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Concerns about the generalizability of machine learning models in mental health arise, partly due to sampling effects and data
disparities between research cohorts and real-world populations. We aimed to investigate whether a machine learning model
trained solely on easily accessible and low-cost clinical data can predict depressive symptom severity in unseen, independent
datasets from various research and real-world clinical contexts. This observational multi-cohort study included 3021 participants
(62.03% females, MAge= 36.27 years, range 15–81) from ten European research and clinical settings, all diagnosed with an affective
disorder. We firstly compared research and real-world inpatients from the same treatment center using 76 clinical and
sociodemographic variables. An elastic net algorithm with ten-fold cross-validation was then applied to develop a sparse machine
learning model for predicting depression severity based on the top five features (global functioning, extraversion, neuroticism,
emotional abuse in childhood, and somatization). Model generalizability was tested across nine external samples. The model
reliably predicted depression severity across all samples (r= 0.60, SD= 0.089, p < 0.0001) and in each individual external sample,
ranging in performance from r= 0.48 in a real-world general population sample to r= 0.73 in real-world inpatients. These results
suggest that machine learning models trained on sparse clinical data have the potential to predict illness severity across diverse
settings, offering insights that could inform the development of more generalizable tools for use in routine psychiatric data analysis.
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INTRODUCTION
The inability to predict the occurrence of depressive symptoms
and patients’ individual trajectories remains a major limitation in
mental health care. Generating data-driven support for clinical
decision-making is therefore the main objective of many recent
advances in psychiatric research [1]. To achieve this goal, we
require machine learning (ML) models that are able to identify
consistent patterns in predictors of depression severity from the
complex inter-individual variety found in real-world clinical
populations. A particular challenge for the field is the develop-
ment of models that not only make reliable predictions within the
participant cohort used for model training, but that are also valid
in unseen, independent data from different treatment contexts,
countries, or age groups [2, 3]. While models for clinically relevant
predictions have been successfully trained within a single research
dataset [4–6], previous investigations have often overlooked

external validation, specifically in real-world samples, which
represent the populations for whom clinical models are developed
and should be applicable [7]. Recently, attempts at externally
validating models for treatment response prediction have failed,
raising concerns about their generalizability [8, 9].
A potential pitfall may lie in systematic differences between

data from real-world clinical populations and those derived from
research cohorts, as clinical and demographic sample differences
can impair prediction accuracy and model generalizability
[3, 10–12]. Although imaging and genetic data have proven
invaluable for advancing precision medicine outside of mental
health [13–16], previous psychiatric research has repeatedly
demonstrated the particular relevance of training models on
clinical data when predicting symptom trajectories and treatment
outcome in disorders such as schizophrenia or depression [17, 18].
However, despite the technical feasibility of implementing
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structured collection of clinical information, the widespread
absence of harmonized machine-readable clinical data
persists across research and treatment settings, primarily due to
a lack of uniform data standards and shared ontologies in
psychiatry [19].
Given that the generalizability of ML models for clinical

applications like predicting treatment response has recently been
questioned [8], it is crucial to first assess whether robust and
generalizable models can be developed to predict depressive
symptom severity across diverse samples. If sampling biases or
batch effects impede model generalizability to the extent that
generalizable cross-sectional symptom prediction using clinical
data is not possible, then a re-evaluation of our current direction is
imperative. We therefore need to improve our understanding of
the differences between study populations and real-world data
and investigate the generalizability of predictive models for
depressive symptoms in unseen, independent data from various
sites and settings as a foundation, before taking on the even more
complex challenges of predicting symptom trajectories in
response to intervention.
In this study, we investigate whether a ML model for the cross-

sectional prediction of depressive symptoms, trained on struc-
tured clinical information, can achieve generalization across
diverse samples, sites, and time points despite potential sampling
and treatment effects. Specifically, we aimed to train a ML model
on homogenous research data and systematically validate it on
independent research and real-world clinical data obtained from
both inpatient and outpatient settings, as well as from the general
population.

MATERIALS AND METHODS
Study design and participants
This was a cross-sectional multi-center study in ten independent samples
with an overall n= 3021. From May 2010 to February 2024, 3021
participants aged 15–81 were included as part of ten different studies or
real-world data collection efforts. All inpatient and outpatient participants
were diagnosed with major depressive disorder (MDD). Participants across
all illness stages were included, ranging from one sample comprising
participants with recent onset depression (ROD, n= 301), eight samples
including a more general range of MDD diagnoses (range of n: 43-1210), to
one sample with persistent depressive disorder (PDD, n= 161). All
participants were undergoing inpatient or outpatient treatment at the
time of assessment, with the exception of the real-world general
population sample, from which participants were selected who reported
having received an MDD diagnosis at some point before the assessment.
An overview of all samples including descriptive and clinical information
can be found in Table 1. We firstly evaluated sampling effects across
patients from two base samples: a study population and a real-world
sample recruited at the same psychiatric hospital to eliminate site
variability: For the study sample (study population inpatients, site #1),
we used clinical and self-report data from two pooled neuroimaging
cohorts conducted at the same site with virtually identical data assessment
protocols. For comparison, a sample from a naturalistic study of a real-
world clinical population that was digitally phenotyped during inpatient
treatment at the same psychiatric hospital was included (real-world
inpatients, site #1). We then included seven additional samples from
various sites across Germany and one sample containing data from
multiple sites across Europe, deviating further from the study population in
terms of patient characteristics and recruitment setting with each site
(see Supplementary Material (SM), pp. 5–8). All samples are findable
through the Meta-Data Study Repository of the German Centre for Mental
Health (DZPG) (http://www.umh.de/cohort-registry). The study protocol
was approved by the responsible ethics committees and was conducted in
accordance with the guidelines for good clinical practice.

Procedures
To capture heterogeneity and diversity of real-world patient populations,
samples included participants with persistent depressive disorder (PDD)
undergoing specialized treatment with cognitive behavioral analysis
system of psychotherapy (CBASP), inpatient samples undergoing

electroconvulsive therapy (ECT), inpatient and outpatient participants with
recent onset depression (ROD) and outpatient samples from psychother-
apy services undergoing long-term psychotherapeutic treatment. More
details on all treatment procedures can be found in the SM, pp. 5–8.

Measures
All available data were extracted and retained as predictor variables for the
training of ML models if they were available in both initial samples. This
resulted in a set of 76 variables that could be grouped into the following
dimensions: sociodemographic variables, current symptom severity,
current psychotropic medication, family and personal psychiatric history,
childhood maltreatment and stressful life events, somatic symptoms, and
personality dimensions. Symptomatic outcomes were assessed based on
harmonized scores from self-report measures of depression severity for all
sites. As depression severity was assessed with different instruments (BDI
[20], BDI-II [21], or PHQ-9 [22]) across different sites, we harmonized these
measures by transforming them into absolute percent of maximum
possible (POMP) scores. The score represents the percentage a participant
achieved in relation to the maximum possible depression severity that can
be achieved in the measurement tool [23] (see SM, pp. 4–5). Where
available, depression severity after a psychotherapeutic intervention or at
the conclusion of treatment was additionally included for model validation
across time-points. Detailed descriptions of all measures are presented in
SM, pp. 3–5.

Statistical analysis
As a first analysis step, we calculated group comparisons between the two
base samples: study population and real-world inpatients from site #1.
Independent two-sample t-tests were calculated for continuous, Χ²-tests
for dichotomous, and Mann-Whitney-U test for ordinal outcome variables.
Benjamini-Hochberg false discovery rate (FDR)-corrected p-values were
calculated for all comparisons. Statistics were computed using IBM SPSS
Version 26.
For the ML analysis, we first trained a model on all N= 366 study

population inpatients #1, using all available 76 features to predict
depression severity. Analogous to Chekroud et al. [8], we used the elastic
net algorithm, a penalized regression method that is appropriate when
covariates are correlated with one another and predictors may only be
sparsely endorsed [24, 25]. We performed cross-validation to assess
generalizability of our model using the PHOTONAI software (www.photon-
ai.com [26]). The cross-validation part of this procedure randomly
reshuffled the data, separated the dataset into 10 non-overlapping folds
and used 9 of the subsets for training, repeating the process until each
subset was left out once for testing. The repeated part of this procedure
randomly re-shuffled and re-split the data ten times to reduce the impact
of the first random data split; in aggregate, 100 total models were fit to the
10 folds by 10 repeats. Missing values were imputed using the median of
the training set within the cross-validation procedure, preserving the
independence of training and test set. Model performance was calculated
by averaging the performance metrics across all 100 models. Based on the
prediction of this baseline model, we computed Pearson correlations
between the true and the predicted values to assess predictive
performance. Next, we identified the most relevant features for this model
using permutation importance with 1000 repeats. This yielded five main
variables driving model performance (Fig. 1): neuroticism, extraversion,
global assessment of functioning, somatization, and emotional abuse
during childhood. Using these five variables alone, we trained a sparse
model on the same initial sample (study population inpatients #1). We
then tested this sparse model in real-world inpatients #1. If missing values
were present, the median of the base model dataset was used. To further
assess model generalizability, we then tested the sparse model across all
nine external samples for external validation (see Fig. 1). To assess whether
model performance remained robust after therapeutic interventions, we
used it to predict depression severity after treatment across the five
external datasets which provided an assessment after a therapeutic
intervention (see Table 1). For all models, we computed the Binomial Effect
Size Display (BESD [27]) from the Pearson correlation coefficients. This
metric provides an approximation of the proportion of correct guesses
about the direction of a correlation. It adjusts the initial chance level (50%)
by incorporating the strength of the correlation coefficient, as a metric for
evaluating the coefficient’s practical significance. More specifically, BESD is
a tool to make the interpretation of correlation coefficients (r) more
intuitive, especially when dealing with binary outcomes (e.g., success/
failure). It converts a correlation into success rates for two groups - those
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predicted to succeed and those predicted to fail. Conversion is done in two
steps:

1. Baseline (no correlation, r= 0): Assume a 50% success rate for both
groups.

2. Adjust for r: For a given correlation:

– Success rate for the “success-predicted” group= (50+ 50r)%
– Success rate for the “failure-predicted” group= (50−50r)%

Random chance occurs when the correlation r= 0. This means there is
no relationship between the predictor and the outcome. Under this
condition, both groups (those predicted to succeed and those predicted to
fail) have the same success rate of 50%. This reflects pure random
guessing.
So, if r= 0:

– Success rate in the success-predicted group= 50+ (50*0)= 50%
– Success rate in the failure-predicted group= 50−(50*0)= 50%

But if, for example, r= 0.20:

– Success rate in the success-predicted group= 50+ (50 * 0.20)= 60%
– Success rate in the failure-predicted group= (50− (50 * 0.20)= 40%

Thus, r= 0.20 means a 20% difference in success rates, making the effect
size easier to interpret.

RESULTS
Systematic comparison between study population and real-
world sample
The two base samples differed substantially in features from all
dimensions except for somatic symptoms. The real-world

participants displayed more severe current depressive symptoms
only in external symptom assessment, not in a self-report
measure. They also showed a more severe disease course, as well
as differences in prescribed medication (more stimulants, benzo-
diazepines, and z-drugs), recalled childhood maltreatment (more
physical neglect) and personality dimensions (lower conscien-
tiousness, higher agreeableness) compared to the study popula-
tion (see SM, Table S2 for all group comparisons). In addition to
this comparison between the two initial samples from the same
treatment site, we also compared all external validation samples
regarding their deviation from the training sample in the top five
features. These results are reported in the SM, p. 9.

Real-World validation of ML model and development of
sparse model
Training the first ML model on all available data in study
population inpatients #1 yielded an internal validation perfor-
mance of Pearson’s r364= 0.57, SD= 0.151. As outlined above, the
five most important features were then used to train the sparse
model on study population inpatients #1. The sparse model
performed above chance in the real-world sample (r350= 0.73,
p < 0.001). Using the BESD for illustration, this corresponds to an
accuracy of 87% in a classification scenario.

Generalizability of sparse model across sites, treatment
settings, and populations
The sparse model also performed above chance level across all
external datasets (r2673= 0.60, SD= 0.089, p < 0.001), correspond-
ing to an accuracy of 80% in a classification scenario. Investigating
performance on the nine samples separately shows that
performance on all sites varied between r1227= 0.48 in the real-
world general population sample, r250= 0.50 in real-world

Fig. 1 Analytic workflow, model evaluation, and results of multisite model validation. A Analytic workflow from systematic differences
analysis to multisite model evaluation. B Scatter plot depicting p-values for group differences between study population and real-world
inpatients from site #1 across clinical and demographic variables. C1 Line plot of ranked feature importances with specified cutoff. C2 Bar plot
highlighting the top 5 features selected through permutation importance analysis. D External validation results of the base model showing
Pearson correlation of true and predicted depressive symptoms, contrasted across nine external sites. E Follow-up validation scatter plot
showing Pearson correlation of true and predicted depressive symptoms following therapeutic intervention, including the presentation of
average follow-up durations by site.
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outpatients #6, and r350= 0.73 in real-world inpatients #1. Thus,
even the lowest performance was within 0.60 standard deviations
of the mean of the first model performance. Note that the
comparatively poorer performance in the real-world general
population sample may result from only two of the five features
being available for this sample, which moreover differed most
markedly from the training set in participant characteristics due to
it being a general population sample in which participants were
not necessarily acutely depressed or currently undergoing
treatment.

Model generalizability across two time points
To assess whether sparse model performance remained robust
after therapeutic interventions, we used it to predict depression
severity after treatment. The sparse model performed above
chance level (r566= 0.50, p < 0.001) across the five external
datasets which provide an assessment after a therapeutic
intervention, which corresponds to an accuracy of 75% in a
classification scenario and indicates good generalization for the
prediction of depression severity at a different measurement time
without explicit training. Investigating performance on the five
sites separately showed that performance varied between
r125= 0.20 (real-world outpatients #6) and r56= 0.54 (real-world
inpatients #1). Note that treatment duration differed substantially
between sites and treatment modalities. The comparatively low
performance in real-world outpatients #6 may be due to the long
treatment as treatment duration was indeed positively associated
with model error across all sites, indicating increased model error
with longer duration between baseline and follow-up assessment
(Spearman’s r554= 0.12, p= 0.004).

Classification of severely depressed non-responders
As the predictive model showed robust performance for
depressive symptom prediction at two distinct time points before
and after intervention, we additionally aimed to assess whether
the same variables could be used to train a model to identify
subjects with severe depressive symptoms at both time points
thus allowing to assess its potential value for individual risk
assessment. We used the established BDI cut-off of 29, indicating
severe depression [21], which corresponded to a POMP score of
46.03 to stratify the sample of 790 patients for whom data from
two time-points was available, yielding 91 (13%) who showed
severe depressive symptoms at both time-points. While training a
baseline model on the study population inpatients #1
dataset alone and testing its generalization to the nine other
sites was not feasible as study population inpatients #1 contained
only 19 patients who were severely depressed at both time-points,
we assessed our ability to predict severe depression without
treatment response using leave-site-out cross-validation. In this
procedure, data from all but one site is used for training and the
model is tested on the remaining site. This is repeated for each
site. To counter the strong class imbalance, we employed the
elastic net approach for classification with Synthetic Minority
Over-sampling Technique (SMOTE) combined with Edited Nearest
Neighbors (ENN) as proposed by Batista et. al [28]. With this
approach, we showed that presence/absence of persistent, severe
depression could be predicted with an average balanced accuracy
of 0.66. Performance per site ranged from chance level (balanced
accuracy= 0.50) in real-world outpatients #6 to 0.86 in study
population inpatients #2 (SM p. 20, Table S3).

Sensitivity analyses
To investigate potential model bias, we assessed the association of
model error with age and sex, respectively. Neither age (Spear-
man’s r554= 0.07, p= 0.093) nor sex (t554=−1.54, p= 0.123) were
significantly associated with model error. We also conducted an
additional analysis to explicitly test the generalization perfor-
mance of our model when excluding neuroticism and global

functioning, indicating good generalization even without the most
highly weighted features of the original model (see SM, p. 9)

DISCUSSION
In this study, we demonstrate that a ML model trained on
homogeneous research data can achieve comparable perfor-
mance for predicting depression severity in unseen, independent
real-world datasets across different sites, treatment settings, and
time points. To the best of our knowledge, this study includes the
most extensive independent validation of a ML model in the field
of psychiatric research to date. In contrast to previous studies
[8, 17], we show robust generalization performance across nine
independent sites comprising over 2600 participants, reflecting
the full spectrum of heterogeneity and diversity present in real-
world patient populations. This suggests that real-world validation
of psychiatric symptom prediction models is possible, despite
substantial sample heterogeneity.
A first challenge to consider for model generalization in

independent datasets is that patient groups from research
contexts may be too different from real-world clinical populations
[29]. We demonstrate that systematic differences indeed exist
between research populations and real-world MDD patients, even
when both samples are treated and assessed at the same
psychiatric hospital. However, our results suggest that these
differences do not impede model generalization, even to
populations from different sites or treatment contexts. While
research from other areas of medicine, such as predicting positive
COVID-19 screenings, reveals that site-specific model customiza-
tion can improve predictive performance, the approach of
applying a ready-made model “as-is” has also been found to be
effective [30] and appears to also be feasible for psychiatry. It
should be noted however that most of the real-world data used in
this study were derived from naturalistic scientific investigations
and therefore still relied on patients’ voluntary participation. This
may have introduced inherent biases, as more strongly impaired
subgroups, such as patients in closed wards or those with suicidal
tendencies, were inevitably excluded. Sample characteristics of
the whole clinical population may therefore deviate more strongly
from study data and face more difficulties for generalization than
we are able to report.
Biases arise not only from baseline differences in patient

characteristics and site but also from variations in treatment
modalities, especially for prospective predictions of depression
severity after a mental health intervention. We show that our
model remains robust across various settings, particularly for
the translation from inpatient to outpatient psychotherapy service
users, as well as after treatment with markedly different
modalities. While performance drops markedly the further the
treatment context deviates from the training set and with
increasing time between baseline and follow-up assessment,
prediction of both baseline as well as post-treatment depression
severity is still possible. This underlines the finding that hetero-
geneity within and between datasets and measurement time does
not substantially impede model generalizability. However,
although the predictive clinical features used in our sparse model
may allow for the identification of participants with persistent
depressive symptoms across time points and after treatment —
and similar approaches have been used to tailor treatments
for participants with more intensive support needs during
routine treatment [31] — the limited sample size of treatment
resistant participants did not allow for external validation in this
additional analysis. This model should therefore not be misinter-
preted as a readily applicable model for clinical decision support.
The present findings rather support the general feasibility of
developing generalizable ML models for predicting complex
phenomena such as psychiatric symptoms. These findings may
thus serve as a foundational step for future endeavors aimed at
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refining models suitable for ecologically valid clinical use cases in
daily practice.
A further challenge to consider is the quality, quantity, and

diversity of the data needed to achieve accurate predictions. While
previous research in study populations shows that predictive
models which include more than one data modality, such as
clinical, neuroimaging, and genetic data, achieve better perfor-
mance [32] we demonstrate that symptom severity prediction is
possible with sparse features that can be collected during the
clinical routine. This is in line with previous findings on the
particular importance of clinical information when predicting
symptom trajectories and treatment outcome in mental health
research [17, 18]. The extracted features, encompassing two
personality dimensions, somatic symptom severity, childhood
emotional abuse, and global functioning, and thus a mixture of
state and trait variables, consistently form a predictive pattern for
depression severity across diverse patient populations, irrespec-
tive of illness stage or treatment setting. It is crucial to highlight
that these features have demonstrated greater importance
compared to over 70 other variables, some of which might be
presumed to hold equal or greater relevance in determining
depressive symptom severity including clinician-relevant factors
like psychiatric history or prescribed medication. However, note
that the initial feature selection may not encompass the full
spectrum of variables with predictive potential and that there may
be other variables of greater significance that were not measured
and therefore not included in the model.
Lastly, in addition to considerations about sample heterogene-

ity, a crucial methodological challenge for constructing general-
izable ML models lies in the avoidance of overfitting when training
the base model [29]. When a model overfits, it captures both the
signal and the noise in the training data on which it may perform
exceptionally well while failing to generalize to new, unseen data
[33]. Regularization, which imposes constraints on the model
parameters to encourage sparsity, can help prevent overfitting by
promoting simpler, more interpretable models. In our study,
working with low-dimensional clinical data and further reducing
the dimensionality of the feature space by focusing on the most
informative features was used to prevent overfitting.
Given our demonstration of the generalizability of ML models

trained on sparse clinical information, along with considerations of
technical and cost efficiency, these findings should advocate for
the structured acquisition of machine-readable clinical informa-
tion in routine settings. To achieve this, it is essential to enhance
interoperability and invest in standardized data formats and
ontologies in psychiatry, paving the way for the application of ML
models across diverse clinical sites. Successful examples from the
medical community include the adoption of the Systematized
Nomenclature of Medicine, Clinical Terms (SNOMED CT [34]),
Logical Observation Identifiers, Names, and Codes (LOINC [35]),
and Fast Health Interoperability Resources (FHIR [36]) profiles.
Moreover, wide-reaching infrastructures such as the German
Medical Informatics Initiative [37] as well as other international
efforts [38–40] have set the goal of improving clinical data
integration from patient care and medical research. The French
Health Data Hub, for instance, is explicitly designed to facilitate
health data sharing with the aim of developing health-related
Artificial Intelligence projects [41]. Our findings highlight the
necessity for national and international initiatives to specifically
tailor, develop, and disseminate such solutions for psychiatry and
mental health. The recent establishment of the German Centre for
Mental Health (DZPG) with its translational agenda and integration
with key data infrastructures in Germany signifies an important
step forward in this regard [42].
In summary, our findings highlight successful real-world

validation of a sparse ML model for depressive symptom
prediction and emphasize the potential of using standardized

collection of routine data to develop generalizable empirical
models in mental health.
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