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Abstract. In this paper we show how to construct Morse homology for an
explicit class of functionals involving the 2p-area functional. The natural
domain of definition of such functionals is the Banach space W 1,2p

0 (Ω),
where p > n/2 and Ω ⊂ Rn is a bounded domain with sufficiently smooth

boundary. As W 1,2p
0 (Ω) is not isomorphic to its dual space,critical points

of such functionals cannot be non-degenerate in the usual sense, and hence
in the construction of Morse homology we only require that the second dif-
ferential at each critical point be injective. Our result upgrades, in the case
p > n/2, the results in Cingolani and Vannella (Ann Inst H Poincaré Anal
Non Linéaire 2:271–292, 2003; Ann Mat Pura Appl 186:155–183, 2007),
where critical groups for an analogous class of functionals are computed,
and provides in this special case a positive answer to Smale’s sugges-
tion that injectivity of the second differential should be enough for Morse
theory
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1. Introduction

Let n ≥ 2. For Ω ⊂ Rn bounded domain with sufficiently regular boundary,
and for p > n/2, we consider the functional

f : X := W 1,2p
0 (Ω) → R, f(u) :=

1
2p

∫
Ω

(
1 + |∇u|2)p dx +

∫
Ω

G(u) dx,

(1.1)

where G : R → R is a function of class C2 such that

|G(t)| ≤ β|t|α + δ, ∀t ∈ R, (1.2)

for some α ∈ [0, 2p) and β, δ ≥ 0.
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Condition (1.2) is needed to ensure that the functional f in (1.1) satisfies
the Palais–Smale condition, a crucial property to do global critical point theory
in infinite dimension. If one is interested in the computation of critical groups
only, then such a condition can be removed, see [7] and references therein,
where an analogous class of functionals is considered (we refer to the discussion
after the statement of the main theorem for more details). Also, in this paper
we are not interested in finding sharp conditions under which Morse homology
can be defined. In this sense, Condition (1.2) as well as the condition p > n/2
can surely be relaxed.

In this paper we show that Morse homology for functionals as in (1.1) is
well-defined provided that all critical points ū of f are non-degenerate in the
sense that the second differential of f at ū defines an injective linear operator
d2f(ū) : X → X∗. We shall stress the fact that such a condition is in general
not enough to construct Morse homology (actually, not even to compute critical
groups), as it does not even imply that the critical points are isolated, see e.g.
[16].

Theorem 1.1. Let f : X → R be a functional as in (1.1) such that all critical
points of f are non-degenerate in the sense that the second differential d2f(ū) :
X → X∗ is injective for all ū ∈ crit (f). Then, Morse homology with Z2-
coefficients for f is well-defined and isomorphic to the singular homology of
X, i.e.

HM∗(f ;Z2) ∼= H∗(X;Z2) ∼=
{
Z2 ∗ = 0,
0 ∗ ≥ 1.

In particular, it is independent of p > n/2.

To our best knowledge, the theorem above represents the first concrete
instance in which Morse homology in a Banach space setting is defined. For
an abstract construction we refer to [2]. Functionals as in (1.1) are interesting
for at least two reasons: first, they are intimately related with the class of
functionals considered in [7,8], whose critical points correspond to weak solu-
tions of a quasi-linear problem (involving the p-Laplacian) which arises in the
mathematical description of propagation phenomena of solitary waves. In fact,
for this latter class of functionals the construction of Morse homology carries
over word by word. Second, they are similar to the class of functionals of α-
harmonic maps, α > 1, introduced in [13] to prove the existence of harmonic
maps by studying the convergence of α-harmonic maps as α ↓ 1. In fact, our
approach should allow to define Morse homology for such class of functionals
as well.

The strategy of the proof of Theorem 1.1 is the following: arguing as in [7,
8] one sees that the critical points of f are isolated and have finite Morse index.
Also, the growth Condition (1.2) implies that f satisfies the Palais–Smale
condition on X. Therefore, in order to apply the abstract theory developed in
[2] one has to prove the existence of a C2-smooth complete Morse (i.e. with
only hyperbolic rest points) vector field F on X such that f is a Lyapounov
function for the flow induced by F , see Sect. 2. The key ingredient here is a sort
of uniform convexity of f in the positive direction determined by the second
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differential d2f at each critical point, see Lemma 2.4. It would be interesting
to check such a condition in other concrete examples.

The fact that f is a Lyapounov function for F together with the fact that
all critical points have finite Morse index (such a condition can be relaxed, see
[2, Theorem 1.20]) implies that the stable resp. unstable manifold W s(ū, F )
resp. Wu(ū, F ) of a rest point ū of F (equivalently, of a critical point ū of f)
is an embedded C2-submanifold homeomorphic to an open disc. Since critical
points of f have finite Morse index and the pair (f, F ) satisfies the Palais–
Smale condition, after a generic perturbation of F we can achieve transverse
intersection between stable and unstable manifolds of pairs of critical points
whose Morse indices differ at most by two. Such intersections are therefore
finite dimensional pre-compact embedded submanifolds of X of dimension
equal the difference of the Morse indices. Now one argues as usually to define a
Morse complex which is generated by critical points of f and whose boundary
operator counts the number of gradient flow lines (modulo two) between pairs
of critical points whose Morse indices differ by one. For more details about the
abstract construction of the Morse complex we refer to [2, Sect. 2].

We finish this introduction discussing an easy consequence of Theorem
1.1.

Corollary 1.2. Let f : X → R be as in (1.1). Assume that G satisfies the
growth Condition (1.2), and that f has two non-degenerate critical points.
Then, f has a third critical point (possibly degenerate). In particular, f as in
Theorem 1.1 has either one or at least three critical points.

Proof. Assume that f has no other critical points. Then the assumptions of
Theorem 1.1 are satisfied, and hence Morse homology for f is well-defined and
isomorphic to H∗(X;Z2). However, this is incompatible with f having only two
critical points, as the second critical point cannot be canceled in homology.
The second statement is an obvious consequence of the first one, observing
that f has at least one critical point because it is bounded from below and
satisfies the Palais–Smale condition. �

2. Construction of Morse homology

The differential of f as in (1.1) at u is given by

df(u)[v] =
∫

Ω

(
1 + |∇u|2)p−1〈∇u,∇v〉dx +

∫
Ω

G′(u)v dx. (2.1)

If ū ∈ X is a critical point of f , then the second differential of f at ū is

d2f(ū)[v, w] =
∫

Ω

(
1 + |∇ū|2)p−1〈∇v,∇w〉dx

+ 2(p − 1)
∫

Ω

(
1 + |∇ū|2)p−2〈∇ū,∇v〉〈∇ū,∇w〉dx

+
∫

Ω

G′′(ū)vw dx.
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Hereafter we assume that ū is a non-degenerate critical point, in the sense that
d2f(ū) : X → X∗ is injective. As easy examples show, such a condition is in
general not sufficient to do Morse theory for abstract functionals on Banach
manifolds, as it does not even imply that the critical point is isolated, see
e.g. [16]. However, for the class of functionals in (1.1), critical groups can be
defined in a similar way to [7] under such an assumption. In this paper, we
upgrade such a result showing that full Morse homology can be defined.

Remark 2.1. Critical points of functionals as in (1.1) cannot be non-degenerate
in the classical sense (i.e. d2f(ū) isomorphism), since X is not isomorphic to its
dual space X∗. On the other hand, injectivity of the second differential at an
isolated critical point can be obtained by arbitrarily small finite dimensional
Marino-Prodi type perturbations, as shown in [8, Theorem 1.6].

In the next theorem we construct a C2-smooth complete Morse vector
field on X for which f is a Lyapounov function. This is the crucial step in the
definition of Morse homology.

Theorem 2.2. Let f be a functional as in (1.1) having only non-degenerate
critical points in the sense above. Then, there exists a C2-smooth vector field
F on X such that:

(i) F is complete,
(ii) f is a Lyapounov function for F ,
(iii) F is Morse, i.e. the Jacobian of F at every critical point ū of f is an

hyperbolic operator on TūX,
(iv) (f, F ) satisfies the Palais–Smale condition,
(v) F satisfies the Morse-Smale condition up to order two.

Proof of Theorem 1.1. The growth Condition (1.2) implies that f is bounded
from below. We define a chain complex (C∗(f), ∂) by setting

Ck(f) :=
⊕

μ(ū)=k

Z2〈ū〉,

where μ(ū) denotes the Morse index of ū ∈ crit (f), and

∂ū :=
∑

μ(v̄)=μ(ū)−1

(∣∣M(ū, v̄)
∣∣ mod 2

)
· v̄,

where M(ū, v̄) is the intersection between the unstable manifold Wu(ū, F )
of ū and the stable manifold W s(v̄, F ) of v̄. Conditions i)-iv) in Theorem 1.1
imply that Wu(ū, F ) resp. W s(v̄, F ) is a finite dimensional resp. codimensional
embedded C2-submanifold of X homeomorphic to a disk of dimension μ(ū)
resp. of codimension μ(v̄). The Morse-Smale condition up to order one then
implies that M(ū, v̄) is a pre-compact one-dimensional embedded submanifold,
and as such consists of only finitely many F -flow lines connecting ū and v̄. In
particular, ∂ū is well-defined as there can be only finitely many critical points
of f of index μ(ū) − 1 contained in f−1(−∞, f(ū)). This follows from the fact
that f is bounded below and that the pair (f, F ) satisfies the Palais–Smale
condition. Finally, the Morse-Smale condition up to order two implies that
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∂2 = 0, so that (C∗(f), ∂) is indeed a chain complex. The fact that the resulting
Morse homology is isomorphic to the singular homology of X is proved in [2,
Theorem 2.8]. �

To prove Theorem 2.2, the first step is to relate the notion of non-
degeneracy above with a notion of non-degeneracy which is more convenient
for Morse homology, namely the existence of a linear hyperbolic operator L
on X such that f is a Lyapounov function for the linear flow defined by L in
a neighborhood of ū, see e.g. [2,16,17].

Proposition 2.3. Let ū ∈ X be a non-degenerate critical point of f as in (1.1).
Then, there exist a neighborhood U of ū in X and a linear hyperbolic operator
L : TūX → TūX such that, on U , f is a Lyapounov function for the linear
flow defined by L.

To prove Proposition 2.3 we first recall some facts which are proved in [7]
for a slightly different class of functionals, but all proofs go through with minor
modifications to the setting of the present paper. Because of the embedding
X ↪→ L∞(Ω), the critical point ū is obviously contained in L∞(Ω). The results
in [14,15] then imply that ū ∈ C1(Ω). Following [7], on C∞

0 (Ω) we introduce
the scalar product

〈v, w〉ū. :=
∫

Ω

(
1 + |∇ū|2)p−1〈∇v,∇w〉dx

+ 2(p − 1)
∫

Ω

(
1 + |∇ū|2)p−2〈∇ū,∇v〉〈∇ū,∇w〉dx,

and define the Hilbert space

Hū := C∞
0 (Ω)

〈·,·〉ū
.

It is easy to see that Hū is isomorphic to W 1,2
0 (Ω), and thus we have a continu-

ous embedding X ↪→ Hū. Moreover, d2f(ū) : X → X∗ extends to an invertible
operator Hū : Hū → Hū (where we have identified H

∗
ū with Hū using Riesz’

representation theorem). Indeed,

Hū = id + K,

where K : Hū → Hū, v �→ Kv, is the compact operator uniquely defined by

〈Kv,w〉ū =
∫

Ω

G′′(ū)vw dx, ∀w ∈ Hū.

Being Hū a compact perturbation of the identity, it has Fredholm index zero.
Furthermore, Hū is self-adjoint and as such its spectrum is real and consists of
the eigenvalue 1 (which has infinite multiplicity) and of eigenvalues different
from 1 (with finite multiplicity) which accumulate to 1. Accordingly, we have
a natural 〈·, ·〉ū-orthogonal decomposition

Hū = H
− ⊕ H

0 ⊕ H
+,
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where H
0 := ker Hū and

H
− :=

⊕
λ ∈ σ(Hū)

λ < 0

ker
(
λ · id − Hū

)
, H

+ :=
⊕

λ ∈ σ(Hū)
λ > 0

ker
(
λ · id − Hū

)
,

are the negative resp. positive eigenspace of Hū. Clearly, the set of positive
eigenvalues of Hū is uniformly bounded away from zero, thus we can find a
constant μ > 0 such that

〈Hūv, v〉ū ≥ μ‖v‖2
ū, ∀v ∈ H

+. (2.2)

Also, dimH
− ⊕ H

0 < +∞, and standard regularity theory implies that

H
− ⊕ H

0 ⊂ X,

see [10, Theorems 8.15, 8.24, 8.29]. Consequently, we obtain a splitting

X = H
− ⊕ H

0 ⊕ W,

where W := H
+ ∩ X, and (2.2) implies that

d2f(ū)[v, v] ≥ μ‖v‖2
ū, ∀v ∈ W. (2.3)

Since by assumption d2f(ū) : X → X∗ is injective, we finally deduce that
Lū is injective and thus an isomorphism, being Fredholm of index zero. In
particular,

Hū = H
− ⊕ H

+, and X = H
− ⊕ W.

In the next result we prove that (2.3) holds for any u in a sufficiently small
neighborhood of ū, thus showing that f is locally uniformly convex around ū in
the W -direction with respect to the ‖ ·‖ū-norm. The proof, which is analogous
to the one of [7, Lemma 4.2], is included for the reader’s convenience.

Lemma 2.4. There exists r > 0 and μ > 0 such that for any u ∈ X with
‖u − ū‖ < r we have

d2f(u)[v, v] ≥ μ‖v‖2
ū, ∀v ∈ W. (2.4)

In particular, ū is a strict minimum point of f in the W -direction.

Proof. Assume that there exist sequences (un) ⊂ X and (vn) ⊂ W such that
un → ū in X, ‖vn‖ū = 1 for all n ∈ N, and

lim inf
n→+∞ d2f(un)[vn, vn] ≤ 0. (2.5)
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Up to taking a subsequence, vn weakly converges (thus also strongly in L2) to
v∞ ∈ H

+. Noticing that

d2f(un)[vn, vn]

=

∫
Ω

(
1 + |∇un|2)p−1|∇vn|2dx + 2(p − 1)

∫
Ω

(
1 + |∇un|2)p−2〈∇un,∇vn〉2 dx

+

∫
Ω

G′′(un)v2
n dx

≥ ‖∇vn‖2
2 +

∫
Ω

G′′(un)v2
n dx

≥ c‖vn‖2
ū +

∫
Ω

G′′(un)v2
n dx

= 1 +

∫
Ω

G′′(un)v2
n dx,

we infer that v∞ �= 0, as otherwise this would contradict (2.5). We now set

h(x, u, v) :=
(
1 + |∇u|2)p−1|∇v|2 + 2(p − 1)

(
1 + |∇u|2)p−2〈∇u,∇v〉2,

so that

d2f(un)[vn, vn] =
∫

Ω

h(x, un, vn) dx +
∫

Ω

G′′(un)v2
n dx.

Obviously, h is non-negative, continuous, and v �→ h(x, u, v) is convex for every
(x, u). Therefore, the result in [11] implies that

(u, v) �→
∫

Ω

h(x, u, v) dx

is lower-semicontinuous with respect to the strong convergence in the u-
direction and the weak convergence in the v-direction. Now, using Assumption
(2.5), Equation (2.2), and the fact that vn → v∞ in L2, we conclude

0 ≥ lim inf
n→+∞ d2f(un)[vn, vn]

= lim inf
n→+∞

(∫
Ω

h(x, un, vn) dx +
∫

Ω

G′′(un)v2
n dx

)

≥
∫

Ω

h(x, ū, v∞) dx +
∫

Ω

G′′(ū)v2
∞ dx

= 〈Lūv∞, v∞〉ū

≥ μ‖v∞‖2
ū,

clearly a contradiction, as v∞ �= 0. This shows that

lim inf
n→+∞ d2f(un)[vn, vn] > 0

for all sequences (un) ⊂ X such that un → ū, and all sequences (vn) ⊂ W
such that ‖vn‖ū = 1 for all n ∈ N. We claim now that for all such sequences
there exists μ > 0 such that

lim inf
n→+∞ d2f(un)[vn, vn] ≥ μ.
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Clearly, this finishes the proof of the lemma. Assuming this is not the case, for
every m ∈ N we find sequences (u(m)

n ) and (v(m)
n ) as above such that

lim inf
n→+∞ d2f(u(m)

n )[v(m)
n , v(m)

n ] <
1
m

.

Therefore, for every m ∈ N we can find n(m) ∈ N such that

d2f(u(m)
n(m))[v

(m)
n(m), v

(m)
n(m)] <

2
m

.

The sequences (u(m)
n(m))m∈N and (v(m)

n(m))m∈N also satisfy

u
(m)
n(m) → ū, ‖v

(m)
n(m)‖ū = 1, ∀m ∈ N,

and by construction

lim
m→+∞ d2f(u(m)

n(m))[v
(m)
n(m), v

(m)
n(m)] = 0,

a contradiction. �

Remark 2.5. A similar statement as in Lemma 2.4 holds also in the H
−-

direction, namely there exist r > 0 and μ > 0 such that for any u ∈ X
with ‖u − ū‖ < r we have

d2f(u)[v, v] ≤ −μ‖v‖2
ū, ∀v ∈ H

−. (2.6)

However, the proof in this case is elementary since f is of class C2 and H
− is

finite dimensional, so that ‖ · ‖ū and ‖ · ‖ are equivalent on H
−. The details

are left to the reader.

Proof of Proposition 2.3. On

TūX ∼= X = H
− ⊕ W

we define the linear operator L = (id,−id), that is

Lx := L(x− + xW ) := x− − xW , ∀x = x− + xW ∈ X.

The operator L is clearly hyperbolic. We claim that there exists a sufficiently
small neighborhood U of ū such that f is a Lyapounov function for the linear
flow defined by L, meaning that, for every x �= 0 ∈ U − {ū},

t �→ f(ū + etLx)

is strictly monotone decreasing, or, equivalenty, that

df(ū + x)[Lx] < 0, ∀x ∈ U \ {0}.

We have

df(ū + x)[·] =
∫ 1

0

d
ds

(
f(ū + sx)

)
[·] ds =

∫ 1

0

d2f(ū + sx)[·, x] ds,
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choose r, μ > 0 such that (2.4) and (2.6) hold, and compute for x ∈ X with
‖x‖ < r:

df(ū + x)[Lx]

=
∫ 1

0

d2f(ū + sx)[Lx, x] ds

=
∫ 1

0

d2f(ū + sx)[x− − xW , x− + xW ] ds

=
∫ 1

0

(
d2f(ū + sx)[x−, x−] − d2f(ū + sx)[xW , xW ]

+ d2f(ū + sx)[x−, xW ] − d2f(ū + sx)[xW , x−]︸ ︷︷ ︸
=0

)
ds

≤ −μ‖x−‖2
ū − μ‖xW ‖2

ū

≤ −μ‖x‖2
ū,

which implies the claim. �
We recall that f : X → R of class C1 is said to satisfy the Palais–Smale

condition, if any sequence (un) ⊂ X such that f(un) → c, for some c ∈ R,
and df(un) → 0 admits a converging subsequence. By the continuity of the
differential, any limit point of a Palais–Smale sequence is a critical point of f .

Remark 2.6. The Palais–Smale condition plays the role of compactness of sub-
level sets, and as such is a crucial ingredient in infinite dimensional critical
point theory. We shall however stress the fact that, when the Morse index
and co-index of critical points is infinite, that is when f is strongly indefinite,
the Palais–Smale condition alone is not enough to construct Morse homology,
as the intersection between stable and unstable manifolds of pair of critical
points might not be pre-compact, not even if finite dimensional. In such cases,
stronger conditions are needed, see e.g. [1,3,4], where Morse homology for an
abstract class of strongly indefinite functionals on a Hilbert manifold resp. for
the Hamiltonian action in cotangent bundles is defined. Also, classical Morse
theory is in such cases of no help, since the topology of sublevel sets does not
change when crossing a critical point with infinite Morse index. Anyhow, this
will not be the case in the present paper, since critical points of a functional
as in (1.1) always have finite Morse index.

We show now that the growth condition (1.2) on the function G implies
that the functional f in (1.1) satisfies the Palais–Smale condition on X.

Lemma 2.7. Let f : X → R be a functional as in (1.1). Then f satisfies the
Palais–Smale condition.

Proof. Let (un) ⊂ X be a Palais–Smale sequence for f .
Claim 1. (un) is bounded in X.

Suppose by contradiction that ‖un‖ → +∞. By the very definition of f , Equa-
tion (1.2), Poincaré inequality, and Hölder inequality we have for some constant
γ > 0:
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|f(un)| =
∣∣∣∣
∫

Ω

(1 + |∇un|2)p dx +
∫

Ω

G(un) dx

∣∣∣∣
≥ ‖∇un‖2p

2p −
∫

Ω

|G(un)|dx

≥ γ‖un‖2p − β‖un‖α
Lα − δμ(Ω)

≥ γ‖un‖2p − βμ(Ω)α(2p−α)/2p‖un‖α2/2p
L2p − δμ(Ω)

≥ γ‖un‖2p − βμ(Ω)α(2p−α)/2p‖un‖α2/2p − δμ(Ω)
→ +∞,

as by assumption α < 2p. This is clearly a contradiction, since f(un) → c for
some c ∈ R.

Claim 2. (un) admits a converging subsequence.
Since (un) is bounded, up to a subsequence we can assume un ⇀ u for some
u ∈ X, hence in particular un → u in L∞(Ω). In view of (2.1) we can write
df : X → X∗ as

df = D + K,

where

D : X → X∗, D(u)[·] :=
∫

Ω

(1 + |∇u|2)p−1〈∇u,∇·〉dx,

K : X → X∗, K(u)[·] :=
∫

Ω

G′(u)v dx.

As shown in [5, Appendix B], the non-linear operator D is invertible with
continuous inverse D−1. We claim that K(un) → K(u) in operator norm.
This follows from the fact that K is sequentially compact, meaning that for
any weakly converging sequence wn ⇀ w in X the operators K(wn) converge
in operator norm to K(w). To see this we compute using Hölder inequality
with conjugated exponents q, 2p:

‖K(wn) − K(w)‖ = sup
‖v‖=1

|K(wn)[v] − K(w)[v]|

= sup
‖v‖=1

∣∣∣∣
∫

Ω

(
G′(wn) − G′(w)

)
v dx

∣∣∣∣

≤ sup
‖v‖=1

(∫
Ω

∣∣G′(wn) − G′(w)
∣∣q dx

)1/q

‖v‖L2p

≤
(∫

Ω

∣∣G′(wn) − G′(w)
∣∣q dx

)1/q

≤ μ(Ω)1/q sup
x∈Ω

|G′(wn(x)) − G′(w(x))|
→ 0,

as wn → w in L∞(Ω) and G′ is continuous. Now, since (un) is a Palais–Smale
sequence we have

o(1) = ‖df(un)‖ = ‖D(un) + K(un)‖,
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thus D(un) → −K(u) in operator norm, and finally un → −D−1(K(u)) as
D−1 is continuous. �
Proof of Theorem 2.2. Fix some u0 ∈ X \ crit (f). Since df(u0) �= 0, we find
v ∈ Tu0X such that

df(u0)[v] ≤ −1
2
‖df(u0)‖2,

for some constant γ(u0) > 0. By the continuity of df , we can find r(u0) > 0
such that

df(u)[v] ≤ −1
4
‖df(u)‖2, ∀u ∈ Br(u0)(u0). (2.7)

Therefore, we set Vu0(u) ≡ v.
If ū ∈ X is a critical point of f , then by Proposition 2.3 we have that

there exist μ(ū), r(ū) > 0 such that

df(ū + x)[Vū(x)] ≤ −μ(ū)‖x‖2
ū, ∀x ∈ X with ‖x‖ < r(ū), (2.8)

with Vū(x) := Lx, where L : TūX → TūX is the hyperbolic operator given by
the proposition. Without loss of generality we may also assume that the open
sets Br(ū)(ū), ū ∈ crit (f), are pairwise disjoint.

We now consider the open covering of X given by

U :=
{

Br(u0)(u0)
∣∣∣ u0 ∈ X \ crit (f)

}
∪

{
Br(ū)(ū)

∣∣∣ ū ∈ crit (f)
}

.

By the paracompactness of X, there exists a locally finite refinement V =
{Vj | j ∈ J} of the open covering U. Let Γ : J → X be a function such
that Vj ⊂ Br(Γ(j))(Γ(j)) for all j ∈ J . Following [6,9], X admits C2-smooth
bump functions. Therefore, we can find a C2-smooth partition of unity {χj}
subordinated to the open covering V, and set

F̃ (u) :=
∑
j∈J

χj(u)VΓ(j)(u), ∀u ∈ X.

By construction F̃ is of class C2, and the inequalities (2.7) and (2.8) imply that
f is a Lyapounov function for F̃ . Furthermore, we can make F̃ to a bounded
vector field by multiplication by a suitable conformal factor: given a smooth
monotonically decreasing function ϕ : [0,+∞) → (0,+∞) such that

ϕ ≡ 1 for s ∈ [0, 1], ϕ(s) =
1
s

for s ≥ 2,

we set
F (u) := ϕ(‖F̃ (u)‖) · F̃ (u), ∀u ∈ X.

Clearly, F is complete, and f is a Lyapounov function for F as well. Moreover,
in a neighborhood of each critical point the vector field F coincides with the
linear vector field x �→ Lx. This implies (iii). We claim now that Palais–Smale
sequences for (f, F ) are also Palais–Smale sequences for f . Indeed, let (un) ⊂ X
be a sequence such that

f(un) → c, df(un)[F (un)] → 0.

By Step 1 in the proof of Lemma 2.7 we have that (un) is a bounded sequence.
If (un) admits a subsequence converging to a critical point of f then there
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is nothing to prove. So without loss of generality we can assume that, up to
passing to a subsequence if necessary, (un) is contained in the complement of
a open neighborhood of crit (f). By (2.7) we can find a constant c > 0 such
that

‖df(un)‖2 ≤ −1
c
df(un)[F (un)] = o(1), for n → +∞.

This together with Lemma 2.7 implies (iv). Finally, since F is of class C2, (v)
can be achieved by a suitable generic perturbation as proved in Theorem 5.5
in [4]. As such a theorem deals with the much more delicate case of strongly
indefinite functionals, we give a sketch of the proof here for the reader’s con-
venience referring to [4] for the details. Whenever possible, we will also adopt
the same notation as in [4]. The interested reader can also have a look at
Theorem 2.20 in [2] for a transversality statement on Hilbert manifolds in the
case of finite Morse indices where the perturbation remains within the class of
gradient vector fields.

The Morse-Smale condition up to order 2 will follow from a version of
the Sard-Smale theorem due to Quinn and Sard [12] which in the setting of
the present paper can be formulated as follows: let ϕ : Y → Z be a C2-smooth
σ-proper Fredholm map between the Banach spaces Y and Z with Fredholm
index at most 2. Then, the set of regular values of ϕ is generic in Z. Recall
that ϕ is called σ-proper if Y is the countable union of open sets, on the closure
of each of which ϕ is proper. σ-properness is required as the Banach spaces we
are interested in do not satisfy the Lindelöf property, which is necessary for
the original version of the Sard-Smale theorem. To explain how we apply the
Sard-Smale theorem, let us start considering neighborhoods U ⊂ V ⊂ X of the
set crit(f) of critical points of f such that each critical point of f belongs to
a different connected component of V, and let C be the space of vector fields
C of class C2 on X such that:
(B1) every C ∈ C vanishes on U .
On C we can introduce a norm ‖ · ‖C which induces the topology of C2

loc-
convergence and such that:
(B2) for every C ∈ C with ‖C‖C ≤ 1, the set of rest points of F + C coincides

with crit(f), f is a Lyapounov function for F +C, and (f, F +C) satisfies
the Palais–Smale condition.

For instance, pick a smooth function χ : [0,+∞) → R such that

0 < χ(ρ) <
1
2

inf
Bρ(0)\U

−df [F ], ∀ρ ≥ 0,

where Bρ(0) denotes the open ball with radius ρ around the origin in X, and
define for every C ∈ C

‖C‖C := ‖χ−1 · C‖C2 .

The straightforward proof that (B2) is satisfied is left to the reader. Notice
that C also satisfies:
(B4) C is closed under multiplication by a vector space of functions which

includes bump functions,
(B5) {C(u) |C ∈ C} = TuX ∼= X, for all u ∈ X \ V.



NoDEA A note on the Morse homology Page 13 of 16 75

We also notice that Properties (B1) and (B2) imply that

Wu(v;F + C) ∩ W s(w;F + C)

is pre-compact for all ‖C‖C ≤ 1 and all v, w ∈ crit(f).
Assume now that v, w ∈ crit(f) are such μ(v) − μ(w) ≤ 2 and

Wu(v;F ) ∩ W s(w;F ) �= ∅.

We define the Banach space

K := C1
v,w(R,X) :=

{
ϕ : R → X | ϕ(t) t→±∞−→ v, w, ϕ̇(t) t→±∞−→ 0

}
and observe that the tangent space to K at each ϕ ∈ K can be identified with

TϕK ∼= C1
0,0(R,X) ⊂ B := C0

0 (R,X).

Finally, denoting with C1 the unit ball of C we set

Φ : C1 × K → B, (C,ϕ) �→ ϕ′ − (F + C) ◦ ϕ,

so that

Z := Φ−1(0) =
⋃

C∈C1

(
Wu(v;F + C) ∩ W s(w;F + C)

)
.

The fact that F is of class C2 together with the fact that the topology on C
coincides with the topology of C2

loc-convergence implies that Φ is of class C2.
Standard Fredholm theory (see [4, Lemma 5.6] and references therein) implies
that, for (C,ϕ) ∈ Z, dϕΦ(C,ϕ) is Fredholm with Fredholm index μ(v)−μ(w),
and it is onto if and only if Wu(v;F +C) and W s(w;F +C) meet transversally
along ϕ. This together with Properties (B4) and (B5) implies that 0 is a regular
value for Φ, so that Z is a C2-submanifold of C1 ×K; see Lemma 5.7 in [4] for
the details.

Let now S ⊂ U be a small smooth sphere centered at v and transversal
to the flow of F (hence, also to the flow of F +C for every C ∈ C by Property
(B1)). We denote by Z0 ⊂ Z the codimension-one C2-submanifold given by
pairs (C,ϕ) ∈ Z such that ϕ(0) ∈ S, and by

π : Z0 → C1, (C,ϕ) �→ C,

the projection onto the first factor. One readily sees that π is Fredholm of
index μ(v) − μ(w) − 1, and that C ∈ C1 is a regular value of π if and only
if Wu(v;F + C) and W s(w;F + C) have transverse intersection. The Palais–
Smale condition finally implies that π is σ-proper. This fact is proved in full
details in [4, Proposition 5.9]; we shall however stress that the proof given
there is much more involved as it deals with the case of infinite Morse index,
case in which the Palais–Smale condition alone is actually not sufficient.

We are now in position to apply the Sard-Smale theorem, thus obtaining
that the set C1(v, w) of regular values of the map π is generic in C1. Since the
set crit(f) is at most countable, the intersection

CMS
1 :=

⋂ {
C1(v, w)

∣∣∣ v �= w ∈ crit(f), μ(v) − μ(w) ≤ 2
}

is also a generic subset of C1, and by construction, for every C ∈ CMS
1 , the

vector field F + C satisfies the Morse-Smale property up to order 2. �
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Gdańsk University of Technology
Gabriela Narutowicza 11/12
80233 Gdańsk
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