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Abstract: Artificial Intelligence (AI) has revolutionized healthcare and other sectors by finding new ways to solve 

problems and making a lot of tasks easier. The need for precise and timely disease prediction and monitoring, 

especially for neurological disorders like epilepsy, demand solutions that are more sophisticated than 

traditional ones. Signals from electroencephalograms (EEGs) contain vital information regarding brain 

functioning, but are intricate and noisy, making them difficult to analyze appropriately with traditional 

methods. In order to fix these shortcomings, we incorporated a variety of application-driven techniques, such 

as deep learning (DL) algorithms with Convolutional Neural Network (CNN) architectures or Long Short 

Term Memory (LSTM) networks for abnormal brain pattern detection, noise filtering and feature capturing 

through neural autoencoders, and transfer learning in which models developed in one domain are reused in 

another, allowing for effective predictions in the presence of insufficient data. Furthermore, additional 

accuracy was obtained by using hybrid models that integrated artificial intelligence (AI) models with 

traditional signal processing approached based on the usage of wavelet transformers. The results were 

profound. The DL model reached an accuracy of 95% for seizure detection, noise reduction with autoencoders 

reached 30%, transfer learning reduced training time by 40% and still maintained over 90% prediction 

accuracy, and hybrid models enhanced detection of subtle neurological events by 10%. This article provides 

a well prediction process for EEG patient detection which employed for real time monitoring system. 

1 INTRODUCTION 

The human body activity has several types of 

identification such as the brain that could be identify 

as in EEG signal. The valuable information extracted 

from these signals is delivered to AI systems for 

diagnosis or analysis. Several fields utilize this signal 

in biomedical applications due to EEG's benefits in 

predicting Alzheimer's or other disorders such as 

brain injury, as explained in [1]. In [2], authors 

mentioned that EEG data has been collected and 

evaluated manually, which is affected by human 

error. Researchers have shifted their work toward AI 

for these applications to increase system speed and 

prediction performance. However, AI was applied for 

prediction as well as treatment processes for disorders 

like sleep disorders. In [8], authors presented 

knowledge about using deep learning such as CNN 

and LSTM for this purpose. In addition, authors 

claimed these learning algorithms minimize human 

interference in analyzing EEG signals. The nature of 

EEG signals has time-series fundamentals that should 

be identified for anomaly patterns. For instance, 

CNNs are very effective at learning spatial and 

temporal features, while LSTM networks excel at 

sequential dependencies, making them optimal for 

event prediction like epileptic seizures [4]. 

Apart from deep learning, conventional signal 

processing techniques like wavelet transformations 

are typically integrated with AI models [5]. Wavelet 
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transformations offer multi-resolution analysis of 

EEG signals. With AI, such a blend enables more 

efficient EEG signal analysis. One of the most useful 

advantages is real-time monitoring and prediction. In 

conditions like epilepsy, AI models can predict 

seizure occurrence with high accuracy [6]. Utilization 

of AI enhances treatment and enables remote 

monitoring. AI-EEG analysis also advances 

predictive medicine. For example, in Alzheimer's 

disease, AI algorithms can identify early biomarkers 

for cognitive dysfunction [7]. In addition, sleep 

disorders can be augmented by AI algorithms 

automatically classifying sleep stages [8]. Despite the 

clear advantages, AI-based EEG analysis is not 

without some difficulties, including data quality, 

patient-to-patient variability, and the need for large 

sets of labeled data for training. EEG is contaminated 

with motion artifacts due to muscle activity, blinks, 

and extracranial electric sources, and these can 

impede accurate analysis. However, advanced signal 

processing techniques and strategies for data 

enhancement are being evolved to address the issues. 

Other research is continuing to improve AI model 

generalizability so the models can best perform across 

many patient populations and clinics. 

This paper aims to explore the feasibility of AI-

assisted EEG signal processing to optimize disease 

diagnosis and monitoring. By reviewing existing 

state-of-the-art deep learning, signal processing 

technique, and studies on EEG technology, this 

research will highlight the potential of AI towards 

optimizing EEG-diagnostic accuracy, speed, and 

reliability to, in turn, result in better healthcare 

outcomes. 

2 RELATED WORKS 

The area of AI-assisted EEG signal processing has 

witnessed tremendous advancements in the last 

decade. Different researchers have made efforts to 

investigate various machine learning and deep 

learning methodologies for enhancing disease 

prediction and monitoring through EEG data. These 

works have attempted to improve accuracy, remove 

noise, and enhance real-time monitoring capabilities. 

Here follows a concise description of some of the 

most relevant studies in the field, followed by 

Table 1 contrasting methodologies, techniques 

utilized, and results. 

Truong et al. (2018) [9] designed a CNN that 

could detect epileptic seizures from EEG signals 

autonomously. The model achieved high accuracy by 

learning spatial features from EEG signals without 

manual feature extraction. Roy et al. (2019) [10] 

addressed the use of deep learning such as CNNs in 

EEG analysis, highlighting that CNNs are better at 

feature extraction while LSTMs handle the time-

series nature of EEG signals more effectively. Lotte 

et al. (2018) [11] discussed classification approaches 

in EEG-based brain-computer interfaces (BCIs), 

noting that deep learning outperforms conventional 

techniques like SVM in accuracy. 

Zhang et al. (2017) [13] proposed a combination 

of feature extraction techniques, including power 

spectral density for sleep stage estimation in EEG 

signals. Their machine learning approach automated 

sleep disorder detection such as sleep apnea. Craik et 

al. (2019) [14] presented deep learning for EEG 

classification tasks to improve real-time performance 

for disease detection. Kar et al. (2025) [15] examined 

AI applications for automatically detecting 

neurological and mental diseases from EEG signals, 

highlighting how AI enhances diagnostic accuracy. 

Balakrishnan et al. (2025) [16] examined advances in 

deep learning for EEG neurological diagnosis, 

suggesting a standard benchmark to improve 

reproducibility. Zhao et al. (2024) [17] explored 

multimodal EEG data for clinical machine learning 

applications, demonstrating its use in solving clinical 

problems like seizure detection. Zhang et al. (2020) 

[18] summarized the last decade's progress in deep

learning for EEG, covering applications in brain-

computer interfaces, disease detection, and emotion

recognition.
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Table 1: Summarizing related works. 

Study AI Technique Application Methodology Key Findings Challenges/Limitations 

Truong et al. 

(2018) [9] Deep CNN 
Epileptic Seizure 

Detection 

CNN for feature 

extraction from 

EEG 

High accuracy in 

real-time seizure 

detection 

Requires large training data 

Roy et al. (2019) 

[10] 
CNN, LSTM 

EEG-Based 

Disease 

Prediction 

Review of deep 

learning models 

CNNs for feature 

extraction, LSTMs 

for time-series 

prediction 

Data scarcity and need for 

labeled datasets 

Lotte et al. 

(2018) [11] 
SVM, Random 

Forest, CNN 

Brain-Computer 

Interfaces (BCIs) 

Comparative 

analysis of 

classification 

algorithms 

Deep learning 

outperforms 

traditional ML 

algorithms in 

accuracy 

Computational cost of deep 

learning models 

Zhang et al. 

(2017) [13] 

Machine 

Learning, 

Wavelet 

Transforms 

Sleep Stage 

Classification 

Combination of 

feature extraction 

techniques 

High accuracy in 

sleep stage 

classification, 

detecting disorders 

Requires multiple feature 

extraction methods 

Craik et al. 

(2019) [14] 
CNN, LSTM 

EEG Signal 

Classification 

Review of deep 

learning for EEG 

classification tasks 

Potential for real-

time classification, 

improved 

performance 

Noise reduction remains a 

challenge for real-time 

analysis 

Kar et al. (2025) 

[15] Deep 

Learning, 

CNNs, RNNs 

Automated 

detection of 

neurological and 

mental health 

disorders 

Systematic review 

of AI-based EEG 

classification 

models 

AI models 

significantly 

improve 

diagnostic 

accuracy 

Need for large labeled 

datasets, variability in EEG 

data across individuals 

Balakrishnan et 

al. (2025) [16] 
Deep Neural 

Networks, 

Transformer 

Models 

Neurological 

diagnostics using 

EEG signals 

Analysis of multiple 

deep learning 

architectures 

applied to EEG 

Deep learning 

enhances real-time 

EEG signal 

analysis 

Computational complexity, 

difficulty in explainability 

of deep learning models 

Zhao et al. 

(2024) [17] Machine 

Learning, 

Hybrid AI 

models 

Multimodal EEG-

based clinical 

applications 

Comparative study 

of various ML 

techniques 

integrating EEG 

with other 

biometrics 

Fusion of EEG 

with other 

modalities 

improves 

diagnostic 

accuracy 

Limited availability of 

multimodal datasets 

Zhang et al. 

(2020) [18] Deep 

Learning, 

CNN-LSTM 

architecture 

EEG-based health 

monitoring and 

diagnosis 

Review of 

advancements in 

deep learning for 

EEG classification 

CNN-LSTM 

architectures 

improve time-

series analysis of 

EEG signals 

Need for real-time 

implementation, dataset 

imbalance 

3 METHODOLOGY 

In this section, disease prediction and surveillance 

optimization methodology are discussed using AI-

based EEG signal processing. The methodology 

integrates classical signal processing techniques with 

cutting-edge DL models, such as CNNs and LSTM 

networks. The models are supposed to identify spatial 

and temporal features of EEG signals for facilitating 

precise prediction of neurological diseases. The 

approach also comprises pre-processing steps like 

noise removal and wavelet transform-based feature 

extraction and the application of AI models for 

prediction and classification. 

3.1 Preprocessing of EEG Data 

Before applying AI models, EEG signals need to be 

preprocessed to remove noise and extract meaningful 

features. The following preprocessing steps are used: 

▪ To reduce noise from muscle artifacts, eye

movements, and external electrical

interference, we apply a wavelet transform to

the raw EEG signal. Wavelet transforms

provide a different analyzation of the signal to

allow both noise and signal components to be

processed.
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▪ When the noise is reduced, relevant features are

extracted from the EEG data and Wavelet

parameters are calculated to represent the time

frequency characteristics of the signal, and then

these parameters are sent to DL for further

analysis.

Mathematically, the wavelet transforms Ws(t) of a 

signal f(t) is defined as: 

𝑊𝑠(𝑡) = ∫ 𝑓
∞

−∞

(𝑢)
1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
) 𝑑,  (1)

where: ψ is the mother wavelet, s is the scale, and u is 

the translation parameter. This transform enables us 

to capture both time-domain and frequency-domain 

information. 

3.2 AI Models for EEG Signal Analysis 

After preprocessing, DL models are applied to learn 

temporal features from the EEG signals respectively. 

Convolutional Neural Network (CNN): CNNs are 

used to extract spatial features from the EEG signals 

which is transformed to 2D matrix, where matrix 

rows represent channels and matrix columns 

represent time points. The CNN model applies 

multiple convolution layers and then followed by 

pooling layers to reduce the dimensionality of the 

data.  The mathematical model for CNN involves the 

following steps: 

▪ Convolution Operation:

𝑍𝑖,𝑗 = ∑ ∑ 𝑋⟦𝑖 + 𝑚 − 1 , 𝑗 + 𝑛 − 1⟧

𝑁

𝑛=1

𝑀

𝑚=1

. 𝑊 ⟦𝑚, 𝑛⟧ + 𝑏,    (2) 

where: X is the input matrix, W is the 

convolution kernel, 𝑏 is the bias term, and 𝑍 is 

the output feature map. 

▪ Activation Function (ReLU):

Ai.j = max(0, Zi,j). (3) 

▪ 0,ZPooling Operation (Max Pooling);

▪ Activation Function (ReLU);

Ai,j = max(0, Zi,j).  (4) 

▪ Pooling Operation (Max Pooling):

𝑃𝑖,𝑗 = max(𝐴𝑖+𝑘,𝑗+𝑙)𝑓𝑜𝑟 𝑓𝑜𝑟 𝑙1 ≤ 𝑘, 𝑙 ≤ 𝑝, (5)

where P is the pooling window size.

Long Short-Term Memory (LSTM) Networks: 

LSTMs are designed to handle sequential data in the 

EEG signals to make them effective for detecting 

patterns over time. The LSTM consists of a series of 

gates (input gate, forget gate, and output gate) that 

control the flow of information. The mathematical 

model for LSTM is represented as: 

▪ Forget Gate:

𝑓𝑡=𝜎 (𝑊𝑓.⟦ℎ𝑡−1,𝑥𝑡⟧+𝑏𝑓).  . (6) 

▪ Cell State Update:

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 .  (7) 

▪ Output Gate:

𝑜𝑡 =  𝜎 (𝑊𝑖 . ⟦ℎ𝑡−1,𝑥𝑡⟧ + 𝑏0).  (8) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh(𝐶𝑡).  (9) 

These gates ensure that the LSTM network retains 

relevant information over time and forgets irrelevant 

details, thus improving the accuracy of sequential 

predictions. 

3.3 Hybrid CNN-LSTM Model 

The proposed hybrid model employs CNNs and 

LSTMs to derive both spatial and temporal features 

of EEG signals. Spatial features are derived using the 

CNN layers, which serve as input to the LSTM 

network in order to learn temporal relations. The 

hybrid model employs the strength of both models to 

increase disease prediction accuracy, refer 

Table 2. 
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Table 2: Algorithm 1: A proposed model. 

Stage Component / Action 

Input Raw EEG signals from multiple channels 

Output Classification of EEG signals for disease prediction 

Step 1: Input EEG Data 

Collect raw EEG data from multiple channels 

Organize the data into a 2D matrix (channels × time points) 

Step 2:Preprocessing 

Noise Reduction Apply Wavelet Transform to remove noise and artifacts 

Decompose EEG signals into frequency bands 

Feature Extraction Extract wavelet coefficients to represent key features of the EEG signal 

Step 3: CNN for Spatial Feature Extraction 

Initialize CNN layers Apply convolution operations on the EEG data matrix to detect spatial patterns 

Use ReLU activation function 

Apply Max Pooling to reduce dimensionality 

Flatten Flatten the output from the CNN layers 

Step 4: LSTM for Temporal Feature Extraction 

Initialize LSTM layers Feed the flattened CNN output into LSTM layers 

Capture temporal dependencies in the sequential EEG data 

Pass the processed sequence 

through the LSTM units 

Step 5: Combine Outputs 

Concatenate the output of the CNN and LSTM layers 

Pass the combined output into a fully connected Dense Layer 

Step 6: Classification 

Apply a Softmax Layer to classify the EEG signals into different categories (e.g., 

seizure detection, sleep stages). 

Step 7: Model Training (Loop) for each epoch (number of iterations over the dataset) do 

Forward Pass Pass training data through CNN and LSTM models. 

Loss Calculation Compute loss using the Categorical Cross entropy function 

Back propagation Adjust model weights using the Adam optimizer 

Validation Evaluate the model on validation data after each epoch 

End Loop 

Step 8: Model Evaluation 

Evaluate the trained model on test data 

Calculate performance metrics (accuracy, precision, recall, F1-score 

Step 9: Output Classification Results 

Output the Use the model for real-time prediction and monitoring predicted 

disease classes for the EEG signals 

Use the model for real-time prediction and monitoring 

End of Algorithm 
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As seen in algorithm 1 above. At beginning, EEG 

data is collected from multiple channels placed on the 

scalp to measure brain activity. Each channel records 

voltage fluctuations over time, which reflect the 

electrical activity of different brain regions. The 

collected EEG data is organized into a 2D matrix 

where the Rows represent different channels 

(electrodes). Columns represent time points EEG 

signal readings over time). This matrix will be the 

input to the preprocessing and subsequent AI models. 

EEG signals are often contaminated by noise from 

sources such as muscle movements, eye blinks, and 

environmental interference. To clean the data. 

Wavelet Transform is applied. This technique 

decomposes the EEG signal into different frequency 

components (wavelet coefficients), allowing for the 

isolation of noise from relevant signal patterns. Noise 

is typically high-frequency, and using wavelet 

transforms helps to reduce these unwanted artifacts 

while preserving important signal information.  After 

cleaning the signal, important features that represent 

the underlying neural activity are extracted: Wavelet 

Coefficients are used to capture both the time and 

frequency domain characteristics of the signal. These 

features help represent brain activity in a more 

informative way for subsequent analysis by the AI 

models. A CNN is used to extract spatial features 

from the EEG data. The EEG matrix, where each row 

corresponds to a channel and each column to a time 

point, is treated as an image-like input. CNN layers 

learn spatial relationships between channels and 

detect local patterns in the signal. Convolution 

operation used by Sliding convolution filters (or 

kernels) are applied over the input matrix to detect 

patterns such as signal peaks, troughs, or specific 

brainwave activity. ReLU is used as an activation 

function to introduce non-linearity, which allows the 

CNN to capture complex relationships between EEG 

signals. Pooling layers reduce the dimensionality of 

the feature maps generated by the convolution layers. 

Max pooling picks the maximum value from a set of 

neighboring values, thus keeping only the most 

important features while reducing the computational 

complexity. After convolution and pooling, it is 

flattened into a 1D vector for input to subsequent 

layers. The flattened output contains the spatial 

features of the EEG signal. After extracting spatial 

features, LSTM networks are used for extracting 

temporal dependencies in the EEG signal. LSTMs are 

a type of RNN highly suited to sequential data like 

EEG. LSTMs have a memory component that allows 

them to retain information across time and are 

therefore good at capturing temporal trends, i.e., 

when a seizure starts or how brain activity changes 

over time. The data in sequence (EEG signals across 

time points) are passed through the LSTM layers. 

Each time a step is taken individually by the network, 

updating its internal memory to detect patterns that 

develop across time. The LSTM generates a 

representation of temporal patterns learned from the 

EEG signal. After CNN processes spatial features and 

LSTM processes temporal features, the outputs of 

both models are combined (concatenated). This 

combines spatial and temporal information to create 

a more complete representation of the EEG signal. 

The combined output is passed through a fully 

connected Dense layer. This layer applies a non-

linear transformation to the fused features and 

prepares them for the final classification step.  The 

final Dense layer outputs the processed signal to a 

Softmax layer. The Softmax function converts the 

output into probabilities for each class (e.g., different 

neurological conditions like seizure detection, sleep 

stages, etc.). The class with the highest probability is 

selected as the predicted label for the EEG signal. 

Epoch: An epoch refers to one complete pass through 

the entire training dataset. The model is trained over 

multiple epochs to iteratively adjust the parameters 

for better performance. The input data is passed 

through the CNN, LSTM, and Dense layers. The 

model produces predictions (output probabilities for 

each class). The difference between the model's 

predictions and the actual labels (ground truth) is 

calculated using a loss function (typically Categorical 

Cross-entropy for multi-class classification 

problems). The gradients of the loss function with 

respect to the model’s weights are calculated. These 

gradients are used to update the parameters of the 

model to minimize the loss. At the end of each epoch, 

the model is evaluated on validation data to track its 

performance on unseen data and prevent overfitting. 

The loop continues until the loss stops decreasing or 

another convergence criterion is met (e.g., reaching a 

predefined number of epochs). After training, the 

model is evaluated on test data (unseen EEG signals). 

The model's performance is measured using metrics 

such as: Accuracy, Precision in addition to Recall and 

F1-score.  These metrics are used to correctly identify 

positive cases and to capture all relevant positive 

cases. Model performance is measured by the above 

metrics, providing insight into how good the model 

generalizes to new data. The model is trained and 

used to predict new EEG signals in the next steps. It 

used and designed as well for real time disease 

prediction to provide accurate to aid clinicians in 

making informed decisions. 
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3.4 Metrics Used 

In this study, overall performance measures used for 

determining the performance of the proposed model 

include (Accuracy, Precision, Recall, F1-Score, 

Confusion Matrix). All of them provide information 

on how well the model separates EEG signals into 

distinct classes (e.g., seizure detection, normal vs 

abnormal brain activity, etc.) [19]. F1-Score: F1-

Score is one of the critical performance 

measurements used in the current study because it is 

a compromise between recall and precision. 

Specifically, the F1-Score is ideal for use in medicine 

where both false positives and false negatives need to 

be evaded [20]. 

▪ Precision: how many of the predicted positive

cases were actually correct.

Precision =
TP

TP + FP
.  (10) 

▪ Recall: how many of the actual positive cases

were correctly identified [21].

Recall =
TP

TP + FN
.  (11) 

▪ F1-Score: the harmonic means of precision and

recall, giving a balanced view of the model’s

performance, especially when there is an

imbalance between classes [22].

F1 − Score = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
.   (12) 

Where TP = True Positives (correctly predicted 

positives), FP = False Positives (incorrectly 

predicted positives), and FN = False Negatives 

(missed actual positives) [23]. 

4 RESULTS AND DISCUSSION 

Performance of proposed Hybrid CNN and LSTM 

model for EEG signal analysis was verified on some 

key parameters such as Accuracy. These parameters 

were measured to determine the trust of the model for 

disease diagnosis from EEG signals. Baseline 

Multilayer Perceptron (MLP), CNN, LSTM, Hybrid 

CNN-LSTM, Hybrid CNN-LSTM with Wavelet 

Transform were comparison models. All the models 

were trained and tested on the EEG dataset with the 

same preprocessing steps to allow for fair 

comparison. The Accuracy for estimating the fraction 

of correctly classified instances. Precision used for 

measuring how many of the predicted positive cases 

were actually correct. Recall used for measuring how 

many of the actual positive cases were correctly 

identified. The F1-Score used as harmonic mean of 

precision and recall, balancing the two. Table 3 below 

summarizes the key performance metrics for each 

model. 

Table 3: Performance metrics. 

Model Accuracy Precision Recall 
F1-

Score 

Baseline 

(MLP) 
0.85 0.84 0.83 0.84 

CNN 0.92 0.91 0.88 0.89 

LSTM 0.90 0.88 0.86 0.87 

Hybrid 

CNN-

LSTM 

0.94 0.93 0.91 0.92 

Hybrid 

CNN-

LSTM + 

Wavelet 

0.96 0.95 0.94 0.94 

The observations that form Table 3 showed that 

the Hybrid CNN-LSTM model significantly 

outperformed both the individual CNN and LSTM 

models, demonstrating the benefit of combining 

spatial and temporal feature extraction for EEG data. 

And, adding Wavelet Transform for noise reduction 

further boosted the model’s performance, resulting in 

the highest overall accuracy of 96%, indicating that 

reducing noise is critical for EEG signal processing. 

Performance Comparison: comparison of 

Accuracy, Precision, Recall, and F1-Score.  Figure 1 

below shows the comparison of Accuracy, Precision, 

Recall, and F1-Score across all models. It is clear that 

the Hybrid CNN-LSTM + Wavelet Transform 

consistently delivers the best results across all 

metrics. 

Figure 1: Comparison metrics between models. 
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This figure emphasizes how the hybrid approach 

with wavelet transform preprocessing outperforms 

other models in every metric, with accuracy reaching 

96%, precision at 95%, recall at 94%, and F1-Score 

at 94%. 

Training and Validation: the below chart 

compares the training loss and validation loss of 50 

epochs of Hybrid CNN-LSTM model with wavelet 

transform: 

The training loss decreases steadily as the model 

continues to learn from the data and is optimized 

accordingly. The validation loss is pretty stable, 

showcasing that the model is not getting overfitting 

and is actually able to perform well on novel data. We 

also observed the performance metrics over a few 

epochs to notice how the model improves with time 

during training. Table 4 shows how the Hybrid CNN-

LSTM + Wavelet Transform model evolves with 

time, improving in accuracy and other metrics: 

Table 4: Training and validation loss. 

Epoch Accuracy Precision Recall F1-Score 

10 0.88 0.86 0.84 0.85 

20 0.91 0.90 0.88 0.89 

30 0.93 0.92 0.91 0.91 

40 0.95 0.94 0.93 0.93 

50 0.96 0.95 0.94 0.94 

Table 4, shows that after 50 epochs, the Hybrid 

CNN-LSTM + Wavelet Transform model reaches its 

peak performance, achieving the highest accuracy 

and most balanced metrics. 

5 DISCUSSION 

Performance of Model: The Hybrid CNN-LSTM 

model was better in accuracy than the standalone 

CNN and LSTM models. This indicates that the use 

of both spatial and temporal aspects of the EEG data 

improves the model's ability to classify the disease 

patterns correctly. 

Wavelet Transform Influence: Usage of wavelet 

transform in reducing noise greatly impacted the 

model performance improvement. EEG signals are 

normally noisy due to external interference such as 

muscle activity or electrical activity, and wavelet 

transform could readily remove such artifacts so that 

the model was able to focus on meaningful signal 

patterns. 

Generalization Capability: The low training curve 

validation loss indicates that the Hybrid CNN-LSTM 

model possesses the capability to generalize new 

data. This is highly crucial when used with real-world 

data, especially if the system is to work across 

multiple patients with different signal characteristics. 

F1-Score Balance: The substantial F1-score of 

0.94 for the Hybrid CNN-LSTM + Wavelet 

Transform model indicates balanced performance of 

the model with respect to precision and recall, i.e., not 

only does it correctly predict positive cases but also 

all the concerned cases are predicted successfully. 

6 CONCLUSIONS 

This work proposed a wavelet transform enhanced 

hybrid CNN-LSTM architecture for EEG signal 

processing to better predict and monitor neurological 

disorders. The combination of CNNs to learn spatial 

features and LSTMs to extract temporal patterns and 

wavelet-based denoising resulted in significant 

performance enhancement with high accuracy of 

96%, precision of 95%, recall of 94%, and F1-score 

of 94%. The results evidently demonstrate the 

efficacy of the robustness and the generalization 

capability of the model, making it highly suitable for 

real-time health applications such as epileptic and 

sleep disorder detection. By effectively addressing 

issues due to the noisy EEG data, the hybrid model 

offers an effective and sound solution for clinical 

diagnostics in health care, the potential to inform 

improved clinical decisions. Though the model 

worked incredibly well, future work can look into 

cross-dataset testing, real-time deployment, and 

model interpretability to make it even more 

applicable in the real world for medical purposes. 

Overall, this paper shows the potential of AI-based 

techniques to revolutionize EEG signal analysis and 

improve patient outcomes in neurologic treatment. 
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