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Abstract 

The chemical industry makes extensive use of solvents in reaction and separation processes 

in order to reduce process costs while simultaneously increasing product quality. Solvent 

selection is a key factor in process design due to their substantial effects on process 

performance. When considering the large number of existing solvents and the necessity for 

finding new solvents, systematic methods for optimal solvent design are very significant. 

Until now, there have been numerous contributions made towards the molecular design of 

solvents as mass separating agents for various separation processes. Despite the strong 

impact of solvents on chemical reactions by changing the reaction rate and/or shifting the 

chemical equilibrium, limited work on reaction solvent design has been reported. 

In the first part of this dissertation, systematic methods for reaction solvent design are 

proposed. For designing solvents to increase reaction rates, a new kind of solvent 

theoretical descriptor is introduced and used to correlate the effect of solvents on the 

reaction rate constant. Based on the parameterized rate constant prediction model and a 

group contribution method developed to estimate these descriptors, optimal solvents with 

the highest predicted reaction rates are identified from the formulation and solution of an 

optimization-based computer-aided molecular design (CAMD) problem. For designing 

solvents to improve reaction equilibrium conversions, a genetic algorithm based CAMD 

method is proposed. The reliability and efficiency of the method have been demonstrated 

on a selected esterification reaction. 

Taking into account the multiple effects that a solvent can have on a continuous production 

process involving reaction and separation sections, as well as the strong interdependence 

between the selection of solvents and the operation of processes, the simultaneous design 

of solvents and processes based on a single process-wide objective is essential. 

The second part of this dissertation proposes methods for integrated solvent and process 

design. An integrated reaction solvent and process design problem is first addressed. The 

best reaction solvent and optimal process operating conditions are simultaneously 

identified from the formulation and solution of a mixed-integer nonlinear programming 

(MINLP) problem where the overall process performance is maximized. The problem is 

simplified by assuming ideal mixture behavior and employing shortcut process models, 

afterwards, it is solved by a standard MINLP algorithm. Finally, a hybrid optimization 

algorithm is proposed for solving complex integrated solvent and process design problems 

where rigorous thermodynamic and process models are employed. The reliability of the 

algorithm is demonstrated on a coupled absorption-desorption process.  



Zusammenfassung 

In der chemischen Industrie sind Lösungsmittel in vielen Reaktions- und 

Trennungsprozessen weit verbreitet, um eine Reduzierung der Prozesskosten bei 

gleichzeitiger Verbesserung der Produktqualität realisieren zu können. Die Auswahl des 

optimalen Lösungsmittels ist dabei ein Schlüsselfaktor, da dieses einen erheblichen 

Einfluss auf die Prozessperformance ausübt. Betrachtet man die große Anzahl bereits 

bekannter Lösungsmittel als auch die Notwendigkeit neue Lösungsmittel zu finden, wird 

die Wichtigkeit systematischer Methoden für die Identifizierung des optimalen 

Lösungsmittel-Designs ersichtlich. In der Literatur findet sich eine Vielzahl an 

Veröffentlichungen bezüglich des molekularen Designs von Lösungsmitteln zur Nutzung 

als Trennmittel in unterschiedlichsten Trennprozessen. Aufgrund des starken Einflusses 

der Lösungsmittel auf chemische Reaktionen bei veränderten Reaktionsraten und/oder 

verschobenem chemischen Gleichgewicht existieren allerdings nur wenige Arbeiten zu 

Lösungsmitteln für chemische Reaktionen. 

Im ersten Teil dieser Dissertation werden systematische Methoden für das Designen von 

Reaktionslösungsmitteln vorgestellt. Für das Designen von Lösungsmitteln zur Steigerung 

der Reaktionsraten wird eine neue Art von theoretischen Lösungsmitteldeskriptoren 

eingeführt, die genutzt werden, um den Einfluss des Lösungsmittels auf die 

Geschwindigkeitskonstante zu beschreiben. Mithilfe eines parametrisierten 

Vorhersagemodells für Geschwindigkeitskonstanten und einer Gruppenbeitragsmethode 

zur Abschätzung der Deskriptoren werden optimale Lösungsmittel mit den höchsten 

vorhergesagten Reaktionsraten identifiziert. Dafür wird ein optimierungsbasiertes, 

computergestütztes Molekulardesign-Problem (engl. computer-aided molecular design, 

CAMD) gelöst. Für das Designen von Lösungsmitteln zur Verbesserung des 

Gleichgewichtsumsatzes wird anschließend eine auf einem genetischen Algorithmus 

basierende CAMD-Methode vorgestellt. Die Zuverlässigkeit und Effizienz dieser Methode 

wird an einer ausgewählten Veresterungsreaktion gezeigt. 

Betrachtet man sowohl die unterschiedlichen Auswirkungen von Lösungsmitteln auf einen 

kontinuierlichen Produktionsprozess, der Reaktions- und Trennschritte aufweist, als auch 

die starke gegenseitige Abhängigkeit von Lösungsmittelwahl und Betrieb des Prozesses, 

wird die Bedeutung eines simultanen Lösungsmittel- und Prozessdesigns unter 

Berücksichtigung einer einzigen prozessweiten Zielfunktion ersichtlich. 

Der zweite Teil dieser Dissertation beschäftigt sich mit Methoden zum integrierten 

Lösungsmittel- und Prozessdesign. Die simultane Identifizierung des optimalen 

Lösungsmittels für eine Reaktion und die Bestimmung der optimalen Prozessbedingungen 



wird durch das Aufstellen und Lösen eines gemischt-ganzzahligen nichtlinearen 

Optimierungsproblems (engl. mixed-integer nonlinear programming, MINLP) unter 

Berücksichtigung der Maximierung der Gesamtprozessperformance erreicht. Das Problem 

wird dabei zunächst durch die Annahme von idealem Mischungsverhalten und mittels 

Verwendung von Shortcut-Prozessmodellen vereinfacht und anschließend mithilfe eines 

MINLP-Algorithmus gelöst. Des Weiteren wird ein hybrider Optimierungsalgorithmus zur 

Lösung von komplexen integrierten Lösungsmittel- und Prozessdesignproblemen 

vorgestellt, der rigorose Thermodynamik- und Prozessmodelle nutzt. Die Zuverlässigkeit 

dieses Algorithmus wird an einem gekoppelten Absorptions-Desorptionsprozess 

demonstriert. 
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1. Introduction 

1.1 Research vision 

The conventional objective in chemical engineering is to minimize the cost of manufacturing a 

product after its molecular architecture and synthesis methods have been developed by chemists. 

However, one should realize that there are intrinsic links between different stages in a product 

R&D, i.e., from the consumers/market survey, computer-aided design, experimental verification, 

to the final industrial production. This characteristic makes the conventional sequential design 

approach (i.e. product/molecular design followed by process design) likely to miss potential 

optimal configurations, which can be obtained only if engineers succeed to consider all stages 

involved in a product-process system simultaneously. Nowadays, the task of Process Systems 

Engineering (PSE) has been transitioned from the traditional analysis and design of macro-scale 

process systems into the improvement of decision-makings for the discovery, design, 

manufacture, and distribution of chemical products. In other words, PSE should tie fundamental 

research at the molecular or microscopic level with the manufacturing of products at the 

industrial level (Grossmann and Westerberg, 2000). 

 

Figure 1.1: Strategic approach of multi-scale product and process design 
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2 1. Introduction 

Figure 1.1 briefly describes the methodology for multi-scale product and process design. Starting 

with a set of atoms, chemicals at the molecular level are synthesized. Subsequent steps aggregate 

the molecules into single or multiphase systems that finally present as macroscopic mixtures. 

Transitioning from chemistry into engineering, we move to the analysis and design of process 

units. The process units are finally integrated into a chemical plant under the consideration of 

economics and environmental, health, and safety regulations. 

A successful multi-scale design requires the integration of models across different scales, where 

the utilization of atomic-level structural and functional models as well as molecular-level fluid 

phase equilibrium models is the most critical and challenging work. Instead of sending 

information stepwise through the length scale via rigorous quantum chemical calculations and 

molecular dynamics simulations, our approach is to bridge the gap between microscopic and 

macroscopic levels by using empirical or semi-empirical property models, such as group 

contribution models. These models allow for the prediction of physical and/or thermodynamic 

properties, as required in process development, from molecular structure information. This 

strategy can significantly reduce the computational cost and difficulty in solving multi-scale 

product and process design problems. 

The chemical industry makes extensive use of solvents in reaction and separation processes in 

order to achieve a reduction of process costs while increasing the quality of products. In view of 

the huge number of existing solvents and the necessity for exploring new alternative solvents, 

systematic methods for the optimal design of solvents is very significant for efficient and 

sustainable industrial manufacturing. For considering the strong interaction between the selection 

of solvents and process operations, reliable and efficient methods for integrated solvent and 

process design are also required. As important example of ―multi-scale product and process 

design‖, the molecular design of solvents as well as the integrated solvent and process design are 

primarily studied in this dissertation. The developed methodologies lay a solid foundation for the 

study on a wide range of chemical product design and integrated molecular and process design 

problems. 

1.2 Research motivation and mission 

The liquid state is so far the most important state for both chemistry and chemical engineering. 

For reaction and separation purposes it provides the advantage of intensive molecular contacting 

with ever-changing partners. Molecules of different species can be mixed and brought into 

contact in the liquid phase if solvents are appropriately chosen (Klamt et al., 2010). 

Nowadays, millions of tons of solvents are used in industrial processes annually and the usage of 

and demand for solvents are still increasing. In addition to the capital and operational economic 

pressures, stricter safety, environmental, and health regulations have driven the search for 
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efficient alternative solvents. The optimal selection of solvents and the exploration for alternative 

solvents have been identified by the ACS Green Chemistry Institute as one of the top five 

priorities for green engineering research (Jiménez-González et al., 2011). 

Since the late 15th century when chemists searched for universal solvents, work on 

understanding the role of solvents and their reasonable selection in chemical manufacturing 

processes has never stopped. Solvents play important roles in both reactions and separations 

(highlighted in Section 2.1). Due to the large number of existing solvents and the necessity for 

finding new solvents, one has to make use of computational design or search methods to guide 

the solvent selection. During the past few decades, the Computer-Aided Molecular Design 

(CAMD) method has been proposed and widely used for solvent screening and molecular design 

(Achenie et al., 2002). Until now, there have been numerous contributions to the CAMD of 

solvents as mass separating agents for various separation processes (Ng et al., 2015). Despite the 

strong impact of solvents on reaction performance by changing the reaction rate and/or by 

shifting the chemical equilibrium, limited work on reaction solvent design has been reported. 

On the other hand, it should be noted that efficient processes can be designed only if engineers 

succeed to consider all levels involved in the process system simultaneously (see Figure 1.1), 

i.e., to bring molecular-level decisions into process design. A solvent can have multiple effects 

on a process it is used for. Considering these multiple influences as well as the strong 

interdependence between the selection of solvents and the operation of processes, the 

simultaneous design of solvents and process based on a single process-wide objective is essential. 

Integrated solvent and process design usually leads to complex mixed-integer nonlinear 

programming (MINLP) problems, especially when rigorous thermodynamic and process models 

are considered. To find the optimal solution of such problems using standard MINLP algorithms 

is very challenging without well-adjusted initial estimates. 

In view of the above limitations, the objectives of this work are (1) to propose systematic 

methods for CAMD of solvents for chemical reactions with respect to solvent effects on reaction 

kinetics and chemical thermodynamics and (2) to propose reliable and efficient optimization 

approaches for solving complex integrated solvent and process design problems. 

1.3 Organization of the dissertation 

This dissertation consists of 7 chapters, including one introductory chapter, one fundamentals 

chapter, two chapters for reaction solvent design (Part I), two chapters for integrated solvent and 

process design (Part II), and finally a conclusion chapter. 

Chapter 2 provides necessary fundamental knowledge. The usage and classification of solvents, 

solvent effects on reactions and separations, as well as the basic methods for predicting solvent 

effects are firstly discussed. The Conductor-like Screening Model (COSMO) based on which we 
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derive solvent molecular descriptors is then introduced. Finally, the CAMD approach is 

elaborated and previous work on the CAMD of solvents as well as computer-aided molecular 

and process design (CAMPD) is reviewed. The significance and key challenges in developing 

efficient methods for reaction solvent design and integrated solvent and process design are 

emphasized. 

Part I of the dissertation introduces work on the CAMD of solvents for chemical reactions. 

Chapter 3 proposes a CAMD method for the optimal design of solvents to accelerate reaction 

rates for nonreversible reactions. The method is demonstrated on two example reactions, one 

simple and one complex. Chapter 4 introduces a method for the optimal design of solvents to 

improve the equilibrium conversion of reversible reactions. The method is illustrated on a 

selected esterification reaction. 

Part II of the dissertation focuses on integrated solvent and process design. Chapter 5 deals with 

reaction solvents and Chapter 6 handles separation solvents. In Chapter 5, the reaction solvent as 

well as the reactor and downstream separation units are simultaneously designed to maximize the 

overall process performance. Chapter 6 proposes a novel optimization approach for solving 

complex integrated solvent and process design problems. The reliability and robustness of the 

approach are demonstrated on a coupled absorption-desorption (AD) process where the 

absorption solvent structure and the AD process are simultaneously optimized. 

Chapter 7 closes the dissertation by summarizing the major achievements and limitations. A 

discussion on remaining challenges and future directions is also given. 
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2. Fundamentals 

2.1 Solvents in process engineering 

2.1.1 Definition, usage, and classification of solvents 

A solvent, according to Wikipedia, is a substance that dissolves a solute (a chemically different 

liquid, solid or gas), resulting in a solution where all the ingredients are uniformly distributed at a 

molecular level. Solvents are used in almost everywhere in process industries, such as chemical, 

petrochemical, biotechnology, food, pharmaceutical, and microelectronic engineering. Their 

applications include the dissolution of solid materials, dilution of liquids, extraction, 

crystallization, facilitating reactions, etc. According to the Ceresana solvent market research, in 

2013 about US$25 billion were generated from the sale of solvents worldwide and the global 

solvent sale will keep increasing by 4% per year until 2021. 

Solvents can be classified according to their physical or chemical properties. Reichardt and 

Welton (2011) have reviewed five common classification systems based on physical constants, 

chemical constitutions, solute-solvent interactions, acid-base behaviors, and multivariate 

statistical methods. In the beginning, solvents were classified based on their physical properties, 

such as density, viscosity, melting and boiling points. For example, they can be broadly 

classified into low-, middle-, and high-boiling solvents with constraints of the normal boiling 

point < 100 °C, 100 ~ 150 °C, and > 150 °C, respectively. Later, solvents were classified into 

four categories: molecular liquids, switchable solvents, ionic liquids, and atomic liquids based on 

their chemical constitutions. 

Molecular liquids (also known as molecular solvents) consist of water and non-aqueous organic 

compounds. Water has been used as a solvent since the early days of human civilization, and 

remains as a common solvent in modern industry. Organic compounds such as alcohols, esters, 

ethers, ketones, amines, nitriles are regarded as traditional solvents widely used in chemical and 

process industry. According to their polarities, usually indicated by the dielectric constant, 

molecular solvents can be classified into polar and nonpolar solvents. Normally, when the 

dielectric constant is larger than 15, the solvent is regarded as polar, otherwise, it is nonpolar. 

Heptane and benzene are typical examples of nonpolar solvents. Polar solvents can be further 

classified into polar protic solvents such as methanol and water, and polar nonprotic solvents 

such as dimethylsulfoxide and acetonitrile. 

Switchable solvents are defined as solvents whose properties can be reversibly changed by 

means of an external stimulus such as a temperature change. This possibility of reversibly 

―switching‖ the physical characteristics and/or the polarity of the solvent largely facilitates both 

reaction and subsequent product separation (Pollet et al., 2011). Supercritical fluids with 

supercritical CO2 as the most important example are one kind of switchable solvents. Another 
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group of switchable solvents are gas-expanded liquids. Similarly, the most common gas-

expanded liquids are CO2-expanded liquids. For more information on the properties and 

applications of supercritical fluids and gas-expanded liquids, please refer to Clifford and Clifford 

(1999) and Jessop and Subramaniam (2007), respectively. 

Ionic liquids (ILs) are molten salts at room or near-room temperature. They are composed of 

ions, i.e., one cation and one anion. Walden (1914) synthesized one of the earliest ILs ethyl-

ammonium nitrate. After that, the development of ILs has been relatively slow for a long time. In 

1970s, ILs consisting of imidazolium or pyridinium cations and halide or tetrahalogenoaluminate 

anions were first synthesized and used as electrolytes in battery applications (Chum et al., 1975). 

Since then, ILs started to attract widespread attentions. Nowadays, they are widely used as 

separation solvents and reaction media. Interested readers can refer to Welton (1999) for a 

comprehensive introduction on the properties and applications of ILs. 

Atomic liquids are metals with low melting points, such as mercury and liquid sodium. Until 

now, they have received very little attention as solvents. 

2.1.2 Solvent effects 

Chipperfield (1999) summarized the major four applications of solvents in process industry as 

reactants, reaction media, separation and transportation agents. As reaction media, solvents can 

facilitate reactions by increasing the reaction rate and/or improving the reaction equilibrium 

conversion. As separation agents, solvents are used in processes including gas absorption, liquid-

liquid extraction, and extractive distillation. In order to find out the role of solvents in reaction 

and separation processes, the understanding of solvent effects on reaction kinetics as well as 

chemical and phase equilibrium is important. 

a) Solvent effects on reaction kinetics 

The influence of solvents on chemical reaction rates was first noticed by Berthelot and Pean de 

Saint-Gilles in 1862 when they studied the esterification reaction between acetic acid and 

ethanol. In 1890, Menschutkin thoroughly investigated the effect of 23 solvents on the reaction 

between trialkylamines and haloalkanes. He found that the reaction rate varied significantly in 

different solvents. In 1948, Grunwald and Winstein proved the strong solvent-dependence of the 

rate of the alkyl halide solvolysis reaction. Starting from these early works, solvent effects on 

reaction kinetics have been extensively studied. Table 2.1 summarizes the relative rate constants 

of the solvolysis of 2-chloro-2-methylpropane in different solvents. The reaction was found 

335000 times faster in water than in ethanol (Fainberg and Winstein, 1956; Winstein and 

Fainberg, 1957). Table 2.2 shows the solvent-dependence of the rate constant of the reaction 

between cyclohexene and chloro-2,4-dinitrophenylsulfane, measured by Campbell and Hogg 

(1967). It was found that the rate constant is 2800 times larger in nitrobenzene than in carbon 
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tetrachloride. Solvent-dependent rate constants of many other reactions can be found in 

Reichardt and Welton (2011). 

Table 2.1: Relative rate constants of the 2-chloro-2-methylpropane solvolysis reaction in 

different solvents 

Solvent C2H5OH CH3OH HCONH2 HCOOH H2O 

Relative k 1 9 430 12200 335000 

Table 2.2: Relative rate constants of the reaction between cyclohexene and chloro-2,4-

dinitrophenylsulfane in different solvents 

Solvent CCl4 CHCl3 CH3COOH (CH2Cl)2 C6H5NO2 

Relative k 1 605 1370 1380 2800 

Solvents influence reaction rates through the differential solvation of the reactants and transition 

state. According to the transition state theory (TST), reactants have to jump over an activated 

complex that lies at a saddle point of the potential energy surface before being transformed into 

the products. The complex with the highest energy is called the transition state (TS). The energy 

gap between the reactants and the TS is known as the activation energy. The Arrhenius equation 

defines the reaction rate constant                 where A is a pre-exponential factor, 

    is the activation energy of the reaction, R is the universal gas constant and T is the absolute 

temperature. Now let us consider a simple R ↔ P reaction carried out in two different solvents, 

Solvent I and Solvent II. The energetic paths of this reaction are sketched in Figure 2.1. Due to 

the different solvation abilities of the solvents on the reactant and the TS, Solvents I and II result 

in different levels of activation energy of the reaction (   
      

 ). From the Arrhenius 

equation, it is clear that the reaction is faster in Solvent II than in Solvent I, i.e., kII > kI. 

 

Figure 2.1: Gibbs free energy paths of an R ↔ P reaction performed in two different solvents 
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b) Solvent effects on chemical and phase equilibrium 

The influence of solvents on chemical equilibrium was initially discovered by Wislicenus (1896) 

when studying the keto-enol equilibrium of the ethyl formylphenylacetate tautomerization in 

eight solvents. Wislicenus found that the keto form dominates in alcohol solvents and the enol 

form dominates in chloroform as well as in benzene. It was concluded that the equilibrium keto-

to-enol ratio depends much on the nature of solvent, more specifically, on solvent dissociating 

power, which can be indicated by the dielectric constant of the solvent. Table 2.3 summarizes the 

solvent-dependent chemical equilibrium of the tautomerization of 3-benzoyl camphor at 273.15 

K (Dimroth, 1910). 

Table 2.3: Keto-enol equilibrium of the 3-benzoyl camphor tautomerization in five solvents 

Solvent Diethyl ether Ethyl acetate Ethanol Methanol Acetone 

Enol/keto 6.81 1.98 1.67 0.87 0.85 

For the liquid R ↔ P reaction taken place at a constant temperature and pressure, we have 
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where           and           are the chemical potential and fugacity of component i in the 

mixture, respectively.         and         are the chemical potential and fugacity of pure-

component i, respectively. x is the composition vector, here x = [xR, xP]. When the reaction 

reaches equilibrium, we have                        . 
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After substituting activity coefficients into the above equation, we have 
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 are the molar fractions of R and P at equilibrium, respectively.   
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represent the activity coefficients of R and P at equilibrium, respectively. The above equation 

can be reformulated as 
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For a liquid compound i,         is equal to   (   
 ) where P

θ
 denotes the standard pressure 

(usually 1 atm). In other words,         is only temperature-dependent. In fact, the right-hand 

term of the above equation is the temperature-dependent thermodynamic equilibrium constant of 

the reaction, which means the left-hand term (  
    

  ) (  
    

   )⁄  is a constant under a specified 

temperature. It is now clear that solvents influence the equilibrium conversion of the reaction 

(indicated by   
    

  ⁄ ) through the variation of   
    

  ⁄  that can be estimated by activity 

coefficient models. 

Solvents influence not only reaction equilibrium, but also phase equilibrium. For instance, when 

a solvent is used for gas separation, the vapor-liquid equilibrium equation under the assumption 

of ideal gases is given by 

 TPxPy sat

iiitoti     or     tot

sat

iiii PTPxy   

yi and xi represent the compositions of component i in the gas and liquid phases, respectively. γi 

is the activity coefficient of i in the liquid phase,   
    is the temperature-dependent saturated 

vapor pressure of i and Ptot denotes the total pressure of the system. The selectivity of the solvent 

for separating gases i and j

 

thus is determined by
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Similarly, when a solvent is used for liquid-liquid extraction, the liquid-liquid equilibrium 

condition of component i between phases α and β is written as 

  iiii xx   

The extraction selectivity of the solvent
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ij
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The same with solvent effects on chemical equilibrium, the effect of solvents on phase 

equilibrium is finally attributed to solvent-dependent activity coefficients as well. 

It should be noted that solvents can sometimes have influences on both chemical and phase 

equilibrium. In order to visualize these dual effects in ternary diagrams, a simple, hypothetical 

reaction A ↔ B is considered. Figure 2.2 shows the effects of two solvents (S1 and S2) on the 

chemical and phase equilibrium of the reaction. UNIQUAC parameters of the virtual liquid 

compounds are listed in Table 2.4. 
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                                  (a)                                                                         (b) 

Figure 2.2: Phase diagrams for the A ↔ B reaction in the presence of inert solvents S1 and S2 at 

the thermodynamic equilibrium constant K = 1 (Figure 2.2a) and K = 0.2 (Figure 2.2b) 

From the Gibbs phase rule it is known that for a three-component and one-reaction system at 

constant temperature and pressure, there are at most two liquid phases at equilibrium. Figure 2.2a 

shows the liquid-liquid phase envelope and reaction equilibrium curve of the ternary system 

where the thermodynamic equilibrium constant K is equal to unity. Here, the reaction 

equilibrium curve does not intersect with the phase envelope. This means that the final 

equilibrium state only has one liquid phase and the composition is completely constrained by the 

reaction equilibrium. The single degree of freedom is the composition of the solvent. Given an 

initial solvent composition, the equilibrium composition corresponds to the intersection of the 

stoichiometric line (vertical line for our A ↔ B reaction) through the initial composition and the 

reaction equilibrium curve. For example, when the initial amount of the solvent is at e, the 

equilibrium composition of the system will be located at g for solvent S1 and h for solvent S2 

with the equilibrium conversions of the reaction being indicated by point n and point m for 

solvents S1 and S2, respectively. 

Similarly, Figure 2.2b shows the phase envelope and reaction equilibrium curve at K = 0.2. For a 

mixture with an initial composition at e, two different liquid phases can be found at equilibrium. 

The compositions of the two phases are determined by the intersections of the reaction 

equilibrium curves and the phase envelopes since both reaction equilibrium and phase 

equilibrium conditions need to be satisfied. The total compositions of the two liquid phases 

correspond to point g for solvent S1 and h for solvent S2, and the reaction conversions are 

indicated by point n and point m for solvents S1 and S2, respectively. 

From the above illustration, it is clear that solvent structure and its initial composition are the 

only degrees of freedom needed to define the equilibrium conversion of liquid phase reactions. 
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Table 2.4: UNIQUAC parameters (T = 298.15 K, P = 1 atm) used to generate Figure 2.2 

Pure component parameters 

Component r q 

B (1) 2.204 2.072 

S1 (2) 0.940 1.400 

S2 (2′) 1.200 1.700 

A (3) 2.870 2.410 

Binary interaction parameters (K) 

Ternary system of {A + B + S1} 

a(1,1) = 0.00 a(1,2) = 10.20 a(1,3) = −10.57 

a(2,1) = −13.94 a(2,2) = 0.00 a(2,3) = 100.80 

a(3,1) = 37.80 a(3,2) = 333.89 a(3,3) = 0.00 

Ternary system of {A + B + S2} 

a(1,1) = 0.00 a(1,2′) = −20.20 a(1,3) = −10.57 

a(2′,1) = −235.94 a(2′,2′) = 0.00 a(2′,3) = 150.80 

a(3,1) = 37.80 a(3,2′) = 350.89 a(3,3) = 0.00 

 

2.1.3 Solvent effect predictions 

a) Prediction of solvent effects on reaction kinetics 

Polar solvents normally have stronger interactions with more polar solutes than with less polar 

solutes. In other words, compared to less polar solutes, more polar solutes have lower energies in 

polar solvents. As explained in Section 2.1.2, it is the different solvation abilities of solvents on 

the reactants and the transition state that result in different levels of activation energy of the 

reaction, which finally lead to different reaction rate constants. Based on these considerations, 

Hughes and Ingold (1935) summarized the following heuristics on solvent kinetic effects. 

(1) An increase in solvent polarity results in an increase in the rates of those reactions where the 

charge density (polarity) of the transition state is higher than that of the reactants. 

(2) An increase in solvent polarity results in a decrease in the rates of those reactions where the 

charge density (polarity) of the transition state is lower than that of the reactants. 
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These heuristics can only provide a qualitative description of solvent kinetic effects. For 

quantitatively predicting these effects, either quantum chemical methods or empirical correlation 

methods can be employed. 

The TST described in Section 2.1.2 is until now the most applicable theoretical method for 

determining reaction rate constants. The TST indicates that the quantification of solvent effects 

on reaction kinetics requires the prediction of solvent-dependent activation energy of the 

reaction. Despite the popularity of using quantum chemical methods to determine reaction 

activation energy, the computation procedure is at the moment still quite computationally 

complex and expensive, additionally, the predicted rate constants sometimes show substantial 

deviations from the experimentally determined ones (Struebing et al., 2013). 

Given the difficulty in determining solvent kinetic effects by computational chemistry methods, 

empirical and semi-empirical methods have been proposed and widely used. A well-known 

semi-empirical approach is the quantitative structure-property relationship (QSPR) method (Jurs, 

2008) where the physical or chemical property of a compound is related to certain parameters, 

properties, or molecular descriptors of the compound. Grunwald and Winstein (1948) correlated 

solvent-sensitive reaction rate constants with solvent ionizing power, an empirical measure of 

solvent polarity. With this correlation, they thoroughly studied the effect of solvents on SN1 

reactions and found that polar protic solvents are the most favorable solvents for accelerating the 

rates of SN1 reactions. The Grunwald-Winstein correlation equation was later improved by 

adding another important factor, solvent nucleophilicity (Winstein et al., 1951), in addition to the 

ionizing power of solvent. The new equation shows an enhanced predictive power for SN2 

reactions. 

In general, correlations taking into account more than two solvent parameters are regarded as 

multi-parameteric QSPR models. Fowler et al. (1971) first showed that by correlating with at 

least three solvent parameters or properties, the quality of prediction on solvent kinetic effects 

can be significantly improved. The Kamlet-Taft Linear Solvation Energy Relationship (LSER) 

model, also known as the solvatochromic equation, is one of the most successful multi-

parameteric QSPR models on describing the effect of solvents on reaction rates. The equation 

first employed three solvent solvatochromic parameters. They are hydrogen-bond donor acidity α 

(Taft and Kamlet, 1976), hydrogen-bond acceptor basicity β (Kamlet and Taft, 1976), and 

polarity/polarizability π (Kamlet et al., 1977). Later, Kamlet et al. (1983) generalized the 

equation by including three more parameters. The generalized solvatochromic equation is 

expressed as: 

log k = log k0 + sπ + dδ + aα + bβ + h  
  + eξ 
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where log k is the logarithm of the rate constant. δ is a discontinuous polarizability correction 

term with δ = 0 for nonhalogenated aliphatic solvents, δ = 0.5 for polyhalogenated aliphatic 

solvents, and δ = 1 for aromatic solvents.   
 , the square of solvent Hildebrand solubility 

parameter (Hildebrand and Scott 1950), indicates the cohesive energy density of solvent 

molecules. ξ is the coordinate covalency parameter (Kamlet et al., 1983). log k0, s, d, a, b, h, and 

e are fitting constants obtained from multi-linear regressions. To date, a large number of 

applications of the solvatochromic equation can be found in open literatures. For example, Folić 

et al. (2008) employed the solvatochromic equation to correlate the effect of solvents on the rate 

constant of a Menschutkin reaction. 

b) Prediction of solvent effects on reaction thermodynamics 

The effects of solvent structure and composition on the equilibrium conversion of liquid phase 

reactions are shown in Figure 2.2 by investigating a simple reversible A ↔ B reaction. Now let 

us consider a more general A + B ↔ C + D reaction taken place at a constant temperature T. The 

initial amount of the reactants and products as well as the amount of solvent added to the 

reaction mixture are given. If the final equilibrium state consists of only one liquid phase, the 

equilibrium conversion of the reaction can be directly determined from the solution of the 

chemical equilibrium equation (  
    

  ) (  
    

  ) (  
    

  )(  
    

  )      ⁄  with a suitable 

activity coefficient model. When the equilibrium state has two liquid phases, a set of nonlinear 

equations including 4 mass balance equations, 1 chemical equilibrium equation, 5 phase 

equilibrium equations, and 2 summation equations can be derived. The final equilibrium state 

can be determined by solving this set of equations. It should be noted that due to the strong 

nonlinearities of these equations, a successful solution relies much on good initial estimates. 

2.2 Conductor-like screening model 

2.2.1 COSMO 

Basic quantum chemistry (QC) methods describe isolated molecules at a temperature of 0 K, 

which allows a realistic description of molecules in vacuum or in the gas phase only. Continuum 

Solvation Models (CSMs) are extensions of the basic QC methods for treating liquid mixtures. In 

CSMs, the atomic structure of solvent is neglected and the electrostatic property of the solvent is 

represented by an infinitely extended dielectric continuum. The solute is treated as if embedded 

in the dielectric continuum where a molecular surface or ―cavity‖ is constructed around the 

solute molecule. The electric field of the solute in the cavity is screened by the polarization of the 

solvent continuum. The effect of this polarization can be represented by the distribution of the 

screening charge density (SCD) produced on the cavity surface. 

In 1993, Klamt and Schüürmann (1993) proposed a very popular CSM, known as conductor-like 

screening model (COSMO). In COSMO, the dielectric continuum that represents the solvent is 
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approximated by a conductor with a positive-infinity dielectric constant. The dielectric boundary 

condition thus is replaced by a much simpler conductor boundary condition, which substantially 

simplifies the calculation of the SCD distribution. Figure 2.3 concisely describes the basic steps 

of a COSMO calculation procedure. Firstly, the molecule of interest is built and optimized to its 

most stable configuration. A molecular cavity defining the boundary of conductor is constructed 

around the molecule. The conductor SCD distribution is then obtained from quantum chemical 

(usually Density Functional Theory, DFT) computation while the molecule is converged to its 

energetically optimal state in the conductor. Due to the wide popularity of the model, the 

COSMO calculation procedure has been standardized and implemented in many quantum 

chemical software packages, such as Turbomole (Schäfer et al., 2000) and Gaussian (Frisch et 

al., 2004). It is worth mentioning that even though the DFT calculation is time-consuming for 

large molecules, the calculation needs to be performed only once for a molecule and the result 

(mainly the SCD distribution) can be stored in a COSMO-file. The available COSMO database 

already covers a large number of common molecules. For more information on the COSMO 

theory and application, please refer to Klamt et al. (2010). 

 

Figure 2.3: Schematic diagram of a COSMO calculation procedure 

2.2.2 σ-profile 

The COSMO calculation finally results in a spatial SCD distribution. This three-dimensional 

information can be converted into a histogram indicating the amount of molecular surface 

segments having a certain SCD value, σ. Figure 2.4 shows the SCD histogram of the water 

molecule. As shown, there is an accumulation of negative screening charges (blue) around the 

positively charged hydrogen atoms and positive screening charges (red) induced by the 

negatively charged oxygen atom. Through the continuation of the SCD histogram, we can finally 

obtain a very important composition function, so called σ-profile, P(σ). 
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Figure 2.4: SCD histogram of the water molecule, taken from 

http://www.cosmologic.de/files/downloads/theory/COSMO-RS-Theory-Basics.pdf 

Figure 2.5 shows σ-profiles of four representative compounds: namely water (highly polar HB 

acceptor and HB donor), hexane (nonpolar), chloroform (HB donor) and acetone (HB acceptor). 

Qualitatively, a more polar molecule has a broader SCD distribution compared to a less polar 

molecule. When the SCD goes beyond ±1.0 e/nm
2
, the molecule is polar enough to form a 

hydrogen bond (HB). As depicted in Figure 2.5, water has a very broad σ-profile with two 

pronounced peaks around –1.6 e/nm
2
 and +1.8 e/nm

2 
resulting from the strongly polar hydrogen 

atoms and oxygen atom, respectively. Hexane is almost nonpolar, which can be reflected from its 

narrow distribution of the SCD around zero. The slightly negative SCD is assigned to the hexane 

hydrogen atoms and the slightly positive SCD denotes the carbon atoms. The σ-profiles of 

chloroform and acetone are very asymmetric. The peak at –1.4 e/nm
2
 of the chloroform σ-profile 

arises from the acidic hydrogen atom and the peak around +1.3 e/nm
2 

of the acetone σ-profile 

corresponds to its carbonyl group. 

 

Figure 2.5: σ-profiles of water, hexane, chloroform, and acetone 
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Derived from uni-molecular quantum chemical calculation, σ-profile can well characterize the 

polarity and charge distribution of a molecule. Moreover, due to its molecule-specific nature, σ-

profile can be regarded and used as a promising molecular fingerprint. 

2.3 Computer-aided molecular design 

From Section 2.1, we know that solvents can influence many process properties, such as reaction 

rate, chemical and phase equilibrium, etc. Therefore, the selection of a proper solvent is very 

important for developing highly efficient process systems. There are two main types of methods 

for making solvent selection decisions. The first is so called experience-and-experiment. 

Potential candidates are first selected from experiences or heuristics. Afterwards, specific 

experiments are carried out for each of the selected candidates, from which the best solvent is 

finally identified. Despite its wide applicability, the method is quite experience-limited and 

experimentally time-consuming. Recent advances in molecular property modeling, numerical 

algorithm, and computer power have brought the computer-aided molecular design (CAMD) 

method to the limelight. CAMD, introduced by Gani and Brignole (1983) as a new concept in the 

early 1980s, is a general term describing the procedure of rational selection or design of 

molecules that possess pre-specified, desirable properties using systems engineering principles. 

Since its emergence, the CAMD method has been widely used for designing solvents for specific 

applications. 

2.3.1 The CAMD approach 

The CAMD problem is described as: Given a set of molecular building blocks (usually structural 

groups), determine feasible molecular structures that possess pre-specified, desirable properties. 

Figure 2.6 concisely summarizes the basic procedures followed in solving a CAMD problem. 

Generally, each CAMD problem can be divided into a forward and a reverse subproblem. The 

task of the forward subproblem is to establish mathematical models for predicting molecular 

properties based on given molecular structures. In the reverse subproblem, molecular structures 

that possess desired properties are identified from either generate-and-test or mathematical 

optimization methods based on the established structure-property relationship models. 

 

Figure 2.6: The CAMD methodology 
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Due to the high complexity and computational load of first-principle models, in CAMD 

empirical or semi-empirical models are usually developed and used for predicting molecular 

properties (see Figure 2.7). Molecular properties generally include pure-component physical 

properties, such as heat capacity and boiling point, as well as mixture thermodynamic properties, 

such as activity coefficient and solubility. Pure-component physical properties are commonly 

estimated by group contribution (GC) methods where each structural group is assumed to 

contribute a specific amount to a certain property and the property is determined by the 

summation of group contributions multiplied by the number of groups present in the molecule. 

Another approach for predicting molecular physical properties is the semi-empirical QSPR 

modeling method. In this method, molecular properties are related to molecular structures via 

correlations with certain molecular descriptors. Linear correlations are typically used in QSPR 

modeling. The nonlinear relationship between molecular structure and property can be included 

by using advanced correlation methods such as artificial neural network (ANN). For estimating 

thermodynamic properties, predictive molecular thermodynamic models such as UNIFAC can be 

employed. 

 

Figure 2.7: Methods for predicting molecular properties in CAMD 

CAMD tasks can be solved as optimization problems where the number of building groups 

present in the molecule is the independent integer variable being optimized. Depending on the 

design task, molecular properties as dependent continuous variables are either constrained or 

posed as the objective function. Structural feasibility rules, used to ensure the chemical 

feasibility of generated molecules, are usually written as equality constraints. Structural 

complexity constraints, normally posed as inequality constraints, take into account the upper and 

lower limits on the number of each group as well as the limit on the total number of groups 

making up the molecule. Due to the inclusion of both discrete and continuous variables, the 

design task is intrinsically a Mixed-Integer Linear Programming (MILP) or Mixed-Integer Non-

Linear Programming (MINLP) problem, depending on the form of the employed structure-

property relationship models. 
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Methods for solving the MILP or MINLP formulated CAMD problem can be generally classified 

into two categories. They are the generate-and-test approach and the mathematical optimization 

approach. 

a) CAMD via generate-and-test methods 

Gani and Brignole (1983) and Brignole et al. (1986) first introduced the generate-and-test 

method. The key idea of this method is to generate all possible molecule candidates from a given 

set of building groups and test them one by one against all constraints, those unsatisfying the 

constraints are discarded and the left are evaluated and ranked according to their objective 

property values. Because all possible combinations of structural groups are generated and tested, 

the calculation can be quite computationally expensive as the number of building groups 

increases. Gani et al. (1991) improved the method by first using structural feasibility rules to 

ensure that only chemically feasible molecules are generated. These molecules are then filtered 

by multi-level property constraints. Molecules violating the preceding constraints are eliminated 

immediately without being assessed by the subsequent constraints. 

Traditional generate-and-test methods cannot distinguish between structural isomers. Harper and 

Gani (2000) addressed this problem by proposing a multi-step CAMD framework. In this 

framework, the optimal combination of first-order structural groups is first identified via 

conventional generate-and-test methods where first-order group based GC models are employed. 

Later in a separate post-design step, all possible structural isomers that can be generated from the 

identified combination of first-order groups are further evaluated by using higher-order GC 

models, molecular modeling techniques, or experimental data if available. After that, a final 

selection of molecules can be made. The multi-step CAMD approach has been implemented into 

a computer program, ProCAMD (Gani, 2010). Apart from the aforementioned contributions, 

other CAMD works using the generate-and-test method or the ProCAMD program include Pretel 

et al. (1994); Constantinou et al. (1996); Harper et al. (1999); Chen et al. (2005); Karunanithi et 

al. (2005; 2006). 

The generate-and-test method tests all the molecules in the design space. Therefore, the global 

optimality of the final identified molecule can be guaranteed. Despite this advantage, the 

limitation of the method is also obvious. Due to the full enumeration of solutions in the design 

space, the method can suffer greatly from the combinatorial explosion for design tasks with a 

large number of molecular building groups. 

b) CAMD via mathematical optimization methods 

Shortly after the first few applications of the generate-and-test method, Odele and Macchietto 

(1993) introduced the mathematical optimization method. This method is able to find promising 

molecules without testing all the candidates in the design space. This feature makes the method 

much less limited by the combinatorial complexity. Therefore, compared to the generate-and-test 
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method, mathematical optimization methods are more efficient for solving complex CAMD 

problems. 

As is well known, deterministic and stochastic optimizations are the two categories of 

mathematical optimization techniques. CAMD using deterministic optimization seeks to find 

optimal molecules from the direct solution of the MILP or MINLP problem by derivative-based 

algorithms. When solving the MILP-formulated CAMD problem with deterministic optimization 

algorithms, global optimality of the solution is always ensured. However, for nonconvex 

MINLP-based CAMD problems, only local optimum can be guaranteed unless deterministic 

global algorithms are used. CAMD works employing deterministic optimization methods include 

Vaidyanathan and El-Halwagi (1994); Maranas (1997); Sahinidis and Tawarmalani (2000); 

Wang and Achenie (2002); Cheng and Wang (2007); Samudra and Sahinidis (2013). Stochastic 

optimization finds optimal solutions based on adaptive search strategies. Depending on the type 

of stochastic algorithm, different rules are defined to guide the movement from one solution 

towards another improved solution. Even though there is no theoretical guarantee on the 

optimality of solution, under properly adjusted algorithm parameters stochastic optimization can 

find global or near-global optimum for both convex and nonconvex problems. CAMD works 

using stochastic optimization methods include Venkatasubramanian et al. (1994; 1995); van Dyk 

and Nieuwoudt (2000); Marcoulaki and Kokossis (2000); Kim and Diwekar (2002). 

2.3.2 CAMD of solvents 

From Section 2.1, we know that solvents can have large influence on reactions and separations. 

Due to the large number of solvent candidates, theoretical methods for guiding the solvent 

selection are strongly required. The CAMD method allows for the optimal design of molecules 

for specific applications. Since its emergence, the method has been widely used for finding 

optimal solvents to improve the reaction and separation performance. 

a) CAMD of separation solvents 

Macchietto et al. (1990) first designed solvents for liquid-liquid extraction and gas absorption 

processes via the formulation and solution of CAMD problems. Marcoulaki and Kokossis (2000) 

proposed a CAMD method based on the simulated annealing algorithm to design solvents for 

liquid-liquid extraction, extractive distillation, and gas separation processes. Later, Kim and 

Diwekar (2002) developed another stochastic algorithm based CAMD method to design 

extraction solvents. Chen et al. (2005) applied the CAMD methodology to design solvents for 

separating hydrocarbons by extractive distillation. The generate-and-test approach was used to 

solve the design problem. Karunanithi et al. (2005) proposed a decomposition-based CAMD 

method to design solvents and solvent mixtures. In the method, the CAMD problem is 

decomposed into an ordered set of subproblems where each subproblem except the final one 

requires the consideration of only a subset of constraints from the original full set. Solvent 
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molecules generated by the ProCAMD program are tested one-by-one by the subproblems. 

Those unsatisfying constraints of the preceding subproblems are discarded without being 

evaluated by the subsequent subproblems. This decomposition strategy finally leads to a 

significantly reduced MILP or MINLP problem that can be comfortably solved. The efficiency 

of the method has been demonstrated on two case studies, one of which is to design solvents for 

separating acetic acid from water by liquid-liquid extraction. In Karunanithi et al. (2006), the 

method was applied to the optimal design of solvents for solution crystallization processes. Apart 

from the aforementioned contributions, numerous works on the CAMD of separation solvents 

can be found, such as Gani et al. (1991); Pretel et al. (1994); Harper and Gani (2000); van Dyk 

and Nieuwoudt (2000); Wang and Achenie (2002); Cheng and Wang (2007); Samudra and 

Sahinidis (2013). 

b) CAMD of reaction solvents 

In contrast to the numerous works on the CAMD of separation solvents, only a very few attempts 

have been made to tackle the reaction solvent design. Stanescu and Achenie (2006) studied the 

mechanism of the Kolbe-Schmitt reaction by quantum chemical DFT calculation and determined 

the best solvent to maximize the reaction rate. ProCAMD was first used to generate solvent 

candidates that fulfill all design constraints including inert to the reactants and products, non-

toxic, and liquid under the reaction condition. It was assumed that a solvent with the same 

Hansen solubility parameters as the product will stabilize the product and therefore improve its 

yield. Based on this criterion, a few promising solvents were selected from the generated 

candidates and they were further evaluated by DFT calculations. The one with the largest 

reaction rate constant was finally selected as the optimal solvent. Despite the great success, 

limitations of the method are obvious. Firstly, the applicability of the method is quite limited 

because the solubility parameter assumption is no more reasonable for reactions involving polar 

compounds as reactants or transition states. Secondly, the generation of solvent candidates via 

ProCAMD can suffer from combinatorial explosion if a large number of molecular building 

groups are considered. Lastly, the DFT calculation of reaction rate constant is quite 

computationally expensive and the resulting rate constant values may have large deviations. 

Gani et al. (2005; 2008) proposed a method for the optimal selection of solvents for organic 

reactions. Five steps are involved in the method and they are summarized as follows. 

Step 1: Reactions are specified and the available reaction characteristics are defined. The desired 

solvent functionality is specified based on the operational needs of the reaction. 

Step 2: Reaction (R) indices are defined based on knowledge of the reaction and desirable 

solvent properties. The solvent functions that fulfill the reaction operational requirements are 

assigned with R indices. 
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Step 3: Suitable solvents for the specified reaction are determined through the database search or 

CAMD method. Reaction-Solvent (RS) indices are assigned to the solvents based on their 

properties and R index values. 

Step 4: Scores are assigned to the solvents based on their RS indices and a predefined scoring 

system. All the suitable solvents are ranked according to their scores. 

Step 5: Solvents with high scores are selected. The performance of these solvents in the specified 

reaction is further analyzed through more rigorous calculations, for example, liquid-liquid phase 

equilibrium calculation. Those showing the highest reaction performance can be targeted for 

experimental verifications. 

The method takes into account multiple considerations that impact the selection of solvents, 

which makes it applicable for a wide range of reactions and situations. The drawback of the 

method is that it requires a large amount of knowledge, experience, and insight on both the 

reaction and solvents. Additionally, the method cannot give any quantitative prediction on 

solvent effects because no real reaction kinetics is considered. 

Folić et al. (2007) proposed an optimization-based CAMD method for the optimal design of 

solvents to accelerate reaction rates. An empirical solvent-sensitive rate expression (the 

solvatochromic equation) is established by linearly correlating the experimentally determined 

reaction rate constants in a small number of solvents with the corresponding solvent 

solvatochromic parameters. Based on the parameterized solvatochromic equation and a GC 

method to estimate solvent solvatochromic parameters from solvent molecular structures, a 

MILP-based CAMD problem is formulated and solved to identify the optimal solvent structure 

that provides a maximum rate constant. The method has been successfully applied to a SN1 

reaction (Folić et al., 2007) and a SN2 reaction (Folić et al., 2008). 

The method introduced in Folić et al. (2007) requires experimental reaction rate constants 

measured in a few solvents. In theory, DFT calculations can be used to predict rate constants for 

liquid phase reactions when experimental kinetic data are not available. Struebing et al. (2013) 

developed a framework combining DFT calculations and the CAMD method proposed in Folić 

et al. (2007) to design solvents to increase reaction rates. In order to minimize the DFT 

computational effort, an iterative strategy was employed. The main steps in the framework are 

summarized as follows. Firstly, an initial set of 6-7 diverse solvents are chosen. The reaction rate 

constants in these solvents are determined by DFT calculations combined with a continuum 

solvation model. The determined rate constants are then used to parameterize the solvatochromic 

equation, which is used in a subsequent optimization-based CAMD problem. An optimal solvent 

with the highest reaction rate constant is identified from the solution of the CAMD problem. If a 

solvent that is not included in the initial solvent set is designed, this solvent is added into the 

solvent set and the solvatochromic equation is re-parameterized based on the extended rate 
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constant database. A new CAMD problem based on the updated solvatochromic equation is then 

solved and consequently, a new optimal solvent can be found. The procedure is repeated until the 

solvatochromic equation is self-consistent, i.e., an optimal solvent is identified for a second time. 

Although in principle no experimental data is required, Struebing et al. claimed that the method 

is flexible as experimental rate constants can be used to complement the DFT prediction if they 

are available and accurate. 

2.3.3 Computer-aided molecular and process design 

The selection of solvents, catalysts, or other functional chemicals is very crucial for achieving 

processes with better economics and lower environmental impacts (Pistikopoulos et al., 2010). 

The important role of molecular-level decisions in developing highly efficient processes has led 

process engineers to recognize that the tool box of process development should include 

molecular design aspects, in addition to the conventional process design and optimization. For a 

computer-aided molecular and process design (CAMPD) problem, there are two main solution 

strategies, i.e., the decomposed design strategy and the integrated design strategy. 

Figure 2.8 depicts the decomposed molecular and process design method where two steps are 

involved. The first is to find suitable molecular structures from a given set of building groups to 

match a set of molecular property targets. This is usually done by solving a MILP or simple 

MINLP based molecular design problem. In the second step, for each molecule identified from 

the first step, process optimization is performed to find the best process operating conditions to 

meet predefined process performance targets. This process optimization task is normally solved 

as a nonlinear programming (NLP) problem. In general, the two-step method decomposes the 

CAMPD problem into a molecular design and a process design problem, both of which can be 

efficiently solved via commercial solvers. Despite the high efficiency, one should note that to use 

the decomposed design method can lead to suboptimal solutions due to the following two 

reasons. (1) Usually, molecules have multiple effects on a process they are designed for. It is 

often difficult to know in advance which molecular property dominates the determination of 

process performance. For instance, Kossack et al. (2008) used the separation selectivity as the 

objective property to design entrainers for an extractive distillation process. The designed 

entrainer was later found not very desirable in terms of process economics. (2) The specification 

of process conditions strongly influences the selection of a suitable molecule and on the other 

hand, the selected molecule reversely determines the optimal operating conditions of the process. 

Decomposed molecular and process design cannot reasonably capture this interdependent 

relationship. 
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Figure 2.8: The decomposed molecular and process design method 

Unlike the decomposition-based design method, integrated molecular and process design (see 

Figure 2.9) attempts to find the optimal molecular structure and process conditions 

simultaneously. A process performance index such as the process cost and energy consumption 

is defined and optimized subject to molecular structural constraints, pure-component and mixture 

property constraints, process and cost models, etc. Due to the large mixed discrete-continuous 

design space as well as the high nonlinearities of the process and cost models, integrated 

molecular and process design normally results in very complex MINLP problems. For solving 

these problems, reliable and efficient algorithms are strongly required. 

 

Figure 2.9: The integrated molecular and process design method 

A sizable number of CAMPD works can be found in literature. Below are a few selected 

examples. 

Eden et al. (2004) and Eljack et al. (2007) proposed a two-step method for general molecular and 

process design based on a visualization tool developed by Shelley and El-Halwagi (2000). The 

first step of the method solves a reverse simulation problem to determine target molecular 

properties for maximizing the process performance. In the second step, molecular structures are 

designed to match the property targets by solving a separate CAMD problem. 

Papadopoulos and Linke (2005; 2006; 2009) suggested another two-step approach for the 

optimal design of solvents for separation processes. In the first step, multiobjective optimization 

is used to identify Pareto-optimal solvents for a set of important solvent properties impacting the 

process performance. In the second step, a molecular clustering technique is employed to 

integrate solvent selection and process design based on the obtained set of Pareto-optimal 

solvents. The approach has been extended to the optimal design of working fluids for organic 

rankine cycles (Papadopoulos et al., 2010). 
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Bardow et al. (2010) proposed a two-stage method CoMT-CAMD to address complex CAMPD 

problems. In their work, the perturbed-chain-polar-statistical-associating-fluid-theory (PCP-

SAFT) equation of state is used as the thermodynamic model. Each molecule is described and 

represented by a set of continuous PCP-SAFT parameters rather than a combination of structural 

groups. In the first stage of CoMT-CAMD, the PCP-SAFT parameters characterizing molecules 

and the process operating conditions are simultaneously optimized. The results include the 

optimal process conditions as well as an optimal set of PCP-SAFT parameters describing a 

hypothetical target molecule. In the second stage, a real, existing molecule that has the closest 

parameters as the target molecule is identified as the final optimal molecule. The method was 

applied to a CO2 capture process where the absorption solvent and the process were 

simultaneously designed. 

Pereira et al. (2011) proposed a method for the optimal design of n-alkane solvents to separate 

CO2 from methane through physical absorption. By treating the chain length (number of carbon 

atoms) of n-alkanes as a continuous variable and optimizing it together with process variables, 

the MINLP-based integrated solvent and process design problem was successfully converted into 

a much simpler NLP problem. The solution of this NLP problem includes the optimal process 

conditions and the optimal chain length, based on which the best n-alkane solvent was identified. 

Lek-utaiwan et al. (2011) developed a four-step method for the optimal design of extractive 

distillation processes considering solvent selection and column optimization. In the first step, the 

generate-and-test approach is used to solve a CAMD problem to suggest a ranked list of 

promising solvents. In the second and third steps, a small number of top solvents resulting from 

the first step are selected for experimental verification where the vapor-liquid equilibrium (VLE) 

data of the ternary system consisting of a solvent and two azeotropes are experimentally 

determined. The VLE data are used to parameterize the thermodynamic model used for process 

optimization. In the final step, the extractive distillation process is optimized for three to five 

experimentally verified solvents, respectively. The one with the lowest annual manufacturing 

cost is selected as the optimal process. 

Roughton et al. (2012) proposed a method for the simultaneous design of ionic liquid entrainer 

and energy efficient extractive distillation process. For a given azeotropic mixture, the CAMD 

method is used to identify the optimal ionic liquid entrainer with the objective to minimize the 

amount of entrainer that can break the azeotrope. Once the optimal entrainer has been found, the 

extractive distillation process for separating the azeotropic mixture is designed using the driving 

force method. The authors found that to use an optimally designed ionic liquid entrainer can 

reduce a lot of energy consumption, compared to the case when an ionic liquid that is known to 

break the azeotrope but not designed by CAMD methods is used. 
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Since it is difficult to directly solve the integrated molecular and process design problem via 

standard MINLP algorithms, until now most of the CAMPD work relies on various 

decomposition-based solution strategies. Burger et al. (2015) is one of the first attempts to solve 

the integrated design problem by local MINLP solvers without any assumption and model 

simplification. In their work, a multiobjective optimization problem where only reduced process 

models are considered is first solved to generate a set of Pareto-optimal solutions. These 

solutions are then used as initial guesses for solving a second MINLP problem where full process 

models are applied. Due to the nonconvexity of the MINLP problem and the utilization of local 

solvers, suboptimal solutions can be obtained. However, the probability of finding high-quality 

suboptimum is increased by solving the problem multiple times starting from different initial 

estimates. 
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Part I 

Reaction Solvent Design 
 

Solvents are widely used as reaction media in liquid phase reactions. It has been indicated in 

Section 2.1.2 that the variation of the type of solvent can dramatically change the reaction rate 

and equilibrium conversion. Despite that, there are still very few works addressing the optimal 

selection or design of solvents for chemical reactions. Since solvents can influence both reaction 

kinetics and reaction thermodynamics, Chapter 3 proposes a method for the molecular design of 

solvents to increase reaction rates for nonreversible reactions and Chapter 4 focuses on the 

optimal design of solvents to improve equilibrium conversions of reversible reactions. 
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3. Optimal design of solvents to increase reaction rates 

In order to develop a CAMD method for rationally selecting or designing solvents to increase 

reaction rates, a solvent structure based model for predicting solvent kinetic effects is 

indispensable. Figure 3.1 depicts the concept for the CAMD of solvents to maximize the reaction 

rate. For a given set of building groups, the optimal solvent structure is determined from the 

solution of a CAMD problem where the solvent-dependent reaction kinetic model is 

parameterized with experimental kinetic data measured in a small number of known solvents. 

 

Figure 3.1: Schematic diagram of the CAMD of solvents for maximizing reaction rates 

The semi-empirical QSPR model is widely used for predicting solvent kinetic effects where 

experimentally measured solvent parameters, such as the solvatochromic parameters, are usually 

used to correlate the effect of solvents on reaction rate constants (Abraham et al., 1987; Folić et 

al., 2007; Chiappe et al., 2010). Over the last few decades, theoretical and computational 

chemistry have been developed very fast and the computer power nowadays has reached a 

relatively high level. This opens the possibility to make use of solvent theoretical descriptors 

(Zhou et al., 2014; Karelson, 2000; Lowrey et al., 1995; Shang et al., 2013; Katritzky et al., 

2010) for correlating solvent effects on reactions. Theoretical descriptors are normally derived 

from molecular structural or electronic information. They are easy-to-generate and do not require 

any experiments. More importantly, compared to the experimentally determined parameters, 

theoretical descriptors are molecular structure related thus they can be more accurately estimated 

by group contribution methods (Sheldon et al., 2005; Zhou et al., 2015a). This advantage ensures 

the high reliability of solvent molecular design results. 

In this chapter, we introduce a new kind of solvent theoretical descriptor and determine the 

contributions of common structural groups to these descriptors. Based on a pre-built solvent-

sensitive reaction rate model and the developed group contribution method, optimal solvents that 

Kinetic data measured in 

a small number of solvents

Optimal 

reaction solvent

Computer-aided molecular design

Parameterize model

CH3

CH2CF3H2N

C H 2

CH3

OH

NH2

O

O

O

NH2

OCH2

N CH2O

OH

CCl2

CF3

O

H

…

…

Br



28 3. Optimal design of solvents to increase reaction rates 

possess the best reaction performance are identified through the formulation and solution of an 

optimization-based CAMD problem. The methodology is elaborated in Section 3.1 and 

illustrated with two application examples in Section 3.2. 

3.1 Methodology 

As described in Section 2.3.1, a standard CAMD procedure consists of two subproblems. The 

forward problem relates molecular structures to molecular properties through certain property 

prediction models. The reverse problem determines the best molecular structure that possesses 

the optimal property via either generate-and-test methods or mathematical optimization methods. 

For CAMD of reaction solvents, we introduce a new type of solvent molecular descriptor and use 

these descriptors to correlate the effect of solvents on chemical reaction rates. As illustrated in 

Figure 3.2, starting from a given set of building groups, different solvent molecular structures are 

generated. Through DFT calculations based on the COSMO solvation model, we obtain the 

screening charge density distribution, σ-profile, of each solvent molecule. Then, we partition the 

σ-profile into six sections and use the areas underneath the curve sections as solvent descriptors. 

By correlating experimental reaction rate constants measured in a few known solvents with their 

descriptors, we parameterize a QSPR model (i.e., rate constant expression) which describes the 

solvent effect on the rate of the investigated reaction. Based on this model and an additionally 

developed group contribution method, COSMO-GC, for estimating the descriptors from solvent 

molecular structures, one can reversely optimize solvent structures in terms of the combination 

of groups for identifying an optimal solvent featuring a highest reaction rate or rate-related 

reaction property, such as the reaction selectivity. 

 

Figure 3.2: Overview of the proposed solvent design methodology 
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The methodology is described in the following sections in a more detailed way. The new type of 

solvent descriptor is introduced in Section 3.1.1. The COSMO-GC method for estimating solvent 

descriptors is explained in Section 3.1.2 and the mathematical formulation of the optimization-

based CAMD problem is presented in Section 3.1.3. 

3.1.1 COSMO-based solvent descriptors 

Derived from uni-molecular quantum chemical calculation, σ-profile can well characterize the 

polarity and charge distribution of a molecule. More importantly, the molecule-specific nature of 

σ-profile makes it very suitable fingerprint for quantitatively correlating molecular properties and 

behaviors. In this work, solvent σ-profile curves are divided into six segments in the entire [–2.5 

e/nm
2
, +2.5 e/nm

2
] σ-region. Six areas (S1 to S6) are obtained for each solvent by integrating 

those segments over the screening charge density, as depicted in Figure 3.2. Afterwards, the six 

area parameters are used as solvent molecular descriptors to correlate solvent-sensitive reaction 

rate constants. 

3.1.2 GC methods for predicting solvent descriptors 

With the solvent-sensitive rate constant expression, we successfully connect solvent descriptors 

to reaction properties in a quantitative way. However, for CAMD of solvents (see Figure 3.2), 

we still lack a relation linking the molecular structure and the descriptors. Group contribution 

(GC) methods, such as Rihani and Doraiswamy (1965); Constantinou et al. (1995); Marrero and 

Gani (2001), are widely used for estimating solvent physical properties based on their molecular 

structures. From Figure 2.5 we can see that the σ-profile of a molecule is closely related to the 

atoms or groups of the molecule. In other words, a certain group should contribute a specific part 

of the σ-profile. This inspires us to develop a GC method, COSMO-GC, for estimating the 

solvent descriptors. The expression of the GC model is given by Eq. (3.1) where Si (i = 1, 2, …, 

6) are the six solvent descriptors, sij is the contribution of the j-th group to the i-th descriptor, and 

si0 are fitting constants. nj denotes the number of group j present in the molecule while N is the 

total number of different groups. The fitting constants and contributions of 48 structural groups 

and 12 single-group solvents (some solvent molecules cannot be divided into sub-groups thus are 

treated as whole structures) to the six descriptors are obtained from the multi-linear regression of 

S1 ~ S6 of 168 common solvents, whose σ-profiles are taken from the latest COSMO database 

(C30-1201). All the selected groups are UNIFAC structural groups (http://www.aim.env. 

uea.ac.uk/aim/info/UNIFACgroups.html). The regressed s10 is −0.00202, s20 is −0.15091, s30 is 

3.58025, s40 is −0.91960, s50 is 0.38711, and s60 is 0.07294. The contribution of each group to the 

six descriptors is given in Table A1 in Appendix A. 
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0  (i = 1, 2, …, 6; j = 1, 2, …, N)              (3.1) 
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For verifying the quality of the regression, the six descriptors of the 168 solvents estimated from 

COSMO-GC are plotted versus the original six σ-profile areas of the solvents in Figure 3.3. The 

overall Mean Absolute Percentage Error (MAPE) between the GC-predicted and the original 

solvent descriptors is 7.28%. It is concluded that the solvent descriptors can be estimated from 

the proposed COSMO-GC method at a relatively high accuracy. 

 

Figure 3.3: The six GC-predicted solvent descriptors plotted with the original six σ-profile areas 

for the 168 solvents 

3.1.3 Mathematical formulation of the CAMD problem 

With the solvent-sensitive rate constant expression and the COSMO-GC model, we successfully 

connect solvent molecular structures to solvent-dependent reaction properties (see Figure 3.2). 

The optimal solvent structure can now be determined from the solution of a CAMD problem. In 

optimization-based CAMD problems, each molecule is represented by a composition vector n = 

[n1, …, nj, …, nN] with the element integer variable nj denoting the number of group j present in 

the molecule. The composition vector is optimized to give an optimal solvent molecule that 

possesses a maximum (or minimum) objective property value and meanwhile satisfies certain 

structural and property constraints. The structural constraints normally include chemical 

feasibility rules that ensure the generation of structurally feasible molecules and chemical 

complexity constraints that make sure the designed solvent molecules are not very big and 

complex. Besides the structural constraints, a number of solvent property constraints are also 

required. For instance, solvents should be chemically inert under the reaction condition, solvents 

must have a high miscibility with the reactants, solvents should be liquid at room temperature, 

etc. The formulated optimization problem for the CAMD of reaction solvents is given below. 
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obj

Njn j ...,,2,1
max
  

Subject to: 

(1) Objective function (reaction rate or rate-related reaction property) calculation 

(2) Structural constraints 

a) Chemical feasibility 

Three binary variables (y1, y2, y3) are introduced to represent the type of designed molecules. 

Specifically, y1 = 1 gives acyclic compounds, y2 = 1 gives bicyclic compounds, and y3 = 1 

gives monocyclic molecules. The constraint 

y1 + y2 + y3 = 1                    (3.2) 

is used to limit that only one type of molecule can be generated. A new variable m is 

expressed in terms of the binary variables. 

m − (y1 − y2) = 0                    (3.3) 

whereas m = +1, 0, −1 indicate acyclic, monocyclic, and bicyclic structures, respectively. 

The octet rule (Eq. (3.4)) is employed to ensure that the molecule has zero valence and the 

modified bonding rule (Eq. (3.5)) is used to ensure that two adjacent groups in a molecule are 

not linked by more than one bond. vj stands for the valence of group j. 
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The following constraint ensures no more than one single-group solvent is generated. 

1
Sg


j

jn                       (3.6)

 

The sixty structural groups and single-group solvents are listed in Table A1 in Appendix A. 

Group classes and ID numbers, abbreviation names of the subset groups are summarized in 

Table 3.1. For aromatic molecules, the number of aromatic groups (Ag) must be equal to 6 if 

the molecule is monocyclic or 10 if it is bicyclic. Eq. (3.8) provides the possibility to 

separately arrange the hydroxyl groups (i.e., not connected to the same group). 
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Table 3.1: Group classes, ID numbers, and abbreviation names of the subset groups 

Group class Group ID number Abbreviation 

Main groups 1-9 Mg 

Double and triple bond groups 5-9 Dtbg 

Aromatic groups 10-14, 16, 29, 36-39, 45 Ag 

Non-chain-ending functional 

groups 

6, 7, 8, 18, 21, 24, 25, 28, 33, 34, 41, 

48 
Nceg 

Chain-ending functional 

groups 

5, 9, 15, 17, 19, 20, 22, 23, 26, 27, 

30, 31, 32, 35, 40, 42, 43, 44, 46, 47 
Ceg 

Single-group solvents 49-60 Sg 

b) Chemical complexity 

Considering the size and structural complexity of typical solvent molecules, the total number 

of groups making up a molecule is limited (Eq. (3.9)) and the maximum number of each 

group is also specified, as given in Eq. (3.10). The allowed maximum number of each group 

n
upp

(j) is listed in Table A1 in Appendix A, together with the group ID and valence. 
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 0 ≤ nj ≤ n
upp

(j), (j = 1, 2, … N)               (3.10) 

In addition, the total numbers of main groups and functional groups are also limited. 
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In aromatic molecules, the existence of ACCH, AC, and ACCH2 groups is represented by the 

binary variables y4, y5, and y6, respectively. y7 is another binary variable that is active when 

both y5 and y3 are active. 

nACCH /100 ≤ y4 ≤ nACCH                 (3.13) 

nAC /100 ≤ y5 ≤ nAC                  (3.14) 
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nACCH2 /100 ≤ y6 ≤ nACCH2                (3.15) 

100 y7 ≥ y3 + y5 − 1                  (3.16) 

100 (y7−1) − y3 − y5 + 2 ≤ 0                (3.17) 

The AC group can appear up to once in monocyclic molecules and should appear twice in 

bicyclic molecules so that: 

2y2 + y7 − nAC = 0                  (3.18) 

The complexity of designed molecules is reduced by allowing at most one AC, ACCH or 

ACCH2 group to be active in monocyclic molecules by: 

y4 + y6 + y7 ≤ 1                  (3.19) 

The ACCH group must be connected with two side chains. One of them is limited to the CH3 

group. 

y4 ≤ nCH3                    (3.20) 

Other constraints used to reduce the complexity of the molecule include limitations on the 

total number of chain-ending and non-chain-ending functional groups: 

76413 yyyyn
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(3) Property constraints 

a) Inertness to reaction 

Two Diels-Alder reactions are studied in this dissertation. For such reactions, we assume that 

solvent molecules without double and triple bonds will not react with the reactants and 

products. Aromatic solvents are allowed because they normally do not take part in 

cycloaddition reactions. 

0
Dtbgj

jn                     (3.23) 

b) Miscibility 

Our experimental experiences suggest that for the investigated Diels-Alder reactions, except 

water, organic solvents generally would not cause phase splitting under the reaction condition. 

In order to avoid any immiscibility problem, water is excluded from the design space. 

c) Melting point and boiling point 
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Melting and boiling point constraints are used to ensure that the generated solvents are liquid 

at room temperature. Taking into account the deviation in the employed group contribution 

methods, we specify an upper bound for Tm of 315 K and lower bound for Tb of 293 K. 











 01

, exp
m

upp

m
N

j

jmj
T

T
tn                  (3.24) 











 01

, exp
b

low

b
N

j

jbj
T

T
tn                   (3.25) 

where upp

mT  = 315 K, low

bT  = 293 K, the constants Tm0 = 147.450 K and Tb0 = 222.543 K. The 

contributions of structural groups to the melting point (tm,j) and boiling point (tb,j) can be 

found in Marrero and Gani (2001). 

3.2 Applications 

The Diels-Alder (DA) reaction is widely used in organic synthesis for forming cyclic structures. 

One of the most interesting aspects of this reaction is its pronounced solvent dependence, which 

has received considerable attentions in the last few decades (Chiappe et al., 2010; Nobuoka et al., 

2013; Cativiela et al., 1996; Ruiz-Lopez et al., 1993). In Section 3.2.1, the proposed method is 

applied to the optimal design of solvents to maximize the rate of a simple DA reaction. In order 

to verify the wide applicability of the design approach, in Section 3.2.2, the method is applied on 

a competitive DA reaction with the objective of maximizing the production of the desired 

product relative to that of the byproduct. 

3.2.1 Simple Diels-Alder reaction 

Blankenburg et al. (1974) systematically studied the effect of solvents on DA reactions between 

1,3-cyclopentadiene and various dienophiles. In this work, the reaction between 1,3-

cyclopentadiene and acrolein at 303 K (see Figure 3.4) is considered as the example reaction 

where 15 solvents with a wide variation of physical and chemical properties were experimentally 

investigated. Table 3.2 presents the six molecular descriptors of the 15 solvents and their 

corresponding experimental reaction rate constants, taken from Blankenburg et al. (1974). 

 

Figure 3.4: The DA reaction between 1,3-cyclopentadiene and acrolein producing                     

5-norbornane-2-carboxaldehyde 

CHO CHO

+
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Table 3.2: The six descriptors of the 15 reaction solvents, together with their corresponding 

experimental reaction rate constants 

Solvent log kexp S1 S2 S3 S4 S5 S6 

Acetic acid −2.491 0.2805 0.5864 4.5564 1.9442 1.8717 0 

Ethanol −2.964 0.0135 0.6676 4.5887 2.3670 1.0127 0.1639 

1-Propanol −3.186 0.0163 0.6709 5.7535 3.2236 1.0294 0.1427 

1-Butanol −3.219 0.0122 0.6794 6.9118 4.0754 1.0128 0.1359 

Methanol −3.257 0.0190 0.7260 3.4825 1.3293 1.0064 0.1927 

Chloroform −3.383 0 0.8256 3.4240 7.5032 0 0 

1,2-dichloroethane −3.602 0 0.4368 4.7253 6.5480 0 0 

Dimethylformamide −3.640 0 0 8.0367 1.6913 1.7447 0.1161 

Dichloromethane −3.699 0 1.1114 2.8389 5.8986 0 0 

Toluene −3.745 0 0 7.1149 6.9400 0 0 

Acetonitrile −3.757 0 0.3018 4.5277 2.0646 1.3673 0 

1,4-Dioxane −3.827 0 0 8.2030 1.9772 1.8345 0.0311 

Tetrachloromethane −3.873 0 0 4.9773 8.4433 0 0 

Acetone −3.983 0 0 6.6600 1.9346 1.6555 0.0129 

Ethyl acetate −4.036 0 0 8.6090 2.9359 1.8029 0.0008 

The following linear regression formula between the logarithm of the solvent-sensitive reaction 

rate constant and the six solvent descriptors is obtained: 

log k = – 4.0113 + 4.7103 S1 + 0.3012 S2 + 0.0050 S3 + 0.0274 S4 – 0.0292 S5 + 3.1087 S6   (3.26) 

The MAPE between         and         is 2.58%. The evaluated coefficient of determination, 

R
2
, is 0.9231. These two statistical indicators show that the six σ-profile area parameters are 

indeed good descriptors for quantifying the effect of solvents on reaction rates. For better 

demonstration, we compared the calculated log kcal values with the experimental log kexp values 

in Table 3.3. Despite some quantitative deviations, the regression model (Eq. (3.26)) can be used 

for solvent ranking with respect to reaction rates. The model predicts the same first five solvents 

as the top five experimentally ranked solvents, although the order is not exactly the same. These 

findings suggest that the regressed rate constant prediction model can be further used for solvent 

screening and molecular design. 
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Table 3.3: Experimental log kexp, calculated log kcal and associated solvent rankings of the 15 

solvents used for the DA reaction (the unit of k is L/(mol×s)) 

Solvent log k
exp

 log k
cal

 Predicted 

ranking 

Acetic acid −2.491 −2.492 1 

Ethanol −2.964 −3.179 3 

1-Propanol −3.186 −3.202 4 

1-Butanol −3.219 −3.210 5 

Methanol −3.257 −3.080 2 

Chloroform −3.383 −3.540 7 

1,2-dichloroethane −3.602 −3.677 9 

Dimethylformamide −3.640 −3.615 8 

Dichloromethane −3.699 −3.501 6 

Toluene −3.745 −3.786 11 

Acetonitrile −3.757 −3.881 13 

1,4-Dioxane −3.827 −3.873 12 

Tetrachloromethane −3.873 −3.755 10 

Acetone −3.983 −3.933 14 

Ethyl acetate −4.036 −3.938 15 

Eq. (3.1) and Eq. (3.26) together allow for the prediction of the reaction rate constant for a given 

solvent. Optimal solvents can be identified from the solution of an optimization-based CAMD 

problem where the rate constant as the objective function is maximized. It is worth noting that in 

Chapter 5 the reaction solvent will be simultaneously designed with the reactive process 

including downstream separations. This integrated solvent and process design problem is very 

computationally expensive. In order to simplify the problem, a reduced set of 15 common groups 

(CH3, CH2, CH, C, OH, CH3CO, CH2CO, CHO, CH3COO, CH2COO, HCOO, OCH3, OCH2, 

OCH, and COOH) selected from the full set of groups listed in Appendix A will be utilized. For 

better comparing the results, the same group set is used in this section, which means in the 

CAMD problem the total number of different groups N is 15. Due to the exclusion of cyclic 

groups, only acyclic molecules can be designed. In this case, y1 is 1 and all the other binary 

variables are zero. The minimum and maximum number of groups making up a molecule nmin 

and nmax are set to 2 and 5, respectively. 
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Under the above conditions, the optimization problem presented in Section 3.1.3 is simplified as 

follows. 

 
 k

Njn j

logmax
...,,2,1

 

Subject to: 

(1) Objective function calculation: Eq. (3.1) and Eq. (3.26) 

(2) Structural constraints: Eq. (3.3 − 3.5); Eq. (3.9 − 3.12) 

(3) Property constraints: Eq. (3.24) and Eq. (3.25) 

The solution of the above CAMD optimization problem is an optimal solvent structure having 

the highest reaction rate constant. Due to the convexity of the MILP problem, global optimality 

of the solution can be guaranteed. However, considering the model deviations, we generate a list 

of promising solvents by using the integer cut method instead of only presenting the very best 

one. Table 3.4 lists the top 10 solvents and their corresponding log k values. As indicated, 

carboxyl acids and alcohols are the most promising solvent types for accelerating the here 

investigated DA reaction. This is in good agreement with the reported kinetic solvent effects
 

where acetic acid is found to be the best solvent and the second to the fifth solvents are all 

alcohols. The solvents listed in Table 3.4 are predicted to have higher rate constants than the best 

experimentally identified solvent acetic acid. They can be targeted for further experimental 

verifications. 

Table 3.4: Predicted top 10 reaction solvents and their corresponding log kpred values 

Ranking Group combination Solvent log kpred 

1 2 CH3, 1 C, 1 OH, 1 COOH (CH3)2C(OH)COOH −1.875 

2 3 CH2, 1 OH, 1 COOH OHCH2CH2CH2COOH −1.934 

3 1 CH3, 1 CH2, 1 CH, 1 OH, 1 COOH CH3CH(OH)CH2COOH −1.942 

4 2 CH2, 1 OH, 1 COOH OHCH2CH2COOH −1.962 

5 1 CH3, 1 CH, 1 OH, 1 COOH CH3CH(OH)COOH −1.971 

6 1 CH2, 1 OH, 1 COOH OHCH2COOH −1.991 

7 3 CH3, 1 C, 1 COOH (CH3)3CCOOH −2.406 

8 2 CH3, 1 C, 1 CH3CO, 1 COOH CH3COC(CH3)2COOH −2.455 

9 2 CH3, 1 C, 1 HCOO, 1 COOH HCOOC(CH3)2COOH −2.462 

10 1 CH3, 3 CH2, 1 COOH CH3(CH2)3COOH −2.465 
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3.2.2 Complex Diels-Alder reaction 

The CAMD method has been successfully applied to the optimal design of solvents for a simple 

DA reaction. However, it is well known that solvents can have very different effects on each 

single reaction in a multiple reaction system (Nobuoka et al., 2013; Dontsova et al., 2013; Selim 

et al., 2014). In this section, we investigate the applicability of the proposed method on a 

competitive DA reaction where optimal solvents are found to promote the main reaction while 

suppressing the side reaction. With this understanding, applications of the method to other 

complex reactions could be attainable. 

Figure 3.5 shows the reaction scheme for the competitive DA reaction between methyl acrylate 

(A) and isoprene (B). C denotes the desirable product (methyl 4-methyl-3-cyclohexene-1-

carboxylate) and D represents the byproduct (methyl 3-methyl-3-cyclohexene-1-carboxylate). 

Fourteen solvents with a broad range of physical and chemical properties were selected and 

kinetic experiments for the DA reaction were performed in the 14 solvents. Based on the 

experimental data, rate constants of the main and side reactions, k1 and k2, in each solvent were 

regressed. Appendix B gives more detailed information on the kinetic experiments and rate 

constant regression. Table 3.5 summarizes the six molecular descriptors of the 14 studied 

solvents and the corresponding experimental k1 and k2 values. 

 

Figure 3.5: Reaction scheme of the competitive DA reaction 

The rate constants of the two parallel reactions were correlated with the six solvent descriptors. 

The correlation models as well as the evaluated MAPE and R
2
 values are given below. 

k1 = 0.1004 − 0.7797 S1 + 0.6274 S2 − 0.2831 S3 + 0.4533 S4 + 1.6771 S5 + 3.4491 S6    (3.27) 

(MAPE = 0.0913, R
2
 = 0.9573) 

k2 = 0.1984 − 0.6694 S1 + 0.0543 S2 − 0.1143 S3 + 0.1744 S4 + 0.6857 S5 + 1.5590 S6    (3.28) 

(MAPE = 0.0921, R
2
 = 0.9349) 

+

k1

k2(A) (B)

(C)

(D)
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Table 3.5: The six molecular descriptors of the 14 studied reaction solvents, together with the 

corresponding experimental rate constants of the two parallel DA reactions 

Solvent 
k1,exp × 10

5 

/(L/(mol×s)) 

k2,exp × 10
5 

/(L/(mol×s)) 
S1 S2 S3 S4 S5 S6 

Hexane 0.845 0.414 0 0 8.3483 7.3412 0 0 

Cyclohexane 1.086 0.527 0 0 6.9695 6.1789 0 0 

Dibutylether 1.355 0.661 0 0 12.8398 7.1797 0.8779 0.0659 

Butyl acetate 1.311 0.628 0 0.0018 11.7329 3.9766 1.6495 0 

Toluene 1.444 0.694 0 0 7.1149 6.9400 0 0 

Dioxane 1.699 0.803 0 0 8.2030 1.9772 1.8345 0.0311 

Chlorobenzene 2.105 0.988 0 0.0296 5.7664 8.2986 0 0 

DMF 2.245 1.046 0 0 8.0367 1.6913 1.7447 0.1161 

Ethanol 2.152 0.917 0.0135 0.6676 4.5887 2.3670 1.0127 0.1639 

Propanoic acid 2.922 1.191 0.2642 0.5932 5.5777 2.9083 1.7835 0 

1-Butanol 2.865 1.252 0.0122 0.6794 6.9118 4.0754 1.0128 0.1359 

Propylene 

carbonate 
3.030 1.387 0 0.1298 7.4306 3.1351 2.1070 0 

Trifluoroethanol 4.096 1.390 0.1811 0.9766 2.7081 6.2031 0.8103 0 

DMSO 3.568 1.674 0 0.1822 7.3987 1.5409 1.2973 0.7474 

For better evaluating the above solvent-sensitive rate constant correlations, we compare the 

calculated and experimental rate constants in Table 3.6. It is clear that despite some quantitative 

deviations, Eq. (3.27) and Eq. (3.28) generally yield reliable solvent performance rankings. In 

particular, Eq. (3.27) predicts exactly the same first five solvents as the top five experimentally 

ranked solvents for the main reaction. The same top three solvents are also predicted by Eq. 

(3.28) for the side reaction. These findings support the reliability of the two rate constant 

prediction models for further use in solvent molecular design. 
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Table 3.6: Experimental and calculated reaction rate constants, together with the predicted 

solvent performance rankings for the two parallel DA reactions 

Solvent 
k1,exp × 10

5 

/(L/(mol×s)) 

k1,cal × 10
5 

/(L/(mol×s)) 

Predicted 

ranking 

Trifluoroethanol 4.096 3.976 1 

DMSO 3.568 3.572 2 

Propylene carbonate 3.030 3.033 3 

Propanoic acid 2.922 2.997 4 

1-Butanol 2.865 2.575 5 

DMF 2.245 1.919 8 

Ethanol 2.152 2.547 6 

Chlorobenzene 2.105 2.249 7 

Dioxane 1.699 1.859 9 

Toluene 1.444 1.232 12 

Dibutylether 1.355 1.420 10 

Butyl acetate 1.311 1.349 11 

Cyclohexane 1.086 0.929 14 

Hexane 0.845 1.065 13 

 

Solvent 
k2,exp × 10

5 

/(L/(mol×s)) 

k2,cal × 10
5 

/(L/(mol×s)) 

Predicted 

ranking 

DMSO 1.674 1.686 1 

Trifluoroethanol 1.390 1.458 2 

Propylene carbonate 1.387 1.347 3 

1-Butanol 1.252 1.054 6 

Propanoic acid 1.191 1.146 4 

DMF 1.046 0.952 8 

Chlorobenzene 0.988 0.988 7 

Ethanol 0.917 1.064 5 

Dioxane 0.803 0.912 9 

Toluene 0.694 0.595 12 

Dibutylether 0.661 0.687 10 

Butyl acetate 0.628 0.681 11 

Cyclohexane 0.527 0.479 14 

Hexane 0.414 0.524 13 



3. Optimal design of solvents to increase reaction rates 41 

It is obvious that the two reactions show some similarities on their solvent dependences. 

Nevertheless, we can still find from Eq. (3.27) and Eq. (3.28) that the six solvent descriptors 

contribute differently to k1 and k2. This gives us the opportunity to design certain solvents to 

provide a maximum concentration of the desired product C relative to that of the byproduct D. In 

this case study, we choose to maximize the concentration gap between C and D after a moderate 

reaction time in an ideal batch reactor. All the groups listed in Table A1 in Appendix A are 

considered as candidate groups for generating solvent molecules, which means N is 60. The 

minimum and maximum number of groups making up a molecule, nmin and nmax, are set to 1 and 

7, respectively. The CAMD optimization problem is outlined as follows. 

 
 DC

Njn
CC

j


 ...,,2,1
max

 

Subject to: 

(1) Objective function calculation 

a) Rate constant correlation models:
 
Eq. (3.27) and Eq. (3.28) 

b) COSMO-GC models: Eq. (3.1) 

c) Determination of product concentrations: 

BA
C CCk

dt

dC
1                   (3.29) 

BA
D CCk

dt

dC
2                   (3.30) 

DCAA CCCC  0                  (3.31) 

The initial conditions at t = 0 s are CA0 = CB0 = 1 mol/L and CC0 = CD0 = 0 mol/L. The final 

product concentrations CC and CD are determined at t = 10
5
 s. 

(2) Structural constraints: Eq. (3.2 − 3.22) 

(3) Property constraints: Eq. (3.23 − 3.25) 

The above MINLP-based solvent design problem was solved by the SBB solver (Brooke et al., 

1998) in the GAMS modelling environment (Rosenthal, 2006). Due to the non-convexity of the 

problem, we cannot guarantee that the resulting solvent represents the global optimum. However, 

many different initializations were used to increase the likelihood of finding the very best 

solution. Considering possible experimental errors and model deviations, instead of only 

presenting the very best solvent, we generate a list of top ranked solvents by using the integer cut 

method. The top 10 solvents and their corresponding rate constant and objective function values 

are presented in Table 3.7. Large structural similarities among the solvent molecules can be 
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found. Specifically, the top three solvents are all aromatics with −NH2 and −CH2CF3 substituent 

groups on the aromatic ring. The remaining seven solvents are all saturated halogenated 

hydrocarbons containing two −CF3 groups. 

In order to better demonstrate the solvent design results, we calculated (CC − CD) values for all 

the experimentally investigated solvents. The best one we found is trifluoroethanol and its (CC − 

CD) value is 0.3914 mol/L. From this perspective, about 10.9% improvement in the reaction 

performance can be achieved via the optimal design of reaction solvents. 

Table 3.7: The top 10 solvents identified for the competitive DA reaction, together with the 

calculated reaction rate constant and objective function values 

Ranking Solvent structure 
k1,cal × 10

5 

/(L/(mol×s)) 

k2,cal × 10
5 

/(L/(mol×s)) 

CC − CD 

/(mol/L) 

1 3 ACH, 1 ACCH3, 1 ACCH2, 1 ACNH2, 1 CF3 4.382 1.426 0.4342 

2 3 ACH, 1 ACCH2, 1 ACNH2, 1 ACF, 1 CF3 4.689 1.551 0.4335 

3 4 ACH, 1 ACCH2, 1 ACNH2, 1 CF3 4.441 1.457 0.4325 

4 2 CH3, 1 CH2, 2 CH, 2 CF3 4.540 1.549 0.4220 

5 1 CH3, 3 CH2, 1 CH, 2 CF3 4.436 1.511 0.4211 

6 3 CH3, 1 CH, 1 C, 2 CF3 4.439 1.514 0.4207 

7 5 CH2, 2 CF3 4.333 1.474 0.4201 

8 2 CH3, 2 CH, 2 CF3 4.426 1.512 0.4199 

9 2 CH3, 2 CH2, 1 C, 2 CF3 4.335 1.476 0.4197 

10 1 CH3, 2 CH2, 1 CH, 2 CF3 4.322 1.475 0.4189 

 

3.3 Summary and outlook 

This chapter introduces a CAMD method for the optimal design of solvents to maximize reaction 

rates or rate-related reaction properties. The method has been successfully applied to two case 

studies. The first designs solvents to maximize the rate of a simple DA reaction. The second case 

study considers a competitive DA reaction with the objective of maximizing the production of 

the desired product relative to that of the byproduct. 

Because the latest COSMO database already covers σ-profiles of several hundred common 

solvents, one can easily obtain the six descriptors of these solvents. Therefore, the parameterized 

rate constant prediction models can be directly used for the fast screening of solvents based on 

extensive model predictions on the common solvents using the six descriptors. Unlike solvent 
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screening whose aim is to identify the best solvent from a given set of candidates, solvent 

molecular design can lead to unconventional but outstanding solvent structures. From this 

perspective, the proposed method can be a valuable tool for finding new promising solvents. 

The introduced solvent descriptors have been proven to be very good parameters for quantifying 

solvent effects on reaction kinetics. Due to their molecule-specific nature, these descriptors in 

theory can be used to correlate various solvent properties, effects, or behaviors, which make the 

proposed CAMD method extendable to other solvent design problems. 

Finally, it should be noted that since the solvent-sensitive rate constant prediction model is 

parameterized from limited experimental data, large uncertainties can be associated with the 

obtained model parameters. This dissertation only shows our work on deterministic solvent 

design where the parameter uncertainties are not considered. We have also proposed a robust 

solvent design framework in Zhou et al. (2015b) which incorporates the parameter uncertainties 

into the CAMD formulation. It was found that for the same reaction, the top solvents obtained 

from the robust solvent design are very similar to those identified by the deterministic design. 

This finding demonstrates the reliability of the design method in the presence of model 

uncertainties. 

 



44 4. Optimal design of solvents to improve reaction equilibrium conversions 

4. Optimal design of solvents to improve reaction equilibrium 

conversions 

The previous chapter proposes a CAMD method for the optimal design of solvents to accelerate 

reaction rates. However, as outlined in Section 2.1.2, besides kinetic effects, solvents as reaction 

media can also change the chemical equilibrium of the reaction. Abildskov et al. (2013) proposed 

a method to help select solvents to improve equilibrium conversion of liquid phase reactions. 

The limitation of this method is that the effect of solvents on phase separations is not considered, 

which has been proven to be another significant factor on enhancing product yields due to the 

selective extraction of products into a separate phase (Samant and Ng, 1998; Wang and Achenie, 

2002). In recent decades, coupled reaction and separation operations have shown significant 

benefits, with reactive distillation being one of the most significant examples. Another important 

integrated process is extractive reaction where a solvent is added to the reaction mixture to 

selectively extract products into a separate phase. This strategy can break the chemical 

equilibrium limitation and thus allows for higher product yields. Samant and Ng (1998) 

developed a systematic method to design extractive reaction processes. Despite these insights 

into process development, the large effect of solvents has not yet been studied. 

To date, there is little work done on the optimal design of solvents to improve equilibrium 

conversion of liquid phase reactions via the extractive reaction strategy. One of the key hurdles is 

the lack of a reliable and fast numerical method to simultaneously determine chemical and phase 

equilibrium. Recently, a rate-based dynamic method has been proposed and applied to solve 

chemical equilibrium (Zinser et al., 2016) and multicomponent fluid phase equilibrium (Zinser et 

al., 2016; Steyer et al., 2005; Ye, 2014) problems. This method has been proven to be reliable, 

easily implementable, and computationally efficient. In this chapter, the method is extended to 

solve the combined chemical and phase equilibria of liquid phase reactions. Due to the difficulty 

in satisfying the liquid-liquid equilibrium (LLE) condition within an optimization environment, 

this condition is often solved externally from the optimization problem. Therefore, the CAMD of 

solvents for extractive reaction cannot be formulated as a conventional mixed-integer program 

and solved deterministically. However, it can be solved stochastically using a stochastic 

algorithm, such as the genetic algorithm (GA). The GA (Affenzeller et al., 2009) has been 

proven to be very efficient in solving problems with large combinatorial and/or discontinuous 

search spaces, such as complex molecular design (Venkatasubramanian et al., 1994; Nachbar, 

2000; Xu and Diwekar, 2005; Herring and Eden, 2015). In this chapter, a GA-based CAMD 

methodology is developed to determine optimal solvents for liquid phase reactions where the 

equilibrium conversion determined by the rate-based dynamic method is maximized. 

In the following sections, the design task is first proposed and the solution strategy is concisely 

outlined. After a brief review of the conventional methods for calculating thermodynamic 

equilibrium, the rate-based dynamic method for simultaneous determination of the chemical and 
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phase equilibrium is introduced. Finally, the GA-based solvent design methodology is proposed 

and applied to design solvents for a selected esterification reaction. 

4.1 Problem statement and solution strategy 

The significance of optimal selection of solvents for improving reaction equilibrium conversion 

has been demonstrated on the hypothetical A ↔ B reaction in Figure 2.2. Now a more common 

A + B ↔ C + D reaction is considered. The schematic diagram of using the extractive reaction 

strategy to enhance the product yield is shown in Figure 4.1. The design problem is described as: 

Given a liquid reaction mixture composed of a known amount of reactants A and B under a 

specified temperature and pressure, determine which solvent and by which amount it should be 

added to the mixture in order to achieve a maximum equilibrium conversion of the reaction. 

 

Figure 4.1: Schematic diagram of a solvent-aided extractive reaction 

The design task is inherently an optimization problem whose solution strategy is depicted in 

Figure 4.2. For a given solvent structure and composition, the rate-based dynamic method is used 

to calculate the combined chemical and liquid-liquid phase equilibrium, through which the 

thermodynamic equilibrium state and the corresponding equilibrium conversion of the reaction 

are determined. The GA-based CAMD method is then used to optimize the solvent structure and 

composition for achieving a maximum reaction equilibrium conversion. The rate-based dynamic 

method and GA-based CAMD method are introduced in Sections 4.2 and 4.3, respectively. In 

Section 4.4, the solution strategy is applied to design solvents for an esterification reaction. 

 

Figure 4.2: Solution strategy for the addressed solvent design problem 

Extractive Phase α

Reactive Phase βA  +  B            C  +  D

A      B            C D 

Solvent S

A  +  B            C   +  D 

+ Solvent to extract C and/or D

Given solvent structure 

and composition

Equilibrium conversion 

of the reaction

Rate-based dynamic method 

to calculate combined chemical 

and phase equilibrium

GA-based CAMD 

method to optimize 

solvent structure and 

composition

Variables

Objective 

function



46 4. Optimal design of solvents to improve reaction equilibrium conversions 

4.2 Chemical and phase equilibrium calculation 

4.2.1 Conventional methods 

The calculation of multicomponent phase equilibrium is a challenging task, especially for 

systems containing more than one liquid phase. Methods for solving liquid-liquid equilibrium are 

classified into two major categories, global and local methods. The necessary and sufficient 

condition for a multiphasic nonreactive or reactive system to achieve thermodynamic 

equilibrium under fixed temperature and pressure is that the total Gibbs free energy of the system 

is at the global minimum. Based on this consideration, global methods formulate and solve 

chemical and phase equilibrium problems by minimizing the total Gibbs free energy (McDonald 

and Floudas, 1997; Wasylkiewicz and Ung, 2000). The major limitation of global methods is that 

due to the large non-convexity and nonlinearity of thermodynamic models, the global 

minimization of the Gibbs free energy is computationally expensive. On the other hand, local 

methods (e.g., Pham and Doherty, 1990) formulate the equilibrium problem as a set of nonlinear 

equations based on the requirement that the chemical potentials of all components are equal in all 

phases. This set of nonlinear equations is normally solved using Newton or Quasi-Newton 

methods. Although the solution procedure is direct and computationally inexpensive, its 

convergence to a feasible solution relies heavily on good initial estimates. Often the calculation 

converges to trivial solutions (see e.g., Michelsen, 1982; Green et al., 1993). 

Additionally, hybrid methods combining the certainty of global methods and the efficiency of 

local methods have been developed (Müller and Marquardt, 1997; Bausa and Marquardt, 2000). 

The state-of-the-art hybrid method for determining liquid-liquid phase equilibrium is the 

approach proposed in Bausa and Marquardt (2000). The idea behind this method is to provide 

good initial estimates using a homotopy continuation algorithm, which significantly reduces the 

calculation complexity. Although this method has been proven to be reliable and faster than 

previous approaches, it is unclear how it can be used in combined chemical and phase 

equilibrium calculations. This is the motivation for developing a new and efficient method that is 

able to accomplish such a task. 

4.2.2 Rate-based dynamic methods 

The idea of using a rate-based dynamic method to determine liquid-liquid phase equilibrium is 

first introduced in Steyer et al. (2005). Using four example cases, the method was proven to be 

highly reliable and faster than Bausa and Marquardt (2000)’s method by an average factor of 

more than two. Recently, the method has been generalized and applied to solve chemical 

equilibrium and fluid phase equilibrium problems (Ye, 2014; Zinser et al., 2016). 

Solving chemical and phase equilibria via the rate-based dynamic method is based on the 

simulation of the dynamic evolution of a mixture from a randomly initialized, non-equilibrium 

composition towards the final equilibrium composition. The change of phase compositions is the 
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result of chemical reactions inside the phases and mass transfers between phases. Phase specific 

reactions are driven by the Gibbs free energy difference of reactants and products, and the mass 

transfer between phases is driven by component chemical potential differences. Based on these 

considerations, the evolution of phase compositions can be formulated as a set of ordinary 

differential equations (ODEs). The thermodynamic equilibrium of a system is finally attained 

when all driving forces become zero (i.e., all the ODEs reach steady states). Compared to 

conventional equilibrium calculation methods, the dynamic method is less dependent on initial 

estimates and not limited by problem size (Ye, 2014). In this work, the dynamic method is 

extended to calculate the combined chemical and phase equilibria of complex liquid systems. 

Despite the much lower dependency of the dynamic method on initial estimates, a good initial 

condition is still preferable for an efficient thermodynamic equilibrium calculation. Steyer et al. 

(2005) recommend a starting point for the liquid-liquid phase equilibrium calculation where the 

initial two liquids have significantly different compositions. For binary mixtures, one can simply 

initialize the two liquids as pure compounds. However, it is not clear how to initialize phase 

compositions for multicomponent mixtures, such as the system studied here. Bausa and 

Marquardt (2000) use the homotopy continuation method to find solutions to difficult 

multicomponent phase equilibrium problems by starting at solving a simple binary mixing 

problem. Inspired by their work, two liquid phases (phase I and phase II) are initialized with the 

two compounds having the largest difference in polarity and all the other components are placed 

into a virtual environment, phase E (see Figure 4.3). The components are continuously 

transferred from phase E to phase I or phase II, depending on the sizes of component activities in 

the two phases. The thermodynamic equilibrium state of the system is finally obtained when no 

compound is left in phase E, reaction equilibria in phase I and phase II are attained, and phase 

equilibrium between the two phases is reached. 

 

Figure 4.3: Schematic diagram on the modeling and simulation of the thermodynamic (chemical 

and phase) equilibrium of liquid reaction mixtures using the rate-based dynamic method 

Phase I Phase II

Closed System

Environment 
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The mass transfer from phase E to the closed system containing phases I and II is: 
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where const is a fixed mass transfer rate, A and B represent the reactants, C and D denote the 

products, S stands for the solvent (see Figure 4.1). 
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The equilibrium state does not depend on the sizes of the mass transfer rate constant ktrans and 

reaction rate constant kreac. In principle, they can be set to any arbitrary positive values. 
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Finally, component mass balances in all the phases are given by the following ODEs: 

E

i

E

i J
dt

dn
           

I

i

III

i

E

ii

I

i JJy
dt

dn
 ,

            

  II

i

III

i

E

ii

II

i JJy
dt

dn
 ,1         

 

where
 

 
 









01

00
II

i

II

i

I

i

I

i

II

i

II

i

I

i

I

i

i
xxif

xxif
y




 

The dynamic simulation is performed along the discretized time until all the ODEs reach steady 

states. It is at this point that the reaction equilibrium conversion can be determined. 

It is worth noting that when using the rate-based dynamic method to calculate chemical and 

phase equilibria, homogeneous liquid reactions are simply a special case of heterogeneous liquid 

reactions where the finally obtained liquid phases (phases I and II) have the same composition. 

From this perspective, the method can be used to determine the combined chemical and liquid-

liquid phase equilibrium for reactions where the number of phases present at equilibrium is 

unknown a priori. 
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4.3 GA-based solvent design 

Starting from the first generation consisting of a population of randomly initialized potential 

solutions (individuals), the GA repeatedly modifies individual solutions by means of selection 

and variation. At each step, the GA randomly selects individuals from the current generation as 

parents to produce offspring (new individuals) for the next generation according to certain 

genetic variation rules. The probability of an individual to be selected as a parent is proportional 

to its fitness value, a non-negative measure of the individual’s performance. Over a number of 

successive generations, the most promising individuals accumulate in the evolution and the best 

individual in a generation converges towards the optimal solution. 

To implement the GA into a CAMD work, one needs to specify a suitable molecular encoding 

method, a fitness function that assigns merit to each encoded molecule-individual, a selection 

rule that favors the selection of fitter individuals as parents, genetic operators for producing new 

individuals, and finally a stopping criterion to terminate the GA computation. 

4.3.1 Molecular encoding 

In order to use the GA for molecular design, molecular structures must be expressed in a 

readable and operable form. This procedure is known as the molecular encoding. A good 

encoding method must facilitate the generation of new individuals via genetic operations and 

meanwhile favor the decoding procedure where individual fitness is evaluated. 

Venkatasubramanian et al. (1994) represent chemical structures as a string of symbols. By pre-

defining two-valence groups as main chain building blocks and one-valence groups as side chain 

building blocks, the GA was successfully employed to design acyclic polymers with simple side 

chain structures. Later, Xu and Diwekar (2005) represent molecules as N-element vectors where 

N is the pre-defined maximum number of allowable building groups. Each element in the vector 

contains a group ID number representing a group or is set to zero when no group is present. This 

molecular encoding method is very simple and straightforward. However, it cannot guarantee the 

generation of structurally feasible molecules. Nachbar (2000) proposed another encoding method 

where atoms instead of structural groups are treated as the basic elements in molecular graphs. 

The hierarchical chemical topology is then represented by an adjacent matrix of atoms, 

facilitating the detailed representation of molecular structures. However, it makes the decoding 

procedure very complicated for some design problems. 

This work proposes a new molecular encoding method where solvent molecules are represented 

as tree structures stored in the form of a dynamic list with UNIFAC groups (Fredenslund et al., 

1977) as the tree nodes (building blocks). In computer science, a dynamic list (also known as 

linked list) is a data structure consisting of a group of nodes which together represent a sequence. 

It provides users much convenience in storing, reading, and manipulating data. In tree structures, 

nodes can be easily deleted, inserted, and modified using the dynamic list to store data. 
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Considering the dynamic tree structure of a molecule, each group node is a structural array with 

several fields (see Figure 4.4). The first two fields provide information on group identity and 

valence. The last two fields contain structural information of the molecular tree. ―Size‖ denotes 

the size of the sub-tree, i.e., the number of group nodes in the sub-tree. ―*Child‖ is the pointer 

that indicates the location of connected child nodes. The number of allowable child nodes for a 

group node depends on the valence of the group, e.g., the number of child nodes is two for three-

valence groups and one for two-valence groups. For root and leaf nodes, only one-valence 

groups can be selected. Additionally, the number of child nodes is limited to one for root nodes 

and no child node is allowed for leaf nodes. The characteristics of the proposed dynamic tree 

structure always guarantee structurally feasible solvent molecules. Figure 4.5 exemplifies the 

molecular representation and encoding method using diisopropyl ether as an example. 

 

Figure 4.4: Structure of a group node in the molecular tree 
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Figure 4.5: The dynamic tree structure of diisopropyl ether (Each group is assigned with an ID 

number. Here, ID = 1, 3, and 14 represent CH3, CH, and OCH, respectively) 

It has been demonstrated in Figure 2.2, Section 2.1.2 that apart from the type of solvent, the 

initial composition of the solvent is the other degree of freedom to define the equilibrium 

conversion of a liquid phase reaction. Therefore, the initial solvent composition should also be 

optimized. In the GA, continuous variables are normally represented by binary arrays and as 

such, the initial molar composition of the solvent is encoded as the binary array b[k]. The 

precision is determined by the length of the array string, k, with longer arrays ensuring higher 

precision, however, at the expense of computational effort. The following equation is used to 

decode the binary array into the solvent composition. 
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where xs,min and xs,max are the lower and upper bounds of the solvent composition in mole 

fractions, set to 0.2 and 0.8, respectively. In this work, k is set equal to six in order to maintain a 

good balance between the result accuracy and computational cost. 

4.3.2 Fitness function and fitness proportionate selection 

In the GA, each individual solution is evaluated and assigned with a fitness value. The fitness 

function is a measure of merit that tells how desirable a candidate solution is. Normally, two 

terms are included in the fitness function: the first term is some type of objective value and the 

second is a measure of constraint violation. This measure of constraint violation is most 

efficiently handled by using penalty functions (Michalewicz and Schoenauer, 1996). Penalties 

are assigned to those design solutions which violate the defined constraints with the penalty size 

being proportional to the magnitude of the violation. The fitness function is then expressed as 

either a summation or product of the objective and penalty functions. The product form is 

employed in this work. 





nci

iPenobjF
 

where obj represents the objective function (reaction equilibrium conversion), Peni denotes the 

penalty function of the i-th constraint whose value is between 0 and 1, and F is the fitness value. 

In the GA, new generations are successively produced from the current generation. A standard 

reproduction process usually consists of two steps: selecting individuals as parents from the 

current generation and generating new individuals for the next generation from genetic 

operations performed on the selected parents. In order to mimic the natural selection process, 

prominent individuals should have high probabilities to be selected as parents. The most popular 

and widely employed selection rule is ―fitness proportionate selection‖ also known as ―roulette 

wheel selection‖ (Holland, 1975). Using this rule, the selection of parents is random, but the 

probability of an individual being selected is proportional to its fitness value. 

4.3.3 Genetic operations 

New individuals are created from the selected parents of the last generation using modifications 

known as genetic operations. Analogous to the natural reproduction process, two genetic 

operators, mutation and crossover, are traditionally used for reproducing individuals in the GA. 

By definition, mutation creates new individuals by introducing random variations in certain 

genes of the parents. Crossover creates new individuals by randomly exchanging some genetic 

information between selected parents. Figure 4.6 illustrates the mutation and crossover 



4. Optimal design of solvents to improve reaction equilibrium conversions 53 

operations on binary arrays. These genetic operators are sufficient for binary coding. However, 

for manipulating molecular structures, one should include two more operators: insertion and 

deletion. These two operators are essential for generating molecules with different sizes (number 

of group nodes). 

 

Figure 4.6: Mutation and crossover operations on binary arrays 

The handling of genetic operations for molecular design is very simple and straightforward using 

the dynamic tree structure. The four genetic operations applied on solvent molecular trees are 

depicted in Figure 4.7. Each operation is based on randomly choosing group nodes in the 

molecular tree and groups from the group set having a defined valence. In mutation, a group is 

only allowed to mutate with another group having the same valence. Crossover is performed by 

randomly choosing two non-leaf group nodes (one in each molecular tree) and exchanging their 

―*Child‖ pointer addresses. In insertion, only groups with a valence larger than one are allowed 

to be inserted. The insertion of two-valence groups is simple and straightforward. However, in 

order to maintain a feasible chemical structure, the insertion of three or four-valence groups must 

be accompanied by including one or two additional one-valence groups, respectively. Similar to 

insertion, only groups with a valence larger than one can be deleted. When deleting a three or a 

four-valence group one should respectively delete one or two additional one-valence groups in 

the molecular tree. If the deleted group node has more than one child node, the right-hand branch 

of the node is grafted to its left-hand branch. By following these genetic operation rules, 

structural feasibility of newly generated molecule is preserved. 

1 0 1 0 0 1 0 1

1 1 0 0 1 0 1 0

Crossover 1 0 1 0 0 0 1 0

1 1 0 0 1 1 0 1

―Parents‖ ―Children‖

1 0 1 0 0 1 0 1
Mutation

1 0 1 1 0 1 0 1
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Figure 4.7: Genetic operations applied on solvent molecular trees 

It is worth noting that each genetic operation is performed with a pre-defined probability. In 

other words, parents can remain unchanged even when they are selected for reproduction. 

Additionally, according to the elitism rule, a small fraction of top solutions from the current 

generation are carried over directly to the next generation without any modification. This 

strategy ensures that the best solution in a generation does not worsen from one generation to the 

next. 

4.3.4 Stopping criterion 

The best solution in a generation improves or remains unchanged as the generation number 

increases. In order to obtain a high-quality result in a reasonable computational time, a stopping 

criterion needs to be defined in advance. The GA calculation is then terminated when the 

criterion is satisfied. To set a maximum number of generations is a widely employed stopping 

criterion in GAs. 

4.3.5 Solution framework 

The overall solvent design framework is shown in Figure 4.8. The main steps are summarized as 

follows. 
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1. To start the program, first set the parameters for the genetic algorithm and specify a set of 

structural groups from which solvent molecules are generated. 

2. Randomly initialize the first-generation individuals: this includes solvent molecules encoded 

using dynamic tree structures and initial solvent compositions using binary arrays. 

3. Solvent physical properties are then evaluated via QSPR or GC models and the equilibrium 

conversion is determined by the rate-based dynamic method. The property estimation and 

reaction conversion calculation are performed on all the individuals in the generation. 

4. Determine the fitness value of each individual in the generation. 

5. The calculation is terminated if the stopping criterion is met. The optimal solvent structure 

and composition are obtained. If the criterion is not satisfied, go to Step 6. 

6. Select parents from the current generation based on the fitness proportionate selection rule. 

7. Create offspring for the next generation by performing genetic operations on the molecular 

tree and on the binary array of the selected parents. 

 

Figure 4.8: The overall solvent design framework 
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4.4 Application on an esterification reaction 

The proposed methodology is applied to design solvents for an esterification reaction. The 

reaction scheme with abbreviations for each compound is given in Figure 4.9. This reaction is a 

good example because the large effect of solvents on the reaction equilibrium is well recognized 

(Voutsas et al., 2002). 

 

Figure 4.9: The reaction scheme with abbreviations for each compound 

4.4.1 Initializations and parameter specifications 

The total amount of the mixture is set to one mole. The initial molar composition of solvent xS is 

a design variable to be optimized along with the solvent structure. A 50% reaction conversion is 

assumed before the simulation (see the ―rate-based dynamic methods‖ section) starts, thus the 

initial compositions of all the reactants and products are set to (1−xS)/4. This assumption 

facilitates the initialization of the system and importantly, it does not affect the final equilibrium 

state. The thermodynamic equilibrium constant K calculated from the standard molar Gibbs free 

energy of formation for all the reactants and products given in Voutsas et al. (2002) is 50.84. 

const is set to 0.1 mol/s and ε is 10
−5

 mol. kreac is set to 50 with ktrans set to 0.5. 

 

                                   (Phase I)                                                               (Phase II) 

Figure 4.10: The evolution of component molar compositions in phase I and phase II determined 

by the rate-based dynamic method 

The reliability and efficiency of the rate-based dynamic method in determining combined 

chemical and phase equilibria are demonstrated with the esterification reaction where hexane is 

fixed as the solvent and its initial molar composition is set to 0.4. Phases I and II (see Figure 4.3) 
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are initialized as pure hexane and water, respectively, with all the other compounds placed into 

phase E. The evolution of component molar compositions in phase I and phase II is shown in 

Figure 4.10. The compositions in both phases change frequently in the beginning due to the 

occurrence of chemical reactions and large driving forces for the mass transfer between phases I 

and II. Afterwards, the system approaches the equilibrium state. The total CPU time for this 

computation is about 2.0 seconds. 

Notably, the final equilibrium state can have one or two liquid phases, depending on which 

solvent and by which amount it is added to the reaction mixture. Nevertheless, both cases are 

acceptable and can be appropriately predicted by using the rate-based dynamic method. In other 

words, even though the benefit of introducing a second phase to extract the products is obvious, 

we have not set phase splitting as a necessary condition for solvent design. Instead, those 

solvents that do not result in a second liquid-phase have also been evaluated, although they may 

show lower equilibrium conversions when compared to those that lead to phase splitting. 

With a reliable method to determine the equilibrium conversion of the esterification reaction, 

solvent structures and initial compositions can now be optimized via the GA-based CAMD 

method to maximize the equilibrium conversion. As described in Figure 4.8, to start the GA-

based solvent design program, the values of algorithm parameters need to be assigned. The 

selection of GA parameters is fully task-specific, i.e., it depends on the nature of the design 

problem. Parameters involved in this work include the population size, maximum number of 

generations, and the probabilities that each of the genetic operations will occur. The population 

size and maximum number of generations are normally selected according to the size of the 

design space. When selecting genetic operation probabilities, it is important to consider the 

tradeoff between the solution quality and computational cost. Using large probabilities is helpful 

in introducing new individuals during evolution. This increases the possibility of finding the best 

solution. However, it significantly slows down the convergence of the calculation. All the 

parameters were tested and reasonably selected. In total, 31 individuals are included in a 

generation. The maximum number of generations is set to 100. The probabilities of performing 

crossover, mutation, deletion, and insertion operations are set to 0.2, 0.3, 0.3, and 0.3, 

respectively. To avoid any premature convergence, the probabilities of all the genetic operations 

are increased to 1 from the 14
th

 to the 16
th

 generation. In order to guarantee that the best solution 

in a generation does not deteriorate from one generation to the next, the best individual in one 

generation is directly passed into the next generation without any modifications. 

In addition to the algorithm parameters, group candidates, from which solvent molecules are 

constructed, also need to be defined. The following are UNIFAC structural groups commonly 

used for molecular design, CH3, CH2, CH, CH2=CH, CH=CH, OH, H2O, CH3CO, CH2CO, 

CHO, CH3COO, OCH3, OCH2, OCH, COOH, CH2Cl, CHCl, CCl, CHCl2, CCl2, Br. Reaction 
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solvents should be chemically inert under the reaction condition and therefore OH, H2O, 

CH3COO, and COOH are excluded from our group set. After selecting algorithm parameters and 

group candidates, the first step is to initialize individuals for the first generation (see Figure 4.8). 

As clarified before, each individual consists of one solvent molecule in the form of a dynamic 

tree structure and one solvent molar composition expressed by a binary array. Solvent molecules 

in the first generation are randomly initialized with chain molecules whose sizes (number of 

groups) are between 3 and 8. The elements in the solvent composition array are randomly 

assigned with either 0 or 1. 

The proposed dynamic tree structure only guarantees the generation of structurally feasible 

molecules. In order to obtain physically relevant solvents, a number of property constraints (such 

as biocompatibility) are required. In this work, the property constraints are handled with penalty 

functions. The penalty function of the k
th

 property constraint is given by: 
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 denotes the penalty function for properties with an upper bound and Penk
low

 is the penalty 

function for properties with a lower bound. Pk,upp represents the allowed upper limit of the k
th

 

property, and Pk,low is the lower limit of the k
th

 property. Pk is the k
th

 solvent property estimated 

by QSPR or GC correlations. Individuals whose properties are outside of the allowed ranges are 

penalized. The sizes of the parameters w and b indicate the relative importance of different 

constraints. The GC models (Martin and Young, 2001; Constantinou and Gani, 1994) used to 

estimate solvent properties are: 

Biocompatibility:   
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Normalized melting point:   
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Where tm0 is 102.425 K and tb0 is 204.359 K. ni is the number of group i present in the molecule. 

The contributions of structural groups to solvent biocompatibility αi, melting point tm,i, and 

boiling point tb,i can be found in Martin and Young (2001), Constantinou and Gani (1994), and 

Constantinou and Gani (1994), respectively. Taking into account the error in the GC models, an 

upper bound for the melting point Tm of 315 K and a lower bound for the boiling point Tb of 293 
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K are specified. Solvent property bounds and penalty function parameters for each property 

constraint are presented in Table 4.1. There is no theoretical guide on how to set parameters for 

the penalty function. Practically, they are chosen empirically or by test-and-set methods. In the 

simplest exponential penalty function, the coefficient w is set to 1.0 and the base b is normally 

adjusted to keep the penalty size in the same magnitude as the objective function. Based on this 

consideration, 0.97~0.99 was empirically found to be a suitable range for b. When testing, we 

found that compared to other constraints, most of the generated molecules can satisfy the boiling 

point constraint, and those unsatisfying ones generally deviate from the allowed boundary more 

lightly (i.e., the exponent of the penalty function is smaller). In order to make the boiling point 

constraint equivalently activate as other constraints, its base number b is set smaller. 

Table 4.1: Solvent property bounds and penalty function parameters for each property constraint 

Solvent property Lower bound Upper bound w b 

Molecular size (number of groups) 3 8 1 0.99 

Biocompatibility / 3.50 1 0.99 

Normalized melting point / 21.66 1 0.99 

Normalized boiling point 4.19 / 1 0.97 

 

4.4.2 Results and discussion 

The design problem is encoded in C and run in Microsoft Visual C++ 2005 (Kruglinski et al., 

1998). Compared to other optimization techniques, the GA-based optimization has a high 

potential of locating near-global designs in a moderate amount of computational time under 

adjusted parameters (Affenzeller et al., 2009; Sundaram and Venkatasubramanian, 1998). In 

order to evaluate the performance and robustness of the method, 10 consecutive optimizations 

were performed and the results are summarized in Table 4.2. As can be seen, two different 

solvent molecules are obtained from the 10 optimization runs. However, they have very similar 

structures (both are homologues with the CHCl2 group). Additionally, small differences among 

the optimized solvent compositions can be found. In all runs, optimal solvents are obtained and 

remain unaltered after only a small number of generations. By contrast, solvent compositions 

evolve relatively slowly because of their limited effect on individual fitness. The fitness values of 

the optimal solutions are equivalent to the reaction equilibrium conversions in all cases because 

none of the obtained solvent molecules violate any of the defined property constraints. The 

difference between the lowest and highest reaction conversions obtained from the ten 

stochastically initialized optimizations is less than 0.01%. Considering the stochastic nature of 
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the algorithm and the very small deviation in the fitness values, the results are regarded as our 

final, best-case (very likely near-global) solutions. The CPU time for a typical run is about 28 

minutes. 

Table 4.2: Results of the 10 consecutive optimization runs 

No. of 

run 

Optimal solvent 

structure 

Optimal solvent 

initial composition 

Fitness value 

(reaction conversion) 

1 CH3(CH2)2CHCl2 0.5524 0.918000 

2 CH3(CH2)2CHCl2 0.5714 0.918019 

3 CH3(CH2)2CHCl2 0.5619 0.918025 

4 CH3(CH2)2CHCl2 0.5619 0.918025 

5 (CH3)2CHCHCl2 0.5524 0.918042 

6 (CH3)2CHCHCl2 0.5810 0.918043 

7 (CH3)2CHCHCl2 0.5714 0.918066 

8 (CH3)2CHCHCl2 0.5619 0.918068 

9 (CH3)2CHCHCl2 0.5619 0.918068 

10 (CH3)2CHCHCl2 0.5619 0.918068 

The evolution of fitness value vs. the number of generations is shown in Figure 4.11. The data is 

taken from the 8
th

 run found in Table 4.2 which represents the best obtained solution. In this run, 

the computation converges very early before it terminates at the 100
th

 generation, thus we only 

show the evolution of fitness value during the first 50 generations. As can be seen, both the 

largest fitness value and the average fitness of individuals in a generation increase quite rapidly 

at the beginning. Afterwards, the change in fitness of the best individual quickly stagnates. As 

mentioned before, in order to avoid any premature convergence, a disturbance is created by 

increasing all genetic operation probabilities to 1.0 during the 14
th

 to the 16
th

 generation. Due to 

the introduction of a large number of new individuals, the average fitness value decreases 

significantly during this disturbance. After that, it increases once again and later fluctuates within 

a limited range. The fitness of the best individual remains unchanged from the 28
th

 generation 

until the end. 
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Figure 4.11: The evolution of fitness value vs. the number of generations 

In GA-based molecular design, structural groups can be regarded as genes that constitute the 

molecules. Just as promising genes have more chances of being retained and unpromising genes 

are gradually eliminated in the natural selection process, the appearance frequency of a group in 

a generation behaves in a similar way. Figure 4.12 shows the evolution of average group weights 

in a generation. As can be seen, favorable groups (such as CH3, CH, and CHCl2) accumulate in 

the evolution. The weights of unfavorable groups (such as CH3CO and OCH2) generally decrease 

with increasing generations. Some group (such as CCl) weights do not change much at all during 

the evolution. These phenomena are consistent with our solvent design results. 

 

Figure 4.12: The evolution of average group weights in a generation 
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Because the developed solvent design method is purely based on the thermodynamic analysis of 

multiphasic reactive mixtures, the obtained results are always thermodynamically consistent. 

Nine representative solvents were investigated in Voutsas et al. (2002) regarding their effects on 

the equilibrium conversion of the esterification reaction. Isooctane has been found to be the best 

one with the highest conversion. Our optimally designed solvent 1,1-dichloro-2-methylpropane 

is predicted as having a slightly higher reaction performance than when making a similar 

calculation for isooctane. This finding suggests that the proposed design method has a high 

potential for quickly identifying optimal reaction solvents without the need for extensive 

experiments. 

4.5 Summary and outlook 

The rate-based dynamic method is extended to calculate the combined chemical and phase 

equilibria of liquid reaction mixtures, through which the reaction equilibrium conversion is 

determined. A genetic algorithm based CAMD method is proposed to design optimal solvents to 

maximize the reaction equilibrium conversion. The method is illustrated through application to 

an esterification reaction. 

For simplification, only acyclic molecules are designed in this work. However, it is shown in 

Nachbar (2000) that tree structures can also represent cyclic and aromatic molecules. From this 

perspective, it is possible to extend the proposed method for the optimal design of cyclic 

molecules. The other issue worth noting is that currently the method cannot distinguish between 

structural isomers. Even though group connectivity is included in the dynamic tree structure, the 

employed UNIFAC model cannot make use of this connectivity information. For distinguishing 

between structural isomers, higher-level property models (e.g., quantum chemistry-based models) 

are required. The aforementioned two possible extensions on the proposed CAMD method 

deserve further investigations. 
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The chemical industry makes extensive use of solvents in reaction and separation processes in 

order to achieve a reduction of process costs while increasing the quality of products. For 

fulfilling these goals, both the solvent and the process system need to be optimally designed. As 

explained in Section 2.3.3, decomposed molecular and process design cannot reasonably capture 

the interdependent relationship between the selection of molecules and the operation of 

processes. In order to find a high-quality solution to a computer-aided solvent and process design 

problem, it is necessary to perform integrated solvent and process design. 

Integrated solvent and process design problems are generally described as: Given a batch or 

continuous process requiring a solvent and a set of structural groups from which solvent 

molecules are built, find the optimal solvent and process operating conditions that would lead to 

a best process performance. This is a typical optimization problem where the design variables 

include discrete solvent structural variables and continuous process operational variables. The 

objective function is normally an appropriately defined process performance index, such as the 

total annual cost. As illustrated in Figure II.1, for calculating the objective function from given 

design variables, we need i) predictive property models that relate solvent structures to solvent 

properties and ii) reliable process models that relate the solvent properties and process operating 

conditions to the overall process performance. 

 

Figure II.1: Calculation of process performance based on property and process models 
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where F is the objective function, such as the process annual cost, to be minimized. x is a m-

dimensional continuous vector of process variables, such as temperatures, compositions, flow 

rates, etc. y is a r-dimensional integer vector of solvent structural variables. It indicates the 

number of groups present in the solvent molecule. Both x and y are independent design variables 

being optimized. q is a n-dimensional continuous vector of dependent state variables that are 

determined by x and y. h (x, y, q) = 0 represent property and process models, such as activity 

coefficient equations, mass and heat balances, equipment sizing, etc. g (x, y, q) ≤ 0 are 

specifications on process operating limits. c (y) = 0 are structural feasibility rules and d (y) ≤ 0 

denote structural complexity and solvent property constraints. Both of them contain molecular 

variables only. 

Due to the high nonlinearity of the property and process models as well as the large mixed 

discrete-continuous design space, the above optimization problem is normally a complex MINLP 

problem. For solving such problem, advanced optimization algorithms are strongly required. 

Chapter 5 addresses an integrated reaction solvent and process design problem. The problem is 

simplified by employing shortcut process models and the simplified MINLP problem is 

successfully solved by a standard MINLP algorithm. In Chapter 6, a hybrid stochastic-

deterministic algorithm is developed for solving complex integrated solvent and process design 

problems where rigorous process models are used. The reliability and efficiency of the hybrid 

optimization algorithm are demonstrated on an integrated separation solvent and process design 

problem. Figure II.2 provides an overview of the work in Part II of the dissertation. 

 

Figure II.2: Structural outline of the work in Part II of the dissertation 
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5. Integrated reaction solvent and process design 

It is well known that a reaction solvent can have large effects on the efficiency of subsequent 

separation units where the product is separated from the solvent and unconverted reactants. In 

this chapter, the DA reaction investigated in Section 3.2.1 is used as the example reaction. 

However, instead of only maximizing the reaction performance, we now consider a continuous 

production process involving reaction and separation sections with recycle streams and optimize 

the overall performance of the process. The optimal reaction solvent and process operating 

conditions are identified from the formulation and solution of an MINLP-based integrated 

solvent and process design problem. 

5.1 Application on a Diels-Alder reaction process 

A simple flow sheet is constructed for the continuous DA reaction process (Figure 5.1). This 

process contains a continuous stirred tank reactor (CSTR), a heat exchanger, and a distillation 

column including a condenser and a reboiler. As depicted, the reactants acrolein (Acro) and 1,3-

cyclopentadiene (Cyclo), together with a certain amount of solvent, are fed into the reactor. After 

the reaction, the mixture is heated and fed into the distillation column. The unconverted reactants 

and solvent are separated from the product 5-norbornane-2-carboxaldehyde (Norbo) and sent 

back into the reactor. Nearly pure product is collected from the bottom of the column. 

 

Figure 5.1: Flow sheet diagram of the DA reaction process 

The integrated reaction solvent and process design task is formulated as a MINLP optimization 

problem. Detailed property and process models that are used in the optimization are presented in 

Sections 5.1.1 and 5.1.2. The MINLP problem is summarized in Section 5.1.3 and the 

optimization results are shown and discussed in Section 5.1.4. 
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5.1.1 Solvent property models 

Solvent effects on chemical processes are directly related to their physical properties. In order to 

develop an efficient chemical process, tradeoffs between different solvent properties need to be 

addressed based on their effects on the process performance. In this work, solvent effects on the 

reaction rate are quantified by the method introduced in Section 3.1. Solvent physical properties 

are estimated from public GC methods, given as Eq. (5.1 − 5.6). The sources of the GC methods 

are summarized in Table 5.1. 

Boiling temperature (K): 
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Table 5.1: A summary of the employed GC methods 

Group contributions (GC) to solvent properties Sources 

GC to boiling point tb,j, critical temperature tc,j, critical 

pressure pc,j, and standard enthalpy of vaporization ∆hvap,j 
Marrero and Gani (2001) 

GC to liquid molar volume vm,j Constantinou et al. (1995) 

GC to heat capacity constants aj, bj, cj, dj Rihani and Doraiswamy (1965) 
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5.1.2 Process and cost models 

a) Reactor models 

According to the experimental reaction condition given in Blankenburg et al. (1974), the 

component molar flow rates of the reactor inlet stream,  ̇      ,  ̇      , and  ̇    , are set to 1 

mol/s, 1 mol/s, and 2 mol/s, respectively. The reaction conversion not only decides the 

production rate, but also affects the reactor volume as well as the size and utility costs of the 

subsequent separation system. It must be carefully selected in order to optimally balance process 

revenue, reactor cost, and separation cost. In this work, the single-pass conversion of the 

reaction, X, is set as a design variable to be optimized. As a result, the component molar flow 

rates of the reactor outlet stream can be determined as follows. 

 XNN cycincycout 


1,,                    (5.7) 

 XNN acrinacrout 


1,,                    (5.8) 

XNN cycinnorout ,,



                     (5.9) 

SinSout NN ,,



                    (5.10) 

The subscripts cyc, acr, nor, and S represent 1,3-cyclopentadiene, acrolein, 5-norbornane-2-

carboxaldehyde, and the solvent, respectively. The concentration of compound i in the outlet of 

the CSTR

 

can be calculated as

 
i

m

COMi

ioutiouti VNNC 




 ,,                  (5.11) 

COM includes S, cyc, acr, and nor. Solvent molar volume   
  (L/mol) is estimated from Eq. (5.5). 

Molar volumes of the reactants and product   
  (i = cyc, acr, and nor) are given in the Supporting 

Information of Zhou et al. (2015a). The reaction was reported in Blankenburg et al. (1974) to be 

an irreversible second-order reaction with respect to the reactants. Therefore, the required reactor 

volume    (m
3
) can be determined by 

 acrcycnoroutR CkCNV 001.0, 


                (5.12) 

The solvent-dependent reaction rate constant k is determined by Eq. (3.1) and Eq. (3.26). The 

heat duty of the reactor cooling water can be evaluated by 

XNHQ cycinRR ,
15.303



                  (5.13) 

where the estimated reaction enthalpy change is 
15.303

RH  = –165.75 kJ/mol.
 

b) Heat exchanger models 
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The composition of the feed stream of the distillation column can be calculated as follows. 

ioutiF NN ,,



                     (5.14) 
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The pressure of the feed stream pF is set to 1.1 bar. The bubble point feed condition can be 

written as 
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where the temperature-dependent relative volatility is calculated from the ratio of the vapor 

pressures of the two components. 
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Methods for calculating the temperature dependences of vapor pressures of the solvent, reactants, 

and product are given in Appendix C. The heat duty of the heat exchanger can be evaluated after 

the feed temperature TF is determined. 
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where Species includes cyc, acr, and nor, and T0 is 303 K. Solvent heat capacity   
  is estimated 

from Eq. (5.6). Heat capacities of the reactants and product   
  are also expressed as functions of 

temperature with their heat capacity constants listed in the Supporting Information of Zhou et al. 

(2015a). 

32 TdTcTbaC iiii

i

p                  (5.19) 

c) Distillation column models 

Due to the complex nonlinear structure of the process design problem combined with the large 

discrete molecular design space, the resulting MINLP problem could be very computationally 

demanding. For simplification, the distillation column is represented by a shortcut model 

including several assumptions such as equilibrium stages, ideal vapor and liquid phases, and 

constant relative volatilities throughout the column. The pressure at the top of the column p is set 

to 1 bar and the total pressure drop in the column ∆p is assumed to be 0.2 bar. In order to meet 

the product purity requirement, the recovery of the solvent (light key component) in the distillate 

ξS is specified to 99.99%. As a key process operating condition, the recovery of the product 

(heavy key component) ξnor in the distillate is set as an optimization control variable. The 

recoveries of the reactants, ξcyc and ξacr, are considered to be 100% due to the sharp split 

assumption. Moreover, to avoid azeotrope formation and to insure a sufficiently large relative 
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volatility for the solvent and product pair, a minimum normal boiling point difference of 30 K 

between the solvent and the product is specified. 

The molar compositions of the distillate and bottom streams are calculated as 

iiFiD NN 


,,                    (5.20) 
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Bubble point calculation at the bottom of the column 
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Dew point calculation at the top of the column 
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The average relative volatility of the solvent-product pair throughout the column is defined by 

B

norS

D

norSnorS ,,,                    (5.28) 

The Westerberg method (Biegler et al., 1997) is used to provide a rough estimation of the 

column size and reflux ratio. The arbitrary weights    and    are set to 0.8 in this work. 

    6132

, 113.12 SnorSlkN                  (5.29) 
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     hklkRhklkR RRRRR ,min1,max                (5.34) 

Enthalpy of vaporization of the stream mixture at the condenser and reboiler are expressed as 

molar weight sum of the enthalpies of vaporization of the individual compounds. 
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where the temperature dependence of the enthalpy of vaporization (Poling et al., 2001) is 

expressed by 
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The standard enthalpy of vaporization and critical temperature of the solvent are estimated by Eq. 

(5.4) and Eq. (5.2), respectively. These two properties of the reactants and product are provided 

in the Supporting Information of Zhou et al. (2015a). 

Finally, the heat duties of the condenser and the reboiler can be determined by
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d) Cost models 

The determination of the overall process economics requires the evaluation of the economic 

potential (EP), capital investment (CI), and utility cost (UC) of the process. The detailed 

calculation of these factors for the DA reaction process is given below with all the prices and 

cost model parameters provided in the Supporting Information of Zhou et al. (2015a). 

(1) Economic potential ($/year) 

The EP per year: GINEP norB 


,330246060122           (5.40) 

(2) Capital investment ($/year) 

The CI of the reactor: PBTVCI RRR               (5.41) 

The CI of the distillation column consists of the cost for trays and the cost for the column vessel. 

      PBTNNCI VTTTTTcolumn   66.01           (5.42) 
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The heat transfer areas of the heat exchanger, condenser, and reboiler are given by 
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  bubrebreb TQS  4931420                 (5.44) 

     320/300ln/208.567  dewdewcondcond TTQS            (5.45) 

Condensing steams of 423 K and 493 K are used as heating media in the heat exchanger and 

reboiler, respectively. The temperature of the cooling water in the condenser is assumed to 

increase from 300 to 320 K. The heat-transfer coefficients in the condensing steam heating and 

the room temperature water cooling processes are estimated as 1420          and 567.8 

        , respectively. 

With the calculated heat equipment sizes, their capital investments can be evaluated according to 

the bare module cost model (Guthrie, 1969), where u = heater, cond, reb denote heat exchanger, 

condenser, and reboiler, respectively. 

 00 SSCBC uu                    (5.46) 

  PBTMPFMFUFBCCI uu 1              (5.47) 

The total CI of the process is calculated as 

rebcondheatercolumnRtot CICICICICICI 
        

    (5.48) 

(3) Utility cost ($/year) 

Assuming that the temperature increase of the cooling water in the reactor and the condenser are 

5 K and 20 K, respectively, UCs of the reactor and the condenser can be evaluated as follows. 

 533.75606024330  CWRR QUC              (5.49) 

 2033.75606024330  CWcondcond QUC             (5.50) 

The costs of hot steams in the heat exchanger and reboiler are calculated by 

4.38012606024330 HSHheater QUC              (5.51) 

6.33303606024330 HSrebreb QUC              (5.52) 

The heat capacity of room temperature cooling water is 75.33          . The enthalpies of 

vaporization of 423 and 493 K hot steams are 38012.4 and 33303.6 J/mol, respectively.
 

The total annual UC: rebcondheaterRtot UCUCUCUCUC           (5.53) 
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5.1.3 MINLP optimization 

A reduced set of 15 common groups (CH3, CH2, CH, C, OH, CH3CO, CH2CO, CHO, CH3COO, 

CH2COO, HCOO, OCH3, OCH2, OCH, and COOH) selected from the full set of groups listed in 

Appendix A is used to generate solvent molecules. Thus the total number of different groups in 

the group set N is 15. The minimum and maximum number of groups present in a molecule nmin 

and nmax are set to 2 and 5, respectively. The integrated solvent and process design task is 

formulated as a MINLP optimization problem. Integer variables nj represent the number of group 

j present in the solvent molecule. Continuous variables include the reaction conversion X and the 

product recovery in the distillate stream ξnor. The objective is to maximize the process annual 

profit. The MINLP problem is summarized as follows. 

Maximize: Total annual profit = EP − CItot − UCtot  

Variables: Integer nj (j = 1, 2, …, N) 

Reaction conversion X and product recovery ξnor 

Subject to: Variable boundaries 

0 ≤ ξnor ≤ 0.2 

0.50 ≤ X ≤ 0.99 

0 ≤ nj ≤ n
upp

(j) (j = 1, 2, …, N) 

Solvent structural constraints 

Chemical feasibility: Eq. (3.3 − 3.5) 

Chemical complexity: Eq. (3.9 − 3.12) 

Solvent property constraints 

Reaction rate constant: Eq. (3.1) and Eq. (3.26) 

Physical property estimation: Eq. (5.1 − 5.6) 

Property boundaries: 330 ≤   
  ≤ 416;        > 1 

Process models 

Reactor: Eq. (5.7 – 5.13)  

Heat exchanger: Eq. (5.14 – 5.19) 

Distillation column: Eq. (5.20 – 5.39) 

Vapor pressure calculation: Eq. (C.1 – C.7) 

Cost models 

Economic potential: Eq. (5.40) 

Capital investment: Eq. (5.41 – 5.48) 

Utility cost: Eq. (5.49 – 5.53) 
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5.1.4 Results and discussion 

The solvent molecular structure, the reaction conversion X, and the product recovery ξnor were 

simultaneously optimized through the solution of the above MINLP problem using the KNITRO 

solver (Byrd et al., 2006) in the AMPL modelling environment (Fourer et al., 2002). For better 

illustration of the results, a reference case is optimized where acetic acid, the best experimentally 

determined reaction solvent, is fixed as the solvent. Because the solvent is fixed, the reference 

design case becomes a NLP problem. Table 5.2 shows the optimization results of the integrated 

solvent and process design as well as the reference design problems. Isopropanol is found to be 

the best solvent in the integrated design case. The corresponding optimal reaction conversion is 

0.755 and product recovery is 0.0055. 

Table 5.2: Optimization results of the integrated solvent and process design and the reference 

design problems for the DA reaction process 

 

 

Integrated solvent and 

process design (MINLP) 

Reference case 

(NLP) 

Solvent Isopropanol Acetic acid 

Reaction conversion X 0.755 0.872 

Product recovery ξnor 0.0055 0.0223 

Annual profit (US $/year) 27918.1 22776.4 

EP (US $/year) 65319.7 74118.8 

CIR (US $/year) 10145.0 5750.3 

CIheater (US $/year) 654.3 670.6 

CIcolumn (US $/year) 7662.7 17133.2 

CIreb (US $/year) 705.2 712.7 

CIcond (US $/year) 725.1 705.9 

UCR (US $/year) 2340.9 2701.7 

UCheater (US $/year) 1261.4 2325.4 

UCreb (US $/year) 13399.3 20816.1 

UCcond (US $/year) 507.7 526.5 

log k  (𝐿      𝑠 ) −3.294 −2.551 

VR (m
3
) 1.90 1.08 

NT (number of trays) 4 15 
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Reflux ratio R 0.128 0.920 

When comparing the integrated design case to the reference case, it is clear that both the lower 

process economic potential EP and the higher reactor investment cost CIR are resulted from the 

much lower reaction rate of isopropanol. However, although isopropanol shows relatively low 

reaction efficiency, it dramatically improves the energetic performance of the solvent-product 

separation. In contrast, despite the excellent reaction performance of acetic acid, it is not the best 

choice for the continuous process due to its extremely high energy consumption in the distillation 

column. This result highlights the importance of investigating trade-offs among different solvent 

properties in order to achieve an overall highest process performance. It can be concluded from 

the data in Table 5.2 that the integrated solvent and process design leads to an increase of the 

process annual profit by more than 20%, compared to the reference case. 

It should be mentioned that due to the non-convexity of the MINLP problem and the utilization 

of local solvers, suboptimal solutions can be obtained. The probability of finding high-quality 

solutions is increased by solving the same optimization problem multiple times starting from 

different initializations. The solution presented in Table 5.2 is the best-case solution we have 

obtained. 

5.2 Summary and outlook 

This chapter proposes a method for integrated reaction solvent and process design. The best 

reaction solvent and optimal process operating conditions are simultaneously identified through 

the formulation and solution of an MINLP optimization problem whereby the economic 

performance of the entire process is maximized. The method is applicable beyond the example of 

the here considered DA reaction process. Its application is straightforward for general solvent-

involved reaction processes once the reaction kinetic data are available for a small number of 

solvents. 

For simplifying the design problem, a relatively small number of structural groups are considered 

and shortcut process models are employed. A larger solvent group set and more detailed process 

models would, of course, increase the reliability and applicability of the results. However, as the 

search space and complexity of the optimization problem increase, computational efficiency is 

likely to become a limiting factor. The extension of the design method to more complex solvent 

structures and more accurate process representations will be attainable, once more efficient 

solution algorithms and more powerful computer systems are available. 
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6. Integrated separation solvent and process design 

Chapter 5 addresses an integrated reaction solvent and process design problem. In order to 

efficiently solve the problem using standard MINLP algorithms, the problem is simplified by 

assuming ideal mixture behavior and employing shortcut process models. However, it is clear 

that the ideal gas and liquid behaviors are normally not valid for most industrial cases. 

Additionally, shortcut models often cannot fully represent the characteristics of processes. Based 

on these considerations, efficient optimization algorithms or methods are strongly required for 

solving complex integrated solvent and process design problems where rigorous thermodynamic 

and process models are employed. 

This chapter first proposes a new hybrid optimization algorithm. The algorithm is then used to 

solve a real-world integrated separation solvent and process design problem. A coupled 

absorption-desorption process is considered where the absorption solvent structure and the 

operating conditions of the absorption and desorption columns are simultaneously optimized. For 

better comparison, the problem is also solved by conventional MINLP algorithms. The results 

demonstrate the high reliability and robustness of the proposed hybrid algorithm. 

6.1 Hybrid stochastic-deterministic algorithm 

For large-scale complex integrated solvent and process design problems, global MINLP 

algorithms (Sahinidis, 1996; Misener and Floudas, 2013) are at the moment too expensive to be 

implemented. Local deterministic algorithms rely very much on initializations. Without good 

initial estimates, poor suboptimal or infeasible solutions are often obtained. In comparison with 

deterministic methods, stochastic optimization methods favor the search of global or near-global 

solutions under random initializations (Biegler, 2014; Rangaiah, 2010). They have been proven 

to be very efficient for solving discrete optimization problems (Rangaiah, 2010). However, one 

should note that stochastic optimizations are usually restricted to unconstrained or simple 

boundary-constrained problems. By contrast, deterministic algorithms can efficiently handle 

nonlinear constraints and are preferable methods for large-scale NLP problems. Moscato (1989) 

first introduced a memetic algorithm that combines population-based stochastic algorithms with 

local refinement strategies. Since then, many combined stochastic and deterministic algorithms 

have been proposed and applied to various optimization problems, including chemical process 

synthesis (Athier et al., 1997; Urselmann et al., 2011a; Skiborowski et al., 2015) and industrial-

scale distillation and reactive distillation design (Gómez et al., 2006; Urselmann et al., 2011b). 

Studies have shown that optimization methods that combine advantages of stochastic and 

deterministic algorithms can considerably improve the optimization performance in terms of 

solution quality and computational cost (Lima et al., 2006; Molina et al., 2010). 
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The genetic algorithm (GA) is one of the most prominent evolutionary-based stochastic 

algorithms. It has been proven to be very efficient in solving optimization problems with large 

combinatorial and/or discontinuous search spaces (Affenzeller et al., 2009). Chapter 4 proposes a 

GA-based solvent design method. In this chapter, a hybrid optimization algorithm combining the 

GA developed in Chapter 4 with a deterministic NLP algorithm is proposed to solve complex 

integrated solvent and process design problems. In the hybrid stochastic-deterministic algorithm, 

the optimization of discrete molecular variables is performed by the GA and the continuous 

process variables are optimized by a gradient-based NLP solver at fixed solvent molecules 

proposed by the GA. The general structure of the algorithm is shown in Figure 6.1 with the 

major steps summarized below. 

 

Figure 6.1: Schematic diagram of the hybrid stochastic-deterministic algorithm for integrated 

solvent and process design (Zhou et al., 2016b) 

1. To start a program, first set GA parameters and specify a set of structural groups from which 

solvent molecules are generated. 

2. Randomly initialize solvent molecules for the first generation using the dynamic tree structure 

(Zhou et al., 2016a). 
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3. Optimize process variables using the gradient-based CONOPT solver (Drud, 1994) at fixed 

molecular variables and return the optimal solution as well as process objective value. This 

procedure is performed for all the molecules in the generation. 

4. Assign a fitness value to each molecule in the generation based on the corresponding process 

objective value. 

5. Select parent molecules from the current generation based on the roulette wheel selection rule 

(Lipowski and Lipowska, 2012). 

6. Create offspring molecules for the next generation via genetic operations (Zhou et al., 2016a) 

performed on the selected parents. Repeat Step 3 and Step 4. 

7. The computation is terminated if predefined stopping criteria are satisfied (usually a 

maximum number of generations is specified). The best solution in the current generation 

represents the final solution to the design problem which includes an optimal solvent 

molecular structure and the corresponding best process operating conditions. If the criteria are 

not satisfied, i = i +1 and return to Step 5. 

The result of each calculation including the optimal solution (x
(i)

, y
(i)

) and process objective F
(i)

 is 

recorded in a database, which provides two advantages. On the one hand, if a molecule that has 

been previously tested is created, the result is directly exported from the database without re-

optimizing the process using the NLP solver. This strategy helps saving a lot of computational 

efforts. On the other hand, the construction of the database facilitates the generation of a list of 

top solutions after the entire computation terminates. These solutions can be more rigorously 

evaluated e.g., by experiments before a final decision is made. 

6.2 Application on an absorption-desorption process 

The proposed optimization algorithm is demonstrated on an absorption-desorption (AD) process 

which consists of an absorption column to separate acetone from air, a desorption column for 

recovering the absorption solvent, two internal heat exchangers, one cooler, and one heater (see 

Figure 6.2). Both absorption and desorption columns are operated at atmospheric pressure. The 

operating temperatures (T
ab

 and T
de

) are considered as key process variables to be optimized 

together with the solvent structure. Ideal gas phase behavior is assumed due to the low operating 

pressure. The UNIFAC model is used to predict the non-ideality of the components in the liquid 

phases. The dissolution of air in the solvent and the vaporization of the solvent are neglected. A 

rate-based mass transfer approach is employed to determine the packing heights of the two 

columns. 
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Figure 6.2: Flow sheet of the AD process 

The selected UNIFAC groups from which solvent molecules are built are: CH3, CH2, CH, C, 

OH, CH3CO, CH2CO, CHO, CH3COO, CH2COO, HCOO, OCH3, OCH2, OCH, and COOH. 

Structural feasibility constraints are omitted because the employed molecular encoding method 

(Zhou et al., 2016a) already guarantees structurally feasible molecules. Taking into account the 

limitation and accuracy of first-order GC methods (see Section 6.2.1), the designed molecules 

should have no more than 10 groups and at most two functional groups (Giovanoglou et al., 

2003). In order to rationalize the assumption of non-volatility of the solvent, the lower bound of 

solvent boiling point is set to 370 K. In this work, each molecule generated by the GA is tested 

against these constraints and those violating the constraints are immediately discarded. Solvent 

molecules are continuously created and tested until a pre-defined number (i.e., the population 

size of a generation) of molecules are obtained. 

In order to obtain high-quality solutions in a reasonable amount of computational time, GA 

parameters should be properly selected. The selection of GA parameters is task-specific. The 

population size and maximum number of generations are normally selected according to the size 

of the design space. In this case study, the maximum number of generations is set to 30 and each 

generation includes 11 molecule individuals. Increasing the probabilities of genetic operations 

facilitates the generation of new individuals during the evolution and therefore increases the 

possibility of finding high-quality solutions. However, this action can slow down the 

convergence of the GA computation. Considering the tradeoff between the solution quality and 

computational cost, the probabilities of performing mutation, crossover, insertion, and deletion 

operations are set to 0.3, 0.3, 0.6, and 0.6, respectively. The probabilities of the insertion and 
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deletion operations are set higher than those of mutation and crossover to favor the generation of 

molecules with different sizes. In order to ensure that the best individual in a generation does not 

deteriorate with the increasing of generation, the best molecule in one generation is directly 

passed into the next generation without any modifications. In GAs, each individual solution is 

evaluated and assigned with a fitness value that tells how desirable the solution is. In this case 

study, the fitness function is defined as the total annual cost (TAC) of the AD process. The 

following provides all the equations for determining the process TAC. 

6.2.1 Physical property models 

a) Pure component properties 

Physical properties of solvent (S) and acetone (A) are estimated by first-order GC methods 

where the required information is the number and type of structural groups present in the 

molecule. 

Critical pressure (Scilipoti et al., 2014) is determined by 
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where nj is the number of group j present in the molecule, ∆MWj is the contribution of group j to 

the molecular weight MW in g/mol, and ∆Pj is the contribution of group j to the critical pressure 

Pc in atm. 

Critical volume (Scilipoti et al., 2014) can be calculated as 
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where ∆Vj is the contribution of group j to the critical volume Vc in cm
3
/mol. 

Molar volume at the normal boiling temperature (Scilipoti et al., 2014) can be determined from 

the critical volume. 

048.1285.0 cVV                      (6.3) 

The ratio of normal boiling temperature to critical temperature (Scilipoti et al., 2014) 
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where ∆Tj represents the contribution of group j to the ratio of normal boiling temperature to 

critical temperature Tb/Tc and ∆Aj denotes the association contribution of group j. 

Normal boiling temperature (Scilipoti et al., 2014) can be determined by 
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Saturated vapor pressure (in atm) is estimated from the Clapeyron equation where T is the 

temperature in K. 
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Viscosity (Scilipoti et al., 2014) is estimated by 
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where ∆µj and ∆Nj are the contributions of group j to the viscosity µ in mPa×s. 

Heat capacity (Rihani and Doraiswamy, 1965) is calculated as 
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where aj, bj, cj, and dj 
are the contributions of group j to the heat capacity Cp in cal/(mol×K). 

Normal melting temperature (Constantinou and Gani, 1994) can be determined by 
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where tmj is the contribution of group j to the normal melting temperature Tm in K. 
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b) Mixture properties 

According to Poling et al. (2001), the infinite dilution diffusion coefficient of acetone (A) in the 

solvent (S) can be estimated by Eq. (6.10) where 𝜙 is the dimensionless association factor, set to 

1.0 in this work. 
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The equation for calculating the infinite dilution diffusion coefficient of S in A,    
 , can be 

derived by simply exchanging the indices of A and S in Eq. (6.10). 

Diffusion coefficient (in cm
2
/s) of the acetone and solvent mixture at arbitrary compositions 

 ASASASAS xDxDD                    (6.11) 

where x represents mole fraction in the liquid phase. 

According to Cussler (2009), the liquid-phase mass transfer coefficient in packed columns can be 

estimated by 
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where: 
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In the above equations, dp represents the packing size, 5.08 cm for the 2-inch saddle used in this 

work, kL is the liquid-film mass transfer coefficient in cm/s, ν is the kinematic viscosity 

(0.01×cm
2
/s), and v0 is the superficial flow velocity in cm/s. 
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where d denotes the column diameter that is set to 30.0 cm. 

The overall mass transfer coefficient Ky is finally calculated from 



6. Integrated separation solvent and process design 83 

ak

m

akaK x

A

yy


11

                   (6.17)

 

where 





SAi

iiLx Vxkk
,

                   (6.18)

 

ky is the local mass transfer coefficient in gas phases which is set to 1.70×10
7
 mol/(cm

2
×s) for the 

investigated air system. a is the surface area per volume, 1.05 cm
2
/cm

3
 for the used saddle 

packing. m is the vapor-liquid equilibrium constant defined in Eq. (6.30), and kx denotes the local 

mass transfer coefficient in liquid phases. Ky values in the absorption and desorption columns are 

determined individually according to Eq. (6.10 – 6.18). 

6.2.2 Process and cost models 

Mass balances in the absorption and desorption columns are written as 
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where N denotes molar flow rate in mol/s, dz (cm) is the differential packing height of the 

column. The indices ab and de represent the absorption and desorption columns, respectively. G 

and L denote gas and liquid phases, respectively. 

Inert gas and nonvolatile solvent assumptions lead to 

0 L

air

G

S NN                    (6.21) 

0
ab

L

S

ab

G

air

dz

dN

dz

dN
                   (6.22) 

0
de

L

S

de

G

air

dz

dN

dz

dN
                  (6.23) 

The flow rates of acetone in the gas and liquid phases are expressed by
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where x and y indicate the mole fraction in liquid and gas phases, respectively. Eqs. (6.21), 

(6.24), and (6.25) holds for the entire columns including inlet and outlet streams. 

Connectivity constraints for the recycle streams 
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where in and out represent inlet and outlet steams, respectively. 

Process specifications are the following 
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Eq. (6.29) is used to determine the packing heights of the absorption and desorption columns 

(i.e., Z
ab

 and Z
de

) with the VLE condition given in Eq. (6.30). Finite difference methods (FDM) 

are used to solve the differential equations. Specifically, the entire solute-concentration range 

(from yA,in to yA,out) is discretized into 30 regions and for each region, the differential equations 

are discretized and solved as algebraic equations.
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where the equilibrium composition of acetone in the gas phase is given by: 
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The temperature and solvent dependent activity coefficient of acetone γA is calculated by the 

reformulated UNIFAC model (Buxton et al., 1999). In the model, the activity coefficient of 

component i is given by: 
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Residual part 
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In the above equations, j and mj are group indices; i and ii are component indices. Van der Waals 

volume Ri and surface area Qi for component i are estimated by 
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rj and qj are UNIFAC volume and surface area parameters of group j, respectively. ni,j represents 

the number of group j in component i. In this case study, there are only two components (acetone 

and the solvent) present in the liquid phase. nA,j is known for the acetone molecule and nS,j is the 

molecular variable of solvent to be optimized. 

Interaction parameters between group mj and group j 

 Ta jmjjmj /exp ,,                    (6.41) 

The rj, qj, and amj,j values can be found in Gmehling et al. (1982). 
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In order to ensure that the designed solvent is liquid in both absorption and desorption columns, 

the following inequality constraints are defined. 

Tm,S < T
ab

, Tm,S < T
de

                  (6.42) 

Tb,S > T
ab

, Tb,S > T
de

                  (6.43)
 

The TAC ($/year) of the process includes the annual utility cost (UC) and the annual capital 

investment (CI). 
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where Q
Cooling

 and Q
Heating

 are the cooling and heating duties, respectively. The subscripts G and 

L denote gas and liquid phases, respectively. Cp,air is the heat capacity of air with a constant 

value of 29.19 J/(mol×K) and T
am

 represents the ambient temperature that is set to 305.15 K. 

The utility cost majorly consists of refrigeration electricity cost UC
C
 and heating steam cost UC

H
 

(Towler and Sinnott, 2012). 
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δ is the cooling cycle efficiency, set to 0.80. ψEL and ψHS are the electricity price (0.06 $/kwh) 

and heating steam price (2.57×10
−4

 $/mol), respectively. 250 °C high-pressure steam is used as 

the heat source. Its enthalpy of vaporization      
      is 1715.8 kJ/kg. 

Total annual utility cost 

HCtotal UCUCUC                    (6.54)

 According to Loh et al. (2002), the annual capital investment of the absorption and desorption 

columns, CI
ab

 and CI
de

, can be estimated by 
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 where Cshell and Cpacking represent the cost of shell and packing of the column, respectively. PBT 

is the payback time, set to 8 years in this work. ψS0 and ψS are two parameters of the linearized 

shell cost model. They are 5100 $ and 6.56 $/cm, respectively. ψP is the packing price with a 

value of 7.42×10
−4

 $/cm
3
. 

Total annual capital investment 

deabtotal CICICI                    (6.61)
 

Finally, 

totaltotal CIUCTAC                    (6.62) 

6.2.3 Results and discussion 

The GA is encoded in C and run in Microsoft Visual C++ 2005 (Kruglinski et al., 1998). The 

process optimization problem is solved by the CONOPT solver (Drud, 1994) in the GAMS 

modelling system (Rosenthal, 2006). In order to evaluate the performance and robustness of the 

hybrid algorithm, 10 optimization runs were consecutively performed with the results 

summarized in Table 6.1. 9 of the 10 runs result in the same optimum (Solution 1) with 
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CH3COOH as the best solvent. In the remaining one run, another solution (Solution 2) with 

CH3CH2COOH as the optimal solvent is found. The CPU time for each run is about 20 minutes. 

In order to more directly verify the reliability of the hybrid optimization method, all the solvents 

in the design space (the total number is 1696) were enumerated and evaluated. Solution 1 and 

Solution 2 have been proven to be the best and the second best solutions, respectively. This high 

probability of finding the best solutions from random initializations demonstrates the high 

reliability and robustness of the method. 

Table 6.1: Results of 10 consecutive optimization runs 

 Solution 1 Solution 2 

Optimal solvent CH3COOH CH3CH2COOH 

T
ab

 (K) 303.54 304.17 

T
de 

(K) 325.38 326.28 

Z
ab

 (cm) 199.89 241.12 

Z
de

 (cm) 311.93 382.62 

UC
C 

($/year) 261.28 362.78 

UC
H 

($/year) 2264.75 2846.80 

CI
total

 ($/year) 1728.36 1827.49 

TAC ($/year) 4254.39 5037.07 

For better comparison, the problem has also been handled by deterministic MINLP algorithms, 

including the global optimization solver BARON and local solvers DICOPT and SBB (Brooke et 

al., 1998). For DICOPT and SBB, the problem was solved multiple times starting from different 

initial estimates. The results show that the problem cannot be successfully settled by BARON 

within a reasonable amount of time. The performances of DICOPT and SBB are similar. Both of 

them rely much on good initializations. Over 80% of the runs failed to converge to a feasible 

solution and only about 5% of them succeeded to find Solution 1 (Table 6.1) as the optimal 

solution. Details about the solved MINLP problem are given in Table 6.2. 

Table 6.2: Computational details of the solved MINLP problems (CONOPT for NLP 

subproblems and CPLEX for MILP subproblems) 

Solver DICOPT 

Number of continuous variables 1198 

Number of discrete variables 15 

Number of equations 1190 
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Number of NLPs 6 

NLP CPU time / MILP CPU time (s) 231.2 / 4.0 

Total CPU time (s) 235.8 

As described before, the result of each calculation including the optimal solution and the 

corresponding process TAC value is stored in a database. A list of top solutions can be obtained 

by sorting all solutions in the database according to their TAC values after an entire computation 

is completed. Table 6.3 shows the top five solutions obtained from a random optimization run. 

Taking into account the deviations in the employed property predictive models, the generation of 

multiple promising solutions is desirable since the solutions can be further evaluated by higher-

level property models or experiments before making a final selection. 

Table 6.3: Top five solutions obtained for the integrated solvent and process design problem 

Ranking Optimal solvent T
ab

 (K) T
de

 (K) TAC ($/year) 

1 Solution 1, Table 6.1 

2 Solution 2, Table 6.1 

3 CH3CH(CHO)2 295.51 319.28 5291.23 

4 CHO(CH2)2CHO 295.54 319.31 5394.91 

5 CH3CH(OH)CHO 282.72 307.30 5490.98 

 

6.3 Summary and outlook 

A hybrid stochastic-deterministic optimization method is proposed for solving complex 

integrated solvent and process design problems. It is a combination of a genetic algorithm that 

optimizes the discrete molecular variables and a gradient-based deterministic algorithm that 

optimizes the continuous process variables. The reliability and efficiency of the method has been 

demonstrated on a coupled absorption-desorption process where the solvent molecular structure 

as well as the operating conditions of the absorption and desorption columns are simultaneously 

optimized. The results indicate that while conventional MINLP algorithms rely much on well-

selected initial values, the hybrid optimization algorithm can steadily and reliably solve the 

problem under random initializations. 
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7. Conclusions and perspectives 

7.1 Summary of major achievements 

This research focuses on the area of multi-scale product and process design. As representative 

and important examples, the molecular design of reaction solvents as well as the integrated 

solvent and process design are primarily studied in this dissertation. The main contributions are 

summarized below. 

In Chapter 3, we propose a QSPR model using a new type of COSMO-based solvent descriptor 

to correlate the effect of solvents on chemical reaction rates. Based on the parameterized QSPR 

model and a developed group contribution method that is used to estimate the solvent 

descriptors, optimal solvents having the highest reaction rates are identified from the formulation 

and solution of a CAMD optimization problem. We have demonstrated the reliability and wide 

applicability of the method on both simple and complex reactions. 

In Chapter 4, we propose a GA-based CAMD method for designing solvents to maximize 

reaction equilibrium conversion. A novel molecular encoding method is introduced within the 

GA to facilitate the generation and evaluation of structurally feasible solvent molecules. The 

application to a selected esterification reaction shows that the method is a valuable tool for 

quickly identifying promising solvents that can break the chemical equilibrium limitation 

allowing for higher product yields. 

In Chapter 5, instead of focusing on chemical reactions, continuous production processes 

involving reaction and separation sections with recycle streams are considered. The optimal 

reaction solvent and process operating conditions are identified from the solution of an MINLP-

formulated integrated solvent and process design problem where the overall process performance 

is maximized. To the best of my knowledge, this is one of the first attempts to integrate reaction 

solvent design into a process-wide optimization framework. 

In Chapter 6, we propose a hybrid stochastic-deterministic optimization method for solving 

complex integrated solvent and process design problems where rigorous thermodynamic and 

process models are employed. The high reliability and efficiency of the method are demonstrated 

on a coupled absorption-desorption process where the absorption solvent structure and the 

operating conditions of the absorption and desorption columns are simultaneously optimized. 

7.2 Limitations and future directions 

Despite several important achievements, a few limitations should be pointed out. In this work, 

the objective of solvent design is to maximize either the reaction performance or the process 

performance. However, one should note that when selecting solvents, their availabilities and 
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impacts on health, safety, and environment are also important factors to consider. How to 

efficiently incorporate these criteria into a solvent design framework deserves serious attention. 

Other limitations and future directions are discussed in the following sections. 

7.2.1 Computational issue 

Optimization lies at the heart of molecular and process design. Except the first case study in 

Chapter 3, all the design tasks addressed in this work are inherently nonconvex MINLP 

problems. Given the large computational cost of global optimization, local MINLP algorithms 

are used to solve the second case study in Chapter 3 and the problem in Chapter 5. This means 

suboptimal solutions can be obtained for both problems. In order to increase the probability of 

finding high-quality solutions, we solve the optimization program multiple times starting from 

different initial values and provide the best solutions we have obtained. Despite these efforts, 

global optimality of the solutions cannot be guaranteed. On the other hand, due to the stochastic 

nature of the algorithm, the methods proposed in Chapter 4 and Chapter 6 are able to find global 

or near-global optima from random initializations. However, these solutions are still not 

theoretically guaranteed to be the global solution. With these considerations, the development of 

deterministic global MINLP algorithms with an acceptable computational cost is always 

significant. 

7.2.2 Model reliability 

In this work, first-order GC models are used to predict several physical properties of solvent. 

Despite their popularity and effectiveness, limitations in these models are also obvious. Firstly, 

the models have not taken into account the connectivity between groups. As a result, they cannot 

distinguish between structural isomers. Secondly, the additive assumption in the model requires 

the contributions of structural groups to be independent of each other. These two limitations 

make the high reliability and accuracy of first-order GC models limited only to those molecules 

with simple structures and small or medium sizes. 

For designing large complex molecules with high reliability, two methods are suggested. The 

first is to replace the first-order GC models with more sophisticated and accurate higher-order 

GC models (e.g., Marrero and Gani, 2001). However, one should note that when higher-order 

groups are included, the computational complexity will be significantly increased due to the 

much larger number of design variables and equations. The other method is to generate a list of 

top solutions instead of only one optimal solution and later introduce a post-design step to further 

screen and more rigorously evaluate the top solutions by using higher-order GC models or 

experimental data if available. When using stochastic optimization to solve solvent design or 

integrated solvent and process design problem, the result of each evaluated solvent can be stored 

in a database. After completing an optimization procedure, a list of top solutions can be directly 

generated from sorting all the solutions in the database according to their objective function 



92 7. Conclusions and perspectives 

values. When using deterministic optimization to solve the problem, the integer cut method 

(Folić et al., 2007) can be used to generate a list of top solutions. 

Most CAMD procedures use GC models to predict molecular properties. However, as an 

alternative to the GC models, QSPR models based on signature molecular descriptors (SMDs) 

have received increasing attention. Currently, one of the most popular and widely used SMDs is 

the topological index (TI), which is obtained from the two-dimensional topologic representation 

of molecular structures. Due to the inclusion of atom connectivity information, TIs provide a 

higher level of molecular representation compared to the simple group partitioning and group 

number counting. Therefore, in principle, TI-based QSPR models can be more accurate than 

simple GC models for predicting molecular properties. In fact, numerous TI-based models have 

been developed to estimate solvent physical properties (e.g., in Patel et al., 2009). However, 

unfortunately there is a lack of TI-based thermodynamic model for predicting activity 

coefficients in liquid phases, which is an essential property for selecting solvents. For this 

reason, the direct application of TI-based property models for solvent design is uncommon at the 

moment. Nevertheless, it deserves further investigation. 

7.2.3 Extension of methods 

a) Ionic liquid solvents and solvent mixtures 

This work only focuses on organic solvent design. However, ionic liquids (ILs), as a new type of 

solvent, have received tremendous attention and wide applications during the last few decades 

(Plechkova and Seddon, 2008). Compared to conventional organic solvents, ILs have some 

unique properties and advantages, such as powerful dissolving and electrical conductivity 

abilities, low volatility, thermal stability, etc. Moreover, IL properties can be tuned by modifying 

the cation structure or changing the cation-anion combination, which makes ILs ―designable 

solvents‖. Since the proposed methods are not limited to certain solvent types, they can be 

extended to IL design as long as reliable IL property models are available. 

In addition to pure solvents, solvent blends are also widely used in industry. The advantage of 

using solvent blends is that their properties can be well tuned by changing the composition of the 

mixture. Although mixture design is not an area as much studied as pure-component design, a 

few significant contributions such as Karunanithi et al. (2005) can still be found. In general, 

mixture design problems are addressed by adding certain additional constraints relevant to the 

mixture properties to the MILP or MINLP formulated pure-component design problem. This 

work proposes methods for the optimal design of pure solvents. The extension of the methods to 

solvent blend design is obviously a worthwhile direction to pursue in future studies. 

b) Integrated solvent and process synthesis 

Integrated solvent and process design is performed, however, under fixed process configurations. 

For processes whose configurations are not fixed, it is necessary to perform integrated solvent 
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and process synthesis to capture the interaction between the selection of solvents and process 

alternatives. Compared to the design problem, the synthesis problem is much more complex due 

to the introduction of binary variables indicating the existence of process units and additional 

equations for the alternative units. A possible way to solve this problem is to incorporate the 

CAMD of solvents into a superstructure-based process synthesis framework by using the 

generalized disjunctive programming (GDP) method. 
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Appendix 

Appendix A. Table A1 

Table A1: Sixty structural groups and single-group solvents with their IDs, valences,                                                                  

maximum numbers, and contributions to the six solvent descriptors 

Group 

ID 

Group      

j 

Valence 

ν(j) 

Maximum group 

number nupp(j) 
s1j s2j s3j s4j s5j s6j 

1 CH3 1 nmaxy1 + y4 + y6 0.00089 0.02073 0.53888 2.06187 -0.17281 -0.02667 

2 CH2 2 nmaxy1 -0.00004 0.00742 1.05649 0.91999 -0.00238 -0.00132 

3 CH 3 3y1 -0.00208 0.01217 1.14222 -0.18643 0.14520 0.02145 

4 C 4 y1 -0.00437 0.01606 1.51306 -1.85052 0.30961 0.07360 

5 CH2=CH 1 y1 + y7 + y4 + y6 0.00419 0.11012 0.99885 2.94047 -0.10216 -0.05282 

6 CH=CH 2 y1 + y7 + y6 0.00028 0.10202 1.54385 1.85037 0.04173 -0.01827 

7 CH=C 3 y1 -0.00059 -0.60012 3.68092 -0.35402 0.25616 0.00906 

8 C=C 4 y1 -0.00146 -1.57226 5.73254 -2.39786 0.47058 0.03639 

9 CH≡C 1 y1 0.00125 0.54523 0.51504 2.55271 -0.00825 -0.04230 

10 ACH 2 6y3 + 8y2 0.00042 0.01990 0.34061 1.25012 -0.06168 -0.01246 

11 AC 3 y7 + 2y2 0.00001 -0.06217 0.98538 -0.25030 0.10503 0.01567 

12 ACCH3 2 6y3 + 8y2 0.00023 0.03093 1.54454 1.86466 -0.06579 -0.01173 

13 ACCH2 3 y6 0.00358 0.01361 2.45084 0.24363 0.10191 -0.00404 

14 ACCH 4 y4 -0.00176 0.00379 2.69615 -1.08616 0.26908 0.04291 

15 OH 1 2y1 0.01484 0.71461 -0.31120 0.31695 0.77063 0.08152 

16 ACOH 2 6y3 + 8y2 0.21121 0.66711 -0.27753 1.26076 0.61421 -0.01135 

17 CH3CO 1 y1 + y7 + y4 + y6 0.00121 0.11035 2.57475 0.77126 1.31332 -0.02939 
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Group 

ID 

Group       

j 

Valence 

ν(j) 

Maximum group 

number nupp(j) 
s1j s2j s3j s4j s5j s6j 

18 CH2CO 2 y1 + y7 + y6 0.00056 0.07364 3.11906 -0.47464 1.43224 -0.01007 

19 CHO 1 y1 + y7 + y4 + y6 0.00121 0.11534 1.38480 0.13605 1.19788 -0.04322 

20 CH3COO 1 y1 + y7 + y4 + y6 0.00121 0.11534 3.61839 0.72511 1.57978 -0.04302 

21 CH2COO 2 y1 + y7 + y6 0.00026 0.10573 3.87689 -0.18063 1.62852 -0.01871 

22 HCOO 1 y1 + y7 + y4 + y6 0.00115 0.29929 1.66505 0.58384 1.44054 -0.04561 

23 OCH3 1 y1 + y7 + y4 + y6 -0.00610 0.00842 1.61665 0.79532 0.87103 -0.03756 

24 OCH2 2 y1 + y7 + y6 -0.00008 0.08996 2.55219 -0.17182 0.75078 0.03014 

25 OCH 3 y1 0.00054 0.05580 2.67201 -1.11185 0.79676 0.16094 

26 CH2NH2 1 2y1 + y7 + y4 + y6 0.00121 0.49071 1.39382 1.34315 0.22805 0.34375 

27 CH3NH 1 y1 -0.00006 0.71858 1.29259 1.83777 0.11208 -0.02630 

28 CH2NH 2 y1 + y7 + y6 0.00032 0.23948 2.07790 0.64838 0.29887 0.27948 

29 ACNH2 2 6y3 + 8y2 -0.00005 1.24791 0.12337 1.10092 0.35031 0.01823 

30 CH2CN 1 y1 + y7 + y4 + y6 0.00115 0.19507 1.97855 1.56929 1.14896 -0.04561 

31 COOH 1 y1 + y7 + y4 + y6 0.26792 0.70732 0.53942 0.72350 1.59226 -0.04357 

32 CH2Cl 1 2y1 + y7 + y4 + y6 0.00096 0.20956 1.00841 3.42696 -0.19105 -0.03755 

33 CHCl 2 y1 0.00028 0.10202 1.65035 1.84147 0.01193 -0.01827 

34 CCl2 2 y1 0.00106 1.26480 -0.67746 5.75529 -0.19605 -0.03539 

35 CCl3 1 2y1 + y7 + y4 + y6 0.00113 0.18487 1.54257 6.44233 -0.21430 -0.04627 

36 ACCl 2 6y3 + 8y2 0.00013 0.07639 0.58193 2.74455 -0.07234 -0.01136 

37 ACNO2 2 6y3 + 8y2 0.00004 0.12734 1.79831 1.47803 0.72343 -0.01099 

38 ACCN 2 6y3 + 8y2 -0.00005 0.18321 1.73137 0.97682 1.03356 -0.01062 

39 ACCHO 2 6y3 + 8y2 -0.00005 0.05471 2.65267 1.24612 0.44596 -0.01062 
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Group 

ID 

Group      

j 

Valence 

ν(j) 

Maximum group 

number nupp(j) 
s1j s2j s3j s4j s5j s6j 

40 CH2NO2 1 2y1 + y7 + y4 + y6 0.00115 0.48784 1.55762 2.63991 0.70929 -0.04561 

41 CHNO2 2 y1 + y7 + y6 0.00024 0.13509 2.64094 1.11861 0.79805 -0.01960 

42 CH2SH 1 y1 + y7 + y4 + y6 0.00113 0.23727 1.55512 2.73973 0.47355 -0.04627 

43 I 1 2y1 + y7 + y4 + y6 0.00098 0.31142 0.28793 3.42427 -0.19957 -0.03852 

44 Br 1 2y1 + y7 + y4 + y6 0.00122 0.29019 -0.07726 3.01428 -0.18491 -0.03482 

45 ACF 2 6y3 + 8y2 0.00033 0.02723 0.42266 1.84768 -0.06490 -0.01211 

46 CF3 1 2y1 + y7 + y4 + y6 0.16827 0.40553 -1.61744 5.88581 -0.34510 -0.15314 

47 CONH2 1 y1 + y7 + y4 + y6 0.01222 1.76786 -1.14500 2.61975 1.40994 0.04246 

48 CH2S 2 y1 + y7 + y6 0.00028 0.10202 2.73840 0.81752 0.77933 -0.01827 

49 CH3OH 0 y1 0.02102 0.87691 -0.09780 2.24890 0.61929 0.11971 

50 H2O 0 y1 0.02952 1.75981 -3.01045 1.61070 0.63294 0.31571 

51 CH3CN 0 y1 0.00202 0.45276 0.94750 2.98415 0.98014 -0.07294 

52 HCOOH 0 y1 0.41207 0.94666 -1.07100 2.75785 1.28849 -0.07294 

53 CH2Cl2 0 y1 0.00202 1.26231 -0.74140 6.81825 -0.38711 -0.07294 

54 CHCl3 0 y1 0.00202 0.97646 -0.15620 8.42280 -0.38711 -0.07294 

55 CCl4 0 y1 0.00202 0.15091 1.39700 9.36285 -0.38711 -0.07294 

56 CH3NO2 0 y1 0.00202 0.93386 0.25205 4.20715 0.54659 -0.07294 

57 DMSO 0 y1 0.00202 0.33316 3.81845 2.46050 0.91024 0.67446 

58 DMF 0 y1 0.00202 0.15091 4.45645 2.61090 1.35759 0.04316 

59 NMP 0 y1 0.00202 0.15091 6.16875 3.14725 1.34054 0.13306 

60 THF 0 y1 0.00202 0.15091 4.01005 3.41960 0.57469 0.05256 



Appendix 97 

Appendix B. Kinetic experiments and rate constant regression 

The competitive DA reaction (Figure 3.5) was carried out in a 100 ml stainless steel reactor, 

equipped with an agitator and a heating jacket (see Figure B1). The kinetic experiments were 

performed in a nitrogen atmosphere to keep a constant pressure (9.0 bar). In a typical run, about 

3.0 ml of methyl acrylate is added into a thermo-stated (100 °C) solution composed of about 10.0 

ml isoprene and 67.0 ml solvent. The resulting mixture is stirred and the reaction is considered to 

start. Samples are taken out every 0.5 h in the first two hours and every 1 h afterwards. The 

samples are analyzed using GC 6890N from Agilent equipped with a HP5MS (Part-Nr. 19091S-

333) column connected with another DB-5MS (Part-Nr. 122-5561) column. The concentration of 

methyl acrylate (CA) is determined from the internal standard method using toluene as the 

internal standard compound for the cyclohexane and 1-butanol solvents and using benzene for 

the other solvents. The para/meta selectivity (CC/CD) is quantified from the ratio of the product 

chromatographic peak areas while the relative response factor for the two products is set to 1.0, 

according to Sabat et al. (1994). All the chemicals were purchased from the Sigma-Aldrich 

company (purity ≥ 99.5%) and used without further purification. 

 

Figure B1: Schematic diagram of the reactor 

It has been reported that both the parallel reactions have straightforward single-step mechanism 

and second-order kinetics (Sheehan and Sharratt, 1998). For each solvent, the total reaction rate 

constant, k1 + k2, was regressed from the experimental time-dependent concentration of methyl 

acrylate based on the second-order kinetic expression. Figure B2 compares the experimental 

methyl acrylate concentrations with the concentrations predicted by the regressed kinetic models. 
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The maximum average deviation between the experimental and predicted concentrations is 

2.29% for the DMF (dimethylformamide) solvent. 

 

   

Figure B2: Experimental and calculated methyl acrylate concentrations in 14 solvents 

From the regressed total reaction rate constant and the measured selectivity values, the rate 

constants of the two parallel reactions, k1 and k2, are determined and presented in Table 3.5 for 

all the investigated solvents. 
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Appendix C. Vapor pressure calculation 

a) Solvent vapor pressure is calculated from the Clapeyron equation. 
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b) Vapor pressures of the reactants and product are estimated from the Nannoolal-Rarey equation 

given in Nannoolal et al. (2008). 
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The normal boiling point Tb and equation parameter dB of the reaction species are provided in 

the Supporting Information of Zhou et al. (2015a). 
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extraction processes. Chemical Engineering Science. 2016, accepted and in press. 

[3] Zhou T, Wang J, McBride K, Sundmacher K. Optimal design of solvents for extractive 

reaction processes. AIChE Journal. 2016, 62, 3238−3249. 

[4] Zhou T, Zhou Y, Sundmacher K. A hybrid stochastic-deterministic optimization approach 

for integrated solvent and process design. Chemical Engineering Science. 2016, 

doi:10.1016/j.ces.2016.03.011. 

[5] Zhou T, Lyu Z, Qi Z, Sundmacher K. Robust design of optimal solvents for chemical 

reactions − A combined experimental and computational strategy. Chemical Engineering 

Science. 2015, 137, 613−625. 

[6] Zhou T, McBride K, Zhang X, Qi Z, Sundmacher K. Integrated solvent and process design 

exemplified for a Diels-Alder reaction. AIChE Journal. 2015, 61, 147−158. 

[7] Song Z, Zhou T, Zhang J, Cheng H, Chen L, Qi Z. Screening of ionic liquids for solvent-

sensitive extraction − with deep desulfurization as an example. Chemical Engineering 

Science. 2015, 129, 69−77. 

[8] Zhou T, Qi Z, Sundmacher K. Model-based method for the screening of solvents for 

chemical reactions. Chemical Engineering Science. 2014, 115, 177−185. 

[9] Lyu Z, Zhou T, Chen L, Ye Y, Sundmacher K, Qi Z. Simulation based ionic liquid screening 

for benzene-cyclohexane extractive separation. Chemical Engineering Science. 2014, 113, 

45−53. 

[10] Zhou T, Wang Z, Ye Y, Chen L, Xu J, Qi Z. Deep separation of benzene from cyclohexane 

by liquid extraction using ionic liquids as the solvent. Industrial & Engineering Chemistry 

Research. 2012, 51, 5559−5564. 

[11] Zhou T, Chen L, Ye Y, Chen L, Qi Z, Freund H, Sundmacher K. An overview of mutual 

solubility of ionic liquids and water predicted by COSMO-RS. Industrial & Engineering 

Chemistry Research. 2012, 51, 6256−6264. 

[12] Zhou T, Wang Z, Chen L, Ye Y, Qi Z, Freund H, Sundmacher K. Evaluation of the ionic 

liquids 1-alkyl-3-methylimidazolium hexafluorophosphate as a solvent for the extraction of 

http://www.sciencedirect.com/science/journal/00092509/137/supp/C
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benzene from cyclohexane: (Liquid + liquid) equilibria. Journal of Chemical 

Thermodynamics. 2012, 48, 145−149. 

[13] Chen L, Zhou T, Chen L, Ye Y, Qi Z, Freund H, Sundmacher K. Selective oxidation of 

cyclohexanol to cyclohexanone in the ionic liquid 1-octyl-3-methylimidazolium chloride. 

Chemical Communications. 2011, 47, 9354−9356. 

6. Invited Talks, Seminars, and Conferences 

Invited Talks 

1. Fast screening and molecular design of solvents for chemical reactions based on COSMO and 

COSMO-RS derived theoretical descriptors. 4th COSMO-RS symposium, 16 – 18 Mar. 2015, 

Bonn, Germany 

2. Engineering of molecules for better chemical processes. International Max Planck Research 

School (IMPRS) Seminar − Tandem Talk, 14 Mar. 2016, Magdeburg, Germany 

Conferences 

3. Integrated solvent and process design exemplified for a Diels-Alder reaction. AIChE Annual 

Meeting, 16 – 21 Nov. 2014, Atlanta, USA 

4. Robust design of optimal solvents for chemical reactions – A combined experimental and 

computer-aided strategy. PSE2015, 31 May – 04 June 2015, Copenhagen, Denmark 

5. Computer-aided solvent design for extractive reaction processes. ECCE10, 27 Sept. – 01 Oct. 

2015, Nice, France 

6. Computer Aided Molecular Design (CAMD): Integration of molecular decisions into process 

systems design. SCPPE 2016, 31 May – 03 June 2016, Nanjing, China 

7. Other Activities 

 Assistant to the Executive Editor (Prof. Kai Sundmacher) of Chemical Engineering Science, 

2013 – 2015 

 Assistant lecturer for the graduate course ―Advanced Process Systems Engineering‖ in the 

2014, 2015, and 2016 academic years 

 Research supervision on 5 master theses 

8. Attended Advanced Courses 

 3rd International Max Planck Research School (IMPRS) Summer School on ―Multi-scale 

Modeling and Simulation‖. 02 – 06 Sept. 2013, Magdeburg, Germany 

 Advanced Course on ―Conceptual Design, Optimization Modeling and Integrated Process 

Operations‖. Carnegie Mellon University, 07 – 14 May 2014, Pittsburg, USA 

 4th IMPRS Summer School on "Process Systems Engineering". 31 Aug. – 04 Sept. 2015, 

Magdeburg, Germany 


