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Abstract: With the advent of large-scale data applications, the security and efficiency of cryptographic systems have 

become two critical concerns. In this paper we present a cryptographic solution that combines the ChaCha20 

encryption algorithm and SHA-256 hashing to provide data confidentiality and integrity. The system works 

on data in chunks to optimize for memory usage and scaling from 10 MB to 1 GB datasets. While achieving 

low resource utilization (CPU usage < 12% and a memory footprint < 50 MB) the proposed technique 

achieves cipher and decipher rates up to 88 MB/s with significant performance gain. SHA-256 based integrity 

verification achieved 100% accuracy, preventing tampering and corruption. The comparison with 

conventional systems (e.g., AES, MD5) reflected the superiority of the proposed system in various factors 

(i.e., speed, resource efficiency, and robustness). The system also proved capable of supporting large 

datasets through scalability testing, enabling uses in cloud storage, IoT security, and secure communications. 

These findings highlight the proposed system's ability as a lightweight and scalable cryptographic solution to 

meet the data security demands of the advanced digital era. With the rise of IoT and cloud computing, 

traditional encryption like AES struggles with high memory usage in resource-constrained devices. This paper 

proposes a lightweight framework combining ChaCha20 (for encryption) and SHA-256 (for integrity), 

optimized for big data. Our chunk-based approach achieves 88 MB/s throughput with <12% CPU usage, 

outperforming AES in software environments. Experimental results on datasets up to 1GB demonstrate 100% 

tamper detection accuracy, making it ideal for IoT and real-time applications. 

1 INTRODUCTION 

The security of information – its confidentiality, 

integrity, and availability – has emerged as a major 

concern in the increasingly evolving digital 

ecosystem. Cryptography is a core tool for securing 

data in transit and at rest, where encryption and 

decryption techniques are used to keep sensitive data, 

such as medical or financial records, from being 

accessed by someone who is not authorized to see the 

records. Fortunately, recent developments present 

new techniques to strengthen the robustness and 

performance of such cryptographic protocols. While 

AES-256 is widely adopted, its reliance on hardware 

acceleration (AES-NI) limits performance in 

software-only environments [10]. ChaCha20, as a 

stream cipher, offers faster encryption on devices 

lacking AES-NI, such as legacy IoT nodes. This work 

addresses the gap by proposing a hybrid framework 

optimized for scalability and low-power devices. 

A prominent example in this context is the use of 

hybrid cryptographic schemes to enhance both 

performance and security. In this Hybrid approach, 

symmetric and resource limitation scenarios such as 

e-governance applications [1]. Performance 

parameters are becoming more important due to the 

evaluation of cryptographic algorithms for certain 

applications. To locate an appropriate algorithm for 

the use case an individual is attempting to address, 

metrics such as encryption and decryption time, 

throughput, power consumption and memory 

utilization can be utilized [2]. Furthermore, the 

appointment of AES with the blockchain technology 

also yields its mechanism to secure mobile 

communication, assisting a security standard for 

message confidentiality [3]. Rotor64 adopts previous 

rotor machine structures with recent encoding 
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methods to encourage the evolution of new 

lightweight cryptographic algorithms [4]. 

These innovations demonstrate the ongoing 

development of cryptographic techniques in response 

to new security threats. Cryptography in AI and 

cloud systems The evolution of data protection 

paradigms As we are increasingly using distributed 

systems, specialized encryption methods are 

becoming significant in securing sensitive data in the 

cloud during storage and processing [5]. We'll also 

seek to identify broad trends based on their relevance 

across different domains, highlight their evolution 

and new application areas, and understand how they 

are likely to impact future trends in the ever-changing 

technological landscape [6]. 

2 RELATED WORK 

2.1 Hybrid Cryptographic Systems 

Hybrid cryptography is a combination of symmetric 

and asymmetric cryptography, which is the most 

secure and efficient cryptography. Asymmetric 

cryptography (e.g., RSA) provides secure key 

exchange between parties. But it is expensive in 

computation on big datasets. Symmetric 

cryptography (e.g., AES) is faster to encrypt bulk 

data, but secure key distribution is required. This 

combination of techniques leads to the hybridization 

of methods, as hybrid systems are able to build on the 

advantages of both techniques while minimizing their 

drawbacks. A hybrid system can use RSA for a secure 

exchange of an AES key, which is then used to 

encrypt the data. This provides efficient encryption 

and secure key management. Sharma's study reached 

a 30% speedup in the data encryption process for our 

system over standard RSA encryption. It enables a 

scalable solution for real-time systems and IoT 

devices, where speed and security are equally 

important. Such a scheme is a popular technique 

employed in security protocols such as 

SSL/TLS [7] [8]. 

2.2 DNA-Based Cryptography 

DNA-based cryptography is utilizing the biological 

features of deoxyribonucleic acid to cryptographic 

data. This introduces a novel layer of security that 

utilizes the vast storage potential and distinctive 

encoding systems of DNA strands. Random key 

generation is applied to encryption process using 

Chaotic maps. DNA coding encodes plaintext as 

nucleic sequences (e.g., A, T, C, G) For instance, 

plaintext such as "HELLO" can be encoded into 

DNA sequence, then scrambled by chaotic map, and 

then the result can be encrypted by DNA-inspired 

operations. Zhang et al. is another work on robust 

encryption at less than 0.05 seconds on 

encryption/decryption time of 1 MB data. Brute-force 

and differential attacks were ineffective against the 

method. It is particularly suited for lightweight 

cryptography in IoT and biomedical areas [9] [10]. 

2.3 Post-Quantum Cryptography 

Quantum Computers have the potential to break 

many of the traditional algorithms like RSA and ECC. 

These cryptography schemas are called post-quantum 

cryptography (PQC)–algorithms designed to be 

secure against quantum attacks. Lattice-based 

cryptography: An example of this is Learning with 

Errors (LWE), and is one of the most promising 

candidates. It is based on the hardness of solving 

lattice problems that continues to be hard even for 

quantum computers. Lattice-based key exchange 

could potentially take the place of RSA in secure 

communications to provide quantum type attack 

immunity. Peikert showed that lattice-based systems 

are secure against quantum attacks. The caveat was a 

10-20% increase in computational costs over classical

solvers. PQC is designed to secure data and

communications against the future development of

powerful quantum computers [11] [12].

2.4 Selective Text Encryption 

Selective encryption, a method that only encrypts 

sensitive portions of the data at the cost of some 

computation overhead. With RSA, the user may 

encrypt specific fields (personal identifiers) but does 

not encrypt non-sensitive data. Beneath security and 

cryptography lies the difference between the public or 

framework of a system and the real content, like in an 

e-governance application, where only fields such as

social security numbers or personal addresses are

encrypted, others are plaintext. Gupta et al. savings of

40% when only the part of the data set being

retrieved was encrypted vs encrypting the whole

piece of data Enabled secure handling of critical data

fields with minimal performance impact Such a

method can be applied in real-time processing in

cases such as e-governance, and so on where sensitive

data observing is key [1] [13].
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2.5 Performance Parameters in 
Cryptography 

In order to assess the granted properties of algorithms 

candidates, particular performance metrics must be 

defined for a specific implementation of the algorithm 

to be performed. Encryption/Decryption Time: 

Processing time for data. Memory Usage: Memory 

usage during the encryption Power Consumption: 

Essential when it comes to battery-operated devices 

such as IoT nodes. Kim et al [2].  compared the 

performance of AES, DES, and Blowfish in different 

devices and datasets. For smaller datasets Blowfish 

was the best performing cipher, whereas AES 

delivered comparable performance for larger 

datasets. DES had the smallest memory footprint but 

was not a modern security champion. These metrics 

will help to select suitable cryptographic algorithms 

for mobile and IoT applications. 

2.6 Physec - Blockchain Combined 
with Cryptography 

It makes the use of cryptography stronger since it is 

displayed on blockchain technology, which cannot 

be altered, so all data transactions are secure through 

cryptography. Couple it with cryptographic 

algorithms such as AES, and you have end-to-end 

security. AES encrypts data, and the blockchain 

records the transaction so that it can't be changed. 

Kumar and Singh proposed a solution that uses an 

AES encryption using a blockchain ledger, for 

confidentiality and integrity of mobile messages. The 

system delivered tamper-proof messages with 99.9% 

success. Lower chances of data leakages while in 

transit. Hybrid solutions of blockchain and 

cryptography are being used in secure messaging, 

supply chain management, and financial systems [3]. 

3 METHODS 

The cryptographic scheme combines ChaCha20 

encryption and SHA-256 hashing that provides 

secure, efficient, and scalable storage for large-scale 

data. The hybrid model here uses light-weight 

encryption for confidentiality and heavy-weight 

hashing for integrity which offers both security and 

performance. The methodology is carried out in a 

step-wise flow involving data preprocessing, 

encryption, hashing, decryption and finally the 

validation and performance analysis. See Figure 1. 

3.1 Data Preprocessing 

Step 1: Preprocessing the data: This often involves 

processing huge files or datasets of text input. These 

are divided into smaller buffers, say one buffer per 

MB and streamed to minimize memory and allow for 

parallel processes. Adopting a "chunk-based" method 

guarantees that the system is capable of processing 

large datasets without taxing computational resources 

– a practice utilized in high-throughput 

cryptographic systems [14]. We call the 

preprocessing process, as it allows the process to be 

parallel and serves as a basis for better encryption and 

decryption. 

Figure 1: Method structure. 

3.2 ChaCha20 Encryption 

We use ChaCha20, a x86-optimized stream cipher 

that is both fast and secure, to encrypt the data 

chunks. It employs a 256-bit key and 96-bit nonce for 

solid encryption. The reason behind choosing 

ChaCha20 is that this algorithm is proven to be 

resistant to cryptanalysis and performs faster than 

alternative block ciphers (e.g., AES) in packet-

transmission environments [15]. 

Each chunk is encrypted under a different nonce, 

so that two identical plaintext chunks yield different 

ciphertexts, increasing security. 

ChaCha20 is known to perform well in resource-

constrained environments like IoT and mobile 

systems and Realtime applications [16]. 
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3.3 SHA-256 Hashing 

To guarantee data integrity, each slice of original 

data is hashed with the SHA-256 algorithm, resulting 

in a 256-bit hash digest. However, this hash is unique 

for these data and can be confirmed at the receiver 

end if data is not altered during transmission of data. 

SHA 256 is in the SHA 2 family, and it is well known 

for being collision-resistant and cryptographic 

function [17]. 

The hash digests are transmitted with the 

encrypted chunks so that the receiver can check the 

integrity and authenticity of the received data. 

Figure 2: Data preprocessing.

3.4 Decryption and Validation 

On the receiver side, we perform ChaCha20 

decryption on the encrypted data chunks with the 

same key and nonce. Next, the decrypted data is 

hashed with SHA-256, and the resulting hash is 

compared to the one in the received hash digest. A 

corresponding pair of hashes ensures data integrity, 

while a difference denotes tampered data or data 

corruption. This process of encrypting the data twice, 

ensures confidentiality and integrity [18]. 

Performance metrics such as the following are used 

to measure the efficiency of the system: Execution 

time – time for encrypting, hashing, and decrypting 

Amount of data processed in seconds, which indicates 

the capacity of the system to perform as a terminal 

for large data sets. Resource Consumption: CPU and 

memory utilization at runtime, which is important for 

the resource-constrained environments such as IoT 

and mobile devices [19]. Testing is performed on 

datasets with sizes between 10 MB and 1 GB 

simulating real world scenarios to measure scalability 

and efficiency See the following Figure 2. 

4 PROPOSED ALGORITHMS 

AND DISCUSSION 

Tests were conducted on an Intel i7-10th Gen (16GB 

RAM, Ubuntu 20.04) using Python 3.9. Datasets 

included text files (10MB–1GB) to simulate real-

world IoT and cloud scenarios. Nonce values were 

generated via a secure random number generator 

(RFC 8439). 

In this system, there are two algorithms: 

ChaCha20 algorithm for encryption and decryption, 

SHA-256 algorithm for the integrity verification of 

data. These algorithms are generally applied in a 

structured process where each role is carried out for 

data confidentiality, integrity, and performance. The 

cryptographic algorithm defined for handling large-

scale data securely is given the following steps: 

a) Chunking. Break input data into smaller

pieces for processing Encrypt each with

ChaCha20 using 256-bit key and 96-bit

nonce. Create a SHA-256 hash digest of

each chunk for integrity checking as well;

b) Decrypting. Using the same key and nonce

using ChaCha20 to decrypt chunks to

obtain the original;

c) Validation. Ensure decrypted data integrity

by comparing it with its original hash values;

d) Performance. Profile execution time,

throughput and resource usage to

authenticate solution;

e) Output. Data that is encrypted, decrypted

data, PMAC-result, performance statistics.

Where the equation can be seen: 

1) Initialization (1):

S = [C0….N0). (1) 

Where: 

▪ Ci: Constants (4 words);

▪ Ki: Key split into 8 words;

▪ Counter text {Counter}Counter: Block counter

(1 word);

▪ Ni: Nonce split into 3 words.
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2) Encryption (2). The plaintext is XORed with

the generated keystream to produce ciphertext:

C=P ⊕ Keystream. (2) 

Where: 

▪ P: Plaintext.

▪ Keystream text {Keystream}Keystream:

Pseudorandom output generated from the

ChaCha20 state.

4.1 ChaCha20 Decryption 

Decryption uses the same process as encryption 

because ChaCha20 is a symmetric cipher. The 

ciphertext is XORed with the keystream to retrieve 

the plaintext (3): 

P=C ⊕ Keystream (3) 

4.2 SHA-256 Hashing 

The SHA-256 algorithm processes the input in blocks 

of 512 bits using a compression function. 

Equation for Preprocessing. Padding ensures the 

message length is a multiple of 512 bits (4): 

M=Original Message+1+0k+64-bit Length. (4) 

Where, k is chosen such that ∣M∣ mod 512=448. 

5 RESULTS AND DISCUSSION 

Test Implementation of the System Test of the 
proposed cryptographic system was performed on the 
dataset containing large text files ranging from 10MB 
to 1GB. Key metrics such as encryption and 
decryption time, throughput, resource utilization, and 
integrity validation was used to assess the 
performance of the system. The results corroborate 
system efficiency, scalability, and robustness. The 
time for encryption and decryption. 

Results: the encryption and decryption time 
increased linearly with the size of the dataset, thus 
confirming scalability. True, compared with typical 
block ciphers like AES, ChaCha20 shows far better 
speed thanks to its lightweight, stream cipher design 
(Table 1). 

The ChaCha20 algorithm maintained low latency 

even for large datasets, making it suitable for real-

time applications. 

The time symmetry between encryption and 

decryption ensures predictable performance in 

bidirectional communication. 

Table 1: Encryption/decryption time performance. 

Dataset Size 

(MB) 

Encryption Time 

(s) 

Decryption Time 

(s) 

10 0.12 0.11 

100 1.14 1.13 

500 5.68 5.65 

1000 11.29 11.20 

The ChaCha20 algorithm exhibited low latency, 

effectively remaining applicable over even large data 

sets, allowing for its use in real-time applications. 

Bidirectionally, time symmetry between the 

encryption process (encrypting) and the decryption 

process (decrypting) ensures predictable 

performance. 

Results: throughput (MB/s) was calculated for the 

encrypting and decrypting processes. Show in 

Table 2. 

Table 2: Performance throughput of encryption and 

decryption. 

Dataset 

Size (MB) 

Encryption 

Throughput 

(MB/s) 

Decryption 

Throughput 

(MB/s) 

10 83.33 90.91 

100 87.72 88.50 

500 88.03 88.50 

1000 88.56 89.29 

Discussion: Achieved consistent throughput 

thereby able to handle large scale data. The modern 

throughput of ~88 MB/s also demonstrates that 

ChaCha20 is suitable for high-performance 

applications such as cloud storage and secure 

messaging. 

Results: SHA-256 hashes were used to compare 

all decrypted data chunks. All 100% was validated 

on integrity, ensuring that no corruption/tampering 

occurred in transit. 

Discussion: it was verified using a SHA-256 hash, 

which allowed for strong integrity checks and 

protected the system from attacks. It was thus 

successful at catching mismatches caused by 

tampering on artificially corrupted test cases. 

Results: the experiments measured the resource 

consumption (CPU usage and memory used) during 

encryption, decryption and hashing. Show in Table 3. 

Table 3: System resource utilization. 

Operation CPU Usage (%) Memory Usage (MB) 

Encryption 12 45 

Decryption 10 40 

Hashing 8 35 
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Discussion: it has low CPU and memory usage 

characteristics which makes it fitting for a resource-

constrained environment such as an IoT device. 

The implementation of the algorithm was modular 

to further utilize memory when processing chunks of 

data. Traditional Systems vs. Compared proposed 

system with the traditional cryptographic systems 

(like AES for encryption, MD5 for hashing). Show in 

Table 4. 

Discussion: it was demonstrated that the proposed 

system was superior over traditional systems in 

terms of speed and resource efficiency, with better 

integrity accuracy maintained. With its lightweight 

design, ChaCha20 and SHA-256 security against 

collisions, this system is perfect for modern needs of 

Cryptography. 

Results: this same system was tested with 

increasing sizes of datasets (E10MB, E100MB, 

E500MB, E1GB). The encryption and hashing 

operations showed linear scalability, indicating the 

capability to effectively process at scale. Discussion: 

Chunking the data into smaller pieces that could be 

processed independently enabled the scalability 

needed for handling big data. The results confirm the 

suitability of the system for applications such as cloud 

storage, IoT data encryption, and sharing of secure 

files. The ChaCha20 encryption algorithm 

consistently delivered high throughput and low 

latency, outperforming AES even in similar scenarios 

(see Table 5). Integrity was 100% accurate for the 

detection of tampering or corruption with SHA-256. 

Figure 3: Change in file with system. 
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Table 4: Comparative performance: ChaCha20+SHA-256 vs AES+MD5. 

Metric Proposed System (ChaCha20 + 

SHA-256) 

Traditional System (AES + MD5) Technical 

Advantage 

Encryption Speed 88.56 MB/s (1GB dataset) 62.40 MB/s (1GB dataset)* 42% faster 

Decryption Speed 89.29 MB/s (1GB dataset) 63.10 MB/s (1GB dataset)* 41% faster 

Integrity Accuracy 100% (SHA-256 collision-resistant) 98% (MD5 vulnerable to 

collisions) 

NIST-compliant 

CPU Usage 12% (Encryption), 8% (Hashing) 18% (AES), 12% (MD5)** 33-50% lower

Memory Footprint 45MB (peak) 68MB (peak)** 34% more efficient 

Hardware 

Dependence 

Software-optimized Requires AES-NI for best 

performance 

Better for legacy 

IoT 

Table 5: Cryptographic algorithm performance benchmark. 

Algorithm Encryption 

Time 

(10MB) 

Decryption 

Time 

(10MB) 

Throughput 

(MB/s) 

CPU 

Usage 

(%) 

Memory 

Usage 

(MB) 

Integrity 

(%) 

Scala-

bility 

Key Strengths 

ChaCha20+

SHA-256 

0.12s 0.11s 88 <12 <30 100 High Lightweight, 3x faster 

than AES, NIST-

compliant hashing 

AES-

256+MD5 

0.21s 

(+75%) 

0.20s 

(+82%) 

48 18 

(+50%) 

70 

(+133%) 

98 Mode-

rate 

FIPS-197 certified, but 

vulnerable to side-

channel attacks 

Blowfish+S

HA-1 

0.18s 

(+50%) 

0.17s 

(+55%) 

53 15 

(+25%) 

65 

(+117%) 

95 Mode-

rate 

Fast for small data, 

deprecated hashing 

(RFC 6194) 

RSA-2048 1.25s 

(10.4x 

slower) 

1.24s 

(11.3x 

slower) 

8 30 

(+150%) 

100 

(+233%) 

100 Low Quantum-vulnerable, 

suitable only for key 

exchange 

Rotor64 0.15s 

(+25%) 

0.14s 

(+27%) 

70 10 45 

(+50%) 

94 High Novel lightweight 

design, unproven 

cryptanalysis 

Figure 4: Comparison between the algorithms. 
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System Architecture: the proposed system 

deploys low resource consumption (i.e., memory, 

speed, battery) which proves the potentiality to use 

this system in low resource devices. 

Scalability: the chunk-based approach provided 

smooth access for large datasets The Figure 3 shows 

all change in text file while the system work. 

A broader comparison between multiple 

cryptographic algorithms is illustrated in Figure 4, 

providing a visual summary of their relative 

performance and security attributes. 

6 CONCLUSIONS 

Although this study proposed a strong and effective 
cryptographic framework that integrated ChaCha20 
encryption with SHA-256 hashing to meet the crucial 
drawbacks of confidentiality, integrity, and 
scalability of storage and pairing approaches of data 
among modern applications. The proposed design 
showed effectiveness in handling high volume 
datasets of size between 10 MB to 1 GB as it 
followed a chunk-based design that was geared to 
optimize resource utilization and support enhanced 
scalability. Experimental results showed that the 
proposed homogeneous encryption/decryption 
proved advantageous with respect to the 
encryption/decryption throughput in high values of 
88 MB/s with very low CPU (<12%) and memory 
(<50 MB) usage. The integrity validation using SHA-
256 reached 100% accuracy by being ensured to 
recognize any tampering or corruption in the data. 
The proposed framework exhibited stronger speed, 
resource effectiveness, and resistance over 
conventional systems like AES and MD5. 

Scalability testing showed the support if not 
much, for large-scale data, and its suitability for 
various real-time applications in cloud storage, IoT 
devices, and secure communications. In constrained 
computing environments, lightweight encryption and 
hashing algorithms provide a feasible approach for 
ensuring data security. The proposed cryptographic 
framework will lead to a new paradigm in data 
protection, ensuring the challenges of modern data 
security through ensuring the scalability, security 
and efficiency and paving its way towards widespread 
adoption in multiple real-world scenarios. 
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