
Comparison of CRC16 and PNC16 Models to Identify

Errors in Python

Odilzhan Turdiev1, Masud Masharipov1, Maad Mudher Khalil2 and Mohammed Sami Mohammed2

1Departments of Information Systems and Technologies in Transport, Tashkent State Transport University,

Temiryolchilar Str. 1, 100167 Tashkent, Uzbekistan
2University of Diyala, 32009 Baqubah, Diyala, Iraq

odiljan.turdiev@mail.ru, masudcha@mail.ru, maadalomar@gmail.com, dr.mohammed.sami@uodiyala.edu.iq

Keywords: Python, Cyclic Redundancy Code, Probability Code Number, Error Detection.

Abstract: In the modern world of programming, where reliability and security are critically important aspects, the

detection and correction of errors becomes an integral part of software development. One of the methods for

detecting errors is the use of error codes, such as Cyclic Redundancy Checks (CRC) and probabilistic number

code (PNC). In this work, we compare these two models for detecting errors in the python programming

language. The aim of the study is to investigate the efficiency and applicability of these models for detecting

errors in data, including 6-bit errors. Full-fledged code examples are provided for each model. These models

are involved to provide analyzation of its contribution and how it deals with errors, which ensures data

integrity through the full process. In addition, the performances of CRC and PNC for 6-bits are included and

studied for this purpose. Results showed that CRC16 provide better performances than PNC16. The high

reliability of CRC16 is due to restrict mathematical operations that CRC16 followed to detect errors. While

PNC16 introduced uncertainty and occasional failures in detecting errors for the same data that has been used

with CRC16.

1 INTRODUCTION

The reliability of related codes especially in software

development is considered a crucial factor for

programming process. Some issues related to code

errors which lead to undesired faults such as incorrect

behavior or even some notable security

vulnerabilities. Different types of models with

various tools was applied to specify and try to solve

such issues [1], [2]. From these common techniques

are Cyclic Redundancy Check (CRC) and Probable

Number Code (PNC), which designed for data

transmissions. In spite of same field utilization for

these both techniques, but different approaches are

defined for each technique. Based on Python

software, this article provide a comparison between

CRC and PNC according to error samples provided

by users. Using Python provided an exploration about

each technique properties like strengths in addition to

their weaknesses points. The goal was also for

providing some recommendations on how the choice

would be to specify the appropriate method for a

specific task. According to the software

performances, programmer or even users can

examine these techniques for better decision reports.

Also, system needs with its related constraints

specify which one of these techniques are more

suitable for a specific task.

The main goal of this article is the using of direct

utilization of python software to give the comparison

between these two techniques. These would provide

more points about these techniques which cannot be

observed in theoretical rules.

2 ANALYZING THE CRC

ALGORITHM

Different error types could be occurred due to the

interferences in the form of transmitted frame, these

types are defined as single, multiple or in a packet

form.

Packet error is defined as the number of bits

between two consecutive erroneous bits Figure 1. In

addition, when determining the packet error length,

the last erroneous bit in a packet and the first

erroneous bit in the next packet must be separated [1].

227

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

mailto:odiljan.turdiev@mail.ru
mailto:masudcha@mail.ru
mailto:maadalomar@gmail.com
mailto:dr.mohammed.sami@uodiyala.edu.iq

Figure 1: Example of a packet error.

The CRC check summing method is based on the

properties of division with remainder of a polynomial

(binary number). In essence, the CRC result is the

remainder from dividing the polynomial

corresponding to the original data by the generating

polynomial of fixed length.

The standard way of representing a generating

polynomial is to show those positions at which the

binary units are powers of X. Examples of generating

polynomials used in practice are as follows [2]-[3]:

;

.

Hence, CRC-16 in binary form is equivalent to

writing:

11000000000000101.

With this generator polynomial, 16 zeros will be

added before the generation of the FCS (Frame

Check Sequence). The last one will be a 16-bit

remainder.

CRC-16 and CRC-CCITT are widely used in

networks such as ISDN, while CRC-32 is used in

most local area networks. The CRC method can be

easily implemented in hardware and software.

One set of check digits is generated (calculated)

for each transmitted frame based on the frame

contents and added by the transmitter to the tail of the

frame. The receiver then performs a similar

calculation on the full frame plus the check digits. If

no errors were found, there should always be a known

result; if a different answer is received, this indicates

an error.

The number of check digits per frame is chosen

according to the expected type of transmission errors;

16 and 32 bits are the most common. The calculated

check digits are labeled as FCS or cyclic redundancy

CRC frame check sequence [4].

Essentially, the method utilizes a property of

binary numbers. When using modulo 2 arithmetic [5,

6]:

M(x) –k -digit -number (the message to be

transmitted);

()G x – ()1n + -bit number (divisor or

generator);

()R x – n is a digit -number such that k> n

(remainder);

, where Q(x) is private;

 , assuming arithmetic

modulo2.

This result can be easily confirmed by

substituting the expression for M(x) * 2n /G(x), into

the second equation:

,

equal to Q(x), since all numbers modulo 2 added to it

will be equal to zero, i.e. the remainder will be equal

to zero.

To use the full frame contents M(x) along with

the added set of zeros equal to the number of FCSs to

be generated (i.e., multiplied by 2n, where n is the

number of FCSs) is divided modulo 2 by a binary

number G(x) is the generator polynomial containing

one more unit than FCSs). The division operation is

equivalent to performing an exclusive OR operation

on a parallel bit, since every bit in the frame is

processed. Then the remainder of R(x) is FCS, which

is transmitted at the tail of the information frames.

Similarly, when received, the received bit stream,

which includes the CRC number, is again divided by

the same generator polynomial, i.e.

228

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

M(x) * 2n + R(x)/G(x), and if there is no error, the

remainder is all zeros. However, if an error is present,

the remainder is not zero.

The choice of the generating polynomial is

important because it determines the types of errors

detected. Suppose that the transmitted frame:

M(x) = 110101100110,

and the error pattern

E(x) = 000000001001.

Thus, 1 in the bit position indicates an error.

Let's apply the Boolean function sum modulo 2.

The resulting frame = M(x) + E(x)

Since M(x) /E(x) does not give a remainder, the

error is present if E(x)/ G(x) gives a remainder.

For example, G(x) has at least three non-zero

summands (1 bits) and E(x)/ G(x) will give a

remainder for all one-bit and all two-bit errors with

modulo 2 arithmetic, and hence the errors are

detectable. Conversely, an error of length(x) gives no

remainder and goes undetected [2].

The generator polynomial of R bits detects [7]:

▪ all one-bit errors,

▪ all two-bit errors,

▪ all odd numbers of bit-errors,

▪ all error packets< R,

▪ most error packets> R.

Cyclic redundant CRC codes are a subclass of

block codes and are used in HDLC, Token Ring,

TokenBus, Ethernet protocol families and other link

layer protocols [14]. Computational resources are

understood as memory, processor power, and the

number of shift registers [12]. One of the ways to

represent a cyclic code is to represent it as a

generating polynomial - a set of all polynomials of

degree (r-code-1) containing as a common multiplier

some fixed polynomial . The polynomial

is called the generating polynomial of the code. For

example, , here r-code = 5, since the

binary sequence looks like 10011. The standardized

and recommended generating polynomials for the

CRC algorithm are which shows the name of the

standard and the generating polynomial [8]: for

example, the entry is equivalent (in binary)

to

 .

2.1 Algorithms for Calculating CRC16

CRC16 (Cyclic Redundancy Code) is a data integrity

method that uses a polynomial of degree 16 to

calculate a checksum [13].

The algorithm for calculating CRC16 is as

follows:

1) Initialization: Set the initial CRC16 value to

0xFFFF.

2) For each byte of data:

▪ Invert the bits of a data byte.

▪ Add a data byte to the current CRC16 value.

▪ For each bit of data byte:

▪ If the XOR between the current CRC16 value

and the current bit is 1, perform a right shift

operation by 1.

▪ Otherwise, perform a right shift operation by

1 without changing CRC16.

3) The final value of CRC16 is a checksum,

which is a 16-bit value.

Example:

For data 0x21 0x43 0x65, calculate CRC16.

Initial CRC16 value: 0xFFFF.

Step 1. For byte 0x21:

▪ Inverted byte: 0xDE.

▪ CRC16 = 0xFFFF + 0xDE = 0xF4DD.

Step 2. For byte 0x43:

▪ Inverted byte: 0xBC.

▪ CRC16 = 0xF4DD + 0xBC = 0xF579.

▪ Check each bit and make the appropriate shifts.

Step 3. For byte 0x65:

▪ Inverted byte: 0x9A.

▪ CRC16 = 0xF579 + 0x9A = 0xFF13.

▪ Check each bit and make the appropriate shifts.

The final CRC16 value for data 0x21 0x43 0x65

is 0xFF13.

2.2 Strengths and Weaknesses Points
of the CRC16 Model

CRC16 like other error detection techniques has

privilege points which may be summarized as

followed:

1) CRC16 is built in easy and efficient way for

different devices or platforms.

2) Due to its quick calculations process, CRC16 is

suited for plenty type of applications.

3) CRC16 has effective error performances in

error identifying especially for transmission

data.

229

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

In the other hand, CRC16 has some issues

which limit their usage which could be mentioned as

follow:

1) Errors detection need correction process which

cannot be provided by CRC16. This issue

makes the system to retransmit data to the

sender side and taking too long time with cost

maximization.

2) Dealing with larger data makes the working of

CRC16 limited which provide restriction in

detection process.

3) calibration between parameters and initial

values may take too much time to be carefully

selected and finalized, which need additional

efforts.

3 ANALYSIS OF THE PNC16

ALGORITHM

This technique is considered as mathematical process

which utilize to specify the likelihood of selection

approach. These numbers are randomly selected and

contained a specific number of digits. Some

applications needed a probability estimation could

use of PNC for their evaluations. Data transmission

checking from errors and storage field are such an

applications need PNC for numerical events

estimation process.

The encoded operation for a set of data could be

corrupted with faults during transmission process.

These changing in data presentation need an error

detection using specific technique based on their

tasks.

The PNC estimate the probability of corrupted

data for data transmission systems which is affected

by interferences. The decision of this technique is

also effected by the data accuracy, the PNC is also

prompt any additional verifications. As a result, the

PNC is considering as an impact tool to improve the

transmission process with error detection and

providing an information acknowledgment about

data likelihood.

The probability of selecting a number for one

digits would be 0.1 which ranging from (0 to 9) for a

single digit that has been randomly selected. These

values are independent of other digits values that

could be appearing in any given positions of related

or transmitted data. The certain numbers of

combination probability appearing could be

calculated using equation below:

PNC = (Nk) / 10n

where PNC is number of coding probability:

▪ N is the possible appearing digits (which is

equal to 10 for a regular system)

▪ k specifies number of digits that required for a

specific combination.

▪ n is the total number of digits in the number.

3.1 Algorithm for Calculating PNC16

Creation of high quality, fast and simple enough

algorithms of formation of checksums with the help

of parallel random number generator is one of the

main problems of data transmission with the help of

low-frequency energy-saving systems. The solution

of this problem ultimately determines the success of

building a PNC model, since the characteristics of the

parallel random number generator (PRNG) largely

determine the parameters of the PNC [9].

The relevance of the issue of synthesis of the

model of formation of the probable code of PNC

number is closely connected with the relevance of the

problem of implementation of the principles of

probabilistic methods of modeling and calculations

of checksums of data transmitted over

communication channels [10], [11].

Figure 2 presents the general scheme of the model

of formation of the probable code of PNC number,

where A - transmitted binary sequence of digit n, Xi

- formed by the i-th parallel PRNG

random code of digit n, Ki - result of bitwise logical

operation over the transmitted binary sequence and

random code of digit n, si - i-th element of the

calculated checksum, S - M-bit checksum (probable

number code) transmitted together with the binary

sequence over communication channels.

Checksum calculation for a binary sequence

,

is performed by means of several parallel

pseudorandom number generators (PRNGs). The i-th

 PRNG generates the random

sequence

, ,

 ,

230

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

S

A

ПГПСЧ Xi

si

01011000001 . ..xn

11011000011 an

Ki

0101100 ..kn

Figure 2: General scheme of the PNC formation model.

Figure 3: Block diagram of the algorithm of PNC checksum formation.

where by elements of the sequences with the

elements of sequence A are subjected to the logical

operation AND (denoted by the symbol &) followed

by summation by mod2. As a result, the following

binary sequences are obtained:

,

where 𝑘𝑖,𝑗 = 𝑎𝑗&𝑥𝑖,𝑗 .

The checksum element is obtained by:

.

Thus, the checksum is a binary sequence

𝑆 = (𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑀),

where M is the number of CBCPs used.

All these activities can be represented in matrix

form as follows. The elements form a matrix:

.

Here - is the matrix of the HGPSP matrix, - is a

random uniformly distributed integer taking values

from the set However, the first row of this matrix

consists of units only. Elements form a vector

𝐴 = (

𝑎1
𝑎2
⋮
𝑎𝑛

).

On the transmitter line, the sum is calculated as

follows: the elements of matrix X are line by line

multiplied by the elements of vector A (source code),

231

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

the result is the sum of each row sm, and matrix S

represents the checksum (PNC).

𝑆 = (

𝑠1
𝑠2
⋮
𝑠𝑚

) = (

𝑎1
𝑎2
⋮
𝑎𝑛

)(

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚,1 𝑥𝑚,2 ⋯ 𝑥𝑚,𝑛

).

If the transmissions and S received interference

and failures, we will get and in the receiver ,

𝑆 = 𝐴̃ ∗ 𝑋.

To detect interference and failures, we need to

compare the check code with , if is not equal

- there is an error, if it is equal - there is no error.

Figure 3. shows a block diagram of the PNC

checksum generation algorithm.

Example: A = 11010, with a 5-digit PNC

Figure 4.

Calculation result: A+S = 1101010000

Figure.4. Example of PNC residue calculation.

Also, this operation can be represented by the

following formula:

𝑆𝑖 = 𝑋𝑖𝑗 ⋅ 𝐴𝑖.

An example with probable interference is shown

in Figure 5.

Received packet with error: 01010 10100

Reverse calculation result: 01010 00111

Figure.5. Example of PNC calculation with errors

(interference).

Based on the analysis of the above-mentioned

material, and in order to verify the error-free model,

the author considers different ways of solving the

problem in the next chapter within the framework of

developing a method of data integrity control based

on stochastic calculations.

3.2 Advantages and Disadvantages of
the PNC16 Model

Advantages of the PNC16 model:

1) The PNC16 is easy and intuitive to use, making

it accessible to a wide range of users.

2) CRC16 allows you to quickly and accurately

estimate the probability of a number code,

which helps you make more informed

decisions.

3) Based on special algorithms and models, the

PNC16 model provides high accuracy number

code probability calculations.

Some issues that PNC are suffering from or

consider as disadvantages as followed:

1) PNC16 has limitations such as storage

requirements, non-deterministic behavior in

addition to error high sensitivity [15].

2) PNC16 also need additional parameters like

synchronization parameters, threshold value

and initial population values. Which mean more

computational evaluations to provide accurate

calculations to a set of number code.

3) It directly depends on data quality, which make

PNC16 affected by noise and lead to distort the

probability distribution, resulting in

misclassification or incorrect predictions. It is

also affected by missing values that could lead

to reduce reliability.

4 CONCLUSIONS

In this article, two models have been utilized (CRC16

and PNC16) to provide analysis of 6-bit error data

using Python. CRC16 was applied by using the

checksum value that was extracted from the data bits

themselves and comparing it with the desired value.

When the checksum is not equal, then an error has

occurred. In PNC16, it relies on a probabilistic

number code and compares the threshold value with

the count of a set of bits. Through the comparison

process, CRC16 provides better performance than

PNC16. The high reliability of CRC16 is due to the

strict mathematical operations that CRC16 follows to

detect errors, while PNC16 introduces uncertainty

and occasional failures in detecting errors for the

same data handled by CRC16. On the other hand,

CRC16 is less sensitive to the input dataset than

PNC16 due to the wide range of polynomial-

designed functions. Also, PNC16 is more affected by

noise and interference that could occur in the

channel, leading to misclassification in error

232

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

detection. CRC16 also, in general, generates a fixed-

length checksum value which allows for direct error

processing with different types such as single, burst,

and multiple errors. In PNC16, it depends on

probabilistic analysis regardless of checksum values,

which fails in detecting errors and is specified for a

single error type. CRC16 provides better results than

PNC16 in error detection due to its deterministic

nature, strong polynomial theory, and reduced

dependency on the data itself. However, PNC16 may

miss errors due to being affected by data noise and

having weaker mathematical guarantees for error

detection.

REFERENCES

[1] O.A. Turdiev, "A model for the formation of a
probable number code based on stochastic
calculations," Intelligent Technologies in Transport,
no. 4, pp. 28-33, 2021.

[2] A.H. Saleh and M.S. Mohammed, "Enhancing Data
Security through Hybrid Error Detection: Combining
Cyclic Redundancy Check (CRC) and Checksum
Techniques," International Journal of Electrical
Engineering Research, Aug. 2024, [Online].
Available: https://doi.org/10.37391/IJEER.120312.

[3] A. Kotade and A. Nandgaonkar, "Cyclic Redundancy
Check: A Novel Software Implementation for
machine cycle optimization and analysis for deciding
Low Peak to Average Power Ratio Discrete
Sequences," in ICCASP/ICMMD-2016, Advances in
Intelligent Systems Research, vol. 137, pp. 441-449,
2017.

[4] P.B. Viegas, A.G. de Castro, A.F. Lorenzon,
F.D. Rossi, and M.C. Luizelli, "The Actual Cost of
Programmable SmartNICs: Diving into the Existing
Limits," in Advanced Information Networking and
Applications: Proceedings of the 35th International
Conference on Advanced Information Networking
and Applications (AINA-2021), vol. 1, Springer
International Publishing, Germany, 2021, pp. 181-
194.

[5] R.N. Williams, Elementary Guide to CRC Algorithms
of Error Detection, Aug. 19, 1993.

[6] S.S. Gorshe, "CRC-16 polynomials optimized for
applications using self-synchronous scramblers," in
Proc. IEEE International Conference on
Communications, vol. 5, pp. 2791-2795, 2002,
[Online]. Available:
https://doi.org/10.1109/ICC.2002.997351.

[7] P. Pramod, R. Anantharaman, and A. Kotain, "FPGA
implementation of single bit error correction using
CRC," International Journal of Computer
Applications, vol. 52, pp. 15-19, 2012, [Online].
Available: https://doi.org/10.5120/8238-1471.

[8] B. Kirocuhenassamy, A. Yessad, S. Jolivet, and
V. Luengo, "Toward diagnosis of semantic errors in
Python programming platforms for beginners," in
Workshop RKDE - ECML PKDD Conference,
Vilnius, Lithuania, 2025.

[9] H. Campbell, A. Hindle, and J. Amaral, "Error
location in Python: where the mutants hide," 2015,
[Online]. Available:
https://doi.org/10.7287/peerj.preprints.1132v1.

[10] D. Robinson, N. Ernst, E. Vargas, and M.-A. Storey,
"Error Identification Strategies for Python Jupyter
Notebooks," 2022, [Online]. Available:
https://doi.org/10.48550/arXiv.2203.16653.

[11] M. Arutunian, S. Sargsyan, M. Mehrabyan,
L. Bareghamyan, and H. Aslanyan, "Automatic
Recognition and Replacement of Cyclic Redundancy
Checks for Program Optimization," IEEE Access, pp.
1-1, 2024, [Online]. Available:
https://doi.org/10.1109/ACCESS.2024.3518953.

[12] X. Dong and Y. He, "CRC Algorithm for Embedded
System Based on Table Lookup Method,"
Microprocessors and Microsystems, vol. 74,
p. 103049, 2020, [Online]. Available:
https://doi.org/10.1016/j.micpro.2020.103049.

[13] J. Ray, "Review of Understanding Checksums and
Cyclic Redundancy Checks —Philip Koopman (Boca
Raton, FL, USA: CRC Press, 2024)," IEEE
Reliability Magazine, pp. 1-2, 2024, [Online].
Available:
https://doi.org/10.1109/MRL.2024.3389635.

[14] A. Akagic and H. Amano, "A study of adaptable co-
processors for Cyclic Redundancy Check on an
FPGA," in Proc. International Conference on Field-
Programmable Technology (FPT), pp. 119-124, 2012,
[Online]. Available:
https://doi.org/10.1109/FPT.2012.6412122.

[15] J. Wan, B. Chen, and S. Wang, Smart Manufacturing
Factory: Artificial-Intelligence-Driven Customized
Manufacturing, CRC Press, 2023.

233

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), June 2020225

