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Abstract: We study the properties of solutions for a porous medium equation (PME) in non-divergent form with a source 

term. The PME is a fundamental model in various physical and biological processes, including fluid flow 

through porous media, heat transfer, and population dynamics. Unlike the classical heat equation, the PME 

exhibits nonlinear diffusion, leading to rich mathematical structures and solution behaviours. Our main focus 

is obtaining exact solutions using the separable variable method under certain parameter constraints. These 

solutions provide explicit representations of the evolving profile of the medium and provide insight into the 

dynamics of the equation. Additionally, we construct a self-similar Barenblatt-type solution, a fundamental 

tool for analysing long-time asymptotics and the spreading behaviour of solutions. Self-similar solutions 

provide insights into the scaling properties of the PME and the influence of the source term on solution 

evolution. Moreover, we have constructed a numerical scheme, calculated numerical results and based on 

numerical solutions shown graphs in some particular cases. 

1 INTRODUCTION 

We consider the nonlinear equation stated as follows: 

( )( ) = ( ) ( ) ( ) ,q m

t
x u u div x u t x u    + (1) 

0
( ,0) = ( ) 0, ,Nu x u x x R  (2) 

where ( , ) , ={( , ) | , > 0},Nx t D D x t x R t 
11, {1 , }, = 1, ( ) =| | ,Nm q m m x x   −   − 

0 < ( ) ( ),t C R 
+

  depends on the function ( )t , 

and we consider a few cases throughout the paper. 

Equation (1) includes many well-known 

equations, such as the Laplacian equation, heat 

equation, Leibenson equation, and the Boussinesq 

equation in the filtration of liquid and gas [1], [2], [3], 

[4]. Equation (1) is important for simulating a broad 

variety of physical processes. For example, curve 

shortening flow, resistive diffusion phenomena in 

force-free magnetic fields, diffusive processes found 

in biological species, and the spread of infectious 

diseases are among the many applications of  (1) (see 

[5], [6], [7], [8] and references therein). 

J.L. Díaz studied the following problem, which

addresses the critical issue of modelling an aircraft 

fire extinguishing process within an engine 

nacelle [9] 

= | | ,m p

t
u u x u + (3) 

0
( ,0) = ( ) ( ),N

loc
u x u x L R (4) 

where >1, > 0, <1.m p  

J.L. Díaz used the nonlinear splitting method and

the comparison principle [10]-[11] to obtain a self-

similar solution in the following form:  

1/( 1)

2 21
( , ) = | | ,

2

m

m
u x t t A x t

m

 

−

−

+

− 
− 

 

where 
1

= , = ,( ) = ( ,0)
( 1) 2

N d max d
N m

  
+

− +
. 

Moreover, J.L. Díaz showed that finite values for 

the model parameters ,p m  and   exist, and that the 

combination of such values ensures the existence of 

global solutions 

J.L. Vázquez studied [12] the PME and the

existence of solutions in finite time or globally for the 

following problem: 

= ( , ),m

t
u u f x t + (5)
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0
( ,0) = ( ), ,Nu x u x x R      (6) 

where f is a reaction term.

J.L. Vázquez showed the decay rate of the

solution such that 0, || (., ) || ,p

pL
f u t Ct

−

= 

( )= ( 1) / ( 1) 2
p

N p m N − − + ; on the other hand,

1/( 1)= ,|| (., ) || ( ) , > 0q q

c c
f u u t T t T− −


−: . 

In the work [13] the existence of the solution and 

blow-up problems of the Cauchy problem are studied 

for a more general case. 

Another significant work by D.G. Aronson [14] 

studied the PME using self-similar analysis [15], [16], 

the comparison principle, dynamical system 

behaviour, and other methods. D.G. Aronson 

obtained lower – upper estimates of the solution to the 

problem (5)-(6), and showed the decay rate of the 

solution. 

M. Winkler showed that all global solutions of  (5)

with zero boundary data are uniformly bounded in the 

case = 0  [17]. 

R.G. Iagar and D.R. Munteanu [18] studied a very 

singular solution of (5) in an absorption case based on 

self-similar solutions and a dynamical system [19]. 

The authors showed the critical Fujita exponent [20] 

as follows:  

= ( 2) / .
F

p m N+ +

Moreover, the authors proved that 
( 2)/( )( , ) | | p mu x t C x − + −: as | |x →  while 

F
p p , 

where C  - some constant. 

We seek the solution in several cases for the 

function ( )t  and  , considering different 

functional forms of ( )t  (such as constant, power-

law, or polynomial) as well as the general case, and 

analyze how various choices of   influence the 

qualitative and quantitative properties of the solution, 

including decay rates, self-similarity, and asymptotic 

behaviour. 

2 SEPARATION OF VARIABLES 

We consider the following cases: 

I. = > 0,const

II. ( ) = ( ) ,at A T t −

III. General case.

2.1 I Case 

In this case, we consider = q m + . First, using the 

separation method [21], we seek the solution to  (1) 

as follows: 

( , ) = ( ) ( ),u x t T t y r −−        (7) 

where =| |r x  and 
1

= > 0
1q m


+ −

. 

We put the (7) into (1). Then we obtain: 

( )

1 1

( ) 1

( ) =

( ) ( ) .

N

q m N q m q m

r T t y

T t r y y y





 

 

− − −

− + − +

−

 − +  (8) 

Therefore, we rewrite the equation as follows: 

( ) 1( ) = 0,m q my y y − − + (9) 

or  
2

2( 1) ( ) = 0.q my
y m y y

y m


 − −


 + − − − (10) 

We denote 1/2( ) = ( )y r z r . Hence, we get

1/21 1
= =

2 2
r y

y z z z−   . 

Consequently, we obtain the following equation: 

21
( 1) ( ) = 0.

2

q m

y

z
z m y y

y m


 − − + − − − (11) 

We seek z  as 

1 2
( ) = ( ) ( ),z y z y z y (12) 

and put it into (14) 

21 2

1 2

1
( ) ' ( 1) ( ) = 0.

2

q mz z
z z m y y

y m


 − −+ − − −

(13) 

We choose 
2

z such that: 

2 21 2

2 2

2( 1)
= 0, ( ) = ,

2

mz m z
z z y y

y

−



 −
+ 

 

that implies: 

3 12 ( 1)
= 1 .

( 1) 2

q m q mm q
z y y

m m q m

 



− − + −− + 
− 

− +  
 (14) 

Hence, we get 

3 12 ( 1)
= 1 .

( 1) 2

q m q mm q
z y y

m m q m

 



− − + −− + 
− 

− +  
 (15) 

Therefore, we derive that 
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1
1

2

2

1

2

( 1)
=

2
( 1)

2

m q

q m

m m q y dy

m q
y

m




 


+ −
−

+ −

− +

 − +
−   

 



1

2

2

2 2

2
= ( ), 2

=( 1)
( 1)

= , = (1 )

m q m
y Y m dY

m q
m q


 


  

    

+ −

− +
+ − −

 −



1

2 2
= = ,

( 1) ( 1)

m m
Y r C

m q m q 
+

+ − + −
(19) 

2

1

( 1)2
( ) = | | ,

1 2

m qm
y x x C

m q m






  − +
+   − +   

where 
( ), if = 1,

( ) =
( ), if = 1.

cos x
x

ch x









−
(20) 

Moreover, we have 

2

1

2

2

1
( | | )

2 2 , = 1,
1

( , ) =
1

( | | )
2 2 , = 1.

1

m q
cos x C

m m

m q T t

u x t
m q

ch x C
m m

m q T t















 − + 
+  

  
− + −  

  


− + 
+ 

− 
− + + 

 

(16) 

It is easy to see that, 
1
( , )u x t → as t T −→ in 

(16). This kind of solution is called a blow-up 

solution and is intensively studied in the works [22]-

[23], [24]-[25]. Similar results were also obtained in 

the work [26]-[27] in the case 0,q =  and using the 

method of separation of variables, alternative 

solutions were found in some groups by A.D. 

Polyanin and A.I. Zhurov [28]. 

2.2 II Case 

In this case, we consider ( )t  as follows 

( ) = ( ) ,at A T t − (17) 

where , > 0A a , and =1 ( 1)( 1)a q m + + + − . 

We seek the solution ( , )u x t  as follows: 

( , ) = ( ) ( )bu x t B T t g r −− (18)

where 
1

11
= , = ( )

1

a
b B bA 



−
−+

−
. 

After inserting the notation (18) into (1) it yields 

following  

( )( ) = 0,q mCg g g g   − + (19) 

which is invariant to the following equation under the 

mapping 
r

r
C

→

( )( ) = 0,q mg g g g   − + (20) 

where = / .q mC B A+ −

Using a similar approach as in (10)-(15), we 

deduce that  

3

2

1

1

( 1)
= =

2 11

m q

m m q g dg m q
g z

m qm q
g

m q







 


+ −

−

−

− + − −

− +− +
−

− −



( )
1

1 11 1
2( 1)2

( )( 1)
( (1 ))

2( 1)

a a

a
m m q m q

z z dz





+
−−

+
− − − +

=  −
−



3 3 4

1 1
; , = ,
2 2( 1)

C J z r C C
a



 
=  + 

+  (21) 

where 1 1

4
0, ( ; , ) = ( (1 )) ,a bC J z a b z z dz


 − − −

( )
1

1

3

( )( 1)
= ,

2( 1)

a am m q m q
C





+− − − +

−

It is easy to see that 

4 1

3

5

1 1
= ; , =

2 2( 1)

1 1
; , , for 0 1,
2 2( 1)

r
C J z

C a

C B z z
a

 
+  

+ 

 
+   

+ 

(22) 

where ( ; , )B z a b  is an incomplete beta function and

5
C some constant.

Furthermore, we rewrite (22) as follows: 

4 5

3

| | 1 1 1 1
= , , ,

2 2( 1) 2 2( 1)
z

x
C C I B

C a a

   
+ −    

+ +   
(23) 

where 
1 1

,
2 2( 1)

B
a

 
 

+ 
 and 

1 1
,

2 2( 1)
z

I
a

 
 

+ 
- beta

and regularized incomplete beta functions, 

respectively. 

From (23), we conclude that g  is a solution to the 

following equation: 

1 61( )

3

1 1
, = .

2 2( 1) 1 1
,

2 2( 1)

m q
g r

m q

r
I C

a
CC B

a





− + −

− −

 
+ 

+   
 

+ 

(24) 
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where ( )6 4 5

1 1
= / , .

2 2( 1)
C C C B

a

 
−  

+ 

Now, we consider = 1 − case and compute

following integral 
11 1

2( 1)2

4 1

3

11 1
2( 1) 2

7

1 1
= ; , = ( 1)

2 2( 1)

1
= (1 ) =

1

a

a

a

r
C J z z z dz

C a

z d C  


−−
+

−

− − −
+

 
+ − 

+ 

= = − +
−





1 1/

1 1
( , ) ( , ), for > 1.
2 2( 1) 2 2( 1)

z

a a
I B z

a a
−


+ +

(25) 

Analogously, we derive that: 

811 ( )
1

3

1
, = .

2 2( 1) 1
,

2 2( 1)

m q
g r

m q

a r
I C

a a
CC B

a

 − − −−
− +

 
+ 

+   
 

+ 

 (26) 

where ( )8 4 7

1
= / ,

2 2( 1)

a
C C C B

a

 
−  

+ 
 and 

7
C some 

constant. 

We are interested only in non-negative solutions 

of the  (1). Thus, we have skipped the cases: >1z  in 

(27) and <1z  in (25). We can find g  explicitly [29] 

using the inverse of the incomplete beta function. 

2.3 III Case 

We rewrite the (1) as follows: 

( )= ( ) ,q m

t rr
u u u t u+ (27) 

where =| |r x . 

Using the nonlinear splitting method, we seek a 

solution to the (27) as follows  

1
( , ) = ( ) ( ( ), ),u r t u t w t r   (28) 

where 
1

1
( ) = ( ) ,q mt u t dt + −



( )
1/( 1)

1
0

1

2 1,2
0

( 1) ( ) , 1,
( ) = ,

exp( ( ) ), = 1, = 0

t

t

T y dy
u t

T y dy T const



   

  

− −


+ − 


 − 





We put the (33) into (32), then the following 

yields: 

( ) 2
( )

= ( ),
( )

q m

rr

u t
w w w w w

t








+ + (29)

where 1

2 1
( ) = ( ) ( ) ( )mu t t t u t  − − .

Now, we seek ( , )w r  as follows: 

( ) 2
( )

= ( ),
( )

q m

rr

u t
w w w w w

t








+ + (30)

After substituting (30) into (29) we obtain the 

following results:  

2
( )( ) = 0.

2

m

q d df df
f u t f f

d d d




  

 
+ + + 

 
(31) 

or 
1 2

= 0,L f L f+ (32) 

where 
1

1
= ,

2(1 )

m q

q d df f
L f f

d d q



 

− 
+ 

− 

( )1

2 2

1
= ( ) 1 .

2(1 )
L f f u t f

q

 −
 

+ − 
− 

We introduce a new function 

1 1
( , ) = ( ) ( ),z x t u t f  (33) 

where ( )
1

2 2 1

1 1 0
( ) = ,q mf A   + −

+
−

1

1

1 0

1
= ( ) , = 0.

4 (1 )

q mq m
A const

m q
+ −+ −


−

Now, based on the comparison principle and 

( , )z x t  function, we estimate the solution of the 

problem (1)-(2). 

Theorem 1: let one of the following inequalities 

hold: 

▪

1

11

2 2 1

2

1
> 0, ( ) , = 2(1 ) 1 ( )q mu t A q Aa

A

 −+ − 
 − + 

  ; 

▪
< 0 ; 

and 
0
( ) ( ,0), Nu x z x x R  . Then the solution to the 

problem (1)-(2) has the estimate in D

( , ) ( , ),u x t z x t

and for the front the following estimate 

( ) 1/2

0
=

f
x x t   hold. 

Proof. According to the definition, the function 
1

f

is nonzero if 
0

<  , and equal to zero if 
0

   or 
1/2

0
| | .x   1/2

0
| |=x   is called front (free boundary 

[10], [12]). 

Now we show that 
1 1 2 1

0L f L f+  . It is easy to see 

that 
1

f satisfies the equality 
1 1

= 0L f . Therefore, 

from (27)-(31) it suffices to show that 
2 1

0L f  in 

order to hold ( , ) ( , )u x t z x t  until 
0
( ) ( ,0)u x z x . 

Since 
1

f is a non-negative function, the following

inequality yields: 
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1

2 1

1
( )( 1) .

2(1 )
u t f

q

 − + 
−

(34) 

Obviously, if < 0  then inequality (34) holds. On 

the other hand, if > 0 :  
1 1

2 1 2 1

1/( 1) 1

2 1

( )( 1) ( )(max( ) 1)

( )(( ) 1),q m

u t f u t f

u t Aa

 



− −

+ − −

+  + =

+

or 2

2

1
( ) .

2(1 ) 2(1 )

A
u t

q q


− −

The proof of the Theorem 1 is completed. 

3 NUMERICAL ANALYSIS 

In order to perform numerical calculations, we need 

to construct numerical grids 
x

  and 
t

  respectively  

{ | = , = ; > },
x i x x

x

b a
x x a ih h b a

N

−
 = +

= { | = , = , > 0}.
t j t t

t

T
t t jh h T

N


Now, we rewrite the (27) on the grid =
x t

  

as explicit scheme form with 2( )
t x

O h h+

approximation error 

, , 1 1, , , 1,

1 2 2

1 , 1

,0 0

0, 1 , 2

= ( ) ( )

( )( ) , = 1, 1, = 1, ,

= ( ), = 0, ,

= ( ), = ( ), = 0, ,

i j i j i j i j i j i j

i i

t x x

j i j x t

i i x

j j N j j tx

y y y y y y
a y a y

h h h

t y i N j N

y u x i N

y t y t j N



 

− + −

+

− −

− − −
−


+ −



 (35) 

where 
1 0 2
( ) = ( , ), ( ) = ( , ),

j j j N jx
t z x t t z x t 

( )
( )

1

1, , 1,

1 1

1, , 1,

( ) 0.5 0.5 ,
( ) =

0.5 ( ) ( ) ( ) ,

m
q

i j i j i j

i
q m m

i j i j i j

m y y y
a y

m y y y

−

− −

− −

− −

  −


 −

To solve  (35) we use iteration processes, so 

1

, , 1 1, , , 1,1 1

1 2 2

1

1 , 1

,0 0

0, 1 , 2

= ( ) ( )

( )( ) , = 1, 1, = 1, , = 1,2,

= ( ), = 0, ,

= ( ), = ( ), = 0, ,

s s s s s s

i j i j i j i j i j i js s

i i

t x x

s

j i j x t

i i x

j j N j j tx

y y y y y y
a y a y

h h h

t y i N j N s

y u x i N

y t y t j N



 

−

− + −− −

+

−

− −

− − −
−


+ −





K (36)

The iteration process continues until the following 

condition is satisfied:  
1

, ,,
< ,s s

i j i ji j
max y y −−

where   precision and we took it as 610− . 

We denote 

1 1

, 1 , , , ,2 2
= ( ), = ( ), = 1,s s s s s s st t

i j i i j i i j i j i j

x x

h h
A a y B a y C A B

h h

− −

+
+ +

1 1

, , 1 1 , 1
= ( )( )s s s

i j i j t j i j
F y h t y  − −

− − −
+ (37) 

Applying this notation, we rewrite (36) as follows: 

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ = ,
i i i i i i i

A y C y B y F
+ −
− + − (38) 

where 
, , , , ,

ˆ ˆˆ ˆˆ = , = , = , = , = .s s s s s

i i j i i j i i j i i j i i j
y y A A B B C C F F  

Figure 1: The numerical solution = 0.5, = 2.2, = 2.01, =1, ( ) =1.q m t    

343 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), June 2020225  



To solve the algebraic (38) we apply the

tridiagonal algorithm [30]  

1
ˆ ˆ=

i i i i
y y 

+
+         (39) 

where 1

1

ˆ ˆ ˆ
ˆˆ ˆ= , = , = ,

ˆ ˆ
i i i i

i i i i i i

i i

A F B
D C B

D D


  −

−

+
−

=1, 1,
x

i N − and the initial values are 

1 1 1 1

0 0

1 1

ˆ ˆ ˆ
= , = .

ˆ ˆ

A F B

C C


 

−

To satisfy the diagonal dominant condition, which 

guarantees the stability of an algorithm or numerical 

scheme, the following condition must be held:  

ˆ ˆ ˆ| | | | | | .
i i i

C A B +  (40) 

According to the definition ˆ
i

C in (37) the

inequality (40) is valid. 

Below we illustrate graphics of the numerical 

solution with Figures 1-4. 

Figure 2: The numerical solution 0.1= 0.1, = 3.2, =1.5, = 1, ( ) = .q m t t  − −

Figure 3: The numerical solution 0.5= 0.1, = 2.2, = 2.1, = 1, ( ) = .q m t t  −
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Figure 4: The numerical solution = 0.1, = 2.25, =1.1, =1, ( ) = 0.1.q m t  

4 CONCLUSIONS 

In this work, we examine the porous medium 

equation written in non-divergence form with a 

spatially varying source term to represent an 

inhomogeneous medium. First, we derived exact 

solutions in special parameter regimes by separation 

of variables, yielding closed-form evolution laws that 

serve as benchmarks. Second, we discovered a novel 

explicit solution expressible in terms of the inverse 

regularized Beta function. Third, we constructed a 

family of Barenblatt-type self-similar profiles and 

applied a comparison-principle argument to bound 

the general solution by these profiles, thereby 

establishing sharp asymptotic estimates. Finally, we 

developed a fully implicit finite-difference scheme 

and solved the resulting tridiagonal linear systems via 

the Thomas algorithm. To perform quantitative 

analysis, we develop a finite-difference algorithm: we 

discretize the source term in  (35) using the 

Samarskii–Sobol scheme at the origin and employ the 

Thomas algorithm to advance the solution in time. 

Two performance metrics -  eps for accuracy and s  for 

convergence - show marked improvement over our 

previous results ( eps=10^(-3), s=5 and   eps=10^(-3), 

s=4 in [5] and [11], respectively). The numerical 

experiments corroborate the analytical findings and 

illustrate representative behaviors (compact support, 

blow-up, interface motion) for general initial data. 

The results have direct implications for physical and 

applied models. Equations of this doubly-nonlinear 

form arise in diverse contexts: for example, they 

describe heat conduction in media with temperature- 

dependent conductivity, resistive diffusion in 

magnetized plasmas, flow through heterogeneous 

porous materials, and density-dependent transport in 

biological media. 
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