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Abstract: Fluorine-doped α-Fe₂O₃ nanostructure films were synthesized by a facile Chemical Spray Pyrolysis (CSP) 

technique at a substrate temperature of 400 °C using standard glass slides. The fluorine dopant 

concentration was varied incrementally at 0%, 2%, and 4% by weight in order to systematically investigate 

its influence on the structural, morphological, and optical properties of the deposited films. X-ray diffraction 

(XRD) analyses exhibit well-defined diffraction peaks corresponding to the (017), (113), (119), and (220) 

planes, confirming the successful formation of the pure α-Fe₂O₃ (hematite) phase without any detectable 

secondary phases. The average crystallite size of hematite increased from 13.98 nm to 16.78 nm with rising 

fluorine content, indicating enhanced crystal growth and improved crystallinity due to doping. Atomic Force 

Microscopy (AFM) images reveal uniformly distributed grains with a smooth surface texture free of cracks 

or pinholes. Furthermore, the surface morphology and grain dimensions were noticeably altered as the 

dopant concentration increased. Optical characterization demonstrated a progressive decrease in 

transmittance with fluorine incorporation, reaching 65% at 600 nm, accompanied by a clear blue shift in the 

optical band gap, indicating modified electronic transitions and enhanced optical activity in the doped 

films.. 

1 INTRODUCTION 

Hematite (α-Fe2O3), Because of its benefits and uses, 

has garnered a lot of interest [1]-[2], with band gap 

of (2.2-2.6) eV. [3]. Additionally, hematite's 

nontoxicity, affordability, environmental 

friendliness, and comparatively high stability make 

it an appealing material for all applications [4]. 

Doping with  Cr, Zn, Ni, Ga, and Co at Fe site in 

hematite influences the physical properties [5]-[10]. 

The morphologies and structures of nanostructures 

have a significant impact on their unique 

characteristics. [11]-[19]. Fluorine doping into metal 

oxides has recently been the subject of numerous 

investigations in an effort to enhance the 

electrochemical outcomes of solar cells and lithium-

ion batteries (LIBs) [18], [20-24].  

2 EXPERIMENTAL DETAILS 

Fluorine-doped α-Fe2O3 was prepared via CSP. O.1 

M of FeCl3, and NH4F were settled via deionized 

water with a small amount of HCl drips. A weight 

ratio of 2% and 4% of Fluorine was carried out. The 

ideal conditions were as follows: base temperature 

of 400°C, spraying time of 8 s and pausing time of 1 

min, air as a carrier gas set at a pressure of 105 pa, 
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and spout-to-base spacing of 28 cm. 310 ± 25 nm 

was the calculated film thickness using the 

gravimetric approach. The samples were studied by 

XRD. AFM was utilized to study deposited thin film 

surfaces. Transmittance spectra were achieved 

utilizing UV-Vis spectrophotometer. Gas sensitivity 

was done  inside a cylindrical chamber with a radius 

of 10 cm and a height of 18 cm. 

3 RESULTS AND DISCUSSIONS 

Figure 1 depicts the XRD styles of the entended 

films. The peaks that were spotted. at 2θ: 24.62°, 

31.14°, 37.82° and 62.71°correspond to (017), (113), 

(119) and (220) planes respectively. The measured

reflections are classified based on the α-Fe2O3

phase's rhombohedral crystal structure. and reliable

with ICDD (card no.40-1139) [25]. The (113)

reflection was the most intense one. This shifting of

XRD peaks results in lattice parameter variation as

shown in

Table 1. The host lattice's irregular distribution

brought on by a larger F-ion content is mostly

responsible for altering the different physical

characteristics. After F-doping, the lattice parameter

values undergo a change due to the reduced radius of

F- ions (1.33 Å) in comparison to O2- ions (1.40 Å)

[26].

The crystalline sizes (D) were calculated via  (1)

[27]:

𝐷ℎ𝑘𝑙 =
0.9𝜆

𝛽𝑐𝑜𝑠𝜃
,       (1) 

where λ =1.54 Å, β is FWHM, and θ is Bragg angle. 

Lattice strain (ε) and dislocation density 

(δ)formula were calculated using (2) [28]: 

𝜀 =
𝛽𝑐𝑜𝑠𝜃

4
 (𝑙𝑖𝑛𝑒𝑠−2. 𝑚−1) (2) 

𝛿 =
1

𝐷2 (
𝑙𝑖𝑛𝑒𝑠

𝑚2 ) ,       (3) 

D is found in the range of 13.98-16.17nm. these 

findings agree with Mote et al. [29].  

AFM pictures of α-Fe2O3 and doping in Fluorine 

nanostructure thin films are depict in Figure 3. The 

regular distribution of grain size is seen by the AFM 

images. of columnar aggregates without any cracks 

or holes. The average particle sizes Pav are: 87.2, 

67.78 and 32.83 nm for 0, 2 and 4 wt.% respectively. 

The deposit surface roughness Ra ranged from (8.69 

to 3.32) nm. Pav and root mean square roughness 

(rms) differ in roughness behaviour in undoing and 

doping. The system roughness is affected by various 

parameters, among which surface diffusion 

temperatures [30], [31].  

Figure 1: XRD styles of the entended films. 
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Figure 2: X-ray parameter of the deposit films. 

Figure 3: AFM information. 

Figure 4, shows transmittance(T) of deposit 

films,  optical transmission depending on the doping 

concentration. From the figure, the visible region's 

transmission is 65% to 75% . An increase in the 

doping concentration causes the transmittance to 

decrease and the absorbance to increase. This result 

is in agreement with Sivakumar et al. [32], [33]. 

Figure 5. offer the optical absorbance of pure and α-

Fe2O3:F thin films. UV-Vis absorbance spectrum 

results show high optical absorption occurs at 380 

nm [34], [35]. According to the UV-Vis absorbance 

spectrum, the absorption rate of the α-Fe2O3:F 

sample increases with the percentage increase in the 

Fluorine concentration. 
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Figure 4: Transmittance of the deposit  films. 

Figure 5: Absorbance of the deposit  films. 

The absorption coefficient α is measured by (4) 

[36]: 

𝛼 =
1

𝑙𝑛𝑇

𝑑
(4) 

where d is film thickness. Figure 6 shows 𝛼 versus 

the photon energy (ℎ𝑣) of various doping of Al. 

Fluorine content. From Figure 7. ,it is evident that α 

increases easily with hv up to 2.42 eV, but for hν < 

2.42 eV, α increases abruptly.  Α has high values 

(104 cm-1) for all films, in addition to  its value risen 

slightly as Fluorine content was increased [37]. 

Tauc's relation has been used to compute the 

band gap as follows: [38]: 

𝛼ℎ𝜐 = 𝐵(ℎ𝜈 − 𝐸𝑔)𝑛 , (5) 

B is a constant , hν  photon energy  and n is taken 

1/2 for direct gap [39, 40]. Figure 7. shows Eg values 

determined as,  A noticeable increase in Eg for 

doped films compared to the udoped ones, Eg = 2.48 

eV for pure α-Fe2O3 and (2.42, 2.38) eV for 

Fluorine content at 2% and 4 wt.% respectively. The 

same phenomena are carried out in the literature 

[41,42]. The refractive index (n) was obtained by (6) 

[43]: 

𝑅 =
(𝑛−1)2

(𝑛+1)2 (6) 

Where R is reflectance. 

The extinction coefficient (k) is evaluated via (7) 

[44]: 

𝑘 =
𝛼𝜆

4𝜋
 . (7) 

Figure 6: Absorption coefficient (α) Vs hν of the prepared 

films. 

Figure 7: Plot of (αhν)2 versus  hν for the Fe2O3 with 

different Fluorine doping. 

Figure 8 shows n as a function of wavelength. It 

is discovered that raising the Fluorine doping 

content improves (n). The variation of n with 

wavelength in the range of (300-900) nm is 

dependent on the reflectance as shown by (6) Figure 

9 shows the extinction coefficient of entended  films. 

As can be seen from this figure, for all produced 

films, k falls dramatically with increasing 

wavelength up to 600 nm, and its value increases 

with increasing doping 45, 46. From Figure 8 k 

values increase with increased doping, which may 

be attributed to a change in crystalline structure. The 
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improved of crystalline development is the cause of 

this increase [47-50]. 

In Figure 10, the observed trend illustrates the 

resistance variation over time for entended films 

when exposed to 150 ppm of NO₂ at a temperature 

of 100°C. This behavior highlights the impact of 

NO₂ molecules in initiating surface oxidation. 

Specifically, this process involves the interaction 

between NO₂ and pre-adsorbed oxygen species (O₂⁺ 

ions) [51-54], leading to the release of trapped 

electrons. These electrons subsequently migrate 

back to the CB, as a consequence, resistance rises. 

This phenomenon also enhances the potential barrier 

under these conditions. Notably, at a fluorine doping 

concentration of 4 wt.%, the Fe₂O₃ film exhibits the 

highest resistance (R). This suggests a direct 

correlation between fluorine doping and increased 

film sensitivity, as well as enhanced resistance to gas 

flow [55, 56]. The significant rise in resistance is 

attributable to the modification of charge carrier 

concentration and potential barrier height, which 

effectively influences the film's response to NO₂ 

exposure [57, 58]. The detection sensitivity, also 

referred to as the sensor response, can be calculated 

using the following (8) [59]: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∆𝑅

𝑅𝑔
= |

𝑅𝑔−𝑅𝑎

𝑅𝑔
| × 100 % (8) 

Figure 8: Refractive Index for grown films. 

Figure 11 illustrates the variation in sensor 

sensitivity for undoped Fe₂O₃ and fluorine-doped 

Fe₂O₃ films with fluorine concentrations of 2 wt.% 

and 4 wt.% after exposed to NO₂ gas. The observed 

decrease in s with increasing fluorine doping is 

primarily attributed to charge carrier recombination 

[60]. This process occurs as electrons released from 

adsorbed oxygen species interact with holes in the 

Fe₂O₃ film, leading to a decrement in free charge 

carriers and, consequently, a rise in electrical 

resistance. 

Figure 9: Extinction coefficient (k) of the grown films. 

Figure 10: Dynamic Resistance of undoped Fe2O3 and 

Fluorine content at 2% and 4 wt.% respectively. 

Figure 11: Sensitivity of undoped Fe2O3 and Fluorine 

content at 2% and 4 wt.% respectively. 

4 CONCLUSIONS 

Fluorine-doped α-Fe₂O₃ nanostructured thin films 

were successfully synthesized using the chemical 

spray pyrolysis (CSP) method at a substrate 

temperature of 400°C. Structural analysis through 

XRD confirmed the formation of the hematite phase 
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with no secondary phases. The crystallite size 

slightly increased from 13.98 nm to 16.17 nm with 

the increase in fluorine content.Surface morphology 

examined by AFM revealed uniformly distributed 

grains and smooth surfaces without cracks or 

pinholes. The root mean square (RMS) surface 

roughness decreased significantly with higher 

fluorine concentration. Optical analysis showed a 

decrease in transmittance and an increase in 

absorbance with increased fluorine content. The 

optical bandgap exhibited a slight blue shift, 

decreasing from 2.48 eV in pure films to 2.38 eV at 

4% fluorine doping. This change is attributed to the 

formation of defect states and improved carrier 

transitions. Additionally, the refractive index and 

extinction coefficient increased with fluorine 

content. Gas sensing results demonstrated a notable 

increase in electrical resistance upon exposure to 

NO₂, especially in films doped with 4% fluorine. 

This suggests that fluorine doping enhances the 

potential barrier and sensitivity of the film. 

However, overall sensitivity decreased with 

increased fluorine content due to increased charge 

carrier recombination. 
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