
A Novel Numerical Approach for Solving Initial Value Problems in 

Heat Equations Using Variational Regularization and Intelligent 

Particle Swarm Optimization 

H.K. Al-Mahdawi1, Kilan M. Hussien1, Ghassan K. Ali2, Fadhil Kadhem Zaidan1,  

Ali Subhi Alhumaima1 and Hussein Alkattan3 

1Electronic and Computer Centre, University of Diyala, 32001 Baqubah, Diyala, Iraq 
2College of Engineer, University of Diyala, 32001 Baqubah, Diyala, Iraq 

3Department of System Programming, South Ural State University, Lenin Avenue 76, 454080 Chelyabinsk, Russia 

hssnkd@gmail.com, moonkmh@gmail.com, ghassan_khazal@uodiyala.edu.iq, sc_fadhelzaidan@uodiyala.edu.iq, 

alhumaimaali@uodiyala.edu.iq, alkatttan.hussein92@gmail.com 

Keywords: Intelligent Particle Swarm Optimization, Regularization Parameter, Variational Regularization, Heat 

Equation. 

Abstract: In this article, we use the variational approach as a regularization tool to solve the initial value problem that 

appears in a heat partial differential equation. Although the temperature obtained at time t=T>0 is known, the 

initial temperature distribution remains unknown. By using the separation of variables method, the partial 

differential equation is transformed into a Fredholm integral equation of the first kind. We then apply a 

discretization algorithm to reduce the integral equation to a system of linear algebraic equations, commonly 

referred to as an inverse linear operator problem. The variational regularization method is employed to obtain 

a regularized solution. We also present a fundamental analysis of this method for solving inverse problems. 

Furthermore, we describe the application of the Intelligent Particle Swarm Optimization (IPSO) technique to 

determine the optimal regularization parameter. Our results demonstrate that integrating particle swarm 

optimization with variational optimization is both effective and computationally feasible. 

1 INTRODUCTION 

Because a "small" change in the data might result in 
"large" mistakes in the solution, the Cauchy inverse 
problem of the heat equation is ill-posed. According 
to Jacques Hadamard, an issue is well-posed if and 
only if the following characteristics are true [1]. 

▪ There is a solution, or at least one solution

exists;

▪ The solution is unique; there is only one

solution in existence;

▪ The data (stability) is a constant determinant of

the solution.

The ill-posedness problem cannot be solved with 
traditional numerical techniques [2] – [4]. It calls for 
specialized methods, such as regularization 
approaches [5]. Inverse heat transfer problems can 
now be solved more easily with numerical methods 
because to the advancement of fast personal 
computers [6]. Numerous writers have addressed the 
inverse problem of heat equation's theoretical ideas 

and computer implementation, and numerous 
approaches have been detailed [4], [6] – [9]. 

Several regularization techniques have been 
developed to address the ill-posed nature of inverse 
equations of the first kind [10].  Classical methods 
include Tikhonov regularization [11], Landweber 
iteration [12] or other iteration methods [13], and the 
discrepancy principle [14].  Regularization introduces 
a penalty term to prevent overfitting and ensure 
stability, especially in ill-posed inverse problems [7]. 
The discrepancy principle helps determine the 
optimal balance between fitting the noisy data and 
avoiding excessive regularization [15].  However, 
these methods often require careful selection of a 
regularization parameter, which can significantly 
influence the quality of the solution [16], [17]. 
Nature-inspired optimization algorithms have shown 
promise in automating the selection of regularization 
parameters for ill-posed problems [18], [19]. Genetic 
Algorithms [20], Particle Swarm Optimization [21], 
and Artificial Bee Swarm Optimization have been 
employed to explore the parameter space and identify 
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optimal or near-optimal values [15], [22].  These 
algorithms offer advantages in handling complex, 
non-convex objective functions, which are often 
encountered in regularization problems. 

Numerous important search techniques use 
population-based optimization. These techniques are 
part of a class of algorithms, such as particle swarm 
optimization, that are inspired by nature. 
The PSO [23] algorithm, created by Eberhart and 
Kennedy, is capable of finding precise 
approximations or global optimum solutions. 
Numerous inverse problem types that can be 
resolved. By proposing a dynamic parameter update 
strategy, offering a new appropriateness choosing 
methodology, and balancing the trade-off between 
investigation and exploitation searches, the PSO 
method was used in [24] to address the 
electromagnetic inverse problems. In order to prevent 
getting stuck in local optima, this new methodology 
also includes the development of a new position 
updating formula. In the work [25], inverse design 
problems for cylindrical thermal multilayer shielding 
and cloaking shells are solved via particle swarm 
optimization. These inverse problems are converted 
into associated control problems. Particle Swarm 
Optimization (PSO) is often used to solve inverse 
problems, however it does not immediately resolve 
typical security issues. Current studies of post-
quantum cryptography, however, provide a more 
thorough comprehension of computational algorithm 
security. Research like [26] and [27], for instance, 
highlight the need for secure implementations and 
demonstrate how inadequate it is to rely solely on 
secure algorithms. Even methods that are 
mathematically valid, such as PSO, might be exposed 
by implementation errors. Therefore, the 
implementation of PSO-Tikhonov Regularization 
must be secured by employing methods such as input 
validation, safe random number generation, and 
meticulous code review. The correctness and 
reliability of the obtained results are ensured by these 
methods [28]. Security concerns are not limited to 
implementations and methods; they also include 
specific hazards that machine learning models must 
deal with [29], [30]. 

Reconstructing the source function of the Initial 
Value Problem IVP for the heat partial differential 
equation is the primary concept in this work. Through 
a series of phases, the starting value problem has been 
reduced to a linear inverse problem. Because of this, 
the solution is unstable because it does not rely on the 
data continuously. As a result, this problem is ill-
posed. We will use variational regularization to 
obtain a well-posed problem. In this paper, we will 
use Intelligent Particle Swarm Optimization (IPSO) 
to solve the problem of choosing the optimal 
regularization parameter. 

2 PROBLEM STATEMENT 

[1] 's IVP taking the heat (1) as follows,
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The boundary conditions are 𝑤(0, 𝑡) and 𝑤(𝑙, 𝑡), 
and the beginning condition is 𝑤(𝑥) which must be 

determined. The partial differential equation above 

can be reduced to integral form using the separation 

of variables method, and the result is: 
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Every step of separation was used in [2]. We must 

limit the sum of series to ten times when the kernel 

( ), P x y is an infinite series because we are unable to 

handle unlimited sums.
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For providing the estimated 𝑤(𝑥) We are able to 

transform the problem of initial value to ,Aw g=

liner operator form by applied discretization 

algorithm as defined and explained in [3]. 
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The matrix A has ill-conditionally property and 

we must locate ( )  2 0,1Lxw  . The exact answer

will be ( ) sin ,xw x=  where the value of x 0 1x 

. We created the input data as ( ) ( ), ,w x T g x=  where

𝑇 = 0.01 and 0   1x 

3 VARIATIONAL 

REGULARIZATION METHOD 

D. Phillips (1962) suggested this approach, which
entails solving a variational problem [14]. Let
consider (4). in liner operator form

,Aw g=  (8) 

Suppose that A  is a bounded, linear, injective 
operator with 1A− not continuous. The data are the 
elements  , ,A g  . If the noise level δ > 0 is given,
the estimate g g −    holds, and the noisy data 
y is the δ−approximation of y . 

Now, let's look at (8). The challenge is to identify 
the stable solution w   such that the error estimate 

( ) 0 0w w as   −  → → holds given 

 , ,A g  . 
Let z be the minimal-norm solution to (8). By 

addressing the variational problem (minimization 
problem) and using a minimal-norm to create a stable 
approximation to the answer z , the variational 
regularization approach ensures that ( )z N A⊥ . 
Assume 1A  without losing generality, and then

* 1A  . Assuming that *B A A= , then 1B  is a 
self-adjoint, bounded operator. The equation Bw q=
, where *q A g= , is equal to (8). 

If *,q q q T  −   , then q is provided 
instead. Given that ( ) ( ) ( )N T N B z N B= ⊥  and 

( )
1 1

B 


−
+  , Examine the issue of determining 

the functional minimum.

2 2
( ) min,F w Aw g w = − + = (9) 

where 0   parameter of regularization and ( )F w  
is a function for  , and  . Minimizers are solutions 
to the variational problem (9). As a result, the next 
formula provides the unique solution to (10). 

* 1 *( ) .w A A A g −= + (10) 

4 IPSO ALGORTHIM 

The IPOS method for choosing the variational 
regularization parameter α without knowing the noise 
level δ is examined in the following. 

The following is a concise statement of IPSO's 
core idea  [5]. Every swarm member, referred to as a 
"particle," is a potential solution; each particle adjusts 
its position within the search domain and updates its 
velocity based on its own and its "neighbors'" flying 
experiences at each iteration, aiming for a better 
position for itself as long as it satisfies specific fitness 
requirements. 

The "current best position" (cbest), the site with 
the highest engagement rate across all affiliates from 
the beginning to the end of the search, is effective and 
is iteratively taught by the algorithm. Every particle 
additionally commits to memory its best experienced 
position, or personal best position (pbest). The 
distance each particle travels to reach its subsequent 
place is calculated using the equation x e t =  , 
where e is the velocity. At iteration t, it is computed 
as follows for particle I: 

, ,

1 1 2 2

t i t i t i t

i i c pe e c r d c r d+ = + + ,          (11) 

, ,i t t i t

p id x pbest = −  ,             (12) 

,i t t t

c id x cbest = −  .               (13) 

A particle's best individual and global positions 
are separated by ,i t

cd and 
,i t

pd , respectively, from its
current position. The symbol ω is well-defined as 
inertia weight, 

1 2&r r  are numbers defined randomly, 
and 

1 2,c c are coefficients for acceleration. Between 
any two following repetitions, 1t =   between any 
two subsequent iterations (i.e., ( )1 1t t t = + − = ), 
Consequently, at iteration, particle I will be in the 
following location ( )1t + :

1 1t t t

i i ia a v+ += + .          (14) 

The procedures that follow now apply the IPSO 
calculation algorithms to solve the problem. 

Step 1: Describe the IPSO and the issue. The IPSO 
and integral equations of the first kind are defined in 
this section. We develop the "cost function" or fitness 
function (Cost_Fun). Next, we must configure the 
following function and variables: 

▪ n - size of domain;

▪ Cost function:
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Cost_Fun (w, A, g, n) 

{ 

( , )I eye n n=
* *( )*w inv A A I A g= +

return 

2 2
Aw g w − +

} 

n_Var; / number of variables for 

unknown decisions; 

Var_Size = [1, n_Var]; / choice 

variables' matrix size; 

Var_Min;/choice variables' lowest 

bound; 

Var_Max;/choice variables' upper 

bound. 

Step 2: Parameters: 
Max_It  

n_Pop /population size 

w, c1, c2  

Step 3: Population Initialize: 

arr_Pos = [ ]; arr_Vel = [ ]; arr_Cost 

= [ ];  

arr_Best.Pos = [ ]; arr_Best.Cost = [ 

]; 

arr_Cur_Best = inf;  

Loop over (n_Pop) 

arr_Pos = unifrnd (Var_Max, Var_Size, 

Var_Min); 

arr_Vel = zeros (Var_Size); 

arr_Cost = Cost_Fun(arr_Pos); 

“Update” arr_Best.Pos and 

arr_Best.Cost = arr_Cost; 

“Update “ 

If arr_Best.Cost < arr_Cur.Best Cost 

arr_Curt.Best = arr_Best.Pos and 

arr_Best.Cost = arr_Cost 

Over n_Pop end loop  

Step 4: Main loop of IPSO: 

▪ Loop over iterations it=1: Max_It;

▪ Loop under population size (n_Pop);

▪ Update velocity:

arr_Vel = w * arr_Vel + c1*rand 

(Var_Size) .* arr_Best.Pos - arr_Pos+ 

c2*rand(Var_Size) .* arr_Cur.Best.Pos - 

arr_Pos); 

▪ Position updating:

arr_Pos = arr_Pos + arr_Vel; 

▪ Assessment:

arr_Cost = Cost_Fun(arr_Pos); 

▪ Update:

if arr_Cost < arr_Best.Cost 

arr_Best.Pos = arr_Pos; 

arr_ Best.Cost = arr_Cost; 

▪ Update:

if arr_Best.Cost < arr_Cur.Best.Cost 

arr_Curt.Best = Best; 

End 

End 

▪ Loop n_Pop ending;

▪ Store the best cost value arr_Best.Costs(it) =

arr_Cur.Best.Cost;

▪ End loop over iterations Max_It.

Step 5: Create the results. 

▪ α= arr_Best.Costs(it);

▪ The inverse problem's approximate solution

can be found by: 
* *( )* ,w inv A A I A g= +

. 

5 NUMERICAL EXPERIMENTS 

We created the inverse problem's input data as 

( ) ( )  ,   ,0   1xw x T g x=   and 𝑇 = 0.01. The IPSO 
values for the common parameters for all testing with 
noise-free and nose-level are as follows: 

n_Var = 1, Var_Size = [1, n_Var], Var_Min = 0, 
Var_Max = 1, c1 = c2 = 2. 

Figures 1, 2, and 3 display the Initial Value test. 
A situation with substantial measurement noise (δ = 
0.2) and (δ = 0.1) is shown in Figures 1 and 2, 
respectively. In spite of this noise, the IPSO method 
finds a good approximation (IPSO solution) and 
determines the ideal (α) parameter. In comparison, 
the noise-free scenario (δ = 0) is depicted in Figure 3. 
In this case, zero is the ideal α value. 
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Figure 1: Initial value with δ=0.2 and best α=0.018. 

Figure 2: Initial value with δ=0.1, and best α=0.006. 
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Figure 3: Initial value with δ=0, best α=0. 

6 CONCLUSIONS 

In order to solve the heat equation's initial value 
problem with both noisy and noise-free data, we 
examined the variational regularization technique and 
Intelligent Particle Swarm Optimization (IPSO) in 
this research. We sought to discover a stable solution 
to the problem, which was converted from a partial 
differential equation to an inverse linear operator 
equation. The regularization parameter in the 
variational regularization method was chosen using a 
novel technique to guarantee convergence to an 
appropriate approximation. IPSO played a crucial 
role in optimizing this parameter by searching for the 
best value that minimized the variational equation 
associated with the Tikhonov method. Numerical 
experiments, including test cases such as the Phillips 
and Gravity problems, demonstrated the effectiveness 
of integrating Tikhonov regularization with IPSO. 
The results confirm that this hybrid approach 
enhances solution accuracy and stability, making it a 
promising method for addressing inverse problems in 
heat equations. 
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