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Kurzreferat

Partikelsysteme sind in einem breiten Spektrum verfahrenstechnischer Anwendungen
von großer Bedeutung. Beispiele finden sich sowohl in der chemischen Verfahrenstech-
nik, z.B. Kristallisationsprozesse, als auch in der Bioverfahrenstechnik, z.B. bei der
zellkulturbasierten Herstellung von Biopolymeren oder Impfstoffen. Dabei variieren die
einzelnen Partikel, z.B. Kristalle oder Zellen, hinsichtlich bestimmter Eigenschaften
wie der charakteristischen Größe, der Form und ihrer Zusammensetzung. Die daraus
resultierende Eigenschaftsverteilung der Partikel hat einen wesentlichen Einfluss auf
wichtige Produkteigenschaften. Neben experimentellen Untersuchungen ist eine mathe-
matische Modellierung für eine vollständige Charakterisierung dieser Prozesse unab-
dingbar. Darüber hinaus stellt die Modellbildung einen wichtigen Schritt im Hinblick
auf die Entwicklung geeigneter Strategien zur Optimierung und Führung der Prozesse
dar.

Die Dynamik von Partikelsystemen lässt sich im Rahmen der populationsdynamischen
Modellierung mithilfe partieller Differentialgleichungen beschreiben. Dabei entspricht
die Ordnung der partiellen Differentialgleichungen der Anzahl der modellierten Par-
tikeleigenschaften. Im allgemeinen können zwei Modellierungsstrategien unterschieden
werden: Bei der top-down-Modellierung werden Messungen der Partikeleigenschaftsver-
teilungen direkt modelliert, was zu niedrig dimensionalen Populationsbilanzgleichungen
führt. Die zeitliche Veränderung der Partikeleigenschaften wird dabei durch globale
mechanistische Ansätze beschrieben. Diese müssen durch die Lösung eines inversen
Problems an die vorhandenen Messdaten angepasst werden. Im Gegensatz dazu ba-
siert die bottom-up-Modellierung auf einer detailierten Beschreibung der Mechanismen
auf Einzelpartikelebene. Vor allem für biologische Prozesse beinhalten diese Einzel-
partikelbeschreibungen oft eine große Anzahl von Partikelzuständen. Innerhalb einer
populationsdynamischen Beschreibung übersetzt sich jede Eigenschaft direkt in eine
unabhängige Koordinate der jeweiligen partiellen Differentialgleichung. Somit führt der
bottom-up-Ansatz meist zu hochdimensionalen Problemstellungen. Diese erfordern den
Einsatz effizienter numerischer Lösungsmethoden, da Standardansätze, wie zum Bei-
spiel die Finite Volumen Methode, nicht ohne weiteres effektiv implementiert werden
können.

Im Rahmen dieser Arbeit werden beide Modellierungsansätze auf einen zellkulturba-
sierten Produktionsprozess für Influenza A Impfstoffe angewendet. Dieser Prozess stellt
aufgrund auftretender Varianzen innerhalb der Zellpopulation ein interessantes Anwen-
dungsbeispiel für partikuläre Systeme dar.

Der erste Teil dieser Arbeit befasst sich mit der Parameterschätzung für ein in ei-
ner vorherigen Arbeit entwickeltes populationsdynamisches top-down Modell [81, 79].



Dieses beschreibt die Interaktion von Zellpopulation und Virus innerhalb eines Biore-
aktors und erfasst zudem die Varianz der Zellen hinsichtlich der intrazellulären Menge
des viralen Nucleoproteins (NP). Eine Anpassung des Modells an durchflusszytometri-
sche Messungen erfordert die Bestimmung konstanter und funktioneller Modellparame-
ter. Das daraus resultierende unendlich-dimensionale inverse Problem wird zunächst
durch eine Hermite-Spline-Approximation der funktionellen Parameter in eine endli-
che Dimension überführt, um anschließend die Modellparameter mit der Methode der
kleinsten Quadrate zu bestimmen. Das angepasste Modell ist in der Lage, die beob-
achteten dynamischen Effekte qualitativ nachzubilden. Des weiteren wird gezeigt, dass
die Modellgüte durch die Verwendung komplexerer Approximationen der funktionellen
Parameter verbessert werden kann. Dies geht jedoch mit einer Erhöhung des nume-
rischen Aufwandes einher und eine biologisch sinnvolle Interpretation der geschätzten
funktionellen Parameter wird erschwert.

Um diese Nachteile zu umgehen, bietet es sich an, mehr strukurelle Information über den
Prozess in die Modellierung einzubeziehen. Eine entsprechende bottom-up-Modellierung
basierend auf einer detailierten Einzelzellbeschreibung der Influenzavirusreplikation [41]
führt auf eine hochdimensionale Populationsbilanz. Hierfür wird im zweiten Teil dieser
Arbeit eine effiziente approximative Momentenmethode zur numerischen Lösung vorge-
stellt. Diese ist eine Kombination aus der bereits existierenden direkten Quadraturme-
thode [70] und einer effizienten Wahl der Stützstellen auf Basis monomialer Kubaturen
[107]. Anhand verschiedener generischer Beispiele wird gezeigt, dass die vorgestellte
Methode einen guten Kompromiss zwischen numerischem Aufwand und Genauigkeit
der Lösung darstellt.

Im letzten Teil dieser Arbeit wird die vorgestellte Methode auf das hochdimensionale
populationsdynamische Modell der Influenzaimpfstoffproduktion angewendet. Dabei
wird zunächst der Einfluss von steigender Varianz innerhalb der Zellpopulation auf die
Virusausbeute untersucht. Hier zeigt sich, dass mit steigender Variabilität die Virus-
ausbeute sinkt. Darüber hinaus wird die Verwendung genetisch modifizierter Zelllinien
zur Verbesserung der Impfstoffproduktion diskutiert. In der Praxis werden diese Mo-
difikationen beispielsweise mithilfe von Transduktionsverfahren vorgenommen. Jedoch
werden nicht alle Zellen mit der gleichen Effizienz modifiziert, so dass eine Varianz der
zellspezifischen Virusproduktionsraten zu erwarten ist. Eine modellbasierte Untersu-
chung zeigt, dass trotz dieser Heterogenitäten eine signifikante Steigerung der Virus-
ausbeute erreicht werden kann und die Verwendung genetisch modifizierter Zelllinien
eine gewichtige Rolle bei der Verbesserung des Impfstoffproduktionsprozesses spielen
können.



Abstract

Particulate systems are found in many process engineering applications and play an
important role in a large number of industries such as pharmaceutical and food indus-
try. In general, the particles are not uniform and properties, like size, shape or internal
composition appear distributed within the particle population. These property distri-
butions may have significant effects on the overall product quality or processability.
Examples are not only found in chemical process engineering, e.g. crystallization, but
also in bioprocess engineering, e.g. cell culture based production of biopolymers or vac-
cines. Here, cell-to-cell variability with respect to size and intracellular composition is
a common feature affecting the overall processes. A model based analysis of the ob-
served effects supports an thorough experimental characterization of the process and
is an important step in the design of model based process intensification and control
strategies.

The dynamics of particulate processes can be characterized conveniently with the pop-
ulation balance modeling approach. Here, the resulting population balance equations
represent partial differential equations and describe the temporal evolution of the prop-
erties distribution of the particle ensemble. The dimension of these equations increase
with the number of modeled properties. To formulate a suitable population balance
model, two general strategies can be followed. Within the top-down approach the mea-
sured distributed data is modeled directly. In result, low dimensional population balance
equations characterizing the particles heterogeneity with respect to a moderate number
of measured properties are obtained. To account for the temporal change of the par-
ticle properties, global mechanistic kinetics are used. These have to be adapted to the
distributed measurements by solution of an inverse problem. In contrast, bottom-up
modeling starts from a detailed description of the mechanisms on the single particle
level. In particular for bioprocesses, these may include a large number of particle prop-
erties. As each modeled property directly translates to an independent coordinate of
the corresponding population balance model formulation, high dimensional partial dif-
ferential equations are obtained. These require the application of efficient numerical
solution techniques as standard discretization based solution methods lack effective
implementation for high dimensional problems.

Within this thesis, focus is on application of both modeling strategies to cell-culture
based influenza A vaccine production processes. These represent an interesting example
for particulate processes as cellular variability affects the overall virus yield.

The first part is concerned with parameter estimation for a top-down model of the
process which was developed in a previous work [81, 79]. The model describes the
interaction of cell population and virus within a bioreactor and is able to account for



cell-to-cell variability with respect to intracellular amount of viral nucleo protein (NP).
As model adaption to flow cytometric data requires the estimation of both, constant and
distributed parameters, an infinite dimensional inverse problem emerges. It is translated
to a finite dimension by a suitable approximation of the distributed parameters. The
parameters are estimated within a generalized least squares framework and the resulting
model is able to qualitatively reproduce most of the dynamic effects, though not every
trait of data is covered. It is also shown that the model fit can be improved when using
more complex approximations of the distributed parameters. However, this comes along
with an increased numerical effort and a biologically reasonable interpretation of the
estimated parameters becomes more and more challenging.

This lack of interpretability motivates the application of a bottom-up modeling ap-
proach which allows to take into account more structural information. The model for-
mulation is based on a detailed description of the viral replication mechanism on the
single cell level presented in [41]. The resulting high dimensional population balance
model requires the application of an efficient numerical solution technique. Therefor,
in the the second part, an efficient approximate moment method is developed which
based on a combination of the direct quadrature method of moments [70] and a specific
choice of the abscissas applying monomial cubatures [107]. The method is evaluated
for several benchmark processes which can be represented by low dimensional popula-
tion balance models. Furthermore, performance is extensively discussed for a generic
five dimensional model of viral replication in a multi cellular system. The technique
represents a good trade off between computational effort and accuracy of the solution
and thus enables an efficient numerical solution of high dimensional population balance
models.

Finally, the method is applied to the high dimensional population balance model for
influenza A virus replication in cell cultures. It is shown that an increasing cell-to-
cell variability negatively affects the overall virus yield. In addition, the application of
genetically modified cell lines for improvement of the vaccine production is discussed.
In practice these can be achieved using e.g. transduction techniques. However, not all
cells are modified with the same efficiency. Therefore, a certain degree of variance w.r.t.
the cell specific virus production rate is expected. A model based analysis shows that
even for a relatively large heterogeneity a significant increase in the overall virus yield
is obtained.



“But still try, for who knows what is possible.”
Michael Faraday
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1. Introduction

1.1. Motivation

Particulate process systems are found in a broad field of process engineering applications
in which single particles or individuals differ from each other with respect to certain
characteristic properties. These variations arise in result of interaction with a temporal
or spatially heterogeneous environment or stochastic behavior on the single particle
scale.

Examples from chemical processes include agglomeration [89], granulation [115, 91],
crystallization [8, 58, 63] and coating processes [37]. Here, nonuniform process param-
eters (e.g. spatial gradients of temperature or solute concentration) and nonuniform
process steps, e.g. nucleation, grinding and sieving, can result in significant particle-
to-particle variabilities with respect to physical properties like characteristic size and
shape. Furthermore, interactions between particles, e.g. fusion of two particles or parti-
cle breakage, and effects at the single particle level, e.g. non ideal moisture distribution
over a spherical particle, contribute to this heterogeneity. An example is depicted in
Fig. 1.1a. It is clearly seen that the shown crystals exhibit a large variance w.r.t. char-
acteristic size and shape.

Further examples for particulate process are found in bioprocess engineering applica-
tions where multi cellular systems are involved, e.g. cultivation of yeast [124, 122, 75],
biopolymer production in microorganisms [28, 27] and vaccine production processes
[103]. As in the aforementioned examples, nonuniformity of cells with respect to phys-
ical properties, like size and shape, but also with respect to intracellular composition
is observed. Besides nonuniformity in the process conditions, unsynchronized cell cy-
cles, age distributions [78], stochastic effects on the gene expression level and bistable
behaviour on the single cell level (e.g. cell proliferation [14, 42] or apoptosis induction
[24]) play a major role in the formation of these heterogeneities. A typical example for
cell-to-cell variability, which is a common feature of multi cellular systems, can be seen
in Fig. 1.1b. Here, bacteria can be distinguished with respect to their characteristic
length.

The described variances within the particle ensemble may have significant effects on
the processes and the quality of the overall products affecting e.g. storage ability or
drug efficiency. A sophisticated mathematical description accompanied by thorough
experimental work contributes to a better understanding of the overall processes and
provide a basis for the design of suitable process intensification and process control
schemes.

1



2 CHAPTER 1. INTRODUCTION

(a) Microscopic picture of mandelic acid crys-
tals; single crystals differing w.r.t. size and
shape

(b) Microscopic picture of Rhodospirillum
rubrum bacteria cells; cells differ in char-
acteristic length

Figure 1.1.: Examples for heterogeneity within particle ensembles in chemical- and bio-
engineering processes

1.2. Mathematical modeling of particulate systems

Each particle can be characterized by a set of properties of which each can undergo
changes resulting from stochastic or deterministic effects during the process. These ef-
fects can be modeled on the microscopic scale using discrete event systems, ordinary
differential equations and stochastic differential equations, respectively [31, 93]. Tech-
niques like discrete particle methods [15, 17, 3], ensemble simulations [100] and Monte
Carlo methods [123, 31] rely on a large number of realizations of the single particle
dynamics. Yet, usually a large computational effort is involved as the number of single
particle realizations has to be sufficiently high to guarantee reliable statements on the
overall particle ensemble.

Alternatively, instead of treating every particle separately, particles with the same
properties can be categorized within property classes. For infinitesimal classes a corre-
sponding property distribution is obtained which characterizes the particle population.
The dynamics can be described conveniently in the framework of population balance
modeling (PBM) [92]. This technique does not only account for deterministic changes
in the particle properties but can also capture random effects and discrete dynamics
to a certain extent [93]. One of the first accounts of the application of PBM to a par-
ticulate process engineering system is found in the contributions of Hulburt and Katz
[44] describing problems in statistical mechanics. For bioprocesses, one of the first ef-
forts of using partial differential equations to describe a heterogeneous cell population
is given by the von Foerster Equation [84] which was generalized to account for cell-
to-cell variability in terms of intracellular composition [29]. From this on, the PBM
concept was established further and found many applications in chemical process (see
e.g. [10, 12, 61, 85, 97]) and bioprocess engineering (see e.g. [55, 25, 53, 82]).

Main focus in the present thesis is on multi cellular systems. For these, two alterna-
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Direct measurements of cell-to-cell variability

Detailed single cell kinetics

top-down approach

Population balance model

bottom-up approach

Inverse
problem

Continuum

mechanics

(e.g. flow cytometry)

Figure 1.2.: Schematic representation of two alternative population balance modeling
approaches: In the top-down approach measurements of the cell-to-cell vari-
ability are directly modeled. In contrast, bottom-up modeling relies on a
detailed formulation of the kinetics on the microscopic level

tive modeling procedures can be followed for the formulation of a suitable population
balance equation (PBE). A principle scheme of the modeling approaches is shown in
Fig. 1.2. In the following, both approaches and the corresponding challenges will be
discussed.
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1.2.1. Top-down modeling approach

The top-down modeling approach relies on measurements of the cell-to-cell variability.
These are available from sophisticated measurement techniques like video imaging or
flow cytometry, in which a low number of properties, e.g. size, is quantified for a large
number of individuals. These measurements are modeled directly and unstructured
population balance models are obtained which represent low dimensional integro partial
differential equations. Here, global mechanistic kinetics on the cell population level are
used to account for the temporal evolution of the cellular properties.

To adapt these mechanistic kinetics to the available measurements an inverse problem
has to be solved. As some of the mechanistic model parameters may exhibit functional
dependencies on the particle properties, the inverse problem is generally set in an infinite
dimension. This requires the application of elaborate solution techniques. In contrast to
the estimation of constant model parameters for population balance models, for which
a large number on contributions is found (see e.g. [36, 62, 9, 60]), the solution of infinite
dimensional inverse problems has not received much attention (see e.g. [59, 5, 64, 65]).

1.2.2. Bottom-up modeling approach

Due to macroscopic mechanistic kinetics, interpretation, predictive capacity and ac-
curacy of top-down models is limited. Alternatively, a bottom-up modeling strategy
can be pursued. Initial point is a detailed description of the dynamics on the single
cell scale represented by a system of ordinary differential equations. The size of this
system depends on the number of considered cellular properties. In particular for bio-
processes, detailed information from the microscopic single cell level is available from
sophisticated experiments and thus the size of the corresponding system of ordinary
differential equations can become very large easily. To account for heterogeneity with
respect to the cellular properties, the single particle description is transformed to a
structured population balance model. As each particle property translates into an ad-
ditional internal coordinate, high dimensional integro partial differential equations are
obtained. Analytic solutions for these are only found for special cases requiring the
application of numerical solution algorithms.

In contrast to the low dimensional case, standard discretization based methods like
finite difference [66], finite volume [56] and finite element methods [68, 45] can not be
implemented efficiently. This motivated the development of sophisticated extensions
to ease the computational burden. These include alternative discretization schemes
(e.g. [86, 34]), the application of spectral methods (e.g. [67, 112, 11]) and the use of
parallel computing algorithms (e.g. [35]). However, application of discretization based
algorithms is mostly limited to low dimensional population balance models with a
maximum of three coordinates because of the increasing numerical effort. Alternatively,
moment methods can be employed [44, 73]. Here, instead of the full particle property
distribution only specific integral quantities of the distribution, so called moments,
are tracked. However, in most cases a closed set of equations describing the moment
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Figure 1.3.: Basic scheme for viral replication in a multi cellular system: (I) initially,
a small concentration of virions and a large concentration of uninfected
cells, (II) virus particles infect the cells which release replicated virions to
the medium, (III) finally, nearly all cells are infected and virions are highly
concentrated in the medium

dynamics can not be found and approximate moment methods have to be applied.
Within this class the quadrature method of moments [73] is an important representative
which has found many applications to one dimensional population balance models,
e.g. crystallization [2] and precipitation [71]. Several extensions for multi dimensional
population balance equations have been developed, e.g. [118, 119, 120, 121, 12]. Yet,
applications to higher dimensional PBEs with more than three internal properties are
rarely found. Another option for the approximation of moments is the direct quadrature
method of moments [70] which can be implemented more efficiently for high dimensional
problems as also illustrated in this thesis.

1.3. Scope and objectives

Within this thesis major focus is on influenza A virus replication in mammalian cell cul-
tures for vaccine production. A basic scheme is depicted in Fig. 1.3. The virus replicates
in the cells, is then released from the cells to the medium and infects still uninfected
cells resulting in a spreading infection within the cell culture. The aim is the produc-
tion of a large concentration of virus in the medium from a small initial concentration.
The harvested virus is later used for the production of the vaccine. This process rep-
resents an interesting particulate system as the cells are characterized by a significant
cell-to-cell variability with respect to the intracellular composition, i.e. the intracellular
amount of viral compounds. Furthermore, the cell population interacts with a contin-
uous phase accounting for free virus particles. The aforementioned modeling strategies
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can be applied to come up with population balance models for this process and will
both be discussed in this thesis.

Motivated by flow cytometric measurements a top-down population balance model was
developed in a preceding work (see [81, 79]). Model adaption to available data involves
the solution of an infinite dimensional inverse problem. The development of a suitable
solution strategy is the aim of the first part of this thesis.

Based on a detailed description of the viral replication cycle on the single cell level
a bottom-up population balance model of the vaccine production process can be for-
mulated. For numerical solution, an efficient approximate moment method will be de-
veloped and evaluated in the second part of this thesis. Besides a generic model of
the viral replication process benchmarks also include crystallization processes which
demonstrates applicability to other particle processes.

In the third part, the method will be used for an efficient numerical solution of the multi
dimensional population balance equation accounting for cell-to-cell variabilities during
vaccine production. Here, specific interest lies on the modeling of genetically engineered
cell lines which can be used to overcome bottlenecks of viral replication process. These
modifications result in heterogeneity within the cell population affecting the overall
production and thus require detailed analysis.

It has to be mentioned that parts of the results presented in this thesis have been
published in advance and are listed in chronological order in the following:

• Thomas Müller, Robert Dürr, Britta Isken, Josef Schulze-Horsel, Udo Reichl,
Achim Kienle. Population balance modeling of influenza virus replica-
tion during vaccine production - Influence of apoptosis. Proceedings to
21st European Symposium on Computer Aided Process Engineering - ESCAPE
21 (2011), 1336-1340.

• Robert Dürr, Thomas Müller, Britta Isken, Josef Schulze-Horsel, Udo Reichl,
Achim Kienle. Distributed modeling and parameter estimation of in-
fluenza virus replication during vaccine production. Proceedings to 7th
Vienna International Conference on Mathematical Modelling MATHMOD 2012
- Vienna (2012), 320-325.

• Thomas Müller, Robert Dürr, Britta Isken, Josef Schulze-Horsel, Udo Reichl,
Achim Kienle. Distributed modeling of human influenza a virus-host cell
interactions during vaccine production. Biotechnology and Bioengineering
110, 8 (2013), 2252–2266.

• Robert Dürr, Achim Kienle. An efficient method for calculating the mo-
ments of multidimensional growth processes in population balance sys-
tems. The Canadian Journal of Chemical Engineering 92 (2014), 2088–2097.

• Robert Dürr, Thomas Müller, Achim Kienle. Efficient DQMOM for multi-
variate population balance equations and application to virus replica-
tion in cell cultures. Proceedings to 8th Vienna International Conference on



CHAPTER 1. INTRODUCTION 7

Mathematical Modelling MATHMOD 2015 - Vienna (2015), 29–34.

• Robert Dürr, Stefanie Duvigneau, Tanja Laske, Mandy Bachmann, Achim Kienle.
Analyzing the impact of heterogeneity in genetically engineered cell
lines for influenza vaccine production using population balance mod-
eling. 6th IFAC Conference on Foundations of Systems Biology in Engineering
FOSBE 2016 - Magdeburg (2016).

• Robert Dürr, Thomas Müller, Stefanie Duvigneau, Achim Kienle. An efficient
approximate moement method for multi-dimensional population bal-
ance models - Application to virus replication in multi-cellular systems
Chemical Engineering Science (2016), in press.

1.4. Thesis outline

This thesis consists of six chapters which cover the tasks laid out in the motivation:

In the second chapter, a brief introduction to the framework of population balance
modeling is provided. The corresponding mathematical formulations are presented and
the notation of moments is introduced.

The third chapter covers the top down modeling of an influenza vaccine production pro-
cess with mammalian cell cultures. The most important modeling steps which led to the
final population balance model formulation (see [79]) will be presented. Furthermore,
the transformation of the infinite dimensional inverse problem to a finite dimension
using a Hermite spline representation of the functional parameters is discussed. Subse-
quently, the results of the overall model adaption will be discussed and the transition
to the bottom-up modeling approach will be motivated.

In the fourth chapter, an efficient method for the approximate moment closure for
multi dimensional population balance equations, which is based on the direct quadra-
ture method of moments, will be presented. First, the general problem of moment
closure will be explained and the classic formulation of the DQMOM will be given. An-
alytic solutions for the dynamics of abscissas and weights will be derived for processes
which are characterized by particle growth and death. Furthermore, a discrete and a
continuous reformulation is provided for processes including nucleation. Subsequently,
different strategies for the construction of weight and abscissa sets are presented. The
performance will be evaluated for several benchmark problems including crystallization
and viral replication in cell cultures.

In the fifth chapter the developed efficient approximate moment method will be applied
to a high dimensional PBE for influenza virus replication in mammalian cell cultures to
analyze the effects of different levels of parameter heterogeneity on the overall process.
Further, the algorithm is used to analyze the effects of nonuniform genetic modifications
of the host cells on the overall process.
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In the last chapter, the major contributions of this thesis are summarized and an outlook
to possible future research topics is given.



2. The framework of population balance
modeling

In the following, the framework of population balance modeling is introduced as pre-
sented in [92]. In general, each particle or individual, like a single crystal or cell, can be
characterized by its properties. These properties are divided into internal coordinates xi

(describing e.g. internal composition or particle morphology) and external coordinates
xe (i.e. spatial coordinates). Together they form the property state space X = Xi×Xe.
Each individual is characterized by the overall property state vector x = [xi, xe]. If
one is interested in the number of particles within a certain volume of the property
space X̃ ⊆ X, one has to compute the integral

N(t) =

∫

X̃

n(t,x)dx . (2.1)

Here, n(t,x) is the number density function which describes the number of particles in
an infinitesimal volume of the property space.

During a process, individual particle properties and the particle location can change.
These changes correspond to a movement in the property state space. Thus, the number
density function changes and so does in many cases the overall number of particles in
X̃. In the following, spatial gradients are assumed to be neglible. This means that the
overall system is well mixed, i.e. dim(xe) = 0.

The dynamics of the overall number of particles in the control volume is given by

dN(t)

dt
=

d

dt

∫

X̃

n(t,x)dx = Fx(t) + Px(t) (2.2)

where Fx(t) characterizes the net amount of particles entering or leaving the control
volume over its surface of S

X̃
and Px(t) is the net production rate of particles in the

control volume. Introducing transport and production densities, fx(t,x) and px(t,x),
(2.2) can be rewritten as

d

dt

∫

X̃

n(t,x)dx = −
∫

S
X̃

〈fx(t,x), n〉 dsX̃ +

∫

X̃

px(t,x)dx . (2.3)

Here n represents the outward normal vector on S
X̃
. Applying Gauss’ theorem, the

surface integral can be transformed into a volume integral

d

dt

∫

X̃

n(t,x)dx = −
∫

X̃

∇x {fx(t,x)} dx+

∫

X̃

px(t,x)dx . (2.4)

9
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This equation is also known as the integral formulation of the population balance equa-
tion (PBE). Assuming a constant control volume X̃ the corresponding local formulation
can be obtained

∂n(t,x)

∂t
= −∇x {fx(t,x)} + px(t,x) , (2.5)

characterizing the dynamics of the number density distribution. However, the actual
expressions for the transport and production densities depend on the system under
consideration.

2.1. Modeling of transport and production densities

As an example, an ensemble of particles (e.g. a cell culture in a stirred tank reactor)
which differ in one specific property x (e.g. characteristic cell size) is considered. As a
result of cell growth the cells size changes with a specific rate G. Thus, the change in
size of an individual cell can be described by the following ordinary differential equation
(ODE)

dx(t)

dt
= G(t, x) . (2.6)

A change in size can be interpreted as convective transport from an infinitesimal control
volume in the space of the cell size coordinate to the neighboring element. The value
of the transport flux depends on the rate G and the number density n. It is therefore
given by

fx = G(t, x) n(t, x) . (2.7)

The growth velocity may have different effects on the number density distribution,
depending on its functional form: For G = const., all cells grow with the same velocity
and the corresponding number density distribution moves through state space while
keeping its initial shape (see Fig. 2.1a). If for example G ∼ x2, then large cells grow
faster than small ones resulting in a broadening of the initial distribution with increasing
time, which is illustrated in Fig. 2.1b.

As mentioned previously, the production density px(t) characterizes the net amount of
newly born and vanished particles or cells. In general, the following subprocesses can
be distinguished from another

• aggregation/fusion: two or more particles agglomerate and form a new particle
(e.g. clumping of blood cells),

• division/fission: a particle splits and two or more new particles are formed (e.g.
cell division),

• injection/nucleation: new particles are introduced into the considered popula-
tion as a result of interaction with another species (e.g. infection of uninfected
cell with virus injects new cells into the population of infected cells),
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x

n

(a) G = const.

x

n

(b) G ∼ x2

Figure 2.1.: Effect of different growth functions G(t, x) on the evolution of n(t, x); ini-
tial number density distribution is given by the solid curves, final number
density distribution is given by the dashed curves

x

n

(a) D = const.

x

n

(b) D ∼ x2

Figure 2.2.: Effect of different death functions D(t, x) on n(t, x); the initial number
density distribution is given by the solid curves, the final number density
distribution is represented by the dashed curves

• death/withdrawal: individuals vanish with a certain rate (e.g. cell death or
withdrawal of cells from the population via outlet).

In the remainder, focus will be on systems characterized by growth, death and injection.
However, to a certain extent, the methods presented in the following can also be applied
to systems which include aggregation and division. For example cell division in a single
PBE can be rewritten as a series of PBEs characterized by injection and death (see e.g.
[57]).
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The resulting production density can be expressed by

px(t) = −D(t, x) n(t, x) +Nuc(t, x) , (2.8)

where the structure of the death rate D can have effects on the number density distri-
bution: If for example D = const., all individuals die at the same rate (see Fig. 2.2a).
The shape of n is not affected but with increasing time the magnitude is decreasing.
On the other hand, if D depends on the characteristic cell size x (see Fig. 2.2b), some
cells are “favored” for “withdrawal” over others, resulting in a changing shape over
time. In contrast to the reproduction rate, the injection/nucleation rate is generally
not proportional to n.

In result, the overall PBE in the local form for the example above is given by

∂n(t, x)

∂t
+

∂

∂x
{G(t, x) n(t, x)} = −D(t, x) n(t, x) +Nuc(t, x) . (2.9)

If more than one particle property is taken into account, a general multi dimensional
PBE in local form can be obtained in a similar manner

∂n(t,x)

∂t
+∇{G(t,x) n(t,x)} = −D(t,x) n(t,x) +Nuc(t,x) . (2.10)

Here, G is the vector of growth rates that characterizes the change of properties for
each particle.

2.2. Definition of moments

In particular, for the multi dimensional case, it can be difficult to interpret number
density distributions. However, there are integral measures of the number density dis-
tributions, like mean and variance, which are much easier to handle. These quantities
are related to the total moments of a distribution. For a density distribution with Nd

internal properties a total moment is defined as

ml1,...,lNd
(t) =

∫

X

xl11 x
l2
2 · · · xlNd

Nd
n(t,x)dx . (2.11)

Unless it is stated otherwise, the notion “moment” instead of “total moment” is used in
the following. The dynamics of a moment follows from integration of the general PBE
in local form (2.5)

d

dt
ml1,...,lNd

(t) =−
Nd∑

k=1

∫

X

xl11 . . . x
lNd

Nd

∂

∂xk
{Gk(t,x) n(t,x)} dx

−
∫

X

xl11 . . . x
lNd

Nd
D(t,x)n(t,x) dx+

∫

X

xl11 . . . x
lNd

Nd
Nuc(t,x) dx .

(2.12)
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In the case of a one dimensional number density distribution with respect to particle
length and under the assumption of a spherical particle shape, the overall number,
mean length and mean surface of the particle ensemble are given by

Nover = m0 =

∫

X

n(t, x) dx ,

xmean =
m1

m0
=

∫
X

x n(t, x) dx

Nover
,

Amean =
Ages

m0
=

∫
X

π x2 n(t, x) dx

Nover
. (2.13)

However, only for restricted classes of G, D and Nuc the moments can be computed
from a finite set of equations in closed form. Alternatively, an approximate closure can
be employed which will be discussed in detail in the fourth chapter.

2.3. Coupling to other species

Frequently, the dynamics of the number density distribution is coupled to a continuous
phase whose dynamics are given by the system of ODEs

dc(t)

dt
= Dil (cin − c(t)) + fI(t, c(t), I(t, n(t,x))) (2.14)

with Dil being the dilution rate and fI characterizing the integral coupling of particle
ensemble (i.e. dispersed phase) and continuous phase by means of moments or more
general integral quantities I of the number density distribution. A simple example is
found in bioprocess engineering: For the cultivation of cells in a defined environment,
e.g. a stirred tank reactor, it is necessary to provide certain substrates (e.g. fructose and
ammonium). The cell population (i.e. the dispersed phase) is taking up the substrates
dissolved in the continuous phase and metabolizes them. In result, the cells increase in
size or reproduce by means of cell division. The higher the concentration of cells in the
reactor, the higher the uptake rate of substrates. If the necessary substrates are fully
consumed and no new substrates are added to the reactor, the cells will no longer grow
and divide.

Further, the particle ensemble may also be coupled to other cell populations, which can
be described by additional number density distributions. An everyday example is found
in the human body where different immune cell populations influence each other to fight
pathogens. The dynamics of the resulting multi disperse process is characterized by a
system of PBEs. Another example will be presented in the next chapter: Uninfected,
infected and apoptotic cells are considered to account for cell-to-cell variability within
an influenza vaccine production process.





3. Parameter estimation for top-down
population balance model of influenza
vaccine production process

The present chapter is concerned with parameter estimation for a population balance
model describing an influenza virus replication in mammalian cell cultures which was
proposed by Müller et al. [81, 79]. As the model features functional parameters model
adaption involves the solution of an infinite dimensional inverse problem. A solution
strategy will be developed and the resulting parameter estimates will be discussed.
Results of the paramter estimation of this thesis were published in advance in [21].

3.1. Description of the process

Influenza is a highly contagious disease which is caused by infection with the influenza
virus. This virus is classified into subtypes A, B and C. Among those the first is the most
relevant affecting humans. It is characterized by a strong antigenic variability and can
affect a wide range of possible hosts such as several mammal species and birds. It does
not only occur in seasonal waves, but can also cause severe pandemic outbreaks. The
treatment of both pose high demands to the public health care system. Vaccination
is recognized as the best method to prevent infection and a possibly fatal course of
the disease. The vaccine consists of inactivated virus particles which are traditionally
produced in embryonated chicken eggs. This production process is well established and
relatively cheap. However, there are several disadvantages e.g. a limited egg production
capacity and less flexible production process, resulting in a delayed vaccine production
in case of pandemic outbreaks.

Alternatively, cell cultures in bioreactors can be used instead of these “natural reactors”
[30]. In combination with experimental work, mathematical modeling of the production
processes is necessary to gain a deeper understanding of the underlying processes and
to come up with suitable schemes for process intensification and process control.

In the following, the experimental setup will be briefly outlined. For a more detailed
description see e.g. [102, 79]. Adherent Madin-Darby-Canine-Kidney (MDCK) cells
are grown on microcarriers within a small-scale bioreactor. After the microcarriers are
fully covered with a confluent layer of cells, fresh medium is added and the reactor is
inoculated with virus seed. In general, the latter consists of infectious and non-infectious
virus particles. Both have the ability to bind to the surfaces of uninfected cells. However,

15
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the latter fail to initiate a successful viral replication cycle. After being infected, the cells
start to synthesize viral compounds and subsequently fully assembled virus particles
are released to the surrounding medium. Here, they can bind to still uninfected cells.

As in many bioprocesses, cell-to-cell variability is a common feature and has to be taken
into account. In the current process, this heterogeneity is measured in terms of intra-
cellular amount of viral nucleoprotein (NP). These can be measured with fluorescence
microscopy and quantified with sophisticated techniques, e.g. flow cytometry. Such
measurements have not only shown the existence of cell-to-cell variability as a matter
of principle (see Fig. 3.1) but also revealed interesting dynamic phenomena which are
depicted in Fig. 3.2. Most notable are the transient bimodality and the backshift of
the distribution at late sample times. The experimental observations have been the

Figure 3.1.: Fluorescence microscopic measurements showing cell-to-cell variability with
respect to different degrees of fluorescences which are a measure of the
intracellular amount of viral nucleoprotein (NP) [21]

major motivation for the modeling efforts which are documented in the doctoral thesis
of Thomas Müller [79]. There, a population balance model was developed to account
for the described heterogeneous effects. Focus of [79] was on model formulation. Pa-
rameter identification, which is crucial to link the model with the experimental results
was done within the present thesis and will be discussed in the following. Main results
were published in advance together with Thomas Müller [80, 21, 81]. Experimental
data were provided by the Bioprocess Engineering Group of the Max Planck Institute
in Magdeburg.
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Figure 3.2.: Number density distributions for selected sample times; At t = 18h a bi-
modal number density distribution is measured, which vanishes for later
samples; A backshift is observed for late sample times

3.2. Model Formulation

In the following, the development of the distributed model formulation will be summa-
rized briefly following [79].

A first step towards the modeling of the influenza vaccine production processes was
made by Möhler and coworkers [76]. Therein, an unstructured model of the process
was derived characterizing the dynamics of uninfected cells, infected cells and free virus
particles within a system of coupled ODEs. The basic scheme is depicted in Fig. 3.3.
Virus particles are released from infected cells, which are “produced” by infection of
uninfected cells. This model formulation constitutes a modification of the SIR models
from classical epidemiology (see e.g. [83, 87]).

Next, the process description was extended additionally considering apoptosis [104,
102]. Apoptosis is a type of programmed cell death which is induced as a result of
environmental stress or in course of the infection. It is known to be an integral part
of the host cells defense against viral infections (see e.g. [101]). Nevertheless, more
recent research indicates a more complex role within the virus replication cycle [54]. In
fact, the genome of influenza A virus codes different types of proteins that can trigger
both, apoptosis induction as well as apoptosis inhibition. Their interplay manipulates
intracellular pathways which support an efficient replication of the virus within the cell
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Infection

Virus release

Uninfected cells Infected cells

Free virus particles

Figure 3.3.: Basic reaction scheme for model of influenza virus replication in MDCK
cell cultures developed by Möhler and coworkers [76]; Virus particles bind
to uninfected cells; After intracellular replication cycle, new virus particles
are released to the medium

culture. A detailed description of apoptosis and its effects on the viral production cycle
is found in [102] and [79]. In the model formulation of Schulze-Horsel and coworkers
[104] an additional species of apoptotic cells was introduced. Furthermore, the free
virus particles in the medium are subdivided into infectious virions and non-infectious
virions. The corresponding scheme is shown in Fig. 3.4. Apoptotic cells can emerge
from uninfected and infected cells. Within the model formulation it is assumed that
apoptotic cells are in a late stage of apoptosis, in which most intracellular mechanisms
for replication of viral proteins and release of virus to the medium are shut down. In
result, they are not able to replicate the viral genome and release virus particles.

Subsequently, the model formulation was further extended by segregation of the cells
with respect to the intracellular amount of viral nucleoprotein NP. This quantity can
be interpreted as a degree of infection. While focus was first on equine influenza A virus
strains [82], it was shifted later to human influenza A strains [80, 81]. The resulting
model scheme which is adopted from [79] can be seen in Fig. 3.5. Here, the cells are
distinguished with respect to their specific degree of fluorescence ϕ. This quantity is
proportional to the amount of intracellular NP and can be measured directly with flow
cytometry. A more detailed description of the relation between the degree of fluorescence
ϕ and the amount of intracellular NP will be given in the next section. The main
principle is the following: If a cell synthesizes a certain amount of NP, its fluorescence
increases. If NP binds to other viral proteins or is released from the cells within a newly
assembled virus particle, the fluorescence decreases.
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Infection

Virus Release

Apoptosis

Apoptosis

Uninfected cells Infected cells Apoptotic cells

Infectious virions Non-infectious virions

Figure 3.4.: Basic scheme for the model formulation developed by Schulze-Horsel and
coworkers [104]; in addition to Fig. 3.3, apoptotic cells are considered and
infectious and non-infectious virions are distinguished

Flow cytometric measurements of cells in very early stages after inoculation show a
distribution at low degrees of fluorescence (see Fig. 3.2) which is caused by an unspecific
antibody binding during the measurement procedure. This observation is also included
in the model formulation by differentiation of the uninfected cells with respect to their
degree of fluorescence. The dynamics of the uninfected cells are dominated by the
infection of uninfected cells with active (i.e. infectious) virions as uninfected cells can not
replicate viral proteins without being infected. Furthermore, cell death is neglected as
the cell death rate of uninfected cells is considered to be much lower than the cell death
rate of infected cells. In addition, growth can also be neglected for this specific type
of adherent MDCK cells (see [79] for a detailed explanation). With this assumptions
the temporal evolution of the number density distribution of the uninfected cells is
described by

∂uc(t, ϕ)

∂t
= −kviuc(t, ϕ) Vac(t) . (3.1)

After infection (kvi denotes the infection rate coefficient), newly infected cells undergo
a latent phase of length τlat in which the intracellular amount of NP is not increasing.
Thus, the cells retain their specific fluorescence. This lag phase lumps together several
intracellular processes which happen prior to the synthesis of NP, e.g. virus entry into
the cell via endocytosis, uncoating of the viral nucleic acid, nuclear import and RNA
transcription. The dynamics of the latent cell number density distribution is given by

∂lc(t, ϕ)

∂t
= kviuc(t, ϕ) Vac(t)− kviuc(t− τlat, ϕ) Vac(t− τlat) . (3.2)

It has to be mentioned, that cell death of these cell species is not considered within the
model formulation.
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Infection

Apoptosis
Release

Uninfected cells

Apoptotic cells

Latent phase cells

ϕ

ϕ

ϕ

ϕ

τlat

NP production + binding

NP production + binding

Infected cells

Infectious

virions

Non-

infectious
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Figure 3.5.: Detailed scheme for model developed by Müller et al. [81]; all cell species
are segregated with respect to the specific fluorescence degree; virus particles
are released by both, infected and apoptotic cells

Following the latent phase, infected cells start to produce viral NP with rate coefficient
kprod(ϕ) thereby increasing the degree of fluorescence. Simultaneously, NP binds with
coefficient kbind(ϕ) during the formation of viral RNP which causes a decreasing degree
of fluorescence Thus, the net rate coefficient is given by

knet(ϕ) = kprod(ϕ)− kbind(ϕ) . (3.3)

Here, it is assumed that the net rate coefficient depends on the specific degree of
fluorescence ϕ. As NP production is assumed to be faster than NP binding for infected
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cells, the corresponding net coefficient is always assumed positive. In result, the degree
of fluorescence generally increases for infected cells. The overall dynamics of the infected
cells number density distribution is characterized by

∂ic(t, ϕ)

∂t
= kvi uc(t− τlat, ϕ) Vac(t− τlat)−

∂

∂ϕ
{knet(ϕ) ic(t, ϕ)} − kapo(ϕ) ic(t, ϕ) .

(3.4)

In course of the infection and the viral replication cycle, infected cells become apoptotic.
The apoptosis rate is proportional to the coefficient kapo(ϕ) which is also a function
of the fluorescence degree. Note, that in contrast to the model formulation of Schulze-
Horsel and coworkers [104] the apoptotic cells are assumed to be in an early stage of
apoptosis. These are still able to synthesize viral compounds and release virus parti-
cles. However, apoptosis is assumed to affect the viral replication cycle resulting in an
increased formation rate of RNP complexes and a decreased production of NP. Hence,
the overall net rate coefficient

knet,apo(ϕ) = kprod,apo(ϕ)− kbind,apo(ϕ) (3.5)

characterizing the rate of change in fluorescence of apoptotic cells is assumed to be
negative. Furthermore, lysis of apoptotic cells is accounted for by the coefficient kcd(ϕ).
In result, the following PBE describing the apoptotic cell number density dynamics is
obtained

∂ac(t, ϕ)

∂t
= kapo(ϕ)ic(t, ϕ)−

∂

∂ϕ

{
knet,apo(ϕ) ac(t, ϕ)

}
− kcd ac(t, ϕ) . (3.6)

Both, infected and apoptotic cells are assumed to release two types of virus particles,
active (i.e. infectious) and inactive (i.e. non-infectious). The production ratio between
the two is regulated via an efficiency factor Peff ∈ [0, 1]. Furthermore, active virions
degrade to inactive ones with coefficient kdeg. Assuming a well mixed medium, balancing
yields the following dynamics of the concentrations of active virions

∂Vac(t)

∂t
=Peff krel

ϕmax∫

ϕmin

{ic(t, ϕ) + ac(t, ϕ)} dϕ

− kvi Vac(t)

ϕmax∫

ϕmin

uc(t, ϕ) dϕ− kdeg Vac(t) (3.7)

and inactive virions

∂Vinac(t)

∂t
= (1− Peff) krel

ϕmax∫

ϕmin

{ic(t, ϕ) + ac(t, ϕ)} dϕ+ kdeg Vac(t) . (3.8)
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3.3. Numerical solution of the process model

The presented model equations represent a coupled system of PDEs and ODEs. For
the numerical solution this system was reduced to a set of ODEs as presented in [79].
In the following, the major points of the numerical solution method are summarized.

At first, the dynamic equations characterizing uninfected and latent cells were trans-
formed to decrease the computational effort. It is assumed, that in cells from these
species viral NP is neither produced nor bound or released and the infection coefficient
kvi does not depend on ϕ. Thus, the corresponding fluorescence degrees are neither in-
creasing nor decreasing. All necessary information for the fluorescence distributions of
these cell species is contained in the initial distribution of the uninfected cells, which is
time invariant. To obtain time variant distributions of uninfected and latent phase cells,
the time invariant initial distribution has to be multiplied with the time variant overall
numbers of uninfected and latent cells. The resulting dynamics of the overall number
of uninfected cells is given by an ODE. In contrast, the dynamics of the overall number
of latent cells is characterized by a delay-differential equation which can be represented
by a transport system. For the numerical solution, this transport system was reduced
to a set of NCV,lat = 50 ordinary differential equations using a Finite Volume Method.

In the next step, the partial differential equations representing the dynamics of infected
(3.4) and apoptotic cells (3.6) were discretized using a finite volume approach with
NCV = 128 control volumes on a logarithmic grid. The virus release integral in (3.7)
and (3.8) was approximated using the rectangular rule.

Including the dynamics of active and inactive virus particles, the overall size of the
resulting system of ordinary differential equations is given by

NODE = 1 +NCV,lat + 2 ·NCV + 2 = 309 . (3.9)

This system was solved numerically using ode15s in MATLAB.

3.4. Measurement data

All experiments and the corresponding measurements were performed by Josef Schulze-
Horsel. In the following the measurement setup will be briefly reviewed. For a more
detailed description of the measurement procedure see [104] and [102].

3.4.1. Process measurements

To obtain information about the intracellular amount of viral nucleoprotein, sam-
pled cells are stained with fluoresceine-conjugated monoclonal antibodies against NP.
Thereby, a certain amount of NP is assumed as a virus equivalent and can thus be
interpreted as degree of infection. Antibodies binding to their specific antigens cause
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an increase in the measured fluorescence intensity F of the considered cell. In [103] it is
shown, that the change of the intracellular amount of viral NP is linked linearly to the
change in fluorescence intensity. A certain amount of binding antibodies is necessary
to increase the fluorescence intensity by one fluorescence unit FU . In addition, there is
an unspecific antibody binding which affects all types of cells, uninfected, infected and
apoptotic. This leads to the introduction of a more general degree of fluorescence ϕ as
an internal coordinate [79]

ϕ =
F

FVE
. (3.10)

It can be defined as the ratio between the fluorescence intensity of a cell and the change
in fluorescence intensity per virus equivalent FVE which is given by [102]

FVE = 2.661 FU . (3.11)

Depending on the individual fluorescence, sampled cells are categorized into 1024 classes
during flow cytometric analysis. Thus, for each sample time tk the counts for each class

Zi(tk) , for i = 1, . . . , 1024 (3.12)

are available. This implies, that a measured distribution is a sum signal merging the
measurement information about uninfected, latent, infected and apoptotic cell species.
A detailed analysis of experimental data suggests that a simple heuristic differentia-
tion into these classes as often applied in biology is not suitable. In addition to flow
cytometric measurements, the overall cell concentration C(tk) was quantified via cell
counts.

The concentration of active virus particles Vac is quantified by TCID50 titration [43]
and overall virus concentration Vtot was measured with a hemagglutination assay (HA)
[52].

3.4.2. Transformation of flow cytometric data

As the model is solved on a logarithmic grid with NCV control volumes, the available
flow cytometric measurement information has to be transformed to fit the same grid.
Furthermore, it has to be taken into account, that flow cytometric samples only give in-
formation about the fluorescence distribution of a representative number of cells (≈ 104

cells). To map the samples number density distribution to the whole cell culture within
the reactor, each flow cytometric sample has to be scaled with the total concentration
of cells at the corresponding sample time.

Taking both facts into account, the overall concentration of cells within one control



24 CHAPTER 3. TOP-DOWN MODELING

volume c∗i (tk) at sample time tk is given by

c∗i (tk) =

Ñi∑

j=Ñ(i−1)

Zj(tk)

1024∑
j=1

Zj(tk)

C(tk) , for i = 1, . . . , NCV , Ñ = 1024/NCV . (3.13)

3.5. Parameter estimation

The model of the process (3.1)–(3.8) was adapted to experiments with different virus
strains. To determine the unknown model parameters, an inverse problem has to be
solved by minimizing the weighted squared error between data y∗ and model prediction
y [116]

min J = min
{
(y∗ − y)T ·W · (y∗ − y)

}

s.t.
dx

dt
= f(x,p)

y = g(x,p) (3.14)

Therein, f represents the dynamics of the vaccine production process and the operator g
relates the model states to the predicted model output. The model states x correspond
to the discretized number density distributions for the distributed cell species and
the active and inactive virus particle concentrations. The vector of unknown model
parameters p = [pconst,pfunct, ] consists of constant rate coefficients characterizing the
length of the latent phase, the infection rate, the efficiency factor, the virus release rate
and the degradation of active virions

pconst = [τlat, kvi, Peff, krel, kdeg] (3.15)

and functional rate coefficients characterizing net viral protein replication/release, apop-
tosis and cell lysis

pfunct = [knet(ϕ), kapo(ϕ), knet,apo(ϕ), kcd(ϕ)] . (3.16)

The latter depend on the intracellular coordinate ϕ. In result, the inverse problem is
set in an infinite dimension and has to be transformed to a finite dimension which will
be discussed in the following.

3.5.1. Transformation of the inverse problem to a finite dimension

To transform the inverse problem to a finite dimension a finite dimensional representa-
tion of the functional parameters has to be found. In general, two solution approaches
can be applied. In simple cases, some standard functional dependency of the functional
parameter on the intracellular coordinate can be applied (e.g. a Gaussian, see [105]).
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If no prior information on the shape of the functional parameter is available, a general
approximation in terms of basis functions is more reasonable [59, 4, 5, 64, 65].

k◦(ϕ) =

Nk∑

k=1

ak fk(ϕ) . (3.17)

Simple examples for these types of approximations include power series, sums of Gaus-
sians but also piecewise constant approximations. Alternatively, more complex approx-
imation schemes like the piecewise cubic Hermite spline approximation can be applied,
as presented in [59]. Here, cubic polynomials are defined locally on an interval [ϕi−1, ϕi].
This specific approximation is characterized by a continuous first derivative with respect
to ϕ (see Fig. 3.6 for a schematic representation). In result, each functional parameter
is represented by a finite set of value pairs {ϕi , k◦(ϕi)} which determine the locations
and values of the so called spline nodes. If the locations of the nodes are fixed a priori,

k◦(ϕ)

ϕϕi−1 ϕi ϕi+1

Figure 3.6.: Schematic representation of piecewise constant (solid), piecewise linear
(dashed) and piecewise cubic hermite spline interpolation (dash-dotted)

the overall set of unknown parameters is further reduced to

p =[τlat, kvi, Peff, krel, kdeg, knet(ϕ1), . . . , knet(ϕimax), kapo(ϕ1), . . . ,

kapo(ϕimax), knet,apo(ϕ1), . . . , knet,apo(ϕimax), kcd(ϕ1), . . . , kcd(ϕimax)] . (3.18)

The degree of freedom of the corresponding inverse problem can be adjusted by in-
creasing or decreasing the number of nodes characterizing the functional parameters.
In general, a larger degree of freedom in terms of a large number of overall model
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parameters promotes a better fit of the model prediction to the experimental data.
Nevertheless, in doing so one does not only increase the computational effort of the
corresponding optimization problem but probably also worsens the robustness of the
parameter estimation setup. Small deviations in the measurement data would result
in large differences in the estimated parameters. This also poses the question of the
optimal degree of freedom which should be used in the model formulation.

3.5.2. Overall parameter estimation setup

The unknown kinetic parameters are estimated within a nonlinear weighted least squares
framework by minimizing the cost function

min J = min

kmax∑

k=1

eT (tk) ·W (tk) · e(tk) . (3.19)

Therein, the error between measurement y∗(tk) and model output y(tk) is given by

e(tk) = y∗(tk)− y(tk) =




c∗1(tk)
...

c∗NCV
(tk)

V ∗
ac(tk)

V ∗
tot(tk)− V ∗

ac(tk)




−




c1(tk)
...

cNCV
(tk)

Vac(tk)
Vtot(tk)− Vac(tk)




. (3.20)

As explained previously, during flow cytometric measurement no distinction is made
between the cell species. Hence, the corresponding model output, i.e. the simulated
number of all cells with a specific degree of fluorescence, is given by

ci(tk) = Uc,i(tk) + Lc,i(tk) + Ic,i(tk) +Ac,i(tk) for i = 1, . . . , NCV (3.21)

The weighting matrix was chosen according to the measurement variance

W (tk) = W = diag
(
σ−2
i

)
(3.22)

with

σ1,...,NCV
(tk) = max

∀k, i=1,...,NCV

(c∗i (tk))

σNCV+1
(tk) = max

∀k
(V ∗

ac(tk))

σNCV+2
(tk) = max

∀k
(V ∗

tot(tk)− V ∗
ac(tk)) . (3.23)

Thereby, it is assumed that the error variance is proportional to the maximum value of
the corresponding measurement and does not scale with the current measurement.

The optimization was solved numerically using the MATLAB optimization toolbox
function fmincon with the active-set optimization strategy. During the parameter es-
timation, a high sensitivity of the overall estimation setup on the parameter charac-
terizing the duration of the latent phase τlat was revealed. For this reason, a two step
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parameter estimation setup was implemented. At first, τlat was kept fixed and all other
parameters were estimated. In the second step, the optimized parameters from the first
step were kept fixed and the duration of the latent phase was estimated. The overall
estimation setup may trap in local minima. For this reason, the parameter estimation
was performed several times with different initial parameter guesses.

3.6. Results

The mathematical model of the process, represented by (3.1)–(3.8) has been adopted
to measurements with different influenza virus strains using the previously described
numerical solution approach (see [81] and [79]). In the following, focus will be on ex-
periments with a human influenza A/Wisconsin/67/2005 (H3N2) virus strain.

The experiments with H3N2 were performed with an initial uninfected cell concen-
tration of Uc(t = 0) = 1.65 106(ml−1). The initial multiplicity of infection (MOI)
characterizing the ratio of active virus particles and uninfected cells is given by 0.025.
The initial fluorescence distributions of the uninfected cells were adopted from the flow
cytometric sample at 0.25 h post infection (p.i.), i.e. the time after inoculating the
reactor with virus seed. At this short period after seeding, it is reasonable to assume
that the virus particles have not yet altered the cells degree of fluorescence.

3.6.1. Increasing complexity of the functional parameter approximation

At first, it was investigated how an increasing complexity of the functional parameter
approximation improves the fit of the model prediction to the measurement data. The
initial value for the length of the latent phase was chosen as tlat = 5 h.

As presented in Section 3.5.1, the functional parameters characterizing the synthesis
and release of viral NP, the apoptosis and the cell lysis were approximated by Hermite
splines. In result, the unknown functional parameters are represented by sets of con-
stant node values. At first, each of the functional parameters was represented by two
nodes. The nodes are located at the minimum and the maximum value of the degree
of fluorescence. Thereby, the functional parameters exhibit a linear dependency on the
degree of fluorescence, which was already presented in [81]. The simulation results with
the estimated parameter set for the fluorescence distributions are shown and compared
to flow cytometric data in Fig. 3.7. The measurement data show only a slight increase
in the fraction of cells with a higher degree of fluorescence for the sample at 14 h p.i.
which is also observed for the simulation results. At 18 h p.i. a significant bimodality
can be seen with one peak in a region of lower degree of fluorescence and one in a
region of higher degree of fluorescence. The simulation results show, that the bimodal
behavior can be reproduced qualitatively. However, the adapted model matches the
second peak much better than the first one. For late samples at 34 h and 42 h p.i.
the bimodal features have nearly vanished and are only vaguely perceivable. Again,
the model reference matches the measurement data qualitatively. From 54 h p.i. on,
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Figure 3.7.: Influenza A/H3N2: Selected snapshots of flow cytometric data (dotted) in comparison to simulation results for two node
scenario with estimated parameter set given in Table 3.1(solid curves)
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Figure 3.8.: Influenza A/H3N2: Measurements of active and inactive virus particle con-
centration (dots) and simulation results for two node scenario; Estimated
parameter set is given in Table 3.1 (solid curves)

a backshift of the distribution to regions of lower degree of fluorescence can be seen.
Though the backshift can be reproduced qualitatively, there is a significant discrepancy
between measurement and model for later sample times.

In Fig. 3.8 measurement data of the active and inactive virus particle concentrations
in the medium are shown along with the corresponding simulation results with the
estimated parameter set. For the active virions, the model shows good agreement to
the experimental data with the exception of the last sample at 90 h p.i. Furthermore,
at 26 h p.i., the measurements show an unreasonable drop in the active virus particle
concentration. This data point was considered to be an outlier and thus not included
into the estimation procedure. In case of the inactive virus particle concentrations
the model captures the data quite accurate. Note, that the detection limit for the
measurement of the total virus particle concentration is given by 2 107ml−1. Hence,
concentrations below that value can not be detected. This explains the three samples
at 6, 10 and 14 h p.i. which hit the lower limit. The initial value of the inactive virus
concentration was computed from the difference between the initial value of total virus
concentration and the initial concentration of active virions measured by TCID50.

In the next step, the number of nodes for the description of the unknown functional pa-
rameters was increased to three. In result, each functional parameter is now represented
by a Hermite spline on two equidistant intervals between the three nodes. Thus, the
functional dependency is not linear anymore. The remainder of the overall parameter
estimation setup was kept as presented above. As initial values for the constant param-
eters, the resulting estimates which were obtained within the two node scenario were
used. For the functional parameters, initial values for the nodes were interpolated from
the two node scenario. As in the previous case, the estimation routine was repeated
several times with different initial conditions.
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Table 3.1.: Estimated parameters for different degrees of discretization of functional
parameters

Parameter Two nodes Three nodes

kvi (ml h−1) 6.337 10−7 8.775 10−7

krel (h
−1) 597.2 589.1

kdeg (h−1) 0.143 0.138
Peff (−) 3.568 10−2 3.451 10−2

τlat (h) 5 5
J 4.4947 3.7460

In Fig. 3.9 selected snapshot data of the fluorescence distributions are shown in com-
parison to the simulation results with the estimated parameter set. It can be seen, that
the fit of the distributions has improved for snapshots at 14 h p.i.. For 18 h p.i. the
overall deviation between model and data has decreased. However, for the next three
samples an improvement in the fit is not obvious at first sight. In contrast, it can be
seen easily that the model shows better agreement for later samples in comparison to
the two node scenario. The corresponding simulation results for the active and inactive
virus particle concentrations are depicted in Fig. 3.10. As for the cell species, the fit for
the active virus particle concentrations is improved, in particular for late samples.

In Table 3.1 the estimated values for the constant parameters are summarized for both
model adaption scenarios. It can be seen that similar values for the parameters are
obtained. Furthermore, the value of the cost function J decreases from 4.4947 to 3.7460
showing an improved model fit. In Fig. 3.11 the estimation results for the functional
parameters are shown. Similar trends are observed for both estimation setups. It can be
seen that the coefficient characterizing the change of the fluorescence degree in infected
cells knet increases with increasing degree of fluorescence. This can be interpreted as a
kind of auto-catalysis: the more viral templates are available in the cell, the more copies
can be produced. In result, the virus production rate in infected cells increases until they
become apoptotic. The apoptosis parameter is characterized by a very similar functional
dependency. Thus, the probability of an infected cell to become apoptotic increases the
more viral NP is accumulated in the cell. However, for the estimation of the coefficients
for the change of fluorescence and cell death in the apoptotic cell species, different
results are obtained. Using the linear approximation, the net coefficient knet,apo(ϕ) has
its highest absolute value at the upper limit of the degree of fluorescence. The more the
apoptotic cells fluorescence decreases, the more does the net coefficients absolute value
decrease. Hence, the loss of fluorescence intensity is slowed down. Furthermore, the
cell death coefficient kcd(ϕ) increases the more the apoptotic cells move to regions of
lower fluorescence intensity. For interpretation of this behavior it has to be kept in mind
that the model formulation assumes that virus release is larger than virus replication in
apoptotic cells resulting in a generally negative net rate knet,apo(ϕ). Thus the estimated
results suggest that apoptotic cells are more likely to die the longer they are already
apoptotic.
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Figure 3.9.: Selected snapshots of the overall number density distribution for simulation of model with estimated parameters for three
node spline discretization; parameters are given in Table 3.1
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Figure 3.10.: Influenza A/H3N2: Measurements of active and inactive virus particle
concentration (dots) and simulation results for three node scenario; Esti-
mated parameter set is given in Table 3.1 (solid curves)

For the three node scenario the parameter estimation brings up a parabolic shape for
the net coefficient of the apoptotic cells. This means, that cells with either a low or a
very high intracellular amount of NP protein do only move very slowly to a region of
lower ϕ. Furthermore, the estimated cell death coefficient shows an increased value for
high degrees of fluorescence and cells with medium level of fluorescence are less likely
to die than cells with a very high or very low level. One possible explanation may be
that apoptotic cells which are characterized by a very high degree of fluorescence tend
to die instead of staying apoptotic and keeping to release more virus progeny into the
medium.

3.6.2. Variable latent phase times

The described two step parameter estimation revealed, that the estimation of the la-
tent phase length parameter τlat differs only marginally from the initial estimate. This
indicates, that the initial choice of the latent phase length fixes the other parameters.
For this reason, the effect of different initial values on the overall parameter estimation
was analyzed. For the two node scenario the overall estimation procedure was repeated
for different values of τlat.

In Fig. 3.12 and Fig. 3.13 the corresponding simulation results are depicted. In case
of the fluorescence distributions, the model predictions for different latent phase times
τlat show only a slight difference, indicating, that the distributed measurements can be
reproduced with a similar accuracy, independent of the choice of the latent phase length.
This is due to the fact that no measured fluorescence distributions are available within
the considered range of τlat. However, for the viral dynamics the model predictions show
a larger variance. The largest differences are found for early samples of the active virus
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Figure 3.11.: Influenza A/H3N2: Functional parameters characterizing change of flu-
orescence level and apoptosis of infected cells as well as change of flu-
orescence level and cell death of apoptotic cells for two and three node
discretization

concentrations. It is noticeable, that the strong decrease shortly after infection is not
reproduced sufficiently using low values for the latent phase length (τlat = 2, 3, 4 h).
For later sampling times (t > 30 h.p.i.) the model predictions differ only marginally.

The resulting corresponding parameter estimates for the constant parameters are sum-
marized in Tab. 3.2. The corresponding final values of the cost function J show similar
values for most cases, excluding τlat = 7 h where the value is larger. However, in gen-
eral, the prior statement, which suggests, that the fits are similar independently from
the value of the latent phase length, is confirmed. It can be observed that the estimated
virus release rate does not change significantly for increasing latent phase time. Also
the degradation rate coefficient kdeg stays within a narrow range. Solely for τlat = 7 h
an increased value is estimated. In general, it can be seen, that the effective virus re-
lease Peff increases with increasing latent phase length. However, the values remain in
the same order of magnitude. In contrast, for the infection rate coefficient kvi a more
significant increase is observed which ranges over three decades.



34
C
H
A
P
T
E
R

3.
T
O
P
-D

O
W

N
M
O
D
E
L
IN

G

10
1

10
2

10
3

0

1

2

3

x 10
6 t=0.25 h

10
1

10
2

10
3

0

1

2

3

x 10
6 t=14 h

10
1

10
2

10
3

0

5

10

15

x 10
5 t=18 h

10
1

10
2

10
3

0

5

10

15

x 10
5 t=34 h

10
1

10
2

10
3

0

5

10

15
x 10

5 t=42 h

10
1

10
2

10
3

0

2

4

6

8

x 10
5 t=54 h

10
1

10
2

10
3

0

5

10

x 10
5 t=66.17 h

10
1

10
2

10
3

0

2

4

6

x 10
5 t=78 h

10
1

10
2

10
3

0

1

2

3

4
x 10

5 t=90 h

ϕ (−)ϕ (−)ϕ (−)

c
(m

l−
1
)

c
(m

l−
1
)

c
(m

l−
1
)

Figure 3.12.: Simulated distributions of estimated parameter sets (see Tab. 3.2) for different values of τlat=2, 3, 4, 5, 6, 7 h (magen-
ta/blue/green/black/red/cyan)
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Figure 3.13.: Simulated virus concentrations of estimated parameter sets (see Tab. 3.2)
for different values of τlat=2, 3, 4, 5, 6, 7 h (magenta/blue/green/black-
/red/cyan)

Table 3.2.: Estimation results for constant parameter vector pconst for different values
of the latent phase length τlat

τlat (h) kvi (ml h−1) krel (h
−1) kdeg (h−1) Peff (−) J

2 5.314 · 10−8 595.6 0.119 2.956 · 10−2 4.4901
3 1.125 · 10−7 594.2 0.115 2.845 · 10−2 4.5159
4 2.376 · 10−7 598.6 0.121 3.031 · 10−2 4.5752
5 6.337 · 10−7 597.2 0.143 3.568 · 10−2 4.4947
6 8.874 · 10−6 595.7 0.162 4.069 · 10−2 4.4402
7 2.518 · 10−5 592.0 0.363 8.619 · 10−2 4.8940
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Figure 3.14.: Functional parameters for different values of the latent phase length
τlat=2, 3, 4, 5, 6, 7 h (magenta/blue/green/black/red/cyan)

In Fig. 3.14 the functional parameters are shown. It can be seen that estimates of the
rate coefficients characterizing the change of fluorescence and the cell lysis of apoptotic
cells, knet,apo and kcd are robust against changes of the latent phase length. In contrast,
a clear trend is observed for the estimated rate coefficients characterizing the change of
fluorescence in infected cells knet and the apoptosis rate of infected cells kapo. Though,
the general functional dependency, i.e. the coefficients increase with increasing degree
of fluorescence, is preserved, for increasing latent phase length the values of the node
parameters increase.

The parameter estimation results can be explained as follows: the longer the newly
infected cells remain in the latent phase, the later infected cells start to replicate viral
compounds and thus the release of new virus is delayed. Thereby the overall spreading
of the virus within the cell population is delayed. On the other hand, a larger virus
infection rate means, that a larger amount of cells is infected resulting in a larger
amount of newly replicated virions at an early stage of the infection. Thereby, the
overall spreading of the virus within the cell population is accelerated. For this reason,
both effects counteract each other in their effect on the overall virus release: an increase
of τlat is compensated by a larger infection rate coefficient. In the same manner it can be
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reasoned, that for a prolonged latent phase, the shift in the fluorescence distributions
to larger degrees of fluorescence is delayed. This effect is obviously compensated by a
larger net coefficient knet and a larger apoptosis rate.

3.7. Discussion

This chapter was concerned with parameter estimation for a population balance model
describing a vaccine production process as presented in full detail in [81] which was
developed to account for cell-to-cell variability as observed by flow cytometric mea-
surements of intracellular viral NP. The model distinguishes between four distributed
cellular species, namely uninfected, latent phase, infected and apoptotic cells, and two
viral species. Besides unknown constant model parameters, the model contains func-
tional parameters which have been approximated by Hermite splines to come up with
a finite dimensional inverse problem. The resulting distributed model is able to repro-
duce the observed dynamic phenomena, including the characteristic decrease of the
viral concentrations at early stages as well as bimodality and backshift of the fluores-
cence distributions. Furthermore, it was shown that the model fit can be improved by
increasing the complexity of the Hermite spline approximations. Although not every
trait of the data is fully covered, the developed model represents a suitable tool for fur-
ther analysis of the vaccine production process. Following [81], an important question
is, which screws are to turn to improve the overall process. From a practical point of
view, an increase of the maximum virus yield is most important which is significantly
influenced by the virus release rate, as well as the length of the productive time of a
host cell. Though not shown here, the general model structure applies to other human
influenza A virus strains (see [81, 79]) and is expected to be adaptable to other pro-
duction processes which show a similar dynamic behaviour (e.g. production of vaccinia
virus).

To improve the model fit, more complex approximations of the functional parameters
can be implemented. In result, the degree of freedom within the corresponding inverse
problem formulation is increased (e.g. by further increasing the number of representa-
tive Hermite spline nodes). Although an increasing number of free model parameters is
expected to result in an improved model fit, the numerical effort of the corresponding
model parameter estimation setup is increased by means of complexity of the optimiza-
tion problem. Furthermore, a larger set of free model parameters is likely to worsen
condition of the inverse problem which requires more advanced estimation strategies.
Thus, a good trade-off has to be found between the improved fit of data and model
on the one hand and an increasing complexity of the estimation procedure. However,
interpretation of the resulting functional parameter estimates becomes even more chal-
lenging in view of the underlying model assumptions and simplifications.

Furthermore, the results from Section 3.6.2 emphasize the limited biological inter-
pretability of the parameter estimates. Here, the initial choice of the latent phase length
τlat has significant effects on estimates of other model parameters while the correspond-
ing values of the cost function are very similar. It was shown, that larger values of the
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latent phase length are compensated basically by larger values for the infection rate co-
efficient kvi, the rate coefficients in infected cells knet(ϕ) and the apoptosis rate kapo(ϕ).
These results indicate, that the latent phase length can only be roughly identified from
the given data. This situation may be improved using additional measurements, e.g.
flow cytometric measurements at early stages of the process.

In addition to the problems listed above, there is a more basic issue restraining a
detailed biological interpretation of the model results. In fact, the whole intracellular
kinetics including the virus entry, replication of viral compounds, formation of protein
complexes and release of virus progeny but also the complete host cell metabolism is
lumped to only one internal coordinate, namely ϕ, and the length of the latent phase
τlat. To improve the situation, more information on the intracellular state, like cell cycle
state, or on further intracellular compounds like other viral proteins has to be taken
into account to allow a more detailed characterization of the virus host cell interaction.
In principle, these intracellular compounds can also be measured with techniques like
flow cytometry (e.g. matrix protein M1, see [102]).

The most straightforward extension of the current model formulation is to develop an
unstructured but segregated model formulation which categorizes cells with respect to
the degree of infection in terms of a corresponding fluorescence ϕNP and degree of apop-
tosis in terms of a second fluorescence ϕAPO (see [79] for a more detailed discussion).
The latter can be quantified by staining of a suitable apoptosis signal. In consequence
a two dimensional population balance equation would be obtained. Here, the net coeffi-
cients describing the change of the distributions during the process are two dimensional
functional parameters k◦(ϕNP, ϕAPO). To adapt the model to the data, the previously
described solution approach for the inverse problem has to be extended. The gener-
ally unknown functional parameters can be represented by a sum of weighted basis
functions (see e.g. [64]) thereby rendering the infinite dimensional inverse problem to
a finite dimension. Yet, the numerical solution of the overall system of coupled partial
and ordinary differential equations increases the computational effort by a large factor
and a biological meaningful interpretation of the resulting coefficients may be difficult.
Even if the these obstacles could be overcome for a two dimensional model formulation,
further extension to a three or four dimensional model formulation may be necessary.
Here, the numerical effort for model solution and adaption may become unreasonable
large.

As an alternative to this top-down modeling approach a bottom-up modeling approach
can be applied leading to multi dimensional structured PBEs of the process. These
model formulations are based on the detailed description of the dynamics on the single
cell level which are derived from single cell experiments. For the influenza virus repli-
cation in mammalian cells such a detailed model was developed by Heldt et al. [41]. In
Fig. 3.15 the corresponding intracellular reaction scheme is depicted. Even without the
knowledge of further details about the modeled compounds and their kinetics, it can be
easily seen, that the single cell model is characterized by complex interactions of a high
number of intracellular compounds. The corresponding population balance model rep-
resents a high dimensional PDE as each state of a single cell model directly translates to
an internal coordinate. As already mentioned in the first chapter the numerical solution
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Figure 3.15.: Schematic representation of the intracellular reactions for influenza virus
replication according to [41]

of the corresponding PBM is challenging. A first step into this direction for influenza
was presented by Heldt et al. [40]: Within an age-structured model formulation it was
assumed that all cells within the same time post infection have the same intracellular
state. However, further cell-to-cell variability, e.g. with respect to viral RNA synthesis
rates, was neglected. If cells with the same time post infection are assumed to exhibit
cell-to-cell variability resulting from e.g. different gene expression levels, this approach
can not be pursued. Instead, other numerical solution methods for the emerging multi
dimensional PBEs have to be employed which can take into account this heterogeneity,
e.g. moment methods as discussed in the second part of this thesis.





4. Efficient moment approximation for
multi dimensional population balance
equations resulting from bottom-up
modeling

From a mathematical point of view the PBE (2.10) is a multi dimensional first order
partial differential equation that is coupled to a set of ODEs characterizing the con-
tinuous phase (2.14). Analytical solutions can only be found for special cases. Thus,
numerical solution techniques have to be employed. For high dimensional PBEs the
application of discretization based solution techniques like the finite volume method is
limited due to large computational costs. Alternatively, as introduced in Section 2.2,
the PBEs can be reduced to a set of ODEs characterizing the moment dynamics. Only
for special classes of problems, the dynamic moment equations are closing such that
an approximate closure has to be applied in many cases. In the following, approximate
moment methods will be discussed and applied to several benchmark problems.

4.1. Approximate closure for computation of moments

It was already mentioned that the moment dynamics (2.12) can be derived from inte-
gration of the general PBE in local form. In the following, the moment closure problem
will be demonstrated for the simple one dimensional case with Nuc = 0 and D = 0.
Here, the dynamics of arbitrary moments

ml(t) =

∞∫

0

xln(t, x)dx (4.1)

with respect to the internal coordinate x, are given by

dml(t)

dt
= −

∞∫

0

xl
∂

∂x
{G(t, x)n(t, x)} dx . (4.2)

Applying integration by parts, for a constant growth velocity G = const., one obtains

dml(t)

dt
= [G(t, x)n(t, x)]∞0 + l G

∞∫

0

xl−1n(t, x) dx = l G ml−1(t) . (4.3)

41
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In the following, it will be assumed that there are no fluxes over the boundaries

[G(t, x)n(t, x)]∞0 = 0 . (4.4)

Thus the first integer moments are given by

dm0(t)

dt
= 0 ,

dm1(t)

dt
= G m0(t) ,

dm2(t)

dt
= 2 G m1(t) , . . . (4.5)

In this case the moment dynamics are said to be closed as there can always be found
a closed set of equations for the computation of the moment dynamics. Here, moment
dynamics of arbitrary degree can always be described by functions of the lower order
moments.

In contrast, if the growth velocity is a monomial function of the internal coordinate
G(t, x) = xp one obtains the following moment dynamics

dml(t)

dt
= l

∞∫

0

xp+l−1n(t, x) dx = l mp+l−1(t) . (4.6)

Here, the moment dynamics are closed for p = 0, 1 but not for p ≥ 2

dm0(t)

dt
= 0 ,

dm1(t)

dt
= mp(t) ,

dm2(t)

dt
= 2 mp+1(t) , . . .

dml(t)

dt
= l m

l̂
(t) .

(4.7)

as the dynamics of an arbitrary moment ml depend on a higher order moment m
l̂
(t) =

mp+l−1(t). To compute the dynamics nevertheless, these higher order moments could
be replaced by a suitable approximation in terms of lower order moments

m
l̂
(t) ≈ A {m0(t), m1(t), . . . , ml(t)} , (4.8)

resulting in the approximate moment dynamics

dm0(t)

dt
= 0 ,

dm1(t)

dt
= mp(t) ,

dm2(t)

dt
= 2 mp+1(t) , . . .

dml(t)

dt
= l A {m0(t), . . . ,ml(t)} . (4.9)

For a more general case, the approximate closure can be obtained by replacing all higher
order moments within the moment dynamics system.




dm0

dt
dm1

dt
...

dml

dt


 =




f0
(
m0, m1, . . . , ml̂

)

f1
(
m0, m1, . . . , ml̂

)

...
fl
(
m0, m1, . . . , ml̂

)


 ≈




f0 (m0, . . . , A {m0, m1, . . . , ml})
f1 (m0, . . . , A {m0, m1, . . . , ml})

...
fl (m0, . . . , A {m0, m1, . . . , ml})


 . (4.10)

One possible way to find an approximation A is to use a weighted sum of abscissas

m
l̂
(t) ≈ A {m0(t), m1(t), . . . , ml(t)} ≈

Nα∑

α=1

wα(t)x
l̂
α(t) . (4.11)
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Here, xα(t) and wα(t) are the abscissas and corresponding weights and Nα is the overall
number of abscissas. At this point it has to be mentioned that this approximation is
special case of the more general quadrature

∞∫

0

n(t, x)f(t, x)dx ≈
Nα∑

α=1

wα(t)fα(t, xα) , (4.12)

with fα(t, xα) = xl̂α. As presented in [73] the core idea of this quadrature based closure
is that the weights and abscissas can be determined in terms of lower order moments

µl =

Nα∑

k=0

wα(t)x
l
α(t) , k = 0, . . . , 2Nα − 1 . (4.13)

Thus values for the weights and abscissas have can be computed from the following
system of nonlinear equations

m0(t) =

Nα∑

α=1

wα(t) ,

m1(t) =

Nα∑

α=1

wα(t)xα(t) ,

...

m2Nα−1(t) =

Nα∑

α=1

wα(t)x
2Nα−1
α (t) . (4.14)

To obtain a numerical solution of the overall approximate moment dynamics a differ-
ential algebraic equation (DAE) system consisting of (4.10) and (4.14) has to be solved
[33, 32]. Alternatively, the problem can be solved sequentially. The procedure is given
by the following steps:

1. Calculate the initial moments from the given initial distributions

2. Solve the system of nonlinear equations (4.14) via algorithms like the Product
Difference Algorithm [73] or the Wheeler-Algorithm [117] for given moments to
obtain abscissas and weights

3. Approximate the right hand side of (4.10)

4. Solve (4.10) to obtain moments at next time step

5. Repeat steps 2. - 5. until tend

This stepwise algorithm is also known as the quadrature method of moments (QMOM)
[73]. A detailed discussion on convergence properties can be found f.e. in [77].

This formalism can be extended to the more general multi dimensional case using the
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following approximation

ml1,...,lNd
(t) ≈

Nα∑

α=1

wα(t)x
l1
1,α(t) . . . x

lNd

Nd,α
(t) . (4.15)

The previously presented procedure for the approximate solution of the moment dy-
namics remains the same. However, the solution of the according nonlinear system of
equations (4.14) is critical as there is no generalized solution concept as the Product
Difference Algorithm for higher dimensional problems. In fact, it is not clear which
moments are necessary to obtain a reasonable solution for a given number of weights
and abscissas. Alternatively, the direct quadrature method of moments can be applied
which can easily be extended to multi dimensional problems.
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4.2. Moment approximation by direct quadrature method of

moments

The main idea of the direct quadrature method of moments (DQMOM) is to track
abscissas xα and weights wα directly, instead of tracking moments as in the QMOM.
Thus (4.14) has to be solved only once for the initial step but the repetitive solution
would be omitted. The corresponding dynamic equations to characterize the temporal
evolution of abscissas and weights are obtained from the PBE formulation and will be
presented in the following.

4.2.1. Classical derivation for one dimensional PBEs

DQMOM was first introduced by Marchisio and Fox [70]. For reasons of simplicity the
one dimensional case is considered first

∂n(t, x)

∂t
= S(t, x) (4.16)

where the right hand side comprises terms describing particle growth, nucleation and
death processes. Basically, it is assumed that the number density distribution can be
approximated by a weighted sum of delta distributions

n(t, x) =

Nα∑

α=1

wα(t)δ(x − xα(t)) . (4.17)

The delta distribution is defined as

δ(y) =

{
0 , y 6= 0
∞ , y = 0

, (4.18)

with
∞∫

−∞

δ(y)dy = 1 . (4.19)

Thus (4.16) can be written as

∂n(t, x)

∂t
=

Nα∑

α=1

[
∂wα(t)

∂t
δ(x− xα(t))

−
(

∂

∂t
{wα(t)xα(t)} − xα(t)

∂wα(t)

∂t

)
δ′(x− xα(t))

]
= S(t, x) . (4.20)

In course of the process, the number density distribution n(t, x) undergoes changes and
thus the weights and abscissas change over time, accordingly. As already mentioned, the
main idea of the DQMOM is the direct tracking of weights and abscissas. Introducing
the following abbreviations for the dynamics of weights and weighted abscissas

∂wα(t)

∂t
= aα,

∂

∂t
{wα(t)xα(t)} = bα , (4.21)
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the equation simplifies to

Nα∑

α=1

[(
δ(x− xα(t)) + xα(t)δ

′(x− xα(t))
)
aα − δ′(x− xα(t))bα

]
= S(t, x) . (4.22)

Now the moment transform (2.11) can be applied resulting in

∞∫

0

xl
Nα∑

α=1

[(
δ(x− xα(t)) + xα(t)δ

′(x− xα(t))
)
aα − δ′(x− xα(t))bα

]
dx

=

∞∫

0

xl S(t, x)dx . (4.23)

Exploiting the following features of the delta distribution

∞∫

−∞

xlδ(x− xα(t))dx = xlα(t) ,

∞∫

−∞

xlδ′(x− xα(t))dx = −l xl−1
α (t) , (4.24)

yields

Nα∑

α=1

[
(1− l)xlα(t)aα + lxl−1

α (t)bα

]
=

∞∫

0

xlS(t, x)dx ≈ S̃l , (4.25)

where the integral on the right hand side can also be written in terms of a delta
distribution. The equation can be derived for arbitrary moments ml(t) , l = 0, 1, . . . , Nl.
In consequence, the following system of linear equations emerges




1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

...
...

(1− l)xl1 . . . (1− l)xlNα
lxl−1

1 . . . lxl−1
Nα


 ·




a1
...

aNα

b1
...

bNα




=



S̃0

...

S̃l


 . (4.26)

The solution gives the required values aα and bα to be used in (4.21) for the dynamics
of wα(t) and xα(t).

4.2.2. Alternative derivation omitting delta distributions

Alternatively, the previously introduced system of linear equations can be derived with-
out the explicit use of delta distributions, as presented in [111]. This is done by directly
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combining the approximation formula (4.11) with the moment dynamics (2.12)

∞∫

0

xlS(t, x) dx =
dml(t)

dt
=

d

dt

∞∫

0

xln(t, x) dx ≈ d

dt

Nα∑

α=1

xlα(t)wα(t)

=

Nα∑

α=1

[
xlα(t)

dwα(t)

dt
+ l wα(t)x

l−1
α (t)

dxα(t)

dt

]

=
Nα∑

α=1

[
xlα(t)

dwα(t)

dt
+ l xl−1

α (t)

(
dwα(t)xα(t)

dt
− xα(t)

dwα(t)

dt

)]

=

Nα∑

α=1

[
(1− l)xlα(t)

dwα(t)

dt
+ l xl−1

α (t)
dwα(t)xα(t)

dt

]
. (4.27)

Introducing the same abbreviations for the dynamics of weights and weighted abscissas
(4.21) as before yields (4.25).

4.2.3. Solution of the system of linear equations

In contrast to QMOM, the DQMOM does not involve the solution of a nonlinear alge-
braic equation system (4.14). Instead, a system of linear algebraic equations (4.26) has
to be solved.

AOV ·
[
a
b

]
= S̃ . (4.28)

This can be done numerically by applying the inverse

A−1
OVS̃ =

[
a
b

]
(4.29)

where AOV ∈ R
2Nα×2Nα has to be regular for an unique solution. Alternatively, if the

size of S̃ is larger than the number of unknowns (which means that AOV ∈ R
Nk×2Nα is

not quadratic anymore), an approximate solution can be computed using the Moore-
Penrose-Pseudoinverse (see e.g. [90])

[
AT

OVAOV

]−1
AT

OV · S̃ = A∗
OV · S̃ =

[
a
b

]
. (4.30)

However, in some cases the unknowns can be computed analytically. For this reason,
the right hand side is subdivided into parts characterizing the effects of growth, death
and nucleation

S̃ = S̃G + S̃D + S̃N. (4.31)

In the same way the unknowns a and b are divided into corresponding solution parts.
Thus, the solution of the overall system

AOV ·
([

aG
bG

]
+

[
aD
bD

]
+

[
aN
bN

])
= S̃G + S̃D + S̃N (4.32)
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can be obtained by linear combination of solutions of the subproblems

AOV ·
[
aG
bG

]
= S̃G , AOV ·

[
aD
bD

]
= S̃D , AOV ·

[
aN
bN

]
= S̃N . (4.33)

In consequence, the overall dynamics of weights and weighted abscissas are given as
sum of the corresponding dynamics of each single effect.

Solution for pure particle growth processes

If the right hand side of (4.26) is also approximated by the same sum of weighted
abcissas (4.11), the system of linear equations




1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

...
...

(1− l)xl1 . . . (1− l)xlNα
lxl−1

1 . . . lxl−1
Nα


 ·
[
aG
bG

]
=




0
Nα∑
α=1

wαGα

. . .
Nα∑
α=1

wαlx
l−1
α Gα



. (4.34)

A corresponding solution can be computed easily from the first two rows by comparing
the coefficients

dwα(t)

dt
= 0 ,

dxα(t)

dt
= Gα = G(t, xα(t)) . (4.35)

Apparently, the dynamics of the abscissas correspond to the characteristic system of
the corresponding PDE (see Appendix A) and the weights remain constant for pure
growth.

Solution for pure particle death processes

As in the case of a pure particle growth process, the moments on the right hand side
may be approximated by a weighted sum of abscissaas. In consequence,

S̃D =

[
Nα∑
α=1

−wαDα , . . . ,
Nα∑
α=1

−wαx
l
αDα

]T
. (4.36)

The solution of the corresponding subproblem, which can again be obtained by com-
paring the coefficients, is given by

dwα(t)

dt
= −wα(t)Dα = −wα(t)D(t, xα(t)) ,

dxα(t)

dt
= 0 . (4.37)

This implies, that the weights increase or decrease according to the particle death
kinetics but the abscissas do not change within the process.
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Solution for pure nucleation processes

Unfortunately, the solution for pure nucleation problems can not be computed in a
similar easy manner. In fact, the unknown dynamics of weights and abscissas aN and
bN are solution of corresponding linear system of equations

AOV ·
[
aN
bN

]
=




∞∫
0

Nuc dx

∞∫
0

x Nuc dx

...
∞∫
0

xl Nuc dx




. (4.38)

As already mentioned, a solution can be computed by inversion of AOV. As AOV re-
sembles a Vandermonde matrix, it may become ill conditioned easily, in particular if
the number of abscissas Nα is large. To improve the condition, the abscissas may be
normalized. Moreover, the usage of fractional order moments (i.e. l ∈ R) is suggested in
[69]. Furthermore, if two or more abscissas take the same value, AOV becomes singular.
One strategy to circumvent this is to add small random perturbations to the abscissas
[70].

4.2.4. Extension to the multi dimensional case

The principle idea of the DQMOM can be extended directly to multiple dimensions [70].
Here, the number density distribution is represented by multivariate delta distributions

n(t,x) =

Nα∑

α

wα(t)

Nd∏

i=1

δ(xi − xi,α(t)) =

Nα∑

α=1

wα(t)δ (x− xα(t)) . (4.39)

Analogous to the one dimensional case, the following equation can be derived

Nα∑

α=1




(1 −

Nd∑

i=1

li)x
l1
1,α . . . x

lNd

Nd,α
aα +




l1 b1,α
...

lNd
bNd,α




T

·




xl1−1
1,α xl22,α . . . x

lNd

Nd,α
...

xl11,αx
l2
2,α . . . x

lNd
−1

Nd,α








=

∫

X

xl11 . . . x
lNd

Nd
S dx , (4.40)

for an arbitrary moment ml1,...,lNd
. The dynamics of weights and weighted abscissas are

defined as

∂wα(t)

∂t
= aα,

∂

∂t
{wα(t) xi,α(t)} = bi,α . (4.41)
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As in the one dimensional case, for different choices of l = [l1, l2, . . . , lNd
], a system of

linear equations can be constructed

AMV ·




a
b1
...

bNd


 = S̃ . (4.42)

Again the corresponding unknowns can be found by inversion which requires

AMV ∈ R
NMV×NMV , NMV = (Nd + 1)Nα (4.43)

to be regular. The set of moments chosen to build the linear system is of crucial impor-
tance for the stability and performance of the overall algorithm. In fact, the moments
chosen for construction of the matrix are the moments which will be predicted the most
accurate. Thus, moments representing important properties of the number density dis-
tribution should always be included. These could be for example the overall number
of particles and the means with respect to particle properties which are represented
by the zeroth and the first order moments of the distribution. However, the remaining
moments to complete the set have to be chosen with care as some sets result in singular
matrices. There are sophisticated rules for obtaining those sets for Nd = 2, 3 as reported
for example in [69]. As in the one dimensional case the use of fractional moments is
suggested to improve condition of the matrix, in particular for a large set of abscissas.
However, no general rules for the choice of moments exist for higher dimensional cases
with Nd > 3.

Alternatively, the unknowns can be determined using the Moore-Penrose-Pseudoinverse
if AMV is constructed from a moment set which is larger than the number of unknowns

AMV ∈ R
N∗

MV
×NMV , N∗

MV > NMV , NMV = (Nd + 1)Nα . (4.44)

As this strategy is equivalent to a solution of the linear system via linear regression by
minimization of the quadratic error, all chosen moments are approximated equally good.
However, the overall accuracy of the approximation always depends on the problem at
hand.

Nevertheless, analytic solutions can be found analogously to the one dimensional case.
For pure growth the solution is obtained by comparison of the coefficients for the zeroth
and arbitrary first order moments

dwα(t)

dt
= 0 ,

dxi,α(t)

dt
= Gi,α = Gi(t,xα(t)) . (4.45)

The corresponding dynamics of weights and abscissas for a pure particle death process
are given by

dwα(t)

dt
= −wα(t)Dα = −wα(t)D(t,xα(t)) ,

dxi,α(t)

dt
= 0 . (4.46)

The abscissa and weight dynamics of a process with growth and death are given by
summation of (4.45) and (4.46). These solutions are also valid for higher order non
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mixed moments. Furthermore, it can be shown that the solutions are also valid for
arbitrary mixed moments.

In case the nucleation kinetics are not negligible, the corresponding dynamics of weights
and abscissas have to be computed from a linear system of equations (4.42). Here, the
critical points discussed for the one dimensional case also apply for the multi dimen-
sional one: AMV may possibly be ill-conditioned or even become singular in case two
or more abscissas take the same value. Furthermore as already mentioned, it is not
clear which moments have to be chosen on the right hand side of (4.42) to compute the
dynamics of weights and abscissas. To circumvent the numerical solution of the linear
system, an alternative approach which is based on the reformulation of the overall PBE
will be presented next.

4.2.5. Reformulation of nucleation processes

In the following, an alternative problem formulation for the general multi dimensional
PBE (2.10)

∂n(t,x)

∂t
+∇x {G(t,x) n(t,x)} = −D(t,x) n(t,x) +Nuc(t,x) . (4.47)

will be presented. Here, the nucleation Nuc(t,x) is assumed to depend on the time and
the internal coordinates. For simplicity, homogeneous boundary and initial conditions
are assumed

n(t = 0,x) = 0 , n(t,x = 0) = 0 . (4.48)

Discrete reformulation

To circumvent the direct involvement of the nucleation kinetics, the PBE can be ap-
proximated by a series of initial value problems as presented in [57].

n(t,x) ≈
Ndis∑

k=1

nk(t,x) . (4.49)

The principle idea is illustrated for a one dimensional example in Fig. 4.1. For this
purpose, the nucleation kinetics is approximated by a sequence of pulses

Nuc(t,x) =

Ndis∑

k=1

(σH(t− tk−1)− σH(t− tk)) Nuc(tk−1,x)

=

Ndis∑

k=1

(σH(t− tk−1)− σH(t− tk))

(tk − tk−1)
Nuc(tk−1,x) (tk − tk−1) (4.50)

where the Heaviside step function is defined as

σH(t) =

{
0 , t ≤ 0
1 , t ≥ 0

. (4.51)
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Figure 4.1.: Approximation of overall number density n (dotted) by series of initial value
problems for one dimensional case

In the remainder, the normalized pulses of finite width in (4.50)

σH (t− tk−1)− σH (t− tk)

tk − tk−1
(4.52)
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are approximated by Dirac pulses δ (t− tk), which are obtained in the limit tk−1 → tk.
In result, the nucleation kinetics can be approximated by

Nuc(t,x) ≈
Ndis∑

k=1

δ (t− tk, )Nuc(tk−1,x) (tk − tk−1) . (4.53)

With (4.49) and (4.53) the population balance (4.47) reads

∂

∂t

Ndis∑

k=1

nk +∇x

{
G

Ndis∑

k=1

nk

}
= −D

Ndis∑

k=1

nk +

Ndis∑

k=1

δ(t − tk)Nuc(tk−1, x) (tk − tk−1) .

(4.54)

The dynamics of each subpopulation nk(t, x) is given by

∂nk(t, x)

∂t
+∇x {G(t,x) nk(t, x)} = −D(t, x) nk(t, x)

+ δ(t− tk)Nuc(tk−1, x) (tk − tk−1)

nk(t = tk,x) = 0 . (4.55)

Alternatively, one may write

∂nk(t, x)

∂t
+∇x {G(t,x) nk(t, x)} = −D(t, x) nk(t, x)

nk(t = tk,x) = Nuc(tk−1,x) (tk − tk−1) . (4.56)

Applying the DQMOM formalism, each of these PBEs can be represented by a weighted
sum of Nα delta distributions. As each PBE (4.56) is only affected by the growth and
death kinetics, solutions of the corresponding system of linear equations (4.42)-(4.46)
gives the dynamics of the corresponding weights and abscissas

dwk,α(t)

dt
= −Dk,αwk,α(t) = −Dk(t,xα(t))wk,α(t) ,

dxk,α(t)

dt
= Gk,α = Gk(t,xα(t)) .

(4.57)

The initial conditions for the weights and abscissas are calculated from the moments
of nk(t = tk,x) = Nuc(tk−1,x) (tk − tk−1) and are given by

wk,α(t = tk) = winit
α (tk−1) (tk − tk−1) , xk,α(t = tk) = xinit

k,α(tk−1) . (4.58)

Integral quantities of the original problem formulation can now be approximated in
terms of the series representation

∫

X

f(t,x)n(t,x) dx ≈
Ndis∑

k=1

∫

X

f(t,x)nk(t,x) dx

≈
Ndis∑

k=1

Nα∑

α=1

f(t,xk,α)wk,α . (4.59)

In summary, the original problem was reformulated as series of subproblems which
correspond to particle growth/death processes and the nucleation kinetics of the original
problem is shifted to the corresponding initial conditions of the subproblems. The
moments of each subproblem are approximated by weighted sums of abscissas with
dynamics given by (4.57).
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Continuous reformulation

Alternatively, a continuous reformulation of the original problem can be derived by
introducing the age τ of a particle as an additional internal coordinate, as presented in
[29]. The dynamics of the corresponding number density distribution ñ(t,x, τ) is given
by

∂ñ(t,x, τ)

∂t
+∇x {G(t,x) · ñ(t,x, τ)} + ∂ñ(t,x, τ)

∂τ
= −D(t,x) ñ(t,x, τ) (4.60)

with

ñ(t,x, τ = 0) = Nuc(t,x) ,

ñ(t,x, τ = ∞) = 0 . (4.61)

Here, ñ(t, τ > t) = 0 by definition. The original number density distribution is obtained
by integration over all ages

n(t,x) =

∫

X

ñ(t,x, τ) dτ . (4.62)

It can be verified easily that integration of (4.60) over τ results in the original PBE
(4.47).

Up to this point, the Nd dimensional PDE including nucleation and homogeneous
boundary conditions (4.47) has been reformulated as an homogeneous Nd + 1 dimen-
sional PDE (4.60) with nucleation in the boundary conditions (4.61). In the context of
moment approximation via DQMOM this is advantageous as the reformulation (4.60)
is only characterized by growth with respect to x and τ and withdrawal whereas the
nucleation kinetics is shifted to the boundary condition (4.61). In the remainder, the
basic idea of DQMOM is used to approximate age-distributed moments

m̃l(t, τ) =

∫

X

xl11 · · · xlNd

Nd
ñ(t,x, τ) dx (4.63)

in a similar fashion as presented in the upper part of this section. For simplicity, the
following derivation will focus on the one dimensional case Nd = 1. Age-distributed
moments are now approximated by a weighted sum of age-distributed abscissas

m̃l(t, τ) =

∞∫

0

xlñ(t, x, τ) dx ≈
Nα∑

α=1

x̃lα(t, τ) w̃α(t, τ) . (4.64)
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The corresponding moment dynamics are given by

∂m̃l

∂t
=

∂

∂t

∞∫

0

xlñ dx ≈ ∂

∂t

Nα∑

α=1

x̃lα w̃α

=

Nα∑

α=1

[
x̃lα

∂w̃α

∂t
+ w̃α l x̃l−1

α

∂x̃α
∂t

]

=

Nα∑

α=1

[
(1− l)x̃lα

∂w̃α

∂t
+ l x̃l−1

α

∂w̃αx̃α
∂t

]

=

Nα∑

α=1

[
−x̃lαDαw̃α − ∂w̃αx̃

l
α

∂τ
+ l x̃l−1

α w̃αGα

]
, (4.65)

with

D̃α = D(t, x̃α(t, τ)) , G̃α = G(t, x̃α(t, τ)) . (4.66)

For the approximation of the zeroth order age-distributed moment (l = 0) one obtains

Nα∑

α=1

∂w̃α

∂t
=

Nα∑

α=1

[
−D̃αw̃α − ∂w̃α

∂τ

]
(4.67)

and thus by comparison of the coefficients the dynamics of the age-distributed weights
are found as

∂w̃α

∂t
+

∂w̃α

∂τ
= −D̃αw̃α , α = 1, . . . , Nα . (4.68)

Analogous, for approximation of the first order age-distributed moment (l = 1) one
obtains

Nα∑

α=1

[
∂w̃αx̃α

∂t

]
=

Nα∑

α=1

[
−x̃αD̃αw̃α − ∂w̃αx̃α

∂τ
+ w̃αG̃α

]
(4.69)

and together with (4.68)

Nα∑

α=1

w̃α
∂x̃α
∂t

=

Nα∑

α=1

[
−w̃α

∂x̃α
∂τ

+ w̃αG̃α

]
. (4.70)

Comparison of the coefficients on the right and left hand side of this equation gives the
dynamics of the age-distributed abscissas

∂x̃α
∂t

+
∂x̃α
∂τ

= G̃α , α = 1, . . . , Nα . (4.71)

The boundary and initial conditions of abscissas and weights are calculated from mo-
ments of the nucleation distribution Nuc(t, x)

∞∫

0

xlNuc(t, x) dx = ml(t, τ = 0) ≈
Nα∑

α=1

xlα,init(t)wα,init(t) (4.72)
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and are given by

w̃α(t, τ = 0) = wα,init(t) , x̃α(t, τ = 0) = xα,init(t) . (4.73)

Integral quantities like moments are approximated by integration over the age coordi-
nate τ

ml(t) =

∞∫

0

m̃l(t, τ)dτ =

∞∫

0

∞∫

0

xlñ(t, x, τ)dx ≈
∞∫

0

Nα∑

α=1

w̃α(t, τ)x̃α(t, τ)dτ (4.74)

For a one dimensional population balance equation, a set of 2 · Nα one dimensional
PDEs describing the dynamics of weights (4.68) and abscissas (4.71) has to be solved.
It can be derived analogously, that for a Nd dimensional PBE a set of (Nd + 1)Nα one
dimensional PDEs emerges

∂w̃α

∂t
+

∂w̃α

∂τ
= −D̃αw̃α ,

∂x̃1,α
∂t

+
∂x̃1,α
∂τ

= G̃1,α ,

...

∂x̃Nd,α

∂t
+

∂x̃Nd,α

∂τ
= G̃Nd,α ,

α = 1, . . . , Nα , (4.75)

describing the temporal evolution of weights and abscissas.

Alternatively, integration of (4.60) over the internal coordinates yields the dynamics

∂m̃0(t, τ)

∂t
+

∂m̃0(t, τ)

∂τ
=

∫

X

−D(t,x, τ) ñ(t,x, τ)dx (4.76)

of the zeroth order age-distributed moment

m̃0(t, τ) =

∫

X

ñ(t,x, τ) dx (4.77)

for

G · n|∞0 = 0 . (4.78)

If further, it is assumed that all particles of the same age share the same properties, than
the dynamics in the multi dimensional property state space reduces to the following
set of one dimensional PDEs as presented in [38]

∂x̃i
∂t

+
∂x̃i
∂τ

= G̃i , i = 1, . . . , Nd (4.79)

It is worth noting that (4.76) and (4.79) are equivalent to (4.75) for Nα = 1 because

m̃0(t, τ) ≈
∫

X

1∑

α=1

w̃α(t, τ)δ (x− x̃α(t, τ)) dx = w̃1(t, τ) . (4.80)
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Figure 4.2.: Schematic representation of age-distributed reformulation for two dimen-
sional PBE at arbitrary time t > t0; Nuc(t,x) (grey) is approximated by
one abscissa at [x̃1,0, x̃2,0]; age coordinate τ can be viewed as a curve pa-
rameter

In Fig. 4.2, a schematic representation for a two dimensional example with time invari-
ant nucleation kinetics Nuc(t, x1, x2) = Nuc(x1, x2) is depicted. During the process the
particles change their internal states and their number density distribution while new
particles are introduced at [x̃1,0, x̃2,0]. This results in a ribbon like distribution along τ
within the property state space for t > t0. Similar to the method of characteristics (see
Appendix A), the age coordinate τ can be viewed as a curve parameter parameterizing
this ribbon. It can be seen easily that particles of the same age, i.e. the same position
on the ribbon, have the same internal state.



58 CHAPTER 4. EFFICIENT MOMENT APPROXIMATION

4.3. Efficient choice of abscissas

In the previous section it was presented how to come up with dynamic equations for
weights and abscissas for an approximate computation of moments. However, so far no
word was lost on the initial values for the corresponding systems of ODEs (4.41). In
the DQMOM context initial abscissas and weights are chosen based on moments of the
initial number density distribution. The choice of this values represents an important
factor in the performance of the overall moment approximation algorithm and will be
discussed in the following.

The problem at hand is strongly related to the numerical approximation of multi dimen-
sional integrals. The basic idea, which was already presented in the previous chapter,
is to find a sufficiently accurate approximation of a general multi dimensional integral
using a weighted sum of function evaluations

∫

X

f(x)p(x)dx ≈
Nα∑

α=1

wαf(xα) (4.81)

at the abscissas xα. In the standard literature on numerical integration, p is also referred
to as weighting function (see e.g. [16, 107]). In the special case of population balances,
p corresponds to the number density distribution n(t = 0,x) and f(x) is a monomial

ml1,...,lNd
(t = 0) =

∫

X

xl11 · · · xlNd

Nd
n(t = 0,x) dx

≈
Nα∑

α=1

wα(t = 0)xl11,α(t = 0) · · · xlNd

α,Nd
(t = 0) . (4.82)

For the following explanations it is assumed that the initial distribution is normalized

∫

X

n(t = 0,x) dx =

∫

X

n0(x) dx = 1 (4.83)

without loss of generalization.

As already mentioned above, the quality of this initial approximation strongly affects
the overall performance of the moment approximation algorithm: If moments of the
initial distribution are approximated poorly by the initial abscissas and weights, one can
hardly expect that moment approximations during the process are sufficiently accurate.
Usually, a larger number of abscissas comes along with a higher degree of accuracy but
also with increased numerical effort. Hence a good trade off between those requirements
has to be found. The methods for finding the sets of weights and abscissas are often
referred to as cubature rules. Those can be roughly classified into random based and
deterministic rules, where the latter contain product rules and non-product rules (see
e.g. [16, 107]. In the following, different formulas from those classes and their application
for the overall moment approximation algorithm are discussed.
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4.3.1. Random based rules

When applying random based rules, NMC abscissas are determined by random sam-
pling of the integration region. The corresponding numerical integration method is also
known as Monte Carlo Integration [16]. Its popularity is based on the straightforward
generation of abscissas. Furthermore, the accuracy of this method is independent of the
dimension of the problem. In general, the error bound is given by

σMC√
NMC

(4.84)

were NMC represents the number of abscissas, σ2
MC is the variance of the estimated

integral approximation. To increase the accuracy, one can either increase the number
of samples or reduce σMC. If one increases the number of abscissas by a factor of 100,
the error of the approximation is only reduced by a factor of 10. Alternatively, several
variance reducing techniques are available [16]. In the most straightforward approach,
initial abscissas are drawn using the initial distribution as a probability distribution.
In this case all weights are identical

wα =
1

NMC
. (4.85)

This technique is also referred to as Importance Sampling [16], because samples are con-
centrated in regions which contribute most to the overall integral. However, in general
a large number of samples is necessary to cover the whole integration region.

As the number of abscissas is generally very large for random based rules, they are
not a good candidate for an efficient approximation algorithm. However, they will be
used in the following to generate reference solutions to evaluate the accuracy of other
cubature rules.

4.3.2. Product rules

Product rules are multi dimensional extensions of one dimensional quadrature rules.
In the one dimensional case, Gaussian quadrature rules which are based on orthogonal
polynomials can be applied to come up with appropriate sets of NGA abscissas and
weights, e.g. if the initial distribution corresponds to a Gaussian distribution, the Gauss
Hermite rule may be applied [16]. The corresponding integral approximations are exact
for polynomials up to degree 2NGA − 1 in f . These formulas can be extended to multi
dimensional problems by using tensor products of one dimensional weight and abscissa
sets Wi and Si, respectively.

S = S1 ⊗ S2 ⊗ . . .⊗ SNd
, W = W1 ⊗W2 ⊗ . . .⊗WNd

. (4.86)

In result, the overall number of abscissas is given by

NGA = NGA,1 NGA,2 . . . NGA,Nd
. (4.87)



60 CHAPTER 4. EFFICIENT MOMENT APPROXIMATION

In consequence, those rules suffer badly from the curse of dimensionality, as the sizes of
the weight and abscissa sets generally increase exponentially with Nd. This is a major
disadvantage for high dimensional applications and for Nd > 5 product rules are not
considered as a reasonable choice for an efficient approximation of multi dimensional
integrals.

4.3.3. Non-product rules

Non-product rules are advantageous in particular for high dimensional problem. In
contrast to product rules, the initial sets of abscissas and weights are generated directly
in the full problem space instead of tensoring low dimensional Gaussian quadrature
formulas. The basic idea is to exploit special properties of the initial distribution and the
weighting function respectively. In the case of symmetric weighting functions, formulas
can be designed that scale polynomially, in the best case linearly with Nd which makes
them favorable for high dimensional applications.

As an important concept, the notion of generator functions was introduced by Lerner
[56]. These enable an efficient and direct generation of the abscissa and weight set using
permutations and sign combinations. The first three generator functions are given by

1. GFI(0) changes no element in a given vector

2. GFII(±θ) changes one element in a given vector

3. GFIII(±θ,±θ) changes two elements in a given vector

The corresponding distribution of abscissas is depicted in Fig. 4.3 for a two dimen-
sional example. Therein, the parameter θ can be viewed as a measure for the spread
of the abscissas. The abscissas are used to approximate the integral by the already
introduced weighted sum of abscissas. Thereby the abscissas are weighted depending
on their corresponding generator function

∫

X

f(x)n0(x)dx ≈ wIGFI + wII

NII∑

i=1

GFII + wIII

NIII∑

i=1

GFIII . (4.88)

As for the general moment approximation (4.14), the unknown parameters wi and θ
are solutions of a system of nonlinear equations consisting of realizations of (4.88) for
different moments of the initial distribution n0. In case n0 corresponds to a Gaussian
distribution N (0, I) the following nonlinear equation system has to be considered

∫
X

n0dx = 1 ≈ wI +4wII +4wIII

∫
X

x2in0dx = 1 ≈ +2wIIθ
2 +4wIIIθ

2

∫
X

x4in0dx = 4 ≈ +2wIIθ
4 +4wIIIθ

4

...

. (4.89)
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Figure 4.3.: Location of different Generator Functions; GFI (circle), GFII (rhomboids),
GFIII (squares)

In comparison to product rules such non-product rules are characterized by a weaker
approximation power. If only the first and the second order generator functions are used
within the derivation, the resulting cubature rule is exact for monomials up to order
3 in f , for which a particular cubature formula will be discussed in the next chapter.
When additionally taking into account GFIII the corresponding cubature rule will be
exact for monomials up to order 5 in f [98].

4.3.4. Sigma points

In literature on numerical integration techniques (e.g. [16, 107]), a vast amount of
non-product rules for different weighting functions can be found. One rule specifi-
cally tailored to Gaussian weighting functions has received large attention in the last
two decades. The sigma point rule as first introduced by Julier and Uhlmann [51, 50]
has been applied extensively for state and parameter estimation purposes for control
systems within the Unscented Kalman Filter (see [48] and the references therein) as
an alternative to the Extended Kalman Filter. Furthermore, applications include ro-
bust process optimization [88] as well as model discrimination and experimental design
[26, 99].

For the use of the sigma point formula, the initial distribution n(t = 0,x) is assumed
to correspond to a multi dimensional Gaussian distribution N (µ,Σ), where µ is the
vector of mean values and Σ being the covariance matrix. The sets of abscissas and
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Figure 4.4.: Location of Sigma-Points for λSP = 0.1, 2, 5

weights [113] are given by

x0 = µ

xi = µ+
√

λSP +Nd

√
Σi

xi+Nd
= µ−

√
λSP +Nd

√
Σi (4.90)

with
√
Σi being the i-th column of the square root of the covariance matrix and

w0 =
λSP

λSP +Nd

wi = wi+Nd
=

1

2(λSP +Nd)
. (4.91)

In [113], the classical formulation was extended for additional design parameters

λSP = α2
SP(κSP +Nd)−Nd (4.92)

which can be used to control the spread of the abscissas in the state space, as it is
depicted for a two dimensional example in Fig. 4.4 for different values of λSP. This
rule corresponds to a non-product formula which is exact for monomials up to order 3
and scales linearly with dimension NSP = 2 (Nd + 1). Several higher order sigma point
formulas have been proposed to improve the accuracy of the approximation but also
the design procedure for minimal number abscissa sets was shown in [48]. Nevertheless
in this thesis focus will be on the above presented classic formula (4.90) - (4.91).
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4.3.5. Using sigma points for non-Gaussian distributions

Sigma points can only be chosen directly for Gaussian initial conditions. However, if
that assumption is not justified, the sigma point approach has to be modified. For some
types of the initial distribution special transformation formulas exist. For example if
n0 corresponds to a one dimensional logarithmic normal distribution L(µL, σL) the
transformed set can be computed as follows [98]

1. sigma points xi are computed for N (0, 1) according to (4.90)

2. the transformed sigma point set is then given by

xi,L = exp (µL + σLk
xi) , i = 1, . . . , Nα (4.93)

3. the set of weights is not changed within the transformation procedure and is given
by (4.90)

Further examples for those transformation formulas include Gamma- and t-Student
distributions [98].

Yet, no general transformations exists if n0 contains multimodalities. To improve this
situation a two step procedure is advantageous, which was applied in [96] and [95]
to approximate uncertainties of biological models. At first, n0 is approximated by a
weighted sum of Gaussian distributions

n0(x) ≈
NGMD∑

k=1

wGMD
k N (µk,Σk) . (4.94)

This approximation is also termed Gaussian mixed density (GMD) in some references.
Afterwards, abscissas and weights are determined for each Gaussian applying the stan-
dard sigma point formula. For the overall approximation of the integrals the general
formula (4.81) has to be adapted

∫

X

f(x)n0(x)dx ≈
NGMD∑

k=1

wGMD
k

Nα∑

α=1

wk,αf(xk,α) . (4.95)

The overall number of weights and abscissas is now given by NGMDNα. For more com-
plex distributions (e.g. multi modal on a logarithmic scale) the previously mentioned
approaches can be combined to come up with more accurate approximations.



64 CHAPTER 4. EFFICIENT MOMENT APPROXIMATION

4.4. One dimensional benchmark

First, the performance of the moment approximation algorithm is shown for a one
dimensional growth process as presented in [20]. Focus is on the particle size distribu-
tion n(t, x). Assuming that the process is dominated by particle growth and particle
death/withdrawal, the following PBE characterizing the dynamics of the number den-
sity distribution can be derived

∂n(t, x)

∂t
+

∂

∂x
{G(t, x) n(t, x)} = −D(t, x) n(t, x) . (4.96)

Therein, the coefficients describing the growth and withdrawal of particles are nonlinear
and time variant functions of the internal coordinate x

G(t, x) = exp (gt t)

3∑

l=0

gi x
i ,

D(t, x) = exp (dt t)

3∑

l=0

di x
i . (4.97)

The initial particle distribution is assumed to be Gaussian

n(t = 0, x) = N (µ, σ) . (4.98)

Furthermore, the boundary condition is homogeneous:

[G n(t, x = 0)] = 0 . (4.99)

The dynamics of an arbitrary moment ml are derived using (2.11)

dml

dt
=(3 g3 ml+2 + 2 g2 ml+1 + 1 g1 ml) exp (gt t)+

(d3 ml+3 + d2 ml+2 + d1 ml+1 + d0 ml) exp (dt t)

l = 0, 1, . . . . (4.100)

It is easily seen, that the moment system is non-closing for non-zero coefficients ai.
The numerical values for the coefficients can be found in Table 4.1. Note, that this is a
purely academic example and thus all parameters can be considered dimensionless.

To approximately compute the moments of the number density distribution the DQ-
MOM is applied. For the system (4.96), the dynamics of the DQMOM abscissas and
weights are given by (see Section 4.2.3):

dxα(t)

dt
= Gα = G(t, xα(t)) ,

dwα(t)

dt
= −wα(t) Dα = −wα(t) D(t, xα) ,

α = 1, . . . , Nα . (4.101)

As mentioned in Section 4.2, the abscissas move on the characteristic curves of the PDE
(4.96). Based on the Gaussian initial distribution, the initial values for the abscissas
were calculated according to the sigma point formulas (4.90) and (4.91) with λSP = 2.
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Table 4.1.: Numerical values for coefficients and initial conditions for 1-dimensional
benchmark example

Parameter Value Parameter Value

g0 2.40 10−2 d0 1.00 10−3

g1 4.80 10−4 d1 5.00 10−2

g2 1.44 10−2 d2 1.10 10−2

g3 9.60 10−4 d3 5.00 10−4

gt 2.50 10−2 dt 3.00 10−2

µ 4.00 σ 0.8

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

n
(t
,x

)

t

Figure 4.5.: Dynamics of the particle number density distribution and the SP abscis-
sas for one dimensional benchmark problem; initial number density (solid
curve), final number density (dotted curve)

The overall temporal evolution of the abscissas and the overall number density distri-
bution is depicted in Fig. 4.5. Note, that the full solution was computed with a pseudo
spectral collocation method (see for example [11]), which is described in more detail in
Appendix D. This discretization based solution method for PDEs is characterized by a
discretization of the internal coordinate which is based on Chebychev polynomials. In
contrast to other discretization based methods as the finite volume method, a higher
accuracy can be obtained for an equal degree of discretization. Vice versa, the same
accuracy is achieved with a lower discretization effort, thereby drastically reducing the
computational burden for the numerical solution of a PDE. In the current example
256 grid nodes are used and the reference values for the moments are calculated ap-
plying the Clenshaw - Curtis quadrature which provides a high degree of accuracy for
the used pseudo spectral discretization scheme (see [112]). Furthermore, a standard
QMOM approximation is implemented and compared to both, reference solution and
approximation using DQMOM with sigma point abscissas.

In Fig. 4.6 the computed values of selected moments are shown. The corresponding
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Figure 4.6.: Moment Dynamics for sigma point approach (×) compared to QMOM (◦)
and full solution with pseudo spectral collocation (solid)

relative errors

el(t) =
mref

l (t)−mapprox
l (t)

mref
l (t)

(4.102)

can be seen in Fig. 4.7. As it could be expected, both approximation approaches
show differences compared to the pseudo spectral collocation reference solution. The
QMOM approximation shows only a slight difference compared to the reference solution.
Despite not being as accurate, the approximation of the moments with the DQMOM
and sigma point abscissas is in good agreement to the reference solution and stays within
narrow error bounds (el(t) < 10%). It can also be seen, that the error is increasing for
progressing simulation time in case of moments up to order 3.
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4.5. Two dimensional crystallization

Next, application of the moment approximation technique is shown for a two dimen-
sional population balance arising from the modeling of a crystallization process. Crys-
tallization is an important class of production processes in chemical and pharmaceutical
industries. It is used for manufacturing of a desired product in crystalline form from a
liquid raw material [46]. Crystals are generated from the supersaturated solution and
change their size and shape depending on the concentration of the solution. The crystals
are heterogeneous with respect to specific properties like representative size or shape.

The structure of the following example is adopted from [58] and the example has also
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(a) Schematic representation of batch crystal-
lization in CSTR; crystals of different size
(black) grow in solute (blue); temperature
is kept constant by a cooling jacket (grey)

x1

x2

(b) Schematic representation of internal coor-
dinates for typical crystal in lysozyme crys-
tallization example with dynamics given by
(4.103); x1 and x2 define the distance of
the two representative crystal facets to the
center

Figure 4.8.: Schematic representation of crystallization process and internal coordinates

been presented in similar form in advance in [20]. In [58] a PBE has been derived,
which describes the dynamics of the crystal morphology (or shape) for a lysozyme batch
crystallization process. Therein heterogeneity of the crystals with respect to different
distances of representative crystal facets from the center of the crystal is accounted
for (see Fig. 4.8). Neglecting the effects of nucleation, dispersion and breakage, the
temporal evolution of the crystal morphology can be characterized with the following
PBE

∂n(t, x1, x2)

∂t
=− ∂

∂x1
{G1(t, x1, x2, cSol) n(t, x1, x2)}

− ∂

∂x2
{G2(t, x1, x2, cSol) n(t, x1, x2)} . (4.103)

The growth kinetics of the facets have been modified compared to the original model
formulation and are assumed to depend nonlinear on the facet lengths

G1(t, x1, x2, cSol) = kg,1 Ssat(t)
p1

(
3∑

i=0

g1,i x
i
1

)
,

G2(t, x1, x2, cSol) = kg,2 Ssat(t)
p2

(
3∑

i=0

g2,i x
i
2

)
. (4.104)
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Table 4.2.: Parameters and initial conditions for two dimensional crystallization exam-
ple; all parameters in the dynamics of the crystal morphology distribution
are scaled to the initial number of crystals

Parameter Value Parameter Value

kg,1 2.5 100 kg,2 4.1 100

p1 3.1 100 p2 3.3 100

g1,0 4.0 10−1 g2,0 2 10−1

g1,1 1.0 10−1 g2,1 2 10−1

g1,2 3.0 10−1 g2,2 2 10−1

g1,3 1.3 100 g2,3 1.4 100

ρc 1.02 100 KV 6.0 100

µ 10−1

(
2.0
2.5

)
Σ 10−2

(
0.15 0.08
0.08 0.3

)

cSol(t = 0) 13.35 100

and on the relative supersaturation

S(t) =
cSol(t)− S∗

S∗
. (4.105)

Here, S∗ is the solubility which depends on the temperature of the solution. It is given
by an empirical function

S∗ = 0.0012096 T 3 − 0.010496 T 2 + 0.26159 T + 1.1408 . (4.106)

In the studied example the reactor is assumed to be operated in an isothermal batch
mode at T = 20◦C. As no new solute is added to the reactor, the overall mass of
lysozyme is constant. Thus, the concentration of the solute in the liquid phase will
decrease if the solid phase (i.e. the crystal ensemble) increases its mass. In case of an
ideally mixed liquid phase spatial gradients can be neglected. Hence, the corresponding
dynamics of the solute concentration cSol(t) are given by the following ODE

dcSol(t)

dt
=− ρc KV

∞∫

0

∞∫

0

{
G1(t, x1, x2, cSol) 8

√
2 x1 x22

+G2(t, x1, x2, cSol)
[
16
√
2 x1 x2 − 12

√
2 x22

]}
n(t, x1, x2) dx1dx2 (4.107)

It is assumed, that the initial distribution of crystals can be approximated by a two
dimensional Gaussian N (µ, Σ), with µ and Σ being the vector of mean values and
the covariance matrix, respectively. All process parameters used in the simulation are
summarized in Table 4.2.

Analogous to the one dimensional example the dynamics of the abscissas and weights
are given by

dx1,α(t)

dt
= G1,α(t) ,

dx2,α(t)

dt
= G2,α ,

dwα(t)

dt
= 0 , α = 1, . . . , Nα . (4.108)
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Figure 4.9.: Left: Evolution of sigma point abscissas compared to overall evolution of
n(t, x1, x2) computed with pseudo spectral collocation; Right: Solute con-
centration computed with moment method compared to reference solution
computed by pseudospectral collocation

On basis of the crystals’ Gaussian initial distribution the initial values for the abscissas
and weights are determined from the sigma point formulas (4.90) and (4.91) with the
tuning parameter λSP = 2. The overall numerical effort in terms of number of ODEs is
given by

NODE = (Nd + 1)Nα + 1 = 16 . (4.109)

A reference solution for the overall number density distribution was computed using a
two dimensional pseudo spectral collocation method as suggested in [11] with 64 grid
points for each internal coordinate. The corresponding reference values for the integrals
were computed using a two dimensional Clenshaw-Curtis quadrature, which was gener-
ated by tensoring of two one dimensional Clenshaw-Curtis quadratures. In Fig. 4.9, the
temporal evolution of the abscissas can be seen in comparison to the reference solution
of the number density distribution. As a matter of fact the abscissas move along the
characteristic curves of (4.103). All integral quantities, like arbitrary moments or the
integral characterizing the dynamics of the solute concentration (4.107) are approxi-
mated as a weighted sum of abscissas. It can be obtained from Fig. 4.9 that the solute
concentration calculated from the approximation by the DQMOM shows good agree-
ment to the reference solution. The same statement holds for the approximation of
the moments. In Fig. 4.10 selected moments of the crystal number density distribution
are shown for the approximation via the DQMOM and reference solution with pseudo
spectral collocation, respectively. In addition, the dynamics of the corresponding rela-
tive errors are depicted in Fig. 4.11. It can be seen, that the DQMOM approximation
with sigma point abscissas reproduces the moments accurately. The relative errors stay
within small bounds (eij < 10%). However, the error in the first order moment m10

and the second order moment m20 is increasing with increasing simulation time while
e01 and e02 already seem to have reached a saturation. Additional figures of further
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Figure 4.10.: Selected moment dynamics computed with sigma point approach compared
to moments computed from solution by pseudo spectral collocation
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Figure 4.11.: Relative error between moments computed with sigma point approach and
full reference solution with pseudo spectral collocation

moment dynamics and their corresponding relative error dynamics with respect to the
reference solution can be found in Appendix B.
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4.6. Two dimensional example with nucleation

The benchmark problems shown so far have all been dominated by the particle growth
and withdrawal kinetics while nucleation has been neglected. It was derived in Sec-
tion 4.2 that in case nucleation is non negligible, the DQMOM requires the solution
of a linear system of equations which may cause numerical difficulties. In result, the
accuracy of the approximation can not be guaranteed. To improve this situation, the
corresponding PBE can be reformulated as presented in Section 4.2.5. Application of
the DQMOM formalism yields the dynamics of age-distributed abscissas and weights.
The performance of this approach will be demonstrated in the following for a two
dimensional example.

Consider the previously presented crystallization example and assume that the super-
saturation Ssat(t) is kept constant by applying a suitable control mechanism. Hence,
the dynamics of the solute concentration do not have to be accounted for anymore.
Furthermore, it is assumed that the new crystal seeds are introduced to the system
by a suitable dosing mechanism and that the particle size distribution of the seeds is
normally distributed. The dynamics of the crystal number density distribution is then
given by

∂n(t, x1, x2)

∂t
= − ∂

∂x1
{G1(x1, x2) n(t, x1, x2)} −

∂

∂x2
{G2(x1, x2) n(t, x1, x2)}

+kNuc(t)N (µ,Σ) (4.110)

with the following boundary and initial conditions

n(t = 0,x) = 0 , n(t,x = 0) = 0 . (4.111)

The growth kinetics are given by

G1(x1, x2) =
3∑

k=0

g1,k xk1 , G2(x2, x2) =
3∑

k=0

g2,k xk2 , (4.112)

with parameters given in Table 4.3. As already mentioned above, it is assumed the scaled
number density distribution of the seed crystals corresponds to a Gaussian N (µ,Σ).
The time variant amount of seeds is given by

kNuc(t) =

{
0.1 , if 0.5 ≥ t ≥ 2.5
0 , else

(4.113)

To calculate the moments, the original problem is reformulated by introducing the
age τ of the crystals (see Section 4.2.5). Following the extended DQMOM formalism
presented in Section 4.2.5 the dynamics of age-distributed weights and age-distributed
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Table 4.3.: Parameters and initial conditions for two dimensional crystallization exam-
ple with nucleation; all parameters in the dynamics of the crystal morphology
distribution are scaled to the initial number of crystals

Parameter Value Parameter Value

g1,0 2.0 10−2 g2,0 1.0 10−2

g1,1 6.0 10−2 g2,1 5.0 10−2

g1,2 3.0 10−1 g2,2 5.0 10−2

g1,3 1.3 100 g2,3 2.5 10−1

µ 10−1

(
2.0
2.5

)
Σ 10−2

(
0.15 0.08
0.08 0.3

)

abscissas are given by the following set of PDEs

∂w̃α(t, τ)

∂t
+

∂w̃α(t, τ)

∂τ
= 0 ,

∂x̃1,α(t, τ)

∂t
+

∂x̃1,α(t, τ)

∂τ
=

3∑

k=0

g1,k x̃k1 ,

∂x̃2,α(t, τ)

∂t
+

∂x̃2,α(t, τ)

∂τ
=

3∑

k=0

g2,k x̃k2 ,

α = 1, . . . , Nα (4.114)

with homogeneous initial conditions

w̃α(t = 0, τ) = 0, x̃1,α(t = 0, τ) = 0, x̃2,α(t = 0, τ) = 0 . (4.115)

The corresponding boundary conditions are computed by application of the sigma point
formula (4.91) and (4.90) to the nucleation distribution N (µ,Σ)

w̃α(t, τ = 0) = kNuc(t) w
init
α ,

x̃1,α(t, τ = 0) = xinit1,α ,

x̃2,α(t, τ = 0) = xinit2,α ,

α = 1, . . . , 5 (4.116)

In summary, the approximation of the age-distributed moments requires the solution
of (Nd + 1)Nα = (2 + 1) 5 = 15 first order PDEs. These can be solved efficiently
with a pseudo spectral collocation method [112]. In the current case, the PDEs were
solved with a pseudo spectral collocation on 128 elements. A reference solution for
the moments was computed from the full solution of (4.110) using a two dimensional
pseudo spectral collocation on 64× 64 elements.

In Fig.4.12 selected snapshots of the weight and abscissa dynamics are depicted. It can
be seen, that the age-distributed weight dynamics follow the given nucleation kinetics
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(4.113), which corresponds to the boundary condition (4.116). The age-distributed ab-
scissas undergo change depending on their age τ . The moments approximated from the
numerical solution of (4.114)-(4.116) are calculated by

ml1,l2(t) =

∫

X

xl11 x
l2
2 n(t, x1, x2) dx1dx2 ≈

∞∫

0

5∑

α=1

w̃α(t, τ) x̃
l1
1,α(t, τ) x̃

l2
2,α(t, τ)dτ (4.117)

For the integration over τ , the Clenshaw-Curtis quadrature rule [112] was used. In
Fig. 4.13 and 4.14 the moment dynamics and the corresponding relative errors are
depicted. It can be seen that the approximation using the age-distributed formulation
reproduces the moment dynamics accurately. However, for the approximation of higher
order moments relative errors increase compared to the approximation of lower order
moments.
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Figure 4.12.: Selected snapshots from simulation of age-distributed abscissas and weights (4.114) with pseudo spectral collocation
method
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4.7. Five dimensional benchmark: A structured model of virus

replication in cell cultures

In the previous sections the principle feasibility of the moment approximation technique
was demonstrated. However, only one and two dimensional examples have been used.
Furthermore, the assumed kinetics are relatively simple. In a preliminary work [20] a
five dimensional nonlinear benchmark example was used to evaluate the performance of
the moment approximation algorithm. Numerical results were compared to a reference
solution which was based on a Monte-Carlo approximation of the integrals. Neverthe-
less, no couplings between the growth rates and other states were incorporated.

The presented moment approximation algorithm is developed for application to bottom-
up population balance models of the influenza vaccine production process. For these, the
corresponding high dimensional single cell dynamics are expected to be characterized
by a strong coupling of the intracellular compounds (see scheme in Fig. 3.15).

For this reason in this section, performance of the presented technique will be analyzed
for a more complex example which is characterized by both, coupling as well as non-
linearities. The DQMOM is used to approximate the moments for a generic process
model describing the spread of a viral infection within a cell culture. The model was
adapted from [38]. Therein a description of the single cell viral replication dynamics is
coupled to the dynamics of the cell culture on a macroscopic scale. Note that part of
what follows has been published in advance [22].

In contrast to the top-down model for virus replication in cell cultures which was
topic of the first part of this thesis, the intracellular replication mechanism processes
is considered in more detail. The dynamic model on the single cell scale comprises
the most important parts of the viral replication kinetics, while avoiding a detailed
description of the subprocesses. The basic scheme is depicted in Fig. 4.15 and will be
explained in the following. Virus particles bind to the surface of uninfected cells. After
a virus particle has surpassed the cell membrane, the virus genome is uncoated and
thus a certain amount of viral genetic information [gen] is injected to the cell. From
this, a template viral genomic acid [tem] is produced. It delivers the blueprints for the
replication of further viral genomic acid and viral structural protein [str]. It is assumed,
that the corresponding production rates are catalyzed by intracellular enzymes v1 and
v2. It has to be mentioned that in addition to the original model developed by Haseltine
and coworkers [38, 39] a degradation of the virus template and the structural protein is
modelled. Virus progeny is formed by binding of structural protein and viral genome.
In a final step virus progeny is released from the cell. Balancing of the subspecies yields
the following dynamics on the single cell level in terms of the following coupled system
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gen tem str

Virus Release

Infec�on

v1 v2

Figure 4.15.: Scheme of the intracellular viral replication mechanism adapted from [38];
after infection, template viral genomic acid [tem] is produced from ge-
nomic acid [gen]; the production of viral structural protein [str] is cat-
alyzed by cellular enzymes [v1] and [v2]

of ODEs

ẋ =
d

dt




[tem]
[gen]
[str]
[v1]
[v2]




= h(x) =




k1 [v1] [gen]− k6 [tem]
k3 [tem]− k1 [v1] [gen]− k5 [gen] [str]− k7 [gen]

k2 [tem] [v2]− k4 [str]− k5 [gen] [str]
fv1
fv2




.

(4.118)

Here, fv1 = fv2 = 0 characterize the enzyme dynamics. Alternatively, they can be used
to describe different kinetic processes like enzyme production or degradation, which
could be induced by cellular events like viral infection and apoptosis [22]. Furthermore,
host cell resource limitation can be included choosing a suitable description of the
enzyme dynamics.

To transform the description to the macroscopic scale within the framework of popula-
tion balance modeling, the single cell states directly translate into internal coordinates
of a corresponding PBE. The dynamics of the number density distribution of infected
cells is thus given by

∂ic(t,x)

∂t
= −∇x {h(x) ic(t,x)}︸ ︷︷ ︸

intracellular reactions

+ kinf Uc(t) V (t) I(x)︸ ︷︷ ︸
infection (nucleation)

− kcd,ic(x)ic(t,x)︸ ︷︷ ︸
cell death

. (4.119)
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Here, it is assumed, that infected cells are produced by binding of free virus particles
V to uninfected cells Uc. In view of the introduced definitions in Chapter 2, infection
corresponds to a nucleation process. Cell-to-cell variability for newly infected cells is
taken into account by spreading infected cells into the space of internal properties
according to a normal distribution

I(x) = N (µ,Σ) (4.120)

with mean µ and covariance Σ. In result of the infection the cells undergo apoptosis and
lysis. These cellular processes are summarized as “cell death” and are represented by
the coefficient kcd,ic(x). Its functional dependency on the vector of internal coordinates
is motivated by the common assumption, that apoptosis and lysis can be induced by
specific viral proteins.

In contrast to the infected cells, uninfected cells Uc are not differentiated with respect to
their intracellular composition. In result, their dynamics is represented by the following
ODE

dUc(t)

dt
= −kinf Uc(t)V (t) + kgro,Uc Uc(t)− kcd,Uc

Uc(t) . (4.121)

Therein, kgro Uc(t) and kcd,Uc
Uc(t) characterize the growth and cell death rates of the

uninfected cells, respectively.

At the end of a successful replication, virus particles are released from the infected cells
to the medium with individual rates. These depend on the intracellular state of each
individual cell and is given by

rrel(x) = k5 [gen] [str] . (4.122)

according to the single cell dynamics.

In addition to the dynamics of the cell species, the dynamics of the virus particles in the
medium has to be taken into account. Thereby, an ideally mixed medium is considered.
The overall dynamics of active virus particles are thus determined by the following
ordinary differential equation

dV (t)

dt
=

∫

X

rrel (x) ic(t,x) dx− kinf Uc(t) V (t)− kdeg,V V (t) (4.123)

where the rate coefficient kdeg characterizes the degradation and inactivation of free
virus particles. The integral term on the right hand side represents the virus release of
all individual cells. The simulation results shown in the following are based on the set
of parameter values given in Table 4.4. In contrast to the formulation of Haseltine and
coworkers [38], an unspecified time unit (tu) is used.

4.7.1. Single infection cycle

At first, a single infection cycle is considered. Here, it is assumed, that all cells are
infected and no free virus is present in the medium at the beginning. Thus, the corre-
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Table 4.4.: Parameter values for adapted Haseltine model (4.118) - (4.123)

Parameter Value Parameter Value

k1 3.13 10−4 #−1tu−1 kinf 1 10−8 [Vol]2

cells virions tu

k2 25.00 10−0 #−1tu−1 kcd,ic 5 10−3 tu−1

k3 7.00 10−1 tu−1 kcd,Uc
1.5 10−3 tu−1

k4 2.00 10−0 tu−1 kgro,Uc 3 10−3 tu−1

k5 7.50 10−6 #−1tu−1 kdeg,V 9 10−1 tu−1

k6 1.00 10−1 tu−1

k7 1.40 10−1 tu−1

sponding initial conditions for uninfected and infected cells are given by

Uc(t = 0) = 0
cells

[Vol]
, Ic(t = 0) = Ic,0

cells

[Vol]
. (4.124)

In view of the influenza vaccine production process which was discussed in the first
part of this thesis, this scenario is similar to a small scale experiment where the ini-
tial concentration of virus particles exceeds the concentration of uninfected cells by a
multiple factor. In result, a high initial MOI would be obtained resulting in a quasi-
instantaneous infection of all cells. Thereby, the major part of cellular heterogeneity
would be an effect of initial cell-to-cell variability while heterogeneity resulting from
the delayed infection process is negligible. For this reason, a similar experiment is often
used to determine single cell parameters.

This setup is also very useful to analyze the performance of the presented DQMOM
algorithm. As it is assumed that all cells are initially infected, the infection process

kinf Uc(t) V (t) I(x)︸ ︷︷ ︸
infection (nucleation)

= 0 (4.125)

can be neglected. Thus the dynamics of the corresponding infected cell number density
distribution is now given by

∂ic(t,x)

∂t
= −∇x {h(x) ic(t,x)} − kcd,ic(x)ic(t,x) (4.126)

and initial condition following from the above representations

ic(t,x) = I(x) = Ic,0 N (µ, Σ) , (4.127)

where

µ = [1, 10, 1, 80, 40]T , Σ = 0.05 diag
(
µ2
)
. (4.128)

In the following, focus will be on the approximation of integral quantities of the multi-
dimensional PBE characterizing infected cells and balancing of the free virus particles
(4.123) is neglected for the single cycle infection.
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Next, the accuracy of the presented moment approximation technique will be evaluated.
For the given setup, the initial number of infected cells is normalized to Ic,0 = 1. Thus,
integral values computed in the following can be viewed as normalized quantities. Now,
arbitrary integral quantities of the infected cell number density with respect to the
internal coordinates can be approximated by (4.81)

∫

X

f(x) ic(t,x) dx ≈
Nα∑

α=1

wα(t) f(xα(t)) . (4.129)

As presented in Section 4.2, the dynamics of the weights and abscissas are given by

ẋα(t) =
d

dt




[tem]α
[gen]α
[str]α
[v1]α
[v2]α




= h(xα) , ẇα(t) = −kcd,ic(xα) wα(t) , α = 1, . . . , Nα .

(4.130)

As the initial condition is Gaussian, the sigma point formulas (4.90)-(4.91) can be
applied to determine the initial values for the abscissas and weights wα(t = 0) and
xα(t = 0). The corresponding numerical effort in terms of complexity of the underlying
ODE system is given by NODE,SP = (Nd + 1) Nα.

At first, the effect of the sigma point formula tuning parameter λSP (i.e. the parameter
controlling the spread of the sigma point abscissas in state space, see Section 4.3.4)
on the accuracy of the moment approximation is analyzed. When applied within the
unscented Kalman filter, the tuning parameter has been reported to have a crucial
influence on the performance of the resulting state estimation (see e.g. [113]). This well
known fact is discussed only vaguely within the majority of contributions in the fields
of unscented Kalman filtering and approximated uncertainty propagation, respectively.
In most publications it is stated that means are always approximated with sufficient
accuracy. To the best of the authors knowledge, no general optimization strategy for
the tuning parameters exists. In [98], it is suggested to treat the tuning parameter
as an additional uncertainty affecting the approximation accuracy. For the presented
example the difference in the approximation is shown for four different choices of the
tuning parameter λSP affecting the initial location of theNα = 2Nd+1 = 11 abcissas. To
determine the overall accuracy, approximation via sigma point abscissas are compared
to a reference solution obtained from an approximation with the DQMOM with 104

random abscissas. Their initial values have been determined by an importance sampling
strategy (see Section 4.3.1).

In Fig. 4.16 the approximations of the virus release rate integral

∫

X

rrel(x) ic(t,x) dx ≈
Nα∑

α=1

k5 [gen]α [str]α wα (4.131)

for the different choices of λSP are depicted. It is easily seen, that the initial choice of
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Figure 4.16.: Approximated virus release rate integrals for sigma points using different
λSP = −4.5,−3, 0, 2 values compared to Monte-Carlo approximation (MC)
with 104 abscissas

the sigma points in terms of distance from the nominal mean value µ has an significant
effect on the approximation accuracy. For λSP = 2, the initial abscissas have a wide
spread in state space. The corresponding relative error between approximation and
MC reference evaluation shows, that the relative error exceeds 0.2 at t ≈ 200 tu. When
reducing the distance, the approximation quality improves up to a certain value around
λSP = −3. Here, the relative error is below 0.03 for the whole simulation time. If one
further decreases λSP, the sigma points move near the mean value µ. This means, that
the multi dimensional integral is approximated only in a very small local region around
the mean. For the analyzed virus release integral, the approximation worsens for values
below λSP = −3. In fact, for λSP = −4.5, the maximum absolute error is nearly as large
as for 0 < λ < 2. The specific choice of λSP = 0 is worth an additional comment. Here,
the moment approximation is not affected by the sigma point x0, which is located at the
mean initially as the corresponding weight is given by w0 = 0. Thus the approximation
of moment dynamics using the sigma point abscissas is based on 2 Nα abscissas and
weights.

However, the “optimal” value of λSP seems to depend on the specific integral expression
for which an approximation is sought. A certain value of λSP resulting in the accurate
approximation of one integral may not be the best choice for other integrals, which
will be shown in the following. In Fig. 4.17 and Fig. 4.18, the first and second order
moments with respect to the most important intracellular states [tem], [gen], [str] and
the corresponding relative errors are depicted. When looking at the second moment
with respect to [tem] the approximation with sigma points designed for λSP = −4.5
shows the best accuracy. In contrast, for any other depicted moment the approach with
λSP = −3 outperforms the all other designs. This indicates that the initial location
of the DQMOM abscissas has to be chosen with care. A “good” choice may allow an
accurate approximation of one certain integral but in the meantime approximation
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Figure 4.17.: First and second order moments of ic(t,x) with respect to [tem], [gen], [str]
for λSP = −4.5,−3, 0, 2 values compared to Monte Carlo approximation
(MC) with 104 abscissas

performance with respect to other integral quantities may degrade. As a rule of thumb,
accuracy with respect to the most important quantities, should be ensured instead of
finding a medium accurate solution for a larger class of integral quantities. For the
current case, this means that the virus release integral and the mean values should
be replicated accurately. Furthermore, the simulation results also imply that a good
approximation of initial integrals may not automatically correspond to an accurate
one for later time points. Thus, the tuning factors have to be optimized manually
depending on the problem at hand. Additionally, accuracy of the approximations should
be evaluated against a reference solution if possible.

All of the above mentioned properties can result in massive problems when the pro-
posed approximate moment method is applied within a more complex framework, e.g.
a process optimization or parameter estimation setup, in which the algorithm is applied
successively for varying process models. Here, an underlying optimization of the tuning
parameter λSP in each successive optimization or estimation step is not recommended.

To improve the situation, one may follow the alternative strategy presented in Section
4.3.5. In a first step, the initial distribution is replaced by a sum of NGMD Gaussian
distributions. Note, that in this connection it is not important if the initial distribution
is already Gaussian or has a more general shape. For each of the sub-Gaussian distri-
butions, individual sigma point abscissas are designed for an arbitrary “non critical”
tuning parameter. Here, λSP = 0 or λSP = 3 − Nd is recommended. This means for



84 CHAPTER 4. EFFICIENT MOMENT APPROXIMATION

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1

0.15

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000
−0.2

−0.1

0

0.1

0.2

0.3

 

 

−4.5
−3
0
2

0 200 400 600 800 1000
−0.2

−0.1

0

0.1

0.2

0.3

0 200 400 600 800 1000
−0.2

−0.1

0

0.1

0.2

0.3

[tem] [gen] [str]

e 1
e 2

ttt

Figure 4.18.: Relative errors of first and second order moments of ic(t,x) with respect
to [tem], [gen], [str] for λSP = −4.5,−3, 0, 2

the approximation procedure, that the problem of finding an optimal tuning parame-
ter is traded for an increased numerical effort in terms of a larger set of abscissas. In
general, a larger number of abscissas is related to an improved accuracy which is also
demonstrated with the following simulation example.

Here, the approximation of the initial distribution by a sum of Gaussians was deter-
mined using the expectation maximization algorithm [74] which is implemented within
the MATLAB function fitgmdist [1]. Alternatively, alternative strategies can be applied
to reduce the number of overall abscissas (see e.g. [95]). In the following, simulation
results are shown for integral approximations based on GMD approximations with in-
creasing number of GMDs. The numerical complexity for the three shown cases are
summarized as follows

NODE = (Nd + 1)×NGMD ×Nα = 6× {5, 11, 21} × 11 = {330, 726, 1386} (4.132)

In Fig. 4.19 the dynamics of the overall released virus particles and the correspond-
ing relative errors are shown. It can be seen that the accuracy of the approximation
generally increases if NGMD is increased. The same is observed for the moment dy-
namics which are depicted in Fig. 4.20. Furthermore, the corresponding relative errors
are shown in Fig. 4.21. The first moments with respect to [tem], [gen] and [str] are
approximated with an excellent accuracy as the relative errors do not exceed ±3%. In
contrast, the relative error becomes quite large when using NGMD = 5. This is also seen
for the approximation quality of the second order pure moments where the relative
error exceeds 20% for the lowest shown NGMD. An interesting effect can be seen for the
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Figure 4.19.: Approximated virus release rate integrals on basis of combined GMD-
sigma-point approach compared to reference solution computed with
Monte-Carlo approximation
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Figure 4.20.: Moment dynamics for different NGMD and comparison to Monte-Carlo
approximation with 104 abscissas

second order moment with respect to [tem]. Here, the accuracy of the approximation
based on 21 GMDs is worse compared to 11 GMDs, yet the maximum error is larger
for the latter one. Furthermore, the overall approximation in terms of an integral error
is smaller when using 21 GMDs.
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Figure 4.21.: Relative errors of moment dynamics for different NGMD w.r.t. to Monte-
Carlo approximation with 104 abscissas

For a very large number of Gaussians NGMD the approximation is likely to converge to
a solution obtained by choosing the initial DQMOM abscissas based on a Monte-Carlo
sampling strategy. Expanding this thought, the following strategy can be applied to
come up with a reasonable NGMD to obtain an accurate approximation quality: The
number of Gaussians can be increased step by step until a reasonable approximation
accuracy is obtained. It is motivated by the same strategy used to find a reasonable
discretization when solving PDEs numerically with the finite volume method (see e.g.
[66, 34, 35]). On the one hand, an increasing number of finite volumes comes along with
a better accuracy but on the other hand, the numerical effort increases. Thus, a good
trade off between the two has to be found and it has to be decided for the problem at
hand, if a larger number of abscissas is justified in relation to the improved accuracy
which is expected.

As a final point of this section the Gaussian mixed density approach and the standard
sigma point approach for the choice of the initial DQMOM abscissas will be compared to
other cubature formulas. Details on all formulas are briefly summarized in the following:

1. Mean approximation (ME): Here the ic(t = 0,x) is represented by a single abscissa
which is located initially at the mean µ. The corresponding initial weight is given
by wα = 1. Thus the overall numerical effort in terms of number of ODEs is given
by NODE,ME = Nα(Nd + 1) = 6.

2. Sigma point formula (SP): The sigma point abscissas and weights are determined
by (4.90) and (4.91). The number of ODEs is given by NODE,SP = 66. For the
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present simulation, the tuning factors were chosen based on the recommendations
given in [49]. Therein, for a Gaussian initial condition the following choice of
tuning parameters is suggested

λSP = 3−Nd = −2 , αSP = 1 , βSP = 0 . (4.133)

3. Higher order non product formula (HONP): The abscissas have been determined
with a fifth order monomial cubature rule, which can be found in [98]. Details on
the formula are given in Appendix E. Here the numerical effort scales quadrati-
cally with dimension and thus NODE,HONP = Nα(Nd+1) = (2 N2

d +1) (Nd+1) =
306.

4. Gaussian mixed density approach (GMD): The initial distribution is approxi-
mated by a sum of NGMD = 11 Gaussian distributions using the expectation
maximization algorithm in Matlab. Afterwards for each Gaussian sigma points
are generated. In contrast to the pure sigma point approach, λSP = 0 is chosen
without further tuning. The overall numerical effort is given by NODE,GMD = 660.

5. Gaussian product formula (GA): For the one dimensional case and λSP = 1 the
SP formula (4.90) enables to capture the kurtosis of a Gaussian initial condition
[49]. For each internal coordinate a three point quadrature is thus derived using
the sigma Point formulas. The sets of weights and abscissas are tensored into
the five dimensional space to obtain the overall abscissa and weight set which
was presented as specialized product Gauss formula in [6]. The numerical effort is
given by NODE,GA = 1458.

The reference solution was computed using Monte-Carlo approximation (MC) with
NMC = 104 abscissas.

In a first scenario, it is assumed, that cell death does not depend on the intracellular
composition. An example for this setup can be found when analyzing the effects of
physical or chemical stimuli on the cell, like medium temperature, radiation or pH-
level which affect all cells in the same manner. Furthermore, the enzyme levels remain
constant in course of the infection process. In consequence, the corresponding rates are
given by

kcd,ic(x) = kcd,ic , fv1 = fv2 = 0 . (4.134)

In Fig. 4.22, approximations of the overall number of released virions (4.131) are de-
picted for all listed approaches. It can be seen that most approaches reach a good
accuracy with the GMD approach slightly outperforming the other approaches. In con-
trast, approximation with only one DQMOM abscissa located at the mean exhibits
significant errors. In Fig. 4.23 the approximation of the infected cells zeroth order mo-
ment, i.e. the overall number of infected cells, is shown. The dynamics of arbitrary
abscissa weights can be computed easily as the cell death coefficient is the same for all
abscissas

wα(t) = wα,0 exp {−kcd,ic t} . (4.135)
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Figure 4.22.: Approximations of virus release rate integral for different cubature formu-
las and relative errors w.r.t. to Monte-Carlo approximation
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Figure 4.23.: Overall number of infected cells for different cubature formulas and relative
errors w.r.t. to Monte-Carlo approximation

Hence the overall dynamics of the approximation is given by

m0(t) ≈ exp {−kcd,ic t}
Nα∑

α=1

wα,0 = exp {−kcd,ic t} Ic,0 . (4.136)

This explains the trivial fact that, apart from some very small numerical differences
which are an effect of the numerical solution of the ODEs, all approximations show the
same accuracy. In contrast, the approaches show different accuracies when used for the
approximation of the first and second order pure moments that are found in Fig. 4.24.
Additionally, relative errors are depicted in Fig. 4.25. Similar to the approximation



CHAPTER 4. EFFICIENT MOMENT APPROXIMATION 89

0 500 1000
0

1

2

3

4

 

 
ME
SP
GA

GMD
MC

0 500 1000
0

2

4

6

8

10

12

14

0 500 1000
0

500

1000

1500

2000

0 500 1000
0

10

20

30

40

50

60

70

0 500 1000
0

100

200

300

400

500

600

700

0 500 1000
0

5

10

15
x 10

6

ttt

[tem] [gen] [str]
m

1
m

2

HONP

Figure 4.24.: Approximations of first and second order moments for different ap-
proaches
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of the overall virus release integral, good accuracy is obtained for all approaches apart
from the mean approach (highlighted with a blue curve) for the approximation of the
first moments. However, the GMD approach (cyan) outperforms the other formulas
with a maximum relative error around 1%. The maximum errors of the HONP, SP
and GA approaches are characterized by similar relative errors. In contrast, the SP
approach exhibits larger relative errors than the other approaches (apart from the ME
approach). In particular, this can be seen for the second order moment with respect
to [tem] where the maximum relative error is around 10%. Again, the GMD approach
outperforms the other approaches.

In the second scenario, it is assumed that each cell is characterized by an individual
cell death rate depending on the intracellular composition

kcd,ic(x) = kcd,ic rrel(x) , fv1 = fv2 = 0 . (4.137)

This means, that cells which are characterized by an increased intracellular amount of
viral compounds [gen] and [str] have a lower survival probability than cells that are
characterized by a low amount. Examples for such behavior are found for example for
apoptosis induction (see e.g. [23, 24]) where the amount of certain intracellular species
triggers certain events of the cellular life cycle. Apoptosis is one form of programmed
cell death and is for example induced as a reaction to environmental stress or to viral
infection.

Approximations of the integral virus release for the different approaches can be seen
in Fig. 4.26. The reference solution was again computed using Monte-Carlo integration
with NMC = 104 abscissas. It can be observed, that neither the standard sigma point

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
ME
SP
GA

GMD
MC

Virus release rate

t

HONP

(a) Computed integral approximations

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1
Virus release rate

t
(b) Relative errors

Figure 4.26.: Approximated virus release rate integrals for different cubature formulas
and relative errors w.r.t. Monte-Carlo approximation

approach, nor the higher order non product cubature approach and the Gaussian ap-
proximation are able to approximate the overall virus release rate with a reasonable
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accuracy. In contrast, the GMD approach shows good results. The corresponding rela-
tive error stays within narrow error bounds |e| < 5 %. The same is also observed from
Fig. 4.27 which shows the overall number of infected cells. Compared to the approxi-
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Figure 4.27.: Overall number of infected cells for different cubature formulas and relative
errors w.r.t. Monte-Carlo approximation

mation using the mean value as single abscissa, all other approaches show much better
performance. Again, the GMD approach outperforms the other approaches and stays
within very narrow error bounds (|e| < 2 %). In Fig. 4.28 and Fig. 4.29 approxima-
tions of the first and second order moments are depicted. As for the approximations
of the overall cell number and the overall virus release, all approaches except the GMD
approach result in significant approximation errors for the first order and the second
order moments.
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Figure 4.28.: Approximations of first and second order pure moments for different ap-
proaches
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4.7.2. Multiple cycle infection

In the previous scenario, it was assumed, that all cells are infected initially. This is
not the case for a large scale vaccine production process. In a real production process,
the initial MOI is generally low: A low number of virus particles is used to inoculate
the reactor to obtain a large harvest of replicated virus particles. In the following, the
accuracy of the approximation approaches presented in the previous section will be
shown for this multiple cycle infection scenario.

In contrast to the previous scenario, now initially only virions and uninfected cells are
present and thus the initial conditions are given by

Uc(t = 0) = 108
cells

[Vol]
, V (t = 0) = 103

virions

[Vol]
, Ic(t = 0,x) = 0

cells

[Vol]
. (4.138)

In contrast to the single cycle infection setup, the full PBE (4.119) has to be taken into
account to characterize the infected cell dynamics. To avert the expected numerical
difficulties which may arise from the application of the DQMOM to problems with
nucleation (see Section 4.2.3), the overall problem is reformulated as a series of initial
value problems as presented in Section 4.2.5

∂ic,k(t,x)

∂t
= −∇x {h(x) ic,k(t,x)} − kcd,ic(x) ic,k(t,x) (4.139)

with initial conditions given by

ic,k(t = tk,x) = kinf Uc(tk−1)V (tk−1) I(x) (tk − tk−1)

= Inf(tk)I(x) . (4.140)

Thereby, each of the initial value problems describes the dynamics of cells ic,k(t,x)
which have been infected in the interval [tk−1, tk). Comparing the obtained series
reformulation to the single cycle infection formulation (4.126), it can be seen that
the reformulated multiple cycle infection corresponds to finite number of single cycle
infection scenarios. The number of subpopulations Nk results from the chosen temporal
discretization

t = [t0, t1, . . . , tk−1, tk, tk+1, . . . , tNk
] . (4.141)

Here, a equidistant grid with (tk − tk−1) = 0.5 tu and Nk = 2000 was used. Integral
quantities (i.e. moments, overall virus release rate etc.) can be approximated by

∫

X

fi(x)ic(t,x)dx ≈
Nk∑

k=1

∫

X

fi(x)ic,k(t,x)dx . (4.142)

At this point it has to be emphasized that the intracellular virus kinetics are decoupled
from the extracellular states (i.e. the single cell dynamics of the infected cells (4.118) do
not depend on Uc(t) and V (t) ). Under these circumstances, the overall numerical pro-
cedure can be further simplified [39]. Instead of solving the full problem for the discrete
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reformulation, the single cycle infection scenario is solved only once for a normalized
initial condition

∂i∗c(t
∗,x)

∂t∗
= −∇x {h(x) i∗c(t∗,x)} − kcd,ic(x) i

∗
c(t

∗,x)

i∗c(t
∗ = 0,x) = I(x) = N (µ,Σ) . (4.143)

Arbitrary integral quantities can be approximated using the moment approximation
algorithm presented previously

∫

X

fi(x)i
∗
c(t

∗,x) dx ≈
Nα∑

α=1

fi(x
∗
α(t

∗))w∗
α(t

∗) . (4.144)

Afterwards each of those is multiplied with the corresponding initial condition, i.e.
the number of newly infected cells in the interval [tk−1, tk) (4.140) to obtain integral
approximations for the subpopulations ic,k(t,x).

∫

X

fi(x)ic,k(t,x) dx = Inf(tk)

∫

X

fi(x)i
∗
c(t− tk,x) dx

≈ Inf(tk)

Nα∑

α=1

fi(x
∗
α(t− tk))w

∗
α(t− tk) (4.145)

Thus, the virus dynamics (4.123) can be written as

dV (t)

dt
=

Nk∑

k=1

∫

X

rrel(x)ic,k(t,x) dx− kinf Uc(t) V (t)− kdeg V (t)

=

Nk∑

k=1

Inf(tk)
Nα∑

α=1

rrel (x
∗
α(t− tk))w

∗
α(t− tk)− kinf Uc(t) V (t)− kdeg V (t) .

(4.146)

In the following, the same dependency of the cell death rate on the intracellular com-
ponents as in the second single cycle infection scenario is assumed

kcd,ic(x) = kcd,icrrel(x) = kcd,ick5[gen][str] . (4.147)

The overall uninfected and infected cell concentration dynamics are depicted in Fig. 4.30.
It can be seen, that the concentration of infected cells increases significantly after a cer-
tain delay of round about 300 tu. This is a direct result of the low initial MOI: At the
begin only a small number of uninfected cells gets infected and the infection takes a
certain time to spread through the whole system. On the single cell scale, the viral
replication mechanism and the resulting virus release rate (see Fig. 4.26) additionally
contribute to the delay.

It can be seen that all cubature formulas show nearly the same results for the uninfected
cells, only the approximation which is based on a sole cubature abscissa at the mean
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Figure 4.30.: Multiple cycle infection: Dynamics of cellular species for different cuba-
tures
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Figure 4.31.: Multiple cycle infection: Virus concentration for different cubature formu-
las

of the initial distribution yields significant errors. However, differences are obtained
for the dynamics of the overall number of infected cells. Again, the mean abscissa
approximation shows the worst performance. Other approximation approaches, based
on the standard sigma points, the Gaussian cubatures and the higher order non-product
formula are at least sufficiently accurate for t < 600 tu, but their approximation quality
worsens for larger simulation times. Again, the performance of the Gaussian mixed
density approach stands out and stays very close to the reference computed with a
large number of random abscissas. These statements on the approximation accuracy
are also valid for the overall virus concentration dynamics which are shown in Fig. 4.31
Excluding the mean abscissa approach, all approaches show a good performance for
t < 500 tu but significant errors emerge for larger simulation times where only the
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Figure 4.32.: Multiple cycle infection: Pure moments of the distribution for different
cubatures

Gaussian mixed density approach gives accurate results. The same is observed for the
first and second order pure moments which are depicted in Fig. 4.32. It can be seen
that the approximations based on standard sigma points, the Gaussian cubature or the
higher order non product cubature formula are accurate up to t ≈ 400 tu but show
significant errors for later time points. Again it can be seen, that the GMD stays very
close to the reference solution and provides an accurate approximation.

4.8. Discussion

In the present chapter, it has been shown that a sufficient accuracy of multi dimensional
moments can be achieved using a combination of the DQMOM and special cubature
rules. For one and two dimensional benchmark problems without nucleation, the appli-
cation of the sigma point cubature rule provides sufficient accuracy, yet the choice of
“optimal” sigma points is not clear. For more complex dynamics and a higher number
of internal coordinates, respectively, the application of the approach using the standard
sigma point formula can result in a poor approximation performance. Alternative rules
can be applied as shown for a five dimensional benchmark. Here, the Gaussian mixed
density approach shows superior performance. It can be viewed as a direct extension of
the sigma point approach: the problem of choosing a good sigma point distribution is
omitted by cost of using more abscissas. For an increasing number NGMD of Gaussian
mixed densities, the overall approximation approaches the corresponding Monte-Carlo
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approximation. Thus by successively increasing the number of applied GMDs, a good
approximation accuracy can be easily evaluated. In the current example, trading off
computational expense and accuracy, NGMD = 11 has shown the best performance.
Systems with non-negligible nucleation can also be reformulated as a series of initial
value problems (see Section 4.2.5) or as an age structured system as presented in Section
4.2.5, respectively. For a two dimensional example it was shown that the age-distributed
reformulation of DQMOM can be used to accurately approximate two dimensional mo-
ments when the initial abscissas are chosen with the sigma point formula. However, for
higher dimensional problems and more complex dynamics of the internal coordinates a
larger number of abscissas may be necessary to obtain a sound approximation. As the
age-distributed reformulation of DQMOM requires the numerical solution of (Nd+1)Nα

one dimensional PDEs, a computationally efficient implementation is crucial.





5. Bottom-up modeling of influenza virus
replication in cellular systems

Following the argumentation of Chapter 3 a bottom up model can be formulated based
on a detailed description of the involved single cell dynamics to overcome the limited
interpretability of the top down model.

In [41] a detailed single cell model characterizing the dynamics of the virus replication
mechanism in the cells was presented. A slightly modified single cell model was later
used within an age structured model to describe viral replication in cell cultures to
analyze the effects of direct acting antivirals [40]. This approach is based on the cru-
cial assumption that all cells with the same “age”, i.e. time post infection, have the
same internal state. Further cell-to-cell variability resulting from stochasticity on the
gene expression level, non-synchronicity, or genetic modifications is neglected. These
variances may however have significant effects on the overall process and thus require
detailed analysis.

In this chapter, an extension of previous modeling approaches will be presented which
is able to cope with cell-to-cell variability by means of heterogeneous production rates.
It will be investigated, how different degrees of cell-to-cell variability affect the overall
virus yield of unmodified and modified cell populations. For the solution of the emerg-
ing multi dimensional PBEs the previously presented approximate moment method is
applied. It has to be mentioned that part of what follows is topic of a joint publica-
tion with Tanja Laske and Mandy Bachmann from the BPE group of the Max Planck
Institute Magdeburg [18].

5.1. The single cell model of influenza virus replication

In the single cell model the interactions of a large number of viral components are
considered. The basic scheme is depicted in Fig. 5.1. At this point, the full presentation
of the mathematical model will be skipped, but a short overview of the intracellular
viral reproduction process shall be given. For a detailed description see [41]. All model
equations and parameters can also be found in Appendix F.

Free virus particles VEx attach to the cell surface at binding sites with either high or
low affinity. Attached virus particles (VAtt

hi and VAtt
lo ) either detach again or they are

absorbed via endocytosis resulting in the enclosure of the virus particle VEn by an
intracellular endosome. After fusion of the viral envelope with the endosomal mem-

99
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Figure 5.1.: Basic scheme of the single cell kinetics with affected reaction steps according
to [41]; dashed lines indicate translational and transcriptional steps whereas
solid lines indicate binding reactions

brane the segmented viral genome is released into the cytoplasm in the form of eight
viral ribonucleoprotein complexes (vRNPs). In Fig. 5.1 these vRNPs are denoted as
Vpcyt. Subsequently, they are imported into the nucleus (denoted as Vpnuc) where
transcription into messenger RNAs (mRNAs denoted as RM

1...8) and complementary
RNAs (cRNAs, denoted as RC) takes place. Viral mRNAs migrate to the cytoplasm
where they are translated into viral proteins PA, PB1, PB2, HA, NP, NA, NEP, M1,
and M2 of which the first three form the RNA-dependent RNA polymerase RdRp. In
the nucleus cRNAs are stabilized by consecutive attachment of RdRp and nucleopro-
tein NP forming cRNPs (Cp). In a second step freshly produced cRNPs are used to
synthesize new vRNA molecules, which are also encapsidated by RdRp and NP forming
stabilized progeny vRNPs. By binding of viral matrix protein M1 vRNPs are excluded
from any further participation in the replication cycle (VpnucM1 ). Subsequent attachment
of nuclear export protein NEP initiates the export to the cytoplasm (VpcytM1). Eventu-
ally, all necessary vRNP complexes and viral proteins assemble at the cell membrane to
form progeny virions that bud from the surface into the surrounding medium as newly
released virus particles VRel.

In [40] a slightly modified model was used within an age-structured model formulation
to analyze the effects of direct acting antivirals within a low MOI setup. Though the
model does not account for non infective virus particles, it can be used to characterize
the influenza vaccine production process up to certain extent and will be used in the
following within a population balance modeling framework.
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5.2. The population balance model

The basic structure of the population balance model is similar to the structure of the
previously introduced generic model for viral replication which was used in Section 4.7.
The dynamics of the infected cells number density distribution are given by the following
multidimensional PBE

∂ic(t,x
∗)

∂t
+∇x∗ {h∗(x∗) ic(t,x

∗)}︸ ︷︷ ︸
Intracellular reactions

= −(kApo
T + kApo

i )ic(t,x
∗)︸ ︷︷ ︸

Apoptosis

+ rinf(t) T (t) I(x∗)︸ ︷︷ ︸
Infection

,

(5.1)

where h∗(x∗) represents the intracellular dynamics

h∗(x∗) = [h(x∗), 0]T (5.2)

of the augmented state vector

x∗ = [x, k]T . (5.3)

In the definition of the latter, x and h are the single cell state vector and the sin-
gle cell dynamics according to [40] (see Appendix F), respectively. It is assumed that
cell-to-cell variability of intracellular rates can directly be mapped to a distribution of
the corresponding reaction rate parameters in the cell population. These parameters
are summarized in the vector k and are assumed to be not affected by the infection
dynamics. As in the generic example presented in Section 4.7, heterogeneity of newly
infected cells is accounted for by I(x∗) which describes the distribution of newly in-
fected cells in the state space. In addition to infected cells, apoptotic infected cells are
considered. These are assumed uniform with respect to their intracellular composition.
Their dynamics are characterized by the following ODE

dIa(t)

dt
=

∫

X∗

(
kApo
T + kApo

I

)
ic(t,x

∗) dx∗ + rInf(t) Ta(t)− kLys(t) Ia(t) . (5.4)

Furthermore, the concentrations of uninfected target cells T (t) and their apoptotic
counterparts Ta(t) are characterized by the following dynamics

dT (t)

dt
= g T (t)− rinf(t) T (t)− kApo

T T (t) ,

dTa(t)

dt
= kApo

T T (t)− rinf(t) Ta(t)− kLys(t) Ta(t) , (5.5)

with the growth rate defined by

g =


 gmax

Tmax


Tmax − T (t)−

∫

X∗

ic(t,x
∗) dx∗




 . (5.6)

Virus particles are distinguished according to their location. There are free virus parti-
cles V (t) (located in the extracellular medium), virus particles attached to the surface
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of target cells V Att(t) and virions located in endosomes of target cells V Ex(t). The re-
spective dynamics of the virus particle concentration in the extracellular medium V (t)
are given by,

dV (t)

dt
=

∫

X∗

rRel(x) ic(t,x
∗) dx∗ − kDeg

V V (t) +
∑

k

[
kDis
n V Att(t)

n − kAtt
c,nBn V (t)

]
.

(5.7)

Furthermore, virions attached to the surface of the target cells can be described by

dV Att
n (t)

dt
= kAtt

c,n Bn V (t)−
(
kDis
n + kEn

)
V Att
n (t)−

(
rinf(t) + rlys(t)

)
V Att
n (t) , (5.8)

and the virions in the endosome are characterized by

dV En(t)

dt
= kEn

(
V Att
hi (t) + V Att

lo (t)
)
− kFus V En(t)−

(
rinf(t) + rlys(t)

)
V En(t) , (5.9)

with

Bn = Btot
n (T (t) + Ta(t))− V Att

n (t) ,

kDis
n =

kAtt
c,n

kEquc,n

,

n ∈ {lo, hi} . (5.10)

Two types of binding sites for the virus particles on the surface are considered: low affin-
ity (lo) and high affinity (hi). A detailed description of the involved kinetic processes
can be found in [41, 40]. The infection and lysis rates are defined as

rinf(t) =
Finfk

FusV En(t)

T (t) + Ta(t)
,

rlys(t) =
klysTa(t)

T (t) + Ta(t)
, (5.11)

and the virus release rate depends on the amounts of viral compounds in each cell

rRel(x) = kRel V pcytM1

V pcytM1 + 8 KV rel

∏

j

Pj

Pj +NPj
KV rel

,

Pj ∈ {RdRp, HA, NP, NA, M1, M2, NEP} . (5.12)

All parameters for the population balance model were taken from [40] and can be found
in Table 5.1.
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Table 5.1.: Parameters for population balance model characterizing influenza virus
replication according to [40]

Parameter Value Parameter Value

Finf 1 cells
virions kApo

I 3.28 10−2 h−1

kApo
T 7.35 10−3 h−1 kFus 9.56 10−3 h−1

kLys 6.39 10−2 h−1 kRel 586 virions
h

kAtt
c,lo 1.85 10−10 ml

sites h
kAtt
c,hi 3.32 10−8 ml

sites h

kEquc,lo 3.32 10−11 ml
site kEquc,hi 4.48 10−9 ml

site

Btot
lo 1000 sites

cell Btot
hi 150 sites

cell

Tmax 7 105 cells
ml

µmax 0.03 h−1

kDeg
V 0.1 h−1 kEn 4.8 h−1

5.3. Effects of cell-to-cell variability on unmodified cell line

In the following the previously presented approach for efficient moment approximation
is applied and the effect of different levels of host cell heterogeneity with respect to
certain production rate parameters on the overall virus yield is analyzed. Focus is on
the production rates of viral proteins as well as viral mRNA, cRNA, vRNA and the
binding rate of M1 which mark important steps in the viral replication kinetics. The
corresponding distributed parameters are summarized in the following vector

k = [kSyn,M , kSyn,P , kSyn,C , kSyn,V , kBind,M1] . (5.13)

The intracellular reactions are highlighted in the single cell reaction scheme in Fig. 5.1.

In practice, the process is run with multiple infection cycles to obtain a high number
of newly produced virions from a relative low number of seed virions. For the current
example, the following initial conditions are assumed

T (t = 0) = 4.9 105
cells

ml
, Ta(t = 0) = 9.49 103

cells

ml
,

Ic(t = 0) = Ia(t = 0) = 0
cells

ml
, V(t = 0) = 6.9 104

virions

ml
,

V Att
lo (t = 0) = V Att

hi (t = 0) = V En(t = 0) = 0
virions

ml
, (5.14)

which correspond to a MOI of 0.14. Following [40], the virus entry dynamics is described
by (5.8)-(5.9). Infection is defined as the time point, when the virus is transferred from
the endosome to the cytoplasm.

Newly infected cells are initialized with a complete set of 8 vRNP segments in the
cytoplasm while the other intracellular compounds are zero. No variances with respect
to the intracellular compounds are assumed for newly infected cells

xinf =
[
8,01×26

]T
. (5.15)
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However, cell-to-cell variability of newly infected cells with respect to the rate coeffi-
cients (5.13) is taken into account. In this section, it is assumed that the parameters
are distributed according to the following logarithmic Gaussian distribution

kinf = L (knom, pvar) = knom exp (N (0, pvarI)) (5.16)

with nominal parameter values given as (see [40])

knom =




8.53 105 nucleotides h−1

6.48 104 nucleotides h−1

5.29 h−1

32.18 h−1

2.43 10−4 (molecule h)−1




. (5.17)

Thereby, it is assumed that all parameters exhibit the same relative variance with
respect to their nominal values which is scaled by the parameter pvar. Here, the resulting
distribution of newly infected cells I(x∗) to the augmented state space can be described
by

I(x∗) =

(
xinf

kinf

)
. (5.18)

As described in Section 4.2.5, the PBE characterizing the infected cells number density
distribution (5.1) can be reformulated as a series of initial value problems

∂ic,l(t,x
∗)

∂t
+∇x∗ {h∗(x∗) ic,l(t,x

∗)} = −(kApo
T + kApo

i )ic,l(t,x
∗) , (5.19)

with the corresponding initial conditions

ic,l(t = tl,x
∗) = rinf(tl−1) T (tl−1) I(x∗)∆t , ∆t = (tl − tl−1) . (5.20)

Each initial value problem describes the dynamics of cells which have been infected
within the interval ∆t. As the intracellular dynamics do not depend on the dynamics
of the extracellular species (i.e. target/infected apoptotic cells, non-apoptotic target
cells), these can be solved in advance based on a normalization as it was described in
Section 4.7.2. Thereby, the numerical burden can be reduced further.

For the solution of the normalized initial value problem by application of the efficient
moment approximation algorithm, I(x∗) has to be represented by a set of abscissas
and weights. As the cells do not exhibit heterogeneity with respect to the intracellular
compounds x, all abscissas would have the same initial location with respect to these.
In contrast, the abscissas will be different with respect to kinf. Thus, it is sufficient to
choose initial abscissas as

xα =

(
xinf

kα

)
, α = 1, . . . , Nα (5.21)

where the abscissas kα are chosen as follows: At first, abscissas are chosen for the Gaus-
sian distribution N (0, pvarI) applying the cubature formulas presented in Section 4.3,
resulting in the abscissa/weight pairs

[kN ,α, wα] . (5.22)
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Figure 5.2.: Simulation results for influenza vaccine production for different degrees of
cell-to-cell variability

Afterwards, the abscissas are transformed to a logarithmic Gaussian distribution

kα = knom exp(kN ,α) . (5.23)

Now, the model is simulated for increasing degrees of cell-to-cell variability. This is
implemented by choosing the value of pvar from the following vector

pvar =
[
10−5, 0.01, 0.1, 0.5

]
. (5.24)

The first case pvar = 10−5 represents a very small cell-to-cell variability, such that
the corresponding results can be compared to the ones presented in [40]. For the ap-
proximation of I(x∗), 11 Gaussian mixed densities were used (see Appendix G for
approximation accuracy). For each, abscissas and weights were determined using the
sigma point rule. Thus the overall number of abscissas is given by

Nα = NGMD (2Nd + 1) = 121 . (5.25)

In Fig. 5.2 simulation results are shown for ∆t = 0.1 h. It can be seen that the degree
of cell-to-cell variability, represented by the parameter pvar, does not exert a significant
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influence on the overall numbers of infected, uninfected and apoptotic cells. Only a
slight delay in the formation of infected cells and apoptotic cells is observed. Simulta-
neously, the decrease in the target cells is slightly delayed. In contrast, the overall virus
dynamics are significantly affected by an increased cell-to-cell variability. The difference
is observed from around 20 h post infection (p.i.). It can be seen, that an increased cell-
to-cell variability results in a decreased maximum virus concentration. In comparison
to a nearly homogeneous cell population (i.e. pvar = 10−5) an increased heterogeneity
of pvar = 0.5 results in a decrease of the maximum concentration from Vmax ≈ 6 108

to Vmax ≈ 3 108 virions ml−1. Having in mind that process for vaccine production is
stopped at the peak of the virus concentration, the results indicate, that an increased
cell-to-cell variability is a disadvantage for the overall production process. However, the
simulation results show a sustained virus production for increasing parameter hetero-
geneity. This indicates that virus particles are released from the cell population over
a longer time leading to a slower decrease of the virus concentration which may be
advantageous for a continuous vaccine production process.

5.4. Effects of cell-to-cell variability on modified host cells

Besides optimization of the operating conditions, genetically modified cells can be used
to improve the overall production process. One approach is to modify gene expression of
host cell factors important for viral replication to establish a high yield production cell
line. A comprehensive analysis of host cell factors affecting influenza virus polymerase
activity demonstrate the importance of RNA synthesis rates in the mathematical model
[108]. Furthermore, the viral matrix protein 1 (M1) is known to promote the nuclear
export or viral RNP [72]. For this reason, in the following, focus is on modifications
of the synthesis rates of viral mRNA, vRNA, cRNA, viral protein translation and the
binding rate of viral protein M1. The affected kinetic reactions are colored in the basic
scheme Fig. 5.1.

Genetic modifications, e.g. by lentiviral transduction, can be used in order to achieve
an overexpression or knockdown of selected host cell factors to increase the cell specific
virus production rate. However, upon lentiviral transduction the degree of overexpres-
sion or knockdown of host cell genes varies within the modified cell population [13].
Thus a considerable cell-to-cell variability in the viral production rates is expected
which may significantly affect the overall vaccine production process.

5.4.1. Sensitivity analysis

First, a sensitivity analysis will be carried out to determine the most promising targets
for an improvement of the virus yield. Simulations are evaluated with respect to max-
imum concentration of the extracellular virus particles and the respective peak time
aiming at increasing the first and decreasing the latter. It is assumed, that genetic
modifications of the cells can be mapped directly to a modification of the correspond-
ing intracellular reaction rate parameters (5.13). The kinetic parameters are modified
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Figure 5.3.: Virus concentration for inhibition of binding rate of M1 by factor 0.2
(dashed) compared to unmodified cell line (solid); filled red symbols mark
the maximum concentrations

by a factor of 0.2 or 5, respectively. Furthermore, for the sensitivity analysis it is as-
sumed that all cells are modified with the same degree of knockdown/overexpression
and thereby exhibit the same modified parameter set. Thus the distribution of newly
infected cells I(x∗) can be represented by a single abscissa in the augmented state
space.

At first, only one parameter is changed while the others are kept constant. Thus 10
independent combinations have to be analyzed in view of the desired improvements
stated above. Here, an inhibition of the binding rate of M1 kBind,M1 has the largest ef-
fect on the virus dynamics. The simulation results are depicted in Fig. 5.3. In contrast
to the unmodified cell line (solid), the maximum virus yield approximately doubles
from 5.94 · 108 to 1.16 · 109 virions ml−1. Furthermore, the peak time has decreased
from approximately 30 to 24.4 h p.i. In the second case, all reaction rates are subject
to modification. Thus, an overall amount of 35 = 243 combinations has to be analyzed.
The best improvement is found for the combination, in which the synthesis rates for
vRNA, mRNA and viral proteins are increased, the M1 binding rate is reduced while
the cRNA synthesis rate is kept unmodified. In Fig. 5.4 the corresponding virus dy-
namics is depicted (dashed) in comparison to the unmodified cell population (solid).
The maximum virus concentration of the modified cells increases by a factor of 2.49 to
1.48 · 109 virions ml−1. Furthermore, the peak time decreases to 25.2 h p.i. and the
virus concentration does not decrease as fast as in case of the previous modification
of one reaction rate (see Fig. 5.3). This suggests that the cells produce virions for a
longer time period which may also be advantageous for the overall vaccine production
process: as harvesting at later time points still results in a considerably higher virus
concentration.
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Figure 5.4.: Virus concentration for modification of 5 rates
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5.4.2. Effects of cell-to-cell variability on modified cell line

In the previous section it was shown that genetic modifications can be used in princi-
ple to improve the overall vaccine production process. However, it was assumed that
all modified cells show the same level of gene expression which is a rather strong as-
sumption. When cells are modified e.g. with the help of lentiviral vectors, the degree
of overexpression and knockdown varies from cell to cell. Thus, the modified cell pop-
ulation will exhibit some degree of variance with respect to the viral production rates.
A desirable transduction would result in a cell population with rate parameters dis-
tributed narrowly around the desired modification. Different degrees of heterogeneity
resulting from lentiviral transduction can now be represented by broadening distribu-
tions of the kinetic parameters. In the following, the parameter distribution within
the cell population is approximated by a weighted sum of five logarithmic Gaussian
distributions to account for asymmetric distributions as illustrated in Fig. 5.5.

Modification of one reaction rate

At first, the inhibition of the M1 binding to viral genomes is considered while the other
rates are kept unmodified. As mentioned above, it is assumed that a prior transduction
results in a distribution of the parameter kM1

Bind within the cell population which can
described by a weighted sum of five logarithmic Gaussian distributions

kM1
Bind ∼

5∑

l=1

al µl e
N (0,σl) . (5.26)
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Figure 5.5.: Parameter distributions for investigated scenarios representing different de-
grees of cell-to-cell variability; mean values of the underlying logarithmic
normal distributions are highlighted red

Thus, the distribution of newly infected cells is given by

I(x∗) =




xinf

kSyn,M,nom

kSyn,P,nom
kSyn,C,nom

kSyn,V,nom

kBind,M1




. (5.27)

The mean values µl are logarithmically distributed between the nominal value kM1
Bind,nom

and 0.2 kM1
Bind,nom, which was determined in the prior sensitivity analysis. The variances

of the logarithmic Gaussians are chosen as σl = 0.05, l = 1, . . . , 5. By using different
values for the coefficients al, different scenarios can be simulated. For the following
simulation study, three different cases are investigated (see Fig. 5.5a - Fig. 5.5c). These
map an increasing heterogeneity of the cell population ranging from a narrow distri-
bution (good transduction, Fig. 5.5a) to a very broad distribution (bad transduction,
Fig. 5.5c).

For the following numerical simulations I(x∗) is first represented by 11 logarithmic
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Figure 5.6.: Virus concentration for different levels of host cell heterogeneity if the M1
binding rate is modified; the maxima are highlighted red for each scenario

Gaussian distributions. For each, 2Nd + 1 = 3 pairs of abscissas and weights were
chosen using the sigma point rule (4.90)-(4.91) resulting in a total amount of Nα = 33
abscissas. The simulation results are shown for the initial conditions which were already
used for the unmodified case (5.14) and ∆t = 0.1 h in Fig. 5.6. It can be seen that
the maximum virus concentrations (flagged with red markers in Fig. 5.4) decrease with
increasing degree of heterogeneity. For the analyzed scenarios (symbols corresponding
to the ones in Fig. 5.5) the maximum virus concentrations are 1.13 · 109 virions ml−1

for scenario (a), 1.02 · 109 virions ml−1 for (b) and 9.03 · 108 virions ml−1 for (c).
The peak time increases to 24.6 (a), 25.2 (b) and 26.1 h p.i.(c). The simulation results
suggest that the overall production process using modified cell lines is relatively robust
against host cell heterogeneity and an increase of the maximum virus titer is possible.
However, for larger degrees of heterogeneity the desired aim of increasing the maximum
virus concentration is reduced.

Modification of multiple reaction rates

In this section the influence of cell-to-cell variability is investigated, when up to five reac-
tion rates are modified simultaneously. The best combination for a up/down regulation
of five reaction rates was already found from the sensitivity analysis. Here, enhance-
ment of mRNA, vRNA and protein synthesis rates in combination with a reduced M1
binding rate has shown the best improvement in maximum virus yield and peak time.
Similar to the previous investigation, it is assumed that cell-to-cell variability resulting
from transduction can be represented by a weighted sum of five logarithmic Gaussian
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distributions. Those are now five dimensional, as five reaction rates are considered

k =

5∑

l=1

al µl · eN (0,diag(σl)) . (5.28)

The mean vectors of the distributions µl are logarithmically distributed between the
nominal parameter vector knom and the best combination kbest

knom =
[
kSynC , kSynM , kSynP , kSynV , kBind

M1

]T

kmod =
[
kSynC , 5 kSynM , 5 kSynP , 5 kSynV , 0.2 kBind

M1

]T
. (5.29)

The variances are chosen as σl = 0.05. Furthermore, for the different scenarios, the
weighting coefficients al are kept at the values reported in Fig. 5.5. It is worth men-
tioning that the cell population exhibits heterogeneity with respect to all considered
reaction rates, even if they are not modified (the mean value of kSynC remains at the
original value). Thereby, a more general effect of genetic modifications is incorporated:
viral and cellular factors are interconnected in a complex virus host cell interaction
network. Consequently, the genetic modification of one host cell factor is likely to affect
multiple steps of the viral replication cycle. Thus, it can be expected that an overex-
pression or knockdown of one host cell factor aiming at the enhancement or inhibition
of a certain kinetic reaction rate also introduces some degree of heterogeneity in other
reaction rates.

Three different scenarios are used to analyze the effects of heterogeneity within the
cell population on the overall vaccine production process. For the representation of the
distribution of newly infected cells I(x∗) is first approximated by 15 Gaussian mixed
density distributions for which abscissa/weight pairs were chosen with the sigma point
rule (4.90)-(4.91) resulting in a total amount of Nα = 165 abscissas. The simulation
results are depicted in Fig. 5.7. As in the previously analyzed case, a broader parameter
distribution correlates with a decreased maximum virus concentration and an increased
peak time. The resulting values for the maximum virus concentrations (highlighted with
red symbols in Fig. 5.7) are 1.44 ·109 virions ml−1 (a), 1.32 ·109 virions ml−1 (b) and
1.11 · 109 virions ml−1 (c). The corresponding values for the peak times are 25.5, 25.9
and 26.9 h p.i. In comparison to the simulation results for a homogeneous population
as computed in Section 5.4.1, only around 40% of the increase in virus concentration
is achieved which again emphasizes the impact of cell-to-cell variability on the overall
process. However, even for the worst assumed scenario (c) a significant increase in the
virus yield is predicted which suggests that the modification of certain reaction rates
by knockdown/overexpression of host cell factors can be a suitable tool to overcome
limitations in the overall process.
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Figure 5.7.: Virus concentration for different levels of host cell heterogeneity if five ki-
netic parameters are modified (see (5.29)); the maxima are highlighted in
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5.5. Discussion

In this chapter application of the proposed approximate moment method to a high
dimensional population balance is shown. The PBE is based on a detailed single cell
model for influenza virus replication. At first, it is researched how an increasing variance
of kinetic rate parameters in the cell population affects the overall dynamics of the pro-
cess. It is shown, that an increasing cell-to-cell variability is attended by a decreased
maximum virus yield. In the second part, the impact of heterogeneity in genetically
engineered cell lines for influenza vaccine production is analyzed using the popula-
tion balance model. A pragmatic sensitivity analysis shows that genetic modifications
by means of overexpression and knockdown of host cell factors lead to an increased
maximum virus yield and a reduced maximum virus yield peak time. Furthermore, it
is shown the overall increase in maximum virus yield and the reduction of the virus
yield peak time are relatively robust w.r.t. cell-to-cell variability as a result of genetic
modifications via transduction techniques. Thus, the simulations suggest that geneti-
cally engineered cell lines can be an important tool to improve the influenza vaccine
production process.



6. Concluding remarks

6.1. Summary

Particulate systems are found in a wide range of processes from chemical and biopro-
cess engineering where a large number of individual particles, e.g. crystals or cells, are
involved. In general, these are not uniform, but differ from each other with respect to
characteristic properties, like size and internal composition. The dynamics of the par-
ticle ensemble can be described conveniently in the framework of population balance
modeling which allows to account for particle-to-particle variabilities. Here, two alter-
native modeling strategies can be pursued: top-down and bottom-up modeling. While
the first concentrates on a mechanistic modeling of available distributed measurements,
the latter starts from a detailed description of kinetic processes on the single particle
level. The obtained population balance models represent low dimensional partial differ-
ential equations for the top-down approach. Here, the main challenge is the adaption of
the model equations to the distributed measurements which generally involves solution
of an infinite dimensional inverse problem. In contrast, bottom-up modeling results
in high dimensional partial differential equations. Here, the main issue is an efficient
numerical solution.

Focus within this thesis was on influenza virus replication in cell cultures for vac-
cine production. This process represents an interesting particulate process as the cell
population is characterized by large cell-to-cell variability. Both modeling approaches,
top-down and bottom-up, are addressed.

The first part is concerned with top-down modeling of the process. For a previously
developed model [79] a suitable scheme for the estimation of unknown parameters is
presented. The model accounts for cellular variances with respect to the intracellular
amount of viral nucleoprotein, which had been measured via flow cytometry. As the
model features functional parameters which depend on the internal coordinate, the
inverse problem is set in infinite dimension. The inverse problem is transformed to a
finite dimension using Hermite spline approximations of different complexities for the
functional parameters. Afterwards, the finite dimensional inverse problem is solved in
a weighted least squares framework to adapt the model to flow cytometric and virus
concentration measurements. The resulting model formulation is able to reproduce the
dynamic phenomena observed in the experiments, including bimodality and backshift
of the fluorescence distributions. It is also shown, that the model fit improves for a more
complex spline representation. However, the increased degree of freedom is attended by
increased numerical effort of the parameter estimation setup. Furthermore a biological
meaningful interpretation of resulting parameter estimates is limited. Moreover, it is
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shown that models with different assumptions on the length of the latent phase yield a
similar model fitness, while the estimated parameters for the different models undergo
drastic changes. This indicates, that identifiability of the model parameters is limited
and the model parameters can therefore only be related roughly to underlying biological
kinetics. Thus it has to be concluded that the top down model represents a convenient
basis for qualitative analysis, yet further insight into the underlying biological effects
of the process is limited. In fact, the whole intracellular viral replication mechanism is
mapped to one internal coordinate (i.e. the intracellular amount of viral nucleoprotein)
and the latent phase length.

To improve the situation more structured information has to be taken into account and
a bottom-up model of the process can be formulated based on the detailed single cell
kinetics. The emerging multi dimensional population balance equation can be solved
numerically using approximate moment methods which require an efficient implementa-
tion. Thus, the second part of this thesis is concerned with the development, evaluation
and application of an efficient moment approximation technique for multi dimensional
population balance equations which are dominated by particle growth, particle death
and nucleation. The presented technique is based on the direct quadrature method of
moments. Here, moments are approximated by a weighted sum of abscissas. It is shown,
how the dynamics of weights and abscissas can be derived analytically for pure particle
growth and particle death. Furthermore, it is demonstrated how problems including
nucleation can be reformulated either in form of a series of initial value problems or
by introduction of an additional internal coordinate characterizing the particle age.
Afterwards, an efficient choice of the abscissas and weights from Gaussian initial dis-
tributions applying a monomial cubature rule is presented. The latter is also known as
sigma point rule and the number of abscissas and corresponding weights scales only lin-
early with the dimension of the problem. The overall method is applied to one and two
dimensional population balance models. The comparison to reference solutions show
that the approach using sigma point abscissas provides accurate approximations while
simultaneously keeping the numerical cost at a low level.

Furthermore, the method was evaluated for a generic five dimensional population bal-
ance model of viral replication in cell cultures. At first, it is shown that the sigma
point tuning parameters significantly affect the overall approximation accuracy. Next,
an alternative to a problem specific manual optimization of the tuning parameters is
proposed. Therein, the initial distribution is approximated by a sum of Gaussians and
sigma point abscissas are chosen for each of these without optimization of the tuning
parameter. It is shown, that the accuracy can be increased by increasing the number of
Gaussians which are used to approximate the initial distribution. Thereby, the task of
finding optimal sigma point abscissas is traded for an increased numerical effort. Both
approaches, standard as well as alternative, are evaluated against other cubature formu-
las. It is demonstrated, that the alternative approach which combines Gaussian mixed
densities and the sigma point cubature formulas outperforms all other approaches while
keeping the computational costs on a reasonable scale.

Finally, application of the technique to a detailed population balance model describing
influenza virus replication is shown. At first the effect of cell-to-cell variability in kinetic



CHAPTER 6. CONCLUDING REMARKS 115

reaction rate parameters on the overall virus yield is analyzed for an unmodified cell
line. It is assumed, that protein synthesis rates of the cells are distributed on a logarith-
mic scale. The simulation results indicate, that an increased heterogeneity of the cells
results in a lower maximal virus yield. On the other hand, the cell population shows a
sustained virus production the larger the cell-to-cell variability. Furthermore, the influ-
ence of cell-to-cell variability on genetically engineered cell lines is analyzed. These are
considered to be a helpful tool to overcome bottlenecks in influenza vaccine production
processes. At first, a sensitivity analysis is conducted to identify the most promising ki-
netic parameters which can serve as a target for genetic modifications via transduction
techniques. In practice, nonuniform gene expression is expected within the modified cell
population when using these transduction techniques. Different degrees of heterogene-
ity are represented by broadening distributions of the kinetic parameters. Simulation
results indicate that with modified cell lines the maximum virus yield can be increased
and the maximum peak time can be reduced. In addition, the model based analysis
shows that these improvements are relatively robust against moderate degrees of het-
erogeneity. Thus, the simulation results suggest that the use of genetically modified
cell lines represents a promising option to overcome bottlenecks in vaccine production
processes.

6.2. Future Perspective

The top-down approach and the proposed model adaption can be used to formulate
population balance models for other vaccine production processes where flow cytometric
measurements have shown similar dynamic effects of the cell culture, e.g. vaccinia virus
replication [106, 47]. Furthermore, an extension of the top-down modeling approach to
other process modes, e.g. continuous and multi stage process schemes [110, 109], are an
interesting topic of future research. Here, additional phenomena, e.g. the accumulation
of defective interfering particles [40], have to be taken into account and may require
an extension of the parameter estimation technique. Moreover, the inverse problem
solution technique may also be applied to problems which feature a similar model
structure, e.g. crystallization processes, to estimate the crystal growth rates which
depend on crystals properties, like size or shape.

So far the proposed moment approximation algorithm can only be applied to particulate
systems in which kinetic processes like agglomeration, breakage and cell division are
negligible. Thus extension to these processes is a major future research issue. Here, a
problem reformulation similar to the technique presented in Section 4.2.5 or the succes-
sive generations approach [57],represents a promising alternative. Therein, the particle
population is divided into subpopulations which are probably easier to handle. Further-
more, an extension of the moment approximation to spatially distributed problems is
desirable to describe the interaction of the particulate phase with a non ideally mixed
fluid phase or spatial separation of cells in an multi cellular environment (see e.g. [42]
and the references therein).

Future applications of the algorithm include parameter estimation procedures for the
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presented multi dimensional population balance model for influenza virus replication
to multi dimensional data obtained from flow cytometric measurements. Furthermore,
the proposed approximate moment method can be applied to multi dimensional popu-
lation balance models derived by bottom-up modeling of other multi cellular biological
processes. Examples are found in bioprocess engineering, e.g. biopolymer production in
bacteria cell cultures [28, 27, 19], but also in the field of systems biology and systems
medicine, e.g. modeling of cell proliferation [14, 7, 42] and cell metabolism [114]. More-
over, application of the developed method is not limited to examples from bioprocess
engineering but can also be applied to multi dimensional PBEs modeling the evolution
of crystal morphology (e.g. [8]).
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A. The method of characteristics

The method of characteristics (MOC) represents a solution technique for first order
hyperbolic partial differential equations[94]. The basic idea is to transform the PDE to
a set of ODEs by reparameterization. Without loss of generalization, in the following
the special case of the scalar quasi-linear partial differential equation

A(t, x, n)
∂n

∂t
+B(t, x, n)

∂n

∂x
= C(t, x, n) , (A.1)

is considered. The boundary and initial conditions are given by

n(t = 0, x) = nIC(x) , n(t, x = 0) = nBC(t) . (A.2)

Here t and x are the independent variables and the overall solution of interest is n(t, x).

In order to compute a solution using the MOC, the independent variables are parame-
terized by new variables θ and s

t = t(θ, s) , x = x(θ, s) . (A.3)

The idea is now to find the solution of the PDE along these curves or characteristics
using s to parameterize the initial point of a curve and using θ to parameterize the
curve itself. The change of n along the curve (i.e. under variation of θ) can be computed
applying chain rule:

∂n

∂θ
=

∂t

∂θ

∂n

∂t
+

∂x

∂θ

∂n

∂x
. (A.4)

Comparison of (A.1) and (A.4) yields the following system of ODEs

∂t

∂θ
= A(θ, s, n) ,

∂x

∂θ
= B(θ, s, n) ,

∂n

∂θ
= C(θ, s, n) , (A.5)

which is also called the characteristic system of (A.1). Here, the first and the sec-
ond ODE describe the dynamics of the characteristic curve whereas the third equation
describes the evolution of the solution n along this curve. The principle scheme is visu-
alized in Fig. A.1 for the solution of the initial value problem (IVP) and the boundary
value problem (BVP), respectively. It can easily be seen that s parameterizes the initial
curve n(t = 0, x) while θ characterizes the position on the characteristic curve.
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Figure A.1.: Parameterization for initial value problem and boundary value problem

For a solution of the IVP the corresponding initial values for the characteristic system
are given as

t(θ = 0) = 0

x(θ = 0) = s (A.6)

n(θ = 0) = nIC(s)

For the solution of the corresponding BVP, s is used to parameterize the boundary
condition. A solution can be computed by solution of the characteristic system for the
following initial conditions

t(θ = 0) = s

x(θ = 0) = 0 (A.7)

n(θ = 0) = nBC(s)

The analytical solutions of the IVP and the BVP yield expression for the parameteri-
zation of the characteristics. To obtain an expression for n(t, x) the solutions have to
be inverted

s = s(t, x) , θ = θ(t, x) (A.8)

which is not always possible.

The MOC is the standard solution approach for processes described by systems of first
order hyperbolic partial differential equations and has many applications in chemical
engineering (see e.g. [94]).



B. Two dimensional crystallization process

In Fig. B.1 the temporal evolution of moments up to the sixth order are shown for
the proposed moment approximation algorithm based on the DQMOM in combination
with an efficient choice of the initial abscissas and weights based on the sigma point
rule. The corresponding relative errors are shown in Fig. B.2.
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Figure B.1.: Moments computed with sigma point approach (circles) and full reference solution with pseudo spectral collocation (solid)
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Figure B.2.: Relative error between moments computed with sigma point approach and full reference solution with pseudo spectral
collocation





C. The finite volume method

The finite volume method is a discretization method which is frequently applied within
the numerical solution of population balance equations [56]. In the following its principle
application will be demonstrated for the one dimensional growth dominated PBE

∂n(t, x)

∂t
= − ∂

∂x
{G(t, x) n(t, x)} −D n(t, x) (C.1)

describing the number density distribution with respect to the general particle property
x. The property coordinate is discretized into NCV intervals or control volumes as
depicted in Fig. C.1. Then the number density distribution is described on grid nodes

x̄0 x̄1 x̄2 x̄3

x0 x1 xi−1 xi xi+1 xNCV−1 xNCV

Figure C.1.: Discretization of property coordinate x into control volumes

x̄i which lie in the control volumes (e.g. in the middle of the control volumes x̄i =
(xi + xi+1) /2). The dynamics of the number density distribution on a grid node can
be derived by integration of (D.1) over the corresponding control volume

xi+1∫

xi

∂n(t, x)

∂t
d x = −

xi+1∫

xi

∂

∂x
{G(t, x)n(t, x)} dx+

xi+1∫

xi

D n(t, x)dx . (C.2)

Integration by parts for the first integral on the right hand side and and interchange of
differentiation and integration on the left hand side of the equation yields

d

dt

xi+1∫

xi

n dx = − [G n]xi+1

xi
+

xi+1∫

xi

D n(t, x) dx (C.3)

In the next step assumptions on the profiles of n and D in the interior of a control
volume have to be made, e.g. piece wise constant profiles

n(t, x) = n(t, x̄i) = ni(t)

D(t, x) = D(t, x̄i)

for x ∈ [xi, xi+1)

i = 1, . . . , NCV (C.4)
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Furthermore, the fluxes over the control volume boundaries are approximated using an
upwind scheme

[G n]xi+1

xi
= (G n|x̄i

− Gn|x̄i−1
) (C.5)

resulting in the following set of ODEs

dni(t)

dt
=

1

∆xi

(
Gn|x̄i−1

− Gn|x̄i

)
+Dni(t) . (C.6)



D. Pseudo spectral collocation

Spectral methods can be used for the solution of population balance models represented
by PDEs. Similar to the FVM, the PDE is reduced to a set ODEs. In the following
their application will be demonstrated for the general one dimensional case

∂n(t, x)

∂t
= − ∂

∂x
{G(t, x) n(t, x)}+D n(t, x) . (D.1)

For further information on spectral methods the interested reader is referred to [112,
67, 11] and the references mentioned therein.

The basic assumption is that the number density function can be approximated by a
weighted sum of spectral functions fi(x)

n(t, x) ≈
Ni∑

i=0

ci(t)fi(x) (D.2)

where ai(t) are the spectral weights. The spectral functions fi(x) are chosen once for
each problem and are on the whole region x = [xmin, xmax]. A common choice for
the function set, which has to consist of mutually orthogonal elements, are Chebyshev
polynomials. To determine the spectral weights, the integral of the weighted residual
has to be zero

xmax∫

xmin

w(x)

[
∂n(t, x)

∂t
+

∂

∂x
{G(t, x)n(t, x)} −D n(t, x)

]
dx = 0 . (D.3)

Here, w(x) corresponds to the weighting function. However, if the weighting function
is chosen as

ρ(x) = δ(x− xi) (D.4)

the spectral approximation satisfies the population at certain grid points or collocation
points xi , fori = 1, . . . Ni. The overall procedure is also known as spectral collocation.
The choice of the collocation points depends on the spectral functions fi. When using
Chebyshev polynomials, the overall method is called pseudo spectral collocation and
the collocation points are defined as

xi = 0.5(xmax − xmin)x̃i + 0.5(xmax + xmin) (D.5)

with the Chebychev points x̃i defined as

x̃i = cos

{
i

π
Ni

}
, for i = 0, . . . , Ni . (D.6)
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Figure D.1.: Distribution of collocation points when using Chebychev polynomials

The corresponding distribution is shown in Fig. D.1. The particular choice of the
weighting function (D.4) enables the direct calculation of n(t, x) at the grid nodes
ni(t) = n(t, xi). In result, the differentiation can be represented by the following matrix-
vector multiplication

∂n(t, x)

∂x
≈ Dx · n

n = [n1(t), . . . , nNi
(t)]T (D.7)

Thereby, information on the spectral functions is incooperated in the generation of the
differentiation matrix Dx. In contrast to the FVM, this differentiation matrix is densily
filled [112]. The overall PDE is approximated by the finite set of ODEs

dn

dt
= Dx · n+Dn (D.8)

As when using the finite volume method, the number of grid nodes has a significant
effect on the overall accuracy. However, in general a considerably lower number of grid
points is necessary when using pseudospectral collocation as the approximation of the
derivatives is much more accurate compared to an FVM with the same number of grid
nodes.



E. Higher order non product cubature rule

In the following the higher order non product cubature rule which is applied is adopted
from [98] and applied in Section 4.7 will be presented.

Based on the moment approximation using the definitions of the generator functions

∫

X

f(x)p(x)dx ≈ wIGFI(0) + wII

NII∑

i=1

GFII(±θ) + wIII

NIII∑

i=1

GFIII(±θ, ±θ) . (E.1)

a non product cubature rule can be derived exploiting the properties of Gaussian dis-
tribution n0(x) = N (0, I). The parameterisation of wI and θ can be derived taking into
account monomials up to degree 5 in f(x)

∫

X

n0(x)dx = 1 ≈ wI + 2 NdwII + 2 Nd(Nd − 1)wIII ,

∫

X

x2in0(x)dx = 1 ≈ 2 NdwIIθ
2 + 4(Nd − 1)wIIIθ

2 ,

∫

X

x4in0(x)dx = 3 ≈ 2 NdwIIθ
4 + 4(Nd − 1)wIIIθ

4 ,

∫

X

x2ix
2
j 6=in0(x)dx = 1 ≈ 4wIIIθ

4 . (E.2)

The unknowns can be determined from the solution of the system

θ =
√
3 ,

wI = 1 +
N2

d − 7Nd

18
,

wII =
4−Nd

18
,

wIII =
1

36
. (E.3)
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F. Influenza A single cell kinetics

In the following, the dynamic equations describing influenza A virus replication cycle
on the intracellular level as presented in [41] are listed. As described in [40], virus entry
is described on the macroscopic scale and is thus cancelled out from the intracellular
model.

F.1. Viral replication

dV pcyt

dt
= −kImpV pcyt , (F.1)

dV pnuc

dt
= kImpV pcyt + kBind

NP PNPR
V
RdRp −

(
kBind
M1 PM1 + kDeg

RnP

)
V pNuc , (F.2)

dRC

dt
= kSynC V pnuc − kBind

RdRpPRdRpR
C − kDeg

R RC , (F.3)

dRV

dt
= kSynV Cp − kBind

RdRpPRdRpR
V − kDeg

R RV , (F.4)

dRC
RdRp

dt
= kBind

RdRpPRdRpR
C − kBind

NP PNPR
C
RdRp − kDeg

RRdRpR
C
RdRp , (F.5)

dRV
RdRp

dt
= kBind

RdRpPRdRpR
V − kBind

NP PNPR
V
RdRp − kDeg

RRdRpR
V
RdRp , (F.6)

dCp

dt
= kBind

NP PNPR
C
RdRp − kDeg

RnpCp , (F.7)

dV pnucM1

dt
= kBind

M1 PM1V pnuc −
(
kExpPNEP + kDeg

Rnp

)
V pnucM1 , (F.8)

dV pcytM1

dt
= kExpPNEPV pnucM1 − 8rrel − kDeg

RnpV pcytM1 . (F.9)
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F.2. Viral transcription and protein synthesis

dRM
i

dt
=

kSynM

Li

V pnuc

8
− kDeg

M RM
i , i = 1, . . . , 8 , (F.10)

dPPB1

dt
=

kSynP

DRib
RM

2 − kRdRpPPB1PPB2PPA , (F.11)

dPPB2

dt
=

kSynP

DRib
RM

1 − kRdRpPPB1PPB2PPA , (F.12)

dPPA

dt
=

kSynP

DRib
RM

3 − kRdRpPPB1PPB2PPA , (F.13)

dPRdRp

dt
= kRdRpPPB1PPB2PPA − kBind

RdRpPRdRp

(
RV +RC

)

−
(
NPRdRp

− 8
)
rRel , (F.14)

dPNP

dt
=

kSynP

DRib
RM

5 − LV

NNuc
NP

kBind
NP PNP

(
RV

RdRp +RC
RdRp

)

−
(
NPNP

− 8
LV

NNuc
NP

)
rRel , (F.15)

dPM1

dt
=

kSynP

DRib
(1− FSpl7)R

M
7 − LV

NNuc
M1

kBind
M1 PM1V pNuc

−
(
NPM1

− 8
LV

NNuc
M1

)
rRel , (F.16)

dPNEP

dt
=

kSynP

DRib
FSpl8R

M
8 − LV

NNuc
NEP

kExpPNEPV pNuc
M1

−
(
NPNEP

− 8
LV

NNuc
NEP

)
rRel , (F.17)

dPHA

dt
=

kSynP

DRib
RM

4 −NPHA
rRel , (F.18)

dPNA

dt
=

kSynP

DRib
RM

6 −NPNA
rRel , (F.19)

dPM2

dt
=

kSynP

DRib
FSpl7R

M
7 −NPM2

rRel . (F.20)
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F.3. Parameters

Table F.1.: Intracellular model parameters as listed in [40]

Parameter Value Unit

kImp 6 h−1

kBind
NP 3.01 · 10−4 (molecule h)−1

kBind
M1 2.43 · 10−4 (molecule h)−1

kDeg
RnP 0.09 h−1

kSynC 5.29 h−1

kBind
RdRp 1 (molecule h)−1

kDeg
R 36.36 h−1

kSynV 32.18 h−1

kDeg
RRdRp 4.25 h−1

KVrel 300 virions
kExp 1 · 10−6 (molecules h)−1

kSynM 8.53 · 105 nucleotides h−1

L1 2320 nucleotides
L2 2320 nucleotides
L3 2211 nucleotides
L4 1757 nucleotides
L5 1540 nucleotides
L6 1392 nucleotides
L7 1005 nucleotides
L8 868 nucleotides

kDeg
M 0.33 h−1

kSynP 64800 nucleotides h−1

DRib 160 nucleotides
kRdRp 1 molecule−2h−1

NRdRp 45 molecules virion−1

LV 1700 nucleotides
NPNA

100 molecules virion−1

NPHA
500 molecules virion−1

NPM1
3000 molecules virion−1

NPM2
40 molecules virion−1

NPNEP
165 molecules virion−1

NPNP
1000 molecules virion−1

NNuc
M1 200 nucleotides

NNuc
NEP 1700 nucleotides

NNuc
NP 24 nucleotides

FSpl7 0.02 −
FSpl8 0.125 −





G. Moment approximation for multi
dimensional population balance
equation

For the analysis presented in Section 5.3 the moments were approximated with the
efficient approximate moment method. Initial abscissas were chosen based on the com-
bined Gaussian mixed density and sigma point approach with NGMD = 11. It can be
obtained from Fig. G.1 that thereby a sufficiently accurate approximation of the virus
release rate can be guaranteed. In contrast, the direct sigma point approach yields a
worse approximation.
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Figure G.1.: Approximation of virus release rate for pvar for single infection cycle and
different abscissa formulas; sigma points(SP) with Nα = 11 , Gaussian
mixed densities (GMD) with NGMD = 11, Monte-Carlo(MC) with Nα =
104
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Nomenclature

ac(t, ϕ) number density distribution of apoptotic cells
aα dynamics of abscissas
bα dynamics of weigths
c(t) states of the continuous phase
cSol solute concentration
di death rate coefficient
el relative error

fx(t,x) transport density
gi growth rate coefficients

fI(t,x) integral coupling between particulate and continuous phase
ic(t, ϕ) number density distribution of infected cells

k{1,2,3,4,5,6,7} rate coefficients

kapo(ϕ) apoptosis rate coefficient for infected cells
kcd(ϕ) cell death rate coefficient for apoptotic cells
kcd,ic cell death rate coefficient for infected cells
kcd,Uc

cell death rate coefficient for uninfected cells
kdeg virus degradation rate coefficient
kdeg,V virus degradation rate coefficient
kgro,Uc growth rate coefficient for uninfected
kinf infection rate coefficient

knet(ϕ) net rate coefficient for infected cells
knet,apo(ϕ) net rate coefficient for apoptotic cells
kNuc(t) nucleation rate coefficient
krel virus release rate coefficient
kvi infection rate coefficient

lc(t, ϕ) number density distribution of latent phase cells
m◦(t) distribution moment of order ◦
ñ(t, x) number density function
n(t,x) number density function
n0(x) initial number density function
p vector of unknown parameters

pconst vector of unknown constant parameters
pfunct vector of unknown functional parameters
px(t,x) production density
rrel(x) virus release rate

t time
uc(t, ϕ) number density distribution of uninfected cells
wα(t) weight

137



138 Nomenclature

w̃α(t, τ) age distributed weight
x characteristic particle property

xα(t) abscissa
x̃α(t, τ) age distributed abscissa

x vector of particle properties
xe vector of external particle properties
xi vector of internal particle properties

A approximation operator
AOV DQMOM Matrix for one dimensional case
AMV DQMOM Matrix for multi dimensional case
C(t) overall cell concentration

D(t,x) death rate
Dil(t, c) dilution rate

F measured fluorescence intensity
Fx(t) flow of particles
FVE fluorescence intensity per virus equivalent

G(t, x) growth rate
G(t,x) vector of growth rates
GFi generator function of order i
J cost function
KV form factor
Lc(t) overall number of latent phase cells

L̂c(t, λ) latent phase cells in transport system
NCV number of control volumes
ND number of characteristic particle properties
N(t) number of particles in a control volume
NGA number of abscissas for Gaussian cubature formula
NGMD number of Gaussian Mixed Density distributions
NMC number of Monte Carlo abscissas
NODE number of ordinary differential equations
NSP number of sigma point abscissas
Nα number of abscissas

Nuc(t, x) number of particles in a control volume
Px(t) net production rate of particles in control volume
Peff efficiency ratio of released active virus particles to total

amount of released virus particles
Px(t) net production rate of particles in control volume
S(t, x) summarized growth, death and nucleation processes
Ssat(t) relative supersaturation
S∗ solubility

S̃(t, x) approximation of S̃(t, x)

S̃G(t, x) approximation of growth processes

S̃D(t, x) approximation of death processes

S̃N(t, x) approximation of nucleation processes
T temperature
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Uc(t) overall concentration of uninfected cells
Vac(t) concentration of active virus particles
Vinac(t) concentration of inactive virus particles
Vtot(t) total concentration of virus particles
W weighting matrix
X property state space
Xe external property state space
Xi internal property state space
Zi number of cells within a certain range of fluorescence

I(x) Distribution of newly infected cells
L(µL,ΣL) logarithmic Gaussian normal distribution
N (µ,Σ) Gaussian normal distribution

S set of abscissas
W set of weights

[tem], [gen], [str], intracellular compounds
[v1], [v2]

αSP tuning parameter for sigma point formula
δ(x− xα(t)) delta distribution

λ local coordinate for transport system
λSP tuning parameter for sigma point formula
κSP tuning parameter for sigma point formula
µ mean value vector of Gaussian distribution
µL mean value vector for logarithmic Gaussian distribution
ρc solute density
τ particle age
τlat latent phase length
ϕ degree of fluorescence

σMC variance of the Monte Carlo estimation
∆ϕi difference between two specific degrees of fluorescence
Σ covariance matrix of Gaussian distribution
ΣL covariance matrix of Log-Gaussian distribution
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[18] Dürr, R., Duvigneau, S., Laske, T., Bachmann, M., and Kienle, A. Ana-
lyzing the impact of heterogeneity in genetically engineered cell lines for influenza
vaccine production using population balance modeling. In 6th IFAC Conference
on Foundations of Systems Biology in Engineering (2016), p. submitted.
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[27] Franz, A., Dürr, R., and Kienle, A. Population balance modeling of biopoly-
mer production in cellular systems. In Proceedings of the 19th IFAC World
Congress (2014), vol. 19, pp. 1705–1710.

[28] Franz, A., Song, H.-S., Ramkrishna, D., and Kienle, A. Experimental
and theoretical analysis of poly(-hydroxybutyrate) formation and consumption
in Ralstonia eutropha. Biochemical Engineering Journal 55, 1 (2011), 49–58.

[29] Fredrickson, A. G., Ramkrishna, D., and Tsuchiya, H. M. Statistics and
dynamics of procaryotic cell populations. Mathematical Biosciences 1, 3 (1967),
327–374.

[30] Genzel, Y., Frensing, T., and Reichl, U. Herstellung moderner Grippeimpf-
stoffe. Chemie in unserer Zeit 47, 1 (2013), 12–22.

[31] Gillespie, D. Stochastic simulation of chemical kinetics. Annual Review of
Physical Chemistry 58 (2007), 35–55.

[32] Gimbun, J., Nagy, Z. K., and Rielly, C. D. Simultaneous quadrature method
of moments for the solution of population balance equations, using a differential
algebraic equation framework. Industrial & Engineering Chemistry Research 48,
16 (2009), 7798–7812.

[33] Grosch, R., Briesen, H., Marquardt, W., and Wulkow, M. Generaliza-
tion and numerical investigation of qmom. AIChE Journal 53, 1 (2007), 207–227.

[34] Gunawan, R., Fusman, I., and Braatz, R. D. High resolution algorithms for
multidimensional population balance equations. AIChE Journal 50, 11 (2004),
2738–2749.

[35] Gunawan, R., Fusman, I., and Braatz, R. D. Parallel high-resolution finite
volume simulation of particulate processes. AIChE Journal 54, 6 (2008), 1449–
1458.



144 Bibliography

[36] Gunawan, R., Ma, D. L., Fujiwara, M., and Braatz, R. D. Identification
of kinetic parameters in multidimensional crystallization processes. International
Journal of Modern Physics B 16, 1 (2002), 367–374.

[37] Hampel, N., Bück, A., Peglow, M., and Tsotsas, E. Continuous pellet
coating in a wurster fluidized bed process. Chemical Engineering Science 86
(2013), 87–98.

[38] Haseltine, E. L., Rawlings, J. B., and Yin, J. Dynamics of viral infec-
tions: incorporating both the intracellular and extracellular levels. Computers &
Chemical Engineering 29, 3 (2005), 675–686.

[39] Haseltine, E. L., Yin, J., and Rawlings, J. B. Implications of decoupling
the intracellular and extracellular levels in multi-level models of virus growth.
Biotechnology and Bioengineering 101, 4 (2008), 811–820.

[40] Heldt, F. S., Frensing, T., Pflugmacher, A., Gröpler, R., Peschel,
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[76] Möhler, L., Flockerzi, D., Sann, H., and Reichl, U. Mathematical model
of influenza a virus production in large-scale microcarrier culture. Biotechnology
and Bioengineering 90, 1 (2005), 46–58.

[77] Motz, S. Reduktion Populationsdynamischer Modelle. PhD thesis, Universität
Stuttgart, 2004.

[78] Müller, S., Harms, H., and Bley, T. Origin and analysis of microbial pop-
ulation heterogeneity in bioprocesses. Current Opinion in Biotechnology 21, 1
(2010), 100–113.

[79] Müller, T. Population balance modeling of influenza A virus replication in
MDCK cells during vaccine production. PhD thesis, Otto-von-Guericke University
Magdeburg, 2015.
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[81] Müller, T., Dürr, R., Isken, B., Schulze-Horsel, J., Reichl, U., and

Kienle, A. Distributed modeling of human influenza a virus-host cell interac-
tions during vaccine production. Biotechnology and Bioengineering 110, 8 (2013),
2252–2266.

[82] Müller, T., Schulze-Horsel, J., Sidorenko, Y., Reichl, U., and Kienle,

A. Population balance modeling of influenza virus replication in mdck cells during
vaccine production. In Proceedings to the 18th European Symposium on Computer
Aided Process Engineering (2008), pp. 133–138.

[83] Murray, J. D. Mathematical Biology I: An Introduction, 3rd ed. Springer-Verlag
Berlin, 2001.

[84] Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Appli-
cations, 3rd ed. Springer-Verlag Berlin, 2001.

[85] Nagy, Z. K. Model based robust control approach for batch crystallization
product design. Computers & Chemical Engineering 33, 10 (2009), 1685–1691.

[86] Nandanwar, M. N., and Kumar, S. A new discretization of space for the so-
lution of multi-dimensional population balance equations. Chemical Engineering
Science 63, 8 (2008), 2198–2210.



148 Bibliography

[87] Nowak, M. A., and May, R. M. Virus Dynamics: Mathematical Principles of
Immunology and Virology. Oxford University Press, 2004.

[88] Paramasivan, G., and Kienle, A. Decentralized control system design under
uncertainty using mixed-integer optimization. Chemical Engineering & Technol-
ogy 35, 2 (2012), 261–271.

[89] Peglow, M., Kumar, J., Hampel, R., Tsotsas, E., and Heinrich, S. To-
wards a complete population balance model for fluidized-bed spray agglomeration.
Drying Technology 25, 7-8 (2007), 1321–1329.

[90] Penrose, R. A generalized inverse for matrices. Mathematical Proceedings of
the Cambridge Philosophical Society 55 (1955), 406–413.

[91] Radichkov, R., Müller, T., Kienle, A., Heinrich, S., Peglow, M., and

Mörl, L. A numerical bifurcation analysis of continuous fluidized bed spray
granulation with external product classification. Chemical Engineering and Pro-
cessing: Process Intensification 45, 10 (2006), 826–837.

[92] Ramkrishna, D. Population Balances: Theory and Applications to Particulate
Systems in Engineering. Academic Press, San Diego, 2000.

[93] Ramkrishna, D., and Singh, M. R. Population balance modeling: Current
status and future prospects. Annual Review of Chemical and Biomolecular En-
gineering 5 (2014), 123–146.

[94] Rhee, H.-K., Aris, R., and Amundson, N. R. First-Order Partial Differential
Equations, vol. 1. Dover Publications, Inc., Mineola, NY, 2002.
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Bollen, Y. J. M., Planqué, R., Hulshof, J., O’Toole, T. G., Wahl,

S. A., and Teusink, B. Lost in Transition: Start-Up of Glycolysis Yields Sub-
populations of Nongrowing Cells. Science 343, 6174 (2014).

[115] Vreman, A., van Lare, C., and Hounslow, M. A basic population balance
model for fluid bed spray granulation. Chemical Engineering Science 64, 21
(2009), 4389–4398.

[116] Walter, E., and Pronzato, L. Identification of parametric models: from
experimental data. Springer, Berlin, 1997.

[117] Wheeler, J. Modified moments and Gaussian quadratures. Rocky Mountain
Journal of Mathematics 4, 2 (1974), 287–296.

[118] Wright, D., McGraw, R., and Rosner, D. Bivariate extension of the quadra-
ture method of moments for modeling simultaneous coagulation and sintering of
particle populations. Journal of Colloid and Interface Science 236, 2 (2001),
242–251.

[119] Yoon, C., and McGraw, R. Representation of generally mixed multivariate
aerosols by the quadrature method of moments: I. Statistical foundation. Journal
of Aerosol Science 35, 5 (2004), 561–576.

[120] Yoon, C., and McGraw, R. Representation of generally mixed multivariate
aerosols by the quadrature method of moments: II. Aerosol dynamics. Journal of
Aerosol Science 35, 5 (2004), 577–598.

[121] Yuan, C., and Fox, R. Conditional quadrature method of moments for kinetic
equations. Journal of Computational Physics 230, 22 (2011), 8216–8246.

[122] Zhang, Y., Zamamiri, A. M., Henson, M. A., and Hjortso, M. A. Cell
population models for bifurcation analysis and nonlinear control of continuous
yeast bioreactors. Journal of Process Control 12, 6 (2002), 721–734.

[123] Zhao, H., Maisels, A., Matsoukas, T., and Zheng, C. Analysis of four
Monte Carlo methods for the solution of population balances in dispersed systems.
Powder Technology 173, 1 (2007), 38–50.

[124] Zhu, G. Y., Zamamiri, A., Henson, M. A., and Hjortso, M. A. Model
predictive control of continuous yeast bioreactors using cell population balance
models. Chemical Engineering Science 55, 24 (2000), 6155–6167.



Curriculum vitae

Personal details

Name Robert Dürr
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