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Abbreviations and Notation

Abbreviations

ADI method alternating implicit direction method

C-controllable completely controllable

C-observable completely observable

c-stable continuous-time stable

GBT(SR) generalized balanced truncation square-root method

GHNA generalized Hankel-norm approximation method

LR-ADI method low-rank alternating implicit direction method

RRQR decomposition rank-revealing QR decomposition

Notation

R the field of the real numbers

R− = (−∞, 0) the negative real semi-axis

j =
√
−1 the imaginary unit

jR the imaginary axis

C the field of the complex numbers

Re(z) real part of z ∈ C
C− = {z ∈ C : Re(z) < 0} the open left half-plane

Fn×m the space of matrices of real (F = R) or complex
(F = C) matrices of size n×m

AT the transpose of A ∈ Fn×m

A−1 inverse of A ∈ Fn×n

A−T = (A−1)T transposed inverse of A ∈ Fn×n

AH = ĀT conjugate transpose of A ∈ Fn×m

A† the Moore-Penrose pseudoinverse of A ∈ Fn×m

diag(A1, . . . , Ak) block diagonal matrix with Aj ∈ Fnj×nj , j =
1, . . . , k
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In =

1 0
. . .

0 1

 the identity matrix of order n

det(A) the determinant of A ∈ Fn×n

tr(A) trace of the matrix A ∈ Fn×n

rank(A) the rank of A ∈ Fn×m

Ker(A) = {x ∈ Fm : Ax = 0} the kernel (or null space) of A ∈ Fn×m

Im(A) = {y ∈ Fn : y = Ax, x ∈ Fm} the image (or range) of A ∈ Fn×m

Λ(A) = {λ ∈ C : det(λIn − A) = 0} spectrum of A ∈ Fn×n

Λ(A,E) = {λ ∈ C : det(λE − A) = 0} spectrum of the matrix pencil λE − A
Λf (A,E) = Λ(A,E) \ {∞} the finite spectrum of the matrix pencil

λE − A
π(A) number of eigenvalues of A ∈ Fn×n in

the open right half-plane

ν(A) number of eigenvalues of A ∈ Fn×n in
the open left half-plane

δ(A) number of eigenvalues of A ∈ Fn×n on
the imaginary axis

In(A) = (π(A), ν(A), δ(A)) the inertia of A ∈ Fn×n

σ1(A) ≥ . . . ≥ σk(A) ≥ 0 singular values of A ∈ Fn×m

σmax(A) = σ1(A) the largest singular value of A ∈ Fn×m

Ak→∞ = lim
k→∞

Ak limit of the sequence Ak ∈ Fn×m, k =
0, 1, . . .

||.|| an arbitrary suitable norm, depending
on the context

||A||2 = σmax(A) spectral norm of A ∈ Fn×m
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1 The Hankel-Norm Approximation, a
Method of Model Reduction

Today, many different real-world applications are modeled by systems of differential-
algebraic equations. Chemical processes, electrical circuits and networks, or computa-
tional fluid dynamics are just a few examples. These models are used for simulations
and the design of controllers since experiments can be very costly, time-consuming and
expensive. In this thesis such systems of differential-algebraic equations have the form

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1.1)

with a singular E matrix. Such systems are called descriptor systems. Here the controls
are used to influence the internal states x. The observed outputs of the system are
given in y. The descriptor system (1.1) can be interpreted as a black box which gets
an input and results in an output under certain rules.
Due to certain required properties, like an increased accuracy, the number of equa-
tions used to model the problem quickly enlarges. For this reason, the usage of the
complete models often reaches the limits of computational resources like memory and
computation time. The acquired data often contains a huge amount of unnecessary
redundancies, especially for large-scale models . It would be beneficial to use an ap-
proximation of the original model by a system with a much smaller number of equations
than the original one. This is the goal of model reduction.
Usually, systems of the form (1.1) have a small number of inputs and outputs but
a much larger count of internal states, which have to be computed through the set
of differential equations. Model reduction methods are then used to compute a new
descriptor system of the form

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(1.2)

where u are the same controls as in (1.1). The number of equations used in (1.2) shall
be much smaller than in the original system (1.1). The reduction of the model is done
in order to approximate the input-output behavior of (1.1), such that

||y − ŷ|| ≤ tol · ||u|| (1.3)

holds for a given tolerance tol > 0 and all admissible inputs u. Beside this approxi-
mation, special properties of the original system should be preserved during the model
reduction. Some of these properties are, for example, the stability or the passivity of
the system.

– 1 –



1 The Hankel-Norm Approximation, a Method of Model Reduction

For the task of model reduction, there exist many different methods and techniques.
Most of them were developed for the much simpler standard case, where the E matrix
in (1.1) is an identity matrix In. For regular E the descriptor system (1.1) can be
reduced to the standard case by applying the inverse of E to the first equations of
(1.1). The more complicated case occurs if E is a singular matrix. The introduction
of spectral projectors has allowed the generalization of many known model reduction
methods for descriptor systems.
A large number of model reduction methods is based on the computation of matrix
equations. There, the solutions of matrix equations and the singular value decomposi-
tion are used to get measurements for a meaningful reduction of the original system.
Different choices of matrix equations change the set of preserved properties of the orig-
inal system. A survey of generalizations of some matrix equation based methods can
be found in [11].
The input-output behavior of a descriptor system (1.1) can be described by a rational
matrix-valued function, the transfer function. Another field of model reduction meth-
ods treats the interpolation of the system’s transfer function. A detailed view on the
generalization of interpolation based model reduction methods for descriptor systems
can be found in [14].
As a last field of techniques, the proper orthogonal decomposition methods shall be
mentioned. Here snapshots of the system’s input-output behavior are computed to
construct a reduced-order model. There exist different approaches, how to choose
the snapshots. Based on spectral projectors, a generalization of proper orthogonal
decomposition methods is presented in [18].
An often mentioned problem is the construction of a reduced-order model minimizing a
certain system norm. A first approach in this direction was made by the introduction
of the balanced truncation method and the corresponding error bound in the H∞-
norm. But in general, this method is not able to construct an optimal approximation.
A refinement of the balanced truncation leads to another model reduction method
which succeeds in finding a best approximation in the Hankel-norm. This Hankel-
norm approximation method was based on the work of Adamjan, Arov and Krein
about the approximation of the Hankel matrix. The main results of this work can be
found in [1]. Further contributions to this theory were made by Glover in [13]. There,
a characterization of all Hankel-norm approximations for standard linear systems is
given using the theory of balanced realizations. As a result, an algorithm for the
Hankel-norm approximation of standard systems was proposed.
Beside an exact error bound in the Hankel-norm, the Hankel-norm approximation
can provide a better approximation behavior than other model reduction methods.
Therefore, it would be beneficial to use it in case of descriptor systems (1.1). So far
used approaches of the Hankel-norm approximation were designed only for the case
of standard systems. In this thesis the Hankel-norm approximation method will be
generalized to the descriptor system case. Therefor, the generalized concept of balanced
realizations using spectral projectors will be considered to make use of the results from
[13].
Starting form this presentation of the problem, in Chapter 2 some necessary basic tools
from the linear algebra and the system and control theory are introduced. Most of the
presented topics are considered in the framework of descriptor systems. In Chapter 3

– 2 –



1 The Hankel-Norm Approximation, a Method of Model Reduction

the Hankel-norm approximation method for the standard case, introduced by Glover,
is presented. Also, a special solution approach for descriptor systems, based on the
Weierstrass canonical form, is presented there.
After clarifying all basics and the state of the art, the generalized Hankel-norm ap-
proximation is developed in Chapter 4 as an extension of the generalized balanced
truncation method. Also, an approximated version of the generalized Hankel-norm
approximation and the application on large-scale sparse systems will be considered
here. In Chapter 5 a projection-free variant of the introduced method and, in this con-
text, spectral projection based algorithms for the implementation of the generalized
Hankel-norm approximation are shown.
The results of some numerical tests in MATLAB are displayed in Chapter 6. Details
of two different dense implementations and a sparse implementation of the method are
shown on different data examples. Finally, in Chapter 7 the results of this thesis are
summarized and open points are outlined.

– 3 –



2 Mathematical Basics

For further discussions of model reduction methods, in this chapter necessary mathe-
matical concepts are presented. After the revision of some basic linear algebra tools, a
large bunch of system theoretical aspects and concepts will be introduced. From the
beginning, the case of descriptor systems is considered.
One of the most used tools in the numerical linear algebra is the singular value decom-
position. Given a matrix A ∈ Rn×m there exist orthogonal matrices U ∈ Rn×n and
V ∈ Rm×m such that

A = UΣV T , (2.1)

with Σ having the following form

Σ =

[
Σ1 0
0 0

]
, (2.2)

where Σ1 = diag(σ1, . . . , σk) ∈ Rk×k is a full-rank diagonal matrix. The matrix de-
composition in (2.1) is called the singular value decomposition of the matrix A. The
diagonal entries of Σ1 in (2.2) are the singular values of A and ordered in a decreasing
way σ1 ≥ . . . ≥ σk > 0. The columns of U = [u1, . . . , un] are the left and the columns
of V = [v1, . . . , vn] are the right singular value vectors of A, see [1]. Often only the
non-zero singular values and the corresponding columns of the orthogonal matrices are
needed. This economic version of the singular value decomposition is called skinny.
One important property of the singular value decomposition is given by the Schmidt-
Eckart-Young-Mirsky theorem.

Theorem 2.1. (See [1]). The best rank-r approximation of the matrix A ∈ Rm×n is
given by the formula

Ak =
r∑
j=1

σjujv
T
j ,

using the singular value decomposition in (2.1). The exact approximation error is then
given by

||A− Ak||2 = σr+1(A),

where ||.||2 denotes the spectral norm and σr+1(A) is the (r+ 1)-st singular value of the
matrix A.

This construction principle is used, in a modified version, for model reduction methods.
There are several other useful matrix decompositions. Another one, which will be
needed in later discussions, is the QR decomposition. Given a matrix A ∈ Rm×n, there
exists an orthogonal Q ∈ Rm×m and an upper triangular R ∈ Rm×n, such that

A = QR. (2.3)

– 4 –



2.1 Descriptor Systems and Spectral Projectors

This matrix decomposition is not unique. A special version of (2.3) is given by including
a permutation matrix Π. This pivoted QR decomposition has the form

AΠ = QR. (2.4)

For example, the permutation matrix can be chosen, such that the diagonal elements
rii of the upper triangular matrix R are ordered in a decreasing way. Another version
can be used to determine the numerical rank of the matrix A. This one is called the
rank-revealing QR decomposition (RRQR decomposition).

2.1 Descriptor Systems and Spectral Projectors

In this thesis linear dynamical systems with differential-algebraic equations are consid-
ered.

Definition 2.1. Given a continuous-time linear time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.5)

with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m constant matrices. The
functions u(t) ∈ Rm are the controls, x(t) ∈ Rn the internal states and y(t) ∈ Rp the
outputs of the descriptor system (2.5). Then, the quintuple (E,A,B,C,D) is called a
realization of the descriptor system (2.5). The order of the descriptor system (2.5) is
given by n.

For a more accurate view on different aspects of descriptor systems, another pow-
erful tool is needed. The Laplace transformation is mapping time domain functions
onto functions in the frequency domain. For a time domain function f(t) the Laplace
transformation is given by

F (s) = L(f(t)) =

+∞∫
0

e−stf(t) dt, (2.6)

with the complex parameter s = δ + jω ∈ C. From system theoretical background, j
denotes here the imaginary unit j =

√
−1. For further evaluations of the frequency

domain function, the parameter s is chosen as δ = 0 and ω = 2πν, where ν being the
frequency. In [21] a more detailed view on the usage of the Laplace transformation can
be found.
The linearity of the Laplace transformation is obvious, since it is defined by an integral.
Also it can be shown that for the differential it holds

L(ẋ(t)) = sL(x(t)) + x(0) = sX(s) + x0,

where X denotes the Laplace transform of x(t) and x0 = x(0), see [21].
Now, the Laplace transformation can be applied to the descriptor system in (2.5).
Thereby, the exact input-output behavior of the system can be described by the re-
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2.1 Descriptor Systems and Spectral Projectors

sulting equation

Y (s) =
(
C (sE − A)−1B +D

)
U(s) + C (sE − A)−1Ex0, (2.7)

where Y and U are the Laplace transforms of y and u, receptively. For simplicity, it is
assumed that Ex0 = Ex(0) = 0. Now, the form of (2.7) can be rewritten as

Y (s) = G(s) · U(s),

with G a rational matrix-valued function. The input-output behavior is completely
described by the function G.

Definition 2.2. The rational matrix-valued function

G(s) = C (sE − A)−1B +D, (2.8)

is called the transfer function of the descriptor system (2.5).

Often the descriptor system and its realization are both associated with the corre-
sponding transfer function.
The realization of a descriptor system is not unique. It exists an endless number of
different realizations of a descriptor system with the same transfer function. Thus,
they all have the same input-output behavior.

Definition 2.3. Let (E,A,B,C,D) and (Ẽ, Ã, B̃, C̃, D̃) be two realizations of descrip-
tor systems. The realizations are called restricted system equivalent if there exist
non-singular matrices W,T ∈ Rn×n, such that

(Ẽ, Ã, B̃, C̃, D̃) = (WET,WAT,WB,CT,D). (2.9)

The transformation between two equivalent systems is called generalized state space
transformation.

With the generalized state space transformation (2.9), for transfer functions it holds

G̃(s) = C̃
(
sẼ − Ã

)−1

B̃ + D̃

= CTT−1 (sE − A)−1W−1W +D

= G(s).

Since the input-output behavior is described by the transfer function, both systems
with different realizations have the same input-output behavior.
Next, some additional generalized concepts have to be introduced.

Definition 2.4. Let A,E ∈ Rn×n. The pair of matrices A and E is called matrix
pencil and further denoted by λE − A.

For such a matrix pencil, the generalized spectrum Λ(A,E) is given as all λ ∈ C for
which the characteristic polynomial P (λ) = det(λE − A) vanishes. These values are
the eigenvalues of the matrix pencil λE − A.

– 6 –



2.1 Descriptor Systems and Spectral Projectors

Definition 2.5. Let λE −A be a matrix pencil. The matrix pencil is called regular if
there exists a λ ∈ C, such that det(λE −A) 6= 0. Otherwise the matrix pencil is called
singular.

The regularity of a matrix pencil λE−A means that the numbers of finite and infinite
eigenvalues are not endless.
Given a regular matrix pencil λE − A, the Weierstrass canonical form can be intro-
duced, see [23]. There are non-singular matrices W and T , such that

E = W

[
Inf 0
0 N

]
T and A = W

[
J 0
0 In∞

]
T. (2.10)

The matrix J ∈ Cnf×nf corresponds to the finite eigenvalues of the pencil λE − A
and is in the Jordan canonical form. The dimension of the corresponding deflating
subspace is given by nf . Also, the matrix N ∈ Rn∞×n∞ is in Jordan canonical form
with zeros on its diagonal. The number n∞ is the dimension of the deflating subspace
corresponding to the infinite eigenvalues of the matrix pencil λE−A. The matrix N is
nilpotent with the index ν. That means, it holds Nν−1 6= 0 and N ν = 0. If the matrix
pencil λE−A is referred to a descriptor system (2.5), the index of nilpotency ν is also
referred to as the index of the system (2.5).
Based on the Weierstrass canonical form, the Rn can be decomposed into two comple-
mentary deflating subspaces corresponding to the finite and infinite eigenvalues of the
matrix pencil λE − A. The two matrices

Pl = W

[
Inf 0
0 0

]
W−1 and Pr = T−1

[
Inf 0
0 0

]
T, (2.11)

where W and T are the transformation matrices from (2.10), are the spectral projectors
onto the left and right deflating subspaces corresponding to the finite eigenvalues,
respectively. Then the spectral projectors onto the left and right deflating subspaces
corresponding to the infinite eigenvalues of the matrix pencil λE − A are given by

Ql = In − Pl and Qr = In − Pr, (2.12)

see [8, 23]. Since the Weierstrass canonical form is difficult to compute, a more prac-
ticable representation of the spectral projectors can be found in [28]. First, a block-
triangular form of λE − A is assumed, with

E = V

[
Ef Eu
0 E∞

]
UT , A = V

[
Af Au
0 A∞

]
UT , (2.13)

where U and V orthogonal, Ef nonsingular, E∞ nilpotent with index ν and A∞ non-
singular. Using this formulation, the spectral projectors are given by

Pl = V

[
Inf −Z
0 0

]
V T and Pr = U

[
Inf −Y
0 0

]
UT , (2.14)

– 7 –



2.1 Descriptor Systems and Spectral Projectors

where Y and Z solve the generalized Sylvester equation

EfY − ZE∞= −Eu,

AfY − ZA∞= −Au.

Finally, the solution of descriptor systems is considered here. The following contents
are based on [8].
From the Weierstrass canonical form (2.10) one can obtain the following Laurent ex-
pansion at infinity to get the generalized resolvent

(λE − A)−1 =
+∞∑

k=−∞

Fkλ
−k−1,

with the coefficients Fk of the form

Fk =


T−1

[
Jk 0
0 0

]
W−1, k = 0, 1, 2, . . . ,

T−1

[
0 0
0 −N−k−1

]
W−1, k = −1,−2, . . . .

(2.15)

Now, the state variables x of the descriptor system (2.5) are transformed by the trans-
formation matrices of the Weierstrass canonical form, such that

Tx(t) =

[
z1(t)
z2(t)

]
, (2.16)

with a partition according to the block structure of the Weierstrass canonical form
(2.10). The matrices

W−1B =

[
Bf

B∞

]
and CT−1 =

[
Cf , C∞

]
(2.17)

are partitioned similar to (2.16).
The descriptor system (2.5) is then transformed into

ż1(t) = Jz1(t) +Bfu(t),
Nż2(t) = z2(t) +B∞u(t),
y(t) = Cfz1(t) + C∞z2(t) +Du(t).

This new system decouples into the slow subsystem

ż1(t) = Jz1(t) +Bfu(t),
y(t) = Cfz1(t),

(2.18)

and the fast subsystem
Nż2(t) = z2(t) +B∞u(t),
y(t) = C∞z2(t) +Du(t).

(2.19)
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The slow subsystem (2.18) is in the standard formulation and has a unique solution of
the form

z1(t) = etJz0
1 +

t∫
0

e(t−τ)JBfu(τ) dτ ,

for any integrable input u and any initial value z0
1 ∈ Rnf . For an input u, ν times

continuously differentiable, the unique solution of the fast subsystem (2.19) is given by

z2(t) = −
ν−1∑
k=0

NkB∞u
(k)(t), (2.20)

where ν is the index of the descriptor system (2.5) and u(k) denotes the k-th derivative
of the input function. It is necessary that the input function u is sufficiently smooth
and the initial value z0

2 satisfies

z0
2 = −

ν−1∑
k=0

NkB∞u
(k)(0).

Considering this, the initial value x0 of the descriptor system (2.5) has to be consistent,
which means, it satisfies the condition

Qrx0 =
ν−1∑
k=0

F−k−1Bu
(k)(0),

whereQr is the spectral projector corresponding to the infinite eigenvalues of the matrix
pencil λE − A and the matrices Fk are given in (2.15).
In consequence, the descriptor system (2.5) has a unique, continuously differentiable
solution x(t) of the form

x(t) = F(t)Ex0 +

t∫
0

F(t− τ)Bu(τ) dτ +
ν−1∑
k=0

F−k−1Bu
(k)(t),

if the matrix pencil λE−A is regular, the input u is ν times continuously differentiable
and the initial value x0 is consistent. The term F is a fundamental solution matrix of
(2.5) given by

F(t) = T−1

[
etJ 0
0 0

]
W−1. (2.21)

In case of a non-consistent initial value x0 or if the input u is not sufficiently smooth,
the solution of the descriptor system (2.5) may have impulsive modes, see [8].

2.2 Controllability and Observability

In case of descriptor systems there exists a large number of different kinds of definitions
for the controllability and observability of the system. A list of the different kinds
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is arranged in [11]. In this thesis, only the aspects of complete controllability and
observability are considered.

Definition 2.6. The descriptor system (2.5) is called

(1) completely controllable (C-controllable) if

rank [αE − βA,B] = n for all (α, β) ∈ C× C \ {(0, 0)}.

(2) completely observable (C-observable) if

rank
[
αET − βAT , CT

]
= n for all (α, β) ∈ C× C \ {(0, 0)}.

The C-controllability of a system implies that for any given initial state x0 ∈ Rn and
final state xf ∈ Rn, there is an input u that transfers the state x0 to the state xf
in finite time. On the other side, the C-observability of a system implies that if the
output y is zero for all solutions x of the system with a zero input u, then this system
has only the trivial solution x ≡ 0, see [8]. These interpretations are conform with
the definitions of the controllability and observability of a dynamical system in [1]. A
useful algebraic characterization is given in the following theorem.

Theorem 2.2. (See [8]). Given a descriptor system (2.5) with a regular matrix pencil
λE − A.

(1) The system (2.5) is C-controllable if and only if rank [λE − A,B] = n for all finite
λ ∈ C and rank [E,B] = n.

(2) The system (2.5) is C-observable if and only if rank
[
λET − AT , CT

]
= n for all

finite λ ∈ C and rank
[
ET , CT

]
= n.

Another important property of descriptor systems is the stability. For further observa-
tions on controllability and observability, the aspect of stability has to be introduced
first.

Definition 2.7. Given a descriptor system of the form (2.5). The system is called
asymptotically stable if lim

t→+∞
x(t) = 0 for all solutions x(t) of Eẋ(t) = Ax(t).

This definition is based on the practical interpretation of the systems stability. As
in Theorem 2.2, an algebraic characterization using the realization of the descriptor
system is more suitable.

Theorem 2.3. (See [8]). Consider a descriptor system (2.5) with a regular matrix
pencil λE − A. The following statements are equivalent.

(1) System (2.5) is asymptotically stable.

(2) All finite eigenvalues of the pencil λE − A lie in the open left half-plane.
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2.2 Controllability and Observability

(3) The projected generalized continuous-time Lyapunov equation

ETXA+ ATXE + P T
r QPr = 0, X = P T

l XPl

has a unique Hermitian, positive semidefinite solution X for every Hermitian, pos-
itive definite matrix Q.

From now on, the matrix pencil λE − A is called continuous-time stable (c-stable) if
it is a regular matrix pencil and all the finite eigenvalues of λE − A have negative
real parts. The infinite eigenvalues of λE −A do not affect the homogeneous system’s
behavior at infinity.
Now, the controllability and observability Gramians can be defined analogously to the
standard system case [23].
Let λE − A be a c-stable matrix pencil. Then the following integrals exist

Gpc =

+∞∫
0

F(t)BBTFT (t) dt, Gpo =

+∞∫
0

FT (t)CTCF(t) dt,

with F is as in (2.21). The matrix Gpc is called the proper controllability Gramian and
Gpo the proper observability Gramian of the system (2.5), see [8, 23]. The improper
controllability Gramian Gic and the improper observability Gramian Gio of the system
(2.5) are defined by

Gic =
−1∑

k=−ν

FkBB
TF T

k , Gio =
−1∑

k=−ν

F T
k C

TCFk,

respectively. The coefficients Fk are the matrices from (2.15).
Considering the standard system case E = In, the proper Gramians are the usual
controllability and observability Gramians [1]. By applying the Parseval identity, the
Gramians can be rewritten in the frequency domain in the following form

Gpc =
1

2π

+∞∫
−∞

(jωE − A)−1PlBB
TP T

l (−jωE − A)−T dω,

Gpo =
1

2π

+∞∫
−∞

(−jωE − A)−TP T
r C

TCPr(jωE − A)−1 dω,

Gic =
1

2π

2π∫
0

(ejωE − A)−1QlBB
TQT

l (e−jωE − A)−T dω,

Gio =
1

2π

2π∫
0

(e−jωE − A)−TP T
r C

TCPr(e
jωE − A)−1 dω.

In [23] it has been shown that the proper controllability Gramian Gpc and the proper ob-
servability Gramian Gpo are the unique, positive semidefinite solutions of the following
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2.2 Controllability and Observability

projected generalized continuous-time Lyapunov equations

EGpcAT + AGpcET + PlBB
TP T

l = 0, Gpc = PrGpcP T
r , (2.22)

ETGpoA+ ATGpoE + P T
r C

TCP T
r = 0, Gpo = P T

l GpoPl. (2.23)

Furthermore, the improper controllability Gramian Gic and the improper observability
Gramian Gio are the unique, positive semidefinite solutions of the projected generalized
discrete-time Lyapunov equations

AGicAT − EGicET −QlBB
TQT

l = 0, Gic = QrGicQT
r , (2.24)

ATGioA− ETGioE −QT
r C

TCQr = 0, Gio = QT
l GioQl. (2.25)

The Lyapunov equations (2.24) and (2.25) can be rewritten in the form

AGicAT − EGicET − (In − Pl)BBT (In − Pl)T = 0, PrGicP T
r = 0,

ATGioA− ETGioE − (In − Pr)TCTC(In − Pr) = 0, P T
l GioPl = 0,

by the application of (2.12). With this formulation, only the spectral projectors cor-
responding to the finite eigenvalues of the matrix pencil λE − A are needed during
computations of the Lyapunov equations.
As well as in standard system case, the Gramians can be used to define the Hankel
singular values of the system. These are of great importance in the field of model
reduction.
The proper controllability and observability Gramians Gpc and Gpo as well as the im-
proper controllability and observability Gramians Gic and Gio are not system invari-
ant. Using non-singular matrices W and T for the generalized state space transforma-
tion of the descriptor system (2.5), the proper system Gramians are transformed into
G̃pc = T−1GpcT−T and G̃po = W−TGpoW−1, whereas the improper system Gramians are
transformed into G̃ic = T−1GicT−T and G̃io = W−TGioW−1. It follows from

G̃pcẼT G̃poẼ = T−1GpcETGpoET,
G̃icÃT G̃ioÃ = T−1GicATGioAT,

that spectra of the matrix GpcETGpoE and GicATGioA do not change under generalized
state space transformations. They are system invariant. These two matrices take the
same role in the descriptor system case as the product of controllability and observ-
ability Gramian in the standard case [8]. In [26] it has been shown that the eigenvalues
of these two matrices are real and non-negative.

Definition 2.8. Let nf and n∞ be the dimensions of the deflating subspaces of the c-
stable matrix pencil λE−A corresponding to the finite and infinite eigenvalues, respec-
tively. The square roots of the nf largest eigenvalues of the matrix GpcETGpoE, ordered
decreasingly and denoted by ς1 ≥ . . . ≥ ςnf ≥ 0, are called the proper Hankel singular
values of the descriptor system (2.5).The square roots of the n∞ largest eigenvalues of
the matrix GicATGioA, ordered decreasingly and denoted by θ1 ≥ . . . ≥ θn∞ ≥ 0, are
called the improper Hankel singular values of the descriptor system (2.5).

The complete set of Hankel singular values of the descriptor system (2.5) is formed by
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2.3 Realizations of Descriptor Systems

the sets of proper and improper Hankel singular values. In the standard case E = In,
the proper Hankel singular values are the classical Hankel singular values.
It was mentioned before that the proper and improper controllability and observability
Gramians are symmetric and positive semidefinite. Hence, there are Cholesky factor-
izations of the form

Gpc = RpR
T
p , Gpo = LpL

T
p ,

Gic = RiR
T
i , Gio = LiL

T
i ,

(2.26)

where the matrices Rp, Lp, Ri and Li are lower triangular. Another computation
opportunity for the Hankel singular values is given by the usage of the factorized
Gramians. The results are summarized in the following lemma.

Lemma 2.4. (See [8]). Given a descriptor system (2.5) with a c-stable matrix pencil
λE − A. The proper Hankel singular values of the system (2.5) are the nf largest
singular values of the matrix LTpERp and the improper Hankel singular values of the
system (2.5) are the n∞ largest singular values of the matrix LTi ARi, with Rp, Lp, Ri

and Li the Cholesky factors from (2.26).

2.3 Realizations of Descriptor Systems

It was already mentioned that the realization of a descriptor system is not unique.
For example, let (E,A,B,C,D) be a realization of a descriptor system. Then another
realization of the system with the same input-output behavior is given by([

E 0

0 Ẽ

]
,

[
A 0

0 Ã

]
,

[
B

B̃

]
,
[
C 0

]
, D

)
,

where Ẽ, Ã ∈ Rk×k and B̃ ∈ Rk×m are matrices with arbitrary dimension k. It can
be seen that the transfer function of a descriptor system (2.5) is invariant under the
addition of uncontrollable and unobservable states.
It has been already seen that the transfer function is invariant under the generalized
state space transformation. So, it is possible to obtain a realization of the descriptor
system with desired properties. Systems can be transformed into special shapes to
study the desired properties. One certain form is the Kalman decomposition. Accord-
ing to the previous section, the system can be split up into the four parts: controllable
and observable, controllable but unobservable, uncontrollable but observable, and un-
controllable and unobservable. For any descriptor system (2.5) such a realization can
be obtained, see [22].
A direct consequence of the Kalman decomposition and the invariance of the transfer
function in terms of uncontrollable and unobservable states is that descriptor systems
can be reduced to the controllable and observable part. So, descriptor systems (2.5) can
be reduced to realizations of smaller order without changing the input-output behavior.

Definition 2.9. A realization (Ê, Â, B̂, Ĉ, D̂) of a descriptor system (2.5) is called
minimal if the order of the realization is the unique minimal number n̂ ≥ 0 of states,
necessary to describe the input-output behavior completely. The order of a minimal
realization is called McMillan degree.
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In case of descriptor systems, the characterization of the minimal realization is more
complicated than for standard systems. Therefor, an additional term for minimality
has been introduced.
A minimal realization of the form (Ê, Â, B̂, Ĉ, 0) is called conditionally minimal, see
[22]. The term conditionally refers to the assumption D = 0. In this case, some
characterizations are given in the following theorem.

Theorem 2.5. (See [8]). Given a descriptor system (2.5) with a c-stable matrix pencil
λE − A. The following statements are equivalent:

(1) The realization (E,A,B,C, 0) is conditionally minimal.

(2) The descriptor system (2.5) is C-controllable and C-observable.

(3) The following rank conditions hold: rank(Gpc) = rank(Gpo) = rank(GpcETGpoE) =
nf and rank(Gic) = rank(Gio) = rank(GicATGioA) = n∞ hold.

(4) The proper and improper Hankel singular values of (2.5) are all positive.

In general the feed-through term D does not have to be 0. In this case the characteri-
zation of a minimal realization differs from the above theorem.

Definition 2.10. A realization (E,A,B,C,D) of the descriptor system (2.5) is called
deflated minimal if the following conditions hold:

(1) The realization is C-controllable and C-observable.

(2) The nilpotent matrix N in the Weierstrass canonical form (2.10) of the pencil
λE − A does not contain any Jordan blocks of index one.

It can be shown that a deflated minimal realization of (2.5) has the same order as a
minimal realization of (2.5), see [22].
The second condition in Definition 2.10 is equivalent to

AKer(E) ⊆ Im(E),

see [8].
Later it is shown that it is not necessary to provide a deflated minimal realization. An
appropriate assumption will be given by Theorem 2.5.
Beside these realizations, another important one is introduced in the next definition.

Definition 2.11. A realization (E,A,B,C,D) of the descriptor system (2.5) is called
balanced if

Gpc = Gpo =

[
Σ 0
0 0

]
and Gic = Gio =

[
0 0
0 Θ

]
,

where Σ = diag(ς1, . . . , ςnf ) is a diagonal matrix containing the proper Hankel singular
values and Θ = diag(θ1, . . . , θn∞) is a diagonal matrix containing the improper Hankel
singular values of the system (2.5).
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For a conditionally minimal realization of the descriptor system (2.5) with a c-stable
matrix pencil λE − A, it is possible to find a generalized state space transforma-
tion with non-singular matrices Wb and Tb, such that the transformed realization
(WbETb,WbATb,WbB,CTb, D) is balanced. A possible formulation of the matrices
Wb and Tb is given by

Wb =
[
LpUpΣ

− 1
2 , LiUiΘ

− 1
2

]
,

Tb =
[
RpVpΣ

− 1
2 , RiViΘ

− 1
2

]
,

(2.27)

where Rp, Ri, Lp, and Li are the lower triangular Cholesky factors from (2.26) and Up,
Ui, Vp, and Vi are the orthogonal matrices from the singular value decompositions of
LTpERp and LTi ARi. The balanced realization of descriptor systems is not unique [8].
Note that for the transformation matrices in (2.27) it holds

Eb = WbETb =

[
Inf 0
0 E∞

]
and Ab = WbATb =

[
Af 0
0 I∞

]
, (2.28)

with E∞ nilpotent and Af nonsingular. The matrix pencil λEb − Ab of the balanced
realization resembles the Weierstrass canonical form (2.10).

2.4 System Norms for Descriptor Systems

A special property of transfer functions of descriptor systems (2.8) is, that even if G
has no poles on the imaginary axis, the transfer function might be unbounded on jR.
This motivates the following definition [8, 30].

Definition 2.12. The transfer function G is called proper if lim
s→+∞

||G(s)|| < +∞ for

any induced matrix norm ||.|| and improper otherwise. If lim
s→+∞

||G(s)|| = 0, then G is

called strictly proper.

In order to define a norm for the transfer function of a descriptor system, some spaces
have to be defined first [30].

Definition 2.13. The Banach space of all p × m matrix-valued functions that are
essentially bounded on jR is denoted by Lp×m∞ . The rational subspace of Lp×m∞ , termed
by RLp×m∞ , consists of all proper and real rational p × m transfer functions with no
poles on the imaginary axis.

For these spaces, the corresponding norm can be defined as follows.

Definition 2.14. For a matrix-valued function F ∈ Lp×m∞ the L∞-norm is defined as

||F ||L∞ = ess sup
ω∈R

σmax(F (iω)), (2.29)

where σmax(M) denotes the maximum singular value of the matrix M .

For proper transfer functions G of descriptor systems, i.e., G ∈ RLp×m∞ , the definition
formula (2.29) simplifies to

||G||L∞ = sup
ω∈R

σmax(G(iω)),
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because G is continuous on the imaginary axis.
Remember the formulation of the approximation error in (1.3). Beside the norm for
the transfer function G, also norms for the vector-valued input and output functions
are needed.
In the time domain [0,+∞) ⊆ R the L2-norm of a square integrable function u(t) ∈ Rm

is given as the integral

||u||L2 =

 +∞∫
0

u(t)Tu(t) dt

 1
2

.

By applying the Laplace transformation (2.6) on the L2-norm, the corresponding norm
in the frequency domain is given by

||U ||L2 =

 1

2π

+∞∫
−∞

U(−jω)TU(jω) dω

 1
2

.

The definition of the L2-norm in the frequency domain can be used to derive an upper
bound on the output Y of the descriptor system. It holds

||Y ||L2 = ||GU ||L2

=

 1

2π

+∞∫
−∞

||G(jω)U(jω)||22 dω

 1
2

≤

 1

2π

+∞∫
−∞

[||G(jω)||2 ||U(jω)||2]2 dω

 1
2

≤ sup
ω∈R
||G(jω)||2

 1

2π

+∞∫
−∞

||U(jω)||22 dω

 1
2

= ||G||L∞ ||U ||L2 ,

(2.30)

where U is the input, G the transfer function and Y the output of the descriptor system
(2.5) in the frequency domain.
Usually, only asymptotically stable systems are considered. Then, the space H∞ is
used, containing all proper transfer functions which are analytic and bounded in the
open right half-plane. The space H∞ is a closed subset of the space L∞, see [30].
In further discussions, mainly the H∞-norm is considered. It is given by

||F ||H∞ = sup
Re(s)>0

σmax(F (s)) = sup
ω∈R

σmax(F (jω)).

On the H∞ space this definition is identical to the one of the L∞-norm.
One of the goals of model reduction was to determine a bound on the approximation
error as in (1.3). Using the Parseval identity and the obtained bound in (2.30), in the
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time and frequency domain it holds

||y − ŷ||L2 ≤
∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H∞
||u||L2 ,

where y is the original output, ŷ is the approximated output, G is the transfer function
of the original descriptor system, Ĝ is the transfer function of the reduced system and
u is the input.
It can be shown that it holds

||G||H∞ = sup
u6=0

||y||L2
||u||L2

in frequency and time domain, see [8, 30]. That is, the H∞-norm of G is the ratio
between the output and input energy of the descriptor system (2.5).
According to the decoupling of descriptor systems into the slow subsystem (2.18) and
the fast subsystem (2.19), the transfer function (2.8) can be additively decomposed
into

G(s) = Gsp(s) + P (s), (2.31)

where Gsp is a strictly proper transfer function and P a polynomial one. With the
block form of the Weierstrass canonical form (2.10) and the partition of the input and
output matrices (2.17), the strictly proper part can be written in the form

Gsp(s) = Cf
(
sInf − J

)−1
Bf

and the polynomial part as

P (s) = C∞ (sN − In∞)−1B∞ +D.

In the following, the feed-through term D is set to zero without loss of generality. For
D 6= 0, a generalized descriptor system of the form[

E 0
0 0

]
ξ̇(t) =

[
A 0
0 Ik

]
ξ(t) +

[
B
D2

]
u(t),

y(t) =
[
C −D1

]
ξ(t)

(2.32)

can be considered instead of (2.5). Here D = D1D2 is a factorization of the feed-
through term, for example, D1 = Ik and D2 = D can be chosen. This generalized
system is equivalent to (2.5) in the sense that x(t) is the solution of (2.5) with a given
input u if and only if

ξ(t) =

[
x(t)
D2u(t)

]
satisfies the generalized system, see [25].
In this thesis, the problem of an optimal Hankel-norm approximation shall be consid-
ered. To introduce the Hankel-norm, the Sobolev spaces have to be considered first.
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Definition 2.15. Suppose u ∈ Lp(Ω) and there are derivatives dα

dtα
u for a non-negative

integer α ≤ k, such that
dα

dtα
u ∈ Lp(Ω)

holds for all α ≤ k. Then it is said that u ∈ Wk
p (Ω), where Wk

p (Ω) is called Sobolev
space.

In the following, the assumed domain is Ω = (−∞, 0]. Also, p = 2 and k = ν − 1 are
set, with ν index of the descriptor system (2.5).
The Hankel operator

H :Wν−1
2 (−∞, 0]→ L2[0,+∞)

is a mapping from past inputs u− : (−∞, 0]→ Rm to present and future system outputs
y+ : (0,+∞]→ Rp. It ignores the system response before the time 0.

Definition 2.16. (See [12]). The Hankel operator H of the descriptor system (2.5) is
defined as sum of the Hankel operators of the strictly proper part Hsp and the polynomial
part Hp as

H = Hsp +Hp,

where the operators can be represented by

(Hspu)(t) =

0∫
−∞

Cfe
J(t−τ)Bfu(τ) dτ ,

and

(Hpu)(t) = −
ν−1∑
k=0

C∞N
kB∞u

(k)(t),

with t ≥ 0.

Now, the L2-norm can be used to measure the effect of the past inputs on future
outputs.

Definition 2.17. The Hankel-norm of a transfer function G is given by

||G||H = sup
u−∈Wν−1

2 (−∞,0]

||y+||L2
||u−||L2

.

In case of standard systems, the Hankel-norm can be written as

||G||H = ςmax(G), (2.33)

where ςmax(G) denotes the largest proper Hankel singular value of G, see [13]. It can
be noted that the Hankel-norm is only a semi-norm on the Hardy space H∞. It is easy
to see that ||G||H = 0 does not imply G ≡ 0.
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The problem of constructing an optimal Hankel-norm approximation was already con-
sidered for standard systems of the form

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

(3.1)

In the next section, the basic theory of the Hankel-norm approximation for standard
systems, introduced by Glover in [13], is summarized. For simplicity, the realization of
the standard system (3.1) is written as (A,B,C,D). If the feed-through term D does
not matter, the realization of (3.1) is reduced to (A,B,C).
A first approach on the generalized Hankel-norm approximation was already considered
in [12]. A summary of the theory and the resulting algorithm is shown in the last section
of this chapter.

3.1 Basic Functioning

The Hankel-norm approximation method introduced by Glover can be seen as an ex-
tension of the balanced truncation model reduction method. A detailed version of the
following theoretical aspects can be found in [13].
First of all, the following definition about the position of the eigenvalues of a matrix
will be needed for further discussions.

Definition 3.1. The inertia of a general complex, square matrix A denoted as In(A)
is the triple (π(A), ν(A), δ(A)), where

(1) π(A) is the number of eigenvalues of A in the open right half-plane,

(2) ν(A) is the number of eigenvalues of A in the open left half-plane,

(3) δ(A) is the number of eigenvalues of A on the imaginary axis.

The main idea of the Hankel-norm approximation is based on the relation between the
Hankel singular values and the frequency response. Therefor, the following definition
introduces para-conjugate unitary rational matrices, further known as all-pass transfer
functions.

Definition 3.2. A transfer function G is called all-pass if

G(s)GH(−s̄) = Ip

holds for all s ∈ C.
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As for other system theoretical aspects before, it is useful to consider an algebraic char-
acterization of all-pass transfer functions. Therefor, the next theorem is introduced.

Theorem 3.1. (See [13]). Given a realization (A,B,C) with A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rm×n.

(1) If (A,B,C) is controllable and observable, the following two statements are equiv-
alent:

(a) There exists a D with G(s)GH(−s̄) = σ2Im for all s ∈ C, where G(s) =
C (sIn − A)B +D.

(b) There exist P and Q, such that

(i) P = PH , Q = QH ,

(ii) AP + PAH +BBH = 0,

(iii) AHQ+QA+ CHC = 0,

(iv) PQ = σ2In.

(2) Let part (1b) be satisfied. Then there exists a D with

DHD = σ2Im,

DHC +BHQ = 0,

DBH + CP = 0,

and any such D will satisfy part (1a). Note that observability and controllability
are not assumed.

First of all, note that this characterization does not need the assumption of a stable
standard system. In case of a non-stable system, the Gramians P and Q are not
defined. But the Lyapunov equations in part (1b(ii)) and (1b(iii)) still have solutions
P and Q satisfying PQ = σ2In. Also, this theorem shows that the Hankel singular
values of an all-pass transfer function are all equal to 1.
Another point to consider is the stability of the transfer function. Beside the Hardy
space H∞ of all proper transfer functions which are bounded and analytic in the right
open half-plane, the following definition has to be used.

Definition 3.3. The space of all transfer functions G(s) : C → Cp×m, which are
bounded and analytic in the open left half-plane, is denoted by H−∞. Furthermore, the
transfer function G ∈ H∞ is called stable and the function F ∈ H−∞ is called anti-
stable.

One can show, for each transfer function G ∈ H∞ it holds

||G||H = inf
F∈H−∞

||G− F ||L∞ . (3.2)

This is, an approximation with the smallest possible L∞ error of a stable transfer
function can be made by an anti-stable one. Also, the smallest L∞ error is given by
the Hankel-norm of the transfer function G. An explicit construction of such an anti-
stable F can be made by the application of the following theorem, assuming an already
balanced realization.
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Theorem 3.2. (See [13]). Let the realization (A,B,C,D) with A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rm×n, and D ∈ Rm×m satisfy

AP + PAT +BBT = 0, (3.3)

ATQ+QA+ CTC = 0, (3.4)

for

P = P T = diag(Σ1, σIr), (3.5)

Q = QT = diag(Σ2, σIr), (3.6)

with Σ1 and Σ2 diagonal, σ 6= 0 and δ (Σ1Σ2 − σ2In−r) = 0. Partition (A,B,C)
conformally with P and Q, such that

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
(3.7)

and define

Ã = Γ−1(σ2AT11 + Σ2A11Σ1 − σCT
1 UB

T
1 ), (3.8)

B̃ = Γ−1(Σ2B1 + σCT
1 U), (3.9)

C̃ = C1Σ1 + σUBT
1 , (3.10)

D̃ = D − σU, (3.11)

where U is a unitary matrix satisfying

B2 = −CT
2 U (3.12)

and
Γ = Σ1Σ2 − σ2In−r. (3.13)

Also, define the error system of the form

Ae =

[
A 0

0 Ã

]
, Be =

[
B

B̃

]
, Ce =

[
C, −C̃

]
, De = D − D̃. (3.14)

Then it holds

(1) (Ae, Be, Ce) satisfy the Lyapunov equations

AePe + PeA
T
e +BeB

T
e = 0, (3.15)

ATeQe +QeAe + CT
e Ce = 0, (3.16)
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with

Pe =

 Σ1 0 In−r
0 σIr 0

In−r 0 Σ2Γ−1

 , (3.17)

Qe =

Σ2 0 −Γ
0 σIr 0
−Γ 0 Σ1Γ

 , (3.18)

PeQe = σ2I. (3.19)

(2) Defining the error transfer function E(s) = De + Ce (sI2n−r − Ae)−1Be. Then it
holds E(s)EH(−s̄) = σ2I2n−r.

(3) If δ(A) = 0 then

(a) δ(Ã) = 0.

(b) If δ(Σ1Σ2) = 0 then

In(Ã) = In(−Σ1Γ) = In(−Σ2Γ).

(c) If P > 0 and Q > 0, then the McMillan degree of the stable part of (Ã, B̃, C̃)
equals π(Σ1Γ) = π(Σ2Γ).

(d) If either

(i) Σ1Γ > 0 and Σ2Γ > 0 or

(ii) Σ1Γ < 0 and Σ2Γ < 0,

then (Ã, B̃, C̃) is a minimal realization.

The transformation formulas (3.8)-(3.11) are a direct result of the characterization of
all-pass transfer functions in Theorem 3.1.
Let G̃ be the system constructed by the formulas (3.8)-(3.11). Then the normalized
error transfer function of the form σ−1(G − G̃) is all-pass. A detailed step-by-step
derivation of the transformation formulas from the characterization of all-pass transfer
functions can be found in chapter 8 in [1].
A direct consequence of Theorem 3.2 is the formula (3.2). Therefor, the number r is
chosen, such that

σ1 = . . . = σr > σr+1 ≥ σr+2 ≥ σn > 0.

The resulting system G̃ is constructed, such that σ−1
1 (G− G̃) is all-pass, so∣∣∣∣∣∣G− G̃∣∣∣∣∣∣

L∞
= σ1.

From part (3) of Theorem 3.2 it follows that all poles of G̃ lie in the open left half-plane,
so G̃ is anti-stable.
Next, the error of the transformed system has to be considered.
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Lemma 3.3. (See [13]). Given a stable transfer function G of dimensions p×m with
Hankel singular values σ1 ≥ . . . ≥ σr ≥ σr+1 ≥ σr+2 ≥ . . . ≥ σn > 0. Then for all
stable Ĝ and McMillan degree ≤ r it holds∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H
≥ σr+1(G).

Lemma 3.3 gives the lower bound on the Hankel-norm error for all stable systems of
order r. Now, a certain system Ĝ has to be constructed to fulfill this lower error bound.
This is the problem of the optimal Hankel-norm approximation.
Now, apply the transformation formulas (3.8)-(3.11) to a stable standard system G
with the chosen Hankel singular value σr+1. From part (3) of Theorem 3.2 it follows
that the resulting system G̃ has the form

G̃ = Ĝ+ F, (3.20)

with Ĝ ∈ H∞ and F ∈ H−∞. The corresponding error system E = G− Ĝ− F satisfies

E(s)EH(−s̄) = σr+1Ip. (3.21)

From part (3) of Theorem 3.2 it follows that the system Ĝ is stable and has the order
r. Also, it holds ∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H
= σr+1(G).

Hence, Ĝ is an optimal Hankel-norm approximation of G. Note that the realization of
Ĝ is minimal.
Let k be the multiplicity of the Hankel singular value σr+1. With part (3) of Theorem
3.2 it follows that the system corresponding to the anti-stable transfer function F (s)
has the order n − r − k. From the formula (3.2), the additive decomposition of the
transformed system (3.20) and the property of the error system (3.21), it follows that

inf
F∈H−∞,Ĝ

∣∣∣∣∣∣G− Ĝ− F ∣∣∣∣∣∣
L∞

= σr+1(G).

This shows a relation between the Hankel singular values of a standard system (3.1)
and an L∞ optimization problem.
The formulas in Theorem 3.2 can be extended to non-square systems by using an
explicit formulation for the unitary matrix in (3.12) with the condition UUH ≤ Ip. A
commonly used example is

U = −C2(BT
2 )†,

where M † denotes the Moore-Penrose pseudoinverse of M .
Note that the Hankel-norm approximation is not unique, since the Hankel singular
values do not depend on the feed-through term D. So, the choice of D̂ ∈ Rp×m is
arbitrary. However, the H∞ error depends on D̂. Further characterizations of all
optimal Hankel-norm approximations can be made by the formulas of the error system
(3.14)-(3.19). In Algorithm 1 the complete Hankel-norm approximation method is
summarized. Numerical tests for this algorithm can be found in [9].
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Algorithm 1: Hankel-Norm Approximation for Standard Systems

Input: Stable realization (A,B,C,D) of a standard systems (3.1)
Output: Realization of an optimal Hankel-norm approximation (Â, B̂, Ĉ, D̂)

1: Compute a minimal balanced realization (Ă, B̆, C̆,D) of (A,B,C,D) with
Gramians

Gc = Go = diag(ς1, . . . , ςnmin
),

where nmin denotes the McMillan degree.
2: Choose a Hankel singular value ςr+1.

3: Permute the balanced realization (Ă, B̆, C̆,D), such that the Gramians have the
form

Ǧc = Ǧo = diag(ς1, . . . , ςr, ςr+k+1, . . . , ςnmin
, ςr+1Ik)

= diag(Σ, ςr+1Ik),

where k is the multiplicity of the Hankel singular value ςr+1.
4: Partition the resulting permuted system according to the Gramians

Ǎ =

[
A11 A12

A21 A22

]
, B̌ =

[
B1

B2

]
, Č =

[
C1 C2

]
,

where A22 ∈ Rk×k, B2 ∈ Rk×m, and C2 ∈ Rp×k.
5: Compute the transformation

Ã = Γ−1(σ2
r+1A

T
11 + ΣA11Σ + σr+1C

T
1 UB

T
1 ),

B̃ = Γ−1(ΣB1 − σr+1C
T
1 U),

C̃ = C1Σ− σr+1UB
T
1 ,

D̃ = D + σr+1U,

with U = (CT
2 )†B2 and Γ = Σ2 − σ2

r+1In−k.
6: Compute the additive decomposition

G̃ = C̃(sIn−k − Ã)−1B̃ + D̃ = Ĝ(s) + F (s),

where F is anti-stable and Ĝ is the stable Hankel-norm approximation with the
realization (Â, B̂, Ĉ, D̂).

Let G be a standard system (3.1) and Ĝ an optimal Hankel-norm approximation com-
puted by Algorithm 1. An H∞ error bound is given by∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H∞
≤ 2(σr+1 + . . .+ σn), (3.22)

with σi the Hankel singular values of G, see [1]. This is the same error bound as for
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the balanced truncation method. It can be shown that there exists a D0, such that∣∣∣∣∣∣G− Ĝ−D0

∣∣∣∣∣∣
H∞
≤ σr+1 + . . .+ σn.

Still, there is no algorithm to compute such a D0 for the Hankel-norm approximation.
An alternative is given by an algorithm in [13]. There, a D̂0 is computed, such that∣∣∣∣∣∣G− Ĝ− D̂0

∣∣∣∣∣∣
H∞
≤ σr+1 + µ1 + . . .+ µn−r−k,

where µ1, . . . , µn−r−k denote the Hankel singular values corresponding to the anti-stable
system, computed by the transformation formulas (3.8)-(3.11).

3.2 Limits of Current Development

Still, there a several open points and questions concerning the Hankel-norm approxima-
tion method. One problem, announced before, was the construction of an appropriate
feed-trough term D0 for a more suitableH∞ error bound. Another problem is the usage
of the scaling matrix (3.13) in the transformations (3.8) and (3.9). Here, the typical
numerical problems occur considering the division by small numbers. Especially for
a small chosen Hankel singular value σr+1, the transformation becomes numerically
unstable. A similar problem occurs if the balanced minimal realization contains too
small Hankel singular values. Note that part (3) of Theorem 3.2 can be used as a
criterion for numerical instability, since the numbers of anti-stable and stable poles of
the resulting system are predetermined.
A further open point is the influence of the error accuracy used in partial computations.
In Algorithm 1 there may be many steps needed to be computed up to a given accuracy
tolerance. A special case is the application of the Hankel-norm approximation method
on large-scale sparse systems. Another example is the use of iterative solvers during
the computation of the minimal balanced realization and the additive decomposition
of the transformed system.
The application of the generalized Hankel norm approximation method on large-scale
sparse descriptor systems will be considered in the next chapter. The introduced theory
can be used for the standard system case, too.
Until now, the Hankel-norm approximation method was only considered for standard
systems of the form (3.1). But in practice, a version for descriptor systems

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

with a singular E matrix, would be beneficial. The problematic of the generalized
Hankel-norm approximation is not completely new. A special solution approach for
the generalized Hankel-norm approximation method is presented in the next section.
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3.3 Display of a Special Solution Approach

The approach, presented in this section, is based on the work of Cao, Saltik and Weiland
on the generalized Hankel-norm approximation in [12].
At first, a strong assumption has to be made. The descriptor system (2.5) must be
transformed into the Weierstrass canonical form (2.10) with a partition according to
the block structure (2.17). For simplicity, the feed-through term D is assumed as
zero. For a non-zero term, the generalized descriptor system (2.32) can be used. The
resulting system has the form[

Inf 0
0 N

]
ẋ(t) =

[
J 0
0 In∞

]
x(t) +

[
Bf

B∞

]
u(t),

y(t) =
[
Cf , C∞

]
x(t).

(3.23)

Moreover, the system is assumed to be c-stable and conditionally minimal.
Next, the system (3.23) is considered in its decoupled form with the slow subsystem

ẋf (t) = Jxf (t) +Bfu(t),

yf (t) = Cfxf (t),
(3.24)

and the fast subsystem
Nẋ∞(t) = x∞(t) +B∞u(t),

y∞(t) = C∞x∞(t).
(3.25)

As the first case, let (3.23) be an index-1 descriptor system. Then the equations of the
fast subsystem simplify to

0 = x∞(t) +B∞u(t),

y∞(t) = C∞x∞(t),

which can be rewritten as
y∞(t) = −C∞B∞u(t).

Finally, the complete descriptor system (3.23) simplifies to the form

ẋf (t) = Jxf (t) +Bfu(t),

y(t) = Cfxf (t)− C∞B∞u(t).
(3.26)

So, the fast subsystem of an index-1 descriptor system is a static gain and the complete
system can be written in standard form with the additional feed-trough term −C∞B∞.
Now, a standard Hankel-norm approximation method can be used to reduce the system
(3.26). For example, the method shown in Algorithm 1 would be an opportunity. The
Hankel-norm approximation of (3.26) is the generalized Hankel-norm approximation
of (3.23).
Next, let the index of the descriptor system be ν ≥ 2. For the reduction of the fast
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subsystem (3.25), the block structure of N is considered

N =


N1

N2

. . .

Nl

 , (3.27)

where Ni are the Jordan blocks with zeros on the diagonal. Each block in (3.27) forms
a new subsystem of the fast subsystem (3.25).
For SISO (single-input, single output) descriptor systems an explicit form of the mini-
mal realization of the fast subsystem is given by the following theorem.

Theorem 3.4. (See [12]). Given a fast SISO subsystem of the form (3.25) with index
ν. If and only if the entire system (3.23) is C-controllable and C-observable a possible
realization of (3.25) is given by

Ñ ˙̃x∞(t) = x̃∞(t) + B̃∞u(t), x̃∞(t0) = x̃0
∞,

ỹ∞(t) = C̃∞x̃∞(t),
(3.28)

where Ñ ∈ Rν×ν is the largest block of (3.27), B̃∞ =
[
0, 0, . . . , 0, −1

]T ∈ Rν and

C̃∞ = −
[
C∞N

ν−1B∞, . . . , C∞N
0B∞

]
∈ Rν.

The construction of C̃∞ is done according to the solution of the fast subsystem (2.20).
Let P (s) be the transfer function of (3.25) and P̃ (s) the transfer function of (3.28).
Then it holds P (s) = P̃ (s). A special feature of this method is the preservation of the
index of the system.
The construction proposed in Theorem 3.4 can be extended to the MIMO (multi-input,
multi-output) system case with m inputs and p outputs. Therefor, it is assumed that
νm ≥ n∞. Then the term B̃∞ is constructed by replacing the scalars by matrices of
the form

B̃∞ =


0
...
0
−Im

 ∈ Rνm×m.

The nilpotent matrix Ñ is no longer the largest block of (3.27) but

Ñ =


0 Im 0

0
. . . . . .
. . . . . . Im

0 0 0

 ∈ Rνm×νm.

The construction of the matrix C̃∞ does not change. The dimensions of the matrices
depend on the number of inputs m, the index of the system ν and the number of states
n∞ of the fast subsystem (3.25). Let k be the dimension of B̃∞ and Ñ , then it holds

k = min(νm, n∞).
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For the slow subsystem, a standard Hankel-norm approximation method can be ap-
plied. Again the method in Algorithm 1 would be possible. The complete reduced
order model is then constructed by an additive decomposition of the Hankel-norm
approximation of the slow subsystem and the constructed fast subsystem.
Let P̃ be the minimal fast subsystem and G̃ be the r-th order Hankel-norm approxima-
tion of (3.24). Then the generalized Hankel-norm approximation Ĝ of the descriptor
system G is given by

Ĝ = G̃+ P̃ .

Since Ĝ is a standard Hankel-norm approximation of Gsp and P = P̃ holds, all error
bounds of the standard Hankel-norm approximation method can still be used.
That means, the reduced-order model fulfills∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H
=
∣∣∣∣∣∣Gsp + P − G̃− P̃

∣∣∣∣∣∣
H

=
∣∣∣∣∣∣Gsp − G̃

∣∣∣∣∣∣
H

= ςr+1(G),

where ςr+1(G) is the (r + 1)-st proper Hankel singular value of G.
The complete generalized Hankel-norm approximation method based on the Weier-
strass canonical form is summarized in Algorithm 2.
The main disadvantage of this solution approach is step 1 in Algorithm 2. The compu-
tation of the Weierstrass canonical form needs a high amount of computational effort.
An efficient method for this computation is given in [16]. Even so, the descriptor sys-
tem already has to be conditionally minimal, since both the construction of the fast
subsystem as well as the use of Algorithm 1 for the computation of the standard Hankel-
norm approximation assume the conditional minimality of the descriptor system. For
an broad application of this method, the computation of the minimal realization should
be adjusted to the computation of the Weierstrass canonical form.
Due to this problematic points, a more general and practicable method is presented in
the next chapter.

– 28 –



3.3 Display of a Special Solution Approach

Algorithm 2: Generalized Hankel-Norm Approximation using the Weierstrass
Canonical Form

Input: Conditionally minimal realization (E,A,B,C, 0), such that λE − A is
c-stable

Output: Realization of Hankel-norm approximation (Ê, Â, B̂, Ĉ, D̂)

1: Compute the Weierstrass canonical form and the transformed system[
Inf 0
0 N

]
ẋ(t) =

[
J 0
0 In∞

]
x(t) +

[
Bf

B∞

]
u(t),

y(t) =
[
Cf , C∞

]
x(t),

from the realization (E,A,B,C, 0) with index ν.
2: Partition the resulting system into the realizations of the slow subsystem

(Inf , J, Bf , Cf , 0) and the fast subsystem (N, In∞ , B∞, C∞, 0).

3: if ν = 1 then

4: Compute the r-th order Hankel-norm approximation (Ir, Â, B̂, Ĉ, D̂) of the
realization (Inf , J, Bf , Cf ,−C∞B∞).

5: else
6: Get the number of states in the minimal fast subsystem

k = min(νm, n∞).

7: if νm < n∞ then

8: Compute the minimal realization (Ñ , Ik, B̃∞, C̃∞, 0) of the fast
subsystem, where

Ñ =


0 Im 0

0
. . . . . .
. . . . . . Im

0 0 0

 ∈ Rk×k, B̃∞ =


0
...
0
−Im

 ∈ Rk×m

and C̃∞ = −
[
C∞N

ν−1B∞, . . . , C∞N
0B∞

]
∈ Rp×k.

9: else

10: The fast subsystem (N, In∞ , B∞, C∞, 0) = (Ñ , Ik, B̃∞, C̃∞, 0) is minimal.
11: end

12: Compute the r-th order Hankel-norm approximation (Ir, Ã, B̃, C̃, D̃) of the
realization (Inf , J, Bf , Cf , 0).

13: Construct the complete system (Ê, Â, B̂, Ĉ, D̂) with

Ê =

[
Ir 0

0 Ñ

]
, Â =

[
Ã 0
0 Ik

]
, B̂ =

[
B̃

B̃∞

]
, Ĉ =

[
C̃, C̃∞

]
, D̂ = D̃.

14: end
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Approximation

In contrast to the special approach presented before, the generalized Hankel-norm ap-
proximation method introduced in this chapter is not based on the Weierstrass canon-
ical form. Here, the method is seen as an extension of the generalized balanced trun-
cation. This is conform with the idea of the standard Hankel-norm approximation
method introduced by Glover in [13]. For this purpose, several theoretical results of
the generalized balanced truncation method will be presented as well as computational
algorithms. On this basics, the generalized Hankel-norm approximation will be devel-
oped.

4.1 The Generalized Balanced Truncation

The following theoretical aspects concerning the generalized balanced truncation can
be found in [8].
Main goal of the balanced truncation method is the computation of a balanced real-
ization of the system and the truncation of undesired states at the same time. The
idea of a balanced realization of a descriptor system (2.5) was already given in Defini-
tion 2.11. Uncontrollable and unobservable states can be associated with zero Hankel
singular values. Since the input-output behavior of the system is invariant under the
addition of unobservable and uncontrollable states, the zero Hankel singular values can
be truncated without changing the system behavior.
Beside these unnecessary states, it would be beneficial to have a measurement for
further states of the system with less influence on the input-output behavior. Therefor,
the following theorem displays an energy interpretation of the proper controllability
and observability Gramian.

Theorem 4.1. (See [8, 26]). Consider a descriptor system of the form (2.5). Assume
that the matrix pencil λE −A is c-stable and the system is C-controllable. Let Gpc and
Gpo be the proper controllability and observability Gramian of (2.5) and let

Ey := ||y||2L2(R+
0 ) =

+∞∫
0

y(t)Ty(t) dt, Eu := ||u||2L2(R−) =

0∫
−∞

u(t)Tu(t) dt

be a future output energy and a past input energy, respectively. If x0 ∈ Im(Pr) and
u(t) = 0 for t ≥ 0, then

Ey = xT0E
TGpoEx0.
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Furthermore, for umin(t) = BTF(−t)G−pcx0 it holds

Eumin
= min

u∈L2(R−)
Eu = xT0 G−pcx0,

where F is the fundamental solution matrix from (2.21) and the matrix G−pc is a solution
of the three matrix equations

GpcG−pcGpc = Gpc, G−pcGpcG−pc = G−pc,
(
G−pc
)T

= G−pc.

This theorem implies that a large past input energy Eu is required to reach the state
x(0) = Prx0 which lies in an invariant subspace of Gpc corresponding to its small non-
zero eigenvalues from the state x(−∞) = 0. On the other side, if x0 is contained
in an invariant subspace of the matrix ETGpoE corresponding to its small non-zero
eigenvalues, then the initial state x(0) = x0 has a small effect on the future output
energy Ey.
For a balanced realization of a descriptor system (2.5) it holds

Gpc = ETGpoE =

[
Σ 0
0 0

]
.

That is, the matrices Gpc and ETGpoE have the same invariant subspaces. In this case,
the states related to the small proper Hankel singular values are difficult to reach and
observe at the same time. The truncation of such states essentially does not change
the system properties, especially the input-output behavior.
This does not hold for the improper Hankel singular values. The truncation of small
non-zero improper Hankel singular values may result in finite eigenvalues of the matrix
pencil lying in the closed right half-plane [8]. Furthermore, the equations associated
with the improper Hankel singular values describe constraints of the system. That
means, these equations define a manifold in which the solution dynamics takes place.
For this reason, a truncation of the equations corresponding to non-zero improper
Hankel singular values can be identified by ignoring certain constraints of the system.
Physically meaningless results may be expected.
Note that he number of the non-zero improper Hankel singular values of (2.5) is equal
to rank(GicATGioA). This number can in turn be bounded by

rank(GicATGioA) ≤ min (νm, νp, n∞) , (4.1)

with ν, the index of the system (2.5), m, the number of inputs, p, the number of outputs,
and n∞, the dimension of the deflating subspace of λE−A corresponding to the infinite
eigenvalues. This bound shows that if the numbers of inputs and outputs multiplied
by the index ν are much smaller than the dimension n∞, the order of the descriptor
system (2.5) can be reduced significantly by the truncation of states corresponding to
zero improper Hankel singular values.
Now, let (E,A,B,C,D) be a realization (not necessary minimal) of the descriptor sys-
tem (2.5) and let the matrix pencil λE−A be c-stable. With the Cholesky factorizations
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(2.26) let

LTpERp =
[
U1, U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
and

LTi ARi = U3Θ3V
T

3

be the skinny singular value decompositions of the matrices LTpERp and LTi ARi. The

matrices
[
U1, U2

]
,
[
V1, V2

]
, U3 and V3 have orthonormal columns. The two matrices

Σ1 = diag(ς1, . . . , ςlf ) and Σ2 = diag(ςlf+1, . . . , ςrf ) with ς1 ≥ . . . ≥ ςlf > ςlf+1 ≥
. . . ≥ ςrf > 0 contain the non-zero proper Hankel singular values of the descriptor
system (2.5). The number of non-zero proper Hankel singular values is given by rf =
rank(LTpERp) ≤ nf . Similarly, the non-zero improper Hankel singular values of the
descriptor system (2.5) are given in the matrix Θ3 = diag(θ1, . . . , θl∞) by θ1 ≥ . . . ≥
θl∞ > 0, where the number of non-zero improper Hankel singular values is l∞ =
rank(LTi ARi) ≤ n∞. The partition by the number lf is chosen, such that the proper
Hankel singular values corresponding to undesired states are contained in Σ2.
Now, a balanced realization (Ê, Â, B̂, Ĉ, D̂) = (W T

l ETl,W
T
l ATl,W

T
l B,CTl, D) of the

descriptor system (2.5) can be computed by the application of the two matrices

Wl =
[
LpU1Σ

− 1
2

1 , LiU3Θ
− 1

2
3

]
∈ Rn×l and

Tl =
[
RpV1Σ

− 1
2

1 , RiV3Θ
− 1

2
3

]
∈ Rn×l

for a generalized state space transformation. The resulting realization has the order
l = lf + l∞.
The transformation using the matrices Wl and Tl can be seen as a truncated version
of the transformation in (2.28). Therefore, the resulting matrices

Ê = W T
l ETl =

[
Ilf 0
0 E∞

]
and Â = W T

l ATl =

[
Af 0
0 Il∞

]
(4.2)

resemble a truncated version of the Weierstrass canonical form (2.10).
The balanced truncation method using the matrices Wl and Tl for the transformation
of the system is known as the square-root method. The complete generalized balanced
truncation square-root method is summarized in Algorithm 3.
The computation of the balanced truncation can be interpreted as a generalized state
space transformation with the transformation matrices W and T of the form

(WET,WAT,WB,CT,D) =

([
Ef 0
0 E∞

]
,

[
Af 0
0 A∞

]
,

[
Bf

B∞

]
,
[
Cf , C∞

]
, D

)
,

(4.3)
where the matrix pencil λEf − Af contains all the finite eigenvalues and λE∞ − A∞
contains the infinite eigenvalues of the original matrix pencil λE − A.
The orders of the decoupled subsystems (Ef , Af , Bf , Cf , 0) and (E∞, A∞, B∞, C∞, D)
are then reduced separately, where Ef and A∞ are both non-singular.
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Algorithm 3: Generalized Balanced Truncation Square-Root Method

Input: Realization (E,A,B,C,D), such that λE − A is c-stable
Output: Reduced-order balanced realization (Ê, Â, B̂, Ĉ, D̂)

1: Compute the Cholesky factors Rp and Lp of the proper controllability Gramian
Gpc = RpR

T
p and the proper observability Gramian Gpo = LpL

T
p that satisfy

EGpcAT + AGpcET + PlBB
TP T

l = 0, Gpc = PrGpcP T
r ,

ETGpoA+ ATGpoE + P T
r C

TCP T
r = 0, Gpo = P T

l GpoPl.

2: Compute the Cholesky factors Ri and Li of the improper controllability
Gramian Gic = RiR

T
i and the improper observability Gramian Gio = LiL

T
i that

satisfy

AGicAT − EGicET − (In − Pl)BBT (In − Pl)T = 0, PrGicP T
r = 0,

ATGioA− ETGioE − (In − Pr)TCTC(In − Pr) = 0, P T
l GioPl = 0.

3: Compute the skinny singular value decomposition

LTpERp =
[
U1, U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

where
[
U1, U2

]
and

[
V1, V2

]
have orthonormal columns, Σ1 = diag(ς1, . . . , ςlf )

and Σ2 = diag(ςlf+1, . . . , ςrf ) with the proper non-zero Hankel singular values of
the system and rf = rank(LTpERp).

4: Compute the skinny singular value decomposition

LTi ARi = U3Θ3V
T

3 ,

where U3 and V3 have orthonormal columns, Θ3 = diag(θ1, . . . , θl∞) with the
improper non-zero Hankel singular values and l∞ = rank(LTi ARi).

5: Compute the transformation matrices

Wl =
[
LpU1Σ

− 1
2

1 , LiU3Θ
− 1

2
3

]
, Tl =

[
RpV1Σ

− 1
2

1 , RiV3Θ
− 1

2
3

]
.

6: Compute the reduced-order model

(Ê, Â, B̂, Ĉ, D̂) = (W T
l ETl,W

T
l ATl,W

T
l B,CTl, D).

The resulting realization of the reduced-order model (Ê, Â, B̂, Ĉ, D̂) is minimal, c-
stable and, due to the choice of the transformation matrices Wl and Tl, balanced.
According to the decoupled form (4.3) of the descriptor system (2.5), the transfer
function can be additively decomposed in the form G = Gsp + P , where the strictly
proper part is given by

Gsp(s) = Cf (sEf − Af )−1Bf
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and the polynomial part by

P (s) = C∞ (sE∞ − A∞)−1B∞ +D.

As mentioned above, the reduced-order model is computed by model reduction of the
subsystems separately. So, the additive form of the transfer function does not change.
The transfer function of the reduced-order model has the form Ĝ = Ĝsp + P̂ , where
the strictly proper can be written as

Ĝsp(s) = Ĉf

(
sÊf − Âf

)−1

B̂f

and the polynomial part has the form

P̂ (s) = Ĉ∞

(
sÊ∞ − Â∞

)−1

B̂∞ + D̂.

These are the transfer functions of the two decoupled reduced-order subsystems.
Since the matrix Ef is non-singular, the classical balanced truncation method can be
applied to the realization (Ef , Af , Bf , Cf , 0). So, the H∞ error bound of the classical
balanced truncation method holds for this subsystem∣∣∣∣∣∣Gsp − Ĝsp

∣∣∣∣∣∣
H∞
≤ 2(ςlf+1 + . . .+ ςrf ), (4.4)

see [13].
In contrast to the reduction of the proper part, the reduction of the subsystem corre-
sponding to the polynomial part (E∞, A∞, B∞, C∞, D) can be interpreted as classical
balanced truncation of the discrete-time system

A∞ζk+1 = E∞ζk +B∞ηk, (4.5)

ωk = C∞ζk +Dηk, (4.6)

with the inputs ηk, the outputs ωk, the internal states ζk and the non-singular matrix
A∞. The classical Hankel singular values of this system are the improper Hankel
singular values of the original descriptor system (2.5).
As mentioned before, for the polynomial part only states corresponding to zero im-
proper Hankel singular values can be truncated. As a result, the equality P = P̂ holds
for the polynomial parts of the original and the reduced subsystem.
The index of the reduced-order model is equal to deg(P ) + 1, where deg(P ) denotes
the degree of the polynomial transfer function P . Equivalent to this number is the
multiplicity of the pole at infinity of the transfer function G, see [8].
Hence, the error system can be written in the form

G− Ĝ = Gsp + P − Ĝsp − P̂
= Gsp − Ĝsp.

That means, the error system’s transfer function is strictly proper and the following
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4.2 The Generalized Hankel-Norm Approximation

error bound holds ∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
H∞
≤ 2(ςlf+1 + . . .+ ςrf ), (4.7)

since (4.4) can be used for the strictly proper parts of the transfer functions.
This error bound is one of the main advantages of the generalized balanced trunca-
tion method compared to, for example, moment matching methods. Therewith, the
order of the strictly proper part can be chosen dynamically depending on the desired
approximation error.
A problem of the balanced truncation square-root method are the possible ill-condi-
tioned transformation matrices. This case can occur for highly unbalanced descriptor
systems, if quite small Hankel singular values are involved in the computation or if the
angle between the subspaces of the matrix pencil λE−A corresponding to the finite and
infinite eigenvalues is too small. The prevention of an accuracy loss in the reduced-order
model can be achieved by changing the construction of the transformation matrices.
The generalized balanced truncation balancing-free square-root method can be ob-
tained by the computation of two QR decompositions of the form

QRR0 =
[
RpV1, RiV3

]
and QLL0 =

[
LpU1, LiU3

]
,

where the matrices Rp, V1, Ri, V3, Lp, U1, Li, U3 are computed by the steps 1-4 in
Algorithm 3. The matrices QR and QL have orthonormal columns and are used as
transformation matrices. The realization of the reduced-order model is then given by

(Ê, Â, B̂, Ĉ, D̂) = (QT
LEQR, Q

T
LAQR, Q

T
LB,CQR, D).

Both generalized balanced truncation methods are formally equivalent in the sense
that in exact arithmetic, they return the same transfer function. Also, the reduced-
order model obtained by the balancing-free square-root method is minimal, c-stable
and satisfies the same error bound in the H∞-norm. Since the transformation matrices
QL and QR have orthonormal columns, they may be significantly less sensitive to
perturbations than the projection matrices Wl and Tl computed by the square-root
method. It is possible to get a resulting system resembling the form (4.3) by separating
the QR decompositions into the parts corresponding to the proper and improper Hankel
singular values, respectively. Note that the realization obtained by the balancing-free
square-root method is in general not balanced. Thus, this method will not further be
considered.
The complete algorithm for the generalized balanced truncation balancing-free square-
root method can be found in [8].

4.2 The Generalized Hankel-Norm Approximation

After considering all basics of systems theory, the classical Hankel-norm approximation
and the generalized balanced truncation, the generalized Hankel-norm approximation
will finally be introduced in this section. In contrast to the special approach based on
the Weierstrass canonical form, the method shown in this section is an extension of the
generalized balanced truncation square-root method.
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4.2 The Generalized Hankel-Norm Approximation

The basic idea of the generalized Hankel-norm approximation is the decoupling of the
descriptor system (2.5) and the individual reductions of the two resulting subsystems.
As seen before, the descriptor system is decomposed in its slow subsystem

Ef ẋ1(t) = Afx1(t) +Bfu(t),

y1(t) = Cfx1(t),
(4.8)

with non-singular Ef , and the fast subsystem

E∞ẋ2(t) = A∞x2(t) +B∞u(t),

y2(t) = C∞x2(t) +Du(t),
(4.9)

where E∞ is nilpotent with index ν.
Since the fast subsystem (4.9) corresponds to the constraints of the solution dynam-
ics, only the states corresponding to the zero improper Hankel singular values can
be truncated. There is no sense to further consider this part for the Hankel-norm
approximation.
Now, the slow subsystem (4.8) is considered. Since the matrix Ef is regular, a standard
system can be obtained by applying the inverse of Ef to the first equations of (4.8).
Then, the classical Hankel-norm approximation method can be applied. In fact, this
transformation to the standard form is made by the generalized balanced truncation
square-root method.
The first step of the Hankel-norm approximation method in Algorithm 1 is the con-
struction of a minimal balanced realization. For descriptor systems this can be made by
the generalized balanced truncation square-root method. Since this method resembles
the Weierstrass canonical form (4.2), the decoupled slow subsystem (4.8) simplifies to
the form

ẋ1(t) = Afx1(t) +Bfu(t),

y1(t) = Cfx1(t),
(4.10)

This resulting slow subsystem is in standard form. Through the use of the generalized
balanced truncation, the subsystem (4.10) is minimal and balanced.
Note that the generalized balanced truncation balancing-free square root method is
not suited, since the resulting realization is usually not balanced.
Let (Ir, Ah, Bh, Ch, Dh) be the resulting r-th order Hankel-norm approximation ob-
tained by Algorithm 1 and (Ê∞, Il∞ , B̂∞, Ĉ∞, D) the balanced fast subsystem, obtained
by the truncation of the zero improper Hankel singular values. Then the complete
Hankel-norm approximation of the descriptor system (2.5) is given by the coupled
descriptor system [

Ir 0

0 Ê∞

]
ż(t) =

[
Ah 0
0 Il∞

]
z(t) +

[
Bh

B̂∞

]
u(t),

ŷ(t) =
[
Ch, Ĉ∞

]
z(t) + (D +Dh)u(t).

The summarized method can be found in Algorithm 4.
Now, the question of the approximation error arises.
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Algorithm 4: Generalized Hankel-Norm Approximation

Input: Realization (E,A,B,C,D), such that λE − A is c-stable
Output: Realization of Hankel-norm approximation (Ê, Â, B̂, Ĉ, D̂)

1: Compute the Cholesky factors Rp and Lp of the proper controllability Gramian
Gpc = RpR

T
p and the proper observability Gramian Gpo = LpL

T
p that satisfy

EGpcAT + AGpcET + PlBB
TP T

l = 0, Gpc = PrGpcP T
r ,

ETGpoA+ ATGpoE + P T
r C

TCP T
r = 0, Gpo = P T

l GpoPl.

2: Compute the Cholesky factors Ri and Li of the improper controllability
Gramian Gic = RiR

T
i and the improper observability Gramian Gio = LiL

T
i that

satisfy

AGicAT − EGicET − (In − Pl)BBT (In − Pl)T = 0, PrGicP T
r = 0,

ATGioA− ETGioE − (In − Pr)TCTC(In − Pr) = 0, P T
l GioPl = 0.

3: Compute the skinny singular value decomposition

LTpERp = U1ΣV T
1 ,

where U1 and V1 have orthonormal columns, Σ = diag(ς1, . . . , ςlf ) with the
proper non-zero Hankel singular values of the system and lf = rank(LTpERp).

4: Compute the skinny singular value decomposition

LTi ARi = U2ΘV T
2 ,

where U2 and V2 have orthonormal columns, Θ = diag(θ1, . . . , θl∞) with the
improper non-zero Hankel singular values and l∞ = rank(LTi ARi).

5: Compute the projection matrices

Wlf = LpU1Σ−
1
2 , Wl∞ = LiU2Θ−

1
2 ,

Tlf = RpV1Σ−
1
2 , Tl∞ = RiV2Θ−

1
2 .

6: Compute the minimal balanced standard realization of the slow subsystem

(Ilf , Af , Bf , Cf , 0) = (W T
lf
ETlf ,W

T
lf
ATlf ,W

T
lf
B,CTlf , 0).

7: Choose the proper Hankel singular value ςr+1.
8: Permute the standard realization (Ilf , Af , Bf , Cf , 0), such that the proper

system Gramians are

Ǧpc = Ǧpo = diag(ς1, . . . , ςr, ςr+k+1, . . . , ςlf , ςr+1Ik)

= diag(Σ̌, ςr+1Ik),

where k is the multiplicity of the Hankel singular value ςr+1.
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9: Partition the resulting permuted system according to the proper Gramians

Ǎ =

[
A11 A12

A21 A22

]
, B̌ =

[
B1

B2

]
, Č =

[
C1 C2

]
,

where A22 ∈ Rk×k, B2 ∈ Rk×m, and C2 ∈ Rp×k.
10: Compute the transformation

Ã = Γ−1(ς2
r+1A

T
11 + Σ̌A11Σ̌ + ςr+1C

T
1 UB

T
1 ),

B̃ = Γ−1(Σ̌B1 − ςr+1C
T
1 U),

C̃ = C1Σ̌− ςr+1UB
T
1 ,

D̃ = ςr+1U,

with U = (CT
2 )†B2 and Γ = Σ̌2 − ς2

r+1Ilf−k.

11: Compute the additive decomposition

G̃ = C̃(sIlf−k − Ã)−1B̃ + D̃ = Gh(s) + F (s),

where F (s) is anti-stable and Gh(s) is the stable Hankel-norm approximation
with the realization (Ir, Ah, Bh, Ch, Dh).

12: Compute the minimal realization of the fast subsystem

(E∞, Il∞ , B∞, C∞, D) = (W T
l∞ETl∞ ,W

T
l∞ATl∞ ,W

T
l∞B,CTl∞ , D).

13: Additive construction of the resulting system

(Ê, Â, B̂, Ĉ, D̂) =

([
Ir 0
0 E∞

]
,

[
Ah 0
0 Il∞

]
,

[
Bh

B∞

]
,
[
Ch, C∞

]
, D +Dh

)
.

Therefore, let G = Gsp+P be the original transfer function with its strictly proper part

Gsp and its polynomial part P . Assume Ĝ = Gh + F is the transfer function resulting
from the transformation formulas in Theorem 3.2 for the system Gsp, where Gh is the
stable, F the anti-stable part and the (r+ 1)-st proper Hankel singular value ςr+1 of G
was chosen. Let P̂ be the conditionally minimal realization of the polynomial transfer
function P , which means P̂ = P . Now, Consider the error system of the form

E = G− Ĝ− P̂
= Gsp + P − Ĝ− P̂
= Gsp − Ĝ
= Gsp −Gh − F.

Since Gh is the Hankel-norm approximation of Gsp and F is the corresponding anti-
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stable transfer function, part (2) of Theorem 3.2 can be used and it holds

E(s)EH(−s̄) = ς2
r+1Ir.

So, the scaled error transfer function is all-pass. That is the reason, the error bounds
proposed in section 3.1 still hold for the descriptor system case. For the Hankel-norm
the error is given by ∣∣∣∣∣∣G−Gh − P̂

∣∣∣∣∣∣
H

= ςr+1(G), (4.11)

where ςr+1(G) is the (r + 1)-th proper Hankel singular value of the original descriptor
system G. Hence, the method in Algorithm 4 is a Hankel-norm approximation for
descriptor systems.
With the same approach as for the Hankel-norm, the error bound in the H∞-norm is
given by ∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H∞
≤ 2

lf∑
k=r+1

ςk(G).

Finally, the following theorem can be summarized.

Theorem 4.2. Let G be a c-stable descriptor system of the form (2.5). In exact
arithmetic, the reduced-order descriptor system Ĝ obtained from Algorithm 4 has the
following properties:

(1) The realization of Ĝ is conditionally minimal, c-stable and resembles the Weier-
strass canonical form.

(2) The error in the Hankel-norm is given by∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
H

= ςr+1(G).

(3) The following H∞ error bound holds

∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
H∞
≤ 2

lf∑
k=r+1

ςr+1(G).

4.3 The Approximated Hankel-Norm Approximation

The generalized Hankel-norm approximation quickly becomes a numerically unstable
method. This problem arises because of a small chosen proper Hankel singular value
or a large McMillan degree with many small proper Hankel singular values of the slow
subsystem. In this section the case of a large McMillan degree is considered.
First, step 10 in Algorithm 4 is regarded. This is the transformation formula from
Theorem 3.2 used for the slow subsystem of (2.5). In this step the permuted system

matrices Ǎ and B̌ are both scaled by the diagonal matrix Γ−1 =
(
Σ̌2 − ς2

r+1Ilf−k
)−1

during the transformation. Quite small proper Hankel singular values in Σ̌ can lead
to large errors in the transformed system. There, the choice of a small ςr+1 Hankel
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singular value as approximation error is as problematic as the use of the remaining
small proper Hankel singular values in Σ̌.
Another point to consider is the computation of the balanced system by the generalized
balanced truncation square-root method. Here, the transformation matrices Wlf and
Tlf get also ill-conditioned for small proper Hankel singular values. The resulting
minimal balanced realization would loose a certain amount of accuracy up to this
point [8].
Beside these accuracy related problems, also the computational costs should be men-
tioned. The resulting transformed unstable system has the order equal to the McMillan
degree of the slow subsystem (4.8) reduced by the multiplicity of the chosen proper
Hankel singular value. So for a large McMillan degree and well distributed Hankel
singular values the resulting system may have a large order. The problem is that this
system has to be decomposed in the stable and anti-stable parts and this becomes very
costly for larger orders.
All these problems could be eliminated by allowing the computation of a smaller bal-
anced realization of the slow subsystem than the McMillan degree. Obviously, this
results in an additional error which hurts the exact error bound of the Hankel-norm
approximation. The question that arises is, how much is the resulting error disturbed.
Therefore, a special result from [13] for standard systems is used.
Let Gb be a r-th order balanced realization of the original standard system G. Then
it holds

||G−Gb||H ≤ 2
n∑

k=r+1

ςk.

As in the previous section shown, this result can be applied to the descriptor system
case by the decoupling of the slow and fast subsystems.
Now, let G = Gsp+P be the original descriptor system (2.5), Gb a balanced realization

of the strictly proper part Gsp with order nb ≤ nf and let Ĝ = Gh + P̂ be the r-th
order Hankel-norm approximation of the balanced system Gb with r ≤ nb.
Then for the error in the Hankel-norm it holds∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H
=
∣∣∣∣∣∣Gsp + P −Gh + P̂

∣∣∣∣∣∣
H

= ||Gsp −Gh||H
= ||Gsp −Gb +Gb −Gh||H
≤ ||Gb −Gh||H + ||Gsp −Gb||H

≤ ςr+1(Gb) + 2

nf∑
k=nb+1

ςk(G),

with nf the dimension of the deflating subspace corresponding to the finite eigenvalues
of the matrix pencil λE − A.
Since Gb is a balanced realization of order nb, only nb non-zero proper Hankel singular
values remain for further computations. If r = nb is chosen, the value ςnb+1(Gb) is set
to zero. For Gb the balanced realization of G, it holds

ςk(Gb) = ςk(G)
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for k = 1, . . . , nb.
Now, the Hankel-norm error can be rewritten as

∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
H
≤ ςr+1(G) + 2

nf∑
k=nb+1

ςk(G). (4.12)

Obviously, in case of Gb is a minimal balanced realization of the strictly proper part
Gsp, the error formula (4.12) simplifies to∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣

H
≤ ςr+1(G).

With the result of Lemma 3.3, equality holds. This is conform with the error of the
exact generalized Hankel-norm approximation (4.11).
Using the same approach for the error bound in the H∞-norm, one obtains

∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
H∞
≤ 2

nb∑
k=r+1

ςk(Gb) + 2

nf∑
k=nb+1

ςk(G) = 2

nf∑
k=r+1

ςk(G),

which is identical to the original H∞ error bound for the generalized Hankel-norm
approximation.
Now, the remaining open point is the implementation of this approximated version of
the generalized Hankel-norm approximation. Therefor, consider step 3 of Algorithm 4.
There, the skinny singular value decomposition has to be changed in the way used for
the balanced truncation method. That means, the singular value decomposition has
the form

LTpERp =
[
U1, U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

where
[
U1, U2

]
and

[
V1, V2

]
have orthonormal columns, Σ1 = diag(ς1, . . . , ςnb) and

Σ2 = diag(ςnb+1, . . . , ςlf ) are diagonal with the proper non-zero Hankel singular values
of the system and lf = rank(LTpERp). The partition is chosen, such that Σ1 contains
the proper Hankel singular values which shall be used for further computations and Σ2

the Hankel singular values which are no longer needed. The matrices U1, Σ1, and V1

are then used for the computation of the balanced realization Gb and hence, for further
transformations of the generalized Hankel-norm approximation method.
This approximated method take the advantage of the generalized balanced truncation
method in form of the adaptive choice of the order. The order nb of the balanced
realization Gb might be chosen as

2

nf∑
k=nb+1

ςk(G)� ςr+1(G).

Then the resulting Hankel-norm error can be seen as∣∣∣∣∣∣G− Ĝ∣∣∣∣∣∣
H
≈ ςr+1(G).
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This approach can be seen as a numerically disturbed version of the exact generalized
Hankel-norm approximation method. So, the additional error is not worse than the
unavoidable round-off errors.
Applying this approximated generalized Hankel-norm approximation is definitely more
stable than the original one. Still, there is no numerical analysis of the exact or the
approximated Hankel-norm approximation method.
Beside the accuracy problem, the case of large McMillan degrees can be tackled by
this approximated method. Memory resources can be saved for the transformation
matrices Wlf and Tlf as well as for the resulting balanced realization. In general, the
computational costs after step 3 of Algorithm 4 are reduced, since further computations
are made on smaller system matrices. Especially, the block diagonalization of the
transformed system in step 10 needs a computational effort of O((lf − k)3) which
clearly reduces for smaller lf .

4.4 Application to Sparse Systems

A frequently appearing case in practice is the model reduction of large-scale sparse
descriptor systems. There, at least the matrices A and E from the descriptor system
(2.5) are in a large-scale sparse form, i.e., the dimension n is large, the matrices A
and E can be stored using O(n) memory and the matrix-vector multiplication can be
computed with O(n) effort. Often these matrices are the result of the discretization of
partial differential equations.
Considering Algorithm 4 with respect to the sparse structure of the matrices, one can
observe that after the steps 6 and 12 both, the fast and slow subsystems, have to be
stored dense, due to the use of dense transformation matrices. Also, it is not possible
to use the Cholesky factors for the computation of the balanced realization because
they are dense and of dimensions n × n. For the usage on sparse data, the projected
Lyapunov equations in the first two steps of Algorithm 4 have to be solved in sparse
form.
It has been observed that the eigenvalues of the symmetric positive semidefinite solu-
tions of the Lyapunov equations with low-rank right-hand sides generally decay rapidly.
Such solutions may be well approximated by low-rank matrices [8]. The same result
holds for the projected Lyapunov equations [29]. For example, consider the Lyapunov
equation (2.22). If it is possible to find a matrix Z ∈ Rn×k with much smaller number of
columns k, such that ZZT is an approximated solution of (2.22), Z is referred to as the
low-rank Cholesky factor of Gpc which is the solution of the projected continuous-time
Lyapunov equation (2.22).
Since the matrix pencil λE −A is assumed as c-stable, the matrix A is invertible. So,
the projected generalized continuous-time Lyapunov equation (2.22) can be rewritten
as standard projected Lyapunov equation in the form

(A−1E)X +X(A−1E)T = −PrA−1BBTA−TP T
r , X = PrXP

T
r , (4.13)

with X = Gpc. The equation (4.17) can be solved by the alternating implicit direction
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(ADI) method. The iteration scheme of this method is given by

Xk = (A−1E + τkIn)−1(A−1E − τ̄kIn)Xk−1(A−1E − τkIn)T (A−1E + τ̄kIn)−T

−2Re(τk)(A
−1E + τkIn)−1PrA

−1BBTA−TP T
r (A−1E + τ̄kIn)−T ,

(4.14)

with the initial solution X0 = 0 and the complex shift parameters
{
τ1, . . . , τkq

}
⊂ C−,

see [29]. The second equation in (4.13) follows from

Pr(A
−1E − τ̄kIn) = (A−1E − τ̄kIn)Pr,

Pr(A
−1E + τkIn)−1 = (A−1E + τkIn)−1Pr.

Now, the iteration scheme (4.14) can be rewritten in the form

Xk = (E + τkA)−1(E − τ̄kA)Xk−1(E − τkA)T (E + τ̄kA)−T

−2Re(τk)(E + τkA)−1PlBB
TP T

l (E + τ̄kA)−T .
(4.15)

It can be shown that the iteration (4.15) converges to the solution X of (4.13) and
consequently, the iteration converges to the solution Gpc of (2.22), see [29].
The formulation (4.15) can be exploited for the low-rank Cholesky factorization X =
ZZT . Therefor, let Xk = ZkZ

H
k be the new iteration variable. The iteration (4.15) can

be written in the form

Zk =
[√
−2Re(τk)(E + τkA)−1PlB, (E + τkA)−1(E − τ̄kA)Zk−1

]
.

By explicitly setting the term Zk−1 the final iteration has the form

Zk =
[
B0, Fk−1B0, Fk−2Fk−1B0, . . . , F1 · · ·Fk−1B0

]
, (4.16)

where B0 =
√
−2Re(τk)(E + τkA)−1PlB and

Fj =

√
Re(τk)

Re(τk−1)

(
In − (τ̄k−1 + τk) (E + τkA)−1A

)
.

In the literature, this method is known as the low-rank ADI (LR-ADI) method. The
introduced method is summarized in Algorithm 5. For simplicity it is assumed, that
the resulting update matrices are real. In general, the proposed method has to be
adjusted for the different cases of complex shifts. A more detailed view on this method
can be found in [8, 29].
If all finite eigenvalues of the matrix pencil λE−A lie in the open left half-plane, then
Zk converges to the solution factor of (2.22). The rate of convergence strongly depends
on the choice of the shift parameters τ1, . . . , τq. The optimal ADI shifts satisfy the
generalized ADI minimax problem

{
τ1, . . . , τkq

}
= argmin

τ1,...,τkq∈C−
max

t∈Λf (A,E)

|(1− τ̄1) · . . . · (1− τ̄q)|
|(1 + τ1) · . . . · (1 + τq)|

,

where Λf (A,E) denotes the finite spectrum of the regular matrix pencil λE − A, see

– 43 –



4.4 Application to Sparse Systems

[29].

Algorithm 5: Generalized LR-ADI Method for Projected Continuous-Time Lya-
punov Equations

Input: Matrices A,E, Pl ∈ Rn×n, B ∈ Rn×m and shift parameters τ1, . . . , τq ∈ C−
Output: Low-rank Cholesky factor Zk of the solution Gpc ≈ ZkZ

T
k of (2.22)

1: Z(1) =
√
−2Re(τ1) (E + τ1A)−1 PlB, Z1 = Z(1)

2: for k = 2, 3, . . . do

3: Z(k) =

√
Re(τk)

Re(τk−1)

(
In − (τ̄k−1 + τk) (E + τkA)−1A

)
Z(k−1)

4: Zk =
[
Zk−1, Z(k)

]
5: end

In exact arithmetic, the matrices Zk satisfy the condition Zk = PrZk. Hence, the second
equation in (2.22) is fulfilled for the approximated solution ZkZ

T
k . However, in finite

precision arithmetic a drift-off effect may occur. In this case, the update matrices Z(k)

need to be reprojected onto the image of Pr by pre-multiplying Z(k) with Pr. In order
to limit the computational costs, it is beneficial to restrict this additional projection
to every second or third iteration step [29]. To avoid complex operations, caused by
the choice of the shifts, the formulation of the LR-ADI should be adjusted, see [7].
For the second projected generalized continuous-time Lyapunov equation (2.23), the
transposed method can be used with the matrices C ∈ Rp×n and Pr ∈ Rn×n. In this
case the reprojection uses the projector Pl.
As well as for the continuous-time Lyapunov equations (2.22) and (2.22), the projected
generalized discrete-time Lyapunov equations (2.24) and (2.25) have to be solved in
sparse form. From the upper bound on the number of non-zero improper Hankel
singular values (4.1), it can be seen that the terms νm and νp provide an upper
bound on the size of the low-rank factorizations for the improper controllability and
observability Gramian.
A first method for the computation of this projected generalized discrete-time Lya-
punov equations can be constructed by a LR-ADI method for generalized discrete-time
Lyapunov equations, see [6]. For the projected version of the algorithm the same adap-
tations as in the continuous-time case have to be made. In contrast to the normal
formulation of the discrete-time Lyapunov equations, the sign of the constant term
is negative, so the roles of the A and E matrices have to be swapped. This leads
to a drawback of the ADI method used in the projected case. Since the projected
generalized discrete-time Lyapunov equations (2.24) and (2.25) relate to the deflating
subspaces corresponding to the infinite eigenvalues of the matrix pencil λE − A, this
spectrum is used in most shift computation methods. But the roles of the A and E
matrices have been swapped, so the considered spectrum completely consists of zero
eigenvalues. Such shifts cannot be used for the discrete version of the LR-ADI method
[6]. Still, the use of this method is possible by a cyclic approach of the LR-ADI method
with small non-zero chosen shifts.
However, for this special case of projected generalized discrete-time Lyapunov equations
there exists a much more efficient computation method. Next, the projected generalized
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discrete-time Lyapunov equation (2.24) is considered. As mentioned before, the matrix
pencil λE − A is assumed as c-stable and thus, the matrix A is invertible. Then, the
equation (2.24) is equivalent to the projected discrete-time Lyapunov equation of the
form

Gic − (A−1E)Gic(A−1E)T = QrA
−1BBTA−TQT

r , Gic = QrGicQT
r . (4.17)

Note that Qr can now be seen as the spectral projector onto the subspace of A−1E
corresponding to the zero eigenvalues. In this case QrA

−1E = A−1EQr is nilpotent
with index ν. So, this index is identical to the index of the matrix pencil λE−A. The
unique solution of the new projected Lyapunov equation (4.17) is given by

Gic =
ν−1∑
k=0

(A−1E)kQrA
−1BBTA−TQT

r

(
(A−1E)T

)k
,

see [29].
Thus, the full-rank Cholesky factor Z of the solution Gic = ZZT of (4.17) can be
written in the form

Z =
[
QrA

−1B,A−1EQrA
−1B, . . . , (A−1E)

ν−1
QrA

−1B
]
.

The computation of this full-rank factor is made by the Smith method, displayed in
Algorithm 6.

Algorithm 6: Generalized Smith Method for Projected Discrete-Time Lyapunov
Equations

Input: Matrices A,E,Qr ∈ Rn×n, B ∈ Rn×m

Output: Full-rank Cholesky factor Zk of the solution Gic = ZkZ
T
k of (2.22)

1: Z(1) = QrA
−1B, Z1 = Z(1)

2: for k = 2, 3, . . . , ν do

3: Z(k) = A−1EZ(k−1)

4: Zk =
[
Zk−1, Z(k)

]
5: end

In contrast to a LR-ADI method, this procedure makes an exact construction of the
Cholesky factor by the exact number of iteration steps. That is why, the Smith method
does not need any computed shift parameters for convergence acceleration.
If the index of the system (2.5) is unknown, the Algorithm 6 can be stopped when∣∣∣∣Z(k)

∣∣∣∣ or
∣∣∣∣Z(k)

∣∣∣∣ / ||Zk|| is small enough for a certain matrix norm ||·||.
As in the continuous-time case, the constructed matrices Zk are affected by a drift-off
effect. To avoid this, the columns of Zk have to be reprojected onto the image of Qr,
so Z(k) should be pre-multiplied by the matrix Qr. As before, the second projected
generalized discrete-time Lyapunov equation (2.25) can be solved with the same method
using the transposed matrices of A and E, the spectral projector Ql and the matrix C.
Back to the generalized Hankel-norm approximation method, the steps 3-13 of Algo-
rithm 4 stay the same as before. Only the computation methods for the solution of
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the Lyapunov equations change for the sparse case. In consequence, the dimensions
of the used Cholesky factors have been changed. It can be noted that computation of
low-rank Cholesky factors for the slow subsystem is an implicit use of the theory in
the previous section.
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5 Implementation in the MORLAB
Toolbox

The Model Order Reduction LABoratory (MORLAB) toolbox is a collection of MAT-
LAB routines for the model reduction of dense continuous-time linear systems, consist-
ing of modal and balancing related model reduction methods. Furthermore, algorithms
for the partial stabilization of systems based on Lyapunov and Bernoulli equations are
given. For the solution of the corresponding matrix equations spectral projection meth-
ods like the matrix sign function and the disk function are used. This whole chapter
deals with the implementation of the generalized Hankel-norm approximation method
in the MORLAB toolbox by the usage of spectral projection methods [2].

5.1 The Projection-Free Generalized Hankel-Norm
Approximation

In the first steps of the generalized Hankel-norm approximation, two balanced minimal
realizations are computed with the decoupling of the system into a slow and a fast
subsystem as an additional result. Therefor, the Cholesky factors of the projected
generalized Lyapunov equations (2.22)-(2.25) are needed. Considering the dense case,
the required spectral projectors are not generally constructed in an explicit way, so
they have to be computed. One possible way would be (2.14).
In [24, 26] it was proposed to use a decoupling of the descriptor system (2.5) rather
than the computation of the spectral projectors for the generalized balanced trun-
cation method. The algorithm mentioned there was based on the generalized Schur
decomposition. The generalized Schur form of a regular matrix pencil λE−A is given
as

E = V

[
Ef Eu
0 E∞

]
UT , A = V

[
Af Au
0 A∞

]
UT , (5.1)

where V and U are orthogonal. The matrix pencil λEf − Af is quasi-triangular and
contains all the finite eigenvalues of λE − A. On the other hand, the matrix pencil
λE∞ − A∞ is triangular and contains infinite eigenvalues.
To compute the block diagonalization corresponding to the deflating subspaces of finite
and infinite eigenvalues, the generalized Sylvester equation

EfY − ZE∞= −Eu,

AfY − ZA∞= −Au
(5.2)

has to be solved. This Sylvester equation has a unique solution, since the matrix pencils
λEf − Af and λE∞ − A∞ have no common eigenvalues.
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Now, these matrices can be used for the generalized state space transformation of the
descriptor system (2.5). The resulting descriptor system has the form[

Ef 0
0 E∞

]
ẋ(t) =

[
Af 0
0 A∞

]
x(t) +

[
Bf

B∞

]
u(t),

y(t) =
[
Cf , C∞

]
x(t) +Du(t),

where the remaining matrices are constructed as

V TB=

[
Bu

B∞

]
, Bf = Bu − ZB∞,

CU =
[
Cf , Cu

]
, C∞= CfY + Cu.

Obviously, this realization of the descriptor system (2.5) decouples into the slow and
fast subsystems. It was mentioned before that the generalized balanced truncation
method can be seen as an individual reduction of the slow and fast subsystems, respec-
tively. Concerning this, the projected generalized continuous-time Lyapunov equations
(2.22) and (2.23) corresponding to the proper system Gramians can be replaced by the
two generalized continuous-time Lyapunov equations

EfXpcA
T
f + AfXpcE

T
f +BfB

T
f = 0, (5.3)

ET
f XpoAf + ATfXpoEf + CT

f Cf = 0, (5.4)

for the slow subsystem (Ef , Af , Bf , Cf , 0). The same approach can be used for the pro-
jected generalized discrete-time Lyapunov equations (2.24) and (2.25) corresponding to
the improper system Gramians. These two equations are replaced by the generalized
discrete-time Lyapunov equations

A∞XicA
T
∞ − E∞XicE

T
∞ −B∞BT

∞ = 0, (5.5)

AT∞XioA∞ − ET
∞XioE∞ − CT

∞C∞ = 0, (5.6)

for the fast subsystem (E∞, A∞, B∞, C∞, D), see [24]. It is possible to reconstruct all
system Gramians and their Cholesky factorizations of the original descriptor system
(2.5) from the solutions of the new Lyapunov equations (5.3)-(5.6), see [26].
Now, the projection-free Lyapunov equations (5.3)-(5.6) can be used for two sepa-
rated balanced truncation approaches. First, the slow subsystem (Ef , Af , Bf , Cf , 0) is
considered. For the matrix LTfEfRf , the skinny singular decomposition of the form

LTfEfRf = U1ΣV T
1

is computed, where Xpc = RfR
T
f satisfies (5.3) and Xpo = LfL

T
f satisfies (5.4). The

matrices U1 and V1 consist of orthonormal columns and the matrix Σ = diag(ς1, . . . , ςlf )
contains the Hankel singular values of the slow subsystem, with lf = rank(LTfEfRf ) ≤
nf . These singular values are exactly the non-zero proper Hankel singular values of the
original descriptor system (2.5).
Finally, the slow subsystem has to be reduced. Therefor, the two transformation ma-
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trices
Wlf = LfU1Σ−

1
2 and Tlf = RfV1Σ−

1
2

are used. The resulting realization is minimal and balanced, so it can be used for the
classical Hankel norm approximation method in Algorithm 1.
For the fast subsystem, it was mentioned before that the reduction of this subsystem is
equivalent to the balanced truncation method applied to a discrete-time system of the
form (4.5). Hence, the skinny singular value decomposition for the matrix LT∞A∞R∞
has to be computed in the form

LT∞A∞R∞ = U2ΘV T
2 ,

where Xic = R∞R
T
∞ and Xio = L∞L

T
∞ satisfy the equations (5.5) and (5.6), re-

spectively. The matrices U2 and V2 have orthonormal columns and the matrix Θ =
diag(θ1, . . . , θl∞) contains the improper non-zero Hankel singular values of the original
descriptor system (2.5), with l∞ = rank(LT∞A∞R∞).
All further computation steps of the generalized Hankel-norm approximation method
stay the same as before. The new resulting method uses implicitly the spectral pro-
jectors corresponding to the deflating subspaces of the finite and infinite eigenvalues
by the computation of the block diagonalization with respect to the eigenvalues. But
the projectors are no longer explicitly involved in the computation. The complete
projection-free Hankel-norm approximation method is summarized in Algorithm 7.
In the beginning, the generalized Schur form was mentioned as bases for the block
diagonalization of the matrix pencil λE − A. An advantage of this method is the
exploitation of the resulting quasi-triangular structure during the following compu-
tation steps. For example, the generalized Schur-Hammarling method can be used
for the computation of the continuous-time Lyapunov equations (5.3) and (5.4) which
takes advantage of the already computed quasi-triangular form of the matrices. The
introduction of this method and the corresponding perturbation theory for projected
generalized continuous-time Lyapunov equations can be found in [24].
An alternative to the Schur based approach for the block diagonalization as well as
for the computation of the matrix equations is given by the application of spectral
projection methods. In the following sections, the spectral projection methods needed
to compute all necessary steps of Algorithm 7 will be considered.

5.2 Additive Decomposition of Descriptor Systems

To understand the spectral projection based methods specified in this and the following
sections, the fundamental theory of spectral projectors is denoted here. Until now,
only the spectral projectors of the matrix pencil λE−A corresponding to the deflating
subspaces of the finite eigenvalues (2.11) and the infinite eigenvalues (2.12) were stated.
The general case is given by the following definitions.

Definition 5.1. A matrix P ∈ Rn×n is a projector onto the subspace S ⊂ Rn if
range(P ) = S and P 2 = P .
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Algorithm 7: Projection-Free Generalized Hankel-Norm Approximation

Input: Realization (E,A,B,C,D), such that λE − A is c-stable
Output: Realization of Hankel-norm approximation (Ê, Â, B̂, Ĉ, D̂)

1: Compute the realization in block diagonal form, such that([
Ef 0
0 E∞

]
,

[
Af 0
0 A∞

]
,

[
Bf

B∞

]
,
[
Cf C∞

]
, D

)
.

2: Compute the Cholesky factors Rf and Lf of the solutions Xpc = RfR
T
f and

Xpo = LfL
T
f that satisfy

EfXpcA
T
f + AfXpcE

T
f +BfB

T
f = 0,

ET
f XpoAf + ATfXpoEf + CT

f Cf = 0.

3: Compute the Cholesky factors R∞ and L∞ of the solutions Xic = R∞R
T
∞ and

Xio = L∞L
T
∞ that satisfy

A∞XicA
T
∞ − E∞XicE

T
∞ −B∞BT

∞ = 0,

AT∞XioA∞ − ET
∞XioE∞ − CT

∞C∞ = 0.

4: Compute the skinny singular value decomposition

LTfEfRf = U1ΣV T
1 ,

where U1 and V1 have orthonormal columns, Σ = diag(ς1, . . . , ςlf ) with the
proper non-zero Hankel singular values of the system and lf = rank(LTfEfRf ).

5: Compute the skinny singular value decomposition

LT∞A∞R∞ = U2ΘV T
2 ,

where U2 and V2 have orthonormal columns, Θ = diag(θ1, . . . , θl∞) with the
improper non-zero Hankel singular values and l∞ = rank(LT∞A∞R∞).

6: Compute the projection matrices

Wlf = LfU1Σ−
1
2 , Wl∞ = L∞U2Θ−

1
2 ,

Tlf = RfV1Σ−
1
2 , Tl∞ = R∞V2Θ−

1
2 .

7: Compute the minimal standard realization of the slow subsystem

(Ilf , Ab, Bb, Cb, 0) = (W T
lf
EfTlf ,W

T
lf
AfTlf ,W

T
lf
Bf , CfTlf , 0).

8: Choose the proper Hankel singular value ςr+1.
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9: Permute the balanced standard realization (Ilf , Ab, Bb, Cb, 0), such that the
proper system Gramians are

Ǧpc = Ǧpo = diag(ς1, . . . , ςr, ςr+k+1, . . . , ςlf , ςr+1Ik)

= diag(Σ̌, ςr+1Ik),

where k is the multiplicity of the Hankel singular value ςr+1.
10: Partition the resulting permuted system according to the proper Gramians

Ǎ =

[
A11 A12

A21 A22

]
, B̌ =

[
B1

B2

]
, Č =

[
C1 C2

]
,

where A22 ∈ Rk×k, B2 ∈ Rk×m, and C2 ∈ Rp×k.
11: Compute the transformation

Ã = Γ−1(ς2
r+1A

T
11 + Σ̌A11Σ̌ + ςr+1C

T
1 UB

T
1 ),

B̃ = Γ−1(Σ̌B1 − ςr+1C
T
1 U),

C̃ = C1Σ̌− ςr+1UB
T
1 ,

D̃ = ςr+1U,

with U = (CT
2 )†B2 and Γ = Σ̌2 − ς2

r+1Ilf−k.

12: Compute the additive decomposition

G̃ = C̃(sInf−k − Ã)−1B̃ + D̃ = Gh(s) + F (s),

where F (s) is anti-stable and Gh(s) is the stable Hankel-norm approximation
with the realization (Ir, Ah, Bh, Ch, Dh).

13: Compute the minimal realization of the fast subsystem

(Ei, Il∞ , Bi, Ci, D) = (W T
l∞E∞Tl∞ ,W

T
l∞A∞Tl∞ ,W

T
l∞B∞, C∞Tl∞ , D).

14: Additive construction of the resulting system

(Ê, Â, B̂, Ĉ, D̂) =

([
Ir 0
0 Ei

]
,

[
Ah 0
0 Il∞

]
,

[
Bh

Bi

]
,
[
Ch, Ci

]
, D +Dh

)
.

Definition 5.2. Let Y,X ∈ Rn×n be a regular matrix pencil with Λ(Y,X) = Λ1 ∪ Λ2,
where Λ1 ∩ Λ2 = ∅, and let S1 be the (right) deflating subspace of the matrix pencil
λX − Y corresponding to Λ1. Then a projector onto S1 is called a spectral projector.

The first problem which will be considered, is the decoupling of the descriptor system
(2.5). Therefore, a matrix pencil λX − Y has to be block diagonalized. This will be
done in two steps. First, the matrix pencil will be transformed into a block triangular
form and then, the block diagonal form is computed.
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Let λX − Y and S1 be as in Definition 5.2. Given a spectral projector P onto S1, the
orthonormal basis of the corresponding right deflating subspace S1 can be computed
using the following way.
Let

P = V R1ΠT
1 , R1 =

[
R11 R12

0 0

]
,

with R11 ∈ Rk×k, be a QR decomposition of P with column pivoting. Here, Π1 is a
permutation matrix. Then, an orthonormal basis of S1 is given by the first k columns
of V =

[
V1, V2

]
, see [4].

The basis of the left deflating subspace can be obtained by the first k columns of U ,
where

UR2ΠT
2 = U

[
R11 R12

0 0

]
ΠT

2 =
[
Y V1, XV1

]
is a QR decomposition of the matrix

[
Y V1, XV1

]
with column pivoting, if Λ1 =

Λ(Y,X) ∩ Γ1, where Γ1 is the stability region of the matrix pencil λX − Y and the
matrix pencil has no eigenvalues on the boundary ∂Γ1, see [4].
Then it holds

UT (λX − Y )V = λ

[
X11 X12

0 X22

]
−
[
Y11 Y12

0 Y22

]
,

where Λ(Y11, X11) = Λ1 and Λ(Y22, X22) = Λ2.
Now, a method for the computation of such a spectral projector is needed.
Consider the Weierstrass canonical form

λX − Y = W

[
λIk − J0 0

0 λN − J∞
]
T,

where J0 contains the Jordan blocks corresponding to the eigenvalues of λE−A inside
the unit circle, and J∞ contains the Jordan blocks corresponding to the eigenvalues
outside the unit circle.
Then, the right matrix pencil disk function is defined for the regular matrix pencil
λX − Y as

disk(Y,X) = T−1

(
λ

[
0 0
0 In∞

]
−
[
Inf 0
0 0

])
T = λP∞ − P0.

The matrix P0 defines a skew projection onto the right deflating subspace corresponding
to the eigenvalues of λX −Y inside the unit circle. On the other hand, the matrix P∞
is a skew projection onto the right deflating subspace corresponding to the eigenvalues
of λX − Y outside the unit circle.
Other splittings than the unit circle in the complex can be computed by applying a
suitable conformal mapping to the matrix pencil λX − Y .
The method for the computation of the right matrix disk function can be found in [4].
The needed parts of this method are summarized in Algorithm 8. In the literature,
this algorithm is referred to as the disk function method or the inverse free method.
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Algorithm 8: Disk Function Method

Input: Matrix pencil λX − Y with no eigenvalues on the unit disk
Output: Yk and Xk with null spaces corresponding to eigenvalues of λX − Y

inside and outside the unit circle

1: Y0 = Y, X0 = X
2: while not converged do
3: Compute the QR factorization[

Xk

−Yk

]
=

[
Q11 Q12

Q21 Q22

] [
Rk

0

]
.

4: Yk+1 = QT
12Yk

5: Xk+1 = QT
22Xk

6: end

Using this algorithm the matrix pencil disk function can be constructed by

disk(Y,X) = (Yk +Xk)
−1 (λYk −Xk) ,

with k → +∞. In this case, the skew projections are given by

P0 = (Yk +Xk)
−1Xk and P∞ = (Yk +Xk)

−1 Yk, (5.7)

for k → +∞. From this, the transformation matrices for the block triangular form can
be computed as mentioned above.
A more efficient approach can be used without the explicit computation of the disk
function as well as the skew projections. Therefor, a suitable subspace extraction
method was proposed in [4]. A slightly modified version of this method can be found in
Algorithm 9. The original algorithm uses a RRQR decomposition for the determination
of the numerical rank. Here, the rank-revealing QR decomposition was replaced by
the singular value decomposition because on modern computers it can be used more
efficiently.
Until now, the deflating subspaces corresponding to the eigenvalues of λX − Y inside
and outside the unit circle were considered. Now, the methods shall be used for the
separation of the finite and infinite eigenvalues of the matrix pencil λE−A. Therefor,
the disk function method has to be applied to the matrix pencil λ(αA)− E, with

1

α
> max{|λ| : λ ∈ Λ(A,E) \ {∞}},

and using the subspace extraction method for the original matrix pencil λE −A. The
scalar α is used to scale the spectrum of λE − A. The finite eigenvalues of λE − A
correspond to the eigenvalues of λ(αA) − E outside the unit circle and the infinite
eigenvalues of λE − A correspond to the eigenvalues of λ(αA) − E inside the unit
circle. The estimation of α is still an unsolved problem [10].
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Algorithm 9: Subspace Extraction for the Disk Function Method

Input: Matrix pencil λX − Y with no eigenvalues on the unit disk, Yk as
computed by Algorithm 8, τ tolerance for rank detection

Output: Orthogonal matrices Q,Z ∈ Rn×n sucht that

QT (λX − Y )Z = λ

[
X11 X12

0 X22

]
−
[
Y11 Y12

0 Y22

]
,

with Λ(Y11, X11) ⊂ {z ∈ C : |z| < 1}, Λ(Y22, X22) ⊂ {z ∈ C : |z| > 1}
1: Compute the singular value decomposition

Yk =
[
U1, U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

with V1 ∈ Rn×r and V2 ∈ Rn×(n−r). The size of the partitioning r is based on
the tolerance τ .

2: Set Z = [V2, V1].
3: Compute the QR decomposition with column pivoting

QRΠR
Q =

[
Y V2, XV2

]
.

Using the obtained transformation matrices Q and Z from the subspace extraction,
the block triangular form of the matrix pencil λE − A can be computed as

QT (λE − A)Z = λ

[
Ef Eu
0 E∞

]
−
[
Af Au
0 A∞

]
. (5.8)

An approach for the block diagonalization is the solution of the generalized Sylvester
equation (5.2). But since there is no spectral projection method for the generalized
Sylvester equation with singular coefficients, standard methods, like the generalized
Schur method, have to be used.
A more suitable approach for the block diagonalization can be developed from [15]. It
is possible to get a block diagonalizing equivalence transformation from two opposed
block triangularizations. Consider the following generalization of Theorem 4.1 in [15].

Theorem 5.1. Let Γ ⊂ C be a region in the complex plane which contains n1 eigen-
values of the matrix pencil λE − A. Let Q,Z ∈ Rn×n be orthogonal matrices that
transform the matrix pencil λE − A into the upper block triangular form:

QT (λE − A)Z =

[
QT

1

QT
2

]
(λE − A)

[
Z1, Z2

]
=

[
λE

(1)
11 − A

(1)
11 λE

(1)
12 − A

(1)
12

0 λE
(1)
22 − A

(1)
22

]
, (5.9)

with Λ(A
(1)
11 , E

(1)
11 ) ⊆ Γ and Λ(A

(1)
11 , E

(1)
11 )∩Λ(A

(1)
22 , E

(1)
22 ) = ∅. Similarly, let U, V ∈ Rn×n

be orthogonal matrices that transform the matrix pencil λE − A into the upper block
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triangular form:

UT (λE − A)V =

[
UT

1

UT
2

]
(λE − A)

[
V1, V2

]
=

[
λE

(2)
11 − A

(2)
11 λE

(2)
12 − A

(2)
12

0 λE
(2)
22 − A

(2)
22

]
, (5.10)

with Λ(A
(2)
22 , E

(2)
22 ) ⊆ Γ and Λ(A

(2)
11 , E

(2)
11 ) ∩ Λ(A

(2)
22 , E

(2)
22 ) = ∅. Then

X =
[
U2, Q2

]
and Y =

[
Z1, V1

]
(5.11)

are transformation matrices, such that XT (λE − A)Y has a block diagonal structure
where the upper block contains the n1 eigenvalues lying inside Γ and the lower block
has the remaining n− n1 eigenvalues of λE − A outside of Γ.

Proof.
First, consider the transformed matrix pencil

XT (λE − A)Y =

[
UT

2 (λE − A)Z1 UT
2 (λE − A)V1

QT
2 (λE − A)Z1 QT

2 (λE − A)V1

]
.

From (5.9) one can obtain

(λE − A)Z1 = Q1(λE
(1)
11 − A

(1)
11 ),

such that
UT

2 (λE − A)Z1 = UT
2 Q1(λE

(1)
11 − A

(1)
11 ).

Using (5.9) and (5.1), the transformed matrix can be rewritten as

XT (λE − A)Y =

[
UT

2 Q1(λE
(1)
11 − A

(1)
11 ) UT

2 U1(λE
(2)
11 − A

(2)
11 )

QT
2Q1(λE

(1)
11 − A

(1)
11 ) QT

2U1(λE
(2)
11 − A

(2)
11 )

]
.

Since Q and U are orthogonal matrices, the matrix products UT
2 U1 and QT

2Q1 are both
zero. So, the transformed matrices have block diagonal structure. The desired spectral
properties of the diagonal blocks follows from the fact that the upper left block is an
equivalence transformation of λE

(1)
11 − A

(1)
11 and the lower right block is an equivalence

transformation of λE
(2)
11 − A

(2)
11 .

Note that by construction of the transformation matrices (5.11), the block columns
of X and Y have orthonormal bases which ensure transformation matrices with an
optimal condition number.
In [15] the block triangular form is achieved by applying the QZ algorithm, such that
the matrix pencil is first transformed into the generalized Schur form. Then the compu-
tation of the opposed generalized Schur form is made by a reordering of the eigenvalues.
By the use of the disk function method, it was possible to obtain orthogonal matrices Q
and Z to get the block triangularization (5.8). For the opposed block triangularization
it would be possible to use the disk function method on the matrix pencil λE − αA
and again the subspace extraction method to get orthogonal matrices U and V , such
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that

UT (λE − A)V = λ

[
E∞ Ev
0 Ef

]
−
[
A∞ Av
0 Af

]
. (5.12)

This additional use of the disk function method is not necessary. By the construction of
the skew projection matrices (5.7), one can see that Algorithm 8 already computes the
matrices corresponding to the eigenvalues of λX−Y inside the unit circle as well as the
matrix corresponding to the eigenvalues outside the unit circle. So, the transformation
matrices from (5.12) can be obtained be applying the subspace extraction to the matrix
Xk resulting from Algorithm 8.
It should be noted that since the dimensions of the deflating subspaces were determined
in the first use of the subspace extraction method, the second application does not
need a rank determination anymore. So, it is possible to replace the singular value
decomposition by a QR decomposition with column pivoting.
The resulting method for the additive decomposition of descriptor systems into the
slow and fast subsystems is summarized in Algorithm 10.
Until now, it was always assumed that the matrix pencil λE−A is c-stable. But using
the additive decomposition, the methods also can be applied to unstable descriptor
systems.

Algorithm 10: Additive Decomposition of Descriptor Systems

Input: Realization (E,A,B,C,D), such that λE − A is a regular matrix pencil
Output: Block diagonalized realization, such that

(Ê, Â, B̂, Ĉ,D) =

([
Ef 0
0 E∞

]
,

[
Af 0
0 A∞

]
,

[
Bf

B∞

]
,
[
Cf , C∞

]
, D

)
,

where (Ef , Af , Bf , Cf , 0) is the slow and (E∞, A∞, B∞, C∞, D) is the fast
subsystem.

1: Compute Ak and Ek by applying the disk function method (Algorithm 8) to the
matrix pencil λ(αA)− E.

2: Compute the transformation matrices Q =
[
Q1, Q2

]
and Z =

[
Z1, Z2

]
by

applying the subspace extraction method (Algorithm 9) on Ak and the matrix
pencil λE − A.

3: Compute the transformation matrices U =
[
U1, U2

]
and V =

[
V1, V2

]
by

applying the subspace extraction method (Algorithm 9) on Ek and the matrix
pencil λE − A.

4: Compute the block diagonalized matrices[
Ef 0
0 E∞

]
=

[
UT

2 EZ1 0
0 QT

2EV1

]
,

[
Af 0
0 A∞

]
=

[
UT

2 AZ1 0
0 QT

2AV1

]
.

5: Compute the effect on B and C[
Bf

B∞

]
=

[
UT

2

QT
2

]
B,

[
Cf , C∞

]
= C

[
Z1, V1

]
.
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To do so, the additive decomposition of the system has to be computed, such that
G(s) = G−(s)+G+(s), with G−(s) = C−(sE−−A−)−1B−+D and G+(s) = C+(sE+−
A+)−1B+ + D. Here, the matrix pencil λE− − A− is c-stable and all the eigenval-
ues of the pencil λE+ − A+ are finite and have non-negative real parts. Then, the
reduced-order system Ĝ−(s) = Ĉ−(sÊ−− Â−)−1B̂−+ D̂ is determined by applying the
model reduction methods to the c-stable subsystem G−(s). Finally, the reduced-order
approximation of the complete system G(s) is given by Ĝ(s) = Ĝ−(s) +G+(s), where
G+(s) is included unmodified. Such an additive decomposition of a descriptor system
(2.5) can be computed by using a modified version of Algorithm 10. Therefor, the disk
function method has to be used on the matrix pencil λ(A − E) − (A + E) and the
subspace extraction on the original matrix pencil λE − A.

5.3 Solving Lyapunov Equations

After the additive decomposition of the descriptor system (2.5), now the Cholesky
factors of the continuous-time and discrete-time generalized Lyapunov equations in step
2 and 3 of Algorithm 7 have to be computed. First, the continuous-time generalized
Lyapunov equations corresponding to the proper Hankel singular values are considered.
Let Y ∈ Rn×n be a matrix with no eigenvalues on the imaginary axis. The Jordan
canonical form of Y is given by

Y = S

[
J− 0
0 J+

]
S−1,

where J− ∈ Ck×k contains the Jordan blocks corresponding to eigenvalues in the left
open half-plane and J+ ∈ C(n−k)×(n−k) contains the Jordan blocks corresponding to
eigenvalues in the right open half-plane. Then, the matrix sign function of Y is defined
by

sign(Y ) = S

[
−Ik 0

0 In−k

]
S−1. (5.13)

Note that the matrix sign function of Y is unique [5].
A generalization of this matrix sign function of the matrix pencil λX − Y , where both
matrices X and Y are non-singular and no eigenvalues of λX −Y lie on the imaginary
axis, is given in [4, 5]. There, a Newton iteration of the form

Yk+1 =
1

2

(
1

ck
Yk + ckXY

−1
k X

)
, Y0 = Y, (5.14)

is considered. The scalar ck is chosen in order to accelerate the Newton iteration.
There are different possibilities how to choose the acceleration parameter ck. Some of
them are given in [8]. Now, consider the generalized Lyapunov equation of the form

EZAT + AZET +Q = 0, (5.15)

where A,E, Z,Q ∈ Rn×n and QT = Q. Assuming λE − A to be c-stable and both
matrices to be non-singular, the Newton iteration in (5.14) can be applied to the
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matrix pencil

λX − Y = λ

[
ET 0
0 E

]
−
[
AT 0
Q −A

]
. (5.16)

Then, the iteration converges to Yk→∞ = lim
k→∞

Yk, with

Yk→∞ =

[
−ET 0

2EZET E

]
. (5.17)

Here, Z is the solution of (5.15). Using the iteration (5.14) and the block structure of
(5.16), one can define the following iteration:

Ak+1 =
1

2

(
1

ck
Ak + ckE

TA−1
k ET

)
, A0 = AT ,

Qk+1 =
1

2

(
1

ck
Qk + ckEA

−1
k QkA

−T
k ET

)
, Q0 = Q.

Let the limits of the iteration be denoted by

Ak→∞ = lim
k→∞

Ak, Qk→∞ = lim
k→∞

Qk,

the resulting solution for the complete matrix pencil (5.16) can be constructed in the
form

Yk→∞ =

[
ATk→∞ 0
Qk→∞ −Ak→∞

]
. (5.18)

Hence, with (5.17) the solution of the Lyapunov equation (5.15) is given by

Z = E−1Qk→∞E
−T .

Now, the symmetric Q term is replaced by BBT . So, the iteration method can be
applied to the generalized continuous-time Lyapunov equation of the form (5.3). The
second continuous-time Lyapunov equation (5.4) can be solved by the application of
the transposed method. Since both iterations only differ in the construction of the
solution, it is possible to compute the solutions of both Lyapunov equations at the
same time with only one iterate Ak.
Since the matrix Q appears in the considered cases in a symmetric factored form, all
iterates Qk are also in a symmetric factored form. In the case Q = FF T , the iteration
of Qk can be replaced by

Fk+1 =
1√
2ck

[
Fk, ckEA

−1
k Fk

]
, F0 = F.

From (5.17) and (5.18) one obtains Ak→∞ = −E. This suggests a stopping criterion of
the form

||Ak + E|| ≤ tol · ||E|| ,

with an appropriate matrix norm ||.|| and a user defined tolerance tol. The complete
resulting method is summarized in Algorithm 11.
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Algorithm 11: Sign Function Method for Generalized Dual Lyapunov Equations

Input: Matrices Af , Ef ∈ Rn×n, Bf ∈ Rn×m, Cf ∈ Rp×n from (5.3) and (5.4)
Output: Low-rank Cholesky factors Xpc = RRT and Xpo = LTL of (5.3) and (5.4)

1: A0 = Af , R0 = Bf , L0 = Cf

2: while ||Ak + Ef || > tol · ||Ef || do
3: Compute scaling factor ck.

4: Rk+1 =
1√
2ck

[
Rk, ckEfA

−1
k Rk

]
5: Lk+1 =

1√
2ck

[
Lk

ckLkA
−1
k Ef

]
6: Ak+1 =

1

2ck

(
Ak + c2

kEfA
−1
k Ef

)
7: end

8: R =
1√
2
E−1
f Rk

9: L =
1√
2
LkE

−1
f

Note that the workspace for storing the iterates Lk and Rk in Algorithm 11 doubles at
each step. This can be avoided by using a column compression method for Rk and a
row compression method for Lk with a suitable tolerance criterion. This can be done,
for example, by the singular value decomposition or the QR decomposition of Lk and
Rk. Using this compression, the costs of solving the systems of linear equation with
the matrix Ef in the last two iteration steps can be reduced.
Hence, it remains to solve the generalized discrete-time Lyapunov equations (5.5) and
(5.6). As announced before, there is no spectral projection method for the solution
of the generalized discrete-time Lyapunov equations with singular coefficient matrices.
But it is possible to construct the exact solution by a Smith method.
Since the matrix pencil λE − A was assumed as c-stable, the matrix A is invertible.
Especially, this holds for the additive decomposition, such that Af and A∞ are both
invertible, too. Analogously to (4.17) the generalized discrete-time Lyapunov equation
(5.5) is equivalent to the discrete-time Lyapunov equation of the form

Xic − A−1
∞ E∞Xic(A

−1
∞ E∞)T = A−1

∞ B∞B
T
∞A

−T
∞ ,

where the matrix A−1
∞ E∞ has the same index of nilpotency ν as the complete descriptor

system (2.5).
That’s why the unique solution of (5.5) is given by

Xic =
ν−1∑
k=0

(A−1
∞ E∞)kA−1

∞ B∞B
T
∞A

−T
∞ ((A−1

∞ E∞)T )k,
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and the full-rank Cholesky factor of Xic is constructed as

Z =
[
A−1
∞ B∞, A−1

∞ E∞A
−1
∞ B∞, . . . , (A−1

∞ E∞)ν−1A−1
∞ B∞

]
.

The resulting Smith method can be found in Algorithm 12. It is the projection-free
equivalent version of Algorithm 6. Because of this, the same criterion for convergence
as for Algorithm 6 can be used here.

Algorithm 12: Projection-Free Generalized Smith Method

Input: Matrices A∞, E∞ ∈ Rn∞×n∞ , B∞ ∈ Rn∞×m from (5.5)
Output: Full-rank Cholesky factor Xic = ZkZ

T
k of (5.5)

1: Z(1) = A−1
∞ B∞, Z1 = Z(1)

2: for k = 2, 3, . . . , ν do

3: Z(k) = A−1
∞ E∞Z

(k−1)

4: Zk =
[
Zk−1, Z(k)

]
5: end

In general, the Algorithm 12 is numerically unstable, since it can be seen as a power
method by applying the matrix A−1

∞ E∞ to the iterate Z(k) in each iteration step. In
practice, the index of descriptor systems is usually less than or equal to 3. So, Algorithm
12 needs only a few steps to compute the desired solution factor and the instability is of
small influence. A possible way to stabilize this method would be an orthogonalization
during the iteration steps.

5.4 Additive Decomposition of Standard Systems

The last undiscussed step in the projection-free Hankel-norm approximation method
is the computation of an additive decomposition of the standard system in step 12 of
Algorithm 7. Here, it is necessary to separate the stable Hankel-norm approximation
Gh from the anti-stable part F .
Let (In−k, Ã, B̃, C̃, D̃) be the standard realization resulting from step 11 of Algorithm
7. A first approach can be made by using the disk function based decomposition
method from Section 5.2. There, it was claimed that the decomposition into the stable
and anti-stable part can be made by applying the disk function to the matrix pencil
λ(A − E) − (A + E). In case of a standard system, this would be the matrix pencil
of the form λ(Ã− Inf−k)− (Ã+ Inf−k). Even so, the application of Theorem (5.1) for
the standard case is not recommended, since the product of two different orthogonal
matrices does not preserve the standard form, i.e., Ê = UT

2 Inf−kZ1 6= Ir.
A more practicable approach is the usage of the standard matrix sign function. The
definition of the matrix sign function for a matrix Y ∈ Rn×n, having no eigenvalues on
the imaginary axis, was given in (5.13). In standard case, the generalized sign function
iteration (5.14) simplifies to

Yk+1 =
1

2

(
1

ck
Yk + ckY

−1
k

)
, Y0 = Y, (5.19)
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where the scalars ck are chosen again to accelerate the convergence of the iteration
[8]. From the matrix sign function, projectors onto the stable and anti-stable invariant
subspaces can be constructed. The projector onto the subspace corresponding to the
eigenvalues of Y in the open left half-plane is given by

P− =
1

2
(In − sign(Y )) .

On the other hand, the projector onto the anti-stable deflating subspace is given by

P+ =
1

2
(In + sign(Y )) .

Note that P− and P+ are not orthogonal projectors, but skew projectors along the
Y -invariant subspace [8].
Let p− be the number of eigenvalues of Y with negative real part and p+ the number
of eigenvalues with positive real part. It can be shown that

p− =
1

2
(n+ tr(sign(Y ))) and p+ =

1

2
(n− tr(sign(Y ))) (5.20)

hold, where tr(M) denotes the trace of the matrix M [8].
As in Section 5.2, it is possible to obtain orthogonal transformation matrices for the
block triangularization of Y from the spectral projectors by applying a pivoted QR
decomposition. Since the dimensions of the deflating subspaces are given by (5.20),
there is no rank-revealing method required. So, with a pivoted QR decomposition of
the form

QRΠT = In − sign(Y ),

the following block triangularization can be computed

QTY Q =

[
Y − Yu
0 Y +

]
, (5.21)

where Y − contains the eigenvalues of Y with negative real part and Y + the eigenvalues
with positive real part.
At this point, there are two different possibilities for the block diagonalization of the
matrix Y . The first one would be the application of Theorem 5.1 by computing a
second pivoted QR decomposition of the matrix In + sign(Y ). As mentioned before,
this is not desired, since it destroys the standard form of the system. The second way
is the computation of a stable Sylvester equation of the form

Y −Z − ZY + + Yu = 0, (5.22)

for the solution Z. Hence, the block triangular matrix (5.21) can be block diagonalized
by [

Y − 0
0 Y +

]
=

[
Ip− −Z
0 Ip+

] [
Y − Yu
0 Y +

] [
Ip− Z
0 Ip+

]
.

Since the matrices used in the Sylvester equation (5.22) have no eigenvalues on the
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imaginary axis, a spectral projection method based on the sign function can be used
to compute the solution.
Consider a Sylvester equation of the form

AZ + ZB + C = 0, (5.23)

with A ∈ Rn×n, B ∈ Rm×m and C ∈ Rn×m. Then, a unique solution Z exists if
α + β 6= 0 for α ∈ Λ(A) and β ∈ Λ(B), which is in fact fulfilled if the eigenvalues
of A and B lie in the same half-plane [3]. Since the method shall be applied to solve
Sylvester equations of the form (5.22), it can be assumed that all eigenvalues of A and
B lie in the open left half-plane. Analogously to the sign function based solver for dual
Lyapunov equations in section 5.3, here the matrix sign function is applied to a block
matrix of the form

H =

[
A C
0 −B

]
.

By utilizing the block structure of H, an iterative scheme for the three matrices A, B
and C can be developed, see [3].
Since all the eigenvalues of A and B lie in the open left half-plane, it holds

Ak→∞ = −In, Bk→∞ = −Im.

So, the same stopping criterion as for Algorithm 11 can be used for the iteration
matrices Ak and Bk at the same time, i.e.,

max{||Ak + In||, ||Bk + Im||} > tol,

with a suitable matrix norm ||.|| and a given tolerance tol.
The solution of (5.23) can be obtained by X = 1

2
Ck→∞.

The resulting method is summarized in Algorithm 13.

Algorithm 13: Sign Function Method for Stable Sylvester Equations

Input: Matrices A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m from (5.23)
Output: Solution Z of the Sylvester equation (5.23)

1: A0 = A, B0 = B, C0 = C
2: while max{||Ak + In||, ||Bk + Im||} > tol do
3: Compute scaling factor ck.

4: Ak+1 =
1

2

(
1

ck
Ak + ckA

−1
k

)
5: Bk+1 =

1

2

(
1

ck
Bk + ckB

−1
k

)
6: Ck+1 =

1

2

(
1

ck
Ck + ckA

−1
k CkB

−1
k

)
7: end

8: Z = −1

2
Ck
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5.5 Notes and Open Points of the MORLAB Toolbox

There are several reasons, the routines in the MORLAB toolbox are criticized for. The
most prominent one is the computation of an explicit inverse in each step of the sign
function iteration methods. Even so, since the matrix sign function is undefined for
matrices with purely imaginary eigenvalues it suffers from numerical problems in the
presence of eigenvalues close to the imaginary axis. The same problem occurs for the
disk function method with eigenvalues close to the unit circle. Fortunately, there are
many applications with descriptor system, where the eigenvalues are suitable apart
from the imaginary axis. Without the numerical problems, the sign and disk function
methods solve problems which are usually better conditioned than the problems solved
by the (generalized) Schur approach. This is because, in the Schur approach a quasi-
upper triangular matrix is computed while the sign and disk function based methods
compute only the block structures. In case of stable matrices, the condition number
of sign(Z) is one and hence, the computation of itself is a well-conditioned problem.
Therefore, the results computed by the spectral projection methods often are more
accurate than those obtained by the Schur-type algorithms [8]. A second advantage of
the spectral projection based methods is that the algorithms basically consist only of
basic linear algebra subroutines. Reviewing the announced algorithms in this chapter,
only subroutines like solving systems of linear equations, computing an inverse, the
QR decomposition and the singular value decomposition are used. Hence, the spectral
projection methods are well suited for parallel computations in contrast to the Schur
based methods.
Beside the projection-free version of the generalized Hankel-norm approximation and
the announced equation solvers, the MORLAB toolbox contains several other algo-
rithms, e.g., a projection-free version of the balanced truncation square-root method
and the balanced truncation balancing-free square-root method. Also, there are other
balancing related methods corresponding to other matrix equations than the continu-
ous-time Lyapunov equations, e.g., the balanced stochastic truncation, the bounded-
real and positive-real balanced truncation, the linear-quadratic-Gaussian balanced trun-
cation, and the H∞ balanced truncation. Corresponding to these model reduction
methods, the toolbox provides solvers for non-factored continuous-time algebraic Lya-
punov equations, continuous-time and H∞ algebraic Riccati equations. Also, the tool-
box contains methods for the partial stabilization of systems based on continuous-time
algebraic Lyapunov equations or algebraic Bernoulli equations.
The next step in the implementation of the MORLAB toolbox is the application of
the presented theoretical aspects of the improper system Gramians for other model
reduction methods. So far, the additive decomposition of the descriptor system (2.5)
was made without any following reduction of the fast subsystem. But the truncation
of zero improper Hankel-singular values can be applied to other matrix equation based
model reduction methods as it is shown in [11].
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6 Numerical Results

After introducing all relevant algorithms and methods, in this section some numerical
examples are presented to illustrate the effectiveness of the described methods. All
implementations of the introduced methods were made in MATLAB.
First, the projection-free generalized Hankel-norm approximation method is presented
on two different medium size data examples. Beside the MORLAB implementation
of this method, also a version based on the Schur form was implemented using SLI-
COT subroutines for the solution of the required matrix equations. SLICOT is the
Subroutine Library In systems and COntrol Theory and contains the most important
algorithms in system and control theory [17].
For the presentation of the generalized Hankel-norm approximation method with spec-
tral projectors, two sparse data examples were chosen. For the implementation of the
sparse method, subroutines from the M-M.E.S.S. were modified for the application
with spectral projectors and used for the computation of the projected generalized
continuous-time Lyapunov equations (2.22) and (2.23). The M-M.E.S.S. is the MAT-
LAB version of the Matrix Equation Sparse Solver toolbox containing efficient sub-
routines for sparse matrix equations [19]. For the projected generalized discrete-time
Lyapunov equations (2.24) and (2.25), Algorithm 6 has been implemented in MATLAB.
For the remaining computation steps, MORLAB subroutines are used.

6.1 A First Index-1 Test Example

To get a first view on the basic behavior of the projection-free Hankel-norm approxi-
mation method, a small, dense index-1 descriptor system has been constructed.
Therefor, the matrices were chosen as follows

E = QT

[
I190 0
0 0

]
Q and A = QT

−1 0
. . .

0 −200

Q,
where Q ∈ R200×200 is a random orthogonal matrix, such that the matrix pencil λE−A
has equally distributed eigenvalues. The resulting system has 190 finite and 10 infinite
states. The input term B ∈ R200×3 is a dense matrix with random entries and the
output term has the form

C =
[
I2 0 · · · 0

]
,

such that the first 2 states of the system are of interest. The feed-through term D ∈
R2×3 is chosen at random. So, the system has multiple inputs and outputs and the
matrix pencil λE −A is c-stable with equally distributed eigenvalues and without any
special structure. Via the construction of A and E, the system is of index 1.

– 64 –
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To this problem, the two implementations of the projection-free generalized Hankel-
norm approximation are applied. The convergence histories of the different applied
spectral projection based methods in the MORLAB implementation can be found in
the tables A.1-A.4 in Appendix A.1. The convergence of the disk function and the
matrix sign function method was evaluated by measuring the relative and absolute
change of the iteration matrices. The quadratic convergence of the Newton-based
methods can be seen after a short warm-up phase in the tables A.2-A.4. Even so, all
of the iterations converge in a small number of required steps to a reliable accuracy.
Since the additive decomposition of the system and the computation of the Gramian’s
factors belong to the computation of the balanced realization, the convergence histories
in the tables A.1 and A.2 are identical for each chosen order.
As mentioned in Section 4.3, it is not recommended to compute the real minimal
realization by only truncating the zero proper Hankel singular values. Therefore, the
tolerance

10 · log n · ε ≈ 1.177 · 10−14,

with ε ≈ 2.22 · 10−16 the machine precision, was chosen. So, all proper Hankel singular
values smaller than this tolerance multiplied with the largest proper Hankel singular
value were truncated. The computed proper Hankel singular values and the tolerance
for the minimal realization are displayed in Figure 6.1. The resulting balanced slow
subsystem is of order 40 with an additional error of 1.7702 · 10−15 in the Hankel- and
H∞-norm. This error is neglectable small compared to the later chosen proper Hankel
singular values. Considering the infinite states of the system, the projection-free Smith
method provides exact two non-zero improper Hankel singular values

θ1 = 1.042 · 10−3 and θ2 = 8.968 · 10−4.

Figure 6.1: Computed proper Hankel singular values and tolerance bound for the bal-
anced realization, example in Section 6.1
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The resulting reduced-order fast subsystem is of order 2.
For a more differentiated view on the approximation behavior of the Hankel-norm
approximation, reduced-order models of order 4 and 10 were computed.
In Figure 6.2 the absolute error in the 2-induced matrix norm is shown. Beside the re-
alizations computed by the generalized Hankel-norm approximation method (GHNA),
also realizations of the same order were computed by the generalized balanced trunca-
tion square-root method (GBT(SR)).

Figure 6.2: Comparison of absolute errors from GHNA and GBT(SR) reduced systems
of order 4 (left) and 10 (right), example in Section 6.1

In the right figure the reduced-order model is of order 4 which means the system has
r = 2 finite and l∞ = 2 infinite states. The chosen proper Hankel singular value for the
generalized Hankel-norm approximation is ς3 = 4.395764 · 10−3. Since the additional
error is neglectable small compared to ς3, the Hankel-norm error of the reduced-order
model is given by ς3. The error of the Hankel-norm approximation system seems to
approach the chosen proper Hankel singular value ζ3 of the system. This effect is even
stronger noticeable in the right figure. There, both reduced-order models are of order
10 (r = 8, l∞ = 2) and the chosen proper Hankel singular value for the generalized
Hankel-norm approximation is ς9 = 2.1534 · 10−4. The H∞ error of the Hankel-norm
approximation seems to be nearly equal to the chosen proper Hankel singular value.
This effect can be ascribed to the construction of the reduced-order system based on
a scaled all-pass error function (3.21). So, if the influence of the anti-stable part in
the transformation becomes smaller, the H∞ error of the generalized Hankel-norm
approximation begins to approach the chosen Hankel singular value. It has to be noted
that this is only a practical observation in the absolute sense. If one would enlarge
the error plot, the error function still fluctuates on a relatively high scale around the
chosen proper Hankel singular value.
Another observation can be made by comparing the Hankel-norm approximation with
the balanced truncation of the same order. The H∞ error of the Hankel-norm ap-
proximation is smaller than for the balanced truncation. Different practical tests have
shown that this observation is often correct. Considering Figure 6.2, it has to be said
that the error of the Hankel-norm approximation is smaller in the beginning but after
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a while larger than the error of the balanced truncation.
For such small orders as in Figure 6.2, there is no noticeable difference in the comparison
of the two implemented versions of the GHNA. Therefore, only the MORLAB version
was plotted.
As an advantage of the MORLAB implementation, in contrast to to the Schur-based
SLICOT version, the higher accuracy was mentioned. In Figure 6.3 the errors of the
reduced-order systems of order 25 (r = 23, l∞ = 2) resulting from both implementa-
tions of the GHNA are plotted.

Figure 6.3: Comparison of absolut errors from the MORLAB and SLICOT versions of
the GHNA, example in Section 6.1

At the beginning, the error of the SLICOT version is much larger and fluctuates more
than the error of MORLAB version before converging to the chosen proper Hankel
singular value. The computation of the Hankel-norm of both error systems shows that
the error of the SLICOT version is slightly larger than the chosen Hankel singular value
while the MORLAB version still serves this condition.

6.2 Semidiscretized Stokes Equation

As a second example, a semidiscretization of the following Stokes equation is considered.
Stokes equations describe the flow of fluids at very low velocities without convection
and coincide with the linearization of Navier-Stokes equations around the zero-state.
In their classical formulation, a Stokes control system for incompressible fluids can be
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written as

∂v

∂t
= ν∆v −∇p+Bu, in (0, T ]× Ω,

0 = div(v) in (0, T ]× Ω,

v = 0 on (0, T ]× ∂Ω,

v = v0 in {0} × Ω,

y = Cv in (0, T ]× Ξ.

Here, Ω is a bounded domain in Rd, d ≥ 2, filled by an incompressible fluid. The
constant scalar ν is the viscosity of the fluid, the vector field v : [0, T ] × Ω → Rd

describes the velocity of the fluid with an initial state v0 ∈ Rd, and the scalar field
p : [0, T ]× Ω→ R describes the pressure. The term B maps the inputs u into the set
of volume forces f : [0, T ] × Ω → Rd and the C term maps the velocity field to the
outputs on the observed domain Ξ, see [20].
The spatial discretization of the Stokes equation system above by the finite volume
method on a uniform staggered grid leads to a descriptor system of the form

v̇h(t) = A11vh(t) + A12ph(t) +B1u(t),

0 = AT12vh(t) +B2u(t),

y(t) = C1vh(t) + C2ph(t),

(6.1)

where vh and ph are the semidiscretized vectors of velocity and pressure, respectively,
see [8]. There, A11 is the discrete Laplace operator, −A12 the discrete gradient operator,
and −A21 the discrete divergence operator. Due to the non-uniqueness of the pressure,
the matrix A12 has a rank defect one. In this case, a full-rank matrix A12 is obtained by
discarding the last column. In the following, the data is already suitably constructed
with A12 full-rank and A21 = AT12. In this case, both matrices A12 and A21 have
full-rank and the overall system is of index ν = 2.
The generation of data is based on the test configuration 3.3 in [20]. That is, the spatial
discretization is made on a unit square domain Ω = [0, 1] × [0, 1]. For generating the
input term B the active control of the flow will be assumed to be restricted to the
smaller rectangular domain Ωc = [0.1, 0.9]× [0.1, 0.3]. Similarly, the output term C is
generated by restricting the observation of the system to the domain Ωm = [0.4, 0.6]×
[0.4, 0.9]. The resulting order of the full order system is given by n = nv +np− 1, with
nv the degrees of freedom in the velocity component and np the degrees of freedom in
the pressure component.

6.2.1 A Small Dense Problem

As a second application of the projection-free generalized Hankel-norm approximation
method, a data set for a medium size system was generated. Therefor, the Stokes
equation was discretized on Ω by a uniform staggered grid with 20 × 20 points. This
leads to a problem of order n = 1159. The dimensions of the deflating subspaces of the
matrix pencil λE −A corresponding to the finite and infinite eigenvalues are nf = 361
and n∞ = 798, respectively.
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Figure 6.4: Comparison of absolute errors from GHNA and GBT(SR) reduced models
of order 2 (left) and 10 (right), example in Section 6.2.1

As in the previous section, the convergence histories of the iterative methods used in
the MORLAB implementations of the GHNA and GBT(SR) can be found in the ta-
bles A.5-A.8 in Appendix A.2. There, a similar convergence behavior compared to the
previous example can be seen. In contrast to before, the column compression during
the sign function iteration method for solving the dual Lyapunov equations truncated
more than 100 columns of the Cholesky factors which correspond to nearly zero proper
Hankel singular values. For the minimal balanced realization the same tolerance for-
mula as before. The obtained balanced realization is of order 17. Considering the fast
subsystem, the Smith method computed only one non-zero improper Hankel singular
value θ1 = 4.4792 · 10−16. This improper Hankel singular value might be small, but
since it corresponds to the constraints defining the manifold for the solution dynamics,
it should not be truncated.
As before, two error plots are displayed for reduced-order models computed by the
GHNA and the GBT(SR) are given in Figure 6.4 with the corresponding H∞ error
bound. There, the left figure shows the reduced-order models of order 2 (r = 1, l∞ = 1).
The chosen proper Hankel singular value for the GHNA was ς2 = 8.1240 · 10−4. This is
an example for a Hankel-norm approximation with a largerH∞ error than the balanced
truncation of the same order. In contrast, the right figure shows again the behavior
seen before. There the order of the approximated models is 10 (r = 9, l∞ = 1) with
a chosen proper Hankel singular value of ς10 = 1.1694 · 10−9. The error plot of the
GHNA is again approaching the chosen proper Hankel singular value and compared to
the balanced truncation, the H∞ error is smaller.
Compared to the MORLAB implementation, the SLICOT version of the GHNA can
only be used to compute small orders for this example. Numerical disturbances starting
to occur at order 8 (r = 7, l∞ = 1) and for further increasing orders the SLICOT based
GHNA becomes more and more unstable. In Figure 6.5 the error plot of both versions
is shown for the reduced system of order 11 (r = 10, l∞ = 1). The plot shows that the
reduced-order model computed by the SLICOT is not a Hankel-norm approximation
anymore.
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Figure 6.5: Comparison of absolut errors from the MORLAB and SLICOT versions of
the GHNA, example in Section 6.2.1

Especially, the H∞ error bound does not hold for the computed result anymore.
On the other hand, the system obtained by the spectral projection methods still fulfills
all conditions. So, the MORLAB version provides to be the more accurate and stable
implementation of the GHNA on this example.

6.2.2 A Large Sparse Problem

The dimensions of the discretized descriptor system (6.1) quickly enlarge for a more
accurate grid on Ω. But the computed matrices have only a small number of entries
unequal to zero. So, it is more practicable to make use of the special large-scale sparse
structure of the system than using the projection-free method. For this purpose, the
sparse implementations of the GHNA and the GBT(SR) are used for this example.
First, note that for the usage of the sparse implementations the spectral projectors
onto the left and right deflating subspaces of the matrix pencil λE −A corresponding
to the finite eigenvalues are needed, where

E =

[
Inf 0
0 0

]
and A =

[
A11 A12

AT12 0

]
are sparse and have a special block structure. This block structure can be exploited to
explicitly construct the spectral projectors Pl and Pr. It holds

Pl =

[
Π −ΠA11A12(AT12A12)−1

0 0

]
, Pr =

[
Π 0

−(AT12A12)−1AT12A11Π 0,

]
,

where Π = Inf − A12(AT12A12)−1AT12 is the orthogonal projector onto Ker(AT12) along
Im(A12), see [27]. A collection of more general construction formulas for matrix pencils
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of different indices and forms can be found in [29].
For the spatial discretization of the Stokes equation a uniform staggered grid of the
size 80 × 80 was used on Ω. As result, the generated full order system (6.1) has the
order n = 19039, where the matrix pencil λE−A has nf = 6241 finite eigenvalues and
n∞ = 12798 infinite ones. Considering the upper bound for the size of the reduced
fast subsystem (4.1), one can see that this system can be massively reduced because
νm = νp = 2.
It was mentioned before that for the computation of the projected generalized contin-
uous-time Lyapunov equations (2.22) and (2.23) routines from the M-M.E.S.S. toolbox
were used. The applied LR-ADI method converged after 51 iteration steps for both
low-rank factors R51 ∈ Rn×51 and L51 ∈ Rn×51, where Gpc ≈ R51R

T
51 and Gpo ≈ L51L

T
51

approximate the proper controllability and observability Gramian, respectively. To pre-
vent the drift-off effect, in every fourth iteration step the update matrix was projected
back onto the corresponding deflating subspace. Since this additional projection is only
done each fourth iteration step, the computational overhead has its limits. The shifts
used in the LR-ADI method were computed during the iteration by using the previous
computed low-rank solution factor for a projection. For shift methods based on the
eigenvalues of the matrix pencil λE −A, the shift computation has to be restricted to
the deflating subspace corresponding to the finite eigenvalues of λE − A. The conver-
gence histories of both LR-ADI methods is plotted in Figure A.1 in the Appendix A.3.
The implemented Smith method for the projected generalized discrete-time Lyapunov
equations (2.24) and (2.25) converged after one iteration step. So, the fast subsystem
has only one non-zero improper Hankel singular value θ1 = 5.3046 · 10−18.
For this example of the semidiscretized Stokes equation, note that the computation
of the low-rank factors corresponding to the proper Gramians can be computed using
much smaller continuous-time Lyapunov equations as well as there exists an explicit
construction for the low-rank factors corresponding to the improper Gramians using
the block structure of the descriptor system, see [27].
The balanced minimal realization of the slow subsystem was determined by using the
same tolerance formula as before. The realization is of order 21. For the remaining ad-
ditive decomposition of the transformed slow subsystem into its stable and anti-stable
parts, MORLAB subroutines has been used. For this example, no further comparison
between the SLICOT and MORLAB implementation versions is done since the appli-
cation of these subroutines is restricted to the additive decomposition of a small dense
subsystem. The convergence histories of the two used MORLAB subroutines can be
seen in the tables A.9 and A.10 in Appendix A.3. As in the previous examples, the
quadratic convergence of the sign function based methods can be seen.
The semidiscretized Stokes system (6.1) was approximated by reduced-order systems
of order l = 5 (r = 4, l∞ = 1) computed by the GHNA and the GBT(SR). So,
for the generalized Hankel-norm approximation the proper Hankel singular value ς5 =
1.8370 ·10−6 was chosen. The error plot for this example is shown in Figure 6.6. There,
the same approximation behavior as for the dense methods in the previous sections can
be seen for the GHNA and the GBT(SR).
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Figure 6.6: Comparison of absolute errors from GHNA and GBT(SR) reduced-order
models of order 5, example in Section 6.2.2

6.3 Constraint Damped Mass-Spring System

As last numerical example, a damped mass-spring system with a holonomic constraint
is considered, see Figure 6.7.

Constrained damped mass-spring system

T. Stykel

Technische Universität Berlin

Consider the holonomically constrained damped mass-spring system [1] shown in Fig. 1.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u1

Figure 1: A damped mass-spring system with a holonomic constraint.

The ith mass of weight mi is connected to the (i + 1)st mass by a spring and a damper
with constants ki and di, respectively, and also to the ground by a spring and a damper with
constants κi and δi, respectively. Additionally, the first mass is connected to the last one
by a rigid bar and it is controlled. The vibration of this system is described by a descriptor
system

ṗ(t) = v(t),
M v̇(t) = K p(t) + Dv(t) − GT

λ(t) + B2u(t),
0 = G p(t),

y(t) = C1p(t),

(1)

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vector, λ(t) ∈ R
2 is the

Lagrange multiplier, M = diag(m1, . . . , mg) is the mass matrix,

D =




δ1 + d1 −d1 0

−d1 d1 + δ2 + d2

. . .
. . .

. . .
. . .

−ds−2 ds−1 + δs−1 + dk−1 −ds−1

0 −ds−1 ds−1 + δs




the damping matrix,

K =




κ1 + k1 −k1 0

−k1 k1 + κ2 + k2

. . .
. . .

. . .
. . .

−ks−2 ks−1 + κs−1 + kk−1 −ks−1

0 −ks−1 ks−1 + κs




the stiffness matrix, G = [ 1, 0, . . . , 0, −1 ] ∈ R
1,g is the constraint matrix, B2 = e1 and

C1 = [ e1, e2, eg−1 ]T . Here ei denotes the ith column of the identity matrix Ig.

1

Figure 6.7: A damped mass-spring system with a holonomic constraint

The i-th mass of weight mi is connected to the (i+1)-st mass by a spring and a damper
with constants ki and di, respectively, and also to the ground by a spring and a damper
with constants κi and δi, respectively. Additionally, the first mass is connected to the
last one by a rigid bar and it is influenced by the control u(t). The vibration of this
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system is described by a descriptor system of the form

ṗ(t) = v(t),

Mv̇(t) = Kp(t) +Dv(t)−GTλ(t) +B2u(t),

0 = Gp(t),

y(t) = C1p(t),

(6.2)

where p(t) ∈ Rg is the position vector, v(t) ∈ Rg is the velocity vector, λ(t) ∈ R is
the Lagrange multiplier, M = diag(m1, . . . ,mg) is the mass matrix, D and K are the
tridiagonal damping and stiffness matrices, and G = [1, 0, . . . , 0,−1] ∈ R1×g is the
constraint matrix. The active part of the input term is given as B1 = e1 and the active
part of the output term as C1 = [e1, e2, eg−1]T , where ei denotes the i-th column of the
identity matrix Ig. The descriptor system (6.2) is of index ν = 3 and the projectors Pl
and Pr can be explicitly constructed by

Pl =

 Π1 0 −Π1M
−1DG1

−ΠT
1D(Ig − Π1) ΠT

1 −ΠT
1 (K +DΠ1M

−1D)G1

0 0 0

 ,
Pr =

 Π1 0 0
−Π1M

−1D(Ig − Π1) Π1 0
GT

1 (KΠ1 −DΠ1M
−1D(Ig − Π1)) GT

1DΠ1 0

 ,
where G1 = M−1GT (GM−1GT )−1 and Π1 = Ig − G1G is a projection onto Ker(G)
along im(M−1GT ), see [8, 29].
For the construction of the data, it was assumed that m1 = . . . = mg = 100 as well as

k1 = . . . = kg−1 = κ2 = . . . = κg−1 = 2, κ1 = κg = 4,

d1 = . . . = dg−1 = δ2 = . . . = δg−1 = 2, δ1 = δg = 10.

For g = 6000 the resulting descriptor system has the order n = 12001 with m = 1
inputs and p = 3 outputs. The dimensions of the deflating subspaces of the matrix
pencil corresponding to the finite and infinite eigenvalues are nf = 11998 and n∞ = 3,
respectively.
Since the resulting descriptor system has a large-scale sparse structure, the sparse
implementations of the GHNA and the GBT(SR) are used again. Therefore, in Figure
A.2 in Appendix A.4 the convergence histories of the LR-ADI method is shown for
the two computed low-rank factors R32 ∈ Rn×32 and L38 ∈ Rn×114. As in the previous
example, the shift parameters are computed during the iteration by projection and in
every fourth iteration step the update matrix is reprojected. The resulting balanced
minimal realization of the slow subsystem is of order 26. The computed improper
Hankel singular values of the system are all zero. This implies that the transfer function
G(s) of the full order model is proper and the reduced-order models do not contain
any fast subsystem anymore. The convergence histories of the iterative methods used
in for the additive decomposition of the transformed slow subsystem in the GHNA can
be found in the tables A.11 and A.12 in Appendix A.4.
The descriptor system (6.2) is approximated by standard systems of order 10 (r =
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10, l∞ = 0) computed by the GHNA and GBT(SR). For the GHNA the proper Hankel
singular value ς6 = 0.0013 was chosen. In Figure 6.8 the magnitude of the (3, 1)
components of the full order model as well as the reduced-order models obtained by the
GHNA and the GBT(SR) are shown. For this small order of the reduced-order systems,
it is possible to see slight differences in this magnitude plot. In the beginning, the
generalized Hankel-norm approximation approximates the original system better while
after the peak the generalized balanced truncation provides a better approximation of
the original system. Note that for higher orders no differences are visible anymore in
the magnitude plots. For the same frequency range the error plot is given in Figure
6.9.

Figure 6.8: Magnitude plots of G31(jω) for the full order and the reduced-order models
obtained by GHNA and the GBT(SR), example in Section 6.3
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Figure 6.9: Comparison of absolute errors from GHNA and GBT(SR) reduced-order
models of order 10, example in Section 6.3
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In this thesis several theoretical aspects and methods for the computation of the gener-
alized Hankel-norm approximation for continuous-time linear time-invariant descriptor
systems have been presented.
The Hankel-norm approximation for standard systems was introduced as an extension
of the generalized balanced truncation square-root method. As a result, an algorithm
for the computation of the generalized Hankel-norm approximation, using the spectral
projectors corresponding to the finite and infinite eigenvalues of the matrix pencil of the
descriptor system, has been developed. For the application of this method on descrip-
tor systems with large McMillan degrees, an approximated version of the introduced
method was considered. A new error bound for the resulting method was shown in
the Hankel-norm and the H∞-norm. According to this, the generalized Hankel-norm
approximation has been considered for the case of large-scale sparse systems. Suitable
algorithms for an implementation of this case were given.
For the usage of the generalized Hankel-norm approximation on medium size dense
systems, a projection-free version of the method has been developed. Matrix sign func-
tion and disk function based methods were introduced as a version of implementation
for several main steps in the projection-free generalized Hankel-norm approximation.
These results have been implemented in the MORLAB toolbox [2]. This implemen-
tation was compared with another one, based on the generalized Schur decomposition
and SLICOT subroutines, on two different numerical examples. As it turned out,
the MORLAB implementation of the generalized Hankel-norm approximation was the
more stable and accurate implementation.
Additionally, an implementation of the generalized Hankel-norm approximation for
large-scale sparse systems has been implemented. Therefor, the M-M.E.S.S. toolbox
was extended for the usage of spectral projectors. This implementation of the gener-
alized Hankel-norm approximation method was tested on two large-scale sparse data
examples with reliable results.
Still, there are many open problems and questions which have to be analyzed in further
research. The method, presented in this thesis, was based on the generalized balanced
truncation square-root method. A second approach would consider the generalization
of the Theorem 3.2. Since this transformation formula is based on the characterization
of all-pass transfer functions, this concept has to be generalized to the case of descriptor
systems.
Another open question, which has to be considered, is the numerical stability of the
method. There are some steps in the introduced algorithm for which the generalized
Hankel-norm approximation can become quickly unstable. That has been shown by the
numerical examples in Chapter 6. Especially, the numerical stability of the transfor-
mation formula in Theorem 3.2 strongly depends on the size of the minimal realization
and the chosen proper Hankel singular value. If the minimal realization has many small
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proper Hankel singular values, the transformation becomes numerically unstable. In
Section 4.3 it has been shown that small proper Hankel singular values can be trun-
cated to receive a smaller minimal realization. The problem is to obtain an order for
the minimal realization which avoid a large additional error and still is small enough
that the method is numerically stable. A similar problem exists for the chosen proper
Hankel singular value. If this value is too small, the algorithm becomes numerically
unstable. It is unknown how small the proper Hankel singular value can be chosen
before the method becomes unstable.
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Appendix: Convergence Histories of
the Numerical Examples

The convergence histories of the iterative MORLAB and M-M.E.S.S. subroutines, used
for the computations on the displayed numerical examples in Chapter 6, are presented
in form of tables and figures in this appendix.

A.1 Convergence Histories of the Index-1 Text Example

The following tables belong to the computation of the generalized Hankel-norm approx-
imation and the generalized balanced truncation on the constructed index-1 example
in Section 6.1.

Table A.1: Convergence history of the disk function method, example in Section 6.1

Iteration Step Absolute Change Relative Change
1 9.620254e+00 1.115906e+00
2 3.994510e−08 4.633453e−09
3 1.840975e−14 2.135449e−15

Table A.2: Convergence history of the dual Lyapunov equation sign function solver,
example in Section 6.1

Iteration Step Absolute Error Relative Error
1 2.300651e+01 1.669068e+00
2 4.159987e+00 3.017972e−01
3 1.259797e+00 9.139525e−02
4 3.257941e−01 2.363559e−02
5 3.910992e−02 2.837332e−03
6 7.358685e−04 5.338551e−05
7 2.705521e−07 1.962791e−08
8 4.997945e−14 3.625890e−15
9 3.007648e−14 2.181977e−15

The tables A.3 and A.4 are used to compute the additive decomposition of the stable
and anti-stable system. Here the computation of the Hankel-norm approximation of
the order 4 is shown. The transformed system has ns = 2 stable poles and nu = 37
anti-stable poles.
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A.1 Convergence Histories of the Index-1 Text Example

Table A.3: Convergence history of the sign function iteration, example in Section 6.1

Iteration Step Absolute Change Relative Change
1 6.570649e+02 2.810483e+01
2 1.797430e+01 2.026950e+00
3 2.711054e+00 3.495354e−01
4 5.928985e−01 7.646071e−02
5 7.652252e−02 9.864063e−03
6 1.621295e−03 2.089895e−04
7 7.321225e−07 9.437264e−08
8 1.487571e−13 1.917521e−14
9 1.783243e−15 2.298651e−16

Table A.4: Convergence history of the Sylvester equation sign function solver, example
in Section 6.1

Iteration Step Absolute Error Relative Error
1 1.372674e+01 7.537494e−01
2 1.983747e+00 1.326800e−01
3 4.710526e−01 3.228748e−02
4 5.998742e−02 4.111733e−03
5 1.249820e−03 8.566674e−05
6 5.641439e−07 3.866826e−08
7 1.149899e−13 7.881785e−15
8 3.524449e−27 2.415772e−28
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A.2 Convergence Histories of the Small Stokes Example

A.2 Convergence Histories of the Small Stokes
Example

The tables in this section show the convergence histories of the iterative methods used
for the small Stokes example in Section 6.2.1.

Table A.5: Convergence history of the disk function method, example in Section 6.2.1

Iteration Step Absolute Change Relative Change
1 1.000000e+00 1.000000e+00
2 3.696554e+00 1.302256e+00
3 3.898837e+00 1.200364e+00
4 8.374486e−15 2.578315e−15

Table A.6: Convergence history of the dual Lyapunov equation sign function solver,
example in Section 6.2.1

Iteration Step Absolute Error Relative Error
1 1.481392e+01 2.710221e+00
2 1.698613e+00 3.107628e−01
3 2.943649e−01 5.385434e−02
4 2.785851e−02 5.096740e−03
5 3.773928e−04 6.904438e−05
6 7.118580e−08 1.302351e−08
7 5.980939e−15 1.094218e−15
8 5.347254e−15 9.782853e−16

The following tables show the computation of the additive decomposition for gener-
alized Hankel-norm approximation is of order 2. The transformed system has ns = 1
stable pole and nu = 15 anti-stable poles.

Table A.7: Convergence history of the sign function iteration, example in Section 6.2.1

Iteration Step Absolute Change Relative Change
1 2.736134e+03 1.221279e+02
2 1.425108e+01 1.471830e+00
3 2.498954e+00 3.129493e−01
4 3.242142e−01 4.051723e−02
5 1.209384e−02 1.511326e−03
6 1.913715e−05 2.391505e−06
7 3.275834e−11 4.093699e−12
8 9.743300e−16 1.217587e−16
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A.2 Convergence Histories of the Small Stokes Example

Table A.8: Convergence history of the Sylvester equation sign function solver, example
in Section 6.2.1

Iteration Step Absolute Error Relative Error
1 1.333112e+01 1.802437e−01
2 2.238004e+00 9.625141e−03
3 3.242938e−01 1.204074e−04
4 1.207087e−02 4.481807e−06
5 1.913706e−05 7.105422e−09
6 3.275773e−11 1.216266e−14
7 1.928930e−22 7.161947e−26
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A.3 Convergence Histories of the Large-Scale Stokes Example

A.3 Convergence Histories of the Large-Scale Stokes
Example

In this appendix the convergence histories of the iterative methods used for the large-
scale stokes example in Section 6.2.2 are shown. The normalized residual norms of Rk

and Lk denote numerical values of the form∣∣∣∣ERkR
T
kA

T + ARkR
T
kE

T + PlBB
TP T

l

∣∣∣∣
||PlBBTP T

l ||

where A, E, B, and Pl are the matrices from the projected generalized continuous-time
Lyapunov equation (2.22). An analog formulation is used for the low-rank factors Lk.
Here, the Frobenius norm is used as matrix norm.

Figure A.1: Convergence histories of the normalized residual norms of the low-rank
factors Gpc ≈ RkR

T
k and Gpo ≈ LkL

T
k , example in Section 6.2.2

The following two tables describe the convergence histories of the additive decompo-
sition of the transformed system for Hankel-norm approximation of the order 5. The
transformed system has ns = 4 stable poles and nu = 16 unstable poles.
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A.3 Convergence Histories of the Large-Scale Stokes Example

Table A.9: Convergence history of the sign function iteration, example in Section 6.2.2

Iteration Step Absolute Change Relative Change
1 1.532838e+04 6.881858e+01
2 2.138810e+02 5.416575e+00
3 2.905646e+01 1.270019e+00
4 6.249697e+00 2.978575e−01
5 2.486120e+00 1.184752e−01
6 1.115318e+00 5.328100e−02
7 2.130972e−01 1.017866e−02
8 9.630014e−03 4.599808e−04
9 8.512319e−06 4.065938e−07
10 1.091815e−11 5.215089e−13
11 4.952740e−15 2.365693e−16

Table A.10: Convergence history of the Sylvester equation sign function solver, example
in Section 6.2.2

Iteration Step Absolute Error Relative Error
1 8.038769e+01 1.226552e−02
2 2.201734e+01 3.359396e−03
3 8.519506e+00 1.299903e−03
4 3.435850e+00 5.242405e−04
5 1.225533e+00 1.869914e−04
6 2.070073e−01 3.158508e−05
7 9.608322e−03 1.466034e−06
8 8.428610e−06 1.286034e−09
9 1.081253e−11 1.649771e−15
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A.4 Convergence Histories of the Constraint Damped Mass-Spring Example

A.4 Convergence Histories of the Constraint Damped
Mass-Spring Example

In this section the convergence histories of the iterative methods used for the constraint
damped mass-spring example in Section 6.3 are displayed. For the explanation of the
normalized residual norms see the previous appendix.

Figure A.2: Convergence histories of the normalized residual norms of the low-rank
factors Gpc ≈ RkR

T
k and Gpo ≈ LkL

T
k , example in Section 6.3

The following two tables show the convergence histories of the matrix sign function
method and the Sylvester equation solver for the generalized Hankel-norm approxima-
tion of order 5, where the transformed system has ns = 5 stable poles and nu = 20
unstable poles.

Table A.11: Convergence history of the sign function iteration, example in Section 6.2.2

Iteration Step Absolute Change Relative Change
1 9.444578e+00 8.587927e−01
2 1.009273e+01 8.109110e−01
3 1.094279e+01 1.783576e+00
4 1.010800e+00 1.681469e−01
5 5.109452e−02 8.490514e−03
6 1.605096e−04 2.667220e−05
7 6.294943e−09 1.046043e−09
8 8.556132e−16 1.421790e−16
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Table A.12: Convergence history of the Sylvester equation sign function solver, example
in Section 6.2.2

Iteration Step Absolute Error Relative Error
1 1.040199e+01 5.140414e+00
2 9.490775e+00 4.690113e+00
3 8.610184e−01 4.254947e−01
4 3.953860e−02 2.636415e−02
5 1.546096e−04 1.473669e−04
6 6.228503e−09 5.936727e−09
7 1.166690e−17 1.112036e−17
8 1.550940e−36 1.478286e−36
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