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Abstract: Traveling waves and integrable equations are the most well-known features of nonlinear wave propagation 

phenomena. Analytical solutions to nonlinear integrable equations play an important role in examining the 

behaviour and structure of nonlinear systems. They offer valuable insights into how these systems evolve over 

time and under different conditions. Such solutions are essential for accurately describing a range of real-

world phenomena. This study aims to derive closed-form traveling wave solutions of the (1+1)-dimensional 

Mikhailov-Novikov-Wang model by employing the Kudryashovʼs new function method. This system 

provides novel perspectives for understanding the connection between integrability and water wave 

phenomena. New solitary wave solutions are constructed in terms of hyperbolic functions by assigning 

particular values of the parameters. The study yields two types of solitons, including bell-shaped and singular 

soliton solutions. The solutions are simulated in 2D and 3D graphical representations to illustrate their 

physical features. The results highlight the effectiveness of the employed approach in constructing novel 

solutions which are essential to understand the dynamics of the governing system.  

1 INTRODUCTION 

Nonlinear integrable partial differential equations 

(PDEs) are fundamental in representing nonlinear 

physical phenomena in diverse fields such as applied 

mathematics, physics, and engineering [1], [2], [3]. 

The investigation of nonlinear physical behaviors 

often necessitates the use of both numerical and 

analytical methods by mathematicians and 

researchers for the analysis of nonlinear PDEs [4], 

[5], [6], [7], [8], [9], [10]. 

The Mikhailov-Novikov-Wang (MNW) system 

was introduced in 2006, and is given by  [11] 

{
𝑔𝑡 = 𝑔𝑥𝑥𝑥𝑥𝑥 − 20𝑔𝑔𝑥𝑥𝑥 − 50𝑔𝑥𝑔𝑥𝑥 + 80𝑔2𝑔𝑥 + ℎ𝑥,

ℎ𝑡 = −6ℎ𝑔𝑥𝑥𝑥 − 2𝑔𝑥𝑥ℎ𝑥 + 96ℎ𝑔𝑔𝑥 + 16ℎ𝑥𝑔
2.

    (1) 

with ( , )g x t  and ( , )h x t  representing differentiable 

functions of velocity and height, respectively. This 

Boussinesq-type system consists of a couple of (1+1)-

dimensional integrable fifth-order PDEs that 

represent nonlinear wave phenomena. Hence, the 

system is significant for examining spatial and 

temporal dynamics, as well as waves in physical 

environments like shallow water. When ( , ) 0h x t = , 

(1) simplifies to the well-known Kaup-Kupershmidt

(KK) equation [12]. Previous studies, including

works by Mikhailov et al. [13] and Vojčák [14] have

demonstrated its integrability. Traveling wave

solutions of the MNW system were constructed by

Cesar via the extended tanh method [15]. A zero-

curvature representation of (1) was formulated by

Sergyeyev [12]. Shan et al. [16] employed Lie algebra

techniques to establish the Lax-integrability of the

equations, further confirming the presence of

Hamiltonian structures. The time-fractional MNW

system was examined by Jiang et al. [17] using Lie

symmetry analysis.

Exact solutions of nonlinear PDEs have 

significant importance for many researchers. Hence, 

numerous powerful and effective methods have been 

developed, including: the generalized exponential 

function method [18], the uniform method [19], the 

Kudryashov new function method [20], [21], Exp-

function method [22], the homogeneous Balance 

Method [23], the generalized Kudryashov method 

[24] and many other analytical methods.

The Kudryashov’s new function method is

employed in this study to construct novel solitary 

wave structures of the (1+1) dimensional integrable 
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MNW system which models the propagation of 

nonlinear waves. This robust technique facilitates the 

discovery of analytical solutions by converting the 

mathematical model into ordinary differential 

equations via the wave transform.  

Next, this study unfolds through the following 

sections:  Section 2 presents a concise overview of the 

Kudryashov’s new function method. In Section 3, 

new exact solutions of the MNW system are 

presented. Section 4 discusses the derived solutions. 

Finally, Section 5 concludes the work. 

2 OVERVIEW OF THE NEW 

FUNCTION METHOD 

The methodology of Kudryashovʼs new function 

method will be exhibited in this section. 

Suppose a nonlinear partial differential (2): 

𝜓(𝑔, 𝑔𝑡 , 𝑔𝑥 , 𝑔𝑡𝑡 , 𝑔𝑥𝑡 , … ) = 0.      (2) 

By employing the wave transformation

𝑔(𝑥, 𝑡) = 𝐺(𝜔), 𝜔 = 𝑘𝑥 − 𝛽𝑡 + 𝜔0,        (3) 

where   is the wave speed, and k  and 0 are 

arbitrary constants, (2) is converted into a reduced 

ODE where   is expressed as a polynomial function 

of the new function ( )G  and its derivatives as 

follows: 

( )2, , , , 0.G G kG G    − =K (4)

where the prime symbol indicates differentiation with 

respect to . 

The foremost steps of the new function method 

can be summarized in the following manner [20]: 

Step 1: For identifying the pole order for the 

formal solution of (4), assume G y=  and compare 

the exponents  of y  associated with the highest-order 

derivative term and the highest nonlinear term 

subsequently.  

Step 2: Assume the solution of (4) is expressed in 

the form: 

 
0

( ) ( ),
N

i

i

i

G b Q 
=

=        (5) 

where N  represents the pole order and 0 1, , , Nb b bK

are constants that will be identified subsequently. 

Kudryashov'–s new function is given by [25] 

1
( ) ,

4

Q

pe e
p

 


 −

=
 

+  
 

     (6) 

where p  and   are unknown parameters. Equation 

(6) satisfies the following auxiliary ODE:

(
𝑑𝑄

𝑑𝜔
)
2

= 𝑄2(𝜔)(1 − 𝜆𝑄2(𝜔)).   (7) 

It is easy to find distinct derivatives of ( )Q   as 

follows: 

2
3

2
2 ,

d Q
Q Q

d



= −       (8) 

3
2

3
6 ,

d Q
Q Q Q

d
 


= −      (9) 

4
3 2 5

4
20 24 ,

d Q
Q Q Q

d
 


= − +  (10) 

5
2 2 4

5
60 120 .

d Q
Q Q Q Q Q

d
   


= − +    (11) 

The relations (8)-(11) are utilized to compute the 

derivatives of ( )Q  as follows:

1

0

,
N

i

i

i

dG dQ
b iQ

d d 

−

=

=    (12) 

2
2 2 2 2

2
0

,
N

i i i

i

i

d G
b i Q i Q i Q

d
 



+ +

=

= − −   (13) 

(

)

3
3 1 2 1

3
0

1

( 2)

( 2) .

N
i i

i

i

i

d G dQ
b i Q i i Q

dd

i i Q






− +

=

+

= − +

− +


  (14) 

And so on. 

Step 3: By substituting (5) together with (7) and 

(12)-(14) into (4), we obtain a polynomial in terms of 

Q  and its derivatives. 

Step 4: A system of algebraic equations results 

from setting the coefficients of various different 

powers of 
dQ

Q
d







 
 
 

( )0,1,2, ; 0,1 =  = to zero.

The unknown constants ( 0,1,2, , ), ,ib i N = K and 

 can be explicitly determined by solving this

system.

Step 5: By substituting these values and the 

general solution (6) of (7) into (5), the traveling wave 

solutions of (2) is obtained. 
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3 EXACT SOLUTIONS OF THE 

MNW SYSTEM 

To derive the exact solutions of (1), the following 

transformation is applied: 

0

( , ) ( ),

( , ) ( ),

.

g x t G

h x t H

kx t





  

=


=
 = − +

   (15) 

Consequently, the system (15) is converted to a 

nonlinear ordinary differential system as follows: 

5 (5) 3 (3) 3

2

3 (3) 3

2

20 50

80 ,

6 2 96

16 ,

G k G k G k G G

kG G kH

H k HG k G H kHGG

kH G





   − = − −


 + +


   − = − − +
 +

     (16) 

thus, 

𝛽𝐻′ − 6𝐾3𝐻𝐺(3) − 2𝐾3𝐺″𝐻′ + 96𝐾𝐻𝐺𝐺 ′ 
+16𝐾𝐻′𝐺2 = 0.     (17) 

The first equation in (16) can be expressed as 

𝐻′ = −
𝛽

𝑘
𝐺 ′ − 𝑘4𝐺(5) + 20𝑘2𝐺𝐺(3) 

+50𝑘2𝐺 ′𝐺″ − 80𝐺2𝐺 ′.  (18) 

Integrating (18) once with respect to  , while 

assuming the integration constant is zero, yields 

𝐻 = −
𝛽

𝑘
𝐺 − 𝑘4𝐺(4) + 20𝑘2𝐺𝐺″

+15𝑘2(𝐺 ′)2 −
80

3
𝐺3.   (19) 

By substituting (18) and (19) into the second 

equation of (16), the following ODE is obtained: 

2
4 (5) 2 (3)

7 (5) (2) 5 (2) (3) 5 2 (3)

5 2 3 2 5 (5) 2

3 (3) 3 4 3 3

5 (4) 7 (3) (4) 2

26 52

2 160 90 ( )

100 ( ) 2880 16

480 3840 1440 ( )

96 6 192 0,

G k G k GG G G
k

k G G k GG G k G G

k G G K G G G k G G

k G G kG G k G G

k GG G k G G G G


  



  − − + +

+ − −

   − + −

 + − +

 − + − =

  (20) 

To determine the pole order, we substitute 

G y= into (20), which results in (5) 2 7G G y −  and 

4 5 1G G y −  . By balancing the exponents, we find 

2 = − , indicating that the pole order is 2N = . 

Consequently, we have 

2

0 1 2( ) ( ),G b b Q b Q = + +    (21) 

With the help of Mathematica, substituting (21) 

and its derivatives into (20), and then collecting terms 

with identical powers of Q
 while setting the 

coefficients of ( )0,1,2, ,9Q  =  to zero, leads to a

system of algebraic equations. This system is solved 

to obtain: 

2
2 5

0 1 2

3
,   0, ,  β

4 4

k
b b b k k= = = − = − .   (22) 

By substituting these values into (21), the 

following exact solution is obtained: 

( )

( )
6

2 2

2

3
,

4
4

.
6

4

G

k

k k

e
pe

p

H









 −


−

 
+  

 

= −



=





        (23) 

where 
5

0kx k t = + + . 

We can randomly choose the parameters p  and 

 . Setting
24p = , we get the following solitary 

wave solution: 

( ) ( )( )

( )
6

2
23sech 1 ,

4

.
6

G

k

k

H






=


−

=



−







−
   (24) 

where 
5

0kx k t = + + . 

Again, setting 
24p = − , we get the following 

solitary wave solution: 

( ) ( )( )

( )

2
2

6

3csch 1
4

.
6

,G

k

k

H






=


+



=






−

   (25) 

where 
5

0kx k t = + + . 
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Figure 1: Solitary wave profile (24) at 0.9,k = and 

0 0.1 =  in 3D plot. 

Figure 2: Solitary wave profile (24) at 0.9,k = and 

0 0.1 =  in 2D density plot. 

Figure 3: Solitary wave profile (24) at 0, 0.9,t k= =  and 

0 0.1 = in 2D plot.

Figure 4: Solitary wave profile (25) at 0.5,k =  and 

0 0.1 =  in 3D plot. 

Figure 5: Solitary wave profile (25) at 0.5,k = and 

0 0.1 =  in 2D density plot. 

Figure 6: Solitary wave profile (25) at 0, 0.5,t k= =  and 

0 0.1 = in 2D plot. 
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4 RESULTS AND DISCUSSION 

We demonstrate the physical behavior of solutions by 

assigning particular values for the arbitrary 

parameters. These parameter choices play a crucial 

role in interpreting the physical features and 

properties of the derived solutions. Figures 1, 2 and 3 

depict the 3D, 2D density and 2D profiles of the anti-

bell-type soliton solution (24) respectively, for 

selected parameter values at 0.9,k =  and 0 0.1 = . 

Figures 4, 5 and 6 depict the 3D, 2D density and 2D 

graphs of the singular soliton solution (25) 

respectively for specific parameters at 0.5,k =  and 

0 0.1 = . 

A comparison between the solitary wave solutions 

obtained in this study for the governing system and 

those reported in earlier literature [15] confirms that 

the solutions presented here are new and have not 

appeared before. The results will significantly 

contribute to investigate numerous phenomena that 

arise in nature and across various nonlinear medium. 
In this research, we employed advanced symbolic 

computation techniques via Mathematica to conduct 

both symbolic mathematical analysis and numerical 

simulations. Mathematica has demonstrated its 

effectiveness and robustness as a tool for deriving 

solitary wave solutions. 

5 CONCLUSIONS 

This paper examined the use of the Kudryashov new 

function technique to analyze the (1+1) dimensional 

Mikhailov-Novikov-Wang system. By applying the 

wave transform, the original system is reduced to a 

fifth-order ODE. Consequently, this analysis has 

yielded new solitary wave solutions, including bell-

shaped and singular soliton solutions. These solutions 

are considered completely new and have not been 

reported before. The obtained solutions offer 

important information about the wave dynamics of 

the model. They are especially useful for researchers 

working on nonlinear processes in areas like fluid 

mechanics and plasma physics. These findings show 

that the Kudryashov new function method provides 

an efficient and reliable approach for analyzing 

complex dynamical systems. This approach serves as 

an effective and robust tool for analyzing and 

interpreting the dynamic behavior of the system. It 

not only enhances the understanding of complex 

mathematical models, but also promising for broader 

future applications in various disciplines. In the 

future, one can further extend our results to solve 

other Boussinesq-type equations due to their 

significance in modeling nonlinear physical 

phenomena. 
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