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Abstract: In the modern world of programming, where reliability and security are critically important aspects, the 

detection and correction of errors becomes an integral part of software development. One of the methods for 

detecting errors is the use of error codes, such as Cyclic Redundancy Checks (CRC) and probabilistic number 

code (PNC). In this work, we compare these two models for detecting errors in the python programming 

language. The aim of the study is to investigate the efficiency and applicability of these models for detecting 

errors in data, including 6-bit errors. Full-fledged code examples are provided for each model. These models 

are involved to provide analyzation of its contribution and how it deals with errors, which ensures data 

integrity through the full process. In addition, the performances of CRC and PNC for 6-bits are included and 

studied for this purpose. Results showed that CRC16 provide better performances than PNC16. The high 

reliability of CRC16 is due to restrict mathematical operations that CRC16 followed to detect errors. While 

PNC16 introduced uncertainty and occasional failures in detecting errors for the same data that has been used 

with CRC16.

1 INTRODUCTION 

The reliability of related codes especially in software 

development is considered a crucial factor for 

programming process. Some issues related to code 

errors which lead to undesired faults such as incorrect 

behavior or even some notable security 

vulnerabilities. Different types of models with 

various tools was applied to specify and try to solve 

such issues [1], [2]. From these common techniques 

are Cyclic Redundancy Check (CRC) and Probable 

Number Code (PNC), which designed for data 

transmissions. In spite of same field utilization for 

these both techniques, but different approaches are 

defined for each technique. Based on Python 

software, this article provide a comparison between 

CRC and PNC according to error samples provided 

by users. Using Python provided an exploration about 

each technique properties like strengths in addition to 

their weaknesses points. The goal was also for 

providing some recommendations on how the choice 

would be to specify the appropriate method for a 

specific task. According to the software 

performances, programmer or even users can 

examine these techniques for better decision reports. 

Also, system needs with its related constraints 

specify which one of these techniques are more 

suitable for a specific task.  

The main goal of this article is the using of direct 

utilization of python software to give the comparison 

between these two techniques. These would provide 

more points about these techniques which cannot be 

observed in theoretical rules.  

2 ANALYZING THE CRC 

ALGORITHM 

Different error types could be occurred due to the 

interferences in the form of transmitted frame, these 

types are defined as single, multiple or in a packet 

form. 

Packet error is defined as the number of bits 

between two consecutive erroneous bits Figure 1. In 

addition, when determining the packet error length, 

the last erroneous bit in a packet and the first 

erroneous bit in the next packet must be separated [1]. 
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Figure 1: Example of a packet error. 

The CRC check summing method is based on the 

properties of division with remainder of a polynomial 

(binary number). In essence, the CRC result is the 

remainder from dividing the polynomial 

corresponding to the original data by the generating 

polynomial of fixed length. 

The standard way of representing a generating 

polynomial is to show those positions at which the 

binary units are powers of X. Examples of generating 

polynomials used in practice are as follows [2]-[3]: 

; 

. 

Hence, CRC-16 in binary form is equivalent to 

writing: 

11000000000000101. 

With this generator polynomial, 16 zeros will be 

added before the generation of the FCS (Frame 

Check Sequence). The last one will be a 16-bit 

remainder.  

CRC-16 and CRC-CCITT are widely used in 

networks such as ISDN, while CRC-32 is used in 

most local area networks. The CRC method can be 

easily implemented in hardware and software. 

One set of check digits is generated (calculated) 

for each transmitted frame based on the frame 

contents and added by the transmitter to the tail of the 

frame. The receiver then performs a similar 

calculation on the full frame plus the check digits. If 

no errors were found, there should always be a known 

result; if a different answer is received, this indicates 

an error. 

The number of check digits per frame is chosen 

according to the expected type of transmission errors; 

16 and 32 bits are the most common. The calculated 

check digits are labeled as FCS or cyclic redundancy 

CRC frame check sequence [4]. 

Essentially, the method utilizes a property of 

binary numbers. When using modulo 2 arithmetic [5, 

6]: 

M(x) –k -digit -number (the message to be 

transmitted); 

( )G x – ( )1n + -bit number (divisor or

generator); 

( )R x – n is a digit -number such that k> n 

(remainder); 

, where Q(x) is private; 

 , assuming arithmetic 

modulo2. 

This result can be easily confirmed by 

substituting the expression for M(x) * 2n /G(x), into 

the second equation: 

, 

equal to Q(x), since all numbers modulo 2 added to it 

will be equal to zero, i.e. the remainder will be equal 

to zero. 

To use the full frame contents M(x) along with 

the added set of zeros equal to the number of FCSs to 

be generated (i.e., multiplied by 2n, where n is the 

number of FCSs) is divided modulo 2 by a binary 

number G(x) is the generator polynomial containing 

one more unit than FCSs). The division operation is 

equivalent to performing an exclusive OR operation 

on a parallel bit, since every bit in the frame is 

processed. Then the remainder of R(x) is FCS, which 

is transmitted at the tail of the information frames. 

Similarly, when received, the received bit stream, 

which includes the CRC number, is again divided by 

the same generator polynomial, i.e. 
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M(x) * 2n + R(x)/G(x), and if there is no error, the 

remainder is all zeros. However, if an error is present, 

the remainder is not zero. 

The choice of the generating polynomial is 

important because it determines the types of errors 

detected. Suppose that the transmitted frame: 

M(x) = 110101100110, 

and the error pattern 

E(x) = 000000001001. 

Thus, 1 in the bit position indicates an error. 

Let's apply the Boolean function sum modulo 2. 

The resulting frame = M(x) + E(x) 

Since M(x) /E(x) does not give a remainder, the 

error is present if E(x)/ G(x) gives a remainder. 

For example, G(x) has at least three non-zero 

summands (1 bits) and E(x)/ G(x)  will give a 

remainder for all one-bit and all two-bit errors with 

modulo 2 arithmetic, and hence the errors are 

detectable. Conversely, an error of length(x) gives no 

remainder and goes undetected [2]. 

The generator polynomial of R bits detects [7]: 

▪ all one-bit errors,

▪ all two-bit errors,

▪ all odd numbers of bit-errors,

▪ all error packets< R,

▪ most error packets> R.

Cyclic redundant CRC codes are a subclass of 

block codes and are used in HDLC, Token Ring, 

TokenBus, Ethernet protocol families and other link 

layer protocols [14]. Computational resources are 

understood as memory, processor power, and the 

number of shift registers [12]. One of the ways to 

represent a cyclic code is to represent it as a 

generating polynomial - a set of all polynomials of 

degree (r-code-1) containing as a common multiplier 

some fixed polynomial  . The polynomial

is called the generating polynomial of the code. For 

example,  , here r-code = 5, since the 

binary sequence looks like 10011. The standardized 

and recommended generating polynomials for the 

CRC algorithm are which shows the name of the 

standard and the generating polynomial [8]: for 

example, the entry  is equivalent (in binary) 

to 

 . 

2.1 Algorithms for Calculating CRC16 

CRC16 (Cyclic Redundancy Code) is a data integrity 

method that uses a polynomial of degree 16 to 

calculate a checksum [13]. 

The algorithm for calculating CRC16 is as 

follows: 

1) Initialization: Set the initial CRC16 value to

0xFFFF.

2) For each byte of data:

▪ Invert the bits of a data byte.

▪ Add a data byte to the current CRC16 value.

▪ For each bit of data byte:

▪ If the XOR between the current CRC16 value

and the current bit is 1, perform a right shift

operation by 1.

▪ Otherwise, perform a right shift operation by

1 without changing CRC16.

3) The final value of CRC16 is a checksum,

which is a 16-bit value.

Example: 

For data 0x21 0x43 0x65, calculate CRC16. 

Initial CRC16 value: 0xFFFF. 

Step 1. For byte 0x21: 

▪ Inverted byte: 0xDE.

▪ CRC16 = 0xFFFF + 0xDE = 0xF4DD.

Step 2. For byte 0x43:

▪ Inverted byte: 0xBC.

▪ CRC16 = 0xF4DD + 0xBC = 0xF579.

▪ Check each bit and make the appropriate shifts.

Step 3. For byte 0x65:

▪ Inverted byte: 0x9A.

▪ CRC16 = 0xF579 + 0x9A = 0xFF13.

▪ Check each bit and make the appropriate shifts.

The final CRC16 value for data 0x21 0x43 0x65 

is 0xFF13. 

2.2 Strengths and Weaknesses Points 
of the CRC16 Model 

CRC16 like other error detection techniques has 

privilege points which may be summarized as 

followed:   

1) CRC16 is built in easy and efficient way for

different devices or platforms.

2) Due to its quick calculations process, CRC16 is

suited for plenty type of applications.

3) CRC16 has effective error performances in

error identifying especially for transmission

data.
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In the other hand, CRC16 has some issues 

which limit their usage which could be mentioned as 

follow: 

1) Errors detection need correction process which

cannot be provided by CRC16. This issue

makes the system to retransmit data to the

sender side and taking too long time with cost

maximization.

2) Dealing with larger data makes the working of

CRC16 limited which provide restriction in

detection process.

3) calibration between parameters and initial

values may take too much time to be carefully

selected and finalized, which need additional

efforts.

3 ANALYSIS OF THE PNC16 

ALGORITHM 

This technique is considered as mathematical process 

which utilize to specify the likelihood of selection 

approach. These numbers are randomly selected and 

contained a specific number of digits. Some 

applications needed a probability estimation could 

use of PNC for their evaluations. Data transmission 

checking from errors and storage field are such an 

applications need PNC for numerical events 

estimation process.  

The encoded operation for a set of data could be 

corrupted with faults during transmission process. 

These changing in data presentation need an error 

detection using specific technique based on their 

tasks.  

The PNC estimate the probability of corrupted 

data for data transmission systems which is affected 

by interferences. The decision of this technique is 

also effected by the data accuracy, the PNC is also 

prompt any additional verifications. As a result, the 

PNC is considering as an impact tool to improve the 

transmission process with error detection and 

providing an information acknowledgment about 

data likelihood.  

The probability of selecting a number for one 

digits would be 0.1 which ranging from (0 to 9) for a 

single digit that has been randomly selected. These 

values are independent of other digits values that 

could be appearing in any given positions of related 

or transmitted data. The certain numbers of 

combination probability appearing could be 

calculated using equation below: 

PNC = (Nk) / 10n 

where PNC is number of coding probability: 

▪ N is the possible appearing digits (which is

equal to 10 for a regular system)

▪ k specifies number of digits that required for a

specific combination.

▪ n is the total number of digits in the number.

3.1 Algorithm for Calculating PNC16 

Creation of high quality, fast and simple enough 

algorithms of formation of checksums with the help 

of parallel random number generator is one of the 

main problems of data transmission with the help of 

low-frequency energy-saving systems. The solution 

of this problem ultimately determines the success of 

building a PNC model, since the characteristics of the 

parallel random number generator (PRNG) largely 

determine the parameters of the PNC [9].  

The relevance of the issue of synthesis of the 

model of formation of the probable code of PNC 

number is closely connected with the relevance of the 

problem of implementation of the principles of 

probabilistic methods of modeling and calculations 

of checksums of data transmitted over 

communication channels [10], [11].  

Figure 2 presents the general scheme of the model 

of formation of the probable code of PNC number, 

where A - transmitted binary sequence of digit n, Xi 

- formed by the i-th parallel PRNG

random code of digit n, Ki - result of bitwise logical

operation over the transmitted binary sequence and

random code of digit n, si - i-th element of the

calculated checksum, S - M-bit checksum (probable

number code) transmitted together with the binary

sequence over communication channels.

Checksum calculation for a binary sequence 

, 

is performed by means of several parallel 

pseudorandom number generators (PRNGs). The i-th

 PRNG generates the random 

sequence 

, ,

 , 
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S

A

ПГПСЧ  Xi

si

01011000001     .   ..xn

11011000011   .  .   ..an

     ...    ..

Ki

0101100    ..kn

Figure 2: General scheme of the PNC formation model. 

Figure 3: Block diagram of the algorithm of PNC checksum formation. 

where by elements of the sequences with the 

elements of sequence A are subjected to the logical 

operation AND (denoted by the symbol &) followed 

by summation by mod2. As a result, the following 

binary sequences are obtained: 

, 

where 𝑘𝑖,𝑗 = 𝑎𝑗&𝑥𝑖,𝑗 .

The checksum element is obtained by: 

. 

Thus, the checksum is a binary sequence 

𝑆 = (𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑀),

where M is the number of CBCPs used. 

All these activities can be represented in matrix 

form as follows. The elements form a matrix: 

. 

Here - is the matrix of the HGPSP matrix, - is a 

random uniformly distributed integer taking values 

from the set However, the first row of this matrix 

consists of units only. Elements form a vector 

𝐴 = (

𝑎1
𝑎2
⋮
𝑎𝑛

). 

On the transmitter line, the sum is calculated as 

follows: the elements of matrix X are line by line 

multiplied by the elements of vector A (source code), 
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the result is the sum of each row sm, and matrix S 

represents the checksum (PNC). 

𝑆 = (

𝑠1
𝑠2
⋮
𝑠𝑚

) = (

𝑎1
𝑎2
⋮
𝑎𝑛

)(

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛

). 

If the transmissions  and S received interference 

and failures, we will get  and  in the receiver , 

𝑆 = 𝐴̃ ∗ 𝑋. 

To detect interference and failures, we need to 

compare the check code   with  , if  is not equal 

- there is an error, if it is equal - there is no error.

Figure 3. shows a block diagram of the PNC

checksum generation algorithm. 

Example: A = 11010, with a 5-digit PNC 

Figure 4.  

Calculation result: A+S = 1101010000 

Figure.4. Example of PNC residue calculation. 

Also, this operation can be represented by the 

following formula: 

𝑆𝑖 = 𝑋𝑖𝑗 ⋅ 𝐴𝑖.

An example with probable interference is shown 

in Figure 5. 

Received packet with error: 01010 10100 

Reverse calculation result: 01010 00111 

Figure.5. Example of PNC calculation with errors 

(interference). 

Based on the analysis of the above-mentioned 

material, and in order to verify the error-free model, 

the author considers different ways of solving the 

problem in the next chapter within the framework of 

developing a method of data integrity control based 

on stochastic calculations. 

3.2 Advantages and Disadvantages of 
the PNC16 Model 

Advantages of the PNC16 model: 

1) The PNC16 is easy and intuitive to use, making

it accessible to a wide range of users.

2) CRC16 allows you to quickly and accurately

estimate the probability of a number code,

which helps you make more informed

decisions.

3) Based on special algorithms and models, the

PNC16 model provides high accuracy number

code probability calculations.

Some issues that PNC are suffering from or 

consider as disadvantages as followed:  

1) PNC16 has limitations such as storage

requirements, non-deterministic behavior in

addition to error high sensitivity [15].

2) PNC16 also need additional parameters like

synchronization parameters, threshold value

and initial population values. Which mean more

computational evaluations to provide accurate

calculations to a set of number code.

3) It directly depends on data quality, which make

PNC16 affected by noise and lead to distort the

probability distribution, resulting in

misclassification or incorrect predictions. It is

also affected by missing values that could lead

to reduce reliability.

4 CONCLUSIONS 

In this article, two models have been utilized (CRC16 

and PNC16) to provide analysis of 6-bit error data 

using Python. CRC16 was applied by using the 

checksum value that was extracted from the data bits 

themselves and comparing it with the desired value. 

When the checksum is not equal, then an error has 

occurred. In PNC16, it relies on a probabilistic 

number code and compares the threshold value with 

the count of a set of bits. Through the comparison 

process, CRC16 provides better performance than 

PNC16. The high reliability of CRC16 is due to the 

strict mathematical operations that CRC16 follows to 

detect errors, while PNC16 introduces uncertainty 

and occasional failures in detecting errors for the 

same data handled by CRC16. On the other hand, 

CRC16 is less sensitive to the input dataset than 

PNC16 due to the wide range of polynomial-

designed functions. Also, PNC16 is more affected by 

noise and interference that could occur in the 

channel, leading to misclassification in error 
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detection. CRC16 also, in general, generates a fixed-

length checksum value which allows for direct error 

processing with different types such as single, burst, 

and multiple errors. In PNC16, it depends on 

probabilistic analysis regardless of checksum values, 

which fails in detecting errors and is specified for a 

single error type. CRC16 provides better results than 

PNC16 in error detection due to its deterministic 

nature, strong polynomial theory, and reduced 

dependency on the data itself. However, PNC16 may 

miss errors due to being affected by data noise and 

having weaker mathematical guarantees for error 

detection. 
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