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Zusammenfassung

Im Gegensatz zu den begrenzten menschlichen Steuerungs- und Überwachungs-
kapazitäten nimmt das Volumen an automatisch generierten Daten kontinuier-
lich zu. Dies erfordert es, die dazu verfügbaren Kapazitäten effizient zur Ver-
arbeitung und Kategorisierung dieser großen Datenmenge einzusetzen.
Diese Fragestellung wird innerhalb dieser Habilitationsschrift zum Themenge-
biet des aktiven und adaptiven maschinellen Lernens behandelt. Sie fasst
zunächst die Literatur und Herausforderungen auf den Gebieten des aktiven
Lernens und des Data Minings auf Datenströmen zusammen. Anschließend
stellt sie eine neue Strategie zum probabilistischen aktiven Lernen vor. Diese
entscheidungstheoretisch motivierte Strategie dient zur Auswahl des für einen
aktiven, maschinellen Klassifikator informativsten Klassifikationsbeispiels unter
einer Menge an potentiellen Klassifikationsbeispielen. Dazu bestimmt sie den
aus dem Klassifikationsbeispiel zu erwartenden Klassifikationsgütezuwachs.
Für diese Erwartungswertberechung werden nicht nur die Klasse des Klassi-
fikationsbeispiels, sondern auch die tatsächliche A-posteriori-Wahrscheinlichkeit
der Klassen an der Position des Klassifikationsbeispiels im Merkmalsraum als
Zufallsvariablen modelliert. Über beide Zufallsvariablen wird der Erwartungs-
wert berechnet, welcher anschließend mit der Dichte an der Position des Klas-
sifikationsbeispiels im Merkmalsraum gewichtet wird. Anschließend wird das
Klassifikationsbeispiel mit dem höchsten dichtegewichteten zu erwartendem
Klassifikationsgütezuwachs ausgewählt.
Diese Berücksichtigung der tatsächlichen A-posteriori-Wahrscheinlichkeit in
der Erwartungswertberechung stellt ein Novum auf dem Gebiet entscheidungs-
theoretischer aktiver Lernansätze dar, wo stattdessen bislang nur der wahr-
scheinlichste oder aber ein pessimistischer A-posteriori-Wahrscheinlichkeitswert
verwendet wurden. Im Gegensatz zur informationstheoretischen Uncertainty
Sampling-Strategie berücksichtigt die vorgeschlagene probabilistische aktive
Lernstrategie die Anzahl der bereits vorhandenen ähnlichen Klassifikations-
beispiele. Dies ist von Vorteil, da somit der Explorationsgrad in der Nach-
barschaft des Klassifikationsbeispiels in die Nutzenwertberechnung mitein-
bezogen wird. Für die Bestimmung dieser Nachbarschaft wird auf die im
maschinellen Lernen gebräuchliche Annahme zurückgegriffen, dass die Nähe
zweier Punkte im Merkmalsraum einen direkten Einfluss auf die Wahrschein-
lichkeit ihrer gemeinsamen Klassenzugehörigkeit hat. Ausgehend von dieser
probabilistischen aktiven Lernstrategie werden für die Berechnung des er-
wartenden Klassifikationsgütezuwachs im Rahmen der Arbeit ein flexibler, auf
numerischer Integration basierender Ansatz, sowie mehrere auf geschlossenen
Lösungen beruhende spezialisierte und schnelle Ansätze vorgestellt.



Die vorgeschlagene probabilistische aktive Lernstrategie bietet somit Auswahl-
ansätze, die effizient und schnell berechenbar sind, direkt ein vorgegebenes
Klassifikationsgütemaß optimieren, nicht auf eine bestimmte Klassifikatortech-
nologie beschränkt sind, nicht-myopisch und auch auf Mehrklassenprobleme
sowie auf kostensensitive Klassifikationsprobleme anwendbar sind. Im Rahmen
der Habilitationsschrift wird darüber hinaus gezeigt, wie diese Lernstrategie
über das poolbasierte aktive Lernszenario hinaus angewendet werden kann.
Dazu werden zwei Ansätze für aktives Lernen in Datenströmen sowie ein
Ansatz für die aktive Auswahl von Klassen vorgestellt.
Die vorgeschlagenen Ansätze werden experimentell gegen mehrere dem ak-
tuellen Stand der Forschung entnommene Vergleichsansätze evaluiert, darunter
solche auf Basis von Uncertainty Sampling oder Expected Error Reduction.
Die experimentelle Evaluation zeigt die Konkurrenzfähigkeit der vorgeschla-
genen Ansätze für verschiedene Szenarien und aktive Lernaufgaben.



Abstract

The volume of automatically generated data is constantly increasing. However,
human supervision and labelling capacities remain limited. Facing the task
to mine large amounts of unlabelled data, an efficient allocation of annotation
efforts is important. The research on active and adaptive machine learning
in this habilitation thesis addresses this challenge. First, this thesis surveys
the fields of active learning and data stream mining. Then, it contributes a
novel probabilistic active learning strategy to these fields. This is a decision-
theoretic strategy that computes the expected gain in classification perfor-
mance from labelling additional instances. Given a candidate for labelling, as
well as the number of already labelled similar instances, it models the possible
label realisations from labelling this (or additional similar) instances as a ran-
dom variable. In addition, it also models the true posterior in the candidate’s
neighbourhood as a random variable. Then, it calculates the expectation of
the performance gain over both random variables. This expected performance
gain is subsequently weighted by the density over labelled and unlabelled in-
stances in the candidate’s neighbourhood. Finally, the candidate with the
highest density-weighted expected performance gain is selected for labelling.
Considering also the true posterior as a random variable advances existing
decision-theoretic strategies, which consider solely the most likely (or most
pessimistic) posterior value. In contrast to the information-theoretic uncer-
tainty sampling, the number of already labelled similar instances is considered
as well. Thus, the proposed probabilistic active learning strategy accounts for
the degree of exploration in a candidate’s neighbourhood. For defining this
neighbourhood, the approach follows the smoothness assumption. For the cal-
culation of the expected performance gain, flexible approaches based on nu-
merical integration as well as fast approaches based on closed-form solutions
are derived. Thus, the strategy is computationally efficient, optimises directly
a classification performance measure, is not limited to a particular classifier
technology, is not myopic but allows to consider multiple label acquisitions at
once, and it is applicable to multi-class and cost-sensitive classification tasks.
Furthermore, this habilitation thesis shows that this strategy is not limited to
the pool-based scenario: for evolving data streams, it proposes two approaches
that use this strategy. In addition, it studies active machine learning also in
its broader sense: for the task of active class-conditional example acquisition,
it proposes an active class selection approach. The proposed algorithms are
evaluated against state-of-the-art approaches, which are based on other active
learning strategies, including uncertainty sampling and expected error reduc-
tion. The experimental evaluation shows the competitiveness of the proposed
probabilistic active learning-based approaches in different scenarios and tasks.
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Chapter 1

Introduction

1.1 Motivation and Outline

Recent years have seen a large increase in the creation and collection of digital
data. Numbers are provided for example by the Digital Universe Study [33],
which states a volume of 2.8ZB of data being created and processed in 2012,
and projects this volume to increase 15 times by 2020. Another example is the
number of webpages indexed by Google, which according to [26] increased from
one million in 1998 to one billion in 2000, and further to one trillion in 2008.
For organisations, for example, making use of this “big” data by data mining
techniques is considered to provide competitive advantages [26]. However,
the increasing volume of available data is contrasted by the limited available
human supervision and labelling capacities. Therefore, the task of mining
large amounts of mostly unlabelled data requires techniques that allocate the
limited annotation efforts optimally.

This habilitation thesis studies such techniques from the fields of active
and adaptive machine learning. Subsequently, it contributes a novel proba-
bilistic active learning strategy to these fields. This active learning strategy
is decision-theoretic and based on the calculation of the density-weighted, ex-
pected performance gain from labelling additional candidate instances. In con-
trast to existing expected error reduction strategies, the proposed approach
models not only the possible label realisation as a random variable. Rather,
it models also the true posterior in a candidate’s neighbourhood as a further
random variable, and performs the expectation over both variables. This pro-
vides an advantage over existing expected error reduction strategies, which
consider solely the most likely (or most pessimistic) posterior value. Further-
more, it uses statistics on the number of labelled instances in a candidate’s
neighbourhood, thereby accounting for the degree of exploration therein. It
provides a flexible approach based on numerical integration for calculating
the expected performance gain, and derives closed-form solutions for fast ap-
proaches. Therefore, the contributed novel probabilistic active learning strat-
egy is computationally efficient and is optimising directly a classification per-
formance measure. The proposed strategy is not myopic, as it allows to con-
sider multiple label acquisitions at once. In addition, it is also applicable
to multi-class and cost-sensitive classification tasks. Furthermore, the use of
this proposed strategy in combination with different classifier technologies is
shown. Extending this initial pool-based approach, further approaches for

1



2 CHAPTER 1. INTRODUCTION

evolving data streams as well as for the task of active class-conditional exam-
ple acquisition are proposed. All these approaches are evaluated against other
state-of-the-art approaches. These include active learning approaches based
on uncertainty sampling and expected error reduction. The results of the ex-
perimental evaluations show that the proposed probabilistic active learning
strategy is competitive in different scenarios and tasks.

1.1.1 Outline

The main part of this habilitation thesis consists of methodological chapters,
each corresponding to a separate publication. Therefore, this first introductory
chapter provides the frame for these later chapters. In its next Section 1.1, it
gives an introduction to supervised machine learning, with particular focus on
active learning and adaptive learning in evolving data streams. This is followed
by two sections that review the literature and challenges in active learning,
again with focus on evolving data streams. Therein, Section 1.3 starts with
a meta review of surveys and position papers on this topic, before identify-
ing and discussing of challenges for active learning in evolving data streams.
Section 1.4 reviews the existing active learning strategies that are the most
relevant to this work. It starts with a review of each strategy by presenting
its main idea, before discussing its use in a non-stationary and stream-based
scenario. The last Section 1.5 is dedicated to the proposed probabilistic ac-
tive learning strategy. First, the strategy and its main idea are presented for
the pool-based scenario. Then, its use in other active learning scenarios is
discussed.

Each of the following Chapters 2–9 corresponds to a separate publication.
Therein, chapter 2 is a position paper on challenges in data stream mining
research. It includes a section on timing and availability of information, where
active learning and handling incomplete information are discussed.

It is followed by Chapters 3–6 that address pool-based active learning.
Therein, Chapter 3 introduces the probabilistic active learning strategy. Chap-
ter 4 extends it to non-myopic and cost-sensitive classification and derives a
fast closed-form solution. This is extended further in Chapter 5, where active
learning for multi-class classification is addressed. The discussion of pool-
based active learning closes with a comparative study in Chapter 6, which
experimentally evaluates different combinations of classifier techniques and
active learning strategies.

In Chapters 7–9, active learning beyond the pool-based scenario is ad-
dressed. This starts with Chapter 7 presenting an instance-wise approach
for probabilistic active learning in evolving data streams. In Chapter 8, a
clustering-based approach for probabilistic active learning in evolving data
streams is introduced. In Chapter 9, an approach for the task of active class
selection is presented.

Finally, documents specifying the bibliographical details of each publica-
tion, their contribution to computer science, and my personal contribution in
each publication are given in the appendix.
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1.2 Introduction

This section provides an introduction to active machine learning and data
stream mining. It gives an introduction to supervised machine learning in
Subsection 1.2.1, to active learning in Subsection 1.2.2, and to evolving data
streams in Subsection 1.2.3.

1.2.1 Supervised Machine Learning

Machine learning is the field of study concerned with computer algorithms
that improve automatically through experience [54, page XV]. The important
aspect is learning as improving through experience, in contrast to being ex-
plicitly programmed. This was pointed out in a famous definition of machine
learning as “the field of study that gives computers the ability to learn without
being explicitly programmed”, which is credited to Arthur Lee Samuel [68, see
second footnote on page 3]. This learning from past experience, or exemplary
data, is often motivated by situations where human expertise does either not
exist or is not explicitly programmable, e.g. when humans are unable to ex-
plain their expertise [3, page XXV]. For example1, it is difficult to derive an
explicit program for the conversion of acoustic speech signals to words, de-
spite the existence of human expertise. Furthermore, it is desirable (and often
necessary) that a machine will adapt to new circumstances. For example, a
speech converting machine might be required to adapt to a new user, by learn-
ing from experience in its interaction with the user. A formal definition of this
learning, according to [54, page 2], is improving a performance, measured by
a performance measure P , in a task T from experience E. For the speech
converter above, an exemplary task is the classification of acoustic sensory
input into ASCII-encoded textual output classes. Therein, experience might
consist of pairs of input-output data that connect recorded acoustic signals to
the corresponding word, e.g. provided by the user as feedback. The perfor-
mance measure might be the error rate, that is, the percentage of incorrectly
converted words.

Machine learning is categorised in supervised, unsupervised and reinforce-
ment learning, based on the type of feedback (or supervision) provided to
the learning system. The classification task above is an example of super-
vised machine learning, where a supervisor provides a learning system with
labelled training data in the form of input-output tuples. More formally, su-
pervised learning [66] is concerned with inferring a predictor f : X → Y. Here,
x ∈ X is the feature vector (or set of attributes or explanatory variables) of
an instance, e.g. the acoustic sensory input sequence. Furthermore, y ∈ Y
is its corresponding response variable (or target attribute), e.g. a class label
corresponding to a word. Finally, f ∈ F is a prediction function from the
hypothesis space, i.e. either a classifier, in the case of a categorical response
variable, or a regression function, in the case of a numerical response variable.
As this work addresses active learning for classification, solely classifier func-
tions are considered further on. A classifier function is learned on a training
data set L = {(xi, yi)}li=1 ∼ Pr(x, y), e.g. on a sample of exemplary words
with their corresponding sensory input sequences. Then, Pr(x, y) denotes

1This example is inspired by an example given in [3, page XXV].
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the joint distribution of features x and class labels y. Marginalising Pr(x, y)
over the features x yields the class prior distribution Pr(y) =

∑
x Pr(x, y).

Marginalising Pr(x, y) over the class labels y results in the feature distribu-
tion Pr(x) =

∑
y Pr(x, y). Using Bayes’ theorem [9], the posterior proba-

bility of an instance with given feature x being from class y is derived as
Pr(y|x) = Pr(x,y)

Pr(x) = Pr(x|y)·Pr(y)
Pr(x) , where Pr(x|y) is the class conditional feature

distribution. The typical objective is generalisation, that is, the prediction of
the class label of new instances. In the example above, this is the prediction
of the word (class label) that corresponds to a new acoustic sensory input
sequence. Some applications require probabilistic classification, that is, the
computation of probabilistic estimates for Pr(y|x). However, for discrimina-
tive applications, it is sufficient to know the label of the most probable class
y∗. This label might be obtained as y∗ = arg maxy (Pr(x|y) · Pr(y)), by ex-
ploiting the fact that for a given x the probability Pr(x) is a constant factor,
thus Pr(y|x) ∝ Pr(x|y) ·Pr(y). In any case, the learner’s generalisation perfor-
mance is typically evaluated on a so-called test set T , which comprises solely
hold-out data that was withheld from training.

The other two categories of machine learning, unsupervised and
reinforcement learning, are not within the scope of this work. However, sum-
marising them for matter of completeness, the former category corresponds
to machine learning without supervision, where the objective is to find struc-
ture in the input that consists of unlabelled training examples. The latter
category corresponds to machine learning without explicit training examples,
but rather by reinforcement from receiving rewards on reaching goals in the
interaction with a dynamic environment.

However, this categorisation into completely supervised or completely un-
supervised learning is too restrictive for some applications. For example, in
some applications the training data set is partially labelled and partially un-
labelled. Semi-supervised learning, a hybrid between supervised and unsu-
pervised learning, addresses machine learning on such data. Its objective
corresponds either to learning a predictor, as in the supervised case, or to find
structure in the input, as in the unsupervised case [83]. In the former, the ad-
ditional unlabelled data provides additional information about structure in the
input data, which might help to modify or re-prioritise classification hypothe-
ses that are obtained from the labelled data alone [82, page 6]. In the latter,
the labelled data provides additional information such as must-link constraints
(all instances from the same class must be assigned to the same cluster) or
cannot-link constraints (any two instances from different classes must not be
assigned to the same cluster) [83, pages 892–893].

Typically, it is assumed that labelled and unlabelled data come from the
same domain, i.e. from the same distribution (see e.g. the definition given in
[83, page 892ff]) and the same task. However, some applications involve learn-
ing and applying models on different domains, where distributions or tasks
differ. This corresponds to transfer learning [57], where knowledge is trans-
ferred between source and target domains that differ in their distributions or
tasks. An example is the adaptation of a model2 learned on labelled training
data from a source domain to testing data from a different target domain. This

2Some authors denote this as domain adaptation. Following the notation in [5], we use
transfer learning as the more generic term in this work.
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is illustrated by the task of adapting a speech converter developed on train-
ing data from users in one region, such as northern Germany, for deployment
in another region, such as Austria. Although the task of converting acous-
tic signals corresponding to spoken German into written words is the same,
the source domain (northern Germany) and target domain (Austria) might
differ in their distributions, e.g. due to idiosyncrasies in the pronunciation
or vocabulary. A common categorisation within transfer learning is based on
the availability of labelled information in each domain [57]: Inductive transfer
learning denotes the case where labelled data is available for both domains,
but the learning task is different. Unsupervised transfer learning denotes the
case where neither in the source nor in the target domain labels are available.
Finally, transfer learning under the constraint that labelled data is solely avail-
able from the source domain is known as transductive transfer learning [57]
(also denoted unsupervised domain adaptation or unsupervised transductive
transfer learning [5]). In the context of this work, it is important to emphasise
that research in transfer learning is not limited to domains that differ in their
task or their (geographical) population, as in the example above. Even when
applied to the same task in the same population, a machine learning model
might require adaptation due to changes in the distribution over time. In the
speech converter above, a model learned and applied to users from the same
region might require adaptation, as for example the users’ vocabulary might
evolve over time. Addressing such temporal difference between domains is im-
portant when working with evolving data streams, as discussed in the later
Chapter 2.

A further categorisation is provided by the interaction between a machine
learner and its supervisor, and the resulting control the learner has on its train-
ing samples [19]. In the passive learning paradigm, the learner is assumed to
be a passive receiver of labelled training instances. That is, there is no in-
teraction between learner and supervisor concerning the selection of training
instances. Thus, it is the responsibility of the supervisor to provide a repre-
sentative and informative sample of training instances. In contrast, the active
learning paradigm assumes an interaction between learner and supervisor on
the selection of training instances, such that the active learner influences or
controls the sample selection. The focus of this work is on active machine
learning, which is therefore discussed in further detail below.

1.2.2 Active Learning

Active learning deals with learning computer systems that actively develop
and test new hypotheses, thereby improving by experience and training [72,
pages 3–4]. It is often assumed that such active learning systems interact
with their environment and influence or control the acquisition of new data
[21]. Thus, such systems actively construct experiments for training, rather
than passively processing given ones [19]. For example, the speech converter
from the previous subsection might actively select few instances, for which
the corresponding word label is uncertain. Subsequently, the learning system
might interact with the user to obtain the true class label for those instances,
in order to improve its future predictions.
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In the case of classification, active learning corresponds to optimising the
interaction between a classifier system and an oracle that provides supervision.
Such an oracle is, for example, a human expert providing labelled data, con-
straints or categorisations. The objective in active learning is to optimise this
interaction [71]. For example, by requesting the most insightful labels first.
One motivation for active learning are applications where supervision is lim-
ited or costly, and thereby efforts should be focused on the data that improves
the classification performance the most. This corresponds to optimising explo-
ration and exploitation of the data space of a domain [10]: selecting instances
from non-sampled areas (exploration) in order to limit the error therein, and
selecting further instances in already sampled ambiguous areas (exploitation)
to improve the classification model in critical areas.

Active machine learning has been approached from different angles under
different names for over two decades now. It is inspired by optimal experiment
design, reinforcement learning, and human learning. Optimal experimental de-
sign, also denoted as regression experimental design, is concerned with the op-
timal organisation of experiments [28]. That is, when and where to take mea-
surements, such that the informativeness of the gathered data is maximised
[18]. Ultimately, techniques from optimal experimental design are incorpo-
rated into a learning system that uses them directly to generate hypotheses
and to automatically perform experiments to evaluate them. An exemplary
implementation of such a learning robotic system for the domain of functional
genomics is presented in [41]. The task of repeatedly selecting, gathering, and
processing information autonomously is also important in reinforcement learn-
ing, another field of machine learning. In reinforcement learning, the learning
problem is to determine which action yields the highest reward in which situ-
ation [75, chapter 1]. Therefore, the learning system is in a different trade-off
between exploitation and exploration than above: on one hand, the system
should exploit its knowledge by selecting the action that is currently known to
maximise the reward. On the other hand, it should aim to find actions with
even higher rewards. The latter requires to try new, unexplored actions. This
helps in selecting better actions in the future, thereby potentially improving
the system’s performance in the long term. In this exploration, the selection
of actions to gather informative data from the environment corresponds to
active learning. This computational active learning has a correspondence in
the educational concept of human active learning. This concept, researched in
learning sciences, cognitive psychology, and educational psychology [53], de-
fines active learning as engaging students in “such higher-order thinking tasks
as analysis, synthesis, and evaluation.”[11, page iii].

In active machine learning, different scenarios for the interaction between
machine learner and supervising oracle have been studied. One of the first
publications in this field is [4], who investigates the use of queries to learn
an unknown concept. Therein, the learning system poses queries on member-
ship, equivalence, subset, superset, disjointness, and exhaustiveness. This is
a particular active learning scenario, later denoted as query synthesis [70]. In
this scenario, the active learning system asks membership queries for synthetic
instances. That is, the learner requests the label for synthetic instances that
are generated upon its query, rather than relying on instances provided by
an oracle. Another name for this query synthesis scenario [72] is construc-
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tive active learning [19]. For this active learning problem, the use of optimal
experimental design as a tool for guiding a neural network learner by using
queries in the exploration of its domain is proposed in [21].

In the query synthesis scenario above, the freedom of an active learner to
create queries that correspond to any point in the feature space might cause
problems. For example, this might result in queries that are not meaningful
or difficult to label by a (human) oracle. Thus, other active learning scenarios
restrict the learner to queries on existing instances provided by the oracle. One
scenario is that a pool U of such unlabelled candidate instances is provided
for free, from which the active learner has to select instances for labelling re-
quests. A common assumption in this so-called pool-based active learning [72,
page 9] scenario is that the learner has access to all unlabelled instances at
once, and that this pool is static. This allows the active learner to compare
or rank candidates by their estimated usefulness. Another scenario restricting
queries to existing instances is stream-based active learning [19], also called se-
quential active learning [72, p. 8–9] or selective sampling [20]. In this scenario,
instances are provided by the oracle one after another, and the active learner
has to decide immediately whether to request an instance’s label or not. Thus,
in contrast to the pool-based setting, the active learner might not request the
labels of previous instances at later time points. This scenario is motivated
by applications where either limited computational capacities prevent storage
or processing of all instances at once, or where data is arriving sequentially.
Thus, it is relevant for active learning in data streams, in particular to evolving
data streams, as discussed further below.

Finally, research on active learning is not limited to the selection of in-
stances for labelling. In its narrower sense active learning corresponds to this
very problem. However, in its broader sense active learning is applicable to the
targeted selection of any type of informative data. This more general topic
has recently been denoted as selective data acquisition in [7]. Therein, the
authors distinguish based on whether active selection is done during training
or at prediction time, and based on the type of information that is requested.
Combining this recent and more complete categorisation with the prototyp-
ical categorisation provided in [70] yields the following categorisation of the
different problems in selective data acquisition.

Selective data acquisition at training time might concern feature values,
labels, feature labellings, or whole examples. In active feature (value) acqui-
sition [65, 7], the value of one or several features is acquired during training.
This is motivated by situations where not all feature values are available for
free, and not all features are equally important for all instances. Then, the
aim is to actively select the most informative subset of features for a given in-
stance at training time. Active label acquisition corresponds to active learning
in its narrower sense, i.e. to the active selection of instances for labelling. As
denoted in [7], the problems of active feature value and active label acquisition
might occur together. Then, class labels might be interpreted as particular
“features”. Active labelling of features is defined in [7] as the active selection of
a given feature value, for which a label is requested. They discuss an example
from sentiment detection, where particular words (feature values) might have
a positive or negative connotation (label), which might be provided upon re-
quest from an oracle. Active class-conditional example acquisition [7], denoted
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active class selection in [51] and [70, page 33], is an inverted active learning
setting, where the learner actively selects a class, for which it queries instances
(i.e. exemplary feature vectors) from the oracle.

Likewise, selective data acquisition at prediction time might be differenti-
ated according to the same categorisation of types of information as at training
time. However, the terminology used to describe these is not consistent in lit-
erature. The active acquisition of feature values at prediction time is denoted
as active classification in [35], and the active acquisition of labels at prediction
time for the purpose of training3 is denoted as active inference in [7], meaning
that labels are requested to improve the classifier during prediction. Active la-
belling of features at prediction time seems to not have been researched so far,
and the active acquisition of class-conditional examples seems solely justified
for the purpose of training.

Furthermore, the problem of active learning from noisy acquisitions [7]4

considers cases where oracles are not perfect providers of noiseless information.
In these cases, the information provided by an oracle is subject to noise, but
the active learner is allowed to formulate multiple queries of the same kind,
either repeatedly from the same oracle, or from independent oracles.

1.2.3 Learning in Data Streams and
Non-Stationary Environments

In the scenario of stream-based active learning [70, page 10] described above,
instances arrive sequentially in a so-called data stream. Learning on such
streaming data that is collected over time, as opposed to batch learning on all
instances at once, has received attention in passive machine learning, for exam-
ple in [24]. In [8], four characteristics are stated that define such a data stream
model: (1) instances arrive online, (2) in an ordering that is not controlled
by the learning system, (3) streams are potentially unbounded in size, (4) pro-
cessed instances are not easily accessible as they are discarded or archived.
These characteristics have a counterpart in the challenges caused by the ever
increasing amount of data, a problem that has attracted attention under the
term “big data” [47]. Three such challenges are listed in [47], namely volume,
variety, and velocity. Therein, volume refers to the large volume of data, which
increases faster than the speed of data processing tools. Variety refers to the
many different types of data. Finally, velocity refers to the speed of continu-
ously arriving data, which should be processed in real-time. Considering the
characteristics of a data stream given in [8], volume and velocity correspond
to challenges due to limitations in the available computational resources in
time and memory.

In addition, recent literature (e.g. [26, 30]) considers further challenges.
In the context of “big data”, variability and value are named as additional
challenges in [26]. There, the former refers to changes, e.g. in the structure
or interpretation of the data, while the latter refers to the business value

3Note that for the purpose of prediction of the same instance, the active acquisition of
its label from the oracle corresponds to classification with a reject option or selective classi-
fication [25]. There, the classifier is allowed to vote for not classifying uncertain instances.

4In the categorisation proposed in [7], this appears as sub-category of active acquisition
at training time. However, as it appears to be a potential problem in any type of active
acquisition of information from oracles, it is presented as orthogonal issue in this work.
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resulting from making use of this data. The counterpart of variability is the
characteristic of change in data streams: patterns might evolve over time, data
might not be considered independently and identically distributed but rather
temporally as well as spatially situated [30]. Thus, in addition to limited
computational resources, evolving data streams pose the further challenge of
requiring adaptation to change. Changes might concern the target variable,
the available feature information, or correspond to changes in the distribution
of variables. In the foremost case, classes might be added to or removed from
the target variable, or the task itself might change, requiring prediction of a
different target variable. In the second case, the feature space might change,
for example due to changes in the availability of features. In the last case, the
target and feature space remain static, but the variables are affected by so-
called concept or population drift. This problem has been subject to extensive
research and has recently been surveyed for example in [32]. Thus, solely a
short categorisation is provided here. Based on which component of the joint
distribution Pr(x, y) of features x and class labels y is affected, one might
distinguish drift of the posterior Pr(y|x), of the conditional feature Pr(x|y),
of the feature Pr(x) and of the class prior Pr(y) distribution.

While the challenges of limited computational resources and adaptation to
change are inherent to mining in evolving data streams, they might be also
relevant outside streaming applications. For example, efficient algorithms are
also important for batch learning in large pools of data with limited compu-
tational resources. Likewise, change might also effect models learned offline.
This might then necessitate adaptation of these models. Thus, machine learn-
ing techniques addressing these challenges are of general interest, under passive
as well as under active learning paradigms.
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1.3 From Static to Adaptive Active Learning

Active learning in general has been reviewed in several recent works. However,
no survey dedicated to adaptive active learning exists to the best of my knowl-
edge. One aim of this section is to provide a broad overview on the general
problem of active learning and its different aspects considered in literature.
Another aim is to discuss in depth adaptive active learning in non-stationary
environments such as evolving data streams, as depicted in Fig. 1.1. Thus,
this section begins with a brief meta review on active learning surveys, in or-
der to provide an overview and key references for its different aspects. Then,
the specific challenges arising in adaptive active learning are elaborated. Fi-
nally, the different active learning strategies and their use in non-stationary
environments are discussed in the next section.

r3 Label Requestsr1

x3

ŷ3

Features

Predictions

x2

ŷ2

x1

ŷ1

y3 Labelsy1

Time

Figure 1.1: Active learning in evolving data streams comprises features xi,
predicted class labels ŷi, label requests ri, and received true labels yi. These
four types of information might arrive at different points in time and constitute
separate, although interdependent streams.

1.3.1 Related Surveys on Active Learning

Several recent publications have surveyed active learning in general. These
include an introductory book [72], which provides an introduction to the dif-
ferent active learning scenarios and strategies and discusses practical consid-
erations. A compact review is given in the Encyclopedia of Machine Learning
[19], with focus on active learning scenarios and selected exemplary active
learning techniques.

Several surveys with focus on different aspects exist [70, 7, 29, 6, 2]. The
survey in [70] precedes the introductory book [72] by the same author. It is
an introduction to active learning, its different scenarios and selection strate-
gies, problem setting variants and related research areas. Furthermore, it
provides a brief analysis on the question whether active learning works, and
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discusses practical considerations. It also includes a section on stream-based
selective sampling [70, page 10]. However, the focus therein is on stationary
environments. The book chapter [7] reviews active learning in its broader
sense of selective data acquisition, thereby extending the problem setting vari-
ants from [70]. In [29], the literature on active learning is reviewed from an
instance-selection perspective. Therein, active learning strategies are cate-
gorised based on whether or not they explicitly consider correlations between
instances. Finally, emerging challenges and trends are briefly discussed, in-
cluding active learning on streaming data platforms. In the book chapter
[6], the use of active learning as a tool for addressing class imbalancedness
is reviewed. Finally, the recently published book chapter [2, Chapter 22.6.4]
includes a short section on streaming active learning with a discussion of a
few particular adaptive active learning approaches.

In addition, different aspects of active learning have been addressed in re-
cent PhD theses [50, 76, 51, 59, 61, 23]. The PhD thesis of [50] addresses
active learning in cost-sensitive environments, with focus on resampling-based
approaches. Active learning in the context of linguistic annotation is studied
in [76], addressing problems such as stopping the annotation process and the
reusability of samples between classifiers. In [51], the general problem of selec-
tive data acquisition is studied, with focus on active class-conditional example
acquisition. New methodologies for active classification and active regression
are discussed in [59]. The thesis of [61] studies active learning with focus on
the trade-off between exploitation and exploration, as well as its industrial ap-
plications. Finally, [23] proposes a new family of decision trees for streaming
data, which are based on confidence and also extended to active learning.

Some of these surveys discuss selected adaptive active learning approaches.
However, none of these provides a structured overview on the challenges or
existing approaches. Furthermore, the term stream-based selective sampling is
frequently used for describing active learning in stationary streams (e.g. [70]).
This makes it even more difficult, but also more important, to identify and
survey adaptive active learning approaches for non-stationary environments.
This is done in the following subsections and continued further in Section 1.4.
Next, an overview on the different challenges for adaptive active learning is
provided, and references to related existing works are given where available.

1.3.2 Efficient Use of Limited Computational Resources

As outlined in Section 1.2.3 above, the limitation in computational resources
is a challenge that is inherent to data streams. It requires efficient processing
of data. As in passive learning, the arriving data might be processed instance-
wise, i.e. one instance after another, or in chunks, i.e. several instances at
once. However, in active learning the protocol for the interaction with the
oracle needs to be considered. If the protocol restricts queries to the most
recently arrived instance, instance-wise processing is required, as assumed for
example in [87, 88, 42]. In contrast, the protocol might allow querying the
label of older, already processed instances as well. Then, instance-wise and
chunk-based processing are possible, as assumed for example in [84, 85, 40, 44].
Furthermore, the interaction protocol might allow requesting the labels of a
single instance or of batches of instances. The former limits active learning
to myopic approaches, while the latter allows non-myopic active learning ap-
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proaches as well. While the majority of adaptive active learning publications
is limited to myopic approaches, few non-myopic approaches exist that ensure
diversity among the queried instances in a batch [15, 14].

Another question concerning chunk-based processing is whether labels ob-
tained in a chunk are allowed to affect the prediction on the remaining unla-
belled instances in the very same chunk. Although the resulting effect might
seem negligible, it directly affects the availability of most recent5 labelled data.
This suggests an effect increasing with chunk size and the extent of drift, al-
though this has not been investigated so far.

1.3.3 Adaptation to Change

The inherent challenge of active learning in non-stationary environments is
adapting the classifier and sampling strategy to changes. As outlined in sec-
tion 1.2.3 above, there are various types of change that might occur. However,
the focus within this work is on changes due to drift. This challenge has been
identified in previous works, most notably in [87] and its extension in [88].
There, the authors highlight that concept drift might affect any part of the
feature space, and provide two illustrative examples6 for changes close and
remote of the decision boundary. They show experimentally that the popular
active learning strategy of uncertainty sampling, discussed in detail in Sub-
section 1.4.1, fails to identify remote changes. The reason is that uncertainty
sampling is an exploitation strategy, which requests labels solely for instances
located closely to the expected decision boundary. Thus, it fails to explore
areas that are further away.

It is noteworthy that this problem related to balancing exploration and
exploitation is not limited to adaptive active learning, but is also relevant in
stationary environments. For example, [56] notes this issue of focusing label
acquisitions to regions close to the expected decision boundary in many con-
ventional active learning strategies. For static active learning, an approach
that dynamically balances between exploitation and exploration is proposed.
Similarly, [13] combines so-called exploration sampling in dense, unexplored
regions with exploitation sampling in well-explored but uncertain regions, i.e.
regions where the sampled labels are contradictory. The idea of both strate-
gies is to initially favour exploration, while later focusing on exploitation, in
order to ensure convergence to a good decision boundary. In stationary en-
vironments, the experimental results in the above works indicate that this
initial exploration might be sufficient. However, as pointed out in [87], in non-
stationary environments previous exploration is not sufficient, as drift might
affect any part of the feature space and therefore requires continuous explo-
ration. Otherwise, a change affecting the classification rule and its subsequent
performance might go unnoticed.

This is illustrated in Fig. 1.2, which shows the distributions at three
consecutive time points T = 0, 1, 2. The true underlying joint distribution for
this binary classification problem (positive against negative class) is plotted
left to the ordinate axis, while the joint distribution as predicted by the model
is plotted to the right. The blue lines on the left indicate the Bayes’ optimal

5Actually even some “future” data, from the point of view of instance-wise stream pro-
cessing.

6See Fig. 1 in [88].
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decision boundaries, while the black lines on the right show the learned decision
boundaries. The shaded area on the right indicates the importance attributed
to sampling instances in a region. Here, dark red indicates high importance,
and white indicates no importance. The indicated importance corresponds to a
strategy that starts with exploration and subsequently focuses on exploitation,
as discussed above. Initially, the exploration at T = 0 ensures that the main
characteristics of the underlying true distribution are captured by the model,
even if not perfectly. Then, at T = 1 and T = 2, sampling is focused on
the region close to the expected decision boundary. As a result, the (upper)
predicted decision boundary converges towards the (upper) Bayes’ optimal
decision boundary. However, at T = 1 also a drift occurs that effects the label
of the cluster located at the bottom of the plot. As this is in a remote region
that is not further explored at consecutive time points, this change is never
noticed.

This challenge has been addressed in different ways in literature. In [87, 88],
the authors propose to use random sampling in combination with an exploita-
tive active learning strategy (uncertainty sampling in their case). Random
sampling selects with equal probability any instance for labelling. This corre-
sponds to exploration, although without consideration of the previous degree
of exploration around an instance. In chunk-based active learning, a simi-
lar strategy is to ensure exploration in each newly obtained chunk. This is
either done by randomly sampling a certain percentage of instances therein
(e.g. in the approaches proposed in [84, 85, 64]), or by building (parts of) the
prediction model from scratch on each chunk (e.g. in [39, 44]).

Another strategy is to monitor the distribution of incoming data by using
change detection techniques. These techniques, reviewed for example in [69],
trigger a signal when changes in the distribution are detected. Upon a detected
change, the sampling strategy is adjusted, for example by triggering a new
exploration phase. This is used for active learning of decision trees in [27, 38].
However, as pointed out in [86], some types of drift require labelled data to be
detectable. In particular, drift that does not affect the unconditional feature
distribution Pr(x) is not detectable from unlabelled data alone.

1.3.4 Budget Management

Active learning is often motivated by limited annotation resources [70, page
4ff], which define the labelling budget [87]. This requires to carefully allocate
them to the most informative instances. How to distribute the use of these
resources over time is a challenge that is closely related to the previous question
on adaptation to change.

In stationary environments, the active learner might eventually focus on
exploitation around the expected decision boundary, which thereby ideally
converges towards the true decision boundary. Thus, the usefulness of addi-
tionally requested labels is likely to decrease over time. However, due to the
reasons given above, this should not be assumed in non-stationary environ-
ments. Upon change, new label requests might provide more insights than
previous ones before the change. A simplistic approach is to distribute the
labelling budget either equally or decreasingly over time. However, in the pre-
viously described situation this approach might perform worse than a more
sophisticated one that focuses its efforts on moments after changes. Thus,
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Figure 1.2: Illustration of issues due to drift and insufficient exploration at
later time points. The three plots show for three consecutive time points
T = 1, 2, 3 the true (left of the ordinate axes) and estimated (right of the
ordinate axes) joint distributions Pr(x, y), as well as the Bayes’ optimal de-
cision boundaries (horizontal blue lines) and the learned decision boundaries
(horizontal black lines). Furthermore, the sampling preferences are shown in
shades of red for an active learning strategy that favours exploration at early
and exploitation at later time points (red indicating high preference). As seen
in the rightmost plot, a change affecting a remote region that is not further
explored at consecutive time points is never noticed.

managing the budget such that it is optimally allocated over both space and
time is a relevant challenge for active learning in non-stationary environments.
In chunk-based approaches, this corresponds to determining for each chunk the
optimal number of label acquisitions therein, and subsequently selecting the
most promising candidates in a pool-based approach. This is addressed in
[85], where the use of a minimum-variance approach for estimating the num-
ber of required instances in a chunk is proposed. In instance-based approaches
this is even more challenging: even if the optimal percentage of label requests
per processed instance was known, the question remains, how to identify and
select the most valuable instance online in a streaming sequence. First ap-
proaches for addressing this problem are proposed in [87, 88]. Here, the aim
is to maintain a fixed sampling proportion over time, which is done by adjust-
ing a selection threshold heuristically. More recently, in [42] adaptive filtering
techniques were proposed for this purpose, and the problems of spatial and
temporal sampling were discussed in more detail.

A further issue is the combination of budget management and change de-
tection. While first approaches exist (see Subsection 1.3.3 above), these do
not provide a generic budget management framework but rather are limited
to a particular classifier technology.
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1.3.5 Providing Bounds for Adaptive Active Learning

Related to budget management is the question of how well an active classi-
fier currently performs, in particular in a streaming environment. In passive
classification, labelled data might be used in a prequential evaluation [31].
However, in active learning labels are scarce and costly. Thus, some works
have derived theoretical bounds for the number of mistakes and necessary
label requests. The only such work addressing a somehow non-stationary en-
vironment is [80]. However, it proves bounds for the number of mistakes and
necessary label requests in static concepts with covariate drift. A potential
reason for the absence of such bounds for non-stationary concepts might be
that strong assumptions on the type of drift would be required, limiting the
applicability of results to very particular situations.
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1.4 Existing Active Learning Strategies

This section reviews the most relevant among the existing active learning
strategies. Most of these strategies were originally designed for the static,
pool-based scenario. Some were later extended to the stream-based scenario.
Therefore, each subsection first presents a strategy and its main idea in the
pool-based scenario. This is then followed by a discussion on the use of this
strategy in a non-stationary and stream-based scenario.

1.4.1 Uncertainty Sampling

Uncertainty sampling [48] is an information theoretic, heuristic active learning
strategy. The main idea behind uncertainty sampling is to measure the current
classifier’s uncertainty in an instance’s label, and to select the instance for
labelling that has the highest uncertainty. Here, uncertainty measures serve
as proxies for the impact an instance’s label would have on the classification
performance. In [48], the authors proposed to use a probabilistic classifier
for estimating the posterior of a candidate’s most likely class. As uncertainty
measure they used the absolute difference between this posterior estimate and
0.5. This uncertainty measure is commonly denoted as confidence (see e.g.
[72, page 14ff]), with low values indicating high uncertainty. The entropy
over the classifier’s posterior estimates is another uncertainty measure (see
e.g. [72, page 14ff]), where high values indicate high uncertainty. A further
uncertainty measure is the margin between a classifier’s decision boundary and
the candidate’s position in a feature space [72, page 14ff]. Here, low values
indicate high uncertainty.

Given a classifier that provides a posterior estimate or margin, the imple-
mentation of this approach is trivial. Furthermore, in the pool-based setting,
its asymptotic time complexity is O(|U|), where U is the set of unlabelled can-
didate instances. In data streams it is constant. However, these advantages
are contrasted by the known problem [81, 46] that these uncertainty measures
do not consider the certainty of the posterior estimate itself. That is, they
do not account for the number of instances, on which the posterior estimates
are made or the decision boundaries are drawn. For example, this might lead
to problems with unreliable uncertainty measures at early learning stages,
when posterior estimates are based on few instances. At later learning stages
these uncertainty measures tend to sample in regions with high Bayesian er-
ror, where the performance is not improvable, as we have shown in [46]. The
former issue might be mitigated to some extend by using beta priors on the
posterior estimates. The latter issue, however, remains. The results of some
empirical evaluations (e.g. [16, 67, 45]), including our own, indicate that this
approach performs often worse than random sampling baselines.

Nevertheless, its algorithmic simplicity and computational efficiency make
it one of the most popular active learning baselines, as for example in the
active learning competition [36].

Use of Uncertainty Sampling in Evolving Data Streams

Uncertainty sampling is easily applicable in evolving data streams. Its sole re-
quirement is that the underlying classifier is suited for evolving data streams.
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This means that the classifier should provide at any time either reliable poste-
rior estimates for confidence- or entropy-based uncertainty measures, or reli-
able margins for margin-based uncertainty measures. As a result, this strategy
is frequently used in evolving data streams [38, 49, 74, 87, 88, 40, 79, 78].

The chunk-based approach proposed in [38] actively constructs a decision
tree. It uses a Naive Bayes classifier to perform confidence-based uncertainty
sampling to select labelling candidates. Upon labelling, a decision tree clas-
sifier is trained. It is noteworthy that this corresponds to the label reusabil-
ity scenario discussed in [77]. Translated to the terminology of [77], in this
approach the Naive Bayes classifier acts as selector of instances for labelling,
while the decision tree classifier acts as consumer of these labels. Furthermore,
the approach in [38] is related to earlier work in [27] that also addresses active
learning for decision trees in evolving data streams. However, the instance-
wise approach in [27] uses a change detection on the distribution of unlabelled
data, and upon a detected change it selects a fixed number of instances using
random sampling.

In [49], a chunk-based approach is designed for support vector machines.
This approach uses the margin as uncertainty measure, and a sliding window
technique for adaptation. A support vector machine is also used in the more
recent work [74] on sentiment analysis in evolving data streams, which includes
a section on active learning. Therein, the authors experiment with margin-
based uncertainty sampling and random sampling.

In [87] and its extended version [88], uncertainty sampling is used in
instance-wise approaches. It is combined with different budget management
and randomisation strategies. As explained in Subsections 1.3.3 and 1.3.4
above, randomisation serves to ensure sufficient exploration at any time, while
adaptive thresholding is used to influence the consumed budget.

In [39], a chunk-based approach is proposed. For improving diversity
among selected instances, it uses an amnesic clustering model. However, it
is designed to be usable with any stream classifier technology. On each arriv-
ing chunk of instances, clustering is performed from scratch, Then, the most
informative instances from each cluster are selected for labelling and fed to
the classifier. For active learning, the approach distinguishes between a macro
and a micro step. The macro step is used to rank clusters according to their
homogeneity in terms of their predicted class distribution. This distribution is
estimated by the current classifier, which was learned on the labelled instances
from previous chunks. This corresponds to confidence-based uncertainty sam-
pling. The later micro step determines the most useful instance within a
given cluster. Thus, it ranks instances by combining geometrical information
inside their cluster with the instance’s maximum a posteriori classification
probability. After selected instances are labelled, the clustering information is
discarded.

The instance-wise approach proposed in [40] combines uncertainty sam-
pling with density weighting. Density weighting is applied for filtering out
candidates from low-density regions. On a remaining candidate from high-
density regions, the candidate’s margin-based uncertainty score is compared
against a adaptive threshold with randomisation.

In [79], a wrapper classifier is evaluated that uses an uncertainty sampling
approach. The used uncertainty sampling employs a (not further specified)
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support function value provided by the underlying classifier.

Finally, [78] is an application-oriented paper that uses uncertainty sam-
pling. For random forest classifiers, the authors propose to use the posterior
difference between the most and second-most probable labels as uncertainty
measure. For evolving fuzzy classifiers, the authors propose a specialised un-
certainty measure that considers at an instance’s position conflict, i.e. how
much opposing classes are overlapping, and ignorance, i.e. how close the near-
est rule is. If rules are clusters, conflict measures the overlap of opposing
clusters, while ignorance measures the distance to the nearest cluster. This is
related to the idea of combined measures for representativeness and diversity
discussed in [29].

1.4.2 Version Space Partitioning and Query by Committee

According to [19], the oldest practical active learning work is [63]. This work
uses the strategy of partitioning the version space. This strategy is based
on selecting those labelling candidates, for which the disagreement between
hypotheses in the current version space is maximal [19]. A particular case
of version space partitioning is the query by committee strategy for ensemble
classifiers: Here, all ensemble members predict the class label of candidate
instances. Subsequently, the candidate with the highest disagreement in its
predicted class labels is selected for labelling [73]. In particular the query by
committee strategy is frequently used in data streams, although it requires
training and maintaining an ensemble of classifiers.

Use of Query by Committee in Evolving Data Streams

The approaches proposed in [84, 85, 64] use the query by committee strat-
egy for active learning within an ensemble, without restriction on the type of
base classifiers therein. In the chunk-based approach in [84] and its extension
in [85], a new base classifier is learned on each arriving chunk. For initial
training of this classifier, a fixed proportion of instances within this chunk is
labelled randomly. Then, the disagreement within the ensemble is used to
select further instances for labelling. In [84], in each chunk a fixed proportion
of the remaining instances is labelled in this way. In [85], this proportion is
automatically determined, and adaptive weighting of base classifiers is intro-
duced. The instance-wise approach proposed in [64] also learns an ensemble.
However, it combines this with change detection techniques to learn new base
classifiers on demand. For change detection, it approximates the feature dis-
tribution by a mixture of spherical clusters. Each cluster corresponds to the
training set used for learning one base classifier. Instances that are outside the
mean-variance range of previous clusters are considered suspicious. Finally,
neighbouring suspicious instances forming a spherical cluster are used to train
a new base classifier. For classification of a new instance, a weighted voting
scheme is used. Here, a base classifier’s vote is weighted according to the dis-
tance between the centre of its corresponding cluster and the position of the
new instance.

The idea to use clustering in combination with a query by committee strat-
egy is taken further by approaches, which directly use the clustering model for
classification. Several such approaches have been proposed for evolving data



1.4. EXISTING ACTIVE LEARNING STRATEGIES 19

streams [52, 1, 55, 34]. The chunk-based approach in [52] also maintains a
mixture of spherical clusters, denoted as pseudo points. This mixture is used
as ensemble for the classification of new instances. For active learning, a com-
bination of outlier selection and query by committee is used: instances outside
all pseudo point ranges, or instances with high disagreement are selected for
labelling and stored in a buffer. New clusters emerging in this buffer are then
added to the ensemble. The semi-supervised stream classification approach
proposed in [1] uses active learning solely to resolve ties due to votes from
opposing classes in the ensemble. Thus, this approach uses active learning
techniques for reducing the requested number of labels, but it provides no
means for controlling its budget consumption. The active learning approach
suggested in [55] differentiates between clusters with and without labelled in-
stances. In the latter case, the algorithm seeks to obtain the label of the
centre-most instance. In the former case, the algorithm checks for a skewed
label distribution. That is, if all labels are located on one side of the cluster, an
additional label at the opposite side of the cluster is requested. Subsequently,
cluster with inhomogeneously distributed labels are split. The approach pro-
posed in [34] addresses active learning for binary spam classification. It learns
a separate clustering model for both classes. For new instances, each clustering
model computes a similarity score. Similar to a likelihood, this score expresses
the confidence that the instance belongs to the particular clustering model.
When both clustering models indicate low but similar confidence, an instance
is selected for labelling. Thus, the approach does not consider a predefined
budget limit.

1.4.3 Loss Minimisation

In contrast to the information-theoretic uncertainty sampling, the decision-
theoretic strategies summarised in [19, page 12] as loss minimisation aim at
directly optimising a classifier’s performance [72, page 37]. This is achieved
by estimating the influence on the performance from acquiring a candidate’s
label.

The first strategy of this kind is expected error reduction [22, 62]. Here,
the influence on the performance is measured by the expected reduction in
the misclassification error. Expectation therein is over the different possible
realisations of the candidate’s label. For each possible realisation, the approach
proposed in [62] simulates a classifier update and calculates the error reduction
of this updated classifier compared to the current one. This Monte-Carlo-
based approach is usable with any classifier and any user-specified classification
performance measure, although computationally expensive. In [22], a closed-
form solution is derived for mixtures of Gaussians. However, deriving such
closed-form solutions is often not feasible. Thus, variance reduction has been
proposed in [21, 22] as a variation of this strategy. Variance reduction aims at
minimising the variance term, while ignoring the noise and bias terms. Thus,
it allows closed-form solutions for some cases of regression problems, where
such closed-form solutions are not available for expected error reduction [72,
pages 40 and 64]. A drawback of loss-minimising strategies such as expected
error reduction is the need for accurate posterior estimates in the expectation
step. This is problematic when the posterior estimates from the current model
are unreliable, as for example in early learning stages. This problem has been
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identified for example in [16]. Therein, different regularisation approaches
have been explored to address this problem, including the use of Beta priors.
A further drawback in expected error reduction is the use of en evaluation
sample V, on which the classifier’s error after its simulated update is calculated.
Different implementations for obtaining V are discussed in literature, using
either the sample L of already labelled instances [62], or self-labelling the
unlabelled candidate pool U [16], or a combination of the two. However, in
any case the resulting evaluation sample V depends on the already acquired
labels in L. Thus, in early learning stages neither L nor V are reliable, as we
have shown in [46]. In addition, this strategy’s asymptotic time complexity
is as high as O(|V| · |U|). Thus, according to [72, page 64], these strategies
are not applicable in stream-based classification scenarios. This is underlined
by the absence of papers reporting their use for classification in evolving data
streams.

1.4.4 Sufficient Weights

The recently proposed strategy of computing so-called sufficient weights [12]
is related to confidence-based uncertainty sampling, expected error reduction,
and to probabilistic active learning discussed in Section 1.5. The sufficient
weight is a proxy for the certainty of the classifier in a candidate’s label. It is
defined as the minimum weight this candidate would require, when added to
the training set, in order to alter its own classification from one class to an-
other. The authors propose to determine this sufficient weight by logarithmic
search and simulation. Thus, the approach aims to consider the influence of an
instance on the classifier given the current training set. This is related to the
aims in expected error reduction and probabilistic active learning. However,
this sufficient weight might be small for instances in regions of high Bayesian
error, independently of the number of already acquired nearby labels. Thus,
one might speculate that the sufficient weight strategy might request instances
from very well-explored but noisy regions, in contrast to probabilistic active
learning. However, this remains to be shown.

This approach is designed for evolving data streams and supposed to work
with a given budget restriction. Similar to the budget management in [88],
its selection threshold is increased in case an acquired instance did match the
predicted label, and decreased otherwise.



1.5. PROBABILISTIC ACTIVE LEARNING 21

1.5 Probabilistic Active Learning

The main contribution of this work is a novel probabilistic active learning
strategy. Although originally presented for the static, pool-based scenario, this
strategy has been designed for expandability to the non-stationary, stream-
based scenario. Thus, the strategy aims to be computationally efficient, to be
decision-theoretic in optimising directly a classification performance measure,
and not to be limited to a particular classifier technology. In addition, it is
not myopic but allows to consider multiple label acquisitions at once, and it is
not limited to binary classification. Furthermore, this strategy is shown to be
applicable in pool-based, stream-based and active class-conditional example
acquisition scenarios.

The strategy and its main idea are presented in the next subsection for the
pool-based scenario. This is then followed by subsections that discuss its use
in other active learning scenarios.

1.5.1 The Probabilistic Active Learning Strategy

Probabilistic active learning is a decision-theoretic strategy that computes the
expected gain in classification performance from labelling additional instances.
Given a labelling candidate x, probabilistic active learning models the possi-
ble label realisations from labelling this (or m additional similar) instances
as a multinomial random variable. Likewise, it models the true posterior in
the labelling candidate’s neighbourhood as another random variable. The ex-
pectation of the performance gain in the candidate’s neighbourhood is then
calculated over both random variables. Subsequently, this expected perfor-
mance gain is weighted by the density of labelled and unlabelled instances in
the candidate’s neighbourhood. Thereby, the importance of the candidate’s
neighbourhood in the classification task is approximated. Finally, the candi-
date with the highest density-weighted expected performance gain is selected
for labelling.

In contrast to probabilistic active learning, loss minimisation strategies
consider the label realisation as only random variable in their expectation.
Considering also the true posterior as a random variable advances the state-
of-the-art decision-theoretic active learning literature, which considers solely
the most likely (or most pessimistic) posterior value. In contrast to the
information-theoretic uncertainty sampling, probabilistic active learning con-
siders how well a candidate’s neighbourhood has been explored. This is done
by counting the number of already acquired labelled instances in the candi-
date’s neighbourhood. As we have shown in [46], this provides theoretical as
well as empirical advantages over other state-of-the-art active learning strate-
gies.

The use of the concept of neighbourhoods in probabilistic active learning
follows the smoothness assumption [17, page 7]. This assumes that neighbour-
ing positions in the feature space have similar posteriors. In this work, two
neighbourhood concepts are differentiated. The first corresponds to disjoint
neighbourhoods and applies to categorical or pre-clustered data. Such data
allows to count directly the number of labelled instances that are similar to the
candidate w.r.t. their features (or assigned cluster). These label counts are
then summarised by so-called label statistics ls = (n, p̂). These are tuples con-
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sisting of the absolute number n of labels in a candidate’s neighbourhood, and
the share p̂ of positives therein. The second concept corresponds to smooth,
continuous neighbourhoods. It is applicable to numerical data, where the in-
fluence of instances increases with the similarity of their features. In analogy
to counts in the disjoint case, frequency estimates are used in the smooth,
continuous case. These might be obtained from probabilistic classifiers that
are modified to return unnormalised estimates for the absolute frequencies.
This is shown to work particularly well for generative probabilistic classifiers
such as Naive Bayes. If such estimates are not available from the classifier,
frequency estimation techniques might be used, e.g. those based on kernels.

For calculating the expected performance gain, a numerical integration
approach is proposed for optimising any user-specified point classification per-
formance measure [58], e.g. accuracy. In addition, a faster closed-form solu-
tion is derived for misclassification loss [37]. This is a performance measure
for cost-sensitive classification, where the cost τ of a false positive classifica-
tion potentially differs from that of a false negative one (1 − τ). As a result,
probabilistic active learning is also applicable in cost-sensitive classification.

To illustrate this approach, consider the case of binary classification with
a given unlabelled instance x from a pool of labelling candidates U , a set of
labelled instances L = {(xi, yi)}, a labelling budget m, and a costs τ for a
false positive classification.

First, the label statistics are acquired for the candidate’s neighbourhood.
Using Gaussian kernel frequency estimation with bandwidth matrix Σ yields:

LC(x,L) ≈ KFE(x,L) =
∑

xi∈L
exp

(
−1

2
· (x− xi)′Σ−1(x− xi)

)
(1.1)

Based on such frequency estimates, the total number of labels is derived as
n = LC(x,L). For the label statistics ls = (n, p̂), the share of positives
therein is p̂ = LC(x,L+)/LC(x,L). Here, L+ is the subset of labelled positive
instances in L.

Since L∪U is static, it is recommended to precompute the densities in the
neighbourhood dx of all candidates x ∈ U . For example, by calculating this
density based on Eq. 1.1:

dx =
LC(x,L ∪ U)

|L ∪ U| (1.2)

Given the label statistics of a candidate, the expected gain GOPAL in the
candidate’s neighbourhood is computed as:

GOPAL(n, p̂, τ,m) =
n+ 1

m
·
(

n
n · p̂

)
·
(

IML(n, p̂, τ, 0, 0)−
m∑

k=0

IML(n, p̂, τ,m, k)

)

(1.3)

Here, Binm,p(k) is the generalised binomial coefficient for non-integer ar-
guments using Legendre’s gamma function Γ(z)7:

(
m
k

)
=

Γ(m+ 1)

Γ(k + 1) · Γ(m− k + 1)
(1.4)

7See for example pages 206–208 in [60].
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The function IML(n, p̂, τ,m, k) is proportional to the expected misclas-
sification loss within the neighbourhood, given that among m additionally
acquired labels k are positive:

IML(n, p̂, τ,m, k) =

(
m
k

)
·





(1− τ) · Γ(1−k+m+n−np̂)Γ(2+k+np̂)
Γ(3+m+n)

np̂+k
n+m < τ

(τ − τ2) · Γ(1−k+m+n−np̂)Γ(1+k+np̂)
Γ(2+m+n)

np̂+k
n+m = τ

τ · Γ(2−k+m+n−np̂)Γ(1+k+np̂)
Γ(3+m+n)

np̂+k
n+m > τ

(1.5)
For m > 1, the value m∗x maximising the GOPAL (see Eq. 1.3) is determined

by using, for example, a logarithmic search over m′ = 1, 2, · · · ,m:

m∗x ← arg max
m′∈1,2,··· ,m

GOPAL((nx, p̂x), τ,m′) (1.6)

Finally, the candidate x∗ with the highest density-weighted expected per-
formance gain is requested:

x∗ ← arg max
x∈U

(dx ·GOPAL((nx, p̂x), τ,m∗x)) (1.7)

1.5.2 Probabilistic Active Learning in Evolving Data Streams

In this work, two different approaches for using the probabilistic active learning
strategy in evolving data streams are shown.

The first, instance-wise approach is presented in [42]. In addition to ex-
tending the probabilistic active learning strategy for the use in evolving data
streams, it complements the notion of usefulness within a topological space
(“spatial usefulness”) with the concept of “temporal usefulness”. Further-
more, it addresses budget management by proposing the Balanced Incremen-
tal Quantile Filter (BIQF). This filtering technique is used for assessing the
usefulness of instances in a sliding window and for ensuring that a predefined
budget is not exceeded above a given tolerance.

The second approach, presented in [42], is based on the concept of disjoint
neighbourhoods. These are obtained from clustering the data in a chunk-based
approach. This requires adjusting the calculation of the label statistics and
the density estimates. Furthermore, a framework for clustering-based active
learning in evolving data streams is presented, which is partially inspired by
[39].

1.5.3 Probabilistic Active Learning for
Active Class-Conditional Example Acquisition

Probabilistic active learning is not limited to pool-based and stream-based
active label acquisition. A further scenario addressed in this work is active
class-conditional example acquisition, also known as active class selection. In
[43], probabilistic active learning is extended to this scenario. The proposed
algorithm uses pseudo instances to estimate in expectation the classifier’s ben-
efit from additional information. For yielding the final class selection score,
this expected value is then weighted with the pseudo instance’s density and
its class conditional probability.
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[86] Indrė Zliobaitė. Change with delayed labeling: When is it detectable?
In IEEE International Conference on Data Mining Workshops (ICDMW
2010), pages 843 – 850, 2010.
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ABSTRACT
Every day, huge volumes of sensory, transactional, and web data
are continuously generated as streams, which need to be analyzed
online as they arrive. Streaming data can be considered as one
of the main sources of what is called big data. While predictive
modeling for data streams and big data have received a lot of at-
tention over the last decade, many research approaches are typi-
cally designed for well-behaved controlled problem settings, over-
looking important challenges imposed by real-world applications.
This article presents a discussion on eight open challenges for data
stream mining. Our goal is to identify gaps between current re-
search and meaningful applications, highlight open problems, and
define new application-relevant research directions for data stream
mining. The identified challenges cover the full cycle of knowledge
discovery and involve such problems as: protecting data privacy,
dealing with legacy systems, handling incomplete and delayed in-
formation, analysis of complex data, and evaluation of stream min-
ing algorithms. The resulting analysis is illustrated by practical
applications and provides general suggestions concerning lines of
future research in data stream mining.

1. INTRODUCTION
The volumes of automatically generated data are constantly in-
creasing. According to the Digital Universe Study [18], over 2.8ZB
of data were created and processed in 2012, with a projected in-
crease of 15 times by 2020. This growth in the production of dig-
ital data results from our surrounding environment being equipped
with more and more sensors. People carrying smart phones produce
data, database transactions are being counted and stored, streams of
data are extracted from virtual environments in the form of logs or
user generated content. A significant part of such data is volatile,
which means it needs to be analyzed in real time as it arrives. Data
stream mining is a research field that studies methods and algo-
rithms for extracting knowledge from volatile streaming data [14;
5; 1]. Although data streams, online learning, big data, and adapta-
tion to concept drift have become important research topics during

the last decade, truly autonomous, self-maintaining, adaptive data
mining systems are rarely reported. This paper identifies real-world
challenges for data stream research that are important but yet un-
solved. Our objective is to present to the community a position
paper that could inspire and guide future research in data streams.
This article builds upon discussions at the International Workshop
on Real-World Challenges for Data Stream Mining (RealStream)1

in September 2013, in Prague, Czech Republic.
Several related position papers are available. Dietterich [10] presents
a discussion focused on predictive modeling techniques, that are
applicable to streaming and non-streaming data. Fan and Bifet [12]
concentrate on challenges presented by large volumes of data. Zlio-
baite et al. [48] focus on concept drift and adaptation of systems
during online operation. Gaber et al. [13] discuss ubiquitous data
mining with attention to collaborative data stream mining. In this
paper, we focus on research challenges for streaming data inspired
and required by real-world applications. In contrast to existing po-
sition papers, we raise issues connected not only with large vol-
umes of data and concept drift, but also such practical problems
as privacy constraints, availability of information, and dealing with
legacy systems.
The scope of this paper is not restricted to algorithmic challenges,
it aims at covering the full cycle of knowledge discovery from data
(CRISP [40]), from understanding the context of the task, to data
preparation, modeling, evaluation, and deployment. We discuss
eight challenges: making models simpler, protecting privacy and
confidentiality, dealing with legacy systems, stream preprocessing,
timing and availability of information, relational stream mining,
analyzing event data, and evaluation of stream mining algorithms.
Figure 1 illustrates the positioning of these challenges in the CRISP
cycle. Some of these apply to traditional (non-streaming) data min-
ing as well, but they are critical in streaming environments. Along
with further discussion of these challenges, we present our position
where the forthcoming focus of research and development efforts
should be directed to address these challenges.
In the remainder of the article, section 2 gives a brief introduction to
data stream mining, sections 3–7 discuss each identified challenge,
and section 8 highlights action points for future research.

1http://sites.google.com/site/realstream2013
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Figure 1: CRISP cycle with data stream research challenges.

2. DATA STREAM MINING
Mining big data streams faces three principal challenges: volume,
velocity, and volatility. Volume and velocity require a high volume
of data to be processed in limited time. Starting from the first arriv-
ing instance, the amount of available data constantly increases from
zero to potentially infinity. This requires incremental approaches
that incorporate information as it becomes available, and online
processing if not all data can be kept [15]. Volatility, on the other
hand, corresponds to a dynamic environment with ever-changing
patterns. Here, old data is of limited use, even if it could be saved
and processed again later. This is due to change, that can affect the
induced data mining models in multiple ways: change of the target
variable, change in the available feature information, and drift.
Changes of the target variable occur for example in credit scor-
ing, when the definition of the classification target “default” versus
“non-default” changes due to business or regulatory requirements.
Changes in the available feature information arise when new fea-
tures become available, e.g. due to a new sensor or instrument.
Similarly, existing features might need to be excluded due to regu-
latory requirements, or a feature might change in its scale, if data
from a more precise instrument becomes available. Finally, drift is
a phenomenon that occurs when the distributions of features x and
target variables y change in time. The challenge posed by drift has
been subject to extensive research, thus we provide here solely a
brief categorization and refer to recent surveys like [17].
In supervised learning, drift can affect the posterior P (y|x), the
conditional feature P (x|y), the feature P (x) and the class prior
P (y) distribution. The distinction based on which distribution is
assumed to be affected, and which is assumed to be static, serves to
assess the suitability of an approach for a particular task. It is worth
noting, that the problem of changing distributions is also present in
unsupervised learning from data streams.
A further categorization of drift can be made by:

• smoothness of concept transition: Transitions between con-
cepts can be sudden or gradual. The former is sometimes also
denoted in literature as shift or abrupt drift.

• singular or recurring contexts: In the former case, a model
becomes obsolete once and for all when its context is re-
placed by a novel context. In the latter case, a model’s con-
text might reoccur at a later moment in time, for example due
to a business cycle or seasonality, therefore, obsolete models
might still regain value.

• systematic or unsystematic: In the former case, there are
patterns in the way the distributions change that can be ex-
ploited to predict change and perform faster model adapta-
tion. Examples are subpopulations that can be identified and
show distinct, trackable evolutionary patterns. In the latter
case, no such patterns exist and drift occurs seemingly at ran-
dom. An example for the latter is fickle concept drift.

• real or virtual: While the former requires model adaptation,
the latter corresponds to observing outliers or noise, which
should not be incorporated into a model.

Stream mining approaches in general address the challenges posed
by volume, velocity and volatility of data. However, in real-world
applications these three challenges often coincide with other, to
date insufficiently considered ones.
The next sections discuss eight identified challenges for data stream
mining, providing illustrations with real world application exam-
ples, and formulating suggestions for forthcoming research.

3. PROTECTING PRIVACY AND CONFI-
DENTIALITY

Data streams present new challenges and opportunities with respect
to protecting privacy and confidentiality in data mining. Privacy
preserving data mining has been studied for over a decade (see.
e.g. [3]). The main objective is to develop such data mining tech-
niques that would not uncover information or patterns which com-
promise confidentiality and privacy obligations. Modeling can be
done on original or anonymized data, but when the model is re-
leased, it should not contain information that may violate privacy
or confidentiality. This is typically achieved by controlled distor-
tion of sensitive data by modifying the values or adding noise.
Ensuring privacy and confidentiality is important for gaining trust
of the users and the society in autonomous, stream data mining
systems. While in offline data mining a human analyst working
with the data can do a sanity check before releasing the model, in
data stream mining privacy preservation needs to be done online.
Several existing works relate to privacy preservation in publishing
streaming data (e.g. [46]), but no systematic research in relation to
broader data stream challenges exists.
We identify two main challenges for privacy preservation in mining
data streams. The first challenge is incompleteness of information.
Data arrives in portions and the model is updated online. There-
fore, the model is never final and it is difficult to judge privacy
preservation before seeing all the data. For example, suppose GPS
traces of individuals are being collected for modeling traffic situa-
tion. Suppose person A at current time travels from the campus to
the airport. The privacy of a person will be compromised, if there
are no similar trips by other persons in the very near future. How-
ever, near future trips are unknown at the current time, when the
model needs to be updated.
On the other hand, data stream mining algorithms may have some
inherent privacy preservation properties due to the fact that they do
not need to see all the modeling data at once, and can be incremen-
tally updated with portions of data. Investigating privacy preser-
vation properties of existing data stream algorithms makes another
interesting direction for future research.
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The second important challenge for privacy preservation is concept
drift. As data may evolve over time, fixed privacy preservation
rules may no longer hold. For example, suppose winter comes,
snow falls, and much less people commute by bike. By knowing
that a person comes to work by bike and having a set of GPS traces,
it may not be possible to identify this person uniquely in summer,
when there are many cyclists, but possible in winter. Hence, an im-
portant direction for future research is to develop adaptive privacy
preservation mechanisms, that would diagnose such a situation and
adapt themselves to preserve privacy in the new circumstances.

4. STREAMED DATA MANAGEMENT
Most of the data stream research concentrates on developing pre-
dictive models that address a simplified scenario, in which data is
already pre-processed, completely and immediately available for
free. However, successful business implementations depend strongly
on the alignment of the used machine learning algorithms with
both, the business objectives, and the available data. This section
discusses often omitted challenges connected with streaming data.

4.1 Streamed Preprocessing
Data preprocessing is an important step in all real world data anal-
ysis applications, since data comes from complex environments,
may be noisy, redundant, contain outliers and missing values. Many
standard procedures for preprocessing offline data are available and
well established, see e.g. [33]; however, the data stream setting in-
troduces new challenges that have not received sufficient research
attention yet.
While in traditional offline analysis data preprocessing is a once-off
procedure, usually done by a human expert prior to modeling, in the
streaming scenario manual processing is not feasible, as new data
continuously arrives. Streaming data needs fully automated pre-
processing methods, that can optimize the parameters and operate
autonomously. Moreover, preprocessing models need to be able to
update themselves automatically along with evolving data, in a sim-
ilar way as predictive models for streaming data do. Furthermore,
all updates of preprocessing procedures need to be synchronized
with the subsequent predictive models, otherwise after an update in
preprocessing the data representation may change and, as a result,
the previously used predictive model may become useless.
Except for some studies, mainly focusing on feature construction
over data streams, e.g. [49; 4], no systematic methodology for data
stream preprocessing is currently available.
As an illustrative example for challenges related to data preprocess-
ing, consider predicting traffic jams based on mobile sensing data.
People using navigation services on mobile devices can opt to send
anonymized data to the service provider. Service providers, such as
Google, Yandex or Nokia, provide estimations and predictions of
traffic jams based on this data. First, the data of each user is mapped
to the road network, the speed of each user on each road segment
of the trip is computed, data from multiple users is aggregated, and
finally the current speed of the traffic is estimated.
There are a lot of data preprocessing challenges associated with
this task. First, noisiness of GPS data might vary depending on
location and load of the telecommunication network. There may
be outliers, for instance, if somebody stopped in the middle of a
segment to wait for a passenger, or a car broke. The number of
pedestrians using mobile navigation may vary, and require adaptive
instance selection. Moreover, road networks may change over time,
leading to changes in average speeds, in the number of cars and
even car types (e.g. heavy trucks might be banned, new optimal
routes emerge). All these issues require automated preprocessing

actions before feeding the newest data to the predictive models.
The problem of preprocessing for data streams is challenging due to
the challenging nature of the data (continuously arriving and evolv-
ing). An analyst cannot know for sure, what kind of data to expect
in the future, and cannot deterministically enumerate possible ac-
tions. Therefore, not only models, but also the procedure itself
needs to be fully automated.
This research problem can be approached from several angles. One
way is to look at existing predictive models for data streams, and
try to integrate them with selected data preprocessing methods (e.g.
feature selection, outlier definition and removal).
Another way is to systematically characterize the existing offline
data preprocessing approaches, try to find a mapping between those
approaches and problem settings in data streams, and extend pre-
processing approaches for data streams in such a way as traditional
predictive models have been extended for data stream settings.
In either case, developing individual methods and methodology for
preprocessing of data streams would bridge an important gap in the
practical applications of data stream mining.

4.2 Timing and Availability of Information
Most algorithms developed for evolving data streams make simpli-
fying assumptions on the timing and availability of information. In
particular, they assume that information is complete, immediately
available, and received passively and for free. These assumptions
often do not hold in real-world applications, e.g., patient monitor-
ing, robot vision, or marketing [43]. This section is dedicated to the
discussion of these assumptions and the challenges resulting from
their absence. For some of these challenges, corresponding situ-
ations in offline, static data mining have already been addressed
in literature. We will briefly point out where a mapping of such
known solutions to the online, evolving stream setting is easily fea-
sible, for example by applying windowing techniques. However,
we will focus on problems for which no such simple mapping ex-
ists and which are therefore open challenges in stream mining.

4.2.1 Handling Incomplete Information
Completeness of information assumes that the true values of all
variables, that is of features and of the target, are revealed eventu-
ally to the mining algorithm.
The problem of missing values, which corresponds to incomplete-
ness of features, has been discussed extensively for the offline,
static settings. A recent survey is given in [45]. However, only few
works address data streams, and in particular evolving data streams.
Thus several open challenges remain, some are pointed out in the
review by [29]: how to address the problem that the frequency in
which missing values occur is unpredictable, but largely affects the
quality of imputations? How to (automatically) select the best im-
putation technique? How to proceed in the trade-off between speed
and statistical accuracy?
Another problem is that of missing values of the target variable. It
has been studied extensively in the static setting as semi-supervised
learning (SSL, see [11]). A requirement for applying SSL tech-
niques to streams is the availability of at least some labeled data
from the most recent distribution. While first attempts to this prob-
lem have been made, e.g. the online manifold regularization ap-
proach in [19] and the ensembles-based approach suggested by
[11], improvements in speed and the provision of performance guar-
antees remain open challenges. A special case of incomplete infor-
mation is “censored data” in Event History Analysis (EHA), which
is described in section 5.2. A related problem discussed below is
active learning (AL, see [38]).
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4.2.2 Dealing with Skewed Distributions
Class imbalance, where the class prior probability of the minor-
ity class is small compared to that of the majority class, is a fre-
quent problem in real-world applications like fraud detection or
credit scoring. This problem has been well studied in the offline
setting (see e.g. [22] for a recent book on that subject), and has
also been studied to some extent in the online, stream-based setting
(see [23] for a recent survey). However, among the few existing
stream-based approaches, most do not pay attention to drift of the
minority class, and as [23] pointed out, a more rigorous evaluation
of these algorithms on real-world data needs yet to be done.

4.2.3 Handling Delayed Information
Latency means information becomes available with significant de-
lay. For example, in the case of so-called verification latency, the
value of the preceding instance’s target variable is not available be-
fore the subsequent instance has to be predicted. On evolving data
streams, this is more than a mere problem of streaming data inte-
gration between feature and target streams, as due to concept drift
patterns show temporal locality [2]. It means that feedback on the
current prediction is not available to improve the subsequent pre-
dictions, but only eventually will become available for much later
predictions. Thus, there is no recent sample of labeled data at all
that would correspond to the most-recent unlabeled data, and semi-
supervised learning approaches are not directly applicable.
A related problem in static, offline data mining is that addressed
by unsupervised transductive transfer learning (or unsupervised do-
main adaptation): given labeled data from a source domain, a pre-
dictive model is sought for a related target domain in which no
labeled data is available. In principle, ideas from transfer learning
could be used to address latency in evolving data streams, for ex-
ample by employing them in a chunk-based approach, as suggested
in [43]. However, adapting them for use in evolving data streams
has not been tried yet and constitutes a non-trivial, open task, as
adaptation in streams must be fast and fully automated and thus
cannot rely on iterated careful tuning by human experts.
Furthermore, consecutive chunks constitute several domains, thus
the transitions between several subsequent chunks might provide
exploitable patterns of systematic drift. This idea has been in-
troduced in [27], and a few so-called drift-mining algorithms that
identify and exploit such patterns have been proposed since then.
However, the existing approaches cover only a very limited set of
possible drift patterns and scenarios.

4.2.4 Active Selection from Costly Information
The challenge of intelligently selecting among costly pieces of in-
formation is the subject of active learning research. Active stream-
based selective sampling [38] describes a scenario, in which in-
stances arrive one-by-one. While the instances’ feature vectors are
provided for free, obtaining their true target values is costly, and the
definitive decision whether or not to request this target value must
be taken before proceeding to the next instance. This corresponds
to a data stream, but not necessarily to an evolving one. As a result,
only a small subset of stream-based selective sampling algorithms
is suited for non-stationary environments. To make things worse,
many contributions do not state explicitly whether they were de-
signed for drift, neither do they provide experimental evaluations
on such evolving data streams, thus leaving the reader the ardu-
ous task to assess their suitability for evolving streams. A first, re-
cent attempt to provide an overview on the existing active learning
strategies for evolving data streams is given in [43]. The challenges
for active learning posed by evolving data streams are:

• uncertainty regarding convergence: in contrast to learning
in static contexts, due to drift there is no guarantee that with
additional labels the difference between model and reality
narrows down. This leaves the formulation of suitable stop
criteria a challenging open issue.

• necessity of perpetual validation: even if there has been
convergence due to some temporary stability, the learned hy-
potheses can get invalidated at any time by subsequent drift.
This can affect any part of the feature space and is not nec-
essarily detectable from unlabeled data. Thus, without per-
petual validation the mining algorithm might lock itself to a
wrong hypothesis without ever noticing.

• temporal budget allocation: the necessity of perpetual vali-
dation raises the question of optimally allocating the labeling
budget over time.

• performance bounds: in the case of drifting posteriors, no
theoretical work exists that provides bounds for errors and
label requests. However, deriving such bounds will also re-
quire assuming some type of systematic drift.

The task of active feature acquisition, where one has to actively
select among costly features, constitutes another open challenge on
evolving data streams: in contrast to the static, offline setting, the
value of a feature is likely to change with its drifting distribution.

5. MINING ENTITIES AND EVENTS
Conventional stream mining algorithms learn over a single stream
of arriving entities. In subsection 5.1, we introduce the paradigm
of entity stream mining, where the entities constituting the stream
are linked to instances (structured pieces of information) from fur-
ther streams. Model learning in this paradigm involves the incor-
poration of the streaming information into the stream of entities;
learning tasks include cluster evolution, migration of entities from
one state to another, classifier adaptation as entities re-appear with
another label than before.
Then, in subsection 5.2, we investigate the special case where en-
tities are associated with the occurrence of events. Model learning
then implies identifying the moment of occurrence of an event on
an entity. This scenario might be seen as a special case of entity
stream mining, since an event can be seen as a degenerate instance
consisting of a single value (the event’s occurrence).

5.1 Entity Stream Mining
Let T be a stream of entities, e.g. customers of a company or pa-
tients of a hospital. We observe entities over time, e.g. on a com-
pany’s website or at a hospital admission vicinity: an entity appears
and re-appears at discrete time points, new entities show up. At a
time point t, an entity e ∈ T is linked with different pieces of in-
formation - the purchases and ratings performed by a customer, the
anamnesis, the medical tests and the diagnosis recorded for the pa-
tient. Each of these information pieces ij(t) is a structured record
or an unstructured text from a stream Tj , linked to e via the foreign
key relation. Thus, the entities in T are in 1-to-1 or 1-to-n relation
with entities from further streams T1, . . . , Tm (stream of purchases,
stream of ratings, stream of complaints etc). The schema describ-
ing the streams T, T1, . . . , Tm can be perceived as a conventional
relational schema, except that it describes streams instead of static
sets.
In this relational setting, the entity stream mining task corresponds
to learning a model ζT over T , thereby incorporating information
from the adjoint streams T1, . . . , Tm that ”feed” the entities in T .
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Albeit the members of each stream are entities, we use the term
”entity” only for stream T – the target of learning, while we denote
the entities in the other streams as ”instances”. In the unsupervised
setting, entity stream clustering encompasses learning and adapting
clusters over T , taking account the other streams that arrive at dif-
ferent speeds. In the supervised setting, entity stream classification
involves learning and adapting a classifier, notwithstanding the fact
that an entity’s label may change from one time point to the next,
as new instances referencing it arrive.

5.1.1 Challenges of Aggregation
The first challenge of entity stream mining task concerns informa-
tion summarization: how to aggregate into each entity e at each
time point t the information available on it from the other streams?
What information should be stored for each entity? How to deal
with differences in the speeds of the individual streams? How to
learn over the streams efficiently? Answering these questions in a
seamless way would allow us to deploy conventional stream mining
methods for entity stream mining after aggregation.
The information referencing a relational entity cannot be held per-
petually for learning, hence aggregation of the arriving streams is
necessary. Information aggregation over time-stamped data is tra-
ditionally practiced in document stream mining, where the objec-
tive is to derive and adapt content summaries on learned topics.
Content summarization on entities, which are referenced in the doc-
ument stream, is studied by Kotov et al., who maintain for each
entity the number of times it is mentioned in the news [26].
In such studies, summarization is a task by itself. Aggregation of
information for subsequent learning is a bit more challenging, be-
cause summarization implies information loss - notably informa-
tion about the evolution of an entity. Hassani and Seidl monitor
health parameters of patients, modeling the stream of recordings
on a patient as a sequence of events [21]: the learning task is then
to predict forthcoming values. Aggregation with selective forget-
ting of past information is proposed in [25; 42] in the classification
context: the former method [25] slides a window over the stream,
while the latter [42] forgets entities that have not appeared for a
while, and summarizes the information in frequent itemsets, which
are then used as new features for learning.

5.1.2 Challenges of Learning
Even if information aggregation over the streams T1, . . . , Tm is
performed intelligently, entity stream mining still calls for more
than conventional stream mining methods. The reason is that enti-
ties of stream T re-appear in the stream and evolve. In particular,
in the unsupervised setting, an entity may be linked to conceptu-
ally different instances at each time point, e.g. reflecting a cus-
tomer’s change in preferences. In the supervised setting, an entity
may change its label; for example, a customer’s affinity to risk may
change in response to market changes or to changes in family sta-
tus. This corresponds to entity drift, i.e. a new type of drift beyond
the conventional concept drift pertaining to model ζT . Hence, how
should entity drift be traced, and how should the interplay between
entity drift and model drift be captured?
In the unsupervised setting, Oliveira and Gama learn and monitor
clusters as states of evolution [32], while [41] extend that work to
learn Markov chains that mark the entities’ evolution. As pointed
out in [32], these states are not necessarily predefined – they must
be subject of learning. In [43], we report on further solutions to
the entity evolution problem and to the problem of learning with
forgetting over multiple streams and over the entities referenced by
them.
Conventional concept drift also occurs when learning a model over

entities, thus the challenges pertinent to stream mining also apply
here. One of these challenges, and one much discussed in the con-
text of big data, is volatility. In relational stream mining, volatility
refers to the entity itself, not only to the stream of instances that
reference the entities. Finally, an entity is ultimately big data by
itself, since it is described by multiple streams. Hence, next to the
problem of dealing with new forms of learning and new aspects of
drift, the subject of efficient learning and adaption in the Big Data
context becomes paramount.

5.2 Analyzing Event Data
Events are an example for data that occurs often yet is rarely ana-
lyzed in the stream setting. In static environments, events are usu-
ally studied through event history analysis (EHA), a statistical me-
thod for modeling and analyzing the temporal distribution of events
related to specific objects in the course of their lifetime [9]. More
specifically, EHA is interested in the duration before the occurrence
of an event or, in the recurrent case (where the same event can oc-
cur repeatedly), the duration between two events. The notion of
an event is completely generic and may indicate, for example, the
failure of an electrical device. The method is perhaps even better
known as survival analysis, a term that originates from applications
in medicine, in which an event is the death of a patient and survival
time is the time period between the beginning of the study and the
occurrence of this event. EHA can also be considered as a special
case of entity stream mining described in section 5.1, because the
basic statistical entities in EHA are monitored objects (or subjects),
typically described in terms of feature vectors x ∈ Rn, together
with their survival time s. Then, the goal is to model the depen-
dence of s on x. A corresponding model provides hints at possible
cause-effect relationships (e.g., what properties tend to increase a
patient’s survival time) and, moreover, can be used for predictive
purposes (e.g., what is the expected survival time of a patient).
Although one might be tempted to approach this modeling task as
a standard regression problem with input (regressor) x and out-
put (response) s, it is important to notice that the survival time s
is normally not observed for all objects. Indeed, the problem of
censoring plays an important role in EHA and occurs in different
facets. In particular, it may happen that some of the objects sur-
vived till the end of the study at time tend (also called the cut-off
point). They are censored or, more specifically, right censored,
since tevent has not been observed for them; instead, it is only
known that tevent > tend. In snapshot monitoring [28], the data
stream may be sampled multiple times, resulting in a new cut-off
point for each snapshot. Unlike standard regression analysis, EHA
is specifically tailored for analyzing event data of that kind. It is
built upon the hazard function as a basic mathematical tool.

5.2.1 Survival function and hazard rate
Suppose the time of occurrence of the next event (since the start or
the last event) for an object x is modeled as a real-valued random
variable T with probability density function f(· |x). The hazard
function or hazard rate h(· |x) models the propensity of the occur-
rence of an event, that is, the marginal probability of an event to
occur at time t, given that no event has occurred so far:

h(t |x) =
f(t |x)

S(t |x)
=

f(t |x)

1 − F (t |x)
,

where S(· |x) is the survival function and F (· |x) the cumulative
distribution of f(· |x). Thus,

F (t |x) = P(T ≤ t) =

∫ t

0

f(u |x) du
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is the probability of an event to occur before time t. Correspond-
ingly, S(t |x) = 1 − F (t |x) is the probability that the event did
not occur until time t (the survival probability). It can hence be
used to model the probability of the right-censoring of the time for
an event to occur.
A simple example is the Cox proportional hazard model [9], in
which the hazard rate is constant over time; thus, it does depend
on the feature vector x = (x1, . . . , xn) but not on time t. More
specifically, the hazard rate is modeled as a log-linear function of
the features xi:

h(t |x) = λ(x) = exp
(
x�β

)

The model is proportional in the sense that increasing xi by one
unit increases the hazard rate λ(x) by a factor of αi = exp(βi).
For this model, one easily derives the survival function S(t |x) =
1 − exp(−λ(x) · t) and an expected survival time of 1/λ(x).

5.2.2 EHA on data streams
Although the temporal nature of event data naturally fits the data
stream model and, moreover, event data is naturally produced by
many data sources, EHA has been considered in the data stream
scenario only very recently. In [39], the authors propose a method
for analyzing earthquake and Twitter data, namely an extension of
the above Cox model based on a sliding window approach. The
authors of [28] modify standard classification algorithms, such as
decision trees, so that they can be trained on a snapshot stream of
both censored and non-censored data.
Like in the case of clustering [35], where one distinguishes between
clustering observations and clustering data sources, two different
settings can be envisioned for EHA on data streams:

1. In the first setting, events are generated by multiple data sources
(representing monitored objects), and the features pertain to
these sources; thus, each data source is characterized by a
feature vector x and produces a stream of (recurrent) events.
For example, data sources could be users in a computer net-
work, and an event occurs whenever a user sends an email.

2. In the second setting, events are produced by a single data
source, but now the events themselves are characterized by
features. For example, events might be emails sent by an
email server, and each email is represented by a certain set
of properties.

Statistical event models on data streams can be used in much the
same way as in the case of static data. For example, they can serve
predictive purposes, i.e., to answer questions such as “How much
time will elapse before the next email arrives?” or “What is the
probability to receive more than 100 emails within the next hour?”.
What is specifically interesting, however, and indeed distinguishes
the data stream setting from the static case, is the fact that the model
may change over time. This is a subtle aspect, because the hazard
model h(t |x) itself may already be time-dependent; here, how-
ever, t is not the absolute time but the duration time, i.e., the time
elapsed since the last event. A change of the model is compara-
ble to concept drift in classification, and means that the way in
which the hazard rate depends on time t and on the features xi

changes over time. For example, consider the event “increase of
a stock rate” and suppose that βi = log(2) for the binary feature
xi = energy sector in the above Cox model (which, as already
mentioned, does not depend on t). Thus, this feature doubles the
hazard rate and hence halves the expected duration between two
events. Needless to say, however, this influence may change over
time, depending on how well the energy sector is doing.

Dealing with model changes of that kind is clearly an important
challenge for event analysis on data streams. Although the problem
is to some extent addressed by the works mentioned above, there
is certainly scope for further improvement, and for using these ap-
proaches to derive predictive models from censored data. Besides,
there are many other directions for future work. For example, since
the detection of events is a main prerequisite for analyzing them,
the combination of EHA with methods for event detection [36] is
an important challenge. Indeed, this problem is often far from triv-
ial, and in many cases, events (such as frauds, for example) can only
be detected with a certain time delay; dealing with delayed events
is therefore another important topic, which was also discussed in
section 4.2.

6. EVALUATION OF DATA STREAM AL-
GORITHMS

All of the aforementioned challenges are milestones on the road to
better algorithms for real-world data stream mining systems. To
verify if these challenges are met, practitioners need tools capa-
ble of evaluating newly proposed solutions. Although in the field
of static classification such tools exist, they are insufficient in data
stream environments due to such problems as: concept drift, lim-
ited processing time, verification latency, multiple stream struc-
tures, evolving class skew, censored data, and changing misclassi-
fication costs. In fact, the myriad of additional complexities posed
by data streams makes algorithm evaluation a highly multi-criterial
task, in which optimal trade-offs may change over time.
Recent developments in applied machine learning [6] emphasize
the importance of understanding the data one is working with and
using evaluation metrics which reflect its difficulties. As men-
tioned before, data streams set new requirements compared to tra-
ditional data mining and researchers are beginning to acknowl-
edge the shortcomings of existing evaluation metrics. For exam-
ple, Gama et al. [16] proposed a way of calculating classification
accuracy using only the most recent stream examples, therefore al-
lowing for time-oriented evaluation and aiding concept drift detec-
tion. Methods which test the classifier’s robustness to drifts and
noise on a practical, experimental level are also starting to arise
[34; 47]. However, all these evaluation techniques focus on sin-
gle criteria such as prediction accuracy or robustness to drifts, even
though data streams make evaluation a constant trade-off between
several criteria [7]. Moreover, in data stream environments there is
a need for more advanced tools for visualizing changes in algorithm
predictions with time.
The problem of creating complex evaluation methods for stream
mining algorithms lies mainly in the size and evolving nature of
data streams. It is much more difficult to estimate and visualize,
for example, prediction accuracy if evaluation must be done on-
line, using limited resources, and the classification task changes
with time. In fact, the algorithm’s ability to adapt is another as-
pect which needs to be evaluated, although information needed to
perform such evaluation is not always available. Concept drifts are
known in advance mainly when using synthetic or benchmark data,
while in more practical scenarios occurrences and types of concepts
are not directly known and only the label of each arriving instance
is known. Moreover, in many cases the task is more complicated, as
labeling information is not instantly available. Other difficulties in
evaluation include processing complex relational streams and cop-
ing with class imbalance when class distributions evolve with time.
Finally, not only do we need measures for evaluating single aspects
of stream mining algorithms, but also ways of combining several of
these aspects into global evaluation models, which would take into
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account expert knowledge and user preferences.
Clearly, evaluation of data stream algorithms is a fertile ground
for novel theoretical and algorithmic solutions. In terms of pre-
diction measures, data stream mining still requires evaluation tools
that would be immune to class imbalance and robust to noise. In
our opinion, solutions to this problem should involve not only met-
rics based on relative performance to baseline (chance) classifiers,
but also graphical measures similar to PR-curves or cost curves.
Furthermore, there is a need for integrating information about con-
cept drifts in the evaluation process. As mentioned earlier, possible
ways of considering concept drifts will depend on the information
that is available. If true concepts are known, algorithms could be
evaluated based on: how often they detect drift, how early they de-
tect it, how they react to it, and how quickly they recover from it.
Moreover, in this scenario, evaluation of an algorithm should be
dependent on whether it takes place during drift or during times of
concept stability. A possible way of tackling this problem would be
the proposal of graphical methods, similar to ROC analysis, which
would work online and visualize concept drift measures alongside
prediction measures. Additionally, these graphical measures could
take into account the state of the stream, for example, its speed,
number of missing values, or class distribution. Similar methods
could be proposed for scenarios where concepts are not known in
advance, however, in these cases measures should be based on drift
detectors or label-independent stream statistics. Above all, due to
the number of aspects which need to be measured, we believe that
the evaluation of data stream algorithms requires a multi-criterial
view. This could be done by using inspirations from multiple crite-
ria decision analysis, where trade-offs between criteria are achieved
using user-feedback. In particular, a user could showcase his/her
criteria preferences (for example, between memory consumption,
accuracy, reactivity, self-tuning, and adaptability) by deciding be-
tween alternative algorithms for a given data stream. It is worth
noticing that such a multi-criterial view on evaluation is difficult to
encapsulate in a single number, as it is usually done in traditional
offline learning. This might suggest that researchers in this area
should turn towards semi-qualitative and semi-quantitative evalua-
tion, for which systematic methodologies should be developed.
Finally, a separate research direction involves rethinking the way
we test data stream mining algorithms. The traditional train, cross-
validate, test workflow in classification is not applicable for sequen-
tial data, which makes, for instance, parameter tuning much more
difficult. Similarly, ground truth verification in unsupervised learn-
ing is practically impossible in data stream environments. With
these problems in mind, it is worth stating that there is still a short-
age of real and synthetic benchmark datasets. Such a situation
might be a result of non-uniform standards for testing algorithms on
streaming data. As community, we should decide on such matters
as: What characteristics should benchmark datasets have? Should
they have prediction tasks attached? Should we move towards on-
line evaluation tools rather than datasets? These questions should
be answered in order to solve evaluation issues in controlled envi-
ronments before we create measures for real-world scenarios.

7. FROM ALGORITHMS TO DECISION
SUPPORT SYSTEMS

While a lot of algorithmic methods for data streams are already
available, their deployment in real applications with real streaming
data presents a new dimension of challenges. This section points
out two such challenges: making models simpler and dealing with
legacy systems.

7.1 Making models simpler, more reactive, and
more specialized

In this subsection, we discuss aspects like the simplicity of a model,
its proper combination of offline and online components, and its
customization to the requirements of the application domain. As
an application example, consider the French Orange Portal2, which
registers millions of visits daily. Most of these visitors are only
known through anonymous cookie IDs. For all of these visitors,
the portal has the ambition to provide specific and relevant contents
as well as printing ads for targeted audiences. Using information
about visits on the portal the questions are: what part of the portal
does each cookie visit, and when and which contents did it consult,
what advertisement was sent, when (if) was it clicked. All this in-
formation generates hundreds of gigabytes of data each week. A
user profiling system needs to have a back end part to preprocess
the information required at the input of a front end part, which will
compute appetency to advertising (for example) using stream min-
ing techniques (in this case a supervised classifier). Since the ads
to print change regularly, based on marketing campaigns, the ex-
tensive parameter tuning is infeasible as one has to react quickly to
change. Currently, these tasks are either solved using bandit meth-
ods from game theory [8], which impairs adaptation to drift, or
done offline in big data systems, resulting in slow reactivity.

7.1.1 Minimizing parameter dependence
Adaptive predictive systems are intrinsically parametrized. In most
of the cases, setting these parameters, or tuning them is a difficult
task, which in turn negatively affects the usability of these systems.
Therefore, it is strongly desired for the system to have as few user
adjustable parameters as possible. Unfortunately, the state of the
art does not produce methods with trustworthy or easily adjustable
parameters. Moreover, many predictive modeling methods use a
lot of parameters, rendering them particularly impractical for data
stream applications, where models are allowed to evolve over time,
and input parameters often need to evolve as well.
The process of predictive modeling encompasses fitting of parame-
ters on a training dataset and subsequently selecting the best model,
either by heuristics or principled methods. Recently, model selec-
tion methods have been proposed that do not require internal cross-
validation, but rather use the Bayesian machinery to design regu-
larizers with data dependent priors [20]. However, they are not yet
applicable in data streams, as their computational time complexity
is too high and they require all examples to be kept in memory.

7.1.2 Combining offline and online models
Online and offline learning are mostly considered as mutually ex-
clusive, but it is their combination that might enhance the value
of data the most. Online learning, which processes instances one-
by-one and builds models incrementally, has the virtue of being
fast, both in the processing of data and in the adaptation of mod-
els. Offline (or batch) learning has the advantage of allowing the
use of more sophisticated mining techniques, which might be more
time-consuming or require a human expert. While the first allows
the processing of “fast data” that requires real-time processing and
adaptivity, the second allows processing of “big data” that requires
longer processing time and larger abstraction.
Their combination can take place in many steps of the mining pro-
cess, such as the data preparation and the preprocessing steps. For
example, offline learning on big data could extract fundamental and
sustainable trends from data using batch processing and massive
parallelism. Online learning could then take real-time decisions

2www.orange.fr
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from online events to optimize an immediate pay-off. In the online
advertisement application mentioned above, the user-click predic-
tion is done within a context, defined for example by the currently
viewed page and the profile of the cookie. The decision which
banner to display is done online, but the context can be prepro-
cessed offline. By deriving meta-information such as “the profile is
a young male, the page is from the sport cluster”, the offline com-
ponent can ease the online decision task.

7.1.3 Solving the right problem
Domain knowledge may help to solve many issues raised in this
paper, by systematically exploiting particularities of application do-
mains. However, this is seldom considered, as typical data stream
methods are created to deal with a large variety of domains. For in-
stance, in some domains the learning algorithm receives only par-
tial feedback upon its prediction, i.e. a single bit of right-or-wrong,
rather than the true label. In the user-click prediction example, if a
user does not click on a banner, we do not know which one would
have been correct, but solely that the displayed one was wrong.
This is related to the issues on timing and availability of informa-
tion discussed in section 4.2.
However, building predictive models that systematically incorpo-
rate domain knowledge or domain specific information requires
to choose the right optimization criteria. As mentioned in sec-
tion 6, the data stream setting requires optimizing multiple criteria
simultaneously, as optimizing only predictive performance is not
sufficient. We need to develop learning algorithms, which mini-
mize an objective function including intrinsically and simultane-
ously: memory consumption, predictive performance, reactivity,
self monitoring and tuning, and (explainable) auto-adaptivity. Data
streams research is lacking methodologies for forming and opti-
mizing such criteria.
Therefore, models should be simple so that they do not depend on
a set of carefully tuned parameters. Additionally, they should com-
bine offline and online techniques to address challenges of big and
fast data, and they should solve the right problem, which might
consist in solving a multi-criteria optimization task. Finally, they
have to be able to learn from a small amount of data and with low
variance [37], to react quickly to drift.

7.2 Dealing with Legacy Systems
In many application environments, such as financial services or
health care systems, business critical applications are in operation
for decades. Since these applications produce massive amounts of
data, it becomes very promising to process these amounts of data
by real-time stream mining approaches. However, it is often impos-
sible to change existing infrastructures in order to introduce fully
fledged stream mining systems. Rather than changing existing in-
frastructures, approaches are required that integrate stream mining
techniques into legacy systems. In general, problems concerning
legacy systems are domain-specific and encompass both technical
and procedural issues. In this section, we analyze challenges posed
by a specific real-world application with legacy issues — the ISS
Columbus spacecraft module.

7.2.1 ISS Columbus
Spacecrafts are very complex systems, exposed to very different
physical environments (e.g. space), and associated to ground sta-
tions. These systems are under constant and remote monitoring
by means of telemetry and commands. The ISS Columbus mod-
ule has been in operation for more than 5 years. For some time,
it is pointed out that the monitoring process is not as efficient as
previously expected [30]. However, we assume that data stream

mining can make a decisive contribution to enhance and facilitate
the required monitoring tasks. Recently, we are planning to use the
ISS Columbus module as a technology demonstrator for integrat-
ing data stream processing and mining into the existing monitoring
processes [31]. Figure 2 exemplifies the failure management sys-
tem (FMS) of the ISS Columbus module. While it is impossible to
simply redesign the FMS from scratch, we can outline the follow-
ing challenges.

1. ISS Columbus module

4. Mission archiv

2. Ground control 
centre

5. Assembly, integration, 
and test facility

3. Engineering support 
centre

Figure 2: ISS Columbus FMS

7.2.2 Complexity
Even though spacecraft monitoring is very challenging by itself,
it becomes increasingly difficult and complex due to the integra-
tion of data stream mining into such legacy systems. However,
it was assumed to enhance and facilitate current monitoring pro-
cesses. Thus, appropriate mechanism are required to integrate data
stream mining into the current processes to decrease complexity.

7.2.3 Interlocking
As depicted in Figure 2, the ISS Columbus module is connected
to ground instances. Real-time monitoring must be applied aboard
where computational resources are restricted (e.g. processor speed
and memory or power consumption). Near real-time monitoring or
long-term analysis must be applied on-ground where the downlink
suffers from latencies because of a long transmission distance, is
subject to bandwidth limitations, and continuously interrupted due
to loss of signal. Consequently, new data stream mining mecha-
nisms are necessary which ensure a smooth interlocking function-
ality of aboard and ground instances.

7.2.4 Reliability and Balance
The reliability of spacecrafts is indispensable for astronauts’ health
and mission success. Accordingly, spacecrafts pass very long and
expensive planning and testing phases. Hence, potential data stream
mining algorithms must ensure reliability and the integration of
such algorithms into legacy systems must not cause critical side
effects. Furthermore, data stream mining is an automatic process
which neglects interactions with human experts, while spacecraft
monitoring is a semi-automatic process and human experts (e.g.
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the flight control team) are responsible for decisions and conse-
quent actions. This problem poses the following question: How to
integrate data stream mining into legacy systems when automation
needs to be increased but the human expert needs to be maintained
in the loop? Abstract discussions on this topic are provided by ex-
pert systems [44] and the MAPE-K reference model [24]. Expert
systems aim to combine human expertise with artificial expertise
and the MAPE-K reference model aims to provide an autonomic
control loop. A balance must be struck which considers both afore-
mentioned aspects appropriately.
Overall, the Columbus study has shown that extending legacy sys-
tems with real time data stream mining technologies is feasible and
it is an important area for further stream-mining research.

8. CONCLUDING REMARKS
In this paper, we discussed research challenges for data streams,
originating from real-world applications. We analyzed issues con-
cerning privacy, availability of information, relational and event
streams, preprocessing, model complexity, evaluation, and legacy
systems. The discussed issues were illustrated by practical applica-
tions including GPS systems, Twitter analysis, earthquake predic-
tions, customer profiling, and spacecraft monitoring. The study of
real-world problems highlighted shortcomings of existing method-
ologies and showcased previously unaddressed research issues.
Consequently, we call the data stream mining community to con-
sider the following action points for data stream research:

• developing methods for ensuring privacy with incomplete
information as data arrives, while taking into account the
evolving nature of data;

• considering the availability of information by developing mod-
els that handle incomplete, delayed and/or costly feedback;

• taking advantage of relations between streaming entities;

• developing event detection methods and predictive models
for censored data;

• developing a systematic methodology for streamed prepro-
cessing;

• creating simpler models through multi-objective optimiza-
tion criteria, which consider not only accuracy, but also com-
putational resources, diagnostics, reactivity, interpretability;

• establishing a multi-criteria view towards evaluation, dealing
with absence of the ground truth about how data changes;

• developing online monitoring systems, ensuring reliability of
any updates, and balancing the distribution of resources.

As our study shows, there are challenges in every step of the CRISP
data mining process. To date, modeling over data streams has
been viewed and approached as an extension of traditional meth-
ods. However, our discussion and application examples show that
in many cases it would be beneficial to step aside from building
upon existing offline approaches, and start blank considering what
is required in the stream setting.
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Abstract. Mining data with minimal annotation costs requires efficient active
approaches, that ideally select the optimal candidate for labelling under a user-
specified classification performance measure. Common generic approaches, that
are usable with any classifier and any performance measure, are either slow like
error reduction, or heuristics like uncertainty sampling. In contrast, our Proba-
bilistic Active Learning (PAL) approach offers versatility, direct optimisation of
a performance measure and computational efficiency. Given a labelling candi-
date from a pool, PAL models both the candidate’s label and the true posterior
in its neighbourhood as random variables. By computing the expectation of the
gain in classification performance over both random variables, PAL then selects
the candidate that in expectation will improve the classification performance the
most. Extending our recent poster, we discuss the properties of PAL and perform
a thorough experimental evaluation on several synthetic and real-world data sets
of different sizes. Results show comparable or better classification performance
than error reduction and uncertainty sampling, yet PAL has the same asymptotic
time complexity as uncertainty sampling and is faster than error reduction.

1 Introduction

Recently, the application of machine learning to large data pools and fast data streams
has gained attention. This application often requires classification of data where fea-
tures are cheap but labels are costly [8]. Examples are applications where features are
obtained from an automated process but labels require human annotation efforts. Active
learning (AL) [15, p. 4] addresses such applications, where the machine learning system
can actively select instances for labelling, rather than passively processing a given set
of labelled instances. Its tasks are to decide a) for which instance to request a label, and
b) whether to continue labelling at all, given some labels have already been acquired.

The ideal active learning strategy should select those instances first that, once incor-
porated into the training data, will result in the highest gain in terms of a classification
performance measure. Furthermore, it provides a quantification of this performance
gain, needed for a sound answer to the stop-criterion related second question. It there-
fore considers the already acquired amount of training data. Finally, it is fast, requiring
solely linear asymptotic computational time per instance with respect to the pool size,
in order to enable its application in large data pools and fast data streams. Active learn-
ing strategies that are usable in conjunction with any classifier technology provide some

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 168–179, 2014.
© Springer International Publishing Switzerland 2014
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of the above qualities. However, as discussed further in Section 2, they do not offer a
combination of all these qualities in one single approach.

We address this challenge by a novel, probabilistic active learning (PAL) technique
for classification that combines the above qualities and constitutes an alternative to
other generic strategies like error reduction or uncertainty sampling. It is not limited to
a particular classifier technology, and usable with any point [12] performance perfor-
mance measure. Given a pool of candidates, it computes for each candidate the expected
gain in classification performance from obtaining its label. This expectation models the
candidate’s label and the true posterior at its location as a random variables, and uses
likelihood weights according to the already obtained labels in the candidate’s neigh-
bourhood. Subsequently, it selects the optimal candidate under this expected overall
performance gain for labelling. This active selection from a pool requires asymptotic
computational time that is solely linear in the size of the pool, as fast uncertainty sam-
pling approaches do. While deriving stop-criteria is not within the scope of this paper,
but our quantification of a label’s expected impact provides a fundamental first step.

This paper is a full-version of our recent poster [10], extending it by a more detailed
discussion of related work, an additional discussion of PAL’s properties, and additional
experiments. It is structured as follows: In the next section, we provide the necessary
background and discuss related approaches. In section 3, we present our probabilistic
active learning approach. In section 4, we report on our evaluation results, where we
compare PAL to the strategy considered to be optimal for minimising classification
error (error reduction), and to a popular fast heuristic strategy (uncertainty sampling). 1

2 Background and Related Work

This paper addresses pool-based active learning (AL) for binary classifiers, as described
in [15, p. 9] and [4]. In this scenario, an active classifier has access to a pool of unla-
belled instances U = {(x, .)}. From this pool of labelling candidates it repeatedly se-
lects an instance (x∗, .) for labelling. Upon receiving its label y∗, the instance (x∗, y∗)
is moved to a pool of labelled instances L = {(x, y)}, the classifier is retrained, and
the process is repeated. There exist various approaches for this scenario, recent surveys
are provided in [15], [6], [4] and [14]. We will focus on popular families of approaches
that are usable with any classification technique, and discuss the ones most related to
our approach: error reduction, uncertainty sampling and query-by-transduction.

Expected error reduction (ER) is a decision-theoretic approach. It considers the im-
provement in classification performance by selecting the candidate, that has the minimal
expected classification error if incorporated into the training pool. The seminal work of
[5], which coined the term “statistically optimal active learning”, derived closed-form
solutions for optimal data selection for two specific learning methods. In contrast, the
approach suggested in [13] is generic, both with respect to arbitrary performance mea-
sures and classifiers: using a Monte Carlo sampling approach, it estimates the perfor-
mance on a labelled validation sample V , rather than integrating over the full feature
distribution Pr (x). It uses the posterior estimate p̂ = P̂r (y|x) provided by the current
classifier as proxy for the true posterior Pr (y|x) that is required for the expectation over

1 For additional resources please consult http://kmd.cs.ovgu.de/res/pal/.
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the label realisations y. However, as discussed in [2], this proxy is not reliable if solely
few labels are available, requiring regularisation approaches such as using Beta priors.
Furthermore, the labelled (or self-labelled) validation sample V must be representative
of the data. Not only is this difficult, in particular at the beginning with few available la-
bels and a still unreliable classifier, but it also makes error reduction prohibitively slow
[14] for using it in applications that require fast processing of big amounts of data, as
even for incremental classifiers its asymptotic time complexity is O(|V| · |U|).

In comparison, a faster method [15, p.64] is uncertainty sampling (US), introduced
in [11]. It uses simple uncertainty measures, like sample margin, confidence, or entropy
as proxies for a candidate’s value, and selects the candidate with maximal uncertainty.
However, these proxies do not consider the number of similar instances on which pos-
terior estimates are made. This is problematic, as Figure 2 (next page) illustrates on
four exemplary active learning situations. These situations could, for example, occur
simultaneously in different regions of a feature space such that the next label must be
actively requested in either of them2 The first (in Roman numeral) and second situation
differ in the number of obtained labels (6 vs. 1), but lead to the same posterior estimate
P̂r (+|x) = 1, as all obtained labels are positive. Uncertainty sampling is indifferent be-
tween them, as both entropy and confidence are zero. This indicates equal and absolute
certainty, which is not justified as in II the single positive label can simply be due to
chance, even if the true posterior of the positive class is actually smaller than 0.5 and the
classifier is wrong. In contrast, in I a high true positive posterior is indeed very likely,
and additional labels have less impact on the classifier. Similarly, in IV the classifier’s
prediction is quite reliable, but uncertainty according to measures like entropy or con-
fidence is maximal. This leads to sampling in regions of high Bayesian error rate, even
if the classifier can not be further improved there.

Some of the many existing classifier-specific AL approaches offer high processing
speeds for particular applications. However, they require classifier selection to be made
with respect to the available active learning strategy, as sample reusability between
different types of classifiers for selector and consumer strategies is an open question
[16]. Finally, even recently proposed classifier-specific approaches are mostly either
information-theoretic (i.e. agnostic to the decision task at hand) or use the most likely
or most pessimistic posterior under the current model, thus ignoring the reliability as-
sociated with this estimate, as for example [7]. A very recent information-theoretic
approach that considers the reliability of a predictive model is Query-By-Transduction
(QbT) [9]. QbT is based on conformal prediction and selects the instances with respect
to the p-values obtained using transduction. This quantification of the reliability us-
ing p-values is related to ours, although we use the likelihood weights of the posterior
estimates and follow a decision-theoretic Bayes-optimal active learning approach that
directly optimises a classification performance measure.

2 For simplicity, this illustration assumes conditional independence of the posterior from the
feature given the region, i.e. Pr (y|x, z) = Pr (y|z), where y is the class, x the feature vector,
and z the region. Thus no further differentiation can be made within a region. We also assume
equal numbers of instances in all regions, making accuracy everywhere equally important.
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Fig. 1. Different AL situations, where entropy- or confidence-based uncertainty measures differ-
entiate only on a class’ relative (vert.) but not on all classes’ total (horiz.) number of labels

3 Probabilistic Active Learning

Following the common smoothness assumption [3], we consider that an instance x in-
fluences the classification the most in its neighbourhood. Thus, the impact of an addi-
tional label primarily depends on the already obtained labels in its neighbourhood. We
summarise these by their absolute number n, and the share of positives p̂ therein, yield-
ing the label statistics ls = (n, p̂). Here, n is obtained by counting the similar labelled
instances for pre-clustered or categorical data (as for the partitions in Figure 2), or ap-
proximated by frequency estimates such as kernel frequency estimates for smooth, con-
tinuous data. Thus, in x’s neighbourhood, n expresses the absolute quantity of labelled
information, whereas the density dx of unlabelled instances quantifies the importance
of this neighbourhood, i.e. the share of future classifications that will take place therein
compared to other regions of the feature space.

Given a labelling candidate (x, .) from a pool of unlabelled instances U for a user-
specified point classification performance measure [12] like accuracy, we want to com-
pute the expected overall gain in classification performance if requesting its label. This
requires knowledge of its label statistics ls , but also of its label y and the true posterior
p of the positive class within its neighbourhood. As the latter values of y and p are not
directly accessible, we use a probabilistic approach and model Y and P as random vari-
ables. This allows us to compute the expected value of the gain in performance over all
different true posteriors and label realisations, which we denote as probabilistic gain3

(pgain). Finally, we weight it by the neighbourhood’s density dx (over labelled and un-
labelled data) to consider the importance of the neighbourhood on the whole data set,
quantifying the overall expected performance change. Comparing the overall expected
performance change of all candidates, we select the optimal candidate for labelling.

We now first provide the modelling and derive the necessary equations, present the
framework of Probabilistic Active Learning (PAL ) with its pseudo-code, and close with
discussing its properties.

3 We do this to differentiate it from the expected gain as in expected error reduction methods
like [2], where expectation is solely over label outcomes, but not over the true posterior.
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3.1 Probabilistic Gain Calculation

Given a candidate (x, .), the label statistics ls summarise the obtained labels in its neigh-
bourhood. We model the true posterior P of the positive class (y = 1) in this neighbour-
hood as a Beta-distributed random variable, whose realisation p is itself the parameter
of the Bernoulli distribution controlling the label realisation y ∈ {0, 1} of any instance
within the neighbourhood. Consequently, the number of positives n · p̂ among the n al-
ready obtained labels in the neighbourhood is the realisation of a Binomial-distributed
random variable:

P ∼ Betan·p̂+1,n·(1−p̂)+1 (1)

Y ∼ Bernoullip = Berp (2)

(n · p̂) ∼ Binomialn,p (3)

The true posterior’s Beta distribution above results from its normalised likelihood given
the already observed labels, that is

ωls(p) =
L(p|ls)g(p)∫ 1

0
L(ψ|ls)g(ψ)dψ

= (1 + n) · L(p|ls) (4)

=
Γ (n + 2) · pn·p̂ · (1 − p)n·(1−p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
= Betaα,β(p) (5)

where the parameters α = n · p̂ + 1 and β = n · (1 − p̂) + 1 of the Beta-distribution’s
pdf Betaα,β(p) are obtained by following a Bayesian approach under a uniform prior
for P such that g() is a constant function, and by using the probability mass function
according to Eq. 3 for the likelihood L(p|ls), and (1 + n) · Γ (n + 1) = Γ (n + 2).

We take the expectation on the performance gain over these two random variables,
yielding the candidate’s probabilistic gain (pgain), that defines the expected change of
the performance measure for its neighbourhood:

pgain(ls) = Ep

[
Ey

[
gainp(ls , y)

] ]
(6)

=

∫ 1

0

Betaα,β(p) ·
∑

y∈{0,1}
Berp(y) · gainp(ls , y) dp (7)

Here, gainp(ls , y) is the candidate’s (x, .) performance gain given its label realisation y
and the neighbourhood’s true posterior p:

gainp(ls , y) = perfp

(
np̂ + y

n + 1

)
− perfp(p̂) (8)

The definition of Eq. 7 and 8 allow the use of any point performance measure (see
e.g. [12]) for perf. An example is accuracy (acc), defined as

perfp(p̂) = 1 − errp(p̂) = 1 −
{

p p̂ < 0.5
1 − p otherwise

(9)
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where errp(p̂) is the error rate under Bayes’ optimal classification, given a true posterior
p and observed posterior p̂ of the positive class.

Plugging this in Eq. 7 yields the probabilistic accuracy gain

pgainacc(ls) =

=

∫ 1

0

Betaα,β(p)
∑

y∈{0,1}
Berp(y)

(
errp(p̂) − errp

(
np̂ + y

n + 1

))
dp

which we compute by trapezoidal numerical integration over p.
Finally, we weight each candidate’s probabilistic gain with the density dx over la-

belled and unlabelled instances in its neighbourhood, and select the candidate with the
highest density-weighted probabilistic gain for labelling:

x∗ = arg max
x∈U

(
dx · pgainacc(lsx)

)
(10)

3.2 PAL Algorithm

The pseudo-code for the resulting probabilistic, pool-based active learning algorithm is
given in Figure 2. Iterating over the candidate pool U (Lines 2-6), for each labelling
candidate x one computes its label statistics lsx = (nx, p̂x), its density weight dx,
and using numerical integration its probabilistic gain, which is weighted by its density
weight to obtain gx. Finally, the candidate with the highest gx is selected (Line 7).

1: function POOLBASEDPAL(U ,L)
2: for x ∈ U do
3: (nx, p̂x) ← labelstatistics(x,L)
4: dx ← densityweight(x,L ∪ U)
5: gx ← pgain((nx, p̂x)) · dx

6: end for
7: return arg maxx∈U(gx)
8: end function

Fig. 2. The PAL Algorithm

3.3 PAL’s Properties

Statistical Optimality in Disjoint Neighbourhoods. For a disjoint neighbourhood
concept, like in pre-clustered or categorical data, where instances are partitioned such
that instances having an influence on each others’ classification belong to the same
subset, the density-weighted probabilistic gain of a candidate corresponds precisely to
the expected change in overall performance from acquiring the candidate’s label. Thus
selecting the candidate with highest probabilistic gain is statistically optimal.

For smooth, continuous neighbourhoods, the density-weighted probabilistic gain is
the expected change at the candidate’s location, serving as an approximation of the
overall performance gain. We use this latter concept in our evaluation, as it applies to
more data sets and is better comparable to the baseline active learning algorithms.
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Computational Efficiency. In this subsection, we discuss the asymptotic (with respect
to data set size) computational time complexity of PAL and related algorithms for ac-
tive learning of binary, incremental classifiers. For selecting a candidate from a pool U
of labelling candidates, the PAL algorithm above needs to iterate over all candidates in
the pool (Lines 2 – 6). Each iteration consists of 1) querying labelstatstics, 2) querying
density weights, and 3) computing the probabilistic gain. The first step requires absolute
frequency estimates of labels in the candidate’s neighbourhood, similar to the relative
frequency estimates needed by entropy or confidence uncertainty measures. These are
obtained in constant time by probabilistic classifiers. The second step requires density
estimates over all instances, that is over labelled L and unlabelled U ones. Precomputing
these density estimates once for all later calls of PAL leads to constant query time, as in
the pool-based setting the union L ∪ U is constant. The third step consists of a numeric
integration over the true posterior p and a summing over possible label realisations y.
Both factors do not depend on the data set size. We used fifty numeric integration steps
in all our experiments to get highly precise estimates for expected classification accu-
racy gain, resulting in a constant factor of O(50 · 2) per probabilistic gain computation.
Overall, the iteration over the pool is done in O(|U|) time.

Selecting the candidate with highest density-weighted probabilistic gain in Line 7 is
done in constant time, by using a sweep line approach and storing the maximal value
and its corresponding candidate in the previous for-loop.

Overall, PAL requires O(|U|) time for selecting a candidate from the pool. Uncer-
tainty sampling, using probabilistic classifiers and entropy or confidence uncertainty
measures, requires asymptotically the same time, but due the simplicity of its compu-
tation with a smaller constant factor involved. In contrast, error reduction as discussed
in [15], requires O(|U| · |V|) time, where |V| ≈ |U|, as V needs to be a representative
sample of the data.

Characteristics of the Probabilistic Gain. For a better understanding of the proba-
bilistic gain function, Figure 3.3 shows the computed probabilistic gain (in terms of
accuracy) for different label statistics, i.e. combinations of different numbers of already
obtained labels n and observed posteriors P̂ r(+|x). The following main characteristics
of the curve underline its reasonable behaviour:

Monotonicity with variable n: With increasing n and a fixed P̂r (+|x) the probabilis-
tic gain decreases, because it is more likely that the posterior already is correct.

Symmetry with respect to P̂r (+|x) = 0.5: Evaluating accuracy, pos. and neg. labels
count the same, i.e. the probabilistic gain is equal for P̂r (+|x) and P̂r (−|x).

Zero for irrelevant candidates: If one label would not change the decision in its neigh-
bourhood, the accuracy remains the same. Thus, gain and probabilistic gain are 0.

This figure is inspired by an illustration of Settles, where different uncertainty mea-
sures are plotted as functions of the posterior of a class (see figure 2.4 in [15, p. 15]).
Comparing the least confident curve (plot (a) in [15]), it behaves nearly similarly as our
probabilistic gain for n = 1, but does not change with n.
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Fig. 3. Illustration of the probabilistic gain (pgain) as a function of P̂r (+|x), which is the observed
posterior of the positive class, and of n, which is the number of already obtained labels

4 Experimental Evaluation

From its theoretical characteristics, we expect PAL to be comparable to error-reduction
in terms of classification performance, yet faster, and we expect PAL to be better than
uncertainty sampling. This section will now verify these characteristics empirically. Af-
ter outlining the experimental setup, we will discuss the results in the second subsection.

4.1 Evaluation Settings

We compare our new base method PAL with expected error-reduction (in the extended
variant proposed by Chapelle in [2], denoted Chap), with uncertainty sampling (using
confidence [15] as uncertainty measure, den. Uncer), and with random sampling (den.
Rand). While error-reduction is considered as one of the best available AL-methods
[15, p. 64], uncertainty sampling is fast and very popular for large or streaming data.

We used Gaussian kernels for frequency estimation, and a Parzen window classi-
fier as in [2] for ensuring comparability with [2]. So, the estimated label frequencies
labelFreqc, c ∈ {+, −} at an instance x for the the positive L+ and the negative class
L− are calculated by an unnormalised Gaussian function. These frequencies build the
label statistics n = labelFreq+ + labelFreq− and p̂ = labelFreq+/n.

labelFreqc(x) =
∑

x′∈Lc

exp

(
−‖x′ − x‖2

2σ2

)

Our framework starts without initial labels, and finishes after 40 label requests. The
classifiers, implemented in Octave/MATLAB and run separately on a cluster, use the
same pre-tuned, data set-specific bandwidth, and are re-evaluated in each of the 40 steps
on the same, dedicated (labelled) test sample. This ensures that only the difference in the
active learning strategy is influencing the performance. For better performance assess-
ment, we generated 100 random training and test subsets for each data set, and averaged
the results. Evaluation is done on 2 synthetic (based on [2]) and 6 real-world data sets
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(from [1]). The main characteristics (number of instances, number of attributes), such
as training and test set size and the σ of the Parzen window, are summarised in Table 4.
The synthetic data sets consist of 4x4 clusters, arranged in a checker-board formation.
While the clusters are low-density-separated in Che, they are adjoined in Che2. The
real-world data sets are Mammographic mass (Mam), Vertebral (Ver), Haberman’s sur-
vival (Hab), Blood transfusion (Blo), Seeds (See) and Abalone (Aba). All attributes
are scaled to a [0; 1]-range. We evaluate the performance over the first 40 active label
acquisitions and provide the results as learning curves for the optimised performance
measure accuracy for all data sets and algorithms.

4.2 Evaluation Results

In accordance to [2] and [15], we provide learning curves in the subfigures of Figure
6. These curves depict the progress in the active classifier’s accuracy as 40 training
instances are selected one after another for training. This allows to evaluate the perfor-
mance based on several criteria, and is more informative than tables of the performance
at arbitrarily selected learning stages.

(1) When does a curve become flat, i.e. when does the learner converge? On subfigure
g) for data set Seeds, the curves become flat already after reading 10 labels, while the
curves for data set Checkboard 2 (b) do not converge. Convergence indicates that addi-
tional labels do not provide additional use to the classifier, ideally a classifier converges
fast and to a high level of performance. This is seen on subfigures a and c, where PAL
in contrast to Random Sampling quickly converges to a high performance level.

(2) At what accuracy does a learner stop improving? Clearly, a learner that achieves
a 99% accuracy after reading 10 labels is better than one that needs 40 labels to reach
the same accuracy value, and also better than one that converges at 75%. Hence, PAL
outperforms all other algorithms except on Blood (f), Seeds (g) Abalone (h). The mo-
ment of convergence gives also indication on the appropriateness of the data set for

Dataset Inst Attr Pr (+) |Train| |Test| σ

See 210 7 33 % 160 50 0.1
Che 308 2 44 % 200 108 0.08
Che2 392 2 49 % 250 142 0.08
Hab 306 3 73 % 256 50 0.1
Ver 310 6 32 % 260 50 0.1
Aba 4177 8 50 % 400 1177 0.06
Blo 748 4 24 % 600 148 0.1
Mam 830 11 51 % 630 200 0.1

Fig. 4. Dataset characteristics and parame-
ters (number of instances, number of at-
tributes, proportion of positive instances,
training set size, test set size, bandwidth for
Parzen window classifier)

Dataset PAL Chap Uncer Rand
See 0.50 0.93 0.03 0.01
Che 0.61 1.16 0.03 0.01
Che2 0.92 1.54 0.03 0.02
Hab 0.89 1.72 0.03 0.02
Ver 0.91 1.84 0.04 0.02
Aba 1.51 3.82 0.07 0.04
Blo 2.34 6.14 0.1 0.05
Mam 2.56 8.48 0.25 0.12

Fig. 5. Average execution time (in seconds),
ordering of rows is in ascending training
dataset size
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active learning. If we contrast subfigures b and g, we must assert that data set Seeds is
not truly interesting in terms of active learning: after reading the labels of 5 or at most
10 instances, all learners converge to an accuracy very close to 1. Thus, comparative
performance of the active learners on Seeds is not truly informative; this data set is
not very appropriate for experiments on active learning (except as a counterexample).
The curves on the Blood Transfusion data set (cf. subfigure f) also indicate that active
learning is not truly beneficial on this data set.

(3) Does a learner recover from previous errors? If a curve becomes flat early, then
the learner might be trapped in low accuracy values. This is the case for the algorithm
Chapelle on data set Mammographic Mass (c). In contrast, PAL recovers on this data
set, as well as on data sets Checkboard, Vertebral and Habermans Survival (a, d, e).
Random Sampling never recovers from earlier choices: its performance curves are ei-
ther flat or go upwards, indicating that an early poor choice cannot be amended. Uncer-
tainty Sampling recovers in some data sets, while Chapelle and PAL always manages
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Fig. 6. a-h: accuracy curves for the algorithms on each dataset; early convergence to very high
values is best; improvement after a performance drop is better than a flat curve on low accuracy
values; j: runtime of PAL on a synthetic data set of varying size (100–1200 candidate instances)
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to recover if they err in their early choices of label. Summarising the results on accu-
racy progress, PAL exhibits high performance in all data sets, manages to recover from
poor choices and makes best use of available labels, as long as needed (i.e. longer for
Checkboard 2 than for Seeds). PAL reaches the best accuracy values on 5 of the data
sets, achieves comparable accuracy to the other learners on two data sets (Seeds and
Blood Transfusion). PAL is only outperformed once on the Abalone data set.

(4) Execution time The execution time of PAL is shown in Table 5 and plot j of figure 6.
Table 5 indicates the execution times of all active learning algorithms on each dataset.
We see that PAL achieves better accuracy curves with lower (up to 1/2.5 times) exe-
cution time than the error-reduction algorithm of Chapelle. Nevertheless, the execution
time is still significantly higher than that of uncertainty sampling, but like the former its
time increases solely linearly with the training set size, i.e. the number of labelling can-
didates. This is also shown in plot j) of Figure 6, where the execution times on various
training set sizes of the same synthetic dataset are plotted. Overall, the uniformly low
execution time of uncertainty sampling is accompanied by a stronger variance among
the accuracy curves (cf. Figure 6): while PAL has very high performance on all data
sets, escapes from earlier errors and exploits well all labels (whenever reasonable, see
counterexample on Subfigure 6g), the accuracy curves of Uncertainty Sampling and
Random Sampling vary in dependence on the data set. Thus, PAL exhibits stable per-
formance at lower execution time than the expensive error-reduction mechanism, while
the simpler algorithms are affected stronger by the idiosyncrasies of the data sets.

5 Conclusion

In this paper, we introduced the probabilistic active learning approach (PAL). It uses
probabilistic estimates (label statistics) calculated within the neighbourhood of a la-
belling candidate. In contrast to Monte-Carlo-based error reduction approach proposed
in [13], it models both the true posterior and the candidate’s label as random variables.
Given a user-specified performance measure, PAL computes the probabilistic gain, that
is the expected performance gain over both random variables by numeric integration.
It subsequently selects the candidate with highest density-weighted probabilistic gain.
Like uncertainty sampling [11], PAL requires asymptotically linear time with respect to
the pool size, in contrast to quadratic time required by error reduction in [13].

Thus PAL combines two previously incompatible qualities: being fast, and computing
and optimising directly a point-performance measure. Given such a user-specified per-
formance measure and the label statistics as input, no additional parameters are required.
Our experimental evaluation shows that PAL yields comparable or better classification
performance than error-reduction, uncertainty-sampling or random active learning strate-
gies, while requiring less computational time than error-reduction.

Future work will comprise deriving specific closed-form solutions for some point-
performance measures such as misclassification loss, as this promises further improve-
ments in speed. Further research is also needed to address non-myopic scenarios, where
optimising the resulting performance gain from acquiring several labels is required. Fi-
nally, as PAL is fast and requires only label statistics but no samples to be kept, its
application in data streams seems a promising direction for future research.
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Abstract In contrast to ever increasing volumes of automatically generated data, human
annotation capacities remain limited. Thus, fast active learning approaches that allow the
efficient allocation of annotation efforts gain in importance. Furthermore, cost-sensitive
applications such as fraud detection pose the additional challenge of differing misclassi-
fication costs between classes. Unfortunately, the few existing cost-sensitive active learning
approaches rely on time-consuming steps, such as performing self-labelling or tedious eval-
uations over samples. We propose a fast, non-myopic, and cost-sensitive probabilistic active
learning approach for binary classification. Our approach computes the expected reduction in
misclassification loss in a labelling candidate’s neighbourhood. We derive and use a closed-
form solution for this expectation, which considers the possible values of the true posterior
of the positive class at the candidate’s position, its possible label realisations, and the given
labelling budget. The resulting myopic algorithm runs in the same linear asymptotic time
as uncertainty sampling, while its non-myopic counterpart requires an additional factor of
O(m · logm) in the budget size. The experimental evaluation on several synthetic and real-
world data sets shows competitive or better classification performance and runtime, compared
to several uncertainty sampling- and error-reduction-based active learning strategies, both in
cost-sensitive and cost-insensitive settings.
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1 Introduction

The volume of automatically generated data increases constantly (Gantz and Reinsel 2012)
but human annotation capacities remain limited. Learning from large pools or fast streams of
unlabelled data, yet scarce and expensive labelled data, requires the development of fast and
efficient active learning algorithms (Gopalkrishnan et al. 2012; Krempl et al. 2014). Such
algorithms actively construct a training set, rather than passively processing a given one. Their
objective is to select among the unlabelled instances (candidates) the ones for labelling that
are deemed tomaximise the classification performance the most (Settles 2012), thus focusing
annotation efforts to the most valuable candidates. While fast active learning itself poses a
challenge, an even bigger one is cost-sensitivity1 (Liu et al. 2009), where misclassification
costs differ between classes, as for example in the diagnosis of rare but dangerous ailments
in patients (Attenberg and Ertekin 2013), where classifying a sick patient as healthy incurs
more severe consequences than classifying a healthy one as sick.

We address these challenges by presenting a novel, fast probabilistic active learning
approach, which is suitable for binary classification, both under equal and non-equal misclas-
sification costs. This probabilistic (Krempl et al. 2014a, b) active learning approach computes
the expected performance gain, thereby considering both a candidate’s label realisation and
the true posterior of the positive class in the candidate’s neighbourhood. The latter directly
incorporates the likelihoods of different possible posteriors under the already labelled data.
This advances most state-of-the-art decision-theoretic active learning literature (e.g. Freytag
et al. 2013; Garnett et al. 2012), which considers solely the most likely (or most pessimistic)
posterior.

We make three important contributions beyond (Krempl et al. 2014a, b) and other works:
First, we optimise label selection for the minimisation of misclassification loss, a cost-
sensitive performance measure (Hand 2009). Second, we derive a fast, closed-form solution
for calculating the probabilistic gain of an instance. We show that this yields a myopic
active learning approach with the same linear asymptotic computational time as uncertainty
sampling, which is one of the fastest available approaches (Settles 2012, p. 64). Third, we pro-
pose a non-myopic extension of our optimised probabilistic active learning (OPAL) approach,
where the myopic, isolated view on the value of each label is exchanged for considering the
possible remaining number of similar label acquisitions under a given budget. We show that
this provides an advantage in particular in cost-sensitive settings, while it requires solely
additional time of a factor O(m · logm) of the budget size. In practical applications, neither
this budget size, which for example results from limited human annotation capacities, nor
the misclassification costs, which for example are determined by economic consequences as
in the German Credit dataset (Elkan 2001), do constitute tunable parameters. Our approach
is simple to implement, and neither requires maintaining an evaluation set, nor self-labelling.
Experimental evaluation shows its competitiveness in classification performance and speed,
compared to other cost-sensitive and cost-insensitive active learning approaches.

The rest of this paper is organised as follows: first, Sect. 2 provides the necessary back-
ground anddiscusses the relatedwork.OurOPAL-approach is presented inSect. 3. The results
of its experimental evaluation are reported in Sect. 4, comparing it to several active learn-
ing strategies, including error-reduction and uncertainty sampling approaches specialised for
cost-sensitive settings.

1 Some authors use cost-sensitive for differing label acquisition costs between candidates (Liu et al. 2009).
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2 Background and related work

Our work addresses cost-sensitive active learning for binary classification. Given the exist-
ing overviews on the various existing cost-insensitive approaches in recent surveys such
as Settles (2012), Fu et al. (2012), Cohn (2010) and Settles (2009), we focus on the most
related approaches and start with cost-insensitive approaches before moving to cost-sensitive
ones.

In expected error reduction (ER) (RoyandMcCallum2001;Cohnet al. 1996), the expected
error upon incorporating a candidate into the training set is calculated. This is done by
simulating for each of its possible label realisations the classifier update, and calculating
the resulting error on an evaluation set (e.g. using the set of already labelled instances). In
contrast to earlier work (Cohn et al. 1996), the error reduction approach inRoy andMcCallum
(2001) is usable with any classifier, and directly optimises a user-specified classification
performance measure. Nevertheless, ER requires reliable estimates for the true posteriors
(Chapelle 2005), which are difficult to obtain in early learning stages, where solely few
labels are available. Therefore, several regularisation approaches, such as Beta priors, have
been explored (Chapelle 2005). This family of approaches is known (see e.g. Settles 2012)
to yield good results, but it is slow, requiring an asymptotic runtime of O(|V| · |U |), where
V is the evaluation set and U the pool of candidates.

A fast active learning approach is uncertainty sampling (US) (Lewis andGale 1994),which
has an asymptotic time complexity of O(|U |) and is usable on fast data streams (Zliobaitė
et al. 2013). It employs so-called uncertainty measures as proxies for a candidate’s impact on
the classification performance, and the candidate with the highest uncertainty is selected for
labelling. In the seminal work of Lewis and Gale (1994), a probabilistic classifier is used on
a candidate to compute the posterior of its most likely class. The absolute difference between
this posterior estimate and 0.5 is used as uncertainty measure (lower values denoting higher
uncertainty). In addition to this confidence-based uncertainty measure, other measures are
common as well (Settles 2012), like entropy or the margin between a candidate and the
decision boundary. Similar to the issue of the true posterior above, a known drawback (Zhu
et al. 2010) ofUS is that these proxies donot consider the number of similar instances onwhich
the posterior estimates are made or the decision boundaries are drawn. The reported results
of empirical evaluations are somewhat inconclusive, with some authors [e.g. Chapelle (2005)
or Schein and Ungar (2007)] reporting for US on some data sets even worse performance
than random sampling.

Our recently (Krempl et al. 2014a, b) proposed probabilistic active learning (PAL)
approach combines the qualities of uncertainty sampling and error reduction, namely being
fast and optimising directly a performance measure. Following a smoothness assumption
(Chapelle et al. 2006), our approach uses probabilistic estimates for summarising the labelled
information in a candidate’s neighbourhood and evaluating the impact of acquiring a label
therein. This impact is expressed by the expected performance gain (the so-called proba-
bilistic gain), measured in terms of an user-defined point classification performance measure
(Parker 2011) like accuracy. Expectation is not only done over the possible realisations of
a candidate’s label as in error reduction, but also over the true posterior in the candidate’s
neighbourhood. PAL then selects the candidate that in expectation improves the classifica-
tion performance the most within its neighbourhood. PAL runs in the same asymptotic time
O(|U |) as uncertainty sampling and showed good results in cost-insensitive classification
experiments (Krempl et al. 2014b), yet its suitability for cost-sensitive applications is an
open question.
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Cost-sensitive learning (Liu et al. 2009) is a particular challenging task for active learning
algorithms, where misclassification costs are not equal among different classes. This occurs
for example in fraud detection (Elkan 2001), where positives are rare, but misclassifying
them (i.e. producing a false negative) is more costly than misclassifying a negative instance
as positive. The objective is then to minimise the misclassification loss (Hand 2009), i.e. the
cost-weighted sum of false positives and false negatives. A related, yet different problem is
that of skewed or imbalanced class prior distributions (seeHe andMa (2013) for an overview),
where one class is far less frequent than the other. This latter problem is addressed in pas-
sive classification (where labels are known) by resampling (Chawla et al. 2002; Attenberg
and Ertekin 2013), i.e. oversampling the minority or undersampling the majority class. In
Attenberg and Ertekin (2013), active-learning-based approaches for resampling are reviewed.
However, while resampling strategies are useful for creating a balanced training sample, they
do not directly address the former problem of cost-sensitive classification itself. Furthermore,
the reported empirical results in Elkan (2001), Liu (2009) suggest that their suitability for
cost-sensitive classification is highly classifier dependent. Thus, we focus on approaches that
directly address cost-sensitive classification.

In passive classification, unequal misclassification costs are addressed by using classi-
fication rules that minimise the conditional risk (Domingos 1999). A corresponding active
learning strategy is to use cost-sensitive measures for label selection. This is done in the cost-
sensitive variant of ER (Margineantu 2005), where misclassification loss is used as error
measure, and varying label acquisition costs between instances are considered. Neverthe-
less, it inherits the slow runtime of ER and its issues associated with the ignorance of the
true posterior. For query-by-committee approaches, which use the disagreement between an
ensemble of classifiers as a proxy for a candidate’s value, Tomanek and Hahn (2009) pro-
poses a class-weighted, vote entropy-based measure as disagreement metric. However, this
approach is specific for natural language processing, where active selection is between given
conglomerates of labels.

Uncertainty measures can be made cost-sensitive by weighting posterior estimates with
class-specificmisclassification costs (Liu et al. 2009).However, an active learning component
might induce a sampling bias, such that with additional labels the posterior estimates deviate
further from the true posterior (Liu et al. 2009). This poses a problem especially in cost-
sensitive classification tasks, where reliable posterior estimates are required to determine the
misclassification-loss optimal decision boundary. Liu et al. (2009) addresses this by propos-
ing a so-called cost-sensitive uncertainty sampling approach that performs self-labelling
of all remaining unlabelled instances after each label request. This aims at de-biasing the
training sample for a cost-sensitive classifier, but also increases the asymptotic time com-
plexity to O(|U |2). To the best of our knowledge, no direct empirical comparison between
the approaches of Margineantu (2005) and Liu et al. (2009) has been published yet. Fur-
thermore, they share another shortcoming in addition to requiring time-consuming steps:
they are myopic, as they evaluate the impact of the next label acquisition without con-
sidering the remaining labelling budget. Nevertheless, as already stated in early works on
active learning (Roy and McCallum 2001), the optimal query may very well depend on
this remaining budget, which defines how many additional label requests will follow. Thus,
extending active learning approaches to become non-myopic (also called far-sighted) is
considered relevant (Zhao et al. 2012; Vijayanarasimhan et al. 2010). Vijayanarasimhan
et al. (2010) proposed a far-sighted cost-sensitive active learning method for support vec-
tor machines that chooses a set of instances out of the pool of unlabelled candidates
incorporating the individual labelling costs into the SVM’s objective function. Zhao et al.
(2012) select a set of instances greedily based on expected entropy reduction. They fur-
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thermore suggest to be near-optimal and define a stopping criterion for the active learning
process.

3 Optimised probabilistic active learning (OPAL)

Weaddress fast active learning for binary classification in a cost-sensitive environment, where
the costs τ of a false positive classification potentially differ from that of a false negative one
(1 − τ ). The objective of our approach is to select from the pool of unlabelled candidates
the one that reduces the misclassification loss (Hand 2009) the most, once it is labelled and
incorporated into the training set.

In the next Sect. 3.1, we provide the detailed modelling and derivation of our probabilis-
tic performance gain estimate (GOPAL), the pseudo-code2 and a numeric example. This is
followed by a discussion of OPAL’s properties (Sect. 3.2), in particular under varying mis-
classification cost ratios and budgets. For convenience, we summarise in Table 1 the notation
that is subsequently used.

3.1 Modelling and derivation of GOPAL

Our approach follows a smoothness assumption [see ch. 1.2.1, p. 7 in Chapelle et al. (2006)],
such that neighbouring positions in the feature space are assumed to have similar posteriors.
Given a labelling candidate (x, ·) from a pool of unlabelled instances U , and a set L of
already labelled instances (x, y), our approach needs to assess how well its neighbourhood
has been explored, i.e. to count the number of already labelled instances that are similar
to the candidate, in order to further assess the value of additional labels therein. Estimates
on the posterior probabilities Pr(y|x) are not sufficient, as their normalisation cancels out
the absolute number of labels, keeping solely information on the proportion of each class.
Therefore, we resort to the unnormalised values. That is, we use the absolute frequencies for
the number of labels of each class in the candidate’s neighbourhood.

We differentiate between two neighbourhood concepts: The first, disjoint one applies to
categorical or pre-clustered data. Such data allows to count the number LC(x,L) of labelled
instances that are similar to the candidate w.r.t. their features (or assigned cluster). These label
counts for x are summarised by its label statistics ls = (n, p̂), a tuple consisting of the absolute
number n of labels in a candidate’s neighbourhood, and the share p̂ of positives therein. The
second concept of smooth, continuous neighbourhoods corresponds for example to numerical
data, where the influence of instances increaseswith the similarity of their features. In analogy
to counts in the first case, we use frequency estimates in this second case. Using probabilistic
classifiers that are modified to return unnormalised estimates for the absolute frequencies is
one option. We recommend to use generative probabilistic classifiers like Naive Bayes rather
than discriminiative ones like logistic regression. The information on the labelled data kept by
the former by modelling Pr(X, Y ) and Pr(X) allows to compute the label statistics directly.
Furthermore, generative classifiers converge with fewer labels, as shown in Ng and Jordan
(2001), which is important in active learning contexts. If these classifiers are not available,
we propose to use Gaussian kernel frequency estimation (here, Σ is the bandwidth matrix):

LC(x,L) ≈ KFE(x,L) =
∑

xi∈L
exp

(
−1

2
· (x − xi )

′Σ−1(x − xi )

)
(1)

2 Implementations are available on our companion website: http://kmd.cs.ovgu.de/res/opal.
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Table 1 Used symbols and notation

Symbol Description Reference

Input data

x Feature vector of an instance p. 5

y ∈ {0, 1} Class label of an instance (0=neg., 1=pos.) p. 5

U = {(x, ·)} Pool of unlabelled instances p. 5

L = {(x, y)} Pool of labelled instances p. 5

Variables imposed by the application domain

τ ∈ [0, 1] Cost of each false positive classification p. 5, p. 9, Eq. 16

m ≥ 0 Budget for the candidate’s neighbourhood p. 7

Variables within the neighbourhood of a candidate (x, ·)
dx ≥ 0 Density weight (w.r.t. all instances in U ∪ L) p. 6, Eq. 2

gx Density weighted optimised probabilistic gain p. 11

ls = (n, p̂) Label statistics with: p. 5

n Total number of already obtained labels

p̂ Share of positives therein (a posterior estimate)

k ∈ {0, . . . ,m} Number of positives among future label realisations p. 7

p ∈ [0, 1] True posterior probability of the positive class p. 7

Functions

L(p|ls) Likelihood of a possible true posterior p. 7, Eq. 7

ωp(Slabel) ∈ [0, 1] Normalised likelihood of a possible true posterior p. 8, Eqs. 10–12

Γ (z) Legendre’s gamma function, see pp. 206–208 in Press
et al. (1992)

p. 7

IML (n, p̂, τ,m, k) Integral, proportional to the expected performance p. 11, Eq. 32

GOPAL(n, p̂, τ,m) Optimised probabilistic gain, i.e. a candidate’s p. 11, Eq. 35

∈ [−1, 1] Exp. average misclassification loss reduction

Based on this, we derive the total number of labels n = LC(x,L) and the share of positives
therein p̂ = LC(x,L+)/LC(x,L), where L+ is the subset of labelled positive instances.
The tuple ls = (n, p̂) constitutes the label statistics of x’s neighbourhood. Using Eq. 1, we
also derive the density in the candidate’s neighbourhood

dx = LC(x,L ∪ U)

|L ∪ U | (2)

This serves as a weight for the importance of the classification performance within this
neighbourhood, as compared to other regions in feature space. Therefore, we later weight the
average misclassification loss reduction by this density-weight. It is useful to precompute dx
for all candidates in the pool, as L ∪ U is static in the pool-based active learning scenario.

3.1.1 A non-myopic, cost-sensitive probabilistic gain

Following our recently (Krempl et al. 2014a, b) proposed probabilistic active learning
approach, we use a candidate’s label statistics ls to compute its probabilistic gain, which
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corresponds to the expected gain in classification performance from acquiring the candi-
date’s label. This is done by first modelling both, the candidate’s label realisation y and the
true posterior p of the positive class in its neighbourhood, as random variables, and com-
puting the expectation over both variables simultaneously, using the normalised likelihood
given the label statistics. The resulting probabilistic gain is weighted by the feature den-
sity dx at its position, and the candidate with highest density-weighted probabilistic gain is
selected.

However, in contrast to (Krempl et al. 2014a, b), our optimised probabilistic active learn-
ing (OPAL) offers three advantages for fast, cost-sensitive applications: first, it quantifies a
candidate’s probabilistic gain (its label’s value) in terms of misclassification loss reduction,
which is a cost-sensitive measure. Second, it uses a closed-form solution for computing the
probabilistic gain, making it faster. Third, it is non-myopic, considering the effect of more
than one label acquisition at once. Thus, given a budget that allows to acquire m labels at
once within the neighbourhood, we compute the expectation over a set y1, y2, . . . , ym of
label realisations, rather than on a single label realisation y. However, the ordering of labels
is irrelevant in this additional training set. By counting the number of positive realisations
k in the possible sets, m + 1 different cases (k = 0, 1, . . . ,m) are distinguishable, and the
number of positive realisations is a binomial-distributed random variable K ∼ Binm,p . Thus,
we perform the expectation over its realisation k and over the true posterior p, rather than
over y and p as in Krempl et al. (2014b).

The true posterior in this neighbourhood is unknown, but for its possible values, the
likelihoods are calculable by using the frequency estimates from the label statistics. For this,
we model the unknown true posterior in this neighbourhood by a Beta-distributed random
variable P. Its realisation p is itself the parameter of the Bernoulli distribution that controls
the label realisation y ∈ {0, 1} of any instance within the neighbourhood. Consequently, for
any set of m label realisations in the neighbourhood, the number k of positives therein is the
realisation of a Binomial-distributed random variable K :

P ∼ Betan· p̂+1,n·(1− p̂)+1 (3)

Y ∼ Bernoullip = Ber p (4)

K ∼ Binomialm,p = Binm,p (5)

We will denote the probability (density) functions (pdf’s) of the above distributions by
Betaα,β(), Ber p(), and Binm,p(), respectively. For computing the binomial coefficient in

Binm,p(k) =
(
m
k

)
· pk · (1 − p)m−k , as well as in the subsequent equations below, we

use the generalised binomial coefficient for non-integer arguments, and the gamma function
Γ (z) as defined by Legendre3:

(
m
k

)
= Γ (m + 1)

Γ (k + 1) · Γ (m − k + 1)
(6)

The true posterior’s Beta distribution above is the result of its normalised likelihood, given
the already observed labels, as we will show below. According to Eq. 5, the likelihood of a
true posterior p given the data summarised in ls corresponds to the probability mass function
Binn,p(n p̂):

3 See for example pages 206–208 in Press et al. (1992).
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L(p|ls) = L(p|(n, p̂)) = Binn,p(n p̂) (7)

= Γ (n + 1) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
(8)

Following a Bayesian approach, we consider a prior g(p) for P, and obtain the normalised
likelihood

ωls(p) = L(p|ls)g(p)
∫ 1
0 L(ψ |ls)g(ψ)dψ

(9)

The choice of a suitable prior g(p) depends on our a priori information about the class prior
distribution Pr(Y = +) in the data. Without any a priori information, we chose a uniform
prior for P, i.e. g(p) ∼ U (0, 1). As a result, g(p) is a constant function, and the integral in
the denominator sums up to (1 + n)−1, yielding (1 + n) as normalising constant:

ωls(p) = (1 + n) · L(p|ls) (10)

Expanding this using Eq. 7, and setting (1+ n) · Γ (n + 1) = Γ (n + 2), we obtain precisely
the probability function of the Beta-distribution:

ωls(p) = Γ (n + 2) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
(11)

= Γ (α + β)

Γ (α) · Γ (β)
· pα−1 · (1 − p)β−1 = Betaα,β(p) (12)

Here, we rewrite in the last step the arguments of the Γ -functions and obtain α = n · p̂ + 1
and β = n · (1 − p̂) + 1. These parameters for the Beta-distribution have a correspondence
in the positive and negative labels in the candidate’s neighbourhood: with each positive
label therein, α increases by one, while with each negative, β increases by one. Thus, the
normalised likelihood expressed by the Beta-distribution is a uniform distribution if no labels
are available. However, if labels are available, its peak around p̂ becomes more and more
distinct with an increase in the number of available labels.

In contrast to Krempl et al. (2014b), we do the expectation in OPAL over k and p, rather
than over y and p, yielding the candidate’s probabilistic gain (GOPAL), defining the expected
change of the performance measure for its neighbourhood in average per additional label:

GOPAL(ls, τ,m) = 1

m
· Ep

[
Ek

[
gainp(ls, k,m)

] ]
(13)

= 1

m
·
∫ 1

0
Betaα,β(p) ·

∑

0≤k≤m

Binm,p(k) · gainp(ls, k,m) dp (14)

Here, gainp(ls, k,m) is the performance gain within the neighbourhood with label statistics
ls and true posterior p, given that k among m additional label realisations are positive. Using
a point performance measure perf p( p̂) that calculates the classification performance under
a posterior estimate p̂ and a true posterior p, the performance gain is written as difference
between future and current performance:

gainp(ls, k,m) = perf p

(
n p̂ + k

n + m

)
− perf p( p̂) (15)

We address active learning for cost-sensitive binary classification tasks, where τ ∈ [0; 1]
indicates the cost for each false positive instance, and 1 − τ is the corresponding cost for
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each false negative one, assuming zero costs for correct classifications. A point performance
measure (Parker 2011) for this setting is misclassification loss (Hand 2009), which is the
product of themisclassification costmatrix and the confusionmatrix.Within a neighbourhood
with true posterior p and a classification rule classifying a share of q instances therein as
positive,4 the misclassification loss is

MLoss(p, q) = p · (1 − q) · costFN + (1 − p) · q · costFP = (16)

p · (1 − q) · (1 − τ) + (1 − p) · q · τ = q · (τ − p) + p · (1 − τ) (17)

Thus, given p and τ , the misclassification loss is a linear function of q ∈ [0; 1]. It has a
positive slope for p < τ , and a negative for p > τ . Due to the positive slope, it is optimal to
set q = 0 in the former case (and q = 1 in the latter), in order to minimise the loss function.
Thus, the cost-optimal decision is:

q∗ =
⎧
⎨

⎩

0 p < τ

1 − τ p = τ

1 p > τ

(18)

One could argue that in the case τ = p the choice of q∗ is an arbitrary one, as the first factor
q · (τ − p) is zero, meaning equal loss of p2 = τ 2 for all choices of q∗. However, in order to
obtain a consistent classification rule, one should specify the assignment q∗ = 1− τ at ties,
rather than simply replacing one strict inequality condition in Eq. 18 with a non-strict one.
This is illustrated when studying the classification under extreme values for τ . For example,
if τ = 0, false positives do not cost anything, while false negatives are very expensive. A
cost-optimal classification rule should thus classify every instance as positive, i.e. q∗ should
be one for all possible p. While cases of p ∈ ]0; 1] are covered by the third clause in Eq.
18, the second clause must return q∗ = 1 for cases of p = 0. Vice versa, if τ = 1 this
second clause must return q∗ = 0. Thus, it should be set to 1 − τ (or 1 − p, equivalently).
As the true posterior p is not directly observable, the counted observed share p̂ of posi-
tives is used as proxy instead. Thus, ties might occur frequently enough to consider this as
relevant.

Given p and τ , using negated misclassification loss (Eq. 16) under cost-optimal classifi-
cation (Eq. 18), we derive a performance measure suited for Eq. 15:

per f p,τ ( p̂) = −ML p,τ ( p̂) = −
⎧
⎨

⎩

p · (1 − τ) p̂ < τ

τ · (1 − τ) p̂ = τ

τ · (1 − p) p̂ > τ

(19)

Intentionally,we do not include the density of the neighbourhood here, tomeasure the effect of
this misclassification loss reduction for the whole data set, because we intend to separate data
set specific information from this value. Of course, ML p,τ ( p̂) should have been multiplied
with the neighbourhood’s density dx , but this factor can be delivered to the very left side of
the whole formula.

Plugging this into Eq. 13 yields the probabilistic misclassification loss reduction

GOPAL(ls, τ,m) = 1

m
·
∫ 1

0
Betaα,β (p)

m∑

k=0

Binm,p(k)

(
ML p,τ ( p̂) − ML p,τ

(
n p̂ + k

n + m

))
dp (20)

4 Classification within a neighbourhood is assumed to be indifferently of the precise location within the
neighbourhood, i.e. we assume conditional independence of the posterior given the neighbourhood of an
instance.
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3.1.2 Derivation of the closed-form solution

For deriving a closed-form solution, we split Eq. 20 it into a term for to the expected current
performance Ecur and another for the expected future performance E f ut :

GOPAL(ls, τ,m) = 1

m
· (
Ecur − E f ut

)
(21)

The first term Ecur , where m = k = 0 and Bin0,p(0) = 1, is simplified to:

Ecur =
∫ 1

0
Betaα,β(p) · ML p,τ ( p̂) dp (22)

Expanding the Beta-distributed probability Betaα,β(p) by Eq. 12 and themisclassification
loss by the case-by-case formula in Eq. 18, and integrating out yields:

Ecur =
∫ 1

0

Γ (n + 2) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
·
⎧
⎨

⎩

p · (1 − τ) dp p̂ < τ

τ · (1 − τ) dp p̂ = τ

τ · (1 − p) dp p̂ > τ

(23)

= (n + 1) ·
(

n
n · p̂

)
·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − τ) · Γ (1+n−n p̂)Γ (2+n p̂)
Γ (3+n)

p̂ < τ

(τ − τ 2) · Γ (1+n−n p̂)Γ (1+n p̂)
Γ (2+n)

p̂ = τ

τ · Γ (2+n−n p̂)Γ (1+n p̂)
Γ (3+n)

p̂ > τ

(24)

The second term, E f ut , in Eq. 21 is:

E f ut =
∫ 1

0
Betaα,β(p)

m∑

k=0

Binm,p(k) · ML p,τ

(
n p̂ + k

n + m

)
dp (25)

=
m∑

k=0

·
∫ 1

0
Betaα,β(p) · Binm,p(k) · ML p,τ

(
n p̂ + k

n + m

)
dp (26)

As above, we expand the terms therein, which now include the Binomial-distributed

probability Binm,p(k) =
(
m
k

)
· pk · (1 − p)m−k :

E f ut =
m∑

k=0

∫ 1

0

Γ (n + 2) · pn· p̂ · (1 − p)n·(1− p̂)

Γ (n · p̂ + 1) · Γ (n · (1 − p̂) + 1)
· (27)

·
(
m
k

)
· pk · (1 − p)m−k · ML p,τ

(
n p̂ + k

n + m

)
dp (28)

= (n + 1) ·
(

n
n · p̂

)
·

m∑

k=0

·IML(n, p̂, τ,m, k) (29)

where IML is a function of n, p̂, τ , m, and k, containing the integral and proportional to the
expected performance, which is integrated out as follows:
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IML(n, p̂, τ,m, k) =
∫ 1

0

(
m
k

)
· pn· p̂+k · (1 − p)n+m−n· p̂−k · ML p,τ

(
n p̂ + k

n + m

)
dp (30)

=
(
m
k

)
·
∫ 1

0
pn· p̂+k · (1− p)n+m−n· p̂−k ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p · (1 − τ)dp n p̂+k
n+m < τ

(τ − τ 2)dp n p̂+k
n+m = τ

τ · (1 − p)dp n p̂+k
n+m > τ

(31)

=
(
m
k

)
·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − τ) · Γ (1−k+m+n−n p̂)Γ (2+k+n p̂)
Γ (3+m+n)

n p̂+k
n+m < τ

(τ − τ 2) · Γ (1−k+m+n−n p̂)Γ (1+k+n p̂)
Γ (2+m+n)

n p̂+k
n+m = τ

τ · Γ (2−k+m+n−n p̂)Γ (1+k+n p̂)
Γ (3+m+n)

n p̂+k
n+m > τ

(32)

Using this in Eqs. 24 and 29, we obtain

Ecur = (n + 1) ·
(

n
n · p̂

)
· IML(n, p̂, τ, 0, 0) (33)

E f ut = (n + 1) ·
(

n
n · p̂

)
·

m∑

k=0

·IML (n, p̂, τ,m, k) (34)

and Eq. 35 to compute the GOPAL in the candidate’s neighbourhood:

GOPAL(n, p̂, τ,m) = (n + 1)

m
·
(

n
n · p̂

)
·
⎛

⎝IML (n, p̂, τ, 0, 0) −
m∑

k=0

IML (n, p̂, τ,m, k)

⎞

⎠ (35)

3.1.3 Pseudocode and numeric examples

The pseudocode for OPAL in pool-based active learning is given in Fig. 1. Lines 2–7 iterate
over each labelling candidate (x, ·) in the pool U . First (line 3), a candidate’s label statistics
ls = (nx , px ) are computed according to Eq. 1. Second (line 4), the density weight dx is
estimated, i.e. the proportion of all labelled and unlabelled instances within the candidate’s
neighbourhood divided by those in all neighbourhoods, seeEq. 2. In line 5, the optimalm∗

x that
maximises theGOPAL (seeEq. 35) is found, using a logarithmic searchoverm′ = 1, 2, . . . ,m.
Density-weighting this maximal GOPAL (line 6) yields gx . , and the candidate maximising
the density-weighted probabilistic gain is returned (line 8).

1: function PoolBasedOPAL(U ,L,τ ,m)
2: for x ∈ U do
3: (nx, p̂x) ← labelstatistics(x, L)
4: dx ← densityweight(x, L ∪ U)
5: m∗

x ← arg maxm ∈1,2,··· ,m GOPAL((nx, p̂x), τ, m )
6: gx ← GOPAL((nx, p̂x), τ, m∗

x) · dx
7: end for
8: return arg maxx∈U (gx)
9: end function

Fig. 1 The OPAL algorithm
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Fig. 2 Visualisation ofGOPAL-values for τ = 0.5 on a one-dimensional dataset with labelled (red resp. green
dots) and unlabelled (grey dots) data points. The upper plot shows the kernel frequency estimates (KFE) for
each class and the corresponding GOPAL-value (blue curve). The lower plot shows the density (grey area)
and the density-weighted GOPAL-values (blue curve). Additionally, the negative confidence values from the
Uncertainty Sampling approach are plotted for comparison. For exemplary data points (A–E) the corresponding
label statistics and the unweighted (·1) and density weighted (·dx ) GOPAL-values are given in the tables

The GOPAL, visualised in Fig. 2, corresponds to the expected average reduction in mis-
classification loss in each subsequent classification5 in the candidate’s neighbourhood. For
equal misclassification costs, theGOPAL is proportional to the expected average gain in accu-
racy and is highest for candidates close to the decision boundary (where p̂ ≈ τ ), like the
points D and E (compared to B and C) in Fig. 2. For a very small number n of already
obtained similar labels, GOPAL approximates random sampling as n → 0, corresponding to
the barely available information. Nevertheless, as n increases (compared to the remaining
budget m), the equations above are dominated by the observed posterior p̂. Thus, the differ-
ence between expected future IML(n, p̂, τ,m, k) and current performance IML(n, p̂, τ, 0, 0)
converges towards zero, making candidates in well-explored regions (e.g. A) less valuable
than those in unexplored ones (e.g. D, E). In the lower subplot in Fig. 2, the points (D, E)
show the importance of the density-weighting: Point E is in a less explored but also sparser
area than D, thus E has a higher GOPAL (0.0817 vs. 0.0737) but a 6.5-times lower density
weight, as improving the performance in its region will effect 6.5 times fewer future classifi-
cations. Thus, the density-weighted probabilistic gain of E (0.00164) is lower than that of D
(0.00982). In contrast, US neither incorporates the amount of available information (e.g.A vs.
D), nor the importance of neighbourhoods (e.g.D vs. E). Note that for unequal misclassifica-
tion costs, the GOPAL is not symmetric around τ , but rather favours sampling instances from
the regions where potentially a more costly error is made. That is, if false positive costs are
relatively low compared to false negative ones (e.g. τ = 0.1), misclassification of positives
(as false negatives) is expensive compared to the misclassification of negatives. Accordingly,
the probabilistic gain is higher in regions where currently instances are classified as negative,
as the possible error therein is more expensive. Therefore, our cost-sensitive approach will
favour sampling in these regions. A further discussion of the properties of GOPAL is provided
in Sect. 3.2.2, where Fig. 3 on page 14 illustrates the shape of this function.

3.2 Properties of GOPAL

We now briefly discuss the asymptotic (with respect to data set size) computational time
complexity of OPAL in Sect. 3.2.1, comparing it to related algorithms for active learning of

5 Assuming cost-optimal classification (Domingos 1999), see Eq. 18 in Sect. 3.1.
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binary, incremental classifiers, before illustrating the effect of the myopic extension on the
probabilistic gain in Sect. 3.2.2.

3.2.1 Computational complexity

For the non-myopic selection of a candidate from a pool U of labelling candidates, OPAL
iterates first over all candidates in the pool (lines 2–7). Each iteration consists of (1) querying
label statistics, (2) querying density weights, (3) determining the locally optimal budget,
and (4) computing the density-weighted probabilistic gain. The first step requires absolute
frequency estimates of labels in the candidate’s neighbourhood, similar to the relative fre-
quency estimates needed by entropy or confidence uncertainty measures. These are obtained
in constant time by probabilistic classifiers. The second step requires density estimates over
all instances, that is over labelled L and unlabelled U ones. Precomputing these density esti-
mates once for all later calls of OPAL leads to constant query time, as in the pool-based setting
the union L ∪ U is constant. The third step requires a logarithmic search over all possible
m′ ∈ 1, 2, . . . ,m, where for eachm′ theGOPAL is calculated. The latter is done in O(m) time,
due to the closed-form solution obtained for Eq. 35. Thus, the third step requires O(m log(m))

time. The fourth step computes the density-weighted probabilistic gain gx , requiring constant
time. For the subsequent selection of the best candidate in line 8, the maximum of gx as well
as the index of the corresponding candidate are kept. Thus, the iteration over the pool is
determining the overall asymptotic time complexity of O(|U | ·m log(m)) for the non-myopic
OPAL, where m is the remaining labelling budget that is in general much smaller than |U |.
OPAL’s myopic counterpart requires asymptotically linear time O(|U |), as m = 1.

In comparison, uncertainty sampling also requires asymptotically linear time O(|U |),
whereas error reduction as discussed in Settles (2012) requires O(|U | · |V|) time, where
|V| ≈ |U |, as V needs to be a representative sample of the data.

3.2.2 Effect of the non-myopic extension

Besides of being faster and cost-sensitive, OPAL extends PAL by adding the ability of acting
non-myopic. The first two properties are the result from using a closed-form solution and
misclassification loss as performance measure, and have already been discussed. Thus, we
will now focus on the third one, which allows OPAL to consider a budgetmwhen computing
the probabilistic gain of a candidate.

We illustrate the usefulness and effect of this extension on the probabilistic gain function
in Fig. 3. In this figure, the first two columns of plots show the probabilistic gain function (in
terms of average misclassification loss reduction) for different label statistics, i.e. combina-
tions of different numbers of already obtained labels n and observed posteriors p̂ = P̂r(+|x).
The first column shows the myopic probabilistic gain (m = 1), the second the non-myopic
one (m = m∗), where m ∈ {1, 2, . . . , 21} is chosen such that the probabilistic gain is max-
imal. The third column corresponds to the difference (in a logarithmic scale) between the
two probabilistic gains. The three rows correspond to the different misclassification costs
τ = 0.1, 0.25, and 0.5. The plots for τ = 0.75 (and τ = 0.9) are not shown, as they are
reflection symmetric to those of τ = 0.25 (and τ = 0.1, respectively).

Given equal misclassification costs (τ = 0.5, third row) and a candidate in a neighbour-
hood, where already two labels (all positive) have been acquired (n = 2, p̂ = 1). In this
neighbourhood, a single additional label can not alter the classification decision, thus the
probabilistic gain in a myopic setting is zero. This is seen in the left-bottom plot, where the
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Fig. 3 Plots of theGOPAL as function of observed posterior p̂ = P̂r(+|x) and number of labels n for different
cost-rations τ = 0.1, 0.25, 0.5 (rows). The left column shows the myopic GOPAL, the centre column shows
the non-myopic GOPAL, and the right column shows the difference between the two (in logarithmic scale)

probabilistic gain is zero for n = 2, p̂ = 1 (the corner in the uttermost back). However,
if more than one label can be acquired in this neighbourhood, these labels might change
the classification. Thus, under a non-myopic setting and equal misclassification costs, the
probabilistic gain should be positive. Indeed, the probabilistic gain is GOPAL = 0.0274 for
the optimal acquisition of three labels (m∗ = 3). Correspondingly, the flanks in the centred
plots are flatter than in the left ones.

For unequal misclassification costs (e.g. in first row with τ = 0.1, meaning false positives
are cheap compared to false negatives), the expected gain from a single additional label
might even be negative. This corresponds to situations, where just sufficiently positive labels
were acquired within a neighbourhood to classify instances therein as positive (i.e. p̂ =
P̂r(+|x) > τ ). In the myopic setting, the realisation of the single additional label is binary.
If it is positive, it does not alter the classification. If it is negative, it inverts the classification.
The latter results in a wrong classification if the true posterior p is actually greater τ , which
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is very likely, given that the share of positives p̂ among the already seen labels was greater
τ . Therefore, in the left-upper plot, the myopic probabilistic gain is negative for n = 1 and
p̂ ∈ [0.1, 0.2], with a negative peak at GOPAL = −0.12 for p̂ = 0.199.

In contrast to the myopic setting with its binary label realisation, the non-myopic setting
uses a rational number: the share of positives among the realisation of additional labels.
Thus, the effect of this special case decreases with increasing m, as shown in the upper-
centre plot. Nevertheless, for extreme misclassification cost inequalities (e.g. τ = 0.1 or
τ = 0.9), the probabilistic gain remains non-positive for all neighbourhoods with p̂ > τ ,
which are therefore not selected for label requests. In contrast, for moderate misclassification
cost inequalities (e.g. τ = 0.25 or τ = 0.75), it becomes positive for some neighbourhoods
therein, namely those having an observed posterior p̂ close to τ . As a consequence, the effect
of the non-myopic extension might be more important for situations with moderate misclas-
sification cost inequalities, than for those with either equal misclassification costs or extreme
unequal ones. However, this requires empirical evaluation, which we provide in Sect. 4.3.

Concerning the probabilistic gain function’s mode, our numerical experiments indicate it
to be an unimodal function of m for a given combination of n, p̂ and τ .

4 Experimental evaluation

We expect our new cost-sensitive method OPAL to perform at least equally well in terms
of resulting classification performance as other (cost-sensitive) active learning approaches,
while being faster than other cost-sensitive approaches. Furthermore, we expect OPAL to be
better than PAL towards the end of the learning process, through its non-myopic extension.
Therefore, we designed a framework that ensures a fair evaluation of our contributions.

In the first subsection, we describe our evaluation setting, the active learning approaches
used in the comparison, the data sets and our framework. In the second subsection, we present
and discuss the results of the experimental evaluation. There, we first assess the usefulness
of our cost-sensitive extension. Then, we show that OPAL is in most cases superior, both to
its myopic counterpart PAL and to other active learning approaches, while having the same
asymptotic time complexity as uncertainty sampling.

4.1 Evaluation settings

4.1.1 Active learning algorithms

For experimental evaluation, we use the fast version of OPAL described in Sect. 3, which
applies a logarithmic search for determining the optimal budget. In pretests, there was no
significant difference in classification performance between this approach and another variant
of OPAL doing exhaustive search. In addition, we use a cost-sensitive, myopic PAL (Krempl
et al. 2014b) with the presented speed optimisation (here denoted as csPAL). This is the
equivalent to OPAL with a fixed budget of m = 1.

Furthermore, we use a cost-sensitive variant of Uncertainty Sampling (Liu et al. 2009)
(denoted as U.S.) and Certainty Sampling (Ferdowsi et al. 2011) (denoted as C.S.), which
both optimise confidence6 (posterior difference to 0.5). Here, the posterior probabilities are
calculated from a cost-weighted frequency estimation. Liu et al. (2009) proposed to use a

6 We tested confidence- and entropy-based uncertainty measures in pretests and used the one with the best
performance over all data sets for the final evaluation.
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self-training approach for uncertainty sampling, such that posterior estimates are optimised
for confidence calculation. We denote this extension as U.S. st.

For error reduction, we use the cost-sensitive algorithm proposed by Margineantu (2005)
(denoted as Marg) and the non-cost-sensitive version by Chapelle (2005) (denoted as Chap).
As a non-myopic representative, we use the method by Zhao et al. (2012) (denoted as Zhao).
As the latter originally needs initial labels, we use a beta-correction for the classifier predic-
tions of 0.001 (like for Chap). This simulates that in each evaluation neighbourhood an equal
number of positives and negatives has been seen. In our framework, we always use 40 labels
to be acquired by the active learners. Therefore, we disabled the automatic stopping crite-
rion (otherwise learning often stopped far too early). Furthermore, we use random selection
(denoted as Rand) as a baseline.

4.1.2 Data sets

In our experiments, we used 3 synthetic and 5 real data sets (from Asuncion and New-
man (2013)). Each attribute was scaled to a [0; 1]-range, because we use Gaussian Kernel
Frequency estimates with a fixed and pre-tuned bandwidth sigma (see Sect. 1). The main
characteristics (number of instances, number of attributes), such as training and test set size
and the bandwidth σ of the Gaussian Kernel, are given in Table 2.

Two of the synthetic data sets are based on the generator used in Chapelle (2005). They
consist of 4x4 clusters, arranged in a checker-board formation (on a 2 dimensional feature
space). While the clusters are low-density-separated in Che (as in Chapelle (2005)), they
are adjoined in Che2. The third synthetic data set (Sim) consists of two normal distributed,
overlapping clusters in a two dimensional space.We used this very simple example as a proof
of concept for active learning methods.

The real-world data sets are Seeds (See), Vertebral (Ver), Mammographic mass (Mam),
Yeast (YeaU) and Abalone (Aba), see Asuncion and Newman (2013). As show in Table 2,
balanced as well as unbalanced class distributions occur. Categorical features (as in Mam)
have been dichotomised into multiple binary features. In Mam, instances with missing values
have been removed. For the multi-class dataset See, we classified Kama and Canadian vs.
Rose; for Ver, we used normal vs. abnormal; for Aba, we used trees with rings <10 vs.

Table 2 Data set characteristics and parameters (number of instances, number of attributes (real-valued,
categorical), proportion of positive instances, training set size, test set size, bandwidth for Parzen window
classifier) in ascending training set size order

Data set Instances Attributes Pr(+) |Train| |Test| σ

Real Cat.

See 210 7 – 33% 160 50 0.2

Che 308 2 – 44% 200 108 0.08

Che2 392 2 – 49% 250 142 0.08

Ver 310 6 – 32% 260 50 0.08

Mam 830 2 2 51% 630 200 0.7

Sim 1200 2 – 50% 800 400 0.08

YeaU 1484 8 – 90% 1000 484 0.1

Aba 4177 8 – 50% 3500 677 0.25
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rings≥10; for YeaU, we usedMIT vs. the rest. For better comparison to Chapelle (2005) and
Krempl et al. (2014b), we used a Parzen window classifier, which is a generative probabilistic
classifier as discussed in Sect. 3.1. However, for some cost-ratios this classifier is not able
to discriminate in the data, thus it is classifying all instances into the more expensive class.
This is detectable in the bandwidth tuning curves (see Fig. 1), when the best σ -value (the
one with lowest misclassification loss) is the maximal, uttermost left one. We reported the
results on those data-set/cost-ratio-combinations for completeness, but emphasise that the
classification performance on such ill-posed learning problems is not meaningful.

4.1.3 Framework

Our framework decouples classification and active learning. All runs behave exactly the
same except for the active sampling component, which decides the instance whose label
should be acquired next. Thus, we use exactly the same frequency estimates (see Eq. 1)
and the same classification algorithm (a Parzen window classifier (Chapelle 2005)) with the
identical parameters for any active learning strategy during the calculation. Furthermore,
we decoupled the classification and evaluation process to ensure, that every active learning
method just differs in the set of labelled instances. To get more significant results, we used a
cross-validation with random sub-samplings in 100 runs. The training and test set sizes are
listed in Table 2.

Here, active learning startswithout initial labels on the unlabelled training sample, and fin-
ishes after 40 label acquisitions (steps).We implemented the framework inOctave/MATLAB,
whichwas parallelised to run on a cluster. Every run uses the same pre-tuned, data set-specific
bandwidth, and each of the 40 steps is evaluated on the same, dedicated (labelled) test sample
with the same cost-sensitive Parzen window classifier, recording misclassification loss and
speed.

The presented learning curves show the arithmetic mean of the misclassification loss over
all 100 runs for a given combination of data set, algorithm and cost-ratio.

4.2 Relevance of the cost-sensitivity

From OPAL’s theoretical characteristics, we expect OPAL to choose the best instances, with
respect to a given cost-ratio τ . To evaluate the relevance of this cost-sensitivity empirically,
we run OPAL for its GOPAL calculation with 5 different τ values (τ ∈ {.1, .25, .5, .75, .9}),
and evaluate its misclassification loss regarding the true cost-ratio τ ∗. If the cost-sensitivity is
meaningful and relevant, the curve with τ = τ ∗ should have the best performance compared
to all other τ -values.

Figure 4 shows a selection of data sets (columns) and the evaluation cost-ratios τ ∗ (rows).
Each plot shows the learning curves with the classification performance in terms of mis-
classification loss on its y-axis and the steps of its learning process in the number of already
requested labels on the x-axis. The 5 different variants of OPALwith the varying τ are printed
in different colours while the correct one is plotted in bold. The results of the other data sets
are given in the appendix (see Sect. 1; Fig. 8).

The first interesting fact is that the correct usage of τ = τ ∗ leads to a converging curve,
while some wrong ones lead to diverging curves. Thus, ignoring the application-specific
cost-ratio results in a low classification performance on these data sets. Furthermore, the
curves for neighbouring τ -values behave similarly, especially the curves for τ = 0.25 and
τ = 0.1, respectively τ = 0.75 and τ = 0.9.
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Fig. 4 Misclassification loss curves for OPAL on a selection of data sets with different cost-ratios (τ ) for
active learning and true cost-ratios (τ∗) for evaluation; curves for correct cost-ratios (τ = τ∗) are plotted in
bold and should be superior; early convergence to very low values is best

Comparing the level and velocity of the misclassification curves, the bold ones are mostly
superior. The single exception occurs on Che, whereOPAL selects optimal labels for τ = 0.5
(that is one instance of each cluster), so it performs very well for the other evaluation cost-
ratios too. This is due to the very special characteristics (well-separated clusters) of this data
set. When the separation between clusters is reduced, as in Che2, the effect vanishes. The
other exceptions, like in YeaU for τ ∗ = .1, occur all on ill-posed learning problems (see Fig.
1), where the results are not meaningful.
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Summarising the results, the use of the cost-sensitive extension is beneficial, although
there are some exceptional cases, where τ �= τ ∗ achieves better performance due to special
structure in the data. It is noteworthy that in a real-world application, τ is not a tunable
parameter but rather imposed by the application domain. The results show that ignoring
this application-specific cost-ratio will in most cases result in a non-optimal classification
performance.

4.3 Comparison between OPAL and other active learning strategies

This subsection assess whether (1) OPAL’s non-myopic extension is beneficial for a given
labelling budget, (2) OPAL’s performance is superior or at least equal to other active learning
approaches, and (3) its time complexity increases solely linearly with training set size (like
uncertainty sampling).

For comparison, we use learning curves measuring the performance in terms of misclas-
sification loss as before. The plots for all data sets and algorithms are given in Figs. 5 and
6. The best active learning method is the one, that has a fast-converging, low final misclas-
sification loss level. Furthermore, we give a numerical value (see Table 3) for comparing
two algorithms directly over all 8 data sets. It is computed as the portion of OPAL being
better than the compared algorithm on all 100 runs of all data sets (thus on 800 pairs) for
a given cost-ratio (τ ∗) and labelling step. We also report the results of one-sided Wilcoxon
signed-rank tests with significance level 0.001 on these pairs, by indicating a significantly
better performance of OPAL by ∗, and a significantly worse performance by †.

(1) OPAL’s non-myopic extension is beneficial Here, we compare the non-myopic OPAL and
the myopic csPAL. Both algorithms just differ in their available budget size. While OPAL
chooses the best GOPAL for a given m-vector, csPAL just considers the very next possible
label (m = 1).

As already discussed in Sect. 3.2.2, the learning curves for τ ∗ = 0.5 of both algorithms
are quite similar. Furthermore, the tables state that OPAL is at most in 4% better than csPAL.
This value might confuse, but one must be reminded, that this is just the portion of OPAL
being better. Because there is no significance of being worse, we can derive that OPAL
and csPAL behave quite similar (have the same values). However, if the number of already
obtained labels is very high, the myopic GOPAL used in csPAL will get zero, resulting in
a random-sampling-like behaviour. In contrast, if m is sufficiently large, meaning that still
several more labels will be acquired, the non-myopic variant in OPAL is advantageous, as it
will still perform a differentiated selection.

For τ ∗ �= 0.5, the non-myopic variant is slightly advantageous in terms of final mis-
classification loss (e.g. Mam for τ ∗ = 0.75, YeaU for τ ∗ = 0.9 or See) or at least
performs equally well. Interestingly, while for extreme cost-ratios (τ = 0.1 or τ = 0.9)
the non-myopic variant is still advantageous over its myopic counterpart (in 44 or 48% of
the cases, see Table 3), the difference is not as big as it is for moderately unequal cost-ratios
(τ = 0.25 or τ = 0.75). However, this is in accordance to the theoretical observationsmade in
Sect. 3.2.2, where a strongest effect for moderately unequal misclassification cost ratios was
predicted.

Furthermore, we observe that csPAL converges faster (see e.g. Table 3 for 10 label acqui-
sitions). However, this again matches with the theoretical discussion in Sect. 3.2.2, because
we set the budget initially to m = 40 (and not to 10), thus OPAL has optimised its learning
path for 40 label acquisitions. Evaluating its performance after less steps is therefore slightly
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Fig. 5 Misclassification loss curves for presented algorithms on all data sets with different evaluation cost-
ratios (τ∗); early convergence to very low values is best

malicious. However, the results indicate that (1) setting the budget correctly to the remaining
one is beneficial for final classification performance, and (2) a faster learning is achievable
by setting m to low values, if one is willing to forfeit long-term performance.

(2) OPAL’s performance is superior Measuring the overall performance of active learning
methods over different data sets and cost-ratios is complex, due to weighting and measuring
the characteristics of learning curves, which ideally converge fast to a low final misclassifica-
tion loss level. Therefore, Table 3 provides a summary of the total percentage ofwins ofOPAL
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Fig. 6 Continuation of Fig. 5 on additional data sets

against each other approach. The learning curves show that OPAL is better than U.S. (with
and without self-training) after 6 label requests (when learning becomes meaningful) in most
cases. Explanations according to Settles (2012, pp. 19–20) are that US (a) ignores the extend
of exploration in a neighbourhood, (b) relies on a hypothesis biased by its sampling, and (c)
is fairly myopic. We can not confirm a superiority of C.S. (Ferdowsi et al. 2011) compared
to any other (even random) active learning approach in our experiments. The cost-sensitive
error reduction method Marg performs worse than expected. It is outperformed by its cost-
insensitive counterpart Chap, maybe due to solely using labelled instances for evaluation, as
opposed to the self-labelling used by Chap. Chap and the non-myopic, cost-insensitive error
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Table 3 Percentages of runs over all data sets, where OPAL performs better than its competitor. Significantly
better performance is denoted by ∗, significantly worse performance by †

OPAL vs.

csPAL U.S. U.S. st C.S. Marg1 Chap1 Zhao1 Rand

10 Labels acquired

τ∗ = 0.10 38%† 51% 52%∗ 62%∗ 58%∗ 47% 64%∗ 54%∗
τ∗ = 0.25 60%∗ 66%∗ 68%∗ 82%∗ 76%∗ 61%∗ 73%∗ 66%∗
τ∗ = 0.50 1% 70%∗ 74%∗ 89%∗ 80%∗ 62%∗ 69%∗ 72%∗
τ∗ = 0.75 46% 62%∗ 65%∗ 81%∗ 78%∗ 58%∗ 60%∗ 67%∗

τ∗ = 0.90 41%† 63%∗ 64%∗ 70%∗ 71%∗ 58%∗ 60%∗ 62%∗

20 Labels acquired

τ∗ = 0.10 47% 62%∗ 70%∗ 72%∗ 66%∗ 56%∗ 72%∗ 62%∗
τ∗ = 0.25 51%∗ 63%∗ 75%∗ 88%∗ 81%∗ 62%∗ 70%∗ 65%∗
τ∗ = 0.50 1% 64%∗ 72%∗ 92%∗ 87%∗ 63%∗ 69%∗ 68%∗
τ∗ = 0.75 53%∗ 60%∗ 67%∗ 86%∗ 80%∗ 50%∗ 48%∗ 58%∗
τ∗ = 0.90 42% 61%∗ 66%∗ 77%∗ 75%∗ 53%∗ 57%∗ 62%∗

40 Labels acquired

τ∗ = 0.10 43% 55%∗ 71%∗ 75%∗ 69%∗ 62%∗ 69%∗ 57%∗
τ∗ = 0.25 56%∗ 59%∗ 73%∗ 89%∗ 79%∗ 65%∗ 69%∗ 58%∗
τ∗ = 0.50 4% 61%∗ 72%∗ 93%∗ 89%∗ 74%∗ 76%∗ 62%∗
τ∗ = 0.75 57%∗ 64%∗ 71%∗ 90%∗ 81%∗ 59%∗ 56%∗ 54%∗
τ∗ = 0.90 46% 55%∗ 63%∗ 82%∗ 77%∗ 57%∗ 64%∗ 56%∗

The used significance level in the one-sided Wilcoxon signed-rank test was for both 0.001. Algorithms are
marked with 1 if not every data set could be used in the evaluation due to their long execution time

reduction method Zhao sometimes achieve competitive results (esp. on YeaU), but only at
very high computational costs, which prevented them to be completed on Aba. Using the
numbers of Table 3, Rand is surprisingly the best competitor. All in all, we can argue that
OPAL outperforms all other tested algorithms with high significance (see Table 3) and has a
good trade-off between fast convergence and low final misclassification loss value. Although
such an evaluation is not in the scope of this paper, the results on YeaU indicate that OPAL
is also suitable for unbalanced data sets.

(3) OPAL’s runtime in comparison with training set size To experimentally verify OPAL’s
time complexity (cmp. Sect. 3.2.1), we measured the time in seconds per run used by each
active learning process and summed it over all 40 label acquisitions in Table 4 (all differences
w.r.t. OPAL are significant at level 0.001). Obviously, Rand is fastest, followed by U.S., C.S.,
csPAL and OPAL, which slow down constantly with increasing training set size. Our myopic
approach csPAL is just slightly slower than U.S., due to its more complex value calculation.
OPAL takes about 7 times longer than csPAL, because it computes the GOPAL more often
when searching for the optimal budget over m = 1, 2, . . . , 40. In contrast, the execution
times of Marg, Chap, and Zhao explode on bigger data sets, taking for a single cost ratio
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Table 4 Average execution time (in s), rows ordered in ascending data set size

Data OPAL csPAL U.S. U.S. st C.S. Marg Chap Zhao Rand

See 1.867 0.254 0.206 0.468 0.162 43.535 51.87 254.8 0.015

Che 1.905 0.249 0.201 0.452 0.183 54.897 56.60 319.9 0.016

Che2 1.968 0.261 0.199 0.510 0.198 66.282 69.68 440.7 0.015

Ver 1.987 0.269 0.202 0.653 0.207 71.126 78.66 451.7 0.015

Mam 2.580 0.353 0.268 3.913 0.277 192.86 280.1 1577 0.016

Sim 2.827 0.335 0.239 2.422 0.202 242.98 302.6 1641 0.016

YeaU 2.993 0.379 0.272 9.318 0.260 285.51 499.9 3050 0.017

Aba 7.000 1.001 0.703 136.1 0.706 NaN NaN NaN 0.023

All differences w.r.t. OPAL are significant (level 0.001, one-sided Wilcoxon signed-rank test)

more than 8 (Marg), 13 (Chap), or 84 (Zhao) hours. Their calculations on Aba were aborted
after one week.

5 Conclusion

In this paper, we addressed the problem of fast, non-myopic active learning for binary clas-
sification in cost-sensitive applications. In such applications, unlabelled data is abundant but
annotation capacities are limited and require an efficient allocation between labelling candi-
dates. Furthermore, the costs of misclassifications differ between classes, and ultimately the
optimal candidate given a remaining labelling budget should be chosen.

We proposed a novel approach, OPAL, that optimises probabilistic active learning for
such situations. Given the misclassification cost ratio and remaining budget, which are pre-
determined by the application, our approach follows a smoothness assumption and computes
the expected misclassification loss reduction within a candidate’s neighbourhood. For this
expectation over the true posterior in the neighbourhood and over the subsequent label real-
isations therein, we derived a fast, closed-form solution. This allows to select the candidate
that reduces the expected misclassification loss in its neighbourhood the most. We have
shown that for a myopic setting, our approach runs in asymptotically linear time in the size
of the candidate pool. For the non-myopic setting, we have shown that an additional factor
that is solely O(m · logm) in the budget size is required. Furthermore, we have illustrated
the effect of the non-myopic extension, indicating its usefulness for unequal misclassifica-
tion costs. This is confirmed in experimental evaluations on several synthetic and real-world
data sets, where our approach has shown comparable or better classification performance
than several uncertainty sampling- or error-reduction-based active learning strategies, both
in cost-sensitive and cost-insensitive settings.

Our fast approach requires no tunable parameters, yet it is simple to implement, and it
neither requires an evaluation sample, nor self-labelling. Thus, its natural extension to data
streams has not missed our attention. However, this remains to be done in further research.
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Appendix

Bandwidth (σ ) tuning

The plots in Fig. 7 below show the misclassification loss (y-axis) on the test set, given full
label information on the training sets of size 40, for different σ -bandwidths of the Parzen
window classifier. The maximal bandwidth (leftmost values of the x-axis) corresponds to a
non-discriminating classifier, which simply classifies any instance into the class with higher
misclassification cost. Thus, ideally each cost-ratio/data-set-combination exhibits a unique
minimum that is smaller than this rightmost value.Combinationswithmonotonically decreas-
ing misclassification loss curves indicate ill-posed learning problems.

Fig. 7 Misclassification loss for different bandwidth (σ ) values of a Parzen window classifier
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Cost-sensitivity (cont.)

In Fig. 8, we continue the results from Fig. 4 on the relevance of the cost-sensitiveness, for
details see Sect. 4.2.

Fig. 8 Misclassification loss curves for OPAL on a selection of data sets with different cost-ratios (τ ) for
active learning and true cost-ratios (τ∗) for evaluation; curves for correct cost-ratios (τ = τ∗) are plotted
in bold and should be superior; early convergence to very high low values is best. Continuation of Fig. 4 on
additional data sets
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Detailed derivation of Eq. 24 from Eq. 22

Starting with Eq. 22, we apply Eq. 12, the misclassification loss def. from Eq. 16 and expand
the latter by the cost-optimal classification rule from Eq. 18:

Ecur =
∫ 1

0
Betaα,β(p) · ML p,τ ( p̂) dp (36)

=
∫ 1

0

Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 · q(τ − p) + p(1 − τ) dp (37)

=
∫ 1

0

Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 ·

⎧
⎨

⎩

0(τ − p) + p(1 − τ) p̂ < τ

(1 − τ)(τ − p) + p(1 − τ) p̂ = τ

1(τ − p) + p(1 − τ) p̂ > τ

dp

(38)

=
∫ 1

0

Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1 ·

⎧
⎨

⎩

p(1 − τ) p̂ < τ

(1 − τ)τ p̂ = τ

τ(1 − p) p̂ > τ

dp (39)

Following Eq. 12, we set α = n p̂ + 1 and β = n(1 − p̂) + 1, and obtain Eq. 24.

Detailed derivation of Eq. 32 from Eq. 31

Using the definition of the Beta Integral

∫ 1

0
xa(1 − x)b dx = Beta(a + 1, b + 1) = Γ (a + 1)Γ (b + 1)

Γ (a + b + 2)
(40)

and setting

a =
⎧
⎨

⎩
n p̂ + k + 1 n p̂+k

n+m < τ

n p̂ + k n p̂+k
n+m ≥ τ

(41)

b =
⎧
⎨

⎩
n + m − n p̂ − k n p̂+k

n+m ≤ τ

n + m − n p̂ − k + 1 n p̂+k
n+m > τ

(42)

we can express the first factors in the integral in Eq. 31 and thus derive Eq. 32:

IML(n, p̂, τ,m, k) =
(
m
k

)
·
∫ 1

0
pn· p̂+k · (1 − p)n+m−n· p̂−k ·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p · (1 − τ)dp n p̂+k
n+m < τ

(τ − τ 2)dp n p̂+k
n+m = τ

τ · (1 − p)dp n p̂+k
n+m > τ

(43)

=
(
m
k

)
·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − τ) · Γ (1−k+m+n−n p̂)Γ (2+k+n p̂)
Γ (3+m+n)

n p̂+k
n+m < τ

(τ − τ 2) · Γ (1−k+m+n−n p̂)Γ (1+k+n p̂)
Γ (2+m+n)

n p̂+k
n+m = τ

τ · Γ (2−k+m+n−n p̂)Γ (1+k+n p̂)
Γ (3+m+n)

n p̂+k
n+m > τ

(44)
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Multi-Class Probabilistic Active Learning
Daniel Kottke1 and Georg Krempl1 and

Dominik Lang2 and Johannes Teschner2 and Myra Spiliopoulou3

Abstract. This work addresses active learning for multi-class clas-
sification. Active learning algorithms optimize classifier training by
subsequently selecting those instances for labeling by an expert,
which improve the classifier’s performance the most. In this work,
we identify different influence factors that positively affect active
learning. These factors are (1) an instance’s impact, (2) its poste-
rior, and (3) the reliability of this posterior. We contribute a new
decision-theoretic approach, called multi-class probabilistic active
learning (McPAL). Building on a probabilistic active learning frame-
work, our approach is non-myopic, fast, and optimizes a performance
measure (like accuracy) directly. Considering all influence factors,
McPAL determines the expected gain in performance to compare the
usefulness of instances. For this purpose, it calculates the density
weighted expectation over the true posterior and over all possible
labeling combinations in a closed-form solution. Thus, in contrast
to other multi-class algorithms, it considers the posterior’s reliability
which improved the performance. In our experimental evaluation, we
show the reasonability of the selected influence factors and the supe-
riority of McPAL in comparison to various other multi-class active
learning algorithms on six datasets.

1 INTRODUCTION
In supervised classification, prediction models are learned from la-
beled training data. In some applications, unlabeled data is avail-
able or easy to collect but the labeling (annotation) of this data is
expensive, time-consuming or exhausting. For such applications, ac-
tive learning methods provide solutions that optimize the labeling
process by selecting the most useful unlabeled instances to be passed
to an oracle for labeling. Thereby, active learning aims to achieve
high performance with as few labeled instances as possible [22].

A particular and little researched challenge [25] in active learning
is its generalization to multi-class settings, with multinomial rather
than binary labels. The few works that have addressed this task so far
mostly use either uncertainty sampling for active learning of support
vector machines, thereby concentrating on instances close to the sup-
posed decision boundary [6, 11, 27], optionally extended by infor-
mation about density or diversity [4, 13], or they use expected error
reduction by simulating an acquisition on the whole dataset to deter-
mine the expected performance [12]. Both approaches have known
limitations [7, 14]: the former fast, information-theoretic heuristic
often fails in exploring the dataspace, the latter decision-theoretic
approach requires high computational resources.
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In contrast, we contribute a multi-class active learning approach
that combines the advantages of the approaches mentioned above,
i.e. optimizing expected performance directly while being nearly as
fast as uncertainty sampling. Following the recently proposed prob-
abilistic active learning framework [16], the key idea is to compute
the expectation over the true posterior by incorporating the number
of nearby labels as a proxy for the posterior’s reliability and to weight
this score by the density as a proxy for the impact of the new label on
the whole dataset. We compare our approach with the most relevant
state-of-the art methods from the literature and present experiments
on six datasets.

In addition, we expose the three influence factors that are used in
our method: the posterior, the reliability of that posterior, and the im-
pact of a labeling candidate. We explain their role in active learning
and evaluate their effect experimentally. To the best of our knowl-
edge, we are the first to use the number of nearby labels in multi-
class active learning, which we show to have a strong impact on
the learner’s performance. Furthermore, by adding another decision-
theoretic argument to propositions in the comparative study of [13],
we contribute to the important research question on how to combine
the posteriors of many classes into one comparable score.

The next section summarizes the related work by introducing the
basic approaches of multi-class active learning. The main section
presents our new approach including an analysis of its characteris-
tics, and is followed by our experimental evaluation. The paper is
concluding with a summarizing discussion.

2 RELATED WORK

Active learning aims to optimize the annotation of unlabeled in-
stances (candidates), by selecting the ones that improve a given clas-
sifier’s performance the most [22]. As active learning in general is far
more researched than multi-class active learning, we concentrate on
the most relevant work before summarizing multi-class approaches.

Most active learning techniques define a usefulness score for each
label candidate. A simple but common information-theoretic heuris-
tic is to use the instances with highest uncertainty [17]. This uncer-
tainty sampling method chooses instances near the classifier’s current
decision boundary, i.e. instances with a posterior probability near the
decision threshold (for binary cases 0.5). Related approaches like us-
ing the posteriors’ entropy have been addressed in [22]. In contrast,
the decision-theoretic expected error reduction approach estimates a
candidate’s usefulness by simulating its label’s realizations and mea-
suring the resulting model’s performance on a representative set of
evaluation instances [20]. This computationally expensive calcula-
tion of the expected performance over all possible labels and the in-
stances of the representative set builds the usefulness score [3].

Krempl et al. [15] argue that using posterior estimates directly in
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the expectation step leads to inaccuracies. They observed that these
posterior estimates are highly unreliable especially having only few
labeled instances. Probabilistic active learning [16] therefore tries to
overcome these difficulties by introducing label statistics that include
the posterior of the positive class (they only consider binary classi-
fication tasks) and the number of nearby labels as a proxy for reli-
ability. The usefulness score is calculated with the expectation over
the true posterior as well as over the possibly appearing labels. Other
approaches aim to reduce the classification variance by using an en-
semble of classifiers and request instances where the ensemble’s dis-
agreement is high [23].

For active learning in multiple classes, the main challenge is
the mapping of posterior values into a comparable score to select
the most useful labeling candidate. Körner and Wrobel [13] ana-
lyzed different heuristics that have been also used by other papers:
(1) usual confidence-based uncertainty sampling chooses the in-
stance with the lowest posterior for the best decision, which is com-
parable to selecting the instances near the decision boundary (see
also [5, 10, 26, 27]), (2) entropy-based sampling chooses the in-
stance with highest posterior entropy (see also [28]), (3) Best-vs-
Second-Best (BvsSB) sampling (also called margin-based) uses the
difference between the posterior of the best and the second best class
(see also [5, 11]), and (4) sampling using a specific disagreement that
combines margin-based disagreement with the maximal probability4.

Expected error reduction-based methods have also been consid-
ered for multi-class active learning. Joshi et al. [12] proposed an al-
gorithm called Value of Information (VoI) that estimates the expected
misclassification costs plus the expected labeling costs. They com-
pare the performance of the current classifier and each hypothetical
classifier which is generated for each labeling candidate and each
class on an evaluation set. As these algorithms take long for execu-
tion, they propose three approximations for speedup. For music an-
notation applications, Chen et al. [4] developed a method that finds
a set of instances to be labeled based on a volume criterion (similar
to SVM volume reduction [24]), a density score to prefer dense re-
gions and a diversity score to ensure that instances from one labeling
set are diverse. More recently, Guo and Wang [6] developed a step-
wise method consisting of an initial selection of instances to be la-
beled (via random, clustering or discrepancy), followed by an active
learning step. This is based on the characteristics of One-versus-Rest
(OvR) Support Vector Machines (SVMs) where a labeling candidate
can belong to one class with support from zero, one or more than one
OvR SVMs. To choose the next instance for labeling, they define a
rejection, a compatibility and an uncertainty score, and some rules
how they are considered. Wang et al. [25] propose an ambiguity-
based multi-class approach that uses possibilistic memberships from
One-vs-Rest SVMs. These memberships are between 0 and 1 but do
not necessarily sum up to one like posteriors. Their ambiguity mea-
sure is based on fuzzy logic operations and has a parameter γ which
has to be optimized and is not known in advance. A more theoretical
work on cost-sensitive multi-class active learning is given by [1]. He
analyzed the regret and label complexity for data with labels that are
generated with a generalized linear model.

Some approaches consider settings with different costs for mis-
classifying an instance of a specific class [5, 12]. Additionally, [12]
also includes annotation cost, i.e. the cost the expert induces while
labeling an instance. The acquisition of instances can be done in a
subsequent manner or in form of instance batches. Most approaches

4 Note, that the selection of instance based on confidence and BvsSB would
be exactly the same in a two-class problem but is different for multiple
classes (see [22]).

choose to acquire instances one-by-one, except for [4, 28]. Besides
support vector machines (often used with a probabilistic version),
[13] used an ensemble of trees, [10] proposed a probabilistic ver-
sion of the k-nearest-neighbor (pKNN) classifier, [5] tested their al-
gorithms on a random forest, and [28] used random walks over a
markov chain.

3 OUR METHOD
In this section, we propose probabilistic active learning for multi-
ple classes. This approach directly optimizes a performance measure
like accuracy, is non-myopic, and works easily with any generative
classifier [15]. In the first subsection, we present the active learn-
ing framework and explain our influence factors. Next, we propose
our Multi-class Probabilistic Active Learning (McPAL) approach,
followed by the derivation of a closed-form solution. Finally, we con-
clude our results and compare its behavior to existing approaches in
an analytical way.

3.1 AL framework and influence factors
In an active, multi-class classification tasks with C different classes,
each instance has a feature vector ~x and a label y ∈ {1, . . . , C},
which is unknown at the beginning. As shown in Fig. 1, the labeled
setL is subsequently filled by the active learner, who selects the most
useful instance ~xopt from the candidate pool U and requests its la-
bel from the oracle. This is repeated until the budget b is consumed.
In our setting, the active component’s decision is based on outputs
(posteriors and distribution of labeled instances) of a generative prob-
abilistic classifier [18], which is updated according to changes in the
labeled set.

function al_framework(U){
L = {}
cl = init_classifier()
for(b=1; b<=60; b++){

x* = active_learning(U, cl)
y = ask_oracle(x*)
U = remove(U, {x*})
L = append(L, {x*, y})
cl = train_classifier(L)

}
}

Figure 1. Pseudocode of the active learning framework

Throughout our research on active learning, we identified differ-
ent influence factors that affect active learning in a positive manner.
The labeling candidate’s class posterior P̂ (y | ~x) is the most com-
monly used one, as it indicates the probability of an instance ~x to
be classified as y. For simplicity, we denote ~̂p as the vector of esti-
mated posterior probabilities, i.e. p̂i = P̂ (y = i | x), 1 ≤ i ≤ C. If
the posteriors for all classes are similar, this indicates a high uncer-
tainty of the classifier at the instance’s location ~x. Here, we have to
distinguish between the aleatoric uncertainty that is caused by high
Bayesian error, and the epistemic uncertainty, which is caused by
a lack of information [21]. We are not able to reduce the aleatoric
uncertainty, but we can acquire more labels to reduce the epistemic
uncertainty in the currently considered neighborhood.

Measuring the number of nearby labels n as a proxy for the reli-
ability of the class posterior enables the separation of the aleatoric
and the epistemic uncertainty. The higher this number is, the more
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likely it is for the observed posterior p̂ to be close to the unknown
true posterior.

The third influence factor is the impact on the whole dataset.
Weighting the usefulness score by the instances’ density as a proxy
for its impact prefers instances in dense regions over those in sparse
ones. We assume that it is more beneficial to focus on regions with
high density as more future classification decision benefit from the
information increment there.

One of the most important questions in multi-class active learning
is how to combine the different posteriors to one comparable score.
In binary situations, this function p̂ 7→ R is only one-dimensional as
p̂2 = 1− p̂1 and can be easily visualized. Three-class problems typi-
cally are visualized with ternary plots (see also [13, 22]). In Fig. 2, we
show a ternary heatmap plot where the darkness indicates the useful-
ness. Every position in that barycentric coordinate system stands for
one specific posterior probability. The figure shows the usefulness
values for confidence-based sampling (Conf), and for the Best-vs-
Second-Best (BvsSB) approach. The entropy-based score has a more
circular shape (not shown here) [22].
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Figure 2. Ternary heatmap plot of the usefulness of confidence-based
(Conf) and Best-vs-Second-Best (BvsSB) sampling. Dark color indicates

high usefulness of a posterior in that barycentric coordinate system.

After we proposed our method that combines all three influence
factors in a decision-theoretic way in the next section, we visual-
ize the behavior of McPAL (without the density) also with ternary
plots, and evaluate our theory of influence factors experimentally
comparing their effects on active learning performance in Sec. 4.2.
Our mathematical symbols are summarized in Tab. 1.5

C - Number of classes
Y = {1, . . . , C} - Vector of all possible labels
L - Set of labeled instances (x, y)
U - Set of unlabeled instances (x, .)
~p = (p1, . . . , pC) - Vector of true posteriors
~k = (k1, . . . , kC) - Vector of frequency estimates
n =

∑
ki - Number of observed labels (reliability)

~̂p = ~k/n - Vector of observed posteriors
~d = (d1, . . . , dC) - Decision vector (see Eq. 8)
m ∈ N - Number of hypothetically considered labels
~l = (l1, . . . , lC) ∈ NC - Hypothetical labeling (

∑
li = m)

Table 1. Overview of used mathematical symbols.

3.2 Multi-class probabilistic active learning
In probabilistic active learning for two classes, it is assumed that the
appearance of a label of class y is a Bernoulli experiment [16]. A
label of class i in the neighborhood of an instance ~x appears with a

5 All unspecified iterators start at i = 1 and end at C.

probability of P (y = i | ~x) =: pi building the vector of true posteri-
ors ~p. For multiple classes, we naturally generalize the 2-class Bino-
mial distribution to a Multinomial one. The probability of observing
a specific labeling situation ~k given the true posterior ~p is then cal-
culated according to Eq. 1. Each entry ki in the vector ~k represents
the number of instances with label i, 1 ≤ i ≤ C in the neighbor-
hood of ~x. This vector also indicates the number of observed labels
n =

∑
ki, which is used as the reliability proxy (~k = n · ~̂p). In

Eq. 1, we use the generalized multinomial coefficient for non-integer
arguments containing the Γ function by Legendre [19].

P (~k | ~p) = Multinomial~p(~k) =

( ∑
ki

k1, . . . , kC

)
·
∏(

pki
i

)
(1)

=
Γ ((
∑
ki) + 1)∏

(Γ (ki + 1))
·
∏(

pki
i

)
(2)

In the active learning setting, we do not know the true posteriors
~p, but we are able to estimate the number of observations ~k. To de-
termine a probability distribution for the true posterior, we take the
normalized likelihood function [15] as given in Eq. 3-5.

L(~p | ~k) = P (~k | ~p) (3)

P (~p | ~k) =
L(~p | ~k)∫

~p′ L(~p′ | ~k) d~p′
=

Γ (
∑

(ki + 1))

Γ ((
∑
ki) + 1)

· L(~p | ~k) (4)

=
Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

·
∏(

pki
i

)
(5)

The density function P (~p | ~k) has its maximum for ~p = ~̂p and the
variance decreases by increasing n =

∑
ki.

Given a performance measure like accuracy, a Bayesian optimal
decision [15] selects the most probable class ŷ (based on its observed
frequency kŷ) according to Eq. 6. The true posterior pŷ of this se-
lected class corresponds to the resulting accuracy, as expressed by
the performance function in Eq. 7.

ŷ = arg max
y∈{1,...,C}

(ky) (6)

perf
(
~k | ~p

)
= pŷ, (7)

=
∏

pdii di =

{
1 if i = ŷ

0 if i 6= ŷ
(8)

Given such a performance function, we calculate the expected per-
formance for the neighborhood around ~x with observations ~k:

expPerf
(
~k
)

= E
~p

[
perf

(
~k | ~p

)]
(9)

=

∫

~p

P (~p | ~k) · perf
(
~k | ~p

)
d~p (10)

The goal of our approach is (1) to estimate the gain of performance
resulting from an upcoming label based on the unlabeled U and la-
beled data L, and (2) to choose the candidate with maximal gain (see
Eq. 11). Having chosen a generative, probabilistic classifier like the
Parzen window classifier [3] or the probabilistic k-nearest-neighbor
[10], we are able to count the number of labeled occurrences per
class (see Eq. 12). Finally, we define our active learning score as the
density weighted performance gain given in Eq. 13.

~x∗ = arg max
~x∈U

(alScore
(
~x | L,U)

)
(11)

~k = cl
(
~x | L

)
(12)

alScore
(
~x | L,U

)
= P (~x | L ∪ U) · perfGain

(
cl
(
~x | L

))
(13)

3
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We determine the performance gain in Eq. 14 by the difference
of the new expected expected performance and the current expected
performance. The current expected performance is simply calculated
as in Eq. 9, the new one is explicitly called expected expected perfor-
mance (see Eq. 15), as there are multiple possibilities of an labeling
to be considered. Therefore, we additionally calculate the expecta-
tion value over these possible labelings ~l = (l1, . . . , lC) ∈ NC .
Given a number of hypothetical labels that are allowed to be acquired
m ∈ N,

∑
li = m in one step, the labeling vector represents the

change of observations that would be added to the ~k vector if this la-
beling would be obtained. Hence, the classifier output after receiving
a labeling ~l changes to ~k + ~l. Note that this calculation is exact for
m = 1, but only an approximation for m > 1, as it is unlikely to
have another instance ~x′ at exactly the same location as our instance
~x (similarity of ~x and ~x′ should be 1). However, as we only select
one instance for labeling at each step, we divide the gain by m to
have the average gain per label acquisition.

perfGain
(
~k
)

= max
m≤M

(
1

m

(
expExpPerf

(
~k,m

)
− expPerf

(
~k
)))

(14)

expExpPerf
(
~k,m

)
= E

~p

[
E
~l

[
perf

(
~k +~l | ~p

)]]
(15)

The labeling ~l is multinomial distributed given the true posterior:

P (~l | ~p) = Multinomial~p(~l) =
Γ ((
∑
li) + 1)∏

(Γ (li + 1))
·
∏(

plii

)
(16)

With help of these equations it is possible to determine the next
best instance for labeling as given in Eq. 13 numerically. To achieve
a good numerical performance would be computationally expensive
and highly dependent on the number of classes C as well as the step
width for integrating the true posterior ~p.

Hence, we propose a closed-form solution for this approach in the
following section that reduces the computational cost seriously.

3.3 Fast closed-form solution
To simplify the integration, it is sufficient to optimize the expected
expected performance, as the expected performance is a special case
of the former (see Eq. 17ff.).

expPerf
(
~k
)

= expExpPerf
(
~k, 0
)

(17)

expExpPerf
(
~k,m

)
= E

~p

[
E
~l

[
perf

(
~k +~l | ~p

)]]
(18)

=

∫

~p

P (~p | ~k) ·
∑

~l

P (~l | ~p) · perf
(
~k +~l | ~p

)
d~p (19)

=
∑

~l

∫

~p

P (~p | ~k) · P (~l | ~p) · perf
(
~k +~l | ~p

)
d~p (20)

=
∑

~l

∫

~p

Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

·
∏(

pki
i

)

· Γ ((
∑
li) + 1)∏

(Γ (li + 1))
·
∏(

plii

)
· perf

(
~k +~l | ~p

)
d~p (21)

=
∑

~l

Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

· Γ ((
∑
li) + 1)∏

(Γ (li + 1))

·
∫

~p

∏(
pki+li
i

)
· perf

(
~k +~l | ~p

)
d~p (22)

After separating the normalization factors from the integral, we
simplify the integral by inserting the performance from Eq. 8 and by
calculating the definite integral as above in Eq. 4.
∫

~p

∏(
pki+li
i

)
· perf

(
~k +~l | ~p

)
d~p (23)

=

∫

~p

∏(
pki+li
i

)
·
∏

pdii d~p (24)

=

∫

~p

∏(
pki+li+di
i

)
d~p =

∏
Γ (ki + li + di + 1)

Γ (
∑

(ki + li + di + 1))
(25)

Reinserting the integral into Eq. 22 and sorting the terms yields
the following equations.

expExpPerf
(
~k,m

)
=
∑

~l

Γ (
∑

(ki + 1))∏
(Γ (ki + 1))

· Γ ((
∑
li) + 1)∏

(Γ (li + 1))
·
∏

Γ (ki + li + di + 1)

Γ (
∑

(ki + li + di + 1))
(26)

=
∑

~l

Γ (
∑

(ki + 1))

Γ (
∑

(ki + li + di + 1))

·
∏

Γ (ki + li + di + 1)∏
(Γ (ki + 1))

· Γ ((
∑
li) + 1)∏

(Γ (li + 1))
(27)

The first and second factor are simplified as follows.

Γ (
∑

(ki + 1))

Γ (
∑

(ki + li + di + 1))
(28)

=
Γ (
∑

(ki + 1))

Γ (
∑

(ki + 1) + (
∑
li) + (

∑
di)))

(29)

=




(∑
(ki+li+di+1)

)
−1∏

j=
∑

(ki+1)

1

j


 Γ (

∑
(ki + 1))

Γ (
∑

(ki + 1))
(30)

=

(∑
(ki+li+di+1)

)
−1∏

j=
∑

(ki+1)

1

j
(31)

∏
Γ (ki + li + di + 1)∏

(Γ (ki + 1))
=
∏ Γ (ki + li + di + 1)

Γ (ki + 1)
(32)

=
∏
(∏ki+li+di

j=ki+1 j
)

Γ (ki + 1)

Γ (ki + 1)
=
∏



ki+li+di∏

j=ki+1

j


 (33)

Using Eq. 27, 31 and 33, we get the fast version of the expected
expected performance.

expExpPerf
(
~k,m

)
=
∑

~l




(∑
(ki+li+di+1)

)
−1∏

j=
∑

(ki+1)

1

j




·
∏



ki+li+di∏

j=ki+1

j


 · Γ ((

∑
li) + 1)∏

(Γ (li + 1))
(34)

Now, the final McPAL usefulness score from Eq. 13 is calculated
using Eq. 14 and Eq. 34.

As an example, we calculate the expected expected performance
form = 0 which is equivalent to the expected performance. As men-
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tioned before, ŷ = arg maxy∈{1,...,C}(ky).

expExpPerf
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∑
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j




·
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 · Γ ((

∑
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(Γ (li + 1))
(35)

=




(
∑

(ki+1)+0+1−1∏

j=
∑

(ki+1)

1

j


 · kŷ · 1 · 1 =

kŷ∑
(ki + 1)

(36)

3.4 Characteristics of McPAL

As briefly discussed in Sec. 3.1, there are different ways to combine
the posterior estimates ~̂p from the classifier to determine a useful-
ness score. The examples in Fig. 2 show different shapes that lead to
different behavior, which is evaluated in Sec. 4.

Fig. 3 shows the ternary heatmap plots for the performance gain
function of the McPAL algorithm, i.e. the active learning score with-
out the density weight. In contrast to all other multi-class active
learning approaches, McPAL does not only consider the observed
probability ~̂p but also includes the reliability n =

∑
ki, which is

summarized in the frequency vector ~k = n · ~̂p. This extends the
ternary plot by an additional degree of freedom. Therefore, we pro-
vide two exemplary figures, one showing the behavior for n = 1,
and one for n = 2.

The left plot of Fig. 3 shows a similar but not identical shape
as the confidence based (Conf in Fig. 2). While contour lines for
confidence-based sampling are linear, these of McPAL are slightly
concave. The highest gain is in the center, which represents regions
of absolute uncertainty as the posteriors are equal. The lowest gains
are in the corners of the triangle. An increase of reliability n de-
creases the gain (see right plot), as the epistemic uncertainty (caused
by lack of information) decreases. This means that there are situa-
tions where instances with a non-equal posterior vector are preferred
over those with equal posteriors if there is more evidence that the
equal posteriors are more likely to be correct.
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Figure 3. Ternary plot for performance gain for situations with
n =

∑
ki = 1 (left) and n = 2 (right).

The maximal number of hypothetically considered labelsM is not
a tuning parameter. It should be set according to the application. For
accuracy optimization, the optimal m value is the lowest number of
labels that is able to switch the decision in the neighborhood of ~x. If
lots of instances should be labeled, the M value should be increased.
In the upper plots the value was set to M = 2 as the highest observ-
able n was 2. Hence, two labels are able to change the decision.

From a decision-theoretic view, it is more reasonable to prefer con-
fidence based active learning over entropy or best-vs-second-best, but
the reliability makes a huge difference in the performance as the next
section will show.

4 EVALUATION
The goals of our evaluation are twofold: on the one hand, we show
the reasonability of our previously defined impact factors, and on
the other hand we compare our multi-class probabilistic active learn-
ing approach with state-of-the-art methods. All experiments are con-
ducted based on the setup explained in the following subsection.

4.1 Experimental setup
The proposed method and several other active learning strategies are
applied to six datasets, sampling single instances subsequently until
the available budget of 60 label acquisitions has been depleted. This
is done on multiple, seed-based splits of the datasets into independent
training and test subsets (training 67%, test 33% of the data) where
the number of different training-test-splits for the smaller datasets
(ecoli, glass, iris, wine) is 100 and for the large datasets (vehicle,
yeast) is set to 50 due to execution time. All experiments are reported
by its mean and standard deviation across all splits.

The most used visualization of evaluation results are learning
curves, which plot the performance in comparison to the number of
acquired labels. Our learning curves in Fig. 4 and 5 show the classi-
fication error of each active learner on the y-axis, the standard devi-
ation of the error across all splits indicated as an error bar, and the
number of instances sampled for the labeled set on the x-axis. In ad-
dition to these plots, the results are given in Tab. 4, showing the error
and standard deviation of the different active learning methods for all
used datasets. The tables show the learner’s performance at three dif-
ferent steps, i.e. after 20, 40 and 60 labels have been acquired. Since
60 is the maximum number of sampled instances in the experiments,
these steps show the performance in the beginning, intermediate and
end phase of the learning process. All results are reported separately
for each classifier and dataset. We computed our experiments on a
computer cluster running the Neurodebian [8] system.

Besides the proposed method of this paper, six other active
learning strategies are used. The McPAL method is executed with
M = 2, as higher M just increased the execution time but
did not change the performance. As a standard baseline, we use
a randomly sampling method (Rand). Confidence-based sampling
(Conf) selects the instance with the lowest maximal posterior (x∗ =
arg minx∈U maxy∈Y p̂y) [10]. The next approach uses the shan-
non entropy to model the uncertainty of an instance (Entr) [12].
Best-vs-Second-Best (BvsSB) samples this instance of the unlabeled
set that minimizes the difference of the posterior probabilities of
the most probable and the second most probable class [11, 12, 13].
Maximum-Expected-Cost (MaxECost) determines the value of an
instance based on the expected cost associated with the misclassifica-
tion of that instance. Consequently, the learner samples the instance
tied to this score [5]. The last strategy belongs to the expected error
reduction based methods. The original Value of Information (VoI)
criterion as suggested by Joshi et al. [12] selects the instance ~x that
minimizes a risk measure defined by them. It has to be mentioned
that the computational effort of this algorithm forced us to exclude
it from the experiments on the vehicle and yeast datasets, since they
possess a large number of instances and/or classes, leading to infea-
sible execution times.
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Active learning algorithms require robust classifiers for robust use-
fulness estimation. Therefore, we choose generative classifiers [18],
namely the Parzen window classifier (PWC) [3], and a probabilistic
variant of the k-nearest-neighbor classifier (pKNN with k = 9) pro-
posed by Jain and Kapoor [10]. These classifiers can be used with
any arbitrary similarity function. As the optimization of the overall
performance level is not the scope of this paper, we choose to simply
standardize each attribute (z-standardization) and use an univariate
Gaussian kernel with fixed standard deviation of σ = 0.7 for all
datasets and active learning algorithms. This ensures fair compara-
bility that is independent of a classifier bias.

Table 2. Datasets with the number of instances, the number of attributes
and the class frequencies.

Dataset #Inst. #Attr. #Instances per class

Ecoli 336 8 143, 77, 52, 35, 20, 5, 2, 2
Glass 214 10 70, 76, 17, 13, 9, 29
Iris 150 4 50, 50, 50
Vehicle 946 18 212, 217, 218, 199
Wine 178 13 59, 71, 48
Yeast 1484 8 463, 429, 244, 163, 51, 44, 35, 30, 20

We evaluate our algorithm on six multi-class datasets from the
UCI repository [2]. The distribution of classes and the number of
instances and attributes are summarized in Tab. 2. The ecoli dataset
was originally used for predicting protein localization sites in eu-
karyotic cells. The attributes describe properties of proteins. Glass
was originally generated for classification of types of glass left at a
crime scene. The attributes describe chemical ingredients to predict
for example whether the glass is from a car window or a window of
a building. The iris dataset classifies the type of an iris plant, the fea-
tures describe physical measures of the plant. Vehicle contains fea-
tures of car models for predicting the manufacturer. The attributes
of the wine dataset describe the chemical ingredients of a wine in-
stance. The class values are derived from three different cultivars.
The yeast dataset is also used for predicting the localization site of
protein in bacteria. The first column, which held the sequence name,
was removed.

The complete results together with an implementation are avail-
able at our companion website6.

4.2 Impact of influence factors
In Sec. 3.1, we introduced three different influence factors that are
considered in McPAL. Fig. 4 shows learning curves on selected
datasets and classifiers of McPAL variants with different input pa-
rameters using the previously described experimental setup. In that
way, we aim to measure the importance of the different influence
factors posterior, reliability, and impact. Besides using the origi-
nal McPAL algorithm, we exclude information about the reliabil-
ity by normalizing the ~k vector to

∑~k = n = 1 (denoted
w/o reliability). Analogously, we proceed with the poste-
rior by replacing the kernel frequency estimate with a uniform one
ki = n/C, 1 ≤ i ≤ C (denoted w/o posterior), and with the
density by setting it to a constant (denoted w/o impact).

Our selection in Fig. 4 shows that the combination of all influence
factors works best. In some cases, the variant without impact is bet-

6 http://kmd.cs.ovgu.de/res/mcpal/

ter than the McPAL method. We explain this behavior with the fact
that the density, which is used as a proxy for the influence of a la-
bel on the complete dataset, gets inaccurate. Especially when there
are many labels added to the dataset, this estimate gets worse as the
influence also depends on the explicit label situation on the dataset.
Nevertheless, the density improved the overall performance although
leaving it out is less critical than leaving out one of the other factors.

Especially the results on yeast with the PWC are interesting. Here,
leaving out the reliability or the posterior leads to no performance
improvement, but unifying these approaches (McPAL) achieves the
lowest error.

4.3 Competitiveness of our method
Fig. 5 shows the learning curves of the experiment results with the
pKNN classifier, Tab. 4 shows the results using the PWC. As shown
in Tab. 4 the McPAL algorithm outperforms its competitors consis-
tently on 4 of the 6 datasets (best performance highlighted in bold
text), for the first 20 sampled instances even on 5 out of 6. Using the
PWC, our method is only the second best by a close margin after 40
and 60 samples on the vehicle data. After 20 samples random sam-
pling performed best. On the wine dataset, our method scores best
at 20 sampled instances but falls behind Entr later. As wine data is
easy to learn, it is important to mention that the performance almost
converged at 30 labels. In general the BvsSB and Entr algorithms
seem to be the most consistent competitors to McPAL in the experi-
ments, the former being the best scoring on the vehicle dataset after
40 samples and the latter outperforming McPAL on the wine dataset
after 40 samples.

A good active learning algorithm is characterized by a fast con-
vergence to a good final performance. As can be seen in Fig. 5, our
proposed method manages to reduce the classification error quicker
than its competitors, in some cases even starting out with a lower
error (e.g. ecoli, glass, yeast). Over all datasets, McPAL reduces the
error quicker than the other algorithms in the early steps. On top of
that, the McPAL algorithm shows a lower standard deviation across
all trials compared its competitors (indicated by the error bars in the
plots and the brackets in Tab. 4), making it not only the best perform-
ing but also the most stable method in the experiments.

For another perspective on the results, the performance of the al-
gorithms in comparison to randomly sampling instances (Rand, grey
dotted line) should be considered. In case of both the vehicle and
yeast dataset McPAL’s competitors surpass random instance sam-
pling only pretty late into the learning process in terms of classifica-
tion error. Even on the iris dataset Conf, BvsSB and VoI struggle
to perform better than random selection.

Table 3. Mean execution time for each algorithm for choosing one
instance for labeling on the specified dataset (sorted by dataset size)

Dataset McPAL BvsSB MaxEC. Conf Entr VoI Rand

Iris 0.363 0.085 0.083 0.097 0.092 15.94 0.001
Wine 0.584 0.145 0.148 0.153 0.147 36.22 0.001
Glass 1.794 0.200 0.205 0.204 0.204 136.1 0.001
Ecoli 4.590 0.306 0.317 0.313 0.308 518.5 0.001
Vehicle 2.128 0.389 0.394 0.385 0.386 NA 0.001
Yeast 28.06 1.175 1.207 1.171 1.186 NA 0.001
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Figure 4. Learning curves of different variants of the McPAL algorithm on all six datasets. The upper plots show results from the pKNN classifier, the lower
ones with the PWC.

In Tab. 3, we summarized the mean execution time of all algo-
rithms on every dataset. Our proposed method does require more
time to sample an instance than its competitors with exception of the
VoI algorithm, which takes much longer than any other algorithm
used in the experiments. Due to the higher complexity of the McPAL
method in comparison to more simple methods like uncertainty-
based ones, a longer execution time is to be expected. Considering
the performance and stability of McPAL mentioned before, the in-
creased time requirement is still a good trade off. In contrast to the
fast methods, McPAL has an additional factor which is the sum over
each labeling that is dependent on the M value.

5 CONCLUSION
This paper addresses active learning for multiple classes. This chal-
lenging topic opens up different aspects like the combination of
the posterior vector into one comparable score. In this paper, we
proposed a new multi-class probabilistic active learning method
(McPAL) that addresses this problem in a decision-theoretic way. To
this end, we developed a generalized probabilistic model that com-
bines all of our mentioned influence factors impact, posterior, and

the reliability of the posterior. Our approach directly optimizes a per-
formance measure like accuracy, is non-myopic and fast. We showed
how the influence factors depend on each other in our probabilistic
framework and evaluated their behavior in multiple experiments. Es-
pecially the combination of the posterior and its reliability makes a
huge difference. Our experimental comparison with the most relevant
multi-class active learning approaches shows that McPAL is superior
in most cases or at least comparable. We suggest that our approach
can still be optimized by replacing the proxies of our influence fac-
tors by even more appropriate ones, which will be part of our future
research. The complete results together with an implementation are
available at our companion website7.

ACKNOWLEDGEMENTS

We would like to thank the Pychoinformatics Labs at OVG-
University Magdeburg for letting us use their cluster, in particular
Michael Hanke and Alex Waite, as well as our colleague Pawel
Matuszyk for all discussions. The ternary plots are generated with
python-ternary [9].

7 http://kmd.cs.ovgu.de/res/mcpal/

7

96
CHAPTER 5. MULTI-CLASS PROBABILISTIC ACTIVE

LEARNING



0 10 20 30 40 50 60
# of sampled instances

20

40

60

80

100

e
rr

o
r

ecoli (pKNN)

McPAL
BvsSB
MaxECost
Conf
Entr
VoI
Rand

0 10 20 30 40 50 60
# of sampled instances

20

25

30

35

40

45

50

55

60

e
rr

o
r

glass (pKNN)

McPAL
BvsSB
MaxECost
Conf
Entr
VoI
Rand

0 10 20 30 40 50 60
# of sampled instances

5

0

5

10

15

20

25

30

35

e
rr

o
r

iris (pKNN)

McPAL
BvsSB
MaxECost
Conf
Entr
VoI
Rand

0 10 20 30 40 50 60
# of sampled instances

80

100

120

140

160

180

200

220

e
rr

o
r

vehicle (pKNN)

McPAL
BvsSB
MaxECost
Conf
Entr
Rand

0 10 20 30 40 50 60
# of sampled instances

0

5

10

15

20

25

30

35

40

45

e
rr

o
r

wine (pKNN)

McPAL
BvsSB
MaxECost
Conf
Entr
VoI
Rand

0 10 20 30 40 50 60
# of sampled instances

200

250

300

350

400

450

e
rr

o
r

yeast (pKNN)

McPAL
BvsSB
MaxECost
Conf
Entr
Rand

Figure 5. Learning curves of McPAL and its competitors on all six datasets using the pKNN classifier.

Table 4. Mean error and standard deviation of the all algorithms on our six datasets using the Parzen window classifier. We report the results after 20, 40, and
60 acquired labels. The best method is printed in bold numbers.

20 samples ecoli glass iris vehicle wine yeast

McPAL 22.70 (± 4.45) 30.17 (± 4.22) 3.94 (± 1.97) 149.14 (± 11.94) 2.66 (± 1.43) 275.24 (± 26.35)
BvsSB 24.75 (± 4.84) 35.95 (± 5.57) 12.63 (± 7.06) 148.68 (± 18.25) 2.80 (± 1.67) 289.90 (± 23.13)
MaxECost 25.42 (± 6.63) 33.33 (± 5.09) 8.23 (± 6.24) 155.98 (± 17.71) 2.95 (± 1.88) 294.20 (± 32.95)
Conf 24.64 (± 7.07) 33.93 (± 5.02) 12.48 (± 7.32) 156.52 (± 17.19) 2.90 (± 1.79) 292.92 (± 34.42)
Entr 26.94 (± 8.01) 33.04 (± 5.50) 14.61 (± 3.17) 153.44 (± 18.82) 3.41 (± 1.76) 298.60 (± 32.63)
VoI 40.14 (± 9.59) 38.20 (± 3.98) 16.55 (± 2.67) NA 2.89 (± 2.68) NA
Rand 32.52 (± 7.89) 36.69 (± 5.00) 9.91 (± 4.47) 145.38 (± 13.27) 4.35 (± 3.04) 300.12 (± 23.56)

40 samples ecoli glass iris vehicle wine yeast

McPAL 19.15 (± 4.06) 29.14 (± 4.22) 2.85 (± 1.58) 125.88 (± 8.99) 1.78 (± 1.06) 258.36 (± 24.40)
BvsSB 21.02 (± 4.42) 32.28 (± 4.36) 11.78 (± 7.78) 122.90 (± 14.43) 1.92 (± 1.26) 273.52 (± 22.95)
MaxECost 20.80 (± 4.10) 29.70 (± 4.46) 7.70 (± 6.44) 131.82 (± 14.44) 1.90 (± 1.16) 274.54 (± 30.65)
Conf 19.60 (± 4.30) 29.79 (± 4.87) 11.69 (± 7.79) 133.56 (± 14.90) 1.94 (± 1.19) 276.36 (± 32.40)
Entr 23.55 (± 4.80) 30.64 (± 4.61) 13.88 (± 3.49) 139.02 (± 18.57) 1.77 (± 1.14) 284.38 (± 28.05)
VoI 41.46 (± 7.22) 38.06 (± 3.78) 16.74 (± 2.58) NA 1.92 (± 1.89) NA
Rand 29.80 (± 6.57) 34.57 (± 5.18) 8.28 (± 4.03) 129.88 (± 13.31) 2.65 (± 1.61) 281.84 (± 25.48)

60 samples ecoli glass iris vehicle wine yeast

McPAL 18.41 (± 3.69) 27.08 (± 3.95) 5.81 (± 2.54) 115.26 (± 7.60) 1.63 (± 1.06) 244.12 (± 20.71)
BvsSB 19.69 (± 4.44) 29.71 (± 4.22) 12.71 (± 7.64) 113.42 (± 9.95) 1.76 (± 1.13) 259.68 (± 22.66)
MaxECost 20.29 (± 4.55) 27.99 (± 4.25) 8.12 (± 5.62) 120.06 (± 12.42) 1.66 (± 1.03) 257.60 (± 26.75)
Conf 19.91 (± 4.29) 28.46 (± 4.59) 12.40 (± 7.59) 122.34 (± 13.39) 1.62 (± 1.12) 259.98 (± 25.76)
Entr 22.54 (± 4.55) 31.65 (± 4.91) 11.94 (± 4.07) 126.06 (± 14.60) 1.53 (± 1.00) 272.44 (± 24.93)
VoI 34.20 (± 5.78) 37.22 (± 4.72) 15.06 (± 3.49) NA 1.54 (± 1.22) NA
Rand 28.32 (± 5.65) 33.55 (± 5.17) 6.92 (± 2.76) 123.28 (± 13.26) 2.30 (± 1.43) 276.42 (± 26.98)
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ABSTRACT
Facing ever increasing volumes of data but limited human
annotation capabilities, active learning strategies for select-
ing the most informative labels gain in importance. How-
ever, the choice of an appropriate active learning strategy
itself is a complex task that requires to consider different
criteria such as the informativeness of the selected labels,
the versatility with respect to classification algorithms, or
the processing speed. This raises the question, which com-
binations of active learning strategies and classification al-
gorithms are the most promising to apply. A general answer
to this question, without application-specific, label-intensive
experiments on each dataset, is highly desirable, as active
learning is applied in situations with limited labelled data.
Therefore, this paper studies several combinations of differ-
ent active learning strategies and classification algorithms
and evaluates them in a series of comparative experiments.

CCS Concepts
�Theory of computation → Active learning;

Keywords
Active Learning; Selective Sampling; Uncertainty Sampling;
Probabilistic Active Learning

1. INTRODUCTION
While the volumes of data are constantly increasing [9],

human annotation and supervision capacities remain lim-
ited. This raises the need for approaches that help in the
efficient allocation of these capacities [15]. Active machine
learning [22] provides such approaches for determining and
selecting the most valuable information. In classification
tasks, this corresponds to selecting the instance from a set
of candidates, whose label is expected to improve a classi-
fier’s performance the most [23]. Given the large number of
approaches that have been proposed in literature, the choice
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of the most appropriate active learning strategy constitutes
itself a complex task: multiple criteria such as the informa-
tiveness of the selected labels, the versatility of the approach
with respect to classification algorithms, or the processing
speed of the approach need to be considered.

Active learning is applied in situations with very limited
initial labelled data. Thus, knowing the overall most promis-
ing combinations of active learning strategies and classifi-
cation algorithms without performing application-specific,
label-intensive experiments on each novel dataset is highly
desirable. This paper addresses this question by providing
results of an experimental performance comparison of sev-
eral combinations of popular classification algorithms and
active learning strategies. In Section 2, related surveys are
reviewed before discussing selected active learning strate-
gies. These strategies are then experimentally evaluated in
Section 3, before concluding in Section 4.

2. ACTIVE LEARNING APPROACHES
This paper addresses the pool-based [23, 6] active learn-

ing scenario for binary classifiers, where an active classifier
has access to a pool of unlabelled instances U = {(x, .)}.
Repeatedly, the best instance (x∗, .) ∈ U is selected, its la-
bel y∗ is requested from an oracle, and it is moved from U
to the set of labelled instanced L = {(x, y)} to retrain the
classifier. In particular, this paper focuses on a sequential
labelling scenario, in contrast to batch-based active learning
where multiple instances are labelled in one iteration [10].
Various existing approaches for this scenario are surveyed in
[22, 6, 23, 8]. The technical report [22], the machine learning
encyclopedia entry [6] on active learning, and more recently
the textbook [23] provide an introduction to active learn-
ing, as well as a good overview on various families of active
learning approaches. While comparing theoretical aspects of
the different approaches, they do not include an empirical
evaluation. Recently, [8] surveys different approaches based
on uncertainty sampling and instance correlation and pro-
vide a categorisation of different approaches. However, the
performance analysis in that review is limited to runtime
evaluations, thus leaving the question on the classification
performance of different approaches open. An experimen-
tal classification performance evaluation and comparison of
some approaches was done in the active learning challenge,
published in [11]. It is remarked therein that a key to success
in active learning is handling the trade-off between explo-
ration and exploitation: the former samples in regions with
yet little collected information, the latter investigates re-
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gions where the current model suspects the decision bound-
ary. According to [11, page iv], the overall winners use com-
binations of random and uncertainty sampling to tackle this
trade-off.

This comparative study’s focus are fast approaches that
are usable with any classification technique. Building on the
results above, we compare random sampling, uncertainty
sampling, and a combination of both that tackles exploration-
exploration. In addition to these popular approaches, we in-
clude the very recently proposed probabilistic active learning
approach, which implicitly balances exploration-exploration.
We now briefly review these approaches, before continuing
with the experimental evaluation in the next chapter.

2.1 Random Sampling
A simple and fast baseline is random sampling, where in-

stances are selected at random with equal probability. De-
spite the simplicity of this purely explorative strategy, it has
been shown to be difficult to be beaten consistently [2] and
is one of the most popular active learning baselines [11].

2.2 Uncertainty Sampling
A very popular active learning strategy is uncertainty sam-

pling [17], which is frequently used as baseline (e.g. in the
active learning competition [11]). This is a purely exploita-
tive strategy that relies on the current model to compute
so-called uncertainty measures. These serve as proxies for
a candidate’s impact on the classification performance, and
the candidate with the highest uncertainty is selected for la-
belling. In the seminal work of [17], a probabilistic classifier
is used on a candidate to compute the posterior of its most
likely class. The absolute difference between this posterior
estimate and 0.5 is used as uncertainty measure (lower val-
ues denoting higher uncertainty). The formula for picking
x∗LC is the following according to [22]:

x∗LC = argmax
x

(1− Pθ(ŷ | x)) (1)

x∗LC is the instance from the pool of unlabelled data Du
which our model θ is least confident in while ŷ is the class for
which the model calculated the highest posterior estimate so
ŷ = argmax

y
Pθ(y | x). In addition to this confidence-based

uncertainty measure, other common measures [23] are en-
tropy or the margin between a candidate and the decision
boundary. However, [22] notes that for binary classification
problems classifiers the measures margin, confidence and en-
tropy result in the same ranking and querying of instances.

This strategy is easy to implement and computationally
efficient, having an asymptotic time complexity of O(|U|).
Thus, it is also usable in time critical applications, or in big
data scenarios with large numbers of unlabelled instances,
or on fast data streams [27]. Nevertheless, a known disad-
vantage [25] of uncertainty sampling is that these proxies
do not consider the number of similar instances on which
the posterior estimates are made or the decision boundaries
are drawn. The reported results of empirical evaluations are
somewhat inconclusive, with some authors (e.g. [4, 20, 13])
reporting even worse performance on some data sets than
random sampling. Its major problems are that it can get
stuck in regions with high Bayesian error, especially when
the data is not linearly separable. Additionally, as this strat-
egy queries instances that are close to the current decision

Figure 1: This figure shows a configuration during
the active learning process on a two-class problem.
The red line is the current decision boundary and
the coloured stars and squares are the labelled in-
stances. The stars on the top left are a subconcept
which will probably be missed by uncertainty sam-
pling because those instances are far away from the
decision boundary which means the classifier is very
confident in their prediction. The star with the blue
circle on the other hand is an outlier that is very
close to the current decision boundary and there-
fore highly likely to be queried for labelling.

boundary, it is prone to missing subconcepts if the initial de-
cision boundary is unfavourable for the data. Furthermore,
it can also tend to query outliers which are not represen-
tative for the underlying distribution. Figure 1 illustrates
some of the problems while the work of [26] and [25] dis-
cuss the issue of querying outliers. Following next is a short
description of a mixed strategy that combines random and
uncertainty sampling.

2.3 Semi-Random Sampling
The combination of uncertainty and random sampling to

combine exploitation and exploration has been suggested
for example in [16, 11, 27]. Most recently, [27] uses a mix
of random and uncertainty sampling on streams to tackle
the problem of missing exploration with uncertainty mea-
sures. This is especially useful in stream-based active learn-
ing where concepts and thus the optimal decision bound-
ary might change over time. The authors speculate that
in a static scenario it is likely that uncertainty sampling
beats the mixed strategies, as the decision boundary does
not change over time. We investigate this hypothesis by
studying the performance of a mixed strategy for pool-based
active learning, which switches between uncertainty and ran-
dom sampling. This strategy alternately applies random
sampling and uncertainty sampling, beginning with the ini-
tial instance being selected randomly from the unlabelled
pool Du. This strategy has the same asymptotic time com-
plexity as uncertainty sampling, but is faster by a constant
factor due to using random selection half of the time.

2.4 Probabilistic Active Learning
Probabilistic active learning is a novel approach [14] that

directly optimises a performance measure like accuracy, us-
ing statistically sound methods to guide the degree of ex-
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ploitation and exploration. In this aspect it is comparable
to error reduction approaches (proposed in [19]), while still
having linear complexity like the fast uncertainty methods.
For binary classification with Parzen Window classifiers, it
was already shown that probabilistic active learning achieves
comparable or superior performance than error reduction.

Probabilistic active learning builds on the smoothness as-
sumption commonly used in semi-supervised learning [5],
which suggests that the influence of an instance on the clas-
sification process is the highest in its neighbourhood:

Semi-supervised smoothness assumption: If two
points x1, x2 in a high-density region are close,
then so should be the corresponding outputs y1, y2.

Therefore, the method proposed in [14] considers within
the neighbourhood of an instance the number of labelled
instances n and the share of positive labels therein p̂ =
n+

n
. These two values are the necessary label statistics

ls = (n, p̂), which should be provided by the classifier be-
ing used. As the real posterior p of that neighbourhood
and the label realisation y of the instance under consider-
ation are unknown, they are modelled as hidden variables.
The so-called probabilistic gain is calculated as the expec-
tation over all possible realisations of p and y of the gain in
classification performance. This gain is then weighted with
the density in an instance’s neighbourhood, considering the
union of the labelled and unlabelled pool Du ∪Dl, in order
to prefer dense regions and avoid outliers. This probabilis-
tic gain calculation models the true posterior p within the
neighbourhood as being Beta-distributed, and the label re-
alisation y as being Bernoulli-distributed with p as an input.
Thus, the number of positive instances in the neighbourhood
n+ = n · p̂ is binomially distributed.

For accuracy or misclassification loss, a closed-form so-
lution for computing the probabilistic gain is given in [13],
which is called optimised probabilistic active learning (OPAL).
The gain G can be written as:

GOPAL(n, p̂, τ,m) =
(n+ 1)

m
·
(

n
n · p̂

)
· (2)

(
IML(n, p̂, τ, 0, 0)−

m∑

k=0

IML(n, p̂, τ,m, k)

)
(3)

Here, τ is the cost of a false positive (normalised such
that the costs of a false positive and a false negative add
up to one), m denotes how many labels can be purchased in
a given neighbourhood, and IML(n, p̂, τ,m, k) is a function
that is proportional to the expected misclassification loss in
case k positive labels were among the m purchased ones:

IML(n, p̂, τ,m, k) =

(
m
k

)
· (4)





(1− τ) · Γ(1−k+m+n−np̂)Γ(2+k+np̂)
Γ(3+m+n)

np̂+k
n+m

< τ

(τ − τ2) · Γ(1−k+m+n−np̂)Γ(1+k+np̂)
Γ(2+m+n)

np̂+k
n+m

= τ

τ · Γ(2−k+m+n−np̂)Γ(1+k+np̂)
Γ(3+m+n)

np̂+k
n+m

> τ

(5)

Here, Γ(z) is Legendre’s gamma function (see e.g. [18,
p. 206]).

For computing the probabilistic gain, the label statistics of
an instance’s neighbourhood are required, which consist of

total number of labels (n) and the share of positives therein
(p̂). These statistics need to be estimated. In [13, 14], it
is argued that using estimates provided by a probabilistic
classifier might be favourable to using kernel frequency esti-
mates as substitutes. For investigating this experimentally,
different ways of computing the label statistics for different
classifiers need to be specified.

When using kernel frequency estimates as substitutes, [14]
propose the following formula that employs Gaussian kernels
with a bandwidth of σ:

LC(x,L) ≈
∑

xi∈L
exp

(
−‖x− xi‖

2

2σ2

)
(6)

The total number of labels is then n = LC(x,L), where
L is the set of all labelled instances, and the the share of
positives is p̂ = LC(x,L+)/LC(x,L), where L+ is the subset
of labelled positive instances.

For Parzen-Window Classifiers [4], which use kernel den-
sity estimates for computing an instance’s posterior proba-
bilities, the kernel frequency estimates above for p̂ are identi-
cal to the classifier’s posterior estimates. However, for Naive
Bayes Classifiers these frequency estimates differ from the
posterior estimates, due to the conditional independence as-
sumed when computing the latter. Therefore, the classi-
fier’s estimates should be used directly for p̂. For k-Nearest
Neighbour Classifiers, these posterior estimates are obtained
by the number of positives among an instance’s k nearest
neighbours. In analogy, for Tree-Based Classifiers such as
Hoeffding Trees [7], the probabilistic estimates are obtained
from the summary statistics in an instance’s leaf, i.e. by
simply dividing the number of positives by the total number
of labels processed in that leaf.

In the classification algorithms discussed above, a label
influences solely a particular region in the feature space.
However, for some classifiers this does not hold. For ex-
ample, in Logistic Regression Classifiers an instance might
alter the decision on instances that are far away. Thus, even
though Logistic Regression Classifiers provide probabilistic
estimates that might be used for p̂, they might be not suited
for probabilistic active learning.

3. EXPERIMENTAL COMPARISON
Motivated by the relationship between the active learn-

ing strategies described in Section 2, the following three hy-
potheses guide the experimental evaluation:

1. Probabilistic active learning outperforms random, semi-
random and uncertainty sampling.

2. The performance of probabilistic active learning drops
if the label statistics are calculated independently of
the classifier being used.

3. Semi-random sampling does not outperform random
and uncertainty sampling at the same time.

The first hypothesis is motivated by the capability of prob-
abilistic active learning to balance exploration and exploita-
tion by computing the expected improvement in classifi-
cation performance in an instance’s neighbourhood, rather
than using a heuristic approach. However, this relies on
good estimates of the labelled information in an instance’s
neighbourhood, which are provided by the label statistics.
These estimates depend on the classifier, thus computing
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them independently from the classifier is expected to dete-
riorate the performance, motivating the second hypothesis.
The third hypothesis is motivated by the speculation in [27]
that mixed strategies might be inferior in a pool-based set-
ting with static concepts (as in our setting). According to
this hypothesis, the performance of semi-random sampling
should be between that of random and uncertainty sampling.

For testing these hypotheses, we follow the standard active
learning assumptions, discussed and motivated in [22]:

1. All labels cost the same.

2. The labels that are bought are always correct.

3. The classifier learns incrementally on the actively se-
lected labels, without any other change.

3.1 Experimental Setup
Active learning works on the trade-off between minimising

the number of labels and maximising classification perfor-
mance. For a single experiment, this trade-off is commonly
visualised using learning curves, which depict the classi-
fier’s performance at different amounts of labelled instances.
However, for a multitude of combinations of active learning
approaches and datasets (as in this comparative study), a
multitude of curves need to be compared. For matters of
space and readability, different approaches for aggregating
this information were used in literature. One proposed solu-
tion is to compare the area under the learning curve [11] but
this method loses information about dominance at the dif-
ferent stages and might be misleading when learning curves
intersect. Therefore, we use the approach suggested in [13]
of pairwise comparisons at specific points in the learning
process, in order to see which strategy dominates or is dom-
inated by another strategy at which point in the learning
process. Furthermore, in order to improve reliability of the
results, we use n-fold-cross-validation to divide the datasets
into different partitions of test and training sets. The ex-
perimental setup used for the comparison of active learning
strategies is summarised by the following workflow:

1. Employ the selected strategies with the selected clas-
sifiers and datasets.

2. Compare the accuracy of two competing strategies af-
ter a specific number of instances were labelled and
create two performance vectors for that point of com-
parison by collecting the achieved performance from
all the folds of the 10-fold-cross-validation and do that
for 10 random seeds. This gives us two vectors of the
length 100 as there are 10 folds for each of the 10 seeds
equalling a 100-fold-cross-validation.

3. Test if the performance vector of one strategy is sig-
nificantly better or worse using a two-sided Wilcoxon
test with a significance level of 0.05.

4. Repeat steps 2 and 3 for all classifiers on the individ-
ual datasets and also over all datasets at the same time
which gives us a summary of how the strategies per-
form for a specific classifier over all datasets. The cho-
sen comparison points are the performances obtained
after labelling 20 and 40 instances. Accuracy is se-
lected as performance measure.

5. Check if the results of step 4 are in line with the hy-
potheses or contradict them.

Table 1: Specifications of the data sets that were
used for the experiments

Data Set Instances Attributes Pr(+)
Seeds 210 7 33%
Vertebral 310 6 32%
Haberman 306 3 73%
Checkerboard1 308 2 44%
Checkerboard2 392 2 49%

3.1.1 Datasets
For the experiments the following real-world datasets from

the UCI machine learning repository [1] are used: haber-
man, seeds, vertebral. Additionally, two synthetic datasets
are included, namely checkerboard1 and checkerboard2 [4,
13]. The datasets are preprocessed such that there are no
missing or invalid values and normalised such that all at-
tribute values are between zero and one. The specifications
of the data sets can be seen in Table 1. All the datasets are
randomised and divided into ten folds, which are then used
in the cross-validation of all active learning strategies. Since
the datasets are small and the learning process converges
quickly, the budget is set to 40 instances.

3.1.2 Algorithms
The compared active learning approaches are random sam-

pling (uniform selection probability), semi-random and un-
certainty sampling (both using confidence as uncertainty
measure), and probabilistic active learning (using accuracy
with τ = 0.5 as performance measure) which were intro-
duced in Sections 2.1 till 2.4.

All active learning strategies are evaluated on the same set
of (incremental) classifiers. Those classifiers, implemented
in MOA [3] and WEKA [12], are Hoeffding trees, Naive
Bayes, logistic regression, k-nearest-neighbour and a Parzen-
Window classifier which was implemented by the authors
and is described in [4]. All algorithms were run on a desk-
top computer (Intel i5-760 with 2.8GHz and 8GB RAM).

The label statistics are once calculated by using the prob-
abilistic classifier’s posterior estimate for the values of the
share of positives (p̂) in a neighbourhood. Furthermore, to
evaluate the effect of calculating the label statistics indepen-
dently of the classifier, estimates based on kernel frequency
estimates (as in [13]) over the labels are used.

3.2 Results
Based on the three hypotheses stated above, we now sum-

marise our findings in the next subsections. Tables 3 and 2
provide the complete results of the experimental evaluation.

Table 3 shows the performance comparison after 20 and
40 labels over all datasets for different pairs of active learn-
ing strategies. The numbers are the percentages of wins of
the strategy in the row versus the strategies in the columns,
excluding ties. Thus, symmetric values sum up to one. Sig-
nificantly better results of a two-sided Wilcoxon test with
a significance level of 0.05 are denoted with a ‘*‘, signifi-
cantly worse ones with a ‘-‘. The active learning strategies
are denoted with Pal (probabilistic active learning), Conf
(confidence-based uncertainty sampling), Ran (random sam-
pling), and Semi (semi-random sampling). For the columns
on the left, the posterior estimates p̂ come from the prob-
abilistic classifier, while for the columns on the right they
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are calculated independently of the classifier by using kernel
frequency estimates. In both cases, the number of labels n
is calculated by kernel frequency estimates.

Table 2 summarises for different classifiers the effect on
Pal’s performance of using independently calculated poste-
rior estimates against estimates takes from the probabilistic
classifier. That is, the values correspond to the number of
wins (excluding ties) of Pal with independently calculated
posterior estimates (by using kernel frequency estimates)
against Pal with estimates taken directly from the proba-
bilistic classifier. A ‘*‘ shows that the performance is signif-
icantly better and a ‘-‘ shows that it is significantly worse
using a two-sided Wilcoxon test with a significance level of
0.05. One can see that in the majority of cases calculating
both parameters independently leads to a significantly worse
classifier performance.

3.2.1 Probabilistic Active Learning Is Superior
In order to assess this statement, Table 3 provides the re-

sults for different classifiers. For a Parzen Window classifier
(top-most cells), probabilistic active learning outperforms
the other strategies significantly over all datasets, both af-
ter 20 and 40 acquired labels. This classifier’s posterior
estimates are kernel frequency estimates, thus there is no
difference between its left and right subtables.

For Hoeffding Trees, this does only hold when posterior
estimates by the classifier are used (64.26%, 64.92%, 62.7%
at 20 labels, and 63.19%, 69%, 66.55% at 40 labels against
confidence-based uncertainty sampling, random sampling,
and semi-random sampling, respectively). When using in-
dependently calculated posterior estimates for probabilistic
active learning, its performance is neither significantly bet-
ter nor significantly worse than that of other approaches.

For Naive Bayes with posterior estimates by the classifier,
Pal is again always significantly better. For Naive Bayes
with kernel frequency estimates for the posterior, Pal is sig-
nificantly better than random while not significantly worse
than any other strategy.

For k-Nearest Neighbour and Logistic Regression, prob-
abilistic active learning is not better: with k-NN it is sig-
nificantly worse than uncertainty sampling or semi-random-
sampling, but not significantly worse than random sampling.
With logistic regression, results are inconclusive, but prob-
abilistic active learning performs in some constellations sig-
nificantly worse than uncertainty or random sampling. The
reason for the weak performance of probabilistic active learn-
ing in combination with Logistic Regression is that here the
smoothness assumption is violated, as an instance might in-
fluence the decision boundary at locations that are far away
from its coordinates. The problem with k-Nearest Neigh-
bour is a different one: here, the number of labels that are
considered by the classifier is constantly set to three. Thus,
the value n used in the label statistics is misleading the ac-
tive learner. Overall, hypothesis one is confirmed for Parzen
Window, Hoeffding Tree, and Naive Bayes, but not for k-
Nearest Neighbour and Logistic Regression Classifiers.

3.2.2 Independently Calculated Label Statistics
Reduce the Performance

The results discussed above already indicate an impor-
tant relationship between the label statistics and the per-
formance of the probabilistic active learning approach. To
assess this relationship further, and to test the second hy-

pothesis that classifier-independent calculation of these label
statistics reduces the performance, Table 2 shows the re-
sults of a pairwise comparison between probabilistic active
learning with and without independently computed poste-
rior estimates. It depicts the percentage of cases where the
performance with independent estimates was greater than
the performance with estimates coming from the classifier.
For example, the Naive Bayes classifier with independent
estimates outperformed its counterpart with dependent es-
timates in 47.62% of the cases after 10 labels were bought
and only in 25,76% of the cases after 40 labels were bought
which is significantly worse being indicated by the ’-’ sign.
A ’*’ ! would indicate that it performed better in most of
the cases and that the result can be deemed significant.

Interestingly, the results depend on the learning stage:
after processing the first ten labels (comparison point CP =
10), there is not yet a difference in performance between
the two ways of calculating the label statistic’s p̂ (except for
3-Nearest Neighbour). In the later learning stages (CP =
20, 30, 40), this changes, and using independently estimated
values for p̂ significantly reduces performance for Hoeffding-
Trees, Naive Bayes, and Logistic Regression. For 3-Nearest
Neighbour, the results are different, but on this particular
type of classifier the probabilistic active learning approach
is not recommendable anyway.

One should note that this evaluation was limited to the
effect of independent posterior estimates for p̂, while always
independently calculated estimates for the number of labels
n were used. The situation of using for both values (for n
and p̂) kernel frequency estimates corresponds to using two
classifiers, namely a Parzen-Window classifier for instance
selection, and the chosen classifier for prediction. This is
the typical scenario of label reusability as introduced by [24].
Summarising, the second hypothesis is confirmed for Hoeffd-
ing Trees, Naive Bayes, and Logistic Regression Classifiers.

Table 2: Effect of Independent Label Statistics Cal-
culation
Labels H-Tree Naive B. Log. Reg. 3-NN
CP=10 54.33% 47.62% 49.82% 34.92%-
CP=20 39.3%- 38.78%- 37.67%- 54.32%
CP=30 32.17%- 28.35%- 30.93%- 48.67%
CP=40 30.4%- 25.76%- 37.04%- 65.82%*

3.2.3 Semi-Random Sampling is not better than both
Random and Uncertainty Sampling

The results in Table 3 confirm hypothesis three that that
semi-random-sampling is with none of the classifiers consis-
tently better (or worse) than both, random sampling and
uncertainty sampling. That is, it is never at the same time
dominating (or dominated by) both strategies. This sup-
ports the suggestions by [27] that a mixed strategy is inferior
in a static setting because either uncertainty sampling will
perform well or random will perform well and semi-random
will end up in the middle of the two. However, this does
not mean that a semi-random strategy is inferior to random
or uncertainty sampling in every setting. For some configu-
rations, semi-random sampling is slightly better than both,
but in those cases the difference is never significant. Thus,
in a real-world application where hold-out performance tests
are difficult, semi-random sampling might help to avoid the
worst-case performance. Nevertheless, for most classifier
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types probabilistic active learning seems to be the better
choice, as it outperforms in general all three other methods
when the label statistics are provided by the used classifier.

4. CONCLUSION
In this paper, the performance of popular active learn-

ing strategies in combination with different classification al-
gorithms has been studied. These combinations were ex-
perimentally evaluated using 100-fold cross validation over
several different real-world and synthetic datasets. The re-
sults confirm the finding of previous studies that neither
pure exploration nor pure exploitation strategies perform
consistently well, making the handling of the trade-off be-
tween exploration and exploitation a key challenge. In ad-
dition, the results show that the recently proposed prob-
abilistic active learning approach significantly outperforms
uncertainty-sampling-based strategies when used with Bayes,
Naive Bayes or Decision-Tree Classifiers, but works not well
on k-Nearest Neighbour or Logistic Regression Classifiers.
Furthermore, it is shown that using a probabilistic classi-
fier’s estimates for the label statistics is in most cases better
than using estimates that were calculated independently of
the classifier. Finally, the results confirm the recently stated
conjecture [27] that a hybrid between random and uncer-
tainty sampling does not outperform both strategies at the
same time in a pool-based setting.

While several combinations of active learning and classi-
fication approaches have been evaluated in this paper, this
comparative study is by no means complete. Future work
will focus on evaluating further combinations, as well as in-
vestigating further ways of computing better label statis-
tics for some classification algorithms. Furthermore, com-
parisons for other active learning settings like user-based
visually-supported active learning [21] would be insightful.
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Table 3: Part A: Pairwise performance comparison after 20 and 40 labels over all datasets. It shows how
often the classifier using the strategy from the row outperformed the same classifier using the strategies
in the columns. For example, a Parzen-Window classifier using probabilistic active learning outperformed
confidence-based uncertainty sampling significantly in 69.48%, random sampling in 73,22% and semi-random
sampling in 71.98% of the cases (continues on the next page).

Parzen-Window Classifier
Posterior from Classifier, 20 labels Posterior from KFE, 20 labels

StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 69.48%* 73.22%* 71.98%* pal 0% 69.48%* 73.22%* 71.98%*
conf 30.52%- 0% 47.62%- 43.75%- conf 30.52%- 0% 47.62%- 43.75%-
ran 26.78%- 52.38%* 0% 47.82% ran 26.78%- 52.38%* 0% 47.82%
semi 28.02%- 56.25%* 52.18% 0% semi 28.02%- 56.25%* 52.18% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 69.09%* 68.19%* 66.32%* pal 0% 69.09%* 68.19%* 66.32%*
conf 30.91%- 0% 38.3%- 37.13%- conf 30.91%- 0% 38.3%- 37.13%-
ran 31.81%- 61.7%* 0% 51.93% ran 31.81%- 61.7%* 0% 51.93%
semi 33.68%- 62.87%* 48.07% 0% semi 33.68%- 62.87%* 48.07% 0%

Hoeffding-Tree Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 64.26%* 64.92%* 62.7%* pal 0% 51.66% 53.82% 49.1%
conf 35.74%- 0% 51.46% 48.92% conf 48.34% 0% 51.68% 45.17%
ran 35.08%- 48.54% 0% 49.86% ran 46.18% 48.32% 0% 44.48%
semi 37.3%- 51.08% 50.14% 0% semi 50.9% 54.83% 55.52% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 63.19%* 69%* 66.55%* pal 0% 53.06% 56.71% 50.16%
conf 36.81%- 0% 52.88% 51.24% conf 46.94% 0% 52.12% 48.48%
ran 31%- 47.12% 0% 45.48% ran 43.29% 47.88% 0% 45.42%-
semi 33.45%- 48.76% 54.52% 0% semi 49.84% 51.52% 54.58%* 0%
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Table 3: Part B: Pairwise performance comparison for Naive Bayes, K-Nearest Neighbour, and Logistic
Regression Classifiers (continuation from the previous page).

Naive Bayes Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 58.97%* 64.66%* 60.7%* pal 0% 51.25% 56.1%* 55.4%*
conf 41.03%- 0% 54.57%* 51.35% conf 48.75% 0% 52.32% 55.41%*
ran 35.34%- 45.43%- 0% 47.26% ran 43.9%- 47.68% 0% 51.26%
semi 39.3%- 48.65% 52.74% 0% semi 44.6%- 44.59%- 48.74% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 63.17%* 74.5%* 67.24%* pal 0% 54.55% 56.9%* 47.93%
conf 36.83%- 0% 60.92%* 53.65% conf 45.45% 0% 56.51% 48.99%
ran 25.5%- 39.08%- 0% 41.18%- ran 43.1%- 43.49% 0% 42.94%-
semi 32.76%- 46.35% 58.82%* 0% semi 52.07% 51.01% 57.06%* 0%

K-Nearest Neighbour (K=3) Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 24.18%- 59.4% 30.34%- pal 0% 27.53%- 50% 25%-
conf 75.82%* 0% 76.02%* 65.32%* conf 72.47%* 0% 69.52%* 59.46%
ran 40.6% 23.98%- 0% 32.74%- ran 50% 30.48%- 0% 30.81%-
semi 69.66%* 34.68%- 67.26%* 0% semi 75%* 40.54% 69.19%* 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 25%- 68.59%* 43.27%- pal 0% 18.64%- 46.25% 27.55%-
conf 75%* 0% 80.57%* 80.75%* conf 81.36%* 0% 78.24%* 72.89%*
ran 31.41%- 19.43%- 0% 35.05%- ran 53.75% 21.76%- 0% 30.5%-
semi 56.73%* 19.25%- 64.95%* 0% semi 72.45%* 27.11%- 69.5%* 0%

Logistic Regression Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 40.57% 37.5%- 45.31% pal 0% 51.46% 46.05% 49.27%
conf 59.43% 0% 50.54% 55.75%* conf 48.54% 0% 44.09% 47.43%
ran 62.5%* 49.46% 0% 56.52%* ran 53.95% 55.91% 0% 51.63%
semi 54.69% 44.25%- 43.48%- 0% semi 50.73% 52.57% 48.37% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 41.21%- 42.01% 43.53% pal 0% 60.13%* 55.84% 58.13%*
conf 58.79%* 0% 52.66% 54.78% conf 39.87%- 0% 44.03% 49.68%
ran 57.99% 47.34% 0% 48.78% ran 44.16% 55.97% 0% 53.59%
semi 56.47% 45.22% 51.22% 0% semi 41.88%- 50.32% 46.41% 0%
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Abstract. In recent years, stream-based active learning has become
an intensively investigated research topic. In this work, we propose a
new algorithm for stream-based active learning that decides immedi-
ately whether to acquire a label (selective sampling). To this purpose,
we extend our pool-based Probabilistic Active Learning framework into
a framework for streams. In particular, we complement the notion of
usefulness within a topological space (“spatial usefulness”) with the con-
cept of “temporal usefulness”. To actively select the instances, for which
labels must be acquired, we introduce the Balanced Incremental Quantile
Filter (BIQF), an algorithm that assesses the usefulness of instances in a
sliding window, ensuring that the predefined budget restrictions will be
met within a given tolerance window. We compare our approach to other
active learning approaches for streams and show the competitiveness of
our method.

1 Introduction

Facing continuously raising amounts of data but limited human supervision
capacities, active learning approaches that help in the efficient allocation of
these capacities gain in relevance. The task in active learning is to decide for
which instances to acquire labels from an oracle. An important active learning
scenario is stream-based active learning (also called selective sampling), where
data arrives one-by-one on a stream and the algorithm has to decide immedi-
ately if the label is acquired [21]. Hence, there is no pool where instances are
compared against each other by estimating their usefulness by their position in
feature space (spatial usefulness). Instead, the question becomes not only where
but also when to query, i.e. the spatial aspect is complemented by a temporal
one [14]. Except for [26], the role of the temporal component was just fairly con-
sidered in the algorithms as just simple thresholds have been tuned and applied.
As it is not possible to tune a parameter without labeled data, we propose a
method that ensures that a predefined budget will be definitely met within a
desired tolerance window. This also means that labeling resources like experts
or money remain constant (within the tolerance window) over time. Application
scenarios for those methods can be found in opinion mining of social comment
streams or annotation of sensor data like weather data or camera surveillance.

c© Springer International Publishing Switzerland 2015
E. Fromont et al. (Eds.): IDA 2015, LNCS 9385, pp. 145–157, 2015.
DOI: 10.1007/978-3-319-24465-5 13
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Here, very fast classification systems are required because models might shift
very fast (e.g. in twitter or stock exchange data). On the one hand, human
experts only have limited (and constant) resources, and on the other hand, col-
lecting a batch means to postpone the model updates.

We propose an active learning framework that explicitly distinguishes
between the spatial and temporal component. This allows to study different
combinations, and to separate their effects on the classification performance.
Furthermore, we contribute an algorithm that chooses the most useful instances
over time: the Balanced Incremental Quantile Filter (BIQF). BIQF uses a slid-
ing window over the stream of spatial usefulness values as a representative of
the most recent values to estimate an acquisition threshold. An adjustment of
this threshold ensures that the aberration of the number of label acquisitions
stays within a given tolerance window. We evaluate the performance of our new
selective sampling algorithm that combines probabilistic active learning as the
spatial and BIQF as the temporal component on multiple datastreams.

We start with a summary of the related work in Sect. 2. We propose our new
stream active learning algorithm in Sect. 3 and present our new temporal active
learning component BIQF in Sect. 3.2. After a detailed evaluation on several
data sets in Sect. 4, we conclude this paper in Sect. 5.

2 Related Work

An active learning system aims to select the most promising instances for label-
ing, in order to build the best training basis for a given classifier [15]. Thus, in
the beginning, no labeled information is available, but the target value (label)
can be actively acquired from an oracle. This dynamic learning process develops
the performance of the classifier directly over time [20].

In the pool-based setting, active learning has been researched for a long
time. One of the simplest and most commonly used approaches, called uncer-
tainty sampling [15], aims to request those instances that the classifier is most
uncertain about, e.g. by measuring the confidence based on posterior estimates
[20]. However, it is fairly easy to construct examples, where uncertainty sampling
is not working [21, p.20], due to not doing any exploration [26]. This could also
lead to even worse performance than a randomly sampling strategy [22]. Another
approach is Expected Error Reduction (EER) [18], which aims to directly opti-
mize a performance measure. It simulates each realization of a label for each
unlabeled instance and trains a new classifier. On this classifier, it estimates the
expected error on a validation set. In [3] it is observed that inaccuracies of the
posterior estimates (esp. at the beginning) lead to problems for this algorithm,
and the addition of a beta-prior is proposed. Other approaches, like Query by
Committee (QbC) [7] minimize the variance between multiple classifiers. More
recently, we proposed Probabilistic Active Learning (PAL) in [13] which includes
the expectation value over the true posterior for a given instance to approximate
the influence of an acquired label by the expected effect in its neighborhood. It
measures the amount of already acquired labels in a neighborhood and balances
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exploration and exploitation while directly optimizing a performance measure.
Summarizing, EER and PAL optimize a performance measure, which ensures a
good trade-off in exploration and exploitation [13,21]. While EER has high com-
plexity, PAL and uncertainty sampling require only constant time per instance
[13] which enables their applicability in streams.

For active learning in datastreams, we have to separate those methods that
instantly decide whether to acquire a label or not, from those, that collect chunks
or batches and apply pool-based methods. Chunk-based approaches use classifier
ensembles [24,25] to determine the usefulness of instances or uncertainty-based
measures [10,16,24]. A batch incremental stream active learning algorithm that
first clusters the chunk and ranks the instances based on an homogeneity and
certainty criterion was proposed in [11]. Most recently, we proposed a clustering-
based approach in [12] using the probabilistic description to select the cluster to
choose instances from. The instantly deciding methods mostly are uncertainty-
based: the entropy uncertainty sampling with beta prior is used in [5], an ensem-
ble of radial clusters that evolve over time is proposed in [19], adaptively weighted
uncertainty and density scores are suggested in [4]. Zliobaite et al. [26] observes
that uncertainty sampling is not sufficient to react to drift and combined it with
random sampling. Except for [26], the latter group does not directly consider
budget restrictions as they use arbitrary tunable parameters or other implicit
descriptions. In [26], an adaptive threshold method is proposed that ensures that
the budget is not exceeded. However, this threshold has issues as it is often dom-
inated by the flag that ensures that the budget is not exceeded. This leads to
not finding the very best instances but to excluding only the very worse.

In Sect. 3.2, we propose an algorithm based on an incremental quantile fil-
ter that handles the budget issue. In literature, quantile filters are primarily
researched to address space limitations. A good review of existing methods and
their complexity is given in [23]. Quantiles have also been researched under
the condition of sliding windows [1], but with estimations for different types
of windows and optimizations for approximations to save time and space. Such
approximations are not necessary in our setting with relatively short sliding
windows.

3 Probabilistic Active Learning in Streams

We propose a probabilistic active learning framework for streams, building upon
our original static framework PAL [13]. A core idea of the original, static PAL is
to select instances for labeling by its probabilistic gain. Therefore, it considers
the observed posterior probabilities p̂ (as determined by a classifier) but rather
model and exploit the true posterior probability p, which we express as a Beta-
distributed random variable, as we explain later on. The new stream algorithm
uses this probabilistic gain as a measure for the instance’s “spatial usefulness”.
To identify what the spatial usefulness is currently worth in a temporal manner
(“temporal usefulness”), we propose the Balanced Incremental Quantile Filter
(BIQF). In the last subsection, we summarize all components and show the
pseudocode.
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3.1 Summary of the Probabilistic Gain Calculation

The probabilistic gain is a measure to determine the spatial usefulness of a
labeling candidate xi for active learning proposed in [13]. We use the term spa-
tial usefulness to describe the usefulness for the instance’s location in the fea-
ture space (characterized by its feature vector). Using the probabilistic gain, we
extend the stream of instances (multi-dimensional feature vectors) by a stream
of spatial usefulness values (single values). The core idea is to model the true
posterior probability p as a Beta-distributed random variable, instead of using
the observed posterior (determined by the classifier) as an estimate for the true
posterior. This probability distribution uses the observed posterior probability
(p̂) and the among of neighbored labeled data (n) as parameters. For n = 0, the
true posterior distribution is similar to an uniform distribution. The higher the
n value, the higher the peak at the observed posterior p̂. The final probabilis-
tic gain calculates the expectation value over this true posterior probability p
(assumed to be Beta-distributed) and each possible label realization y (assumed
to be Bernoulli-distributed) [13].

pgain((n, p̂)) = Ep

[
Ey

[
gainp((n, p̂), y)

] ]
(1)

=

∫ 1

0

Betanp̂+1,n(1−p̂)+1(p) ·
∑

y∈{0,1}
Berp(y) · gainp((n, p̂), y) dp (2)

The values for n and p̂ can be determined by any generative classifier [17].
The gain in accuracy is directly derived from the true posterior (p), given the
classification decision made from the observed posterior [13].

gainp((n, p̂), y) = accp(p̂new) − accp(p̂) = accp

(
np̂ + y

n + 1

)
−accp(p̂) (3)

accp(p̂) =

{
1 − p p̂ < 0.5
p otherwise

(4)

In the static, pool-based setting, this probabilistic gain is weighted with the
candidate’s density to incorporate the information about the influence of the
accuracy gain for the whole dataset. In a stream environment, any generative
classifier gives us information about the label statistics of an incoming instance.
As these label statistics are the only input parameters to calculate the proba-
bilistic gain, it is easily applied. In a datastream and especially at the beginning,
it is difficult to estimate the influence of a label for the whole dataset reliably.
Hence, we here set the density weight to one.

3.2 Balanced Incremental Quantile Filter

Using the probabilistic gain, we extend the stream of feature vectors (from the
instances) by a stream of scalars (spatial usefulness values). As higher values
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mean higher benefit for the classification task, the next step is to select the
highest values over time. There exist two related problem formulations in liter-
ature: Either to collect a batch and to choose the best within, or to determine
immediately which instances are the best. The first strategy is easier but needs
additional resources to store the data and delays learning to the end of each
batch, thus we decided for the second one. The challenges for this stream of
scalars are: (C1) to decide immediately whether to acquire the label or not, (C2)
the values are distributed arbitrarily, (C3) acquiring a label changes the classi-
fication model, hence the distribution of spatial usefulness values might change
(as classification performance should improve over time, the spatial usefulness
should decrease), and (C4) the classification model changes due to evolution in
the data.

In this section, we propose a new algorithm to determine the most useful
instances respecting a predefined budget (b) over time (temporal usefulness),
called Balanced Incremental Quantile Filter (BIQF). It is based on an incre-
mental quantile filter to determine a threshold for the spatial usefulness value
and a threshold-adjustment-component that ensures that the predefined budget
is met. In streams, the relative budget b ∈ [0, 1] is usually defined as the share of
labels that are acquired over time. Additionally, we try to distribute the budget
constantly over time such that this enables to detect drift as we always explore
the data, and we have constant and predictable annotation cost.

Incremental Quantile Filter. Given a budget b ∈ [0, 1] and a stream of spatial
usefulness values (u1, u2, . . . ), the incremental quantile filter aims to determine
the best values such that a share of b labels is acquired. Thus, it stores the last
w (w denotes the window size) values of this input stream in a queue Q as a
representation of the most current value distribution. The decision to acquire
the label of an instance xi with its spatial usefulness value ui is based on its
rank (rankui

) in Q. If Eq. 5 is true, the label is acquired [1]:

rankui
≤ �len(Q) · b� (5)

The rankui
describes the position of the new value ui in the list Q, e.g. the

highest value has a rank of 1, the second highest one has a rank of 2, and so on.
Figure 1 visualizes this process for a window size w = 6 and a budget b = 0.5.

Additionally to the chronologically sorted queue Q (not shown in the figure),
the method stores a value-sorted duplicate Qs. In the first step, the algorithm
gets the first usefulness value u1 = 1 from the stream. As Eq. 5 returns true
(ranku1

= 1 ≤ 1 = �1 · 0.5�), the label y1 of the instance x1 is acquired. Next,
u2 = 6 is added with ranku2

= 1 and Eq. 5 is again true. Hence, the label y2 is
acquired, too. The same happens with value u3 = 8. As value u4 = 5 is added,
Eq. 5 results in ranku4

= 3 �≤ 2 = �4 · 0.5�, which means that the corresponding
label is not acquired. Value u5 = 3 and u6 = 4 are not added, too. Adding value
9 would result in a list length of 7, which is higher than the window size w = 6.
Thus, the oldest value, determined from the original queue Q, is removed, and
the formula is applied again.
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Fig. 1. Scheme of the Incremental Quantile Filter (IQF) for window size w = 6 and
budget b = 0.5. Each usefulness value ui (left stream) is inserted into the sorted list
Qs. If the incoming value is in the green area, the corresponding label is acquired.

Instead of calculating the rank, it is also possible to determine the usefulness
threshold (θ) and check if the current value is higher or equal (Eq. 7). Referring
to Fig. 1, the threshold is the most left green value. Depending on the queue’s
length (|Q|) and the predefined budget (b), it is calculated by Eq. 6 (using Eq. 5).

thresIdx = �|Q| · (1 − b)�; θ = Qs[thresIdx] (6)

ui ≥ θ (7)

The implementation of this algorithm was optimized using a B-tree [6] data
structure to store and update the sorted list of usefulness values (Qs). This reduced
the computational complexity of sorting a whole list (O(w log(w))) into insert-
ing (resp. deleting) an element (O(log(w))). This optimization needs the thresh-
old index description. A complete pseudocode, a Python implementation and a
detailed description of this optimization is given at our companion website1.

Summarizing, this method decides immediately about a label acquisition
(C1), works with arbitrary distributions (C2) but is only applicable when the
distribution of the incoming usefulness values does not change over time (neither
C3, nor C4). The simplest counterexample is a stream of monotonously decreas-
ing values. In this case, no labels will be acquired because the rank is always at
the very last position. With no new labels, we are not able to detect changes
and the constant budget constraint is violated. This requires a solution which is
described in the next subsection.

Balancing. We solve challenges C3 and C4 by a balancing approach that
ensures that the predefined budget will be met within a given tolerance window.
The tolerance window (wtol) defines the maximal absolute difference between
the number of actually acquired labels and the number of labels that should
have been acquired so far. This target number of label acquisitions is the result
of multiplying the predefined relative budget (b) and the number of processed
stream instances. Counting the number of already acquired labels, we determine

1 Companion website: http://kmd.cs.ovgu.de/res/pals.
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the number of label acquisitions that should be spent to reach the predefined
budget by Eq. 8.

acqleft = #{processed instances} · b − #{acquired labels} (8)

Using this equation, the number of left labels for acquisition is real-valued
and possibly negative (in case that the number of labels is higher than desired).
If this value is positive, the acquisition threshold (θ) should be decreased to make
the threshold less restrictive and vice versa. The amount of adaptation depends
on the predefined tolerance window (wtol) and the range of the most recent
usefulness values (denoted as Δ). We use the difference between the first and
last element of the sorted queue to calculate the range (Δ = Qs[|Qs|−1]−Qs[0]).
Hence, the new threshold is determined by Eq. 9.

θbal = θ − Δ · acqleft

wtol
(9)

Next, we show that the next label will be acquired if the tolerance window
is reached (wtol = acqleft). To calculate the range, we determine the maximal
and minimal usefulness values stored in Qs (Δ = umax − umin). Therefore, the
threshold is between these values (θ ∈ [umin, umax]).

θbal = θ − Δ · acqleft

wtol
= θ − (umax − umin) · wtol

wtol
≤ umin (10)

Hence, the new threshold θbal is below or equal all currently observed useful-
ness values. As the current usefulness value is already added to Q, we ensured
that the corresponding label will be acquired because for all u ∈ Q : u ≥ umin.
Analogously, one can show that the next label will not be acquired for the oppo-
site case wtol = −acqleft.

3.3 Pseudocode

Algorithm 1 shows the complete stream active learning procedure using Prob-
abilistic Active Learning (PAL) and the Balanced Incremental Quantile Filter
(BIQF). The user defined parameters are the budget (b), the IQF window size
(w), and the tolerance window size (wtol). From lines 5–19, the instances are
processed one by one. The probabilistic gain is calculated in lines 6–8, followed
by the processing of the Incremental Quantile Filter (IQF) (lines 9–12). In line
13, the threshold is adapted by the proposed balancing approach. If the useful-
ness value (ui) is greater or equal this balanced threshold (θbal) in line 14, the
label is acquired and this labeled instance is forwarded to the classifier (line 15)
and the label acquisition counter (cacq) is increased (line 16).

4 Experiments

The experimental evaluation section consists of two components. First, we show
that the BIQF algorithm is able to select the best instances over time and second,
we evaluate our algorithm that combines Probabilistic Active Learning (PAL)
with BIQF against current baselines on seven datasets.
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Algorithm 1. Probabilistic Active Learning in Streams

1: b ∈ [0, 1]; w, wtol ∈ N {Predefined budget, IQF window size, balancing window size}
2: C ← {} {Generative Classifier}
3: Q ← {} {Queue for IQF algorithm}
4: i ← 1, cacq ← 0 {Instance counter, counter of acquired labels}
5: while Stream delivers new instance xi do
6: {determine spatial usefulness value}
7: p̂ ← PC(+|xi); n ← KFEC(xi)
8: ui ← pgain(p̂, n)

9: {determine BIQF threshold}
10: Q.push(ui); if |Q| > w: Q.pop()
11: Qs ← sort(Q)
12: θ ← Qs[�|Q| · (1 − b)�]
13: θbal ← θ − Qs[|Qs|−1]−Qs[0]

wtol
· (b · (i − cacq))

14: if ui ≥ θbal then
15: C.retrain(xi, getLabel(xi))
16: cacq ← cacq + 1
17: end if
18: i ← i + 1
19: end while

4.1 Performance of BIQF

To evaluate the Balanced Incremental Quantile Filter (BIQF), we test BIQF on
static, synthetic usefulness streams. Therefore, we generate single-valued streams
of different distributions (uniform, normal, gamma and a mixture of two normal
distributions). The task of BIQF is to select the highest values as they appear
without knowing the future values of that stream. As the distributions of these
synthetic streams do not change over time, the optimal solution for a predefined
budget b is determined by sorting the values of the whole stream and selecting
the highest instances until the budget b is reached. To quantify the performance
of BIQF, we calculated the mean of all selected values (resp. to b) and determined
the reached percentage compared to the optimal solution. The window size is
set to w = 100 and the tolerance window to wtol = 50.

Fig. 2. Comparison of BIQF and the variable threshold method for different distribu-
tions.
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Fig. 3. Performances (left, middle) and visualization of really used budget (right) of the
BIQF algorithm for different parameters on a static Gamma-distributed value stream.

In Fig. 2, we show the results in terms of the reached percentage of the
optimum as the mean and standard deviation for five streams underlying the
same distribution. Additionally, we executed the budget control mechanism from
the Variable Uncertainty method (VarUncer), proposed in [26]. The results show
that VarUncer does not reach a competing performance as its results mostly are
below 95% compared to the optimal solution. In contrast, the BIQF is always
better than 95% for every budget b which is completely enough for the demands
of stream active learning.

For static data, increasing the window size w improves the results especially
for low budgets (see Fig. 3 left) but also increases the execution time slightly
(O(log(w))). Even more relevant, the average age of the queue rises because
more old values are considered. Hence, setting the window size to higher values
reduces the currency of the model, which impairs the performance in non-static
data. Hence, the window size should be set to the highest acceptable delay of
recognizing a possibly appearing drift. In our case, the window size w = 100 was
a good trade-off.

Additionally, Fig. 3 shows the performance of our algorithm for different tol-
erance window sizes (wtol) on the same value streams. Again, the performance
increases for higher tolerance windows as the data is static. Nevertheless, a high
variable budget distribution possibly does not recognize drift early enough and
does not use the resources of an oracle efficiently as its workload should be con-
stant. The right plot shows the distribution of the really used budget over time.
As expected, the variance of wtol = 5 is the smallest. Hence, it met the budget
restrictions the best in average. We suggest to set the tolerance window to the
half of the window size. If the resulting variance is too high for the oracle to
process the incoming data, one should reduce it to an acceptable level.

4.2 Stream Active Learning Performance

In this section, we compare our proposed algorithm that combines Probabilis-
tic Active Learning (PAL) with the new Balanced Incremental Quantile Filter
(BIQF) against other algorithms in stream active learning: a randomly sam-
pling method (Random), Split and Variable Uncertainty (VarUncer), proposed
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in [26]. As we noticed some problems with the temporal selection strategy of [26],
we further combined their ideas with our method: uncertainty sampling + BIQF
(Uncer +BIQF) and Split + BIQF that selects one half of the instances randomly
for exploration and the other half by uncertainty sampling for exploitation. The
window sizes are the same as above. The generative classifier is a Parzen win-
dow classifier with pre-tuned bandwidths. To be able to react to drift, we add a
sliding window with a size of 300 instances. All experiments run on a compute
cluster running the (Neuro)Debian operating system [8].

The electricity dataset (27 k instances) [9] and the abalone dataset (4 k
instances) [2] come from a real-world application. The checker dataset (moti-
vated in [3]) consists of a 4× 4 checkerboard (10 k instances) that switches all
labels gradually after 50 % of the instances have been processed. The farcluster
and movplane (10 k instances) are motivated in [26]. In farcluster an additional
cluster appears far the decision boundary. In movplane, the decision boundary
rotates slowly after 50 % of the instances have been processed. For the latter
three datasets, 10 % of the labels are flipped to add noise. Bars and wave (10 k
instances) are synthetic datasets without noise and a well-formed decision bound-
ary. For each datastream, we created 100 random train/test-stream partitions.
The results are averaged with respect to the actually used budget. To evaluate
the algorithms, we provide learning curves in Fig. 4 for three datasets and an
overview of mean accuracies for all datasets in Table 1.2

Fig. 4. Accuracy learning curves for datastreams elec, farcluster and bars.

For small budgets, PAL +BIQF is clearly dominating the other algorithms.
Except for abalone, this approach always receives higher accuracy values given
a budget of b = 0.1. For a budget of b = 0.2, PAL +BIQF is solely defeated
on the wave dataset. This is expected because wave has a very simple and well
defined decision boundary with small Bayesian error. Here, it is not necessary
to explore the dataset (as PAL does), but to exploit the decision boundary (as
uncertainty sampling methods do). Setting the budget to b = 0.5, the dominance
of PAL +BIQF diminishes. On the one hand, this effect is not surprising in active
learning because all sampling techniques should converge to the same level in the
end. On the other hand, this might be caused by a problem of PAL with many
labels: Especially for high n values, the probabilistic gain can get zero if one single

2 More learning curves are available on http://kmd.cs.ovgu.de/res/pals.
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Table 1. Mean accuracy for each algorithm on each dataset for the used budgets
0.1, 0.2, 0.5 including standard deviation. Higher values are better and the best algo-
rithm is printed in bold.

additional label would not change the classifier’s decision. Nevertheless, results
with small budgets are more important as we aim to save label acquisitions.

Very interesting is the fact that Uncer + BIQF could not improve the uncer-
tainty sampling method with the adaptive threshold (VarUncer) of [26]. Hence,
we also could confirm that excluding exploration (the adaptive threshold method
solely excludes very certain samples and therefore does exploration) for uncer-
tainty sampling is malicious. Using BIQF for the idea of combining uncer-
tainty and random sampling shows a slight advantage of Split +BIQF against
Split. Hence, the idea of random samples for uncertainty sampling is beneficial,
although its performance is below the one from PAL. We assume that the supe-
riority of PAL is caused by its direct integration of exploration and exploitation.

5 Conclusion

In this paper, we proposed a new active learning algorithm for datastreams
that combines Probabilistic Active Learning to measure the spatial usefulness
of each instance, and the new Balanced Incremental Quantile Filter (BIQF)
that selects the best over time. Through threshold adaptation, BIQF is able
to ensure that the predefined budget is met within a tolerance window. Our
experimental evaluation on seven datasets and five competing algorithms showed
the superiority of PAL +BIQF, especially for small budgets. We suggest that
the reasons are the implicit consideration of exploration and exploitation of the
spatial usefulness measure using the probabilistic gain and the selection of the
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highest spatial values in its temporal context by BIQF. For future work, we will
investigate if these effects are also true for the application scenarios mentioned in
the introduction, and we will apply our framework in combination with different
generative classifiers.
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Abstract. Facing ever increasing volumes of data but limited human
annotation capacities, active learning approaches that allocate these
capacities to the labelling of the most valuable instances gain in impor-
tance. A particular challenge is the active learning of arbitrary, user-
specified adaptive classifiers in evolving datastreams.We address this
challenge by proposing a novel clustering-based optimised probabilistic
active learning (COPAL) approach for evolving datastreams. It combines
established clustering techniques, inspired by semi-supervised learning,
which are used to capture the structure of the unlabelled data, with the
recently introduced probabilistic active learning approach, which is used
for the selection among clusters. The labels actively selected by COPAL
are then available for training an arbitrary adaptive stream classifier. The
performance of our algorithm is evaluated on several synthetic and real-
world datasets. The results show that it achieves a better accuracy for
the same budget than other recently proposed active learning approaches
for such evolving datastreams.

Keywords: Probabilistic active learning · Selective sampling · Evolving
datastreams · Nonstationary environments · Concept drift · Adaptive
classification · Clustering

1 Introduction

In the face of ever increasing volumes of data [6] that contrast limited human
annotation and supervision capacities, approaches for the efficient allocation of
these capacities are of increasing interest. Active machine learning approaches
address this by providing strategies for determining and selecting the most valu-
able information. In classification tasks, this corresponds to selecting the instance
from a set of candidates, whose label is expected to improve a classifier’s per-
formance the most [23]. Active learning is considered a particularly challenging
problem [15] in evolving datastreams, where instances arrive continuously over
time and distributions may change and require adaptation.

c© Springer International Publishing Switzerland 2015
N. Japkowicz and S. Matwin (Eds.): DS 2015, LNAI 9356, pp. 101–115, 2015.
DOI: 10.1007/978-3-319-24282-8 10
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We address this challenge by proposing a novel active learning approach for
evolving datastreams. Inspired from semi-supervised learning, our clustering-
based optimised probabilistic active learning (COPAL) approach uses estab-
lished clustering techniques to capture the structure of the unlabelled data. We
combine this with the recently introduced optimised probabilistic active learn-
ing [13] approach that we use for selecting the cluster, and with a diversity-
maximising criterion for selecting the instance within that cluster. This actively
selected label is then used for the training of a user-specified adaptive stream
classifier.

We contribute two such clustering-based probabilistic active learning
approaches. The first is an incremental clustering variant that maintains and
adapts its clustering model over time. The second is an amnesic clustering vari-
ant that iteratively learns new clustering models from scratch on each chunk and
discards it after updating the classifier. We evaluate both variants by comparing
them against each other and several competitors on six different datastreams,
among them four real-world datasets. The results of the experimental evalua-
tion indicate an overall superior performance of our incremental clustering-based
probabilistic active learning approach.

We first review the related work in Sect. 2, before presenting our clustering-
based optimised probabilistic active learning approach in its incremental and
amnesic clustering variant in Sect. 3. These and other recently proposed AL-
approaches are evaluated in Sect. 4, followed by a conclusion in Sect. 5.

2 Background and Related Work

Active machine learning [23] aims to optimise the selection of labels when they
are costly to obtain. The scenario addressed in this paper is stream-based selec-
tive sampling [22], where instances arrive continuously and an active classifier has
to decide for each instance upon its arrival once-and-forever whether to acquire
its label. Compared to the rich literature on selective sampling in streams in
general, active learning in nonstationary, evolving datastreams has received far
less attention, although it is considered as a challenging, relevant task [7,15].

One line of research [16,17,21,24,25] has investigated ensemble-based active
learning approaches for evolving datastreams. The approach in [24] processes
instances in chunks, such that in each chunk a certain initial percentage of
instances are labelled. These initial labels in the chunk are used to learn a new
base classifier, which is added to the ensemble. The disagreement within the
updated ensemble is then used to select iteratively a given number of instances
within the remaining unlabelled ones in the chunk. This is extended in [25]
by a criterion that determines when to stop the active learning process on a
chunk, and by an adaptive weighting of the base classifiers in the ensemble. The
ActMiner-algorithm proposed in [17] processes data also in chunks, but clus-
ters the data into spherical micro-clusters, which represent base classifiers of an
ensemble. New instances that are not covered by any micro-cluster (so-called
F-outliers) or instances with disagreeing micro-clusters are labelled and saved in
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a buffer for later inspection. If the instances in the buffer form a new cluster,
this cluster is added to the ensemble. The approach suggested in [21] extends
this in two directions. First, by processing the stream instance-wise, and second,
by using decision trees as base classifiers. Like [17], it also summarises the dis-
tribution of each base classifier’s training data by a spherical cluster centred at
its mean. This clustering is then used for the weighting of base classifiers and for
the identification of suspicious instances outside all clusters. The labels of these
suspicious instances are then requested to train a new base classifier. In contrast
to these works, a different combination of query-by-committee and clustering
for instance-wise active learning is proposed in [16]: upon the arrival of a new
instance, a new ensemble of Gaussian mixture models is created by sampling
from a normal inverse Wishart distribution, such that each Gaussian component
corresponds to one class. The GMMs in the ensemble converge as the number of
acquired labels increases, reducing the areas of disagreement between the GMMs
and balancing exploration and exploitation.

More recently, other authors [1,10,11,20] have investigated the idea of com-
bining clustering and stream-based active learning further. They extend the
older clustering-based active learning approach in [19], which addressed a pool-
based setting but already used the clustering information to select the most
representative instances for labelling, thereby reducing the required number of
labelled instances in each cluster. In contrast, the newer StreamAR approach in
[1] is actually a semi-supervised stream classification approach that uses a micro-
clustering ensemble to assign labels and uses active learning solely to resolve ties
due to votes from opposing classes in the ensemble. Thus, while reducing the
requested number of labels, it provides no means for controlling its budget.

In [20], a clustering-based approach is proposed for evolving datastreams, the
so-called Concurrent Semi-supervised Learning of Data Streams (CSL-Stream).
It maintains a clustering and assumes the posterior distribution within a cluster
to be homogeneous, i.e. statistically independent of the feature position given
the cluster membership. Its active learning step differentiates between clusters
with and without any labelled instances. In the latter case, the algorithm seeks
to obtain the label of the centremost instance. In the former case, the algorithm
checks for a skewed label distribution: if all labels are on one side of the cluster,
an additional label at the opposite side of the cluster is requested. Otherwise,
if the class of the labels differs between the sides of the cluster, the cluster is
split. If the distribution of labels is homogeneous, the cluster is kept as it is.
Concept drift is addressed by using a fading model such that instances age over
time. Unfortunately, the author’s informed us that an implementation for this
algorithm is no longer available.

While the clustering-based approaches above integrate clustering and classi-
fication, the aim of Clustering Based Active Learning for Evolving Data Streams
(ACLStream) proposed in [10] is to be usable with any stream classifier technol-
ogy. On each arriving chunk of instances a new clustering is performed and the
most informative instances from each cluster are selected for labelling. For this
selection, the approach distinguishes between a macro and a micro step. The
macro step is used to rank clusters according to their homogeneity in terms of
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their predicted class distribution. This distribution is estimated by the model
learnt from all the labelled instances from previous chunks of instances. The later
micro step determines the most useful instance within a given cluster. Thus, it
ranks instances by combining geometrical information inside their cluster and
the maximum a posteriori classification probability. After selected instances are
labelled, the clustering information is discarded.

The most recent active learning approach for evolving datastreams is DBAL-
Stream [11]. This instance-wise approach combines density-weighting with uncer-
tainty sampling. The density-weighting is used in a preselection step, such that
solely instances within dense areas are considered as labelling candidates. Among
those preselected candidates from dense regions, a margin-based uncertainty
sampling approach is used to select one-by-one instances for labelling. This is
done by comparing an instance’s margin against a threshold, which is adjusted
depending on the consumed and available budget and combined with random
noise to improve exploration. This approach was reported to perform best in
the evaluation by [11], making it an interesting candidate for our experimental
evaluation.

The active learning algorithms for evolving datastreams discussed above are all
based either on the disagreement in a query-by-committee approach, or the uncer-
tainty in an uncertainty sampling approach, with known shortcomings [14,23].
Recently, the probabilistic active learning (PAL) approach has been proposed to
overcome these shortcomings in the pool-based setting [14]. PAL summarises the
labelled information in an instance’s neighbourhood and evaluates the impact of
acquiring a label therein in terms of the expected performance change. Expecta-
tion is not only done over the possible realisations of a candidate’s label as in error
reduction, but also over the true posterior in the candidate’s neighbourhood. In
[12], combining this approach with budgeting for datastreams is investigated. In
[13], a fast closed-form solution is proposed that combines the qualities of uncer-
tainty sampling and error reduction, namely being fast and optimising directly a
performance measure. Thus, it seems worth exploring this fast approach in com-
bination with clustering in a stream-based setting.

3 Clustering-Based Probabilistic Active Learning

Our approach combines ideas from clustering-based semi-supervised learning
and probabilistic active learning. More precisely, we use the clustering model
to define the neighbourhoods for the label statistics in a probabilistic active
learning approach [14]. Our Clustering-based Optimised Probabilistic Active
Learning (COPAL) algorithm consists of four steps, which are pre-clustering,
macro and micro selection, and updating. To complete the big picture, we briefly
summarise them before providing their details in the Subsects. 3.1 to 3.3. Finally,
in Subsect. 3.4, we present two variants of COPAL with their pseudocode.

The pre-clustering step starts with a pool of unlabelled instances. In this
step, all instances are divided into some initial clustering. While more elaborate
clustering algorithms can be used, we opted for conventional K-means because
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it builds spherical clusters and because our focus is on assessing the neighbours
of a data point and not on achieving a good partitioning of the data space.

The task of the macro step is to determine the most important cluster to
select instances from for labelling. Therefore, we need an approach to measure the
value of additional labels for a cluster. For that purpose, we adapt the OPAL-gain
formula from probabilistic active learning [13] to our clustering model. The micro
step then selects an instance from the previously chosen cluster for labelling, such
that the diversity among the labelled instances within a cluster is maximised.
After a new instance is labelled, the class distribution in the selected cluster may
have changed. Thus, an updating step is used to adjust the clustering model. In
this last step, we examine the homogeneity of the posterior distribution within
the selected cluster. We split the cluster in case it has become inhomogeneous.

3.1 Macro Step: Determining the Most Valuable Cluster

The OPAL-gain formula in [13] is designed to compute the expected average mis-
classification loss reduction from obtaining m additional labels within a candi-
date’s neighbourhood. It relies on label statistics ls, which summarise the number
of already obtained labels n within its neighbourhood and the share of positives
therein p̂. For COPAL, the cluster of an instance defines its neighbourhood, thus
n equals the number of labels acquired in that cluster, and p̂ equals the share of
positives therein. Because all instances in the cluster share the same neighbour-
hood, their probabilistic gains are equal. Following [13], the resulting expected
average misclassification loss reduction in the cluster (GOPAL) is calculated as:

GOPAL(n, p̂, τ,m) =
(n + 1)

m
.

(
n

n.p̂

)
.

(
IML(n, p̂, τ, 0, 0)

)
−

m∑

k=0

IML(n, p̂, τ,m, k)

(1)
Here, τ ∈ [0, 1] is given by the application and corresponds to the relative

cost of each false positive classification, normalised such that the costs of a false
positive and a false negative sum to one. For example, when the objective is
maximising the classifier’s accuracy, τ = 0.5 and GOPAL is proportional to the
gain in accuracy. Likewise, m > 0 is the application-given remaining budget for
the currently processed chunk. Thus, τ and m are the same for each cluster.
Equation 1 uses the function IML, introduced in [13], to compute a value that is
proportional to the expected misclassification loss within a cluster, given that k
additional positives among the m additional labels are sampled:

IML(n, p̂, τ,m, k) =

(
m

k

)
.

⎧
⎪⎨
⎪⎩

(1 − τ) .Γ (1−k+m+n−np̂)Γ (2+k+np̂)
Γ (3+m+n)

np̂+k
m+n < τ

(τ − τ2) .Γ (1−k+m+n−np̂)Γ (1+k+np̂)
Γ (2+m+n)

np̂+k
m+n = τ

τ .Γ (2−k+m+n−np̂)Γ (1+k+np̂)
Γ (3+m+n)

np̂+k
m+n > τ

(2)

In a clustering model, the expected misclassification loss reduction for a clus-
ter depends not only on the probabilistic gain, but also on the size of the cluster.
Since a larger cluster affects more future classifications than a smaller one, the
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larger is favoured if their probabilistic gains are (nearly) equal. Therefore, for
estimating the importance of a cluster Clusteri with NClusteri

(labelled and
unlabelled) instances therein, we propose to compute a cluster-size-weighted
probabilistic gain GClusteri

by the following formula:

GClusteri
= GOPALi

· NClusteri∑N
j=1 NClusterj

(3)

The algorithm in Algorithm 1 describes this macro step in detail. For each
cluster c, we calculate the values of n and p̂ for this cluster, before computing
its weighted gain by using the formulas 1, 2 and 3 (line 3–5). Finally, we select
the cluster with the largest weighted gain and return it as the output (line 7–8).

Algorithm 1. Select the Best Cluster for Budget m and Cost-Ratio τ

1: procedure selectCluster(C, m, τ) � C: Pool of clusters
2: for c ∈ C do
3: (n, p̂) ← labelstatistic (c)
4: GOPAL ← getOPALGain (n, p̂, m, τ) � Use Eq. 1
5: Gc ← getWeightedGain (GOPAL, c) � Use Eq. 3
6: end for
7: c∗ ← arg maxc∈C(Gc)
8: return c∗

9: end procedure

3.2 Micro Step: Selecting an Instance Within the Cluster

The micro step selects an instance within the cluster c∗ that was previously
chosen in the macro step. We aim to maximise diversity among the label that
are requested within that cluster. Thus, by using Eq. 4, we select the instance
for labelling, whose nearest labelled neighbour is the furthest away. Here, c∗

U is
the subset of the current chunk’s unlabelled instances within c∗, c∗

L is the subset
of labelled ones, and | · |2 is the l2-Norm:

x∗ ← arg max
xi∈c∗

U

(
min

xl∈c∗
L

|xi − xl|2
)

. (4)

3.3 Updating Step: Adjusting the Clustering Model

Upon having obtained the label for the instance selected in the micro step,
the cluster it belongs to is updated. In this step, two alternating hypotheses
are considered: The first hypothesis H1 is that the cluster is homogeneous with
respect to its posterior distribution and, as a consequence, should not be split fur-
ther. The second, alternative hypothesis H2 is that the cluster is inhomogeneous
and the instances therein originate from two spatially separable subpopulations
with different posteriors. In the second case, splitting the cluster should improve
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homogeneity. Therefore, we calculate the current error rate E1 (under H1) and
compare it to the error rate after splitting1(E2 under H2). However, due to
the limited number of remaining labels in each subcluster, the simple approach
to use directly the training error is prone to overfitting. Instead, we perform a
leave-one-out cross-validation on the labelled instances and calculate E2 as the
average error rate over each fold. In the case of ties due to an equal number of
positives and negatives, we use an error rate of 50%. If the error rate decreases
by splitting (i.e. E1 > E2), we retrain the classifier on all labels in the cluster
and partition the instances based on their assigned labels into two new clusters.

3.4 Variants of COPAL

We propose two variants of COPAL for combining the modules above. The first
uses a sliding window and an incremental clustering, the second an amnesic clus-
tering that forgets the clustering model after processing its chunk. The latter
is inspired by the discussions of the authors of [10], who observed good perfor-
mance with their amnesic clustering approach. However, COPAL worked better
with an incremental rather than an amnesic clustering in our experiments.

Incremental Clustering Variant (COPAL-I). The pseudocode of the pro-
posed incremental variant COPAL-I is provided in Algorithm2. It uses the four
steps above in combination with an incremental clustering model to actively
select instances for labelling, which are then passed to an arbitrary incremental
classifier. Using a sliding window approach, a fixed number of the most recent
instances is kept in a Cache. These instances are used to maintain the cluster
model. Consequently, the pre-clustering step is only applied for the first chunk
(line 6), which also initialises the Cache (line 7). For subsequent chunks, the new
instances are matched to the closest cluster of the current model (lines 9–11),
and appended to the Cache, eventually replacing the oldest ones therein (lines
13–17). Afterwards, the macro, micro and update steps are applied iteratively
to select the most valuable instances for labelling (lines 19–25). The update in
each iteration comprises updating the dedicated classifier by the new label (line
23), and updating the clustering model (line 24).

Amnesic Clustering Variant (COPAL-A). This variant of COPAL uses an
amnesic clustering model, as outlined in Algorithm 3. As above, after a chunk
has been processed, the labels selected by COPAL-A therein are used to train
an incremental classifier. The clustering model, however, is forgotten. Therefore,
the pre-clustering step is repeated on each chunk (line 4). Afterwards, the macro
and micro steps are applied to get the most valuable instance for labelling (lines
6–7). Its label is used to update the incremental classifier (line 9), and the process
is repeated until the budget for this chunk is exhausted. Then, if necessary, the
clustering is updated by splitting the cluster of the new instance (line 10).

1 For speed, we used logistic regression for determining the preliminary splits.
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Algorithm 2. Incremental Clustering Variant COPAL-I

Require: S: Stream of Instances
Require: b: Budget (per Chunk)
Require: w: Window Size (of Cache)
1: cl ← initClassifier
2: Cache ← null � Initialise cache of recent instances
3: while hasMoreInstances(S) do
4: St ← nextChunk(S)
5: if Cache == null then
6: C ← preClustering (St) � C: Pool of clusters with centroids c̄
7: Cache ← St

8: else � Cluster pool and cache maintainance
9: for xi ∈ St do

10: c∗ ← arg minc̄∈C |xi − c̄|2 � l2-Norm(instance xi,centroid c̄ of C)
11: addInstance(c∗, xi) � Add xi to cluster c∗

12: end for
13: Cache.append(St) � Add new instances to cache
14: while Cache.size() > w do
15: x ← Cache.removeOldest() � Remove oldest instance from cache
16: removeInstance(C, x) � Remove oldest instance from clustering
17: end while
18: end if
19: for k ∈ {1, 2, · · · , b} do
20: c∗ ← selectCluster (C, b + 1 − k, τ) � Marco step, Alg. 1
21: xi ← selectInstance (c∗) � Micro step, Eq. 4
22: yi ← askLabel(xi)
23: trainClassifier(cl, xi, yi) � Classifier update
24: updateCluster(c∗, xi, yi) � Cluster update
25: end for
26: end while

Algorithm 3. Amnesic Clustering Variant COPAL-A

Require: S: Stream of instances
Require: b: Budget (per chunk)
Require: τ : false positive misclassification cost
1: cl ← initClassifier
2: while hasMoreInstances(S) do
3: St ← nextChunk(S)
4: C ← preClustering (St) � C: Pool of clusters with centroids c̄
5: for k ∈ {1, 2, · · · , b} do
6: c∗ ← selectCluster (C, b + 1 − k, τ) � Marco step, Alg. 1
7: xi ← selectInstance (c∗) � Micro step, Eq. 4
8: yi ← askLabel(xi)
9: trainClassifier(cl, xi, yi) � Classifier update

10: updateCluster(c∗, xi, yi) � Cluster update
11: end for
12: end while
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4 Experimental Evaluation

In the following Subsect. 4.1, we describe the setting for our experimental evalu-
ation, including the datasets and the compared active learning approaches. This
is followed by a presentation and discussion of the results in Subsect. 4.2.

4.1 Experimental Setup

The objective in active learning is the selection of the most beneficial labels
for the training of the classifier, such that for a given budget the classification
performance is maximised. How well a strategy handles this trade-off between
classification performance and consumed budget is usually evaluated in learning
curves, which plot the performance in dependence of the budget. For stream-
based scenarios, this requires to aggregate the performance over time, as done
for example in [10,11]. However, for evolving datastreams the variance in the per-
formance over time is also an important aspect, as it indicates whether and how
quickly an algorithm adapts to drift. For passive stream classifiers, the standard
approach is prequential evaluation [5], which uses newly arrived instances first
for testing the current classifier, before using them for updating the classifier.

We consider both aspects in our experimental evaluation: following the pre-
quential evaluation paradigm, we evaluate the classifier first on newly arriving
instances, before we consider them as candidates for the active learning and
classifier updating step. For studying the active learning strategies’ effect on the
adaptation of the classifier to drift, we provide curves that show the accuracy of
the algorithms over time. For evaluating how well the strategies perform in the
trade-off between accuracy and budget size, we provide learning curves that plot
the aggregated accuracy over time for different budget shares. This is the most
informative common evaluation method, as there is no consensus on an approach
for statistically testing such active learning results in evolving datastreams yet.

Using this setup, we compare the incremental variant COPAL-I and the
amnesic variant COPAL-A of our approach against several other active learn-
ing strategies: first, we use complete labelling (denoted as Complete), which
requests all labels and serves as a proxy for the upper bound of the achievable
performance, thereby indicating the complexity of the datastream. Second, we
use random selection (denoted as Random) as a baseline, where instances are
chosen randomly with equal selection probabilities. Third, we compare our app-
roach to ACLStream , the most recently proposed [10] clustering-based active
learning strategy for evolving datastreams. Finally, we compare against DBAL-
Stream , to our knowledge the most recently proposed active learning strategy
for evolving datastreams. This strategy was reported in [11] to outperform sev-
eral other active learning strategies for evolving datastreams, including the ones
proposed in [26]. Other active learning approaches for evolving datastreams dis-
cussed in Sect. 2 integrate a specific classifier into their algorithm. Since this con-
flicts with a differentiated evaluation between the impact of the AL-component
alone and the used classifier technology, they were not included into the eval-
uation. Furthermore, to ensure a fair evaluation, all algorithms are run within
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the MOA framework in Java, using the original implementations and recom-
mended parameter settings of their authors. For the non-deterministic strategies
ACLStream and Random, we average the performance over 5 runs. For better
comparison, we use for COPAL the same k-means pre-clustering technique with
k = 5 as in ACLStream, and the same type of classifier (adaptive Naive Bayes
with drift detection, see [4]) that was proposed for DBALStream in the evalua-
tion of all approaches. The chunk- and sliding window size is set to 100 instances
for all approaches. We measure accuracy gain in COPAL by setting τ = 0.5.

The experimental evaluation is done on six datastreams, including four real-
world ones. The first synthetic datastream is based on the Moving Hyperplane
generator proposed in [9]. The concept therein is based on a hyperplane, which
rotates over time to generate drift. The implementation of the HyperplaneGen-
erator class in MOA was used with default settings to generate the data. The
second synthetic datastream, random radial basis function (Random RBF ), is
based on the randomRBFGeneratorDrift class in MOA [3]. It uses a mixture of
Gaussians with a fixed number of components, such that each component gener-
ates instances from a single class. Drift is induced by moving the centroids of the
components in the featurespace. Except for the number of components, which
was set to 20, the default parameter settings were used. The first real-world
datastream is the Airline dataset by the US Bureau of Transportation Statis-
tics, Research and Innovative Technology Administration (RITA), with the task
being to predict whether a flight will be delayed based on the information of
its scheduled departure. The second one is the Bank Marketing dataset by [18],
where the task is to predict whether the client will subscribe to a term deposit
subsequently to a direct marketing campaign. The third one is the Electricity
dataset by [8], with the task to predict an increase or decline of the electricity
prices in New South Wales (Australia). The fourth datastream is the EEG Eye
State dataset from [2], with the task to repeatedly predict over the experiment’s
duration of 117 s whether a proband’s eyes are opened or closed.

4.2 Results and Discussion

We first discuss the results of the evaluation of the active learning strategies’
performances under different budgets. These are shown in the learning curves
in Fig. 1, which plot the accuracy (aggregated over time) for different budget
shares. Overall, COPAL-I performs best for the most datastreams and bud-
get sizes. It is always better than ACLStream, better than Random except for
a budget of 0.05% on Bank Marketing, and better than DBALStream except
for a single budget share on the Airline, the Bank Marketing, the EEG Eye
State and the Electricity datastreams. Compared to its amnesic counterpart
COPAL-A, it performs better on Airline and Moving Hyperplane, and compa-
rably on the remaining datastreams, except for its worse performance on the
EEG Eye State. Compared to their competitors, COPAL-A performs also well,
being better than Random on all datastream-budget combinations except for
one particular budget share on Electricity and Bank Marketing, and perform-
ing always better than ACLStream except for the budget share of 0.05 on the
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Fig. 1. Learning curves in budget share against accuracy for different datastreams.
Complete (black dotted line) corresponds to an upper bound of the performance with
all instances being labelled. Early convergence to high values is favourable.
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Fig. 2. Performance (in accuracy) over time (in steps of 100 instances). On
all datastreams prequential evaluation and a budget share of 15 % were used. Complete
(black dotted line) corresponds to an upper bound of the performance with all instances
being labelled. Higher values are favourable.
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Moving Hyperplane datastream. However, on the latter datastream, COPAL-A
is worse than DBALStream, while being on the other datastreams still better in
the majority of tested budget shares. Concerning the superiority of DBALStream
over ACLStream, which was indicated in [11], our results confirm that overall the
former is the better strategy of the two. Due to the label sets becoming more and
more similar with increasing budgets, one would expect the differences between
the strategies to diminish with increasing budget shares. This is indeed the case
in most of our results, except for ACLStream on Electricity.

The performance and adaptivity over time are reported in Fig. 2, which shows
the active classifier’s accuracy for the budget share of 0.15. The trend of the
black-doted curve of the Complete-baseline indicates changes in the classifica-
tion task’s complexity over time. Except for initially low performance (compared
to Complete) on the Random RBF and Electricity datastreams, the curves of
COPAL-I and COPAL-A follow this trend, indicating a quick adaptation. How-
ever, on the Random RBF datastream all approaches initially perform poorly,
and the ACLStream approach completely fails to improve over time (for better
visibility of the other strategies’ performance, its curve was cut below an accu-
racy of 0.6, but its downward trend continued). Thus, except for ACLStream all
active learning approaches were able to recover from drift.

In summary, our experimental evaluation indicates a mostly superior per-
formance of the incremental variant COPAL-I compared to all other tested
approaches including its amnesic counterpart COPAL-A, while the latter shows
comparable performance to the most recently proposed DBALStream approach.
In our experiments, the clustering-based active learning strategy ACLStream
proposed in [10] performed in most test-cases not better than random sampling.

5 Conclusion

In this paper, we have proposed a clustering-based optimised probabilistic active
learning approach (COPAL) for selective sampling in evolving datastreams.
Inspired from semi-supervised learning, it combines established clustering tech-
niques, which it uses to capture the structure within the unlabelled data, with
the recently proposed probabilistic active learning [14] approach, which serves
for selecting the best among the clusters. Our approach is designed for selecting
labels actively in nonstationary environments, and is usable to actively train any
adaptive stream classifier. We studied two variants of this approach: COPAL-
I uses incremental clustering and windowing to maintain and adapt a single
clustering model over time. COPAL-A is an amnesic clustering variant that iter-
atively learns a new clustering model on each chunk and discards it after classi-
fier training. The experimental evaluation against competitors that include two
recently proposed approaches for evolving datastreams shows an overall supe-
rior performance of the proposed COPAL approach. The incremental variant
performs overall the best, while the amnesic variant performs at least on par
with competitors and in three out of six datasets best for large budget sizes.
While for better comparison with competitors the same combination of cluster-
ing and classifier technique was used in this paper, the performance with other
combinations is subject of ongoing research.
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Furthermore, COPAL uses the obtained clustering model solely in the active
sampling process. Thus, the information from the structure of the unlabelled data
is not considered explicitly during classifier training. Future work will focus on
extending COPAL by semi-supervised techniques in the classification step, for
example by self-labelling of the unlabelled instances or by using the clustering
directly in the classification process.
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10. Ienco, D., Bifet, A., Žliobaitė, I., Pfahringer, B.: Clustering based active learning
for evolving data streams. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.)
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Abstract. In machine learning, active class selection (ACS) algorithms
aim to intelligently ask for instances of specific classes to optimize a
classifier’s performance while minimizing the number of instances. The
challenge is to find the most appropriate sampling proportion for classes
according to their difficulty at runtime. In this paper, we show the influ-
ence of the sampling proportion on the overall classification performance.
Our proposed algorithm (PAL-ACS) applies the approach of probabilis-
tic active learning to the active class selection scenario. We introduce the
concept of pseudo instances, which are used to estimate in expectation
the classifier’s benefit from additional information. Weighting that score
with the pseudo instance’s density and its class conditional probability
yields our final class selection score. Our experimental evaluation (on
synthetic and real data) shows the advantages of our algorithm com-
pared to state-of-the-art algorithms. Through determining the difficulty
of classes, it adapts its sampling proportion and thereby improves its
classification performance the most.

Keywords: Active class selection, probabilistic active learning, sam-
pling proportion, difficult classes

1 Introduction

Methods with active interaction currently receive much attention as economy,
medicine and research benefit from human knowledge for machine learning algo-
rithms. Such methods are researched in the field of active machine learning [16].
Instead of asking for labels, active class selection (ACS) addresses classification
problems, where instances are actively acquired or generated. In detail, an ACS
algorithm selects classes subsequently from which an instance is added to the
training set. The objective is to distribute the proportion of sampled instances
for each class such that well-separable classes are sampled less than classes with
complex decision boundaries.
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One example for active class selection is the development of brain computer
interfaces for motoric prostheses in the neurobiology research domain [5]. To
train such a prosthesis, the impaired patient has to imagine motoric movements,
such as finger movements, while brain activity is captured by EEG. The result-
ing data is evaluated to construct a classification hypothesis, which is used to
assign new incoming brain data to a motion. As the learning process is highly
exhausting and costly, one aims to reduce the length of that training phase, i.e.
to create a good classification hypothesis within only few iterations. Especially
for disabled patients, the use of BCI systems is critical, as they provide the possi-
bility of performing otherwise impossible tasks [5]. There exist further examples,
e.g. in arousal detection [18].

In this paper, we present a new Active Class Selection (ACS) approach that
uses the benefits of the recently proposed multi-class probabilistic active learning
[6] to select those classes that improve the classification performance the most.
The adaptation of this approach uses pseudo instances to enable the applicability
of the probabilistic active learning approach for active class selection. For each
pseudo instance, we estimate the expected gain in performance and weight it with
its density and class conditional probability. The density describes the influence
of the hypothetic information gain for the overall classification performance. The
class conditional probability is the probability that this class could be sampled
when choosing that class. These values together build a comparative score, which
we use to choose the class of the next instance.

The rest of the paper is structured as follows. In Sec. 2, we discuss the
literature on active class selection, followed by a section discussing the influence
of the sampling proportion for ACS experiments. In Sec. 4, we propose our
new method PAL-ACS, show a pseudo code and discuss the approach with an
exemplary ACS task. After an evaluation on multiple datasets in Sec. 5, we
finally conclude our work.

2 Related Work

Active classification systems have the ability to request relevant information
from external sources. With respect to the type of requested information, dif-
ferent approaches are distinguished [2]. The most intensively researched ones
actively select instances for labeling from an oracle. The aim of these so-called
active learning methods is to select those instances whose labels will improve the
classification performance the most [16]. Scope of this paper is the inverse setting
of active class selection [15]: here, the active component is able to select a class
from which subsequently an unknown instance (feature vector) is generated.

The idea of active class selection (ACS) is to distribute the number of in-
stances per class such that a certain level of classification performance is reached
with the lowest number of requested instances [2, p. 29]. The work presented in
[12] (see also [11]) proposes different techniques to determine this class distri-
bution for acquisition chunks. First, they propose to use a uniform distribution
and the Original Proportion (that usually is not known) as baselines. Performing
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what they called f -fold cross validation on the already seen chunks, they propose
to use the results for the subsequent chunk: the approach Inverse distributes the
information according to the inverse of the class accuracy. An extension of this
is called Accuracy Improvement. It distributes the values according to the accu-
racy difference between the two most current chunks. The Redistricting method
counts the number of labels that have been flipped (these instances are marked
as redistricted) by adding the most recent chunk to the training set. Here, the
upcoming instances are distributed with respect to the number of redistricted
instances of the true classes.

Wu and Parsons [18] applied the previous algorithms Inverse and Accuracy
Improvement for arousal classification. Later, they extended this paper in [17]
and improved the approach Inverse to be applicable for incremental stream
acquisitions and added a constraint that two consecutive new training examples
are from different classes. In her PhD thesis [10], Lomasky extended her work
by two more methods: Risk estimates the sensitivity of error that is induced by
adding new instances of a certain class, and Sensitivity measures the stability of
class decisions. As these methods are only mentioned in the PhD thesis yielding
mixed results, we only consider the former ones.

As there are applicable aspects mentioned in active learning literature, which
we partly use for our approach, we shortly summarize the most relevant works.
To determine the most valuable label, most active learning methods propose
a model to determine the usefulness of a label acquisition. Uncertainty sam-
pling [9] suggests to acquire labels from instances that are near the decision
boundaries. Expected error reduction methods [14] simulate every possible la-
beling for each unlabeled instance and train new classifiers. The instance whose
new classifier reduces the error the most on an evaluation set is then selected
for labeling. In [3], Chapelle observed that these error reduction estimates have
issues with unreliable posterior estimates at the beginning. Thus, he suggests
using a beta-prior to shift posterior values with less labeled information towards
equal posterior probabilities. Recently, we proposed a method that overcomes
the issues of unstable posteriors in a theoretically founded approach by modeling
the expectation over the true posterior, called probabilistic active learning [6, 7].
Probabilistic methods directly optimize a performance measure and incorporate
the amount of labeled information to notice unseen areas and areas with high
Bayesian error.

3 Finding the Best Sampling

Active class selection (ACS) algorithms vary in their proportion of selected in-
stances per class. As this is the only difference in their resulting training set,
we can reformulate the problem which class to select next as the question of
the most beneficial sampling proportion. To substantiate the idea of preferring
a certain class over others, we designed an experiment to be able to describe
the optimal behavior of such a method. Therefore, we generated three datasets
consisting of four classes. The decision boundary between classes 2, 3 and 4 are
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similarly difficult, whereas the complexity of the boundary between class 1 and
the other three varies between difficult, normal and easy.

To simplify the readability, we say that a class is easy, resp. difficult. A
difficult class is characterized by having more complex decision boundaries. This
implies that a classifier benefits from having more instances from that class.
Nevertheless, to determine the shape of a decision boundary a classifier needs
data from the class on its opposite site as well. Hence, we can conclude that the
best sampling for a binary classification task is a uniform one. Another aspect is
the kind of complexity of a decision boundary. While some decision boundaries
might have a complex shape that can be learned, others might suffer from high
Bayesian error. In the latter case, even learning this decision boundary perfectly
might not improve the classification performance.
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Fig. 1: Performance regarding sampling proportion on a synthetic dataset with
a varying difficulty for the decision boundary between class 1 vs. classes 2,3,4.

In our experiment, we used active class selection algorithms that select in-
stances according to a predefined sampling proportions. As we defined the data
such that classes 2, 3 and 4 are equally complex, we used 41 versions of this
sampler with different proportion values for class 1. The remaining proportions
are distributed equally across the classes 2, 3 and 4. To achieve reliable results,
we repeated this experiment using 300 randomly generated datasets of the same
distribution. For evaluation, we generated 100 hold-out instances per class. Dur-
ing training, the ACS method has access to 100 data points per class, stored in
an acquisition stack. In that way, we ensure that two samplers with the same
proportion would receive the same result on the same dataset. This reduces the
result’s variance. The evaluation methodology is similar to the one we used in
the later experiments and is described in more detail in Sec. 5.2.

In Fig. 1, we show the performance of the different active class selection
algorithms in terms of mean performance on the hold out data with respect to
the share of instances that are from class 1. All curves have been shifted to
their best performance to be able to compare them across the datasets. Hence,
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this relative error describes the loss in performance by not finding the best
sampling proportion. The left plot shows the results after 15-20 instances have
been acquired, the right one after 75-80 instances. Using a range here reduces
variance. In result, each of the 41 data points in the plots is calculated as a mean
of 6 · 300 performance values.

The plots show that it is beneficial to prefer difficult classes over others. In
case class 1 is more difficult (red curve), the performance curve shifts to the
right with increasing number of instances, whereas in the opposite case (blue
curve), it shifts to the left. If all three classes are equally difficult (green curve),
the best sampling is a uniform one. Comparing both plots, we see that the
best sampling at the beginning is nearly a uniform one and drifts towards the
left, resp. right, with a higher number of instances. Furthermore, we see that
missing the optimal sampling proportion has a smaller effect with increasing
number of instances because the feature space is already covered better and
classifier estimates become more reliable. Additionally, finding the best sampling
proportions is more critical for cases where the decision boundaries are unequally
difficult.

Summarizing, a non-uniform sampling proportion makes a difference in per-
formance if that classes are unequally difficult. Therefore, finding difficult classes
improves the learning task and helps reducing the number of training samples
to achieve an appropriate classification model.

4 Our Method

In this section, we propose a new method called Probabilistic Active Learning
for Active Class Selection (PAL-ACS). The main idea is to estimate the benefit
of acquiring an instance of class y ∈ Y = {1, . . . , C} in terms of classification
performance, and to select the class with best expected improvement. In the
next section, we present the algorithm, followed by a discussion of its properties.
The last section describes implementation aspects including a pseudo code.

4.1 Probabilistic Active Learning for Active Class Selection
(PAL-ACS)

In an active class selection (ACS) task, instances are generated from the selected
classes and stored in the set of training data that solely consists of labeled data
(x, y) ∈ L. To select the most beneficial classes, our approach PAL-ACS aims to
estimate the usefulness of selecting the next instance from class y ∈ {1, . . . , C}
for the overall classification performance.

Works on probabilistic active learning [6, 7] have shown that an important
aspect to consider is the reliability of the posterior estimates used to classify
unseen data. Therefore, these probabilistic approaches model the distribution of
the true posterior probability building on the observed posterior vector p̂, and
the number of nearby labels n. The information about the number of nearby
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labels is used as a proxy for the reliability of that observed posterior. Multi-
ple labels around an instance x provide evidence for the true posterior being
close to the observed one. In contrast, posteriors based on few observed labels
are doubtful. As a mathematical model, probabilistic approaches calculate the
probabilities of the true posteriors p using the normalized likelihood function of
a Multinomial distribution [6]. The gain in performance according to [6] is then
calculated as given in Eq. 1-2.

perfGain
(
x | L

)
= max

m≤M

(
1

m

(
expExpPerf

(
k,m

)
− expExpPerf

(
k, 0
)))

(1)

expExpPerf
(
k,m

)
= E

p

[
E
l

[
perf

(
k + l | p

)]]
(2)

Here, the parameter M is a maximal local budget for non-myopic applications
with small constant (e.g. 3) as a recommended default [6]. The labeling vector
l represents all possible labeling combinations when acquiring m labels (e.g.,
having a local budget of m = 2 and C = 3 classes, l ∈ NC , with each column
li representing the number of labels that are hypothetically acquired from class
i,
∑

(li) = m, e.g., l ∈ {(2, 0, 0), (1, 1, 0), (0, 1, 1), . . . }). The vector k = p̂ · n
represents the currently observed label frequencies (number of nearby labels of
each class C) of an instance x. Hence, the expExpPerf

(
k,m

)
calculates the

expected performance having observed the labels in k near x allowing to select
m more labels.

ACS methods do not have access to a candidate pool like active learning
methods. Thus for using this model in active class selection, we propose to
generate pseudo instances xp over the whole feature space. Using these pseudo
instances, we transform the active class selection problem into an active learning
task. Hence, we have to additionally weight each instance with its probability
from being from the currently considered class P (x | y). Calculating the expec-
tation over all pseudo instances yields the selection criterion for the PAL-ACS
algorithm as follows.

y∗ = arg max
y

(
E
xp

[P (xp | y,L) · perfGain(xp | L)]

)
(3)

Sampling the pseudo instances uniformly over the whole feature space, the
probability of observing it in the data L can be estimated by its density P (x|L)
[8, 19].

y∗ = arg max
y


∑

xp

P (xp | L) · P (xp | y,L) · perfGain(xp | L)


 (4)

A general tool to calculate the label frequencies k is kernel frequency esti-
mation. These can also be used for classification by selecting the most frequent
class. This classifier is similar to the very generic Parzen window classifier [3,
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13]. In this paper, we use unnormalized Gaussian kernels with bandwidth σ as
they provide a robust and expressive estimates.

ky =
∑

(x′,y′)∈L, y=y′

exp

(
−||x− x

′||2
2σ2

)
(5)

4.2 Characteristics of PAL-ACS and Example

We now discuss PAL-ACS’s approach in two exemplary active class selection sit-
uations shown in Fig. 2. Both situations are based on a three-class-classification
task with a one-dimensional feature space. One class (blue) is well separated
from the other two classes (red and green) and can therefore be considered to
be easy. Due to an overlap of the other two classes, finding the best decision
boundary between them is more difficult.
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Fig. 2: Visualization of PAL-ACS for different situations.

The situations shown in the left and right columns are from consecutive
selection steps. On the left, 8 instances (3 red, 3 green, 2 blue) have already
been acquired, and subsequently one additional blue instance on the right. The
upper plots show the labelings (red, green, and blue colored dots on the x-
axis, corresponding to the classes’ instances). Furthermore, they show the class
conditional distributions in the corresponding color and the density as the gray
area. The plots in the second horizontal row show the perfGain function over the
whole feature space as a black dashed line, and the density weighted perfGain
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as a solid line with gray area. The lower three plots show the density weighted
perfGain (solid black curve from above) weighted with the corresponding class
conditional probabilities. The numbers in the upper right corners represent the
sum of the corresponding values. The class with the maximal value is chosen for
the next instance generation.

The relevant difference between both situations is the smaller number of blue
instances on the left. Thus, there is less evidence for the blue class’ posterior to
be one. In terms of the weighted performance gain, this outweights the complex
boundary of the red and green classes (see left lower three plots). Thus, PAL-
ACS selects the blue class to validate the posterior.After generation of another
blue instance (right), the red and green class have a similarly good score which
is higher than the blue one. Hence, the algorithm detects that these classes are
more beneficial. Thus, in analogy to [6], the perfGain function balances here ex-
ploration and exploitation by using the number of nearby labels. It also decreases
the usefulness in regions with many labels and a high uncertain posterior. This
prevents the algorithm from getting stuck in areas with high Bayesian errors.

4.3 Implementation and Pseudo Code

Fig. 3 provides the pseudo code of our approach, beginning with the sampling of
pseudo instances X p. Sampling the whole feature space to get pseudo instances
is time consuming, especially for high-dimensional data.

1: np ← 25 · C, M ← 5 . Init params to defaults
2: L ← {}
3: while instance acquisitions left do
4: X p ← SampleFromDensity(L, np) . Sample pseudo points (PP)
5: for i ∈ {1, . . . , |X p|} do . Calculate PP’s perfGains
6: ki,. ← getKVector(xp

i ,L)
7: pgi ← perfGain(ki,m)/|L, np)|
8: end for

9: for y ∈ {1, . . . , C} do . Summarize weighted perfGains
10: gy ← 0
11: for i ∈ {1, . . . , |X p|} do
12: gy ← gy + pgi · ki,y/(

∑|Xp|
j=1 kj,y)

13: end for
14: end for

15: y∗ ← arg maxy(gy) . Select optimal class
16: x← requestInstance(y∗)
17: L ← L ∪ (x, y∗)
18: end while

Fig. 3: Pseudo code of the probabilistic active learning for active class selection
(PAL-ACS) method.
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Hence, we use a Monte-Carlo approach. In active class selection it is gen-
erally assumed that each class per se is similarly important (albeit not all are
necessarily equally difficult). Therefore, we sample the same number of pseudo
instances from each class. The distribution to sample from is determined by
a kernel density estimation similarly to the frequency estimate’s kernel. This
function is called SampleFromDensity in the pseudo code (line 4).

In the for-loop (ll. 5-8), we estimate the kernel frequency vector as defined
in Eq. 5 and calculate the corresponding performance gain (see Eq. 1) for each
pseudo instance. As all values are generated from the data, each pseudo instance
is now equally probable. Hence, the density weight is a simple division by the
number of pseudo points. In lines 9-14, we weight this density weighted perfor-
mance gain with the class conditional probability and sum all values for each
class separately. Finally, we select the best class gain gy and request a corre-
sponding instance (ll. 15-17).

5 Evaluation

In this section, we evaluate the probabilistic active learning for active class selec-
tion (PAL-ACS)-approach against other methods on multiple datasets in exper-
imental comparisons. After describing our evaluation setup, we provide learning
curves, error tables, as well as proportion plots and discuss the results.

5.1 Evaluation Setup

The methods are evaluated on six different datasets. Thereof, three datasets
are synthetic, having one class that is easily distinguishable from the others
and two classes with a more complex decision boundary. A visualization for
these two-dimensional datasets, called 3Clusters, Spirals and Bars, is given in
Fig. 4a–4c. Additionally, we used three real-world datasets from the UCI machine
learning repository [1], namely Vehicle, Vertebral Column, and Yeast. In Vehicle,
the task is to distinguish four different vehicle classes. The task in Vertebral
Column is to classify patients to one of the classes Normal, Disk Hernia or
Spondylolisthesis. For Yeast, we selected four classes for our application: CYT
vs. NUC vs. ME1 or ME2 vs. ME3. On all datasets, features are normalized to
a [0, 1] range. The datasets differ in their complexity. This requires a different
number of instance acquisitions needed for analysis for each dataset. Thus, the
maximum number of learning steps was set to 60 for 3Clusters, Vertebral, and
Yeast, to 80 for Vehicle, and to 120 for Bars and Spirals. As a baseline approach,
we implemented a randomly selecting strategy (Random) that selects each class
with equal probability. Furthermore, we compare against the state-or-the-art
approaches Inverse and Redistricting published in [12].

To classify unseen data from a hold-out test set, we use a Parzen window
classifier with the same kernel used in the kernel frequency estimation with band-
width σ = 0.05. Due to the feature normalization, we use the same bandwidth
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Fig. 4: Scatterplots of the synthetic datasets.

for all datasets. Changing the bandwidth slightly had only little influence on the
order of the algorithms’ performance. Error rate is used as performance measure.

According to [6], we set the maximal local budget of the performance gain
function to a small number that does not change the result. To have a good
tradeoff between performance and speed, we set M = 5. Especially for more
classes, we recommend to reduce that value (e.g., M = 3). We used different
values for the number of the pseudo instances to set a final value of np = 25 ·C.
All experiments were performed on a computer cluster running the NeuroDebian
operating system [4].

5.2 Evaluation Methodology

For each dataset, we generated 500 random test-training-set combinations (tri-
als). The test set consists of 50 instances from each class. The training set is a
stack containing all remaining instances in a random but fixed order.
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Fig. 5: Evaluation methodology for active class selection
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When an algorithm requests an instance, the first instance of this class is
returned (see Fig. 5). At the beginning, each algorithm is initialized with one
instance from each class. This setup reduces noise in the results, ensuring that
only the algorithm’s sampled class distribution influences the results. Thus, two
selection strategies with exactly the same class distributions obtain precisely the
same set of training instances. As seen in Fig. 5, this also means that the training
data of samplers with different sampling proportions might overlap largely. In
the example, we acquired 15 instances from 3 classes according to a uniform
sampling proportion as a passive sampler does (like random), and according to
a proportion of 40%, 40%, 20%. In that case, 13 instances of their training set
are completely equal. Hence, the resulting classifiers might be very similar.

5.3 Results and Discussion

To compare the algorithms, we provide learning curves in Fig. 6. These learning
curves show the mean error and the variance of all algorithms with respect to
the number of acquired instances. The best algorithm is the one that converges
fastest to the lowest error. Additionally, we provide quantitative values for the
algorithms’ performances in Tab. 2. Here, we separated the learning process into
four phases, in order to determine how fast algorithms get the the structure of
the learning problem. Each phase contains 25% of the learning steps. In the first
phase, we exclude the results of the initialization phase as they are similar for
each algorithm.

For each phase, we determine the mean accuracy for each algorithm on each
dataset and calculate the ratio of won trials. Note, that these ratios do not sum
to one because some trials have multiple, ex-equo winners due to the aspects
discussed in Sec. 5.2. Furthermore, we provide information on the methods’
sampling proportions. In Tab. 1, the final sampling proportions are summarized.

Their detailed development over the learning steps is shown for 3Clusters as
exemplary dataset in Fig. 7. For the other datasets, these plots are provided at
our companion website1. We now analyze different aspects of the result.

As visible from the learning curves and tables, PAL-ACS is constantly better
than both competing active class selection methods, except for Bars. In the Bars
dataset, it became only the best towards the very end. This might be due to the
non-Gaussian structure of the data and the Gaussian classifier. Although its
performance is low, PAL-ACS finds the easy class even in early phases (see
companion webpage and Tab. 1). Comparing PAL-ACS with Random, we see
that the superiority of our method depends on the structure of the data. The
higher the differences in the complexity of the classes, the more beneficial is
PAL-ACS. In Vehicle, for example, each class is equally difficult. Here, Random
has the advantage that it assumes the classes to be equally difficult per default.
Hence, its performance is slightly better, although PAL-ACS detects the best
sampling proportion. Here, the advantages of PAL-ACS compared to Restricting
and Inverse get visible, as it also detects regions of high Bayesian error.

1 See http://kmd.cs.ovgu.de/res/palacs
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Method 3Clusters Bars Spirals Vehicle Vertebral Yeast

PAL-ACS 17,42,41 38,41,21 05,49,46 25,25,25,25 30,35,34 23,27,27,23
Inverse 29,35,36 35,36,30 28,36,36 27,27,24,23 38,36,25 28,28,22,23
Redist. 25,37,38 38,37,24 19,41,39 26,26,23,25 38,37,25 29,27,20,24
Random 33,34,33 33,33,34 33,34,33 25,25,25,25 33,34,33 25,25,25,25

Table 1: Final sampling proportions (for all classes) in percent.
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Fig. 6: Learning Curves for each algorithm on every dataset. Each curve shows
the mean error and standard deviation.
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Dataset Method phase 1 phase 2 phase 3 phase 4
error win ratio error win ratio error win ratio error win ratio

3Clusters PAL-ACS 0.1498 40.97% 0.1316 42.69% 0.1215 45.85% 0.1161 47.93%
Inverse 0.1543 38.97% 0.1382 33.67% 0.1271 34.28% 0.1206 34.17%
Redistricting 0.1557 36.10% 0.1418 30.25% 0.1339 31.28% 0.1281 31.69%
Random 0.1575 35.18% 0.1390 31.13% 0.1294 30.93% 0.1217 32.68%

Bars PAL-ACS 0.2705 25.97% 0.1773 28.82% 0.1378 32.47% 0.1177 38.22%
Inverse 0.2636 31.12% 0.1686 33.14% 0.1364 32.24% 0.1196 31.85%
Redistricting 0.2564 34.73% 0.1697 33.69% 0.1384 32.74% 0.1218 30.67%
Random 0.2539 35.59% 0.1694 32.65% 0.1371 32.88% 0.1202 31.61%

Spirals PAL-ACS 0.2816 38.82% 0.1927 58.07% 0.1397 66.61% 0.1139 66.81%
Inverse 0.2831 34.47% 0.2103 24.53% 0.1611 21.94% 0.1328 20.74%
Redistricting 0.2861 30.61% 0.2165 21.17% 0.1735 15.96% 0.151 15.64%
Random 0.2897 26.16% 0.2205 13.66% 0.1701 13.09% 0.1404 13.97%

Vehicle PAL-ACS 0.5783 34.45% 0.4931 29.19% 0.4499 29.89% 0.4238 32.06%
Inverse 0.5851 31.49% 0.5041 23.60% 0.4572 23.04% 0.4301 23.75%
Redistricting 0.5783 33.62% 0.4981 26.00% 0.4536 28.84% 0.4290 26.78%
Random 0.5776 34.32% 0.4920 33.42% 0.4486 32.75% 0.4230 33.89%

Vertebral PAL-ACS 0.3989 34.00% 0.3696 31.55% 0.3566 33.44% 0.3506 33.63%
Inverse 0.4088 30.53% 0.3764 27.61% 0.3625 27.97% 0.3536 28.99%
Redistricting 0.4009 34.13% 0.3737 30.12% 0.363 28.57% 0.3557 27.25%
Random 0.3993 34.38% 0.3695 32.43% 0.3578 32.51% 0.3522 31.85%

Yeast PAL-ACS 0.4439 37.38% 0.3909 29.99% 0.3716 29.59% 0.3606 31.20%
Inverse 0.4495 32.48% 0.3967 27.23% 0.3744 28.80% 0.3612 31.64%
Redistricting 0.4444 35.07% 0.3958 26.99% 0.3762 27.39% 0.3659 23.67%
Random 0.4417 38.40% 0.3931 28.48% 0.3731 27.95% 0.3617 28.21%

Table 2: Quantitative Comparison of ACS methods on all datasets. To show the
learning process, the mean of errors has been calculated for different learning
phases. Additionally, the ratio of won trials for each algorithm is shown.
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Fig. 7: Sampling proportions on 3Clusters dataset for all four sampling strategies.
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The results on 3Clusters, Spirals, and Bars in Tab. 1 show, that PAL-ACS
contributes a smaller sampling proportion to the easier class (1st in 3Clusters and
Spirals, 3rd in Bars) than to the more difficult ones. Inverse and Redistricting
show the same tendency, but to a much lesser extend, resulting in weaker per-
formance in 3Clusters and Spirals. Furthermore, PAL-ACS also chose the best
final sampling proportion in cases when all classes are equally difficult, as in the
Vehicle dataset. Here, the best-performing methods are PAL-ACS and Random,
both using uniform sampling proportions. In contrast, Inverse and Redistricting
perform worse by undersampling classes.

Overall, PAL-ACS always identifies the difficult classes and samples accord-
ingly. As a result, its performance is best (in cases some classes are more difficult
than others) or ex-equo with the best competitor Random (in cases all classes
are equally difficult). Furthermore, PAL-ACS’ sampling rate over the learning
process shows a stable convergence with lower variance, as shown in Fig. 7 for
the exemplary 3Clusters dataset. This is similar for the other datasets (see com-
panion website).

6 Conclusion

In this paper, we introduced an approach to subsequently choose the class where
we expect a newly requested instance to improve the classification performance
the most. Therefore, we generate pseudo instances to simulate possible instance
acquisitions. Using a probabilistic model, we estimate the expected gain in per-
formance and weight it with the instance’s density and class conditional proba-
bility. The class with the highest class gain is the next to be selected.

The experimental evaluation shows our method’s superiority on datasets
where a non-uniform sampling improves the learning process. On datasets with
equally complex decision boundaries, our method identifies uniform sampling as
the best strategy. Thus, in contrast to other active class selection methods, it
also performs on such datasets comparably well as the winning random sampling
strategy.
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Contribution Sheet

Open Challenges for Data Stream Mining Research
by Georg Krempl, Indrė Zliobaitė, Dariusz Brzeziński, Eyke Hüllermeier,
Mark Last, Vincent Lemaire, Tino Noack, Ammar Shaker, Sonja Sievi, Myra
Spiliopoulou, and Jerzy Stefanowski.

In: SIGKDD Explorations, Special Issue on Big Data, 2014, 16, 1-10, ACM.

Contributions to the Field of Computer Science

This position paper discusses open challenges for mining streaming data
in real-world applications. It points out gaps between current research and
meaningful applications, highlight open problems, and defines new application-
relevant research directions for data stream mining. The identified chal-
lenges cover the whole cycle of knowledge discovery, including the issues of
data privacy protection, dealing with legacy systems, handling incomplete
and delayed information, analysis of complex data, and evaluation of stream
mining algorithms. Thus, it provides general suggestions concerning lines of
future research in data stream mining.

Individual Contributions by the Authors

The authors made the following contributions to this joint work:

Georg Krempl and Indrė Zliobaitė jointly organized the RealStream-
2013 workshop preceding this paper (together with G. Forman and
Y. Wang). The two proposed the idea of this joint position paper,
proposed its structure, and coordinated its writing. They jointly con-
tributed section 1 (Introduction) and section 8 (Concluding Remarks).

Georg Krempl contributed section 2 (Data Stream Mining) and
subsection 4.2 (Timing and Availability of Information).

Indrė Zliobaitė contributed section 3 (Protecting Privacy and
Confidentiality), and subsection 4.1 (Streamed Preprocessing).

Eyke Hüllermeier, Mark Last, Ammar Shaker, and Myra Spiliopoulou
jointly contributed section 5 (Mining Entities and Events). Eyke
Hüllermeier, Mark Last, and Ammar Shaker jointly contributed in
particular subsection 5.2 (Analyzing Event Data), Myra Spiliopoulou
contributed in particular subsection 5.1 (Entity Stream Mining).

1



Dariusz Brzeziński and Jerzy Stefanowski contributed section 6
(Evaluation of Data Stream Algorithms).

Vincent Lemaire, Tino Noack, and Sonja Sievi contributed section 7
(From Algorithms to Decision Support Systems). Vincent Lemaire
contributed in particular subsection 7.1 (Making models simpler, more
reactive, and more specialized). Tino Noack and Sonja Sievi con-
tributed in particular subsection 7.2 (Dealing with Legacy Systems)

All authors contributed by reviewing, discussing and editing the final
version of the paper.

As acknowledged in the work, the authors would like to thank the
participants of the RealStream2013 workshop at ECML PKDD 2013 in
Prague, and in particular Bernhard Pfahringer and George Forman, for sug-
gestions and discussions on the challenges in stream mining.
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Contribution Sheet

Probabilistic Active Learning:
Towards Combining Versatility, Optimality & Efficiency.
by Georg Krempl, Daniel Kottke, Myra Spiliopoulou.

In: S. Deroski, P. Panov, D. Kocev, and L. Todorovski (eds.). Proceedings
of the 17th International Conference on Discovery Science (DS), October
8–10, 2014, Bled, Slovenia. Lecture Notes in Computer Science, Springer.
ISSN: 0302-9743.

Contributions to the Field of Computer Science

This paper addresses the problem of active machine learning in a pool-based
setting. In particular, it aims to offer an approach that combines versatility,
direct optimisation of a performance measure, and computational efficiency.
It contributes a novel probabilistic active learning (PAL) approach for bi-
nary classification that combines these qualities. This is a decision-theoretic
approach that computes the expected gain in performance from labelling a
candidate from a pool. To this end, PAL models both the candidate’s label
realisation and the true posterior in its neighbourhood as random variables.
In contrast to expected error reduction, PAL then performs expectation not
only over this candidate’s label realisation, but also over the true posterior
of the positive class in the candidate’s neighbourhood. The latter directly
incorporates the likelihoods of different possible posteriors under the al-
ready labelled data. This advances the state-of-the-art decision-theoretic
active learning literature, which considers solely the most likely (or most
pessimistic) posterior. Subsequently, PAL weights this expected gain by
the density over labelled and unlabelled instances at the candidate’s posi-
tion. Thereby, it approximates the importance of the candidate’s neigh-
bourhood in the classification task. Finally, PAL selects the candidate for
labelling that will improve the classification performance in expectation the
most. The experimental evaluation on several data sets shows that PAL
yields comparable or better classification performance than error-reduction,
uncertainty-sampling or random active learning strategies, while requiring
less computational time than error-reduction.
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Individual Contributions by the Authors

The authors made the following contributions to this joint work:

Georg Krempl contributed the idea of this approach, i.e. to compute the
gain in classification performance using expectation over both the can-
didate’s label realisation and the true posterior of the positive class
in its neighbourhood. He derived and formulated the model and the
asymptotic bound for its computational complexity. He contributed
the review of the related work and the idea for Figure 1 on the different
exemplary active learning situations. He contributed the idea for Fig-
ure 3 and the discussion of PAL’s properties. He suggested the setup
for the experimental evaluation and advised Daniel Kottke in the im-
plementation and evaluation, which was done jointly. He texted drafts
for all sections but Section 4, which was drafted by Daniel Kottke.

Daniel Kottke contributed the draft for the text of the experimental eval-
uation, for which he implemented the compared algorithms and an
evaluation framework in MATLAB jointly with Georg Krempl. In ad-
dition to the experiments reported in the paper, Daniel Kottke and
Georg Krempl jointly performed extensive preliminary experimental
evaluations, which led to the final formulation of PAL as presented in
the paper.

Myra Spiliopoulou contributed in discussions and written comments her
expertise in semi-supervised learning. She helped in defining the scope
of the work, and provided insights that led to PAL’s formulation. Fur-
thermore, she pointed to some of the related work.

All authors contributed by reviewing, discussing and editing the final
version of the paper.

As acknowledged in the work, the authors would like to thank in particular
Vincent Lemaire, who helped in discussions in shaping the scope of this
paper, and furthermore the anonymous reviewers for their comments to
improve the paper. The authors,

Georg Krempl Daniel Kottke

Myra Spiliopoulou
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Contribution Sheet

Optimised Probabilistic Active Learning (OPAL)
For Fast, Non-Myopic, Cost-Sensitive Active Classification
by Georg Krempl, Daniel Kottke, Vincent Lemaire.

In: C. Bielza, J. Gama, A. Jorge, I. Zliobaite (eds.). Machine Learning,
Special Issue of the Journal Track of ECML/PKDD 2015, Springer, 2015.
ISSN: 1573-0565.

Contributions to the Field of Computer Science

This paper addresses the problem of active machine learning in a pool-based
setting. Building on the probilistic active learning (PAL) framework intro-
duced in [1], this paper contributes an optimised approach (OPAL) that,
in addition to PAL, (1) is also usable in cost-sensitive applications, as it
optimises the candidate selection for minimisation of the expected misclassi-
fication loss, (2) includes a non-myopic variant, that considers the available
budget for subsequent label acquisitions when computing the value of a can-
didate, (3) is fast due to a closed-form computation. This combination of
properties in a single active learning approach, that is not limited to a par-
ticular classifier technique, is novel and of practical relevance, due to limited
human annotation capacities but ever increasing volumes of automatically
generated data.

Individual Contributions by the Authors

The authors made the following contributions to this joint work:

Georg Krempl contributed the idea to extend the approach proposed by
considering several label acquisitions at once, thereby making it non-
myopic, and to derive a closed-form solution for misclassification loss,
thereby making it fast and cost-sensitive. He derived this closed-form
solution jointly with Daniel Kottke. He proposed scope, structure and
organisation of the paper. He has written the introduction, related
work, conclusion, and most parts of the method section. He con-
tributed the idea for Figure 3 and the discussion thereof. He advised
Daniel Kottke in the setup for experimental evaluation.
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Daniel Kottke contributed the experimental evaluation, for which he im-
plemented the compared algorithms and an evaluation framework in
MATLAB. In addition to the experiments reported in the paper, Daniel
Kottke and Georg Krempl jointly performed extensive preliminary ex-
perimental evaluations, which led to the final formulation of the OPAL
presented in the paper, for which they jointly derived a closed-form so-
lution. Daniel Kottke has written the experimental evaluation section,
he has designed the presentation of results on the companion Website,
and he contributed the idea for Figure 2 and the discussion thereof.

Vincent Lemaire contributed in discussions and written comments his ex-
pertise in active learning. He helped in defining the scope of the work,
pointed to some of the related work, and helped in designing the setup
for the experimental evaluation.

As acknowledged in the work, the authors would like to thank in particular
Myra Spiliopoulou, Pawel Matuszyk and Christian Braune, and furthermore
the anonymous reviewers for their comments to improve the paper. The
authors,

Georg Krempl Daniel Kottke

Vincent Lemaire
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Contribution Sheet

Multi-Class Probabilistic Active Learning
by Daniel Kottke, Georg Krempl, Dominik Lang, Johannes Teschner, Myra
Spiliopoulou.

Under Review for: European Conference on Artificial Intelligence ECAI
2016, IOS Press, 2016.

Contributions to the Field of Computer Science

This work addresses active learning for multi-class classification in pools.
The first contribution of this work is the identification of different influ-
ence factors that positively affect active learning. These factors are (1)
an instance’s impact, (2) its posterior, and (3) the reliability of this pos-
terior. Furthermore, this work contributes a new approach, called multi-
class probabilistic active learning (McPAL). It builds on the probabilistic
active learning framework[1], is non-myopic, fast, and directly optimises a
performance measure, e.g. accuracy. Considering all influence factors, Mc-
PAL determines the expected gain in performance to compare the usefulness
of instances. For this purpose, it calculates the density-weighted expecta-
tion over the true posterior and over all possible labeling combinations in
a closed-form solution. Thus, in contrast to other multi-class algorithms, it
considers the posterior’s reliability which improved the performance. The
experimental evaluation of this paper shows the reasonability of the selected
influence factors and the superiority of McPAL in comparison to various
other multi-class active learning algorithms on six datasets.

Contributions by the Authors

The authors made the following contributions to this joint work:

Daniel Kottke contributed the scope, the formulation of the approach and
the derivation of the closed-form solution to the paper. He has writ-
ten the drafts for the section introduction, related work, method, and
conclusion and implemented the functions for the McPAL method.
He co-supervised (together with Georg Krempl) Dominik Lang and
Johannes Teschner and specified the experimental setup. He partici-
pated in the review of the drafts and finalizing the paper.



Georg Krempl advised in the planning and in the definition of the scope
and the structure of the work. Together with Daniel Kottke, he co-
supervised Dominik Lang and Johannes Teschner. He participated in
the review of the drafts and finalizing the paper.

Dominik Lang and Johannes Teschner contributed the drafts of the
experimental evaluation, for which they implemented the compared
algorithms and an evaluation framework. They participated in the
review of the draft and finalizing the paper.

Myra Spiliopoulou initiated the research on multi-class active learning
on opinionated data. She advised in the planning and contributed
her expertise in discussions and comments on multi-class classification
tasks.

As acknowledged in the work, the authors would like to thank the Pycho-
informatics Labs at OVG-University Magdeburg, in particular Michael Hanke
and Alex Waite, for providing their cluster for the experiments, as well as
Pawel Matuszyk for all discussions.
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Contribution Sheet

How to Select Information That Matters: A Comparative Study
on Active Learning Strategies for Classification
by Christian Beyer, Georg Krempl, and Vincent Lemaire.

In: Stefanie Lindstaedt, Tobias Ley, and Harald Sack. Proceedings of the
15th Int. Conf. on Knowledge Technologies and Data-driven Business,
i-KNOW 2015, ACM, 2015. ISBN: 978-1-4503-3721-2.

Contributions to the Field of Computer Science

This paper addresses the problem of active machine learning in a pool-based
setting. It contributes a comparison between different combinations of active
learning strategies and classification algorithms. In particular, the compared
active learning strategies include random sampling as pure exploration strat-
egy, uncertainty sampling as exploitation strategy, a semi-random sampling
strategy as hybrid between the previous two, and probabilistic active learn-
ing. As classification algorithms, it includes Hoeffding trees, Naive Bayes,
logistic regression, k-nearest neighbour and Parzen Window classifiers. Its
results confirm the finding of previous studies that neither pure exploration
nor pure exploitation strategies perform consistently well. It underlines the
importance of handling the trade-off between exploration and exploitation.
Furthermore, it shows that probabilistic active learning approach signifi-
cantly outperforms uncertainty-sampling-based strategies when used with
Bayes, Naive Bayes or Decision-Tree Classifiers, but works not well on k-
Nearest Neighbour or Logistic Regression Classifiers. In addition, it shows
that better results for most classifier technologies are obtained when using
label statistics that are directly based on the probabilistic classifier’s esti-
mates.
This paper was awarded as best paper at the i-KNOW conference 2015.

Individual Contributions by the Authors

This paper builds on experimental work from a preceding master thesis. This
master thesis was written by Christian Beyer, supervised by Georg Krempl,
and reviewed by Vincent Lemaire. For this joint paper, the authors made
the following contributions:

Christian Beyer and Georg Krempl jointly wrote a first version of this
paper.
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Christian Beyer wrote the master thesis preceding this paper, for which
he performed the experimental evaluation used in this paper. For this
evaluation, he implemented the compared algorithms as well as an
evaluation framework in Java.

Georg Krempl supervised Christian Beyer’s master thesis. He contributed
the idea and scope of the master thesis and paper, provided related
work and proposed the comparison to the problem of label reusability,
and defined the setup for the experimental evaluation.

Vincent Lemaire was second reviewer of Christian Beyer’s master thesis.
He contributed in discussions and written comments his expertise in
active learning. He helped in defining the scope of the work, suggested
among others the comparison between a hybrid between random sam-
pling for exploration and uncertainty sampling for exploitation.

All authors contributed jointly in reviewing and editing the paper.

As acknowledged in the work, the authors would like to thank Myra Spiliopoulou
and Daniel Kottke for their comments and suggestions.
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Contribution Sheet

Probabilistic Active Learning in Datastreams
by Daniel Kottke, Georg Krempl, Myra Spiliopoulou.

In: E. Fromont, T. De Bie, M. van Leeuwen. Advances in Intelligent Data
Analysis XIV, Proc. of the 14th Int. Symposium (IDA 2015), Lecture Notes
in Computer Science, vol. 9385, pp.145–157, Springer, 2015.

Contributions to the Field of Computer Science

This work addresses active learning in evolving data streams. It contributes
a new algorithm for stream-based active learning that decides immediately
whether to acquire a label (selective sampling). To this end, the work ex-
tends the recently proposed pool-based Probabilistic Active Learning frame-
work [1] for data streams. In particular, the work complements the notion of
usefulness within a topological space (“spatial usefulness”) with the concept
of “temporal usefulness”. In this paper, the so-called Balanced Incremental
Quantile Filter (BIQF) is introduced for active selection of instances for la-
belling. This BIQF algorithm assesses the usefulness of instances in a sliding
window, ensuring that the predefined budget restrictions will be met within
a given tolerance window. The experimental evaluation of this approach
against other active learning approaches for evolving data streams shows its
competitiveness.

Contributions by the Authors

The authors made the following contributions to this joint work:

Daniel Kottke wrote his Master’s thesis about “Budget Optimization for
Active Learning in Data Streams”. This thesis was supervised by
Georg Krempl, who provided the topic. The idea of the approach is a
result of multiple intense discussions between Daniel Kottke and Georg
Krempl. The paper presents the main results from this thesis. Hence,
Daniel Kottke provided raw drafts from the original manuscript of the
thesis. He wrote the draft of the paper jointly with Georg Krempl.



Georg Krempl provided the topic for the underlying Master’s thesis and
defined in joint work with Daniel Kottke the work packages. He su-
pervised the planning and the definition of the scope and the structure
of this paper. He participated in writing the draft of the paper, based
on raw text from the thesis, together with Daniel Kottke.

Myra Spiliopoulou advised in the planning and scope and contributed
her expertise in data stream mining and comments on structure and
presentation.

All authors contributed in editing the final version of this paper.

The authors would like to thank the Pychoinformatics Labs at OVG-University
Magdeburg, in particular Michael Hanke and Alex Waite, for providing their
cluster for the experiments.
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Clustering-Based Optimised Probabilistic Active Learning
by Georg Krempl, Tuan Cuong Ha, and Myra Spiliopoulou.

In: Nathalie Japkowicz and Stan Matwin. Proceedings of the 18th Int. Conf.
on Discovery Science, DS 2015, Springer Lecture Notes in Computer Science,
vol. 9356, pages 101–115, 2015. ISBN 978-3-319-24281-1.

Contributions to the Field of Computer Science

This paper addresses the problem of active machine learning in evolving
data streams. It proposes a so-called clustering-based optimised probabilis-
tic active learning (COPAL) approach. This approach combines the idea of
clustering-based active learning with the idea of probabilistic active learning.
Two variants of this COPAL-approach are proposed. The first uses an in-
cremental clustering variant, where the clustering model is maintained over
the arriving chunks of data. The second, amnesic clustering variant builds
the clustering model anew from scratch on each chunk. The proposed ap-
proaches are evaluated on several synthetic and real-world datasets against
two state-of-the-art active learning approaches for evolving data streams.
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experiments, including the selection of ACLStream and DBALStream
as baselines.
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Tuan Cuong Ha contributed the results of the experimental evaluation,
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COPAL variants and an evaluation framework in Java, and performed
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that the distance between newly requested labels and existing ones is
maximised. His suggested modification of the micro step was used in
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Contributions to the Field of Computer Science

This work is in the subfield of active learning, within the field of machine
learning. It addresses the problem active class selection (ACS) for multi-
class classification. Active class selection algorithms aim to intelligently ask
for instances of specific classes to optimize a classifier’s performance while
minimizing the number of instances. This paper shows the influence of the
sampling proportion on the overall classification performance. Thus, the
challenge is to find the most appropriate sampling proportion for classes
according to their difficulty at runtime. This paper proposes to apply the
approach of probabilistic active learning [1] to the active class selection sce-
nario. A novel algorithm (PAL-ACS) that uses this approach is contributed
in this work. This algorithm introduces the concept of pseudo instances,
which are used to estimate in expectation the classifier’s benefit from ad-
ditional information. This expected value is weighted with the pseudo in-
stance’s density and its class conditional probability, yielding the final class
selection score. The experimental evaluation shows the advantages of the
PAL-ACS algorithm compared to state-of-the-art algorithms on several syn-
thetic and real data. These experiments indicate that PAL-ACS adapts its
sampling proportion according to the difficulty of classes, thereby optmizing
its classification performance.



Contributions by the Authors

The authors made the following contributions to this joint work:

Daniel Kottke contributed the final PAL-ACS approach as presented in
this paper. He implemented this algorithm and performed the exper-
imental evaluation. He defined the scope of this work and comple-
mented the related work. He drafted the sections (1) introduction, (3)
finding the best sampling, and (4) our method.

Georg Krempl contributed in discussions with Matthias Deliano the ini-
tial idea of using the probabilistic approach for the active class selec-
tion problem. He provided initial references and drafted the sections
(5) evaluation and (6) conclusion.
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and Tuan Pham Minh contributed the implementation of reference al-
gorithms and the evaluation framework, and a draft of section (2)
related work. The implementations for the experiments in section 3
were done by Cornelius Styp von Rekowski, the text of this section
was drafted by Daniel Kottke. Marianne Stecklina contributed Figure
5 visualizing the evaluation methodology. Tim Sabsch contributed in
the review and editing of the draft for the submission.

Matthias Deliano contributed in discussions with Georg Krempl the prob-
lem definition and motivation in BCI applications. Furthermore, he
provided data and support for preliminary experiments (not shown in
the final version of this paper).

Myra Spiliopoulou contributed her expertise in discussions and comments.
She helped in shaping the scope and presentation of this work. Inputs
from these discussions motivated Figure 7 and related experiments.

Daniel Kottke, Georg Krempl, and Matthias Deliano jointly super-
vised the different student projects leading to this paper. Thereby,
Daniel Kottke was the primary contact person.

All authors contributed in editing the final version of this paper.

As acknowledged in the work, the authors would like to thank the Psycho-
informatics Labs at OVG-University Magdeburg, in particular Michael Hanke
and Alex Waite, for providing their cluster for the experiments, and Pawel
Matuszyk for all discussions.
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