing streamline similarity (Sec. 4.3).

6.4 Qualitative Evaluation

We let domain experts evaluate blood flow summaries
generated by means of the quantitatively best performing

streamline clustering techniques (Sec. 5.4): Agglomerative
Hierarchical Clustering (AHC) with average link, AHC
with Ward’s method, and Spectral Clustering (SC). The
number of clusters in the summary and hence, the num-
ber of representatives, has been computed automatically
(Sec. 6.4). The evaluation is based on three clinical cases
together comprising five datasets and representing the pre-
vailing types of aneurysms. One case has been simulated
without virtual stenting (Fig. 4(a)). Two cases have been
simulated with and without stenting, one of them with two
types of stents in two different positions (Sec. 7.1 and 7.2).
For the latter case, we considered only the most beneficial
type of stent and position. The blood flow summaries were
evaluated by two board certified (BC) senior interventional
neuroradiologists, a BC senior radiologist with a strong
background in aortic aneurysms, two CFD engineers with a
strong background in cerebral blood flow (one being coau-
thor of the paper), and one computer scientist working on
experimental 7-Tesla Magnetic Resonance Imaging (MRI)
of cerebral blood flow. The CFD engineers and one of
the neuroradiologists participated in the Virtual Intracranial
Stenting challenges in 2009 and 2010 (Sec. 7.1 and 7.2).
The case without virtual stenting was stented by the neu-
roradiologist in real life.

Flow Summary: At first, the experts were asked to
familiarize with the original data, i.e., the streamlines. All
of them had seen streamline visualizations of blood flow
before. However, the two neuroradiologists had no and only
limited experience, respectively in interacting with such
visualizations, e.g., filtering lines and probing by interactive
seeding. The streamlines were visualized as in Figure 4(a).
The experts could filter lines by thresholding their average
distance to the vessel wall. This offered browsing through
the lines from the vessel wall to the center in order to
grasp the path of the flow through the near-vessel domain
(Fig. 1(b)) and to detect characteristic flow structures, such
as swirls. The experts were asked to sketch the flow path
and annotate all structures that they consider to be relevant
in a drawing of the aneurysmal silhouette.

Then, the flow summaries based on the three clustering
algorithms were presented in a random, blinded side-by-
side arrangement. In addition, a control summary was
generated and mixed in to eliminate coincidence. This
summary was generated based on a random number k
of clusters, with k being in the range of the numbers
computed for the three algorithms. Cluster size, the as-
signment of streamlines to clusters, and the selection of
cluster representatives were also randomized. The experts
were asked to rate each flow summary. Zero points were
given if the sketched flow was in no way represented by the
summary, one point was given if it was partially represented
and two points in case of full representation. Finally, the
experts should check whether the summary reveals other
important patterns than they had discovered. Additional
comments were recorded during the evaluation. The overall
time exposure for the experts was ≈ 60 minutes.

The results of the evaluation are summarized in Table 2.
SC consistently achieves the best results. Except for one
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TABLE 2
Average expert ratings of blood flow summaries

(∈ {0,1,2}, 2=best). Comparison of Spectral
Clustering (SC), Agglomerative Hierarchical

Clustering (AHC) with average link (avg) and Ward’s
method, and random generation (RAND).

Datasets
(NVS=Not Virtually Stented,V09/V10=Virtual

Intracranial Stenting Challenge 2009/10,
S=SILK, R=right posterior cerebral artery)

Algorithm NV S V 09 V 09S V 10 V 10SR �
SC 2.0 2.0 1.5 2.0 2.0 1.9
AHC avg 1.5 1.8 2.0 2.0 1.2 1.7
AHC ward 1.8 1.8 0.8 1.8 1.2 1.5
RAND 1.0 1.0 0.0 0.7 1.0 0.7

dataset, its flow summaries fully represent the flow sketched
by the experts. For this specific dataset, half of the partici-
pants considered a swirl as “not really visible” (one point)
while the other half considered it to be “slightly indicated”
(two points). AHC with average link and with Ward’s
method show the second and third best results, respectively.
However, Ward’s method never achieves the full score on
average for none of the datasets. The control summary
(RAND) performs significantly worse than the rest, which
confirms that the other summaries indeed provide non-
random, meaningful insight. In 33 flow summaries out of
90 (5 datasets times 6 participants times 3 algorithms,
excluding RAND), the experts detected more interesting
flow patterns than they had discovered during streamline
filtering further indicating the summary’s benefit. The 33
summaries were generated in equal shares by the algorithms
thus not indicating a unique feature.

Number of Clusters: The CFD engineers and the
computer scientist were given an extra task before the
assessment of the flow summaries. This time-consuming
task did not fit into the tight schedule of the physicians
since it extended the evaluation time to 90−120 minutes.
In a sequence, the flow summaries based on the range of
possible numbers of clusters [4,20] were presented and the
experts were asked to select the number ksel that fully rep-
resents their sketched flow, possibly shows more important
flow structures, and is still clearly readable. To reduce time
exposure, each expert assessed each dataset only based
on one alternately chosen algorithm A with the control
summary being left out (3 experts times 5 algorithms results
in 15 ratings). After ksel had been determined, the experts
were asked to rate the flow summaries as explained above.
Afterwards, the summary corresponding to A was pointed
out and the expert was asked to compare the associated
computed number of clusters kcmp to ksel .

For SC, ksel was preferred once over kcmp, namely for
the only dataset for which SC’s flow summary did not
achieve the full score on average (Table 2, V 09S). For both
AHC with average link and AHC with Ward’s method, ksel
was preferred three times over kcmp since important flow
structures were missing based on kcmp. The remaining 8
comparisons assessed kcmp as appropriate for generating
an uncluttered summary, which is complete with respect

to characteristic flow structures. In 5 (of 8) comparisons,
these structures were overrepresented (kcmp > ksel) but still
clearly visible. In the remaining 3 comparisons, ksel was
higher than kcmp because one specific swirl was seen based
on both but even more clearly based on ksel .

In conclusion, the blood flow summaries based on SC
have achieved the best evaluation results by a narrow
margin. The applied clustering algorithm, the number of
clusters, and the type of representative effect the success
of the summary. Hence, we recommend and employ in
the remainder SC, its associated technique for computing
a reliable number of clusters, and density-based represen-
tatives (Sec. 5.3, 6.1, 6.2). Since kcmp was assessed as
inappropriate in one case of SC, we offer interactively
browsing the range of possible cluster numbers [4,20]
starting from kcmp.

Anecdotal Feedback: All experts agreed that the flow
summary is much faster to interpret than the entire set
of streamlines and reveals flow features which are hidden
inside the streamline clutter. They appreciated the workload
reduction by avoiding the tedious iterative procedure of
selectively seeding and/or filtering streamlines. Displaying
streamline clusters on demand was rated as very valuable
to get an impression of the spatial region that is represented
by a cluster representative. Supporting the visual tracking
of individual representatives by coloring the halo of the
representative under the mouse pointer was preferred over
temporarily modifying the halo color of all representatives
according to cluster ID (Sec. 6.1). The physicians agreed
that the comparison of flow before and after stenting is
greatly simplified by the flow summaries in Figure 5 and 7.

6.5 Design Lessons

We carefully designed the flow summary in a tight feedback
loop with our collaborators. The design lessons learned help
other visualization practitioners working with similar data.

(1) Restrict the clustering domain to the region-of-
interest. We restrict it to the aneurysm and the near-
vessel domain. Otherwise, long sections of straight in- and
outflow would lead to high streamline similarities while
differences inside the aneurysm would have less impact
(Sec. 4.1). (2) Choose a similarity measure that is less
sensitive to streamline length if the course of streamlines
is the primary concern. (3) Provide a good initial guess of
the number of clusters since visually tracking the changes
while browsing through different numbers of clusters is a
tedious task especially for highly intertwined streamlines.
(4) Use tubes as cluster representatives instead of ribbons if
the readability of attribute values is crucial. (5) Add halos
to streamlines and representatives in order to enhance their
spatial perception. (6) Use black as halo color to avoid
visual interference with color-coded streamline attributes.
(7) Support visual tracking of tubes through a set of
intertwined representatives by assigning a striking color to
the halo of the representative under the mouse pointer. (8)
Allow the user to see the original clusters since the repre-
sentatives well encode the general course of the contained
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(a) (b) (c) (d)
Fig. 5. VISC 2009. (a) Virtual stent placement, morphological features, subdivision of vascular domain (red
circles) and flow conditions. (b,c) Streamlines clustered based on geometry (b) before and (c) after stenting.
Arrows point at interesting differences, e.g., reflux (upper arrow). Flow from the right artery is not completely
diverted (c). (d) Inside the artery. Flow bypassing the stent (arrow) reveals a gap between stent and vessel wall.

streamlines but fail in illustrating the cluster extent. (9)
Encode the direction of the flow, e.g., by arrowhead glyphs.
(10) Attribute-based clustering may require the computation
of several representatives per cluster since the streamlines
in a cluster may be quite heterogeneous with respect to
their geometry (Fig. 8 (b,d)).

6.6 Development Environment
The clustering algorithms, the similarity measures and the
computation of cluster representatives are implemented in
MATLAB (MathWorks, Natick, MA, U.S.). Source code
for local scaling and determining the number of clusters is
provided by Zelnik-Manor and Perona [47]. All MATLAB
code is exported as a shared library and accessed from cus-
tom C++ code. The three categories of streamline attributes
are computed using (1) ANSYS Fluent 12 and ParaView,
(2) the Vascular Modeling Toolkit (www.vmtk.org), and (3)
custom C++ code (Sec. 4.3). The visualization is imple-
mented in C++ and the Visualization Toolkit (Kitware, Inc.,
Clifton Park, NY, U.S.).

7 APPLICATION
We applied our approach to data of the Virtual Intracranial
Stenting Challenges (VISC) in 2009 and 2010 [48]. Please
consider the following advices when reading the figures of
this section. The color scales refer to the representatives, not
their halos. The annotated range of values is based on the
entire set of streamlines. Halo colors must not be employed
for establishing correspondence between clusters in differ-
ent figures or figure parts. They are assigned independently
to each clustering result and simplify the visual tracking of
representatives in a non-interactive display.

7.1 Virtual Intracranial Stenting Challenge 2009
For the VISC 2009, teams were invited to compete in
predicting stenting success based on simulated hemody-
namic data. Two cases and a model description of the flow
diverting SILK stent (Balt, Montmorency, France) were
provided. Due to space restrictions, we only discuss the
first case with a saccular side-wall aneurysm located at

a bifurcation (Fig. 5(a)). A rare anatomical variant is the
cavity (fenestration) behind the aneurysm. Our medical col-
laborators suggested placing the stent in the right artery and
circumventing the aneurysm to the left. The stent geometry
was modeled in a CAD program and manually fitted to
the vessel wall. The hemodynamic data generation resulted
in volume meshes with 4.3 and 4.6 (with stent) million
tetrahedral elements (Sec. 2.3). The meshes constituted the
input for streamline generation (Sec. 4.1).

The resulting lines have been clustered based on ge-
ometry (Sec. 4.2). The flow summaries are displayed in
Figure 5 (b,c). A higher number of clusters can be observed
in the untreated aneurysm indicating a more complex flow
pattern (Fig. 5(b)). After stenting, the flow is less complex
which decreases the risk of aneurysm rupture [5]. In the
stented configuration, flow arriving from the right artery
is not completely diverted but still enters the aneurysm
(Fig. 5(c)). A closer look from inside the vessel at the
location where this flow enters the stent reveals that the
stent model does not perfectly adhere to the vessel wall
(Fig. 5(d)). A considerable gap exists through which flow
with high pressure is bypassing the stent. A neuroradiolo-
gist commented that such gaps indeed occur in real stenting
due to a sharp bending of the vessel. Their prediction would
be of great value. The flow that travels through the virtual
stent, exits the stent at its aneurysm-near inflection point

(a) (b)

Fig. 6. Clustering streamlines according to their mean
distance to the aneurysm wall before (a) and after
virtual stenting (b). Stenting reduces near-wall flow.
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(a) (b) (c) (d)
Fig. 7. VISC 2010. (a) Virtual stent placement, morphological features, subdivision of the vascular domain (red
circles) and flow conditions. (b-d) Clustering of streamlines based on geometry before (b) and after stenting (c,d).
Representatives indicating a major difference between the flow patterns are rendered opaque. While a “simple”
swirl is characteristic for the first two patterns (b,c), a double helical swirl is observed in the third one (d).

and enters the aneurysm (Fig. 5(c)). This may be mitigated
by a higher general or local mesh density. Before stenting,
reflux is observed below the ostium (Fig. 5(b), top arrow).
Furthermore, flow is entering the aneurysm from the left
artery with high pressure (Fig. 5(b), bottom arrow). After
stenting, this flow is obstructed by the stent and circumvents
the aneurysm. This is a convenient side effect of diverting
the flow arriving from the right branch.

A comparison of the aneurysmal wall-shear stress (WSS)
before and after stenting revealed lower values in the latter
which indicates a benefit. We investigate the near-wall flow
by clustering the streamlines based on their mean distance
to the aneurysm wall (Sec. 4.3). The results before and
after stenting are compared in Figure 6. To support a visual
comparison, the color mapping and the radius scaling of the
representatives after stenting are applied uniformly to both
configurations. The comparison shows that more flow hits
the wall and is traveling through the near-wall region before
stenting. This is in accordance with the higher WSS [49].
After stenting, a considerable amount of the flow barely
enters the aneurysm (thick blue tube in Fig. 6(b)). Note
that attribute-based representatives have been applied well
indicating a cluster’s range of attribute values (Sec. 6.1).

7.2 Virtual Intracranial Stenting Challenge 2010
For the VISC in 2010, research teams were invited to find
the optimal placement of a stent in treating a basilar tip
aneurysm (Fig. 7 (a)). We considered two types of stents
and two different positions, both covering the end of the
basilar artery and then extending to the beginning of the
left and the right posterior cerebral artery (LPCA/RPCA),
respectively. We restrict our discussion to the most bene-
ficial type of stent (SILK). The hemodynamic data of the
two stented configurations and the untreated case has been
generated as described in Section 2.3. The biggest tetra-
hedral mesh consists of 13.5 million elements (including
stent). The stent geometry was modeled in a CAD program.
Learning from the issues of a manual stent deployment
(Sec. 7.1), we applied an automatic wall-tight deployment
using polyharmonic splines for free-form deformation [15].

For the detection of flow structures in the untreated
aneurysm and in the two stented configurations, the near-
vessel domain is specified (Fig. 7 (a)) and the data is
cropped. Then, streamlines are seeded at the ostium and
clustered based on geometry. Cluster representatives are
displayed and colored according to local residence time
(RT, Sec. 4.3). The color scale has been set for all con-
figurations to mapping the range of RT in the untreated
configuration (Fig. 7 (b-d)). Thus, regions of prolonged RT
after stenting can be easily spotted. Before we focus on RT,
we study the detected flow structures.

In Figure 7 (b-d), representatives indicating a major
difference between the flow patterns are rendered opaque.
Before and after stenting along the LPCA, parts of the
flow enter the aneurysm and after a swirling motion inside,
exit via the RPCA (Fig. 7 (b,c)). Stenting along the RPCA
considerably alters the flow pattern and generates a double
helical swirl in the center of the aneurysm. A closer look
at the highlighted representative(s) of each configuration
revealed that they always represent those clusters with the
highest RT values on average. Comparing their coloring
indicates that SILK stenting along the RPCA causes the
most prolonged RT and hence represents the preferred
strategy (Fig. 7(d)). Further evidence is given by plotting
the percentage of streamlines over discrete RT values
(Fig. 8 (a)) and by Janiga et al. [15] who report the most
prolonged turnover time for this configuration. The turnover
time is a global scalar measure which is proportional to RT
and both characterize intra-aneurysmal flow stasis [50]. In
the following, we focus on stenting along the RPCA.

In order to investigate RT more locally, the streamlines
of the stented configuration have been clustered based on
it. The cluster with the highest RT values is shown in Fig-
ure 8 (b). Its streamlines are rendered semi-transparent such
that the inner swirl is easier to perceive. Flow enters the
aneurysm, is attracted by opposing wall parts, converges in
a swirl in the center, and leaves the aneurysm (the swirling
motion is also indicated in Fig. 7(d)). Since correspon-
dences between a low WSS and thrombosis development
as well as between a high RT and thrombosis development
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Fig. 8. VISC 2010. (a) Comparison of local residence
times (RT) before and after stenting along the left and
right posterior cerebral artery (LPCA, RPCA). The % of
streamlines is plotted over discrete RT values. Stenting
causes prolonged RT. (b) Cluster with the highest aver-
age RT in RPCA stenting. (c) Investigating this cluster
in the context of wall-shear stress (iso-contours). (d)
Partitioning the cluster based on streamline geometry.
Flow is strongly decelerated at the stent wires (inset).

are known [4], the cluster has been further investigated in
the context of WSS (Fig. 8 (c)). WSS is mapped to the
surface of the aneurysm and visualized by contour lines. In
agreement with [4], a value of 1.5 is chosen as the upper
limit for color mapping. Values above are clamped to this
limit. As can be observed, low WSS values occur in a large
region where the flow streaks the wall (arrow). The same
is true for the opposite side of the wall. It should be further
investigated whether these regions are potential candidates
for thrombosis initiation and whether a double helical swirl
particularly encourages flow stasis.

It was shown in [15] that the SILK stent diverts a
considerable amount of blood. However, parts of the blood
flow exit the wired mesh and enter the aneurysm. In
Figure 8 (d), the cluster with the highest values of RT
is refined by a clustering based on geometry and the new
representatives are colored according to velocity magnitude.
The structure of the swirl is easier to perceive as compared
to Figure 8 (b). Furthermore, it can be observed that the
flow exiting the stent is strongly decelerated at its wires
thus leading to a prolonged RT and a slow inflow (strong
red to green jump in the inset of Fig. 8 (d)).

7.3 Performance
This section reports on the performance of our approach.
The focus is on computation time since memory consump-
tion is not critical. The time is dependent on the number of
streamlines and their number of vertices (columns 2-3 in

TABLE 3
Dataset characteristics and timings [s] of

geometry-based clustering and visualization.
V09/V10=Virtual Intracranial Stenting Challenge
2009/2010, S=SILK stent, N=Neuroform stent,

L/R=left/right posterior cerebral artery.
.

Dataset #Stream-
lines

#Vertices
(�)

Distance
Matrix

Clustering Visualiza-
tion

V 09 2254 505 4547 34.7 9.5
V 09S 2207 249 732 29.9 4.4
V 10 2929 265 1567 57.2 6.2
V 10NR 2923 275 1581 55.9 6.8
V 10NL 1153 283 256 12.8 4.1
V 10SR 2891 234 1128 51.8 7.4
V 10SL 1138 212 142 14.1 3.7

Table 3). While the first varies with the sampling density of
the ostium, the latter depends on the streamline length and
integration step size (Sec. 4.1). We measured the compu-
tation time of Spectral Clustering and of the visualization.
In clustering, we differentiated between the computation
of the distance matrix and the actual clustering. The latter
also comprises the determination of cluster representatives.
In distance matrix computation, we focused on geometry-
based distances since attribute-based distances are much
faster to compute. The timings were taken on a 3.07GHz
Intel 8-core PC with 8GB RAM and a 64bit Windows
operating system (Table 3).

As expected, the computation of the distance matrix
represents the bottleneck. However, the matrix can be
reused for different clustering settings. In attribute-based
clustering, the time for computing the matrix depends on
the applied statistic (Sec. 4.3). For simple statistics such
as min/max, the computation is two orders of magnitude
faster than in geometry-based clustering. The timings for
the clustering itself are in the range of seconds. The most
time-consuming part of the visualization is the geometry
computation for the GPU-based streamline rendering.

8 SUMMARY AND DISCUSSION

We presented an approach for reducing visual clutter in
streamline visualizations of simulated blood flow. The
approach is based on clustering streamlines and computing
cluster representatives, which are compiled into a flow
summary. To determine the most appropriate clustering
algorithm, we carried out a quantitative evaluation of
Spectral Clustering (SC), four variants of Agglomerative
Hierarchical Clustering (AHC), and k-means. Based on
cluster validity measures, we identified SC and AHC with
average link and Ward’s method, respectively as superior. In
an expert evaluation of blood flow summaries generated by
these algorithms, SC achieved the best ratings by a narrow
margin. Its summaries are complete with respect to the
relevant flow structures in most cases. In a tight feedback
loop with our collaborators, we carefully designed the flow
summary. The design lessons learned help scientists, e.g.,
in exploring flow in other vascular pathologies.
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The computation of the summary is fully automatic.
Only a range for the number of clusters that possibly
exist in the dataset must be provided. The optimal number
is identified automatically. We empirically determined a
range of [4,20] for detecting all relevant flow structures
in ten datasets. The time needed for the clustering and
the visualization is within the range of minutes. Compared
to the Computational Fluid Dynamics (CFD) simulation,
which takes hours, it is of little consequence with respect
to a possible therapeutic workflow.

Results from CFD simulations are not yet part of the
clinical decision pipeline although they can be generated
within a clinically acceptable time frame for planning an
intervention. Neuroradiologists have little experience in
investigating flow data. Our flow summary simplifies the
access to the data, it is easier to read than full streamline
visualizations, and it contributes to the communication
between CFD engineers and physicians. The latter is of
crucial importance in understanding “How stent properties
affect flow patterns?”, “How the change in flow patterns
after stenting is related to treatment success?”, and “How
flow patterns are related to the risk of aneurysm rupture and
the development of thrombosis?”. Once these questions can
be answered, stenting may not be planned solely based on
the coverage of the aneurysm neck by the stent, but also
based on CFD results and the flow summary. The concept
of the summary can be readily transferred to (virtual)
coiling. However, the joint visualization of coils and cluster
representatives will cause serious occlusion problems.

The success of virtual stenting is so far evaluated based
on global measures, e.g., the turnover time. However, if
a certain stented configuration does not indicate a benefit
for the patient, global measures fail to explain why. We
cluster streamlines also based on locally derived domain-
specific attributes, e.g., the distance to the aneurysm wall
and the local residence time (RT). The latter was considered
a useful extension to the turnover time. Clusters with a high
RT may forecast locations of thrombosis initiation.

A limitation of our approach is that a few cluster repre-
sentatives do not capture the entire structure of their cluster.
They faithfully represent its densest part but fail to represent
all parts in the in- and outflow regions of the near-vessel
domain. Hence, the clusters itself should also be inspected.
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[11] C. Rössl and H. Theisel, “Streamline Embedding for 3D Vector Field
Exploration,” IEEE Trans Vis Comput Graph, vol. 18, no. 3, pp. 407–
420, 2012.

[12] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters,
and C. D. Hansen, “Similarity Measures for Enhancing Interactive
Streamline Seeding.” IEEE Trans. Vis. Comput. Graphics, vol. 19,
no. 8, pp. 1342–53, 2013.

[13] M. Forsting and I. Wanke, Intracranial Vascular Malformations and
Aneurysms: From Diagnostic Work-Up to Endovascular Therapy,
ser. Medical Radiology. Springer, 2008.

[14] N. Andaluz and M. Zuccarello, “Recent Trends in the Treatment of
Cerebral Aneurysms: Analysis of a Nationwide Inpatient Database,”
Neurosurgery: Pediatrics, vol. 108, no. 6, pp. 1163–1169, 2008.
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Gábor Janiga is researcher (Privatdozent)
at the Laboratory of Fluid Dynamics and
Technical Flows at the University of Magde-
burg, Germany. In 1998, he received his
diploma and in 2002 a Ph.D. from the Univer-
sity of Miskolc (Hungary), and a habilitation
(venia legendi) in 2011 from the University of
Magdeburg. His research interests are in the
simulation of blood flow in vascular patholo-
gies and in virtual stenting.

Holger Theisel is professor for Visual Com-
puting at the Computer Science Department
at the University of Magdeburg, Germany.
In 1994, he received the diploma in Com-
puter Science, in 1996 a Ph.D. in Computer
Science, and a habilitation (venia legendi)
in 2001 from the University of Rostock. His
research interests focus on flow and volume
visualization as well as on CAGD, geometry
processing and information visualization.

Bernhard Preim is professor for visualiza-
tion at the Computer Science Department
at the University of Magdeburg, Germany. In
1994, he received the diploma in Computer
Science and in 1998 a Ph.D. in Computer
Science from the University of Magdeburg,
and a habilitation (venia legendi) in 2002
from the University of Bremen. His research
interests are in medical visualization and ap-
plications in diagnosis and treatment.

66 CHAPTER 2. Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms



Cluster Analysis of Vortical Flow in Simulations of Cerebral
Aneurysm Hemodynamics

Steffen Oeltze-Jafra, Member, IEEE, Juan R. Cebral, Gábor Janiga, and Bernhard Preim

Fig. 1. Vortical flow in aneurysm with major center swirl (case #2, Fig. 9(b)). Vortex core lines are rendered magenta in (a-f). Neither
streamlines seeded at the aneurysm inlet (a) or inside (b) nor the representatives (d-e) of their clustering results [32] clearly convey the
swirl. We propose a new approach to grouping streamlines seeded at vortex core lines (c) comprising custom group representatives
(f). It reveals an embedded vortex (g) — a small vortex enveloped by a larger one swirling in the opposite direction — forming around
a saddle-node bifurcation (h). In (g-i), arrows indicate local flow direction and the vortex core line of the major swirl is rendered gray.

Abstract—Computational fluid dynamic (CFD) simulations of blood flow provide new insights into the hemodynamics of vascular
pathologies such as cerebral aneurysms. Understanding the relations between hemodynamics and aneurysm initiation, progression,
and risk of rupture is crucial in diagnosis and treatment. Recent studies link the existence of vortices in the blood flow pattern to
aneurysm rupture and report observations of embedded vortices — a larger vortex encloses a smaller one flowing in the opposite
direction — whose implications are unclear.
We present a clustering-based approach for the visual analysis of vortical flow in simulated cerebral aneurysm hemodynamics. We
show how embedded vortices develop at saddle-node bifurcations on vortex core lines and convey the participating flow at full
manifestation of the vortex by a fast and smart grouping of streamlines and the visualization of group representatives. The grouping
result may be refined based on spectral clustering generating a more detailed visualization of the flow pattern, especially further off
the core lines. We aim at supporting CFD engineers researching the biological implications of embedded vortices.

Index Terms—Blood Flow, Aneurysm, Clustering, Vortex Dynamics, Embedded Vortices

1 INTRODUCTION

Cerebral aneurysms represent a type of cerebrovascular disorder in
which a weakening of the arterial wall leads to a balloon-like dilation
(Fig. 2(a)). The prevalence of unruptured cerebral aneurysms in the
general population has been estimated as 3.2% [48]. Their rupture is
associated with a mortality rate of ≈ 50%.

Computational fluid dynamic (CFD) simulations of blood flow play
a crucial role in understanding aneurysm rupture and evaluating its
risk since they provide insights into the aneurysm hemodynamics
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[4, 7, 17]. Hemodynamic parameters are evaluated as predictors for
aneurysm rupture together with geometrical descriptors, wall proper-
ties, inflammatory effects, genetic predispositions, and behavioral fac-
tors. The blood flow pattern and in particular, the formation of vortices
are among the hemodynamic parameters that were linked to rupture,
thus motivating a detailed investigation of swirling flow [4, 7].

Previous work reports the frequent observation of embedded vor-
tices — one vortex enveloped by a second one swirling in the opposite
direction — in unsteady CFD simulations [3] (Fig. 1 (g)). It relates
their formation and collapse over the cardiac cycle to saddle-node bi-
furcations — the collision and annihilation of a saddle and a node
located on the vortex core line (Fig. 1 (h)). We aim at supporting
CFD engineers in revealing the biological implications of embedded
vortices. Here, we study the structure of these vortices at full manifes-
tation based on a representative point of the cardiac cycle.

The investigation of embedded vortical flow benefits from an ex-
traction of the vortex core line and the seeding of integral curves in its
vicinity (Fig. 1(a-f)). In [3], groups of streamlines are integrated from
manually selected core line segments which were extracted by Sujudi
and Haimes’ method [45]. The segments are selected and integration
and visualization parameters are adjusted until inner and outer vortex
are properly conveyed by a separate group of streamlines.
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We automate this tedious, error-prone process and contribute a fast
generation of the streamline groups. The display of group representa-
tives yields a comprehensive and comprehensible visual summary of
the vortical flow (Fig. 1(g)). On demand, the groups are refined in a
clustering step leading to a more detailed visualization, e.g., of flow
further off the core line. We show that this two-step approach outper-
forms the direct clustering [32] in terms of speed and accuracy and
illustrate our method by six (out of 17 investigated) case studies. We
further contribute an expert evaluation of the visual summary, explo-
ration techniques, and an automatic assembly of core line segments
output by Sujudi and Haimes’ algorithm [45] into continuous lines.

2 HEMODYNAMIC BACKGROUND

We introduce cerebral aneurysm hemodynamics with a focus on vorti-
cal flow and outline our hemodynamic data generation pipeline.

2.1 Hemodynamic Parameters
The role of quantitative parameters in characterizing the hemodynamic
environment in ruptured and unruptured aneurysms is detailed in [6].
Here, we focus on qualitative parameters describing the blood flow
pattern. They are derived from a visual inspection. If flow particles are
moving mostly parallel or in a helical fashion along a common axis,
the flow is considered laminar while turbulent flow is characterized
by chaotic property changes. If flow from a forward stream reverses
and flows back into a separation zone, recirculation is observed. The
existence, number, and persistence of vortices over the cardiac cycle
influence the flow complexity and stability. In complex flow, more than
one recirculation zone or vortex are observed. Their disappearance and
recreation during the cardiac cycle are characteristic for unstable flow.

2.2 Vortical Flow in Cerebral Aneurysms
Cebral et al. introduced and later reviewed a flow pattern classifica-
tion scheme comprising flow complexity and stability [7]. Blinded ob-
servers visually classified CFD simulation results of a large database
comprising ruptured and unruptured cerebral aneurysms (n = 210).
Simple, stable patterns were seen in unruptured aneurysms while com-
plex, unstable patterns were observed in ruptured aneurysms. More
than 95% of the aneurysms contained at least one vortex. Gambaruto
and João link vortex cores anchored at the aneurysm wall to wall shear
stress and monitor the persistence of vortex cores [14]. The most rig-
orous investigation of vortical flow has been accomplished by Byrne
et al. based on vortex core line extraction [4]. They reviewed the
database from Cebral et al. [7] and expressed flow complexity by
core line length, with multiple core lines, i.e., vortices, resulting in
a higher overall length, i.e. complexity. The persistence of core lines
was related to flow stability. Unstable, complex vortical flow was more
frequently seen in ruptured than in unruptured aneurysms.

2.3 Embedded Vortices
Byrne et al. observed the formation of embedded vortices in cere-
bral aneurysms [3]. These vortices are characterized by a vortex layer
swirling in one direction along the vortex core line, and a second vor-
tex layer swirling in the opposite direction and enveloping the first
(Fig. 2(b), top). Their formation and collapse over the cardiac cycle
has been related to saddle-node bifurcations — a concept from dy-
namical systems theory. It describes the collision and annihilation of
two equilibrium points with alternating stability in a dynamical system
[9].1 In one-dimensional phase space, an unstable saddle and a stable
node collide at the bifurcation point and annihilate each other.

Transferred to embedded vortices, two points at which the velocity
magnitude is (near-)zero, i.e. two equilibria, emerge along the vortex
core line causing the formation of embedded vortical flow (Fig. 2(b)).
During the cardiac cycle, they converge along the core line, collide,
and disappear causing a collapse of the embedding and a regression to
uni-directional vortical flow [3]. Both equilibria are of type focus sad-
dle since they simultaneously exhibit stable and unstable components

1In fluid dynamics, a saddle-node bifurcation is also referred to as fold or
blue skies bifurcation and equilibria are known as stagnation or critical points.

(a) (b)
Fig. 2. (a) Morphological features (bold) of an aneurysm and subdivision
of the vascular domain (red lines). (b) Embedded vortex (top) and its ex-
posed core line (bottom). Two equilibria form a saddle-node bifurcation.
Arrows indicate the saddle- (Equilibrium 1) and node-like (Equilibrium 2)
flow transport along the core line. Vortex formation is detailed in the text.

— one 2D component describing the direction of swirling flow in a
plane transverse to the core line (in or out relative to the equilibrium
point, i.e. stable or unstable focus) and a 1D component describing the
direction of flow transport along the core line (attracting or repelling
from the point, i.e., stable node or unstable saddle). The direction of
transport is expressed by stable and unstable manifolds also known as
stable insets and unstable outsets (arrowheads in Fig. 2(b) bottom).

In Figure 2(b) top, streamlines are seeded at three manually de-
fined core line parts separated by the equilibria. Red streamtubes spi-
ral away from the stable focus (Equilibrium 1) along its unstable out-
set (left red arrow), flow along the length of the core line and spiral
in towards the unstable focus (Equilibrium 2) along its stable inset
(right red arrow). As they approach the unstable focus, they collide
with green streamtubes flowing in along the inset on the opposite side
(green arrow). Red and green streamtubes are repelled by the unstable
focus, swirl outwards, and jointly flow back along the core line.

2.4 Hemodynamic Data Generation Pipeline
The pipeline employed for the cases shown in Figure 9 (a-c) is de-
scribed in the following. The pipeline for cases (d-f), which differs in
steps tailored to virtual stenting, is outlined in [32].

CFD models of intracranial aneurysms are generated from 3D ro-
tational angiography images [5]. The aneurysm and the surrounding
vasculature are segmented by thresholding and region growing algo-
rithms followed by iso-surface deformable models [49]. The resulting
surface is smoothed with a non-shrinking algorithm [46]. Unstructured
grids composed of tetrahedral elements are generated with an advanc-
ing front technique [25]. A maximum element size of 0.2 mm is used,
resulting in meshes with approximately 1.5-3 million elements. Nu-
merical solutions of the incompressible Navier-Stokes equations under
unsteady pulsatile flows are obtained with an implicit finite element
formulation and a deflated conjugate gradients solver to accelerate its
convergence [28]. The neck of the aneurysm is manually traced on the
3D model and used to triangulate the ostium and subdivide the volume
mesh into aneurysm sac and parent vasculature [29] (Fig. 2(a)). The
latter is further subdivided into near- and far-vessel domain [6].

3 RELATED WORK

Post et al. categorized flow visualization techniques into direct, geo-
metric, texture-based, and feature-based [33]. Salzbrunn et al. added
partition-based techniques [38], which decompose a flow field based
on vector values, integral curve properties or contained features. Our
approach is related to geometric, feature-based, and partition-based
techniques since we employ streamribbons to convey flow dynamics,
restrict the visualization to vortices, i.e. features, and decompose the
flow field around a vortex core line. We restrict our literature overview
to the visualization of vortical flow and the partition-based visualiza-
tion of blood flow.
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3.1 Visualization of Vortical Flow

A qualitative investigation of vortical flow does not require an explicit
representation of the vortex. Basic techniques such as arrow glyphs
and selectively seeded streamlines were compared in this context [24].
A quantitative investigation builds upon a vortex representation, which
can be the vortex core line or the vortex region. While the latter is
directly visualized by a surface [43], the former serves as a basis for
visualizing the flow in its vicinity, mostly by integral curves [21].

We aim at a more quantifiable and reproducible analysis of vortical
flow and hence, build upon a vortex representation. We favor the core
line since embedded swirling motion is better conveyed by envelop-
ing sets of integral curves than by nested, semi-transparent surfaces.
Furthermore, we need the core line to detect the equilibria constituting
a saddle-node bifurcation. In the following overview of visualization
approaches, we omit a description of the respective core line extraction
algorithm. An introduction to extraction methods is given in [21].

Based on Vortex Core Line. The core line is often rendered
as polyline or tube. Integral curves are seeded in its vicinity or cutting
planes showing the local 2D flow are erected along the line [21]. Em-
bedded vortices are visualized by means of manually defined, colored
sets of streamlines in [3] (similar to Fig. 2(b) top). Filled contour plots
of normalized helicity [27] erected along the core line facilitate the
visual separation of a primary and an embedded, secondary vortex in
[11]. A streamsurface tightly enclosing the core line and a color map-
ping to convey local flow rotation are proposed in [16]. An iconic rep-
resentation of core lines is employed in [36]. A tube is colored and/or
scaled according to a vortex criterion and, e.g., colored stripes on the
tube indicate flow rotation. Striped pathlines around core lines for
conveying vorticity transport in unsteady flow are presented in [35].
The stripes convey scalar flow quantities and simulation quality. In
[37], vortex skeletons are extracted from scalar fields indicating vor-
tex activity and visualized by tapered tubes. An illustrative rendering
conveying both, vortical flow and vortex extent is introduced in [42].

3.2 Partition-Based Visualization of Blood Flow

Most techniques decompose a blood flow field into regions of similar
behavior based on integral curves [2, 17, 23, 32]. Others employ local
vectors [47] or aneurysm wall properties [14, 18, 30]. As argued in
[50], we favor integral curves over local flow information since they
represent continuous flow patterns traced over the entire domain.

3.2.1 Partitioning Based on Integral Curve Properties

Streamline predicates represent and combine local integral curve prop-
erties [39]. The predicate-based grouping of streamlines which con-
stitute the inflow jet in a cerebral aneurysm is proposed in [17]. Predi-
cates for the visual analysis of measured cardiac and aortic blood flow
can be defined such that, e.g., flow passing vortices is extracted [2]. A
comparison of vortex criteria for defining pathline predicates tailored
to vortical cardiac blood flow is provided in [23].

Predicate-based approaches require the user to define attributes of
interest and thresholds on attribute values. Clustering approaches em-
ploy a data-driven strategy for grouping integral curves and are hence
self-tuning with respect to differences in the flow across datasets. In
[32], different integral curve properties and techniques for clustering
streamlines were compared for analyzing the blood flow pattern in
cerebral aneurysms. A spectral clustering approach [51] performed
best and will hence, be applied in the refinement step of our approach.

3.2.2 Partition/Cluster Representatives

A condensed visualization of clustered integral curves or fiber tracts
is achieved by displaying one or more representatives per parti-
tion/cluster. In [50], only streamlines located at cluster boundaries
are shown adhering to a user-defined density. An interactive filter-
ing mechanism iteratively removing the most similar lines from a
cluster until the characteristic ones remain is suggested in [26]. In
[2], representative streamlines are derived from the skeleton of a line

(a) (b)
Fig. 3. (a): Streamlines seeded at core line points. The core line is
superimposed and its equilibrium points are rendered as spheres (yel-
low: saddle, red: node). (b): Streamline clustering and display of cluster
representatives [32]. The result is lacking a representation of the flow
along the magenta ends (arrows) of the gray shaded core line. The
same streamlines were grouped using our new approach (Fig. 1(g)).
The group representatives clearly convey also the missing flow.

predicate-based streamline bundle and visualized by illustratively ren-
dered ribbon-like structures with arrowheads. We aim at a user-
independent approach exploiting the good cluster cohesion and sep-
aration achieved by our clustering technique [32]. Related work dis-
plays down to a single representative per cluster. In [8], the stream-
line(s) closest to the cluster centroid are computed in cluster space and
displayed by streamribbons with arrowheads. Streamtubes with arrow-
heads are employed in [32]. Here, the streamline traversing the densest
cluster parts on average is computed in streamline space employing an
adaptation of [31]. We adopt the density-based representative since it
does not require expensive inter-streamline similarity computations.

4 PREVIOUS APPROACHES AND NEW ANALYSIS PIPELINE

In previous work, uncluttered visualizations of the aneurysmal blood
flow pattern were generated by clustering streamlines seeded at the in-
let of the aneurysm, i.e. the ostium surface (Fig. 2(a)), or inside the
aneurysm, and showing cluster representatives [32]. However, neither
the lines (Fig. 1 (a,b)) nor their representatives (Fig. 1 (d,e)) are guar-
anteed to properly capture and convey (embedded) vortical flow and
non-vortical flow causes visual clutter (vortices are indicated by their
magenta core lines). Extracting vortex core lines and seeding stream-
lines in their vicinities resolves these issues (Fig. 1 (c)). However, con-
veying the structure of an embedded vortex requires additional efforts.
In previous work, streamlines were seeded at manually selected core
line parts such that inner and outer vortex were represented by a sepa-
rate group of streamlines [3]. Integration length, seeding density, and
transparency of the streamline groups were manually adjusted until
the embedding was properly conveyed. In this tedious and error-prone
process, often only trade-offs can be achieved between a clear visibil-
ity of the embedding structure, an indication of flow feeding and drain-
ing the vortex, and an uncluttered visualization also in case of multiple
vortices in one aneurysm. An automated definition of the streamline
groups based on the cluster representative approach in [32] and a dense
set of lines seeded along the entire core line suffers from inaccuracies
and performance issues. First, small parts of distinct vortical flow at
core line ends are not always captured by a separate cluster (represen-
tative) hampering the assessment of local flow near equilibria (Fig. 3).
This is due to the spectral clustering approach which is biased towards
clusters of similar size and thus, may merge a very small cluster with
a larger one [32]. Second, the clustering can take minutes depending
on streamline count and length due to the employed inter-streamline
similarity measure. We propose a solution that is fast, avoids visual
clutter, and generates a complete visual summary of vortical flow.

Our pipeline for the cluster analysis of vortical flow is shown in
Figure 4. It starts by extracting the vortex core lines from the hemo-
dynamic data (Sec. 5.1). Since the extraction generates sets of line
segments suffering from erroneous gaps and noise, continuous lines
are formed in an enhancement step (Sec. 5.2). Then, streamlines are
integrated from seed points along the core lines (Sec. 5.4). The sub-
sequent clustering step comprises an initial grouping of streamlines
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Fig. 4. Analysis pipeline. Vortex core line segments are extracted from time step t of the simulation data and continuous lines are formed in an
enhancement step. Then, streamlines are integrated from core line points. Next, streamlines are grouped and the groups are optionally refined in
a clustering step. Finally, group/cluster representatives are computed and integrated with other simulated or derived data in a visual summary.

and an optional refinement step. The grouping is sufficient to observe
the global structure of an embedded vortex and to assess the local flow
near equilibria (Fig. 1 (f-i)). It comprises detecting the equilibria along
the core lines for defining core line partitions (Sec. 6.1) and associat-
ing each streamline with a partition (Sec. 6.2). This structured process
ensures that all parts of embedded vortical flow are captured by a sep-
arate group of streamlines. It is fast since it does not require the com-
putation of inter-streamline similarity. In an optional clustering-based
group refinement, a more detailed representation of flow further off
the core line and of vortical flow without an embedded structure can
be achieved (Sec. 7.2). The refinement step employs the grouping re-
sult as constraint to improve accuracy and reduce computational time.
After the clustering, group/cluster representatives are computed and
aggregated in a visual summary of vortical flow (Sec. 8.1). The user
may interact with the visual summary to explore the flow (Sec. 8.2).

5 COMPUTATION OF A VORTEX REPRESENTATION

We describe vortex core line extraction and enhancement. The core
line is part of our vortex representation which is completed by stream-
lines integrated from seed points on the core line. Note that we con-
sider only vortices located inside the aneurysm sac (Fig. 2(a)).

5.1 Vortex Core Line Extraction
Our collaborating CFD engineers extracted the core lines partially
within previous projects employing the eigenvector method by Sujudi
and Haimes [45]. It returns a line segment per element of the volume
mesh that is penetrated by the core line. The set of segments is known
to suffer from discontinuities between neighboring segments due to
the piecewise linearity of the Jacobian and from false positives, i.e.
noise. Hence, filtering mechanisms were applied.

Despite careful fine-tuning, often only trade-offs between noise re-
moval and maintenance of “real” core line segments were achieved.
Gaps resulted from a too generous filtering and the filtered data still
suffers from noise (Fig. 5(a)). More sophisticated algorithms for core
line extraction were proposed [40]. However, no algorithm or vortex
criterion are known to guarantee vortex detection [1]. Moreover, dif-
ferent algorithms generate different core line candidates. To find the
best algorithm is out of scope of this paper. In preliminary tests, we
visually compared the given segments to the results of two algorithms
implemented in EnSight (CEI Inc., Apex, NC) — the method by Su-
judi and Haimes and a vorticity-based approach. The agreement also
between EnSight’s methods was very high with the vorticity-based
method producing more noise. A more thorough comparison involving
more approaches would be required for implementing our approach in
a clinical setting requiring maximum confidence. However, we focus
on supporting the research endeavors of CFD engineers who are aware
of the vortex extraction issues.

We stick with the available core line segments and propose an en-
hancement approach incorporating automatic removal of the remain-
ing noise, gap closure, and the formation of continuous lines adhering
to the segments (Sec. 5.2). In a sensitivity analysis, we visually verify
all core line candidates and elaborate on the rate of false-positive and
-negative (missing) core lines after enhancement (Sec. 5.3).

5.2 Vortex Core Line Enhancement
The enhancement step may neglect the flow field since we do not aim
at the precise core line but at a solid base for seeding streamlines and
computing equilibria. We identify curve-shaped clusters of segments,
e.g., the green and red cluster in Figure 5(a), and per cluster, find the
shortest path P along the segments from one end of the curve/cluster
to the other (Fig. 5(c)). Gaps are closed by merging nearby, simi-
larly oriented paths P. Stair-case artifacts caused by discontinuities
between adjacent segments are resolved by smoothing (Fig. 5(b)). The
proposed approach can handle multiple core lines but fails to handle
branching ones. So far, we did not observe branching vortex cores.

Clustering. At first, the segments are clustered using a density-
based technique (Fig. 5(a)). Such techniques are particularly suited
for noisy data and non-spherical clusters. Instead of employing the
line segments, we cluster their endpoints. This is feasible since the
endpoints of a segment are very close together due to their location
inside the same cell of the volume mesh. We employ a variant of the
DBSCAN clustering algorithm that requires only a single parameter
minPts steering the minimum number of points to be considered as a
cluster [10]. The second parameter ε of the original DBSCAN algo-
rithm is derived from minPts. It represents the distance between points
up to which they are considered to lie in the same cluster. Small clus-
ters can be tagged as outliers, i.e. false positives, by adjusting minPts.
However, increasing minPts leads to larger values of ε which in turn
leads to the merging of outliers with larger clusters in close proximity.
We thus set minPts = 1 and skip small clusters when determining P.

Graph Representation. In a second step, the set of points is
treated as undirected, edge-weighted graph. Each of the n points cor-
responds to a node. An edge exists between two nodes if their points
are contained in the same cluster. The Euclidean distance is employed
as edge weight unless the points belong to the same line segment, in
which case a predefined value very close to zero is assigned. This
guarantees that the search for the shortest path P prefers the line seg-
ments. For instance, P of a U-shaped set of segments would otherwise
correspond to the direct connection of the U’s ends. The graph is rep-
resented by its sparse n×n adjacency matrix A.

Shortest Path Search. A series of steps is carried out to de-
termine Pc for each cluster c. Clusters smaller than a threshold T1 are
neglected since they are likely to represent false positives (too small
clusters in Fig. 5(a)). (1) For the rest, the corresponding subgraph Ac is
extracted from A. A straightforward but expensive approach to search
for Pc would be the computation of all shortest paths between pairs
of nodes in Ac with Pc being the longest of them. (2) To minimize
the number of pairs to test, the minimal spanning tree MSTc of Ac is
computed [34] (black structure in Fig. 5 (close-up)). It forms a nat-
ural skeleton of c suggesting its shape. (3) Then, the shortest paths
between all pairs of nodes in MSTc are computed [22] and the longest
of them Ptmpc is memorized (yellow path in Fig. 5 (close-up)). It pro-
vides a good estimate of Pc but its computation considers only a subset
of Ac, namely the edges in MSTc. As a consequence, Ptmpc may not
be optimal everywhere and make detours as for instance in the middle
of Figure 5 (close-up) where the red line represents the shortest path.
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Fig. 5. Vortex core line enhancement. (a) Core line segments are clus-
tered. (close-up) For each larger cluster, the shortest path (red) from
end to end along the line segments (green) is computed based on the
cluster’s minimal spanning tree (black) and its longest shortest path (yel-
low). Note that segment overlaps result from 3D to 2D projection. (b)
Gaps are closed, the path is smoothed, and small clusters representing
noise and those without a distinct curve shape are neglected.

(4) Hence, the path search is extended to Ac and point pairs in the ε-
neighborhood of Ptmpc’s terminal vertices. Note that the two terminal
vertices are located at either “end” of the cluster due to the definition
of MSTc. For all point pairs, the shortest path is computed [12] and the
longest of the shortest is chosen as Pc (red path in Fig. 5 (close-up)).

Verification Step. Clusters without a distinct curve shape, i.e.
a high percentage of segments deviates strongly from Pc, shall be ne-
glected from further processing since they are likely to represent false
positives. At first, the median of all distances d̃ between two neigh-
boring points on Pc is computed. Then, all points in c which are not
part of Pc and further off Pc than d̃ are determined. For each of these
points, its closest point on Pc is computed. If the share of unique clos-
est points in total points of Pc exceeds a threshold T2, c is neglected
since it shows a high degree of dispersion which is not restricted to
a small region along Pc. A locally high dispersion is tolerable. It is
occasionally observed close to the vessel wall where core line extrac-
tion is error-prone due to small velocities. The light and the dark blue
clusters in Figure 5(a) fail the verification step. The latter is a border
case which becomes more apparent in a 3D view.

Path Merging and Smoothing. The merging step checks
whether ends of paths are close together and oriented in a similar di-
rection. If so, the paths are likely to belong to the same core line
and they are merged (paths of red and green cluster in Fig. 5(a) are
merged in Fig. 5(b)). The similarity of direction is checked based on
the dot product of direction vectors extracted from the paths’ ends.
Two thresholds T3 and T4 are applied to proximity and similarity of di-
rection, respectively. In a final step, a low-order smoothing spline is fit
to each path based on an automatically determined amount of smooth-
ing [15] (Fig. 5(b)). As argued in [19], this eliminates high frequency
noise, i.e., the stair-case artifacts caused by the discontinuities between
neighboring segments, while maintaining the core line’s curvature.

5.3 Parameter Sensitivity Analysis
A parameter sensitivity analysis was conducted to determine the sta-
bility of the enhancement result as well as default values for T1−T4. In
a visual inspection of 17 aneurysm cases with differing number of vor-
tices, streamlines were integrated from each cluster of line segments
produced by DBSCAN. If the lines were swirling around the segments,
this cluster was tagged as vortex. None of the clusters was seen to rep-
resent more than one vortex indicating a good separability of the data

and performance of DBSCAN. From 94 clusters, 42 were tagged as
vortex and 9 as embedded vortex. To initialize T1 and T2 properly,
the number of points per cluster and the share of unique closest points
from the verification step were opposed in a plot (Fig. 1 of the sup-
plemental material). It reveals that vortices cannot perfectly be sepa-
rated using T1 and T2. However, setting T1 = 26 points and T2 = 15%
achieves a good trade-off between false-positives and -negatives and
only neglects two small vortices. While the inclusion of embedded
vortices, which only appear on longer core lines (T1 > 100 points)
with a very distinct curve shape (T2 < 5%), is insensitive to slight pa-
rameter changes, the inclusion of other vortices is sensitive. In future
work, an automatic vortex verification will obviate T1 and T2 [20].

The stability of the core line merging step has been investigated by
setting T1 and T2 to their default values and letting T3 vary over multi-
tudes of ε starting by a value close to zero and terminating at half the
largest diameter of the aneurysm sac. With each value of T3, the sim-
ilarity of direction of core line ends (T4) being closer together than T3
was recorded. Only values in the range [0,1] (0 = orthogonal ends and
1 = collinear ends) were considered. The results are given in Figure 2
of the supplemental material. Merging only occurs for five cases and
does not start until T3 = 1.5ε . Multiple merges were observed for two
datasets (pink and turquoise). The merges at values of T4 < 0.9 were
visually identified as false merges fusing unique vortices. The data at
hand suggests that a combined thresholding of distance and direction
at T3 = 1.5ε and T4 = 0.9 (equal to ≈ 26◦ maximum deviation) yields
satisfying results. Small changes of T3 and T4 do not effect the results.

5.4 Streamline Integration
We seeded streamlines in the vicinity as well as directly on the core
line and found that the latter sufficiently conveys the structure of em-
bedded vortices. Hence, seed points are computed along each core
line by equidistant resampling employing half the minimum distance
between any two consecutive points in Pc. A 5th order Runge-Kutta
method is employed for streamline integration. The maximum inte-
gration length is set to three times the maximum edge length of the
volume mesh’s bounding box. This high value accounts for the high
vorticity of the investigated flow. The integration is carried out in back-
ward and forward direction and each resulting pair of lines is merged.

6 GROUPING OF STREAMLINES

The grouping requires the computation of all equilibrium points along
a core line (Sec. 6.1) and then, classifies streamlines based on the posi-
tion of their respective seed point relative to the equilibrium locations
(Sec. 6.2). Since equilibria subdivide a core line into regions of co-
herent flow transport, this structured processing ensures that all parts
of embedded vortical flow are captured by a separate group of stream-
lines. This was confirmed by three observations in a visual investiga-
tion of 9 embedded vortices. Streamlines seeded on (see Fig. 6)

1. either side of an equilibrium point differ strongly in shape.

2. the same side exhibit a very similar shape in the vicinity of the
core line and may only diverge further off.

3. two different vortex core lines differ strongly in shape unless they
are traced for a long time and participate in both vortices.

Here, “shape of a streamline” refers to its progression along the vor-
tex core line. For instance, in Figure 6(b), all green streamlines swirl
in from the left of the node and at the node (between green and red
arrow), jointly spiral outwards. Therefore, their shape is said to be
similar. Note that for the grouping, similarity considerations are re-
stricted to the vicinity of the core line. In the clustering-based refine-
ment step (Sec. 7), they are extended to the entire aneurysm to capture
differences further off the core line (yellow arrows in Fig. 6).

6.1 Detection of Equilibrium Points
So far, equilibria were detected visually based on color mapping the
velocity magnitude onto the core line, clamping values > 1 cm/s, and
searching for local minima [3]. We maximize comparability with [3]
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(a) (b)
Fig. 6. Sets of streamlines seeded at two (a) and three (b) different core
line parts. Lines within a set exhibit a similar shape and only diverge
further off the core line (yellow arrows). The core lines are shown at
their real location (gray tubes) as well as in a shifted display. In the
latter, the in-/outflow direction at equilibria is depicted by arrows whose
color corresponds to streamline color. Furthermore, the core line parts
employed for seeding are rendered thicker.

by adopting their color mapping. The classification of equilibria, i.e.,
saddle or node, was achieved by integrating streamlines from manually
selected core line segments only in forward or backward direction.

The strict calculation and classification of equilibria/critical points
in vector fields with a finite precision suffers from numerical instabil-
ities. We suggest a more robust alternative that is based on analyzing
the local flow transport (insets/outsets) along the core line. Before we
describe the approach, we characterize the types of equilibria that were
observed in our case studies.

Types of Equilibrium Points. The following types are indi-
cated by colored spherical glyphs in all visualizations (e.g., Fig. 9):

• <— o —>, saddle point (o), two unstable outsets (—>)

• —> o <—, stable node, two stable insets

• | o —>—–, end of core line near wall (|), one unstable outset

• o —>——, end of core line offside wall, one unstable outset

In accordance with [14], we observed equilibria at the ends of vor-
tex cores, particularly, at those anchored to the aneurysm wall. Here,
wall-near flow is advected in a swirling motion, leaves the wall along
the outset, and spirals along the core line. Detecting these equilibria is
desirable since the inner vortex of an embedded vortex may originate
here and not as typical, at a saddle (e.g., left blue sphere in Fig. 9(a,g)).

Detection based on Normalized Helicity. While detecting
equilibria as local minima in a function of clamped velocity magnitude
|~v| over core line points (plot in Fig. 7) may seem straightforward, it
fails in two situations (topmost core line in Fig. 7). First, equilibria
within larger “stagnation zones”, such as the left large dark blue zone,
may not be reflected by distinct minima (plot). However, the veloc-
ity vectors ~v in this zone point in alternating directions of flow trans-
port indicating the presence of equilibria (encircled close-up). Second,
multiple equilibria, i.e. local minima, may exist within a region of very
low velocity magnitude, such as those within the stagnation zone plus
the one within the smaller dark blue zone to its right.

Our solution is inspired by the visual separation of a primary and
an embedded secondary vortex based on the switching sign of normal-
ized helicity in [11]. Helicity is defined as the knottedness of vortex
lines [27]. These lines are everywhere tangent to the vorticity vector
~ω = ∇×~v which describes the curl of the flow velocity. Normalized
helicity H is computed as:

H = ~ω ·~v/(|~ω| |~v|),∈ [−1,+1] (1)

The sign of H is negative if ~v and ~ω point in an opposite direction
and positive if they point in the same direction. This property is ex-
ploited in detecting the equilibria. Since the direction of ~ω is stable
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Fig. 7. Detection of nodes and saddles (red and yellow spheres) based
on normalized helicity H and velocity magnitude |~v| along the vortex
core line. H is the normalized dot product of ~v and vorticity vector ~ω.
All vectors are scaled to unit length to improve readability. Equilibria are
more reliably indicated by zero crossings of H than by minima of |~v|.

along the core line and the direction of~v switches at both, saddles and
nodes (Fig. 7), equilibria are indicated by zero crossings in a function
of H over core line points (plot in Fig. 7). The precise positions of
the equilibria are gained by interpolation based on the respective two
points “enclosing” a crossing and their values of H. Finally, the equi-
libria are classified by comparing the average direction of ~v on either
side in a local neighborhood. For a saddle, the dot product of the two
average vectors is negative while it is positive for a node.

The detection of equilibria based on H and |~v| is compared in Fig-
ure 7. Two saddle-node pairs within the stagnation zone and the nearby
saddle are identified using H. The pairs would have been missed em-
ploying |~v|. They form two adjacent embedded vortices with one en-
veloping the other (illustrated by streamlines). The analysis of H is
also more robust since zero crossings are global features of a function
and hence, less sensitive to low frequency jags than local minima.

Detection at Vortex Core Line Ends. Equilibria at core line
ends are not reflected by a switching sign of H due to the uni-
directional flow there. However, they are located inside small regions
with |~v| < 1 cm/s (clamping value). If such a region exists, its point
with minimum |~v|, which in all cases corresponded to the terminal
vertex of the core line, is taken as equilibrium point. Depending on its
distance to the aneurysm wall, it is classified as “near wall” or “off-
side” wall (blue or green sphere).

6.2 Grouping
This step iterates over all vortex core lines, partitions them according
to the respective equilibria, and assigns each streamline to a partition.

Grouping at Saddles and Nodes. Only saddles and nodes
are considered for the partitioning since only streamlines seeded on
either side of these equilibria differ strongly in shape (Fig. 6). Accord-
ingly, the core line in Figure 7, is divided by the five equilibria into
six partitions. Before streamlines are assigned to them, safety mar-
gins are defined around saddles and nodes (thin parts of exposed core
lines in Fig. 6). They account for the potential inaccuracies involved in
core line extraction and enhancement and comprise all core line points
within the next five penetrated volume elements to either side.

Streamlines seeded outside the safety margins are assigned to the
partition containing their respective seed point thereby creating ini-
tial streamline groups. For each group, a representative is determined
employing our variant [32] of density-based representatives [31]. In
short, the longest streamline traversing the densest parts of the group is
computed. For streamlines seeded inside the margins, the similarity to
the neighboring group representatives is calculated based on minimum
closest point distances. Each line is then assigned to the group of the
most similar representative and finally, all representatives are updated.

Grouping at Near-Wall Equilibria. Group representatives
shall convey each distinct streamline shape occurring in the vicinity
of the core line. To guarantee this at near-wall equilibria, a refine-
ment step is necessary. At the corresponding core line end, two types
of streamlines are observed (arrow in upper inset of Fig. 9(g)): longer
lines whose backward integration indicates the inflow of the vortex and
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Fig. 8. Clustering-based refinement. (a) The streamline groups in Fig-
ure 6(a) were refined based on their spectral embedding (b). The en-
circled clusters constitute the blue group in Figure 6(a). (c) Streamlines
at a vortex without an embedded structure were grouped in (d) and the
groups were refined in (e) yielding a comprehensive representation.

short lines whose backward integration terminated early due to near-
zero velocities close to the aneurysm wall. To ensure that representa-
tives convey both types, the streamline group that has been assigned to
the partition containing the core line end is split according to the length
of the backward integrated streamline part. The set of lengths forms
two crisp clusters that can be detected by k-means with k = 2. The two
corresponding subgroups of streamlines replace the current group and
their representatives are computed. In the lower inset of Figure 9(g),
the upper and the lower arrow point at the representative indicating the
inflow and the early terminated streamlines, respectively.

Grouping at Core Lines with a Single Equilibrium Point.
We observed core lines with a single equilibrium located at one of their
ends, mostly near the wall and once, offside the wall (Fig. 9(b) and
9(e)). We chose to generate two representatives per such core line so
that their intertwining conveys the vortical nature of the flow. For core
lines with a near-wall equilibrium, k-means clustering as described
above is employed. For the rest, the density-based representative of
all associated streamlines is first computed. Next, the similarity of all
lines to the representative is calculated and the similarities are clus-
tered using k-means with k = 2. Finally, the representatives of both
clusters are computed, one conveying the densest part of the stream-
line group and one conveying the part that deviates most from it.

7 CLUSTERING-BASED GROUP REFINEMENT

The clustering-based refinement of streamline groups allows for a
more detailed visualization of flow further off the core line and of
vortical flow without an embedded structure. In previous work, we
showed that spectral clustering of streamlines generates expressive
blood flow summaries [32]. Here, we recapitulate the approach and
explain its adaptation to the refinement of an initial grouping result.

7.1 Spectral Clustering
Spectral clustering (SC) maps all streamlines to a spectral embedding
space where each line is represented by a point (Fig. 8 (a,b)). This
mapping preserves local distance relations and increases cluster sepa-
rability. SC starts by constructing a n×n symmetric distance matrix M
that contains all pair-wise distances/dissimilarities between n stream-
lines. Then, the n× n affinity matrix W is constructed by applying
a function f to the entries of M. As f , a Gaussian is used assign-
ing high affinities to low distances and vice versa. Based on W, the

n×n Graph Laplacian L is computed [51]. Then, the k largest eigen-
values and their corresponding eigenvectors of L are determined with
k representing the number of clusters. These eigenvectors span the
k-dimensional spectral embedding space (Fig. 8(b)). Instead of pro-
viding k, a range of values [a,b] is provided by the user. The optimum
number of clusters within [a,b] and a cluster label per streamline are
then returned by an eigenvector rotation approach [51].

7.2 Group Refinement
Our adaptation of SC employs the grouping result to constrain the
clustering-based refinement. Since streamlines from different groups
exhibit a considerably different shape, they must not fall into the same
cluster. As a consequence, distances in M must only be computed
for pairs of streamlines from the same group. To speed up distance
computation, hierarchical signatures [26] are employed. Distances
between lines from different groups are set to a predefined very high
value such that the Gaussian f is evaluated to zero (affinity). The re-
maining steps are identical to our previous approach except for the
initialization of [a,b]. Instead of assigning an arbitrary minimum to a,
it is set to the number of streamline groups. Assuming that each group
will not be partitioned more than the number of draining vessels dv,
b is set to a ∗ dv. Constraining SC yields a performance gain due to
fewer distance computations. In the best case, the g streamline groups
are of equal size reducing the number of computations by factor ≈ g.

The streamline groups in Figure 6(a) were refined in Figure 8(a),
yielding a separate cluster for each unique streamline shape. Repre-
sentatives now well convey the fact that flow leaving the vortex pro-
ceeds through different draining vessels. The spectral embedding of
the streamlines reflects the four well-separable clusters (Fig. 8(b)). In
Figure 8(c), streamlines convey vortical flow without embedded struc-
ture. The corresponding core line exhibits a single equilibrium at one
of its ends offside the aneurysm wall (green sphere) and the stream-
lines were grouped accordingly (Fig. 8(d)). While the two group rep-
resentatives partially convey the vortex, the group refinement yields a
more comprehensive representation (Fig. 8(e)).

8 VISUAL SUMMARY OF VORTICAL FLOW

We describe the aggregation of group/cluster representatives in a vi-
sual summary of vortical flow, present exploration techniques, and
demonstrate the summary in six case studies. We use the term cluster
to refer to both, group and cluster. Exemplary summaries are shown
in Figure 9(g-j). In Section 2 of the supplemental material, we report
on timings of generating the summary.

8.1 Composition of the Visual Summary
Stream ribbons and tubes have been tested for visualizing the cluster
representatives. While tubes allow for a good readability of color-
mapped parameters independent of the viewpoint, we favor ribbons
since they additionally encode the local curl of the flow. A narrow
strip of polygons is added to each representative streamline. Its curl is
either determined by the local vorticity vectors or by normal vectors,
which are forced to minimally rotate along the line. The former yields
strongly twisted ribbons in regions of high vorticity hampering the
readability of color and textures. The latter resolves this problem but
indicates the torsion of the streamline instead of the flow’s local curl.
Hence, both opportunities were integrated. The latter is shown in the
paper to avoid readability issues.

The width of a ribbon encodes the number of streamlines in its as-
sociated cluster. Black halos improve the visual separability of the rib-
bons. An arrowhead glyph is attached to the ribbon’s end that points
in outflow direction. To visualize the local flow direction at equilibria,
arrow textures are mapped onto the ribbons inspired by [44]. Normal-
ized helicity H (Eq. 1) is mapped along the ribbons by a diverging
blue-to-red color scale. The display of representatives is embedded in
a surface rendering of the aneurysm. The front faces are culled to pro-
vide an unobstructed view. A silhouette drawing lets the surface stand
out from the background. The streamlines of a cluster can be displayed
to indicate its extent. They are rendered with GPU support, black halos
are added to improve spatial perception [13], and normalized helicity
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(a) case #1 (b) case #2

(c) case #3 (d) case #4

(e) case #5 (f) case #6

(g) case #1 (h) case #3

(i) case #4 (j) case #6
Fig. 9. The cases analyzed in this work are presented in the first two columns. Aneurysmal morphology including feeding and draining arteries,
inflow and outflow direction (arrows), vortex core lines (dark gray tubes), equilibrium points (colored spheres), and a stent (wire mesh in (d)) are
depicted. Embedded vortices are shown in detail views of selected visual summaries of vortical flow in the last two columns. Insets depict the
original streamlines. The lower inset of (g) shows a near-wall equilibrium (blue sphere) and the representatives of the two types of streamlines
(arrows) which are typically observed here (Sec. 6.2). In the corresponding upper inset, an arrow points at the represented streamlines.

is color-coded (insets of Figure 9(g-j)). Inspired by [14], equilibria are
represented by spherical glyphs whose color encodes the type of equi-
librium (Sec. 6.1). Vortex core lines are rendered as tubes and colored
according to velocity magnitude as described in Section 6.1.

8.2 Exploration of the Visual Summary
The exploration techniques discussed in [32] and two new techniques
are integrated. First, an inspection of the flow in the immediate vicinity
of an equilibrium point is supported. Clicking on the spherical glyph
causes an emphasis of the two representatives associated with the ad-
jacent core line partitions. Second, investigating flow in the presence
of multiple vortices benefits from a smart visibility strategy. Please,
see the supplemental video for a demonstration. In an overview visu-
alization, the representatives of all vortices are displayed. As the user
zooms in on a vortex, all other vortices gradually disappear. This is
realized by coupling opacity with distance to the camera. A proper
functioning requires that the vortex of interest is always closest to the
camera and in the approximate center of the viewport. Once the dis-
tance is < 4 mm, the representatives of the vortex in focus also start
to fade-out and its spherical glyphs gradually shrink to reveal the core
line and facilitate an inspection of its velocity magnitude profile.

8.3 Case Studies
We processed 17 cerebral aneurysm cases from which we chose six
representative ones for illustration (Fig. 9(a-f)). Visual summaries
of selected additional cases are shown in the supplemental material
(Sec. 4). The six cases differ with respect to location at the circle of
Willis, type: side-wall (cases #4,case #6) vs. basilar tip (the rest), size:
small (case #6) vs. giant (case #3) vs. big (the rest), and number of
vortices. Furthermore, case #4 was virtually stented and case #2 ex-
hibits a local outpouching (bleb) at the top of the aneurysm sac.

For each of the first three cases, at least one embedded vortex had
been observed in unsteady CFD simulation data. To study the structure
of the vortex at full manifestation, a representative point of the cardiac

cycle was selected. For the last three cases, only steady-state CFD
simulation data existed. A candidate embedded vortex was observed
in case #6. For case #4, no clear statement could be made since the
outer layers of two adjacent candidate embedded vortices only briefly
envelope their inner counterpart before leaving the aneurysm. No em-
bedded vortex seems to exist in case #5. A conclusive assessment of
the three cases yet requires unsteady data covering the cardiac cycle.

Detail views of the visual summaries of vortical flow are presented
for case #2 in Figure 1(g), for case #5 in Figure 8(c-e), and for the
remaining cases in Figure 9(g-j). Each summary has been visually
validated by our collaborators. The correctness of the groups/clusters
and their representatives was assessed based on a display of the corre-
sponding original streamlines and on additional arrow glyphs convey-
ing the flow direction along the core line as well as along the stream-
lines. The glyphs helped in validating the determined type of equilib-
rium as well as the orientation of the ribbon textures. All visual sum-
maries were assessed as correct. Note that this assessment neglects
vortices potentially missed during core line extraction (Sec. 5.1). The
false-positive and -negative core line candidate clusters described in
Section 5.3 do not affect the six demonstration cases.

We restrict our discussion to cases exhibiting a definite embedded
vortex (candidate). While case #2, case #3, and case #6 show the typ-
ical saddle-node configuration (yellow and red sphere), the inner vor-
tex of case #1 originates at a near-wall equilibrium (left blue sphere).
The latter configuration must be considered in embedded vortex detec-
tion since core lines of strong vortices are frequently attached to the
aneurysm wall and end their in an equilibrium [14]. A single embed-
ded vortex had been reported for the ruptured giant aneurysm case #3
[3]. We found two more embedded vortices (Sec. 6.1, Fig. 7). How-
ever, both together reach their full extent at a different point of the
cardiac cycle and are small-scale phenomena compared to the known
vortex (Fig. 9(h)). Hence, they are neglected here and their equilib-
ria are not shown in Figure 9(c). Case #6 in Figure 9(f) had been
investigated in previous work [32]. While the swirl in the center of
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Table 1. The visual summary VS of vortical flow was compared to inter-
actively seeding IS streamlines at selected core line parts and spectral
clustering SC of streamlines and display of cluster representatives [32].

Analysis Time [m:s] Correct Equilibrium Embedded Vortex
Classification [%] Detection [%]

IS SC VS IS SC VS IS SC VS
9:24 5:36 2:06 90 76 100 95 100 100

Convenience of Confidence in Clarity of
Analysis [-2,+2] Analysis Results [-1,+1] Visualization [-2,+2]

-0.4 -0.1 1.3 0.0 0.1 0.8 -0.6 0.5 1.3

the aneurysm was observed, details of the swirling motion remained
hidden. Accordingly, the embedded vortex along the upper core line
(Fig. 9(j)) had been described just as “complex flow”.

9 EVALUATION

We carried out an evaluation comparing our new and two prior ap-
proaches with regard to the quality and speed of detecting embedded
vortices and equilibria as well as of characterizing the flow near equi-
libria. We compared (VS) our visual summary without the clustering-
based group refinement, (IS) the interactive seeding of streamlines at
selected core line parts as in [3] (Sec. 4), and (SC) the spectral cluster-
ing of streamlines and display of cluster representatives [32]. IS is em-
ployed by our collaborators and has been reimplemented in ParaView
(Kitware, Clifton Park, NY). For SC, we used our in-house implemen-
tation. Since the core line enhancement is not part of IS and SC, the
originally extracted core line segments were employed as seeding ge-
ometry for both (Sec. 5.1). They were rendered and colored according
to velocity magnitude in order to indicate equilibria [3]. Seeding re-
gions as well as integration direction and length could be modified in
IS. In SC, individual representatives could be turned on/off and stream-
lines could be displayed for each cluster. Please consult Section 3 of
the supplemental material for illustrating screenshots.

Two CFD engineers (no co-authors) with long-term experience in
analyzing blood flow and eight computer scientists with a background
in flow visualization participated in the evaluation. Each session
started with a briefing including the definition of embedded vortices
and equilibria and a short introduction. Then, each participant em-
ployed each approach twice to analyze all six cases (Fig. 9(a-f)). A
questionnaire had to be filled in per case showing the vortex core lines
inside a drawing of the aneurysm. Participants were asked to encircle
core lines exhibiting embedded flow, sketch inner and outer vortex, in-
dicate the equilibria and determine their type (Sec. 6.1). Since spheri-
cal glyphs represent equilibria in VS, the participants were asked here
to validate their location and classification. Finally, they rated the con-
venience of the analysis process, their confidence in the results, and
the visual clarity of the visualization. The analysis process was timed.

The evaluation results are summarized in Table 1. On average, VS
reduces the analysis time by a factor of ≈ 4.5 and ≈ 2.7 as compared
to IS and SC, respectively. Participants spent plenty of time in SC with
deducing local flow direction at an equilibrium from the arrowheads’
direction of the corresponding representatives (Fig. 3(b)). In VS, this
information is locally encoded by arrow textures (Fig. 1(g)). The par-
ticipants detected all equilibria in all cases independent of the applied
approach. Hence, the detection rates are omitted and only the classifi-
cation rates are given. In VS, all equilibria were confirmed as properly
localized and classified. The classification rate in IS was also high
while only 76% of the equilibria were classified correctly in SC. This
is due to an inadequate visualization of flow (direction) at some equi-
libria (Fig. 3). Participants were explicitly asked not to guess the flow
(direction) but only to report what they actually see. All embedded
vortices were detected in VS and SC. One participant did not observe
the embedding in case #3 (Fig. 9(h)) based on IS. Some participants
saw an embedded vortex in the ambiguous case #4, while others did
not (Fig. 9(i)). Both answers were counted as correct. The conve-
nience of the analysis was rated highest for VS with a substantial lead
on SC and IS. The participants had great trust in their analysis results
based on VS but felt less confident when employing IS and SC. Fur-
thermore, the visual clarity of VS was rated highest. In IS, participants

complained about the cluttered streamline display while in SC, they
found parts of vortical flow not properly conveyed (Fig. 3).

Limitations. The evaluation has the character of first prelimi-
nary tests. A prospective user study will be based on a larger database
of aneurysms (n = 210) capturing the variety of location, shape, and
hemodynamics [7]. It will involve more and a wider variety of users,
e.g., neurosurgeons and neuroradiologists. Since expert users will em-
ploy our approach, participants should be familiar with flow visualiza-
tion and analysis. So far, the evaluation focused on the streamline
grouping step whose results are sufficient for conveying the global
structure of embedded flow and the location and type of equilibria.
The prospective study will include the group refinement step.

A reworked study design will ensure that metrics such as analysis
time are not biased towards VS, which is designed to highlight vortices
and equilibria. Instead, users will be asked to accomplish the tasks
employing IS and SC and their results will be compared to those of our
new pipeline (Fig. 4). Our case studies indicate that the pipeline can
batch the database and solve the tasks automatically. The generated
quantitative results will be compared to the manually derived ones and
the visual summaries VS will be rated by the users.

Given a positive evaluation of VS, an insight-based study will be
conducted with expert users. For this purpose, VS will be integrated
in an analysis system [30] and embedded in a more realistic data anal-
ysis context. More general analysis tasks will aim at understanding
the effects of (embedded) vortical flow on quantitative hemodynamic
parameters, such as pressure and wall shear stress, and the relation to
other qualitative parameters, such as wall-near flow and the inflow jet
[17]. In pair analytics sessions, an expert user and a developer will
analyze the data and try to generate application-specific insight and
hypotheses. Both will be counted yielding metrics of success.

10 SUMMARY AND OUTLOOK

We presented a pipeline for the cluster-based visual analysis of vortical
flow in simulated cerebral aneurysm hemodynamics. Segments of vor-
tex core lines affected by artifacts are transformed into continuous core
lines serving as a basis for seeding streamlines that convey the vortical
flow. Streamlines are grouped and group representatives are computed
such that each distinct flow behavior in the vicinity of the core line
is properly captured. On demand, the groups are refined yielding a
more detailed representation of more distant flow. The group/cluster
representatives are aggregated in a visual summary of vortical flow.

With the focus on embedded vortices, the pipeline was applied to 17
aneurysm cases from which six were chosen for demonstration here.
The corresponding visual summaries were positively evaluated by ex-
perts. They outperform the summaries generated by our previous ap-
proach [32] in terms of production time and accuracy. Our collaborat-
ing CFD engineers so far managed to manually investigate a few cases
a day. Assuming an automated, reliable vortex core line extraction, the
pipeline facilitates a batch processing of their database (n = 210) [7].

Relating embedded vortices to aneurysm rupture and hemodynamic
parameters may contribute to an understanding of their implications,
which may range from thrombosis initiation to high/low wall shear
stress. However, this requires extending the considered time-window
from one point in time to the full cardiac cycle. This will pose further
challenges such as tracking saddle-node bifurcations over time [41].

Our results strongly depend on the vortex core line extraction and
enhancement. While for the extraction no perfect criterion or algo-
rithm delivering a ground truth exist [1], we carried out a parameter
sensitivity analysis for the enhancement step. The resulting default
values of all involved parameters yielded satisfactory results for the
17 cases. The parameters of streamline grouping and clustering-based
group refinement influence the summaries rather slightly. No adjust-
ment of their proposed default values was required.
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SUPPLEMENTAL MATERIAL
Paper Title: Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics
Authors: Steffen Oeltze-Jafra, Juan R. Cebral, Gábor Janiga, and Bernhard Preim

1 PARAMETER SENSITIVITY ANALYSIS IN CORE LINE ENHANCEMENT

The parameter sensitivity analysis based on 17 aneurysm cases is detailed in Section 5.3 of the paper. Supplemental Figures 1 and 2 illustrate
the sensitivity of the core line enhancement result with regard to the adjustable parameters T1 to T4 as well as good parameter default values.
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Suppl.Fig. 1. Each dot in the plot represents a cluster. Cluster size (measured in points) and the deviation of a cluster from a distinct curve shape (a
higher % indicates a higher deviation) are opposed on the x- and y axes. Orange lines are drawn at good default values for parameters T1 and T2.
The set of clusters with T1 > 26 points and T2 < 15% exhibits the best trade-off between false-positive and -negative clusters representing vortices.
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Suppl.Fig. 2. Each dot in the plot represents a merge event of two vortex core line ends. With an increasing distance (x-axis) and an increasing
angle between core line ends (y-axis; measured as dot product between direction vectors) more merge events occur. All events occurring for the
first time at T3 > 1.5ε (green and neighboring turquoise points) and T4 < 0.9 (green and neighboring turquoise as well as red points) were identified
as erroneous merges suggesting these values as the default setting (orange lines).
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2 PERFORMANCE

Timings of selected steps of our analysis pipeline (Fig. 4 of the paper), the total time, and characteristics of our demonstration cases (Fig. 9(a-f)
of the paper) are given in Supplemental Table 1. Note that vortex core line enhancement was timed but not core line extraction. Timings were
taken on a 3.07 GHz Intel 8-core PC with 8 GB RAM and a 64 bit Windows operating system.

The duration of the core line enhancement (column 5) depends on the number of core line segments (c2) extracted before (Sec. 5.1 of the
paper). The bottleneck is the extended shortest path search in a graph representing the segment endpoints (Sec. 5.2 of the paper). This search
is based on an approximated path, which led to very similar visual summaries of vortical flow at a first glance. Applying this path would
significantly reduce the computation time to the fraction of a second, e.g., 0.58 s for case #3.

Grouping streamlines (c6) takes longer than a second only for the giant aneurysm (case #3). The bottleneck are inter-streamline similarity
computations based on closest point distances between all vertices. These are carried out for all lines seeded inside safety margins around
saddles and nodes (Sec. 6.2 of the paper). Hence, the duration depends on the number of saddles and nodes (Fig. 9(a-f) of the paper), on safety
margin size, and on the average number of streamline vertices (c4). The streamline count (c3) has a low impact since the majority of streamlines
is seeded outside the safety margins (compare, e.g., case #2 and case #6).

The duration of group refinement (c7) depends on the number of streamlines (c3) and their average number of vertices (c4), both influencing
the duration of inter-streamline similarity computations (Sec. 7.2 of the paper). It further depends on group count and group size (Suppl. Eq. 1)
since the similarity computations are restricted to streamline-pairs from identical groups (compare, e.g., case #1 and case #2). In the best case,
the g streamline groups are of equal size reducing the number of inter-streamline similarity computations from

n(n−1)
2

to
n(−g+n)

2g
by a factor of

g(n−1)
(n−g)

≈ g. (1)

The total time (c8) represents the duration of our entire pipeline except the core line extraction and the group refinement step (c7). The
streamline integration takes between 3.36 s for case #6 and 26.29 s for case #3 (Sec. 5.4 of the paper). The computation of group/cluster
representatives takes the fraction of a second for all cases (Sec. 6.2 of the paper). The time for the composition of a visual summary ranges
from 1.55 s for case #1 to 17.41 s for case #3 (Sec. 8.1 of the paper). Here, the geometry computation for the GPU-based streamline rendering
is most time-consuming.

Suppl.Table 1. Characteristics of six demonstration cases (Fig. 9(a-f) of the paper) and
timings [s] of selected analysis pipeline steps (Fig. 4 of the paper). Number of vortex
core line segments (#Seg.), streamline count (#Sl.), and average number of streamline
vertices (�#Vt.) are given. Vortex core line enhancement (1), grouping of streamlines
(3), optional clustering-based group refinement (4opt), and the total duration have been
timed.

.
Case Characteristics Time of Analysis Steps [s] Total

Case #Seg. #Sl. �#Vt. 1 3 4opt Time
#1 500 608 312 2.68 0.44 9.7 9.51
#2 674 859 299 2.80 0.46 10.0 13.78
#3 2469 1493 904 10.53 1.47 26.8 56.21
#4 628 735 444 2.63 0.56 12.7 13.77
#5 500 703 301 2.52 0.48 6.1 9.59
#6 350 587 533 1.84 0.57 6.8 11.65
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3 INTERACTIVE VISUALIZATIONS EMPLOYED IN THE EVALUATION

The evaluation is described in Section 9 of the paper. Supplemental Figures 3 and 4 show for two cases screenshots of the set of interactive
visualizations on which the evaluation was based. All cases are surveyed in Figure 9 of the paper. The following abbreviations are used in the
Supplemental Figure captions: (VS) our visual summary without the clustering-based group refinement, (IS) interactive seeding of streamlines
at selected core line parts as in [3] (Sec. 4 of the paper), and (SC) spectral clustering of streamlines and display of cluster representatives [32].

(a) (b) (c)

Suppl.Fig. 3. Interactive visualizations of case #2 employed for the evaluation in Section 9: IS (left), SC (middle), and VS (right).

(a) (b) (c)

Suppl.Fig. 4. Interactive visualizations of case #3 employed for the evaluation in Section 9: IS (left), SC (middle), and VS (right).
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4 VISUAL SUMMARIES OF VORTICAL FLOW OF ADDITIONAL ANEURYSM CASES

Apart from the six demonstration cases in the paper, we investigated 11 additional cases. Visual summaries of a selection are shown in the
following. Note that all of them could be generated using the default parameter settings proposed in the paper. Vortex core lines exhibiting no
equilibrium point (not seen in the demonstration cases) are indicated by a gray sphere.

(a) (b)

Suppl.Fig. 5. The hemodynamic data of these two cases was generated within the scope of the CFD rupture challenge in 2013 (see Janiga et al.,
AJNR Am J Neuroradiol; 36(3):530-6, 2015 for details). The case in (a) exhibits an embedded vortex (inset). The case in (b) shows one core line
attached not the neck of the aneurysm (blue sphere) and another core line attached to its dome and exhibiting a node (red sphere).

(a) (b)

Suppl.Fig. 6. The basilar-tip aneurysm shown in (a) exhibits a major swirl in the aneurysm’s center (core line with gray sphere) and a saddle (yellow
sphere) close to the neck of the aneurysm. Three vortices are observed for the case shown in (b). The aneurysm exhibits a strong vortex (core line
with gray sphere) located in a large local outpouching (bleb) at the top of the aneurysm sac. Blebs are associated with an increased risk of rupture.
A saddle (yellow sphere) is located close to the neck of the aneurysm and one core line is attached to the aneurysm wall (blue sphere).
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(a) (b)

Suppl.Fig. 7. The virtually stented case in (a) exhibits are core line attached to the aneurysm wall (blue sphere) and a node (red sphere) along this
core line. A saddle (yellow sphere) is located close to the neck of the aneurysm. The stent is represented by a wire mesh in the lower right of the
Figure. The case in (b) corresponds to case #6 in Figure 9(d) of the paper. It represents the aneurysm before the virtual stenting procedure. Note
that the vortex (core line) is located at a very similar position and also exhibits a node (red sphere) and a saddle (yellow sphere).
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Part II

Microscopy Data of Cells and Tissues

This part of the postdoctoral thesis cumulates the following publications:

Chapter 4 [166] S. Oeltze, W. Freiler, R. Hillert, H. Doleisch, B. Preim, and W. Schubert, “Inter-
active, Graph-Based Visual Analysis of High-Dimensional, Multi-Parameter Fluorescence
Microscopy Data in Toponomics”, IEEE Trans. Vis. Comput. Graphics (IEEE TVCG), vol.
17, no. 12, pp. 1882-1891, 2011.

Chapter 5 [167] S. Oeltze, P. Klemm, R. Hillert, B. Preim, and W. Schubert, “Visualization and
Exploration of 3D Toponome Data”, Eurographics Workshop on Visual Computing for Biol-
ogy and Medicine (EG VCBM), pp. 115-122, 2012.

Chapter 6 [172] S. Oeltze-Jafra, F. Pieper, R. Hillert, B. Preim, and W. Schubert, “Interactive
Labeling of Toponome Data”, Eurographics Workshop on Visual Computing for Biology
and Medicine (EG VCBM), pp. 79-88, 2014.
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Interactive, Graph-Based Visual Analysis of High-Dimensional,
Multi-Parameter Fluorescence Microscopy Data in Toponomics

Steffen Oeltze, Member, IEEE, Wolfgang Freiler, Reyk Hillert, Helmut Doleisch, Member, IEEE,
Bernhard Preim, and Walter Schubert

Abstract—In Toponomics, the function protein pattern in cells or tissue (the toponome) is imaged and analyzed for applications in
toxicology, new drug development and patient-drug-interaction. The most advanced imaging technique is robot-driven multi-parameter
fluorescence microscopy. This technique is capable of co-mapping hundreds of proteins and their distribution and assembly in protein
clusters across a cell or tissue sample by running cycles of fluorescence tagging with monoclonal antibodies or other affinity reagents,
imaging, and bleaching in situ. The imaging results in complex multi-parameter data composed of one slice or a 3D volume per
affinity reagent. Biologists are particularly interested in the localization of co-occurring proteins, the frequency of co-occurrence and
the distribution of co-occurring proteins across the cell.
We present an interactive visual analysis approach for the evaluation of multi-parameter fluorescence microscopy data in toponomics.
Multiple, linked views facilitate the definition of features by brushing multiple dimensions. The feature specification result is linked to
all views establishing a focus+context visualization in 3D. In a new attribute view, we integrate techniques from graph visualization.
Each node in the graph represents an affinity reagent while each edge represents two co-occurring affinity reagent bindings. The
graph visualization is enhanced by glyphs which encode specific properties of the binding. The graph view is equipped with brushing
facilities. By brushing in the spatial and attribute domain, the biologist achieves a better understanding of the function protein patterns
of a cell. Furthermore, an interactive table view is integrated which summarizes unique fluorescence patterns. We discuss our
approach with respect to a cell probe containing lymphocytes and a prostate tissue section.

Index Terms—Visual Analytics, Fluorescence Microscopy, Toponomics, Protein Interaction, Graph Visualization.

1 INTRODUCTION

While the human genome project has revealed, among other things,
the code for all proteins, the next big challenge is to understand how
proteins cooperate in cells and tissues in time and space [30]. The to-
ponome of a cell describes its function protein pattern, i.e. the location
and topological distribution of proteins. In Toponomics, the toponome
is imaged, explored and analyzed for applications in toxicology, drug
development and patient-drug-interaction. In the traditional fluores-
cence microscopy, a maximum of five proteins may be mapped con-
currently. With a sophisticated flow cytometer up to 17 proteins may
be mapped [23]. However, this number is still insufficient for map-
ping protein network features. The most advanced imaging technique
is robot-driven multi-parameter fluorescence microscopy [28]. It is ca-
pable of co-mapping hundreds of proteins and their distribution across
a cell or tissue sample by running cycles of fluorescence tagging with
monoclonal antibodies or other affinity reagents, imaging, and bleach-
ing in situ. The imaging results in complex multi-parameter data com-
posed of one slice or a 3D volume per affinity reagent. In a prepro-
cessing step, the data is binarized such that 1 encodes protein present
and 0 encodes protein absent. Biologists are particularly interested
in the localization of co-occurring proteins, i.e. co-occurring affinity
reagent bindings, the frequency of co-occurrence and the distribution
of co-occurring proteins across the cell. This information is crucial in
order to understand how proteins cooperate in cells and tissues in time
and space.

We present an interactive visual analysis approach for the evalua-
tion of multi-parameter fluorescence microscopy data in toponomics.
Multiple, linked views facilitate the definition of features by brushing
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multiple dimensions. The feature specification result is linked to all
views establishing a focus+context style of visualization in 3D. In a
new attribute view, we integrate techniques from graph visualization.
Each node in the graph represents an affinity reagent while each edge
represents two co-occurring affinity reagent bindings. The graph vi-
sualization is enhanced by glyphs which encode specific properties of
the binding. The graph view is equipped with brushing facilities. By
brushing in the spatial and attribute domain, the biologist achieves a
better understanding of the function protein patterns of a cell. Ad-
ditional attributes, such as local binding frequency, are derived from
the data and made accessible from other attribute views, e.g., his-
tograms and scatter plots. Furthermore, an interactive table view sum-
marizes unique fluorescence patterns existing in the data. We discuss
our approach with respect to a cell probe containing lymphocytes and
a prostate tissue section. The probe has been stained with 32 protein
affinity reagents (PARs) and imaged at 20 different slice locations. The
tissue section has been stained with 17 PARs and imaged at 1 slice lo-
cation. So far, we could test our approach only for the investigation of
these two datasets since datasets from other studies were not available
in the present cooperation and the temporal and financial costs which
are involved in the imaging are high (sample preparation and imaging
together often require several days [10]). However, at the end of this
paper, we will elaborate on the generality of our approach including
its scalability.

2 BIOLOGICAL AND TECHNICAL BACKGROUND

This section gives an overview on the biological background and fa-
miliarizes the reader with the imaging technique that we apply for
mapping the toponome.

2.1 Toponomics

Toponomics requires new technologies which are able to co-localize a
quasi random number of different proteins in the one biological sample
in order to map what any cell does in reality: it forms functional pro-
tein patterns (assemblies of clusters of different proteins) to generate
concrete cell functions. Hence, the cell is a protein pattern formation
apparatus [28, 30]. This machinery, the whole functional plan of the
cell, still poses many open questions. Neither the really existing pro-
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tein clusters in given functional states of a cell in vivo/in situ, nor the
rules of their formation can be derived from genomic or pure molecu-
lar protein data. Although many details on the molecular function and
structure of many proteins are known, we cannot simply derive the
corresponding cellular functions of these proteins, because the latter
are dependent on the contextual position of a given protein within a
protein network inside the cell [28, 29, 30, 31, 32, 33]. It is therefore
essential to distinguish the molecular function from the cellular func-
tion of a protein, defined by the spatial protein context cell by cell. The
entirety of all protein networks, in which proteins are defined by their
protein-to-protein context in any given cell, is defined as the toponome
[10, 28, 32]. The toponome is a system of proteins. Its inner structure,
its biological code, and its semantics are investigated in toponomics.

The toponome in cells is hierarchically organized: protein clusters
interlocked as a network contain lead protein(s) that control the topol-
ogy of the protein clusters and their function as a whole network [32].
This has been clearly demonstrated by knocking down the lead protein
or inhibiting it by a chemical agent which result in a disassembly of the
whole protein cluster network and an essential alteration of the cellular
function that is encoded by this network [32]. Neither a lead protein
nor the protein cluster which is controlled by it can be predicted from
molecular data. Thus, the toponome must be mapped in human tis-
sues and human or animal cells to understand how cells encode the
myriads of different functionalities both in health and disease. Many
investigations have shown that mapping the toponome is essential for
finding new drugs in cancer and for finding protein clusters that can be
regarded as a new system of biomarkers in disease [2, 30, 34].

2.2 Imaging the Toponome
Imaging the toponome is based on a cyclical imaging procedure in
which a tag library (specific affinity reagents recognizing proteins) is
conjugated to one and the same dye. A toponome imaging system
(TIS) robot [10] applies these tags sequentially in the following way:
the first dye-conjugated tag is applied to a fixed cell or tissue sample,
the resulting fluorescence image is registered by an epifluorescence
microscope which is connected to a CCD camera, and the dye is then
bleached gently to avoid any energy transfer into the remaining pro-
teins [27, 28, 32]. This first incubation imaging bleaching cycle is
followed by a second incubation imaging bleaching cycle using a sec-
ond tag reacting with the second protein of interest, and so on. This
imaging procedure can be performed in 2D or 3D. Up to 100 cycles to
label 100 proteins and co-map these proteins at any given sub-cellular
data point in a cell have been demonstrated [32].

A wide-spread method for the rapid analysis of toponome data
is thresholding each protein fluorescence signal thereby generating a
combinatorial binary code, where 0 indicates protein absent and 1 indi-
cates protein present [1, 9, 28, 32]. In case of a 3D dataset, this results
in a binary code at each voxel. The size of the code equals the number
of applied tags. All binary codes that exist in the data, out of all pos-
sible combinations of 0 and 1, can be assembled in a toponome map
and be referred to as combinatorial molecular phenotypes (CMPs). In
a toponome map, a unique color is assigned to each CMP. Since the
corresponding binary code frequently occurs at several locations, the
map visualizes the location of given protein clusters present in groups
of pixels or voxels. We introduce the term single-1-CMP which refers
to a CMP which contains only a single element equal 1.

3 PRIOR AND RELATED WORK

This section describes prior and related work on the application of
graph visualization techniques for investigating biological data and on
the visual analysis of such data by employing multiple coordinated
views. It starts with a brief discussion on how our collaborating biolo-
gists have been analyzing their data so far.

After imaging the toponome and thresholding the data, the CMPs
are determined and added as rows to a table. Each row then repre-
sents a group of pixels/voxels having the same binary code. The table
may be sorted according to the columns which represent the employed
affinity reagents. The table is linked to a toponome map such that the
user may select individual CMPs and observe their location in the data

or define a region of interest in the toponome map thereby restrict-
ing the table to the corresponding CMPs. A limitation of this setup
is the ability to explore a 3D dataset as a whole volume instead of
slice by slice. Furthermore, it is impossible to select individual co-
occurring PAR bindings across different CMPs and the frequency of
co-occurrence is very difficult to infer from just the table. The distribu-
tion of CMPs across the cell may be recognized in the toponome map
whereas the distribution of individual co-occurring proteins remains
hidden in the data.

3.1 Graph Visualization of Biological Data
The most frequent use of graphs in biology is the visualization of
biological networks representing the metabolism of cells, the regu-
lation of genes and the interaction of proteins. Graph visualizations of
such networks encode biochemical processes and provide an important
means to understand their complex nature. A survey of visualization
tools for biological network analysis is given in [14]. One prominent
example is Cytoscape [36]. A central component of the software is
the graph view which represents molecular species as nodes and in-
termolecular interactions as edges. Severals graph layout algorithms
have been integrated including a circular layout. Another popular soft-
ware for studying pathways, gene regulation and systems biology is
VisANT [18]. It is implemented as an on-line tool and integrated with
standard databases for organized annotation. All information gathered
in VisANT may be visualized in a graph. Among others, a circular
layout has been integrated. The usefulness of circular graph layouts
for visualizing expressions of genes across a set of patients has been
investigated in [37]. Genes are clustered and the resulting clusters are
visualized as a set of circles. Edges reflecting the correlation between
two genes are drawn inside a cluster and across clusters. Special care
is taken to generate a visually pleasing layout of the set of circles. An
extension of circular graph layouts to 3D is integrated in the software
Arena3D [22]. Proteins or pathways can be iteratively grouped and the
result of each iteration can be arranged on a separate higher layer. This
results in a hierarchical 3D layout where for each layer, e.g., a circular
layout may be employed. The described tools are very diverse, but
each of them provides among others a circular graph layout since this
results in a compact view of the investigated network. Furthermore,
the modification of a node’s and an edge’s visual properties according
to a biological aspect as well as the ability to interact on the graph,
e.g., select a subset of nodes, are essential.

3.2 Visual Analysis of Biological Data
DeLeeuw et al. present the ARGOS system for interactive exploration
and batch processing of confocal laser microscopy data [5]. They
combine views of the image data with attribute views, e.g. parallel
coordinates, scatter plots and histograms. The views are realized as
separate windows which leads to maximum flexibility at the expense
of guidance. Weber et al. present results of a long-term effort of ex-
ploring gene regulatory networks by means of relating them to 3D
gene expression data [38]. Thus they had to find visualization tech-
niques which convey the spatial position of gene expression data and
to relate these visualizations to attribute views. For this purpose, they
created different views on the spatial data including those where they
unroll the data to a cylindrical shape and project it in 2D. To relate the
spatial data to the attribute views, they developed a query-mechanism.
There are a number of other techniques and systems where multiple
views are coordinated to investigate biological data. However, most
of them do not incorporate image data. In [19], a multiscale synteny
browser (MizBee) for the comparison of two genomes is presented.
MizBee incorporates linked genome, chromosome, and block views.
The genome view applies a double circular graph layout that opposes
source and destination chromosomes. Schulz et al. developed spe-
cial graph visualization techniques for bipartite biological networks,
a special kind of network which is frequently used to study findings
in biology [35]. The SpRay-system supports the exploration of gene
expression data with various InfoVis views [6]. To the best of our
knowledge, no system exists that can readily process our data and link
the image data to the derived information.
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4 METHODS

In this section, we provide details on our visual analysis framework
and on the integration of the graph and the table view. We put spe-
cial emphasis on the graph view, in particular, the graph layout, the
modification of an edge’s visual attributes, the integration with glyph
drawings, and the equipment with brushing facilities.

4.1 The Visual Analysis Framework
The interactive visual analysis is carried out in a framework employing
the SimVis technology [7]. SimVis has been developed for the analysis
of multi-parameter data. It has originally been engineered for the anal-
ysis of 3D time-dependent flow simulation data but has been extended
to cope with data measured on structured grids, e.g., 3D/4D medi-
cal data [20, 21]. Recently, a structured grid ray-casting renderer has
been integrated. In the framework, multiple views from scientific and
information visualization may be linked together, e.g., 3D view, his-
togram, scatter plot, and parallel coordinates. By linking these views,
the framework supports the concurrent exploration of the observation
space (3D view) and the attribute space (InfoVis views). The user may
choose an attribute for representation in one of the InfoVis views and
then, brush an interesting range of attribute values, i.e. specify a fea-
ture. The result of such a brushing operation is reintegrated into the
data in form of a synthetic data attribute DOI j ∈ [0,1] (degree of inter-
est (DOI), compare to [12]). This DOI attribution is used in the views
of the analysis setup to visually discriminate the interactively specified
features from the rest of the data in a focus+context visualization style
which is consistent in all (linked) views [15].

There are several interactive visual analysis tasks. In a feature lo-
calization, the user searches for places in the 3D/4D domain where
certain feature characteristics are present. The user can brush features
in attribute views and concurrently localize the respective feature in the
observation space. In a multi-variate analysis, multi-variate data prop-
erties are investigated by specifying a feature in one attribute view and
at the same time analyzing the DOI distribution with respect to other
data attributes in other attribute views (through view linking). In a lo-
cal investigation, the user inspects the values of selected data attributes
with respect to certain spatiotemporal subsets of the 3D volume do-
main. In SimVis, the user can also load spatial as well as temporal
data references into attribute views—brushing these kinds of data at-
tributes then yields features which are specified according to their spa-
tiotemporal extents. Each feature is described in SimVis by a feature
characteristic and organized in a feature set:

• feature set: subsumes an arbitrary number of features (logical
OR combination of features), only one feature set is used by the
framework at the time

• feature: specified by one or more feature characteristics (logical
AND combination of DOI functions of all feature characteristics)

• feature characteristic: simple (attribute+bounds) or complex
(AND/OR/NOT of several brushes) feature characteristic defined
on an attribute view

Each attribute view is associated to a feature characteristic and
hence, to a feature. SimVis uses standard colors for the geometric
primitives in an attribute view, e.g., scatters in a scatter plot, thereby
indicating the belonging of the corresponding data points to features:

• red: belong to the associated feature and all other features in the
current feature set

• green: do not belong to the associated feature but to at least one
other feature in the current feature set

• yellow: do neither belong to the associated feature nor to any
other feature in the current feature set

• dark gray: only exists if ≥ 1 brush is defined for the associated
attribute view; then, corresponding data points do not belong to
the associated feature

A mixing of color (averaged DOI) may occur when a geometric
primitive in an attribute view represents multiple data points. For ex-
ample, a simple range of values has been brushed on one attribute in
a histogram. In a linked scatter plot, two other attributes are opposed.
As a result of the brushing, pure red, pure yellow as well as scatters
in various shades of orange appear. A mixed color scatter indicates
that some of the corresponding data points exhibit values within the
brushed range while others do not. The percentage of each separate
color is proportional to the respective number of data points. In all
attribute views, color mixing may be turned on and off. If it is off, the
drawing priority in decreasing order is red, green, yellow, gray (see
[20] for more details on the colors and their mixing).

4.2 The Graph View
The co-occurrence of proteins across the cell and the frequency of co-
occurrence are of high interest for biologists. Also the spatial distri-
bution of co-occurring proteins and a comparison of this distribution
across cells are crucial. The co-occurrence is represented in the data
by pairs of 1s in the binary codes and each such pair may be consid-
ered as a relation. The relation is not directional and since PARs are
not grouped together, no hierarchy exists in the data. Graphs offer a
comprehensive and comprehensible representation of relational data
and are frequently used in bioinformatics [14]. Transferred to our bi-
nary data, each node in an undirected graph may represent a PAR and
each edge may represent two co-occurring PAR bindings, i.e. a pair
of 1s in a binary code. The frequency of co-occurrence should be en-
coded by a visual property of the edge, e.g., edge color or edge width.
Understanding the spatial distribution of co-occurring PAR bindings
would be supported by integrating the graph into the visual analysis
framework as an additional attribute view. Furthermore, the new view
may be equipped with brushing facilities, e.g., for node and edge se-
lection, and the brushing result should be reintegrated into the data as
DOI thereby linking the graph view to all other views. This allows to
select an edge with an associated high co-occurrence frequency and
then, show all sites in the 3D view where the two corresponding PARs
are concurrently binding. Further, by also updating the graph view
according to the modified DOI values, PAR bindings which coincide
with the selected PARs are highlighted, i.e., edges connecting these
PARs with the selected PARs are emphasized.

Requirements. The requirements on the graph view are derived
from many discussions with the biologists. The graph layout should:

• enable a fast recognition of a PAR of interest

• enable a quick inference of which other PARs are connected by
an edge to a PAR of interest, i.e., co-occurring PAR bindings

• be static, i.e. node positions must not change during a DOI up-
date in order to guarantee a fast PAR recognition

• avoid visual clutter by minimizing the number of edge crossings

The following information should be communicated by the graph:

• PAR bindings do/do not co-occur

• Co-occurrence frequency in the feature and in the context

• SimVis standard colors (see Sec. 4.1)

• PAR name and frequency of the PAR binding in the feature

• frequency of single-1-CMPs with a 1 for this PAR in the feature

• degree of the node corresponding to the PAR

With regard to interactivity, the graph view should support:

• a repaint of the graph at interactive frame rates when the feature
specification has been updated

• brushing in order to include PARs (nodes) in the feature
(AND/OR) and to exclude PARs (NOT)
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Development Environment. The graph view is implemented
in C++ and added to SimVis as a plug-in. The graphical user
interface of SimVis and hence, of the plug-in are realized in Qt.
The information visualization classes of VTK are used for im-
plementing the graph-related functionality. VTK provides most
of the relevant graph features, such as different layout strategies.
The most important VTK classes which have been employed are
vtkMutableUndirectedGraph and vtkGraphLayoutView.
While the first implements a data structure representing an undirected
graph, the latter implements functionality for laying out and drawing
a graph. Moreover, a plenty of new functionality has been added for
customizing the graph drawing and augmenting its expressiveness by
integrating additional information. A crucial step in SimVis is the con-
tinuous traversal of all voxels while the feature specification is being
changed in order to determine those which do/do not adhere to the
specification. In order to offer interactive frame rates, we have paral-
lelized the voxel traversal using OpenMP [3]. Since SimVis processes
the data block-wise, the parallelization of the traversal is relatively
straightforward by letting each thread process a block. For the graph
and the table view, a thread-safe computation of a graph and a list of
CMPs per block and a final merging step have been implemented.

Preprocessing. Preprocessing includes the determination of the
edges that exist in the graph out of all theoretically possible edges, the
determination of the frequency of each PAR binding, i.e., the edge-
weight, and for each PAR, the computation of the number of single-
1-CMPs. The latter information is not inherently represented by the
graph and is therefore added to the view.

At first, the PARs are determined which bind at neither position
in the cell probe, i.e. whose corresponding binary images are zero
everywhere. These PARs are excluded from further processing. They
are presented in a text inset of the graph view (Fig. 3 (b)).

Next, several arrays are initialized. The array [EW ] is going to con-
tain the edge-weights. Its size is set to the number of possible graph
edges: n(n−1)/2, where n is the number of PARs. The arrays [PAR]
and [PAR1] are going to contain the PAR binding-related information.
The size of the arrays is set to the number of PARs. Finally, an ar-
ray [CN] is initialized which is going to contain indexes into the nodes
connected by an edge in [EW ]. [CN] is filled with all possible index
pairs and its size is set to two times the size of [EW ]. Next, a nested
for-loop begins. The outer loop iterates over all voxels (data points
will be referred to as voxels in the following) whereas the inner loop
iterates over all binary attributes, i.e. PARs. Within the inner loop, the
current binary code is reconstructed and all pairs of 1s are determined
without repetition and inversion of CMP elements. The elements of
[PAR] are incremented at those positions where the elements of the
code equal 1. If the code contains just a single 1, [PAR1] is updated
accordingly. Next, the index into [EW ] is computed for each pair of
ones and the corresponding element of [EW ] is incremented. At the
end of the for-loop, [EW ] and [CN] are squeezed such that zero ele-
ments are deleted.

An additional step, which is carried out within the inner part of the
for-loop, is the filling of a data structure which will speed up the
repaint of the graph on a feature specification update. The new data
structure is realized as a Vector, a special type of dynamic array. It is
initialized before the outer loop starts and its size is set to the size of the
dataset. Within the inner loop, all indexes into [EW ] which have been
computed for the current voxel, are stored at the corresponding voxel
position in the Vector. They are again stored in the form of a Vector
vsub. The majority of voxels in the lymphocytes dataset represent pro-
tein absent. Here, no indexes are computed resulting in a sparse Vector
containing many Vectors vsub of size zero. On the repaint of the graph,
all voxels are traversed again and for the non-background voxels, the
corresponding indexes into [EW ] have to be determined. By means of
the Vector, only a readout of each vsub is required. Without the Vec-
tor, this would require recomputing the indexes which in turn involves
touching every binary attribute as described above. This is particularly
ineffective when the voxel represents background which may easily be
inferred from vsub by just checking its size.

Fig. 1. Different graph layouts: circular (a), force-directed (b), and force-
directed under consideration of edge frequency (c). The insets illustrate
the strong overlap of edges in (b) and the aggregation of nodes which
are connected by edges with a high frequency in (c).

Graph Layout. Two strategies have been tested for laying out the
graph in 2D: a circular layout and a force-directed layout [11]. In a cir-
cular layout, all nodes are uniformly arranged on a circle (Fig. 1 (a)).
In a force-directed layout, the nodes are arranged such that the varia-
tion in edge length as well as the number of edge crossings are min-
imized and a symmetric layout is achieved (Fig. 1 (b)). In addition,
edge-weights may be considered such that the nodes connected by an
edge with a high weight are positioned close together, e.g., CD3 and
CD4 which are connected by the most frequent edge in Figure 1 (c).

Considering the above mentioned requirements on a graph layout,
the circular layout performs better than the force-directed layout ex-
cept for the number of edge crossings. The PARs are easier to find
since their position follows an obvious rule and they are ordered alpha-
betically starting at 3 o’clock. In the force-directed layout, some edges
strongly overlap which hampers a separate tracing (inset of Fig. 1 (b)).
In an interactive analysis, edge-weights are constantly recomputed
with respect to the updated feature characteristics. If edge-weights
influence the positioning of nodes, the force-directed layout then con-
stantly changes. This hampers a fast recognition and a visual tracking
of nodes representing PARs of interest.

Edge Color. After the nodes of the graph have been laid out in
a circular fashion, edges need to be constructed. For each edge in
[EW ], the corresponding nodes are retrieved from [CN] and a line is
drawn between them. The edge color is modified according to the
SimVis standard colors (Fig. 2 (a), recall Sec. 4.1). The selected color
depends on the voxels which contain this edge and their belonging to
the features in the feature set. As can be seen, it is difficult to visually
group edges of equal color due to the large number of edge crossings.
However, early feedback from the biologists indicated that mostly only
edges being part of the feature set are of interest, i.e. red and green
edges. Furthermore, green edges are only interesting in a comparison
of different cells or different cell parts which must be described by
different features. In order to account for this feedback, the opacity
of the edges is initially modulated and may be further adjusted by the
user. Red is assigned full opacity, while green and yellow are assigned
an opacity of 50% and 20%, respectively (Fig. 2 (b)).

Edge Width. We decided to map the edge-weights in [EW ] to the
width of the graph edges. Width is chosen instead of color or opacity
since the perception of quantities depicted by area is more accurate [4].
Unfortunately, VTK only offers a uniform change of edge width which
requires a workaround. Each line representing an edge is replaced by
a ribbon that is generated in 2D by means of vtkRibbonFilter
(Fig. 2 (c)). The width of the ribbons is modified according to the
values in [EW ]. All values are normalized with respect to an empir-
ically determined minimum and maximum width. Width modulation
and normalization are only applied to edges being part of the feature.
All other edges are assigned a uniform width being slightly below the
minimum. In Figure 2 ((a) and (c)), two problems become obvious. At
first, yellow edges are often drawn in front of red feature edges since
the drawing order does neither consider importance nor edge width.
Second, edges with a strong overlap are sometimes difficult to visu-
ally separate when being assigned the same color (inset of Fig. 2 (c)).
The first problem could be solved by adapting the drawing order each
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Fig. 2. Development of the graph view. (a): Edge color is modified
according to the SimVis standard colors. (b): Opacity modulation to
emphasize edges that are part of features. (c): Ribbons encode the
edge-weights. (d): Ribbons are replaced by tubes thereby resolving
the dependency between edge drawing order and good visibility. (e):
A feature has been defined. The different shades of red encode the
frequency of each edge inside and outside of the feature. (f): Circu-
lar glyphs encode node-specific properties such as binding frequency
inside the feature. Please, note the close-up views in (c),(d), and (f).

time the feature specification changes and draw red edges on top of the
yellow edges. However, a less expensive solution also solves the sec-
ond problem as a side effect. The ribbons have been replaced by tubes
constructed of four faces by means of vtkTubeFilter (Fig. 2 (d)).
The tube radius is modified according to the edge-weights. To ensure
a rounded appearance, surface normals are computed and the tubes are
oriented such that a salient edge faces the viewer. Without any addi-
tional sorting, edges now automatically appear in increasing order of
their associated edge-weight from back to front. The thickest edge,
i.e. the tube representing the highest weight is drawn in front of all
other edges. Also, feature edges are drawn in front of context edges
(yellow) since the latter are guaranteed to have a lower radius. With re-
gard to the second problem, partially overlapping edges are now easier
to separate due to shading (inset of Fig. 2 (d)).

Feature Edge Saturation. In a local investigation, the user in-
spects a certain subset of the observation space, e.g., a single cell.
From the current graph visualization it remains unclear whether a PAR
binding (edge) only occurs in this cell. In other attribute views of
SimVis, such information is conveyed by percentaged color mixing of
red and yellow (Sec. 4.1). However, a color map with a varying hue
component is less effective in encoding variations in magnitude than
isomorpic color maps, i.e. maps where saturation or luminance are
increased monotonously [25]. Hence, we modify the saturation of the

feature edges (Fig. 2 (e)). If the corresponding PAR binding is fully
contained in the feature, the edge is assigned a fully saturated red. If
it often occurs in the context, the edge is assigned a very light red. In
between, the saturation is interpolated. From our meetings with the
biologists, we learned that for a pure exploration of the data, the def-
inition of one feature set including a single feature is sufficient. The
biologists then browse through the data by constantly modifying the
feature’s characteristics. Hence, only mixtures of red and yellow may
occur which are replaced here by a varying saturation. The definition
of multiple features in a feature set becomes interesting if two cells or
two parts of a single cell, i.e. two features shall be compared. In that
case, green is used to convey the difference between the two features
and other color mixtures, e.g., of green and yellow may occur. How-
ever, since the feature edges are of primary interest, we decided to
neglect these mixtures and consider only the green color component.

Glyph Drawings. The frequency of an individual PAR binding
and the existence and frequency of single-1-CMPs may not be in-
ferred from the graph. In order to integrate this information, the
graph view is augmented by glyph drawings (Fig. 2 (f)). Disc sec-
tions (vtkSectorSource) are employed as a base for the glyph
shape and customized such that the outer construction circle is shown
as a frame of reference. This simplifies the estimation of sector cir-
cumference with respect to the full circumference and better conveys
glyph size. One glyph is created per PAR and placed close to the cor-
responding node. The glyph’s inner and outer radius as well as its
start and end angle may be modified. All modifications are carried
out with respect to the associated feature and neglecting the context.
The user is provided with two settings of glyph attribute modification.
In the default setting, the inner radius is set to zero and the outer ra-
dius is adapted according to the binding frequency of the PAR (values
of [PAR]). The start angle is set to zero and the end angle is modi-
fied according to the percentage of CMPs which exhibit a 1 for this
PAR but are not single-1-CMPs (computed based on values of [PAR]
and [PAR1]). Hence, the missing piece of the full circle represents the
percentage of single-1-CMPs.

In the feature represented by Figure 2f (see inset), CD4 is the most
frequently binding PAR. About 35% of the CMPs with a 1 for CD4 are
single-1-CMPs. CD3 has the second highest binding frequency. The
associated filled circle indicates that no single-1-CMPs exists with a
1 for CD3. A special case from a visualization point of view is the
existence of only single-1-CMPs for a specific PAR. Without special
care, no glyph would be visible here since start and end angle would
be equal in this case. To treat those cases, only the outline of the circle
is drawn, as for CD45. In a second glyph modification setting, the
inner radius and the start angle are set to zero. The outer radius is
assigned a uniform value. The end angle is modified according to the
percentage of CMPs with a 1 for the associated PAR with respect to
the overall number of non-background CMPs in the feature. A very
high percentage may indicate that the protein which is bound by this
PAR is a lead protein. The glyphs are colored according to the degree
of their corresponding node, i.e. the number of incident edges. Finally,
the nodes are labeled with the name of the associated PAR.

Brushing Facilities. The graph view is equipped with a brush-
ing facility. Each user-defined brush modifies the DOI attribute which
is associated with the view. The modified DOI is then merged with
the DOIs of all other views thereby linking the graph to these views.
For simplification, we decided to restrict the brushing to nodes. Edge
brushing would be hampered by the large number of edge crossings
and can also easily be replaced by multiple node brushes. AND, OR,
and NOT brushes are provided for the definition of simple and com-
plex brushes. Complex brushes facilitate feature specifications such
as ’Show all sites where CD3 AND CD4 bind but CD36 does NOT
bind.’. Once a (complex) brush has been defined, a rule is constructed
based on the involved brush types and the involved binary attributes
corresponding to the selected nodes. Then, the DOI attribute is mod-
ified according to this rule thereby triggering a new merge with the
DOI attributes of all other views. This again updates these views and
also the graph view itself.
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The brush type may be chosen from the graphical user interface.
A rubber band brushing which is accomplished by pressing the left
mouse button and moving the mouse allows for the selection of mul-
tiple nodes. The small squares which are drawn at the corresponding
node positions are then colored according to the brush type. The col-
ors adhere to the SimVis style: AND = yellow, OR = turquoise, NOT
= magenta (not selected = gray). The deselection of nodes is accom-
plished by rubber band brushing after pressing the right mouse button.
An extension of brushing is Smooth brushing facilitating the definition
of non-discrete DOIs [8]. It has been neglected here since the under-
lying binarized fluorescence data does not exhibit smooth features.

4.3 The Table View
We integrate a table view in the framework in order to represent the
unique CMPs being part of the current feature. Thereby, we take into
account the familiarity of the biologists with a table view. Further-
more, the graph view is not able to convey individual CMPs. This in-
formation may only be inferred from the graph by a tedious search for
individual cliques. A clique is a complete subgraph, i.e. each edge is
connected to all other edges. This is inherent to the graph representa-
tion of each CMP. The table view has been implemented as a derivation
of vtkQtTableView which is based on Qt’s QTableView. It con-
tains one column per PAR and three additional columns showing the
absolute frequency of the CMP within the current feature, the percent-
aged frequency and the number of elements which equal 1 (Fig. 3 (e)).
Each column may be applied for sorting the table. Alternating row
colors simplify the differentiation of adjacent CMPs. Elements which
equal 1, are highlighted in the SimVis standard color red since the ta-
ble view shows only CMPs which are part of the current feature. If
only a subset of PARs is of interest, other columns may be hidden
by decreasing their width to zero. The table view is equipped with
a brushing facility that allows for an OR selection being defined on
the table rows (CMPs). This facilitates feature specifications such as
’Show all voxels with CMP1 or CMP2.’. AND and NOT brushes are
needless here since only a single CMP may exist per voxel and un-
wanted CMPs may simply not be selected. The table supports the
brushing of separate rows, a range of rows or multiple ranges. The
brushed rows are highlighted in blue and white.

5 APPLICATION

Our analysis framework has been applied to one cell probe containing
lymphocytes and a prostate tissue section. In the following, we discuss
how a biologist uses the framework. Please note that for local inves-
tigation (Sec. 5.3), the biologist decreased the opacity of the context
edges (yellow) to 0% such that visual clutter is reduced and switched
off the saturation modulation of the feature edges. When investigating
a cell of a specific type, it is less important to know which edges exist
in other cells in the data likely being of another type. The situation
changes when only cells of the same type are in the probe or can be
extracted from the probe and shall be compared or in a sub-cellular
examination of a single cell.

5.1 Case Studies
Lymphocytes. In this example, a large PAR library (monoclonal

antibodies directed against cluster of differentiation (CD) marker pro-
teins) was used to co-map the cell surface toponome of lymphocytes
in a healthy subject. Lymphocytes are a special type of white blood
cells. CD marker proteins are proteins that are expressed on the sur-
face of immune cells, such as lymphocytes, but are also expressed in
many other cell types of the human and animal organism. We have
chosen lymphocytes, since this cell type in the human blood is fre-
quently related to causing chronic inflammatory diseases by entering
healthy tissues. Hence, a major biological challenge is to decipher the
cell surface toponome code of lymphocytes to detect disease-specific
codes, e.g., by a systematic co-mapping of a large number of CD sur-
face proteins [29]. In the present study, we have co-mapped 32 CD
surface proteins on a cell probe by using a TIS robot system [2, 10].
The probe has been imaged at 20 different slice locations with a ma-
trix of 658×517 pixels, an in-plane-resolution of 216×216 nm and a

slice distance of 200 nm. The data has been binarized by an expert
and imported into our framework (see [10] for detailed information
on the probe preparation, the data acquisition, and thresholding). The
initial graph visualization of the entire dataset results in 24 nodes (24
PARs) and 271 edges (out of 276 theoretically possible co-occurring
PAR bindings) as illustrated by Figure 3 (a-b). Only 24 of 32 PARs
are included in the graph since the remaining PARs, e.g., CD49F and
CD10, bind at neither position in the cell probe. Their names are in-
stead displayed in a text inset of the graph view (Fig. 3 (b)). The colors
in the 3D view encode the CMP frequency with red corresponding to
the highest frequency. The cells appear as ring-shaped structures. In
the graph view, it can be seen that CD3 and CD4 co-map most fre-
quently since they are connected by the thickest edge. Also, CD3,
CD4 and CONA individually map with a high frequency as indicated
by the large, associated glyphs. The color of the glyphs encodes the
number of incident edges per node (degree). The highest possible de-
gree in case of 24 binding PARs is 23 (magenta). The high frequency
of magenta-colored glyphs reflects the high number of edges. The ta-
ble view summarizes all existing CMPs and sorts them from top to
bottom in order of descending frequency.

Prostate Cancer. In this example, a tissue section has been in-
vestigated that was cut from a prostate tissue block of radical prostate-
ctomy. A library of 17 PARs, among which 16 were cell surface pro-
teins, was used to co-map the cell surface toponome in prostate tissue.
This example is highly relevant since prostate cancer is the most com-
mon noncutaneous malignant neoplasm in men in western countries
and its pathogenesis is still unclear [34]. A major biological challenge
is to detect disease-specific codes, including the identification of lead
proteins which may be candidates for therapeutic intervention: when
lead proteins are inhibited, the corresponding protein clusters disas-
semble and loose their function [30, 34]. The tissue section has been
imaged at a single slice location with a matrix of 658×517 pixels and
an in-plane-resolution of 216×216 nm. Its analysis results are pre-
sented in Section 5.3. For a detailed discussion of the tissue section,
see [34].

5.2 CMP-Guided Analysis
In Figure 3 (e), the CMPs with the five highest frequencies have been
brushed in the table (bluish rows). The highest frequency has been
computed for a single-1-CMP with a 1 at CD36. The correspond-
ing regions appear red in the 3D view (Fig. 3 (c)). Amongst others,
CD36 is found on platelets (small, solid structures in between the ring-
shaped cells). Platelets are crucial in hemostasis since their aggrega-
tion causes a bleeding to stop. Since CD36 does not bind to lympho-
cytes, it may be excluded from the analysis by a NOT-brush in the
graph view. Please note that the blank circle, which is drawn at CD36,
indicates that this PAR does not co-occur with neither of the other
PARs within the feature (Fig. 3 (d)). The CMP with the second highest
frequency is again a single-1-CMP with a 1 at CD3 (yellow regions).
CD3 may be found in the membrane of T-lymphocytes which are a spe-
cial subgroup of lymphocytes. Different types of T-lymphocytes exist
such as T helper and Natural killer T cells which all participate in
the cell-mediated immunity. The third highest frequency is computed
for a single-1-CMP with a 1 at CONA (Concanavalin A) which is a
sugar-binding protein (green regions). The fourth highest frequency
is computed again for a single-1-CMP with a 1 at CD15 (turquoise
regions). CD15 binds to mononuclear immune cells and granulocytes
with the latter also being a type of white blood cell. Here, the two
ring-shaped, turquoise structures represent mononuclear immune cells
since the cell nucleus (missing, inner part of the ring) of granulocytes
has a very distinct shape. Mononuclear immune cells represent an-
other type of white blood cell (just as lymphocytes) and are impor-
tant in immune function since they respond to inflammation signals.
The fifth highest frequency is computed for a CMP with two elements
equal 1: CD3 and CD4 (blue regions). Hence, an edge exists that
connects CD3 and CD4. CD4 binds to T4 cells whose function is to
activate and direct other immune cells. The depletion of T4 cells is
an important characteristic of an infection with the human immunod-
eficiency virus (HIV). The edge between CD3 and CD4 is colored in
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Fig. 3. CMP-Guided Analysis. (a): The entire probe is visualized and
colored according to CMP frequency. (b): The graph represents all co-
occurring PAR bindings. (c): The visualization is restricted to the CMPs
with the five highest frequencies (blue rows in (e)) and colored according
to table row (first row = red). (d): The corresponding graph reveals
single-1-CMPs, e.g., for CD36, as well as one co-occurring PAR binding:
CD3 and CD4.

a medium saturated red which indicates that the combination of these
two PARs also often occurs outside the feature. The missing part of
the filled, circular glyph at CD3 reflects that this PAR also exists in
a single-1-marker within the feature. This has already been discussed
above. Another type of T-lymphocyte, that has been identified in the
data, is T8 cells (not illustrated by Fig. 3 (c-e)). T8 cells are charac-
terized by a concurrent binding of CD8 and CD3. Their function is to
destroy, e.g., cells which are effected by a virus.

5.3 Local Investigation
Biologists frequently inspect a single cell in the probe. From a visual
analysis point of view this corresponds to a local investigation since
the observation space is restricted to a subset and then the attribute
distribution in this subset is investigated.

Lymphocytes. In Figure 4, a mononuclear immune cell is ana-
lyzed. The cell is focused by coloring the data in the 3D view ac-
cording to CD15 and applying a rectangular brush to the x-and y-
coordinates of the probe in a scatter plot (not illustrated). The glyph
encoding in the graph view has been switched to the non-default set-
ting (see Sec. 4.2, paragraph Glyph Drawings). All circles have the
same radius and the filled portion of the circle is proportional to the
number of non-background voxels in the feature that exhibit a binding
of the PAR. Accordingly, CD15 binds in almost every part of the cell.
If CD15 co-maps with another PAR, this is CONA in the majority of
cases (thick edge). The modulation of edge saturation has been turned
off since the focus is just on this single cell. It can be observed from
the table that a single-1-CMP with a 1 at CD15 and a CMP with 1s at
CD15 and CONA are the most frequent CMPs (together ≈86% of all
non-background voxels). In the histogram, the number of PAR bind-
ings per voxel is plotted and scaled logarithmically. At most, three

Fig. 4. Local investigation of a mononuclear immune cell toponome.
CD15 binds to almost every part of the cell’s surface (almost fully filled
glyph). If it co-maps with another PAR, this is CONA in the majority
of cases. A smooth brush is applied to the histogram which plots the
number of PAR bindings per voxel (logarithmic scaling). The focus is on
a high number. Thereby, corresponding regions are assigned a higher
opacity in the 3D view (red regions, see arrows). Green indicates single-
1-CMPs, yellow indicates two and red three concurrently binding PARs.

bindings co-occur (rightmost red bar). A smooth brush is defined such
that the focus region includes the highest number of bindings and the
near-focus region spans the remaining numbers. The 3D view is col-
ored according to the number of bindings with red representing three
co-occurring bindings (arrows). As can be seen, separate clusters exist
within the cell that may correspond to individual cell parts and func-
tions. The grayish context represents those parts of the cell which are
not part of the feature. The structured grid ray-caster of SimVis sup-
ports focus and context visualization in one pass. In addition to the
accumulation of color values, the context visualization is created us-
ing a second selection (feature set) which includes, e.g., all parts of
the dataset with a specific PAR binding. This selection is represented
by a 3D-texture containing 0 for unselected cells and 1 for selected
cells. Due to interpolation, texture lookups between those cells can
return values between 0 and 1. The distance to 0.5 is then used as a
transparency value of the context, which leads to an opaque visual-
ization of the context’s silhouette. The interior of a selected region is
not occluded, because a ray which intersects the volume perpendicular
to the selection border collects only very few opaque values. In Fig-
ure 4, all voxels with a binding to CD15 have been selected for context
generation.

In order to illustrate the striking difference between cells with re-
gard to their surface protein pattern, we repeat the local investigation
for a T8 cell (Fig. 5). The cell is focused in a similar way as de-
scribed for the mononuclear immune cell. An initial rendering of the
graph reveals the edge between CD3 and CD8 as having the highest
frequency. Hence, it is selected by brushing the two corresponding
nodes using an AND-brush (the small, filled squares representing the
nodes are colored in yellow). Two thick edges connecting both nodes
to CD45 show that this triple co-mapping frequently occurs across the
cell surface. The histogram indicates that within the feature, between
two and five PARs are co-mapped (red bars). The CMPs in the table
are sorted according to the number of elements equal 1 in a decreasing
order from top to bottom. Most of the higher binding numbers occur
only at low magnitudes which may however not be related to their sig-
nificance. To localize the co-mappings within the cell, the 3D view
is colored according to the number of bindings per voxel. All voxels
with a binding to CD8 have been selected for context generation.

Prostate Cancer. In the analysis of this tissue section, we fol-
low the procedure described by our collaborators in [34]. We use
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Fig. 5. Local investigation of a T8-cell toponome. CD3 and CD8 have
been brushed in the graph by means of an AND-brush. The resulting
cell parts are colored in the 3D view according to the number of PAR
bindings per voxel (blue represents 2, red 5). The remaining parts of
the cell are rendered in gray and serve as context information. The
histogram plots the number of PAR bindings (logarithmic scaling). The
CMPs in the table are sorted according to their number of elements
equal 1 in a decreasing order from top to bottom.

our new system and illustrate how the analysis may benefit from the
linked views (Fig. 6). At first, we exclude the marker propidium io-
dide (PROP2) from the analysis by means of a NOT brush on the graph
view. PROP2 is excluded since it is no cell surface marker, but instead
binds to the cell nucleus. Then, we select the 30 most frequent CMPs
in the table (not illustrated here) and superimpose a context visual-
ization of the PAR CD138 (inset of the 3D view). CD138 has been
chosen since its is a marker for prostate cancer progression. The 3D
view is colored according to CMP frequency. The context appears as
a gray silhouette. Next, the focus is on a single cell by brushing x- and
y-coordinates of the dataset in the scatter plot (compare to Figs. 4-5
in [34]). This lens function was not available to the biologists in [34],
requiring a manual cropping of the dataset. The inset of the 3D view
shows the location of the cell within the entire tissue section. Then,
we apply an AND brush on CD26 in the graph since CD26 is known
to recognize prostate epithelium [34]. Two very frequent co-mappings
are revealed: CD54 and CD26 as well as CD26 and CD29. In [34], the
biologists had to extract this information from a table with 17 columns
and 4217 rows (number of unique CMPs) which was a cumbersome
task. After further investigation of other cells in the dataset, they con-
cluded that CD26 and CD29 are lead proteins in a motif that is specific
to epithelial cells with features of neoplasia inside prostate acini.

5.4 Comparative Analysis
The comparison of cell samples from healthy subjects and patients is
crucial in detecting and understanding disease-related protein patterns.
We mimic this procedure by comparing two cells in a sample, in par-
ticular, we compare two T8-cells: T 81 and T 82 (Fig. 7). Two features
are defined in a feature set, one for each cell. The separation of each
cell is carried out as described in Section 5.3. The result is visualized
in the 3D view and colored according to CMP frequency with red rep-
resenting the highest frequency. For each cell, a graph has been gener-
ated. The glyph encoding in the graph views has been switched to the
default setting (see Sec. 4.2, paragraph Glyph Drawings). Apart from
red edges, green edges appear indicating that the corresponding PAR
pair is not co-mapped in this cell but in the other cell (see Sec. 4.1 for
a detailed discussion of the edge colors). Thus, similarities and differ-
ences between the graphs can easily be inferred. At a first glance, the
graphs and the glyphs look similar which is also reflected by similar
colors in the 3D view. However, an interesting observation is the bind-
ing of CD36 at T 82 in a single-1-CMP. Essentially, CD36 only binds

Fig. 6. Local investigation of a prostate cell toponome. The analysis has
been restricted to the cell by brushing the x- and -y coordinates of the
dataset in the scatter plot (lower right view). The cell is colored in the
3D view according to CMP frequency. The PAR CD138 is superimposed
as gray isolines for providing context information. The inset shows the
location of the cell in the tissue section. CD26 has been brushed in the
graph by means of an AND-brush restricting the visualization to prostate
epithelium. PROP2 has been excluded from the analysis by means of
a NOT-brush. The table shows all CMPs that adhere to the final feature
specification.

to platelets and mononuclear immune cells. For further investigation,
CD36 has been brushed in the graph view leading to a separation of
the small, solid, red region in T 82 (not illustrated here). It was con-
cluded that this region represents a platelet which superimposes T 82.
Another interesting observation is that CD19 is not binding at T 81 but
at T 82. This may indicate that T 82 is in a different transition stage.
Living cells undergo different stages during their life span. The two
histograms plot the number of PAR bindings per voxel. In T 82, the
highest number of co-mappings is five whereas it is four in T 81.

5.5 User Feedback
We gathered anecdotal feedback from two users, an experienced biol-
ogist and a computer scientist who has been working in the biology
domain for several years. Both appreciated the possibility to explore
the 3D data as a whole instead of slice by slice. The latter is a serious
limitation of their homemade system which requires tedious manual
post-processing in order to merge the analysis results from individ-
ual slices. They commended the interactive selection of parts of the
cell probe and the interactive update of graph and table view which
greatly simplifies the data exploration. Also, the graph brushing was
appreciated as a fast method for defining a template CMP that can be
searched for in the data. The graph provides a fast and easy to compre-
hend overview of a cell’s toponome and clearly outperforms the table.
As shown in Section 5.4, it can be used as a symbolic description of a
cell’s toponome in a cell-by-cell comparison. Information that is cum-
bersome to infer from a table but can easily be observed in the graph
is the frequency of individual PAR bindings and co-occurring PAR
bindings. Another advantage of the new system is the possibility to
integrate histograms and scatter plots displaying derived parameters,
e.g., the number of PAR bindings per voxel.

A drawback of the system is the way of defining a region of inter-
est. For this purpose, a scatter plot opposes the x- and y-coordinates
of the data points and the user may define a region by means of a rect-
angular brush. This requires the user to focus on the 3D view while
moving the brush in order to select the desired cell. However, guid-
ance is provided by a context visualization of the entire dataset. The
biologist commented that a more flexible brush shape is desirable in
order to adhere to more complex cell shapes. Furthermore, measure-
ment units and the current scale should be included in the 3D view.
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Fig. 7. Comparative analysis of two T8-cells: T 81 and T 82. Red edges
in the graph represent PAR bindings that exist in both cells whereas
green edges represent bindings that exist only in the other cell. For
example, CD19 binds only to T 82. The histograms plot the number of
PAR bindings per voxel (logarithmic scaling). In the 3D view, the cells
are colored according to CMP frequency.

Feature requests of our users include a picking facility in the 3D view
that allows the selection of cell parts thereby inducing an update of all
other views with respect to the selected part. Furthermore, it should be
possible to crop the data such that only a single cell is considered in the
analysis. At the moment, a cell can be focused but the entire dataset is
considered as context. This hampers, e.g., a sub-cellular examination
in which cell parts shall be focused while the rest of the cell serves as
context. If this was possible, the users would fade in again the yel-
low context edges and apply the modulation of feature edge saturation
(Sec. 4.2, paragraphs Edge Color and Feature Edge Saturation).

5.6 Scalability

In order to assess the scalability of our approach, we created
two synthetic datasets: D1 and D2. D1 has the characteristics:
1056×1027×32(slices)×31(PARs). At the moment of writing, a
dataset of this size is being acquired by the biologists and represents
their largest dataset with respect to voxel count. D2 resembles the skin
biopsy data analyzed in [32] which contains the highest number of
PARs that have ever been applied: 658×517×1(slices)×100(PARs).
The original data could not be provided for the present collabora-
tion. Hence, we randomly distributed 155,000 unique CMPs over both
datasets while treating 50% of the voxels as background. This is the
highest number of CMPs that the biologists ever observed in one of
their datasets. The maximum number of 1’s in a CMP has been set
to 37% of the PAR number corresponding to the maximum for the
lymphocytes dataset.

All tests were carried out on a 3.07GHz Intel 8-core PC with
8GB RAM and a 64bit Windows operating system. Our view setup
consisted of a 3D view, a table view, a graph view and a scatter
plot. Both datasets were rendered at interactive frame rates in the 3D
view. After defining the entire dataset D1 (values of D2 in parenthe-
ses) as a feature, the table view with 155,000 rows and 31 columns
(155,000 rows, 100 columns) needed ≈240ms and ≈360ms (≈80ms
and ≈200ms) rendering time with and without sorting according to
one of its columns. The graph view with 32 nodes and 496 edges
(100 nodes, 4950 edges) needed ≈2.44s (395ms) rendering time, 2.4s
(51ms) for the voxel traversal and the update of the data structures
and 40ms (344ms) for repainting the graph and the glyphs. For com-
parison, the lymphocytes dataset which contains 2228 unique CMPs
needed≈10ms and≈11ms for table update and≈70ms (32ms+38ms)
for graph update. The long time for voxel traversal of D1 when up-
dating the graph view does not primarily result from the high voxel

count. It is related to the high number of edges (10) which are stored
on average per non-background voxel (17,352K voxels) in the custom
data structure described in Section 4.2 (paragraph Preprocessing). For
comparison, 1 edge is stored on average for the lymphocytes dataset
and 3 edges are stored for the prostate dataset with the latter being sig-
nificantly smaller then D1. Further investigation and more real world
examples are required to study this effect more thoroughly. From the
timings, it can be concluded that even data with a high voxel count and
a high number of PARs may be processed. However, interactive frame
rates with 25 updates per second are not achieved anymore.

We also explored the visual scalability. The table of D2 is very wide
requiring ineffective horizontal scrolling. In a two screen solution, the
table may span both screens. A more appropriate solution could be the
application of focus+context techniques, e.g., table lenses [24]. The
graph of D2 is very cluttered and the glyphs may cover only a few pix-
els which hampers their readability. The situation is improved slightly
when the graph is displayed in full screen mode on a second screen.
In addition, focus+context techniques such as graphical fish eye views
may be applied [26]. A more sophisticated solution to edge cluttering
would be edge bundling [16]. The original method requires a hierarchy
being defined on the nodes. However, such a hierarchy is not defined
on the PARs we applied. An extension proposed by the same authors
does not require a hierarchy but applies a flexible spring model [17].
An additional advantage of this approach is a parameter that controls
the bundling strength. By reducing the bundling strength from full to
a lower value, edges become slightly separated which is a prerequi-
site for the recognition of a varying edge width. Additional solutions
for reducing edge cluttering are the reordering of nodes (in contrast to
dynamic node arrangements, node positions on the circle are fixed but
the assignment of PARs to nodes is flexible) and the exterior routing
of edges [13, 37]. It should be noted that the visual clutter is already
significantly reduced once only individual cells are investigated and
context edges are fade out. However, in future scenarios fading out the
edges may not be an option (recall Sec. 5.5).

6 SUMMARY AND DISCUSSION

We presented the integration of techniques from graph visualization
in an interactive visual analysis framework for the investigation of to-
ponome data. Each node in the graph represents an affinity reagent
while each edge represents two co-occurring affinity reagent bindings.
The frequency of co-occurring affinity reagent bindings is encoded in
the edge’s width. The graph visualization is enhanced by glyphs which
encode specific properties of the binding. The graph view is equipped
with brushing facilities and linked to all other views of the framework.
Furthermore, an interactive table view is integrated which summarizes
unique fluorescence patterns existing in the data.

We applied the framework to a cell probe containing lymphocytes
and to a prostate tissue section. By brushing in the spatial and at-
tribute domain of the corresponding datasets, the biologist achieves
a better understanding of the function protein patterns of a cell. In
a local investigation, a single cell may be separated from the probe
and inspected. By browsing the table view, individual combinatorial
molecular phenotypes may be localized. Interesting co-mappings of
individual affinity reagents may be localized by brushing the corre-
sponding nodes in the graph view. Clusters of protein mappings with
a different number of protein bindings per voxel were observed in a
mononuclear immune and a T8 cell. By defining two features (cells),
the biologist is able to compare two cells. Edges in the graph of one
cell are then colored differently if they occur only in the other cells.

In the future, we will implement more advanced methods and brush
shapes for cell separation which will more strongly adhere to the ac-
tual cell shape. So far, a reliable analysis of the cell depends on its
separability from other cells in the probe.
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Abstract

The toponome of a cell describes the location and topological distribution of proteins across the cell. In topo-
nomics, the toponome is imaged and its inner structure and its semantics are investigated in order to understand
how cells encode different functionalities both in health and disease. Toponome imaging results in complex multi-
parameter data composed of a 3D volume per protein affinity reagent. After imaging, the data is binarized such
that 1 encodes protein present and 0 encodes protein absent. Biologists are particularly interested in the clustering
of these binary protein patterns and in the distribution of clusters across the cell.
We present a volume rendering approach for visualizing all unique protein patterns in 3D. A unique color is
dynamically assigned to each pattern such that a sufficient perceptual difference between colors in the current
view is guaranteed. We further present techniques for interacting with the view in an exploratory analysis. The
biologist may for instance “peel of” clusters thereby revealing occluded cell structures. The 3D view is integrated
in a multiple coordinated view system. Peeling off clusters or brushing protein patterns in the view updates all
other views. We demonstrate the utility of the view with a cell sample containing lymphocytes.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical
Sciences—Biology and genetics

1. Introduction

While the human genome project has revealed the code for
all proteins, the next big challenge is to understand how
proteins cooperate in cells and tissues in time and space
[Sch10]. Although many details on the molecular function
and structure of many proteins are known, their correspond-
ing cellular functions cannot simply be derived. This is due
to a dependence of the function on the contextual position
of a given protein within a protein network. The toponome
of a cell describes its functional protein pattern, i.e. the loca-
tion and topological distribution of proteins. In toponomics,
the toponome is imaged, explored and analyzed for appli-
cations in toxicology, drug development and patient-drug-
interaction. Toponome imaging results in complex multi-
parameter data composed of a 3D volume per protein affin-
ity reagent. In a post-processing step, the data is binarized
such that 1 encodes protein present and 0 encodes protein ab-
sent. For each data voxel, a binary vector can be constructed
over all volumes, which then encodes the local protein co-
mapping. Biologists are interested in answering questions
such as: Which proteins co-map with which frequency?,

Where across the cell surface do the binary protein patterns
cluster?, and How does the clustering differ from cell to cell?
These questions guide our research. In previous work, we
developed a graph view which encodes co-mapping proteins
and co-mapping frequency [OFH∗11].

Here, we present a volume rendering approach that gen-
erates an integrated 3D visualization of all protein affinity
reagent volumes. It is based on the assignment of a unique
color to each unique binary protein pattern. Since several
thousands of such patterns may exist in a dataset, we offer a
dynamic color range distribution for the current view on the
data, e.g., a close-up view of a cell. The algorithm then gen-
erates a set of unique, perceptually optimized colors for the
currently visible patterns. Thus, the visual differentiability of
these patterns is improved. To support an exploratory analy-
sis of the toponome, the 3D view is equipped with several in-
teraction techniques, e.g., similarity brushing. Furthermore,
it is integrated via linking in a multiple coordinated view
system. Brushing and linking supports the biologist in de-
ciphering the toponome code. We demonstrate the utility of
the 3D view with a cell sample containing lymphocytes.
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(a) (b) (c)
Figure 1: a: Original fluorescence signal in a single slice. b: The same slice as in (a) after thresholding. White pixels indicate
protein present. c: Generation of combinatorial molecular phenotypes and display in a 2D toponome map. For each pixel, the
binary fluorescence signal of all protein affinity reagents is collected in a combinatorial binary code (table columns). The set of
unique binary codes (combinatorial molecular phenotypes) is computed and each code is assigned a color. A toponome map is
generated by mapping each pixel to its corresponding color (right subimage).

2. Biological Background

This section explains the toponome and how it is imaged.
Further, it introduces combinatorial molecular phenotypes,
which serve as the input for the 3D visualization.

2.1. The Toponome

The entirety of all protein networks, in which proteins are
defined by their protein-to-protein context in any given cell,
is defined as the toponome [FBKS07, SBP∗06, SGK∗11]. Its
inner structure, its biological code, and its semantics are
investigated in toponomics. It has been shown that the to-
ponome is hierarchically organized [SBP∗06]. It comprises
protein clusters which contain lead proteins and are inter-
locked as a network. The lead proteins control the topology
of the clusters and their function as a network. However,
neither a lead protein nor the protein cluster which is con-
trolled by it can be predicted from molecular data. Thus, the
toponome must be imaged in human cells or tissues to un-
derstand how cells encode different functionalities both in
health and disease. This is essential for finding new drugs in
cancer and for detecting protein clusters that can be regarded
as a new system of biomarkers in disease [Sch10, SGK∗11].

2.2. Imaging the Toponome

The most advanced technique for imaging the toponome
is robot-driven multi-parameter fluorescence microscopy
TISTM. It is based on a cyclical procedure in which a tag li-
brary (specific affinity reagents recognizing proteins) is con-
jugated to one and the same dye. An imaging robot applies
these tags to a fixed cell or tissue sample [FBKS07]. It starts
with the first dye-conjugated tag and applies it to the sam-
ple. The resulting fluorescence image is then captured by a
CCD camera, which is connected to an epifluorescence mi-
croscope. In the last step of the cycle, the dye is bleached
gently to avoid any energy transfer into the remaining pro-
teins [SBP∗06]. Then, the second tag is applied and so on.

The labeling of 100 proteins in 100 cycles has been demon-
strated [SBP∗06,SGK∗11]. Imaging can be performed in 3D
by modifying the microscope’s focal plane. The acquisition
of a 3D dataset is costly and may take longer than a day.

2.3. Combinatorial Molecular Phenotypes

After imaging the toponome, a thresholding algorithm is ap-
plied to the fluorescence signal (Fig. 1a-1b). This generates
a combinatorial binary code for each voxel where 0 indicates
protein absent and 1 indicates protein present [BDS10]. The
unique binary codes that exist in the data, out of all possi-
ble codes, are referred to as combinatorial molecular phe-
notypes (CMPs). A simple technique for visualizing CMPs
of a single volume slice is the assignment of a unique color
to each CMP and the display of the slice as a colored im-
age also known as toponome map. The generation of CMPs
and of the toponome map are illustrated by Figure 1c. The
binary code that corresponds to a certain CMP very often ex-
ists at several pixel/voxel positions. These positions are not
randomly spread over the data but clustered at certain loca-
tions of the cells. The biologist is interested in these protein
clusters since they correspond to functional units of the cells.

3. Related Work

3D microscopy data may consist of a single channel or mul-
tiple channels, with each channel showing a different aspect
of the data. The most wide-spread visualization technique
for 3D microscopy data is direct volume rendering.

3.1. Single-Channel 3D Microscopy Data

Sakas et al. presented a pipeline for visualizing confocal
laser scan microscopy (CLSM) data [SVP96]. They inte-
grated Maximum and Minimum Intensity Projection as well
as full volume rendering into the rendering step. The vol-
ume visualization system VolVis was presented by Kauf-
man in the context of investigating CLSM datasets of nerve
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cells [Kau98]. It supports surface as well as volume ren-
dering and offers global rendering effects such as shadows
and reflections. Fang et al. described an approach for mi-
croscopy data exploration with a focus on the intuitive de-
sign of transfer functions [FDM∗00]. They employed an
image-based model which defines a transfer function as a se-
quence of 3D image processing steps, e.g., intensity thresh-
olding and boundary detection. An approach for the recon-
struction of cellular structures from optical microscopy data
was proposed by Mosaliganti et al. [MCS∗08]. They em-
ployed sophisticated techniques for extracting cells and sep-
arating overlapping cells. The resulting, individually colored
cells were then visualized through volume rendering. In re-
cent work, Guo et al. presented a novel volume illustration
technique [GYL∗12]. It simulates an optical phenomenon in
interference microscopy, which accounts light interference
over transparent specimens, and thereby enhances the image
contrast and structure details.

3.2. Multi-Channel 3D Microscopy Data

Razdan et al. worked on the visualization of multicolor laser
confocal microscopy data [RPFC01]. In such data, three
lasers providing light at different wavelengths reveal differ-
ent substances in the same field of view. A RGB compos-
ite rendering was generated by means of ray-casting. A vol-
ume rendering system for confocal and two-photon fluores-
cence microscopy data was presented by Clendenon et al.
[CPS∗02]. They focused on a near real-time visualization of
multichannel image stacks on standard PCs by exploiting 3D
graphics processors. DeLeeuw et al. presented the ARGOS
system for an interactive exploration and batch processing
of confocal laser microscopy data [dLVvL06]. They linked
a volume rendering of the image data to attribute views,
e.g., parallel coordinates, which were equipped with brush-
ing facilities. Bruckner et. al presented a system for an inte-
grated visualization, exploration and annotation of anatom-
ical brain microscopy data and molecular genetic data of
fruit flies [BŠG∗09]. The microscopy data was visualized
through volume rendering with Maximum Intensity Differ-
ence Accumulation as a projection method. Wan et al. devel-
oped an interactive tool for visualizing multi-channel confo-
cal microscopy data [WOCH09]. Multidimensional transfer
functions and several compositing techniques were imple-
mented for an integrated visualization of up to three chan-
nels. The approaches creating an integrated visualization of
several data channels are closest to our work. However, none
of these approaches can handle an arbitrary number of binary
data channels (Sec. 2.3).

4. Analysis Framework and Prior Visualization

This section comprises a brief discussion of the in-house to-
ponome analysis framework of our collaborators and their
prior way of visualizing the 3D toponome data in an off-line
process, i.e., outside the framework.

Figure 2: Toponome analysis framework. Multiple views are
implemented, such as a table view listing all CMPs as rows
(left) and a toponome map showing the location of CMPs
selected in the table (right). The toponome map is super-
imposed on a grayscale phase contrast image. Each ring-
shaped structure represents a cell.

4.1. Toponome Analysis Framework

The in-house toponome analysis framework implements
multiple coordinated views: a filter view, a table view (Fig. 2,
left), a toponome map (Fig. 2, right), and a recently added
graph view [OFH∗11]. All views are linked and equipped
with brushing facilities. If a selection is brushed in one view,
it is merged with the selections from all other views and
the result is propagated to all views. The filter view facili-
tates the definition of a template CMP by setting the filter
for each affinity reagent to zero, one or no filtering. The ta-
ble view lists all CMPs as rows. Each selected row is as-
signed a unique color, which serves as an identifier for this
CMP in all views. The table is linked, e.g., to the toponome
map, such that the user may select individual CMPs and ob-
serve their spatial locations in the cell/tissue sample. The
toponome map is often superimposed on a phase contrast
image, which serves as a spatial reference (Fig. 2, right).
In these images, a relatively clear distinction between cell
surface, nucleus, and background is possible. The frame-
work further contains a graph view which encodes the co-
mapping of proteins (edges) and the co-mapping frequency
(edge width).

4.2. Prior Visualization of 3D Toponome Data

Until now, our collaborators applied the commercial soft-
ware IMARIS (Bitplane AG, Zurich, Switzerland) for gen-
erating volume renderings of their 3D toponome data in an
off-line process. The entire procedure for visualizing a 3D
toponome dataset took them 1− 2 workdays. Besides the
high expenditure of time, a visualization at interactive frame
rates in IMARIS is restricted to ≈ 30 different CMPs on a
machine with 4 GB of working memory. Hence, our collab-
orators focused on the 30 most frequent CMPs out of a set
that may comprise several 1000 CMPs. In the following, we
describe the time-consuming visualization procedure. Since
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the in-house framework could only handle 2D data so far,
each volume slice was processed separately. At first, the 30
most frequent CMPs of the volume’s middle slice were de-
termined. Although these might not have been the most fre-
quent ones in the remaining slices, they were treated as such
in order to generate an inter-slice coherent visualization. In a
next step, all n slices were processed sequentially: an image
was generated per CMP, showing its locations in this spe-
cific slice, the image was screen captured and stored. For a
common number of slices n = 20, this resulted in 600 screen
captures which were then loaded into IMARIS. Each set of
images showing the same CMP had to be loaded as a sep-
arate channel and perceptually well separated colors had to
be defined manually and assigned to the channels.

5. Visualization and Exploration Methods

This section starts with a description of the toponome data,
which we employ for demonstration purposes. Then, it elab-
orates on our volume rendering approach for visualizing the
data, which has been integrated in a newly added 3D view of
the toponome analysis framework. Finally, it discusses the
equipment of the 3D view with interaction facilities.

5.1. Toponome Data

Our methods have been applied to a cell sample contain-
ing blood lymphocytes of a healthy subject. Lymphocytes
are frequently related to causing chronic inflammatory dis-
eases by entering healthy tissues. In imaging the sample, a
large tag library, containing monoclonal antibodies directed
against cluster of differentiation (CD) marker proteins, was
used. CD marker proteins are expressed, among others, on
the surface of immune cells such as lymphocytes. A major
challenge is to decipher the cell surface toponome code of
these cells in order to detect disease specifics. In this study,
32 CD surface proteins have been co-mapped on the sample
(Sec. 2.2). The sample has been imaged at 20 slice locations
with a matrix of 658×517 pixels, an in-plane-resolution of
216×216 nm and a slice distance of 200 nm. The data has
been binarized and imported into the framework, which de-
tected 2167 CMPs (see [FBKS07] for detailed information
on sample preparation, data acquisition, and thresholding).

5.2. Volume Rendering of 3D Toponome Data

The combinatorial molecular phenotypes (CMPs) serve as
an input for the volume rendering (recall Sec. 2.3). They are
stored per slice in XML files. Each file contains the CMPs
of the slice and the pixel positions per CMP. In order to con-
struct a 3D dataset, the XML files are read in and an empty
dataset is generated, whose dimensions correspond to those
of the measured data. Then, each CMP is assigned a unique
RGBA value and this value is stored at those voxels of the
new dataset which are associated with the respective CMP
(RGBA computation will be discussed in Section 5.3).

(a)

(b)
Figure 3: (a) Overview of a cell sample containing lym-
phocytes (hemisphere-shaped structures). Each of the 2167
CMPs is assigned a unique color. Very small structures
are likely to represent noise. (b) A globally assigned trans-
parency visually suppresses these structures. A subset of the
major cell types is annotated.

A crucial aspect of volume rendering is the definition of
transfer functions for mapping data values to color and trans-
parency. Often, a color scale together with a range of trans-
parency values between zero and one are defined and dis-
cretized for that purpose. In our case, a color has already
been defined and associated to each data value which ren-
ders a mapping unnecessary. The application of transparency
to visualizing toponome data is challenging. An increased
transparency induces color mixing which hampers the iden-
tification of CMPs by their unique color. This scenario is
very likely, since a cell or tissue section often contains het-
erogeneous regions with respect to CMP distribution. At a
given pixel position, a different CMP may exist in each slice
or all neighboring pixels in the same slice may exhibit dif-
ferent CMPs. Nevertheless, a semi-transparent visualization
proved to be valuable in getting an initial overview of the
data, in visually suppressing noise and in an interactive data
analysis. The latter will be described in Section 5.4. The ex-
ploration of 3D toponome data starts with an overview vi-
sualization (Fig. 3a). Here, the biologist is particularly inter-
ested in the location of cells and in dominant CMP clusters.
In case of noise or a high frequency of other small struc-
tures that visually overlap with the structures of interest, an
increased global transparency simplifies the retrieval of this
information (Fig. 3b). It visually suppresses small structures
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(a) (b)
Figure 4: (a) Ray casting using nearest neighbor interpo-
lation at sample points. (b) Trilinear interpolation improves
the recognition of depth information and cell surface mor-
phology. However, mixed colors occur at transitions between
different CMP clusters and between a cluster and the back-
ground (arrows in inset).

while large regions exhibiting identical CMPs remain visi-
ble due to a higher accumulated opacity. The global trans-
parency is adjustable and initially set to zero.

The volume rendering has been implemented employ-
ing the open-source Visualization Toolkit (VTK, Kitware,
Clifton Park, NY, U.S.). VTK offers fast volume rendering
techniques exploiting graphics hardware, it implements 3D
interaction techniques, e.g., picking, and it is freely avail-
able. Furthermore, it integrates well with the existing frame-
work written in C#, by means of the ActiViz software (VTK,
Kitware, Clifton Park, NY, U.S.). In VTK, two hardware-
accelerated volume rendering techniques are integrated: 3D
texture mapping and GPU-based ray casting. We employ
the latter, since it is better suited for interactive applications
where the input dataset is constantly updated, e.g., through
brushing operations. These updates significantly slow down
the texture mapper since it always resamples the data to be
a power of two in each direction before rendering. In ray
casting, the data is sampled along each ray. At each sample
position, the corresponding data value is interpolated based
on the neighboring values. VTK implements nearest neigh-
bor and trilinear interpolation. We apply the latter since the
resulting visualization better conveys depth information and
cell surface morphology (Fig. 4). A drawback of trilinear in-
terpolation is the generation of mixed colors along the border
between two CMP clusters or a cluster and the background
(arrows in inset of Fig. 4b). However, the corresponding re-
gions are very narrow and hence can be distinguished from
the real data. The sample distance along the ray as well as
the image sampling density have a strong impact on the im-
age quality. If either of them is too low, aliasing artifacts
occur. VTK’s default values for the sample distance and the
sampling density are 1.0 and one ray per pixel, respectively.
These settings led to an artifact-free visualization in all our
experiments. However, a rendering at interactive frame rates

(a) (b)
Figure 5: (a) Close-up view of a cell and a neighboring cell
(upper left). A large CMP cluster appears turquoise in both
cells. (b) A color range redistribution for the same view re-
veals the true variety of CMPs (insets). It shows that the
visible CMP cluster of the neighboring cell differs from the
largest cluster of the focused cell.

is hampered for large render windows, e.g., 1600×1200 pix-
els. As a solution, VTK offers an automatic adjustment of
the parameters to a desired update rate, which we set to 15
frames per second. This guarantees a fluent interaction but
also causes aliasing artifacts. Hence, we turn the automatic
adjustment on when the user is interacting with the scene
and turn it off again when interaction stops.

5.3. Perceptually Optimized Coloring

Color serves as CMP identifier across all views of the
toponome analysis framework. It is crucial that different
CMPs, i.e., their associated colors, may be well discrimi-
nated by the biologist. However, a toponome dataset is likely
to contain several thousand CMPs. While generating a dif-
ferent color for each CMP is technically possible, visually
discriminating these colors by far exceeds the capabilities of
the human visual system. Hence, we offer a dynamic color
range distribution, that can be activated for the current view
on the data, e.g., a close-up view of a particular cell (Fig. 5).
It then generates a set of colors with a sufficient percep-
tual difference for the currently visible CMPs. The colors
are transfered to all other views for a coherent visualization.
The color range distribution is carried out before the dataset
is initially displayed. The user may trigger a redistribution
for the current view at any time of the exploration process. In
the following, we provide details on the implemented color
range distribution algorithm. It strongly improves the former
coloring algorithm, which was independent of the number of
CMPs and generated 255 shades of color by uniformly sam-
pling the perceptually non-linear RGB color space.

At first, an initial pool of colors is computed in HSV color
space by a regular sampling of each component (Alg. 1).
From this pool, the n colors, which will be associated to the n
visible CMPs, will be drawn. When computing the pool, the
hue component is sampled over the full range of 360◦ with a
sample distance of 360◦/n. For the saturation S and the value
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Algorithm 1 Compute pool of colors in HSV space.
counter← 0
degree_incr← 360/n
for hue = 0→ 359 incr : degree_incr do

for saturation = 60→ 100 incr : 10 do
for value = 70→ 100 incr : 10 do

colors[counter]← [hue,saturation,value]
counter← counter+1

end for
end for

end for

V component, only a subrange of [0,100] is considered in or-
der to avoid undersaturated and too dark colors. Both, S and
V are iteratively incremented by 10, within the subranges
[60,100] and [70,100], respectively. With this computation
scheme, n hue samples, 5 saturation samples per hue sample
and 4 value samples per saturation sample are employed re-
sulting in a color pool size of n× 5× 4. Less saturated and
darker colors are computed first. They will later be assigned
to CMPs with a high frequency of occurrence while highly
saturated and bright colors will be assigned to CMPs with
a low frequency of occurrence. Thus, large protein clusters
remain well visible due to their size and small clusters are
easier to perceive due to a striking coloring.

In the next step, the n visible CMPs of the current view are
computed by casting a ray per pixel into the scene and deter-
mining each intersected voxel and the corresponding CMP.
Finally, n colors with a sufficient perceptual difference are
drawn from the pool. We compute the difference in the per-
ceptually linear CIELab color space, since a difference be-
tween two colors there corresponds well to their perceived
difference. As a difference measure, the Euclidean distance
is employed [Sha03]. To facilitate distance computations,
the color pool is transformed from HSV to RGB [Smi78]
and from RGB to CIELab space [JL07]. Before the n colors
are drawn, a distance threshold is defined beyond which two
colors are considered as sufficiently different. If the thresh-
old is too high, the number of colors that can be drawn is
too small. If its is too small, the colors are not perceived as
different. Hence, the threshold is determined in an iterative
process. The iteration starts with a high value and decreases
the value down to the just noticeable difference (JND) of two
colors in CIELab space which is≈ 2.3 [Sha03]. The iteration
is terminated once n colors could be determined. The initial
threshold as well as the step size for decreasing it have been
determined empirically and set to 2.3+ 30 and 0.5, respec-
tively. A higher initial threshold led to very small color sets,
e.g., containing just a single entry. During each step of the
iteration, the algorithm tries to draw a set of n colors from
the pool. It starts with the first color and adds it to the set.
Thereafter, the distance between this color and the second
color is computed. If it is higher than the current threshold,
this color is also added. If not, the algorithms proceeds with

(a) (b)
Figure 6: Close-up views of a T4 (a) and a neighboring T8
lymphocyte (b). Note the strikingly different toponomes.

the third color and measures its distance to the first one and
so fourth. If more than a single color is contained in the al-
ready drawn set, distance tests are carried out between the
new color and each of the set members. Only if all tests are
passed, the new color is added.

The computation time of the color range distribution de-
pends on the view size and the percentage of background
pixels (black image regions). For a view size of 1600×1200
pixels and an overview of the dataset as in Figure 3, the time
is 4.4s. For the same view size and a close-up view as in
Figure 6a, the time is longer (6.2s) due to a lower percentage
of background pixels. A drawback of the current approach
is that the colors of the CMPs which are outside the cur-
rent view are not taken into account. Hence, these colors
may also be assigned to CMPs within the view. This poses a
problem once the user changes the view, e.g., to an overview
representation. In such a case, the color range distribution
should be triggered again.

5.4. Interactive Exploration of 3D Toponome Data

In this section, we describe our methods for interacting with
the 3D view in an exploratory analysis. After the dataset
has been loaded, all CMPs are listed and automatically se-
lected in the table view. Due to linked views, this gener-
ates an overview visualization of the cell sample in the 3D
view (Fig. 3a). The biologist then modifies the global trans-
parency in order to get an overview of the most prominent
CMPs (Fig. 3b). Since the table is initially sorted from top to
bottom according to decreasing CMP frequency, these CMPs
are listed at its top. This together with the overview helps the
biologist in identifying the cell types which are contained in
the sample. For example, the cluster of differentiation (CD)
marker protein CD4 binds to the surface of T4 lymphocytes.
If now CMPs are listed in the table with an entry of 1 in
the column representing CD4 and if the corresponding re-
gions cover large parts of a cell’s surface in the 3D view,
this cell represents a T4 lymphocyte. In the present sample,
for instance T4 and T8 lymphocytes as well as monocytes
and thrombocytes may be observed. In Figure 3b, T4 lym-
phocytes, which activate and direct other immune cells, ap-
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(a) (b)
Figure 7: Similarity brushing of a T8 lymphocyte. (a) The
biologist brushes an interesting part of the cell surface. (b)
The corresponding CMPs are determined across all slices
and the 3D visualization is restricted to these CMPs. A phase
contrast image stack is volume rendered in grayscale mode
and integrated into the scene as a spatial frame of reference.

pear as red and greenish sprinkled hemispherical structures.
T8 lymphocytes destroy cells which are effected by a virus.
Large parts of their surface are colored in turquoise. Mono-
cytes are another type of white blood cells and appear as
mostly blue structures. They are important in immune func-
tion and often serve as antigen presenting cells. Thrombo-
cytes are the light red, small, solid structures in between the
hemispherical cells. They play a role in blood coagulation.
Please note that the coloring of the cells may change across
the figures due to color range redistribution (Sec. 5.3).

For our collaborating biologist, the T4 and the T8 lym-
phocytes are of high interest. Hence, he zooms in to one of
these cells and applies a color range redistribution (Fig. 6).
Then, the proteins that contribute to the visible CMPs need
to be identified. This may be accomplished sequentially by
memorizing the color of each CMP and then searching for
this color within the selected rows of the table view (Fig. 2).
The entries in a detected row which are equal 1 then rep-
resent the co-mapped proteins. This approach has several
drawbacks. It involves frequently changing the point of gaze
between table and 3D view in order to recall the color of
interest. This is further complicated as soon as scrolling the
table is required. Furthermore, once the row of interest has
been detected it needs to be scanned for its entries equal 1.
We avoid these problems by implementing a CMP probing
through mouse-over interaction. During mouse movement,
a ray is cast into the scene starting from the current mouse
pointer position. The first hit non-background voxel is re-
ported, the corresponding CMP is extracted, and the names
of its co-mapped CD marker proteins are rendered as text at
the mouse pointer position. Further, the table row represent-
ing this CMP is moved to the top in order to avoid scrolling.

While the biologist samples the cell’s surface, he mentally
constructs a molecular “face” of the cell which he later com-
pares to the “face” of other cells, e.g., for detecting (patho-

(a) (b)
Figure 8: CMP peeling of a T4 lymphocyte. (a) Initial view
showing all CMPs. The CMP with a single entry equal 1 for
the cluster of differentiation (CD) marker protein CD3 shall
be peeled off (CD3 is found in the membrane of T4 and T8
lymphocytes). (b) A CMP with entries equal 1 for CD3 and
CD4 is revealed (CD4 is specific to T4 lymphocytes).

logical) variations. We support this comparison by similar-
ity brushing (Fig. 7). Here, a cell surface part is brushed
in screen space, the corresponding CMPs are determined
across all slices and the visualization in all views (includ-
ing the 3D view) is restricted to these CMPs. Thus, regions
containing at least one of the brushed CMPs are revealed.
In practice, the biologist defines a rectangular ROI enclos-
ing a cell surface part. Then, rays are cast into the scene for
each ROI pixel. Finally, all hit non-background voxels and
the corresponding CMPs are determined per ray. In order to
augment the 3D visualization, which is restricted to a sub-
set of CMPs and hence, to certain cell parts, a phase contrast
image stack is volume rendered and integrated into the scene
as a spatial reference (Fig. 7b). The reference is rendered in
shades of gray and a global transparency is assigned such
that a trade-off between a good visibility of the brushed data
and a clear visibility of reference structures is achieved. The
reference volume approach has been adopted from superim-
posing a toponome map on a phase contrast image (Sec. 4.1).

A common problem in 3D data visualization is occlusion.
Transferred to toponome data, cell regions corresponding to
one CMP occlude others that correspond to another CMP.
Hence, we implemented a semi-transparent rendering of the
occluding region which is triggered by a point-and-click in-
teraction. After clicking, the desired CMP is determined as
described for the CMP probing. This approach is very lim-
ited, since overlapping semi-transparent regions are difficult
to distinguish and color mixing occurs. Hence, we imple-
mented a CMP peeling interaction (Fig. 8). The desired CMP
is selected by means of point-and-click and then, “peeled
off” by rendering it fully transparent. Further, it is auto-
matically deselected in all other views of the framework.
The peeling step may be repeated any number of times.
We enhance the usability of this technique by offering an
undo/redo mechanism which is operated via the graphical
user interface of the 3D view.
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5.5. Anecdotal User Feedback

We gathered anecdotal feedback from our collaborating bi-
ologist and a computer scientist who has been working in his
laboratory for several years. Both also co-authored this pa-
per. They appreciated the fast generation of the 3D visualiza-
tion, its completeness with regard to the number of displayed
CMPs, and its integration into their framework. They used
the color range redistribution extensively (Sec. 5.3). How-
ever, they criticized that it ignores the spatial arrangement of
the differently colored cell surface parts. Thus, neighboring
parts may be assigned rather similar colors as compared to
further distant parts. The integration of a reference volume
was commended (Fig. 7b). All interaction methods were as-
sessed as useful. Particularly, CMP probing and CMP peel-
ing were frequently used. The computer scientist requested
an undo/redo mechanism for the peeling which we added.

6. Summary and Discussion

We presented a volume rendering approach for visualizing
3D toponome data, which significantly reduces the workload
of our collaborators. Visualizing a 3D toponome dataset,
which took them 1− 2 workdays before, now takes ≈ 30s.
We integrated the 3D visualization into their analysis frame-
work. In this framework, a unique color serves as CMP iden-
tifier. We improved the existing coloring scheme by comput-
ing a set of perceptually optimized colors. This set may be
recomputed for varying views on the data in order to opti-
mize the differentiability of the currently visible CMPs. To
support an exploratory analysis, the 3D view was equipped
with several interaction techniques. CMP probing supports
the biologist in mentally forming the molecular “face” of a
cell. CMP peeling provides insight into the composition of
a cell’s surface. For instance, a CD3 layer wrapping around
a CD3/CD4 layer was frequently observed in T4 lympho-
cytes (Fig. 8). We further presented the brushing of interest-
ing CMPs in 3D space, which restricts the visualization in
all views to these CMPs. In future work, we will conduct a
user study to evaluate the perceptually optimized coloring.

Acknowledgements

Technological and biological toponome studies were sup-
ported by BMBF grants Biochance, CELLECT, NBL3,
NGFN2, NGFNplus, and through DFGschu627/10-1, the In-
novationskolleg INK15, and the Klaus Tschira foundation
(project toponome atlas).

References
[BDS10] BARYSENKA A., DRESS A. W. M., SCHUBERT W.:

An information theoretic thresholding method for detecting pro-
tein colocalizations in stacks of fluorescence images. J Biotech-
nol 149, 3 (2010), 127–131.

[BŠG∗09] BRUCKNER S., ŠOLTÉSZOVÁ V., GRÖLLER M. E.,
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Abstract
Biological multi-channel microscopy data are often characterized by a high local entropy and phenotypically
identical structures covering only a few pixels and forming disjoint regions spread over, e.g., a cell or a tissue
section. Toponome data as an example, comprise a fluorescence image (channel) per protein affinity reagent, and
capture the location and spatial distribution of proteins in cells and tissues. Biologists investigate such data using
a region-of-interest in an image view and a linked view displaying information aggregated or derived from the
channels. The cognitive effort of moving the attention back and forth between the views is immense.
We present an approach for the in-place annotation of multi-channel microscopy data in 2D views. We combine
dynamic excentric labeling and static necklace maps to cope with the special characteristics of these data. The
generated annotations support the biologists in visually exploring multi-channel information directly in its spatial
context. A label is generated per unique phenotype included in a flexible, moveable focus region. The labels
are organized in a circular fashion around the focus region. On demand, a nested labeling can be generated
by displaying a second ring of labels which represents the channels characterizing the focused phenotypes. We
demonstrate our approach by toponome data of a rhabdomyosarcoma cell line and a prostate tissue section.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical
Sciences—Biology and genetics

1. Introduction

Proteins are the basic modules of cells performing a huge
variety of functions in living organisms. A major challenge
in biology is to understand how proteins cooperate in cells
and tissues in time and space [Sch10]. The toponome of
a cell describes its functional protein pattern, i.e. the loca-
tion and spatial distribution of proteins. In toponomics, the
toponome is investigated in order to understand how cells
encode different functionalities both in health and disease.
Robot-driven multi-parameter fluorescence microscopy is
employed for imaging the toponome [Sch03]. The imaging
may be carried out in 2D or 3D and results in a fluorescence
image or volume per protein. Here, we focus on a 2D slice-
based analysis of toponome data.

In a post-processing step, the fluorescence data is bina-
rized. For each pixel, a binary code (protein pattern) is con-
structed over all images, i.e. proteins, which then encodes
the local protein co-mapping. Finally, all unique protein pat-
terns are determined and each is assigned a unique color.
Biologists are interested in the natural clustering of protein
patterns across a cell, in the difference in clustering between

cells or healthy and pathologic tissue, and in the frequen-
cies of proteins and protein patterns. Hence, they visually
explore the toponome data piece by piece. They repeatedly
define a region-of-interest in an image view and inspect the
corresponding unique patterns in a separate table view. The
cognitive effort of moving the attention back and forth be-
tween the views is immense.

We present an approach to interactively label toponome
data in image views facilitating an exploration of the to-
ponome in its spatial context. Labeling the clusters of protein
patterns is challenging since (Fig. 1c):

• very small clusters cover only a few pixels,
• the local entropy, i.e. variety of clusters, is high, and
• phenotypically identical clusters form disjoint regions.

To cope with the high local entropy and to account for the
piece-wise exploration of the data, we adopt dynamic excen-
tric labeling of a focus region [FP99]. Phenotypically identi-
cal but disjoint regions, such as the turquoise or red clusters
in Figure 1c, require either multiple converging lines (lead-
ers) connecting the regions with a single label (many-to-one
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(a) (b) (c)
Figure 1: (a) Fluorescence signal of a protein affinity reagent as measured (top) and after binarization (bottom). White pixels
indicate protein present. (b) Generation of Combinatorial Molecular Phenotypes (CMPs). For each pixel, the binarized fluores-
cence signal of all protein affinity reagents is collected in a combinatorial binary code. The set of unique codes, i.e. the CMPs,
is computed and visualized in a toponome map (right). Image adapted from [OKH∗12]. (c) Inset of an exemplary toponome
map illustrating the challenges on labeling. Very small clusters of protein patterns exist (arrows). The local variety of clusters,
e.g., inside the circle, is high. Phenotypically identical clusters form disjoint regions, e.g., the turquoise and the red regions.

labeling) or also multiple labels. In order to avoid visual
clutter, we combine excentric labeling with static leader-
free necklace maps [SV10], which line up a single label per
unique protein pattern on a curve surrounding the focus re-
gion and relate labels to regions, e.g., by matching colors. To
the best of our knowledge, we are the first to present a dy-
namic variant of necklace maps posing special requirements
on label update during exploration.

We support multiple labeled focus regions facilitating
cell-to-cell comparisons, which so far required the tedious
comparison of individual tables. Copies of the labelings are
organized in a management view to structure and log the ex-
ploration. We demonstrate our approach by a rhabdomyosar-
coma cell line and a prostate tissue section. It may be trans-
ferred to similar image data, e.g., light microscopy images
of differently stained tissue, or maps of geospatial data, e.g.,
the world-wide distribution of mineral resources.

2. Biological Background

The toponome of a cell is defined as the entirety of all protein
networks, in which proteins are defined by their protein-to-
protein context [Sch03]. It is hierarchically organized and
comprises protein clusters which in turn contain lead pro-
teins and are interlocked as a network [SBP∗06]. The lead
proteins control the topology of the clusters and their func-
tion as a network. The most advanced toponome imaging
technique is robot-driven multi-parameter fluorescence mi-
croscopy TISTM [FBKS07]. It is capable of co-mapping
hundreds of proteins and their distribution across a cell or
tissue sample in situ [SBP∗06, SGK∗12]. Imaging and an-
alyzing the toponome are essential in finding new drugs,
e.g., for cancer treatment, and for detecting protein clusters
that can be regarded as a new system of biomarkers in dis-
ease [Sch10, SGK∗12].

Combinatorial Molecular Phenotypes. After imaging the
toponome, the fluorescence data is binarized [BDS10]

(Fig. 1a). This generates a combinatorial binary code (pro-
tein pattern) for each pixel where 0 indicates protein ab-
sent and 1 protein present. The unique binary codes in the
data are referred to as Combinatorial Molecular Phenotypes
(CMPs). A simple technique for visualizing CMPs is their
color-coded representation in a toponome map. The compu-
tation of a unique color per CMP is described in [OKH∗12].
The generation of binary codes, the concept of CMPs, and
the toponome map are illustrated by Figure 1(b,c). The bi-
nary code corresponding to a CMP very often exists at many
pixel positions, which are clustered at several locations of a
cell or tissue sample. These protein clusters correspond to
functional cell units and are of crucial interest.

3. Biological Workflow and Requirement Analysis

The analysis of toponome data starts with a hypothesis-free
visual exploration of the CMPs and involves the following
biological tasks:

(1) detection of selective CMP patterns,
(2) comparison of CMP patterns, and
(3) identification of lead proteins.

In (1), patterns characteristic for a particular cell type, a de-
velopmental stage of cells or a pathology are searched for.
Such patterns support an understanding of cell composition
and function, protein interaction, and may serve as biomark-
ers in disease. The comparison of patterns (2) is crucial, e.g.,
in comparing healthy and pathologic tissue or cells in differ-
ent developmental stages for understanding stage transition.
The detection of lead proteins (3) may be the first step in
drug development. Inhibiting a lead protein causes a disas-
sembly and function loss of the associated protein network,
which may eventually stop the disease [SBP∗06].

Workflow. The biologists perform these tasks following a
specific workflow implemented by their in-house, multiple
coordinated view framework (see [OFH∗11, OKH∗12] for
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details on the framework). Here, we focus on the 2D view
showing the image data and the toponome map and on the
table view listing the CMPs as rows and the proteins as
columns. Together, they are the main vehicles of initial to-
ponome exploration (Fig. 2a,b).

After toponome data have been acquired, the biologists
browse the morphology in the 2D view to orient themselves
in the spatial domain of the data. This step is carried out, e.g.,
based on a phase contrast image facilitating a good visual
separation between cells and background (Fig. 2b). Next,
the biologists investigate the CMP data at morphologically
interesting locations and search for selective CMP patterns.
For this purpose, a focus region is defined on the morphol-
ogy image. This region is neither draggable nor resizable.
After its definition, the corresponding part of the toponome
map is superimposed. Note that the corresponding CMPs are
not only superimposed on the focus region but on the entire
image (Fig. 2b). This is necessary to assess whether a CMP
pattern is selective or appears anywhere in the data.

Once a selective pattern has been detected, its CMPs and
their contributing proteins are investigated in the table view,
which is often shown on a second screen (Fig. 2a). The ta-
ble lists the CMPs of the entire dataset sorted according to
each CMP’s overall frequency. The rows corresponding to
the focused CMPs are colored. A CMP’s unique color is em-
ployed to establish visual correspondence between table and
toponome map. Comparing cells or cell parts regarding their
CMP pattern and proteins requires multiple focus regions.
Since this was not supported so far, multiple instances of the
framework were created or screenshots were compared.

Requirement Analysis. To investigate the CMPs of an in-
teresting pattern, the user browses the table, which may
list hundreds or thousands of CMPs. All columns must be
checked to retrieve the present proteins. This is essential,
e.g., for detecting lead proteins. If all CMPs of a pattern con-
tain a specific protein, it represents a lead protein candidate.

The exploration requires the user to constantly move the
focus of attention back and forth between table and 2D view.
The static focus region prevents a fluent sampling of the to-
ponome and a comprehension of pattern changes between
neighboring image regions. The missing support for multi-
ple focus regions hampers the comparison of CMP patterns.

The primary requirement of our collaborators on a novel
approach is the embedding of information derived from the
table into the 2D view such that the toponome may be ex-
plored directly in its spatial context. Further requirements
are the support of multiple focus regions and the manage-
ment of these regions and their respective CMP pattern, e.g.,
capture, show, hide, and store.

4. Related Work

This section is based on a survey of labeling techniques in
medical visualizations [OJP14]. Ali et al. studied handmade

Figure 2: Toponome analysis framework. (a) The table view
lists all CMPs as rows and proteins as columns. (b) The
2D view shows a grayscale phase contrast image as spa-
tial context. The ring-shaped structures represent cells. Each
CMP within a user-defined focus region (arrow), i.e., the
corresponding part of the toponome map, is superimposed
in color and the respective table row is colored likewise.

illustrations in scientific and technical textbooks and identi-
fied two types of labels: internal and external [AHS05].

Internal Labels. Labels being superimposed on the struc-
ture of interest are referred to as internal labels. They
have been applied, e.g., to virtual bronchoscopy images
[MHST00], medical surface [RPRH07] and volume ren-
dered data [JNH∗13]. Their application to toponome data is
challenging since clusters of the same CMP do not form a
single, continuous region in the 2D toponome map (e.g., the
turquoise or red clusters in Fig. 1c). The problem might be
tackled by multiple identical labels as shown for annotating
vascular structures in volume rendered images [JNH∗13].
Here, a vessel is often partially occluded by other vessels
or organs. However, another problem prevents the applica-
tion of internal labels. Often, CMP clusters cover only a few
pixels, which would be largely occluded by the label.

External Labels. The occlusion problem is solved by ex-
ternal labels. They are positioned outside the structure of in-
terest and connected to it by a line. This so-called leader
connects an anchor point on the structure and a point on the
label box holding the label’s textual representation. Ali et
al. proposed a variety of real-time label layout algorithms
for anatomical 3D models [AHS05]. Labels are arranged in
a circular fashion around the model or along its silhouette.
Mühler et al. demonstrated the labeling of 3D medical struc-
tures located inside a transparent structure or being currently
hidden but still of importance for surgical planning [MP09].
Mogalle et al. presented the automatic optimal placement of
external labels representing findings in 2D radiological slice
data [MTSP12]. They focused on avoiding leader crossings
and labels occluding crucial image parts. Their approach is
limited to≈ 10 labels, which is realistic for radiological data.
However, the number of CMPs even in a small subregion of
the toponome map is often higher.
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Boundary Labeling. In early work, Preim et al. presented
a system for exploring anatomical models which combines
zooming techniques, fisheye views, and interactive labels
[PRS97]. The labels are aligned on the left and right bound-
ary of a virtual rectangle enclosing the model. Bekos et al.
later coined the term “boundary labeling” in the context of
annotating static maps [BKSW07]. A virtual rectangle con-
taining the map is constructed and external labels are placed
outside the rectangle. They are connected by leaders to the
map areas of interest. Crossings of leaders are avoided and
total leader length is minimized. Boundary labeling is gen-
erally applied to the entirety of data. Labeling the entire to-
ponome map is however, neither feasible due to the hundreds
or thousand of CMPs nor required by the biologists who ex-
plore the data piece by piece.

Excentric Labeling. The cell-wise or subcellular piece-
wise exploration of the data is very well related to excentric
labeling by Fekete and Plaisant [FP99]. Their dynamic ap-
proach aims at labeling dense maps interactively by means
of a moveable, flexible focus region. The labels are dis-
played in stacks to the left or right of the focus region and
connected to the structure of interest inside the region by a
leader. Fink et al. extended the approach by various tech-
niques for creating a visually pleasing annotation, e.g., the
use of straight lines or Bézier curves instead of zigzagging
polylines [FHS∗12]. Luboschik et al. presented a fast point-
feature labeling approach, which avoids the placement of la-
bels over other labels or visual representatives such as lead-
ers and icons [LSC08]. They coupled the approach with a
moveable label lens. Transferring excentric labeling to to-
ponome data is not straightforward. Several leaders originat-
ing either from a single label (many-to-one labeling [Lin10])
or from multiple identical labels would be necessary to an-
notate multiple clusters of the same CMP. Even with mini-
mized leader crossings, this would cause a cluttered visual-
ization for a larger number of CMPs.

Necklace Maps. A static labeling approach abandoning
leaders has been proposed by Speckmann and Verbeek for
visualizing statistical data on geographical maps [SV10].
Glaßer et al. have applied necklace maps to labeling clusters
of breast tumor tissue with cluster-specific perfusion infor-
mation [GLP14]. In a necklace map, the labels are related to
structures of interest by matching colors – the unique CMP
color in our case – and spatial proximity. They are organized
on a one-dimensional curve (the necklace) that surrounds the
map or a subregion.

Consequences. We choose external labels over internal
ones since the latter would occlude very small CMP clusters.
To cope with the high local entropy of toponome data and to
account for its piece-wise exploration, we adopt excentric la-
beling of a focus region [FP99]. Disjoint regions, such as the
turquoise clusters in Figure 1c, require either multiple con-
verging leaders connecting the regions with a single label

(many-to-one labeling) or also multiple labels. In order to
avoid visual clutter, we adopt the leader-free necklace maps
[SV10], which line up a single label per CMP or protein on
a curve surrounding the focus region. The combination of
excentric labeling and necklace maps meet our requirements
on a visual exploration of toponome data (Sec. 3).

5. Interactive Labeling of Toponome Data

We discuss our visual encoding, aspects of label position, or-
der, and count, and we emphasize modifications to the origi-
nal static necklace map approach. After describing the neck-
lace composition, we elaborate on interaction facilities and
introduce a view for managing multiple necklaces.

5.1. Basic Approach

Initialization. At first, the user defines a focus region
(region-of-interest, abbrev. ROI) on the toponome map by
means of a flexible lens. We have implemented three lens
shapes: circle, rectangle, and lasso. Circular and rectangular
lenses are adjustable with respect to size and position. Both
are meant for a quick inspection of the CMP distribution.
The lasso is employed for a more targeted inspection of sep-
arate cellular subregions. It does not need to be adjustable
since it is aligned with a particular shape. In an early proto-
typical implementation, our collaborators favored the circu-
lar lens since it adheres to the metaphor of exploring a dark
room by means of a flashlight. For a recent survey on inter-
active lenses in visualization, see [TGK∗14].

Nested Necklaces. After ROI definition, all pixel positions
within the ROI and their associated CMPs are determined.
Then, a one-dimensional curve (the necklace) surrounding
the ROI is constructed. Currently, our implementation is re-
stricted to a circular necklace since it best matches the cir-
cular lens shape (see [SV10] for arbitrary necklace shapes).
The CMPs are represented by graphical symbols, which are
strung on the necklace (inner necklace in Fig. 3). Following
Speckmann and Verbeek [SV10], we provide circular and
bar-shaped symbols (Fig. 4). In the remainder, we use the
terms symbol and label interchangeably.

On demand, a second necklace enclosing the former is
displayed. One symbol per protein present in the focused
CMPs is drawn (outer necklace in Fig. 3). This nested label-
ing facilitates the concurrent exploration of CMPs and pro-
teins. While dragging the focus region, the protein necklace
is hidden by default to avoid mental overload.

5.2. Visual Encoding

Label Text. When the CMPs of a new toponome dataset
have been determined, each is assigned a unique name which
simply equals its place in a frequency ranking of all CMPs.
This name is typeset within the corresponding symbol. The
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Figure 3: Nested necklace map. Two one-dimensional
curves (the necklaces) surround a focus region (white cen-
ter circle). The CMPs in the focus region and their present
proteins are represented by circular symbols strung on the
inner and the outer necklace, respectively. The CMP symbol
colors match the unique CMP colors while the colors of the
protein symbols indicate lead protein likelihood. Please see
the text for all other encodings and interaction facilities.

name of the protein affinity reagent is typeset in the symbol
of the corresponding protein. The names relate the symbols
to the table view since the latter consists of columns listing
the ranking place and the proteins (Fig. 2a).

Symbol Size. The relative frequency of a CMP inside the
ROI fcmp is of particular interest to the biologists. It is de-
fined as the number of ROI pixels being associated with the
CMP normalized by the overall number of ROI pixels. We
map the CMP frequencies to the area of the circular symbols
and to the length of the bar-shaped symbols, respectively. In
accordance with [SV10] and Tufte who demands to “tell the
truth about data” [Tuf01], we employ mathematical scaling,
which directly relates the symbol area/length to the underly-
ing data. However, for the circular symbols, we offer percep-
tual scaling by Flannery’s compensation which aims at com-

Figure 4: Circular and bar-shaped labels are implemented.
Circles encode CMP frequency by area and bars by length.

pensating for the non-linear relationship between an increase
in circular area and the perceived increase [Fla71]. Our col-
laborators prefer circular symbols due to their orientation-
independent encoding of frequency and the more symmetric
and aesthetic appearance of the resulting necklaces (Fig. 4).
Hence, we show circular symbols in the remainder.

The biologists are also interested in the relative frequen-
cies of the proteins inside the ROI fprot . A protein’s rela-
tive frequency is independent of the number of pixels. It is
defined as the number of focused CMPs with this protein
present normalized by the overall number of focused CMPs
(except for the background zero-CMP). The biologists cate-
gorize the frequencies rather than considering individual val-
ues. For the detection of lead proteins, it is sufficient to know
whether a protein is present in (nearly) all CMPs inside the
ROI or only in a small subset. Hence, we assign a uniform
size to the protein symbols and employ color to encode the
frequency category (outer necklace in Fig. 3).

Symbol Color. A necklace map communicates the relation
between a symbol and its corresponding pixels within the
ROI by matching colors and spatial proximity. Hence, we
color each symbol on the CMP necklace according to the
CMP’s unique color in the toponome map (Fig. 3). For the
symbols on the protein necklace, we use a segmenting color
scale. Symbols of proteins with a relative frequency fprot <
80% are shaded in gray, 80%≤ fprot < 100% in yellow, and
fprot = 100% in green. This facilitates an easy detection of
lead protein candidates (green; recall Sec. 3) and of such
near the mark (yellow).

5.3. Label Position, Order, and Count

The following methods are straightforward to implement
based on simple trigonometry facilitating an update of the
necklaces at interactive frame rates during exploration.

Position and Order. Besides color, necklace maps employ
spatial proximity to relate image or map regions and their
corresponding symbol. Optimizing spatial proximity is a
hard problem having received special attention in [SV10].
For toponome data, this problem is even aggravated. Often,
multiple clusters of the same CMP exist in a focus region
(Fig. 3,5) and also a protein may be scattered across the en-
tire region. Optimization with respect to one cluster is not
reasonable in particular for similar-sized, equally distributed
clusters. Generating multiple symbols would require their
mental integration during exploration. The integration is par-
ticularly cumbersome if symbol attributes encode data vari-
ables, e.g. size encoding CMP frequency. Finally, very small
clusters may exist in the center of a focus region where spa-
tial proximity is hard to achieve by means of a standard con-
vex necklace shape. Discussing these problems with our col-
laborators revealed that in an initial exploration of toponome
data, they are rather interested in the relative frequency of
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Figure 5: Local vs. global sorting of CMP symbols. (Left) In
local mode, the symbols are sorted clockwise according to
their CMP’s frequency inside the focus region (inner circle).
Note that symbol size encodes local CMP frequency while
the label text equals the CMP’s place in a ranking of global
frequencies. (Right) In global mode, the frequency inside the
entire dataset is employed for sorting. The symbols are not
ordered anymore according to size, but the label texts are
ordered now.

the CMPs than in their exact location inside the focus region.
Hence, we decided to sacrifice the spatial proximity criterion
in favor of a sorted symbol line-up along the necklace start-
ing at 3’o clock with the most frequent CMP and proceeding
in clockwise order. Due to the sorted line-up, simple compar-
isons of CMP frequency within a necklace are even possible
when symbols sizes are visually not distinguishable.

The symbols on the CMP necklace may be sorted accord-
ing to the CMP frequency inside the ROI (local) or the to-
tal frequency in the dataset (global). An exploration in local
mode supports the detection and tracking of a CMP’s place
in a local frequency ranking (Fig. 5a). An exploration in
global mode simplifies the tracking of a CMP’s presence and
frequency inside the focus region (Fig. 5b). This is due to the
rather stable place of its corresponding symbol in the order
of symbols, which is fix as long as the more frequent CMPs
also remain in focus. Note that in global mode, the symbol
sizes are not ordered since they still represent the local fre-
quency which often differs from the global one. Please also
see our supplemental video for an illustration of the modes.

In order to simplify the search for a specific protein, the
symbols on the protein necklace may be arranged alphabet-
ically. Alternatively, the symbol order may be chosen to re-
flect each protein’s place in a ranking of the number of asso-
ciated ROI pixels. The latter is set by default and also shown
in all figures of the remainder.

The necklace radii and the arc length distance between
neighboring symbols are chosen such that labels do neither
overlap the focus region nor each other. The latter is guaran-
teed along the necklace and across inner and outer necklace.

Count. In a toponome dataset, hundreds to thousands of
CMPs may exist depending on the investigated biology and
the number of applied protein affinity reagents. Even in a

small focus region, the number of CMPs can be quite high.
However, the number of labels that can be drawn on the CMP
necklace is restricted by the minimum size of a symbol down
to which it is readable and by the necklace perimeter. Since
the necklace should closely adhere to the focus region rather
than exploiting the entire available screen space, its perime-
ter is bounded above. Instead of predefining the perimeter,
we first map each CMP’s relative frequency fcmpi to symbol
size. Based on fcmpi ∈ [0,1], the diameter øsi of the corre-
sponding symbol s of the necklace map is computed:

øsi = øbase ·
√

fcmpi , i ∈ [1,ncmp] (1)

The number of CMPs inside the ROI is denoted by ncmp.
The global scaling factor øbase corresponds to an adjustable
maximum symbol size which is initially set to 150 pixels.
Note that this high value is only achieved in the rare case of
a single CMP covering the entire ROI ( fcmpi = 1). If neces-
sary, øsi is clamped to the minimum value of four pixels to
guarantee the readability of its symbol color. The mathemat-
ical scaling in Equation 1 directly relates the symbol area –
not the radius/diameter – to the underlying data by employ-
ing the square root.

Based on the maximum of øsi , we then compute the neck-
lace diameter such that this symbol does no overlap the focus
region. We then draw the symbols starting at 3’o clock and
proceeding clockwise until a new symbol would intersect the
first one. Following this strategy, the most frequent CMPs
inside the ROI are labeled. This has been agreed upon with
the biologists, since very small CMP clusters might repre-
sent noise not being eliminated in the course of binarization
(Fig. 1a,b). However, special care must be taken when the
labels shall be ordered according to global CMP frequency.
If for instance only 20 out of 30 CMPs can be labeled, the 20
locally most frequent CMPs do not necessarily coincide with
the 20 globally most frequent ones. To guarantee that always
the former are labeled, we first determine them and then, sort
only these in descending order according to global CMP fre-
quency. A more fine-granular inspection of the CMP distri-
bution can be accomplished by capturing the necklace and
labeling all CMPs in an enlarged separate widget (Sec. 5.5).

The number of labels that can be drawn on the protein
necklace is also limited by the same factors but the number
of proteins is small as compared to the number of CMPs.
The most comprehensive toponome study hereof, employed
100 protein affinity reagents [SBP∗06]. Furthermore, only a
subset of all proteins is included in a reasonably sized focus
region. So far, we have been able to draw a label for each
protein inside a ROI employing a symbol size that guaran-
tees good readability and at the same time a perimeter that is
not far off the perimeter of the CMP necklace. Drawing all
symbols is crucial here since otherwise lead protein candi-
dates may remain unnoticed.
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Figure 6: 2D view of image data and toponome map (left)
and necklace management view (right). The management
view organizes the necklaces of the two focus regions as wid-
gets. Both widgets have been enlarged by means of a slider
(arrow) to gain space for more CMP symbols.

5.4. Necklace Interaction

The user can drag the focus region across the toponome map
and modify its size by scrolling the mouse wheel. The neck-
lace of a selective CMP pattern can be captured via mouse-
click causing an interactive copy to be added to the necklace
management view (Sec. 5.5). Another necklace map may be
initialized, causing a fade-out of the old map. For orientation
purposes, the old focus region remains visible. If multiple
necklaces have been defined, any of them can be reactivated
by clicking the respective focus region. Note that during in-
teraction, only the CMPs inside the focus region of the active
necklace map are colored in the toponome map.

A tooltip listing the relative and the absolute CMP fre-
quency inside the ROI is shown during mouse hover of a
CMP’s symbol. If the symbol is clicked, the CMP’s pixels
are highlighted by a temporary blinking. This is particularly
useful in cases of CMPs with barely distinguishable colors.
Furthermore, if the protein necklace is visible, the symbols
of the proteins present in the CMP are highlighted.

The protein necklace is by default only visible on demand.
Hovering the mouse pointer over a symbol causes an em-
phasis of the symbols of all CMPs with this protein present
by means of a yellow contour. On clicking the symbol, the
CMPs’ pixels are highlighted by a temporary blinking.

5.5. Necklace Management View

The necklace management view facilitates the organization
of multiple necklaces and helps to structure the exploration.
It is attached to the 2D view of the toponome map (Fig. 6).
The view is based on requests by the biologists for having
a means to record their exploration results. Such records il-
lustrate the daily work and are integrated in the laboratory
book. They support scientific reporting of research results

and simplify the communication with other biologists. Fur-
thermore, the management view arranges the necklaces in a
non-overlapping fashion thereby simplifying a comparison
of the associated CMPs. Superimposing all necklace maps
on the toponome map would lead to overlapping necklaces
and considerable occlusions of the image data.

In the management view, each necklace is presented in a
resizable widget. If a widget is enlarged, the necklace diam-
eter is increased causing previously neglected CMPs to be
displayed (recall paragraph “Count” in Sec. 5.3). This facil-
itates a more fine-granular inspection of the CMP distribu-
tion. The background of the widget may be set to the cor-
responding part of the toponome map. For comparing neck-
laces, a plain color background causes less distraction.

A necklace map may be shown/hidden in the toponome
map by selecting/deselecting its widget. Note that the fo-
cus region of a hidden map remains visible. The background
color of a selected widget switches from white to yellow.
Multiple selections are supported. For each necklace map,
the user may choose whether the corresponding CMPs, i.e.
their pixels in the toponome map, are shown in color. In Fig-
ure 6, the coloring is restricted to the left necklace.

6. Application

We demonstrate our approach by a rhabdomyosarcoma cell
line and a prostate tissue section. Both probes have been im-
aged by means of the TIS robot system with an in-plane-
resolution of 216×216 nm (Sec. 2). Protein affinity reagents,
more precisely, monoclonal antibodies directed against clus-
ter of differentiation (CD) surface marker proteins, were co-
mapped on the probes. The resulting fluorescence images
were binarized according to [BDS10] (Sec. 2). We conclude
the section by providing anecdotal user feedback.

6.1. Rhabdomyosarcoma Cell Line

Rhabdomyosarcoma (RMS) is the most common peripheral
malignant tumor of soft tissue in children and adolescents
and its causes are unclear [HJC∗13]. RMS is made up of
cells which normally develop into skeletal muscles. To re-
search RMS, muscle cells were extracted from the RMS cell
line TE671. Cell lines are populations of cells which have
been cultivated from a single cell thus held to contain the
same genetic makeup. The cell sample has been imaged in
a single transection with a matrix of 693× 552 pixels em-
ploying 23 protein affinity reagents. 958 CMPs were derived
from the binarized data. Sample preparation, data acquisi-
tion, and binarization are detailed in [SBP∗06].

RMS cells enter two different evolutionary states charac-
terized by a specific cell shape: spherical and elongated with
spindle-shape extensions [SBP∗06] (Fig.7a). Spherical cells
spontaneously enter an exploratory state in which they form
three spindle-shaped extensions. Once a promising direction
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(a) (b) (c)
Figure 7: Necklace maps for visually exploring the toponome of Rhabdomyosarcoma (RMS) cells. (a) Phase-contrast image
of RMS cells in two different states of their evolution: spherical and elongated with spindle-shaped extensions. (b) A necklace
map at one of the extensions confirms CD13’s function as a lead protein [SBP∗06] as indicated by the green symbol (arrow).
(c) Two focus regions have been defined in the cell bodies. Note the strikingly different toponome despite the same cell type.

has been detected by the cell, it proceeds to a migratory state
characterized by a withdrawal of one of the extensions. The
whole process is targeted at metastasis formation.

Previous toponome decoding work has shown that the
proteolytic enzyme CD13 functions as a lead protein driving
and directing the formation of the cell extensions [SBP∗06].
Based on the same cell type and a similar dataset, we reca-
pitulate this finding (Fig. 7b). While previous work required
a time-consuming investigation of the CMP table view, the
necklace facilitates a quick identification of CD13 as a lead
protein. Its corresponding symbol is colored in green and
appears at the starting position of symbol drawing (arrow).

Furthermore, we show that the protein network controlled
by CD13 across the cell body shows strikingly different
variations for cells in the spherical as compared to the
exploratory state (Fig.7c). Two focus regions were placed
within the cell bodies. The toponomes represented by the
corresponding necklaces are completely disjoint. Further-
more, the CMPs included in the focus region of the spherical
cell barely occur in the elongated cell and vice versa. An in-
vestigation of the protein necklaces of both focus regions re-
vealed an omnipresence of CD13 (not illustrated here to sim-
plify a comparison of the CMP patterns). This provides fur-
ther evidence that CD13 functions as a control element steer-
ing the transformation from the spherical to the exploratory
state by a recombination with other proteins. It was shown
in [SBP∗06], that inhibiting CD13 prevents the transforma-
tion from the spherical to the exploratory state.

6.2. Prostate Tissue Section

The tissue section was cut from a prostate tissue block of
radical prostatectomy — the surgical removal of the entire
prostate gland in the therapy of prostate cancer. This type
of cancer is the most common noncutaneous malignant neo-
plasm in men in western countries and its pathogenesis is

still unclear [SGKH09]. The tissue section has been imaged
in a single transection with a matrix of 658×517 pixels em-
ploying 17 protein affinity reagents. 2100 CMPs were de-
rived from the binarized data. Sample preparation, data ac-
quisition, and binarization are detailed in [SGKH09].

The tissue section contains several prostate acini —
many-lobed, berry-shaped terminations of the prostate
glands lined by secretory epithelial cells — and the fi-
bromuscular stroma between the acini. The protein affin-
ity reagent CD138, which is a marker for prostate cancer
progression, singles out the acini in its fluorescence image
(Fig. 8a). For clarification, one acinus has been encircled. Its
epithelial cells appear white in the image while their nuclei
and the lumen of the acinus show no response to CD138 and
hence, appear as small black circular and large black cen-
tered regions, respectively. The encircled acinus drew the
interest of the biologists since a fraction of its epithelial
cells exhibits features of prostate intraepithelial neoplasia
(PIN) [SGKH09].

Researching PIN is crucial since it is considered to be a
pre-malignancy of the prostatic glands. In order to inves-
tigate the toponome of PIN, we have dragged a focus re-
gion across the epithelial cells. A representative necklace
map including the protein necklace is shown in Figure 8b.
The CMP pattern is selective for epithelial cells since none
of the CMPs appear in the stroma surrounding the acini.
The protein necklace reveals CD26 and CD29 as lead pro-
tein candidates indicated by the yellow colored symbols.
Both contribute to all but one CMP, which in both cases is
the one with only the respective other protein present. For
instance, only CMP 6 does not exhibit CD29 but instead
solely contains CD26 (Fig. 8b). Similar to the role of CD13
in tackling rhabdomyosarcoma (Sec. 6.1), inhibiting CD26
and CD29 may contribute to preventing the transformation
of PIN to prostate adenocarcinoma [SGKH09]. CD26 and
CD29 were already identified as lead proteins in [SGKH09]
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(a) (b) (c)
Figure 8: Necklace maps for visually exploring the toponome of a prostate tissue section. (a) Fluorescence image of protein
affinity reagent CD138 with one acinus encircled. (b) A necklace map at epithelial cells of the acinus from (a) indicates CD26
and CD29 as lead protein candidates (yellow circles). CD29 is mouse hovered causing all symbols of CMPs containing CD29
to be highlighted (yellow border). (c) A focus region is defined below the acinus in the stroma. Note the strikingly different CMP
pattern compared to (b) despite the overlap of contributing proteins (7 out of 11).

and [OFH∗11] however, by means of a more complex and
time-consuming pipeline of analysis and interaction steps in-
volving additional views.

A second necklace has been positioned over a part of the
stroma (Fig. 8c). The corresponding CMP pattern is selec-
tive for the stroma and considerably differs from the one in
the acinus (Fig. 8b). In Figure 8c, the acinus is located in the
upper right corner. The protein necklace reveals again a high
frequency of CD29 but also no mapping of CD26. Since the
latter specifically recognizes prostate epithelium, this may
be seen as a validation of our labeling algorithm. Further-
more, the necklace shows a mapping of CD4 and CD8 indi-
cating the presence of T4 and T8 lymphocytes both partici-
pating in the cell-mediated immunity. This in turn, substan-
tiates the presence of inflammatory cells.

6.3. User Feedback

We gathered anecdotal feedback from a biologist with a
long-term, strong background in oncology and a computer
scientist who has been working in his laboratory for many
years. Both are co-authors of the paper. They used our
necklace map approach and we simultaneously recorded
their comments. They appreciated the in-place annotation of
CMPs and proteins as a great cognitive relief since it avoids
the tiresome shifting of attention back and forth between ta-
ble and 2D view (Sec. 3). The comprehensive and sorted dis-
play of CMPs along the necklace obviates the search for the
focused CMPs in the table. The display of the protein neck-
lace and the interaction with it simplify the identification of
present proteins, the detection of lead proteins, and the de-
termination of cell types. Retrieving this information from
the table view requires scrolling through the rows and exam-
ining each selected row for 1s (Fig. 2a).

The interaction with the necklace map was considered
simple and effective. Merely, the temporary blinking of CMP
pixels after clicking a symbol causes distraction and should
be replaced by a less discomposing highlighting technique.
The necklace management view was considered useful. It
was heavily used for hiding and showing individual necklace
maps. In contrast, the scalability of the necklace widgets was
barely utilized due to a common focus of the CMP analysis
on the most frequent ones, which were always visible.

7. Summary and Discussion

We have presented an approach to interactively label to-
ponome data in 2D views thereby supporting biologists in
visually exploring the data. The approach may be readily
transferred to other image data exhibiting a very high local
entropy, phenotypically identical structures forming multi-
ple disjoint regions, and very small structures.

We have combined the dynamic excentric labeling of a
focus region [FP99] with the static leader-free labeling of
necklace maps [SV10]. The user may place a single or mul-
tiple focus regions in the image view causing the contained
protein patterns to be displayed as symbols strung on a neck-
lace surrounding each focus region. On demand a second
necklace illustrating the proteins present in the focused pat-
terns can be displayed. A focus region may be dragged and
adjusted causing an update of the necklace(s) at interactive
frame rates. For the use cases in Section 6 and larger test
images (1600×1200 pixels), no restricted interactivity even
for unreasonably large focus regions was observed.

A necklace management view has been implemented for
organizing multiple necklaces and structuring the explo-
ration. While necklaces may overlap in the toponome map,
the management view arranges them in a non-overlapping

c© The Eurographics Association 2014.

CHAPTER 6. Interactive Labeling of Toponome Data 111



S. Oeltze-Jafra & F. Pieper & R. Hillert & B. Preim & W. Schubert / Interactive Labeling of Toponome Data

fashion subserving a comparison of the represented to-
ponomes. We have demonstrated our approach for the visual
exploration of a rhabdomyosarcoma cell line and a prostate
tissue section. We plan to integrate the approach into volume
rendered views of 3D toponome data [OKH∗12].
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Part III

Epidemiological Population Study Data

This part of the postdoctoral thesis cumulates the following publications:

Chapter 7 [181] B. Preim, P. Klemm, H. Hauser, K. Hegenscheid, S. Oeltze, K. Toennies, and
H. Völzke, Visual Analytics of Image-Centric Cohort Studies in Epidemiology, vol. 3, ch.
Visualization in Medicine in Life Sciences, in print. Springer, 2016.

Chapter 8 [112] P. Klemm, K. Lawonn, M. Rak, B. Preim, K. D. Tönnies, K. Hegenscheid, H.
Völzke, and S. Oeltze, “Visualization and Analysis of Lumbar Spine Canal Variability in
Cohort Study Data,” in Vision, Modeling, and Visualization (VMV) (M. Bronstein, J. Favre,
and K. Hormann, eds.), pp. 121-128, 2013.

Chapter 9 [113] P. Klemm, S. Oeltze-Jafra, K. Lawonn, K. Hegenscheid, H. Völzke, and B.
Preim, “Interactive Visual Analysis of Image-Centric Cohort Study Data,” IEEE Trans. Vis.
Comput. Graphics (TVCG), vol. 20, no. 12, pp. 1673-1682, 2014.

Chapter 10 [4] P. Angelelli, S. Oeltze, C. Turkay, J. Haász, E. Hodneland, A. Lundervold, A. J.
Lundervold, B. Preim, and H. Hauser, “Interactive Visual Analysis of Heterogeneous Cohort
Study Data,” IEEE Comput. Graph. Appl. Mag. (CG&A), vol. 34, no. 5, pp. 70-82, 2014.

Chapter 11 [170] S. Oeltze, H. Schütze, A. Maaß, E. Düzel, and B. Preim, “Measurement of the
Stratum Radiatum/Lacunosum-Moleculare (SRLM),” in Bildverarbeitung für die Medizin
(BVM), pp. 264-269, 2014.

113



114



Visual Analytics of Image-Centric Cohort
Studies in Epidemiology

Bernhard Preim, Paul Klemm, Helwig Hauser, Katrin Hegenscheid, Steffen Oeltze,
Klaus Toennies, and Henry Völzke

Abstract Epidemiology characterizes the influence of causes to disease and health
conditions of defined populations. Cohort studies are population-based studies in-
volving usually large numbers of randomly selected individuals and comprising nu-
merous attributes, ranging from self-reported interview data to results from various
medical examinations, e.g., blood and urine samples. Since recently, medical imag-
ing has been used as an additional instrument to assess risk factors and potential
prognostic information. In this chapter, we discuss such studies and how the evalu-
ation may benefit from visual analytics. Cluster analysis to define groups, reliable
image analysis of organs in medical imaging data and shape space exploration to
characterize anatomical shapes are among the visual analytics tools that may enable
epidemiologists to fully exploit the potential of their huge and complex data. To gain
acceptance, visual analytics tools need to complement more classical epidemiologic
tools, primarily hypothesis-driven statistical analysis.

1 Introduction

Epidemiology is a scientific discipline that provides reliable knowledge for clinical
medicine focusing on prevention, diagnosis and treatment of diseases [14]. Research
in epidemiology aims at characterizing risk factors for the outbreak of diseases and
at evaluating the efficiency of certain treatment strategies, e.g., to compare a new
treatment with an established gold standard. This research is strongly hypothesis-
driven and statistical analysis is the major tool for epidemiologists so far. Correla-
tions between genetic factors, environmental factors, life style-related parameters,
age and diseases are analyzed. The data are acquired by a mixture of interviews
(self-reported data, e.g., about nutrition and previous infections) and clinical ex-
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aminations, such as measurement of blood pressure. Statistical correlations, even if
they are strong, may be misleading because they do not represent causal relations.
As an example, the slightly reduced risk of heart infarct and cardiac mortality for
elderly people reporting to drink one glass of wine every evening (compared to peo-
ple drinking no alcohol at all) may be due to the involved low level of alcohol but
may also be a consequence of a very regular and stress-free lifestyle [14]. When
something happened, before an event, it is an indicator for a causal relationship.
However, care is necessary, since many things happen in the life of an individual
before, e.g., a heart attack, but do not cause it.

Thus, statistical correlations are the starting point for investigating why certain
factors increase the risk of getting diseases. Epidemiology is not a purely academic
endeavor but has huge consequences for establishing and evaluating preventive mea-
sures even outside of medicine. The protection of people from passive smoking,
recommendations for various vaccinations and the introduction of early cancer de-
tection strategies, e.g., mammography screening, are all based on large-scale epi-
demiological studies. Also the official guidelines for the treatment of widespread
diseases, such as diabetes, are based on evidence from epidemiological studies [14].
While this all may sound obvious, it is a rather recent development. Evidence-based
medicine often still has to “fight” against recommendations of a few opinion leaders
arguing based on their personal experience only.

The analysis techniques used so far are limited to investigating hypotheses based
on known or suspected relations, e.g. hypotheses related to observations or previous
publications. The available tools support the analysis of a few dimensions, but not of
the hundreds of attributes acquired per individual in a cohort study. Both typical vi-
sualization techniques as well as analysis techniques, e.g., support vector machines,
do not scale well for hundreds of attributes [41]. While we are not able to describe
solutions for these challenging problems, we give a survey on recent approaches
aiming also at hypothesis generation.

Organization. This chapter is organized as follows. In Sect. 2 we describe im-
portant concepts and terms of epidemiology including observations from epidemi-
ologic workflows. This discussion is restricted to those terms that are crucial for
communicating with epidemiologists, understanding requirements and for design-
ing solutions that fit in their process. In Sect. 3, we discuss how (general) informa-
tion visualization and data analysis techniques may be used for epidemiologic data.
Section 4 describes the analysis of image data from cohort studies and how this
analysis is combined with the exploration of non-image attribute data. This section
represents the core of the chapter and employs a case study where MRI data of the
lumbar spine are analyzed along with attributes characterizing life-style, working
habits, and back pain history.
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2 Background in Epidemiology

Population-based studies. Epidemiological studies are based on a sample of the
population. The reliability of the results obviously depends on the size of that sample
but also strongly on the selection criteria. Often, data from patients treated in one
hospital are analyzed. While this may be a large number of patients, the selection
may be heavily biased, e.g., since the hospital is highly specialized and diseases are
often more severe or in a later stage compared to the general population.

Population-based studies, where representative portions of a population (without
known diseases) are examined, have the potential to yield highly reliable results.
The source population may be from a city, a region or a country. Individuals are
randomly selected, e.g., approaching data bases of population registries. The higher
the percentage of people who accept the invitation and actually take part in the study,
the more reliable the results are.

In this chapter, we focus on longitudinal population-based studies. The sheer
amount and diversity in terms of type of data makes it difficult to fully identify and
analyze interesting relations. We will show that information visualization and visual
analytics techniques may provide substantial support that complements the statisti-
cal tools with their rather simple statistical graphics. Most epidemiological studies
were restricted to nominal (often called categorical) and scalar data, e.g., related to
alcohol consumption, and body mass index as one measure of obesity.

Image-centric epidemiological studies. More recently, for example, in the Rot-
terdam study [22], also non-invasive imaging data, primarily ultrasound and MRI
data, are employed. Petersen and colleagues [32] report on six studies involving
cardiac MRI from at least 1000 individuals in population-based studies. These high-
dimensional data enable to answer analysis questions, e.g., how does the shape of
the spine changes as a consequence of age, life style and diseases? We focus on such
image-centric epidemiological studies.

Epidemiology and public health. There are different branches of epidemiology.
One branch deals with predictions to inform public health activities. These include
measures in case of an epidemic – an acute public health problem, mostly related
to infectious diseases. The recent article ”computational epidemiology” [29] was
focussed on this branch of epidemiology. Another branch of epidemiology aims at
long-term studies and at findings primarily essential for prevention. Image-centric
cohort studies, the focus of this article, belong to this second branch. The target user
group consists of epidemiologists who can be expected to have a high level of ex-
pertise in statistics. Thus, their findings involve statistical significance, confidence
intervals and other measures of statistical power.

Healthy aging and pathologic changes. An essential problem in the daily clini-
cal routine is the discrimination between healthy age-related modifications (that may
not be reversed by treatment) and early stage diseases (that may benefit from imme-
diate treatment). As a consequence, elderly people are often not adequately treated.
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As a general goal for epidemiological studies, better and more reliable markers for
early stage diseases are searched for. The cardiovascular branch of the Rotterdam
study, for example, aims at an understanding of atherosclerosis, coronary heart dis-
ease and “cardiovascular conditions at older age” [22].

Modern epidemiology. Epidemiology faces new challenges due to the rapid
progress, e.g., in genetics and sequencing technology as well as medical imaging.
Acquisition of health data thus becomes cheaper and more precise. In cohort stud-
ies, as much potentially relevant data as possible are acquired as a basis for an as
broad as possible spectrum of analysis questions. This includes blood, urine and tis-
sue samples, information about environmental conditions and the social milieu.

Visual analytics for modern epidemiology. In the past, epidemiology primarily
dealt with hypotheses aiming to prove them, e.g., the efficiency of early cancer de-
tection programs in terms of mortality and long term survival [14]. Since recently,
more and more data mining is performed to identify correlations. Results of such
analyses, however, need to be very carefully interpreted. If thousands of potential
correlations are analyzed automatically, just by chance some of them will reach a
high level of statistical significance.

An essential support for epidemiology research is to define relevant subgroups.
To perform separate analyses for women and men as well as for different age groups
is a common practice in epidemiology. However, relevant subgroups may be defined
by a non-obvious combination of several attributes that may be detected by a com-
bination of cluster analysis and appropriate visualization.

Since the information space is growing with each examination cycle, Pearce and
Merletti [31] pointed out in 2006 that methods are needed which can cope with this
complexity and enable the analysis of underlying causes of a certain disease. Visual
analytics (VA) methods can support epidemiological data assessment in different
ways, e.g. by defining subgroups based on a multitude of attributes that exhibit a
certain characteristic. For the analysis of scalar and categorical data, established in-
formation visualization techniques combined with clustering and dimension reduc-
tion are a good starting point, but need to be tightly integrated with statistic tools
epidemiologists that are more familiar with. For image-centric studies, however,
new visualization, (image) analysis and interaction techniques are needed.

In the following, we define essential terms in epidemiology and give an overview
on cohort studies that employ medical image data as an essential element. Finally,
we describe how image data, derived information and other data complement each
other to identify and characterize risks.

2.1 Important Terms

Prevalence and incidence. Epidemiology investigates how often certain diseases
or clinical events, such as a cerebral stroke or sudden heart death, occur in the pop-
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ulation. Two terms are important to characterize this frequency. The prevalence in-
dicates the portion of people suffering from a disease at a given point in time. The
incidence represents how many people suffer from a disease or event in a certain in-
terval, usually one year. High prevalence is usually associated with high economic
costs. Population-based studies focus on diseases with a high prevalence, such as
diabetes, coronary heart disease or neurodegenerative diseases. Even these diseases
do not occur frequently in a random population including many younger people
(where the prevalence of these diseases is low). A rare disease, such as amyotrophic
lateral sclerosis, may have a prevalence of 5 from 100,000. Thus, even in a large
population-based study probably no individual suffers from this disease.

Absolute and relative risks. Another essential epidemiological term is the risk
for a clinical event, such as outbreak of a certain disease, severity (stage) or death.
As an example, a study related to cardiac risk may investigate angina pectoris, my-
ocardial infarction, atrial fibrillation depending on attributes such as age and sex.
The absolute risk characterizes the likelihood of getting a disease in life time. The
absolute risk for a woman to develop breast cancer in the Western world is partic-
ularly high for women aged 50-60 (2.6%) and 60-70 (3.7%). Therefore, for these
age groups, mammography screening – aiming at early detection and thus optimal
treatment – was introduced.

The relative risk (RR) characterizes the increased risk if an individual is exposed
to a certain risk factor, e.g., smoking, excessive weight, or alcohol abuse. It is based
on a comparison with a control group not exposed to that risk factor. A value of
RR < 1 represents a factor that protects, e.g., moderate physical activity. Exciting
observations are often the combined effects of several parameters. A certain factor
may be protective for some people (younger, slim women) and is involved with an
increased risk for others. The combined risk may be significantly smaller or larger
than could be expected from individual factors.

Moreover, relationships are often distinctly non-linear or even non-monotonic.
Dose-response relationships are often non-linear. RR increases slowly (almost no
effect for a small dose) and increases much faster for higher levels of a dose, e.g.,
exposure to toxicity. A typical non-monotonic relation is U-shaped, that is both
very low and very high instances of an attribute involve an increased risk, whereas
values in between are associated with a reduced risk. Examples are weight (both
very low and very high weight are associated with an increased risk for mortality)
and sleeping time (both very short and very long sleepers have an increased risk for
developing psychiatric disorders [22]). Such relations cannot be characterized by a
global RR value. Instead, tools are necessary that support the hypothesis of a U-
shaped relation by estimating their parameters with some kind of best-fit algorithm.
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2.2 Image-Centric Cohort Studies

Image data in epidemiology. The acquisition of image data is determined by the
available time, by financial resources, by the epidemiological importance and by
ethic considerations. Epidemiological studies require approval by a local ethics
committee. As a consequence, healthy individuals in a cohort study should not be
exhibited to a risk associated to the examinations carried out. Thus, MRI should be
preferred over X-ray or CT imaging for its non-radiation nature. Petersen and col-
leagues [32] explain why cardiac CT is less feasible in a cohort study and even MR
is only used without a contrast agent in their study due to ethical reasons. MRI data
and ultrasound data are the prevailing modalities in both the SHIP as well as the
Rotterdam study. Unfortunately, MRI and ultrasound data do not exhibit standard-
ized intensity values (in contrast to CT data). Moreover, MRI and ultrasound data
suffer from inhomogeneities and various artifacts. Thus, they are more difficult to
interpret for humans and more difficult to analyze with computational means. These
data are used to measure, e.g., the thickness of vessel walls, the abdominal aorta
diameter and plaque vulnerability in the coronary vessels [22]. The intensive use
of MRI in epidemiological research also explains to some extent which questions
are analyzed: MRI is the best modality for the analysis of brain structures and thus
serves to explore early signs of Parkinson’s, Alzheimer’s and other neurodegener-
ative diseases. Epidemiological research aims at identifying such brain pathologies
in a pre-symptomatic stage. Among the sources for such investigations are MR Dif-
fusion Tensor Imaging data that enable an assessment of white matter integrity [22].

The selection of imaging parameters is always a trade-off between conflicting
goals related to quality, e.g., image resolution, signal-to-noise ratio, patient comfort,
e.g., examination time and associated costs. As a consequence, to shorten overall
examination times in cohort study examinations, not the highest possible quality is
available, i.e., a slice distance of 4 mm is more typical than 1 mm. A great advantage
of MRI is that this method is very flexible and enables to display different structures
in different sequences, such as T1-, T2- and proton density-weighted imaging. MRI
data in cohort studies often comprise more than ten different sequences.

Standardization in image acquisition. Due to the rapid progress in medical
imaging, sequences, protocols and even (MR) scanners are frequently updated in
clinical routine (similar to the update frequency on a computer). These updates
would severely hamper the comparison of imaging results and thus the assessment
of natural changes and disease outbreak. Thus, differences in acquisition parameters
are essential confounding variables. Therefore, for one cohort and examination cy-
cle that may last up to several years, no updates are allowed. Moreover, all involved
physicians and radiology technicians are carefully instructed to use the same stan-
dardized imaging parameters. This point is even more important for longitudinal
studies with repeated imaging examinations. Even if MR scanners and protocols are
not updated, the life cycle of MR coils leads to changes of image quality that need
to be monitored and compensated.
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2.3 Examples for Image-Centric Cohort Study Data

In the following, we describe selected comprehensive and on-going longitudinal co-
hort studies. Both use a number of (epidemiologic) instruments that are innovative
in cohort studies and thus lead already to a large number of insights documented
in hundreds of (medical) publications. A considerable portion of these publications
employ results from imaging data. However, the full potential of analyzing organ
shapes, textures and spatial relations quantitatively is not exploited so far.

The Rotterdam study. A prominent example is the Rotterdam Study1, initiated
in 1990 in the city of Rotterdam, in the Netherlands. Similar to later studies, it was
motivated by the demographic change with more and more elderly people suffering
from different diseases and their interactions. After the initial study involving almost
8,000 men and women, follow-ups at four points in time were performed—the most
recent examinations took place in the 2009-2011 period. In the later examination
cycles, also new individuals were involved leading to datasets from almost 15,000
patients [22].

The original focus of the Rotterdam Study was on neurological diseases, but
meanwhile it has been extended to other common diseases including cardiovascu-
lar and metabolic diseases. The study has an enormous impact on epidemiological
and related medical research, documented in 797 journal publications registered in
the pubmed database (search with keyword “Rotterdam Study”, January 30, 2014).
Among them are predictions for the future prevalence of heart diseases and many
studies on potential risk factors for neurodegenerative diseases. For a comprehen-
sive overview of the findings, see [22] that summarizes the findings of more than
240 papers related to the Rotterdam Study. In a similar way, [23] is a significant
update of these findings with more recent data.

Norwegian Aging Study. A long-term study in Norway investigates the rela-
tions between brain anatomy (as well as brain function), cognitive function, and
genetics in normally aging people.2 In total 170 individuals (120 of them female),
aged between 46 and 77 (mean 62), were examined in Bergen and Oslo in by
now three waves (1st wave in 2004/2005, next in 2008/2009, and most recently in
2011/2012) [48]. While naturally not all of these subjects could be followed through
all three waves, still most of them were subjected to an extensive combination of

1. neuropsychological tests, including tests of the intellectual, language (memory),
sensory/motor, and attention/executive function,

2. MRI data, including co-registered T1-weighted anatomical imaging, diffusion
tensor imaging, and – from the 2nd wave on – also resting-state functional MRI,
as well as

3. genotyping (1st wave only) [46].

1 http://www.erasmus-epidemiology.nl/research/ergo.htm, accessed:
1/31/2014
2 http://org.UiB.no/aldringsprosjektet/, accessed: 1/31/2014
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The substantially heterogeneous imaging and test data are used to study aging-
related questions about the modern Norwegian population, for example, how anatom-
ical and functional changes in the human brain possibly relate to the later develop-
ment of Alzheimer and dementia. Important findings include the relation between
hippocampal volumes and memory function in elderly women [48] and the relation
between subcortical functional connectivity and verbal episodic memory function
in healthy elderly [47].

SHIP. The Study of Health in Pommerania (SHIP) is another cohort study
broadly investigating findings and their potential prognostic value for a wide range
of diseases. The SHIP tries to explain health-related differences after the German
reunion between East and West Germany. It was initiated in the extreme northeast
of Germany, a region with high unemployment and a relatively low life expectancy.

In the first examination cycle (1997-2001) 4,308 adults of all age groups were ex-
amined, followed by a second and a third cycle that was finished at the end of 2012.
The instruments used changed over time with some initial image data (liver and
gallbladder ultrasound) available already in the first cycle and others, in particular
whole body MRI, added later. The use of whole body MRI was unique in 2008 when
the third examination cycle started. Breast MRI for women is performed, whereas
for men MR angiography data are acquired, since men suffer from cardiovascular
diseases significantly earlier than women [42]. In addition, a second cohort (SHIP-
Trend) was established comprising 4,420 adult participants.

Diagnostic reports are created by two independent radiologists who follow strict
guidelines to report their findings in a standardized manner. The pilot study to dis-
cuss the viability and potential of such a comprehensive MR exam is described by
[20]. The overall time for the investigation is two (complete) days with 90 minutes
for the MR exam. The SHIP helped to reliably determine the prevalence of risk fac-
tors, such as obesity, and diseases. Major findings of the SHIP are increased levels of
obesity and high blood pressure (compared to the German population) in the cohort.
The MR exams alone identified pathological findings in 35% of the sample popula-
tion. More than 400 publications in peer-reviewed journals are based on SHIP data
(January 2014).

UK Biobank. The UK Biobank started recently and represents a comprehensive
approach to study diseases with a high prevalence in an aging society, such as hear-
ing loss, diabetes and lung diseases. Half a million individuals will be investigated
in one examination cycle from which 100,000 receive an MRI from 2014 onwards.
The rationale for the number of individuals to be included is explained by Peterson
and colleagues [32]: they aim at a reliable identification of even moderate risk fac-
tors (RR between 1,3 and 1,5) for diseases with a prevalence of 5%. The prospective
study should have a comprehensive protocol of cardiac MRI, brain MRI and abdom-
inal MRI. This prospective cohort study also involves genetic information.3

3 http://www.ukbiobank.ac.uk, accessed: 1/31/2014
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The German National Cohort. The recently started “German National Cohort”
in Germany is based on experiences with a number of moderate-size studies, such
as SHIP, and examines some 200,000 individuals over a period of 10-20 years. In-
dividuals will be invited in three waves to characterize changes. Due to the large-
scale character, imaging is distributed over five cities. Thus, the subtle differences
in imaging within different scanners have to be considered. 4 It explicitly aims at
improvements in the treatment of chronic diseases and involves a variety of tissue
samples, e.g., lymphocytes. Imaging in 30,000 individuals is again performed with
MRI, comprising whole body, brain and heart.

2.4 Epidemiological Data

Epidemiological data are huge and very heterogeneous. As an example, in the UK
biobank 329 attributes relate to physical measures, such as pulse rate, systolic and
diastolic blood pressure, and various measures relate to vision or hearing. 471 at-
tributes relate to interviews (socio-demographics, health history, lifestyle, . . . ).

The data that are stored per individual is standardized but not completely the
same, e.g., childbirth status and menstrual period are available for women only.
Image data and derived information, e.g., segmentation results, significantly in-
creased both the amount and complexity of data. Longitudinal cohort study data are
time-dependent. While some instruments, such as blood pressure measurements, are
available for all examination cycles, others were added later or removed. Individuals
drop out, because they move, die or just do not accept the invitation to a second or
third examination cycle. It is important to consider also such incomplete data but to
be aware of potentially misleading conclusions.

The great potential of image-centric studies is that image data and associated
laboratory data as well as data from interviews are available. An epidemiological
study, such as the SHIP, has a large data dictionary that precisely defines all at-
tributes and their ranges. While laboratory data are scalar values, most data from
interviews are nominal or ordinal values. In particular, data from interviews exhibit
an essential amount of uncertainty. Self-reports with respect to alcohol and drug use,
cigarette smoking and sexual practices may be biased towards “expected or socially
accepted” answers. Epidemiologists are not only aware of these problems but devel-
oped strategies to minimize the negative effects, e.g., by asking redundant questions.
After data collection, experts spend a lot of effort to improve the quality of the data.
Despite these efforts, visual analytics techniques have to consider outliers, missing
and erroneous data.

Geographic data. Geographic data play a central role in public health where
the dynamics of local infections are visualized and analyzed (disease mapping).
Chui and colleagues [9] presented a visual analytics solution directly addressing this

4 http://www.nationale-kohorte.de/, accessed: 1/31/2014
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problem by combining three dedicated views. Also in cohort study data, geographic
data are potentially interesting to understand local differences in the frequency and
severity of diseases as an interaction between environmental factors and genetic dif-
ferences. This branch of epidemiology is referred to as spatial epidemiology. Beale
and colleagues [5] investigated differences between rural and urban populations. In
their comprehensive survey, Jerrett and colleagues [24] considered spatial epidemi-
ology as an emerging area. However, we do not focus on spatial epidemiology since
cohort study data typically comprise rather narrow regions and thus may not fully
support such analysis questions.

2.5 Analysis of Epidemiological Workflow

The following discussion of observations and requirements for computer support is
largely based on discussions with epidemiologists as well as the inspiring publica-
tion by Thew and colleagues. According to [40]

• epidemiological hypotheses are mostly observations made by physicians in clin-
ical routine,

• corresponding attributes are chosen based on the observations and further expe-
rience, and

• regression analysis is frequently used to determine whether the investigated at-
tribute is a risk factor or not.

Major requirements for an epidemiological workflow (again based on [40]) are:
• Results have to be reproducible. Due to the iterative data assessment, methods

need to be applied to new data sets as well and the results need to be comparable
between different assessment times to characterize the change. User input needs
to be monitored all the time to enable reproducible results.

• A major result of an epidemiological analysis is whether certain factors influence
a disease significantly. Relative risk (as a measure of effect size) and p-values as
statistical significance level are particularly important.
Although these requirements neither consider image data nor visual analytics,

they have to be considered also in these more innovative settings. Reproducibility,
for example, means that clustering with random initialization is not feasible. More-
over, reports must be generated that clearly reveal all settings, e.g., parameters of
clustering algorithms that were used for generating the results.

Since statistical analysis plays such an important role, statistics packages, such as
SPSS5, R6 and STATA7 dominate in epidemiology. They provide various statistical
tests also in cases where assumptions, such as a normal distribution, are not valid.

5 http://www-01.ibm.com/software/analytics/spss/products/
statistics/, accessed: 1/31/2014
6 http://www.r-project.org/, accessed: 1/31/2014
7 http://www.stata.com/, accessed: 1/31/2014
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Also the peculiarities of categorical data are considered. Visual analysis, so far, plays
a minor role. As an example, Figures 1 and 2 illustrate two graphical representations
frequently used in epidemiology: Kaplan-Meier curves and interaction terms. A
Kaplan-Meier curve shows the survival of patients, often as a comparison between
different treatment options.

Fig. 1 A Kaplan-Meier curve
indicates how many patients
survive at least a certain time.
The more patients pass away,
the larger is the confidence
interval indicated by the
dotted lines. The crosses mark
each time a patient dies to
further provide information
on the reliability of the data
that decreases over time
(Courtesy of Petra Specht,
University of Magdeburg).

Fig. 2 The relative risk for
cholelithiasis in men asso-
ciated with a high level of
a certain type of cholesterol
slightly increases with a low
BMI, but decreases for in-
dividuals with high or very
high BMI. This multifactorial
situation is depicted in an
interaction term (Inspired by
[43]).

3 Visual Analytics in Epidemiology

The visualization of correlations in the epidemiological routine is largely restricted
to scatterplots with regression lines and box plots to convey a distribution. Scatter-
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plots may be enhanced, e.g., by coloring items according to certain characteristics,
e.g., a diagnosis or by adding results from cluster or Principal Component Analy-
sis (PCA) [38]. The frequency related to a particular combination of values is often
encoded by adapting saturation or darkness of colors.

Visual analytics methods can complement the statistical analysis and provide
methods to explore the data. Efficient methods are essential to cope with the large
amount of data and provide rapid feedback that is essential for any exploration pro-
cess.

One of the first attempts to employ information visualization techniques for med-
ical (image and non-image) data was realized in the WEAVE system [19]. The sys-
tem incorporated parallel coordinates as well as real time synchronization between
different views. Another essential tool, inspired by the WEAVE system, was pre-
sented by Blaas and colleagues [7]. They enabled feature derivation techniques and
incorporated segmentation techniques providing a powerful framework for hetero-
geneous medical data. Later work by Steenwijk and colleagues was more focussed
on epidemiology. They provided an exploratory approach to analyze heterogeneous
epidemiological data sets, including MRI [38]. They consider parameters on nor-
malized and not normalized domains, while only normalized domains are compara-
ble between subjects. Normalization means, for example, to register MRI brain data
to an atlas to compare individual differences.

Mappers are used to project data into normalized domains. As an example, in
brain analysis, a mapper defines the relation between an individual brain and a brain
atlas that contains normalized and averaged information derived from many indi-
vidual data. Feature extraction pipelines can be build visually by using a pipeline
of mappers. The visualization is realized through multiple coordinated views which
either represent scalar data or volumetric images. Different techniques to color code
data, to align them and add further information are provided to enhance scatterplots.
Steenwijk and colleagues evaluated their tools with specific examples from neu-
roimaging and questions related to a neurological disease where relations between
clinical data (anxiety-depresssion scales, mental state scales) and MR-related data
are analyzed (Fig. 3). Normalized data domains are represented using scatterplots
and parallel coordinated views. Dynamic changes are visualized using a time plot.
The selection is linked between views and allows for multi-parameter comparison
of clusters.

Zhang and colleagues [49] build a web-based information visualization frame-
work for epidemiological analysis through different views. They divide the analyt-
ics process in batch analytics and on-demand analytics. Batch analytics steps are
performed automatically as a new subject is added to the data set and aim to create
groups by means of a certain condition. On-demand analytics are performed by user
requests. Subjects are visualized using treemaps, histograms, radial visualizations
and list views. However, neither filtering and grouping nor the interaction between
the views are explained.

Recently, Turkay and colleagues [41] described a framework to analyze the data
of the Norwegian aging study, aiming particularly at hypothesis generation. For this
purpose, they give an overview on the dimensions in their dataset that conveys statis-
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tical properties, such as mean, standard deviation, skewness and kurtosis. The two
latter measures characterize how asymmetric the data distribution is. Scatterplots
display pairwise measures related to all dimensions. Deviation plots, a new tech-
nique, enables grouping and supports a comparison of measures for a subgroup to
the whole cohort.

The possibilities of VA tools can be summarized as follows:

• Manual/automatic definition (brushing) of interesting parameters and ranges of
values in attribute views,

• Linking of attribute views for identifying relations,
• Analysis across aggregation levels, parameters and subjects,
• Definition of groups either interactively by means of (complex) brushes, or semi-

automatically by means of clustering, and
• Visual queries and direct feedback enable easy exploration

Fig. 3 Left: A scatterplot relates magnetic transfer ratios to age. Items relating to the same patient
(over time) are connected via a line. Colors indicate a diagnosis. Right: An enhanced scatterplot
with PCA results for three subgroups overlaid (Courtesy of Martijn Steenwijk, VU University
Medical Center Amsterdam).

While having different applications in mind, the Polaris system of Stolte and col-
leagues also employs multiple coordinated views to validate hypotheses [39]. It uses
a variety of different information visualization techniques to map ordinal/nominal
or quantitative data of a relational data base. The system itself formulates data base
queries and the mapping to create visualizations for the requested attributes. They
choose the visualization mapping automatically based on the attribute types that are
viewed in context with each other. This allows for a fast visualization of different
attribute combinations in order to drill down to the information of interest. Gen-
eral visual analytics tools, such as Polaris and Weaver, in principle support some
of the requirements for epidemiology. The use of coordinated views, brushes and
switches is advantageous [44]. However, they are not designed to cope with the spe-
cial requirements of cohort study data and do not directly support epidemiological
workflows. In particular, no support for a combined assessment of image data and
other epidemiological data is available.
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Commercial Visual Analytics Systems. There are a number of commercial soft-
ware tools specialized on data visualization. As an example, Tableau [28] provides
an interface for creating different visualizations based on attribute drag-and-drop.8

These approaches deliver fast results with respect to visualizing different attributes.
However, it is not supported to derive new data, such as scores for diseases, body
mass index and other data that is relevant in epidemiology. QLikView is a similar
tool for visualizing data associations. The user can design a frontend where associ-
ations can be assessed using multiple information visualizations. Thus, the user can
drill down to the desired information. Statistics features regarding epidemiological
key figures are limited.

Spotfire/IVEE [2] is able to handle more complex analysis of data sets and allows
for interactive filtering of attributes. It can be linked to the statistical computing pro-
gramming language R, which makes it versatile in comparison with its competitors.
However, users need to be familiar with the R syntax.

Commercial systems cannot be enhanced or embedded in another system with
hassle-free data exchange. The focus of commercial data visualization tools is busi-
ness intelligence yielding a focus on quantitative data sources. At the same time they
excel at incorporating user collaboration by including comment sections and share
filters or entire setups of a dashboard.

4 Analysis of Medical Image Data for Epidemiology

Medical images are not by themselves useful for epidemiological analysis, since
the semantics of image elements (pixel, voxels) is too low. The resulting extremely
high-dimensional feature space would be unsuitable for visual analysis. Hence, im-
age data is sequentially aggregated and reduced. The different steps of this process
i.e. image analysis, shape analysis of extracted objects and subsequent clustering are
characterized and discussed in this section. Throughout the section, we often refer
to one case study, where MRI data from the lumbar spine is analyzed. The represen-
tation of assumptions on the lumbar spine shape and location as well as the object
detection scheme used are examples of viable and common approaches. We do not
claim that these techniques are better than any other approaches.

4.1 Medical Image Analysis

One of the major purposes of image analysis for a cohort study is to quantify
anatomy, e.g., by volume, shape or spatial relations between structures. Quantifi-
cation may be used to establish a range of normal values for different age groups
and to characterize variations. Such variations may also confirm a disease and thus

8 http://www.tableausoftware.com/, accessed: 1/31/2014
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add to data derived from clinical tests. Thus, the use of image data enables more
reliable conclusions w.r.t. the incidence and prevalence of diseases. As discussed in
Sect. 2.2, MRI is particularly interesting because of the wide range of different in-
formation represented in these data. Thus, the examples discussed in the following
relate to MRI data although the principles are more general.

Due to the wide range of image analysis tasks, the techniques should be adapt-
able to different analysis goals. The parameterization of an image analysis technique
should be intuitive and the interaction should be kept to a minimum. The latter as-
pect is particularly important, since often several thousand datasets need to be an-
alyzed. While largely manual approaches are acceptable in some clinical settings,
such as radiation treatment planning, they are not feasible in the evaluation of cohort
study data. The reduction of interactivity is not only a matter of effort, but also to
meet the essential goal of reproducible approaches.

Detection and segmentation of anatomical structures. A modular system is a
possible means to meet the central requirement of image analysis in cohort study
data. An example of a cohort study is the liver segmentation of [17], where concur-
rent detection and localization processes are combined for initial segmentation that
is then fine-tuned in a model-driven segmentation step and finalized by a data-driven
correction process. It has been shown that processes can be re-used and re-combined
to solve a different segmentation task on similar data (kidney segmentation in MRI
[18]). Alternatively, the necessary domain knowledge, related to expected size, basic
shape, position and grey values, can be separated from the detection and segmenta-
tion module. This strategy is attractive, since the user has not to care about the de-
tection process when changing the application. Two problems have to be addressed
in this case:

• What is the expectation about the data support integrated to fit a model?
• How is the with-class variation of the object in search separated from the

between-class variation?

Point distribution models (PDM) [30] address the second question by training on
sample segmentations. Model fitting is realized by a registration step. When train-
ing is not feasible, a prototypical model may be used instead. It is associated with
restricted input about variation (a few parameters only) and qualitative knowledge
about configuration or part-relationship.

In the following, we describe the linear elastic deformation of a finite element
model (FEM) as a common method to model shape variation. The user specifies the
average shape and two elasticity parameters: Young’s modulus defines how much
external force is needed for a deformation and Poisson’s ratio describes how the
deformation is transferred orthogonal to the direction of an incident force [35]. The
decomposition of the prototypical shape into finite elements bounded by nodes and
specification of the elasticity parameters results in a stiffness matrix K that relates
the node displacement u to incident forces f (Eq. 1):

Ku = f (1)
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Different kinds of nodes may be specified that are attracted by different kinds of
forces. Boundary nodes are attracted by the intensity gradient and inner nodes are
attracted from expected intensity or texture. For letting an FEM move and deform
into an object in an image, deformation is made dependent on time t. Behavior then
also depends on mass M of the FEM and object-specific damping D (Eq. 2).

Mü(t)+Du̇(t)+Ku(t) = f (t) (2)

M represents the resistance of the moving FEM to external forces and allows
the model to move over spurious image detail (e.g., gradients caused by noise).
Damping D avoids oscillation of the FEM. The system of differential equations is
decoupled by solving the following generalized eigenproblem.

KE = MEΛ with ET KE = Λ and ET ME = I

where Λ is the diagonal matrix with real-valued eigenvalues and I is the identity
matrix.

Fig. 4 Vibration modes 7 to 9 of a lower spine model. Vibration modes 1 to 6 represent rigid
transformations (Courtesy of Marko Rak, University of Magdeburg).

After projecting the data on the eigenvector matrix, the differential equations can
be solved fast and in a stable manner. Moreover, the projection on the eigenvec-
tors (called modes of vibration, see Fig. 4) separates deformation into components
representing rigid transformation, major deformation modes and remaining minor
deformation modes. The vibration modes can be used similar to the variation modes
of an ASM to derive a quality-of-fit formulation for a fitted model instance. Since
only a few anatomical objects have such a specific shape that it can be described by
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a simple deformation model and since training of additional information should be
avoided, it is useful to complement simple deformation with pre-specified informa-
tion on part-relationships. Part-relationships may describe the configuration of the
object of interest w.r.t neighboring structures or may represent decomposition into
parts (see [33]).

Extending the FEM to a hierarchical model requires the introduction of a second
layer FEM. Each sub-shape is represented by an FEM on the first layer and sub-
shape FEMs are connected to the second layer. The type of connection regulates
dependencies between sub-shapes and may range from distance constraints to co-
deformation. FEMs for the first and second layer are created and assembled in the
same fashion than elements are assembled for the sub-shape FEM [35].

Case study: Analysis of vertebrae. Back pain and related diseases exhibit a
high prevalence and are thus a focus of the SHIP (recall [42]). Specific goals are

• to define the prevalence of degenerative changes of the spine,
• to identify risk factors for these changes,
• to correlate degenerative changes with actual symptoms, and
• to better understand the progress from minor disease to a severe problem that

requires medical treatment.

Epidemiologists hypothesize that smoking, heavy physical activity and a number
of drugs that are frequently used are risk factors for back pain. Based on clinical
observations, epidemiologists suggested to focus on the lumbar spine – the lowest
part of the spine comprising five vertebrae. As a first step, the spine and lumbar
vertebrae should be detected in T1-weighted and T2-weighted MRI data from SHIP.

Although local optimization could be complemented by stochastic global opti-
mization [11], Rak and colleagues used only local optimization, since the initializa-
tion is simple for the given data. The user places a model instance in a sagittal view
on the middle slice of the image sequence which is then transformed based on local
image attributes. The model is constructed according to the appearance of vertebrae
and spine in a sample image sequence. Vertebra sub-shapes were connected with a
spine sub-shape by a structural model on the second level.

The spine model supported proper localization of the vertebrae. Since its most
discriminate aspect was the cylindrical shape, it was represented by a deformable
cylinder consisting of inner nodes only. The vertebrae shape was represented indi-
rectly by inner nodes as well, since reliability of the intensity gradient was low. For
each of the two shape models, the vertebra and the spine, a weighted combination
of the T1-weighted and the T2-weighted image was computed as appearance input.
Weights for each of the two models were determined a priori and produced a clearly
recognizable local minimum for vertebra and spine appearance, respectively. The
user placed a model instance in the vicinity of the object on a sagittal slice. Compu-
tation time until convergence was between 1.1 and 2.6 seconds per case. The method
was evaluated on 49 data sets from the SHIP. The detection was considered success-
ful if the center of each vertebra sub-shape was in the corresponding vertebra in the
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image data, which was achieved in 48 of the 49 cases (see Fig. 5 for examples and
[35] for further details).

Fig. 5 Examples for initialization and convergence of model instances applied to the MRI data
(Courtesy of Marko Rak, University of Magdeburg).

4.2 Shape Analysis

Epidemiologists are used to work with numerical and categorical data which then is
tested for statistic validity. Medical image data also allows to consider characteristic
object shapes. As an example, the shape of the liver may depend in a characteristic
manner on infections (hepatitis), alcohol consumption, or obesity. Eventually, shape
characteristics may change even before a disease becomes symptomatic. If this turns
out, shape changes may be employed as an early stage indicator.
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While the quantitative analysis of shapes or parts thereof (morphometrics) is a
recent trend in epidemiology due to the availability of image data, it is established
in anatomy and evolutionary biology.

Shape analysis requires that different shapes are transformed in a common space,
typically by a rigid transformation (translation and rotation). The parameters of this
rigid transformation are determined in an optimization process that minimizes the
distances of corresponding points. A major challenge is to determine these corre-
sponding points that serve as landmarks. In particular for soft tissue structures there
are not sufficient recognizable landmarks and therefore a parameterization is neces-
sary to define these points. Without going into detail, we assume that this process
is applied to many individual shapes Si, say livers in a cohort study. Then, for each
Si an optimal non-rigid transformation to a reference shape R defines a deformation
with displacement vectors for each landmark.

For use in epidemiology, a large set of displacement vectors is not the right level
of granularity. Instead, a few dimensions are desirable that characterize major differ-
ences. Thus, typically a dimension reduction technique, such as PCA, is employed
to characterize the directions that represent the major differences. This process may
be adapted to specific analysis questions by assigning individual weights to the land-
marks expressing a strong interest in particular displacements [21]. Thus, epidemi-
ological hypotheses may be incorporated.

While the establishment of point correspondences is often a major challenge,
recently alternative approaches were developed. The GAMES algorithm (Growing
and adaptive meshes) [13] creates a data structure to represent the shape variance
if no pairwise correspondence between points is given. However, it can be prone to
errors since it requires a prior registration of segmentation masks.

Shape analysis, of course, may also be supported by appropriate visualizations
that enable pairwise comparisons and emphasize differences. In this vein, [8] pre-
sented a system for shape space exploration based on carefully designed multiple
coordinated views.

4.3 Analysis of Lumbar Spine Canal Variability

In Sect. 4.1, we introduced a case study related to the analysis of the lumbar spine
in cohort data and explained how the spine and the vertebrae are detected in MRI
data from the SHIP. Here, we extend this discussion by the analysis of the spinal
canal and non-imaging attributes related to back pain. In the SHIP, attributes related
to back pain history, e.g., working habits, physical activities, size and weight, are
available to identify and analyze potential correlations with findings from the MRI
data. After careful discussions, we selected 77 attributes (60 are ordinal or nominal
and 17 scalar) to investigate back pain [25]. Ordinal data are primarily results of
multiple choice questions. The epidemiologists suggested to focus on the overall
shape and curvature of the spine in that region instead of individual vertebrae. This
overall shape is well characterized by the lumbar canal. Thus, correlations between
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the shape of the lumbar spine, attributes of back pain history and activities both in
leisure and working time may be analyzed.

Fig. 6 Lumbar spine visualization of 243 female subjects. Left: Tetrahedron-based finite element
model from Rak and colleagues [35]. The dashed purple line indicates the lumbar spine canal cen-
terline Middle: Model used to detect lumbar spine canal in an MRI scan Right: Agglomerative
hierarchical clustering of 243 centerlines yields seven clusters. Their representatives are visual-
ized as ribbons mapping cluster size to width. The ribbon color encodes the distance to the semi-
transparent plane orthogonal to the view direction (lower inset). Shadow projections (upper inset)
provide an additional visual hint on the curvature extent [26].

Klemm and colleagues [26] extracted, clustered and visualized spine canal cen-
terlines. Image segmentation of 493 MRI data sets was carried out automatically
using tetrahedron-based finite element models of vertebrae and spinal canal [35].
Using barycentric coordinates of the tetrahedrons, a centerline consisting of 93 dis-
crete points was extracted for each segmentation, as seen in Figure 6 (left, middle).
They served as input for an agglomerative hierarchical clustering which created
groups of subjects based on differences in shape. This special clustering technique
was chosen, since it produces meaningful results in the clustering of similar struc-
tures, such as fiber tracts derived from MR-Diffusion Tensor Imaging data [26].

The cluster visualization in Figure 6 (right) displays each cluster representative
as ribbon in a sagittal plane. The representative is the centerline with the smallest
sum of distances to all other centerlines, i.e., the centroid line of the cluster. The
width of the ribbon encodes the cluster count and the color encodes the distance to
the sagittal plane. Shadow projections also (redundantly) convey the distance to the
sagittal plane. This allows to assess the 3D shape in a 2D projection. The results of
the clustering can be used in different ways.

• Outlier detection: Extraordinary shapes yield clusters of small size that differ
strongly from the global mean shape. This can point to pathologies or errors in
the segmentation process.
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• Hypothesis generation: Shape groups serve as a starting point for an exploratory
analysis to analyze disease-related correlations. The usual workflow requires epi-
demiologists to define groups, e.g., age ranges. Groups calculated solely using
shape information can be analyzed to detect statistically relevant associations in
other expositions which can lead to new hypotheses.

• Hypothesis validation: Clustering based on non-image related features can be
used to analyze if these clusters are correlated to characteristic shapes, e.g., a
strongly bent spine canal representative.

Calculating curvature on groups created according to body height starting from
150 cm in 10 cm steps was performed. Klemm and colleagues found that taller
people have a more straight spine compared to small people. They also found mul-
tiple clusters of people 10 years above average age across all groups that exhibit a
strong ”S” shape of the spine, which was the starting point for new investigations
using expert chosen spine-related attributes. This method was extended to integrate
the relevant information for identifying correlations. Thus, for a selected cluster,
information related to the distribution of attributes, such as the back pain history
(frequency and intensity of back pain), may be displayed as a tool tip. The initial
observations show, that a box plot summarizing the distribution is more suitable than
the full histogram. For routine use in epidemiology, the lumbar spine visualization
(Fig. 6) has to be complemented with at least simple statistics to answer questions,
such as: Is there a statistically significant difference between the curvature of the
lumbar spine canal and back pain frequency? If so, what is the effect size?

4.4 Cluster Analysis and Information Space Reduction

A crucial task in epidemiology is the definition of groups of subjects. Differences
and similarities among groups are investigated and control groups are defined to de-
tect and assess the impact and interaction of risk factors to define the relative risk.
A straightforward approach is the manual definition based on study variables and
ranges of interest. A data-driven extension is the automatic detection of potentially
relevant subgroups in the often high-dimensional data by means of clustering algo-
rithms [25]. In particular, the generation of new hypotheses, which may be tightly
connected to the identification of new groups, benefits from the latter. In clustering,
subjects, being similar with respect to a certain similarity metric, are grouped in
clusters with a low intra-cluster and a high inter-cluster variance. Particular chal-
lenges in the cluster analysis of cohort study data are:

• Missing data, e.g., denied answers to inconvenient questions [1]
• Mixture of scala and categorical study variables [3]
• Time-varying variables in longitudinal studies [15]

As a consequence of the first problem, it should be reported to the user how many
datasets were actually used for clustering. Depending on the chosen attributes, this
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may be a subset of the overall amount of data. Incomplete datasets may and should
be used when the relevant data is available. It is essential to use similarity metrics
that consider also ordinal or categorical data. Usually, the following convention is
used: The distance between datasets equals 1 if their categorical data is different
and 0 if it is the same. With ordinal data, more care is necessary. The difference
between ”strongly agree” and ”strongly disagree” on a Likert scale is larger than
the difference between ”agree” and ”disagree”. However, the precise quantification
is not straightforward. As a first step to explore the SHIP data, a parallel coordinate
view is combined with scatterplots and clustering (Fig. 7).

Fig. 7 A parallel coordinate view enables the selection of a relevant subset (here persons with a
weight larger than 120 kg). The scatterplots represent correlations between age, size and weight.
The elements are color-coded according to a clustering result that yields three clusters. The encir-
cled elements correspond to the selection in the parallel coordinates view.

With respect to clustering algorithms, it is essential that the number of resulting
groups has not to be specified in advance. Moreover, algorithms are preferred that
allow outliers instead of forcing all elements to be part of a cluster. Outliers may be
particularly interesting and thus serve as a starting point for further investigation.
Of course, they may also indicate a bad quality of some data. In our experiments,
density-based clustering with DBSCAN [12] produced plausible results when ap-
plied to non-image data of the SHIP study. The DBSCAN result is sensitive to the
minPoints parameter that determines the minimum size of a cluster. Some cycles
of clustering are necessary to make a suitable choice. In this process, an appropri-
ate visualization is essential to easily understand the results. A visualization that
conveys the location, size and shape of clusters is difficult in case that clustering is
applied to more than two-dimensional data. A recently developed approach enables
3D visualizations of clustering results with very low levels of occlusion [16].

The majority of cohort-studies are restricted to non-image data, i.e., categorical
and scalar data, which may directly serve as input for a clustering algorithm. In [4],
176 patients with lower back pain have been monitored over six months via text mes-
sages describing their bothersomeness. All patients received chiropractic treatment.
A hierarchical clustering of the individual temporal courses of bothersomeness re-
vealed groups of patients who responded differently to the therapy, which may im-
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prove the optimal individual treatment selection. Hypotheses about the differences
between paternal age-related schizophrenia (PARS) and other cases of schizophre-
nia were generated in [27]. A k-means clustering of demographic variables, symp-
toms, cognitive tests and olfaction for 136 subjects (34 with PARS) delivered clus-
ters containing a high concentration of PARS cases. Significant characteristics of
these clusters may give a hint on features of PARS improving its dissociation of
other cases of schizophrenia.

In analyzing image-centric cohort study data, besides categorical and scalar data,
images may be clustered for group definition. Image intensities, segmentation re-
sults, e.g., the surface of the segmented liver or the centerline of the spinal canal
(recall Section 4.3) and derived information, e.g., liver tissue texture, liver volume
and spinal canal centerline geometry, may serve as input. In [37], the anatomical
variation of the mandibles is assessed across a population. For treating mandible
fractures, subjects with similar characteristics are grouped in clusters and a suitable
implant is designed per cluster. The clustering algorithm k-means is applied to trans-
formation parameters of a locally affine registration between all mandible surfaces
segmented in CT data. A cohort of 50 patients with suspicious breast lesions was
investigated by means of dynamic contrast enhanced MRI (DCE-MRI) in [34]. Each
lesion was clustered according to its perfusion characteristics by means of a region
merging approach. Perfusion is represented by the temporal course of the DCE-MRI
signal intensities. The clustering itself did not generate groups of patients here, but
based on each individual number of clusters and their perfusion characteristics, two
groups of lesions could be defined: benign and malignant. These groups were then
compared to histological results from core needle biopsy.

Investigating high-dimensional non-image cohort study data often benefits from
an information space reduction, e.g., by means of PCA. Plotting the data for inspec-
tion in a lower dimensional space while capturing the greatest level of variation,
e.g., a scatterplot of the first two principal components, as well as detecting trends
in the data and ordering them according to the variance they describe are important
applications of PCA. In [36], symptom data gathered in interviews of 410 people
with Turret syndrome was investigated in order to specify homogeneous symptom
categories for a better characterization of the disease’s phenotype. First, clusters
of symptom variables were generated using agglomerative hierarchical clustering.
Then, for each cluster and each participant a score was computed equal to the sum
of present symptom variables in the cluster. These scores were the input for PCA,
which produced homogeneous symptom categories, sorted according to their per-
centage of represented symptomatic variance. In [38], scatterplots of variables from
cohort study data are extended by superimposing PCA ellipses. The ellipses are
computed per group of subjects and illustrate its global distribution with respect to
the two opposed variables. They are spanned by the principal component axes of a
groups data points and centered at their mean. Optionally, their transparency is ad-
justed with respect to the groups confidence, i.e. the number of contained subjects.
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4.5 Categorical Data

Cohort study data sets comprise many categorical data such as answers to ques-
tionnaires or categorizations that may result from binning continuous data, such as
intervals of income or age groups. These data are discrete and exhibit a low range.
While data resulting from binning or from answers marked at a Likert scale have
an inherent order (ordinal data), often no inherent order exists. Standard informa-
tion visualization methods like scatterplots and parallel coordinates are designed for
continuous data and thus not ideal for displaying categorical data, since many data
points occlude each other.

Fig. 8 Parallel sets are designed to explore categorical data. Parallel sets are based on the par-
allel coordinates layout, but it maps frequency of the data instead of rendering them just as data
points. The user can interactively remap the data to new categorizations as well as highlight entries
to examine their distribution along other mapped dimensions. The displayed data set shows the
distribution of passengers of the RMS Titanic and whether they survived the sinking of the ship
[10].

Categorical data are often visualized using boxes where the width is scaled to
frequency [45]. These approaches use much space and are also not well suited for
encoding multidimensional relationships. Parallel sets, introduced by Bendix and
colleagues, comprise the same layout as parallel coordinates, ”but the continuous
axes were replaced with sets of boxes . . . scaled to the frequency of the category”
[6] (see Fig. 8). Selecting an attribute will map each category to a distinct color so
that they can be traced through all visualized dimensions. Highlighting a category
may be realized by drawing the selected category in a higher saturation leading
to a pop-out effect. It is also useful to display a histogram for the selected cate-
gory annotated with statistical information. Selecting a category will only display
the particular box on an axis and make more room for connections to other axes.
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This is especially helpful if the number of categories for one dimension is large. In
case of data without inherent order, reordering of axes is possible and supports the
exploration by providing more comprehensible layouts.

5 Concluding Remarks

A variety of large prospective cohort studies are established and ongoing. They gen-
erate a wealth of potentially relevant information for assessing risks, for estimating
costs involved in treatment and thus inform health policy makers with respect to po-
tentially preventive measures or cost-limiting initiatives. Despite the great potential
of data mining and interactive visualization, none of these studies included such ac-
tivities in their original planning. The role of computer science, so far, was limited
to database management and data security. Visual analytics has a great potential for
exploring complex health-related data, as recently shown by Zhang and colleagues
[50] for clinical applications, such as treatment planning. Similar techniques may
be employed to address epidemiology research. In contrast to clinical applications,
where a severe time pressure leads to strongly guided workflows, epidemiology
research benefits from powerful and flexible tools that enable and support explo-
ration. Currently, existing and widespread information visualization and analytics
techniques are employed and adapted to epidemiologic data. The high-dimensional
nature of these data, however, also requires to develop new techniques.

The specific and new aspect discussed in this paper was the integration of image
data, information derived from image data, such as spine curvature-related mea-
sures, and more traditional socio-demographics data.

Future work. So far, visual analytics research and software was rarely focused
on epidemiology. Thus, to adapt visual analytics to epidemiology and to integrate
the solutions with tools familiar to epidemiologists is necessary. In epidemiology,
national studies are prevailing, which is due to the large amount of legislative con-
ditions to be considered. International studies would enable to explore diseases with
lower prevalence, subtypes of diseases that occur rarely, e.g., cancer in early age, and
specific questions of spatial epidemiology. The SHIP Brazil study will provide such
information. It was recently initiated to perform a study in Brazil according to the
standards and experiences gained in the German SHIP study. A nasty but essential
problem of image-based epidemiologic study is quality control. Research efforts are
necessary to automatically check whether image data fully cover the target region,
whether the alignment of slices, e.g., in heart imaging, is correct and whether severe
artifacts appear, e.g., motion artifacts. This chapter discussed exciting developments
related to the combined use of radiologic image and more classical epidemiological
data. The next wave is already clearly recognizable: genetics information will be
integrated in the search for early markers associated with risks for diseases.
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Abstract

Large-scale longitudinal epidemiological studies, such as the Study of Health in Pomerania (SHIP), investigate
thousands of individuals with common characteristics or experiences (a cohort) including a multitude of socio-
demographic and biological factors. Unique for SHIP is the inclusion of medical image data acquired via an
extensive whole-body MRI protocol. Based on this data, we study the variability of the lumbar spine and its
relation to a subset of socio-demographic and biological factors. We focus on the shape of the lumbar spinal canal
which plays a crucial role in understanding the causes of lower back pain.
We propose an approach for the reproducible analysis of lumbar spine canal variability in a cohort. It is based
on the centerline of each individual canal, which is derived from a semi-automatic, model-based detection of the
lumbar spine. The centerlines are clustered by means of Agglomerative Hierarchical Clustering to form groups
with low intra-group and high inter-group shape variability. The number of clusters is computed automatically.
The clusters are visualized by means of representatives to reduce visual clutter and simplify a comparison between
subgroups of the cohort. Special care is taken to convey the shape of the spinal canal also orthogonal to the view
plane. We demonstrate our approach for 490 individuals drawn from the SHIP data. We present preliminary results
of investigating the clusters with respect to their associated socio-demographic and biological factors.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical
Sciences—Health

1. Introduction

Exploiting the full potential of huge information spaces cre-
ated by cohort studies like the Study of Health in Pomerania
(SHIP) is one of the major challenges in modern epidemi-
ology. The SHIP [VAS∗11] aims at characterizing health by
assessing data relevant to prevalence and incidence of dis-
eases and identifying their risk factors. With the recent in-
corporation of medical image data in cohort studies, shape
and texture of organs may be characterized. Shape infor-
mation linked to other medical or lifestyle data show great
promise for better understanding of risk factors for certain
diseases [WP03]. For example, how does a physically hard
job influence the shape of the spine? Scientific findings yield
in precise precautions for people who belong to risk groups.

Our focus is on the lumbar spine, which is most often
the source of musculoskeletal disorders in clinical practice
[vTKB02, WP03]. The whole-body MRI scans of the SHIP

are the basis for our approach to enable a reproducible anal-
ysis of the lumbar spine canal variability. Our contributions
are:

• generation of groups of individuals sharing a similar
shape of the lumbar spine canal,

• visualization of these groups by means of representatives,
• illustration of 3D shape in a 2D view.

While the processing of the 490 data sets represents first re-
sults, we were able to observe the expected behavior like de-
creasing spine curvature with increasing subject body height.
We also found unexpected clusters of unusual shape, which
are now subject to further epidemiological analysis.

2. Related Work

To the best of our knowledge, only Steenwijk and colleagues
concurrently query and visualize both image and non-image
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data in a Visual Analytics framework [SMvB∗10]. They put
emphasis on a structured data organization and employ a re-
lational database. Their work is closest to ours albeit our in-
vestigation of image and non-image data is at the moment
still being performed sequentially.

Non-image Data. Cohort study data is often very hetero-
geneous. It consists of image and non-image data, differ-
ent types of parameters, e.g. ordinal, nominal, and quanti-
taive, and parameters of the same type but having different
domains, which may partially overlap. Schulze-Wollgasts
[SWST03] work supports the data exploration process and
hypotheses generation by dividing the information space
into data cubes, which can then be understood as n-
dimensional arrays. They are used to investigate normalized
parameters of different modalities and individuals. Linking
& brushing is used to investigate interesting details in the re-
sulting spaces. Zhang and colleagues [ZGP12] extended this
approach by a web-based system which allows for group-
ing of subjects based on associated data variables and feed-
ing groups into a visualization system to support insight into
complex correlations of the data attributes. Groups are pre-
computed by calculating common sets of risk factors. This
can serve as starting point for an exploratory analysis. We
adapt this approach by computing clusters based on shape.

Image Data. Caban and colleagues [CRY11] give an
overview on how shape distribution models can be compared
using different methods like deformation grids, likelihood
volumes and glyphs. Their presented study favors a spherical
glyph representation of variation modes. Busking and col-
leagues [BBP10] proposed a method which plots instances
of a structure on a 2D plane. The user can then generate in-
terpolated views in an object space view via mesh morph-
ing on a reference structure together with a color-coded de-
formation field on the surface. In the shape evolution view,
2D projections of all structure instances can be compared.
With pairwise corresponding data points their segmentation
model is of the same type as our spine detection model.
Their methods, however, focuses largely on local structural
changes while we address curvature. Visualizing our data
with their open source ShapeSpaceExplorer lead to a
very cluttered view, since it is not suited for a large num-
ber of input objects. We do not use their approach of main
variation modes, since they also display models by interpo-
lating between standard deviation steps, which are not part
of the data. Hermann and colleagues [HSK11] compared
statistical deformation models to detect anatomically differ-
ent individuals of the rodent mandibles. They propose a se-
mantically driven user-centered pipeline that includes expert
knowledge as region-of-interest selection via interactive vol-
ume deformation. This takes especially into account that not
all shape information in a model is of equal interest to the
user. Chou and colleagues [CLA∗09] investigated the cor-
relation of Alzheimer’s disease for 240 subjects with ven-
tricular expansion, clinical characteristics, cognitive values
and related biomarker by statistically linking them together

and ploting their p-values onto the ventricle surface. This
way of directly mapping disease-related biomarkers is an ex-
ample of how different data modalities can be expressively
combined. A visual analytics approach for improving model
based segmentation is presented by von Landesberger and
colleagues [vLBK∗13]. They introduced expert knowledge
via visual analytics tools into every important step of seg-
mentation from pre-processing to evaluation.

Using deformation fields that describe dense correspon-
dences, Rueckert and colleagues [RFS03] constructed an at-
las of average anatomy with variability across a population.
Registration-based statistical deformation models are shown
to be suitable for characterizing shape over many subjects.

3. Epidemiology of Back Disorders

Epidemiological cohort studies aim to identify factors which
are associated with diseases and mortality risks. This in-
cludes socio-economic characteristics and medical parame-
ters. While the understanding of genetic mutations regarding
back disorders made progress, the correlations with differ-
ent environmental factors as well as physical stress are not
sufficiently understood [MM05]. Manek and colleagues re-
viewed the progress made in understanding causes of back
pain and present influencing factors like age, gender, weight
and different lifestyle aspects, such as smoking behavior and
work conditions. Tucer and colleagues [TYO∗09] conclude
that depression is one of the independent risk factors for ex-
periencing low back pain, although their analysis is based on
surveys of the subjects and does not rest upon clinical anal-
ysis. Lang-Tapia and colleagues [LTERAC11] used a non-
invasive method for analyzing spine curvature using a so-
called "Spine-Mouse". They correlated spine curvature with
age, gender, and weight-status. They did not find correlations
between lumbar spine deformation and weight status. Van
Tulder and colleagues [vTKB02] conclude that the value of
such identified risk factors as prognostic value remains low.
No factor arose as strong indication for back pain through
many different studies.

These studies share the relation to socio-demographic and
medical attribute data with most cohort studies that analyze
back disorders. Many studies do not include shape informa-
tion, only very few use medical imaging at all. One distinct
feature of the SHIP are the whole-body MRI scans gathered
for a large cohort of 3,368 subjects [HSS∗13]. Radiation act-
ing on subjects makes CT imaging ethically unjustifiable.
Body-imaging allows for linking the spine shape to other at-
tributes. Spines can be divided into groups to evaluate their
potential to induce a pathology. Future cohort assessments
even allow to determine change of spine shape.

4. Image Data Acquisition and Spine Detection

All whole-body MRI scans were acquired on a 1.5 Tesla
scanner (Magnetom Avanto; Siemens Medical Solutions,
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Figure 1: The layered finite element model consists of more
than 2,000 tetrahedrons (left). The spine canal center line
is indicated by the dashed line. The model uses the image-
induced potential field to align itself to find a local minimum
after the initialization (right).

Erlangen, Germany) by four trained technicians in a stan-
dardized way. Subjects were placed in the supine position.
Five phased-array surface coils were placed to the head,
neck, abdomen, pelvis, and lower extremities for whole-
body imaging. The spine coil is embedded in the patient ta-
ble. The spine protocol consisted of a sagittal T1-weighted
turbo-spin-echo sequence (676 / 12 [repetition time msec /
echo time msec]; 150◦ flip angle; 500 mm field of view;
1.1×1.1×4.0 mm voxels) and a sagittal T2-weighted turbo-
spin-echo sequence (3760 / 106 [repetition time msec / echo
time msec]; 180◦ flip angle; 500 mm field of view; 1.1×
1.1×4.0 mm voxels). First, both sequences were placed over
the cervical and upper thoracic spine. Then, they were placed
over the lower thoracic and lumbar spine. The MRI software
automatically composed a whole spine sequence from the
two T1-weighted and T2-weighted sequences [HSS∗13]. We
were provided with 490 data sets.

Our work requires a detection of the lumbar spine in
the MRI data. We employ a hierarchical finite element
method according to [RET13]. Tetrahedron-based finite el-
ement models (FEM) of vertebrae and spinal canal are con-
nected by a bar-shaped FEM (Fig. 1). The model comprises
a fixed number of points which are pairwise relatable be-
tween instances of the model. Hence, correspondences be-
tween lumbar spine representations of different data sets can
easily be established. The model is placed in the scene using
an empirically chosen initialization point. The force acting

on the model stems from aggregation of loads, which are de-
rived from a potential field resulting from a weighted sum
of the T1- and T2-weighted MRI images, see [RET13]. Af-
ter detecting all spines, we register the models because in a
later clustering step we only want to capture the local defor-
mation of the lumbar spine, not different locations in world
space. The models are registered using the Kabsch Algo-
rithm [Kab76], which is designed to minimize the root mean
squared deviation between paired sets of points. The model-
based detection captures information about the spine canal
curvature as well as the alignment of the vertebrae. It is not
meant to capture information about vertebrae deformation
and differences in spine canal extent.

5. Analysis of Lumbar Spine Canal Variability

We investigate the variability of the lumbar spine canal based
on the deformed and registered models of the detection step.
Since our primary interest is on the curvature of the spine,
we focus on the spinal canal. Centerlines capture curvature
and are easier to handle than the tetrahedral mesh. Cluster-
ing using Agglomerative Hierarchical Clustering is carried
out to form groups that exhibit low intra-group and high
inter-group shape variability. The clusters are visualized by
means of representatives to reduce visual clutter and sim-
plify a comparison between subgroups of the cohort.

5.1. Centerline Extraction

In this subsection, we describe how we compute the center-
line cS of the lumbar spine model S. The model is given as
a cylindrically shaped tetrahedral mesh. The axis of rotation
is aligned to the z axis. Therefore, we use a parametric curve
c(t) = p0 + t · vz where the z-component lies in [hmin,hmax].
Here, hmin and hmax are the minimal and maximal height of
the mesh, respectively. We can write the parametric curve
c(t) as:

c(t) =




0
0

hmin




︸ ︷︷ ︸
p0

+ t ·




0
0

hmax−hmin




︸ ︷︷ ︸
vz

, t ∈ [0,1]. (1)

We determine the intersection points of the parametric curve
with the faces of the tetrahedra τ ∈ S of the undeformed
lumbar spine model S0. Thus, we combine the vertices to
obtain the triangles, faces and assess the intersection points
with the curve. For this, we use vertices v0,v1,v2,v3 of every
tetrahedra τ = {v0,v1,v2,v3} and solve the following matrix
equation:

(
vk vl vm vz
1 1 1 0

)
·




α
β
γ
−t


=

(
p0
1

)
, (2)

with different permutated k, l,m ∈ {0,1,2,3} for the four
different faces of the tetrahedra. The equation combines the
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parametric curve with the triangle face according to barycen-
tric coordinates to obtain the intersection point. If we obtain
a positive solution α,β,γ > 0, the considered curve point lies
in the interior of a triangle of τ. Thus, we assign the corre-
sponding tetrahedron with its triangle and their barycentric
coordinates to the curve point pi = p0 + t · vz. If one curve
point lies on the boundary of a triangle, i.e., one of the co-
ordinates is equal to zero, we assign only one tetrahedron
to the curve point. Using these values, we obtain the center-
line of every deformed lumbar spine model by applying the
stored barycentric coordinates to the corresponding tetrahe-
dron. Having one intersection point pi of the undeformed
lumbar spine model with the assigned tetrahedra τ, the core-
sponding triangle face vk,vl ,vm, and the assigned barycen-
tric coordinates α,β,γ, we extract the new point p′i of the
deformd lumbar spine model by applying:

p′i = αvk + βvl + γvm. (3)

Hence, we gain the new centerline.

5.2. Centerline Clustering

To cluster the centerlines, we employ an Agglomerative Hi-
erarchical Clustering (AHC) approach. It has been demon-
strated that AHC delivers meaningful results in the cluster-
ing of other plane and space curves, such as fiber tracts from
Diffusion Tensor Imaging (DTI) data [MVvW05], stream-
lines from flow data [YWSC12], and brain activation curves
(time-series) from functional Magnetic Resonance Imaging
(fMRI) data [LCYL08]. Furthermore, it is flexible with re-
gard to cluster shape and size. AHC relies on the differ-
ence/similarity between data entities. Thus, a definition of
centerline similarity is the prerequisite for AHC of center-
lines.

Similarity is often evaluated by a distance measure. Gen-
eral requirements for such a measure are positive definite-
ness and symmetry. A valid example, that has been suc-
cessfully employed for clustering fiber tracts and stream-
lines [MVvW05,YWSC12], is the mean of closest point dis-
tances (MCPD) proposed in [CGG04]. For two centerlines
ci and c j with points p, the MCPD is computed as:

dM(ci,c j) = mean(dm(ci,c j),dm(c j,ci)) (4)

with dm(ci,c j) = meanpl∈ci min
pk∈c j

‖pk− pl‖

Cluster Proximity. AHC requires beforehand the compu-
tation of all pairwise centerline distances and their storage in
a quadratic and symmetric distance matrix M. The algorithm
operates in a bottom-up manner. Initially, each centerline is
considered as a separate cluster. The algorithm then itera-
tively merges the two closest clusters until a single cluster
remains. The merge step relies on M and a measure of clus-
ter proximity. Various cluster proximity measures have been
published, among which single link, complete link, average

link, and Ward’s method [TSK05] are the most popular. In
single link, the proximity of two clusters is defined as the
minimum distance between any two centerlines in the dif-
ferent clusters. Complete and average link employ the maxi-
mum and the average of these distances, respectively. Ward’s
method aims at minimizing the total within-cluster variance
at each iteration. It defines the proximity of two clusters as
the sum of squared distances between any two centerlines
in the different clusters (SSE: sum of squared errors). Be-
fore we elaborate on the most suitable proximity measure
for our application, we focus on automatically computing a
reasonable number of clusters k. This computation helps us
in providing a good initial visual summary of the variants
in spinal canal shape and it facilitates a more reproducible
analysis.

Number of Clusters. Salvador and Chan propose a
method for automatically computing the number of clusters
in hierarchical clustering algorithms [SC04]. Their L-method
is based on determining the knee/elbow, i.e., the point of
maximum curvature, in a graph that opposes the number of
clusters and a cluster evaluation metric. The knee is detected
by finding the two regression lines that best fit the evalua-
tion graph, and then, the number of clusters that is closest
to their point of intersection is returned. Locating the knee
depends on the shape of the graph, which again depends on
the number of tested cluster numbers k. Salvador and Chan
recommend using a full evaluation graph, which ranges from
two clusters to the number of data entities. Starting with the
full graph, the L-method is carried out iteratively on a de-
creasing focus region until the current knee location is equal
to or larger than the previous location. As evaluation metric,
the proximity measure used by the different link versions of
AHC is applied. Furthermore, the evaluation is not based on
the entire dataset but only on the two clusters that are in-
volved in the current merge step.

Evaluation of Cluster Proximity Measures. In an infor-
mal evaluation based on 16 datasets, we tested AHC with the
four proximity measures and the L-method. The 16 datasets
represent the complete set of centerlines (n = 490) and epi-
demiologically relevant subsets derived according to gender,
age, e.g. 20-40, 41-60 and 61-80, body weight, and body
height. For each dataset, we applied the four proximity mea-
sures and visualized all clustering results side-by-side. A vi-
sual inspection of the results confirmed textbook knowledge
with regard to the strengths and weaknesses of the proxim-
ity measures [TSK05] (Fig. 2 shows an exemplary scenario).
In single link clustering, the chaining effect could be ob-
served for every dataset. Here, a single large cluster arises
containing almost the entire set of centerlines. This cluster
contains very dissimilar centerlines but they are connected
by a chain of similar ones via some transitive relationship.
For the majority of datasets, average link failed to avoid this
effect. Instead, strong outliers were represented as individ-
ual clusters while the remaining centerlines, being dissim-
ilar and still comprising outliers, were grouped in a single

c© The Eurographics Association 2013.

146 CHAPTER 8. Visualization and Analysis of Lumbar Spine Canal Variability in Cohort Study Data



P. Klemm et al. / Visualization and Analysis of Lumbar Spine Canal Variability in Cohort Study Data

Figure 2: Spinal canal centerlines of 242 female subjects clustered with Agglomerative Hierarchical Clustering using four
different proximity measures and a technique for automatically computing the cluster count. Single link and average link suffer
from the chaining effect (single large cluster), complete link produces compact, tightly bound clusters and Ward’s method is
biased towards generating clusters of similar size. The difference in centerline shape also occurs orthogonal to the view plane.

large cluster. Complete link clustering produced small, com-
pact, and tightly bound clusters. Ward’s method was biased
towards generating clusters with similar size. These clusters
showed less diversity than the ones generated by means of
complete link. In summary, due to the chaining effect of sin-
gle link and average link, and the arbitrary assumption of
similar cluster sizes in Ward’s method, we favor complete
link as a proximity measure.

The bottleneck of AHC in terms of time complexity is the
computation of M, in particular when a multitude of clos-
est point distances must be calculated (Eq. 4). However, our
total number of centerlines (n = 490) and the number of
vertices per centerline (v = 93) are relatively small. Further-
more, we have parallelized the computation and the matrix
must be computed only once and may be stored. The com-
putation of M based on the complete set of centerlines, i.e.
the entire population, can be considered as the worst case.
On a 3.07 GHz Intel 8-core PC with 8 GB RAM and a 64 bit
Windows operating system, the computation took 7.9 s. The
L-method for determining the number of clusters took 24.2 s
and represents the bottleneck in processing our data. This is
due to the multitude of computations required for finding the
two best fit regression lines but may be mitigated by cutting
off unlikely high numbers of clusters from the full evaluation
graph [SC04].

The clustering implementation is based on the AHC algo-
rithm and the proximity measures being part of MATLAB’s
Statistics Toolbox (MathWorks, Natick, MA, U.S.). The
source code of the L-method is provided by A. Zagouras as
part of MATLAB Central’s file exchange [Zag].

Figure 3: Initially, all centerline clusters are closely inter-
twined (left). To simplify their interpretation, they are trans-
lated along the coronal axis and lined up at equidistant loca-
tions (right). The annotations illustrate typical medical view
planes/axes: sagittal (S), coronal (C), and transversal (T).
Our default viewing direction~v is parallel to the sagittal axis
(as can be seen in the right view).

5.3. Visualization of Clustered Centerlines

A standard medical view for inspecting the spine in MR im-
ages is the sagittal view with the vertebrae located to the left
of the spinal canal (Fig. 1, right). Hence, we choose it as the
default view for the presentation of the clustering results. Ini-
tially, all centerlines and hence also the clusters, are closely
intertwined in space due to the co-registration of all spine
detection results (Sec. 4 and Fig. 3, left). In order to get a
better overview of the individual clusters, they are translated

c© The Eurographics Association 2013.
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Figure 4: Spinal canal centerlines of all subjects (n =
490) clustered with Agglomerative Hierarchical Clustering
employing complete link. For each cluster, a representa-
tive centerline is visualized as a ribbon. Ribbon width en-
coded cluster size. Ribbon color encodes the distance to
a view-aligned, highly transparent, sagittal plane passing
through the barycenter B of the original centerline bundle
(Fig. 3, left). The sequence of a ribbon’s intersections with
the plane supports an assessment of its curvature (upper in-
set). Shadow projections reveal how far a representative ex-
tends to either side of the plane (lower inset).

along the coronal axis and lined up at equidistant locations
(Fig. 3, right). The centerlines are visualized with GPU sup-
port as illuminated streamlines with halos [EBRI09]. The ha-
los improve the visual separation of individual lines. Before
the centerlines are translated, the barycenter B of the entire
bundle of lines is computed (Fig. 3, left). It will be used for
positioning visual hints in the scene.

Cluster Representatives. In order to simplify the inter-
pretation of a cluster, to further reduce visual clutter, and to
improve a visual comparison of clustering results between
groups, e.g., younger and elder subjects, we compute a rep-
resentative centerline for each cluster. This is inspired by
the computation of a representative fiber tract for a bundle
of fibers derived from DTI tractography data [BPHRA13].
Here, the fiber with the smallest sum of distances to all other
fibers, i.e. the centroid fiber, of the bundle is chosen. Since all
pairwise centerline distances are stored in M, the selection of
a centroid centerline is straightforward (Sec. 5.2). Each such
centroid is then visualized by a ribbon whose width is scaled
according to the size of the corresponding cluster (Fig. 4).
Please note that the location of the vertebrae corresponding
to this centroid centerline is intentionally not indicated since

the ribbons are representative for the course of the spinal
canal but not necessarily for the vertebrae location.

Visual Hints. The curvature of the spinal canal along the
coronal axis is perceived well in the sagittal view. However,
the curvature along the sagittal axis, i.e. the viewing direc-
tion, is only deducible by rotating the scene. Hence, we aug-
ment the sagittal view by three visual hints improving the
curvature perception. (1) A highly transparent sagittal plane
passing through B is added to the scene. The position of the
ribbon parts with respect to the plane (in front/behind) and
the visible intersections of ribbons and plane support the dif-
ferentiation between spinal canals being mostly bended to-
wards the viewer from those being bended away (Fig. 4, up-
per inset). (2) The ribbons are colored according to their dis-
tance to the sagittal plane. A diverging color scale is used
to distinguish between parts in front of the plane (blue),
close to the plane (white), and behind the plane (red). (3)
A transversal plane is positioned below the ribbons and a
light source is positioned above them. Shadow projections
are computed and drawn on the plane. They provide an esti-
mate of how far the representatives extend to either side of
the plane (Fig. 4, lower inset). In some cases, the projections
revealed subtle differences in shape, which could hardly be
inferred from the other two hints.

Measurement and Interaction. In order to facilitate a
more quantitative analysis of the centerlines and to support
a comparison of individual representatives, a vertical and a
horizontal axis including tick marks are added to each clus-
ter representative (Fig. 4). All axes are located within the
sagittal plane (1). An initial pair of axes running through B
has been computed based on the entire set of centerlines and
then copied and translated together with each cluster along
the coronal axis (Fig. 3). The vertical axes are assigned a
unique cluster color to interrelate the representatives and the
cluster size legend. The interaction with the visualization ex-
ceeds standard 3D scene navigation. Individual representa-
tives may be picked by the user and all centerlines of the
corresponding cluster are visualized. The measurement of
the spine based on neuralgic points is of crucial importance
and has a long tradition in orthopedics. Hence, two measure-
ment widgets have been added for measuring distances and
angles (Fig. 5). Both widgets are bound to the geometry of
the ribbons in order to simplify measurements in 3D space.
The visualization has been implemented in C++ and the Vi-
sualization Toolkit. (Kitware, Inc., Clifton Park, NY, U.S.).

6. Results & Discussion

In this section, we present preliminary results combining
our shape visualization with associated cohort study data.
As seen in Fig. 4, the clustering step is a good way to de-
tect outliers in the data as clusters with very few subjects
that have an unusual shape. This can be utilized for finding
pathological spine shapes–even for subjects, which do not
have a diagnosed back disorder. The technique scales well
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Figure 5: Interaction facilities. The user may pick a clus-
ter representative, i.e. a ribbon, causing the corresponding
cluster to be visualized (centerlines with red and yellow ha-
los). Widgets for measuring distances and angles facilitate a
quantitative analysis of the spinal shape.

regarding the number of input center lines. It is possible to
generate an overview for hundreds of subjects as well as for
smaller subsets, e.g. subjects which share certain similar at-
tributes. A subset visualization can be applied to detect if
the different shape clusters imply a significant difference in
associated variables of interest. Does for example a physical
demanding job correlate with an extraordinary curved spine?

Our clinical partners expected the lumbar spine to be more
straight along the coronal axis for tall people, while being
more sinuous ("lordosis") with decreasing body height. To
check our results for medical plausibility, we created subsets
of the data based on body height. For each cluster we calcu-
lated the distance to the arithmetic mean of age, body height,
and weight. We computed the mean of the absolute lordosis
curvatures K using the Frenet formulas [Fre52].

While the mean curvature K for people sized 150 –
160 cm is 38.99 · 10−4 (σ = 9.99 · 10−4), it gets smaller
the larger the subjects are, being at 34.59 · 10−4 (σ = 9.98 ·
10−4) for 160 – 170 cm and at 31.95 ·10−4 (σ= 8.88 ·10−4)
for 180 – 190 cm tall people. We could not only confirm
the expected differences in the distinct groups, but also give
clues for groups which share similar curvature. When look-
ing at subject groups of body height 150 – 160 cm, 160
– 170 cm and 170 – 180 cm we always found a cluster
of subjects which are about 10 years older than the rest of
the group. They all presented a lordosis shape as well as an
"S" shape in sagittal direction ("scoleosis"). Since a cluster

showing the same characteristics was found in distinct sub-
ject groups, it is subject of further investigation.

This finding is an example of how a clustering result can
create groups related by shape in order to find other correla-
tions in the associated socio-economic and medical attribute
parameters. It can also serve as starting point for a visual
analytics tool to detect risk factors.

The visualization aims for at a visual comparability of
the clusters. Additionally statistically reliable shape describ-
ing features would enhance the method by making statistical
calculation applicable to deformation information. This can
be achieved by storing the curvature and position of several
fixed points in the FEM model. While the visualization al-
lows for characterization of the lumbar spine curvature, it is
currently not possible to predicate information about spinal
canal narrowings, which can also be an indicator for patholo-
gies like spinal stenosis. This is also the case for a vertebrae
deformation, which is an indicator for osteoporosis. We plan
to incorporate such information, e.g, based on an extension
of the finite element model used for spine detection.

7. Conclusion & Future Work

Applying analysis of medical image data associated with
non-image data in a cohort study context is both promis-
ing and challenging. The multitude of subjects requires ro-
bust yet precise and at least semi-automatic detection and
segmentation algorithms which capture the shape of a struc-
ture of interest over a large space of subjects. Assessing the
resulting information space demands visualizations, which
map relevant information among large groups of subjects.

We aim to include more shape describing metrics and ap-
ply the technique to all cohort study subjects. This allows for
a statistically reliable comparison of clusters. Currently, only
the overall curvature and torsion is calculated. Those can be
misleading metrics, since coronal as well as sagittal defor-
mation can induce a large curvature. The deformation should
be class-divided with the analyzed pathology in mind. Those
and other morphology describing metrics can be transferred
to the cohort study data dictionary. We also want to include
information about unusual vertebrae alignment.

Our presented approach implements a pipeline for analyz-
ing the lumbar spine canal in order to correlate its shape to
other variables associated with the cohort study. This was
done using an association to body height, gender, age and
weight. While this was a first step to confirm the expected
shape in different subject groups, it has to be enhanced to be
applicable to all data variables measured in the cohort.

We plan a web-based visual analytics framework that
allows for information visualization on non-image data in
combination with complex data set queries including the
shape of structures. This allows for possibilities to support
queries which are not easy to make in classic statistics
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software, like filtering by geographic location as closeness
to the coast. We want to provide the epidemiologists with a
fast and effective way to analyze their data sets exploiting
the potential which lies beneath the numbers.
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Interactive Visual Analysis of Image-Centric Cohort Study Data

Paul Klemm, Steffen Oeltze-Jafra, Kai Lawonn, Katrin Hegenscheid, Henry Völzke, Bernhard Preim

Abstract—Epidemiological population studies impose information about a set of subjects (a cohort) to characterize disease-specific
risk factors. Cohort studies comprise heterogenous variables describing the medical condition as well as demographic and lifestyle
factors and, more recently, medical image data. We propose an Interactive Visual Analysis (IVA) approach that enables epidemiolo-
gists to rapidly investigate the entire data pool for hypothesis validation and generation. We incorporate image data, which involves
shape-based object detection and the derivation of attributes describing the object shape. The concurrent investigation of image-
based and non-image data is realized in a web-based multiple coordinated view system, comprising standard views from information
visualization and epidemiological data representations such as pivot tables. The views are equipped with brushing facilities and
augmented by 3D shape renderings of the segmented objects, e.g., each bar in a histogram is overlaid with a mean shape of the
associated subgroup of the cohort. We integrate an overview visualization, clustering of variables and object shape for data-driven
subgroup definition and statistical key figures for measuring the association between variables. We demonstrate the IVA approach by
validating and generating hypotheses related to lower back pain as part of a qualitative evaluation.

Index Terms—Interactive Visual Analysis, Epidemiology, Spine

1 INTRODUCTION

Epidemiology aims at characterizing health and disease by determin-
ing risk factors. Clinical problems, such as the selection of diagnostic
tools and efficient treatment, are tackled using results of epidemiologi-
cal research. The introduction of preventive measures in medicine and
beyond is also based on epidemiological research, where, for exam-
ple, subgroups with increased risk are identified [12]. Observations
made by clinicians in the daily routine are translated into hypotheses
for epidemiological research. These are used to determine environ-
mental and lifestyle factors as well as medical examination results that
may influence a disease. Potentially useful data variables are gathered
using structured interviews and clinical examinations. Methods like
regression analysis check the attribute list for statistical soundness.

Longitudinal population-based studies, such as the Study of Health
in Pomerania (SHIP) [41], gather as much information as possible
about a defined sample of people (a cohort). The cohort consists of
several thousands of people, randomly selected to avoid any bias. The
subjects are selected without focus on a certain disease. A large co-
hort size is essential to investigate differences between healthy and
diseased people. Cohort studies often include medical image data.
The concurrent analysis of image data and non-spatial epidemiolog-
ical factors requires techniques that reach beyond standard statistical
methods. For instance, segmentation of the image data is required
for an analysis of anatomical structure and of possible correlations
between this structure and epidemiological factors. Semi-automatic
segmentation techniques are promising but also challenging, since the
employed modalities, such as magnetic resonance imaging (MRI) and
ultrasound, are subject to inhomogeneity and noise.

Compiling a list of variables for tests of statistical resilience based
on experience-driven hypotheses leaves out other variables in the data
which potentially interact with a disease. This also applies to the cho-
sen landmarks used to quantify medical image data information. The
standard workflow lacks methods for automatically identifying cor-
relations possibly buried deep in the data or overseen by the expert.
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Also, only a small subset of factors can be concurrently analyzed.
We propose an Interactive Visual Analysis (IVA) approach [37] for

the combined analysis of image and non-image data. Visual queries
and direct feedback of Visual Analytics systems allow for a fast ex-
ploration of the data space incorporating many different variables. In-
tended as an extension to the well-established epidemiological tools it
provides a way to rapidly validate hypotheses and to trigger hypothesis
generation using data mining methods, such as clustering. Hypothe-
sis generation gains importance since the number of epidemiological
variables increases and the focus shifts towards more complex rela-
tions involving more than two variables. Our contributions are:

• an IVA workflow for cohort study data to allow both, hypothesis-
driven analysis and hypothesis generation,

• visualization techniques, which incorporate both information vi-
sualization and 3D rendering of organ shapes as well as combin-
ing them with epidemiological graphics and key figures,

• highlighting subject groups and variable associations using
shape-based clustering and statistical contingency measures.

We applied our approach to a data set compiled to analyze lower
back pain and aim to determine variables, which indicate pathologi-
cal changes. This data set comprises 127 variables and 2 sequences
of MRI data from 6,753 subjects. The method implementation is web
based to allow a fast feedback loop with domain experts.

2 EPIDEMIOLOGICAL BACKGROUND

This section covers the epidemiological workflow and requirements.

2.1 Epidemiological Workflow
The diversity of epidemiology is reflected in the different experts who
work at cohort studies, ranging from specialized doctors to medical
computer scientists with focus on biometrics, and statisticians. Epi-
demiologists follow a workflow mainly driven by statistic tools to val-
idate hypotheses about disease-specific risk factors. Following Thew
et al. [36], the workflow can be characterized as follows:

1. A hypothesis is derived from observations made by clinicians in
their daily routine.

2. A set of variables depicting conditions affected by the hypothesis
is compiled accordingly.

3. Confounding variables are identified and taken into account (for
example using stratification).

4. Statistical methods, such as regression analysis, assess the asso-
ciation of selected variables with the investigated disease.
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Fig. 1. (a) The standard epidemiology workflow consists of four steps.
(b) IVA tools complement parts of this workflow instead of replacing
them. The combination of statistical and interactive analysis shows
promising potential to unveil information in the data. We call the iter-
ative red highlighted part IVA Loop, described in detail in Figure 2.

The workflow is shown in Figure 1 (a) and serves as orientation for
our approach. We focus on the potential of image data and attempt to
support hypothesis generation.

Reproducibility of results is an epidemiological key requirement. It
is difficult to achieve, since many physicians are involved when thou-
sands of subjects are examined and interviewed. Thus, both intra- and
inter-observer variability needs to be low for all aspects of a cohort
study examination. Longitudinal studies require the acquired variables
to be comparable for evaluation. Grouping subjects using epidemio-
logical variables is essential in cohort studies to allow per-group risk
determination. Grouping depends on the underlying hypothesis. Age,
for example, is divided into groups (e.g. in 20 year steps) when inves-
tigating its influence. These groups strongly depend on the condition
of interest and therefore there is no standard for their categorization.

Relative risks are determined to detect if a subject is prone to be
affected by a certain disease. This includes confidence intervals indi-
cating the certainty of that variable being a risk factor.

Statistical tools such as SPSS1 play a major role for analyzing epi-
demiological data. Epidemiologists employ static graphical data rep-
resentations primarily at the very end of an analysis session for pre-
senting results or observing trends in the data.

2.2 Epidemiological Data
Epidemiological data are strongly heterogenous and incomplete. In-
formation about medical history and examinations, genetic conditions,
geographical data, questionnaire results and image data yield a com-
plex data space for each subject. For ethical or medical reasons some
variables cannot be gathered for each subject, e.g. women-specific
questions about menstrual status or number of born children. Follow-
up examinations or questions about conditions such as medications
taken after a diagnosed disease also yield variables only available for
a small amount of subjects.

Indicators for medical conditions as well as questions about a sub-
ject’s lifestyle are often dichotomous–they have two manifestations
(Yes or No). Dichotomous data can also be derived by aggregating
variables to yield only two manifestations (e.g. subjects younger or
older than 50 years). Medical examinations comprise categorical (e.g.
levels of back pain) and continuous values (e.g. age or body size).
Data analysis is usually carried out by calculating correlations, which
is challenging due to the data type heterogeneity. Parameter correla-
tion can also be associated with confounding, which cannot be auto-
matically predicted. It has to be judged by a domain expert. Sparse
populated variables are hard to assess statistically. Too few data sam-
ples may distort the real underlying distributions. Statistical correla-
tions are prone to confounding, meaning that the association of two
variables is influenced by a third variable, which needs to be isolated.

1Product of IBM; ibm.com/software/analytics/spss/

A famous example is the association between shoe size and mortal-
ity, where it can be observed that people with larger shoe size have
a smaller life expectation. The shoe size is actually associated with
gender, where women have smaller feet and a longer life expectation.

Image Acquisition. Imaging techniques involving ionizing radia-
tion for the subject are not suitable for ethical reasons. Therefore, MRI
is the main method for collecting cohort study imaging data. The im-
age quality is a tradeoff between accuracy and affordability [31]. This
often yields image resolutions inferior to those of clinical practice.

Image Analysis. Decisions have to be made about comparison
and quantification of image data. Segmentation masks representing
the voxels of an anatomical structure would be ideal, since key fig-
ures, e.g., volume, largest diameter or aspect ratio, can be derived
from them. Since reliable and efficient segmentation techniques are
not available in general, epidemiologists are forced to measure the data
by hand. Information derived by landmarks, such as top and bottom
point of a vertebra, are by far not as expressive and versatile as seg-
mentation masks describing its whole shape. They are also prone to a
high inter-observer variability. Morphometric information from land-
marks comprises thickness, diameter or length of a structure as well as
grey value distribution in an area.

2.3 The Study of Health in Pomerania (SHIP)
After the pioneering Rotterdam study (started in 1990), several MR
imaging study initiatives were initiated. They slightly differ in clinical
focus, acquired data and epidemiological research questions. Starting
in 1997 with a cohort of 4,308 subjects, the SHIP, located in Northern
Germany, aims to characterize health and disease in the widest range
possible [41]. Data are collected without focus on a group of diseases.
This allows to query the data regarding many diseases and conditions.
Subjects were examined in a 5-year time span, continuously adding
new parameters including MRI scans in the last iteration [16].

3 PRIOR AND RELATED WORK

This section describes prior and related work and covers visual analy-
sis methods incorporating both image and non-image data.

Visual Analysis of Image and Non-Image Data. Our work is
closest to that of Steenwijk [35], Turkey [39], and Angelelli [1] and
colleagues, who employ multiple coordinated view systems for the
analysis of cohort study data.

Steenwijk et al. [35] propose a relational database to organize co-
hort study data for a visual analysis based on linked views such as
parallel coordinates, scatter plots and time plots. Information about
medical image data is incorporated via mappers, which extract com-
parable metrics about the data. Medical image data can be displayed
individually for subjects, e.g., for analyzing outliers. While we use
a similar approach when analyzing non-image data, our process also
includes overview visualizations and statistical suggestions of poten-
tially interesting variables.

Turkey et al. [39] present hypothesis generation based on descrip-
tive statistics of the data dimensions. Key figures describing the distri-
bution of data values, e.g., standard deviation and interquartile range,
are computed per dimension and analyzed by pairs in a deviation plot.
The dual analysis of data items and dimensions in multiple linked
views led to several hypotheses in analysis sessions with domain ex-
perts. Hypotheses based on observations in the deviation plot may im-
pose overfitting to the data because the measures highlight only parts
of the statistical changes. Our approach uses information extracted
from the segmented image data (such as 3D meshes) and variable as-
sociations with non-image epidemiological factors.

Angelelli et al. [1] focus on the data organization for an interac-
tive visual analysis of heterogeneous cohort study data. The proposed
data-cube model facilitates the seamless integration of image-based
and non-image data. In a demonstration of the model, brain image
data was integrated into the analysis by first segmenting brain regions
and tracking neural pathways and then deriving attributes from both,
e.g., volume and fractional anisotropy. A multiple coordinated view
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framework then linked spatial and non-spatial data views. Our inte-
gration of image data into the analysis is similar to the work of Steen-
wijk [35] and Angelelli [1] and colleagues. While they offer a single
spatial view for visualizing image-based information of one subgroup
of the cohort, we provide multiple views showing the information of
subgroups and their respective deviation from the entire cohort.

Gresh et al. [14] proposed WEAVE, one of the first systems which
concurrently analyzed medical image and non-image data using linked
views. Blaas et al. [2] presented a similar system, which also analyzed
medical image data and variables derived from them using views from
the variable and physical space. Both works are restricted to the anal-
ysis of one case at a time and to non-image data with a unique spatial
reference, e.g., voltage simulated across the heart muscle. In epidemi-
ology, multiple cases must be concurrently investigated and non-image
data often lacks a spatial reference, such as gender or age.

Visual Analysis of Heterogenous Non-Image Data. Zhang et
al. [44] provide a web-based system for analyzing subject groups with
linked views and batch-processing capabilities for categorizing new
subject entries into the data set. Their definition of a cohort differs
from the understanding of the term in an epidemiological context by
denoting every parameter-divided subject group as individual cohort.
Due to the short paper length, detail is missing on the data types and
their algorithms of identifying similar subjects or whether they employ
statistical measures. We employ the idea of adding variables via drag
and drop into a canvas area.

Generalized Pairs Plots (GPLOMS) are an information visualiza-
tion technique comparing heterogenous variables pairwise using a
plot-matrix grouped by type [10, 19]. They are useful to gain an
overview over numerous variables and their distributions. Histograms,
bar charts, scatter plots and heat maps are used to visualize variable
combinations with regard to their type. The resulting matrix provides
an overview visualization, but requires a lot of screen space for many
variables (127 in our application scenario). We incorporate the idea
of adaptive type-dependent visualizations. Dai et al. [9] explored
risk factors by incorporating choropleth maps of epidemiological vari-
ables (e.g., mortality rates in a region) with parallel coordinates, bar
charts and scatter plots with integrated regression lines. Their find-
ings yielded a Concept Map, which linked cancer-related associations
via graph edges. While their goal to identify possible risk factors us-
ing socio-economic and health data is similar to ours, they focus on
iteratively refining defined hypotheses and on geographical data. We
employ the use of small multiples for incorporating heterogenous data
types for comparability. Chui et al. [6] visualized associations in time-
dependent epidemiological data using time-series plots highlighting
risk factor differences in age and gender. While the work shows how
different visualization techniques provide insight into these data sets,
it focuses on the time aspect, which is not present for our data.

Visualizing Shape Variance. Comparing tissue between many
subjects requires shape variance visualizations. Caban et al. [5] inves-
tigated the suitability of variance visualizations of shape distribution
models and concluded that users favor spherical glyph representations
over deformation grids and likelihood volumes. The distribution of
shapes in a space derived from a PCA is plotted by Busking et al. [4]
in a 2D-projected plane of the space. Interpolated views can be cre-
ated by the user in a separate view as well as comparisons in a contour
view. Interpolation is carried out by mesh morphing. The distance to
the mean shape is color-coded. We incorporate the idea of combining
3D shape rendering with information visualization techniques. Ap-
plying this technique to our data yielded a cluttered shape space due
to the high subject count. The data needs to be abstracted to work in
this context. Hermann et al. [18] identify local deformation changes
by investigating shape-related differences on rodent mandibles. User-
specified regions of interests are mapped to associated anatomic co-
variation using tensor visualization. This method enables rapid hy-
potheses validation and was able to reproduce textbook knowledge. It
requires a spatial colocation of associated variables.

Prior Work. We visualized lumbar spine variabilities based on a
semi-automatic shape detection algorithm of 490 participants of the

SHIP-2 cohort [21]. Hierarchical agglomerative clustering divided
the population into shape-related groups. As proof of concept, a rela-
tion between the size of the segmented shape and the measured size
of the subjects was shown. This work focuses on incorporating these
derived data as new variables, enabling to include it into the hypothe-
sis validation and generation process. When applying clustering tech-
niques to the non-image data it was found that k-Prototypes and
DBSCAN are appropriate, but are strongly dependent on the chosen
variables and distance measures [20]. Niemann et al. [26] presented
an interactive data mining tool for the assessment of risk factors of
hepatic steatosis, the fatty liver disease. Association rules created by
data mining methods can be analyzed interactively with their tool and
highlight potentially overlooked variables.

Interactive Visual Analysis. The strength of the IVA approach
is its versatility with respect to the application field [22]. Oeltze et
al. proposed a multiple coordinated view approach for the analysis of
medical perfusion data [27] and biological multi-channel fluorescence
microscopy data [28]. The approach is restricted to the investigation
of a single subject at a time.

Lammarsch et al. [24] provided a workflow and terminology defi-
nition of Visual Analysis techniques. They define a model as a repre-
sentation of system entities, phenomena, processes and hypotheses as
models whose outcomes are not compared with real-world data (vali-
dation). The VA process is also reflected in our IVA loop.

Baldonado et al. [42] presented rules for designing multiple
coordinated views. They point out the cost-benefit tradeoff introduced
by the cognitive overhead by mentally connecting multiple views over
more complex single views. Weaver et al. [43] extracted guidelines
for cross-filtering multiple views by incorporating views mapping
data to visual elements, brushes for selecting these elements and
switches for linking brushing results between views. Our system
follows the same rules for selecting subject groups, but our goal is to
judge variable relations and potential outcomes.

The uniqueness of our workflow compared to the discussed
work is threefold. (1) We incorporate 3D models abstracting shape
information fused with non-image data visualizations, allowing to
analyze local physiological changes related to non-image parameters.
(2) We focus on hypothesis generation by discovering new relation-
ships associated with shape information. (3) Overview visualizations
using statistical abstractions aim to provide an unbiased variable
relationship assessment.

4 IMAGE-CENTRIC COHORT STUDY DATA IN AN INTERACTIVE
VISUAL ANALYSIS CONTEXT

We described the epidemiological workflow and emphasized the
reproducibility and statistical integrity (recall Subsection 2.1).
Introducing the IVA principle to the epidemiological domain aims
to compensate the weaknesses of the existing workflow rather than
replacing it (recall Fig. 1). In the current state, the workflow treats
the data like a black box. Statistical tests on variables associated to
a hypothesis yield a value for deciding whether the data supports the
hypothesis. Variables not included in the analysis may potentially
support the chosen hypothesis by discriminating the population
in the expected way, but are not highlighted. This becomes even
more important when the workflow is adapted to the analysis of
the medical image data, where domain experts annotate landmarks
tediously to derive measures, such as diameters. This leaves out
the majority of information in the image data by abstracting it to
single values. Considering more complex parts of the data would
make those results more trustworthy and could also identify possi-
ble anatomical confounders–an epidemiolgical research result in itself.

IVA tries to illuminate the black box by making the domain ex-
perts part of an iterative variable selection process (see Fig. 1 b).
It also aims to project back into the hypothesis formulation step to
amplify hypothesis generation. This has to be handled with care, since
overfitting of expectations to the data is an imminent danger [39].
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Domain and Range Variables. In the IVA context, data are
characterized by a combination of independent variables, such as
space and/or time, and dependent variables, like temperature or pres-
sure. Two kinds of views are employed to inspect the data:

• physical views [29], e.g. volume rendering, show information in
the context of the spatio-temporal observation space [27], while

• attribute views, such as scatter plots and parallel coordinates,
show relationships between multiple data attributes.

Transferred to epidemiological data, the residential area of cohort sub-
jects could be interpreted as space, the different assessment cycles of
a longitudinal study as time, and the image and non-image data as de-
pendent variables. Our current work neglects geographical and tempo-
ral aspects. Instead we employ an abstract model and consider the sub-
jects as living in a joint image space where each of them is represented
by a segmented organ or structure. For instance, the lumbar spine is
segmented over all subjects and all lumbar spines are co-registered
spanning a joint space. Then, two types of dependent variables ex-
ist: the socio-demographic data and medical examination results, and
variables derived from the segmented structures, e.g., spinal curvature
or misalignment of the vertebrae. An alternative of the image space
would be the shape space generated by extracting the major modes
of variation from all segmentation results [4]. Based on our abstract
model, the three analysis patterns of IVA can be employed.

Local Investigation refers to the inspection of dependent vari-
ables with respect to subsets of the image or shape space. For instance,
the epidemiologist selects several lumbar spines with a common char-
acteristic in the image or shape space and inspects the associated de-
pendent variables in an attribute view [18]. The selection step requires
dedicated interaction techniques for defining a subset. Alternatively,
derived shape-related variables opposed in an attribute view or auto-
matic techniques for shape clustering may be employed [21]. Cluster-
ing algorithms can be used to investigate associations between shape
groups and other non-image variables. Analysis of outliers can indi-
cate segmentation errors or a group of subjects sharing a pathology.

Feature Localization refers to the search for structures in the
image or shape space with a defined characteristic. The epidemiol-
ogist may be interested in all female subjects with lower back pain
and wishes to see the corresponding spines in a physical 3D view.

Multivariate Analysis refers to an investigation of multi-variate
properties of the dependent data by specifying a variable in one at-
tribute view while analyzing the value distribution with respect to other
variables in other attribute views. Epidemiologists may define a vari-
able in a scatter plot of the body mass index (BMI) and age to inspect
the result in a histogram of body height. These associations may also
be summarized using pivot tables, which are widely used in epidemi-
ology.

4.1 Data Preprocessing
Non-Image Data. Data obtained using questionnaires or med-

ical tests are often stored using statistical packages such as SPSS,
which have a proprietary data format. Exporting the data in the re-
spective tool to a CSV file and then converting it to file types that are
easily manageable, such as JSON, makes it readable for modern pro-
gramming languages. A data dictionary stores information about each
manifestation of a variable. Detailed description of data variables, its
meaning as well as unit of measurement are stored as a lookup table.
Missing data are denoted using error codes indicating their cause rang-
ing from ethical to medical and personal issues (recall Subsection 2.2).

Image Data. Information about anatomical structures, such as
diameter or volumes, is extracted from the image data. This is either
done manually by experts setting, landmarks or by a (semi-)automatic
detection, registration and segmentation. These algorithms have to
deal with a large inter-subject variability of the anatomical structure
[31]. In principle, model-based approaches are effective for detec-
tion [32] and segmentation [13]. If a segmentation yields only bi-
nary masks, algorithms such as Growing and Adaptive Shapes can

be applied for creating a surface grid where each point is compara-
ble throughout the population [11]. Grey value comparison is used to
measure the quantity of fat, water, and–application-specific–the iron
content (liver) or the distribution of grey and white brain tissue. Mor-
phometric variables are derived to allow for statistical comparison of
the tissue, which incorporates mostly positions, diameters, volumes,
relative distances and alignment to other structures.

Fig. 2. Detailed IVA Loop as extension from Figure 1. Usually starting
with a selection of a variable of interest (user-driven or via data min-
ing techniques), the data are mapped using a visualization technique
appropriate for the selected data types. The data are visualized in the
range and domain space, which can be brushed, yielding new groups to
be investigated using further variables. Note that adjacent steps are di-
rectly connected via feedback loops, allowing for an iterative refinement
and giving as much freedom to the user as possible.

4.2 Analysis Workflow
Our proposed IVA workflow consists of three major steps, as illus-
trated in Figure 2: Variable selection, visualization and brushing. A
hypothesis-driven analysis usually starts with the selection of variables
or shape groups derived from a shape-based clustering. Hypothesis
generation with focus on image data starts with a shape-based clus-
tering or an overview visualization of all variables. The variable is
mapped using an automatically chosen visualization appropriate for
its data type (described in detail in the following section). The visual-
ization techniques have to combine both image- and non-image data to
set domain and range data in relation to each other. In our system, the
visualization can either be brushed or new variables can be added to
the analysis. Brushed regions are treated like categorical variables, as
they divide the subject space in the same way. Selecting variables also
triggers a multivariate analysis using contingency values (described
in the following section) to highlight associated variables. A sample
workflow using interaction and visualization techniques described in
the next section can be seen in Figure 3.

5 SYSTEM DESIGN AND IMPLEMENTATION

The suitability of visualization techniques for epidemiological data de-
pends on their ability to compare multiple data variables while high-
lighting associations. Visual evaluations of data are therefore as im-
portant as methods allowing for numerical data analysis. In the fol-
lowing sections we present the different parts of our system.

5.1 Design and Visualization Techniques
Early it became clear that we have to rely a lot on online communi-
cation due to the large spatial distance towards each other. Hence, we
built our system using web technologies. By running the prototypes on
server machines, software exchange became as easy as sharing a we-
blink, giving us the opportunity to include the clinical experts in the
development process with little effort. Incorporating the IVA workflow
for image-centric cohort study data requires overview visualizations as
well as multivariate visualizations, which bring image-derived infor-
mation in context to non-image variables.

The focus on web technologies is not without tradeoffs. Classical
UI elements, such as the menu bar or custom right-click menus, are
technically possible, but not common in this domain. In favor of a
clean layout, we designed the system without such components. Since
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Fig. 3. (Left) Screenshot from the front-end, which is divided as follows: (a) The sidebar containing all variables as well as the groups defined in
the analysis process; (b) the canvas area where variables can be added via drag and drop and the visualization is chosen automatically according
to the data type; (c) the interactive pivot table showing the exact numbers for each displayed variable combination; (d) buttons to open panes
containing the contingency matrix, contingency pane and pivot table. The data displayed is used to analyze the lumbar spine. Variables can be
added freely on the canvas via drag and drop. Dropping the gender parameter on the already plotted body size container creates a mosaic plot
combining both variables (right). In a prior step, the user selected all subjects with diagnosed thyroid disorder. These subjects are shown as shade
in the visualizations, denoting their share. Subjects between 153.5-170 cm body size are more affected by thyroid disorder (box plot) and are mostly
female (mosaic plot). Distance to the mean mesh of subjects with thyroid disorder is encoded as red for x axis, blue y axis and green z axis.

the previously described IVA workflow allows for many different ways
to analyze the data, we designed the interface as minimalistic as pos-
sible, treating the resulting space as canvas for the data. We divided
the workspace into four major parts, as illustrated in Figure 3 and 4.

• The sidebar, which contains all epidemiological variables. The
cluster results group variables like categorical variables and are
part of the sidebar as well (Fig. 3 a).

• The canvas holding all visualizations. Elements can be added,
arranged, resized and removed freely (Fig. 3 b).

• The interactive pivot table gives detailed numerical information
of the variables in the canvas view. This view on the data is
familiar to epidemiologists (Fig. 3 c).

• The contingency view depicts relations for variables in the canvas
in an contingency matrix (Fig. 4) and a contingency list.

System Layout. We experimented with several layouts. The ini-
tial idea was to make all components freely arrange- and resizable on
a large canvas area. This idea was soon dropped, since domain ex-
perts reported a cluttered workspace, which required a lot of scrolling.
The introduction of separate panes for the contingency matrix, pivot
table and sidebar, displayed with a mouse click on the corresponding
button and sliding on top of the canvas was considered more feasible
(Figure 3 shows the system with reeled-out pivot table pane). All user-
generated visualizations are part of the canvas and can be arranged
freely.

Sidebar. Only the sidebar is visible at system start. It categorizes
all variables into different types, such as somatometric (measurements
of the human body dimensions), disease- or lifestyle-related, pain in-
dicators and laboratory data (Fig. 3 a). It also contains subject groups
defined by automated shape clustering. Groups are treated like di-
chotomous variables. Variables can be dragged from the sidebar into
the canvas area for a feature localization, which works as follows.

Adaptive Variable Visualization. The visualization type, in-
spired by GPLOMS [10, 19], is dynamically chosen based on the vari-
able types and number to allow for multivariate analysis. Categor-
ical data are either mapped to bar charts (single variables) or mosaic
plots (multiple variables). Figure 3 describes this dynamic adjustment.
Continuous data can be visualized using scatter plots (two variables) or
parallel coordinates (multiple variables), but in epidemiology, this data

type is usually categorized into ordinal groups of equal size. Since the
number of categories often depends on the hypothesis, the discretiza-
tion steps can be adapted dynamically. Too many groups potentially
generate sparse bins not suited for statistical evaluation. Not enough
groups overgeneralize information. Adaptive discretization is an op-
tion, but imposes possible overfitting to the data. Conclusions based on
statistical relationships derived from groups already biased by variable
distribution are heavily influenced by the used discretization. There-
fore, we follow the convention to use bins of equal size.

Following Tufte’s concept of small multiples [38], information de-
rived from the medical image data are incorporated into the plot by in-
cluding color-coded mean shapes for each manifestation (Figure 3 b).
The 3D plots can be navigated using standard mouse input, the camera
is synchronized between all views to enable direct comparison. The
distance from a group mean shape is mapped to the global mean using
color. This allows to assess local shape changes (Fig. 3) and is an im-
portant information to the epidemiologist. Until now, epidemiologists
were not able to inspect shape differences based on non-image vari-
ables. Dropping a variable on an existing plot adapts the visualization
dynamically to allow for comparison (Fig. 3 right).

To support feature localization, subject groups can be brushed via a
double-click on its representative in the visualizations. Holding down
the shift key allows to select multiple manifestations. Brushed groups
act as reference for the shape visualization, calculating distances based
on the mean-shape of the brushed selection. The share of subjects of
this subgroup is linked to all other views (Fig. 3 left). If the user selects
all female subjects in a visualization of gender distribution, all other
displayed meshes are color-coded with their distance to the female
mean and the share of female subjects is highlighted in the information
visualization.

Pivot Tables. Epidemiologists are used to perform multivariate
analysis of groups based on table representations. Thus, we decided
to introduce an interactive pivot table. These tables clearly convey the
subject count in each group (see Figure 3 c). However, they quickly get
confusing when they are divided into many subgroups. We tackled this
problem by making the order and number of displayed variables adapt-
able. This also applies to the assignment of row or column variables.
Another way to avoid clutter is the user-driven selection of displayed
variables. To allow for better comparison with respect to variables, the
values of each cell can also be displayed as percentage of the variable
represented of either the row or column.
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Fig. 4. Contingency matrix of 129 variables (127 data set variables, 2
cluster results) showing 16,641 combinations. Similarity is calculated
using the Cramér’s V contingency value. Color brightness encodes as-
sociation strength. Moving the mouse over an entry enlarges the vari-
able names for better readability. The enlarged excerpt shows associ-
ations for shape clusters of subjects with and without diagnosed spine
attrition, which show associations between gender, weight, body height
and smoking behavior. The contingency pane is not shown here.

Automated Variable Suggestion using a Contingency Matrix.
Highlighting potentially interesting associations in the data set is one
major benefits of the IVA-powered approach and is part of the mul-
tivariate analysis pattern for analyzing variables outside the shape
space. Turkay et al. [39] used the approach to calculate statistical
key figures based on the distribution functions of each variable de-
rived from the image data. Since the majority of our data are categor-
ical variables, we have to employ different solutions. The Cramér’s V
contingency coefficient can be used to calculate coherences between
categorical variables [8]. It is based on Pearson’s X2 distribution test
[30], which uses contingency tables holding the counts of subjects for
all possible manifestations of two variables. Cramér’s V is defined as:

V =

√
X2

N(k−1)
, (1)

where X2 equals Pearson’s chi squared, N is the total number of obser-
vations and k is either the row or column count, depending on which
one is lower. V yields values between 0, meaning that two variables
are completely independent, and 1 indicates that they are the same.
Cramér’s V does not allow to infer the dependency direction.

It shares the same restrictions as Pearson’s X2. The expected counts
in the contingency table have to be larger than five for 80% of the en-
tries and no expected value must be smaller than one [7]. Some mani-
festations and variable combinations, which are only exposed by small
subject groups, cannot be assessed with this technique. They cannot be
included into the epidemiological analysis, since statistical validation
needs a minimum count to be valid. The contingency matrix high-
lights correlations between all variables. This aims to highlight vari-
ables possibly associated with the focused hypothesis and to trigger
new hypotheses. Contingency is visualized using an interactive con-
tingency matrix with association power mapped to color brightness.
The distinction whether an association is a confounder or an effect de-

pends on the context defined by the hypothesis and is a decision to be
made by the domain expert. The contingency matrix visualization is
an overview visualization–something the epidemiological community
lacks and is in great need of.

Contingency Pane. Dropping a variable into the canvas area
adds an entry for each manifestation of it to the contingency matrix.
Testing sessions revealed that it was tedious to open the matrix every
time a new variable is added. As a consequence, the contingency pane,
a table containing correlating variables for the last added visualizations
in descending order of the Cramér’s V value was added. Contingency
pane entries can be dragged and dropped into the canvas area just like
variables in the sidebar.

Initialization and Clustering. Using variable suggestion allows
to initialize the system with a set of potentially interesting visualiza-
tions. After testing and domain expert feedback we dropped this idea.
Reasons for this are twofold. Very often, high correlations are obvi-
ous, such as gender with menstrual status. Also, we observed that the
variables of interest are dependent on the specialization of the domain
expert (explained in detail in Section 6).

Subject clustering is triggered automatically as local investigation
for a variable after it was added to the canvas by the user. A status
indicator at the bottom of the screen keeps the user informed about the
pending clustering result, since the process can take up to ten seconds.
Clustering results are listed in their own category in the sidbar.

5.2 Implementation

Fig. 5. The front-end solution (left) uses HTML5/CSS3, WebGL and
SVG to display the data. The NodeJS based back-end (right) stores
all image and non-image data and transfers it to connected clients. All
computation-heavy operations, such as calculation of mean shapes or
distances, are performed on the server side. Client-server communica-
tion is accomplished via the Websocket protocol.

In this section, we discuss how we implemented the presented meth-
ods using open web standards. To provide a fast communication loop
between method development and expert input, we decided to rely on
modern web technologies. In addition to the obvious advantages of
web technologies, the following aspects are crucial for our work:

• The client-server structure allows for employing heavy compu-
tation on a server machine and transferring results to the client.

• Disk-space demanding image data remains on the server and el-
ements can be transferred on demand. High confidentiality stan-
dards of the data are met by a password protecting the access.

• Recent developments in WebGL applications running in browsers
with near-native performance results in many open source li-
braries, which are well documented and driven by active com-
munities. We use WebGL for rendering shape information.

These advantages do not come without drawbacks. Sophisticated li-
braries/languages, such as the Visualization Toolkit2 or R3

for statistics, are either not available at all or only accessible through
complex client-server systems. Therefore, many standard methods had
to be written from scratch. The back-end is realized using NodeJS4,

2Developed by Kitware Inc; vtk.org
3Open Source; r-project.org
4Developed by Joyent Inc, nodejs.org
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which is based on the Google V8 Javascript runtime environment. Due
to its event-driven non-blocking I/O model it is fast and responding
even with heavy workload, such as mesh processing. Non-image data
for all subjects including the data dictionary is stored in a JSON file on
the server. Image data are available as raw DICOM files. Segmentation
masks of anatomical structures are represented as meshes, suited for
comparing subjects. The requested data are transmitted when a client
connects. The server performs heavy statistical tasks, such as calcu-
lation of Cramér’s V values for all variable combinations in order to
keep the computation time on the client as low as possible.

The front-end is created using Bootstrap5 as foundation for the
layout and basic UI elements using HTML5, CSS3 and Javascript.
Information visualizations such as scatter plots and bar charts are cre-
ated using the popular Data-Driven Documents (D3.js) li-
brary [3], which works well for attaching data to visible elements
like vector graphics and provides powerful transformation and map-
ping tools. The pivot table implementation uses PivotTable.js.6
Three.js7 allows GPU-accelerated data rendering using WebGL.
The WebSockets protocol handles the client-server communication.
Since our clustering algorithms are written in MatLab8, we had to
access them using the NodeJS server. We accomplished this by con-
verting it to a parameterized standalone console application, spawned
by NodeJS on client request. The result is read from the console
output and is returned to the client. All parameter-steered console ap-
plications can be incorporated in this context.

6 APPLICATION

This section describes how the presented IVA workflow is used in the
epidemiological application. We conducted a qualitative evaluation
with two domain experts on a data set compiled to analyze lower back
pain. This is one of the most common diseases in the Western civi-
lization [40]. Epidemiological analysis of lumbar back pain, such as
the work of Harreby et al. [15], is largely focused on non-image in-
formation. In comparable studies, only a few shape-related variables
are included [25]. Determining risk factors in this area can lead to par-
ticularly affected risk groups, prognostic variables for diagnosis and
treatment of lumbar back pain and a better understanding of effects
of preventive measures, such as occupational health and safety reg-
ulations [12]. Characterizing the healthy aging process of the spine
is a long-term goal for determining age-normalized probabilities for
spine-related diseases by incorporating individual risk factors.

6.1 The Lumbar Spine Data Set

There are 127 variables describing diagnosed diseases, lifestyle fac-
tors, women-specific factors, pain indicators, laboratory values and so-
matometric variables for 6,753 subjects (4,420 from SHIP-Trend-0
and 2,333 from SHIP-2). Since data acquisition protocols between
these two cohorts are identical, the variables between the two cohorts
are comparable. The data contains 30 metric, 7 nominal, 29 ordinal
and 62 dichotomous variables. Somatometric variables include mea-
sures of the human body, such as body height, weight and body fat
percentage as well as gender. These measures are reliable and com-
plete. Other variables, such as pain indicators or lifestyle indicators
(e.g. physical activity) are more subjective and less reliable. There
are also variables missing for each subject, such as variables building
upon each other (e.g. Do you have high blood pressure? Which med-
ication is prescribed against it?). Therefore, some manifestations are
sparsely populated, which makes statistical evaluation challenging.

The MRI data was acquired for each subject on a 1.5 Tesla scanner
(Magnetom Avanto; Siemens Medical Solutions, Erlangen, Germany)
by four trained technicians in a standardized way. The spine protocol
consisted of a sagittal T1-weighted turbo-spin-echo sequence (1.1×
1.1×4.0 mm voxels) [17].

5Developed by Twitter, getbootstrap.com
6Developed by N. Kruchten, nicolas.kruchten.com/pivottable
7Originally developed by R. Cabello, threejs.org
8Owned by The MathWorks, mathworks.com

6.1.1 Data Preprocessing

The data processing follows the description in Section 4.1.

Non-Image Data. To ensure a fast and easy data access outside
of statistical processors like SPSS, the data was exported to the JSON
file format. Since it lacks export methods for data dictionaries, we
used SPSS to export our data to the SAS v9+ format, which saves
the data labels, and exported the data values as non-labeled CSV. A
short script combined both data sources to a JSON file. The data types
had to be transferred manually. Each variable is stored as an object
containing the data as array, its data type, a detailed description and
data dictionary translating value or error IDs to values. Continuous
variables are discretized to allow for Cramér’s V contingency coeffi-
cient assessment. Following epidemiological publications, we set the
number of groups to five, to allow for contingency assessment.

Image Data. The lumbar spine was detected in the image data us-
ing a hierarchical finite element method by Rak et al. [32]. This semi-
automatic method requires the user to initialize the tetrahedron-based
finite element models (FEM) with a click on the L3 vertebra. Two
user-defined landmarks on the top and bottom of the L3 vertebra de-
scribe an initial model height estimation. The model uses a weighted
sum of T1- and T2-weighted MR images to detect the lumbar spine
shape. Once registered, it captures information about the shape of the
lumbar spine canal as well as the position of the L1-L5 vertebrae [21].
Due to incorrect initialization, strongly deformed spines, contrast dif-
ferences and artifacts, the model was not able to detect lumbar spines
for all subjects. We obtained and worked with 2,540 tetrahedron mod-
els of the lumbar spine. For clustering, we extracted the centerline of
the lumbar spine canal, which captures information about lordosis and
scoliosis (the medical terms for spine curvature) [21].

6.1.2 Shape Visualization and Clustering

The tetrahedron-based detection model consists of corresponding grid
points for each structure instance. This allows to calculate shape dis-
tance and similarity. This information is used to calculate mean shapes
as described in Section 5. The shape distance between meshes is
mapped to color (recall Fig. 3).

Shape-based clustering is carried out via agglomerative hierarchical
clustering of the spine canal centerlines (recall Section 6.1.1 and [21]).
Since the “correct” number of clusters in a given group is unknown, an
estimate is computed by means of the knee/elbow method [33]. The
method has proven to produce sound results on a preliminary data set
and was able to reproduce textbook knowledge [21].

6.2 Participants, Setup and Procedure
Inspired by Lam et al. [23], we conducted an investigation of Visual
Data Analysis and Reasoning (VDAR). This approach aims to charac-
terize the system’s ability to explore data, discover knowledge, gen-
erate hypotheses and help formulating decisions. Since it is hard to
quantify these outcomes, Lam et al. suggest case studies for the VDAR
by applying the think-aloud protocol to understand the domain expert’s
observations, inferences and conclusions when using the system.

Our participants are two epidemiological domain experts who also
co-authored this publication. HV and KH are physicians with focus on
epidemiological research. HV is a specialist in internal medicine (23
years of experience) and head of the SHIP, KH a radiologist (9 years
of experience) and responsible for the SHIP MRI data acquisition.

Setup. Due to the large geographical distance, the evaluation was
done completely web-based. The experts accessed the prototype by
entering the weblink into their browser. User input was observed using
screen sharing. Communication was enabled via webcam-supported
voice over ip. The total setup time including installing the screen
sharing application was about five minutes. Video recordings of the
sessions allowed a detailed evaluation afterwards.

Procedure. At first, we controlled mouse and keyboard of the
participants’ PC and demonstrated the basic functionalities of the sys-
tem. As they understood the concepts, we handed over the mouse and
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Fig. 6. Various case study results. (a) Mean curvature of lumbar spine canal plotted against the mean shape of 58-74 years old female subjects
(light-blue bars). Note the high amount of this subject group relative to the total count in the third group. The last group contains four outliers. (b)
Clustering of all subjects yields seven groups, whereas Cluster 4 assembles the mean. The light blue bars indicate the share of females in the
group. (c) A mosaic plot mapping age against the dichotomous questionnaire answer to “Did you experience back pain in the past three months?”.
(d) Clustering result of “Did you experience back pain in the past three months?” Yes/no with female share in each group. Cluster 1 and 6 for
answer “Yes” contain mostly women. The pivot table shows how many subjects with strong back pain are in each cluster for answer “Yes”. Subjects
in Cluster 1, 2 and 6 report strong back pain more often than subjects in other clusters.

keyboard control and only observed from this point on. The epidemi-
ologists were given two tasks: one hypothesis-free analysis of the data
and one starting with an assumption. For each case we conducted one
analysis with each expert.

6.3 Case 1: Hypothesis-free Analysis
Analyzing the data set without prior hypothesis requires a starting
point giving an overview over the data [34]. With our tool, there are
two ways to achieve this. Performing a multivariate analysis by view-
ing the contingency matrix or a shape grouping step using shape-based
clustering. The first was chosen by both experts. Before, they were not
able to look at all variables in the context of each other. To cite one ex-
pert, the contingency matrix “illumunates the data black box”, making
it possible to look at the data unbiased of assumptions.

Analysis 1. The radiologist (KH) was looking for correlations
with shape-related variables in the data, finding that spine curvature
correlates with leg pain, age, body height and hormone replacement
therapy status. Due to the dense mapping of information in the con-
tingency matrix, KH suggested to make this visualization full screen.

After this initial overview, KH performed a multivariate analysis by
introducing variables, such as age, waist circumference, weight or lum-
bar spine canal curvature as bar chart views into the canvas area and
selected subgroups to see how they are distributed and if they could
observe unusual behavior in the mean shapes. This pointed out prob-
lems with the used categorization method splitting numerical variables
into equally-sized ordinal bins. If a variable contains outliers, such as
waist circumference (e.g. by subjects with morbid obesity), this ap-
proach leads to sparse categories, making it hard to calculate associ-
ations. The proposed expert solution for this is categorization using
quantiles/quartiles and is described in detail in Section 6.5.

A multivariate analysis using the Cramér’s V contingency values
for subjects with strong lumbar spine curvature showed, that these sub-
jects are primarily females between 58-74 years who also report pain
radiating from their back into other body regions Figure 6(a).

Analysis 2. HV also started with a multivariate analysis using
the contingency matrix to analyze non-image variables, such as age-
associated parameters like income, blood fat values or number of born
children, but found no associations of interest. Therefore, he applied
the local investigation pattern by a shape grouping step using shape-
based clustering via dragging All subjects from the sidebar into the
canvas area, triggering the shape clustering (Fig. 6 b).

Cluster 4 represents subjects with average shape. Other shapes
differ with respect to size, such as cluster 2, 3, 7, whereas the last

one and cluster 5 also represent a more straight spine, which is
usual for subjects with larger body size. Cluster 1 and 6 contain
outliers, characterized by their unusual shape and small number.
To get an overview of the suggested variables, the user opened
the contingency pane (not shown here) to perform a multivariate
analysis by looking at Cramér’s V contingency values of all clusters,
revealing a strong correlation with gender and body size. Therefore,
another multivariate analysis was carried out by dragging the gender
variable to the canvas and selecting all female subjects (Fig. 6 b).
Cluster 1 contained primarily female subjects. Contingency values
for this cluster revealed correlations with leg fatigue, physically heavy
work, body weight, dyspnoea and headache intensity. Since it is
a pain indicator, headache was of special interest and was further
investigated by incorporating a pivot table setting headache intensity
in relation to cluster affiliation. It was found that cluster 1 subjects
report heavy headaches more frequently than other subjects.

The experts emphasized the importance of methods providing
an overview over the data for hypothesis generation. With the
presented IVA approaches they were quickly able to confirm medical
knowledge and to elaborate new hypotheses. We observed that the
domain experts are more likely interested in variables they are familiar
with and have personal clinical experience with.

6.4 Case 2: Hypothesis-driven Analysis
If the user proposes a hypothesis about a relation between a non-image
variable and shape, the workflow slightly differs from the hypothesis-
free analysis. The starting point follows the feature localization pat-
tern, where a variable of interest is selected by dragging it into the can-
vas area and viewing the subjects’ distribution as well as their shape
differences.

Analysis 1. Hypothesis: “Back pain is associated with age and
lumbar spine shape”. To validate this hypothesis, a feature localiza-
tion was performed by combining the dichotomous variable “Did you
experience back pain in the last three months?” with age in a mosaic
plot by dropping both variables on the canvas area (Fig. 6 c). HV was
not able to observe the expected effect in the visualization. Reasons
for this are twofold. Age influences the lumbar spine shape, while
the differences between subjects with and without back pain are small.
The major differences seen in the visualization are therefore related to
the age variable, masking differences related to the back pain param-
eter. The second explanation is the commonality of back pain in our
society. As seen in Figure 6 (c), subjects reporting back pain are the
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majority, which makes it difficult to extract parameters that reliably de-
scribe back pain. A multivariate analysis using the contingency table
showed a strong association between back pain with both, gender and
body height. Body height was explained as a confounder for gender,
since female subjects on average are smaller than male subjects. The
analysis solely based on shape-accentuated body height differences in
gender, which clouded the differences of back pain.

The epidemiologists pointed out that they would like to see a more
intuitive and fast way to select subgroups based on different vari-
ables to make full use of the analysis capabilities, as discussed in Sec-
tion 6.5.

Analysis 2. Hypothesis: “Back pain is related to lumbar spine
deformation”. The previously discussed analysis questions the
suitability of the lumbar spine segmentation for analyzing back pain,
leading to this analysis. Therefore, the dichotomous variable “Did you
experience back pain in the past three months?” is dropped into the
canvas area. Figure 6 (d) shows the results of the automatically trig-
gered shape-based clustering for subjects with and without back pain.
The clustering algorithm finds only three homogenous clusters close
to the global mean shape for subjects reporting no back pain. The
cluster analysis for back pain yields diverse clusters with pathological
shape classes. Cluster 5 represents most of the subjects and is similar
to the global mean shape. Cluster 1 and 2 present a hyperlordosis, a
strong curvature of the lumbar spine, while Cluster 3 and 4 present a
more straight shape. A multivariate analysis using the pivot tables put
gender and strong back pain in context to cluster affiliation (Fig. 6 d).
It shows that subjects in Cluster 1, 2 and 6 reported strong back
pain, while at the same time they also have a considerably higher
share of females. To check for unusual correlations, the expert used
the Cramér’s V contingency table. It depicted strong associations
with body fat, body weight and blood pressure (Cluster 1) alcohol
consumption and attentiveness disorder (Cluster 2), and amount of
sleep (Cluster 6). For the experts, these observations are a starting
point for a number of new hypotheses about possible relationships,
for example the association between overweight and Cluster 1.

In summary, it can be stated that the hypothesis-driven analysis
leads to hypothesis generation by design of the framework. It is not
suited and intended to statistically validate hypotheses like statistical
processors. It rather triggers the analysis of potentially associated
variables with a pathology of interest.

6.5 Further Feedback and Lessons Learned
Both domain experts rated the IVA approach positively. KH empha-
sized the way the image data are included into information visualiza-
tions, which comes much more natural to her due to her background
in radiology. Great potential is also seen in communicating insights
efficiently using the presented visualizations.

Multivariate analysis is most important for hypothesis genera-
tion. Both experts emphasized the potential of the multivariate anal-
ysis capabilities of the contingency matrix for gaining insight into a
large amount of variables simultaneously. It is also useful to verify
established but still controversial risk factors, such as the metabolic
syndrome for coronary heart disease and whether the data set pro-
vides more suitable risk factors. Creating contingency matrices for
subgroups, such as different age bins can help to characterize the ag-
ing process by deriving age-specific risk factors. Multivariate analysis
can be improved by more ways of brushing the data as well as creating
subgroups for comparison as a result of the hypothesis-driven analysis
case. Too small variable ranges yielding sparse groups could hinder
the calculation of statistical resilient measures, since they require a
minimum amount of subjects exhibiting the selected variable ranges.

Segmentation quality is crucial. KH pointed out the unusual
strong similarity of the L3 vertebrae throughout the population. The
medical explanation is that it represents an angular point of curvature
of the lumbar spine. A second explanation is the use of the L3 verte-
bra as initialization point of the lumbar spine model. The experts also
emphasized that associations related to shape strongly depend on the
segmentation quality. The lumbar spine model used in this case study

captures deformation of the spine canal well, but lacks precise defi-
nition in vertebrae height and shape. Since deformation of the spine
canal is the last stage of pathological lumbar spine deformation and is
preceded by vertebrae deformation, the system would strongly benefit
from more precise segmentation results capturing these prior changes.
For the visual comparison, KH proposed an abstraction of the repre-
sentation into landmarks, such as centers of the vertebrae and cardinal
points of the lumbar spine canal.

Usage of different categorizations depending on expected out-
come. Categorizing numerical variables into equal groups possibly
creates sparse categories due to outliers.These outliers are only of high
interest for finding pathological subjects. The experts therefore sug-
gested two modes of the tool. The outlier mode still creates categories
of equal size, producing sparse categories for outliers. Balanced cate-
gories are created in the second mode, which uses quartiles or quintiles
to set borders between categories.

Web technologies are well suited for rapid feedback. The web-
based approach for both implementing the prototype and getting feed-
back via voice over ip conference calls worked very well. Since the
software does not need to be compiled, small changes can even be
made on the fly during a testing session. The large data base asso-
ciated with image-based epidemiological data remains on the server
machine and has not to be moved tediously using external hard disks.
This approach is well suited for the VDAR approach to assess user
thought processes using the think-aloud technique.

7 SUMMARY AND CONCLUSION

We presented an IVA framework for the analysis of image-centric epi-
demiological data. Hence, the framework allows both for hypothesis-
driven analysis and hypothesis generation. The visualization of mul-
tivariate data using multiple connected views allows to get fast visual
feedback about subject groups. Brushing and linking makes the data
tangible and adaptable to formulated hypotheses. The use of pivot
tables is familiar to epidemiologists while embracing the power of in-
teractive adjustment of the shown variables. The automatic suggestion
of correlations using contingency methods, such as Cramér’s V trig-
gers hypothesis generation by highlighting variables potentially over-
looked by the experts. Shape-based clustering assesses the variability
of an anatomical structure in the context of non-image variables, such
as disease indicators or lifestyle factors.

Epidemiologists are for the first time able to assess shape informa-
tion of the lumbar spine and its influence to diseases. Findings from
analyzing lumbar back pain using the IVA approach range from de-
riving shape-based groups of subjects to detailed descriptions of vari-
ables potentially associated with the disease, such as waist circum-
ference, alcohol consumption and attentiveness disorder. A number
of improvements is left open for future work, such as shape brushing
methods to intuitively query subjects using image data or the inclusion
of more statistical methods and views that are familiar to the epidemi-
ologists (odds ratios, box plots).

As the number of image-centric cohort studies, participating sub-
jects, gathered variables and imaging modalities rises, and advances
towards comparability between cohort studies are made, the gap be-
tween data complexity and analyzability increases. Our work focuses
on closing this gap, allowing the domain experts to dig deep into the
data and potentially obtain unexpected findings. We believe that web
technologies pave the way to analyze this data in a convenient way.
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Interactive Visual Analysis of Heterogeneous Cohort Study Data

Paolo Angelelli, Steffen Oeltze, Judit Haász, Cagatay Turkay, Erlend Hodneland,
Arvid Lundervold, Astri J. Lundervold, Bernhard Preim and Helwig Hauser

Abstract— Cohort studies in medicine are conducted to enable the study of medical hypotheses in large samples. Often, a large
amount of heterogeneous data is acquired from many subjects. The analysis is usually hypothesis-driven, i.e., a specific subset of
such data is studied to confirm or reject specific hypotheses. In this paper, we demonstrate how we enable the interactive visual
exploration and analysis of such data, helping with the generation of new hypotheses and contributing to the process of validating
them. We propose a data-cube based model which handles partially overlapping data subsets during the interactive visualization.
This model enables seamless integration of the heterogeneous data, as well as linking spatial and non-spatial views on these data.
We implemented this model in an application prototype, and used it to analyze data acquired in the context of a cohort study on
cognitive aging. We present case-study analyses of selected aspects of brain connectivity by using the prototype implementation of
the presented model, to demonstrate its potential and flexibility. .

Index Terms—heterogeneous data, medical visualization, IVA

1 INTRODUCTION

Cohort studies in medicine become increasingly common, partly
thanks to the availability and to the recent improvements in medical
imaging technologies. Such studies are a type of observational study
that follows one or more groups of people (samples), called cohorts,
over time. They are used to evaluate medical hypotheses in samples
sharing common characteristics, for example being healthy, or present-
ing specific risk factors, to gain a better understanding of the absolute
risks of certain pathologies and of the pathology development. Cohort
study data is often acquired over longer time periods, following strictly
defined protocols, being therefore not trivial to set up. Because of that,
they are often designed to deliver a larger variety of data than the focus
of the initial study, which, later on, can be the basis for retrospective
analyses, evaluating further sets of hypotheses.

There are means to evaluate specific hypotheses, based on such co-
hort study data, often involving accordingly designed data extraction,
transformation, and fusion approaches. However, there is a lack of
technology to support the flexible and open-ended exploration of such
data, mostly because of its heterogeneity. This means collections of
image and non-image (quantitative, often image-derived) data, which
in turn can be categorical and numerical, and defined on domains that
only partly overlap. Due to the complexities posed by the data het-
erogeneity, analysts often have to limit their attention to subsets of
the data, making the analysis lose the overall relations within different
modalities. Integrating all the available data within one visual analysis
tool that allows to seamlessly combine them in an on demand fashion
is expected to support the experts in the exploration of heterogeneous
cohort study data and in the hypothesis generation and verification,
and to accelerate their research workflow.

The exploration and analysis of heterogeneous cohort study data
generates specific new challenges for visualization. The contribution
of this article is therefore two-fold. First, in Section 2, we charac-
terize these challenges, in relation to the substantial heterogeneity of
the data, and in relation to the analysis tasks, goals, and typical ana-
lysis workflow in the specific context of a cohort study on cognitive
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aging. Second, in Section 4, we describe our solution, based on a new,
general multi data-cube model to support heterogeneous data, and that
can be also adapted to other situations of highly heterogeneous prob-
lems. Finally, in Section 5 we describe our prototype implementation
of our model, that, in Section 6, we use to exemplify how our novel
approach can enable the generation of new hypotheses, as well as the
swift analysis of relations between otherwise unconnected data parts,
thus improving the analysis and exploration process. In Section 6 we
also provide an evaluation of our method by two domain experts from
the medical and neuropsychological domain.

2 A SCENARIO OF HETEROGENEOUS DATA IN A COHORT
STUDY

One major goal of this work is to create a solution to enable the ex-
plorative visualization and analysis of data that was acquired as part
of a longitudinal study on cognitive aging. During this study, more
than 100 healthy individuals (mean age 60.8 (7.8), 65% females at in-
clusion) were recruited through advertisements in local newspapers.
At inclusion, all the subjects who responded were interviewed, to
exclude those reporting previous or present neurological or psychi-
atric disorders, a history of substance abuse, or other significant med-
ical conditions. The neuropsychological evaluation confirmed that the
participants showed no symptoms indicating mild cognitive impair-
ment (MCI) or dementia. Each participant was examined every three
years, starting in year 2004/2005, and then in 2008. The participants
were subjected to neuropsychological testing, genetic analysis (data
not available for this work), and multimodal MR imaging. The re-
sult of each examination consisted of data on white matter fiber in-
tegrity, expressed by anisotropy measures computed from diffusion
tensor imaging (DTI), cortical and subcortical gray matter measures,
automatically calculated from structural MR images, and a number
of neuropsychological tests, including the California Verbal Learn-
ing Test–Second Version (CVLT-II), the Color–Word Interference Test
(CWIT), the Digit Symbol Substitution Task from WAIS-R, and the
Mini Mental State Exam (MMSE). To summarize, each examination
(per subject and year) consists of:

• white matter fiber bundles with anisotropy measures. Each in-
dividual fiber was divided into 100 segments of equal length for
the derivation of associated measures.

• gray matter cortical and subcortical regions with quantitative
measures for each region.

• scores from different neuropsychological tests.

For a detailed description of the study protocol and for previous se-
lected analyses of this longitudinal study please refer to Ystad et
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Fig. 1. a) Illustration of the dimensions (red), measures (green) and entities (blue) in the dataset of the cohort study on cognitive aging. The
hierarchy in the figure is used only for presentation, as the presented model treats the dimensions independently. b) Simplified illustration of the
proposed model. User interactions are colored in red, automatic operations, transparent to the user, are green, information sources are blue,
and in black the components necessary to implement the model. Note that the selections require interaction to be used as filters, but are also
automatically re-aggregated upon measure changes in views, or brush changes, and the result is automatically updated in the views. c) Illustration
of the projection operation. The dimensions which are not common (in red) are processed using a statistical estimator (e.g., average). This
operation can be steered by using a selection for each data-cube to filter the elements that are aggregated.

al. [14].

2.1 A heterogeneous dataset
Resulting from this study, a number of measures related to different
aspects are available. One specific challenge with respect to the data
exploration and analysis is that the measure’s domains overlap only
partially. Taking a scatterplot as an example, how should two hete-
rogeneous measures be combined? In our case, these measures could
be the fractional white matter fiber anisotropy (FA), that describes the
degree of anisotropy of water diffusion along a fiber, defined for each
segment of each fiber bundle, and the thickness of the cortex, available
for each cortical region in both left and right brain hemisphere. This
partial incompatibility of the data domains proved to be one if not
the key challenge of this work. To overcome this challenge we devel-
oped the method presented in this article, able to seamlessly combine
heterogeneous measures on the fly.

2.2 Abstract and physical data and their representation
In such studies certain measures, such as white matter FA or gray mat-
ter region volume, as well as others, are quantitative abstract measures
that relate to physical (anatomical) entities. These, for the example,
would be the white matter fibers or the gray matter regions. For these
entities additional qualitative data is often also acquired, such as the
bundles trajectories, or brain regions meshes or volumes. While anal-
yses are often performed on the quantitative measures, it also becomes
necessary to occasionally fetch and inspect the related anatomical data,
to explain, for example, data outliers, or to see what effects certain
conditions have on the anatomy. For these reasons domain experts
would benefit from a system that can link different types of data, and
bring up the appropriate sets on demand, e.g. in linked views.

In addition, when dealing with abstract views of measures related to
physical entities, domain experts often need to relate groups of entities,
such as selections, in abstract views to their physical location. To ease
this process we propose to use a view with an illustrative physical
model, or atlas, of the entities, which is linked to the other views.
Through this atlas, the content of the selections is put in its physical
context, to improve the understanding of such data. The definition of
this model for the specific case described in this article, and its use, are
described in Section 4.5.

3 RELATED WORK

While the majority of visualization research –in particular also medi-
cal visualization– was (and still is) focused on the visualization of in-
dividual datasets, the visualization of data from population studies has
not been a research topic until recently. One recent exception is the
work of Bruckner et al. [1], presenting a system to retrieve and visu-
alize anatomical brain data of Drosophila, covered in a large database
of such flies’ brains. This system enables a novel way to perform vi-
sual queries, combined with a volume rendering solution called Max-
imum Intensity Difference Accumulation (MIDA). Still in the biol-
ogy domain, Jeanquartier and Holzinger presented a visual analytics
approach for cell physiology to support the exploration and sense-
making process. [5]. Steenwijk et al. [10] also presented a novel visual
analytics framework to query and visualize data from a cohort study
, consisting of imaging and non-imaging data for each subject. Their
approach was to preprocess and store the imaging and non-imaging
data in a searchable relational database, to which a visual interface
would perform dynamic queries. Still in the healthcare domain, Si-
monic et al. [9] presented a visualization system to improve prediction
and treatment of patients based on longitudinal data.

More generally, few other visual analysis methods have been pro-
posed for the analysis of higher-dimensional and heterogeneous data.
One relevant related solution was presented by North et al. [7], who
introduced visualization schemas to achieve the concurrent analysis
of different sources of information in relational databases. Their sys-
tem enables building coordinated visualizations in a similar fashion as
when constructing relational data schemas. More recently, Weaver
uses a method called cross-filtered views [13] to interactively drill
down into multidimensional relations between multiple datasets. In
his method, different variables are visualized in particular views and
brushes in these multiple views are cross-filtered to discover complex
relations in the data.

4 A DATA-CUBE BASED MODEL TO ENABLE INTERACTIVE
VISUAL ANALYSIS

The typical workflow approach to analyze the data coming from such
studies is to manually extract the pieces of data to analyze from the
dataset (e.g., using custom scripts or programs for each analysis), and
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then process them using mathematical and statistical packages. Fi-
nally, plots of the results are generated either using custom scripts, or
by importing the results into applications that can plot the data.

The first, and perhaps the biggest challenge in designing an inter-
active visualization system targeted at this problem is storing the data
acquired with such studies in a way that allows fast and flexible ac-
cess, retaining the meta-information expressing the relationships be-
tween the different pieces of data. Organizing the data in a relational
database, similarly to Steenwijk et al. [10], is probably the first solu-
tion at hand, and possibly the easiest to design from scratch.

However, organizing data in a relational database is relatively in-
flexible: the database schema is bound to the specific structure of a
particular study, together with the queries associated to it. Using a
system designed in such a way to analyze a different dataset would
require the redefinition of the database schema, as well as reprogram-
ming the logic for data access. In addition, processing the queried data
with mathematical or statistical methods that are not implemented in
the database itself would require an additional application layer into
which the data should be loaded, thus voiding the benefits of using a
relational database. Finally, from a performance point of view, using
a relational database to perform complex queries touching all the rows
on a large amount of data becomes quickly a performance bottleneck
in interactive operations, and this is even more problematic when item
selection and measure filtering based on multiple attributes, requiring
table joins, are used.

With Polaris, Stolte et al. [11] showed how visualization systems
can also ground on data organized in a n-dimensional, possibly hier-
archical, data-cube, which is also known as OLAP cube (for On-Line
Analytical Processing) in the field of data warehousing. It has been re-
ported that executing complex queries using OLAP cubes can perform
about hundred times faster than doing the same on relational data [4].
A single, hierarchical, data-cube organization however, shows its lim-
itations when the dataset, and its dimensionality, become heteroge-
neous.

4.1 Data-cubes: dimensions, entities and measures
In our model, data-cubes are constructed using categorical attributes
as dimensions, while quantitative numerical values are stored as mea-
sures [11]. The dimensions and measures can be thought of as in-
dependent and dependent variables, and dimension coordinates are
used to access the measures. Practically, after assigning an order to
the dimensions of a cube, a data-cube can be implemented as an in-
memory n-dimensional array. To make an example taken from the
system presented in this paper, a measure for segments of white mat-
ter fiber bundles in our dataset, e.g., FA, is represented as a floating
point n-dimensional array consisting of n = 4 dimensions: subject,
year, bundle, and segment.

Compared to the model proposed for Polaris, we also introduce a
third concept, called entity. An entity can be thought of as a row in
a database table, and quantitative row fields would be the measures
for that entity. In the example above, the measure fibersegment.fa (fa
for fractional anisotropy) would be related to the entity fibersegment,
being a measure of that entity. When, in our model, a data selection
is defined, it also contains selection values for entities, which are then
propagated to the measures related to it when it becomes necessary.

4.2 Multiple data-cubes and seamless dimension aggre-
gation

A challenging feature of the data acquired in cohort studies is their
heterogeneity. This means that measures are collected for different
entities, which do not share the same set of dimensions. In our spe-
cific case, when referring to entities, we can talk of white matter fiber
segments, grey matter subcortical regions and grey matter cortical re-
gions, as well as neuropsychological tests. As shown in Figure 1a,
the dimensions’ sets of the measures are only partially overlapping,
having all these entities in common only two dimensions, subject and
year. The standard way to organize these data into a single data-cube
would be to build a denormalized cube characterized by all the dimen-
sions in the dataset, which would contain all the data. When the data is

significantly heterogeneous, however, this strategy may lead to an ex-
plosion of the memory requirements caused by the denormalization.

In the model that we present here, the solution to this problem is
twofold: on one side we store all the data in multiple, normalized data-
cubes, to eliminate any kind of information redundancy and minimize
the memory occupancy. Secondly, we propose runtime aggregation
of the measures’ data-cubes, when data which are held in data-cubes
belonging to different entities have to be combined or cross-checked.
Such aggregation operation is also referred to as the projection of a
data-cube [11] (see Fig. 1c). Our model includes an engine to per-
form aggregation on-the-fly, for reducing the data-cubes’ dimensions
to their largest common subset, without having any embedded knowl-
edge of the relations between measures. In contrast, this would be nec-
essary when using a relational model for the data, as the system would
need to incorporate knowledge about each specific database schema,
together with logic for performing the operations.

In our model, when multiple measures are combined in a visualiza-
tion (e.g., in a scatterplot, a parallel coordinate view, curve view, etc.),
each measure is aggregated across those dimensions not belonging to
the intersection. For the moment we can consider the mean as mea-
sure aggregator, but there are several other options, such as different
statistic estimators which can be selected by the user.

In certain cases, it is also useful to change the level of detail. To
allow this, we enable toggling which common dimension to keep dur-
ing the aggregation. This is similar to a roll-up operation, with the
difference that the dimensions’ structure is treated as hierarchy-less.

Finally, even if some of the dimensions may embed a hierarchy, oth-
ers are independent from each other. For example, it is easy to imagine
that subject is independent from other dimensions, while bundle and
segment are logically nested, as segments are part of a bundle. How-
ever, an imposed dimension hierarchy for all the dimensions would
be useful to represent the data in a tree-like visualization, and let the
user navigate the dataset (as shown in Fig. 1a). To compute such a
hierarchy, we group entities recursively by the number of common
dimensions, with each group reflecting dimensions occurring in the
same number of entities. By letting the dimensions that occur in more
entities floating higher in the tree hierarchy, and then proceeding re-
cursively on subgroups, we can generate a complete hierarchy. Having
defined such a hierarchy, it is possible to represent the measures in our
cohort study data like in Fig. 1a.

4.3 Selections and selection-based filtering
In section 4.2 we explained how to create projections of a measure
by aggregating it over entire dimensions. Obtaining an aggregate of a
measure over a whole brain, however, may not always produce specific
enough data to answer questions of interest. To enable a more focused
analysis, selection techniques can be used in order to restrict the pro-
cessed or visualized data to specific subsets under investigation. An
example is the Polaris specifications [11], introduced for defining se-
lections. Interactive visual analysis has introduced the related concept
of brushing, a visual method to select items with certain characteris-
tics (e.g., fitting certain ranges on specific measures), by defining a
visual brush over a view on the data. These brushes normally contain
a value for each data item, either binary or a percentage value, to ex-
press if or how much the data item is selected. Our model makes use of
brushing to let the user define data selections. Using data-cubes, this
brush should be transformed into a data-cube itself, where each item
contains the tag information for the related entity. In our case, hav-
ing several entities in the dataset generates an additional challenge:
when tagging one entity, we must also propagate the selection to all
those other entities in the dataset sharing at least one dimension with
the tagged one. As a clarifying example, let us consider a selection
of only those white matter fiber segments above a certain FA thresh-
old. Such selection does not necessarily involve all the examinations,
or even all the subjects. Let us say the user wants to cross only items
in this selection with the cortical thickness. Then this selection has
to be propagated to the entity cortical region, knowing that the shared
dimensions between the entities cortical region and fiber segment are
subject and year. This has to be done in an appropriate manner, so
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Fig. 2. Screen-shot of the prototype of the proposed model. The Measure Browser (a) lets the user drag desired measures into a view, and the
Selection Manager (b) allows to add new selections, activate them, enable one of them for editing, and drag them into views, to be used as filters.
The Dimension Brusher (c) enables slicing the data-cubes in the data collection, while the other views (d,e,f), in this setup a scatterplot, a curve
view and a histogram view, can be seen as projections of the data, and allow a more advanced definition of the selections, by means of brushing
ranges of measures. In each view a drop down menu lets the user adjust the aggregation dimensions as well as the additional analyses to perform.
Finally, the Atlas view (g) represents the selections in their anatomical context using a brain model. The two selections visualized contain, the first,
both the fibers and the brain region of the Corpus Callosum anterior, and the second both the fibers of the corticospinal tract and the brainstem
region (colors representing different bundles).

that only those (subject, year) pairs selected in one entity are selected
also in the other one. In our model we propose a propagation scheme
where a brush on one entity is propagated to all the other entities in the
dataset that share dimensions with the brushed one. The propagation
is done by first computing a projection of the brushed entity onto the
common dimensions with all the other entities. Such projections of
the brush are generated using the max operator, which produces, for
each set of items being aggregated along one aggregation coordinate,
the equivalent of a Boolean value indicating whether or not at least one
item was selected. This scheme also allows multiple selections to be
combined using Boolean logic, giving the user the necessary flexibility
in building up expressive item selections.

Once a selection has been defined, it can be used in two manners.
First, selections can be visually highlighted in the views, and thus com-
pared with the whole dataset or with other selections. Second, since
most of the views are built upon aggregated data-cubes, this aggrega-
tion can be steered, or filtered, using a selection ( Fig. 2d ). By setting
a selection as aggregation filter, the aggregation is performed only us-
ing those items that are tagged in the selection. In this way, carefully
selected information from the dataset can be cross-checked with other
aspects, enabling the user to analyze virtually any aspect of the dataset.

4.4 Unrolling dimensions: a first step toward iterated vi-
sual analysis

Using a system implementing our model interactively is a flexible way
to cross-analyze a wide variety of information in such heterogeneous
datasets. In some cases, however, the analysis can benefit from au-
tomating certain steps, like repeating selected tests or analyses using a
scheme defined by the user on different data, or with varying parame-

ters or methods. This could be seen as extending a purely interactive
visual analysis metaphor by using it as a analysis-setup tool for defin-
ing what type of actions to automate. The results of this extension
could be thought as an iterated visual analysis. A clarifying exam-
ple could be correlating age with subcortical region volume. The user
could first define a selection, for example by filtering specific ages,
or other parameters such as the IQ. This selection could then be used
to filter the aggregation, which could conclude the interactive analysis
step. Since it is also interesting to have details of how the volume
of each specific subcortical region correlates with age, the user might
want to combine his interactively specified selection with another one,
selecting only a specific subcortical region, and repeat the process for
every subcortical region. To ease this process, enabling at the same
time to produce comparable results, we propose a method to automat-
ically dissect and process the measures present in a specific view, by
iteratively slabbing each measure’s data-cube along those dimension
that are specific to the data-cube (e.g., not common). In the exam-
ple above, the only non-common dimension in a view containing only
age and subcortical region volume is the subcortical region, as both
the year and subject measures are common to both the entities (see
Fig. 1a). The expression unrolling a dimension here means automati-
cally generating a sequence of selections for an entity having such di-
mension, each selection containing only data items along one specific
coordinate of that dimension at a time. The user can choose one or
more of the non common dimensions in the view to unroll, and the au-
tomatically generated selection is combined with a user specified one,
if present, before aggregation and further analysis take place. When
performing dimension unrolling, however, a large amount of data is
being generated, and we currently deal with it by outputting only the
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analyses results, such as regression or correlation values. We make
use of this technique in the case-studies illustrated in Section 6, and
the results of the unrolling are shown in Fig. 4.

4.5 Visualizing aggregates in physical space
Sometimes it is of interest to link abstract information of physical en-
tities to these entities in a spatial visualization of the data. Examples
could be various, ranging from the analysis of mechanical components
to various kinds of simulations. In the case of cohort studies, it can be
useful to visualize the content of selections, as well as other parame-
ters in the context of the brain’s anatomy. A practical example would
be visualizing where the parts of the white matter fiber bundles within
a certain range of anisotropy, or having certain properties (e.g., sensi-
tivity to aging) are located. To represent statistical information for a
selection in physical space, we propose to use a physical atlas of what
the data refer to, which in our case is a brain atlas (Fig. 2g). The se-
lection aggregation is then performed on the dimensions present in the
atlas.

4.6 Performance and limitations of the data model
We compared the performance between our implementation of the data
model described above and a relational database (SQLite) on simple
queries involving aggregation. We found that, using the dataset intro-
duced in Section 2 (approximately 50MB in SQLite form, including
only the quantitative measures), operations on our data model were
more than ten times faster than the corresponding operations on the
relational database. For example, such operations on the largest ta-
ble/cube in our database, consisting of approximately 500,000 rows,
lasted 260ms using our model, compared to the 2700ms using SQLite.
Data-cubes are, however, able to provide such performance only when
the data fits the system memory, and our model is, at the present, not
supporting out-of-core data. In case of datasets not fitting the system
memory, a standard database is necessary, but with the awareness that
new technology will be necessary to allow systems like this to perform
interactively.

5 PROTOTYPE REALIZATION

The prototype implementation of our model has been specifically real-
ized to explore and analyze selected aspects of the brain aging dataset
produced by the cohort study described in Section 2. The prototype
consists of a coordinated multiple view application implementing link-
ing and brushing on top of the proposed aggregation engine (2). Mea-
sures can be visualized and cross-checked on demand and in different
views by using drag-and-drop interaction from the measure browser
window into the view of choice. Selections can be initialized and
modified by means of brushes on the views. Using selections as filters
is implemented via drag-and-drop: dragging a selection into a view
opens a selection dialog for the measure to filter. Choosing the mea-
sure re-triggers the filtered aggregation process.

To present selections and statistical information in physical space,
we employ a brain atlas onto which aggregated statistics can be
mapped. For simplification purposes, we treat the brain of a repre-
sentative subject S and the fine-granular parcellation of its cortical and
sub-cortical white and gray matter as the atlas. A more sophisticated
approach would require the averaging of brain regions across all sub-
jects and the computation of average fiber tracts. Instead of displaying
all fibers of S (>20000), we compute a representative fiber for each
fiber bundle (Fig. 2g). This reduces visual clutter and facilitates the
mapping of statistics, aggregated across all fibers of a bundle and all
subjects. Previous work suggests choosing the longest fiber traveling
though the densest parts of the bundle as representative fiber [8]. We
apply this approach directly to homogenous bundles, i.e. all fibers fol-
lowing a similar course. In heterogeneous bundles, we first subdivide
the bundle by grouping similar fibers, and then compute the represen-
tative of each group. For the grouping, we employ a spectral clustering
technique [2]. The white matter measures (such as FA) in our data were
extracted after subdividing each individual fiber into 100 segments of
equal length, to allow tract analysis. Therefore, we also divide each
representative fiber into 100 segments, allowing the system to map

the measures to each segment individually. We assign a unique color
and add halos to each of them to enhance the visual separation of the
representatives. The aggregated values are then encoded, upon nor-
malization, by modifying the color saturation of each fiber segment
(high values resulting in high saturation). Segmentations and related
measures for brain regions are also included in the study, and were ex-
tracted with Freesurfer (http://surfer.nmr.mgh.harvard.edu/). For dis-
playing the measures, an isosurface is constructed per segmented re-
gion. The visual separation of brain regions is enhanced by assigning
unique colors according to the Freesurfer’s color look-up table. Map-
ping a measured value is then performed upon normalization by mod-
ifying the surface transparency (high values resulting in high opacity).
Finally, a highly transparent outer surface of the brain is superimposed,
to augment the overall atlas visualization (Fig. 3g).

6 CASE-STUDIES AND EVALUATION

We conducted a two-phase study with domain experts: a design re-
quirement phase to understand the analysts’ needs, and an evaluation
phase to evaluate our method after the suggestions of the experts were
included. In the first phase, we have been able to gather initial im-
pressions from two neuropsychologists and one neurologist, as well as
some feature requests. The prototype has been received with strong
interest. Thanks to the flexibility and simplicity of performing data
selections and cross-analyses, it has been seen as a practical alterna-
tive to the current way of analyzing data, consisting of extracting the
values by various means into separate tables, and loading them into
commercial statistical packages or tools. The experts also explicitly
requested to be able to get a detailed description, save, and load the
selections, and to be able to export filtered data.

After this first cycle, we included these additional functionalities,
and performed the second evaluation phase with a neuropsychologist
and with a neurologist. These two evaluation sessions were subdivided
in three parts, organized as follows: first, a thorough explanation of
the application of the underlying model was given. The explanation
was followed by few questions about the model, in order to ensure
the understanding of the model. This first part of the session was suc-
cessful, and the domain experts could explain well the difference be-
tween our model and the table-based data model present in all the sta-
tistical analysis tools used in a standard analysis workflow, where the
observations are the rows, and the variates are the columns. Neither
of them was previously familiar with relational databases or OLAP
cubes. During this first part of the sessions, the demonstration of the
application functionalities was also well understood. The second part
of the sessions had a dual aim: to verify that our model is capable of
producing the same results obtainable with a standard analysis work-
flow, but in a faster way, and to prove that our model is capable of
helping the generation of new hypotheses. For this second part two
case-studies, one for each domain, were set up, and are described be-
low. The third part of the sessions was used to gather an assessment of
the proposed method by asking the domain experts specific questions,
and details are given in Section 6.3.

6.1 Neurologic case-study
Jointly with a neurologist, we attempt to confirm or reject three
hypotheses which were already statistically evaluated in previous
work [12]:

• The increased age-related anisotropy decline in the anterior cal-
losal fiber (CC-Anterior), as compared to the posterior portion of
the corpus callosum, called splenium (CC-Splenium).

• The higher sensitivity to age-related anisotropy decline of supe-
rior fibers (Superior-LF), as compared to inferior fibers (Inferior-
LF).

• The resistance of the cortico-spinal tract to age-related
anisotropy decline.

To confirm the first hypothesis, we begin with selecting the fibers
under investigation. Then, we use these selections as filters in scatter-
plots opposing the age of the subjects and the FA of the fiber segments
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Fig. 3. a) Age opposed to FA for each examination (subject, year). Vi-
sualizing the linear regressor depicts the general declining trend, also
summarized by the negative correlation r-value. b,c,d,e,f) Age opposed
to FA aggregated (across segments and bundles) using a different filter
in each plot, as labeled in the views. c and f show a stronger nega-
tive correlation, while d) and e) show a weaker negative correlation. b)
shows almost no correlation between FA and age for the corticospinal
fiber tracts, which confirms previously published studies, and can be
used as control. In each plot: R is the correlation coefficient, SSE is the
sum of squared residuals of the regression analysis.

in the subjects’ brains. In these scatterplots, shown in Fig. 3, each
point represents a single subject examination (subject, year), while the
other dimensions are aggregated for each of the measures. In the case
of FA, this aggregation is filtered using the selections above. The sys-
tem automatically computes the Pearson’s r value of the two measures
(one aggregated using the filter), the p-value, which, in our case, is
below 0.05 except for the corticospinal tract (that, therefore, does not
show a correlation that is statistically significant) and the regression
line. The regression analysis also provides the regression coefficient
and the sum of squared residuals (SSE) as a metric for the goodness
of fit. These plots confirm that the corticospinal tract is relatively in-
sensitive to the age effect. They also show that the posterior portion of
the corpus callosum is less prone to age effect compared to the frontal
portion. But, in contrast to our expectations, superior fibers are less
prone to age effect than inferior fibers. This could suggest the new
hypothesis that language functions stay normal while the visual in-
tegration might decline. Such hypothesis, however, requires further
investigations.

In the second part of this case study we decide to perform an ex-
plorative investigation of the relation between the anisotropy decline
in the white matter fiber tracts and age. We do this by looking at the
correlation coefficient, as well as the regression coefficient, between
FA and age. The result of this analysis is shown in Fig. 3a, and we dis-
cover that there is a significant negative correlation (-0.406) between
these two aspects. The regression coefficient (-0.001, not normalized)
is small since the data has not been normalized, but the regressor (the
red line) provides a better picture of the trend than the value alone.
Once we discovered that these aspects are worth investigating, we use
the unrolling mechanism described in Section 4.4 to evaluate this re-
lation selectively for each fiber bundle. The system estimates these
statistics for the chosen measure by iterating over a user specified di-
mension, in our case fiberbundle. These estimates are presented in two
bar charts shown in Fig. 4a and 4b. It is easy to spot one fiber (fornix)
that goes against the general declining trend, also showing a bad fit-
ting (sum of squared residual, SSE). We decide to bring this fiber up
for inspection in a scatterplot (Fig. 4c), by using the filtering capabil-
ity of the system. So we manually create a specific selection, defined
by slabbing the data-cube along the fornix coordinate of the fiberbun-
dle dimension and use it to filter the aggregation. In the scatterplot
we detect several zero values (Fig. 4c), probably due to missing data,
which tells that the information for this fiber should be discarded or
the missing data should be removed. We opt for cleaning the data, by
performing a selection with a brush on the scatterplot that excludes the
incorrect values. This leads to opposite results (Fig. 4d), in line with
the overall declining trend (these results are sketched with a dashed
line in the barcharts of Fig. 4a and 4b). We also notice that the corti-
cospinal fiber tracts seem to be particularly insensitive to age decline,
while other tracts have very strong decline (anterior callosal fibers and
inferior longitudinal fasciculi). Finally, we notice two corresponding
tracts, left and right occipitofrontal fasciculi, which are not homoge-
neous, with the right one showing a more pronounced anisotropy de-
cline, even though they are anatomically symmetric to each other. This
finding should be investigated further, to verify the fibers’ geometrical
path along which the measures have been sampled, in order to possibly
formulate a new hypothesis on this phenomenon.

6.2 Neuropsychologic case-study

Jointly with a neuropsychologist, we attempt to verify the relation be-
tween the volume of the frontal regions of the cortex and the perfor-
mance in the Stroop task. We focus on this task since a functional cor-
relation between these brain regions and the Stroop effect has been dis-
covered using functional imaging techniques [6]. Therefore we would
expect that subjects with smaller frontal cortices would perform worse
at the Stroop task.

We begin by opposing the cortical gray matter volume measure to
the scores of the Stroop task (where higher is worse) in a scatterplot
(Fig. 4f). A general declining trend (smaller cortical regions causing
worse performance) is therefore expected, and it is also what we get.
Then we create a selection with the frontal pole cortical area, and filter
the aggregation accordingly. The resulting plot shows a minor increase
in correlation and regressor slope (these values are outlined in red in
Fig. 4e). Such result confirms a mild correlation between the volume
of frontal cortical area and Stroop task performance, but the aggre-
gated result tells us that there must be other cortical regions whose de-
cline is even more correlated to the Stroop task than the frontal cortex.
Therefore we decide to use the unrolling option to get an overview of
how each single cortical region correlates with the Stroop task scores.
The resulting statistics (Pearson’s r and p-value, non-normalized re-
gression coefficient and sum of the squared residuals) are displayed
using a table widget, allowing us to sort the rows by a chosen col-
umn (Fig. 4e, sorted by r-value). Sorting these data by r value unveils
an area, the parahippocampal cortical region, for which no know hy-
potheses have been formulated, but which shows the strongest correla-
tion between its volume and the Stroop task scores. According to the
neuropsychologist, this is a new finding, but something that requires
further investigation because this analysis is done on the raw data, not
corrected for basic skills.
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Fig. 4. a) The correlation coefficient between age and the FA of the fibers. The dimension fiberbundle for the measure FA is unrolled, meaning
that FA is filtered by automatically iterating over a chosen dimension, in this case fiberbundle. Each bar represents the correlation for a specific
coordinate in the fiberbundle dimension. b) The same type of visualization for the regression coefficient. c,d) Scatterplots related to the fornix fiber
bundle, before and after excluding wrong values. f) Stroop task scores related to cortical region volume in a scatterplot. The cortical region volume
is aggregated along the cortical region dimension (called aparc). e) The same analysis after unrolling the cortical region dimension. Each row in
the table reports the correlation and regression results for the data filtered for a single cortical region, reported in the first column. d,c) The same
analyses, but for Stroop task scores and cortical region thickness.

At this point we also wonder whether any relation between the
Stroop task scores and the cortical thickness is present in the data,
as thickness is another measure that has been shown to correlate with
level of cognitive functions [3] We proceed as before, opposing the
cortical thickness measure to the scores of the Stroop task in a scatter-
plot (Fig. 4h). A general declining trend is visible also in this case, but
less strong than with the cortical volume. We then use the unrolling
option to get an overview of how each single cortical region correlates
with the Stroop task scores (Fig. 4g). In this case, the frontal pole
cortical area shows a stronger correlation as compared to the overall
cortical thickness. However, the task performance seems to be even
more affected by other areas, most notably the superiortemporal cor-
tical region. This is also a new finding, which however requires, as
in the previous case, further investigation in order to formulate a new
hypothesis on this phenomenon.

6.3 Assessment of the model
In the third part of the sessions we asked the domain experts the fol-
lowing questions: a) whether or not our prototype system was useful
for data exploration tasks, b) whether or not such system was capable
of answering specific questions, c) whether or not such system was
useful to generate new hypotheses and d) whether or not such system
could potentially replace their current tools.

Both scientists answered positively to question a), stating that such
a tool, able to load and combine in a quick yet flexible way all the
measures from such large studies, would be certainly helpful in data
exploration tasks. This answer was supported by the fact that, in the
current analysis workflow based on data in tabular form and commer-
cial statistical analysis packages, all the work of data combination and
selection has to be done manually for each question to analyze, which
makes data exploration tasks especially cumbersome.

The scientists were also particularly positive regarding question c).

The key aspects that were regarded as most useful in generating new
hypotheses are: having the whole data at hand in one tool, the ease of
use, and being able to fire queries in the tool. Moreover, and what im-
pressed them the most, is to be able to automatically generate relevant
selections in an iterated way while processing the data with a specific
statistical method.

Concerning question b), which is also related to question d), our
system proved to be effective in performing basic multivariate statisti-
cal analyses on the data. However, the domain experts stated to rarely
use only basic multivariate statistics, but rather adding advanced tech-
niques to assess relations between two or more measures. In addition,
the neuropsychologist that was interviewed stated to rarely use the raw
data alone, but often combine multiple measures into more advanced
descriptors (e.g., correcting test results for the basic subject skills).
However, the fast and flexible selection and filtering capabilities that
the presented model offers were highly appreciated, since both the sci-
entists stated to perform selections on the subjects to include in each
analysis based on different parameters that vary from case to case.
The conclusion for question b), and also for question d), was that an
ideal tool would combine the presented model with more advanced
data derivation and statistical analysis tools. This is a good lesson
learnt, and a direction that, in some way, was already taken by having
the R software environment embedded into our prototype system, even
if not all of the requested methods are bound to the prototype yet.

7 CONCLUSION AND FUTURE WORK

Medical cohort studies are an excellent starting point for exploratory
data analysis, since most of the data acquisitions are standardized be-
fore specific hypotheses are formulated. Often, such studies are de-
signed to provide enough data, of very heterogeneous character, such
that a large set of possible hypotheses can be tested on them. Accord-
ingly, hypothesis generation becomes an own challenge, when asso-
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ciated with populations studies. In this work, we have demonstrated
that an exploratory interface, which is capable of flexibly linking up
different aspects of the data even if they are not given with respect to
exactly the same domain, can help to swiftly identify new and pos-
sibly promising research hypotheses. We also showed, that the same
approach is also capable of enabling a first quick analysis of the identi-
fied hypotheses, leading to an accelerated analysis methodology with
respect to such highly rich and versatile data. The prototype system
presented here, however, is still relatively limited in features, but such
an application could potentially benefit from a broad spectrum of func-
tionalities. In future, we plan to continue in this research direction, and
extend the capabilities of this tool.

As future work we also plan to import genotype data for the sub-
jects, that at the time being was not readily available, and to integrate
2D/3D graph views for representing the brain connectivity informa-
tion. We are also trying to obtain a more thorough evaluation of the
system in terms of new requirements, in particular from a statistical
and data-mining perspective. Finally, we plan to include the retrieval
and visualization of patient-specific image data, to assess whether out-
liers originate from the image data, or whether they are the result of an
erroneous derivation process.
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Abstract. Alzheimer disease (AD) at an early stage is characterized by
a synaptic loss and atrophy in the apical layer of the CA1 part of the
hippocampus, the stratum radiatum and stratum lacunosum-moleculare
(SRLM). It was shown in vivo that patients with mild AD exhibit a
reduced thickness of the SRLM.
We propose a new approach to measure SRLM thickness in coronal brain
sections. It is based on the interpolated contour of the manually seg-
mented SRLM and its medial axis. We automatically compute the axis
by combining Voronoi diagrams and methods from graph analysis. While
existing measurement approaches require a mental segmentation of the
SRLM and a repeated local estimate of its center, we obviate the latter.
We evaluate our approach based on coronal T2∗-weighted 7-Tesla MR
images of 27 subjects.

1 Introduction

At an early stage, Alzheimer disease (AD) is characterized by episodic memory
dysfunction. The hippocampus – a brain structure existing in both hemispheres
and being part of the limbic system – plays a crucial role in consolidating episodic
memory [1]. Postmortem studies found that synaptic loss and atrophy in the api-
cal layer of the CA1 part of the hippocampus, the stratum radiatum and stratum
lacunosum-moleculare (SRLM, Fig. 1(a)), coincide with earliest cognitive symp-
toms [2]. Kerchner et al. [3] showed that patients with mild AD exhibit a reduced
SRLM thickness. Their analysis was based on coronal T2∗-weighted images from
ultra-high field 7-Tesla (7-T) MRI. Only ultra-high field imaging provides an in-
plane resolution (< ≈0.5mm) high enough to identify hippocampal subfields
(Fig. 1(b)). Since normal SRLM thickness is about 1 mm, its width covers only
a few pixels. Within each transection of the hippocampus, the SRLM is heavily
quantized and borders to adjacent structures form a step-wise pattern. Since the
CA1 apical neuropil is affected in early stages of AD, a correct measurement of
SRLM thickness could serve as an objective imaging biomarker for AD pathol-
ogy and moreover, contribute to judging the (e.g. protective) effects of physical
or cognitive training in early AD patients as well as healthy older people.
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Fig. 1. (a) Coronal T2∗-weighted Magnetic Resonance image with overlaid ROIs of the
stratum radiatum and stratum lacunosum-moleculare (SRLM, white) and pyramidal
CA1 (black). The upper inset shows the corpus callosum (arrow). Its shape is similar
to SRLM shape. (b) Schematic of the subfields in the hippocampal body.

Two approaches to measuring SRLM thickness have been published. A man-
ual approach was presented by Kerchner et al. [3]. For each hemisphere in two
consecutive slices, the user draws three lines extending over the local width of the
SRLM. The approach is subjective, it is restricted to a subset of the slices that
show the SRLM, and it poorly acknowledges the variance in thickness along the
SRLM. Recently, Kerchner et al. [4] proposed a semi-automatic measurement.
The user first draws in the medial axis of the SRLM in all slices. Orthogonal sig-
nal intensity profiles are then determined at equidistantly sampled points along
a spline that is fit to the user-defined line. A single thickness value is computed
per slice based on the average signal intensity change from the medical axis of
the SRLM to the surrounding subfields. The approach is less subjective but sen-
sitive to the user’s definition of the medial axis. The definition requires a mental
segmentation of the SRLM and a concurrent, repeated local estimate of its cen-
ter. The latter is particularly tedious in regions of very small SRLM thickness
(1-2 pixels). Furthermore, the measured local thickness depends on the signal in-
tensity distribution of the surrounding subfields. SRLM sites being equally thick
may result in different measurement values. This effect is mitigated by averaging
the local intensity profiles but hampers a real local analysis.

The shape of the SRLM in coronal slices is similar to the shape of the corpus
callosum (cc) in mid-sagittal slices (Fig. 1(a), cc in upper inset). An overview of
approaches to measuring callosal thickness is part of [5]. Most approaches rely on
the medial axis of the cc and determine thickness orthogonal to it. We propose a
related SRLM measurement approach which is based on the interpolated contour
of the manually segmented SRLM and the medial axis of this contour, i.e., of
the SRLM. In contrast to [4], we automatically compute the axis. The contour
increases the range of possible measurements, e.g., by area or curvature. Another
advantage is the coherent local computation of SRLM thickness independent of
the signal intensities of surrounding structures. We evaluate our approach based
on two studies comprising T2∗-weighted 7-T MR images of 27 subjects.
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2 Materials and Methods

The focus of this section is on the measurement of the SRLM. Before, we describe
our study data and briefly our SRLM segmentation.

2.1 Study Data and SRLM Segmentation

The data were collected in an ultra-high field 7-T MRI study at the Institute
of Cognitive Neurology and Dementia Research of the University of Magdeburg,
Germany. The study combined a visual learning paradigm with high resolution
functional measurements and very high resolution structural images for 14 sub-
jects. A pre-study with 13 subjects was conducted. For both studies, healthy
young people were recruited (age 25±2, 14 male). MRI data were acquired using
a 7-T MRI system (Siemens, Erlangen, Germany) with a 32-channel head coil.
The high resolution partial structural volume was acquired (T2*-weighted imag-
ing, TE = 18.5 ms, TR = 680 ms, in-plane resolution 0.33mm×0.33 mm, slice
thickness 1.5 mm+25% gap, 45 slices, FOV 212mm×179mm, matrix 640×540),
with a slice alignment orthogonal to the hippocampal main axis. The pre-study
was conducted with the same sequence and similar parameters.

The segmentation of hippocampal subfields was performed for each hemi-
sphere using MRIcron (Chris Rorden, Version 4, April 2011). First, subfields in
the hippocampal body were traced according to [6]. Next, the parahippocampal
regions were delineated. Then, the hippocampal head was segmented into subre-
gions according to [7]. The hippocampal tail was not delineated. Overall, the hip-
pocampus was segmented into subiculum (Sub), CA1-stratum pyramidale (pyr.
CA1), CA1-stratum radiatum/stratum lacunosum-moleculare (SRLM, Fig. 1(b))
and the remaining portion comprising CA2, CA3, and DG (DG/CA2-3). Only
the SRLM part in the hippocampal body is used in the thickness evaluation.

2.2 SRLM Measurement

Our measurement of the SRLM is based on its medial axis. A good survey of
medial axis computation algorithms is part of [8]. The pixel-based medial axis
generated by topological thinning or distance transform algorithms is too coarse
since the width of the SRLM in some regions covers only 1-2 pixels. Surface
sampling methods allow for a more fine-grained determination but require a
representation of the objects boundary by a dense cloud of sample points. Our
measurement algorithm starts by computing this point cloud.

Given the binary mask of the SRLM resulting from segmentation, we process
this mask slice-by-slice (Fig. 2(a)). A 3D measurement is not feasible due to the
considerable slice thickness (1.5mm+25% gap). We start by computing a smooth
contour of the quantized binary mask. A marching squares algorithm with linear
interpolation provides an initial sharp-edged contour. The contour is enhanced
via B-spline interpolation followed by a Laplacian smoothing with displacement
adjustment to avoid shrinkage [9]. The smoothing parameters have been deter-
mined empirically: 10 smoothing passes with a factor of 0.1 and a window of 3
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(a) (b) (c)

Fig. 2. Measurement approach. (a) Computation of the contour (black) of the SRLM
mask (white). (b) Voronoi diagram (net-like structure) of the contour points (circles).
The medial axis (thick polyline) is part of the diagram. The inset shows erroneous side
branches. (c) Ideal medial axis and thickness measurements (thin, orthogonal lines).

points. The final contour is resampled equidistantly with a sample point density
that fulfills the requirements for an accurate medial axis computation [10].

The medial axis is derived from the Voronoi diagram of the sample points
[10] (Fig. 2(b)). A Voronoi diagram divides the space into regions such that each
seed (contour sample point) is contained in a separate region which comprises all
points that are closer to this seed than to any other. The edges of the Voronoi di-
agram, which are completely contained within the SRLM contour, constitute its
medial axis. They are determined based on point-in-polygon tests. The Voronoi
approach is sensitive to noise in the contour. Slight deviations from a perfectly
smooth curve cause short side branches originating from the medial axis (inset
in Fig. 2(b)). Hence, pruning is often carried out as a post-processing step [10].

We suggest an inverse strategy that separates the ideal medial axis MAideal

from the noisy one MAnoisy (Fig. 2(c)). Due to the normally non-branching,
tubular shape of the SRLM within a coronal slice, MAideal is a simple polyline
extending from one end to the other. Its separation is based on the observation
that MAideal corresponds to the longest of the shortest paths between any pair
of terminal vertices of MAnoisy. We treat MAnoisy as an undirected, unweighted,
acyclic graph. Each of the n vertices is a node and an edge exists between two
nodes if they are connected by a line segment in MAnoisy. We describe the
graph by its n×n symmetric adjacency matrix A, whose entries equal 1 if the
two corresponding nodes are connected by an edge and 0 otherwise. Terminal
vertices of MAnoisy are characterized by a single 1 in their corresponding row or
column of A. For each pair of terminal vertices, we find the shortest in-between
path, i.e., along MAnoisy, by Breadth-First Search on A. The longest of these
shortest paths represents MAideal.

To measure SRLM thickness, we equidistantly resample MAideal according
to a user-defined number of thickness measurements (Fig. 2(c)). At each sample
point, we erect an orthogonal line. Its intersections with the lower and upper part
of the SRLM’s contour delimit the local thickness. If a line intersects the contour
more than twice, the two intersections which are on either side of the line and
closest to MAideal are chosen. The Euclidean distance between the intersection
points corresponds to the local thickness of the SRLM.
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3 Results

We have applied our measurement approach to data of 27 subjects. For each sub-
ject, the SRLM of the two hemispheres has been segmented in ≈10 slices resulting
in 594 SRLM contours. The algorithm was set to equidistantly sample SRLM
thickness at 20 locations along the medial axis. All medial axes and orthogonal
lines defining local SRLM thickness were visually verified. Local thickness was
correctly represented in > 95% of the orthogonal lines. Figure 3 shows typi-
cal examples for successful and failed representations, and illustrates the shape
variety of the SRLM. In (a − c), common shape variants and their reasonable
measurements are displayed. The contours in (d− f) represent increasing devia-
tions from the typical SRLM shape leading to incorrect thickness measurements
(thick lines). It can be seen that these errors occur mostly at sites of high bending
or where one part of the contour bends significantly different than the opposite
part. The branchings seen in (g−h) result from uncertainty during segmentation
which is due to similar signal intensities of blood vessels or surrounding struc-
tures. Although a reasonable medial axis can be computed, thickness measure-
ments are disturbed by the second branch and it remains unclear which branch
represents the SRLM. Instead of neglecting individual thickness measurements,
we completely removed cases similar to (d − h) from our analysis (22% of the
contours were removed).

a b c

d e f

g

h

Fig. 3. Successful (a-c) and failed (d-h) evaluations of SRLM thickness. Thick lines
represent unreasonable measurements due to strong local differences in the bending of
the lower and upper SRLM contour parts (d-f) or due to a branching contour (g-h).

The SRLM thicknesses of all subjects had a mean of 0.95mm (σ = 0.17mm)
and showed a very high correlation between both hemispheres (r = 0.93, p <
0.01), which suggests that an individual property of the subjects was indeed
obtained. Kerchner et al. reported thickness values in the range 0.4−0.6mm [4].
The differences to our values are most likely due to their conservative estimate of
where SRLM ends and where surrounding structures begin based on the signal
intensities. While they choose the approximate middle of the unsure transition
zone, we include the entire zone during segmentation.
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4 Discussion

Our method is largely dependent on the individual rater bias during pixel-wise
delineation of the SRLM. However, if either a conservative or a slightly relaxed
segmentation strategy is consistently chosen for all subjects of a study, the bias
should be minimized. Hence, comparing a group of subjects with mild Alzheimer
disease or Mild Cognitive Impairment and a control group is feasible. We aim
at correlating thickness and performance measures of recognition memory tests.
Hereby, differences in thickness between groups and reproducible measurements
are rather important than absolute real thickness values.

The causes of erroneous thickness measurements as illustrated in Figure 3 (d−
f), have been also acknowledged by Herron et al. in measuring the corpus cal-
losum (cc) [5]. However, their proposed solution involves a strict anatomically
based definition of the cc’s center. The computation of a similar center for the
SRLM is hampered by its higher shape variability (Figure 3). A promising so-
lution in regions of high SRLM bending is based on electric field lines and was
presented for measuring the cerebral cortex in 2D histological sections [11].
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Part IV

Perfusion Data

This part of the postdoctoral thesis cumulates the following publications:

Chapter 12 [63] S. Glaßer, S. Oeltze, U. Preim, A. Bjørnerud, H. Hauser, and B. Preim, “Visual
Analysis of Longitudinal Brain Tumor Perfusion”, Proc. of the SPIE Medical Imaging, pp.
86700Z, 2013.

Chapter 13 [28] C. Chalopin, S. Oeltze, B. Preim, A. Müns, J. Meixensberger, and D. Lindner,
“Method for the Evaluation of US Perfusion for Brain Tumor Surgery”, Proc. of Jahresta-
gung der Deutschen Gesellschaft für Computer- und Roboter Assistierte Chirurgie (CU-
RAC), pp. 198-202, 2013.
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ABSTRACT

In clinical research on diagnosis and evaluation of brain tumors, longitudinal perfusion MRI studies are acquired
for tumor grading as well as to monitor and assess treatment response and patient prognosis. Within this work, we
demonstrate how visual analysis techniques can be adapted to multidimensional datasets from such studies within
a framework to support the computer-aided diagnosis of brain tumors. Our solution builds on two innovations:
First, we introduce a pipeline yielding comparative, co-registered quantitative perfusion parameter maps over
all time steps of the longitudinal study. Second, based on these time-dependent parameter maps, visual analysis
methods were developed and adapted to reveal valuable insight into tumor progression, especially regarding
the clinical research area of low grade glioma transformation into high grade gliomas. Our examination of four
longitudinal brain studies demonstrates the suitability of the presented visual analysis methods and comprises
new possibilities for the clinical researcher to characterize the development of low grade gliomas.

Keywords: Brain Tumor Perfusion, Longitudinal Data, Multiple Coordinated View Systems

1. INTRODUCTION

Magnetic resonance imaging (MRI) is used for evaluating brain tumors due to its high soft-tissue contrast.
In addition to morphologic aspects represented by conventional MRI, dynamic susceptibility contrast (DSC)
perfusion imaging enables the characterization of dynamic aspects, in particular the cerebral microvasculature
that is represented by the quantitative perfusion parameter relative cerebral blood volume (rCBV), see Figure 1.
DSC-MRI, in combination with conventional MRI, is a good presurgical indicator for glioma grade and may
identify the most malignant parts of a tumor for guiding stereotactic biopsy as well as to monitor and assess
treatment response and patient prognosis. Gliomas – tumors with a glial cell origin – are the most common
primary brain tumors, varying histopathologically from low grade gliomas (LGGs) to high grade gliomas (HGGs).

Grading of gliomas and thus the differentiation between LGGs and HGGs plays an important role for treat-
ment planning and patient outcome.1 Further, LGGs may transform into HGGs at some point in time, and
an early detection of such a transformation is of significant clinical importance. If a surgical removal or radi-
ation treatment is not possible, e.g., due to the tumor’s location or patient’s request, patients with LGGs are
commonly subject to a life-long MRI monitoring. Here, the clinical research focus lies on the detection of LGG
transformation in longitudinal brain data acquired over several years.

Since tumor growth depends on angiogenesis, i.e., the formation of new vessels and/or the sprouting of
existing vessels, the increased cerebral microvasculature yields elevated rCBV values. Evaluation of rCBV is a
clinical research focus. It is an important indicator for a patient’s survival and gliomas with high rCBV values
have a significantly faster progression time.2 Since HGGs have in general foci of higher rCBV values, and rCBV
correlates with the tumor grade, rCBV is also employed for differentiation between LGGs and HGGs.2–4

For longitudinal studies, rCBV maps of different acquisitions have to be compared, which is a complex and
exploratory analysis task, due to the absence of standardized intensity values and the high variability of MRI
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scanners and patient data. As one challenge, intervoxel correspondence has to be established between scans
of different time steps. This is further complicated by tumor growth and increasing tumor heterogeneity. At
last, MRI scans from longitudinal studies are acquired over a period of several years and thus employ different
scanning protocols, image resolutions, and sequence parameters. This is in contrast to cohort studies, e.g., the
SHIP study,5 where many patients are examined in a short time period and extra care is taken to avoid image
parameter changes. Currently, longitudinal studies are assessed with software intended for the diagnosis of a
patient at one point in time. Hence, no dedicated support for longitudinal studies, i.e., normalization of image
data and visual comparison of data from different points in time, is provided.

In this paper, we present a visual analysis approach for the investigation of longitudinal brain tumor perfusion
studies within a clinical research scenario. The approach comprises a preprocessing pipeline and the visual
analysis framework for the computer-aided evaluation of longitudinal brain tumors. The framework also includes
a new 3D parallel coordinates plot that provides a complete overview of all rCBV values at all time steps and
allows for fast detection of trends.

Figure 1. MRI slices with a tumor (see arrow). For a single voxel (see arrowhead) of the DSC-MRI data, the time-intensity
curve is extracted and converted into the concentration-time curve (see diagrams). From the concentration-time curve,
the parameter CBV is extracted, yielding a CBV map (low values are mapped to blue, high values to red). Note the
varying data size, orientation, and image resolution.

2. RELATED WORK

Basic visualization techniques for exploring tumor perfusion data were presented by Behrens et al.,6 including
color-coded parameter maps. Covarrubias et al.1 employ rCBV parameter maps to specify ROIs with high
rCBV values (also called hot spots), indicating tumor growth and malignancy. Wetzel et al.7 analyze different
methods for creating a representative ROI regarding intra- and interobserver reproducibility, but a gold standard
for a cut-off value between LGGs and HGGs of a ROI’s average rCBV value is still missing.8 Covarrubias et
al.1 suggest an rCBV value of 1.5 ml / 100 g and Law et al.4 1.75 ml / 100 g as cut-off value. These
cut-off values are reported to have high sensitivity but low specificity by Emblem et al.3 They suggest cut-
off values between 3.75 − 5.58 ml / 100 g after minimizing the number of glioma grade misclassifications and
maximizing the average sensitivity and specificity. Furthermore, Emblem et al. present a histogram analysis of
rCBV heterogeneity leading to increased diagnostic accuracy and interobserver agreement. Lupo et al.9 extract
the spatial heterogeneity of a brain tumor’s concentration-time curves to further distinguish microvasculature
characteristics.

For scientific visualizations, a 3D parallel coordinates plot has been presented by Wegenkittl et al.10 The
WEAVE system11 links scientific visualizations with multidimensional statistical representations by brushing
facilities applied to scatter plots. The SimVis framework12 extends this work, and was adapted to the visual
exploration of perfusion data by Oeltze et al.13 Oeltze et al.14 also analyzed longitudinal ischemic stroke cerebral
perfusion data. Kohle et al.15 introduced an adapted volume rendering of breast MRI data that emphasizes
suspicious regions with an appropriate color scheme. Coto et al.16 present a multidimensional view system
with scatter plot-based selections for visual exploration of breast perfusion data, where cutaway views reveal the
suspicious breast tumor in its surrounding. Botha et al.17 present a system for analyzing and exploring medical
multi-field data and integrate techniques from pattern analysis to enhance the data exploration process. For
visual analysis of breast perfusion data regarding perfusion characteristics and tumor heterogeneity, Glaßer et
al.18 and Preim et al.19 applied glyphs and region merging.
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In clinical research regarding neurological impairments, longitudinal studies are becoming a standard ele-
ment.20 So far, visual analysis has seen limited use in medical research, although in many applications the
magnitude and heterogeneity of the data would strongly benefit from these methods. Steenwijk et al.21 apply
visual analysis techniques to cohort study image data to explore parameters across patients. In general, there
is a wide variety of visual analysis techniques for evaluating single perfusion studies. However, specific sup-
port for longitudinal studies is needed for the comparison of different points in time – taking into account that
imaging parameters may have changed. We want to investigate the applicability of visual analysis techniques
to longitudinal perfusion brain studies and investigate rCBV development as well as local tumor heterogeneity
approximated with the correlation of rCBV and relative cerebral blood flow (rCBF).22

3. APPLICATION SCENARIO AND IMAGE DATA

This section introduces clinical research questions regarding LGGs, their development, and the image data for
which the visual analysis techniques were developed.

3.1 Clinical Research Questions

The comparison of rCBV maps is the most important question of our clinical partners. As a prerequisite,
preprocessing has to be carried out to incorporate rCBV maps from different perfusion scans. Since LGG
transformation relates to increased tumor heterogeneity, the evaluation of the tumor’s heterogeneity based on
quantitative perfusion parameters is another task. Tumor transformation is also related to tumor growth, which
should be visualized. In summary, there are four clinical research question and a last question covering our
application that consists of the problem-solving components:

1. How can a comparative rCBV evaluation be achieved for a longitudinal brain perfusion study?

2. When does the LGG transformation start based on the evaluation of rCBV maps?

3. How is the tumor’s heterogeneity characterized in terms of local rCBV and rCBF correlation?

4. How does the tumor grow and develop during the longitudinal study?

5. How can visual exploration and analysis of longitudinal studies be carried out?

3.2 Image Data

Our case study consists of a selection of four patients fulfilling two special conditions: First, each patient had a
confirmed diagnosis of an inoperable grade II glioma, i.e., an LGG, and was thus monitored over several years.
Second, during this time period, a transformation into an HGG took place. We evaluated the brain MRI data
of these four patients resulting in four longitudinal studies L1 – L4. For each study, up to five MRI protocols
including perfusion DSC-MRI sequences, T1 pre- and post-contrast, T2, and Fluid Attenuated Inversion Recovery
(FLAIR) MRI were acquired. Typical sequence parameters for the DSC-MRI perfusion studies are gradient-echo
echo planar imaging (GRE-EPI) with a temporal resolution TR = 1.4−1.72 s, echo time TE = 30−52 ms, image
matrix = 128×128, slice thickness = 6.5 mm, in-plane resolution = 1.8 mm ×1.8 mm, number of slices = 12−19,
number of acquisitions = 50− 75, and a total acquisition time ranging from 73 s to 119 s.

For each study, the point in time of the LGG transformation was estimated by an experienced radiologist.
The estimation is based on all MRI protocols – instead of the single perfusion scan – of all time steps for
each study. L1 was acquired over almost three years at four time steps t1 − t4 for monitoring of an LGG. The
transformation into an HGG started between t1 and t2. The patient of study L2 underwent surgical intervention
and the remaining LGG was monitored for four years. MRI data was acquired at five time steps and the LGG
transformation started between t3 and t4. L3 contains an oligodendroglioma, a glioma type exhibiting foci of
high CBV values irrespective of the tumor grade.23 MRI scans have been acquired at four time steps during
two and a half years. The transformation started between t3 and t4. L4 has been acquired at five time steps to
supervise an LGG over a time period of three and a half years. The transformation into an HGG started after t3.
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4. VISUAL ANALYSIS OF LONGITUDINAL BRAIN TUMORS

Our computer-aided diagnosis of longitudinal brain tumor studies includes two innovations: a preprocessing
pipeline for the MRI perfusion scans and the framework containing the adapted visual analysis techniques.

4.1 Preprocessing Pipeline

Our preprocessing pipeline facilitates the comparison of a longitudinal study’s different perfusion datasets (with
possibly different image parameters) and comprises five steps, which are described in the following.

4.1.1 Co-registration of Perfusion Datasets

Motion artifacts in brain perfusion imaging typically result from patient movement. With the skull as static
reference object, rigid registration algorithms allow for co-registration of brain perfusion data. We co-registered
each study’s perfusion DSC-MRI datasets to the study’s DSC-MRI dataset acquired last in time with Rview
(rview.colin-studholme.net), employing a rigid registration algorithm.24 Thus, a concurrent analysis of all per-
fusion scans is supported.

4.1.2 Extraction of CBV and CBF maps

To assess CBV and cerebral blood flow (CBF), the distribution of the contrast agent is analyzed. The contrast en-
hancement results in time-intensity curves for each voxel (see Fig. 1). We employ the software package nordicICE
(NordicNeuroLab, www.nordicneurolab.com) to transform these curves into concentration-time curves, applying
the regularized singular value decomposition for deconvolution.25 The arterial input function was extracted from
the arteria cerebri media.26 Contrast agent leakage correction was carried out due to possible contrast agent
extravasation in regions of blood-brain-barrier disruption,27 caused by the tumor. CBV is approximated as the
area under the concentration-time curve and defined as the total volume of blood traversing a given region of the
brain, measured in ml of blood per 100 grams of brain tissue. CBF is defined as the volume of blood traversing
a given region of brain per unit time, measured in milliliters of blood per 100 grams of brain tissue per minute.
Although in ischemic stroke diagnosis, CBF is thoroughly analyzed, the role of this parameter in brain tumor
diagnosis has not been as extensively studied as CBV.1 We investigate the correlation between CBF and CBV
for tumor heterogeneity evaluation. While a small decrease in CBF is expected as a consequence of normal
aging in a longitudinal study, the transformation from LGG to HGG is expected to involve significant stronger
changes. However, a gold standard for CBF and CBV evaluation seems hard to establish, due to different imaging
modalities, age, and gender.8

4.1.3 Normalization of CBV and CBF maps

For comparison of CBV and CBF values from DSC-MRI scans, normalization has to be carried out. We employ
the general approach, where CBV and CBF maps are normalized with the averaged white matter’s values of
the contralateral side,7 yielding relative CBV (rCBV) and relative CBF (rCBF) values. Visual inspection and
ROI placement are realized with MeVisLab (www.mevislab.de), a platform for medical image processing and
visualization.

4.1.4 Exclusion of Vessels and Adapted Smoothing

Next, vessels were excluded from the rCBV and rCBF maps, since brain vessels exhibit higher values than the
surrounding tissue. They can be identified and removed based on the earlier and stronger contrast enhancement
in the DSC-MRI data. We extracted a vessel mask with nordicICE based on the cluster analysis of the estimated
perfusion-related parameters to separate vessels (both arteries and veins) from other tissue. For each rCBV and
rCBF map the corresponding vessel mask is applied. Afterwards, a 3 × 3 modified average filter is applied to
smooth the data as well as to reduce holes caused by the vessel mask. This filter empirically accounts best for
rCBV changes due to noise or subtle artifacts. The modified filter only averages over non-vessel voxels in the
3 × 3 neighborhood of the current filter kernel. Hence, outliers, i.e., isolated voxels with rCBV values higher
than a certain threshold, are removed. We employed the .995 quantile of each rCBV map as cut-off value.
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4.1.5 Extraction of Tumor Masks

In a last step, a tumor mask for each of the perfusion datasets was created. Hence, the T2 and FLAIR images
were co-registered to the perfusion datasets acquired at the same point in time of the studies with Rview. Next,
binary tumor masks based on hyperintense areas in T2 and FLAIR data for each study’s time step were extracted
and applied to the rCBV maps. Tumor mask creation was manually carried out and validated by an experienced
radiologist.

4.2 A Framework for Visual Analysis of Longitudinal Brain Tumors

Based on the preprocessed longitudinal scans, we developed a framework for the longitudinal evaluation of brain
perfusion data. The framework contains color-coded 2D and 3D visualizations, a local heterogeneity map, and
a parallel coordinates plot view.

4.2.1 Direct 2D and 3D Visualizations

The 2D and 3D visualizations directly map each voxel’s rCBV value to color and are explained in more detail
below.

2D rCBV Maps. For direct rCBV extraction, a standard 2D slice view of the brain tumor with voxelwise
rCBV is presented. All tumor slices of a study’s scans are provided. We apply a modified rainbow color scale
from blue to red, see Figure 2, based on the color scale suggested by Wetzel et al.7 Red highlights critical rCBV
values (values > 5), and suspicious rCBV values greater than 1 are mapped to cyan. Although rainbow color
scales do in general lack an intuitive visual interpretation of the data’s order, they support visual clustering.
Hence, regions with mostly red colors (and thus high rCBV values) or blue regions can be observed. Based on
the rCBV maps a selection of voxels, – the rCBV threshold selection – can be defined. This selection consists of
all voxels with an rCBV value greater than a user-defined threshold and can be combined with all other views.

Figure 2. 2D rCBV maps of all slices (horizontally aligned) of study L1 for all four time steps (vertically aligned) of the
study. At t1 and t4, the tumor is covered by four and six slices, respectively. Note the hot spot with high rCBV values
(arrow). The encircled regions exhibit lower rCBV values.

3D Overview. The 3D overview provides a direct volume rendering applying the same color scale (see Fig. 2)
for highlighting tumor voxels. A linear opacity transfer function assigns α-values of 0.2 to low rCBV values
≤ 1 and α = 1 to rCBV values ≥ 5. The brain (extracted from the perfusion dataset with thresholding) is
displayed as isosurface context object and the tumor is revealed by cutting the isosurface, see Figure 3. The 3D
overview visualizes the tumor’s progression as well as its spatial localization in the brain. However, only limited
information about a tumor’s malignancy can be provided, since no exact quantification of rCBV hot spots is
possible. The 3D overview reveals the spatial variability of rCBV hot spots. They may occur at slightly different
positions across all scans of a longitudinal study due to tumor growth (see Fig. 3).
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Figure 3. 3D view of tumor growth of L1 at t1 (left), t2 (center), and t3 (right). The brain is depicted as context object
and the tumor is emphasized with a cut-out technique.

4.2.2 Visual Analysis of Local Tumor Heterogeneity

In clinical research, tumor growth and malignancy are associated with increased tumor heterogeneity due to
necrosis mainly in the tumor center. Also, some neoangiogenetic tumor parts are expected to exhibit increased
heterogeneity. For an assessment of local heterogeneity, approximated as correlation of rCBV and rCBF, we
extract the local correlation coefficient (LCC) measure.28 An important property of LCC is the independence
of scaling of the data value range. Thus, the LCC maps are independent of rCBV and rCBF normalization
factors, which had been used to normalize CBV and CBF maps. We apply LCC to the preprocessed rCBV and
rCBF parameter maps, yielding a color-coded 2D LCC parameter map, see Figure 4. LCC values of 1 indicate
an increasing linear relationship. Values ≈ 0 illustrate a missing linear dependency. We apply a heat color map
from dark red to bright orange to map increasing values of LCC.

Figure 4. LCC parameter maps of L1. Heterogeneous areas are mapped to dark red. The encircled regions at time steps
t3 and t4 exhibit low rCBV values, see Figure 2.

4.2.3 The rCBV Profile Parallel Coordinates Plot

A parallel coordinates plot allows for the exploration of multivariate data, where each axis presents a data
dimension. We adapt the parallel coordinates plot as follows: For each voxel, the rCBV values over time (i.e.,
the scans at different time steps of a study) are extracted, yielding rCBV curves. In Figure 5, the rCBV profile
view of L1 is presented (the same color scale is applied, recall Fig. 2). According to discussions with our clinical
partners, the rCBV changes, i.e., the voxel’s rCBV differences between two subsequent time steps were of great
interest resulting in the rCBV change profile view, see Fig. 5. Hence, shadows support depth perception, and
the rainbow color scale’s hue changes support the differentiation between rCBV values. The data’s order can
be easily inferred from the curves’ height. In addition, height lines support direct quantitative rCBV or rCBV
change extraction, whereas curve differentiation is supported by contour lines and Fresnel shading.

To obtain groups of similar curves, we tested different strategies to sort the curves. We empirically determined
the best result (i.e., the lowest amount of occlusions of curves in the background and the easiest detection of
trends) with a sorting based on the squared differences of each rCBV change curve’s integral. The order is
applied to both rCBV profile views. Tumors with larger extents and thus a larger amount of voxels yield a
higher number of rCBV change curves, which may lead to visual clutter. To reduce the curve number, the user
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Figure 5. The rCBV profile view (left) with all voxels’ rCBV curves. The rCBV values are color-coded (a) and height
lines support direct measurement (b). Differentiation of curves is supported by dark contour lines (c), with Fresnel
shading attached to (d). The rCBV change profile view presents the rCBV parameter curves’ differences (right). Thus,
all differences are mapped to zero for t1.

can apply the rCBV threshold selection, and only curves that have at least one rCBV value greater than this
threshold are included. In addition, the rCBV profile views allow for the rCBV curve index selection. Hence,
all voxels with a corresponding curve index inside the selected range of curve indices are combined. The curve
indices are sorted depending on the rCBV profile view. Although the rCBV profile views allow for simultaneous
display of all voxels’ rCBV changes, the spatial connectivity of the voxels is lost, as the voxels’ order purely
depends on the rCBV curves, and not on their spatial position.

4.3 Combination of Visual Analysis Techniques

The presented techniques can be combined via the rCBV threshold selection and the rCBV curve index selection.
Then, a tumor voxel is only mapped to color or represented as curve when it is part of all chosen selections.
Furthermore, the 2D views can be combined with lenses to allow for simultaneous evaluation of rCBV and LCC
values.

5. EVALUATION

In this section, the studies L1 − L4 were discussed with two physicians regarding the clinical research questions
(recall Sec. 3).

5.1 How can a comparative rCBV evaluation be achieved?

With the presented pipeline, a concurrent evaluation of each study’s perfusion scans can be achieved. User
interaction is only necessary during ROI placement in the contralateral healthy brain tissue. The pipeline can
be applied to all brain DSC-MRI datasets independent of MRI scanner or specific scanning protocol parameters.
Also, distortion of a ROI’s rCBV values due to vessel voxels is prevented.

5.2 When does the LGG transformation start based on the evaluation of rCBV maps?

In general, rCBV maps are evaluated with the hot spot method. If the hot spot’s average rCBV value is greater
than a certain threshold, e.g., > 1.5,1 the tumor is expected to be an HGG. The transformation of the LGG
of L1 started between t1 and t2, since a hot spot occurs at t2 with an average rCBV value > 1.5. The patient
of L2 was monitored after surgical intervention. In Figure 6(a), the development of the recurrent LGG can be
observed: First, there is a lesion dominated by radiation necrosis and low rCBV values. Next, the rCBV view
at t4 reveals some rCBV hot spots, whereas at t5 increased extents of hot spots with higher rCBV are visible.
The reported rCBV differences of oligodendrogliomas in comparison to other brain gliomas is reflected by L3,
since foci with high rCBV values do occur at all time steps (see Fig. 6(e)). Study L4 comprises an LGG, whereas
between t3 and t4 more hot spots with increased rCBV values occur, (see Fig. 6(i)). However, in clinical research,
it is not always clear at which extent and number of hot spots and which threshold of rCBV a glioma is graded
as HGG.1,3, 4 Furthermore, the normalization of rCBV with a possibly too low or too high normalization factor
(extracted on the contralateral brain side) could strongly hamper this analysis and ROI placement suffers from
interobserver variability.7 These limitations also hold for our parameter maps.
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5.3 How is the tumor’s heterogeneity characterized in terms of local rCBV and rCBF
correlation?

To support stereotactic biopsy, the most malignant tumor parts have to be determined. These parts are charac-
terized by areas with increased angiogenesis and therefore with highest rCBV values. Furthermore, our clinical
research partners presumed increased heterogeneity and thus uncorrelated rCBV and rCBF values for these
parts. The LCC maps of L1 are presented in Figure 4 and of L2-L4 in Figure 6. Hence, also the combination of
LCC maps and rCBV maps via lenses is demonstrated. Two facts can be observed: First, with increased tumor
growth, heterogeneous areas in the tumor center become visible, which may be caused by necrotic areas. Second,
at the tumor’s boundary, uncorrelated areas of rCBV and rCBF exist. During tumor growth, necrotic areas in
the tumor center show up with typical low rCBV values, see the encircled regions in Figures 2 and 4. Necrotic
tumor parts typically exhibit low rCBV values. For stereotactic biopsy, these parts should be explicitly spared.
In contrast, areas with high rCBV and high heterogeneity in terms of LCC should be aimed at. These areas can
be defined by applying an rCBV selection first. Next, a ROI is set in the remaining rCBV map (see Fig. 6(c)).
Another finding of the LCC maps is the lack of relationship between LGG transformation and the amount of
LCC approximated heterogeneity.

5.4 How does the tumor grow and develop?

For a qualitative overview of tumor growth, the 3D view is provided (see Fig. 3, Fig. 6(d)(h)(l)). Hence, no
quantitative evaluation is possible. Quantitative information is provided in the 2D parameter maps and the rCBV
profile views. Furthermore, the rCBV profile views provide a fast overview of significantly changing rCBV values
and thus a possible LGG transformation. This relationship is illustrated in Figure 6(m)-(o), where the rCBV
values and the rCBV changes of L4 suddenly increase after t3, matching the estimated transformation point in
time. Due to the large tumor extent of L3, a reduction of the number of curves is necessary, see Figure 6(p)-(r).
Still, no rapid rCBV value increase can be observed due to the oligodendroglioma type.

5.5 How can visual exploration and analysis of longitudinal studies be carried out?

A possible user scenario is carried out in the following way: First, the preprocessing pipeline provides co-
registered rCBV parameter maps. Now, the clinical researcher starts with the spatial 3D cut-out view for a first
overview. Next, the datasets are analyzed in the rCBV profile curve view and the 2D rCBV maps. Hence, the
transformation time step can be estimated by examining the rCBV curves, the rCBV change curves, or scalar
values of rCBV. The analysis involves combinations of the rCBV threshold selection and the rCBV curve index
selection (see Figures 6((c),(g),(k), and (o)) to determine the most malignant tumor part for tumor grading or
stereotactic biopsy.

In summary, for all tumors but the oligodendroglioma of L3, the transformation time step (which initially
was estimated also based on structural MRI sequences) could be approximated with the application employing
only the perfusion datasets (recall Sec. 3.2).

6. CONCLUSION

We presented an application for the evaluation of longitudinal brain perfusion studies focusing on the development
of LGGs within the context of clinical research. A preprocessing pipeline enables the simultaneous evaluation of
tumor localization, size and rCBV values of all perfusion scans. The visual analysis techniques include linked 2D
parameter maps, a 3D overview and the new 3D rCBV profile view that represents all rCBV values of all voxels
at all time steps. Once the user examined the LGGs temporal development and the point in time of a starting
LGG transformation, the analysis can be restricted to foci with high rCBV values and local tumor heterogeneity.
Combination of the different views as well as selecting a set of voxels which may represent the most malignant
tumor part is carried out with lenses in the 2D views, the rCBV threshold selection, and the rCBV curve index
selection. The resulting voxel set can be used for ROI placement for tumor grading or stereotactic biopsy.

Without our application, a clinician would have to mentally integrate scans of the same study acquired at
earlier time steps to evaluate the LGG progression. In addition, the application prevents vessel voxels to be inte-
grated in ROIs and thus avoids distortions of rCBV averaging. Our clinical partners do especially like the rCBV
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change profile view depicting each voxel’s rCBV changes, due to their ability to visualize the temporal develop-
ment. Hence, the tumor changes are analyzed for a retrospective evaluation. However, with the heterogeneity
analysis based on the LCC, additional information is provided to guide a stereotactic biopsy.

Our framework is a prototype application for clinical research and may be adapted to longitudinal studies of
breast and prostate tumors, where perfusion data is acquired for diagnosis and treatment monitoring. Due to
the growing number of longitudinal medical image data and the general need of comparison of sequenced image
data, e.g., cohort study data, we expect an increasing demand for visual exploration and analysis of this kind of
medical data.
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[16] Coto, E., Grimm, S., Bruckner, S., Gröller, E., Kanitsar, A., and Rodriguez, O., “Mammo Explorer: An
Advanced CAD Application for Breast DCE-MRI,” in [Proc. of VMV ], 91–98 (2005).

CHAPTER 12. Visual Analysis of Longitudinal Brain Tumor Perfusion 187



[17] Blaas, J., Botha, C. P., and Post, F. H., “Interactive Visualization of Multi-Field Medical Data Using Linked
Physical and Feature-Space Views ,” in [IEEE EuroVis ], 123–30 (2007).
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Figure 6. Presentation of the visual analysis techniques applied to L2-L4. To improve readability, the first and the last
2 tumor slices of L2 and L3 are not presented. In (a), (e) and (i) the rCBV maps with corresponding LCC maps in (b),
(f), and (j) are depicted. In (d), (h), and (l), the 3D overviews are presented.
The combination of (a) and (b) via a lens for a selected slice (marked with *) is depicted in (c), revealing a hot spot
with increased local heterogeneity at the tumor’s boundary. In (a) and (d), increased rCBV values and larger hot spots
(marked with arrows) at t4 and t5 are revealed. In (g), the combination of (e) and (f) via a lens for a selected slice
(marked with *) is depicted, revealing a hot spot with increased local heterogeneity in the tumor’s center. In (c) and (g),
the rCBV threshold selection (rCBV threshold = 1.5) is applied, mapping lower rCBV values to gray. In (k), the rCBV
curve index selection is applied to the slices marked with * in (i). Only the voxels, which were selected in the rCBV
profile view in (o), are mapped to color. The region marked with an arrow exhibits only moderate rCBV, but these voxels
belong to the selected curve indices. Thus, this tumor part may be one of the most malignant parts, since these voxels
correspond to rCBV curves with the highest curve indices, i.e., the highest integrals. The rCBV profile view (m) and the
rCBV change profile view (n) reveal increased rCBV values and changes, marked with arrows, after t3 – matching the
estimated transformation starting time. In (o), an rCBV curve index selection is carried out by applying the selection
plane (see arrows) such that from the 600 rCBV curves with highest integral 300 curves are selected. The selection is
then applied to all other views, see the rCBV map in (k).
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Abstract:
 
This paper presents a method to evaluate intraoperative ultrasound (iUS) perfusion imaging of brain tumors acquired 
during resection surgeries. It consists in comparing the iUS perfusion with the standard preoperative MR perfusion. In 
a first step the iUS and MR perfusion data are represented in a common frame with the same pixel size. This is per-
formed using image registration methods to achieve a pixel-wise correspondence between both data sets. In a second 
step the perfusion data are analyzed and visualized with the SimVis framework. It is possible to select region of interests 
of the tumor, such as the margins or the center, and to perform a region-based comparison between the iUS and MR 
perfusion data. The pipeline is demonstrated for one representative surgical case. 
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1 Problem 

Ultrasound (US) perfusion is an imaging modality used to analyze the perfusion of human tissue. This technique is in 
comparison to MR perfusion less heavy and can be easily used in the operating room. An ultrasound contrast agent con-
stituted of gas micro-bubbles is injected and its absorption by the tissue is qualitatively (visually) or quantitatively ana-
lyzed in the temporal sequence of the US images. The quantitative analysis consists in plotting the image intensities 
measured at a given pixel over time and in computing different perfusion parameters from the obtained time-intensity 
curve. The most common parameters are the peak intensity, the time to peak, and the area under the curve correspond-
ing to the cerebral blood volume. So far t here is no standard for the choice of the most relevant parameters and their 
visualization [8]. 
An important medical application of perfusion imaging is its ability to differentiate lesions from healthy tissue. Ultra-
sound perfusion imaging is nowadays routinely performed for the detection and operation of hepatic lesions [10, 13]. 
Cerebral US perfusion is also beneficial for the transcranial examination of brain tumors [5, 6, 11, 12], and was moreo-
ver tested intraoperatively during tumor surgeries [4]. In comparison to B-mode ultrasound imaging, intraoperative US 
(iUS) perfusion enables to depict more accurately the tumor margins and is therefore a promising control tool for the 
detection of possible remnants of tumor tissue. This imaging modality needs however to be still evaluated in the context 
of brain tumor surgery. In this paper, we present a method for the evaluation of intraoperative US perfusion by compari-
son with a gold standard, namely preoperative MR perfusion. 

2 Material and Methods 

Perfusion data acquisition 
One day before the brain tumor surgery, preoperative MR data of the patient are acquired. The examination includes 3D 
contrasted T1-weighted MR anatomical data (mostly isotropic) and 3D+t T2*-weighted MR perfusion data. The MR 
perfusion data consists of several volumes acquired at different points in time rendering the contrast agent accumulation 
visible. The in-plane resolution is 1.75 mm x 1.75 mm, the slice thickness is 5mm, and t is 40. 
The tumor surgery is guided using a sononavigation system (Sononavigator, Localite, Sankt Augustin, Germany) and a 
conventional US device (AplioXG, Toshiba, Medical Systems Europe, Zoetermeer, Netherland). At the beginning of the 
intervention, the anatomical MR volume is registered with the patient based on anatomical landmarks and the result is 
improved using a head surface registration technique. At any moment the surgeon is able to acquire an iUS volume by 
scanning the region of interest using a tracked 2D US transducer. The acquired volume is superimposed on the preoper-
ative MR data on the monitor of the sononavigation system. 
During the surgery, right after the skull opening (craniotomy), a bolus of 1.5 ml of US contrast agent (SonoVue, Bracco 
s.p.a., Milano, Italy) is injected into the patient. Based on US B-mode images of the tumor, the surgeon localizes with 
the US transducer the cross-section plane situated at the tumor middle. The position of the probe in the patient coordi-
nate system is identified through the navigation system. A temporal sequence of 2D iUS perfusion images is then ac-
quired with at a rate of 19.0 frames per second over about one minute. The in-plane resolution is 0.35 mm x 0.35 mm. 
 

iUS-perfusion and MR-perfusion data registration 
Three main difficulties hamper the comparison of the iUS-perfusion data with the preoperative MR-perfusion data: 

o The different data dimension: 2D+t data and 3D+t data; 
o The differences in image size and in-plane resolution; 
o The orientation of the data in different coordinate systems. 

 
We propose a registration pipeline establishing a pixel-to-pixel correspondence between the iUS-perfusion data and a 
reformatted slice through the MR-perfusion data. All steps have been implemented in a prototypical application within 
the MeVisLab framework (MeVis Medical Solutions AG). 
 
Step 1: preregistration. The cross-section plane corresponding to the 2D iUS perfusion data is registered with the pre-
operative anatomical 3D MR data using the transform matrix Msono provided by the sononavigation system. However, 
the tumors in both data are offset due to the brain shift after craniotomy. 
Step 2: brain shift correction. The tumor margin is manually delineated in the 2D iUS perfusion data (Figure 1, left) and 
in the anatomical 3D MR data resulting in two sets of contour points: PiUS (2D) and PMR (3D). An Iterative Closest Point 
(ICP) algorithm is used t o register PiUS to PMR [1] using a rigid transformations and an isotropic scaling. It provides a 
transformation matrix Mshift, which together with Msono enables us to find the plane in the anatomical 3D MR data corre-
sponding to the acquisition plane of the iUS perfusion data. 
Step 3: plane correspondance. Then the anatomical 3D MR data are transformed into the MR perfusion frame. The MR 
data are acquired within the same protocol and are therefore represented in the same coordinate system but with differ-
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ent in-plane resolution. A rigid registration is employed using a Newton-type optimizer and normalized mutual infor-
mation to cope with the non-linear image intensity relations [2] and provides the transformation matrix Mperf. The matrix 
multiplication Mperf x Mshift x Msono yields the final transformation matrix Mresult, which transforms the original iUS per-
fusion data into the corresponding plane in the MR perfusion data. 
Step 4: pixel-wise correspondence. The MR perfusion data are resampled along the transformed iUS image plane lead-
ing to 2D+t MR perfusion data with the same x-y dimensions and the same in-plane resolution as the iUS data (Figure 
1). A Trilinear interpolation is employed. A valid pixel-to-pixel correspondence in the iUS and MR perfusion images is 
obtained. Only the number of points in time still differs. 
 

 
Figure 1: Registered intraoperative, contrast-enhanced Ultrasound (iUS) data (left) and preoperative MR perfu-
sion data (right). The MR perfusion data has been resampled along the registered iUS image plane. The tumor 
margin is manually delineated in the iUS data and employed for registration as well as visualization purposes. 

Intraoperative US-perfusion and MR-perfusion comparison 
We compare iUS-perfusion and MR-perfusion based on perfusion parameters derived from the corresponding time-
intensity curves [8]. Two pre-processing steps are carried out before parameter computation. First, the signal intensities 
of the T2*-weighted MR perfusion data are converted to contrast agent concentration [9]. This is a prerequisite for the 
determination of perfusion parameters, which are at least proportional to real quantitative hemodynamic parameters, 
such as cerebral blood volume and cerebral blood flow. Second, the iUS data is smoothed in the spatial as well as in the 
temporal domain to reduce the effects of strong speckle noise. A mean filter kernel of size 5 x 5 x 19, where 19 is the 
number of points in time, has been empirically determined as appropriate. 
After the pre-processing, a set of seven perfusion parameters is computed pixel-wise from the iUS and the MR perfu-
sion data [8]. The pre-processing and the parameter derivation have been implemented in MeVisLab. The fourteen 2D 
perfusion parameter images are aggregate d for a c oncurrent interactive visual analysis and a co mparison within the 
SimVis framework [3]. SimVis is a multiple coordinated view framework where each view is equipped with interactive 
drill-down operations for focusing on data features. Two classes of views are integrated: physical views, such as direct 
volume rendering, show information in the context of the spatiotemporal observation space while attribute views, such 
as scatter plots and histograms, show relationships between multiple data attributes. The user may drilldown the data by 
selecting interesting regions of the observation space or attribute ranges leading to a consistent highlighting of this se-
lection in all other views (brushing-and-linking). SimVis has been applied to perfusion data in breast cancer diagnosis 
and in the diagnosis of ischemic stroke and Coronary Heart Disease [7]. 

3 Results 

This pipeline was tested on data of a patient with a glioblastoma multiform located in the left frontal area of the brain. 
The iUS perfusion data reveals the enhanced tumor margins as well as a necrosis at the tumor center (Figure 1, left). For 
this patient T2*-weighted MR perfusion data are available. 
A typical analysis session with SimVis is shown in Figure 2. The upper view shows the tumor in its spatial context. A 
gradient image of the point in time employed for tumor delineation in the iUS data serves as background (Figure 1, 
left). Blood vessels as well as the tumor itself appear elevated due to their high contrast agent accumulation at this point 
in time leading to a strong separation from the surrounding tissue, i.e. a high gradient. The whole tumor extent is indi-
cated by a highly transparent layer in front of the gradient image. The current attribute selection is colored according to 
the area under the curve derived from the iUS data. The selection has been defined in the histogram view (lower mid-
dle). The histogram shows the results of an Euclidean distance transform, which determines for each pixel of the tumor 
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the distance to the surrounding tissue. High distances (dark bars) are brushed by means of a rectangular attribute selec-
tion thereby restricting the analysis to the center of the tumor. Moving the brush inside the histogram triggers an instant 
update of all other views and allows for a seamless inspection of tumor zones from the center to the margin. 
The lower left scatter plot opposes the area under the curve of the iUS (x) and the MR (y) data. Each image pixel is rep-
resented by a colored dot. The transparency of each dot is modified with respect to the frequency of the underlying at-
tribute pair. The current selection is rendered dark. Its shape illustrates the correlation of the chosen parameter between 
the two imaging modalities. The lower right parallel coordinates plot opposes three more pairs of perfusion parameters. 
The vertical axes are alternate ly associated with the parameter derived from the iUS and from the MR perfusion data, 
respectively. Each image pixel is re presented by polyline connecting the axes. The current selection is rendered dark. 
The parallel coordinates facilitate a visualization of the entire high-dimensional space of perfusion parameters. From the 
course of the polylines, correlations as well as data clusters may be inferred. The current selection may be further re-
fined by brushing the scatter plot and/or the parallel coordinates. 

4 Discussion 

The brain tumor tested here has an irregular shape, which is of benefit to the registration step. The 
appropriateness of the ICP algorithm for nearly spherical tumors, such as metastases, has to be investigated. 
Moreover, the success of the registration method is dependent on the manually performed tumor segmentati-
ons. It would be interesting to test the influence of slight changes to the tumor delineation. Further, it should 
be investigated whether perfusion parameters are best derived after resampling the MR perfusion data or be-
fore. In the latter case, they would be computed for each voxel  

 

Figure 2: Concurrent, interactive visual analysis of perfusion parameters derived from intraoperative con-
trast-enhanced Ultrasound data (iUS) and preoperative MR perfusion data. The user may select and inter-
esting range of parameter values within one or more of the attribute views (lower row) causing a colored 
emphasis of the associated tumor part in the spatial view (upper row).
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and the resulting parameter volumes would then be resampled along the iUS image plane. So far, a mean filter was used 
to smooth the iUS perfusion data. Alternatively, fitting the perfusion curves with a gamma variate function could be 
more appropriate. This could attenuate as well the motion artifacts due to hand jittering during the intraoperative acqui-
sition. Finally, the possible selection of further regions of interest in the image data such as blood vessels should be 
added. 
 

5 Conclusion 

In this paper, we presented a pipeline for the evaluation of intraoperative US perfusion data of patients with brain tu-
mors. The pipeline consists of registration steps and an interactive visual analysis step. It facilitates a comparison of the 
perfusion parameters of the iUS perfusion data with those of the MR perfusion data based on a pixel-wise correspond-
ence between the data. The implementation of the visual analysis step enables the user to select regions of interest of the 
tumor according to its anatomy, for example the margin or a possible necrosis, and according to its features, i.e. the per-
fusion parameters. Testing the pipeline on more patient data is required to improve the registration steps and the visuali-
zation and analysis of perfusion parameters according to clinical purposes. 
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Survey of Glyph-based Visualization Techniques
for Spatial Multivariate Medical Data

Timo Ropinski, Steffen Oeltze and Bernhard Preim

Abstract

In this survey article, we review glyph-based visualization techniques which have been exploited when visualizing spatial multi-
variate medical data. To classify these techniques, we derive a taxonomy of glyph properties that is based on classification concepts
established in information visualization. By considering both the glyph visualization as well as the interaction techniques that are
employed to generate or explore the glyph visualization, we are able to classify glyph techniques into two main groups: those
supporting pre-attentive and those supporting attentive processing. With respect to this classification, we review glyph-based tech-
niques described in the medical visualization literature. Based on the outcome of the literature review, we propose design guidelines
for glyph visualizations in the medical domain.

Keywords: Glyphs, medical visualization, multivariate data

1. Introduction

Data sets acquired in the medical domain, contain a multitude
of information that provides a huge potential for diagnosis and
individualized therapy planning. However, to exploit this po-
tential, the data needs to be interpreted efficiently. In the past,
mainly the increasing resolution of the scalar volume data sets
posed a challenge for medical visualization. Algorithms had to
be developed in order to extract and emphasize structures of in-
terest. Today, also the multiple variables which can be derived
from different modalities or time steps, pose a challenge when
interpreting visualizations. When dealing with 3D data sets, as
done in this article, additional problems arise, as for instance
occlusion handling or choosing an appropriate projection.

One essential example, where multivariate data sets accrue is
the 4D ultrasound acquisition of the human heart, which re-
cently became a routine proceeding. With this method it is
possible to derive multiple variables during one examination,
i. e., information regarding the structure of the heart as well
as direction and amount of blood flow. Another example are
data sets acquired with multimodal medical scanners. When,
for instance combining positron emission tomography (PET)
with computed tomography (CT) it becomes possible to ob-
tain an integrated visualization of metabolism activity within
a high resolution structural context. To address the visualiza-
tion challenges posed by these multivariate medical data sets,
glyph-based techniques are a viable option [1, 2].

Glyphs are considered as symbolic or iconic representations
of one or more variables of a data set. They are usually geomet-
ric objects, whose visual representation can be altered through
changing the glyph properties. By using a parameter mapping
function (PMF), the variables that have to be represented can be
associated with one or more properties of a glyph, e. g., shape,
size or color. The parameter mapping can either be continuous

or discrete. When interpreting glyph-based visualizations, the
visual representation of individual glyphs as well as the over-
all structure given by the arrangement of all glyphs can be ex-
ploited [1, 2]. Bürger and Hauser describe glyphs as just one
visualization technique for multi-variate data [2]. They men-
tion the benefit that a large number of data dimensions can be
incorporated and the mapping can be used to reflect semantics.
Another advantage is the ability to combine glyphs with other
visualization techniques. On the other hand continuity is not
given, and thus the data set depicted by the glyphs is only vi-
sualized in a discrete manner. Therefore, the visualization de-
signer should carefully review the visualization requirements
before using glyphs.

In this article, we describe and classify the glyph-based tech-
niques exploited when visualizing spatial multivariate medical
data. Ward classifies different glyph placing strategies and pro-
poses rules for their usage in the context of information visu-
alization [1]. In this article, we restrict ourselves to the review
of glyph-based visualization techniques for medical data sets.
In contrast to most applications in information visualization,
in medical visualization the spatial embedding of the glyphs
is of major interest. In almost every case, the data is regu-
larly sampled, whereby for each sampling point either one or
a set of scalar variables are present. We propose a taxonomy of
glyph properties specifically designed for medical visualization
that is based on findings from the perception literature. Rather
than classifying glyph techniques with respect to their technical
properties, we address the way they communicate the informa-
tion to be visualized. This is essential since in medical diag-
nosis time is usually the limiting factor, and thus an efficient
communication is essential. The described taxonomy extends
the taxonomy proposed by Ropinski and Preim [3]. In particu-
lar, we now also consider the findings from higher-order tensor
glyphs which play an important role in the literature. Further-
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more, we introduce a more strict differentiation between pre-
attentive and attentive glyph properties. Thus, we introduce the
appearance property as a pre-attentive glyph property. These
new considerations lead to a concise set of usage guidelines for
glyph-based medical visualizations, which we believe has the
potential to improve future glyph applications in the medical
domain.

After discussing our glyph taxonomy in the next section, we
will describe the usage of glyphs in selected medical applica-
tion areas in Section 3. There, we will cover visualization of
cardiac MRI data, and diffusion weighted MRI (DW-MRI) data
in general. Based on the best practice we have identified in
our literature review, we propose some usage guidelines in Sec-
tion 4, before concluding the paper in Section 5.

2. Glyph-Based Medical Visualization Taxonomy

Efficiency as well as accuracy of information processing play
a crucial role in clinical practice, and therefore an intuitive as-
sociation between the visualization of data and their meaning is
important. Glyph representations are not only used in medical
research. It has also been shown in user studies that their use
can be beneficial in the medical diagnosis [4]. However, due
to the time constraints during a diagnosis, it is of great inter-
est that the most important of these associations can be done
in a very short time frame. Semiotic theory concentrates on
signs and how they convey meaning. According to semiotic
theory, stimuli are processed in two phases [5]. The first phase
is the pre-attentive one, where impulses are perceived in par-
allel and instantly (within 250 ms) as one entity. Within this
phase facts that can be easily perceived are extracted, for exam-
ple the overall structure of a visualization, strong differences in
shape, and strong differences in color [6]. In the second more
goal-driven phase of the perception process the visualization is
analyzed sequentially, i. e., parts of the visualization are identi-
fied and observed more detailed, one after another. Due to the
conscious nature of this phase, we refer to it as attentive phase
in the remainder of this article. According to Treisman, the
initial pre-attentive phase is the major step towards improved
comprehension [7]. This theory is supported by recent find-
ings in fMRI-based brain research [8]. Thus, visualization de-
signers should choose the pre-attentive stimuli wisely in order
to communicate the desired information effectively. In fact,
most glyph-based visualizations exploit pre-attentive stimuli,
such that the distribution of glyph size, shape and color as well
as the glyph aggregation aid visual comprehension. Attentive
stimuli are mainly considered in glyph-based visualizations by
exploiting interaction metaphors. Thus, after the pre-attentively
perceivable information is extracted, the user can interactively
explore the glyph visualization. This explorative process is also
reflected in Shneidermans overview, zoom, filter out, details-on-
demand concept that describes a general explorative task to be
performed through these four steps [9].

Therefore, our taxonomy that is based on the preliminary
work presented in [3], allows to distinguish between pre-
attentive stimuli (Section 2.1) and attentive stimuli processing
through appropriate interaction metaphors (Section 2.2). To be

Figure 1: We consider parameter mapping and glyph placement as the two main
groups of glyph properties, which are perceived pre-attentively.

able to incorporate also future glyph-based techniques, we do
not consider entire glyph visualizations, but regard different as-
pects as glyph shapes, parameter mapping or placement, which
are integrated into the taxonomy.

2.1. Pre-Attentive Stimuli
Pre-attentive stimuli, relevant for glyph-based visualization,

can be classified with respect to glyph shapes as well as glyph
appearance, such as color, transparency and texture (see Fig. 1).
Furthermore, the glyph placement strategies have an influ-
ence, since the spatial distribution can also be perceived pre-
attentively. These pre-attentive stimuli can be exploited only in
order to extract basic features of objects in the display which
include colors, closure, line ends, contrast, tilt, curvature, and
size [7]. A quantitative analysis occurs in the attentive process-
ing phase which we address in Section 2.2.

2.1.1. Glyph Shape
The shape of a glyph is the main characteristic and it is im-

portant that it can be perceived easily and unambiguously [10].
Since the perception of shapes as well as spatial relationships
is more accurate than the perception of quantities depicted by
colors [11], the glyph shapes, and also glyph placements (see
Section 2.1.3), are primarily used to convey information. We
distinguish two main groups of glyph shapes:

1. Basic glyph shapes are geometric objects which can be
modified by changing their geometric properties, such as
size or orientation. Wide-spread examples are spheres,
cuboids, and ellipsoids.

2. Composite glyph shapes are composed of the basic glyph
shapes. Composite glyph shapes require a more special-
ized mapping function, i. e., parameters usually cannot be
mapped to geometric properties as radius or length. They
are often used to display multivariate data, whereby each
variable can be communicated using another property of
the composed building blocks.

2
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Figure 2: The mapping function (left) maps a parameter to the size of a glyph
(right). Depending on the continuity of the mapping function, its reconstruction
can be rather challenging without having a legend.

Regarding the complexity of composite glyph shapes, we
assume that mainly basic glyph shapes benefit from the im-
proved perception of shapes and spatial relationships in the
pre-attentive phase, and consequently discuss composite glyph
shapes within Section 2.2.

Continuous and discrete mapping. For both basic and
composite glyph shapes either a continuous or a discrete map-
ping can be used in order to communicate information based
on the glyph’s properties. Ropinski et al. described variations
of mapping functions [12]. They point out that also a step
mapping function can be used in order to allow a better dif-
ferentiation of the values to be visualized. Such a mapping is
shown in Fig. 2, where glyphs representing different data val-
ues are shown next to the respective PMF. The mapping type
should always be application-driven. For instance, to support
the decision process in therapy and diagnosis, a discrete map-
ping might be appropriate, where color could be used to classify
tissue states, e. g., benign suspicious, malign. In contrast, when
quantifying perfusion, the whole range of scalar values might
be of interest. When using a spherical glyph, such a scalar data
value can be continuously mapped to its radius (recall Fig. 2).
Discrete mappings often better support a quantitative analysis.
Since a perspective projection is used in many cases, the size of
a glyph cannot be measured in image space, without consider-
ing the perspective distortion. While color scales are sufficient
to enable the interpretation of color-coded information, a simi-
lar concept is not sufficient to show the meaning of glyph sizes.
Only a tendency can be expressed by using such a scale.

As mentioned above, it must be also ensured that the shapes
are distinguishable independent of the viewing direction. Su-
perquadrics do not only satisfy the criterion of unambiguous
perception [10], they can also be used to map a multitude of
variables (see Fig. 3(a)). According to Barr’s definition of su-
perquadrics [14], they are specified besides their size based on
two parameters α and β, which influence their roundness. In
Fig. 4, an ellipsoid and a toroid superquadric shape are shown
with varying α and β parameters. Thus, when considering their
size as another glyph property, ellipsoid superquadrics provide
three degrees of freedom (DoF) for parameter mapping and
toroid superquadrics provide four DoF for parameter mapping,
since the radius of the tube can be additionally exploited for
parameter mapping. For both cases, the glyph orientation can

(a) (b)

Figure 3: Superquadrics are unambiguously perceivable [10] (a). Glyphs show-
ing diffusion directions are packed in order to remove undue visual emphasis
of the regular sampling grid of the data and to illustrate larger-scale continuous
features [13] (b). (Images courtesy of G. Kindlmann.)

(a) (b)

Figure 4: Superquadric glyph shapes can convey multiple variables by changing
their α and β parameter. This variation influences the roundness of the ellipsoid
(a) and the toroid superquadric (b) along different principle directions.

be considered as additional DoF. In contrast, a spherical shape
only provides a mapping with one DoF, given by the radius.

2.1.2. Glyph Appearance
Besides a glyph’s shape, its appearance is the property most

commonly used to convey information. In the context of this ar-
ticle, we refer to the combination of color, transparency and tex-
ture as glyph appearance. Similar to the shape-based parameter
mapping, the mapping of values to the glyph appearance can
also be either continuous or discrete. When using a continuous
color mapping, an absolute quantification is difficult to achieve
because differences in color are harder to perceive than for in-
stance spatial distances [11]. Thus color perception can only be
used to get an overview during the pre-attentive phase, i. e., lo-
cal maxima and minima as well as gradients may be identified.
In the following attentive phase, color scales can assist the user
when interpreting the visualization. Due to the relatively high
occurrence of color blindness, a color scale is preferable, which
not only varies in hue, but also in luminance.

A common extension of color-coding is to employ trans-
parency. Transparency, however, makes the perception of oc-
clusion relations more difficult. Since occlusion is one of the
strongest depth cues, and psychophysical experiments indicate
that spatial perception is improved when using multiple depth
cues [15], the use of transparency is expected to hamper the vi-
sual perception of objects [16]. Therefore, transparency may
not be used for quantification either. In contrast it may be used
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(a) (b)

Figure 5: Feature-driven placement of glyphs within two data sets, where the
glyphs are oriented according to the surface normal. Toroidal glyphs aligned
to the surface of the skull (a). Glyphs depicting PET intensities as positioned
on the surface of the human heart extracted from simulated CT data [12] (b).
To emphasize potentially interesting regions an inverse parameter mapping is
used.

to de-emphasize less important glyphs or to depict uncertainty.
To communicate more complex information through the glyph
appearance, as for instance directional information, also tex-
tures can be used.

2.1.3. Glyph Placement
To achieve a beneficial glyph visualization, also the glyph

placement is crucial. Ward has already proposed a taxonomy
for glyph placement strategies in the context of information vi-
sualization [1]. Some concepts of his taxonomy can be trans-
ferred to medical visualization, whereas some concepts should
be omitted. In our opinion, neither a data-driven nor a structure-
driven approach for glyph placement should be exploited in
medical visualization (data-driven placement is based on the
data dimensions and structure-driven placement on the relation-
ship between data points), and thus both can be omitted. In
contrast, in most medical applications, a reproduction strategy
as described in [5] is exploited. Thus, glyphs are either placed
based on the underlying regular grid, or based on the location
of features present in the data set. Therefore, we distinguish
between data set-driven and feature-driven placement. Place-
ment on the regular grid is a data set-driven placement strategy,
while the isosurface placement [12] is a feature-driven place-
ment strategy (see Fig. 5). Both placement strategies are usually
combined with a spatial context and may contain overlapping or
non-overlapping glyphs.

Avoiding image space clustering. When choosing a data
set-driven placement, the underlying structure of the regular
grid usually has a major influence on the visualization. Thus
it can unintentionally emphasize or even feign a non-existent
glyph aggregation. However, there is a variety of techniques,
which help to avoid this inadvertent effect of the underlying
grid structure. Laidlaw et al. [17] proposed a jittered placement
in order to reduce the aliasing introduced by the regular grid.
Similarly, Meyer-Spradow et al. proposed a random distribu-
tion with relaxation, in order to get a uniform glyph distribu-
tion, when using feature-based glyph placement [4]. Bokinsky
presented data-driven spots, which are used to display multi-
ple scalar fields [18]. These spots are colored Gaussian splats,
which are placed on a jittered grid. A more sophisticated ap-

Figure 6: We consider composite glyph shapes, glyph legends and interactive
techniques as the three main groups of glyph properties, which are relevant
during the attentive processing.

proach has been proposed by Kindlmann and Westin [13]. They
exploited a particle system in order to generate a packed glyph
placement, which combines the continuous character of a tex-
ture with the used glyph technique (see Fig. 3(b)).

2.2. Attentive Stimuli

While the techniques described in the previous subsection
primarily provide a first impression, the techniques described
in this subsection allow to get into detail and possibly derive
quantitative results. Thus, besides the composite glyph shapes
mentioned above, we mainly focus on glyph legends and glyph
interaction, which are integrated into our taxonomy as shown
in Figure 6.

2.2.1. Composite Glyph Shape
In comparison to basic glyph shapes, composite glyph shapes

(recall Section 2.1.1) may communicate more complex in-
formation in terms of dimensionality and arbitrary mappings,
whereby the DoF for a parameter mapping is highly dependent
on the type of glyph.

We consider directional glyphs as a subset of composite
glyphs. When using directional glyphs, the semantic of the
visualized data values is taken into account and is expressed
by means of the glyph shape, e. g., an arrow is used to com-
municate a direction of movement. In medical visualization,

(a) Customizable glyph (b) Profile flag glyph

Figure 7: Composite glyphs can be customized in order to depict multiple data
values [19] (a). More complex information can be visualized by integrating
projection surfaces into composite glyphs [20] (b). (Images courtesy of M.
Kraus and M. Mlejnek.)
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directional glyph shapes may be used to visualize blood flow or
tissue movement.

Composite glyph shapes are frequently used in information
visualization [21, 22]. In scientific visualization, Kraus and Ertl
have proposed a system that allows non-programmers to intu-
itively customize composite glyphs [19]. With their system, the
user can generate a composite glyph by selecting shapes from a
provided set of basic shapes, and configure the orientation and
scaling of each shape to be dependent on the data values. An ex-
ample glyph generated using their system is shown in Fig. 7(a).
In medical visualization, the profile flag glyph has been pro-
posed as a combination of basic geometric primitives combined
with a surface used to project more complex information (see
Fig. 7(b)) [20]. The glyph consists of several basic primitives
and allows an efficient exploration of knee MRI scans. It has
a projection surface for displaying a profile through the scan,
while the base cone shows which part of the scan is consid-
ered (see Fig. 7(b)). Emphasizing their attentive nature, profile
flags have been proposed together with probing-like interaction
metaphors: One or two glyphs are manually positioned to visu-
alize the data value at a desired position. Further extensions of
this glyph technique are described in [23].

2.2.2. Glyph Legend
To aid the interpretation of visually displayed information,

often graphical legends are exploited. In many cases these leg-
ends are restricted to represent a color scale annotated with the
according range of values. Alternatively, often symbolic maps
are used as graphical legends, where a symbol is defined as a
certain feature shown in the visualization. In glyph visualiza-
tion, legends have to be considered as a hybrid between graph-
ical and symbolic legends. On the one hand, the legend should
allow the user to mentally reconstruct the parameter mapping,
on the other hand, it might be also helpful to display glyphs for
certain values which define an important threshold. Thus, with
such a legend, the user is able to visually compare the glyphs
shown in the current visualization with characteristic glyphs in-
cluded in the legend [12] (see Fig. 8). However, since glyphs
need to be visually matched with the glyph legend, absolute
quantification is still difficult. Additionally, when certain pa-
rameters are mapped to a glyph’s size, this might be influenced
by the perspective distortion, making the visual matching of
equally sized glyphs contained in the legend even more diffi-
cult. A typical glyph legend is given by multiple rows, each
depicting the range of values for one glyph property. Thus, a
glyph legend implicitly depicts the DoF of the used PMF.

2.2.3. Glyph Interaction
We consider the probing-like repositioning of glyphs as well

as the interactive modification of the parameter mapping as the
most important interactions influencing the attentive processing
of glyph visualizations.

Repositioning glyphs. Many glyph visualization techniques
exist, where the initial glyph placement can be interactively
modified by moving one or two proxy glyphs through the data
set [20, 24]. These glyphs, which are also referred to as probing
tools [25], adapt their visual appearance based on the PMF to

the new location they are moved to. Thus, repositioning glyphs
can be compared to using a color picker tool.

Sigfridsson et al. have proposed such glyphs for tensor field
visualization, where the glyphs can be positioned within a con-
tinuous field representation, in order to get quantitative values at
the desired position [26]. A more complex probing glyph, is the
previously mentioned profile flag glyph described in [20] (recall
Fig. 7(b)). To allow a semi-quantitative analysis, two profile
flags can be visualized and repositioned simultaneously such
that their visualization is comparable. Thus, it has to be distin-
guished between single and multiple probing glyphs, which can
be repositioned.

Parameter mapping modification. In comparison to repo-
sition individual glyphs, interactively modifying the PMF is
much less frequently considered in the literature. Only a few
efforts have been undertaken in order to support interactive pa-
rameter mapping [27]. Instead, most researchers have focussed
on how glyphs can be visualized when a certain parameter map-
ping is present [19, 10, 28, 12]. However, generating such a pa-
rameter mapping is crucial and should also be interactive. Es-
pecially because different glyph representations may be devel-
oped with the goal to emphasize certain features. With glyph
filtering, it is possible to display only glyphs, which satisfy a
certain selection criterion. For instance, in the context of dif-
fusion tensor imaging (DTI) visualization, it would be possible
to visualize only glyphs exceeding a certain level of fractional
anisotropy. Another example would be blood flow visualiza-
tion, where it might be desirable to exclude glyphs representing
values above a certain speed level. In all cases, filtering has a
major influence on the overall glyph distribution. Modifying
this glyph distribution can be used to direct the user’s attention,
or to emphasize critical data values. Thus, glyph filtering could
alternatively be also considered as a glyph placement strategy,
since less meaningful glyphs are omitted from display. While
most filtering techniques are performed automatically by the
system, the user should also have the possibility to filter glyphs
by changing the PMF.

3. Applications

In this section, we describe medical application areas, in
which glyph-based visualization techniques are exploited. The
goal is not to give a comprehensive overview of the described
glyph techniques. Instead, we pick out DW-MRI and cardiac
visualization as prominent examples. An overview on stress
and strain tensor glyphs in non-medical domains can be found
in [29].

Table 1 gives an overview of the applications described in
this section. It relates the techniques to our taxonomy, by list-
ing their most important properties, as the modality of the visu-
alized data, the used glyph shapes, the glyph placement and the
used parameter mapping.

3.1. Diffusion Weighted MRI Visualization
In medical visualization, DW-MRI is probably the domain

where the usage of glyphs has been most intensively inves-
tigated. DW-MRI exploits that the diffusion rate of water
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Figure 8: Glyph legends help with the interpretation of a glyph visualization [12]. Legends can be especially helpful when dealing with discontinuous mapping
functions as shown in the two bottom rows of Figure 2.

Table 1: A listing of the most important glyph properties used in the applications described in Section 3: the modality of the visualized data, the used glyph shapes,
their placement and the used parameter mapping.

Modality Glyph Shape Glyph Placement Parameter Mapping Reference
DTI spherical harmonics grid higher order tensor to shape [30]
DTI HOME - higher order tensor to shape [31]
DTI ellipsoids grid one tensor value to glyph size [17]
DTI stroke layers random all tensor value to shape and color [17]
DTI superquadrics grid eigenvector and eigenvalue to shape and orientation [10]

DW-MRI deformed spheres grid deformation depicts diffusion direction [28]
DTI ellipsoids interactive eigenvector and eigenvalue to shape [26]
DTI lines interactive eigenvector and eigenvalue to length and direction [26]
DTI superquadrics packing eigenvector to color [13]
DTI Gabor patches grid eigenvector to color, anisotropy to transparency [32]

DW-MRI ellipsoids grid deformation to color [33]
PET/CT superquadrics feature-driven interactive [12]

MRI cuboids & custom data set-driven peak enhancement to color, Up Slope to size [34]

molecules allows to derive information about the structures
of the underlying tissue. However, glyphs are only suitable
for getting a first impression immediately after the acquisition.
Glyph visualizations cannot be exploited during a neurosurgical
intervention since glyphs do not explicitly show the underlying
fibers which must not be affected during an intervention.

Laidlaw et al. have proposed glyph techniques for the repre-
sentation of DTI data derived from the mouse spinal cord [17].
They exploited an array of ellipsoids, where the shape of the el-
lipsoids present one tensor value, whereas their size is equal due
to an introduced normalization. Their second technique used
multiple layers of varying brush strokes, to represent all tensor
values. The authors state that the ellipsoids are easier to inter-
pret, while the brush stroke visualization is more quantitative.
Integrated approaches of stream- and glyph-based techniques
have been proposed by Hlawitschka and Scheuermann [30] as
well as Chen et al. [35].

Kindlmann proposed superquadric glyph shapes to convey
the principal eigenvectors of a diffusion tensor in order to de-
pict the microstructure of white-matter tissue of the human
brain [10]. The distinct glyphs are placed at a regular grid and
controlled by a fractional anisotropy threshold in order to min-

imize visual clutter. Jankun-Kelly et al. [36] have evaluated the
use of four different glyph visualizations for depicting traceless
tensor data. They could show, that among the tested techniques,
superquadric glyphs led to lower total error and lower response
times. Their approach, that has been originally developed for
nematic liquid crystal alignment tensors, is not based on the
offsets of the eigenvalues, but on physically-linked metrics.

Domin et al. criticize that most glyphs proposed for DTI
visualization are not sufficient [28]. The major drawback is
that the used glyphs cannot convey the possibly arbitrary dif-
fusion directions, and the data is usually reduced to 6 DoF in
the modeling stage. Several approaches avoid this limitation
by scaling vectors on the sphere based on the diffusion coef-
ficients [37, 38, 28]. Fig. 9(a) shows the approach by Domin
et al. [28]. However, it should be investigated how far the de-
formed sphere geometry can be perceived without introducing
a cognitive overload.

Sigfridsson et al. have presented a hybrid approach for
visualizing tensor fields [26]. Their approach integrated an
overview of the field, which is generated through adaptive fil-
tering (see Fig. 9(b)). While this provides the context, glyphs
can be used in the attentive phase in order to get more detailed

6

204 CHAPTER 14. Survey of Glyph-Based Visualization Techniques for Medical Data



information. Therefore, the glyphs can be positioned freely.
To avoid the perception of false glyph aggregation in DTI

data, Kindlmann and Westin have proposed a glyph packing
algorithm [13] that exploits a modified particle-system (recall
Fig. 3(b)). Hlawitschka et al. have also proposed a packing
algorithm for the same application case [24] that achieves fast
clustering. However, they describe the packing on a single slice
only, which can be moved through the volume.

Since DTI data are primarily analyzed with respect to the
direction of principal diffusion, it is reasonable to use trans-
parency to convey the amount of anisotropy [32]. With this
strategy, directional information is only pronounced if it is reli-
able. The use of transparency requires some background infor-
mation, either a constant background color or anatomic infor-
mation, such as a T2-weighted image (see Fig. 10(a)). Benger
et al. also employ the human shape perception capabilities in
particular with respect to pattern discrimination [32]. As a gen-
eral strategy, they suggest to map tensorial quantities to tex-
ture patterns. More specifically, they employ the Gabor filter
(see Fig. 10(b) and [39]), which conveys directional informa-
tion well. A Gabor patch is mapped to the plane formed by
the principal and median eigenvector (the y-direction of the
Gabor patch is aligned with the principal eigenvector). Map-
ping tensor information to Gabor textures is optionally com-
bined with the previously defined mapping to color and trans-
parency. Thus, anisotropy characteristics are mapped to color,
transparency, and texture (see Fig. 10(b)), while directional in-
formation is only visualized if it is assessed as reliable based on
the relation between the eigenvalues.

3.2. Higher-Order Tensor Glyphs
While most DTI visualization approaches focus on second-

order tensor fields derived from MRI data, some techniques
have been also developed for higher-order tensor data [40, 41,
42, 43]. Hlawitschka and Scheuermann presented a technique
for higher order tensor fields [30]. They exploit the analogy
of higher order tensors and spherical harmonics, and propose a
glyph visualization inspired by this analogy. Thus, the authors
generate glyphs of symmetric fourth order tensors by deform-
ing a subdivided icosahedron based on the pre-computed spher-
ical harmonic representation. Schultz and Kindlmann have pre-
sented another glyph approach for higher-order tensors [31].

(a) Deformed spheres (b) Probing glyphs

Figure 9: Deformed spheres are used to visualize diffusion directions [28] (a).
Glyphs can be positioned within a continuous tensor field representation [26]
(b). (Images courtesy of L. Linsen and A. Sigfridsson.)

(a) The components of the
principal eigenvector are
mapped to the red-, green-
and blue-component
of color. Transparency
indicates linear anisotropy.

(b) Semitransparent colored Gabor
patches are used to depict anisotropy
from tensor data. If the tensor is
isotropic (top corner of the triangle),
transparency is 100%. Red indicates that
planar anisotropy dominates, whereas
green indicates predominantly linear
anisotropy.

Figure 10: Usage of color and transparency for DTI visualization. (Images
courtesy of W. Benger.)

The proposed glyphs are colored based on the parameters to
be visualized and allow to emphasize the depicted maxima val-
ues by introducing sharp edges, at the cost of smoother shapes
around the minima. Therefore, the proposed glyphs are re-
ferred to as higher-order maximum enhanced (HOME) glyphs.
A composite DTI glyph has been also proposed by Westin et
al. [44]. For each glyph, they combine a sphere, a disc and a
rod. The radius of the disc is determined based on the largest
eigenvalue, while the radius of the disk is determined by the
second largest eigenvalue. Finally, the length of the rod is set to
twice the largest eigenvalue.

3.3. Cardiac Visualization

In this section, we address glyph-based visualizations for as-
sessing functional and structural parameters of the heart. Choi
et al. present such glyphs specifically designed for cardiac visu-
alization [45]. They propose a technique for accurately measur-
ing ventricular volume, mass, wall thickness, and wall motion,
based on a 3D shape reconstruction through fitting a deformable
model. The data extractable from the model can be visualized
by using glyph techniques also in a quantitative manner. With
their technique, different variables can be mapped to properties
of the glyph allowing a comprehensible visualization of these
multivariate data sets.

Wünsche and Lobb introduced a glyph-based technique to
visualize wall motion of the heart [33]. Based on a generated
finite element model, they position ellipsoid glyphs to show the
movement of the myocardium. Each glyph is divided into six
regions, whereas the region color encodes whether a dilation or
a contraction is present.

Ropinski et al. have proposed easily modifiable superquadric
glyphs which they also apply to cardiac visualization [12]. With
their surface-based placement strategy, they are able to position
the glyphs directly on the myocardium. Thus, the high resolu-
tion CT data provides the morphological context, while the low
resolution PET data is depicted by using the glyphs (see Fig. 5).
By choosing appropriate PMFs, it is possible to guide the user’s
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(a) Grid placement (b) 17-segment model placement

Figure 11: Glyph visualizations developed to support the analysis of cardiac
MR data. Perfusion parameters are encoded voxel-wise by cuboid glyphs (a) or
segment-wise by a more sophisticated glyph shape (b) [34].

attention to regions of interest, e. g., areas of the myocardium
with low PET activity.

Oeltze et al. exploited glyphs to visualize cardiac MRI
data in order to also allow an exploration of the structure
and the function of the myocardium [34]. Cuboid-shaped
glyphs map two parameters describing the perfusion of the my-
ocardium [46]: peak enhancement to color and Up-Slope to
size. The glyphs are placed voxel-wise for each slice of the
perfusion scan and are integrated in a visualization of the left
ventricle and scar tissue derived from MRI late enhancement
data (see Fig. 11(a)). Glyphs may also be aggregated accord-
ing to the 17-segment model of the American Heart Association
(AHA). A more sophisticated glyph shape represents a segment
of the myocardium (see Fig. 11(b)). Another approach has been
presented by Ennis et al. [47]. They have described the use of
superquadric glyphs, which allow a better differentiation of the
fiber direction as compared to ellipsoidal glyphs.

4. Usage Guidelines

In this section we propose guidelines for the usage of glyph
techniques. It should be mentioned that apart from the work by
Spradow et al. [4] and Jankun-Kelly et al. [36] to our knowledge
no other formal evaluation of glyph techniques has been con-
ducted so far. Therefore, these guidelines should rather be con-
sidered as conjectures derived from the best practice described
in the literature. We do not state that these guidelines are com-
plete or describe a theory, but they distill the observations, we
have made during our literature review. We believe they can be
a helpful condensation for the interested reader. Therefore, we
have derived the following six usage guidelines for the integra-
tion of glyph-based techniques in medical visualization, which
in our opinion reflect the current state of the art:

1. Parameter mapping functions should

• visually emphasize important variables.

• incorporate the range of values.

• guide the user’s focus of attention to encode rele-
vance.

• incorporate semantics of the data.

• be mentally reconstructable based on the visualiza-
tion.

2. Glyph placement should be well-balanced and avoid un-
wanted glyph aggregations in image space, e. g., by apply-
ing jittering or relaxation procedures.

3. Glyph shapes should be unambiguously perceivable inde-
pendent of the viewing direction.

4. Glyph visualizations should support quantitative analysis
in the attentive phase.

5. Hybrid visualization should be exploited to provide the
anatomical context.

6. When using the glyph size to convey information, perspec-
tive projections should be avoided.

Most of these guidelines are focused on choosing an appro-
priate PMF, which is crucial to allow comprehensive glyph vi-
sualizations. According to the first guideline, the most impor-
tant variables should be more prominent in the final visualiza-
tion. When, for instance, using a torus-like glyph, the color is
better perceivable than the roundness of the glyph. Since the
range of values present in a data set has a major impact on the
right choice of a mapping function, this range should be con-
sidered carefully when specifying the function. Furthermore,
an appropriate parameter mapping can also be used to guide the
user’s focus of attention. In Fig. 5, an inverse parameter map-
ping is used, i. e., low PET activity is mapped to thick glyphs,
while high PET activity is mapped to thin glyphs. By using this
inverse mapping, the region of interest, namely the region with
reduced PET activity, is visually emphasized. Additionally, the
parameter mapping should be intuitive, i. e., in cases where a
glyph property fits semantically to a parameter to be mapped,
it should be assigned to this parameter. For instance, in cases
where a parameter represents the dimensions of a feature, it
should be mapped to the glyph’s size. Intuitive mappings are
presented in [48].

Also colors should be chosen wisely when specifying a color
PMF. In some applications, widely accepted color mappings are
present. These should be considered when exploiting glyph
techniques. For instance, PET data sets are often visualized
exploiting a heat map, i. e., a yellow-to-red gradient. In cases,
where no widely accepted color mapping is available, the map-
ping should be chosen by considering color perception, and
eventually the semantics of the variables to be visualized. When
taking into account the opponent color model [49], two-colored
gradients can be generated, whereas the two colors are per-
ceived as lying along the opposite directions of a coordinate
axis. According to the opponent color theory, the three color
axis are specified by red and green, blue, and yellow as well as
black and white. However, it should also be considered that the
displayed colors influence spatial comprehension. The chro-
madepth technique [50] supports depth perception based on the
fact that the lens of the eye refracts colored light with different
wavelengths at different angles. Although this effect can be sup-
ported by diffraction grating glasses, watching images without
instrumentation can also result in a depth effect.
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Furthermore, for all parameter mappings it is important that
the mapping supports a mental interpolation, i. e., the user is
able to mentally reconstruct the PMF when viewing distinct
glyphs. This can be supported when equal perceptual distances
match distances in the range of values which is true when spec-
ifying colors in the CIE color model.

As expressed by the second guideline, glyph placement is
also important for the comprehension of glyph-based visual-
izations. Since a regular placement on the grid may convey
non-existent aggregations unintendedly [12, 13], this has to be
avoided. Therefore, when using a data set-driven placement
in combination with regular grids often occurring in medical
imaging data, at least a jittering has to be applied [17]. More-
over, when a texture-like appearance is desired, glyph packing
strategies are sufficient in order to avoid misleading aggrega-
tions [13]. In general, the placement should be chosen in a
way that the observer can perceive existent aggregations eas-
ily. Thus, also the glyph size and the question whether glyphs
are overlapping or non-overlapping have to be taken into ac-
count. Since the glyph size and thus the spacing between adja-
cent glyphs is dependent on the resolution of the data set, gen-
eral guidelines cannot be proposed.

Independently of parameter mapping and placement, the
used glyph shapes should also satisfy certain criteria to allow a
comprehensible visualization. First of all, glyph shapes should
be unambiguously perceivable independent of the viewing di-
rection as stated by the third guideline. Another important cri-
terion possibly resulting in improved perception is the usage of
intuitive glyph shapes. Similar to choosing an intuitive param-
eter mapping, a glyph shape can be chosen which represents
the semantics of the variables to be shown. For instance, when
considering tissue motion or blood flow direction, directional
glyphs such as arrows are sufficient.

While the previous guidelines are focussed on the pre-
attentive phase, in some cases a quantitative analysis in the
attentive phase is desired. For these application cases, interac-
tion metaphors, e. g., probing tools [26], and glyph legends [12]
should be integrated, as expressed by the fourth guideline.

Furthermore, especially when choosing a rather large glyph
spacing and thus a lot of context would become visible, the fifth
guideline should be considered, i. e., the visualization should
be enhanced by integrating a spatial context, for instance, by vi-
sualizing morphological structures through rendering selected
structures from a CT data set. Since such a hybrid visualization
is often described in literature, dealing with glyph-based medi-
cal visualization [12, 26], it can be assumed as helpful in many
cases.

Finally, in order to support the quantification in the attentive
phase, according to the sixth guideline, perspective projections
should be avoided, when mapping parameters to glyph size. In-
stead an orthographic projection ensures that glyphs are quan-
tifiable and the user can visually compare glyphs to glyphs at
different locations or in the legend.

As mentioned above, all these guidelines have been derived
from the best practice. Thus, they just reflect the current state
of the art, and have to be subject to a systematic evaluation in
the near future. However, although these guidelines have been

derived from applications within the area of medical visualiza-
tion, they may also be transferable to a certain extent to other
domains.

5. Conclusions and Future Work

In this article we have described a taxonomy for glyph prop-
erties to be used in medical visualizations. In our taxonomy we
classify these properties by considering aspects from the area
of perception. Thus, we were able to identify glyph properties
supporting pre-attentive and attentive visual processing. This
distinction is important, since medical diagnoses are often per-
formed under time pressure, and thus it is essential that the most
relevant information is conveyed in a very direct way. Based on
our literature review, we have proposed six guidelines with the
goal to support improved glyph-based visualizations in the fu-
ture. Since these guidelines are only derived from observations,
a systematic evaluation is necessary in order to prove their use-
fulness. However, our taxonomy and to some extent also the
guidelines have been motivated by the feature integration theory
of attention. The pre-attentive processing is known to be par-
tially dependent on the experiment setup that would be in our
case equivalent to the glyph design. For instance, it is known
that the expectation of the viewer as well as the similarity of the
distracters have an influence on the pre-attentive phase [51, 52].
Furthermore, in some cases the existence of a certain feature is
better perceivable within a group of objects not having this fea-
ture, than its absence within a group having this feature [53].
The latter is not an issue when only two variables are depicted
by the shown glyphs. Nevertheless, when multiple variables are
depicted, the distracters might not look similar enough to fully
support pre-attentive processing. To be able to conduct the pre-
viously mentioned evaluation, all these aspects need to be taken
into account.
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Abstract
Annotations of relevant structures and regions are crucial in diagnostics, treatment planning, medical team meet-
ings as well as in medical education. They serve to focus discussions, present results of collaborative decision making,
record and forward diagnostic Vndings, support orientation in complex or unfamiliar views on the data, and study
anatomy. DiUerent techniques have been presented for labeling the original data in 2D slice views, surface represen-
tations of structures extracted from the data, e.g., organs and vasculature, and 3D volume rendered representations
of the data. All aim at a clear visual association of labels and structures, visible and legible labels, and a fast and aes-
thetic labeling while considering individual properties of the data and its representation and tackling various issues,
e.g., occlusion of structures by labels, overlapping labels, and crossings of lines connecting labels with structures.
We survey the medical labeling work and propose a classiVcation with respect to the employed labeling technique.
We give guidelines for choosing a technique dependent on the data representation, e.g., surface rendering or slice
view, the type of structures to be labeled, and the individual requirements on an eUective label layout.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous—J.3
[Computer Applications]: Life and Medical Sciences—

1. Introduction

The term labeling is used ambiguously in medical comput-
ing. On the one hand, it refers to automatically identifying
anatomical structures in medical data such as speciVc seg-
ments of a vascular tree [BPC∗13] or individual vertebrae
of the spine [ACC11]. On the other hand, it is used for the
process of annotating structures in medical visualizations
by textual labels. This survey is dedicated to the latter.

Labeling medical visualizations has a centuries-long tra-
dition in medical textbooks and anatomy atlases. Here, its
main function is to communicate anatomical structures for
education. In the age of modern medical imaging devices
and computerized medicine, the range of possible applica-
tions has increased. Labeling plays an important role in di-
agnostics, treatment planning, medical team meetings, and
in the education of medical students and patients. It is an
everyday task for radiologists in diagnosing image data.
Annotations serve to:

• record and forward diagnostic Vndings, e.g., to the trans-
ferring doctor or a medical specialist,

• focus discussions in team meetings, e.g., a tumor board
discussing the therapeutic strategy,

• present results of collaborative decision making,

• support orientation in complex or unfamiliar views on
the data, e.g., 3D views of highly branched vascular trees
or (virtual) endoscopic views in sinus surgery,

• study anatomy in computer learning systems, e.g., the
VOXEL-MAN-series [SFP∗00],

• explain an intervention in patient education, and
• practice an intervention in a surgery training system,

such as the LiverSurgeryTrainer [MMH∗13].

Various labeling techniques which mimic hand-crafted
visualizations of medical illustrators and techniques tai-
lored to the particularities of computer support, e.g., a third
dimension and interactivity, have been developed. Numer-
ous approaches were proposed to labeling the original im-
age data in 2D slice views, 3D surface representations of
structures extracted from the data, e.g., organs and vascu-
lature, and 3D volume rendered representations of the data.

In Section 2, we provide the foundation of labeling med-
ical visualizations by discussing general and medicine spe-
ciVc requirements on an eUective labeling and by introduc-
ing the employed labeling techniques. The latter serve as a
classiVcation scheme for our overview of medical labeling
work in Section 3. We conclude in Section 4 with guidelines
for choosing a labeling technique.

c© The Eurographics Association 2014.
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2. Foundation of Labeling Medical Visualizations

Labeling may be accomplished automatically or interac-
tively. Interactive labeling is performed, e.g., by radiolo-
gists when annotating their Vndings in a slice view. For
instance, a label depicting measurement values and a com-
ment shall be added to a pathologic structure that has been
segmented before. Modern radiological workstations sup-
port this process by providing lines, arrowheads, and tex-
tual labels. While these features are useful, automatic label-
ing where the system (re)arranges the labels, relieves the
user from taking care of, e.g., crossing lines, labels overlap-
ping each other or other important Vndings, and proximity
of a label to the related structure. This is gaining impor-
tance with an increasing number of labels.

In labeling scenarios where the structures and label texts
are predeVned, e.g., in a 3D view of an anatomy learning
system showing the human body, interactive labeling is
inappropriate. Instead, automatic labeling is accomplished
and adapted to user-interactions, such as pan and zoom.

2.1. Requirements on an EUective Labeling

Ali, Hartmann, and colleagues pose some general require-
ments on an eUective label layout for interactive 3D illus-
trations [AHS05, HGAS05]. While they do not speciVcally
aim at medical visualizations, their working examples are
mostly borrowed from that domain. The requirements are:

• Readability Labels must not overlap,
• Unambiguity Labels clearly refer to their objects,
• Pleasing Prevent visual clutter,
• Real-Time Compute layouts at interactive rates,
• Frame-Coherency Prevent visual discontinuities,
• Compaction Reduce the layout area.

Besides theses general requirements, medical visualiza-
tions pose speciVc ones. (1) The labels must neither oc-
clude diagnostically relevant information, such as potential
pathologies, nor patient information, e.g., from the DICOM
header, which is superimposed on the visualization. (2) The
slice-based investigation of image data is a specialty of the
medical domain. Here, the interactive labeling of Vndings
is crucial. Once all Vndings have been annotated, an au-
tomatic post-processing, rearranging the labels for an ef-
fective layout, is desirable. (2a) An important aspect of the
layout is the slice-coherency of annotations. If a structure
covers multiple slices, it should be labeled in each of them
and annotations should not abruptly change their position
while browsing the slices. (2b) Branching structures and
elongated structures, e.g., vessels, appear disconnected in
slice views. As long as they are located close together, they
should be summarized by a single label. (3) It may be nec-
essary to label also hidden structures to remind the viewer
of their existence, e.g., in the course of evaluating all lymph
nodes in 3D views of the neck anatomy [MP09]. (4) Trans-
parent surfaces often serve as context information in med-

ical visualizations, e.g., the transparent liver or brain sur-
face with the respective inner vascular system rendered
opaque. Visibility tests for checking whether a structure
must be labeled need to take transparency into account. (5)
In volume-rendered views, object visibility is also depen-
dent on the transparency transfer function. If physicians
adjust this function dependent on the anatomy of interest,
e.g., bony structures or soft tissue, visibility computations
and the labeling must be updated accordingly.

The fulVllment of all requirements is hard to achieve and
may conWict, e.g., with the desire to label as many visible
objects as possible [AHS05]. Sometimes, objective criteria
are missing to evaluate whether a requirement has been
met, e.g., for readability and unambiguity. In 3D visualiza-
tions, interactivity aggravates the compliance with each re-
quirement since the labeling has to be updated once the ob-
ject is rotated or zoomed in. Structures which were visible
become hidden and vice versa, empty screen space used for
a label may now be occupied by a structure, and graphics
objects relating labels to structures may start to cross.

2.2. Labeling Techniques

In a review of medical labeling work, we identiVed Vve dif-
ferent labeling techniques. None of them has been speciV-
cally invented for or is restricted to medical visualizations.
However, all have been extended and tailored to a spe-
ciVc type of medical data, e.g., containing tubular struc-
tures such as vessels, a particular use case, e.g., an anatomy
learning system or a surgery trainer, or a certain type of
medical visualization, e.g., surface-based, volume-rendered,
or slice-based. Adhering to the identiVed techniques, we
classify the labeling work into the categories (Fig. 1):

• internal labels
• external labels
• boundary labeling
• excentric labeling
• necklace maps

Internal labels are superimposed on the structure of inter-
est and should Vt its screen representation (Fig. 1a). A good
legibility is achieved if enough screen space is available for
a suXcient font size, a good contrast between label text
and background structure is provided, and the label text
is aligned horizontally. If horizontal text extends beyond
the structure, it should rather be aligned along the center-
line of the structure’s screen representation [GAHS05]. For
strongly bended centerlines, smoothing is advisable. Ropin-
ski and colleagues argue that in 3D visualizations, internal
labels should also convey an objects 3D shape and hence,
be projected onto it [RPRH07].

External labels are positioned on empty screen space and
connected to their structure by a line (Fig. 1b). This so-
called leader connects an anchor point on the structure and
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(a) (b)

(c)

(d) (e)
Figure 1: Overview of labeling techniques in medical visualizations. (a) Internal labels are superimposed on the structures of
interest. (b) External labels are positioned on empty screen space and connected to an anchor point on the structure of interest by a
line. (c) Boundary labeling organizes the labels along a virtual rectangle enclosing all structures. (d) Excentric labeling annotates
structures located inside a draggable, Wexible focus region. Labels are stacked to the left and/or right of the region. (e) Necklace
maps abandon connection lines and instead relate labels to structures by matching colors and spatial proximity.

a point on the label box holding the label’s textual represen-
tation. The deVnition of an anchor point is crucial. While
the center of mass of an objects screen projection is suitable
for convex objects, thinning algorithms shrinking the pro-
jection to a single pixel [HAS04] or algorithms computing
the skeleton of a mesh in 3D [PR98] are generally applica-
ble. Multiple anchor points may exist if an object is partially

occluded and it must be decided which parts are to be la-
beled. External labels are often aligned along the silhouette
of all objects in the scene [HAS04]. Close-up views form an
exception since the entire screen space may be covered by
objects. Mogalle and colleagues formulate requirements on
external labels in 2D slice views, which can be generalized
to 3D visualizations [MTSP12]. In summary, labels must not
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overlap with other labels and structures, they should iden-
tify a structure unambiguously, and visual clutter must be
avoided. To meet the latter two requirements,

• the number of leader crossing must be minimum,
• labels must be placed in close proximity to the structure,

i.e. the total leader length must be minimum, and
• leader shapes should be simple, e.g., horizontal or verti-

cal lines instead of zigzagging polylines.

Internal and external labels may be combined in a dy-
namic labeling. If a structure covers more and more screen
space while being zoomed in, its external label can be re-
placed by an internal one at some point [GAHS05]. Further
aspects of dynamic labeling, e.g., level-of-detail dependent
labeling and interactive labeling speed, were discussed in
the context of street maps [BDY06].

Boundary labeling generates a very tidy layout by orga-
nizing all labels along a virtual rectangle enclosing the en-
tire scene (Fig. 1c). While the term was coined by Bekos
and colleagues [BKSW05], Preim and colleagues already
used this technique for the exploration of anatomical mod-
els [PRS97] and Ali and colleagues referred to it as “Wush
layout” [AHS05]. Each label is connected by a leader to
an anchor point on its associated structure. Optimization
approaches for minimizing the number of leader cross-
ings, the total leader length, and the number of leader
bends have been proposed in the context of static 2D
maps [BKSW05,BHKN09] and 3D interactive visualizations
[AHS05]. A circular boundary shape has been employed
in [BSF∗11]. Note that the tidiness of a boundary layout
comes at the expense of a restricted freedom in label posi-
tioning which must be accounted for in optimization.

For structures being partially occluded or structures of
the same type spread over multiple locations in the scene, it
might be desirable to connect a single label to multiple an-
chor points (many-to-one labeling problem, see the label “G.
occipitales” in Fig. 1c). Solutions to this problem tailored to
boundary labeling have been presented in [BCF∗13,Lin10]).

Excentric labeling is dedicated to annotating subsets of
dense data and was presented by Fekete and Plaisant [FP99]
(Fig. 1d). Labeling a subset of the scene is in contrast to
the previous techniques, which often aim at labeling large
parts. It is accomplished by means of a moveable, Wexible
focus region which can be dragged by the user. The labels of
the focused structures are displayed in stacks to one or both
sides of the focus region and connected to the structures by
leaders. Fink and colleagues extended excentric labeling by
techniques for creating a visually pleasing annotation, e.g.,
the use Bézier curves instead of zigzagging polylines and
the optimization of total leader length [FHS∗12].

Necklace maps abandon leaders and instead relate labels
to structures by matching colors and spatial proximity in

order to generate an uncluttered visualization (Fig. 1e).
They were proposed by Speckmann and Verbeek for vi-
sualizing statistical data on geographical maps [SV10]. In
the necklace map approach, labels are referred to as sym-
bols. They are organized on a one-dimensional curve (the
necklace) that surrounds the map or a subregion. Circles
and bars have been implemented as symbol shapes. A data
attribute is mapped to the area of the circular symbols or
to the length of the bar-shaped symbols, respectively. Opti-
mizing symbol sizes and positions is NP-hard. Speckmann
and Verbeek contribute an algorithm that is exact up to a
certain symbol density.

Boundary labeling, excentric labeling, and necklace
maps may be seen as variants of external labeling since all
position labels outside the structures of interest. We think
however that they exhibit suXcient unique characteristics
to be treated as unique labeling techniques.

3. Overview of Medical Labeling Work

Preim and Botha dedicate a section of their book to labeling
medical visualizations [PB13]. We extend their set of re-
viewed techniques, update and extend their classiVcation,
and we provide guidelines for choosing an appropriate la-
beling technique. We collected labeling work from the IEEE
and ACM electronic libraries and a Google search and cat-
egorize it according to the employed labeling techniques.
We dedicate an extra category to labeling slice-based visu-
alizations since they are most prevalent in clinical routine.

3.1. Internal Labels

Mori and colleagues describe a method for the automatic
extraction of the bronchial tree from Computed Tomogra-
phy (CT) images and for the automatic identiVcation and
naming of the bronchial branches [MHST00]. The surface
of the extracted tree serves as the input for a virtual bron-
choscopy system facilitating Wights through the bronchus.
Interpreting the images rendered from a viewpoint inside
the tree is hampered by a lack of spatial orientation. To
improve this situation, the name of the current branch is
superimposed and outgoing child branches are annotated.

Petrovic and colleagues present a GPU-based approach
for eXciently rendering very large sets of Vber tracts de-
rived from whole-brain DiUusion Tensor Imaging (DTI)
data [PFK07]. They propose a Level-of-Detail management
system and a streamtube imposter construct for fast ren-
dering and the reduction of overdraw. Curvature-correct
text labels are employed for annotating the simulated tubes.
The labeling is integrated in the fragment processing lead-
ing to the impression of text being attached to the im-
poster’s surface. Special care is taken to orient the text
right-side-up and to draw labels only if their corresponding
geometry is close enough for the text to be legible. Fading
labels in and out by alpha blending prevents label popping.
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Figure 2: Internal labels are projected onto the surface in or-
der to convey its 3D shape. Image adapted from [RPRH07].

Ropinski and colleagues argue that in surface-based 3D
medical illustrations, internal labels should not only match
the screen representation of an object but also convey
its 3D shape, i.e. its varying depth structure [RPRH07].
Hence, they project a label onto the surface (Fig. 2). Special
care must be taken to maintain legibility in case of noisy,
strongly bended surfaces, and highly occluded regions, e.g.,
the sulci of the brain’s surface. As a solution, the label
is projected onto a smooth intermediate surface, a bezier
patch in [RPRH07] and a text scaUold in [CG08], whose ad-
herence to the original surface can be adjusted. Further-
more, the intermediate surface is oriented along the medial
axis of its object as it is deVned in image space and such that
perspective distortion of labels is minimized [RPRH07].

Jiang and colleagues propose a method for annotating
vascular structures in volume rendered views integrated
in computer-assisted surgery systems [JNH∗13]. While in-
vestigating highly-branching structures, surgeons strongly
beneVt from guidance by labeling. First, a surface model of
the vasculature is constructed based on centerline and ra-
dius information. Then, in a two-pass rendering process, la-
bels are projected from the current viewpoint onto the sur-
face model which is after that rendered into a depth buUer
image (Vrst pass) followed by a ray-casting of the origi-
nal data volume considering the depth buUer (second pass).
Since vessels are often partially occluded by other vessels
or organs, they are assigned multiple identical labels at in-
tervals along their run. The legibility of labels may be ham-
pered along surface parts generated from jagged center-
lines. The problem is mitigated by centerline smoothing.
The impact of transfer function adjustment on the visibil-
ity of vessels and the legibility of labels is not discussed.

Major an colleagues present the automated landmarking
and labeling of spinal columns in CT images [MHSB13].
Disks are Vrst superimposed on the automatically detected
intervertebral spaces. The mean of the disks’ positions is
then employed for placing the corresponding vertebral text
labels. The labeling approach is integrated in 2D slice views
as well as in 3D volume rendered views.

3.2. External Labels

Hartmann, Ali, and Strothotte employ dynamic potential
Velds to generate eUective and appealing label layouts for
complex-shaped anatomical 3D models [HAS04]. Require-
ments on a layout, such as proximity of object and label and
prevention of overlapping labels, are formalized in terms
of attractive and repulsive forces steering the label place-
ment. Anchor points are computed via thinning an object’s
screen projection to a single pixel. Limiting to the labeling
approach is its inability to prevent leader crossings and vi-
sual discontinuities during interaction (frame-coherency).

Ali, Hartmann, and Strothotte extend their work by a va-
riety of real-time label layout algorithms eliminating these
limitations [AHS05]. Each algorithm is designed for a com-
bination of a particular layout and leader style and demon-
strated by an anatomical model. The proposed Wush layout
corresponds to boundary labeling (Fig. 1c) while the circu-
lar layout aligns the labels along the silhouette of the 3D
model. Straight and orthogonal leaders are supported. The
latter represent axis-aligned lines with their bends made at
orthogonal angles. Anchor points are computed by apply-
ing a distance transform to an object’s screen space projec-
tion. The pixel with the largest distance is chosen.

Sonnet and colleagues augment interactive explosion di-
agrams of complex 3D models by dynamic, scrollable anno-
tations [SCS04]. They demonstrate their approach amongst
others by anatomical models. The user may move the
pointer over an object causing its textual description to be
displayed. The closer the pointer gets to the object’s cen-
troid, the larger the label box becomes revealing more and
more of the text. At entering the object, only a small box is
displayed to account for the possibly unintentional or tem-
porary hovering on the way to another object. The box is
connected to the object’s centroid (anchor point) by a trans-
parent triangle emphasizing togetherness.

Bruckner and Gröller integrate external labels in the
VolumeShop system to simplify orientation in an interac-
tive environment, e.g., when exploring anatomical mod-
els [BG05]. They propose a simple algorithm aligning labels
along the convex hull of the projected bounding volumes of
all visible objects. This resembles the silhouette-based cir-
cular layout by Ali and colleagues [AHS05]. Special care
is taken to resolve leader crossings and overlapping labels,
which however causes visual discontinuities in animated
views due to the extra computational eUort. Details on the
computation of anchor points are not given.

Mühler and Preim present techniques for annotating
3D structures reconstructed from medical image data in
surgery planning [MP09]. They extend the work of Ali and
colleagues [AHS05] by tackling the labeling of structures
located inside or behind semi-transparent objects, e.g., the
portal vein and metastases inside the liver parenchyma
(Fig. 3a). Standard visibility tests by means of depth buUer-
ing return no objects to be labeled in such situations.
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(a) (b)
Figure 3: (a) Labeling of the portal vein and metastases lo-
cated inside the semi-transparent liver parenchyma. Standard
visibility tests by means of depth buUering would return no
objects to be labeled here. Image from [MP09]. (b) Hidden
lymph nodes labeled by bended arrows indicating presence
and location. Image adapted from [MP09].

Hence, a multi-buUering approach is proposed treating all
objects as visible and computing a set of anchor point can-
didates for each of them. The candidates are derived by dis-
tance transforms applied on the buUers. Next, rays are cast
from each anchor point to the viewer and the opacity of
intersected objects is accumulated. If it is above a threshold
for each anchor point, the object is not labeled. Otherwise,
the point with the “smallest” occlusion is chosen.

A further contribution is the labeling of currently hid-
den objects to recall their existence. For instance, no lymph
node must be overlooked in planning neck dissections
(Fig. 3b). Bended, arrow-shaped leaders indicate the pres-
ence and location of currently invisible lymph nodes.

3.3. Internal and External Labels

Götzelmann and colleagues propose a hybrid label layout
comprising internal and external labels [GAHS05]. The la-
bel type is chosen depending on the zoom level. For in-
stance, if an object gets closer to the camera and occupies
more screen space, an external label is replaced by an inter-
nal one to exploit the gained space. During interaction, the
entire scene is continuously projected to screen space and
the skeleton of each object’s projection is determined. It is
then tested, whether an internal label would be given suf-
Vcient space to be placed along the skeleton while guaran-
teeing minimal readability. If this is not the case, an exter-
nal label is drawn whose anchor point is computed accord-
ing to [AHS05]. The labeling approach has been integrated
in a framework for anatomical education [VGHN08].

Ropinski and colleagues also propose a hybrid layout
[RPRH07]. If the screen coverage of a projected object is
suXcient to place a label along the pojection’s medial axis
while guaranteeing a minimum label size, an internal label
is drawn. Otherwise, external labels are employed (Fig. 4).

Figure 4: Hybrid layout comprising internal and external la-
bels. If the screen coverage of a projected object is suXciently
large, an internal label is drawn. Image from [RPRH07].

3.4. Boundary Labeling

Preim and colleagues present a system for the exploration
of anatomical models which combines zooming techniques,
Vsheye views, and interactive external labels [PRS97]. The
labels are aligned on the left and right boundary of a rect-
angle enclosing the model (Fig. 5). They are connected via
straight lines to anchor points on the model parts. The com-
putation of the anchor points is not described. The focus is
on the interaction with the model and the labels. For in-
stance, selecting a label causes (1) an enlargement of the
corresponding model part and a simultaneous shrinking of
the other parts (Vsheye technique) as well as (2) an enlarge-
ment of the label box gaining space for a more detailed de-
scription. In (2), neighboring labels are automatically re-
located and minimized if necessary. Assigning a single la-
bel to multiple model parts (many-to-one labeling) is sup-
ported, e.g., to facial muscles in both sides of the face. How-
ever, optimization with respect to leader crossings and total
leader length seems to be missing (Fig. 5).

Figure 5: Boundary labeling of facial muscles. A label of mus-
cles above the eye has been selected causing a description to
be displayed (right), the muscles to be enlarged, and two la-
bels to be pushed downward. Image from [PRS97].
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Eichelbaum and colleagues visualize human brain con-
nectivity derived from DiUusion-weighted magnetic reso-
nance imaging (DW-MRI) data [EWH∗10]. They employ
Vber tracking and clustering to generate Vber bundles
which illustrate the connection of brain regions. The bun-
dles are displayed together with the regions inside a semi-
transparent surface of the brain. The regions are labeled
according to [BKSW05] for improving spatial orientation.

Battersby and colleagues [BSF∗11] employ ring maps
for visualizing multivariate epidemiological data [BSF∗11].
A ring map shows a 2D geographical map enclosed by a
virtual circular boundary shape along which glyphs are
aligned. The glyphs are composed of n parts for encoding
n variates. The parts are located at an uniformly increas-
ing distance to the boundary. Each set of parts with equal
distance to the boundary represents a ring. The glyphs and
county names are connected to their respective map region
via straight leaders. Label and anchor point positions are
chosen such that glyphs are uniformly distributed, located
close to their region, and leaders do not cross.

3.5. Excentric Labeling

Fekete and Plaisant introduce excentric labeling for the an-
notation of dense, point-based data representations, e.g.,
scatter plots [FP99]. A circular focus region is dragged
across the representation and labels of the objects in focus
are displayed in stacks to the left and/or right of the re-
gion. Multiple labeling variants are proposed. In the basic
variant, straight lines connect points – coincident with the
anchor points here – and labels. In the radial variant, leader
crossings are prevented by Vrst connecting the labeled
point with a point on the boundary of the focus region and
then, bending towards the sorted stack of labels. In fur-
ther variants, the label order and justiVcation reWect the
y- and x-position of the labeled points, respectively. How-
ever, this is at the expense of crossing-free leaders. Plaisant
and colleagues integrate excentric labeling in LifeLines – a
system for visualizing personal histories [PMR∗96]. They
demonstrate how the investigation of patient records ben-
eVts from labeling health-related events (Fig. 6).

Luboschik and colleagues present a point-feature label-
ing approach, which is fast and avoids overlapping labels as
well as the occlusion of other visual representatives such as
leaders and icons [LSC08]. In contrast to the work of Fekete
and Plaisant [FP99], each point is initially labeled. In the
Vrst step of an iterative, particle-based approach, all points
with suXcient empty space in their direct neighborhood
are annotated by an adjacent label (no leader). Then, the
remaining points are annotated by positioning the label as
close as possible and connecting it to the point by a straight
line. The labeling approach is coupled with a movable label
lens. Labels of focused points are relocated along the out-
side of the lens such that they do not overlap other labels.
Straight leaders are drawn to convey correspondence. The

Figure 6: Excentric labeling in LifeLines [PMR∗96]. A rectan-
gular focus region is dragged across events in a patient record.
Drugs administered in a narrow time frame become readable.

approach has been demonstrated amongst others for the
labeling of symbol maps encoding health data.

3.6. Necklace Maps

Glaßer and colleagues apply necklace maps to labeling
clusters of breast tumor tissue with cluster-speciVc per-
fusion information [GLP14]. The necklace surrounds an
abstract representation of the tumor (Fig. 7). Each set
of equally-colored, spindle-shaped extensions represents a
cluster of voxels exhibiting similar perfusion characteris-
tics. The extensions originate at the cluster’s center and are
directed towards the subregions of the tumor. For each clus-
ter, a label is strung on the necklace and colored according
to the cluster’s color. Proximity of labels and clusters is not
optimized. Each label shows an iconic representation of the
wash-in and wash-out of a contrast agent.

Oeltze-Jafra and colleagues combine dynamic excentric
labeling and static necklace maps for the interactive visual
exploration of multi-channel Wuorescence microscopy data
[OPH∗14]. Nested necklaces show information aggregated
over all channels as well as individual channels.

Figure 7: Abstract visualization of three regions with distinct
perfusion in a breast tumor. Labels showing plots of contrast
agent accumulation are strung on a surrounding necklace.
Correspondence is conveyed by color. Image based on [GLP14].
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Figure 8: In a slice view, branches of the portal vein and
metastases inside the liver parenchyma (brown, large region)
are annotated. Disconnected, but close parts of the same
branch are summarized by one label. Image from [MP09].

3.7. Labeling Slice-Based Visualizations

The manual annotation of digital images is crucial in clini-
cal routine. EUorts were made to advance the generation,
management, and dissemination of annotations. Cai and
colleagues present a web-based system for the collaborative
generation and editing of labels supporting collaborative
decision making [CFF01]. Goede and colleagues propose
a methodology and implementation for annotating digital
images [GLC∗04]. They deVne a set of rules to standardize
the annotation process.

Mühler and Preim discuss important aspects of automat-
ically labeling slice views [MP09]. If empty space exists in
the image, e.g., around the head in images of the brain, ex-
ternal labels should be placed there. Otherwise, they should
be positioned on less important structures, e.g., on the liver
parenchyma in an examination of inner metastases and
vessels (Fig. 8). Elongated structures with a small diame-
ter, e.g., vessels, often appear as disconnected components.
They should be summarized by one label if they are located
close together (Fig. 8). Slice coherency of labels must be
guaranteed to support their visual tracking and to avoid
Wickering artifacts. Mühler and Preim lock the position of
a label across multiple slices until it overlaps with a crucial
image region. They also employ many-to-one labeling and
achieve crossing-free leaders.

Mogalle and colleagues present an optimal placement
of external labels representing radiological Vndings in 2D
slice data [MTSP12]. They focus on avoiding leader cross-
ings, mutually overlapping labels and labels occluding Vnd-
ings, and on minimizing total leader length. A local opti-
mization algorithm achieves a trade-oU between speed and
labeling quality. It samples directions for label placement
starting at the anchor point of a structure and assesses a
direction’s compliance with each of the requirements (inset
of Fig. 9). This results in a set of weighted candidate direc-
tions for each object. The Vnal layout is derived from these
sets either by a greedy optimization or a label shifting ap-
proach (Fig. 9). The labeling is limited to≈ 10 annotations,
which is however realistic for radiological data.

Figure 9: Labeling radiological Vndings in 2D slice data. La-
bel positions for each Vnding are searched in discrete direc-
tions starting at the Vnding’s anchor point (inset). Green rays
represent directions complying to a set of constraints, e.g., no
occlusion of other Vndings. Image adapted from [MTSP12].

4. Guidelines for Labeling Medical Visualizations

The search for a suitable labeling technique is Vrst guided
by the visual representation of the data, second, the type
of structures to be labeled, and third, the individual re-
quirements on an eUective label layout (Sec. 2.1). This or-
der is reWected by the decision diagram in Figure 10. The
decision process leads to publications describing a suitable
technique. For instance, if surfaces of arbitrary shape shall
be labeled and readability of the labels, unambiguity of the
association between label and structure, and the tidiness of
the label layout are the may concerns, boundary labeling
according to [PRS97,EWH∗10] is suitable.

In general, internal labels facilitate an easy visual associ-
ation with a structure and lead to a compact label layout.
External labels, do not occlude their associated structure,
are easier to read, and better suited for small structures and
dense data. However, they demand extra eUort to establish
the visual association with a structure. Leaders, proxim-
ity, and color are employed requiring optimization steps,
e.g., to reduce leader crossings, achieve suXcient proxim-
ity for all labels, and avoid overlapping labels. A dynamic
application of both internal and external labels dependent
on a structure’s screen coverage is appropriate in interac-
tive 3D views where zooming is frequently used. The main
strength of boundary labeling is the tidiness of the label
layout providing a fast overview of all labeled structures.
Excentric labeling is particularly suited for the piece-wise
exploration of very dense data. So far, it has only been
demonstrated for representations of abstract data, such as
patient records [FP99]. Another potential application area
could be the exploration of large, annotated microscopic
images, e.g., in histology. Necklace maps avoid the visual
clutter caused by leaders and show little occlusion of the
data at the expense of additionally required screen space
and weaker visual association of labels and structures. They
could prove beneVcial in volume renderings where separate
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Figure 10: Decision diagram for choosing a labeling technique dependent on the data representation (surface rendering, slice view,
point set, map, or volume rendering), the type of structures to be labeled, and the individual requirements on an eUective label
layout. The yellowish boxes show the related work. The circled letters encode the labeling technique: I=internal labels (Sec. 3.1),
E=external labels (Sec. 3.2), B=boundary labeling (Sec. 3.4), X=excentric labeling (Sec. 3.5), and N=necklace maps (Sec. 3.6).

structures are discernible due to diUerent colors and opaci-
ties but not processable, e.g., for anchor point computation.

In medical education systems, 3D surface models should
be annotated by a combination of internal and external
labels according to customs in hand-drawn medical illus-
trations. External labels and boundary labeling are better
suited for displaying long label texts, e.g., descriptions or
links to other structures, and for generating foldout groups
of labels, e.g., all bones of the foot. In intervention plan-
ning and medical training systems, external labels should
be used since they are more legible than internal ones, pro-
vide a clearer overview of all relevant structures, may in-
dicate currently hidden objects in 3D scenes [MP09], and
above all, they do not occlude structures. Occlusion is criti-
cal since, e.g., the irregular and complex shape of an object
may inWuence the interventional strategy. In 3D views of
vasculature and Vber tracts, internal labels should be em-
ployed. Thin, elongated structures are often only visible at
intervals due to mutual occlusion and occlusion by other
structures. Identical internal labels applied to these inter-
vals avoid the visual clutter that would be induced by an ex-
ternal many-to-one labeling [JNH∗13]. An exception are 2D
and 3D views for vascular diagnosis. Here, external labels
are more appropriate since internal ones may interfere with
the perception of pathologic shape variances, e.g., stenoses,
and the evaluation of vascular cross-sections and compo-
sitions of the vessel wall, e.g., in plaque detection. Exter-
nal labels are generally recommended for slice views in ra-
diology since they do not occlude the associated Vndings.
Boundary labeling treating the image border as boundary
would be best here in terms of occlusion but would also
require shrinking the image to make space for the labels.
Optimization with respect to placing labels on less impor-

tant image parts is more promising [MTSP12]. A similar
situation exists in virtual endocsopy where the endoscopic
view should occupy maximum screen space. However, in-
ternal labels are more appropriate here, e.g, for annotating
branches, since their in-site position causes less distraction
while navigating the endoscope. Pathologies, e.g., polyps
should again be annotated by external labels.

5. Concluding Remarks

We provided an overview of the existing medical labeling
work and proposed a classiVcation with respect to the em-
ployed labeling techniques. Furthermore, we gave guide-
lines for choosing a suitable technique. The labeling of 3D
surfaces is the most extensively researched subVeld. Label-
ing medical volume renderings and slice views are under-
represented measured against their wide-spread use and
may pose interesting directions for future work. Labeling
slice views may beneVt from transferring more knowledge
in cartography, where labeling is widely studied.
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