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Abstract
Particle mixing is a fundamental unit operation in many industrial applications. Rotary

drums are widely adopted due to their simple structure, yet particle mixing within
them exhibits high complexity due to the interplay of multiple influencing factors. This
complexity makes accurate prediction particularly challenging. While discrete element
method (DEM) simulations have been extensively validated through experiments and
can effectively model this process, their high computational cost remains a significant
limitation. Therefore, finding efficient and reliable approaches to predict particle mixing in
rotary drums based on a limited number of DEM simulations while covering a multi-factor
parameter space is of critical importance.
This study presents two types of predictive approaches: the first, referred to as cross-

correlation, and the second, based on machine learning models. Both approaches rely on
experimentally validated DEM data. Additionally, the subdomain-based mixing index
(SMI) was chosen as the sole quantitative description of mixing processes in this study.

Cross-correlation establishes a relationship between the mixing time of spherical particles
in a 2D drum at different revolution frequencies and that in a 3D drum. In other words,
as a bridge, it enables the prediction of computationally expensive 3D simulations using
cheap 2D simulations. Once developed, cross-correlation demonstrated strong predictive
performance for mixing time in a 3D drum at different revolution frequencies, achieving
R2 = 0.92. Remarkably, even when predicting mixing time for density ratios, which are
beyond the parametric range of the training set, the model maintained acceptable accuracy
with R2 = 0.86. The reasons for its limited performance in predicting different size ratios
were analyzed. The primary advantages of the cross-correlation method lie in its strong
interpretability, expandability, and its ability to deliver satisfactory predictions even with
a highly limited dataset.
Regarding machine learning approaches, the particle swarm optimized support vector

regression (PSO-SVR) model was first employed to predict the mixing of spherical particles
in rotary drums. Compared to cross-correlation, this model incorporated two additional
influencing factors—size ratio and drum length—alongside of the revolution frequency
and density ratio. Furthermore, it was capable of predicting not only the mixing time
but also the mixing degree at steady mixing state. The predictive accuracy reached R2

= 0.95 for mixing time and R2 = 0.90 for mixing degree. While running a new DEM
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simulation requires several hours, the PSO-SVR model, including hyperparameter tuning,
could be trained and make predictions within just tens of seconds, significantly reducing
computational time.
Building upon this, machine learning was further extended to predict the mixing of

non-spherical particles in rotary drums. Three different models—artificial neural network
(ANN), extremely randomized trees (ERT), and PSO-SVR—were employed to analyze
the mixing of rod-like particles, which were represented using the multi-sphere method.
Their simulation results were compared with those of spherical particles. Each machine
learning model exhibited distinct strengths and weaknesses. A comprehensive comparison
across various dimensions, such as predictive accuracy, interpretability, and implementation
complexity, was presented in a table. Overall, the predictive performance of these models
was satisfactory, and their total modeling time was significantly shorter than that required
for running new DEM simulations.
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Kurzzusammenfassung
Teilchenmischung ist eine grundlegende Einheitoperation in vielen industriellen Anwen-

dungen. Rotierende Trommeln werden aufgrund ihrer einfachen Struktur weit verbreitet
eingesetzt, doch die Teilchenmischung in ihnen zeigt eine hohe Komplexität aufgrund
des Zusammenspiels mehrerer Einflussfaktoren. Diese Komplexität macht eine genaue
Vorhersage besonders herausfordernd. Während Simulationen mit der diskreten Elemente-
Methode (DEM) durch Experimente umfassend validiert wurden und diesen Prozess effektiv
modellieren können, bleibt ihr hoher Rechenaufwand eine bedeutende Einschränkung. Da-
her ist es von entscheidender Bedeutung, effiziente und zuverlässige Ansätze zu finden,
um die Teilchenmischung in rotierenden Trommeln basierend auf einer begrenzten Anzahl
von DEM-Simulationen vorherzusagen und dabei einen multifaktoriellen Parameterraum
abzudecken.

Diese Studie stellt zwei Arten von Vorhersageansätzen vor: den ersten, als Kreuzkorrela-
tion bezeichnet, und den zweiten, der auf maschinellen Lernmodellen basiert. Beide Ansätze
beruhen auf experimentell validierten DEM-Daten. Zudem wurde der subdomänenbasierte
Mischungsindex (SMI) als einzige quantitative Beschreibung der Mischungsprozesse in
dieser Studie gewählt.
Die Kreuzkorrelation stellt eine Beziehung zwischen der Mischzeit von sphärischen

Partikeln in einer 2D-Trommel bei verschiedenen Umdrehungsfrequenzen und der in
einer 3D-Trommel her. Mit anderen Worten: Als Brücke ermöglicht sie die Vorhersage
von rechnerisch aufwendigen 3D-Simulationen mithilfe kostengünstiger 2D-Simulationen.
Nach ihrer Entwicklung zeigte die Kreuzkorrelation eine starke Vorhersageleistung für die
Mischzeit in einer 3D-Trommel bei verschiedenen Umdrehungsfrequenzen mit R2 = 0.92.
Bemerkenswerterweise behielt das Modell selbst bei der Vorhersage von Mischzeiten
für Dichteverhältnisse, die außerhalb des Parameterbereiches des Lernsatzes lagen, eine
akzeptable Genauigkeit mit R2 = 0.86 bei. Die Gründe für die begrenzte Leistung bei der
Vorhersage unterschiedlicher Größenverhältnisse wurden analysiert. Die Hauptvorteile der
Kreuzkorrelationsmethode liegen in ihrer starken Interpretierbarkeit, Erweiterbarkeit und
der Fähigkeit, auch mit einem stark begrenzten Datensatz zufriedenstellende Vorhersagen
zu liefern.

Im Hinblick auf maschinelle Lernansätze wurde zunächst das Partikelschwarm-optimierte
Support Vector Regression (PSO-SVR) Modell zur Vorhersage der Mischung von sphärischen
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Partikeln in rotierenden Trommeln eingesetzt. Im Vergleich zur Kreuzkorrelation integrierte
dieses Modell zwei zusätzliche Einflussfaktoren—Größenverhältnis und Trommellänge—
neben Umdrehungsfrequenz und Dichteverhältnis. Darüber hinaus war es in der Lage,
nicht nur die Mischzeit, sondern auch den Mischungsgrad im stationären Mischzustand
vorherzusagen. Die Vorhersagegenauigkeit erreichte R2 = 0.95 für die Mischzeit und R2 =
0.90 für den Mischungsgrad. Während die Durchführung einer neuen DEM-Simulation
mehrere Stunden erfordert, konnte das PSO-SVR-Modell einschließlich Hyperparameter-
Tuning innerhalb von nur wenigen Sekunden trainiert werden und Vorhersagen treffen,
wodurch die Rechenzeit erheblich reduziert wurde.

Darauf aufbauend wurde die Anwendung künstlicher Intelligenz weiter ausgedehnt, um
die Mischung von nicht-sphärischen Partikeln in rotierenden Trommeln vorherzusagen.
Drei verschiedene Modelle—künstliches neuronales Netzwerk (ANN), extrem zufällige
Bäume (ERT) und PSO-SVR—wurden eingesetzt, um die Mischung von stabförmigen
Partikeln zu analysieren, die mit der Multi-Sphären-Methode dargestellt wurden. Ihre
Simulationsergebnisse wurden mit denen sphärischer Partikel verglichen. Jedes maschinelle
Lernmodell wies unterschiedliche Stärken und Schwächen auf. Ein umfassender Vergleich
hinsichtlich verschiedener Dimensionen wie Vorhersagegenauigkeit, Interpretierbarkeit
und Implementierungskomplexität wurde in einer Tabelle dargestellt. Insgesamt war die
Vorhersageleistung dieser Modelle zufriedenstellend, und ihre gesamte Modellierungszeit
war erheblich kürzer als die für die Durchführung neuer DEM-Simulationen erforderliche
Zeit.
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Chapter 1

Introduction

1.1 Overview
This chapter provides an informative introduction to solid particle mixing in rotary drums.
It first describes the fundamentals of solid mixing and segregation phenomena, with a
particular focus on their underlying mechanisms. Next, the various forms of transverse
bed motion and the unique segregation behaviors observed in rotary drums are introduced.
Subsequently, the most commonly used numerical simulation method for granular flow—the
discrete element method (DEM)—is explained in detail. This is followed by a discussion
on the quantitative description of the mixing process using mixing indices. Finally, the
motivation and objective of this dissertation are outlined.

1.2 Solid particle mixing
Solid particle mixing is an ancient and widely applied technical operation, it has been
performed for thousands of years, long before modern science and industrial processes
emerged. For example, in early metallurgy, mixing metal ores with charcoal was an
important part of smelting and metalworking processes; mixing clay, sand, and other
natural materials was central to pottery making and building materials in ancient times;
ancient cultures like the Chinese and Greeks mixed minerals and plant extracts to create
cosmetics, dyes, and pigments. Solid particle mixing is also quite common in our daily life.
A typical example is baking, where ingredients like flour, sugar, salt, and baking powder
need to be evenly mixed; otherwise, the cake or bread may rise inconsistently, or parts of
the product may be too sweet while others lack flavor. More importantly, solid particle
mixing is one of the most fundamental unit operations in many industries, including
chemical manufacturing, food processing, material engineering and pharmaceuticals. The
uniformity of mixing is crucial in industrial processes, as it often impacts the quality of
the final product. This is especially evident in pharmaceutical industry, where insufficient
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1.2 Solid particle mixing

active ingredient content can render the drug ineffective, while excessive amounts may be
fatal.

Despite the commonality and importance of solid particle mixing, research in this field
has remained limited to this day, and understanding the dynamic behavior of particles
during the mixing process remains a significant challenge in physics, with many unresolved
problems. However, due to the seemingly apparent nature of solid particle mixing, it
is often mistakenly believed that mixing of solids is much simpler and certainly more
intensively studied than that of fluids, while in reality, the opposite is true. In fact, solid
particle mixing is significantly different in principle from fluid mixing. Under normal
circumstances, liquids and gases could mix spontaneously due to molecular thermal motion,
known as Brownian motion. This kind of motion was found by Robert Brown in 1827.
Molecules in these phases move randomly and collide with each other, allowing substances
to diffuse throughout the system and achieve uniform mixing. However, for solid particles,
to be more specific, for collections of discrete macroscopic solid materials with sizes from
micrometer to centimeter range, the Brownian motion is irrelevant. Since the internal
thermal fluctuations are insufficient to move solid particles, external forces such as gravity
or mechanical action from mixing paddles are necessary. It was not until 1954 that Lacey
[1] first proposed three possible mechanisms for solid particle mixing, which have now been
widely recognized by the academic community. These three principal mechanisms are:

1) Diffusive mixing: the distribution of particles over a freshly developed surface.

2) Convective mixing: the transfer of groups of adjacent particles from one location in the
bulk to another.

3) Shear mixing: the setting up of slipping planes within the bulk.

Diffusive mixing always exists in any type of mixer as long as the inside particles are
kept in a state of free flow. This mechanism serves as the primary mechanism in some
simple mixers, such as horizontal rotary drums. When the inside particle bed has a stable
dynamic angle of repose, diffusive mixing keeps taking place in the inclined plane, as
shown in Fig. 1.1(a). For convective mixing, the movement of solids is forced by mixing
tools. Simple modifications to the basic rotary drum, for example, adding L-shaped flights
to its inner wall, can make convective mixing dominant. The flights continuously separate,
lift, and release portions of the particle bed, accelerating the overall mixing process within
the flighted rotary drum, as illustrated in Fig. 1.1(b). In shear mixing, a high-speed
mixing tool is employed to induce the slipping of particle groups past one another. When
a mixture contains some undesirable agglomerates that should be broken down to achieve
a good mix, shear forces are particularly effective. Ploughshare mixers are a typical mixing
device that primarily utilizes the shear mixing mechanism. Figure 1.1(c) gives the picture
of a ploughshare mixer.

2



1.2 Solid particle mixing

(a) (b)

(c)

Figure 1.1: Mixers based on different solid mixing mechanisms: (a) rotary drum—diffusive
mixing; (b) flighted rotary drum [2]—convective mixing; (c) ploughshare mixer
[3]—shear mixing.
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1.2 Solid particle mixing

Another common misconception about solid particle mixing is that for non-cohesive
particles, the type of mixer only affects the speed of mixing, and given enough time, the
particles will eventually reach a uniform mix regardless of the mixer used. In reality,
achieving a uniformly mixed state for solid particles during production is not a simple
task that can be accomplished by merely extending the mixing time. This challenge is
closely related to a unique phenomenon of solid materials: segregation. Although liquids
or gases can sometimes undergo stratification due to density differences, such as the classic
separation of oil and water, segregation in solids is not only caused by more complex
factors but also manifests itself in a variety of forms. Specifically, when solid particles
have differences in material properties, especially in size, density or shape, their mixture
tends to segregate rather than mix uniformly [4, 5]. Besides material properties, device
and operation parameters, handling processes, and environmental conditions also influence
segregation [6].
Segregation phenomena are quite common in processes involving the handling of solid

particulate materials. When a mixture containing a range of particle sizes is poured to form
a heap, the finer fraction deposits preferentially near the center and the coarser fraction
near the edges. Sometimes stratification may also occur, with interleaved layers of coarser
and finer particles. Figure 1.2(a) illustrates an example of segregation and stratification
occurring during the formation of a quasi-2D bounded heap. When filling a binary mixture
of particles into a storage bin under gravity, the smaller particles concentrate at the center
of the bin while the larger particles concentrate at the sides of the bin, as shown in Fig.
1.2(b). The most famous example of solid segregation must be the Brazil nut effect. When
observing a serving of mixed nuts, one will often find the larger Brazil nuts appearing
on the upper surface, as indicated in Fig. 1.2(c). Even if this is not the case at first, by
gently shaking the can for a short period of time, the larger Brazil nuts will magically
move to the top of the entire nut mixture.
However, the most complex and diverse segregation patterns are observed in rotary

drums. In the radial direction, smaller or denser particles tend to concentrate in the center
of the particle bed; in some special cases, radial streaks may occur. In the axial direction,
alternating particle bands will form in a long drum because of the particle size difference.
Those patterns can be found in Fig. 1.3.

Mosby et al. [12] reviewed ten main segregation mechanisms, short descriptions and
alternative terms are given below:

1) Rolling: rounder or larger particles are more likely to roll down along the surface of a
heap.

2) Sieving: smaller particles tend to move downward through a rolling or sliding layer of
larger particles. This mechanism is often accompanied by percolation, which can be
considered a distinct segregation mechanism in its own right.
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1.2 Solid particle mixing

(a)
(b)

(c)

Figure 1.2: Different forms of solid particle segregation: (a) segregation and stratification
when particles build up a quasi-2D bounded heap [7]; (b) segregation during
gravity filling of a storage bin [8]; (c) Brazil nut effect [9].

3) Percolation: this mechanism causes smaller particles to fall through gaps between larger
particles due to localized shear. While similar to sieving, it does not require the larger
particles to be in a flowing layer. The mechanism can be triggered by vibrations or
local shear planes and may also result in the upward displacement of larger particles.

4) Push-away effect: when heavier particles are positioned above lighter, gravity causes
the heavier particles to push the lighter particles aside. This results in heaps where
heavier particles settle near the center of the heap and lighter ones near the edges.

5) Angle of repose effects: this mechanism involves differences in the angles of repose of
various components filled sequentially onto a heap. The component with a lower angle
of repose flows over that with a higher angle, moving toward the edges of the heap.

6) Displacement: larger particles rise to the surface of a mixture of large and small particles
in stages, as a result of vibrations with vertical amplitudes. Small particles percolate
into the vacated space and prevent large ones from returning. The mechanism has also
been called “floating migration”.

7) Trajectory effects: the retarding force in a fluid decelerates smaller particles in free
motion more significantly than larger (or heavier) particles. This mechanism can lead
to segregation when particles move through the air, e.g. when they fall from the end of
a conveyor belt. It is more accurately referred to as “inertia segregation”.
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1.2 Solid particle mixing

(a) (b)

(c)

Figure 1.3: Different patterns of particle segregation in rotary drums: (a) smaller and
denser particles form a core [10]; (b) smaller and denser particles form radial
streaks [10]; (c) alternating particle bands in a long rotary drum [11].

8) Air current effects: this mechanism is induced by specific handling conditions, for
example during the filling of a silo. As particles fall, they generate an air current
circulating from the center toward the walls, which carries very fine particles (< ca. 50
µm) away from the center and deposits them along the silo walls.

9) Fluidization effects: the fluidizable component of lighter or finer particles may become
fluidized when falling, and then float on the heap surface.

10) Impact effects: occurs when particles with higher coefficients of restitution bounce off
the surface of a heap, causing them to be distributed further from the center compared
to particles with lower coefficients. Increasing the filling rate will significantly enhance
this mechanism. Could also be called “bouncing”.

From the above summary of segregation mechanisms, it can be observed that segregation
phenomena in particle handling processes are highly complex, often involving multiple
mechanisms acting simultaneously, and sometimes in competition with each other. However,
the ten segregation mechanisms mentioned above seem inadequate in fully explaining the
particle segregation phenomena within rotary drums. This will be discussed in detail in
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1.3 Particle mixing in rotary drums

Section 1.3.
Additionally, different segregation mechanisms are significantly influenced by particle

properties and operational parameters. In the heap segregation shown in Fig. 1.2(a), at
least four mechanisms—rolling, sieving, angle of repose effects, and impact effects—work
together. With the help of the discrete element method (DEM) simulation, Zhang et al.
[13] obtained a comprehensive view of the particle movements during heap segregation,
and found that some special areas with extremely low porosity and high resistance to flow
also play an important role during the formation of segregation or stratification. They also
investigated the effects of size ratio, injection height, and mass ratio on the segregation.
Regarding the segregation in the bin shown in Fig. 1.2(b), sieving is always considered
as the primary segregation mechanism. However, through DEM simulation, Zhang et al.
[14] reproduced the original experiment quite accurately and found that bouncing of small
particles and rolling of large particles are main segregation mechanisms. The effect of
friction coefficients was also examined. These two examples demonstrate the significant
role of DEM simulation in particle research. This simulation method not only provides
deeper insights into segregation by tracking the motion of individual particles, but it is
also highly effective in scenarios where particle properties and operational parameters
frequently change, offering considerable flexibility for analysis. A detailed introduction
into DEM simulations will be presented in Section 1.4.

1.3 Particle mixing in rotary drums
As the simplest mixer in terms of structure, rotary drums are widely popular in a variety
of industries involving the mixing of solid particles. Although various drum types exist,
this study focuses on cylindrical drums with their rotational axes aligned horizontally,
perpendicular to gravity, and without internal flights. In this section, the transverse motion
of a particle bed in rotary drums is first introduced. Then the segregation phenomena in
radial and axial direction as well as their possible mechanisms are reviewed separately.

1.3.1 Forms of transverse bed motion
As a rotary drum turns around its axis, the mixing of particles occurs in both the transverse
plane and the axial direction. The axial mixing is considered to be a random motion as
the results of interparticle collisions and can be described by Fick’s law [15]. This kind
of diffusive mixing in the axial direction is much slower than the particle mixing in the
transverse plane, and its effect is not obvious in relatively short drums, so most of the
research works were concentrated on the transverse motion.

In a stationary drum, the inside particles form a bed of solids at the bottom. While the
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1.3.1 Forms of transverse bed motion

drum rotates, the particle bed takes on different forms. Based on an experimental study,
Henein et al. [16] summarized six transverse bed motion regimes: slipping, slumping,
rolling, cascading, cataracting and centrifuging. They also pointed out that these regimes
depend on many variables such as revolution frequency, filling degree, drum diameter,
particle size, and particle shape. Mellmann [17] studied the transition between different
flow regimes in depth, and developed mathematical models to predict these transitions.
He further subdivided the slipping regime into sliding and surging, and clarified the effect
of Froude number, filling degree and wall friction coefficient on the transverse motion in
rotary drums, as summarized in Table 1.1.

Table 1.1: Regimes of transverse motion of solid particles in rotary drums [17].

The dimensionless quantity in Table 1.1—the Froude number Fr—is considered to be
the characteristic criterion for the transverse motion of solid bed in rotary drums, which is
defined as the ratio of centrifugal force to gravity:

Fr = ω2R

g
, (1.1)

where R is the radius of the rotary drum, g is the gravitational acceleration and ω is the
angular velocity of the rotary drum, with the unit of rad/s. The conversion between the
angular velocity ω and the more commonly used revolution frequency n (with the unit of
rpm) can be expressed as:

ω = 2πn
60 . (1.2)

The filling degree f is defined as the portion of the drum occupied by the particle bed.
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1.3.1 Forms of transverse bed motion

Note that the particle bed includes not only the solids but also the voids between particles.
Assuming a flat bed surface in a stationary drum, based on the geometric relationships
shown in Fig. 1.4, the filling degree can be converted from the volume ratio to the area
ratio, and directly correlated to the bed height H:

f = Asolid bed

Adrum
= εR2 −R sin εR cos ε

πR2 = ε− sin ε cos ε
π

, (1.3)

with
ε = arccos

(
R−H
R

)
. (1.4)

The filling angle ε here corresponds to the half bed angle of the circular segment occupied
by the solid bed, with the unit of rad. Moreover, the parameter µW,c in Table 1.1, denoted
here by µW,crit, represents the critical wall friction coefficient for the transition from slipping
motion to non-slipping motion, which will be described in detail after the introduction of
different regimes.

Figure 1.4: Schematic of the cross-section of the solid particle bed in a stationary drum.

Two subtypes of slipping—sliding and surging—both occur in slow rotated drums with
smooth inner walls. When the filling degree is really low, sliding may be observed, which
is characterized by the particle bed constantly sliding down the wall with a very small
inclination. Increasing the filling degree, sliding turns into surging. The surging regime is
characterized by the whole bed briefly adhering to the wall, being lifted, and then sliding
back, repeatedly cycling between these two states. Slipping is an undesirable motion as
nearly no particle mixing takes place. Specifically, the bed moves as a whole, and its
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1.3.1 Forms of transverse bed motion

inclination is too small to form a continuous particle flow on its surface. Therefore, this
motion state should be avoided in practice by increasing the roughness of the inner wall,
such as by adhering sandpaper, to enhance mixing quality.

As opposed to slipping, centrifuging is another extreme motion that occurs at very high
revolution frequencies. This motion regime is characterized by the fact that the entire
solid bed remains fixed to the drum wall as a uniform film. When centrifuging begins to
appear, the centrifugal and gravitational forces acting on the particles are in equilibrium,
i.e. Fr = 1. Substituting Fr = 1 into Eq. 1.1 and combining with Eq. 1.2, the expression
of the critical revolution frequency ncrit can be determined as:

ncrit = 30
π

√
g

R
. (1.5)

This critical parameter can be used to specify the revolution frequency of rapidly rotating
drums such as ball mills. Hence, the Froude number Fr can be expressed in a more
convenient form:

Fr =
(

n

ncrit

)2
. (1.6)

Additionally, the critical revolution frequency can also be taken as a reference for other
motion regimes.
Slumping, rolling, cascading, and cataracting (subtypes in Table 1.1) are four non-

slipping motion regimes that occur when the revolution frequency ranges from small to
the critical value. The cataracting regime is commonly observed in ball mills for grinding
particles, where particles follow parabolic trajectories after detaching from the particle bed.
The other three regimes are the main forms of motion in rotary drums used for mixing,
drying or cooling.

Slumping occurs in the low-filled drum (f<0.1) at low revolution frequencies (less than
3% of the critical revolution frequency). It is characterized by the continuous elevation of
the particle bed by the rotating drum, with particles on the sloped surface periodically
avalanching from the upper half to the lower half. Slumping clearly differs from surging
since the particle bed no longer moves as a whole, and particle flow is generated during
surface avalanching.
Both rolling and cascading may take place in the range of 1% to 30% of the critical

revolution frequency. As can be seen in Table 1.1, there is an overlap in the Fr intervals
corresponding to these two flow regimes. The rolling regime is characterized by a thin
layer of continuously fast-moving particles on a sloped flat upper bed surface, while the
majority of the bed is rotating with the wall at the revolution frequency at the bottom. As
the revolution frequency increases further, the steady flow observed in the rolling regime
becomes progressively unstable, with the flat bed surface deforming into an S-shaped
profile. This new flow regime is referred to as cascading. The transition from rolling to
cascading is also closely related to the length of the rotary drum. Yang et al. [18] found in
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1.3.1 Forms of transverse bed motion

their DEM simulations that higher revolution frequencies are needed for longer drums to
achieve this flow regime transition. Their findings can be explained by the influence of end
walls. Taberlet et al. [19] demonstrated that the friction on end walls can greatly affect
the particle flow properties, and this effect is more pronounced in short drums compared
to long ones.
Rolling is considered as the ideal motion regime for particle mixing since it provides a

stable and efficient particle flow. Most studies on particle mixing in rotary drums have
focused on the rolling regime. Similarly, the majority of cases examined in this study were
conducted within this regime. Only a few instances of mixing in short drums operating at
high revolution frequencies exhibited cascading behavior. The constant slope of the bed
surface in the rolling regime is defined as the dynamic angle of repose θ. The critical wall
friction coefficient µW,c in Table 1.1 is also related to this angle. Mellmann [17] derived an
expression for the critical wall friction coefficient based on the momentum balance around
the axis of rotation as:

µW,crit = 2 sin3 ε sin θ
3πf(1 + Fr) . (1.7)

Notably, the critical wall friction coefficient here represents the friction coefficient between
the particles and the cylindrical wall, as the effects of the two end walls were not considered
in his calculations.

Based on the granular flow characteristics in the rolling regime, the particle bed can be
divided into two distinct regions: an active layer near the free surface, which flows rapidly
downward under gravity, and a passive layer deeper in the bed, rotating slowly at the
same revolution frequency as the drum [20, 21, 22]. These two layers are separated by
a curved boundary line, as illustrated in Fig. 1.5. Particles at the boundary line AWB

have zero velocity parallel to the inclined surface. According to experimental observations
and simulations [23, 24], the particle velocity profiles along the mid-chord of the particle
bed exhibit bi-linear distributions. However, the turning point of the two linear velocity
distributions is not located on the boundary line but slightly below it, a detail that is also
shown in Fig. 1.5. It is generally accepted that particles do not mix in the passive layer.
Mixing takes place when particles cross the upper boundary line (WA) into the active
layer. After undergoing mixing in the active layer, particles are transported back into
the passive layer through the lower boundary line (WB). The center of the symmetric
boundary line is referred to as the vortex point W . Particles at the vortex point have zero
velocity in all directions.

Another noteworthy aspect is the filling degree of rotary drums. When drums are used
for mixing in practice, their filling degrees are relatively low, typically between 20% to
50%. This is because too high filling degree hinders particle mixing in rotary drums. Xiao
et al. [25] observed in DEM simulations that, as the filling degree increases from 20% to
45%, the thickness of the active layer (CW in Fig. 1.5) decreases. However, since the
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1.3.2 Radial segregation in rotary drums

Figure 1.5: Schematic of the solid particle bed in the rolling regime.

chord length of the particle bed (ACB in Fig. 1.5) also increases, the reduction in the
total area of the active layer in the cross-section is less pronounced. Nonetheless, the
overall particle bed expands significantly with higher filling degrees, leading to a noticeable
decrease in the proportion of the active layer relatively to the whole particle bed. This
ultimately results in longer mixing times. When the filling degree exceeds 50%, the active
layer lies above the axis of rotation, and a dead zone can be observed around the axis [26].
The particles in the dead zone always behave as an unmixed compact core, even if the
revolution frequency is increased (within the rolling regime). Hlosta et al. [27] performed
DEM simulations of rotary drums with filling degrees ranging from 10% to 80% and found
that either too low or too high a filling degree led to inhomogeneous mixing.
Understanding the unique particle motion in the rolling regime forms the foundation

for investigating segregation phenomena in rotary drums, which will be explored in the
following subsections.

1.3.2 Radial segregation in rotary drums
When there are differences in particle properties, such as size, density, or shape, the
mixture tends to segregate rather than mix, and this phenomenon is also observed in
rotary drums. Segregation occurs in both radial and axial directions of rotary drums,
whereas typically radial segregation is usually observed in quasi-2D drums, i.e., when the
axial length of drums is rather short, as this minimizes the effect of axial segregation.
In the rolling regime, as the drum rotates, smaller or heavier particles gather at the
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center of the drum, surrounded by larger or lighter particles, as shown in Fig. 1.3(a).
Whereas size segregation can be attributed to the sieving mechanism [28, 29], density
segregation can be explained by the buoyancy effect [30, 31]. The sieving mechanism has
already been described in Section 1.2, that is, in a flowing layer, the small particles tend
to be sieved downward into the voids of the larger particles, causing the larger particles to
rise to the free surface. The buoyancy effect is actually a density-driven push-away effect,
and also operates within a flowing layer. The heavier particles sink to lower levels in the
layer, whereas lighter particles rise, resulting in segregation across the layer. Obviously,
the “buoyancy” mechanism here is named by analogy to fluid dynamics.

However, to fully explain the core-shell structure of segregation formed in rotary drums,
it is necessary to combine these segregation mechanisms with the unique particle motion
in the rolling regime. The active layer in the rolling regime is a typical flowing layer where
both sieving and buoyancy take effect. Smaller or heavier particles drift downward in the
active layer, displacing larger or lighter particles upward. Due to the continuous rotation of
the drum, larger or lighter particles floating on the surface of the active layer move rapidly
until they enter the passive layer at the lower boundary line, away from the vortex point.
These particles then travel along the periphery of the particle bed within the passive layer,
and eventually re-enter the active layer from the upper boundary line, also distant from
the vortex point. In contrast, smaller or heavier particles located deeper in the active layer
tend to approach the vortex point. Once near the vortex point, their velocities decrease
and their circulation paths become shorter, leading to their entrapment in the vicinity
of the vortex point. These processes are amplified each time particles pass through the
active layer, until a stable core-shell structure is formed. The radial segregation caused by
size or density differences occurs quite quickly, often in a few revolutions of the drum.
As for particles with different shapes, their segregation is caused by the differences in

particle flowability, essentially the rate of energy dissipation during flowing [32]. Particles
with poor flowability will concentrate in the center of the particle bed to form a core, while
particles with good flowability will form a shell on the periphery of the bed. Compared to
size or density segregation, shape segregation is much weaker, as it takes longer to reach a
steady state and results in a fuzzier interface between segregated domains. In addition,
the shape segregation occurs along the surface of the active layer rather than through the
active layer. Take the mixing of spherical particles and cubical particles as an example.
Due to the poor flowability, only a few cubical particles are able to roll down along the
inclined surface of the active layer all the way to the bottom end. Most of the cubical
particles come to rest near the middle of the inclined surface and are overtaken by rapidly
moving spherical particles. This forces the cubical particles to sink into the passive layer
and finally form a core.
Another interesting observation is that, when comparing size and density segregation

under identical conditions for particles of different shapes, spherical particles always exhibit
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the highest segregation extent among any other non-spherical particles [33, 34, 35]. This
observation can also be explained by their flowability differences. The lower flowability of
non-spherical particles impedes the sieving and buoyancy mechanisms within the active
layer, thereby weakening the overall segregation effect. Moreover, Kumar et al. [34, 35]
found in both experiments and DEM simulations that, for non-spherical particles with
identical particle density but different shapes, higher packing densities result in weaker
size segregation. This is because higher packing density corresponds to lower interparticle
porosity, which also inhibits the sieving mechanism.
The complexity of radial segregation in rotary drums lies in the fact that different

mechanisms can be effective simultaneously and lead to seemingly contradictory results.
For example, He et al. [33] found in DEM simulations that when there is a huge difference
in shape between spherical and ellipsoidal particles, reverse segregation may occur, i.e.,
ellipsoids in the periphery and spheres in the center. They explained that when ellipsoidal
particles are too flat or too elongated, their packing becomes much looser than that of
spheres. When rolling down in the active layer, the spheres are more likely to be sieved
through the voids instead of rolling over the stacks of ellipsoids. Another example of
reverse segregation is that when the size ratio is above five, large particles may segregate
in the center. Thomas [36] explained that when the size ratio is very large, the push-away
effect driven by mass cannot be ignored, and the large particles will sink into the small
particles when flowing in the active layer. The combination of size segregation and density
segregation is of particular interest and practical relevance. Jain et al. [10] mixed large-
heavy steel beads with small-light glass beads in a rotary drum, causing the sieving and
buoyancy mechanisms to oppose each other, successfully eliminating segregation.

Radial streak patterns in rotary drums (Fig. 1.3(b)) is another complex and interesting
phenomenon that remains poorly understood. The conditions for the formation of streaks
are quite demanding. Radial streaks can only be observed in nearly half-filled (filling
degree = 50%) quasi-2D drums. The revolution frequency of the drum should be really
low, approaching the lower limit of maintaining the rolling regime, typically 1 rpm. Radial
streak patterns can be induced solely by size difference [37] or density difference [38], but
the required ratios are relatively high, with a lower limit of approximately 3 in both cases.
However, if size segregation and density segregation enhance rather than oppose each
other, the ratios required to produce radial streaks will decrease [10]. Moreover, radial
streak pattern has been successfully reproduced by DEM simulations [39, 40]. Liao et al.
[38] and Pereira et al. [39] both believe that the difference in the dynamic angle of repose
between the two types of particles also plays a key role in the formation of radial streaks.
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1.3.3 Axial segregation in rotary drums
Due to the much slower particle flow in the axial direction compared to that in the transverse
plane, axial segregation takes significantly longer to develop than radial segregation [28].
Nevertheless, axial segregation has a considerable impact on the particle distribution in long
drums. Once axial segregation forms, radial segregation becomes less apparent. Differences
in particle density and size both lead to axial segregation, but their manifestations are
noticeably different.

When particles with varying densities are mixed in a long drum, lighter particles tend to
completely envelop the heavier ones in all directions. As a result, the core of heavy particles
becomes almost invisible, even when the cross-section is observed from the transparent
ends of the drum. However, if a cross-section at the midpoint of the axis is examined
(which can be easily achieved in DEM simulations), the internal particle bed reveals a
core-shell structure consistent with that observed in quasi-2D drums [41].

Axial segregation caused by differences in particle size is characterized by the formation
of alternating bands of large and small particles alongside of the drum, as shown in
Fig.1.3(c). All experiments on axial segregation indicate that large particles always
accumulate near the end walls of rotary drums [42, 43, 44]. When the aspect ratio of the
drum, defined as the ratio of its length to its diameter, is close to or slightly less than 1,
three relatively stable bands with an alternating large-small-large particle arrangement are
typically formed [41, 45]. In contrast, in longer drums with an aspect ratio greater than 2,
not only does the number of particle bands increase with drum length, but the width of
these bands also becomes unstable and slowly changes over time [11, 43]. The mechanism
behind the formation of particle bands remains unclear. Early studies often attributed it
to differences in the dynamic angle of repose between large and small particles [42, 46].
However, this explanation fails to answer why particles with different densities do not lead
to the formation of alternating particle bands. In more recent studies, particularly those
utilizing DEM simulations, researchers have gradually recognized the indispensable role of
end walls in the formation of axial particle bands. The particle flow near the end walls was
found to be significant different from the flow far from end walls [47, 48]. Cui et al. [49]
created a rotary drum with frictionless end walls through DEM simulation and observed a
phenomenon never seen in experiments before, where small particles accumulated near the
end walls. This confirmed that the friction on the end walls is the cause of large particle
accumulation. Arntz et al. [45] set the rotary drum to be non-closed periodically continued
in the DEM simulation and found that the axial particle bands completely disappeared,
particles of different sizes exhibiting only radial segregation. This further illustrates that
the end walls play a crucial role in the axial distribution of particles throughout the drum.
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1.4 Discrete element method (DEM)
simulation

Discrete element method (DEM) simulations have been mentioned quite a few times in
previous sections. Since the DEM was developed by Cundall and Strack [50], it has become
the most popular and effective simulation method for studying granular flow. As its name
suggests, the DEM is a typical discrete model. By modeling each single particle as a
distinct entity, DEM tracks individual motions of particles over time by calculating forces
and torques arising from particle collisions and external fields. The overall particulate
system behavior results from individual particle interactions. Using this modeling strategy,
DEM can provide detailed insights into particle dynamics, such as the trajectories or
instantaneous velocities of individual particles, which is extremely hard, or even impossible
to obtain from physical experiment.
Another major advantage of DEM lies in its ability to combine with other models or

simulation methods. For example, the DEM can incorporate particle-particle contact
heat transfer models to predict the temperature variations in stirred beds [51, 52]. The
DEM can also be linked with pore network models to investigate the influence of liquid
phase distributions on damage and deformation of particle aggregates during convective
dying [53]. The coupling of DEM and computational fluid dynamics (CFD) has become a
well-established simulation approach for studying multi-phase flows, such as modeling the
particle residence time distribution [54] and coating uniformity [55] in fluidized beds. This
flexibility expands the scope of DEM far beyond granular flow alone.

Despite its strengths, DEM has certain limitations. Since DEM tracks the motion and
interactions of individual particles, the computational cost grows significantly, typically
between linear and quadratic, as the number of particles increases. For each time step, DEM
must compute the contact forces between all particle pairs within the interaction range, as
well as their resulting accelerations, velocities, and displacements. This makes simulations
of industrial-scale systems highly time-consuming and resource-intensive. Furthermore,
the accuracy of DEM simulations often requires very small time steps to ensure numerical
stability, particularly when dealing with stiff particle materials or high-speed dynamics.
A typical time step for DEM is between 10−4 and 10−6 s, which can be as much as 100
times smaller than the time steps commonly used in CFD. As a result, even short-duration
processes require millions of iterations, further compounding the computational demand.
To mitigate these challenges, researchers have developed techniques such as coarse graining
[56, 57], optimized contact detection algorithms [58, 59, 60], parallel computing [61],
and graphics processing unit (GPU) acceleration [62, 63]. While these advancements
significantly reduce computation times, they may introduce trade-offs such as reduced
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accuracy, increased implementation complexity, or specialized hardware requirements,
potentially limiting their widespread adoption. Moreover, with current computational
power, simulating typical industrial-scale systems involving billions of particles using DEM
remains far beyond reach. Therefore, minimizing the time consumption associated with
DEM while obtaining accurate information about particulate systems remains an urgent
need in current research.

In this section, the DEM models for spherical particles are first presented, which includes
governing equations, contact model and numerical integration algorithm. Then, two popular
models for representing non-spherical particles are introduced, and the differences between
modeling spherical and non-spherical particles are also discussed. Finally, the detailed
process of determining DEM parameters is explained. This process is critical in DEM
simulations, as it directly influences the accuracy and reliability of the results.

1.4.1 DEM models for spherical particles
The open-source software LIGGGHTS [64] was employed for all DEM simulations in this
study. This software is a fork of the classical molecular dynamics simulator LAMMPS
[65]. In DEM, a wide variety of sub-models are available to represent particle interactions
and system behavior. The equations provided in this section are those specifically applied
in this study.

Due to the perfect symmetry of a sphere in all directions, DEM modeling for spherical
particles is relatively straightforward. Many sub-models developed for spherical particles
can be directly applied to non-spherical particles or require only minor modifications
for adaptation. Notably, the original DEM model developed by Cundall and Strack [50]
was designed for 2D discs, whereas the widely adopted DEM models today focus on
3D spheres. Therefore, this section provides a detailed introduction to the modeling of
spherical particles as a foundation.

1.4.1.1 Equations of particle motion
Each particle in a granular flow can have two types of motion: translational and rotational.
In DEM, the translational and rotational accelerations of a particle are governed by
Newton’s second law, which are then numerically integrated over a time step to update
the particle’s translational and angular velocity as well as its position. For a particle i
with mass mi and moment of inertia Ii, its translational and rotational motion can be
described as follows:

mi
d2xi
dt2 = mi

dvi
dt =

∑
F i,c +mig, (1.8)

Ii
dωi
dt =

∑
T i,c, (1.9)
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where xi, vi and ωi are the center position, translational velocity and angular velocity
of particle i, respectively. The translational motion of particle i is a function of the sum
of contact forces ∑F i,c acting on the particle i by other particles or walls as well as the
non-contact gravitational force mig. Although other types of contact or non-contact forces,
such as the particle-fluid interaction force in multi-phase flow or capillary force describing
the action between wet particles, can also be integrated into the governing equations of
DEM, they are not considered in this study. Similar to the translational motion, the
rotational motion of particle i depends on the sum of contact torques ∑T i,c acting on the
particle i. The moment of inertia of a solid sphere can be written as:

I = 2mr2

5 , (1.10)

where r is the radius of the solid sphere.

1.4.1.2 Contact model
In DEM, contact models play a crucial role in simulating particle interactions, with the
hard-sphere and soft-sphere models being two primary approaches. The hard-sphere model
assumes instantaneous interactions between rigid particles without any deformation and can
only deal with binary collisions. This model can be classified as an event-driven approach,
since it increases the simulation time by processing the collisions one by one according to
the contact order [66]. As a result, the hard-sphere model is generally suitable for dilute
particle flows, where its assumptions are good approximations and the model remains
computationally efficient [67]. However, in dense particle flows, multiple and long-lasting
particle contacts are quite common, making the hard-sphere model inadequate. In contrast,
the soft-sphere model allows for particle overlap to represent the deformation of particles
during contact, even though the particles are still assumed to be rigid. The overlaps are
used to calculate elastic and frictional forces for each particle-particle and particle-wall
contact, enabling the simulation of multiple and long-lasting particle interactions. As
the soft-sphere model always proceeds via small time steps, it is thus referred to as a
time-driven approach. In fact, the original DEM framework proposed by Cundall and
Strack [50] employs the soft-sphere model as the contact model. Given that the particles
in a rotary drum exhibit typical dense particle flow behavior, the DEM simulations in this
study also adopt the soft-sphere model.
Many physical parameters in the soft-sphere model are directional. To accurately

describe these parameters, the normal direction in the binary spherical particle system
is first defined as the unit vector pointing from the center of particle j to the center of
particle i:

n = xi − xj
‖xi − xj‖

. (1.11)
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Two particles are considered to be in contact once the distance between their centers
becomes less than the sum of their radii, as shown in Fig. 1.6. The overlap of two spherical
particles in the normal direction can be expressed as:

δn = max(0, ri + rj − ‖xi − xj‖). (1.12)

Figure 1.6: Soft-sphere particle-particle contact model with notations.

However, when calculating the relative velocity between two contacting particles, their
overlap is ignored, and a single contact point is assumed. The relative velocity at the
contact point is determined by considering both the translational velocities and the angular
velocities. The angular velocities are converted into linear velocities at the contact point
and combined with the translational velocities. Therefore, the relative velocity is calculated
as:

vr = (vi − vj) + [ωi × (−rin)− ωj × (rjn)] . (1.13)

The relative normal velocity is the projection of the relative velocity vector vr onto the
unit normal vector n:

vr,n = (vr · n)n. (1.14)

So the relative tangential velocity is given by:

vr,t = vr − vr,n. (1.15)

Since particle i is the subject of the following force analysis, the subscript i is omitted
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to simplify the notations. Similar to the velocity decomposition, the contact force from
particle j acting on the particles i during collision can also be decomposed into normal
and tangential directions:

F c = F n + F t. (1.16)

All real-world collisions are inelastic, i.e., there is always a loss of kinetic energy during
the collision. This energy dissipation can be characterized in DEM using the spring-dashpot
model. The model simulates both the elastic and dissipative behaviors of particle collisions
by combining a spring and a dashpot in parallel. However, the implementation differs
slightly between the normal and tangential directions, as illustrated in Fig. 1.7.

Figure 1.7: Schematic of spring-dashpot model in normal and tangential directions.

Contact force in normal direction

The normal contact force consists of two components: elastic force and damping force,
which together account for the deformation and energy dissipation during contact:

F n = F n,elastic + F n,damping = knδnn− γnvr,n, (1.17)

where kn is the normal elastic coefficient and γn is the normal damping coefficient. The
normal elastic force term is positive because the direction of the normal elastic force
is always from particle j to particle i, which is consistent with the previously defined
normal direction n. The normal damping force term, however, is negative since the normal
damping force is always opposite to the normal relative velocity vr,n to impede the relative
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motion of particles.
The simplest spring-dashpot model is the linear spring-dashpot (LSD) model, which

was proposed by Cundall and Strack [50]. In the linear model, the elastic force follows
Hooke’s law, being linearly proportional to the deformation. So the elastic coefficient, also
referred to as the stiffness, is a constant value. Similarly, the damping force is assumed
to be linearly related to the relative velocity, with the damping coefficient also set as a
constant. Due to its simplicity, the linear spring-dashpot model ensures high computational
efficiency in the resource-intensive DEM simulations and remains widely popular to this
day. However, its physical foundation is not robust, and determining the constants in the
model—the elastic coefficient and the damping coefficient—can be challenging. These
values are often obtained through experiments, empirical formulas or equivalence between
the linear and the nonlinear models [68].
In this study, a more complex and theoretically sound model, known as the Hertzian

spring-dashpot (HSD) model, was selected. This is a nonlinear model. In this model, the
normal elastic force component is based on Hertzian contact theory. Hertz considered the
relationship between the normal elastic force and the normal displacement to be nonlinear,
which means that the normal elastic coefficient kn is also related to the normal overlap
δn. Unlike the LSD model, where determining the elastic coefficient is challenging, the
estimation of elastic coefficient in the HSD model based on material properties has become
well-established [69]. The normal elastic coefficient can be written as:

kn = 4
3Eeq

√
reqδn, (1.18)

where Eeq and req are the equivalent Young’s modulus and equivalent radius in the binary
spherical particle system. The definitions of all the equivalent properties in the HSD model
will be given in summary later on.

The normal damping coefficient in this model is not a constant either. Its expression
is based on the works by Tsuji et al. [70], who gave a generalized form of the damping
coefficient. In the normal direction, the damping coefficient is expressed as:

γn = α(e)
√
knmeq, (1.19)

where meq is the equivalent particle mass, and α(e) is a dimensionless empirical parameter
related to the coefficient of restitution e. The coefficient of restitution is defined as the
ratio of relative velocity of particles before and after collision. Strictly speaking, this
coefficient is not a material property since it also depends on the impact velocity. However,
this effect is significant only at high impact velocities (over 10 m/s), so the coefficient of
restitution is often taken as a constant in DEM simulations [71]. The analytical solution
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of α(e) in HSD model is given by Antypov and Elliott [72]:

α(e) = −
√

5 ln e√
ln2 e+ π2

(0 < e < 1). (1.20)

Contact force in tangential direction

In the tangential direction, the spring-dashpot model incorporates both elastic and
damping components, similar to those in the normal direction. However, it also accounts
for the history of tangential displacement and the Coulomb friction limit. The tangential
contact force is written as:

F t = F t,elastic + F t,damping = −ktδt − γtvr,t, (1.21)

where kt is the tangential elastic coefficient and γt is the tangential damping coefficient.
The tangential displacement δt, unlike the normal overlap δn, not only has a direction
but also exhibits a history-dependent effect. It is calculated by integrating the relative
tangential velocity at the contact point throughout the duration of contact between two
particles:

δt =
∫ t

0
vr,tdt. (1.22)

The direction of the tangential displacement represents the cumulative displacement of
the contact point in the current tangent plane relative to the initial contact point over
the entire contact history. The elastic force term in Eq. 1.21 is negative because the
tangential elastic force is always opposite to the direction of the tangential displacement.
The tangential elastic force acts as a restoring force, resisting any further increase in
the tangential displacement. The Coulomb criterion limits the maximum value of the
tangential contact force, which can be expressed as:

‖F t,max‖ = µ ‖F n‖ , (1.23)

where µ is the coefficient of friction between two particles. Specifically, the tangential
contact force between two particles grows according to Eq. 1.21 until it reaches the upper
limit. At this point, the particles are considered to be sliding, the tangential displacement
is truncated and no longer accumulates. The force is then held at the maximum value until
the particles lose contact. Therefore, by combining Eq. 1.23 and Eq. 1.21, the expression
of the tangential contact force can be rewritten as:

F t = min(−ktδt − γtvr,t, −µ ‖F n‖
vr,t
‖vr,t‖

). (1.24)

The relationship between the tangential elastic force and the tangential displacement is
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also nonlinear in the HSD model. The tangential elastic coefficient is expressed based on
the no-slip elastic solution proposed by Mindlin [73]:

kn = 8Geq

√
reqδn, (1.25)

where Geq is the equivalent shear modulus. Similar to the normal case, the tangential
elastic coefficient also depends on the normal overlap δn. The expression of tangential
damping coefficient follows the generalized form in Eq. 1.19, with a slight adjustment in
the dimensionless empirical parameter:

γt =
√

2
3α(e)

√
ktmeq. (1.26)

The four equivalent properties (radius req, mass meq, Young’s modulus Eeq and shear
modulus Geq) in the binary spherical particle system with particle i and particle j are
summarized as follows [74]:

1
req

= 1
ri

+ 1
rj
, (1.27)

1
meq

= 1
mi

+ 1
mj

, (1.28)

1
Eeq

= 1− ν2
i

Ei
+

1− ν2
j

Ej
, (1.29)

1
Geq

= 2(1 + νi)(2− νi)
Ei

+ 2(1 + νj)(2− νj)
Ej

, (1.30)

where νi and νj are the Poisson’s ratios of particle i and particle j, respectively. By
utilizing equivalent properties, the collision between a particle and a planar wall can be
treated similarly by assuming that the wall has an infinite radius and mass. In other words,
the equivalent radius and equivalent mass in this case are directly equal to the radius and
mass of the particle. It is fairly easy to determine the distance between a spherical particle
and a plane in DEM. As long as this distance is smaller than the radius of the spherical
particle, the particle is considered to be in contact with the wall.

Contact torque

Following the contact force analysis, the contact torque decomposition is considered.
The contact torque has two sources, one from the tangential contact force and the other
from rolling friction:

T c = T t + T roll. (1.31)

By definition, the torque generated by the tangential contact force is given by:

T t = −rin× F t. (1.32)
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For the torque generated by the rolling friction, the constant directional torque model is
applied, which can be expressed as:

T roll = −µrollknδn
ωr,t
‖ωr,t‖

req, (1.33)

where µroll is the rolling resistance coefficient, and ωr,t is the relative tangential angular
velocity. The negative sign in Eq. 1.33 indicates that the torque generated by the rolling
friction is always opposite to the relative tangential angular velocity, thereby inhibiting
the relative rolling of two particles.
The rolling resistance coefficient is defined by the angle of rolling resistance φ:

µroll = tanφ. (1.34)

This angle represents the maximum inclination of the slope at which a spherical particle
can stay at rest without initiating rolling motion.
The relative angular velocity is defined as follows:

ωr = ωi − ωj. (1.35)

Since the relative angular velocity is not necessarily in the tangent plane, a projection is
needed:

ωr,t = ωr − (ωr · n)n. (1.36)

Although the constant directional torque model is the simplest among the various models
describing rolling resistance, it is quite reliable for characterizing rolling energy dissipation
in dynamic flow scenarios, such as particle mixing in rotary drums [75].

1.4.1.3 Numerical integration algorithm
Many equations of motion in DEM are expressed in differential or integral form, such as
Eqs. 1.8, 1.9 and 1.22. However, the actual simulation of particle motion in DEM is carried
out using explicit numerical integration methods. Explicit integration refers to a numerical
approach where the state of the system at the next time step is calculated directly from
known quantities at the current step, without solving differential equations iteratively.
Among these, the simplest approach is the Euler integration method, which updates
particle positions and velocities using linear approximations based on their derivatives at
each time step. While straightforward to implement, the Euler method suffers from poor
accuracy and numerical instability, making it less suitable for long-term simulations of
dynamic systems [76, 77].

In contrast, the velocity Verlet integration algorithm [78, 79] is one of the most widely
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1.4.1.3 Numerical integration algorithm

used due to its superior accuracy and stability. This algorithm is also the default integra-
tion method for spherical particles in LIGGGHTS. By updating velocities and positions
in a staggered manner with half-step and full-step updates, the velocity Verlet integra-
tion algorithm ensures better energy conservation and reduces numerical errors without
significantly increasing computational cost [76].
Particularly, for a single spherical particle, the main procedures of the velocity Verlet

integration algorithm are as follows:

1) Update the translational and angular velocity (half-step):

The translational velocity of the particle at moment t+ ∆t
2 is expressed as:

v(t+ ∆t
2 ) = v(t) + F (t)

m

∆t
2 , (1.37)

where ∆t represents a full time step used in the DEM simulation, F (t) is the combined
external force, including all the contact forces as well as the gravitational force, on the
particle at moment t.

The updating of angular velocity is performed in the same manner:

ω(t+ ∆t
2 ) = ω(t) + T (t)

I

∆t
2 , (1.38)

where T (t) is the combined external torque.

2) Update the position (full-step):

The center position of the particle at moment t+∆t is updated based on the translation
velocity at moment t+ ∆t

2 :

x(t+ ∆t) = x(t) + v(t+ ∆t
2 )∆t. (1.39)

3) Update force and torque (full-step):

After completing the position update, calculate the force and torque acting on the
particle at moment t + ∆t. When velocities are involved in the calculation, use the
velocities at moment t + ∆t

2 . Then save the new force and torque as F (t + ∆t) and
T (t+ ∆t), respectively.

4) Update the translational and angular velocity (remaining half-step):

Complete the velocity and angular velocity updates at moment t+ ∆t based on the
new force and torque:

v(t+ ∆t) = v(t+ ∆t
2 ) + F (t+ ∆t)

m

∆t
2 , (1.40)
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1.4.2 DEM models for non-spherical particles

ω(t+ ∆t) = ω(t+ ∆t
2 ) + T (t+ ∆t)

I

∆t
2 . (1.41)

The above procedures will be repeated for every spherical particle in the system until the
last time step of the DEM simulation.

1.4.2 DEM models for non-spherical particles

1.4.2.1 Representation of particle orientation
Although using spheres as the shape of solid particles in DEM simulations brings many
conveniences, it is undeniable that most solid particles in nature are non-spherical. The
proportion of the raw materials consisting of non-spherical particles in modern industries
is believed to exceed 70 % [80]. In addition to the obvious difference in packing density
between non-spherical and spherical particles, the more significant difference is that the
irregular shape of non-spherical particles hinders the overall particle flow during rotational
motion. In order to accurately capture the rotation of non-spherical particles in DEM
simulation, the orientation of the non-spherical particles must be determined first. This
orientation is not only essential in particles’ equations of motion, but also crucial for the
contact detection.
The representation of particle orientation in DEM is closely related to the moment of

inertia. The moment of inertia of a particle is actually a tensor, which can be expressed in
the space-fixed (global) coordinate system x-y-z as:

I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 , (1.42)

where the diagonal elements Ixx, Iyy and Izz denote the moments of inertia around three
axes x, y and z; the off-diagonal elements are termed the products of inertia, which
describe the coupling effect between different axes. By definition, the inertia tensor I is a
symmetric matrix.

For a spherical particle, due to its perfect symmetry, all products of inertia are zero. In
addition, its moments of inertia around the three axes are equal, as expressed in Eq. 1.10,
and remain constant over time. This is why the moment of inertia of a spherical particle
can be simplified as a scalar in Eq. 1.9. However, for a generic non-spherical particle, its
products of inertia are not necessarily equal to zero, and the inertia tensor changes in
every time step according to the new particle orientation, which makes the calculation of
its rotational motion in the space-fixed coordinate system really complex.

Hence, it is convenient to additionally introduce a body-fixed (local) coordinate system
that rotates synchronously with the non-spherical particle [81]. According to linear
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algebra theory, any real symmetric matrix can be diagonalized through an orthogonal
transformation. It means that by rotating the coordinate axes, all the products of inertia in
the inertia tensor I can be zeroed. The axes of the rotated coordinate system are referred
to as the principal axes of inertia. The principal axes of inertia can often be identified
geometrically, especially for particles with clear symmetry. For particles with uniform
density distribution, their symmetry axes are typically their principal axes of inertia.
For instance, in the case of elliptical particles, the major and minor axes correspond to
the principal axes of inertia. In DEM, the axes of body-fixed coordinate system X-Y -Z
coincide with the principal axes of inertia [82], which makes the moment of inertia of the
non-spherical particle in the body-fixed coordinate system time-invariant. In this new
coordinate system, the inertia tensor is represented as:

Ib =


IXX 0 0
0 IY Y 0
0 0 IZZ

 , (1.43)

where the diagonal elements of this matrix IXX , IY Y and IZZ are called the principal
moments of inertia.

The normalized eigenvectors of I obtained from this principal axis transformation form
the columns of the rotation matrix A. Two inertia tensors in the space-fixed coordinate
system and in the body-fixed coordinate system are connected through the rotation matrix
as:

Ib = A−1IA, I = AIbA−1. (1.44)

Besides, the orthogonality of the rotation matrix, i.e., A−1 = A>, enables the accurate
transformation of any vector, e.g., velocity or angular velocity, between the two coordinate
systems without altering the vector’s magnitude or direction [83], which can be written as:

vb = A−1v, v = Avb, (1.45)

where vb indicates the vector in the body-fixed coordinate system, whereas the vector in
the space-fixed coordinate system has no superscript.

According to Euler’s rotation equation, the rotational motion of a non-spherical particle
in the body-fixed coordinate system should be expressed as:

Ib
dωb
dt + ωb × (Ibωb) =

∑
T b, (1.46)
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or 
IXX

dωb
X

dt + (IZZ − IY Y )ωY ωZ = ∑
T bX ,

IY Y
dωb

Y

dt + (IXX − IZZ)ωZωX = ∑
T bY ,

IZZ
dωb

Z

dt + (IY Y − IXX)ωXωY = ∑
T bZ .

(1.47)

Compared to Eq. 1.9, the subscript i, representing a single particle, and the subscript c,
representing contact, are omitted for simplicity.

Although the rotation matrix A can be obtained by diagonalizing the moment of inertia
tensor I in the space-fixed coordinate system, performing this operation at every time
step in DEM simulations is computationally expensive and impractical. Therefore, it
is necessary to parameterize the rotation matrix to ensure efficient and stable updates
at each time step. There are two common parameterization methods: Euler angles and
quaternions.
The Euler angles provide an intuitive and easily understandable representation of

orientation. They decompose the rotation of the coordinate axes from the space-fixed to
the body-fixed system into three sequential rotations. The Euler angles must be combined
with a rotation convention, and the most commonly used convention is called Z-X-Z
convention [84]. According to this convention, the body-fixed coordinate system X-Y -Z is
initially aligned with the space-fixed coordinate system x-y-z. Then, the X-Y -Z system
rotates counterclockwise by a precession angle around the original Z-axis. Subsequently,
the X-Y -Z system rotates counterclockwise by a nutation angle about the current X-axis.
Finally, the X-Y -Z system rotates counterclockwise by a spin angle around the current
Z-axis. By these processes, the rotation matrix can be parameterized using the three
Euler angles and efficiently updated at each time step in DEM simulations. However,
when the nutation angle equals zero or π, the so-called gimbal lock problem arises. Under
this condition, a single orientation corresponds to non-unique sets of Euler angles. In
other words, when using Euler angles to parameterize the rotation matrix, singularities
appear in the update equations for the Euler angles [84]. This is an intrinsic property
of the Euler angles and cannot be avoided by selecting other rotation conventions [82],
potentially leading to numerical instability in DEM simulations.

Another representation of orientation, quaternions, are singularity-free [85]. The quater-
nions are interconvertible with Euler angles, but the quaternions corresponding to each
orientation are unique. According to Euler’s rotation theorem, multiple rotations in
three-dimensional space can be expressed as a single rotation around a fixed axis. Let
a = (ax, ay, az) be the unit axis of rotation from the space-fixed to the body-fixed coordi-
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nate system, with a rotation angle β; the quaternions are then calculated as [60]:


q0 = cos β
2 ,

q1 = ax sin β
2 ,

q2 = ay sin β
2 ,

q3 = az sin β
2 .

(1.48)

The quaternions must satisfy the following constraint:

q2
0 + q2

1 + q2
2 + q2

3 = 1, (1.49)

and the rotation matrix A can be parameterized by the quaternions as:

A =


1− 2 (q2

2 + q2
3) 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) 1− 2 (q2
1 + q2

3) 2 (q2q3 − q0q1)
2 (q1q3 − q0q2) 2 (q2q3 + q0q1) 1− 2 (q2

1 + q2
2)

 . (1.50)

The rotation matrix A can then be updated at each time step using the time derivatives
of quaternions: 

dq0
dt = q1ωx+q2ωy+q3ωz

2 ,

dq1
dt = q0ωx−q3ωy+q2ωz

2 ,

dq2
dt = q3ωx+q0ωy−q1ωz

2 ,

dq3
dt = −q2ωx+q1ωy+q0ωz

2 .

(1.51)

It is worth noting that any numerical integration algorithm can only provide an approximate
solution of Eq. 1.51. Besides, the floating-point arithmetic in computers also causes error
accumulation while updating quaternions. For these reasons, the quaternions must be
re-normalized in every time step to avoid violating Eq. 1.49.

1.4.2.2 Representation of particle shape
Many models have been developed to represent shapes of non-spherical particles. There
are three primary approaches: the polyhedral model, the superquadric model, and the
multi-sphere model. Unlike the latter two methods, the polyhedral model is capable of
accurately representing particles with edges and flat surfaces, making it more commonly
used in geotechnical and geological engineering simulations. However, the complexity
of this model is evident, as the types of contact, including vertex-vertex, vertex-edge,
vertex-face, edge-edge, edge-face, and face-face, differ significantly. Although various
contact detection algorithms have been proposed [86, 87, 88], the calculation of contact
forces remains not fully resolved [60]. Overall, the polyhedral model is less popular than

29



1.4.2.2 Representation of particle shape

the superquadric model and multi-sphere model. The latter two models are employed in
this study and will be described in more detail next.

Superquadric model

The superquadric model uses a continuous function to describe the surface of smooth
non-spherical particles. The superquadric equation in the body-fixed coordinate system
X-Y -Z given by Barr [89] can be written as:

(∣∣∣∣Xa
∣∣∣∣n2

+
∣∣∣∣Yb
∣∣∣∣n2
)n1/n2

+
∣∣∣∣Zc
∣∣∣∣n1

− 1 = 0, (1.52)

where a, b and c are three shape parameters which indicate the half-lengths of the particle
along its principal axes, and n1 and n2 are two blockiness parameters. Figure 1.8 gives
examples of commonly shaped particles constructed by superquadric equations.

Figure 1.8: Superquadric particle shapes composed by different shape and blockiness
parameters [90].

Since the center of gravity of a superquadric particle coincides with its geometric center,
its translational motion can also be calculated like that of a spherical particle using
Eq. 1.8. Additionally, due to the symmetry of superquadric particles, their principal
axes of inertia can be easily determined. Therefore, in DEM simulations, the body-fixed
coordinate system can be aligned with the space-fixed coordinate system at the particle
initialization stage. This allows the particle orientation to be directly updated using
quaternions, beginning with q = (1, 0, 0, 0), thereby eliminating the step of diagonalizing
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the inertia tensor. The analytical expressions of volume and principal moments of inertia
of superquadric particles can be found in works by Jaklic et al. [91, 92].
Various numerical integration algorithms [93, 94, 95] can be used to solve Eq. 1.51 in

conjunction with Eq. 1.47. The DEM software LIGGGHTS used in this study recommends
a novel symplectic quaternion scheme developed by Miller et al [96], which guarantees
the energy conservation over long-term DEM simulations. While performing the contact
detection, the expressions of different superquadric particles must first be transformed
from the body-fixed coordinate system to the space-fixed coordinate system, and then
solved by Newton’s method. The contact point of two superquadric particles is defined as
the equidistant point closest to the surfaces of both particles. The detailed description of
particle-particle and particle-wall contact detection algorithms are provided by Podlozhnyuk
et al. [60].

Multi-sphere model

The multi-sphere model treats a non-spherical particle as a rigid body composed of
multiple primary spheres. The primary spheres are allowed to vary in size and to overlap
with each other. This model can approximate non-spherical particles of any shape with
adjustable accuracy, and the detailed algorithm can be found in references [97, 98].
The relative positions between primary spheres remain unchanged during the DEM

simulations. At each time step, the total force and torque of the multi-sphere particle are
the sum of the contributions from all primary spheres and are accumulated at its center
of gravity. The translational and rotational motion of the multi-sphere particle is then
updated based on these resultant forces and torques. Note that the total mass of the
multi-sphere particle cannot be simply calculated as the sum of the masses of all primary
spheres due to the potential overlapping between primary spheres. Actually, the mass,
the center of gravity and the inertia tensor of the multi-sphere particle are all accessed
by a Monte Carlo procedure in LIGGGHTS. A multi-sphere particle does not necessarily
exhibit symmetry, and its center of gravity does not always coincide with its geometric
center. So the inertia tensor of the multi-sphere particle needs to be diagonalized during
the particle initialization stage to determine the rotation matrix. The initial quaternions
can then be expressed using the elements of the rotation matrix A as:



q0 = 1
2
√

1 + A11 + A22 + A33,

q1 = 1
4q0

(A32 − A23) ,

q2 = 1
4q0

(A13 − A31) ,

q3 = 1
4q0

(A21 − A12) .

(1.53)

The numerical integration algorithm in the multi-sphere model is similar to the velocity
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Verlet integration for spherical particles, but includes an additional error correction
procedure using the Richardson extrapolation to further enhance the accuracy of quaternion
calculations at each time step. The contact detection of multi-sphere particles is essentially
the determination of the contact between primary spheres. So the fast and robust contact
detection algorithm for spherical particles can be easily extended to the multi-sphere
model. This convenience, as well as its flexibility, make the multi-sphere model the most
popular approach for representing non-spherical particles [82].

1.4.3 Determination of DEM parameters
The determination of DEM parameters is a critical step in ensuring both the efficiency
and reliability of simulations. There are numerous input parameters in DEM simulations,
which can be broadly classified into two main types: simulation parameters and physical
properties. Simulation parameters, including time step and skin distance, primarily affect
the CPU time of running a DEM simulation. Improper settings in this category can lead
to excessive computational demands or even numerical instabilities. In contrast, physical
properties, such as Young’s modulus, Poisson’s ratio and coefficient of friction, define the
interaction laws used in the DEM model. Accurate calibration of physical properties is
essential for ensuring that simulation results are consistent with experimental observations
and physical reality. Although these two categories serve distinct purposes, they are also
interconnected, which will be discussed in detail next.

1.4.3.1 Simulation parameters

Time step

The choice of time step is of great importance in DEM simulations. The time step must
be set sufficiently small for two main reasons. First, it prevents excessive overlaps between
contacting particle pairs, which may lead to unrealistically high contact forces. This reason
is well understood and is demonstrated in Eq. 1.39, where an excessively large time step
results in unphysically large particle displacements in the subsequent iteration. Second,
small time step can avoid effects of disturbance waves. The movement of a particle in a
granular flow is affected not only by the forces and torques originated from its immediate
neighboring particles but also the particles far away through the propagation of disturbance
waves [99]. By choosing a small enough time step in DEM, disturbance waves from each
particle are prevented from propagating further than to its neighboring partners. It is
assumed that all of the radiated energy in disturbance waves is transferred by Rayleigh
waves, therefore the contributions of distortional and dilational waves are neglected [100].

The critical time step (also referred to as Rayleigh time step) is calculated based on the
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theoretical expression of the Rayleigh wave velocity and can be approximately expressed
as [101]:

∆tcrit =
πr
√

ρ
G

0.1631ν + 0.8766 , (1.54)

where r is the particle radius, ρ is the particle density, G is the shear modulus of the
particle and ν is Poisson’s ratio of the particle. Due to the involvement of spherical and
non-spherical particles with varying sizes and densities in this study, the most conservative
values are adopted for particle radius and density: a radius of 1.5 mm for the smallest
spherical particle and a density of 1,000 kg/m3 for the lightest particle used. The shear
modulus G is related with the Young’s modulus E and Poisson’s ratio ν:

G = E

2(1 + ν) . (1.55)

The Young’s modulus of the particle in this study is set as 1× 107 Pa and the Poisson’s
ratio is 0.24. Therefore, the critical time step yields ∆tcrit = 8.2× 10−5 s. Note that Eq.
1.54 assumes that the relative velocity between contacting particles is very small. Other
than for quasi-static systems, the time step in DEM simulations should be set as a fraction
of the critical time step, typically ranging from 20% to 80% in practice [27]. The time
step of all the DEM simulations in this study is finally determined as ∆t = 2× 10−5 s,
which is 24% of the critical time step.

Skin distance

Although the criterion of contact between two spherical particles is the simplest (Eq.
1.12), it still involves calculating the distance between the particle pair. Computing the
distances for all particle pairs in the system at every time step would result in an enormous
computational burden and is unnecessary. Therefore, optimizing the computational
strategy for contact detection is critical. In LIGGGHTS, this optimization is achieved
through the use of neighbor lists, a technique that is equally applicable to non-spherical
particles [60]. Before performing contact detection, the neighbor list excludes particle
pairs that are a priori too far apart to interact within several time steps. This technique
significantly reduces the number of particle pairs requiring distance checking, thereby
greatly improving the computational efficiency of DEM simulations, especially for systems
with large particle counts.

The neighbor list is constructed through the combination of particle binning [102, 103]
with the Verlet list [78]. Particle binning implies that the simulation domain is divided by
equal-sized cubic bins, with all particles assigned to corresponding bins according to their
center coordinates. This approach facilitates the subsequent identification of neighbors by
bypassing direct pairwise distance calculations. The Verlet list determines the range for
identifying neighboring particles and the frequency of neighbor list updates. Specifically,
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the neighbor search radius rneigh consists of the force cutoff distance rf and an additional
buffer region known as the skin distance rs, which can be written as:

rneigh = rf + rs. (1.56)

For spherical particle pair of identical size, the force cutoff distance is equal to twice of
the particle radius. In contrast, for more general cases involving non-spherical particles of
varying sizes, the force cutoff distance is defined as the maximum possible center-to-center
distance at which two particle surfaces may come into contact. The skin distance, which
is a user-specified value, determines when the neighbor list is updated. An update occurs
only when any particle in the system moves more than half of the skin distance within
a time step [64]. On the one hand, this rule allows the neighbor list to be reused over
multiple time steps, thereby improving the efficiency of contact detection. On the other
hand, it ensures that no potential neighbors newly entering the search radius are missed
during contact detection at any time step. The bin size (the length of the cubic side) is
typically matched to the neighbor search radius. In LIGGGHTS, the default setting for the
bin size is half of the maximum neighbor search radius in the system, as this configuration
has been found to be optimal for many typical cases [65].
Figure 1.9 illustrates an example of neighbor identification in a 2D simulation domain.

In this system, circular particles with identical radii are assumed. The skin distance is set
equal to the particle radius in this case. However, regardless of the skin distance value, as
long as the bin size sbin is set to half of the neighbor search radius rneigh, considering all
particles located within a range of 25 (5×5) bins around a given particle ensures that no
neighbors are missed. Extending this method to a 3D simulation domain, the neighbor
search requires considering only 125 (5×5×5) bins around each particle, and no distance
calculations are needed during this neighbor identification process.

Although the size of the skin distance does not affect the total number of bins considered
during the neighbor search, it plays a critical role in the overall process of neighbor list
construction and subsequent contact detection. When the skin distance is small, the
number of neighbors, and thus the number of distance calculations required during contact
detection, is reduced. However, the neighbor list must be updated more frequently, and the
increased number of bins in the simulation domain results in higher memory requirements
for storing the neighbor list. Conversely, when the skin distance is large, the opposite
occurs: fewer neighbor list updates are needed, but the number of distance calculations
increases. Therefore, the optimal value of the skin distance is typically determined through
trial simulations. Table 1.2 gives the results of trial simulations for determining the value
of skin distance. It was found that setting the skin distance to one particle radius resulted
in the shortest DEM simulation time. Therefore, a skin distance of 1.5 mm was adopted
for all simulations in this study. It is worth noting that a smaller skin distance does not
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Figure 1.9: Schematic representation of neighbor search in a 2D simulation domain, rneigh =
rf + rs = 2r + r = 3r, sbin = 0.5rneigh = 1.5r. Particle B is a neighbor of
particle A, while particle C is not.

always lead to reduced simulation time in other DEM simulations. The determination of
the optimal skin distance always requires targeted trial simulations. The trends of CPU
time presented in Table 1.2 may be attributed to the relatively small drum size (simulation
domain) used in this study, where an increase in the total number of bins has a negligible
impact on simulation efficiency.

Table 1.2: Comparation of trial simulations with different skin distances (37,600 spherical
particles of 1.5 mm radius mixed in a rotary drum for 1 s).

Skin distance [mm] Average neighbors per particle [-] CPU time [s]
1.5 (r) 6.8 208
3.0 (2r) 17.9 286
4.5 (3r) 33.1 426
6.0 (4r) 58.7 626
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1.4.3.2 Physical properties
In this study, there are five physical properties that remain constant throughout all DEM
simulations: Young’s modulus, Poisson’s ratio, coefficient of restitution, rolling resistance
coefficient, and coefficient of friction. For common experimental materials, the values of
the first three physical properties can be easily found in the literature or reference books.
Among them, it is worth noting the setting of Young’s modulus. Taking the experimental
material γ-alumina as an example, its actual Young’s modulus is approximately 4× 1011

[104], which leads to excessively small time step (Eqs. 1.54 and 1.55) as well as large
computational time. To overcome this limitation, it is quite common in the literature
to reduce the value of the Young’s modulus when performing DEM simulations [105].
Another common simplification is to use the same properties for wall and particle (as
well as for particle-particle and particle-wall interactions), mainly due to the fact that
walls do not undergo any deformation in DEM simulations. The simulation results from
Yamamoto et al. [106] also indicated that Young’s modulus, Poisson’s ratio and coefficient
of restitution are not significant for particle motion.

As for the other two friction-related coefficients, they are often difficult to obtain from
the literature, and direct measurement is equally challenging. This is not a concern in
DEM practice, as neither of these two approaches is generally recommended. The rolling
resistance coefficient for stiff sphere, such as γ-alumina particle in this study, is often set
to a considerably small value or even ignored [107, 108]. The coefficient of friction has
the greatest effect on particle motion among those five physical properties. However, even
if the coefficient of friction is accurately measured, it cannot be directly used in DEM
simulations. Because it needs to compensate for the effects of using a reduced Young’s
modulus [109]. In practice, the coefficient of friction used in DEM is typically calibrated
by comparing batch simulation results with the experiment. And it is acceptable to assign
different coefficients of friction for particle-particle and particle-wall interactions.

In this study, the calibration target is the dynamic repose angle, as already introduced in
Section 1.3.1 and illustrated in Fig. 1.5. The strategy begins by simplifying the calibration
process by setting identical coefficients of friction for particle-particle and particle-wall.
Using the calibrated coefficient of friction, a full-scale simulation was performed and
validated by quantitatively comparing the simulation results with experimental data
through the selected mixing index. If validation failed, different values of coefficient of
friction for particle-particle and particle-wall contacts would be explored to achieve a better
match. Fortunately, the identical setting of both coefficients of friction proved sufficient to
satisfy the validation criteria in this study. The mixing indices will be detailed in Section
1.5.1. The specific calibration and validation procedures are described in Chapter 2 (the
first manuscript), along with the numerical values of all physical properties, which will not
be repeated here.

36



1.5 Mixing quantification

1.5 Mixing quantification
In DEM simulations, instantaneous dynamic information about particles, such as position,
velocity, and trajectory, can be readily obtained, whereas experimental measurements
are often more challenging. To gain deeper insights into particle mixing in rotary drums,
numerous experimental techniques have been developed. One of the earliest approaches
involved direct sampling methods, which, despite their effectiveness in reflecting local
mixing conditions, are inherently invasive and can disrupt the overall mixing state of the
system. To address this limitation, non-invasive techniques such as radioactive particle
tracking (RPT) [110, 111], positron emission particle tracking (PEPT) [112], magnetic
particle tracking (MPT) [113] and magnetic resonance imaging (MRI) [114, 115] have
been introduced. The first three particle tracking methods allow for measuring a limited
number of tracer particles, which is valuable for the microscopic analysis of granular flow.
However, they do not provide information for the majority of ordinary particles in the
system. As for the MRI, while capable of visualizing the internal structure of particle beds,
it is limited by the high equipment costs and stringent requirements for the experimental
particles, as only a small selection of MRI-sensitive materials can be used. In contrast,
image analysis methods have gained widespread application due to their simplicity, low
experimental cost, and flexibility in image processing algorithms. Although image analysis
is restricted to capturing particle information from the front and rear walls of transparent
drums, it is sufficient for validating the reliability of DEM simulations. Therefore, image
analysis was adopted as the primary experimental technique in this study. The detailed
validation procedure and image processing methodology are presented in Chapter 2 (the
first manuscript).

1.5.1 Mixing indices
A unified quantitative description of mixing time and mixing quality is essential for
both experimental validation of DEM parameters and the analysis of subsequent DEM
mixing simulations. To achieve such standardization, various mixing indices have been
proposed in the literature. According to the principle of calculation, those mixing indices
can be divided into two categories: fraction-based and distance-based. Fraction-based
indices quantify the number fraction of different particle types within selected regions,
with typical examples including the Lacey index [1], the entropy of mixing [116], and
the subdomain-based mixing index [117]. In general, these indices range from zero to
one, where zero represents complete segregation and one indicates perfect mixing. By
definition, fraction-based indices are inherently influenced by the size of the selected
regions. This can be intuitively understood: if a region encompasses the entire system,
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1.5.1.1 Lacey index

the local particle fraction equals the overall composition, resulting in a mixing index
of one. Conversely, if the regions are too small, each containing only a single particle
or none, then every local mixing index equals zero, leading to a global mixing index
of zero. Therefore, the choice of region size is critical. Regions that are too small not
only underestimate the overall homogeneity but also increase the total number of regions,
raising computational costs. On the other hand, excessively large regions fail to capture
local heterogeneity, which may prevent the index from accurately identifying segregation in
rotary drums. Distance-based indices, in contrast, evaluate particle spatial distribution by
computing relative positions through coordinate analysis. Common methods include the
nearest-neighbors and neighbor-distance approaches [118]. Unlike fraction-based indices,
distance-based indices consider all particles in the system without relying on selected
regions, thus eliminating the influence of region size. Nevertheless, distance-based indices
are obviously more computationally expensive and generally applicable only to small-scale
mixing systems with fewer than 10,000 particles. Given that the particle count in this
study reaches up to 75,200, one of the three fraction-based mixing indices was selected for
further mixing analysis, which will be introduced in detail in the following subsections.

1.5.1.1 Lacey index
The Lacey index is one of the most famous and classic mixing indices for analyzing the
mixing state of binary mixtures. It is based on the statistics and can be defined as:

LI = σ2
u − σ2

σ2
u − σ2

m

, (1.57)

where σ2 is the variance of number fraction of a specific kind of particles, σ2
u is the variance

in completely unmixed state and σ2
m is the variance in fully mixed state. These three

variances can be expressed as:

σ2 = 1
Ns

Ns∑
i=1

(pi − p)2 , (1.58)

σ2
u = p(1− p), (1.59)

σ2
m = p(1− p)

Np

, (1.60)

where Ns is the number of selected regions, Np is the number of particles in each of the
selected regions, pi is the number fraction of the specific kind of particles in the region i,
and p is the number fraction of the specific particles in the whole mixture. By definition,
Np should be a constant, which implies that this index requires an identical amount of
particles in each of the selected regions. This condition is hard to achieve in practice,
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1.5.1.2 Entropy of mixing

so that Np is usually replaced by the average number of particles in all selected regions.
However, this replacement may lead to a smaller Np, which in turn can make the Lacey
index in Eq. 1.57 to exceed one. This restriction about Np also prevents the Lacey
index from being applied through grid division of the entire particle system, making it
highly sensitive to the location of the selected regions. This effect becomes particularly
pronounced when particle segregation occurs. Moreover, because Eqs. 1.59 and 1.60 are
only valid for binary mixtures, the Lacey index is not able to characterize the mixing state
of multi-component mixtures.

1.5.1.2 Entropy of mixing
The entropy of mixing has become a popular mixing index in recent years. Unlike the
Lacey index, it does not require an equal number of particles in each selected region,
therefore allowing for grid division of the particle system and consideration of all particles
within the system. It is important to note that, despite sharing the same name as the
thermodynamic concept, this index does not carry the same physical meaning; rather, it is
only a mixing measure inspired by the mathematical form of thermodynamic entropy. For
a binary mixture, the entropy of the whole mixing system is expressed as:

S = p1 ln p1 + p2 ln p2, (1.61)

subject to:
p1 + p2 = 1,

where p1 and p2 are the initial number fractions of the two types of particles in the mixing
system. The local entropy of mixing in a specific grid element i is similarly calculated as:

Si = p1,i ln p1,i + p2,i ln p2,i, (1.62)

where p1,i and p2,i are the number fractions of the two types of particles in the grid element
i. Subsequently, all of the local mixing indices Si

S
are weighted and averaged in Ns grid

elements according to the number of particles to obtain the total mixing index EI as:

EI =
Ns∑
i=1

Si
S

Np,i

Np,tot

, (1.63)

where Np,i is the number of particles in the grid element i, and Np,tot is the total number
of particles in the whole mixing system. This algorithm enables the analysis of every local
region within the mixing system. In addition, according to the expression of entropy (Eq.
1.61), this mixing index can be easily extended from binary to multi-component mixtures.
Both of these features are not achievable with the Lacey index. However, the extreme
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1.5.1.3 Subdomain-based mixing index (SMI)

value of S in Eq. 1.61 can only be achieved when p1 = p2 = 0.5, which means the local
mixing index is guaranteed to be less than one only when the two particle types have
equal initial proportions in the system. The same limitation applies when the entropy of
mixing is used for multi-component mixtures, where the local index remains valid only if
all particle types have identical initial proportions within the system.

1.5.1.3 Subdomain-based mixing index (SMI)
The subdomain-based mixing index (SMI) is a recently proposed mixing index that
overcomes all the limitations of the previously mentioned Lacey index and entropy of
mixing. The core concept of SMI is similar to that of the entropy of mixing, as it also
partitions the entire particle system into multiple subdomains through grid division and
integrates local indices to obtain the total mixing index. For a mixture that consists of
Q types of particles within Ns subdomains, the participation factor of k-type particles
(1 ≤ k ≤ Q) can be calculated as:

fk =
max

(∑Ns
i=1Np,1i,

∑Ns
i=1Np,2i, . . .

∑Ns
i=1Np,Qi

)
∑Ns
i=1Np,ki

, (1.64)

where Np,ki is the number of k-type particles in subdomain i. Therefore, the participation
factor fk represents the ratio of the total number of the most abundant particle type in the
system to the total number of k-type particles. The modified fraction of k-type particles
in subdomain i is calculated as:

Pki = Np,kifk
max (Np,1if1, Np,2if2, . . . , Np,QifQ) ≤ 1. (1.65)

If all types of particles are perfectly mixed in subdomain i, it means that the proportion
of each particle type within subdomain i is identical to its original proportion in the entire
system, therefore P1i = P2i = · · · = Pki = · · · = PQi = 1 and ∑Q

k=1 Pki = Q. In contrast,
if complete segregation occurs in subdomain i, for example, only k-type particles exist
in subdomain i, then ∑Q

k=1 Pki = Pki = 1. Then, the local SMI for subdomain i is the
normalization of ∑Q

k=1 Pki from the range of [1, Q] to the range of [0, 1] as:

SMIi = 1
Q− 1

 Q∑
k=1

Pki − 1
 . (1.66)

In addition, if a subdomain does not contain any particles, the local SMI is directly
assigned a value of zero, which similarly represents complete segregation. Finally, the total

40



1.6 Motivation and objectives

mixing index is obtained by averaging all the local indices as follows:

SMI = 1
Np,tot

Ns∑
i=1

SMIi
Q∑
k=1

Np,ki

 , (1.67)

where Np,tot is the total number of particles in the whole mixing system.
Through sophisticated algorithm design, the SMI not only guarantees the strict accuracy

of local indices in any subdomain but also remains applicable to multi-component mixtures
with varying initial proportions. Its capabilities allow for a comprehensive evaluation
of both local and overall mixing under complex mixing conditions. Consequently, it is
selected in this study as the sole mixing index for quantitatively describing particle mixing
in rotary drums.

1.6 Motivation and objectives
So far, the fundamental aspects of solid particle mixing in rotary drums, the numerical
simulation method and the quantitative description of mixing process have been covered in
detail. The particle motion in rotary drum is quite complex, particularly in the presence
of segregation. Various factors influence particle mixing in rotary drums, which can
be broadly classified into two categories: drum-related parameters such as drum size,
revolution frequency and filling degree; and particle-related properties, with particle shape,
size ratio and density ratio being the most critical. The interplay of these factors leads to
distinct particle motions, and thus significantly affects the mixing efficiency and mixing
quality. Existing studies have primarily focused on the influence of individual parameters,
and are mostly qualitative investigations. However, systematic quantitative research that
simultaneously considers multiple influencing factors is scarce. The ability to predict
mixing outcomes across a broad parameter space remains an open question. While the
discrete element method (DEM) has been widely employed for simulating particle mixing,
its computational costs impose significant limitations, particularly for large-scale particle
systems or those involving non-spherical particles.
Therefore, in order to address these gaps, the central goal of the present work is to

efficiently predict the particle mixing results in rotary drums within a parameter space that
encompasses multiple influencing factors, based on a limited number of DEM simulations.
This cumulative dissertation comprises three published manuscripts as Chapters 2 to 4.
Chapter 2 explores a novel approach for predicting the mixing time of spherical particles
in a rotary drum, termed cross-correlation. This method establishes a bridge between
2D and 3D simulations, enabling efficient predictions of 3D mixing time across different
rotational speeds and density ratios using cost-effective 2D simulations. Chapter 3 presents
a machine learning model: particle swarm optimized support vector regression (PSO-SVR)
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1.6 Motivation and objectives

to fast predict mixing of spherical particles in rotary drums. This model not only enables
accurate predictions of both the mixing time and the mixing degree at steady mixing state
but also expands the considered influencing factors to four: revolution frequency, size ratio,
density ratio, and drum length. Chapter 4 extends the application of machine learning
methods to predictions for a non-spherical particle type—rod-like particles. This chapter
also provides a detailed comparison of three different machine learning models, covering
both their underlying principles and predictive performance. Chapter 5 summarizes the
main conclusions from the three manuscripts and provides an outlook on possible further
work.
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Chapter 2

Prediction of particle mixing time in
a rotary drum by 2D DEM
simulations and cross-correlation

During the mixing of solid particles in a rotary drum, particle motion in the transverse
plane is significantly more intense than in the axial direction. Building on this observation,
the feasibility of using 2D simulations as a cheap surrogate for computationally expensive
3D simulations was explored. This approach enabled the rapid prediction of mixing time
for spherical particles in a drum under varying revolution frequencies and density ratios.
A paper with the same title as this chapter has already been published:
Wencong Wu, Kaicheng Chen, and Evangelos Tsotsas. “Prediction of particle mixing

time in a rotary drum by 2D DEM simulations and cross-correlation.” Advanced Powder
Technology 33.4 (2022): 103512.

As this paper is not open access, the attached version is the preprint manuscript
containing the same content as the published version. For highlights and the graphical
abstract, please visit:

https://doi.org/10.1016/j.apt.2022.103512.
The validation experiment in this paper was conducted by my mentor and second author

Dr.-Ing. Kaicheng Chen. As the first author, my individual contributions include:
designing and performing all DEM simulations, analyzing the simulation data, developing
the cross-correlation for mixing prediction, and writing the original draft with all figures
and tables.
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Prediction of particle mixing time in a rotary drum by

2D DEM simulations and cross-correlation

W. Wu∗, K. Chen, E. Tsotsas

Thermal Process Engineering, Otto-von-Guericke-University, Universitätsplatz 2, 39106
Magdeburg, Germany

Abstract

A new concept for the prediction of the mixing time of a large particle system

from the mixing time of a small particle system and a scale-spanning cross-

correlation are presented. By way of example, the considered large system is

a 3D rotary drum, and the used small system is a 2D rotary drum. At both

levels, data for the change in mixing degree with time are created by DEM

simulation. The cross-correlation is developed from a learning set which

consists of 17 sets of simulation data and represents a variation of revolution

frequency. The prediction of mixing time through the cross-correlation is

excellent within the parametric range of the learning set (R2 = 0.92). Beyond

the parametric range of the learning set, good predictions are obtained for

binary mixtures of particles with different density (R2 = 0.86), but not in

case of different size. Whether the additional parameter will affect the axial

mixing in the rotary drum is considered to be the key for such parameter

expansion. Advantages of interpretability, expandability and relatively high

accuracy for the limited data size compared to machine learning approaches
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are seen in the cross-correlation method, which may promote its application

for the fast and cheap prediction of industrial mixers.

Keywords: Particle mixing, Rotary drum, DEM simulation, Prediction,

Machine learning

1. Introduction

Mixing is a standard unit operation for particles in chemical, food, feed

and pharmaceutical industries. An ideal mixer should yield a uniform mix-

ture in relatively short time, which reveals the two worth noting aspects of a

mixing process: the mixing degree and the mixing time. The mixing degree

is a quantitative description of the uniformity of a mixture, which clearly

reflects the final product quality. And the mixing time directly determines

the efficiency of a mixing process.

To improve the performance of mixers or to assess the behavior of new

products in such equipment, computer modeling is an economical and conve-

nient choice. Since the discrete element method (DEM) has been introduced

by Cundall and Strack (1979), it has been widely used for particle-related

simulations, including simulations of mixing. However, even in recent publi-

cations, most mixing simulations with DEM are still restricted to small-scale

systems with total particle numbers less than 20000 (Liu et al. (2017); Chen

et al. (2017); Zhang et al. (2020); Hlosta et al. (2020)). This is because 3D

DEM simulation is computationally expensive. Simulations from Bertrand

et al. (2005) show that the CPU time increases exponentially with the num-

ber of particles in the mixing system. Although DEM modeling with millions

of particles can be achieved through supercomputers with clusters of CPU or
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GPU nowadays (Govender et al. (2018); Yan and Regueiro (2018)), the par-

ticle number is still far away from a typical industrial mixing system, which

usually includes billions of particles.

This situation underlines the still persisting need for methods that would

provide access to the mixing dynamics of large particle systems at low cost.

As it will be discussed later on, machine learning or other similar techniques

could be used to this purpose. In contrast, a different approach is here pro-

posed. The new idea is to simulate a small particle system per DEM and

then connect the result of such simulations by means of a cross-correlation

with the mixing behavior of a large scale particle system. Learning would in

this concept be top-down (derivation of the cross-correlation by comparison

of the large with the small system), application would be bottom-up (predic-

tions for the large system from small system simulations and the previously

derived cross-correlation). In the present work, the large scale particle sys-

tem is represented by 3D DEM simulations for a rotary drum, whereas a

flat, 2D rotary drum is the small, surrogate particle system, simulated by 2D

DEM. In general, however, any mixer could be the large system, with either

experimental or computational data for the representation of its mixing be-

havior. And, other surrogates are thinkable, meaning that large mixer and

surrogate don’t necessarily need to be of similar geometry.

In any case, questions that arise are whether the proposed approach is at

all possible, i.e. whether such a link between large and surrogate system can

be expressed in form of a cross-correlation, which accuracy can be achieved

in this way, and how robust the link would be, i.e. when the surrogate

representation can be expected to work or fail. These aspects will be treated
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in the paper for the already mentioned case of 3D rotary drum DEM as

the large particle system, and 2D rotary drum DEM as the computationally

cheap surrogate. We are not aiming at fundamentally new insights about

the dynamics of particles in rotary drums, but tear profit from the fact that

rotary drums are a simple, commonly used, and well understood example of

a mixer.

In a rotary drum, particles are mixed in both transverse plane and ax-

ial direction. The axial mixing is really slow and considered as driven by

self-diffusion (Finnie et al. (2005)). The transverse mixing is a few orders of

magnitude faster compared to mixing in the axial direction (Nityanand et al.

(1986)), which makes 2D DEM simulations with a small amount of particles

that can significantly reduce the computational cost especially interesting.

Kwapinska et al. (2006) compared 2D DEM simulation results for a rotary

drum with experiments and penetration models for thermal processes. Xu

et al. (2010) conducted a qualitative parameter study through 2D DEM sim-

ulations. However, 2D simulation has always been treated as a simplified

model to qualitatively analyze the dynamics of the mixing system. The use

of 2D simulations as a cheap surrogate for mixing prediction is basically

unexplored.

The paper is organized as follows. In Section 2, it is explained how mixing

time is derived from transients of an appropriate mixing index obtained from

either 2D or 3D simulations, including experimental validation of the latter.

In Section 3, data are separated into a learning set and several prediction

sets, similarly as in machine learning approaches. The learning set takes the

widely investigated influential parameter revolution frequency as the unique
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variable to develop the cross-correlation. The predictive ability of the devel-

oped cross-correlation is then tested within and, in several steps, also beyond

the parametric range of the learning set. A short discussion that compares

the new cross-correlation method with prediction models from the field of

machine learning in regard of notable merits and future potential is given

in Section 4, followed by conclusions in Section 5 and some supplementary

material in three Appendices. It should be noted that, though steady-state

mixing quality is discussed in some cases, mixing time is the target quantity

of this work, so that the cross-correlation and respective analysis refer only

to mixing time.

2. Experiment and DEM modeling

2.1. Mixing experiment

Though not absolutely necessary from the theoretical point of view (in-

accurate or partially biased data might also be used, as long as the main

features of mixing dynamics of the large system are still reflected), reliabil-

ity and accuracy of the 3D DEM simulation would be an advantage in the

present work.

Hence, a lab scale experiment was carried out for calibration and valida-

tion. The experimental setup consists of a horizontal rotary drum mixer and

a camera system, as illustrated in Fig. 1(a). The rotary drum is made of

acrylic glass with an inner diameter of 194 mm and a length of 150 mm. The

entire drum is transparent with a black background at the rear face, which

facilitates imaging. The camera system includes a LaVision high-speed cam-

era with CMOS chip (1440×1440 pixels) and two halogen lamps (400 W)
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providing continuous lighting. Mixing material is γ-alumina spherical parti-

cles with diameter of 3 mm and particle density of 1358.8 kg/m3. In order

to create a binary mixture, half of the particles were left with their origi-

nal white color, and another half were dyed light green in a spray fluidized

bed. Before starting the experiment, particles of the two colors, each with

the same amount, were placed in the drum in top-bottom stratification (Fig.

1(b)), at a filling degree of the drum of 20%. With a set value of 15 rpm for

the revolution frequency of the drum, the entire mixing process lasted for 60

s. During this time, images from the front face of the drum were captured

by the high speed camera with 40 frames per second. After the experiment,

image processing is necessary to extract the information on particle posi-

tions from the raw images for further analysis, more details are shown in

Appendix A.

(a) (b)

Figure 1: Experimental system: (a) sketch of setup (b) rotary drum with top-bottom

stratification.
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2.2. DEM modeling and validation

The open-source software LIGGGHTS (Kloss et al. (2012)) was used to

conduct the DEM simulations in the present work. Governing equations can

be found in Appendix B. To accurately simulate the mixing experiment,

physical properties such as Young’s modulus, Poisson’s ratio, coefficient of

restitution, rolling coefficient and friction coefficient need to be carefully

determined (see Appendix C). Respective values are summarized in Table

1. In this study, physical properties were assumed identical for particles and

walls.

Table 1: 3D DEM simulation parameters.

Parameters Value Unit

Time step 2×10−5 s

Young’s modulus 1×107 Pa

Poisson’s ratio 0.24 -

Coefficient of restitution 0.82 -

Rolling coefficient 0.01 -

Friction coefficient 0.80 -

After parameter determination, mixedness comparison between experi-

ment and simulation is necessary for further validation. In order to describe

the quality of mixing quantitatively, different mixing indices were developed

in the literature (Lacey (1954); Schutyser et al. (2001); Deen et al. (2010)).

Our mixing system contains 37600 particles. To avoid the bias from randomly

selected samples and considering the computational cost, a recently proposed

index named subdomain-based mixing index (SMI) (Cho et al. (2017)) was

50



selected as the measure of mixedness in this study. This index takes all the

particles in the mixing system into account, and can be calculated by means

of a relatively simple algorithm. Determination of the SMI starts by dividing

the computational domain into n subdomains. For a mixture consists of Q

types of particles, the participation factor of particle type k can be calculated

as:

fk =
max (

∑n
i=1N1i,

∑n
i=1N2i, . . .

∑n
i=1NQi)∑n

i=1Nki

. (1)

The modified fraction of k-type particles with respect to the maximum num-

ber of particles among the Q types in subdomain i is:

Pki =
Nkifk

max (N1if1, N2if2, . . . , NQifQ)
. (2)

The local SMI for subdomain i is calculated from the arithmetic mean of

fraction Pki over all particle types, except of the majority type of particles

with a fraction which by definition is equal to one:

SMI(i) =
1

Q− 1

(
Q∑

k=1

Pki − 1

)
. (3)

Finally, the total mixing index is obtained by averaging all the local SMIs as

follows:

SMI =
1

Ntot

n∑

i=1

[
SMI(i)

Q∑

k=1

Nki

]
, (4)

where Ntot is the total number of particles in the whole mixing system. The

range of SMI is between zero and one: zero means that different particles are

fully separated, whereas one indicates a perfect mixing state.

For a mixing process, two characteristics of mixedness are noteworthy:

mixing time and mixing degree at steady state. Mixing time is the time after
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which the mixing process can be assumed to have reached a steady mixing

state, so that the mixing degree of the mixture will only fluctuate around a

certain value. In order to describe these two characteristics quantitatively,

the curve that describes the transient of SMI over time can be fitted by the

following equation:

SMI = ae−bt + c. (5)

Here c is the asymptote of the fitted curve, which can be treated as the

mixing degree at steady mixing state. And, the moment when the mixing

index becomes equal to 0.95c is defined as the mixing time.

Subdomain-based mixing index was tested by the 3D benchmark simu-

lation, which has the same particle configuration and operating conditions

as in the experiment. As remarked by Cho et al. (2017), the total number

of subdomains for a mixing system has an influence on the value of mixing

index. Larger number of subdomains leads to a lower value of mixing degree

at steady mixing state, as can be seen in Fig. 2(a). Considering the time

cost for mixing index calculation and the actual mixing situation (Fig. 2(b)),

we chose 1250 (5×5×50) subdomains for the entire domain of our 3D mixing

system. Specifically, the 3D rotary drum was first divided into 50 layers with

equal thickness of 3 mm each (equal to the particle diameter) in the axial

direction. Then a square in which the circular cross section of the drum is

inscribed has been defined, and a 5×5 equidistant square grid has been laid

on this square. The detailed gridding manner is illustrated in Fig. 3.

Since the experimental images can only provide the location of particles

on the front face, simulation results from only the first axial slice (the closest

layer to the front wall) have been used for comparison. Both the used single
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Figure 2: The effect of the number of subdomains on SMI: (a) evolution of indices with

different numbers of subdomains (b) image of rotary drum at steady mixing state (32.5

s).

Figure 3: Gridding manner for SMI.
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layer simulation data as well as the experimental data were further divided

into 25 subdomains (5×5). Same gridding has also been used for the following

2D simulations.

Figure 4 shows the comparison of SMI evolution from experimental photos

and the first layer of particles in the 3D benchmark DEM simulation. As can

be seen, the mixing degrees at steady mixing state are quite close between

experiment (0.88) and simulation (0.87). However, the mixing time in the

experiment (22.7 s) is somewhat longer than in the simulation (18.3 s), which

could be explained as follows: the revolution frequency of the rotary drum

increases progressively from 0 to 15 rpm in the experiment due to inertia,

whereas it reaches 15 rpm immediately in the simulation. In general though,

the consistency of the two curves in Fig. 4 confirms that the 3D DEM

simulation is able to replace the experiment with high reliability. Besides,

the 3D DEM simulation can provide mixing information from the whole

volume of the drum, which is hard to achieve in the experiment.
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Figure 4: Comparison of experiment and the first layer of the 3D benchmark DEM simu-

lation in terms of SMI.
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3. Cross-correlation method

3.1. 3D DEM simulation vs. 2D DEM simulation

As pointed out in Section 1, 2D simulations are considered as a cheap

surrogate model for expensive 3D simulations. Both 3D and 2D simulations

were performed on a commercial computer with AMD Ryzen Threadrippe

2950X processor (16 cores/32 threads, 3.5 GHz) and 32 GB RAM. On the one

hand, for the 3D DEM simulations, 37600 particles in total were inserted into

the simulation domain, and six hours of real time was spent for conducting

60 seconds of mixing process. On the other hand, 16 cases of 2D simulation

of 60 seconds mixing process with 760 particles in parallel cost half an hour.

The 2D simulations were conducted with same simulation parameters as in

Table 1. In the 2D simulations, the particles are still spheres instead of discs,

only the velocities and forces in the axial direction are zeroed out in every

time step. There are no front and rear walls in the 2D simulations. Due to

the lack of friction from these two surfaces, the motion regime in 2D is closer

to slumping instead of rolling, which means that the particle bed is elevated

and slides down periodically during the rotation of the drum, especially at

low revolution frequency. It should be noted that, keeping other simulation

settings identical but only changing the number of allocated CPU cores has

certain influence on the final simulation results. Table 2 shows that, when

the number of CPU cores changes, the 3D simulation results are quite stable.

But the core number has a relatively large influence on the mixing time of

2D simulations. Hence, to increase the reliability of 2D simulation, every 2D

case was, for otherwise same conditions, repeated three times with 1 core,

4 cores and 16 cores, respectively, as one set. The mixing time and mixing
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degree at steady mixing state of the 2D simulations are the averaged values

from these three runs. However, all the corresponding 3D simulations were

only run once under 16 cores for saving simulation time. In summary, the

time cost for running a set of 2D simulation is 1/64 of the time cost of one

corresponding 3D simulation.

Table 2: The influence of allocated CPU cores on 3D and 2D DEM simulation.

Core number [-] Mixing time [s]
SMI at steady

mixing state [-]

3D

simulation

1 31.5 0.86

4 31.3 0.85

16 32.5 0.85

2D

simulation

1 33.9 0.89

4 38.1 0.88

16 37.1 0.89

3.2. Development of cross-correlation

The 2D simulation seems to be able to well reflect mixing in that direction

of the 3D rotary drum, in which mixing is by far more intense, namely in

transverse direction. However, and expectedly, mixedness, including mixing

time and mixing degree at steady state, is clearly not identical between 2D

and 3D simulation. So the new idea is to develop a cross-correlation to bridge

the differences in mixedness between the 2D (small, surrogate) and the 3D

(large, target) particle system. Similar to conventional machine learning

approaches, all the simulation data were first separated into two main parts:
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learning set and prediction set, where the learning set is used for developing

the cross-correlation and the prediction set is used for testing the predictive

ability of the developed cross-correlation.

In the learning set, we chose the revolution frequency of the rotary drum

as the unique input parameter, because the influence of revolution frequency

on the mixing time is quite clear: higher revolution frequency leads to faster

mixing, and this conclusion has been widely investigated in the literature

(Van Puyvelde et al. (1999); Kwapinska et al. (2006); Liu et al. (2017)).

Seventeen sets of 3D and 2D simulations were conducted. Compared to the

benchmark 3D DEM simulation, only the revolution frequency was changed

from 10 to 50 rpm with an increment of 2.5 rpm. The simulation results are

plotted in Fig. 5.

For both 3D and 2D simulations, as can be seen in Fig. 5(a) and Fig.

5(b), the SMI at steady mixing state only fluctuates within a small range,

indicating that the revolution frequency of the rotary drum has no significant

influence on this index. Consequently, and for this reason, the connection

between 3D and 2D simulations would be quite trivial regarding the mixing

degree at steady state. Therefore, we have refrained from a respective cross-

correlation, concentrating on the behavior of mixing time. As Fig. 5(c) and

Fig. 5(d) illustrate, latter depends strongly on the revolution frequency for

both the 3D and 2D simulations. Expectedly, the mixing time decreases with

the increase in revolution frequency. However, the decreasing trend gradually

slows down.

In both cases, mixing time can be correlated with the revolution frequency

58



10 20 30 40 50

Revolution frequency [rpm]

0.75

0.8

0.85

0.9

0.95

S
M

I 
[-

]

Steady SMI 3D

(a)

10 20 30 40 50

Revolution frequency [rpm]

0.8

0.85

0.9

0.95

1

S
M

I 
[-

]

Steady SMI 2D

(b)

10 20 30 40 50

Revolution frequency [rpm]

10

15

20

25

30

35

40

T
im

e
 [

s
]

Mixing time 3D

Correlation

R
2
 = 0.98

(c)

10 20 30 40 50

Revolution frequency [rpm]

0

10

20

30

40

50

60

T
im

e
 [

s
]

Mixing time 2D

Correlation

R
2
 = 0.95

(d)

Figure 5: Relationships between mixedness and revolution frequency of rotary drum: (a)

mixing degrees (SMI) at steady mixing state from 3D DEM simulations (b) mixing degrees

(SMI) at steady mixing state from 2D DEM simulations (c) mixing times from 3D DEM

simulations (d) mixing times from 2D DEM simulations.
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f by a rational functionn, namely:

t3D =
781.1

11.28 + f

(
R2 = 0.98

)
, (6)

for the large 3D particle system, and

t2D =
743.8

3.957 + f

(
R2 = 0.95

)
. (7)

for its small 2D surrogate. Here, f is in rpm, times are in seconds. The values

of the coefficient of determination (R2) reflect a high consistency between the

correlations and the original simulation data. Combining Eqs. (6) and (7),

the mixing times of the 2D simulations and those of the 3D simulations (in

seconds) can be cross-correlated to:

t3D =
781.1t2D

743.8 + 7.323t2D
. (8)

This is the final result of learning set considerations, namely the cross-

correlation, which connects the mixing kinetics of the surrogate particle sys-

tem with full-scale mixing kinetics, enabling to calculate the mixing time in

3D (t3D) when the mixing time in 2D (t2D) is known from respective, low

cost simulations.

3.3. Test of predictive ability

3.3.1. Within the parametric range of learning set - revolution frequency

The developed cross-correlation along with the 2D simulation results con-

stitute our tool box for predicting the mixing time of the large particle sys-

tem considered (3D simulation). The test of predictive ability of the cross-

correlation is firstly performed within the parametric range of the learning
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set, which means for variation of the same parameter, the revolution fre-

quency of the rotary drum, as in the learning set, and within the same range

of values. This is done in two stages.

In the first stage, mixing times from the 3D simulations are compared to

predictions of the cross-correlation at exactly the same revolution frequencies

as in the learning set. Results of this comparison are presented in Table 3.

As can be seen, the maximum prediction error is 4.3 s and the overall mean

absolute error is 1.7 s. In addition, the cross-correlation seems to perform

better under high revolution frequencies. A possible reason is that, under

low revolution frequency, the motion regimes in 2D and 3D are different,

namely rather slumping in 2D but rolling in 3D. Nevertheless, the coefficient

of determination R2 of these 17 predictions for the learning set is 0.92, which

illustrates the high accuracy of the developed cross-correlation. In the second

stage, comparisons are undertaken for three additional revolution frequencies

that did not belong to the learning set. Results can be seen in Table 4, and

are equally satisfactory.

3.3.2. Beyond the parametric range of learning set - density ratio

In the learning set, revolution frequency was the only parameter consid-

ered for developing the cross-correlation. Contrary, density of the two kinds

of mixed particles was kept identical, in other words, their density ratio was

always one. However, different particle densities are usually involved when

mixing different ingredients in industrial processes. And, density ratio is also

an important parameter that has a strong impact on the particle mixing be-

havior. When the density ratio is larger than one, segregation phenomena

would appear (Pereira et al. (2011)). Denser particles tend to gather in the
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Table 3: Mixing times at different drum revolution frequencies from 3D simulations and

cross-correlation predictions.

Revolution Mixing time from Mixing time from Error of

frequency [rpm] 3D simulation [s] cross-correlation [s] prediction [s]

10 34.3 38.6 4.3

12.5 33.4 29.9 -3.5

15 32.5 30.6 -1.9

17.5 27.9 24.9 -3.0

20 25.1 26.2 1.1

22.5 23.2 21.0 -2.2

25 21.5 21.4 -0.1

27.5 19.9 20.6 0.7

30 18.3 19.6 1.3

32.5 18.5 17.5 -1.0

35 17.6 17.3 -0.3

37.5 15.6 18.1 2.5

40 15.2 14.2 -1.0

42.5 14.3 15.4 1.1

45 12.8 15.7 2.9

47.5 12.6 14.3 1.7

50 11.8 12.3 0.5
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Table 4: Test of prediction with three additional simulations.

Revolution Mixing time from Mixing time from Error of

frequency [rpm] 3D simulation [s] cross-correlation [s] prediction [s]

16 30.3 33.1 2.8

32 18.1 21.1 3.0

48 12.1 13.0 0.9

central axis of the bed and form a heavy core with lighter particles surround-

ing. Figure 6 shows the mixing patterns in the 3D rotary drum when density

segregation occurs (as visible from the outside, for a cross-sectional image see

Fig. 8(a)). Conducted 3D simulations show that, the larger the density ratio

is, the more obvious becomes the segregation phenomenon. The mechanism

of density segregation is not completely clear, but this kind of segregation is

generally attributed to buoyancy (Arntz et al. (2014)).

We would like to test whether our developed cross-correlation is still ap-

plicable in this density segregation situation, or not. For this purpose, 3D

and 2D simulations with density ratio from 1.25 to 2 at different revolution

frequencies were performed. To better represent the changing trend of mixed-

ness, five data points with density ratio of one from the previous learning set

are also plotted together with the new results in Fig. 7. The new results

correspond to 20 data sets with unequal particle density.

Figures 7(a) and 7(b) show that, for both 3D and 2D simulations, the mix-

ing degree at steady state decreases with increasing density ratio when the

revolution frequency is constant. When the density ratio is larger than one,

higher revolution frequency would promote the mixing process and finally
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(a) (b)

Figure 6: Snap-shots of mixture from 3D DEM simulations with different density ratio:

(a) density ratio = 1.25 at steady mixing state (b) density ratio = 2 at steady mixing

state (blue particles are heavier than white particles).

lead to a higher mixing degree in 3D. However, this effect is not observed

in 2D. Figures 7(c) and 7(d) indicate quite similar changing trends of mix-

ing time for 3D and 2D simulations. Mixing time generally decreases by

increasing either the density ratio or the revolution frequency.

As before, mixing times obtained from the 3D simulation and mixing

times predicted from the cross-correlation have, then, been compared. This

comparison is summarized in Table 5. We can find that the largest prediction

errors are still concentrated at low revolution frequency, similar to the pre-

vious predictions for the learning set. Here, the maximum prediction error

is with 9.0 s quite large, but the overall mean absolute error is with 3.7 s

significantly smaller. The coefficient of determination of these 20 new predic-

tions is with R2 = 0.86 satisfactory. This proves that the cross-correlation is
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Figure 7: Relationships between mixedness and density ratio at different revolution fre-

quencies: (a) mixing degrees (SMI) at steady mixing state from 3D DEM simulations (b)

mixing degrees (SMI) at steady mixing state from 2D DEM simulations (c) mixing times

from 3D DEM simulations (d) mixing times from 2D DEM simulations.
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still acceptably accurate and usable for situations with density ratio different

than unity.

These satisfactory results are not a coincidence, and we can find the rea-

son behind them by observing the mixing patterns of 3D and 2D drums (Fig.

8). When both simulations have reached a steady mixing state, the cross sec-

tion at mid length of the drum from the 3D simulation is contrasted in Fig.

8 with the cross section of the 2D simulation. It can be observed that these

two cross sectional images are quite similar, the heavier blue particles being

concentrated in the middle while the lighter white particles are surrounding

them in form of an outer ring. Although this phenomenon is more clear in

3D, it is also present in 2D. Put together, Figures 6(b) and 8(a) provide a

complete picture of density segregated mixture in 3D drum. They show that

the density segregation is really stable in the transverse direction. Contrary,

there is, except for the particles close to the front and rear wall, which almost

all are lighter white particles, almost no change in particle concentration in

the axial direction. Obviously, the overall mixing situation in the 3D drum

is dominated by the transverse mixing. This is why the connection of mixing

time between 3D and 2D simulations is still existent when with the density

ratio a new parameter is taken into account.

3.3.3. Beyond the parametric range of learning set - particle size ratio

Besides density difference, binary mixtures with different particle sizes

are also of practical interest and could also cause segregation. Differently

from the density segregation, size segregation though occur in both trans-

verse direction and axial direction (Ding et al. (2002), Kuo et al. (2005)).

In the transverse plane, small particles tend to concentrate in the core re-
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Table 5: Mixing times with density ratio larger than one at different revolution frequencies

from 3D simulations and cross-correlation predictions.

f [rpm]
Density Mixing time from Mixing time from Error of

ratio [-] 3D simulation [s] cross-correlation [s] prediction [s]

10

1.25 20.3 29.3 9.0

1.5 14.2 22.8 8.5

1.75 12.3 18.7 6.4

2 10.3 18.7 8.4

20

1.25 14.6 19.1 4.5

1.5 11.4 16.4 5.1

1.75 9.7 13.4 3.7

2 11.0 8.9 -2.1

30

1.25 13.4 18.5 5.1

1.5 10.7 13.2 2.6

1.75 9.1 10.9 1.9

2 8.4 7.5 -0.9

40

1.25 12.5 17.9 5.4

1.5 9.9 12.1 2.2

1.75 7.6 9.1 1.5

2 6.0 7.7 1.7

50

1.25 9.8 10.4 0.6

1.5 8.2 10.9 2.7

1.75 6.9 8.5 1.6

2 5.5 5.5 0.0

67



(a) (b)

Figure 8: Mixing patterns of 3D and 2D simulation when density segregation occurs

(density ratio = 2): (a) cross section at the middle of drum’s length in the 3D simulation

(b) cross section of the 2D simulation.

gion, whereas large particles tend to occupy the shell region, which could be

attributed to dynamic sieving (Arntz et al. (2014)). In the axial direction,

a pattern of alternating bands would form. Small particles are entrapped

in the body of the particle bed, whereas large particles accumulate at the

front and rear walls, which may be caused by the end wall effect (Cui et al.

(2014)).

In order to test the predictive ability of the cross-correlation when the

size segregation appears, 3D and 2D simulations with particle size ratio equal

to two were performed, where the large particles had a diameter of 6 mm

and the small particles were 3 mm in diameter. The filling degree remains

at 20% and the revolution frequency is 10 rpm. Figure 9 is a comparison

of mixing patterns between 3D and 2D simulation when size segregation
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occurs. Clearly, the 2D simulation cannot reflect the axial segregation due

to the particle movement, which in this case is restricted in the transverse

plane. Next we analyzed the SMI curves of 3D and 2D simulations, as shown

in Fig. 10. It is interesting to see that when size segregation occurs, the

SMI curve of the 3D simulation is totally different than before. After a short

period of elevation at the beginning, as the alternating bands form in the

axial direction, the mixing degree gradually decreases and finally reaches a

steady state. However, the trend of the mixing degree from the 2D simulation

is still similar to the trend without size segregation - with mixing degree

that increases, apart from fluctuations, monotonically in time. The value of

mixing time that the cross-correlation predicts for the large particle system

would be 20.4 s in this case, but this value has not much in common with

the behavior of the large system that the 3D DEM simulation shows. So, the

cross-correlation is not appropriate in cases that feature particle size ratio

significantly different from unity. This is mainly because the 2D simulation

cannot reflect the mixing process in the axial direction.
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(a) (b)

Figure 9: Mixing patterns of 3D and 2D simulation when size segregation occurs (particle

size ratio = 2): (a) snapshot of 3D simulation at 60 s (b) snapshot of 2D simulation at 60

s.
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Figure 10: SMI evolution of 3D and 3D simulation when size segregation occurs (particle

size ratio = 2): (a) SMI curve of 3D simulation (b) SMI curve of 2D simulation.
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4. Discussion

Recapitulating, the presented results have shown that the idea of approxi-

mating the mixing behavior of a large particle system by the mixing behavior

of a much smaller surrogate system and a scale-bridging cross-correlation is,

in principle, feasible. Taking DEM simulations of a 3D rotary drum as the

large system, and similar simulations in 2D as the small system, large system

behavior could be accurately predicted by means of computationally cheap

small system simulations and the previously derived cross-correlation. This

has been the case when the learning data set of the method was used, but

also for other conditions within the parametric range of the learning set.

Positively, perhaps unexpectedly positive, the new approach and the cross-

correlation have been found to hold even outside of the parametric range

of the learning set, for the mixing of particulate species of different den-

sity. Satisfactory predictive performance in mentioned cases is summarized

by means of a parity plot in Fig. 11. Though, there are obviously also limits

to the applicability of the concept, which have been reached and illustrated

by considering particulate species of different size.

In this context, comparison is interesting of the new concept with black-

box machine learning methods, such as artificial neural networks (Kumar

et al. (2018), Kalathingal et al. (2020)) or gradient boosting models (Qi

et al. (2018)). Methods of this kind are becoming increasingly popular for

predicting the behavior of big and complex systems of various kinds in indus-

try, and they can indeed provide excellent accuracy after training by massive

data. Compared to these black-box models, the cross-correlation method is

quite simple and can be derived from very limited sets of data, but still pro-
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Figure 11: Parity plot of mixing time from 3D simulation and the cross-correlation pre-

diction (including 17 points that correspond to the learning set; 3 points of additional

simulations that do not belong to the learning set but within its parametric range; 20

points that correspond to unequal density, outside of the parametric range of the learning

set).
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viding satisfactory predictive ability. Moreover, the cross-correlation method

has two notable merits, interpretability and expandability. Interpretability

stems from the physical foundation of the cross-correlation. For example,

when particles are mixed in a rotary drum, the transverse mixing is much

more intense than the axial mixing. The 2D simulation can well reflect parti-

cle mixing in the transverse plane and the trend of its mixing time is similar

to that of the 3D simulation when revolution frequency changes, which allows

the cross-correlation to be successfully developed. The expandability of the

cross-correlation is embodied in its already discussed potential to make pre-

dictions beyond the parametric range of its learning set, where conventional

machine learning models are usually unable to do this. With the here dis-

cussed aim of reconstructing the mixing behavior of particles in large rotary

drums, the expandability is limited when the axial mixing effect becomes

significant. However, the cross-correlation method might still successfully

perform outside of the parametric range of its learning set, capturing the

effects of further influential parameters such as filling degree, cohesive parti-

cles or additional blades. Whereas this, as well application to different kinds

of mixers at both, the large and the small scale, remain to be seen, even the

limited scope of the present work indicates new possibilities by the proposed

concept for fast and cheap predictions of the operation of industrial mixers

in the future.

5. Conclusion

A new concept for the prediction of the mixing time of particles in large

mixers from small system mixing behavior with the help of a scale-spanning
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cross-correlation has been prototypically explored. In the worked out ex-

ample, the large system is a 3D rotary drum, whereas the small system is

a 2D rotary drum. Data at both scales are generated by means of DEM

simulations. Main findings are:

• The cross-correlation along with the 2D simulation is a cheap surro-

gate for the expensive 3D simulation, 64 times cheaper in terms of

computational time cost.

• The development of the cross-correlation is based on 17 sets of simu-

lation data (learning set) gained with variation of the revolution fre-

quency. Predictions of mixing time within the parametric range of the

learning set are very satisfactory (R2 = 0.92).

• Predictions of mixing time beyond the parametric range of learning set

were also tested. Good results (R2 = 0.86) are obtained for the mixing

time of particles that differ in density.

• Contrary, the cross-correlation fails when particulate species of different

size are considered. This is due to the fact that segregation caused by

particle size difference in the axial direction cannot be neglected. So we

speculate that as long as the newly added parameter has no significant

impact on the axial mixing, the cross-correlation could work well.

Further generalization of the concept, as well as further investigation of

its applicability range and limits should be addressed in future work.
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Appendix A. Image processing

In order to get the center positions of each white or green particle in the

images, the Hue-Saturation-Value (HSV) color model was used, which is eas-

ier and more accurate compared with the Red-Green-Blue (RGB) color model

(Olaofe et al. (2013)). The image processing steps are briefly introduced as

follows:

1. Importing the experimental images into MATLAB, and then trans-

forming the RGB information of every pixel into the HSV space by

using the rgb2hsv function.

2. Selecting a representative white and a representative green particle

from the image manually. Based on the different range of their HSV

values, the white part and the green part in the image can then be

identified (Fig. A.1(a)), for more details see Jiang et al. (2018).

3. With the help of a normalized 2D cross-correlation algorithm and with

known value of ideal particle diameter, the center coordinates of white

and green particles were obtained as shown in Fig. A.1(b), where the

red dots represent the centers of the green particles, and the hollow

blue points represent the centers of white particles.
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(a)

(b)

Figure A.1: Image processing: (a) histograms of HSV channels for representative white

and green particles (b) particle center determination.
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Appendix B. DEM governing equations

Except of gravity, the force between two particles in contact with each

other was taken into account, decomposed in normal direction n and tangen-

tial direction t:

F = F n + F t. (B.1)

In the soft-sphere contact model, overlap is assumed to be possible between

two contacting particles. The normal force Fn, on the one hand, can be

expressed as:

Fn = knδni,j
− γnvnij

. (B.2)

As can be seen, the normal force can be further divided into two terms: the

spring force and the damping force. The spring force is the product of the

elastic constant for normal contact (kn) and the normal overlap distance of

particle i and particle j (δni,j
), whereas the damping force is the product of

the viscoelastic damping constant for normal contact (γn) and the normal

component of the relative velocity of the two particles (vnij
). On the other

hand, the tangential force also consists of two terms: the shear force and the

damping force,

Ft = ktδti,j − γtvtij . (B.3)

Here, kt is the elastic constant for tangential contact, δti,j is tangential over-

lap, γt is the viscoelastic damping constant for tangential contact and vtij

represents the tangential component of the relative velocity of the two parti-

cles. In addition, the tangential overlap is truncated to fulfill Coulomb’s law

of friction:

|Ft| ≤ µ |Fn| , (B.4)
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where µ is the friction coefficient between two particles. Hertz contact model

with tangential loading history condition was chosen to describe particle

interaction (Di Renzo and Di Maio (2004); Navarro and de Souza Braun

(2013)). In this model, kn, kt, γn and γt can be calculated through material

properties as follows:

kn =
4

3
Eeq

√
reqδni,j

, (B.5)

kt = 8Geq

√
reqδni,j

, (B.6)

γn =
√

5α
√
knmeq, (B.7)

γt =

√
10

3
α
√
ktmeq, (B.8)

α = − ln e√
ln2 e+ π2

, (B.9)

where e is the coefficient of restitution between two particles and α is the

dimensionless damping coefficient. Eeq, req, Geq and meq are the four equiva-

lent properties, which respectively represent Young’s modulus, radius, shear

modulus and mass of two contacting particles. These equivalent properties

can be expressed as follows:

1

Eeq

=
1− ν2i
Ei

+
1− ν2j
Ej

, (B.10)

1

req
=

1

ri
+

1

rj
, (B.11)
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1

Geq

=
2− νi
Gi

+
2− νj
Gj

, (B.12)

Gi =
Ei

2 (1 + νi)
, (B.13)

1

meq

=
1

mi

+
1

mj

, (B.14)

where νi and νj are the Poisson’s ratios of the two particles. As for the torque,

which controls the particle rotational motion, it can also be separated into

two parts: one caused by the contact forces between particles and another

one attributed to the rolling friction. The constant directional torque model

(Ai et al. (2011)) was selected to describe the torque contribution from the

rolling friction:

M i,j = −krknδni,j

ωrel

|ωrel|
req, (B.15)

where kr is the rolling coefficient, ωrel is the relative angular velocity between

two contact particles.

Appendix C. DEM parameters determination

Simulations from Yamamoto et al. (2016) indicated that Young’s modu-

lus, Poisson’s ratio and coefficient of restitution are not of essential impor-

tance for particles motion. Alizadeh et al. (2014) also proved that DEM

simulation results are still physically sound when unrealistic particle proper-

ties are used. Young’s modulus is related to the setting of time step. A lower

value of Young’s modulus was, therefore, used in order to save the simulation

time. Poisson’s ratio of γ-alumina particles was taken from Auerkari (1996)
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and the coefficient of restitution from measurements conducted by Mueller

et al. (2011) with an electromagnetic induction canon.

Friction can strongly affect the particle mixing behavior. Smooth surface

of γ-alumina particle makes the rolling resistance really weak in the mixing

system, so the rolling coefficient was set as 0.01. The determination of friction

coefficient is based on the comparison of the dynamic angle of repose between

experiment and DEM simulation. When the particle bed in the drum rotates

in rolling motion, which is the most recommended motion regime for the

mixing process, a so-called active layer of particle flow is formed on the bed

surface (Mellmann (2001)). The angle between inclined bed surface and

the horizontal is defined as the dynamic angle of repose (α). Under rolling

motion, a greater friction coefficient would lead to a higher dynamic angle of

repose.

In order to find the DEM simulation that can represent the experiment,

several trial simulations with different friction coefficients were conducted,

and then the dynamic angles of repose from experiment and simulations

were compared. In the experiment, after image processing, the positions of

particles at the transparent front face of the drum were stored. In the simu-

lations, the coordinates of every single particle in the drum can be obtained,

but only the first slice at the front face with thickness of one particle di-

ameter (3 mm) was considered for angle recording. A Cartesian coordinate

system was placed at the center of the cross section of the anticlockwise ro-

tating drum and the dynamic angle of repose was derived from two specific

particles: the particle with smallest coordinate value in x direction, and the

particle with biggest coordinate value in y direction, as shown in Fig. C.1.
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In the experiment, some particles which stuck electrostatically on the inner

wall of the drum were excluded from angle determination. The final dynamic

angle of repose is a time averaged value from 2 s to 10 s, during which the

angle fluctuation is relatively small. Figure C.2 gives an example for the

evolution of repose angle from a DEM simulation over time.

(a) (b)

Figure C.1: Dynamic angle of repose α in: (a) experiment (b) 3D DEM simulation (filling

degree 20%, revolution frequency 15 rpm).

The results of trial simulations with different friction coefficients are listed

in Table C.1. The friction coefficient was finally determined as 0.8 for all sub-

sequent simulations, where the dynamic angle of repose from the simulation

(30.4◦) is closest to the experimental value (30.6◦).
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Figure C.2: Evolution and average of dynamic angle of repose.

Table C.1: Average dynamic angle of repose under different conditions.

Friction coefficient Dynamic angle of repose [◦]

Experiment - 30.6

DEM simulation

0.5 26.7

0.6 28.8

0.7 29.8

0.8 30.4

0.9 30.9
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Nomenclature

Symbols

a, b, c Parameters in fitted curves -

e Coefficient of restitution -

E Young’s modulus Pa

f Revolution frequency rpm

fk Participation factor of particle type k -

F,F Force N

G Shear modulus Pa

k Elastic constant kg/s2

kr Rolling coefficient -

L Lacey index -

m Mass kg

M Torque from rolling friction N · s
n Number of subdomains -

N Number of particles -

p Number fraction of particles -

P Intermediate fraction in SMI -

Q Types of particles -

r Radius of particle m

R Density ratio -

R2 Coefficient of determination -

s2 Variance -

S mixing entropy index -

t Time s
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v Velocity m/s

x Number fraction of particles -

Greek symbols

α Damping coefficient -

γ Viscoelastic damping constant kg/s

δ Overlap distance of two particles m

µ Friction coefficient -

ν Poisson’s ratio -

ρ Density kg/m3

ω Angular velocity rad/s

Subscripts

0 Unmixed

1, 2, 3 Different particle types

2D Two-dimensional

3D Three-dimensional

10, 30, 50 Different revolution frequency

add Additional

bas Basic

cc Cross-correlation

eq Equivalent

i, j, k Indices

mix Mixing

n Normal direction

r Fully mixed

rel Relative
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sim Simulation

t Tangential direction

tot Total

Abbreviations

CFD Computational fluid dynamics

DEM Discrete element method

HSV Hue-Saturation-Value

RGB Red-Green-Blue

SMI Subdomain-based mixing index
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Chapter 3

Prediction of particle mixing in
rotary drums by a DEM data-driven
PSO-SVR model

The cross-correlation method of Chapter 2 is limited in that it cannot predict the mixing
degree at steady mixing state and only accounts for two influencing factors: revolution
frequency and density ratio. To overcome these limitations and expand the applicability, a
machine learning model was introduced as an alternative prediction approach. This model
incorporates size ratio and drum length as additional input parameters and extends the
prediction scope to include the mixing degree at steady mixing state.
A paper with the same title as this chapter has already been published:
Wencong Wu, Kaicheng Chen, and Evangelos Tsotsas. “Prediction of particle mixing

in rotary drums by a DEM data-driven PSO-SVR model.” Powder Technology 434 (2024):
119365.

As this paper is not open access, the attached version is the preprint manuscript
containing the same content as the published version. For highlights and the graphical
abstract, please visit:

https://doi.org/10.1016/j.powtec.2024.119365.
As the first author, my individual contributions include: designing and performing

all DEM simulations, analyzing the simulation data, developing the machine learning
model—PSO-SVR for mixing prediction, and writing the original draft with all figures
and tables.
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Abstract

Particle mixing in rotary drums is of significant industrial importance, but

very complex. Detailed simulation can be achieved using the discrete element

method (DEM), but the computational time cost is enormous. Therefore, we

combined machine learning with DEM simulations and established a DEM

data-driven particle swarm optimization and support vector regression (PSO-

SVR) model to predict mixing time and mixing degree at steady mixing state

for binary sphere mixtures in horizontal rotary drums with four independent

variables: revolution frequency, particle density ratio, particle size ratio, and

drum length. After hyperparameter tuning by PSO on a validation set of 25

simulations, the SVR model was trained on 81 DEM simulations. Testing on

another 25 simulations yielded excellent results with R2 = 0.95 for mixing

time and R2 = 0.90 for mixing degree. These results indicate that the PSO-

SVR model is suitable for rapid predictions of particle mixing in rotary drums

and other particle processing equipment.
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Machine learning

1. Introduction

Rotary drums are widely used for mixing granular materials in a variety of

industries such as chemical, food, pharmaceutical, mineral, etc. Although the

structure of a drum is quite simple, particle flow inside of the drum exhibits

great complexity. According to the different operation conditions, particle

motion in a rotary drum can evolve into six flow regimes: slipping, slumping,

rolling, cascading, cataracting and centrifuging [1], where rolling and cascad-

ing regimes are commonly chosen for mixing operations since they provide

relatively good particle movement [2–4]. Besides, when inventory particles

have varying sizes or densities, segregation phenomena occur, smaller and

denser particles generally tend to gather in the center of the particle bed

[5]. In a over half filled drum at low revolution frequency, radial streaks may

appear in a binary mixture system [5–7]. In a long rotary drum, a pattern

of alternating bands can be observed in the axial direction because of size

segregation [8–10]. Such complex particle dynamics have significant impacts

on mixing time and mixing degree [11–13], which in turn affect the efficiency

of a mixing process and the quality of final products. Therefore, predic-

tion of particle mixing under different operation conditions is significant in

industrial productions.

The discrete element method (DEM) developed by Cundall and Strack

[14] is a powerful tool to investigate particle flow behavior [15–17], and has

been widely used for particle mixing simulations [18–22]. Compared to the

experiment, DEM simulation can provide detailed information for every par-
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ticle in the whole system, including their instantaneous positions, instan-

taneous velocities and complete movement trajectories. These pieces of in-

formation are of great importance for further analysis of the particle flow,

but are hard to obtain experimentally. However, large-scale industrial DEM

modeling is still limited because of its extremely high computational cost

[23–25], especially in automatic control applications where parameters are

frequently changed.

In order to solve this problem, in recent years, some researchers turned

their attention to artificial intelligence and tried to combine DEM simulations

with data-driven models based on machine learning. For example, Kumar et

al. [26] developed an artificial neural network model to predict the mass dis-

charge rate from conical hoppers. Training data of this model were generated

from a set of 67 DEM simulations with seven varied input parameters. Li et

al. [27] used the support vector regression (SVR) method to predict two im-

portant properties of particle flow: angle of repose and collision energy inside

of a drum. They selected a set of 84 DEM simulations based on Kennard-

Stone algorithm to train their SVR model. Hu and Liu [28] proposed the

Hermite interpolation-based Markov chains method to make predictions of

the particle spatial distribution and mixing degree in a short rotary drum

with periodic boundaries. Only six DEM simulations were used for train-

ing, but a simple monodisperse particle system with only one variable, the

revolution frequency of the drum, was considered in this work.

Our previous work combined 2D DEM simulation results and a cross-

correlation method to predict particle mixing in a 3D drum [29]. Although

the cross-correlation can be developed based on a small amount of simulation
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data and is able to make predictions beyond the parametric range, its ap-

plication is limited by the number of changeable independent variables and

the ability to only predict mixing time, not the mixing degree. In order to

expand the predictive range to both, mixing time and mixing degree with

more independent variables, in this work we develop a DEM data-driven ma-

chine learning model, which can be used for fast predictions of the particle

mixing process of binary mixtures in rotary drums. DEM simulations will

be performed by changing four different independent variables: revolution

frequency of the drum, particle density ratio, particle size ratio and drum

length, which means that complex segregation phenomena are also taken

into account. The subdomain-based mixing index (SMI) is selected as the

measure of mixedness. From the evolution of SMI, we can obtain two key

characteristics of a mixing process: mixing time and mixing degree at steady

mixing state. The next step is to import the data from DEM simulations into

a machine learning model. Support vector regression (SVR) is combined with

an algorithm of particle swarm optimization (PSO) for prediction. After the

PSO-SVR model has been established, the mixing process within the whole

parameter space can be predicted quickly, instead of performing additional

time-consuming DEM simulations.

2. DEM simulation and data generation

2.1. Simulation conditions and parameters

The DEM simulations were performed for horizontal rotary drums with

binary sphere mixtures. Two kinds of particles were generated in the upper

half of the drum and then let to fall freely, finally forming a top-bottom
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stratification, as shown in Fig. 1. White particles initially at the bottom

(so-called benchmark particles) are always with constant size and density.

The end walls can be considered to affect the size segregation pattern [10].

In order to investigate the influence of this segregation on mixing, we set the

boundaries as fixed instead of periodic. The key parameters that maintain

constant value in the DEM simulations are listed in Table 1. The current

DEM simulation has been validated through experiments with a drum length

of 150 mm as reported in our previous work [29].

(a) (b)

Figure 1: Particles in the 150 mm rotary drum with top-bottom stratification (18800 white

particles + 18800 blue particles): (a) particle generation; (b) initial state before rotating.

In this work, we used the results from 131 DEM simulations (107 newly

performed and 24 taken from our previous work) with four varied independent

variables: revolution frequency of the drum, particle density ratio, particle

size ratio and drum length. These 131 simulations are split into three sets: a

training set (81), a validation set (25) and a test set (25). The training set is
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Table 1: Key parameters in the DEM simulations with constant value.

Parameter Value Unit

Drum diameter 194 mm

Filling degree 0.2 -

Benchmark particle diameter 3 mm

Benchmark particle density 1000 kg/m3

Young’s modulus 1×107 Pa

Poisson’s ratio 0.24 -

Coefficient of restitution 0.82 -

Friction coefficient 0.80 -

Rolling coefficient 0.01 -

used to train the model, the validation set is used for hyperparameter tuning,

and the test set is used to evaluate the final performance of the chosen model.

In the training set, every independent variable has three different levels, as

shown in Table 2, resulting in 81 simulations. As for the validation set and

the test set, the independent variables were chosen within the parametric

range established by the training set, but with different values.

Table 2: Values of four independent variables in the training set.

Independent variable Value

Revolution frequency [rpm] 10 30 50

Particle density ratio [-] 1 1.5 2

Particle size ratio [-] 1 1.5 2

Drum length [mm] 75 150 300
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We used the open-source software LIGGGHTS, which supports parallel

computing, to conduct DEM simulations [30]. The particle number in the

simulation is related to the drum length and the particle size ratio. Among

the simulations conducted in this study, the maximum total particle number

is reached in the 300 mm drum with a particle size ratio of one, amounting

to 75200 particles (37600 + 37600). As the drum length decreases and the

size ratio increases, the particle number diminishes proportionally. A typical

simulation on a single core without parallel computing takes about 18.8 h

for 60 s of mixing process time with 75200 particles; while using 16 cores for

parallel computing, the time consumption is reduced to 5.2 h, i.e., by more

than 3.6 times. All the simulations were performed on a commercial computer

with AMD Ryzen Threadrippe 2950X processor (16 cores/32 threads, 3.5

GHz) and 32 GB RAM.

2.2. DEM model

For an individual particle i with mass mi in the DEM model, its transla-

tional and rotational motion at each time step can be described by Newton’s

second law as:

mi
dvi
dt

=
Nc∑

j=1

(
F n
ij + F t

ij

)
+mig, (1)

and

Ii
dωi

dt
=

Nc∑

j=1

(T t,ij + T r,ij) , (2)

where v and ω are the translational and rotational velocities of the particle,

respectively. In addition to gravity, the contact force acting on particle i can

be decomposed into normal and tangential directions. While interacting with
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particle j, torque on particle i can also be divided into two parts: the tangen-

tial torque T t,ij, which makes the particle to rotate, and the rolling friction

torque T r,ij, which impedes the relative rotation between two particles. Here,

Nc represents the total number of particles contacting with particle i; contact

forces and torques from them are summarized. We chose the Hertz contact

model with tangential loading history condition to describe particle interac-

tion [31] and the constant directional torque model to calculate the torque

contribution from the rolling friction [32].

2.3. Mixing quantification

A recently proposed mixing index, the subdomain-based mixing index

(SMI) [33], was selected for the quantitative description of mixing in this

study. Compared to other fraction-based indices, which have the distinct

feature of calculating the number fraction of particles in selected regions, such

as the classic Lacey index [34] and the widely used entropy of mixing [35],

SMI is suitable for binary or multi-component mixtures mixed in any initial

proportion. Moreover, the calculation of SMI includes the entire mixing

system, avoiding the randomness caused by sampling.

The number of subdomains is kept the same as in our previous work (1250,

corresponding to a grid of 5×5×50). Specifically, in the axial direction, the

rotary drum was first divided into 50 equivalent layers. Then a circumscribed

square of the circular cross section of the drum was defined, and a 5×5

equidistant square grid was laid on this square. The detailed gridding manner

is shown in Fig. 2.

The core idea of the SMI is obtaining local mixing information from all

subdomains and then integrating them to get the overall index. For a mixture
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Figure 2: Gridding manner for SMI.

that consists of Q types of particles within n subdomains, the participation

factor of particle type k can be calculated as:

fk =
max (

∑n
i=1N1i,

∑n
i=1N2i, . . .

∑n
i=1NQi)∑n

i=1Nki

. (3)

The modified fraction of k-type particles with respect to the maximum num-

ber of particles among the Q types in subdomain i is:

Pki =
Nkifk

max (N1if1, N2if2, . . . , NQifQ)
. (4)

The local SMI for subdomain i is calculated as:

SMI(i) =
1

Q− 1

(
Q∑

k=1

Pki − 1

)
. (5)

Finally, the total mixing index is obtained by averaging all the local SMIs as

follows:

SMI =
1

Ntot

n∑

i=1

[
SMI(i)

Q∑

k=1

Nki

]
, (6)
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where Ntot is the total number of particles in the whole mixing system. The

range of SMI is between zero and one: zero indicates a completely separated

state, whereas one means that different types of particles are perfectly mixed.

After calculating the SMI values during a mixing process, the next step is

to determine the mixing time and mixing degree at steady mixing state from

the curve of SMI over time. In previous studies, researchers always applied

different transformations of exponential functions or cubic polynomials to

fit the index evolution [29, 36, 37]. However, this procedure is not suitable

for mixing particles with different densities and diameters. Because when

segregation phenomena occur, the shape of the mixing index evolution curve

will dramatically change, especially for the size segregation, as shown in Fig.

3. The SMI curves all start from about 0.35 instead of zero and have big

fluctuations during the first two seconds. At the initial state, the edges of the

subdomains do not coincide with the dividing plane of the two colored layers;

during the first turn, many particles change subdomain in a short time. When

mixing particles with identical density and size, the SMI gradually increases

and then enters a stable stage after a period of time, with finally quite well

mixed particles, as can be seen in Fig. 3(a). If two kinds of particles have

different density but same size, only density segregation occurs. The shape of

the SMI curve here is similar to the first case, but it approaches the steady

state much faster. As the mixing process proceeds, heavier blue particles

tend to gather in the central axis of the bed and form a heavy core with

lighter white particles surrounding, which leads to a low mixing degree, as

illustrated in Fig. 3(b). Figure 3(c) shows the SMI evolution when there is

only size segregation. After a short period of increasing, the mixing in the
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rotary drum undergoes a transition from an unstable intermediate state to a

stable segregation state, and the SMI drops sharply until it reaches a steady

level, even smaller than the initial value, resulting in a prolonged mixing time

and poor mixing quality. The bigger blue particles are collected at both ends

of the drum, whereas smaller white particles are concentrated in the middle

of the particle bed, together forming three distinct alternating bands. In Fig.

3(d) we can find that when density segregation and size segregation appear

simultaneously, the SMI value decreases only slightly after having reached a

peak. Compared with the previous two cases, here the mixing time becomes

shorter and the steady SMI is also higher, which indicates that the two types

of segregation oppose each other, facilitating mixing when simultaneously

present. For a binary mixture, density segregation and size segregation tend

to cancel each other when one type of the particles is larger than the other in

both size and density, which has also been observed experimentally by Jain

et al. [6].

In order to determine the mixing time and the mixing degree at steady

state from different situations, we process the SMI evolution as follows:

1) Run each simulation for 60 s and check the difference in SMI between

50 s and 60 s. If the difference is less than 0.02, then average the SMI

values over 50–60 s as the mixing degree at steady mixing state, otherwise

continue the simulation for further 60 s and repeat the same procedure

until steady state SMI has been found;

2) Calculate the moving average of the original SMI curve as the smoothed

SMI curve by the smooth function in MATLAB with a span of the moving

average of 49 considered data points to reduce noise or fluctuations;
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(a) (b)

(c) (d)

Figure 3: Different shapes of SMI evolution and corresponding mixing patterns at steady

state (drum length = 150 mm, revolution frequency = 30 rpm), white particles are the

benchmark particles with relatively low density and small size: (a) particle density ratio

= 1, particle size ratio = 1, no segregation; (b) particle density ratio = 2, particle size

ratio = 1, only density segregation; (c) particle density ratio = 1, particle size ratio = 2,

only size segregation; (d) particle density ratio = 2, particle size ratio = 2, density and

size segregation occur simultaneously.
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3) Lay two horizontal straight lines from right to left on the image of the

smoothed SMI curve, the values of which should correspond to 95% and

105% of the mixing degree at steady state respectively. Find the first

intersection point between the curve and the lines, and take the corre-

sponding time as the mixing time.

Figure 4 gives an example of the above mentioned determination process.

(a) (b)

Figure 4: Example of determining (a) mixing degree at steady state; (b) mixing time from

a SMI evolution.

2.4. Simulation results in the training set

The DEM simulation results for the training set are briefly analyzed in

this section. Figure 5 plots the simplest cases, in which no segregation exists.

In other words, the density ratio and the size ratio are both equal to one.

The results about mixing time shown in Fig. 5(a) are generally in line with

intuition: higher revolution frequencies lead to faster mixing, while longer

rotary drums take longer to become well mixed. In the low revolution fre-

quency region (10–30 rpm), increasing rotational speed has a significant effect

on improving mixing efficiency. As for the mixing degree at steady mixing

105



state, Fig. 5(b) illustrates that the increase of revolution frequency has only

little effect, but the mixing degree is relatively higher in longer drums. This

is because for drums of different lengths the total number of subdomains in

the SMI calculation is the same (5×5×50 = 1250). In shorter drums, non-

uniformity may occur in the, absolutely seen, smaller subdomains, while the

composition tends to become more uniform in the larger subdomains of the

longer drum. This is actually a commonality of the fraction-based mixing in-

dices. Both the authors of entropy of mixing [35] and SMI [33] have observed

this phenomenon. When we choose a smaller subdomain, it means that we

use a more rigorous perspective to examine the mixing state. In our previous

study [29], subdomains of different sizes were also compared in more detail.

(a) (b)

Figure 5: Relationship between mixedness and revolution frequency in drums of different

lengths without segregation phenomenon: (a) mixing times; (b) mixing degrees (SMI) at

steady mixing state.

Next cases where only density segregation occurs are considered. The

variation of mixing time in Fig. 6(a) shows that, when there is a density

segregation, increasing revolution frequency always leads to faster mixing.

But in the high revolution frequency region (30–50 rpm), the mixing times
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of particles with different density ratios are almost identical. Regarding the

mixing degree at steady mixing state, unlike the case without segregation,

increasing the revolution frequency significantly improves the mixing quality,

as shown in Fig. 6(b). Additionally, the larger the density ratio, the poorer

the mixing quality.

(a) (b)

Figure 6: Relationship between mixedness and revolution frequency in the drum of 75 mm

length with density ratio larger than one: (a) mixing times; (b) mixing degrees (SMI) at

steady mixing state.

Finally, the cases where only size segregation appears are analyzed. Fig-

ure 7(a) shows that mixing time still follows the trend of faster mixing at

higher revolution frequencies, but this trend is not that pronounced when

mixing particles with high size ratio (2) in the high revolution frequency re-

gion (30–50 rpm). It also can be seen that particles with larger size ratio

are mixed (or rather segregated) much faster than those with smaller size

ratio. The behavior of mixing degree at steady mixing state can be seen in

Fig. 7(b). Similar to the case of density segregation, when size segregation

occurs, increasing the revolution frequency promotes mixing. However, the

difference in steady mixing degree between a particle size ratio of 1.5 and
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2 is negligible. This maybe because a particle size ratio of 1.5 is enough to

form clear and stable segregation bands in the axial direction, so that further

increasing the particle size ratio does not significantly deteriorate the mixing

degree.

(a) (b)

Figure 7: Relationship between mixedness and revolution frequency in the drum of 75

mm length with size ratio larger than one: (a) mixing times; (b) mixing degrees (SMI) at

steady mixing state.

From the above analysis, it can be observed that each independent vari-

able (revolution frequency, particle density ratio, particle size ratio, drum

length) has its own distinct effects on mixing time and mixing degree. When

they interact together, the situation becomes much more complex, making it

extremely challenging to capture the intricate relationships and nonlineari-

ties between the parameters and the mixing outcomes through conventional

empirical methods. In this kind of situation, the use of machine learning

methods may be highly rewarding.
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3. Data-driven model for prediction

3.1. Support vector regression model

Support vector regression (SVR) is a variation that extends the use of sup-

port vector machines from solving classification problems to solving regres-

sion problems [38, 39]. Compared to other machine learning models, SVR has

outstanding advantages in handling non-linear and high-dimensional data,

especially with small sample size. Therefore, we chose SVR as the DEM

data-driven model for mixing prediction in this work.

The basic idea behind SVR while dealing with non-linear regression is:

first, transforming the non-linear problem into linear by mapping samples

from the input space to a high-dimensional feature space; then constructing

an optimal hyperplane in the feature space, which minimizes the distance

between partial training samples (so-called support vectors) and the hyper-

plane, while still allowing a certain degree of error on both sides of the hy-

perplane. Those two processes are illustrated in Fig. 8, with mathematical

symbols that will be explained in the following.

Figure 8: Scheme of SVR for non-linear regression in one dimension.

Specifically, assume training set data to be {(x1, y1) , . . . , (xl, yl)}, where l
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is the number of samples in the training set, which is equal to 81 in the present

work. Our input data vector xi includes four elements: revolution frequency,

particle density ratio, particle size ratio, and drum length, whereas the target

value y represents either mixing time or mixing degree at steady mixing state,

calculated based on the DEM simulation results. The hyperplane in the high-

dimensional feature space can be represented as:

f(x) = wTϕ(x) + b, (7)

where w is the vector normal to the hyperplane, b denotes the offset, and

ϕ(x) represents the non-linear mapping function which maps the original

input data to the high-dimensional feature space.

The goal of SVR is not only to minimize the error between predicted and

actual values but also to ensure that the function is as simple as possible.

Therefore, the objective function of SVR can be expressed as [40]:

min
w,b

1

2
‖w‖2 + C

l∑

i=1

`ε (f (xi)− yi) , (8)

where the first term is the regularization term of the model, which controls

the complexity of the model; the second term represents the loss function of

the training error; and the penalty coefficient C is one of the hyperparameters

used to balance the fitting ability and generalization ability of the model. A

smaller C allows the model to be more tolerant upon training errors. On

the other hand, a larger C imposes a higher penalty for errors, leading to a

stricter fit to the training data, which may result in overfitting. It should

be noted that this kind of hyperparameter needs to be set in advance before

training.
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Unlike the commonly used least square method, which calculates the pre-

diction error for every data point, SVR adopts an ε-insensitive loss function,

only penalizing predictions that are farther than ε from the desired output:

`ε(a) =





0, if |a| 6 ε

|a| − ε, otherwise.
(9)

In Fig. 8, this ε-insensitive loss function can be visualized as a tube. Data

points that fall within this tube have a loss of zero, since their predictions

are within an acceptable range. Data points which lie on the edge of the

tube or outside the tube are called support vectors. A larger ε means a wider

tube as well as less support vectors, which may lead to more training error

but can result in a model that is insensitive to noise. A small ε will lead a

narrower tube with more support vectors outside, which makes the model

more accurate on the training data but also increases the risk of overfitting.

Similar to the penalty coefficient C, the margin of tolerance ε is another

hyperparameter that needs to be set before training the SVR model.

By introducing the slack variables ξi and ξ∗i , which represent the distance

between support vectors and the upper and lower margin of the ε-insensitive

tube, Eq. 8 can be reformulated as:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i ) , (10)

subject to:

yi − f(xi) ≤ ε+ ξi,

f(xi)− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, 2, . . . , l.

111



By constructing a Lagrange function, the relationship between normal

vector of the hyperplane w and non-linear mapping function ϕ(x) can be

derived as:

w =
l∑

i=1

(αi − α∗
i )ϕ(xi), (11)

where αi and α∗
i are Lagrange multipliers. Substituting Eq. 11 into Eq. 7,

we get:

f(x) =
l∑

i=1

(αi − α∗
i )ϕ(xi)

Tϕ(x) + b =
l∑

i=1

(αi − α∗
i ) k(xi,x) + b, (12)

where k(xi,x) is the kernel function, the result of which, calculated in the

original input space, is equal to the inner product of the transformed feature

vectors ϕ(xi)
Tϕ(x). The introduction of the kernel function is motivated

by the inherent difficulty in directly computing the inner product in high-

dimensional feature spaces. By applying the kernel function, we no longer

need to know the specific form of the mapping function ϕ(x), because the

high-dimensional feature space can be implicitly defined by specifying the

kernel function.

For the non-linear SVR, there are many different kernel functions to

choose from, such as polynomial kernel, radial basis function (RBF) kernel

and sigmoid kernel. Among them, the RBF kernel function was selected in

this work because it offers a good balance between flexibility, computational

efficiency, and ease of use. Its expression is:

k(xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, (13)

where γ is the kernel function coefficient, which needs to be greater than

zero. And, this is the last hyperparameter in our SVR model.
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Additionally, since our four input variables (revolution frequency of the

drum, particle density ratio, particle size ratio, drum length) vary in different

ranges, preprocessing is necessary. We standardize each value of every input

variables by subtracting the respective mean and scaling to unit variance,

which can be expressed as:

xi,st =
xi − u

s
, (14)

where xi,st is the standard score of the input vector xi, u is the mean of this

vector in the training sample, and s is its standard deviation.

3.2. Particle swarm optimization

As mentioned in the last section, there are three hyperparameters: penalty

coefficient C, margin of tolerance ε and kernel function coefficient γ in the

SVR model, which are not learned from the training data but need to be

set before training in order to control the behavior of the learning algorithm.

Setting hyperparameters correctly is crucial for achieving good performance

with the predictive model.

In Section 2.1, we explained that all of the 131 simulation data were

divided into three sets, where the validation set which consists of 25 sim-

ulations was prepared for hyperparameter tuning. Hyperparameter tuning

for SVR is essentially an optimization problem with the objective of finding

the best set of hyperparameters that gives the highest predictive accuracy

on the validation set. Particle swarm optimization (PSO) is a metaheuristic

optimization algorithm inspired by the social behavior of bird flocking or fish

schooling [41]. This optimization method is able to scan the entire search
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space and give the global optimal solution efficiently, which makes it really

suitable for hyperparameter tuning in SVR.

The first thing to note is that the so-called particles in PSO are differ-

ent from the particles mixing in the drum. In PSO, a group of particles,

also called the swarm, each representing a potential solution, move through

the search space towards the optimum solution by updating their positions

and velocities based on their own experiences and the experiences of their

neighboring particles. The algorithm begins with a random initialization of

particle positions within the search space. Each particle evaluates its posi-

tion using an objective function and keeps track of its personal best solution.

The particles then update their velocities by considering their personal best

positions and the global best position found by any particle in the swarm.

The particles’ positions are also updated based on their velocity. Through

this iterative process, PSO explores the search space and converges towards

the global optimum efficiently.

The objective function here evaluates the performance of each hyperpa-

rameter setting on the validation set, which can be characterized by the

coefficient of determination:

R2(y, ŷ) = 1−
∑l

i=1 (yi − ŷi)2∑l
i=1 (yi − ȳ)2

, (15)

where ŷi is the predicted value of mixing time or mixing degree at steady

mixing state from SVR model of the i-th sample, yi corresponds to the true

value obtained from DEM simulation results and ȳ is the mean of true values

across all l samples. The R2 value indicates the proportion of the variance in

the true values that is explained by the predicted values, with higher values

indicating better predictive performance.
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In PSO, for particle i at iteration r, the velocity and position updates are

given by [42]:

vi,r+1 = wvi,r + c1r1
(
pbesti,r − pi,r

)
+ c2r2

(
gbestr − pi,r

)
, (16)

pi,r+1 = pi,r + vi,r+1, (17)

where pi,r = (C, ε, γ) is the position vector of particle i at iteration r, vi,t is

the corresponding velocity vector, pbesti,r is the personal best position found

by particle i up to iteration r, gbestr is the global best position found by the

swarm up to iteration r, w is the inertia weight that controls the impact of

the previous velocity on the current velocity, c1 and c2 are the acceleration

coefficients that control the impact of the personal best and global best posi-

tions on the particle’s velocity, r1 and r2 are random numbers sampled from

a uniform distribution between zero and one. In order to balance exploration

and exploitation of the search space, the inertia weight w is set as 0.4, and

the setting of acceleration coefficients is c1 = c2 = 2.

3.3. PSO-SVR model implementation

Our PSO-SVR model is written in Python. The SVR part has been

implemented through an open source machine learning library, Scikit-learn

[43], and then connected to the self-programmed PSO model. The flowchart

of the whole model is shown on Fig. 9.

As mentioned in Section 2.1, the DEM simulation data were first grouped

into three sets, where the validation set was imported into the PSO for hy-

perparameter tuning. The PSO model starts with initialization of population

parameters, which include the population size and the number of generations.
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Figure 9: Flowchart of PSO-SVR model.

The population size is the number of particles (solutions) in PSO, and the

number of generations is the maximum number of iterations. We observed

that varying those two population parameters from 20 to 40 gives essentially

the same results, so both of them are set as 20. Then, after initializing

the particles’ velocities and positions, the objective function (Eq. 15) can

be calculated through the SVR algorithm. For a given combination of hy-

perparameters (C, ε, γ), the SVR algorithm will compute a present optimal

hyperplane with fixed (w, b) (Eq. 7). As the cycle proceeds, the values of

(C, ε, γ) and (w, b) will be updated continuously, until the maximum number

of iterations has been reached. Eventually, the global best position (C, ε, γ)

of PSO in the last iteration will be stored and imported into the SVR algo-

rithm along with the training set for PSO-SVR model training, and the final

optimal hyperplane will be obtained. This marks the fact that the PSO-SVR
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model has been established and can be used to predict new data (test set).

It is worth noting that we developed two PSO-SVR models for predicting

mixing time and mixing degree at steady mixing state separately, to ensure

their predictive accuracy. In other words, the combinations of hyperparam-

eters in these two predictive models are different, which reflects the specific

requirements of each prediction task, resulting in models that are tailored

to their respective objectives. Through PSO, the optimal hyperparameters

for mixing time prediction are determined as: (C, ε, γ) = (67.8, 0.1, 1.71),

and for mixing degree prediction as: (C, ε, γ) = (16.1, 0.001, 0.151). It is

interesting to see that the margin of tolerance (ε) of SVR model for mixing

time is much larger than that for mixing degree, indicating that the model

for mixing time is more tolerant to variations and uncertainties. This may be

because the ranges of those output variables are different. In the validation

set, the maximum and minimum values of the mixing degree only differ by

three times, but that of mixing time can differ by more than six times.

4. Predictive results from PSO-SVR model

After hyperparameter tuning, the best set of hyperparameters was used

to train the predictive model using the training set. The final performance of

the model was then evaluated on the test set. It is noteworthy that the PSO-

SVR model exhibits a remarkable improvement in time efficiency, as it only

takes tens of seconds from hyperparameter tuning to prediction, compared to

spending several hours to run a new DEM simulation. The predictive results

of mixing time and mixing degree at steady mixing state in the training and

test set are summarized by means of parity plots in Fig. 10.
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(a) (b)

(c) (d)

Figure 10: Comparison between DEM simulation and PSO-SVR prediction: (a) mixing

time of the train set; (b) mixing time of the test set; (c) mixing degree (SMI) at steady

mixing state of the train set; (d) mixing degree (SMI) at steady mixing state of the test

set.
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On the whole, the prediction of mixing time in the training set has an

extremely high accuracy of R2 = 0.99, as can be seen in Fig. 10(a). Among

a total of 81 training data points, only four points deviate from the reference

line due to under-forecasting. These four mixing processes all appear under

the lowest revolution frequency (10 rpm) with relatively large particle size

ratio (1.5 or 2) in relatively long drum (150 or 300 mm). The mixing curves

under these conditions are distinct from a lot of other cases, similar to the

curve shown in Fig. 3(c). The drum in Fig. 3(c) is, though, 150 mm long,

and in the still longer drum, the alternating bands in the axial direction will

be more numerous and unstable, as shown in Fig. 11, further increasing the

difficulty in predicting the mixing time. However, such error can be reduced

by adding more similarly conditioned data points to the training set.

As for the mixing time in the test set (Fig. 10(b)), the PSO-SVR model

provides very satisfactory result with R2 = 0.95, which is only slightly lower

than its predictive accuracy on the training set, shows the strong general-

ization ability of this model. And, the data points are evenly distributed

on both sides of the reference line, which indicates that the model does not

exhibit any particular overestimation or underestimation tendencies.

Figures 10(c) and (d) show the prediction of mixing degree (SMI) at

steady mixing state in the training set and the test set, respectively. The

predictive accuracy of the PSO-SVR model for the training set is quite good

with R2 = 0.98. The predictive accuracy for the test set remains acceptable

(R2 = 0.90), though visibly smaller. The reason can be found in Table 3,

which gives the detailed predicted results of the test set.

To present the results more intuitively, different measures were adopted
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Figure 11: Alternating bands in the 300 mm drum, blue particles have the bigger size

(revolution frequency = 10 rpm, particle density ratio = 1, particle size ratio = 1.5).
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Table 3: Prediction results of test set.

Independent variable Mixing time Mixing degree at steady mixing state

n rdens rsize L tDEM tPSO−SVR tAE SMIDEM SMIPSO−SVR SMIAPE

[rpm] [-] [-] [mm] [s] [s] [s] [-] [-] [%]

40 2 1.5 150 16.4 15.4 1.0 0.664 0.664 0.0%

30 1.25 1.75 150 38.0 37.7 0.3 0.346 0.321 7.0%

11 1 1 150 31.6 33.2 1.6 0.843 0.846 0.3%

12.5 1 1 150 30.6 32.7 2.1 0.839 0.846 0.8%

22.5 1 1 150 22.8 25.4 2.6 0.844 0.848 0.5%

27.5 1 1 150 22.2 21.3 0.9 0.848 0.849 0.1%

35 1 1 150 16.8 18.3 1.5 0.856 0.852 0.5%

40 1 1 150 13.8 16.0 2.2 0.862 0.854 0.9%

45 1 1 150 12.2 12.4 0.2 0.853 0.856 0.4%

10 1.75 1 150 12.4 12.7 0.3 0.474 0.465 2.0%

20 1.75 1 150 18.8 16.0 2.8 0.518 0.541 4.5%

40 1.75 1 150 16.2 14.3 1.9 0.609 0.637 4.5%

50 1.75 1 150 10.0 9.5 0.5 0.634 0.630 0.7%

32 1 1 150 20.0 19.2 0.8 0.854 0.850 0.4%

16 1.8 1 150 10.2 14.0 3.8 0.473 0.500 5.6%

48 1.4 1 150 9.0 9.7 0.7 0.713 0.748 4.8%

20 1.25 1.2 100 29.2 25.4 3.8 0.728 0.591 18.8%

20 1.25 1 100 22.0 17.7 4.3 0.612 0.694 13.5%

20 1.75 1.6 100 22.8 27.6 4.8 0.624 0.641 2.8%

40 1.25 1.2 100 10.8 14.4 3.6 0.727 0.689 5.2%

40 1.25 1 100 10.0 10.8 0.8 0.709 0.752 6.0%

40 1.75 1.6 100 9.4 11.7 2.3 0.646 0.660 2.2%

20 1.75 1.6 200 52.8 56.6 3.8 0.500 0.543 8.7%

40 1.25 1.2 200 31.4 30.5 0.9 0.782 0.664 15.0%

40 1.25 1 200 25.6 24.2 1.4 0.760 0.814 7.1%

* n is the revolution frequency of the drum, rdens is the particle density ratio, rsize is the particle size ratio,

L is the drum length, AE means absolute error and APE represents absolute percentage error, both as

absolute (always positive) values.
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to depict the errors in the two output variables. Specifically, the absolute

error was used to characterize the deviation of mixing time, while the per-

centage error was used to quantify the deviation of mixing degree at steady

mixing state; both as absolute values, i.e. always positive defined. It can be

found that, in terms of mixing degree, the three sets of data with the largest

percentage errors exceeding 10% were all generated at the density ratio of

1.25. Notably, when the density ratio equals to 1, there is no density segrega-

tion, whereas a density ratio of 1.5 leads to significant segregation. The lack

of data describing intermediate transition states in the training set results in

less accurate predictions of the mixing degree. Choosing smaller intervals of

density ratio variation in the train set could potentially enhance the predic-

tive accuracy in this regard. Nevertheless, in general, the mean percentage

error of mixing degree prediction in the test set is only 4.5%, which proves

the effectiveness of the PSO-SVR model. Moreover, as for the mixing time

in the test set, the mean absolute error is 2.0 s and the maximum absolute

error is 4.8 s. Such small errors indicate that the PSO-SVR model is also

highly suitable for predicting mixing times.

5. Conclusion

We developed a data-driven PSO-SVR model based on the results of DEM

simulations to rapidly predict the particle mixing process, including mixing

time and mixing degree at the steady mixing state, for binary mixtures in

rotary drums. Four independent variables: revolution frequency of the drum,

particle density ratio, particle size ratio and drum length were taken into

account.
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The prediction results of mixing time and mixing degree at steady mixing

state in the training set are excellent with R2 = 0.99 and R2 = 0.98, respec-

tively. Very satisfactory results (R2 = 0.95) are obtained for the mixing time

prediction in the test set, with a mean absolute difference to the real value

of only 2.0 s. Although the predictive accuracy of mixing degree at steady

mixing state in the test set is lower with R2 = 0.90, this value and the small

mean percentage error (4.5%) still make the result acceptable.

Overall, the present work demonstrates the effectiveness and efficiency of

using the PSO-SVR model for predicting particle mixing in a rotary drum.

This lays a foundation for extending the model to larger and more complex

industrial mixers. In future work, we aim to consider additional independent

variables, such as different filling degrees and particle shapes, and compare

the PSO-SVR model with other data-driven machine learning models to fur-

ther improve prediction accuracy.
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Nomenclature

Symbols

a loss of prediction -

b offset -

c1 and c2 acceleration coefficients -
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C penalty coefficient -

fk participation factor of particle type k -

F force N

g acceleration of gravity m/s2

gbest global best position -

I moment of inertia kg/m2

k kernel function -

l number of samples -

`ε ε loss function -

m mass kg

n number of subdomains -

N number of particles -

p position vector -

pbest personal best position -

P intermediate fraction in SMI -

Q types of particles -

r1 and r2 random numbers between zero and one -

R2 coefficient of determination -

s standard deviation of the input vector -

t time s

T t tangential torque N · s
T r rolling friction torque N · s
u mean of the input vector -

v velocity vector in PSO -

w inertia weight -
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w normal vector of the hyperplane -

x input vector -

xst standard score of the input vector -

y target value -

ŷ predicted value -

ȳ mean of target values -

Greek symbols

α and α∗ Lagrange multipliers -

γ kernel function coefficient -

ε margin of tolerance -

ξ and ξ∗ slack variables -

φ non-linear mapping function -

Superscripts and subscripts

c contacting

i, j, k indices

n normal direction

r iteration

t tangential direction

T transpose

tot total

Abbreviations

DEM discrete element method

PSO particle swarm optimization

SMI subdomain-based mixing index

SVR support vector regression
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Chapter 4

Prediction of rod-like particle mixing
in rotary drums by three machine
learning methods based on DEM
simulation data
A machine learning model has been successfully applied in Chapter 3 to predict the

mixing of spherical particles in rotary drums, yielding highly satisfactory results. Building
on this success, the approach was extended to predict the mixing of non-spherical particles.
A typical non-spherical particle type—rod-like particles—was selected and represented
using the multi-sphere method. Additionally, three different machine learning models were
developed and comprehensively compared.
A paper with the same title as this chapter has already been published:
Wencong Wu, Kaicheng Chen, and Evangelos Tsotsas. “Prediction of rod-like particle

mixing in rotary drums by three machine learning methods based on DEM simulation
data.” Powder Technology 448 (2024): 120307.
This article is open access. Therefore, in accordance with the CC BY-NC 4.0 license

(https://creativecommons.org/licenses/by-nc/4.0/), the published electronic ver-
sion is provided, corresponding to pages 133–146 of this dissertation. It can also be
accessed via the following link:

https://doi.org/10.1016/j.powtec.2024.120307.
As the first author, my individual contributions include: designing and performing

all DEM simulations, analyzing the simulation data, developing the three machine learning
models—ANN, ERT and PSO-SVR for mixing prediction, and writing the original draft
with all figures and tables.
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• Build machine learning models to pre-
dict rod-like particle mixing in rotary
drums.

• The training, validation, and test data
are sourced from 121 DEM simulations.

• Models can predict mixing time and
degree under four distinct independent
variables.

• Each model has its pros and cons, but
the overall predictions are satisfactory.

• Compared to DEM simulations, machine
learning models save a lot of time.
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The mixing of non-spherical particles in rotary drums exhibits significant complexity, particularly when
density segregation and size segregation occur simultaneously. Three machine learning models: artificial neural
network (ANN), extremely randomized trees (ERT), and particle swarm optimized support vector regression
(PSO-SVR) were developed to predict the mixing time and mixing degree at the steady mixing state of rod-
like particles in rotary drums. The training, validation, and test data for the machine learning models were
generated from 121 discrete element method (DEM) simulations with four independent variables: revolution
frequency, particle density ratio, particle size ratio, and drum length. All three models predicted the mixing
degree accurately with R2 ≥ 0.94. The ERT and PSO-SVR models also predicted the mixing time well with R2
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1. Introduction

Particle mixing is quite common in various industrial fields, such as
chemical, food and pharmaceutical industries. Rotary drums are widely
popular as mixers due to their simple structure. Since the discrete ele-
ment method (DEM) was proposed by Cundall and Strack in 1979 [1],
it has gradually evolved into a powerful tool for analyzing particle
flow within rotary drums [2–7]. In DEM, each particle is treated as an
individual entity, and its motion is calculated based on Newton’s second
law. The DEM simulation can provide detailed insights into particle-
level interactions and behaviors, which are difficult to achieve through
traditional experiments.

However, the majority of past studies involving DEM have focused
on spherical particles. One reason is that DEM was initially developed
for spherical particles, as modeling spherical particles is much easier
compared to non-spherical ones [8–11]. On the other hand, as a com-
putationally intensive method, DEM has always been limited by the
processing power of computers [12–14]. Not to mention, non-spherical
particles require more computational resources compared to spherical
ones, making it rather difficult to conduct large-scale simulations [15].

It is gratifying that in recent years, with the continuous deepening
of research and the improvement of computer performance, there
has been a gradual increase in studies using DEM to simulate the
mixing behavior of non-spherical particles in drums. For example, He
et al. [16] investigated size segregation of ellipsoids in rotary drums
by DEM with number of particles varied from 10,000 to 56,000. The
effects of aspect ratio, size ratio, and rotating speed on the extent of
segregation were taken into consideration. Jiang et al. [17] used DEM
to simulate the mixing of 22,000 spherical and cylindrical particles
in a rotary drum. They identified the role of various parameters such
as rotation speed, aspect ratio, density ratio as well as mass fraction
and volume fraction of cylindrical particles. Dong et al. [18] estab-
lished a super-quadric DEM model to describe the solid transportation
mechanisms of 10,000 cylindrical particles in a rotary drum. Their
study concerned the influence of aspect ratio and rotation speed on the
granular flow behavior and mixing performance. Unfortunately, most
of the related studies have only conducted analyses by varying one
single independent variable at a time. The problem of predicting mixing
conditions of non-spherical particles in rotary drums when multiple
factors vary simultaneously remains largely unexplored. The reason is
understandable, as this task is indeed challenging. When mixing non-
spherical particles in rotary drums, they exhibit all the complexities
inherent in the flow of spherical particles, including six different flow
regimes [19–21], size and density segregation [22–24], radial streaks
in the transverse plane [25,26] and alternating bands in the axial
direction [27,28]. Additionally, there are different particle orientations
and interlocking phenomena occur [18,29,30]. Such complex dynamics
of non-spherical particles make the mixing outcome exhibit highly
nonlinear relationships with different influencing factors. Conventional
analysis methods struggle to accurately predict the results.

Thanks to the development of artificial intelligence, machine learn-
ing methods are increasingly being applied in engineering fields. They
offer significant advantages in handling complex nonlinear problems,
some of which involve particle mixing processes. For example, Miao
et al. [31] developed a long-short term memory model to predict and
classify particle segregation in rotary drums, their predictive results are
consistent with DEM simulations; Dai et al. [32] applied the random
forest algorithm for image processing, which accurately count the num-
ber of particles in a rotary drum on the radial direction; van Sleeuwen
et al. [33] adopted the genetic optimization algorithm to estimate
globally optimal particle parameters in scaling, dramatically decreasing
the computational expense in DEM simulation. These contributions
demonstrate the power of machine learning methods across various
domains, including regression, classification, image processing, and
parameter optimization. Machine learning methods not only surpasses
traditional methods in terms of accuracy and speed but also addresses

key gaps in previous research, such as predicting particle mixing in
rotary drums under simultaneous influence of multiple factors. Our
previous research also established a DEM data-driven particle swarm
optimized support vector regression model to predict spherical particle
mixing in rotary drums, and the results of mixing time and mixing
degree from this machine learning model were promising [34]. In
the present work, a typical kind of non-spherical particles: rod-like
particles, has been selected for DEM simulations. The structure of
such particles is still relatively simple, and they are commonly used
in industrial production. The rod-like particles are constructed with a
multi-sphere model. Four independent variables are considered in the
mixing simulations, which include revolution frequency of the drum,
particle density ratio, particle size ratio, and drum length. The mixing
results are quantitatively described using mixing time and mixing
degree at the steady mixing state with the help of the subdomain-based
mixing index (SMI). The differences in mixing results between spherical
particles and rod-like particles are compared. Three machine learning
models are developed for mixing prediction: artificial neural network
(ANN), extremely randomized trees (ERT), and particle swarm opti-
mized support vector regression (PSO-SVR). These three methods differ
fundamentally in their modeling approaches. We extensively compared
the differences among the three methods, not only in terms of their
predictive accuracy, but also considering the implementation difficulty,
interpretability, total modeling time, etc., hoping to provide reference
and assistance to researchers who are not familiar with machine learn-
ing methods but plan to adopt them as predictive tools in their research.
After establishing suitable machine learning models, the mixing behav-
ior of non-spherical particles across the entire parameter space can be
predicted accurately and rapidly. This overcomes a major challenge
faced by traditional regression methods, which have difficulty accu-
rately predicting non-spherical particle mixing when multiple factors
change simultaneously. Additionally, the machine learning models op-
erate hundreds of times faster than DEM simulations, highlighting their
significant potential for predicting larger-scale simulations involving
more complex particle shapes in industrial applications.

2. DEM simulation and mixing quantification

2.1. Multi-sphere model and simulation conditions

The superquadric model and the multi-sphere model are the two
most popular models used to represent non-spherical particles in DEM
simulations. The former utilizes the superquadric equation to de-
fine particles, constructing various non-spherical shapes through three
shape parameters and two blockiness parameters. The latter combines
primary spheres with the same or different sizes to an independent
rigid body that represents a single non-spherical particle, overlapping
between primary spheres being permitted. It is worth mentioning that
although both models require significantly more computation time
for simulating non-spherical particles compared to spherical ones,
the reasons behind this are different. The time consumption of the
superquadric model is primarily attributed to its complex contact
detection algorithm [10]. On the other hand, the multi-sphere model
employs the widely validated contact detection algorithm for spheri-
cal particles, where computational efficiency mainly depends on the
number of primary particles [35]. Therefore, for simulating relatively
simple non-spherical structures, using the multi-sphere model is a more
efficient choice.

Our test mixing simulations in a rotary drum also confirm this
point: under identical conditions, the CPU time for rod-like multi-
sphere particles composed of four primary spheres is less than half of
that for superquadric rod-like particles, and their mixing results are
quite similar. Detailed settings and results of these test simulations are
shown in Appendix A.

For the above reason, in this study, all of the rod-like particles
are structured by the multi-sphere model with four identical primary
particles, resulting in an aspect ratio of 2:1, as shown in Fig. 1.
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Fig. 1. Rod-like particle generated by the multi-sphere model: (a) coordinates of the primary particles; (b) combined rod-like particle.

Table 1
Key parameters and independent variables in the DEM simulations.

Key parameter Value

Young’s modulus [Pa] 1 × 107
Poisson’s ratio [–] 0.24
Coefficient of restitution [–] 0.82
Friction coefficient [–] 0.80
Rolling coefficient [–] 0.01
Time step [s] 2 × 10−5
Drum diameter [mm] 194
Filling degree [–] 0.2
Diameter of primary particle
composing benchmark particle [mm]

3

Density of benchmark particle [kg/m3] 1,000

Independent variable Value

Revolution frequency [rpm] 10, 12, 15, 20, 25, 30, 40, 48, 50
Particle density ratio [–] 1, 1.2, 1.25, 1.3, 1.4, 1.5,

1.6, 1.7, 1.75, 1.8, 1.9, 2
Particle size ratio [–] 1, 1.2, 1.25, 1.5, 1.5, 1.75, 1.8, 2
Drum length [mm] 75, 100, 150, 200, 225, 300

We used the open-source software LIGGGHTS to conduct DEM
simulations [36], which has a built-in multi-sphere model. At each
time step, the total force and torque on each rigid multi-sphere particle
is computed as the sum of the forces and torques on its constituent
primary particles. The coordinates, velocities, and orientations of the
primary particles in each rigid body are updated so that the multi-
sphere particle moves and rotates as a single entity. Details of the
governing equations as well as the contact model used in LIGGGHTS
can be found in our previous paper [37].

The mixing simulations with binary mixtures of rod-like particles
were performed in horizontal rotary drums. Before rotating, the two
kinds of rod-like particles were generated in the drum with a top-
bottom stratification. The particles initially generated and let fall to the
bottom of the drum (so-called benchmark particles) always had con-
stant size and density. The diameter of the primary spherical particles
composing the rod-like benchmark particles is 3 mm, and the density of
the benchmark particle is 1,000 kg∕m3. The particles latter generated
and placed at the upper part of the bed had varied sizes and densities,
with ratios relative to the benchmark particles. The size ratio of these
two kinds of rod-like particles is equal to the diameter ratio of their
primary particles. Key parameters as well as the independent variables
that used in the DEM simulations are listed in Table 1, values of those
key parameters have been validated through experiments for spherical
particles in our previous work [37]. The range of drum revolution
frequency (10–50 rpm) ensures that the flow regime of particle bed
in the drum stays in rolling or cascading. These two regimes provide
good particle movement, are commonly chosen for mixing operation
in practice. The ranges of particle density ratio and size ratio (1–
2) are set to be consistent with our previous work on simulating

spherical particles, facilitating comparison in subsequent sections. As
for the range of drum length (75–300 mm), we take the length of the
previous experimental drum, 150 mm, as an intermediate value and
scale up and down by a factor of two. Regarding the specific values
of the independent variables, the bold numbers in Table 1 represent
those used in the training set of our machine learning models, while
the regular numbers are used in the validation and test sets. More
detailed data generation and grouping will be thoroughly explained in
Section 3.1 later.

The total number of rod-like particles in the DEM simulations
depends on the drum length and the particle size ratio, ranging from
5288 to 37,600. All the simulations were performed on a commercial
computer with AMD Ryzen Threadripper 2950X processor (16 cores/32
threads, 3.5 GHz) and 32 GB RAM. A typical CPU time for a mixing
process involving 18,800 rod-like particles (75,200 spherical primary
particles) is 8.5 h. By comparison, under identical conditions, the CPU
time for 75,200 spherical particles is 5.2 h.

2.2. Mixing quantification

We selected the subdomain-based mixing index (SMI) [38] for the
quantitative description of mixing in this study, which first divides the
whole mixing system into subdomains, and then obtains local mixing
information from all subdomains, finally integrating them to get the
overall mixing index. In comparison to the classic Lacey index [39], SMI
considers all particles in the mixing system, thus avoiding biases caused
by sampling. Compared with the widely used entropy of mixing [40],
SMI ensures, through a clever algorithm, that the range of the local
mixing index in each subdomain remains between 0 and 1, even for
particles with different initial proportions. Moreover, SMI is not only
suitable for binary mixtures but can also be used for mixtures with more
particle types, making it widely applicable. The detailed formulas for
SMI are placed in Appendix B.

The total number of subdomains in this work is kept at 1,250
(5 × 5 × 50) for all the drums. The subdomains are created by setting
a 5 × 5 equidistant square grid with its edges tangent to the circular
cross section of the drum and dividing the drum to 50 slices of equal
thickness in the axial direction, as illustrated in Fig. 2. Using the same
number of subdomains for mixers of different sizes means we always
consider 1/1,250 of the entire system as the smallest unit to determine
the mixing quality. This also ensures that when we simultaneously scale
the drum and particle sizes, the overall mixing degree of the system
remains unchanged. For each rod-like particle, its center of gravity
is used as a marker to determine whether the particle is in a certain
subdomain.

After obtaining the evolution curve of SMI over time for a mixing
process, determining the mixing time and mixing degree at steady mix-
ing state is the next task. These two parameters are of great importance
for a mixing process, as they determine the process efficiency and the
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Fig. 2. Gridding manner for SMI.

product quality, respectively. When no segregation occurs during drum
mixing, the shape of the SMI curve is quite consistent. The mixing
degree continuously increases in the initial stage and stabilizes after
reaching a steady mixing state, with the values fluctuating around
a constant. Such curves can be conveniently fitted using exponential
functions. However, this method is not suitable for the mixing of
particles with different densities and sizes. Because when segregation
phenomena occur, the value of mixing degree may decrease over time,
indicating that the final mixing degree at steady mixing state may be
lower than a top value achieved during the mixing process. In order
to handle the different types of mixing curves, we process the SMI
evolution as follows, keeping it consistent with our previous research
on spherical particles [34]:

(1) Run each simulation for 60 s and check the difference in SMI
between 50 s and 60 s. If the difference is less than 0.02,
then average the SMI values over 50–60 s as the mixing degree
at steady mixing state, otherwise continue the simulation for
further 60 s and repeat the same procedure until steady state
SMI has been found;

(2) Calculate the moving average of the original SMI curve as the
smoothed SMI curve by the smooth function in MATLAB with
a span of the moving average of 49 considered data points to
reduce noise or fluctuations;

(3) Lay two horizontal straight lines from right to left on the image
of the smoothed SMI curve, the values of which should corre-
spond to 95% and 105% of the mixing degree at steady state,
respectively. Find the first intersection point between the curve
and the lines, and take the corresponding time as the mixing
time.

Fig. 3 gives examples of the above mentioned determination process
for two typical shapes of mixing curves.

2.3. Mixing of rod-like particles vs. mixing of spherical particles

In this section, the simulation results of rod-like particles mixing
will be compared with the results of spherical particles from our
previous studies. We start with the simplest scenario, setting both the
density ratio and the size ratio to unity. No segregation occurs in
this scenario. The drum length here is 150 mm. The results regarding
mixing times and mixing degrees at steady mixing state under dif-
ferent revolution frequencies are shown in Fig. 4. It is evident that
the mixing of rod-shaped particles is faster than that of spherical
particles, up to reaching the maximum drum revolution frequency (50
rpm) in our simulations, where the mixing times of both types of
particles become relatively close. This may be because individual rod-
like particles experience more collisions than spherical particles, and

due to the interlocking phenomenon of rod-like particles, sliding is
significantly less compared to spherical particles, thereby increasing the
efficiency of mixing. Furthermore, increasing the revolution frequency
has a more gradual impact on the mixing time of spherical particles,
with their relationship approaching linearity. However, for rod-like
particles, increasing the revolution frequency beyond 20 rpm does not
significantly affect the mixing time. As for the mixing degree at steady
mixing state, mixing of spherical particles is slightly more uniform
compared to rod-like particles. Steady SMI values are not significantly
affected by the revolution frequency in either case.

In the next scenario, the size ratio is still set to unity, but the density
ratio is changed. Only density segregation appears in this scenario. The
revolution frequency and the drum length here are also kept constant at
10 rpm and 150 mm, respectively. The influences of the density ratio on
mixing can be found in Fig. 5. For both rod-like particles and spherical
particles, the occurrence of density segregation dramatically decreases
the mixing time to quite similar values. However, regarding the mixing
degree at steady mixing state, the difference between the two shapes of
particles is obvious. Starting from the density ratio of 1.25, the steady
SMI of rod-like particles is always higher than that of spherical ones,
indicating that the effect of density segregation is more pronounced for
spherical particles.

A deeper understanding can be gained by comparing the mixing
curves for the two shapes of particles as well as their mixing patterns
at steady mixing state. The cases with a density ratio equal to two
serve as an example, as shown in Fig. 6. The trends of the two mixing
curves are similar, but the curve for the rod-like particles fluctuates
more violently. For spherical particles at steady mixing state, heavy
particles (blue) are almost completely surrounded by the light particles
(white), resulting in a relatively low degree of mixing. While observing
the mixing of rod-like particles at steady state, although there are also
more light particles (white) on the surface of the particle bed, they are
still far from enclosing the heavy particles (red). Moreover, the dynamic
angle of repose of rod-like particles is evidently greater than that of
spherical particles. Rod-like particles also exhibit more jagged edges of
the particle bed. All these features indicate that the movement of rod-
like particles is more intense than that of spherical particles, which in
turn leads to a higher degree of mixing.

The last scenario is similar to the previous one, but changes in the
size ratio are analyzed. In this scenario, only size segregation occurs.
Specifically, the revolution frequency is 30 rpm, the density ratio is
set to unity, and the drum length is equal to 150 mm. Here 30 rpm is
chosen instead of 10 rpm because the mixing time of spherical particles
at low revolution frequency is very long, which is not convenient
for comparison. The effects of the size ratio on mixing for rod-like
particles and spherical particles are shown in Fig. 7. The mixing time
and mixing degree at steady mixing state for rod-like particles and
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Fig. 3. Examples of determining the mixing degree at steady mixing state and the mixing time for different SMI evolution: (a) without segregation (revolution frequency = 50
rpm, density ratio = 1, size ratio = 1, drum length = 150 mm); (b) with density and size segregation (revolution frequency = 50 rpm, density ratio = 1.5, size ratio = 1.5, drum
length = 150 mm).

Fig. 4. Compare mixing between rod-like particles and spherical particles without segregation phenomenon (density ratio = 1, size ratio = 1, drum length = 150 mm): (a) mixing
times; (b) mixing degrees (SMI) at steady mixing state.

Fig. 5. Compare mixing between rod-like particles and spherical particles with only density segregation phenomenon (revolution frequency = 10 rpm, size ratio = 1, drum length
= 150 mm): (a) mixing times; (b) mixing degrees (SMI) at steady mixing state.
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Fig. 6. Mixing curves and mixing patterns at steady mixing state for rod-like particles
and spherical particles with density ratio of two (white particles are the benchmark
particles with relatively low density).

spherical particles exhibit significant differences. When size segregation
occurs with spherical particles, the mixing times dramatically increase,
reaching a maximum at the size ratio of 1.5. Conversely, for rod-like
particles, their mixing times become slightly shorter after size segre-
gation appears. As for the mixing degree at steady mixing state, the
steady SMI of both rod-like particles and spherical particles decreases.
However, the difference is that for spherical particles, their decreasing
trend gradually levels out, with a size ratio of two appearing to be the
limit; further increasing the size ratio does not result in poorer mixing.
In contrast, the decrease in steady SMI of rod-like particles is nearly
linear, and its value may continue decreasing even after the size ratio
exceeds two.

More detailed information for this scenario is also obtained by
checking the mixing curves and observing the mixing patterns at steady
mixing states, as shown in Fig. 8. Here, both rod-like particles and
spherical particles have a size ratio of two. The shapes of the two
mixing curves are completely different. The mixing degree of rod-like
particles increases sharply and approaches the steady state rapidly. But
for the spherical particles, after a short period in which the mixing
degree increases, the SMI drops slowly until it reaches a steady level,
leading to a prolonged mixing time and poor mixing quality. The
mixing pattern for the spherical particles clearly shows that three
distinct alternating particle bands in the axial direction have been
caused by size segregation: large particles (blue) accumulate near the
ends of the drum, while small particles (white) are located in the
middle of the particle bed. For rod-like particles, although there is
a higher concentration of large particles (red) near the ends of the
drum compared to the center, clear alternating bands are not formed,
resulting in significantly higher mixing quality than in case of spherical
particles.

In the above analysis, we compared the mixing of rod-like parti-
cles and the mixing of spherical particles for relatively simple mixing
scenarios: no segregation, only density segregation, and only size segre-
gation. For rod-shaped particles, although the mixing time and mixing
degree at steady mixing state differ among those scenarios, it seems
that they can all be described by simple regression models. However,
when both segregation phenomena occur simultaneously and multiple
independent variables change concurrently, the mixing situation of rod-
like particles becomes extremely complex. The changes in mixing time
and degree exhibit highly nonlinear behavior, as shown in Fig. 9. Many
counter-intuitive results emerged, for example use of a longer drum not
necessarily prolonged the mixing time and increase of the revolution
frequency not always improved the mixing quality. Analyzing such
complex relationships effectively is virtually beyond reach, let alone
making predictions. In this kind of situation, accurate predictions of

mixing time and mixing degree at steady mixing state for rod-like
particles may be best achieved through artificial intelligence-based
machine learning methods.

3. Machine learning models for prediction

3.1. Data generation and grouping

In order to make predictions using machine learning models, we
took the results from 121 DEM simulations of mixing rod-like particles
in rotary drums. Four independent variables varied in the simulations
(revolution frequency of the drum, particle density ratio, particle size
ratio, and drum length) are taken as the input parameters in the ma-
chine learning models. The two variables that quantitatively describe
the mixing state: mixing time and mixing degree (SMI) at steady mixing
state, are used as output parameters in the machine learning models.
These 121 simulations are grouped into three sets: a training set (81), a
validation set (20), and a test set (20). The training set is used to train
and develop the model. The validation set is used for hyperparameter
tuning or adjusting the model during training. Its specific role for
different models will be explained in detail in the following sections.
The test set is used to evaluate the final performance of the fully
established model using entirely new data compared to the training and
validation sets, and it does not influence the model itself.

In the training set, each input parameter has three levels, result-
ing in 81 sets of simulations through full factorial design, as shown
in Table 1 before. This kind of design guarantees a comprehensive
and effective training. The number of simulations in the test set was
determined based on a classic Pareto principle (also known as the
80/20 rule) in machine learning practice, i.e., amount of training data
: amount of test data = 8 : 2. The number of simulations in the
validation set remained the same as in the test set. The input parameters
of validation and test set were chosen within the parametric range
established by the training set, but with different values. Using a fixed
data split ensures consistency and fairness when comparing machine
learning methods across different platforms, as it avoids the variability
introduced by random data partitioning in cross-validation. This fixed
split approach also facilitates the reproducibility of model results.

Additionally, it should be noted that after determining the machine
learning model, for prediction of the two output parameters in this
study, two separate models will be established. Hyperparameter set-
tings for those two models may differ. There are three reasons for
this procedure: most machine learning models do not support multiple
outputs due to algorithmic limitations; even for models that support
multiple outputs, such as artificial neural networks (ANN), the accuracy
of two single-output models is much higher than that of a single
dual-output model; the two output parameters in this study are not
highly correlated, so there is no need to compute both parameters
simultaneously. Nevertheless, the data grouping for the two output
parameters is identical.

3.2. Artificial neural network model

Artificial neural networks (ANN) are popular machine learning
models which have been inspired by the biological neural networks
of the human brain [41]. The neurons in the human brain receive
electrical signals from other neurons, and when the potential of a
neuron exceeds a certain threshold, it becomes activated and sends
signals to the next neuron. The mathematical model of neurons in
ANN is very similar to this process. A typical artificial neuron with 𝑛
inputs from the previous neurons or the original input data is shown
in Fig. 10. Each input is weighted with an appropriate 𝑤 and then
summed up. The bias 𝑏 in the artificial neuron is like the threshold in
the biological neuron. The sum of the weighted inputs, along with the
bias, is transformed by the activation function to form the output of this
neuron. The role of the activation function is quite crucial: on the one
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Fig. 7. Compare mixing between rod-like particles and spherical particles with only size segregation phenomenon (revolution frequency = 30 rpm, density ratio = 1, drum length
= 150 mm): (a) mixing times; (b) mixing degrees (SMI) at steady mixing state.

Fig. 8. Mixing curves and mixing patterns at steady mixing state for rod-like particles
and spherical particles with size ratio of two (white particles are the benchmark
particles with relatively small size).

hand it squeezes the input values, which may vary over a wide range,
into a specific range of output values; and, on the other hand, it allows
for a nonlinear correlation to be established between the input and
output values. Without the activation function, no matter how complex
the neural network structure is, it is impossible to predict a nonlinear
relationship. A commonly used activation function – the tan-sigmoid
transfer function – is presented as an example in Fig. 10, the output
values from which is in the range of (−1, 1).

Feedforward neural networks are the most common network struc-
ture for regression modeling. Specifically, each layer of neurons is
fully interconnected with the next layer of neurons, and there are no
same-layer connections between neurons or cross-layer connections.
Fig. 11 gives an example of a simple feedforward ANN that consists
of one hidden layer with three neurons and one output layer with
one neuron. The network can increase in complexity by increasing the
number of hidden layers as well as the number of neurons in the layers.
By observing the network structure, we can also understand why the
ANN is able to implement multiple outputs very easily. For additional
outputs, it is only necessary to add the appropriate number of neurons
in the output layer and build connections with neurons in the last
hidden layer, without modifying the rest of the network structure.

The ANN models in this study were implemented by the deep
learning toolbox in MATLAB. In both predictive models for mixing time
and mixing degree at steady mixing state, we used the tan-sigmoid
transfer function tansig as activation function in the hidden layer
and the linear transfer function purelin as activation function in the
output layer. The purelin function is an identity mapping function
that does not impose any restrictions on the range of output values

and is commonly used in the output layer for regression problems.
The number of neurons in each hidden layer was kept as the default
value ten. For predicting the steady SMI, we chose the default single
hidden layer network structure, while for predicting the mixing time,
we increased the number of hidden layers to two. This is because our
trial runs revealed that a single hidden layer network led to insufficient
training when predicting mixing time, resulting in low accuracy on the
training set. However, increasing the number of hidden layers to three
caused significant overfitting, where the model performed extremely
well on the training set but poorly on the test set. This further indicates
that predicting mixing time is indeed more challenging than predicting
mixing degree at steady mixing state, as the range of variation in mixing
time is much larger than that of mixing degree. Training an ANN for
regression is to tune the values of the weights and biases of the network
to optimize the predictive performance. The performance function for
our networks during training is the mean square error, and the training
algorithm here is Levenberg–Marquardt backpropagation [42,43]. This
algorithm combines the advantages of gradient descent and Newton’s
method and is generally the fastest algorithm in the deep learning
toolbox. Since this algorithm is also based on gradient optimization,
differences in the scales of input parameters will lead to unstable and
slow gradient updates for multi-input models, hence data preprocessing
is necessary. The function mapminmax was applied to normalize input
parameters to fall in the range [−1, 1].

As mentioned before, the validation set plays different roles in
different machine learning models. During each epoch of training the
ANN model, the performance of the model on the validation set was
monitored synchronously to decide when the training process should
be stopped, which is known as the early stopping technique. With this
technique, overfitting of the ANN model can be effectively avoided.
In our ANN model, the training process finished when the validation
error was larger than or equal to the previously smallest validation
error for six consecutive validation iterations. Taking the ANN model
which predicts mixing degree at steady mixing state as an example, the
mean squared errors of different data sets during training are shown in
Fig. 12. The training process stopped at epoch 14 because at epoch 8
the best validation performance has been reached. It is evident that
the error in the training set continuously decreases with the increase
in training epochs, which is not the case for the validation set and
the test set. If the epoch keeps increasing, the model will be at risk
of overfitting. Moreover, the test set error and the validation set error
show similar characteristics, which indicates that the data grouping of
these two sets is reasonable.

It is worth noting that due to the random initialization of weights
and biases in the network, even when constructing the network with ex-
actly the same hyperparameters, the output may have slight differences
and cannot be entirely reproduced. The prediction results of mixing
time and mixing degree at steady mixing state in the test set are shown
in Fig. 13. The ANN model does not perform very well in predicting
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Fig. 9. Relationship between mixedness and revolution frequency for rod-like particles in drums of different lengths with both density and size segregation (density ratio = 1.5,
size ratio = 1.5): (a) mixing time (b) mixing degree (SMI) at steady mixing state.

Fig. 10. A typical artificial neuron.

Fig. 11. The structure of a simple artificial neural network.

mixing time, with a coefficient of determination (R2) of only 0.76.
Most of the mixing times are underestimated, and the mean absolute
error (MAE) is 5.1 s. This result is mainly due to the inherent difficulty
in predicting mixing time, as the maximum value (67.4 s) and the
minimum value (5 s) in the training set differ by more than 13 times.
Another possible reason is that ANN performs better with large-scale
data, and its performance on highly nonlinear, small-scale data cannot
be guaranteed. On the contrary, ANN shows really high accuracy (R2 =
0.95) in predicting the mixing degree at steady mixing state. Moreover,
the data points are evenly distributed on both sides of the reference
line, indicating that the model here has no systematic bias. Its MAE is
also quite low, only 0.02.

3.3. Extremely randomized trees model

Extremely randomized trees (ERT) is a tree-based ensemble learning
method introduced by Geurts et al. in 2006 [44]. As an improvement
and extension of the traditional decision tree approach, ERT not only
introduce randomness during the tree-growing process to speed up

Fig. 12. Training performance of the ANN model predicting mixing degree at steady
mixing state.

the calculation, but also aggregate the results from multiple trees to
enhance the robustness and accuracy of the model.

A simple example is used to illustrate how a single decision tree, the
basic unit of ERT, handles a regression problem, as shown in Fig. 14.
The data in this example have two input parameters 𝑥1, 𝑥2 and one
output parameter 𝑦. The decision tree utilizes the binary tree structure.
At each growth step, one of the input parameters and a threshold value
will be selected as a node to split the data (ellipse text box), and the
input space will also be divided into two sub-regions. After growing,
the output value for each sub-region corresponds to the mean output
of all data points contained within that sub-region.

The improvement of ERT over the traditional regression tree lies
mainly in the selection of candidate nodes. A traditional regression tree
traverses through all the possible values of each input parameter. An
ERT, on the other hand, will randomly select only one threshold within
the range of minimum and maximum values of each input parameter.
Subsequently, for all candidate nodes, the criterion for selecting the
optimal one is to minimize the mean squared error of the split data.
Because ERT has far fewer candidate split points compared to the
traditional regression tree, its computational efficiency is considerably
higher. During the training process of ERT, multiple independent de-
cision trees are constructed using the method described above. When
making predictions, the output of ERT is the average of results from all
the individual decision trees.

In this study, the ERT model has been implemented through an open
source machine learning library in Python named Scikit-learn [45].
One notable advantage of ERT over other machine learning methods is
the simplicity of its hyperparameter settings, especially for small-scale
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Fig. 13. Predictive accuracy of ANN model on the test set: (a) mixing time; (b) mixing degree (SMI) at steady mixing state.

data with few input parameters. Because our data only has four input
parameters, we set max_features=None, which means ERT always
considers all these four input parameters during splitting instead of
a random subset. Also because our training set only has 81 samples,
we can let the trees fully develop. In other words, no limitations are
imposed on the depth of the tree growth and a node can continue to
split as long as it contains at least two samples (max_depth=None
and min_samples_split=2). The number of trees in ERT is set as
10, instead of the default value 100. This decision was based on the
results of our trial runs, which showed that increasing the number of
trees from 10 to 100 had minimal impact on the prediction accuracy,
but increased the modeling time by a factor of 7.6. Consequently, this
hyperparameter is determined as 10, which not only mitigates the
potential overfitting that can occur with single decision trees but also
ensures efficient computation. Additionally, because the ERT use data
splitting for training and each input parameter has its own independent
dimension in the input space, there is no need to perform any normal-
ization or standardization preprocessing on the training data. This also
simplifies the modeling process compared to other machine learning
methods.

Even after determining all hyperparameters, the results of ERT
can vary significantly with each run. This variation is because the
threshold for each split in ERT is randomly chosen. However, the ERT
implemented in Python allows for fixing the random splitting of trees
using the random_state parameter. This ensures consistent results
across different runs. The task of the validation set here is to find the
optimal random state. Specifically, we use the training set to build
models under different random states, compare the predictive accuracy
of these models on the validation set, select the random state with the
highest R2 as a fixed parameter for the model, and finally test the model
performance on new data from the test set. We tried 2,000 different
random states from random_state=0 to random_state=1999,
and found that the optimal random state for mixing time was ran-
dom_state=1188, whereas for the mixing degree at steady mixing
state it was random_state=329. The results of their predictions on
the test set are shown in Fig. 15. The accuracy of ERT for predicting
mixing time is acceptable with R2 of 0.88. Apart from a few data points
with relatively large deviations, the rest of the data points are evenly
distributed on both sides of the reference line, with a MAE of only 2.4
s. This demonstrates that ERT, being insensitive to the scale of input
parameters, has a clear advantage when handling data with significant
differences in the upper and lower limits. The predictive performance

Fig. 14. A decision tree for regression: structure of the tree and division of the input
space.

of ERT for mixing degree at steady mixing state is even better, with
R2 achieving a value of 0.94. No systematic bias is observed. And, the
MAE here is only 0.02.

Due to the intuitive and transparent modeling process of ERT, it has
stronger interpretability compared to most black-box machine learning
algorithms. This is particularly evident in the calculation of feature
importance. In the field of machine learning, the input parameters of
a model are also named as features. Feature importance analysis can
quantify the impact of each feature on the output results. Since the
predicted mean square errors before and after the split of candidate
nodes are calculated each time during the growth of trees in ERT, the
results can be naturally used as a measure of the feature importance.
The greater the change in the mean square error before and after the
split, the more important the feature is. This change is accumulated
according to each feature, normalized, and then averaged over the
results of all trees to obtain the final feature importance. The results of
feature importance on mixing time and mixing degree at steady mixing
state are shown in Fig. 16. The influences of the four input parameters
on the mixing time vary greatly. But for the mixing degree at steady
mixing state, except for the revolution frequency, the other three input
parameters have relatively even effects. For both output parameters,
the drum revolution frequency has the smallest influence, while the
particle size ratio has the largest impact. This indicates that, in order
to improve the mixing efficiency and the mixing quality of the rod-
like particles, it is better to avoid size segregation caused by different
particle sizes rather than increasing the revolution frequency.
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Fig. 15. Predictive accuracy of ERT model on the test set: (a) mixing time; (b) mixing degree (SMI) at steady mixing state.

Fig. 16. Feature importance of mixing time and mixing degree (SMI) at steady mixing state from ERT model.

3.4. Particle swarm optimized support vector regression model

Support vector machines are classic machine learning algorithms
used for classification tasks [46]. Support vector regression (SVR) ex-
tends the principle of support vector machines to regression problems,
where the objective is to predict continuous outcomes rather than
discrete class labels [47]. This model has significant advantages when
dealing with high-dimensional data with non-linear relationships, and
it also performs well for small-scale data. The mathematical principles
behind SVR are much more complex than those of the previously
mentioned methods (ANN and ERT). This section aims to introduce the
core principles of the SVR algorithm in a simple and intuitive manner.
More detailed formulas can be found in our previous research [34] or
other Refs. [48,49].

The basic idea behind SVR can be better understood by comparing it
with linear regression, as shown in Fig. 17. Although one-dimensional
data (only one input parameter) is used as an example in the figure, the
formulas use a more general vector notation to indicate that the model
is also applicable to multi-dimensional data. Notably, the derivation
of regression equations 𝑓 (𝒙) is the common goal of both models, linear
regression and SVR, the only difference lies in their objective functions.
In linear regression, the objective is to minimize the sum of the squared
errors between the predicted and actual values, considering all data

points. However, in SVR, an 𝜖-insensitive tube is created. The tube is
designed to contain as many data points as possible, with the straight
line (or hyperplane for multi-dimensional data) in the center of the tube
representing the regression equation. The distance from the edge to the
center of the tube in the 𝑦-direction, 𝜖, also known as the margin of
tolerance, is the first hyperparameter in SVR, which needs to be set
before training. Data points located within this tube are considered to
be perfectly predicted and do not contribute to the loss calculation.
Losses are calculated only for data points that fall on the edge of or
outside the tube, with the values of the differences between the actual
values and the predicted values exceeding 𝜖. The objective function of
SVR consists of two terms. The first term is the regularization term of
the model, which controls the complexity of the model; the second term
refers to the loss function of the training error. The penalty coefficient
𝐶 in the second term is the second hyperparameter in SVR, which
balances the predictive ability of the model on the training data with
the generalization ability of the model for new data.

While dealing with non-linear relationships, the strategy of SVR is
to introduce the kernel trick, which implicitly maps the input data to
a high-dimensional feature space, transforming the original non-linear
problem to a linear problem for solution. The radial basis function
kernel was chosen in this work since it provides a good flexibility while
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Fig. 17. Comparison between linear regression and SVR for one dimensional data.

ensuring calculation speed. The expression of this kernel is:

𝑘(𝒙𝑖,𝒙𝑗 ) = exp
(
−𝛾 ‖‖‖𝒙𝑖 − 𝒙𝑗

‖‖‖
2
)
, (1)

where 𝛾 is the kernel function coefficient, serving as the third hyperpa-
rameter in our SVR model.

The solution process of SVR does not contain any randomness, so the
final prediction model is unique for each hyperparameter combination.
In other words, setting hyperparameters appropriately is crucial for
the SVR model to achieve good predictive performance. There are
three hyperparameters: margin of tolerance 𝜖, penalty coefficient 𝐶 and
kernel function coefficient 𝛾 in the SVR model, and none of them is
an integer, which makes the hyperparameter tuning really challenging.
Hence, a metaheuristic optimization algorithm, namely particle swarm
optimization (PSO), was chosen to address this challenge. This algo-
rithm is inspired by the social behavior of birds within a flock [50]. The
particles in PSO are not physical but represent potential solutions of the
optimization problem. The PSO efficiently explores the entire search
space to find the global optimal solution, making it highly suitable for
hyperparameter tuning in SVR.

The objective of PSO in this work is to find the best combination of
hyperparameters (𝜖, 𝐶, 𝛾) which gives the highest predictive accuracy
(R2) in the validation set. A group of particles, also called the swarm,
is generated with random initialized positions, i.e., values of (𝜖, 𝐶, 𝛾)
at the beginning of the algorithm. In each iteration, particles move
one step, termed velocity in PSO, within the search space, guided by
their personal best position and the global best position of the swarm,
gradually converging to the optimal solution, which can be expressed
as [51]:

𝒗𝑖,𝑟+1 = 𝑤𝒗𝑖,𝑟 + 𝑐1𝑟1
(
𝒑𝑏𝑒𝑠𝑡𝑖,𝑟 − 𝒑𝑖,𝑟

)
+ 𝑐2𝑟2

(
𝒈𝑏𝑒𝑠𝑡𝑟 − 𝒑𝑖,𝑟

)
, (2)

𝒑𝑖,𝑟+1 = 𝒑𝑖,𝑟 + 𝒗𝑖,𝑟+1, (3)

where 𝒑𝑖,𝑟 = (𝐶, 𝜖, 𝛾) is the position vector of particle 𝑖 in iteration
𝑟, and 𝒗𝑖,𝑡 is the corresponding velocity vector. The personal best
position 𝒑𝑏𝑒𝑠𝑡𝑖,𝑟 signifies the best (𝜖, 𝐶, 𝛾) combination found by particle
𝑖 up to iteration 𝑟. The global best position 𝒈𝑏𝑒𝑠𝑡𝑟 indicates the best
combination discovered by the entire swarm up to iteration 𝑟. In these
expressions, 𝑤 represents the inertia weight controlling the influence
of previous velocity on the current velocity, while 𝑐1 and 𝑐2 are the
acceleration coefficients regulating the impact of personal best and
global best positions on the particle’s velocity. Additionally, 𝑟1 and 𝑟2
are random numbers sampled from a uniform distribution between zero
and one. To balance exploration and exploitation of the search space,
the inertia weight 𝑤 is set to 0.4, and the acceleration coefficients
are both set to 𝑐1 = 𝑐2 = 2. For balancing predictive accuracy and

computational efficiency, the particle number in the swarm and the
maximum iteration are both set to 20.

The particle swarm optimized support vector regression (PSO-SVR)
model was implemented in Python, utilizing Scikit-learn for the SVR
part and a self-programmed PSO part. All input parameters were stan-
dardized using the StandardScaler function. Through PSO op-
timization, the optimal hyperparameter combinations for predicting
mixing time and mixing degree at steady state were determined as
(𝜖, 𝐶, 𝛾) = (1.98, 89.4, 0.37) and (0.001, 16.5, 0.076), respectively. The
margin of tolerance 𝜖 in SVR for predicting mixing time is notably
larger than that for predicting mixing degree, reflecting broader varia-
tions and higher noise levels in the mixing time data, hence requiring
a wider tube, consistent with previous observations. The performances
of PSO-SVR models on the test set are shown in Fig. 18. The PSO-SVR
model provides good accuracy (R2 = 0.90) when predicting mixing
time. The MAE is only 2.4 s with generally no systematic bias. The
performance of PSO-SVR model on predicting steady SMI is excellent
with R2 = 0.96. The MAE of mixing degree is quite low, with the value
of 0.02. The data points closely align with the reference line.

3.5. Model comparison and discussion

Three machine learning models (ANN, ERT, and PSO-SVR) have
been developed to predict mixing time and mixing degree at steady
mixing state for rod-like particles in rotary drums based on DEM
simulations, each with distinct mathematical modeling principles. All
121 sets of DEM simulation data and the predictions from the three ma-
chine learning models are summarized in Appendix C. In this section,
these three models will be comprehensively compared, including their
predictive performances and various characteristics, to aid researchers
using similar machine learning models in their studies. While much of
the content has been covered in previous sections, our focus here is to
organize and summarize these findings, as presented in Table 2.

The prediction performance of the three models for the new data on
the test set is first summarized, which is the most important criterion
for measuring the reliability of a machine learning model, and their
training set results are also given below as a reference. All three models
perform well when predicting the mixing degree at steady mixing state
in the test set, and their differences are quite small. However, for
predicting mixing time, the ANN is significantly less accurate than the
other two models. As mentioned earlier, the predictive accuracy of the
ANN model cannot be guaranteed on small-scale data. A deeper reason
may lie in a critical hyperparameter of ANN: the number of hidden
layers, which can only change in discrete integers. This constraint has
a significant impact on the model training process on small-scale data.
In our trial runs, we found that with one hidden layer, the ANN model
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Fig. 18. Predictive accuracy of PSO-SVR model on the test set: (a) mixing time; (b) mixing degree (SMI) at steady mixing state.

Table 2
Comparison of three machine learning methods.

ANN ERT PSO-SVR

Test set

R2 of mixing time 0.76 0.88 0.90
MAE of mixing time [s] 5.1 2.4 2.4
R2 of steady SMI 0.95 0.94 0.96
MAE of steady SMI [–] 0.021 0.022 0.018

Training set

R2 of mixing time 0.92 1 0.94
MAE of mixing time [s] 2.0 0 2.1
R2 of steady SMI 0.97 1 0.98
MAE of steady SMI [–] 0.014 0 0.008

Software platform Matlab Python Python
Difficulty of implementation Easy Moderate Hard
Reproducibility No Yes Yes
Interpretability Weak Strong Moderate
Data preprocessing Necessary Unnecessary Necessary
Role of validation set Early stopping Determining random state Hyperparameter tuning
Total modeling time [s] 8.4 27.1 100.8

was severely undertrained when predicting mixing time, while with
three hidden layers, the model exhibited severe overfitting. Finally,
the number of hidden layers was set to two. However, even with this
adjustment, the R2 of the ANN model on the training set was still
the lowest among the three models, reaching only 0.92, indicating
that the model training may still be insufficient. This could probably
be improved by adding more training data. Another notable aspect
of the training set results is the performance of the ERT model. The
predictions from this method were absolutely identical to the original
data, which is a direct consequence of the ERT’s training algorithm.
Although our ERT model consists of 10 trees, with their node thresholds
randomly selected, each tree was fully grown. This means that each tree
completely partitions the 81 data points in the training set according
to different divisions of the input space, perfectly matching the input–
output pairs. As a result, even after averaging, this mapping remains
unchanged.

In terms of model implementation, the deep learning toolbox in
MATLAB provides a very comprehensive graphical interface for ANN,
making model development relatively simple and clear. Implementing
ERT with the help of Scikit-learn requires basic Python syntax, while
using PSO for hyperparameter tuning in SVR requires more advanced
Python programming skills. Since the weights and biases in ANN are

randomly initialized, exact reproduction of the model results is impos-
sible, unlike the other two models written in Python. The ERT model
has the strongest interpretability among the three models since the
calculation of feature importance is embedded in its modeling process.
The PSO-SVR model has moderate interpretability because the values
of some hyperparameters can partially reflect the data characteristics.
In terms of handling the data, ERT is insensitive to the scale of the fea-
tures, so preprocessing is not necessary. The last row of the table shows
the total modeling time, encompassing the entire training, validation,
and testing processes of the model. Since each machine learning model
makes separate predictions for mixing time and mixing degree at steady
mixing state, and the time for each run is slightly different, we employ
an averaging and summing approach to calculate the total modeling
time. Specifically, for a certain machine learning model, we predict the
mixing time and steady SMI five times each, and then average their
modeling times separately, finally add these two averages as its total
modeling time. The PSO-SVR model has the longest total modeling time
(100.8 s), primarily due to the time spent on hyperparameter tuning
(validation) through PSO. Nevertheless, compared to DEM simulations,
which take hours to run a single case, a machine learning model
is a significant time saver. This advantage is further extended when
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performing simulations with a larger scale and more complex particle
shapes.

In practical industrial applications, the obtained raw data is unlikely
to be as comprehensive as the training data generated through the
full factorial design in this study. In such cases, cross-validation can
be employed to divide the training and validation sets, and with a
sufficient amount of data, similar training effectiveness can still be
achieved, without affecting the potential of machine learning methods.
Returning to the problem of non-spherical particle mixing in rotary
drums, this study has successfully predicted the mixing time and mixing
degree at steady mixing state of rod-like particles under simultaneous
variation of multiple key factors. However, the particle mixing process
in rotary drums is quite complex, and several other influencing factors
have not yet been considered, such as filling degree of the drum, ternary
or higher-order mixtures, and difficult particle shapes, all of which
can be explored in future research. Enhancing the interpretability of
machine learning models is also a valuable direction for future efforts.

4. Conclusion

We performed 121 discrete element method (DEM) simulations of
rod-like particles mixed in rotary drums. The rod-like particles were
constructed using a multi-sphere model. Four independent variables
were varied in the simulations: revolution frequency of the drum, par-
ticle density ratio, particle size ratio, and drum length. Two important
characteristics in the mixing process, mixing time and mixing degree at
steady mixing state, were defined with the help of the subdomain-based
mixing index (SMI). Three simple mixing scenarios: no segregation,
only density segregation, and only size segregation were compared
between rod-like particles and spherical particles. Due to the high
complexity of mixing results when multiple independent variables are
simultaneously varied, predicting these outcomes becomes very chal-
lenging. Therefore, we developed three machine learning prediction
models: artificial neural network (ANN), extremely randomized trees
(ERT), and particle swarm optimized support vector regression (PSO-
SVR). All three models provide excellent performance (R2 ≥ 0.94)
in predicting mixing degree at steady mixing state. The predictive
accuracy of ERT (R2 = 0.88) and PSO-SVR (R2 = 0.90) for mixing time
is also good, better than that of ANN (R2 = 0.76). The strengths and
weaknesses of the three models were compared in detail. In general,
machine learning models not only provide high accuracy in predicting
complex relationships but also offer significant time-saving advantages
over DEM simulations, making them highly promising for rapid predic-
tions in larger-scale particle processing equipment with more complex
particle shapes.
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Fig. A.1. Mixing curves of the test simulations, in which rod-like particles are created
either by the multi-sphere model or by the superquadric model.
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Appendix A. Compare multi-sphere model and superquadric
model

The test simulations were performed in a 150 mm long rotary drum
with 10 rpm, the density ratio and size ratio were set to 1. For both
non-spherical particle models, the total number of rod-like particles is
18,800. The combination method of the multi-sphere model has been
described in the main text, as shown in Fig. 1. In the superquadric
model, the surface of a superquadric particle can be described by the
inside–outside function given by Barr [52]:
(||||

𝑥
𝑎
||||
𝑛2

+
||||
𝑦
𝑏
||||
𝑛2
)𝑛1∕𝑛2

+
||||
𝑧
𝑐
||||
𝑛1

− 1 = 0. (A.1)

Here, the three shape parameters are set as 𝑎 = 𝑏 = 1.5 mm, 𝑐 =
3 mm, and the blockiness parameters are 𝑛1 = 8, 𝑛2 = 2. In both DEM
simulations 60 s of mixing process have been simulated, and the CPU
times of the multi-sphere model and the superquadric model were 8.5 h
and 18.3 h, respectively. The mixing curves for both models are shown
in Fig. A.1.

Appendix B. Formulas of subdomain mixing index (SMI)

The subdomain mixing index (SMI) is applicable for mixtures of
more than two particle types with different initial proportions. Assume
a mixture with 𝑄 types of particles in a mixing system that is divided
into 𝑛 subdomains. The participation factor of particle type 𝑘 can be
calculated as:

𝑓𝑘 =
max

(∑𝑛
𝑖=1 𝑁1𝑖,

∑𝑛
𝑖=1 𝑁2𝑖,…

∑𝑛
𝑖=1 𝑁𝑄𝑖

)
∑𝑛

𝑖=1 𝑁𝑘𝑖
. (B.1)

Here 𝑁𝑘𝑖 is the number of type 𝑘 particles in the subdomain 𝑖. The
modified fraction of 𝑘-type particles in subdomain 𝑖 can be computed
as:

𝑃𝑘𝑖 =
𝑁𝑘𝑖𝑓𝑘

max
(
𝑁1𝑖𝑓1, 𝑁2𝑖𝑓2,… , 𝑁𝑄𝑖𝑓𝑄

) . (B.2)

The local SMI for subdomain 𝑖 is:

SMI(𝑖) = 1
𝑄 − 1

( 𝑄∑
𝑘=1

𝑃𝑘𝑖 − 1

)
. (B.3)
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Finally, the total mixing index is obtained by averaging all the local
SMIs:

SMI = 1
𝑁𝑡𝑜𝑡

𝑛∑
𝑖=1

[
SMI(𝑖)

𝑄∑
𝑘=1

𝑁𝑘𝑖

]
, (B.4)

where 𝑁𝑡𝑜𝑡 is the total number of particles in the whole mixing system.
The range of SMI is between zero and one: zero indicates a completely
separated state, whereas one means that different types of particles are
perfectly mixed.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.powtec.2024.120307.
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Chapter 5

Summary and Outlook

5.1 Summary
Solid particle mixing is a fundamental industrial unit operation with a long history and
widespread applications. Mixing time and mixing degree are two of the most critical
aspects of a mixing process, one is closely related to process efficiency and the other
determines product quality. However, even in geometrically simple systems like horizontal
rotary drums, accurately predicting these two aspects remains a challenge. This difficulty
arises not only from the relatively underdeveloped theoretical framework of solid dynamics
compared to fluid mechanics but also from the multitude of factors influencing particle
mixing. A particularly noteworthy phenomenon in particle mixing is segregation, which
occurs primarily due to differences in the nature of the solid particles involved.

Discrete element method (DEM) has proven to be a powerful simulation tool for studying
granular mixing, with its effectiveness validated by numerous experimental studies. By
combining DEM simulations with a mixing index, which is able to quantitatively describe
a mixing process, both the mixing time and the mixing degree can be accurately predicted.
However, the computational cost of DEM remains a significant limitation, particularly
in applications requiring frequent parameter adjustments, such as automated industrial
processes. While existing studies mainly focus on the qualitative influence of individual
variables on mixing, the core objective of this research is to rapidly and accurately predict
particle mixing in rotary drums under varying influencing factors based on a limited
number of DEM simulations.

This cumulative dissertation consists of a comprehensive introduction and three published
manuscripts. These manuscripts propose two types of approaches for predicting particle
mixing in rotary drums, both relying on DEM simulation data and consistently employing
the subdomain-based mixing index (SMI) as the sole criterion for determining mixing
time and mixing degree. In Chapter 1, the DEM models for spherical and non-spherical
particles are introduced in detail, including the numerical integration algorithm and
representation of non-spherical particles’ orientation—both of which were not covered in
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the three manuscripts. This is followed by a discussion on the determination of key DEM
parameters, including an explanation of the skin distance, another concept not addressed
in the manuscripts. Furthermore, SMI is compared with two other commonly used mixing
indices, and reasons for selecting SMI as the preferred metric are thoroughly examined.
These additions significantly enrich the content of the three manuscripts and provide a
clearer understanding of the research foundation and overall framework.
Chapter 2 proposes the first type of approach, termed cross-correlation, which enables

scale-spanning correlation between particle mixing systems of different sizes. In this
manuscript, the two systems considered were a 3D rotary drum and a 2D rotary drum,
both containing spherical particles. The reliability of DEM simulations was validated
through an experiment combined with image analysis, establishing a solid foundation for
all subsequent studies. The mixing results of particles at different revolution frequencies
in both the 3D and 2D drums were used as the training set for cross-correlation. The
predictive performance of cross-correlation was evaluated both within and beyond the
parametric range of the training set. Additionally, the applicability and limitations of
cross-correlation were analyzed, and its advantages over machine learning methods were
discussed.

Chapter 3 presents the second type of approach, which is a machine learning model called
particle swarm optimized support vector regression (PSO-SVR). This model considers
four independent variables: revolution frequency, density ratio, size ratio as well as drum
length, and is able to predict the mixing time as well as the mixing degree at steady
mixing state of spherical particles mixed in rotary drums. The model was trained using
data from 81 DEM simulations, the input parameters of which were generated through
a full factorial design with three levels for each of the four independent variables. The
mixing results from the training set were subsequently analyzed. An overview of the SVR
algorithm was provided, and PSO was employed to optimize the three hyperparameters of
the SVR model. Finally, the predictive performance of the PSO-SVR model was evaluated
by comparing its results on both the training and test sets with DEM simulations, and
the outcomes were visualized using parity plots.

Chapter 4 extends the machine learning approach introduced in Chapter 3 from spherical
particles to a common type of non-spherical particles—rod-like particles. Three different
machine learning models, namely artificial neural networks (ANN), extremely randomized
trees (ERT), and PSO-SVR, were employed to predict the mixing behavior of rod-like
particles in rotary drums. In the DEM simulations, rod-like particles were represented using
the multi-sphere model. The input and output variables of the three machine learning
models in this manuscript remained consistent with those of the PSO-SVR model in
Chapter 3. The DEM simulation results for rod-like and spherical particles were compared
under three different scenarios: no segregation, only density segregation, and only size
segregation, incorporating the observed mixing patterns within the drums. Each of the
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three machine learning models was briefly introduced, followed by a comparison of the
model predictions and DEM results in the test set using parity plots. A comprehensive
evaluation was conducted at the end, summarizing various performance aspects in a table,
such as predictive accuracy, difficulty of implementation, and total modeling time. This
analysis aims to provide reference and assistance for researchers seeking to apply machine
learning models in similar predictive tasks.

5.2 Outlook
It is important to note that while this study does not introduce new insights into the
mechanisms of particle mixing and segregation in rotary drums, nor does it contribute to
related dynamic analyses, these aspects remain the most fundamental and critical topics
in the field of granular mixing. Any breakthrough in these areas would undoubtedly result
in benefits for research related to the prediction of particle mixing.

The SMI was chosen as the sole mixing index in this study due to its numerous advantages;
however, its full potential has not been fully explored. For instance, SMI is capable of
quantitatively describing the mixing state of polydisperse mixtures with more than two
components and can be used to analyze local mixing characteristics, such as the axial
mixing distribution in long rotary drums. Nevertheless, as a fraction-based mixing index,
SMI is inherently influenced by subdomain size. To completely eliminate this limitation,
either a novel distance-based mixing index must be developed, or existing distance-based
indices need to be optimized to accommodate large-particle systems. In this regard, the
neighbor list in DEM presents a promising concept that may serve as a useful reference.

The transition phase from no segregation to the onset of segregation is particularly critical.
Whether for studying the underlying mechanisms or improving predictive accuracy, it is
essential to increase the number of simulations in this range. Specifically, more simulations
should be conducted for size and density ratios between 1 and 1.5.
One major advantage of the cross-correlation method over machine learning models is

its ability to make predictions beyond the parametric range of the training set, provided
that the considered parameter does not significantly affect the axial motion of particles.
Therefore, its applicability may be further explored, including scenarios such as varying
filling degrees, mixing cohesive particles, or using flighted rotary drums. Moreover, the
study by Xie et al. [119] introduced an interesting approach, suggesting that non-spherical
particle behavior in DEM can be approximated by increasing the rolling resistance of
spherical particles. This approach could also be integrated into the cross-correlation
framework.
When applying machine learning methods in this study, spherical and non-spherical

particles were investigated separately. However, particle shape could potentially be
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abstracted as an additional influencing parameter, such as circularity. Saeed et al. [120]
have already explored this approach in a cylindrical tank mixer. While more influencing
factors can certainly be incorporated into the machine learning model, doing so would
inevitably lead to an increased number of training samples. Therefore, it is necessary to
explore alternative fractional factorial design methods beyond full factorial design. Finally,
as most machine learning models function as black boxes, enhancing their interpretability
remains a worthwhile direction for future research.
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