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Abstract
A fiber graph is a graph on the integer points of a polytope whose edges come from a set of allowed
moves. Fiber graphs are given implicitly which makes them a useful tool in many applications
of statistics and discrete optimization whenever an exploration of vast discrete structures is
needed. The first part of this thesis discusses the graph-theoretic structure of fiber graphs with
a particular focus on their diameter and edge-expansion. We define the fiber dimension of a
simple graph as the smallest dimension where it can be represented as a fiber graph and prove
an upper bound on the fiber dimension that only depends on the chromatic number of the graph.
In the second part, random walks on fiber graphs are studied and it is shown that, when a
fixed set of moves is used, rapid mixing is impossible. In order to improve mixing rates for fiber
walks in fixed dimension, we evaluate possible adaptions of the set of moves, one that adds a
growing number of linear combinations of moves to the set of allowed moves and one that allows
arbitrary lengths of single moves. We show that both methods lead to spectral expanders in fixed
dimension. Finally, the parity binomial edge ideal of a graph is introduced. Unlike the binomial
edge ideal, it does not have a square-free Gröbner bases and is radical if only if the graph is
bipartite or the characteristic of the ground field is not two. We compute the universal Gröbner
basis and the minimal primes and show that both encode combinatorics of even and odd walks.

Zusammenfassung
Ein Fasergraph ist ein Graph auf den ganzzahligen Vektoren eines Polytops, dessen Kanten aus
einer Menge zugelassener Richtungsvektoren entstehen. Fasergraphen sind implizit gegeben und
deshalb ein wichtiges Werkzeug in vielen Anwendungen der Statistik und Optimierung, wann
immer riesige diskrete Strukturen untersucht werden. Der erste Teil dieser Arbeit beschäftigt sich
mit der graphen-theoretischen Struktur von Fasergraphen mit besonderem Augenmerk auf deren
Durchmesser und Kanten-Expansion. Wir definieren die Faserdimension eines einfachen Graphen
als die kleinste Dimension, in der er als Fasergraph dargestellt werden kann, und beweisen eine
obere Schranke der Faserdimension, die nur von der chromatischen Zahl des Graphen abhängt. Im
zweiten Teil werden Zufallsbewegungen auf Fasergraphen untersucht und es wird gezeigt, dass mit
fixierten Richtungsvektoren eine schnelle Konvergenz nicht möglich ist. Um die Konvergenzrate
zu verbessern, untersuchen wir mögliche Anpassungen der zugelassenen Richtungsvektoren: eine,
die eine wachsende Zahl an Linearkombinationen der Richtungen hinzufügt und eine zweite,
die fixierte Richtungen beliebiger Länge zulässt. Wir zeigen, dass beide Methoden spektrale
Expander in fixierter Dimension liefern. Zum Schluss wird das paritäre binomische Kantenideal
eines Graphen vorgestellt. Dieses hat, anders als das binomische Kantenideal, keine quadratfreie
Gröbnerbasis und ist radikal genau dann, wenn der Graph bipartit oder die Charakteristik des
Grundkörpers ungleich zwei ist. Wir berechnen die universelle Gröbnerbasis sowie die minimalen
Primideale und zeigen, dass beide eine Kombinatorik von geraden und ungeraden Pfaden kodieren.
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1 Introduction

The assessment of statistical models, based on expectation and experience, tries to reduce the
complexity of our ambient world and makes questions about nature amendable to algorithms
and mathematics. The prevalent working scheme in inferential statistics is to draw conclusions
based on finitely many independent observations about the whole set of interests. Frequently,
observations are represented as multi-way contingency tables and the class of log-linear statistical
models describes how their attributes relate among each other [28]. Given an observed contingency
table on the one and a statistical model on the other hand, an intruding question is how well the
model explains the observed data, that is determining its goodness-of-fit. The running engine
that many exact goodness-of-fit tests for log-linear models have under their hood is a random
walk on a fiber graph. Essentially, a fiber graph is a graph on the lattice points of a polytope
where two nodes are adjacent if their difference lies in a set of allowed moves. Being graphs on
lattice points, the combinatorial outreach of fiber graphs goes far beyond statistics as they appear
naturally in discrete optimization [31] and commutative algebra, particularly in the context of
toric ideals [109] and matrix gradings [79]. Regardless of the application, an interesting situation
is when fiber graphs are connected, in which case the set of moves is called a Markov basis.
The seminal paper of Diaconis and Sturmfels [39] triggered a lot of research on fiber graphs
that was mostly dedicated to the determination of Markov bases for a variety of statistical
models [72, 112, 110, 111] and the design of algorithms for their computation [42, 61, 41]. Since
Markov bases can be determined with tools from commutative algebra, research on fiber graphs
is a topic of algebraic statistics, a field that studies statistical models with algebraic methods.
Due to the implicit structure of fiber graphs, Markov bases give rise to implementable and

irreducible random walks that can approximate any probability distribution on the underlying
set of lattice points. The number of steps needed to approximate a given distribution sufficiently
is the mixing time of the random walk. As a general impediment of any Markov chain Monte
Carlo approach, there is a priori no information on the mixing time of a random walk available
and its exact determination remains computationally unfeasible. To put hands on mixing times,
a combinatorial understanding of fiber graphs is necessary and it is the goal of this thesis to take
a first step towards their graph-theoretic understanding.

This thesis summarizes and unifies the author’s work on questions related to fiber graphs [119,
120, 108] and parity binomial edge ideals [73]. Being at the non-empty intersection of commutative
algebra, statistics, graph theory, and discrete geometry, a lot of different concepts, notations,
and terminologies are required in this thesis. Chapter 1 is devoted to briefly set up the very
basic definitions that are used throughout and it provides pointers to the literature for more
details on the particular topic. More specific concepts are introduced in the respective chapters
locally. Typically, the node set of a fiber graph is a fiber FA,b := {u ∈ Nd : Au = b} of an
integer matrix A ∈ Zm×d and a right-hand side b ∈ Zm, and our leading principle is to study
fiber graphs that originate from the same integer matrix, but for varying right-hand sides. In
the first part of this thesis, we study how much a priori information about the graph structure
of fiber graph can be read off the input only. Our results concern the asymptotic character of
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diameter and edge-expansion of fiber graphs for sequences of right-hand sides (bi)i∈N in NA.
We state properties on (bi)i∈N and the moves that imply a decline of the edge-expansion as 1

i
and a growth of the diameter linearly in i. Every simple graph can be written as a fiber graph,
but not all structures are possible in any dimension. This motivates our investigation of the
fiber dimension of a graph in Chapter 3, that is the smallest dimension in which a graph can
be represented as fiber graph. The second part of this thesis deals with random walks on fiber
graphs. First, we use our results from Chapter 2 to prove that symmetric fiber walks cannot
mix rapidly in fixed dimension. A canonical adaption of Markov bases is stated and shown to
be faster than fiber walks with conventional Markov bases asymptotically for large right-hand
sides. A different adaption is shown in Chapter 5, where heat-bath walks on compressed fiber
graphs are examined. We prove that the diameter of compressed fiber graphs is bounded from
above by a constant when the right-hand side varies (Theorem 2.2.17) and that under additional
assumptions on the Markov basis, the heat-bath walk mixes rapidly on them (Theorem 5.2.9).
Finally, the parity binomial edge ideal IG of a graph G = (V,E) is studied in Chapter 6, which
encodes the adjacency relations into a binomial ideal in k[xv, yv : v ∈ V ]. We determine a prime
decomposition and prove radicality for parity binomial edge ideals when char(k) 6= 2 in terms of
combinatorial invariants of the graph G. Moreover, the universal Gröbner basis of IG is stated
in Section 6.2 and shown to support one part of a recent conjecture from [8].

Basic notations
The natural numbers are N := {0, 1, 2, . . .}. For any n ∈ N, we set [n] := {m ∈ N : 1 ≤ m ≤ n}
and we use N>n and N≥n to denote the subsets of N whose elements are strictly greater and
greater than n respectively. For any u ∈ Zd, the symbols u+, u− ∈ Nd denote the unique support
disjoint vectors that fulfill u = u+ − u−. The d × d identity matrix is denoted by Id and the
unit vectors of Qd are e1, . . . , ed. Let S ⊆ Qd and i ∈ Q, then the i-th dilation of S is the set
i · S := {i · s : s ∈ S}. For another subset T ⊆ Q, we let T · S = {t · s : t ∈ T , s ∈ S}.
Let (ai)i∈N and (bi)i∈N be two sequences in Q, then (ai)i∈N ∈ O(bi)i∈N if there exist i0 ∈ N

and C ∈ Q>0 such that |ai| ≤ C · |bi| for all i ≥ i0. Similarly, (ai)i∈N ∈ Ω(bi)i∈N if there exist
i0 ∈ N and C ∈ Q>0 such that |ai| ≥ C · |bi| for all i ≥ i0. The sequence (ai)i∈N is a subsequence
of (bi)i∈N if there is a strongly increasing sequence (ik)k∈N in N such that aik = bk for all k ∈ N.

A graph is always undirected and can have multiple loops. Occasionally, we point to the node
set of a graph G = (V,E) with V (G) := V and to its edge set with E(G) := E. The adjacency
matrix of G is denoted by AG ∈ N|V |×|V | and for a node v ∈ V , degG(v) denotes the number
of edges in E incident to v. A (u, v)-walk in G of length r is a sequence (w1, . . . , wr+1) ∈ V r+1

with w1 = u and wr+1 = v such that {wk, wk+1} ∈ E for all k ∈ [r]. A path is a walk where the
intermediate nodes w2, . . . , wr are distinct and different from u and v. A cycle (circuit) is an
(u, v)-walk (path) with u = v. For a set of nodes S ⊆ V , G[S] denotes the induced subgraph on S.
The complete graph and the circuit graph on n nodes are Kn and Cn respectively. The complete
r-partite graph on node classes of size n1, . . . , nr ∈ N is denoted Kn1,...,nr .

1.1 Random walks
In this and the remaining sections, the notation is mainly borrowed from the excellent text-
books [40] on graph theory and [81] on Markov chains. When graphs meet probability theory,
then walks become random walks. Different than their name let one suggest, random walks on
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graphs are very deterministic and tangible in mathematics:

Definition 1.1.1. Let G = (V,E) be a graph. A map W : V × V → [0, 1] is a random walk on
G if for all distinct s, t ∈ V with {s, t} 6∈ E, W(s, t) = 0 and if for all v ∈ V ,

∑
u∈V W(v, u) = 1.

Let G = (V,E) be a graph. When there is no ambiguity, a random walk is represented
as a |V | × |V |-matrix, for instance when it is clear how the elements of V are ordered. Let
W : V ×V → [0, 1] andW ′ : V ×V → [0, 1] be maps, then their product W◦W ′ : V ×V → [0, 1] is

(W ◦W ′)(u, v) =
∑
w∈V
W(u,w) · W ′(w, v).

Representing W and W ′ as matrices, then W ◦W ′ =W ·W ′ is precisely the product of matrices.
Let π : V → R be a map, then we similarly define (W ◦ π)(u) =

∑
v∈V W(u, v) · π(u) and

(π ◦ W)(u) =
∑
v∈V π(v) · W(v, u) to be the multiplications of a matrix with a vector. We

let W0 be the map that sends (u, v) ∈ V × V to 1 if u = v and to 0 otherwise, and define
Wt :=W ◦Wt−1 for t ∈ N≥1 recursively. With a random walk W , the node set of its underlying
graph can be explored randomly by selecting for any starting node v ∈ V a node w randomly
from V according to the distribution W(v, ·) and iterating the procedure at the new node. For
any t ∈ N, the quantity Wt(v, u) is then the probability that the random walk that starts at v is
at u after t steps. The assumptions in Definition 1.1.1 guarantee that two distinct nodes that
are subsequently visited are adjacent in G and hence this method produces walks randomly.

Remark 1.1.2. To perform a random walk on a graph G = (V,E), we do not need an explicit
description, or list, of its nodes V and edges E. It suffices to have a local understanding of
the graph, for instance an algorithm that computes for any v ∈ V its neighborhood in G. In
computer science, graphs with that property are called implicit graphs [66, Definition 2.3].

We now define the simple walk on a graph which is, as the name suggests, a very simple random
walk, mainly because it selects at every step uniformly from the respective neighborhoods:

Definition 1.1.3. The simple walk on G = (V,E) is the map SG on V × V defined by

SG(u, v) =


AG(u,v)
degG(u) , if {u, v} ∈ E
0, otherwise

.

In general, every random walk W : V × V → [0, 1] comes along with a discrete-time Markov
chain whose state space is the node set of its underlying graph [18, Section 1]: For any initial
distribution π0 : V → [0, 1] and any t ∈ N, a probability mass function πt on V is given by
πt(v) :=

∑
u∈V π0(u) · Wt(v, u) and it is not hard to show that (πt)t∈N is a Markov chain. The

following properties on the random walk ensure convergence – in a sense that is made precise
later – of its attached Markov chain (πt)t∈N (see also Theorem 1.1.5):

Definition 1.1.4. Let G = (V,E) be a graph andW a random walk on G. The random walkW is
symmetric ifW is a symmetric map and aperiodic if for all v ∈ V , gcd{t ∈ N>0 :Wt(v, v) > 0} = 1.
A random walk W is irreducible if for all v, u ∈ V , there exists t ∈ N such that Wt(v, u) > 0 and
reducible otherwise. A random walk W is reversible if there exists a probability mass function
µ : V → [0, 1] such that µ(u) · W(u, v) = µ(v) · W(v, u) for all u, v ∈ V . A probability mass
function π : V → [0, 1] is a stationary distribution of W if π ◦W = π.
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Irreducibility of random walks is an important and desired property since irreducible random
walks have a unique stationary distribution [81, Corollary 1.17]. If the random walk is symmetric
additionally, then this distribution is the uniform distribution on the node set of the underlying
graph. It is immediate from Definition 1.1.4 that connectedness of the underlying graph is a
necessary condition to construct irreducible random walks. The next theorem shows that an
irreducible and aperiodic random walk converges to its stationary distribution. To specify what
the convergence of a random walk is, let us set up a distance measure on the set of mass functions
that is suitable for statistical purposes: The total variation distance of two mass functions π
and π′ on a finite set V is defined by ‖π − π′‖TV := 1

2
∑
v∈V |π(v)− π′(v)|. An equivalent, and

more statistically motivated, definition of the total variation distance is in [81, Proposition 4.2].

Theorem 1.1.5. Let G = (V,E) be a graph and W : V × V → [0, 1] be an irreducible and
aperiodic random walk with stationary distribution π. Then there exists C ∈ Q and α ∈ (0, 1)
such that maxv∈V ‖Wt(v, ·)− π‖TV ≤ C · αt for all t ∈ N.

Proof. This is [81, Theorem 4.9].

Putting Theorem 1.1.5 in other words: Random walks can be used to draw samples from the
distribution they converge to. To make this approximation applicable in practice, the number of
steps that are needed to be sufficiently close to the stationary distribution needs to be known:

Definition 1.1.6. Let G = (V,E) be a graph and W an irreducible and aperiodic random walk
with positive stationary distribution π. The mixing time of W is the map TW : R≥0 → N,

TW(ε) := min{t ∈ N : max
v∈V
‖Ws(v, ·)− π‖TV ≤ ε for all s ≥ t}

In statistics, it is common practice to denote the mixing time of a random walkW by TW(0.25),
which typically suffices to approximate the stationary distribution of W sufficiently well in
applications (see also [81, Section 4.5]). The general definition of the mixing time as stated in
Definition 1.1.6 is cumbersome and intricate to work with in practice. To derive an equivalent
convergence measurement that additionally takes the combinatorial structure of the random walk
into account, we need a few definitions: A scalar λ ∈ R is an eigenvalue of a random walk W
if there exists a map π : V → R not identically zero such that W ◦ π = λ · π. In this case, π is
an eigenfunction of W. The absolute value of all eigenvalues of a random walk is smaller than
one [81, Lemma 12.1] and hence the following definition is well:

Definition 1.1.7. Let G be a graph on n nodes and W a random walk on G. The eigenvalues
of W are denoted by λ1(W), . . . , λn(W) so that 1 = λ1(W) ≥ λ2(W) ≥ . . . ≥ λn(W) ≥ −1 is
fulfilled. The second largest eigenvalue modulus of W is λ(W) := max{λ2(W),−λn(W)}.

Remark 1.1.8. Let G be a graph andW be a random walk on G that is not irreducible, then the
eigenvalue λ1(W) = 1 has multiplicity greater than 2 and hence λ(W) = 1. If W is irreducible,
then the Perron-Frobenius theorem [95, 55] implies that λ1(W) is a simple eigenvalue of W.

Theorem 1.1.9. Let G = (V,E) be a graph and W be a reversible and irreducible random walk
on G with stationary distribution π, then for all ε > 0,

log
( 1

2ε

)
·
( 1

1− λ(W) − 1
)
≤ TW(ε) ≤ log

( 1
ε ·minv∈V π(v)

)
· 1

1− λ(W) .
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Proof. The first inequality is [81, Remark 13.7] and the second is [81, Theorem 12.3]. Although
our definition of mixing time TW(ε) (Definition 1.1.6) is an upper bound to the mixing time tmix(ε)
as defined in [81, Section 4.5], it is immediate from their proof of [81, Theorem 12.3] that the
upper bound is valid for both definitions.

The second largest eigenvalue modulus is a measurement of the convergence rate: Theorem 1.1.9
says that the closer λ(W) is to 1, the slower is the convergence to the stationary distribution.
However, it is precarious to assign the adjectives fast and slow to the mixing behaviour of a
single random walk. Instead, the mixing time has to be in relation to the size of its state space
asymptotically. It is common to express rapid mixing of random walks in terms of the following
spectral property [3, 69, 25, 66, 115]:

Definition 1.1.10. For any i ∈ N, let Gi = (Vi, Ei) be a graph and let Wi be a random walk
on Gi. The sequence (Wi)i∈N is rapidly mixing if there is a polynomial p ∈ Q≥0[t] such that

λ(Wi) ≤ 1− 1
p(log |Vi|)

for all i ∈ N. The sequence (Wi)i∈N is an expander if there exists δ > 0 such that for all i ∈ N,

λ(Wi) ≤ 1− δ.

Due to Theorem 1.1.9, being rapidly mixing or an expander is equivalently expressed in
terms of the mixing time (Remark 1.1.12). The name expander relates to the fact that their
edge-expansion (Definition 2.4.1) can strictly be bounded away from zero (Proposition 4.1.9).

Example 1.1.11. The simple walk on the complete graph Kn has eigenvalues {1,− 1
n−1} and

hence (SKn)n∈N is an expander. It is not hard to see that the spectrum of the simple walk on the
circuit graph Cn is {cos(2πk

n ) : 0 ≤ k ≤ n− 1} and thus λ(SCn) ≥ cos(2π
n ). For n→∞, cos(2π

n )
tends faster to 1 than 1− 1

p(logn) for all p ∈ Q[t] and hence (SCn)n∈N is not rapidly mixing.

Remark 1.1.12. More generally, a sequence (Wi)i∈N of random walks on graphs Gi = (Vi, Ei)
with stationary distribution πi : Vi → [0, 1] is rapidly mixing when there is a polynomial p such
that TWi(ε) ≤ p(log(ε−1), log

(
minv∈Vi πi(v)−1)) (see for instance [3, Section 5]). Since we focus

in this thesis exclusively on symmetric random walks, that is πi is the uniform distribution, the
spectral property of Definition 1.1.10 is a pragmatic, but equivalent, reformulation. Roughly
speaking, a symmetric random walk mixes rapidly if only a logarithmic part of the graph nodes
has to be traversed. Observe that in this framework, the number of computations needed for a
single transition are not taken into account at all. Thus, when we assume that all graphs Gi are
given implicit (Remark 1.1.2) and that Wi needs at most q(ε, i) many computations to sample
locally from its induced distributions on the graph neighborhoods, then Wi generates elements
from Vi uniformly with at most q(ε, i) · p(log ε−1, log |Vi|) many computations.

Remark 1.1.13. Let G = (V,E) be a graph, then the stationary distribution of SG is the map
u 7→ degG(u) · (2|E|)−1. If G is d-regular , that is if all its nodes are incident to d edges, then
SG = 1

dA
G is symmetric and hence its stationary distribution is the uniform distribution on V .

With Theorem 1.1.9, analyzing the mixing time of a random walk boils down to a linear
algebra problem. However, the dimensions of the matrix we want to compute the eigenvalues
from is not given a priori and the number of its entries grows quadratically in the number of
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nodes of the graph. A powerful and popular tool to bound the mixing time of a random walk
and that respects the underlying graph structure is the conductance of the random walk which
has first been used in a statistical context in [106].

Definition 1.1.14. Let G = (V,E) be a graph and W : V × V → [0, 1] be a random walk on G
with stationary distribution π : V → [0, 1]. The conductance of W is

Φ(W) := min
{∑

i∈S
∑
j∈V \S π(i)W(i, j)
π(S) : S ⊆ V, 0 < π(S) ≤ 1

2

}
.

In [69], it was shown that 1−2Φ(W) ≤ λ2(W) ≤ 1− 1
2Φ(W)2. In particular, if λ2(W) = λ(W),

then the conductance is another equivalent measurement of the convergence rate. However, when
λ(W) > λ2(W), then these bounds are not valid for λ(W) and no statement can be made. A
way to circumvent this issue is to manually increase the rejection probability of the walk:

Definition 1.1.15. Let G = (V,E) be a graph and W a random walk on G. The lazy version
of W is the random walk L(W) = 1

2(W + In).

Remark 1.1.16. Since for any graph G = (V,E), the eigenvalues of symmetric random walks
W : V × V → [0, 1] on G are within [−1, 1], all eigenvalues of their lazy versions are in [0, 1].

1.2 Fiber graphs
A polytope is a set of the form convQ(F) ⊂ Qd for a finite set F ⊂ Qd. If F ⊂ Zd, then P is
a lattice polytope. The key player of this thesis are graphs on saturated sets, i.e. sets which
are the lattice points of a polytope. In particular, a finite set F ⊂ Zd is saturated if and only
if convQ(F)∩Zd = F . To get started, let us recall how we construct graphs on lattice points [39]:

Definition 1.2.1. Let F ⊆ Zd andM⊆ Zd be sets. Then F(M) is the graph on F where two
nodes u, v ∈ F are adjacent if u− v ∈ ±M. If F is saturated, then F(M) is called fiber graph.

We have stated Definition 1.2.1 in its full generality, but we restrict here to the case where the
involved sets F andM are finite, and leave the infinite case for further investigations. The choice
of the name in Definition 1.2.1 needs some clarification. It is hard to track when and where the
notion fiber graph has entered algebraic statistic. In the last two decades, it has became a collective
term that stands for graphs on sets (v + L) ∩ Nd, where v ∈ Nd and L ⊆ Zd is a lattice, that is
a set of the form {

∑r
i=1 λiwi : λ1, . . . , λr ∈ Z} for fixed w1, . . . , wr ∈ Zd (see for instance [86]).

When L ∩Nd = {0}, then (v + L) ∩Nd is a finite set for all v ∈ Zd. If L is saturated, i.e. if there
is an integer matrix A ∈ Zm×d for some m ∈ N such that L = kerZ(A), then (v + L) ∩ Nd is a
saturated set. In this case, the set (v + L) ∩ Nd is the fiber FA,b := {u ∈ Nd : Au = b} of A and
the right-hand side b := Av ∈ Zm. To work with fibers, we postulate the following throughout:

Convention. Matrices A ∈ Zm×d that define fibers are assumed to have a non-trivial kernel
and to satisfy kerZ(A) ∩ Nd = {0}.

Clearly, only for right-hand sides in the affine semigroup of A, denoted by NA := {Au : u ∈ Nd},
the fiber is non-empty. Although the node sets of the graphs in Definition 1.2.1 do not need to
be fibers, the next lemma justifies why the name is appropriate in spite of that.
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Lemma 1.2.2. Let F ⊂ Zd be a saturated set andM⊂ Zd be a finite set. There exists a matrix
A ∈ Zk×m, b ∈ NA, andM′ ⊂ kerZ(A) such that F(M) ∼= FA,b(M′).

Proof. Translation of F does not change the graph structure of F(M) and thus we can assume
that F ⊂ Nd. Let P ⊂ Qd

≥0 be a polytope with F = P ∩Nd. Since P is a rational polytope, there
exists B ∈ Zn×d with dim kerZ(B) = 0, n ≥ d, and b ∈ Zn such that P = {x ∈ Qd

≥0 : Bx ≤ b}.
Consider the injective and affine map

φ : Qd → Qd+n, x 7→
(

x
b−Bx

)

and let P ′ := φ(P) = {(x, y)T ∈ Qd+n
≥0 : Bx+ y = b}. Since the kernel of B is trivial, φ induces

a bijection from F = P ∩ Nd to F ′ := P ′ ∩ Nd+n. ForM′ := {(m,−Bm)T : m ∈ M}, we have
F ′(M′) ∼= F(M). With A = (B, In) ∈ Zn×(d+n), we get FA,b = P ′ andM′ ⊂ kerZ(A).

Figure 1.1: A fiber graph in Q2.

When working with fiber graphs, the overall goal is to make them connected, for instance, in
order to run irreducible random walks on them. The authors of [39] coined the following concept:

Definition 1.2.3. LetM⊂ Zd be a finite set. ThenM is a Markov basis for a finite set F ⊂ Zd
if F(M) is connected andM is a Markov basis for a collection F of finite subsets of Zd ifM is a
Markov basis for all F ∈ F. For a norm ‖ · ‖ on Rd, ‖M‖ := maxm∈M ‖m‖.

This definition of a Markov basis is a slight extension of that given in [43, Definition 1.1.12].
Their definition can easily be recovered by plugging in the collection of fibers for an integer
matrix A ∈ Zm×d, that is the set FA := {FA,b : b ∈ NA}. For simplicity, we call a Markov basis
for FA just a Markov basis for A. In the literature, a Markov basis for FA,b is often called a
Markov subbasis [26, 99]. We discuss in Section 2.1 how Markov bases for this type of collections
are computed. Observe that, in general, finite Markov bases do not have to exist:

Example 1.2.4. Let Fi := {0, i} ⊂ Z for i ∈ N, then clearly the collection (Fi)i∈N cannot have
a finite Markov basis. But trivially, all collections of saturated sets in Z have a finite Markov
basis, namely {1}. This fails to be true in Z2, where Fi = {(0, 0), (1, i)} ⊂ Z2 is saturated for
every i ∈ N and every Markov basis of (Fi)i∈N is a superset of {(1, i) : i ∈ N}.

Convention. Let (w1, . . . , wr) ∈ Fr be a path in F(M) from u = w1 to v = wr, then the
difference of subsequent elements mi := wi+1−wi is a move from ±M. For brevity, we frequently
just call the sum v = u +

∑r
i=1mi a path from u to v, where we implicitly assume that the

partial sums satisfy u+
∑l
i=1mi ∈ F for all l ∈ [r].

In the joint work [108] with Caprice Stanley, the compression of a graph from Definition 1.2.1
was introduced, which allows edges of arbitrarily length in the directions of the moves used:
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Definition 1.2.5. Let F ⊂ Zd andM⊂ Zd be finite sets. The compression of the graph F(M)
is the graph Fc(M) := F(Z · M).

Clearly, the compressed version of a fiber graph is connected if and only if the fiber graph itself
is connected. In Chapter 5, random walks on this type of graphs are studied and it is shown that
they converge rapidly in fixed dimension. The diameter of compressed fiber graphs is discussed
in Section 2.2, where the following set of moves becomes important:

Definition 1.2.6. Two vectors u, v ∈ Zd are sign-compatible if ui ·vi ≥ 0 for all i ∈ [d]. We write
u v v if u and v are sign-compatible and if |ui| ≤ |vi| for all i ∈ [d]. The Graver basis GL of a
lattice L ⊆ Zd is the set of all v-minimal elements in L. The Graver basis of a matrix A ∈ Zm×d
is the Graver basis of the saturated lattice kerZ(A).

The Graver basis is always finite and there are many good reasons why they are an especially
nice set of moves, some of these reasons are shown in Proposition 2.1.3, Lemma 2.2.14, and
Proposition 2.1.8. We refer to [31, Chapter 2] for more nice and not so nice Graver facts.

Figure 1.2: Compressing graphs.

We now merge fiber graphs with random walks, shortly fiber walks. Given a finite set F ⊂ Zd
together with a Markov basis M ⊂ Zd, one simply can use the simple walk on F(M) to
explore F . However, the simple walk may not be aperiodic, for instance when the underlying
graph is bipartite. In this case, the simple walk commutes back and forth between its color
classes and does not converge to its stationary distribution. This also happens for fiber graphs:

Proposition 1.2.7. Let F ⊂ Zd be a saturated set and let M ⊂ Zd be a Markov basis for F
with dim(F) = |M|. Then F(M) is bipartite.

Proof. Let k := dim(F) ≤ d. SinceM is a Markov basis of F , dim(F) = dim(spanQ {M}) and
thus we can writeM = {m1, . . . ,mk}. The assumption on the dimension says thatM is linearly
independent. Let v ∈ F and let v+

∑k
i=1 λimi +

∑k
i=1−µimi = v be a circuit in F(M) of length

r =
∑k
i=1(λi + µi). Linear independence gives λi = µi for all i ∈ [k] and thus r is even.

Bipartiteness of fiber graphs cannot always read off as easy as in Proposition 1.2.7 and can be
quite hidden subtly. A feasible way to construct a fiber walk that converges without any more
assumptions on F andM – beside connectedness of F(M) – is to manually add rejections:

Definition 1.2.8. Let F andM⊂ Zd be finite set. The simple fiber walk is the simple walk on
the graph obtained from F(M) by adding |{m ∈ ±M : v +m 6∈ F}| many loops to all v ∈ F .

We do not require the set F in Definition 1.2.8 to be saturated, although we restrict to this
case most of the time. With the additional halting states, we obtain:

Proposition 1.2.9. Let F ⊂ Zd be finite and non-empty set andM⊂ Zd a Markov basis for F .
The simple fiber walk on F(M) is irreducible, aperiodic, symmetric, reversible, and its stationary
distribution is the uniform distribution on F .
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Proof. The random walk is irreducible and symmetric since F(M) is connected and |±M|-regular
(Remark 1.1.13). Thus, it suffices to show that F(M) has one aperiodic state to show that all
states are aperiodic due to [81, Lemma 1.6]. Choose v ∈ F and m ∈M arbitrarily. Since F is
finite, let λ ∈ N be the largest natural number such that v+λm ∈ F . Then m cannot be applied
on v + λm and thus there is a positive probability that the simple fiber walk stays at v + λm.
Symmetry of the simple fiber walk implies immediately its reversibility and that the uniform
distribution is its unique stationary distribution.

For a finite set of moves M, the neighborhood of a given node v ∈ F in F(M) can be
enumerated by going through all moves m ∈ ±M and by checking whether v+m ∈ F holds. We
emphasize that, by definition, Markov bases are finite sets, which is important from a algorithmic
perspective. The efficiency of the decision on membership v +m ∈ F depends on how the set F
is given. Typically, F is given implicitly in H-representation, as in the case F = FA,b, and here
we can decide over membership efficiently. As we have seen in Remark 1.1.2, the capability to
enumerate the neighborhood of any node suffices to perform random walks on this graph.

Remark 1.2.10. For finite sets F ,M⊂ Zd, the simple fiber walk on F(M) is implemented as
follows: At a given node v ∈ F , select uniformly an element m ∈ ±M and stay at v if v+m 6∈ F ,
or walk to v +m ∈ F otherwise (which may also be v if m = 0).

Figure 1.3: The simple fiber walk with unit vectors in a convex polygon after 2500 steps.

Remark 1.2.11. The Metropolis-Hastings-methodology (see Definition 1.4.2) allows to modify
the simple fiber walk so that it converges to any given probability distribution on F .

Remark 1.2.12. A fiber walk that is not restricted to some finite set in Zd, but uses a finite set
of moves, is often called a lattice walk. The asymptotic counting of the number of lattice walks
in Zd, or Nd, under some fixed parameters such as length, start node, or end node is a topic of
combinatorics [78]. The correspondence between Catalan strings and Dyck paths is just one of
the many paradigms to describe combinatorial structures as lattice walks. Recently, the proof of
Gessel’s walk conjecture in [75] received a lot of attention. It states that there are O(16n) Gessel
walks of length 2n, that are lattice walks in N2 whose start and end nodes are the origin and
that use the moves {±(1, 1),±(1, 0)}. Another aspect is the sampling of lattice walks themselves.
For instance, the uniform sampling of certain 2-dimensional lattice walks is discussed in [85].

1.3 Running examples
This section introduces matrices that appear frequently in this thesis.
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Example 1.3.1. For k ∈ N, let 1k be the k-dimensional vector with all entries equal to 1 and let

Hk :=

Ik Ik 0 0 −1k 0
0 0 Ik Ik 0 −1k
0 0 0 0 1 1

 ∈ Z(2k+1)×(4k+2). (1.3.1)

The linear independent set of moves Rk ⊂ Z4k+2 that consists of(
0, . . . , 0, 1, . . . , 1, 0, . . . , 0,−1, . . . ,−1, 1,−1

)T
and ei − ek+i for i ∈ {1, . . . , k, 2k + 1, . . . , 3k} is a Markov basis for Hk [62, Theorem 3]. An
explicit description of the Graver basis of Hk is in [62, Theorem 2].

Example 1.3.2. The node-edge incidence matrix of the complete bipartite graph Kn,m is
denoted An,m ∈ {0, 1}(m+n)×m·n. For instance,

A2,3 =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .

In a statistical context, An,m is the constraint matrix of the n×m independence model, which is
briefly discussed in Example 1.4.7. We refer to [43, Chapter 1] and [39] for more information about
the statistics behind. Elements in the kernel of An,m are represented as n×m contingency tables
whose row and column sums are zero. Among these, the easiest ones are the basic moves Mn,m

which are all elements in the orbit of
1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0
...

... . . . ...
0 0 · · · 0

 ∈ Zn×m

under the group action of Sn×Sm on the rows and columns. In particular, |Mn,m| = 2 ·
(n

2
)
·
(m

2
)
.

It is well-known that the basic moves form a Markov basis for An,m that is minimal in the sense
that a removal of any element takes away the Markov basis property [43, Proposition 1.2.2].

Example 1.3.3. For any d ∈ N, let Ad = (1, . . . , 1) ∈ Z1×d. For any b ∈ N, the elements of FAd,b
corresponds to the monomials in k[x1, . . . , xd] of degree b and hence |FAd,b| =

(b+d−1
d−1

)
. It is easy

to see that the setMd := {e1 − ek : 2 ≤ k ≤ d} is a Markov basis for Ad.

1.4 Fiber walks in statistics
Let Ω be a finite set and π : Ω → [0, 1] be a probability mass function. Many problems in
statistics are stated equivalently as the problem of estimating the expected value of a function
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f : Ω→ Rm under π, i.e. Eπ(f) =
∑
ω∈Ω f(ω)π(ω). Given a sequence (ωi)i∈N of elements in Ω

that are drawn independently from π, the law of large numbers ensures that almost surely,

lim
t→∞

1
t

(
t−1∑
i=0

f(ωi)
)

= Eπ(f). (1.4.1)

Typically, it is computationally expensive to sample from π directly. The Markov chain Monte
Carlo approach works around this issue by constructing a connected graph G = (Ω, E) and an
irreducible and aperiodic random walkW : Ω×Ω→ [0, 1] on G that has stationary distribution π.
The Ergodic theorem [81, Theorem 4.16] ensures that for any starting vector ω0 ∈ Ω and
any sequence (ωi)i∈N that is obtained by an execution of the random walk W starting at ω0,
equation (1.4.1) holds almost surely. Again, the second largest eigenvalue modulus of W is an
indication of how fast the sum converges to Eπ(f). Recall that the variance of the function f is

Varπ(f) := 1
2
∑
u∈Ω

∑
v∈Ω

(f(u)− f(v))2π(u)π(v).

Theorem 1.4.1. Let W : Ω×Ω→ [0, 1] be a reversible random walk with stationary distribution
π : Ω → [0, 1] and let ω0 ∈ Ω. Suppose that (ωi)i∈N is obtained by an execution of W starting
at ω0 and let ε > 0 and δ > 0. If t0 ≥ TW

(
ε
2
)
and t ≥ 4·Varπ(f)

δ2·ε · 1
1−λ(W) , then the probability that∣∣∣∣∣1t

(
t−1∑
i=0

f(ωt0+i)
)
− Eπ(f)

∣∣∣∣∣ ≥ δ
is at most ε.

Proof. This is [81, Theorem 12.19].

Theorem 1.4.1 suggests to omit the first t0 samples obtained by the random walk W. This
is often called a burn-in in the literature. Although the set Ω is finite, an enumeration of its
elements is frequently unfeasible in practice. Instead, we typically have to deal with an implicit
description of its elements, as FA,b for given A and b (see Example 1.4.6). Even if we are able to
construct a graph and a random walk on Ω, the respective stationary distribution is certainly
not π. The Metropolis-Hasting methodology helps to modify a given random walk so that it
converges to any positive mass function on the node set Ω:

Definition 1.4.2. Let G = (Ω, E) be a graph, W a random walk on G, and π : Ω → [0, 1] a
positive mass function. The Metropolis-Hastings walk MW,π is the random walk on G defined by

MW,π(u, v) :=

W(u, v) ·min
{

1, π(v)W(v,u)
π(u)W(u,v)

}
, if u 6= v

1−
∑
w∈Ω\{u}W(u,w) ·min

{
1, π(w)W(w,u)

π(u)W(u,w)

}
, if u = v

.

The Metropolis-Hastings walk was introduced in [60], which in turn arises as a generalization
of the results in the classic paper [89]. Many properties of the original random walk are invariant
under this deformation and an execution of the Metropolis-Hastings walk is possible despite the
fact that π may is expensive to evaluate (Remark 1.4.4).

Proposition 1.4.3. Let G = (Ω, E) be a graph, let W be an irreducible and aperiodic random
walk on G, and let π : Ω→ [0, 1] be a positive probability mass function, thenMW,π is irreducible,
aperiodic, reversible with respect to π, and has stationary distribution π.
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Proof. This is [37, Lemma 1.1].

Remark 1.4.4. Given a random walk W, the Metropolis-Hastings walkMW,π is performed as
follows: Suppose the random walk is at node u ∈ Ω, then we sample v ∈ Ω according to W(u, ·)
and compute p := min

{
1, π(v)W(v,u)

π(u)W(u,v)

}
. In a second step, we walk to v with probability p and we

stay at u with probability 1− p. Basically, an instance of the Metropolis-Hastings walk is just
an instance of W that is enriched with an additional rejection probability which depends on the
current state and the proposal drawn by W . In many cases, where a direct evaluation of π is not
possible, π is known up to a constant factor, that is

π(u) = g(u)∑
ω∈Ω g(ω)

for some function g : Ω→ R≥0 that is easy to evaluate (as in Example 1.4.5 and Example 1.4.6).
In this case, the rejection step in a Metropolis-Hastings walk needs only to evaluate the ration
π(v)
π(u) = g(v)

g(u) , where the normalizing constant cancels.

Algorithm 1 puts all pieces together and shows the common workflow of a Markov chain Monte
Carlo approach to approximate Eπ(f). We finish this section with explicit examples showing the
importance of fiber walks in statistics.

Algorithm 1 Markov chain Monte Carlo
Input: Ω (a finite set), π : Ω→ [0, 1] (mass function), f : Ω→ Rm, t ∈ N

1: procedure MCMC:
2: Construct a connected (implicit) graph G = (Ω, E)
3: Construct an irreducible and aperiodic random walk W on G
4: PerformMW,π to obtain samples ω1, . . . , ωt ∈ Ω
5: RETURN 1

t

∑t
i=1 f(ωi)

Example 1.4.5 (Ratio counting). Let F ⊂ Zd be a saturated set, F ′ ⊆ F be a subset, and
M ⊂ Zd be a Markov basis for F . With Algorithm 1, we can approximate the ratio |F

′|
|F| . Let

π : F → [0, 1] be the uniform distribution and f := 1F ′ : Qd → {0, 1} be the indicator function
of F ′, then |F|·Eπ(f) = |F ′|. The simple fiber walk on F(M) is symmetric and has π as stationary
distribution, so in this case, we even do not have to use the modified Metropolis-Hastings walk.

Example 1.4.6 (Goodness-of-fit). Let Ω = [d] be a finite set and π ∈ [0, 1]d a probability
mass function on Ω. In many practical problems, the distribution π is expensive to evaluate or
unknown, but sampling from π is easy. Given n independent samples x1, . . . , xn ∈ Ω from π,
a typical question in statistical inference is whether the true distribution π belongs to a given
statistical model. For instance, the log-linear model on Ω defined by a matrix A ∈ Qm×d with
(1, . . . , 1) ∈ rowspan(A) is the set

PA :=
{
θ ∈ (0, 1)d : θ1 + . . .+ θd = 1 ∧ (log θ1, . . . , log θd) ∈ rowspan(A)

}
.

A broadly accepted way to evaluate the goodness-of-fit of log-linear models is by doing an exact
conditional test (see also [39, 43] and references therein), which we explain now. For i ∈ [d], let
uobs
i := |{j ∈ [n] : xj = i}| be the frequency count of i within the samples. The frequency counts
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of n independent samples from Ω is multinomial distributed over {v ∈ Nd : ‖v‖1 = n} and when
π ∈ PA, then the probability to observe v ∈ Nd with ‖v‖1 = n is

n!
v1! · · · vd!

πv1
1 · · ·π

vd
d = n!

v1! · · · vd!
exp(αTAv)

with (log π1, . . . , log πd) = αTA. Assume that the statistical model PA comes with a test statistics,
that is a map X : Nd → R which measures the extremeness of an observed frequency count within
the model PA. Then, the elements of X := {v ∈ Nd : ‖v‖1 = n} ∩ {v ∈ Nd : X(v) ≥ X(uobs)} are
the frequencies that are more extreme than uobs. Now, the probability of observing a frequency
count under π that is more extreme than uobs is∑

v∈X

n!
v1! · · · vd!

exp(αTAv). (1.4.2)

Thus, if this value is small, it is very unlikely to observe uobs and the conclusion we draw is that
the hypothesis π ∈ PA is false. However, the value in (1.4.2) depends on α, which in turn relies
on the unknown distribution π and hence this quantity cannot be computed. Instead, we exploit
the fact that A is a sufficient statistics for the multinomial distribution on {v ∈ Nd : ‖v‖1 = n}
induced by PA. That is, when conditioning on the subset FA,b where b := Auobs, then∑

v∈X∩FA,b
n!

v1!···vd! exp(αTAv)∑
w∈FA,b

n!
w1!···wd! exp(αTAv)

=
∑
v∈X∩FA,b

1
v1!···vd!∑

w∈FA,b
1

w1!···wd!
(1.4.3)

and the unknown parameter α cancels. The quantity in (1.4.3) is the conditional p-value of the
test and in practice, the hypothesis π ∈ PA is rejected when the conditional p-value is below a
threshold of 0.05. The sum in equation (1.4.3) runs over FA,b and is thus impossible to evaluate
in practice. However, an approximation of the p-value with Algorithm 1 is applicable. First,
define a probability mass function π̃ : FA,b → [0, 1] by

π̃(v) =
1

v1!···vd!∑
w∈FA,b

1
w1!···wd!

and let f : FA,b → {0, 1} be the indicator function of X ∩ FA,b, then the conditional p-value
is Eπ̃(f). After computing a Markov basisM⊂ Zd for FA,b (for example with Proposition 2.1.1),
a connected graph on FA,b is obtained and we can use the Metropolis-Hastings walk as a
modification of the simple fiber walk to sample from FA,b according to π̃. In practice, X is often

X(v) :=
d∑
i=1

(vi − n · θ̃i)2

n · θ̃i

where θ̃ ∈ PA is a maximum likelihood estimator for the samples x1, . . . , xn ∈ Ω, that is an element
of (the possibly empty set) arg maxθ∈PA

∑n
i=1 log θxi . Since the function θ 7→

∑n
i=1 log θxi , is

convex on the open set PA, the maximum likelihood estimator θ̃ is unique when it exists.

Example 1.4.7. Let Ω = [n]× [m] and let π = (π1,1, . . . , π1,m, π2,1, . . . , πn,m) be a probability
mass function function on Ω. Let π(1)

i :=
∑m
j=1 πi,j and π

(2)
j =

∑n
i=1 πi,j be the marginal

probabilities. We want to test whether πi,j = π
(1)
i · π

(2)
j holds for all (i, j) ∈ [n] × [m], that is
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whether π(1) is stochastically independent of π(2). It is not hard to show that this is true if
and only if π is an element of the log-linear model defined by An,m from Example 1.3.2. As a
special log-linear model, testing on stochastic independence can be done as in Example 1.4.6.
The frequency count of n observations (v1, w1), . . . , (vn, wn) ∈ Ω is typically represented as an
n×m contingency table uobs ∈ Nn×m. The entries of the image of uobs under An,m are the rows
sums r1, . . . , rn and the column sums c1, . . . , cm of the table u. A maximum likelihood estimator
is then θ̃i,j := ri·cj

n·n , provided that ri > 0 and cj > 0 [43, Example 2.1.2].

Remark 1.4.8. If Ω = [n1]× · · · × [nm], then more complex relations among the m features can
be modeled with hierarchical models [43, Chapter 1.2] which also belong to the class of log-linear
models. Here, the relations among the items are represented by a simplicial complex Γ on [m]. The
independence model is a special case, namely for the simplicial complex Γ = {∅, {1}, . . . , {m}}.

Remark 1.4.9. Discrete reaction networks are used to model the dynamic behaviour of chemical
reactions [94, 19, 4]. The discrete nature of atoms and atomic reactions makes the methods of
discrete mathematics applicable. Typically, there are d chemical species and with the number of
atoms of species i equal to ui, every state of the network is represented as an element u ∈ Nd.
The dynamics of the atom numbers proceeds only along elementary reactions m ∈ Zd which
is applied to a state u only if u + m ∈ Nd. In many situations, there are only finitely many
elementary reactions M ⊂ Zd available to the system and the probability for every reaction
to be applied depends on the entries of u only. There may also be irreversible reactions, that
are elements m ∈ M such that −m 6∈ M. In particular, reachability in these networks is not
symmetric and hence is more subtle than it may first seem. Additionally,M∩ Nd \ {0} is not
required to be empty and the lattice spanned byM is not saturated a priori. In the language
of Definition 1.2.1, this setup deals with directed fiber graphs on infinite node sets. Typical
questions have a purely combinatorial character, as the reachability of a state starting at a given
state, or are analytic, as whether the random walk is positive recurrent or transient.
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2 Graph properties of fiber graphs

In this section, the toolbox for our further investigation is developed. After surveying known
results on the connectedness and connectivity of fiber graphs (Section 2.1), we turn our attention
to their diameter (Section 2.2). For a given collection F, we detect properties on the set of moves
M that allow to bound the diameter of F(M) linearly in max{‖u− v‖ : u, v ∈ F} from below
and above for all F ∈ F. As a consequence, the diameter of FA,i·b(M) for fixed A ∈ Zm×d,
M⊂ Zd, and non-trivial b ∈ NA grows at least and at most linearly as i varies. On the other
hand, the diameter of compressed fiber graphs cannot be arbitrarily large. We prove that for any
matrix A ∈ Zm×d and any Markov basisM⊂ Zd, the diameter of the compressed fiber graphs
on FA,b is bounded from above by a constant as b varies (Theorem 2.2.17). Finally, we show that
under certain assumptions on a sequence (bi)i∈N in NA, the edge-expansion of the corresponding
fiber graphs declines essentially as O(1

i )i∈N.

2.1 Connectedness and connectivity
Diaconis and Sturmfels have shown in [39] that the combinatorics necessary to decide the
connectedness of fiber graphs is encoded in a binomial ideal attached to them. To set up their
machinery, let k[x1, . . . , xd] be the polynomial ring over a field k and u ∈ Zd be an integer vector.
The unique decomposition u = u+ − u− allows to attach the binomial

x
u+

1
1 · · ·x

u+
d
d − x

u−1
1 · · ·x

u−
d
d ∈ k[x1, . . . , xd]

to u. Similarly, we attach to any set L ⊂ Zd the ideal IL ⊂ k[x1, . . . , xd] generated by all
binomials coming from vectors in L. If L is a lattice, then IL is the lattice ideal of L (see [31,
Chapter 11]). The following is due to Diaconis and Sturmfels:

Proposition 2.1.1. Let L ⊂ Zd be a lattice with L∩Nd = {0} andM⊂ L a finite set. ThenM
is a Markov basis for the collection {(L+ u) ∩ Nd : u ∈ Nd} if and only if IM = IL.

Proof. This is a straightforward extension of [39, Theorem 3.1] to non-saturated lattices (see
also [31, Lemma 11.3.3]).

A special lattice ideal is the toric ideal of a matrix A ∈ Zm×d which is the ideal IA := IkerZ(A).
Proposition 2.1.1 says that a setM⊂ kerZ(A) is a Markov basis for A if and only if IM = IA.
Hilbert’s basis theorem [76, Corollary 2.13] on the other hand says that every ideal in k[x1, . . . , xd]
is finitely generated and hence there always exists a finite Markov basis for A. The “only if”
direction of Proposition 2.1.1 enables access for a practical computation of Markov bases by
computing a finite binomial generating set of IA. In commutative algebra, a desirable generating
set for a given ideal is a Gröbner basis [109, Chapter 1]. There exists a huge literature on Gröbner
bases, including many excellent textbooks focusing on the fascinating theory around [76, 31, 109].
Many algorithms that compute a Markov basis have one or more Gröbner basis computations
under the hood, like the saturation algorithm [65], the elimination algorithm for toric ideals [16],
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or the Project-and-Lift algorithm [61, Section 3]. The latter algorithm is implemented in the
software 4ti2 [1] and tends to be the fastest method in practice.
Proposition 2.1.1 is often called the fundamental theorem of algebraic statistics and along

with it comes the fundamental problem of algebraic statistics: The only known way to compute
a Markov basis for FA,b is to compute a Markov basis M for the whole collection FA. As a
consequence,M contains a lot of moves that are redundant for an irreducible random walk on
the fiber FA,b of interest, but whose pure presence increases the rejection rate of any fiber walk
(see also Proposition 4.3.2). To get around that problem, a truncated version of Buchberger’s
algorithm for toric ideals was introduced in [113] that computes for given b ∈ NA a Gröbner
basis for FA,b′ with b− b′ ∈ NA. This was further relaxed in [86]. Another approach is to write a
matrix A as a toric fiber product of “easier” matrices B1 and B2 and to lift and glue Markov
bases of B1 and B2 to a Markov basis of A afterwards [111]. This technique turns out to be
highly beneficial for many statistical models, especially hierarchical ones [50, 101].

Remark 2.1.2. In [101], the notion of an inequality Markov basis was introduced, which is a
Markov basis for sets of the form {u ∈ v + L : Bu ≤ b} for a fixed lattice L ⊂ Zd, a fixed integer
matrix B ∈ Zm×d, and varying v ∈ Zd and b ∈ Zm. The computation of an inequality Markov
basis for L and B can be reduced to a Markov basis computation in the sense of Proposition 2.1.1.

The connectedness of fiber graphs is subtle and highly sensitive to small changes of the saturated
set or the set of moves. For instance, whenM is a Markov basis for F , then connectedness does
not carry over to subsets F ′ ⊂ F in general, not even saturated ones. Similarly, adding a single
row to a constraint matrix A ∈ Zm×d can have huge effects on the size of a minimal Markov
basis. The Graver basis, on the other hand, is a very robust set of moves in the following sense:

Proposition 2.1.3. Let A ∈ Zm×d, then GA is Markov basis for {v ∈ Zd : Av = b, l ≤ v ≤ u}
for all b ∈ NA and l, u ∈ Zd.

Proof. This is [31, Lemma 3.2.4].

Remark 2.1.4. Let B ∈ Zm×d such that Fb := {u ∈ Zd : Bu ≤ b} is bounded for all b ∈ Zm.
There are many ways to compute a Markov basis for the collection F := {Fb : b ∈ Zm}. One
way is by Proposition 2.1.3: The projection onto the first d coordinates of the Graver basis of
the matrix (B, Im) ∈ Zm×(d+m) is a Markov basis for F. Another way is to use [101, Lemma 6],
which says that whenM′ is a Markov basis for the lattice Z ·B generated by the columns of B,
then {m ∈ Zd : Bm ∈M′} is an inequality Markov basis for Zd and B (Remark 2.1.2) and hence
a Markov basis for F. In particular, given a polytope P ⊂ Qd in H-representation, a Markov
basis for the collection {(i · P) ∩ Zd : i ∈ N} can be computed.

The theory around Markov bases hosts many open questions, and they typically range from
the computation of Markov bases for certain statistical models to the investigation of bounds on
the degrees of Markov binomials. The following question arises while working on this thesis and
aims in a new direction: Does there exists a universal constant on the number of moves needed
to connect any given saturated set in fixed dimension? Expressed with quantifiers:

Question 2.1.5. Is there for all d ∈ N a constant Cd such that any saturated set F ⊂ Zd has a
Markov basisM⊂ Zd with |M| ≤ Cd?

A trivial lower bound is Cd ≥ d, since any Markov basis of a saturated sets has at least dim(F)
many moves. For d = 1, the unifying set {1} gives C1 := 1. For d = 2, however, C2 > 2 must
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be true: Figure 2.1 shows a saturated set F ⊂ Z2 where |M| ≥ 3 for all Markov basesM⊂ Z2

for F . In particular, there does not always exist a Markov basis with linearly independent moves.
Currently, we do not know whether minimal Markov bases in Z2 can be arbitrarily large.

Figure 2.1: A saturated set where every Markov basis has at least 3 moves.

For the remainder of this section, we survey results on the connectivity of fiber graphs, mainly
based on the joint work [62] with Raymond Hemmecke. We first need a few definitions. Let
G = (V,E) be a graph, then G is k-node-connected if |V | > k and if for all X ⊆ V with |X| < k,
the induced graph on V \X is connected. Similarly, the graph G is k-edge-connected if |E| > k
and if for all X ⊆ E with |X| < k, the graph (V,E \X) is connected. The edge-connectivity
(node-connectivity) of G is the largest natural number k ∈ N such that G is k-edge-connected
(k-node-connected). Clearly, the node-connectivity of any graph is bounded from above by its
edge-connectivity, which in turn is bounded from above by the minimal degree of the graph.
We refer to [40] for more details on the connectivity of a graph. Let A ∈ Zm×d, then a set
R ⊂ kerZ(A) is a (reduced) Gröbner basis of A if the set of corresponding binomials in k[x1, . . . , xd]
is a (reduced) Gröbner basis of IA. For instance, the set of basic movesMn,m is a Gröbner basis
of An,m. It was shown in [97] that for r ∈ N>2 and br := (r, . . . , r)T ∈ N2n, the node-connectivity
and the minimal degree of of FAn,n,br(Mn,n) are both

(n
2
)
. There, it also was conjectured that

this extends to the general case:

Conjecture 2.1.6. Let A ∈ Zm×d and let R ⊂ kerZ(A) be a reduced Gröbner basis of A. There
exists N ∈ Nm so that the node-connectivity of FA,b(R) equals its minimal degree for all b ≥ N .

Let us briefly recall the construction of the counter-example to Conjecture 2.1.6 from [62]. Let
A1 ∈ Zm×d1 and A2 ∈ Zm×d2 and define

A1 ×A2 :=
[
A1 A2
0 A2

]
.

For any bi ∈ NAi, we have the cartesian decomposition FA1×A2,(b1+b2)×b2 = FA1,b1×FA2,b2 . In fact,
given additionally two sets of movesMi ⊂ kerZ(Ai), we show in Section 3.1 that the fiber graph on
FA1×A2,(b1+b2)×b2 with the set of movesM1×{0}∪{0}×M2 is the cartesian product of the graphs
FA1,b1(M1) and FA2,b2(M2) (Proposition 3.1.9). Since kerZ(A1 × A2) = kerZ(A1) × kerZ(A2),
linear algebra does not see a difference between A1 ×A2 and the diagonal matrix that has A1
and A2 as blocks. In particular, the Graver basis satisfies GA1×A2 = GA1 × GA2 and Gröbner and
Markov bases of A1×A2 decompose in the very same way. When A2 = Im is the identity matrix,
then all its fibers are single points and the fiber graph on FA1×A2,(b1+b2)×b2 = FA1,b1 × {b2}
is isomorphic to FA1,b1(M1), for arbitrary b2 ∈ Nm. This allows to ’push’ the entries of the
right-hand side of A1 ×A2 beyond any given bound, without changing the graph structure:

Proposition 2.1.7. Let A ∈ Zm×d, b ∈ NA, M⊂ Zd, and c = (1, . . . , 1)T ∈ Zm. There exists
C ∈ N such that for all i ≥ C, FA,b(M) ∼= FA×Im,(b+i·c)×i·c(M×{0}).

Proof. This is [62, Theorem 1].
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Rephrasing Proposition 2.1.7: Any given fiber graph is isomorphic to a fiber graph with
arbitrarily large right-hand side entries. This provides a new view on the behaviour of graph-
theoretic properties of fiber graphs and the way we should make conjectures about them. For
instance, to disprove Conjecture 2.1.6, it suffices to find just a single right-hand side where the
node-connectivity of the corresponding fiber graph differs from its minimal degree. It turns out,
a particular right-hand side for the matrix from Example 1.3.1 settles this case:

Proposition 2.1.8. The node-connectivity of FHk,e2k+1(Rk) is 1 and its minimal degree is k.

Proof. For any graph, the node-connectivity is bounded from above by its edge-connectivity and
bounded from below by 1 for connected graphs. Thus, this is precisely [62, Corollary 5.1].

The set of moves Rk is not only a Markov basis of Hk, but also a reduced Gröbner basis [62,
Theorem 3]. Together with Proposition 2.1.7, Hk×I2k+1 is a counter-example to Conjecture 2.1.6.
An appealing question is when the connectivity of fiber graphs is best-possible, that is, equal to
its minimal-degree. This may be achieved by either adding or removing moves from the set of
allowed moves, since both operations affect the connectivity and the minimal degree at the same
time. For Hk, adding more structural moves makes the edge-connectivity best-possible.

Proposition 2.1.9. The edge-connectivity of all fibers of Hk is best-possible when using the
Graver basis as moves.

Proof. This is [62, Theorem 4].

Exploring the connectivity of fiber graphs is an important question in further understanding
their structure. We are convinced that the connectivity of Graver fiber graphs is best-possible,
i.e. that the answer to the following question is ’no’:

Question 2.1.10. Is there a matrix A ∈ Zm×d and b ∈ NA such that the minimal degree of the
fiber graph FA,b(GA) is strictly larger than its edge-connectivity?

2.2 Bounds on the diameter
Let G be a graph, then the distance distG(u, v) between two distinct nodes u and v which are
contained in the same connected component of G is the number of edges in a shortest (u, v)-path.
We set distG(u, v) :=∞ if u and v are disconnected. The diameter of G, denoted diam(G), is
the maximal distance that appears between any pair of its nodes. In this section, we determine
lower and upper bounds on the diameter of fiber graphs and their compressed counterparts. The
results of this sections come, with small modifications, from [108, Section 3].

Lemma 2.2.1. Let F ⊂ Zd andM⊂ Zd be finite and non-empty sets. Then for any norm ‖ · ‖,

diam(F(M)) ≥ 1
‖M‖

·max{‖u− v‖ : u, v ∈ F}.

Proof. If F(M) is not connected, then the statement holds trivially, so assume that M is a
Markov basis for F . Let u′, v′ ∈ F such that ‖u′ − v′‖ = max{‖u − v‖ : u, v ∈ F} and let
m1, . . . ,mr ∈M so that u′ = v′+

∑r
i=1mi is a path of minimal length, then ‖u′− v′‖ ≤ r · ‖M‖

and the claim follows from diam(F(M)) ≥ distF(M)(u′, v′) = r.
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Remark 2.2.2. Let P ⊂ Qd be a lattice polytope and F := P ∩ Zd its attached saturated set.
For any non-zero l ∈ Zd, the l-width of P is widthl(P) := max{(u − v)T l : u, v ∈ P}. Since
widthl(P) = max{uT l : u ∈ P} −min{uT l : u ∈ P} and since the maximum and minimum is
attained at a vertex of P , we have widthl(P) = max{(u− v)T l : u, v ∈ F}. For all l ∈ {−1, 0, 1}d
and u, v ∈ F , we have (u − v)T l ≤ ‖u − v‖1 and thus widthl(P) ≤ max{‖u − v‖1 : u, v ∈ F}.
Let u′, v′ ∈ F such that ‖u′ − v′‖1 = max{‖u − v‖1 : u, v ∈ F} and let l′i := sign(u′i − v′i) for
i ∈ [d], then ‖u′ − v′‖1 = (u′ − v′)T · l′ ≤ widthl′(P) ≤ max{‖u − v‖1 : u, v ∈ F} = ‖u′ − v′‖1.
The lattice width of P is width(P) := min{widthl(P) : l ∈ Zd \ {0}} and thus Lemma 2.2.1 gives

‖M‖1 · diam(F(M)) ≥ width(convQ(F)).

Given a collection F of saturated sets in Zd, Lemma 2.2.1 says that there exists a constant
C ∈ Q>0 such that diam(F(M)) ≥ C ·max{‖u − v‖ : u, v ∈ F} holds for all F ∈ F. We now
investigate when a similar upper bound on diam(F(M)) holds, which is not always the case:

Example 2.2.3. Let i ∈ N and let Fi ⊂ Z3 be the ’pyramid’ from Figure 2.2, where i denotes
the number of integers on its largest slice. Since the description of Fi in symbols is quite vacuous
and technical, we omit it here. Clearly, Fi is a saturated set andM = {(1, 0, 0), (0, 0, 1), (0, 1, 1)}
is a Markov basis for Fi for all i ∈ N. It is straightforward to check that Fi(M) is a path
of length |Fi| − 1 = (i+1)·i

2 + i − 2 and that max{‖u − v‖ : u, v ∈ Fi} = i−3
2 ≤ C · i. Since

diam(Fi(M)) ≥ C ′ · i2, the diameter grows quadratically in the 1-norm distance.

Figure 2.2: The pyramid for i = 7.

The following concept is well-established (see for instance [6, Chapter 6]) in the theory of
Markov bases and helps us to derive an upper bound on the diameter of fiber graphs:

Definition 2.2.4. LetM⊂ Zd be finite. ThenM is norm-reducing for a finite set F ⊂ Zd if
for all u, v ∈ F , there is m ∈M such that u+m ∈ F and ‖u+m− v‖1 < ‖u− v‖1. The setM
is norm-reducing for a collection F of finite sets of Zd ifM is norm-reducing for all F ∈ F.

Any norm-reducing set of moves is a Markov basis [6, Proposition 6.1] and it is well-known
that the Graver basis of any matrix A ∈ Zm×d is norm-reducing for FA [6, Proposition 6.4]. An
example of a Markov basis that is norm-reducing and strictly contained in the Graver basis
isMn,m from Example 1.3.2. Between being norm-reducing and being a Markov basis, there is
much space left for the following property:

Definition 2.2.5. Let F be a collection of finite subsets of Zd andM⊂ Zd a finite set. Then
M ⊂ Zd is norm-like for F if there exists a constant C ∈ N>0 such that for all F ∈ F and all
u, v ∈ F , distF(M)(u, v) ≤ C · ‖u− v‖1.
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All norms on Rd are equivalent and thus we could have used any other norm in Definition 2.2.4.
Observe, however, that being norm-reducing depends on the norm. With Lemma 2.2.1 in mind,
the next remark motivates why we are interested in norm-like set of moves:

Remark 2.2.6. Let F be a collection of finite subsets of Zd andM⊂ Zd be norm-like for F. It
follows from the definition that there is a constant C ∈ N>0 such that for all F ∈ F

diam(F(M)) ≤ C ·max{‖u− v‖1 : u, v ∈ F}.

However, the converse is not true as demonstrated in Example 2.2.7.

Norm-reducing sets are always norm-like, and norm-like sets are in turn always Markov bases,
but the reverse of both statements is false in general (see Example 2.2.7 and Example 2.2.8). For
collections FA however, every Markov basis is norm-like (Proposition 2.2.9).

Example 2.2.7. For any i ∈ N, consider the saturated set Fi := ([2] × [i] × {0}) ∪ {(2, i, 1)}
with the Markov basis {(0, 1, 0), (0, 0, 1), (−1, 0,−1)} (see Figure 2.3). The distance between
(1, 1, 0) and (2, 1, 0) in Fi(M) is 2i and thusM is not norm-like for the collection {Fi : i ∈ N}.
Observe that the diameter of Fi(M) is bounded from above by 2 ·max{‖u− v‖1 : u, v ∈ Fi}.

Example 2.2.8. Let d ∈ N and consider Ad andMd from Example 1.3.3. For any d ≥ 3, the
only move from Md that can be applied on e2 in FAd,1(Md) is the move e1 − e2. But since
‖(e2+e1−e2)−e3)‖1 = ‖e1−e3‖1,Md is not norm-reducing for FAd . On the other hand, when we
cannot find a move that reduces the 1-norm distance of two nodes u, v ∈ FAd,b, we instead find two
moves m1,m2 ∈Md such that u+m1, u+m1 +m2 ∈ FAd,b and ‖u+m1 +m2−v‖1 = ‖u−v‖1−2.
Thus, the graph-distance of any two elements u and v in FAd,b(Md) is at most ‖u − v‖1 and
henceMd is norm-like for FAd .

Figure 2.3: The graphs F4(M) and F7(M) from Example 2.2.7.

The next proposition states that when the sets in a collection come from the same integer
matrix, effects as in Example 2.2.7 cannot occur.

Proposition 2.2.9. Let A ∈ Zm×d, then any Markov basis of FA is norm-like.

Proof. Let M be a Markov basis for FA and define C := max{diam(FA,Ag+(M)) : g ∈ GA},
which is well since the Graver basis GA is a finite set. For u, v ∈ FA,b, let v = u +

∑r
i=1 gi be

a walk from u to v in FA,b(GA) of minimal length. Since the Graver basis is norm-reducing
for FA,b [6, Proposition 6.4], there always exists a path of length at most ‖u− v‖1 and hence
r ≤ ‖u− v‖1. Every gi can be replaced by a path in FA,Ag+

i
(M) of length at most C and these

paths stay in FA,b. This gives a path of length C · r, hence distFA,b(M)(u, v) ≤ C‖u− v‖1.

Proposition 2.2.10. Let P ⊂ Qd be a polytope with dim(P ∩ Zd) > 0 and letM be a Markov
basis for Fi := (i · P)∩Zd for all i ∈ N. There exists a constant C ′ ∈ Q>0 such that for all i ∈ N,
C ′ · i ≤ diam(Fi(M)). IfM is norm-like for {Fi : i ∈ N}, then there exists a constant C ∈ Q>0
such that diam(Fi(M)) ≤ C · i for all i ∈ N.
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Proof. For the lower bound on the diameter, it suffices to show the existence of C ′ such that
C ′ · i ≤ max{‖u − v‖1 : u, v ∈ Fi} for all i ∈ N due to Lemma 2.2.1. Since dim(P ∩ Zd) > 0,
we can pick distinct w,w′ ∈ P ∩ Zd. For all i ∈ N, the vectors i · w and i · w′ are in Fi and
hence i · ‖w − w′‖1 ≤ max{‖u− v‖1 : u, v ∈ Fi}. For the upper bound, assume that the Markov
basisM is norm-like. By Remark 2.2.6, it suffices to show the existence of C ∈ Q≥0 such that
max{‖u− v‖1 : u, v ∈ Fi} ≤ i ·C. Now, let v1, . . . , vr ∈ Qd such that P = convQ(v1, . . . , vr) and
define C := max{‖vs − vt‖1 : s 6= t}. Since Fi = (i · P) ∩ Zd ⊂ convQ(iv1, . . . , ivr) for all i ∈ N,
max{‖u− v‖1 : u, v ∈ Fi} ≤ max{‖u− v‖1 : u, v ∈ i · P} ≤ max{‖ivs− ivt‖1 : s 6= t} ≤ C · i.

[97, Proposition 2.10] shows that the diameter of fiber graphs of An,n along a certain ray in
NAn,n grows linearly. The following result generalizes this to all matrices:

Corollary 2.2.11. Let A ∈ Zm×n,M be a Markov basis for FA, and b ∈ NA with dim(FA,b) > 0.
Then there exist C,C ′ ∈ Q>0 such that i · C ′ ≤ diam(FA,i·b(M)) ≤ i · C for all i ∈ N.

Proof. This follows from Proposition 2.2.10 sinceM is norm-like by Proposition 2.2.9.

One question remains. We have seen that the diameter of fiber graphs with norm-like Markov
bases is bounded from above and below by the 1-norm distance of their elements linearly.
Example 2.2.3 shows a collection and a Markov basis where this is not the case, but with one
additional move, the linear bound hold for this example as well. Is this the general case?

Question 2.2.12. Let F be a collection of saturated sets in Zd that has a Markov basis. Does
there exists a Markov basisM for F such that there is a constant C ∈ Q>0 with

diam(F(M)) ≤ C ·max{‖u− v‖ : u, v ∈ F}

for all F ∈ F?

We now turn our attention to the diameter of compressed fiber graphs. Since the edge set of a
graph is contained in the edge set of its compressed version, paths may become shorter after the
compression. But, in general, compression may do not change the graph at all:

Example 2.2.13. For any i ∈ N, let Fi := {(0, 0), (0, 1), (1, 1), (1, 2), . . . , (i, i)} ⊂ Z2. The unit
vectorsM = {e1, e2} are a Markov basis for {Fi : i ∈ N}. However, Fci (M) = Fi(M) and thus
diam(Fci (M)) = diam(Fi(M)) = 2i is unbounded.

Recall that v denotes the partial ordering on Zd by sign-compatibility (see Section 1).

Lemma 2.2.14. Let A ∈ Zm×d and z ∈ kerZ(A). There exists r ∈ [2d − 2], distinct elements
g1, . . . , gr ∈ GA, and λ1, . . . , λr ∈ N>0 such that z =

∑r
i=1 λigi and gi v z for all i ∈ [r]

Proof. This is [31, Lemma 3.2.3], although it only becomes clear from the original proof in [104,
Theorem 2.1] that the appearing elements are indeed all distinct.

Proposition 2.2.15. Let A ∈ Zm×d and F :=
{
{x ∈ Zd : Ax = b, l ≤ x ≤ u} : l, u ∈ Zd, b ∈ Zm

}
.

Then for all F ∈ F, diam(Fc(GA)) ≤ 2d− 2.

Proof. Let s, t ∈ {x ∈ Zd : Ax = b, l ≤ x ≤ u}, then s− t ∈ kerZ(A) and thus s = t+
∑r
i=1 λigi

with r ≤ 2d − 2, λ1, . . . , λr ∈ N>0, and distinct g1, . . . , gr ∈ GA such that gi v s − t according
to Lemma 2.2.14. By [31, Lemma 3.2.4], all intermediate points t +

∑l
i=1 λigi, l ∈ [r], are in

{x ∈ Zd : Ax = b, l ≤ x ≤ u} and the claim follows.
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Lemma 2.2.16. Let F ⊂ Zd be finite and let Fi := (i · convQ(F)) ∩ Zd for i ∈ N. For all
u, v ∈ F , distFci (M)(iu, iv) ≤ distF(M)(u, v) for all i ∈ N.

Proof. The statement is true if u and v are disconnected in F(M). Thus, let u = v +
∑k
j=1mj

with mj ∈ M be a path in F(M) of length k = distF(M)(u, v) and let i ∈ N. Clearly,
i · u = i · v + i ·

∑k
j=1mj = i · v +

∑k
l=1 i ·mj , so it is left to prove that the elements traversed by

this paths are in Fi. Let l ∈ [k], since v +
∑l
j=1mj ∈ F , we have i · v +

∑l
j=1 i ·mj ∈ i · F ⊆ Fi.

Hence, this is a path in Fci (M) of length k = distF(M)(u, v).

We are ready to prove that the diameter of compressed fiber graphs that come from the same
integer matrix is bounded from above for all right-hand sides simultaneously.

Theorem 2.2.17. Let A ∈ Zm×d with kerZ(A) ∩Nd = {0} and letM be a Markov basis for FA.
There exists a constant C ∈ N such that diam(Fc(M)) ≤ C for all F ∈ FA.

Proof. The proof relies on basic properties of the Graver basis GA of A. For any g ∈ GA, let
Fg := FA,Ag+ and let K := max{distFg(M)(g+, g−) : g ∈ GA}. We show that the diameter of
any compressed fiber graph of A is bounded from above by (2d − 2) ·K. For any b ∈ NA, let
u, v ∈ FA,b be arbitrary. According to Proposition 2.2.15, there exists r ∈ [2d− 2], Graver moves
g1, . . . , gr ∈ GA, and coefficients λ1, . . . , λr ∈ Z such that u = v+

∑r
i=1 λigi, and v+

∑l
i=1 λigi ∈ Nd

for all l ∈ [r]. According to Lemma 2.2.16, for any i ∈ [r] there are mi
1, . . . ,m

i
ki
∈ M and

α1, . . . , αki ∈ Z such that λig+
i = λig

−
i +

∑ki
j=1 αjm

i
j is a path in the compression of the fiber

graph FA,Aλig+
i

(M) of length ki ≤ K. Lifting these paths yields a path u = v+
∑r
i=1

∑ki
j=1 αjm

i
j

in FcA,b(M) of length r ·K ≤ (2d− 2) ·K.

Remark 2.2.18. Proposition 2.2.9 and Theorem 2.2.17 extend trivially to collections of the
form F = FA1 ∪ · · · ∪ FAr for integer matrices Ai ∈ Zmi×d.

2.3 Graph degrees
The minimal degree of a graph G is δ(G) := min{degG(v) : v ∈ V (G)}. In this section,
miscellaneous observations on the minimal degree of fiber graphs are discussed. The minimal
degree of F(M) is trivially bounded from above by | ±M| and its exact value is the solution to
the optimization problem

min{|{m ∈M : v +m ∈ F}| : v ∈ F},

which seems too generic without additional conditions on F and M. We thus focus in the
following on fibers FA,b with A ∈ Zm×d and b ∈ NA. What makes this situation special is that
for all finite sets of movesM⊂ kerZ(A), the graph-degree of any node u in FA,b(M) can be read
off u andM directly by checking which moves m ∈M satisfy u+m ∈ Nd. Hence, no information
about the surrounding faces of the polytope convQ(FA,b) is needed. WhenM⊆ {−1, 0, 1}d, then
the graph-degree of u depends only on the support supp(u) and we can locate the nodes with
the smallest degree in FA,b(M) for any b:

Proposition 2.3.1. Let A ∈ Zm×d andM⊆ {−1, 0, 1}d. For any b ∈ NA, the minimal degree
of FA,b(M) is attained at a vertex of the polytope convQ(FA,b).
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Proof. Let deg : FA,b → N be the function that maps a node of FA,b(M) to its graph-degree.
Let W ⊆ FA,b be the set of vertices of convQ(FA,b) and choose v ∈ FA,b \W . Then there is k > 1
and vertices w1, . . . , wk ∈W together with coefficients λ1, . . . , λk ∈ Q>0 that satisfy

∑k
i=1 λi = 1

such that v =
∑k
i=1 λiwi. Since all involved vectors are non-negative, no cancellation appears

and hence supp(λiwi) ⊆ supp(v) for all i ∈ [k]. Since λi > 0, we deduce that supp(wi) ⊆ supp(v).
All moves are in {−1, 0, 1}d and hence the graph degree only depends on the support of the
respective node. More precisely, the containment supp(wi) ⊆ supp(v) implies deg(wi) ≤ deg(v)
for all i ∈ [k] and this finishes the proof.

In the proof of Proposition 2.3.1, we can further conclude that

deg(v) =
k∑
i=1

λi deg(v) ≥
k∑
i=1

λi deg(wi).

Since
∑k
i=1 λiwi = v, this shows concavity of the graph-degree of FA,b(M) whenM⊆ {−1, 0, 1}d.

Moreover, for any u ∈ FA,b and l ∈ kerZ(A), let β ∈ Z≥0 be maximal such that u+βl ∈ FA,b and
let µ ∈ Z≤0 be minimal such that u+µl ∈ FA,b. For any µ < t ≤ t′ < β, supp(u+tl) = supp(u+t′l)
and sinceM⊆ {−1, 0, 1}d, the nodes u+ tl and u+ t′l have the same graph-degree in FA,b(M).
Moreover, the supports of u+βl and u+µl are strictly contained in supp(u+tl) for any µ < t < β
and hence among all points on the discrete ray (u+ Z · l) ∩ FA,b, the nodes u+ µl and u+ βl
have the smallest degree.

Figure 2.4: Fiber graphs whose minimal degree is attained at an interior point.

It is easy to see (especially after seeing it) that Proposition 2.3.1 is false when one of the
assumptions is violated: On the left-hand side of Figure 2.4, the fiber graph on FA3,3 that uses
the moves {2 ·m : m ∈M3} with A3 andM3 as in Example 1.3.3 is shown. The graph on the
right-hand side is the fiber graph on the saturated set
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In both graphs, the degree of their unique interior point is strictly smaller than the degree of all
the other nodes. Whereas in the first graph, the entries of the moves are not from {−1, 0, 1} and
the node set is a fiber, the node set of the second graph is not a fiber but the moves are from
{−1, 0, 1}3, justifying that both assumptions are needed in Proposition 2.3.1. We also obtain an
upper bound on the minimal degree that is slightly better than the trivial bound | ±M|.

Proposition 2.3.2. Let A ∈ Zm×d,M⊆ {−1, 0, 1}d, and b ∈ NA. Then δ(FA,b(M)) ≤ |M|.

Proof. By Proposition 2.3.1, there exists a vertex v of the polytope convQ(FA,b) whose degree
equals the minimal degree of FA,b(M). Thus, for anym ∈M, either v+m 6∈ FA,b or v−m 6∈ FA,b
since v would otherwise be contained in a face whose dimension is at least 1.

Recall that an integer matrix is totally unimodular if each of its subdeterminants is in {−1, 0, 1}.
For totally unimodular matrices, dilation of their fibers does not change the minimal degree:

Proposition 2.3.3. LetM⊆ {−1, 0, 1}d be a Markov basis for a totally unimodular matrix A.
For all b ∈ NA and all i ∈ N, δ(FA,b(M)) = δ(FA,ib(M)).

Proof. Total unimodularity yields convQ(FA,b) = {x ∈ Qd
≥0 : Ax = b}. Let v1, . . . , vr ∈ FA,b be

the vertices of convQ(FA,b), then convQ(FA,ib) = convQ(iv1, . . . , ivr) for all i ∈ N. According to
Proposition 2.3.1, the minimal degree of FA,b is attained at a vertex of the polytope, say v1.
Since the graph-degree of any vector with respect to fiber graphs usingM does not change after
multiplying it with a scalar, the minimal degree of FA,ib is attained at i · v1 and coincides with
the minimal degree of FA,b.

2.4 Edge-expansions
This section is based on the author’s work [119]. There are many different invariants of graphs
that measure how well connected it is. Beside connectivity and toughness [11], the edge-expansion
is one of the most important concepts:

Definition 2.4.1. Let G = (V,E) be a graph. For any S ⊆ V , let EG(S) ⊆ E be the set of
edges with endpoints in S and V \ S. The edge-expansion of G is

h(G) := min
{ |EG(S)|
|S|

: S ⊂ V, 0 < 2|S| ≤ |V |
}
.

The invariant h(G) has many names in the literature, like Cheeger constant [24] or isoperimetric
number [90]. As we will see in Chapter 4, the edge-expansions connects nicely statistics and
graph theory since it yields a bound on the second largest eigenvalue modulus (Proposition 4.1.9).
For simple walks, the edge-expansion of the graph is proportional to the conductance:

Remark 2.4.2. Let G be a d-regular graph, then Φ(SG) · d = h(G).

Let A ∈ Zm×d and letM ⊂ kerZ(A) be a Markov basis for A. The central question of this
section is the following: What happens to the edge-expansion of fiber graphs asymptotically
when the right-hand side varies? The following example depicts how a possible answer looks like:

Example 2.4.3. Let A2 andM2 be as in Example 1.3.3. Then FA2,i(M2) is a path on i+ 1
nodes and hence its edge-expansion is 2

i+1 if i is odd and 2
i when i is even [90, Section 2].
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Definition 2.4.4. Let A ∈ Zm×d and let (bi)i∈N be a sequence in NA. The sequence (bi)i∈N is a
ray in NA if there is b ∈ NA such that (bi)i∈N = (i · b)i∈N.

We need the following terminology for our next definition: For b ∈ NA, the Q-relaxation of
the fiber FA,b is the polytope RA,b := {x ∈ Qd

≥0 : Ax = b}.

Definition 2.4.5. Let A ∈ Zm×d. A sequence (bi)i∈N is dominated if there exists b ∈ NA with
dim(RA,b) > 0 such that bi − i · b ∈ NA for all i ∈ N and if there is u ∈ FA,b and wi ∈ FA,bi−i·b
with supp(wi) ⊆ supp(u) for all i ∈ N.

On the one hand, being dominated is a sufficient, though technical, condition on (bi)i∈N that
is crucial in our proof of the decline of the edge-expansion of (FA,bi(M))i∈N (Theorem 2.4.16).
The prime example of a dominated sequence the reader should have in mind is a ray in the
semigroup NA as in Example 2.4.3. We think it is an interesting task to further relax the
conditions from Definition 2.4.5 so that they still prevent the following effects:

Remark 2.4.6. It was shown in Proposition 2.1.7 that for all i ∈ N and c ∈ Nm, the fiber graphs
of A× Im for bi := (b+ i · c, i · c)T are all isomorphic to FA,b. In particular, their edge-expansion
is constant along the sequence (bi)i∈N. Assume that the sequence (bi)i∈N is dominated. Then
there is f = f1 × f2 ∈ N(A× Im) with bi − i · f ∈ N(A× Im) for all i ∈ N. Thus, for every i ∈ N
there exists ui × vi ∈ Nd+m such that[

A Im
0 Im

]
·
[
ui
vi

]
=
[
b+ i · c− i · f1
i · c− i · f2

]
. (2.4.1)

Since f ∈ N(A × Im), there is u × v ∈ Nd+m such that A × Im · (u, v)T = f . This implies
Au = f1 − f2 and, plugged into equation (2.4.1), we obtain Aui = b + i · A(−u). This yields
ui + i · u ∈ FA,b for all i ∈ N which is due to ui, u ∈ Nd only possible when u = 0. Hence, f1 = f2
and FA×Im,f = {0×f2}. In particular, there is no element wi in FA×Im,bi−i·f = FA,b×{i·(c−f2)}
such that supp(wi) ⊆ supp(0× f2) and consequently (bi)i∈N is not dominated.

Dominated sequences appear, for instance, as subsequence of sequences whose distance to the
facets of NA becomes arbitrarily large. Let HA(b) := min{dist(b, F ) : F facet of NA}, where
dist(b, F ) ∈ Q≥0 denotes the distance between b and the facet F ⊆ NA.

Proposition 2.4.7. Let A ∈ Zm×d and let (bi)i∈N be from NA with lim supi∈NHA(bi) = ∞,
then (bi)i∈N has a dominated subsequence.

Proof. Let a1, . . . , ad ∈ Zm be the columns of A and let c := a1 + . . .+ ad. First, we show the
following: For every k ∈ N, there exists mk ∈ N such that any b ∈ NA with HA(b) ≥ mk is
contained in k ·c+NA. The set NA\(k ·c+NA) is contained in finitely many hyperplanes parallel
to the facets of NA. Hence, choosing mk ∈ N large enough, every b ∈ NA with HA(b) ≥ mk

cannot be in NA \ (k · c+ NA) and hence must be in k · c+ NA. The statement of the lemma
follows immediately because lim supi∈NHA(bi) = ∞ implies that there is ik ∈ N such that
HA(bik) ≥ mk. In particular, (bik)k∈N is dominated since FA,c has an element with full support
and since dim(RA,c) = dim(kerZ(A)) > 0.

Remark 2.4.8. The reverse of Proposition 2.4.7 is not true. For instance, take the matrix

A =
[
1 1 0
0 0 1

]
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and the right-hand side b = (2, 0)T ∈ Z2. The ray (i · b)i∈N is dominated since dim(RA,b) > 0.
However, since {i · b : i ∈ N} is contained in a facet of NA, HA(i · b) = 0 for all i ∈ N.

Almost needless to say, being dominated is preserved under taking subsequences:

Lemma 2.4.9. Every subsequence of a dominated sequence (bi)i∈N in NA is dominated.

Proof. Let (wi)i∈N and u ∈ FA,b be as in Definition 2.4.5 and let (bij )j∈N be a subsequence of
(bi)i∈N. Consider w′j := wij + (ij − j) · u for j ∈ N, then Aw′j = bij − j · b and since ij ≥ j, we
have bij − j · b ∈ NA. The claim follows then from supp(w′j) ⊆ supp(u)∪ sup(wij ) = supp(u).

The edge-expansion of a graph is bounded from above by the number of edges that leave a
certain set of nodes divided by the cardinality of this particular set. In a fiber graph, the edges
come from a fixed set of moves and hence have a limited outreach. The next construction helps
to find the nodes that are incident to outgoing edges:

Definition 2.4.10. Let A ∈ Zm×d, b ∈ NA, andM⊂ kerZ(A). For u ∈ Nd, the u-boundary of
FA,b is ∂uM(FA,b) := {v ∈ u+ FA,b : ∃m ∈ ±M : v +m ∈ Nd \ (u+ FA,b)}.

Figure 2.5: The sets ∂(3,0,0)T

M3
(FA3,3), ∂(3,0,0)T

M3∪2·M3
(FA3,3), and ∂(1,1,1)T

M3
(FA3,3) in FA3,6 (white points).

Figure 2.5 justifies that ∂uM(FA,b) can indeed be regarded as boundary. With this, the number
of outgoing edges in a translated fiber u+FA,b within a larger fiber can be bounded from above:

Lemma 2.4.11. Let A ∈ Zm×d and b, b′ ∈ NA with 2|FA,b| ≤ |FA,b′+b|. Then for any finite set
M⊂ kerZ(A) and all u ∈ FA,b′,

h(FA,b′+b(M)) ≤ 2|M| · |∂uM(FA,b)|
|FA,b|

.

Proof. Let G := FA,b′+b(M), then u+ FA,b ⊂ V (G) and since 2|u+ FA,b| = 2|FA,b| ≤ |FA,b′+b|,
the following upper bound is immediate by the definition of the edge-expansion:

h(G) ≤ |EG(u+ FA,b)|
|u+ FA,b|

.

The edges leaving u+ FA,b in FA,b′+b(M) ⊂ Nd are precisely those with endpoints in ∂uM(FA,b).
Every node of FA,b′+b(M) has at most |±M| incident edges and hence |EG(u+FA,b)| is bounded
from above by 2|M| · |∂uM(FA,b)|.

The size of the entries in a Markov basis is crucial to determine the size of the boundary. The
larger those entries are, the more nodes are in the boundary (Lemma 2.4.12) since more nodes in
the shifted fiber u+ FA,b are adjacent to nodes outside of u+ FA,b.
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Lemma 2.4.12. Let A ∈ Zm×d,M⊂ kerZ(A) a finite set, and b ∈ NA. Then for all u ∈ Nd,

∂uM(FA,b) ⊆ u+
⋃

j∈supp(u)

‖M‖∞⋃
r=0
{w ∈ FA,b : wj = r}.

Proof. Let v ∈ ∂uM(FA,b), then there is m ∈ ±M such that v +m ∈ Nd, but v +m 6∈ u+ FA,b.
Since v ∈ u + FA,b, there is w ∈ FA,b such that v = u + w. The vector w + m must have
a negative entry, since otherwise w + m ∈ Nd, that is w + m ∈ FA,b which in turn implies
v + m = u + w + m ∈ u + FA,b. Hence, there is j ∈ [d] such that (w + m)j < 0. Suppose
j 6∈ supp(u). Then (u+ w +m)j = (w +m)j < 0, which contradicts u+ w +m = v +m ∈ Nd.
Thus, j ∈ supp(u) and wj < −mj . Since that means wr ≤ ‖M‖∞, the statement follows.

Lemma 2.4.11 allows to bound the edge-expansion by essentially comparing the growth of fibers
with the growth of their boundary. The idea is to show that the boundary grows asymptotically
slower than the fiber itself. Counting the number of integer points in a polytope is the subject of
Ehrhart theory [47]. Let P ⊂ Qd be rational polytope and consider the map LP : N→ N which
counts the integer points in the i-th dilation iP, i.e. LP(i) := |iP ∩ Zd|. Ehrhart’s theorem (cf.
[15, Theorem 3.23]) says that LP is a quasi-polynomial of degree r := dim(P), that is there exist
periodic maps c0, . . . , cr : N→ Z with integral periods such that

LP(t) = cr(t)tr + cr−1(t)tr−1 + . . .+ c0(t)

with cr not identically zero. This applies to rays in affine semigroups: Since for any i ∈ N, the
integer points of RA,ib are precisely the elements of FA,ib, LRA,b(i) = |FA,ib| for all i ∈ N and
hence |FA,ib| grows in i (quasi-)polynomial with degree dim(RA,b).

Remark 2.4.13. For any integer matrix A and b ∈ NA, dim(RA,b) ≥ dim(FA,b). In particular,
if dim(FA,b) > 0, then (|FA,ib|)i∈N is unbounded. If A is totally unimodular, then RA,b equals
convQ(FA,b) and hence the dimensions of RA,b and FA,b coincide.

We count the lattice points in the boundary of a fiber with Lemma 2.4.12. However, the
components of the set appearing there are not precisely dilates of polytopes and Ehrhart theory
does not apply directly. Nevertheless, their growth can be bounded in terms of their dimension.

Lemma 2.4.14. Let A ∈ Zm×d, b ∈ NA, and fix integers j ∈ [d] and l ∈ N. If for all i ∈ N>0,
RA,ib is not completely contained in the hyperplane H := {x ∈ Qd : xj = l}, then there is C ∈ N
such that the number of integer points in RA,ib ∩H is bounded from above by C · idim(RA,b)−1.

Proof. Write P := RA,b and r := dim(P). For i large enough, the dimension of (iP) ∩ H
stabilizes, i.e. there are r′, N ∈ N such that r′ := dim(iP ∩H) for all i ≥ N . The affine space of
iP ∩H is completely contained in H whereas the affine space of iP has elements outside of H.
That implies r′ < r. Let A = (a1, . . . , ad) and A′ be submatrix of A omitting the j-th column,
then the (bijective) projection of iP ∩H onto all coordinates different from j is

Qi := {x ∈ Qd−1 : A′x = i · b− l · aj}.

By [117, Proposition 1], there exists finitely many sets C1, . . . , Ck covering N such that for i ∈ Cj ,
the number of integer points in Qi is a quasi-polynomial of degree r′.
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Lemma 2.4.15. Let p(t) =
∑r
s=0 cs(t)ts be a quasi-polynomial with r > 0 and let k ∈ N such that

cr(k) > 0. There is n ∈ N>0 and N ∈ N such that for all i ∈ (k+n ·N)∩N≥N , 2p(i) < p(i+ni).

Proof. Let n ≥ 2 such that cr(i+ ni) = cr(i) for all i ∈ N (i.e. if cr is not a constant, let n ≥ 2
be the period of cr). For all i ∈ k + n · N, cr(i+ ni) = cr(i) = cr(k) > 0 and hence

p(i+ ni)− 2 · p(i) = cr(k) ((1 + n)r − 2) ir +
r−1∑
s=0

(cs(i+ ni)(1 + n)s − 2cs(i)) is.

The sum in the term on the right-hand side is a quasi-polynomial of degree at most r − 1 and
the left term on the right-hand side is a polynomial of degree r > 0 whose leading coefficient is
positive due to n ≥ 2 and r > 0. Thus, there is N ∈ N such that for all i ∈ k + n ·N with i ≥ N ,

cr(k) ((1 + n)r − 2) ir > −
r−1∑
s=0

(cs(i+ in)(1 + n)s − 2cs(k)) is,

that is 2p(i) < p(i+ ni).

We are now ready to state and prove the main theorem of this section.

Theorem 2.4.16. Let A ∈ Zm×d, letM⊂ kerZ(A) be a Markov basis for A, and let (bi)i∈N be
dominated in NA. Then there exist C,C ′ ∈ N>0 such that h(FA,bi(M)) ≤ C

i for all i ∈ C ′ · N≥1.

Proof. Since (bi)i∈N is dominated, there exists b ∈ NA such that b′i := bi− i · b ∈ NA for all i ∈ N.
Moreover, there is u ∈ FA,b and a sequence (wi)i∈N in Nd such that for all i ∈ N, wi ∈ FA,b′i
and supp(wi) ⊆ supp(u). By Lemma 2.4.9, the subsequence (b(‖M‖∞+1)i)i∈N is dominated as
well. Due to the linear re-parametrization, the statement on the edge-expansion is true for the
sequence (bi)i∈N if it is true for this particular subsequence. Thus, we replace bi with b(‖M‖∞+1)i,
b with (‖M‖∞ + 1) · b, and b′i with b′(‖M‖∞+1)i. Additionally, we replace wi with w(‖M‖∞+1)i
and u with (‖M‖∞ + 1) · u, which does not change the support of u. After these changes,
we have ui > ‖M‖∞ for all i ∈ supp(u), which is needed later in the proof. The Ehrhart
quasi-polynomial LRA,b has degree r := dim(RA,b) and by the definition of being dominated,
r > 0. Write LRA,b(i) =

∑r
s=0 cs(i)is with cr not identically zero. Since LRA,b(i) = |FA,ib| > 0,

there exists k ∈ N such that cr(k) > 0. By Lemma 2.4.15, there exists n ∈ N>0 and N ∈ N
such that 2|FA,ib| ≤ |FA,(i+ni)b| for all i ∈ (k + n · N) ∩ N≥N =: I. By the choice of wi and u,
A ·(wi+ni+ni ·u) = b′i+ni+ni ·b = bi+ni−ib for all i ∈ I and hence wi+ni+ni ·u+FA,ib ( FA,bi+ni .
In particular, for any i ∈ I

2|FA,ib| ≤ |FA,(i+ni)b| = |wi+ni + FA,(i+ni)b| ≤ |FA,bi+ni |.

For any i ∈ I, set ui := wi+ni + ni · u, then Lemma 2.4.12 gives

|∂uiM(FA,ib)| ≤
∑

j∈supp(ui)

‖M‖∞∑
l=0
|{v ∈ FA,ib : vj = l}|. (2.4.2)

Since 2|FA,ib| ≤ |FA,bi+ni | and Aui = b′i+ni + ni · b for all i ∈ I, an application of Lemma 2.4.11
yields the upper bound on the edge-expansion of the graph FA,bi+ni(M):

h(FA,bi+ni(M)) ≤ 2|M| · |∂uiM(FA,ib)|
|FA,ib|

≤ 2|M| ·
∑
j∈supp(u)

∑‖M‖∞
l=0 |{v ∈ FA,ib : vj = l}|
|FA,ib|

,
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where (2.4.2) and supp(ui) = supp(wi+ni) ∪ supp(u) ⊆ supp(u) was used in the first and second
inequality respectively. For any j ∈ supp(u) and l ∈ {0, . . . , ‖M‖∞}, consider the hyperplane
Hj,l = {x ∈ Qd : xj = l} in Qd, then for all i ∈ I, the number of integer points in (i · RA,b)∩Hj,l

is precisely Lj,l(i) := |{w ∈ FA,ib : wj = l}|. Since uj > ‖M‖∞ for all j ∈ supp(u), the vector
i · u ∈ RA,ib = i · RA,b is not contained in (i · RA,b) ∩Hj,l for all 0 ≤ l ≤ ‖M‖∞ and all i ∈ I.
Lemma 2.4.14 then implies that for all j ∈ supp(u) and l ∈ {0, . . . , ‖M‖∞}, there is a constant
Dj,l ∈ N such that Lj,l(i) ≤ Dj,l · ir−1 for all i ∈ N. Let D ∈ N be the maximum of all Dj,l, then

h(FA,bi+ni(M)) ≤ 2|M| ·
∑
j∈supp(u)

∑‖M‖∞
l=0 Lj,l(i)

LRA,b(i)

= 2|M| · | supp(u)| · (‖M‖∞ + 1) ·D · ir−1

cr(k)ir +
∑r−1
s=0 cs(i)is

for all i ∈ I. Hence, there exists a constant C ∈ Q>0 such that h(FA,bj (M)) ≤ C
j for j ∈ (n+1)·I.

The existence of C ′ follows immediately from the construction of (n+ 1) · I.

Remark 2.4.17. The constant C ′ in Theorem 2.4.16 is due to the many boundary effects and
the fluctuations in Ehrhart quasi-polynomials. For instance when (bi)i∈N is a ray instead of a
dominated sequence and when A is totally unimodular, the set C ′ · N is a set of the form N≥C′′ .
However, our pragmatic bounding of the index set suffices to disprove rapid mixing in Chapter 4.

As a consequence, whenever the distance of a sequence to the facets of the semigroup becomes
arbitrarily large, the edge-expansion of a subsequence converges to zero.

Corollary 2.4.18. Let A ∈ Zm×d have non-trivial kernel and (bi)i∈N a sequence in NA with
lim supi∈NHA(bi) =∞, then lim inf i∈N h(FA,bi(M)) = 0 for any finite setM⊂ kerZ(A).

Proof. This is Proposition 2.4.7 and Theorem 2.4.16.

Remark 2.4.19. Let G = (V,E) be a graph with maximal degree d. It is well-known that the
diameter and the edge-expansion of G satisfy the inequality

diam(G) ≤ log |V |
log

(
1 + h(G)

d

) ,
see for instance [56, Proposition 1.30]. Let A ∈ Zm×d,M⊂ kerZ(A) a Markov basis for A, and
b ∈ NA. Together with the lower bound on the diameter from Corollary 2.2.11, we have

h(FA,i·b(M)) ≤ | ±M|
(

exp
( log |FA,i·b|

C ′ · i

)
− 1

)
for all i ∈ N. This upper bound on the edge-expansion, however, cannot be used in general to
show the O(1

i )i∈N bound from Theorem 2.4.16.
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3 The fiber dimension of a graph

The study of geometric properties of graphs is a key ingredient in understanding their algorithmic
behaviour and combinatorial structure [114, 84]. In [52], the dimension of a graph was introduced
as the smallest d ∈ N such that the graph can be embedded in Rd with every edge having unit
length. Recently, isometric embeddings of graphs into discrete objects like hypercubes or lattices
received a lot of attention and led to many new notions of graph dimension, like the isometric
dimension [54], the lattice dimension [51, 68], or the Fibonacci dimension [21] of a graph.

The goal of this chapter is to study embedding of graphs onto fiber graphs. As every graph G
can be represented as a fiber graph (Proposition 3.1.1), this motivates the question for the smallest
dimension in which such a representation exists, the fiber dimension of G (Definition 3.1.5).
First, we explore general properties of this dimension and state an upper bound in terms of the
chromatic number (Theorem 3.1.13) in the spirit of [52]. We then determine the fiber dimension
for a variety of graphs. The fiber dimension of a circuit of length n depends on Euler’s totient
function and we show that it equals one if and only if n ∈ N \ {3, 4, 6}. Circuits whose length is
one of the exceptional cases in {3, 4, 6} have fiber dimension two (Proposition 3.2.7). We also
determine the fiber dimension of complete graphs and show that it is logarithmic in the number of
nodes (Theorem 3.3.4). In the end, a connection to distinct pair-sum polytopes [27] is established
and it is shown how the fiber dimension leads to relations between the number of lattice points
and the dimension of the ambient space of these polytopes. In Section 3.5, we give an algorithm
that decides whether the fiber dimension of a graph is smaller or equal to two. Eventually, we
discuss the obstacles that make the computation of the fiber dimension challenging in higher
dimensions. All results of this chapter are based on the author’s publication [120].

Convention. In this chapter, all graphs are simple.

3.1 Embeddings
The following proposition is the starting point of our investigation:

Proposition 3.1.1. Every graph is isomorphic to a fiber graph.

Proof. Let G = ({v1, . . . , vn}, E) be a graph and let F := {e1, . . . , en}. Then F is saturated
since it is the set of lattice points of the (n− 1)-dimensional simplex. ConsiderM := {ei − ej :
{vi, vj} ∈ E}, then F(M) is isomorphic to G.

Remark 3.1.2. Let G, F , andM as in the proof of Proposition 3.1.1 and consider the integer
matrix A = (1, . . . , 1) ∈ Z1×n. If G is connected, then it is easy to show thatM is not only a
Markov basis for FA,1, but also for FA,b for any b ∈ NA.

The restriction to graphs without loops is necessary since the canonical way to model loops in
fiber graphs yields regular graphs only. It is not clear how to write the graph obtained from K2
where only one node has a loop as fiber graph. Naively, Proposition 3.1.1 gives rise to the
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following alternative definition of the fiber dimension of a graph G: define it as the smallest
natural number d ∈ N such that there exists a saturated set F ⊂ Zd and a finite setM⊂ Zd so
that G ∼= F(M). The complete graph Kn would then be isomorphic to the fiber graph on [n]
that uses [n− 1] as a set of moves. That is, the complete graph would have the same dimension
as a path, that is one, despite the fact that n− 1 moves are needed to represent the complete
graph as fiber graph, whereas the path requires only one, namely {1}. To capture the structural
information stored in the moves, we put more restrictions on the set of moves:

Definition 3.1.3. LetM⊂ Zd be a finite set, thenM is a set of directions ifM = −M and if
for all λ ∈ N with λ ≥ 2 and all m ∈M, λ ·m 6∈ M.

There is no particular mathematical reason why we require a set of directions to be symmetric,
but it simplifies the counting and the construction of fiber graphs in subsequent sections. Observe
that a set of directions cannot contain the zero vector. Recall that the dimension of a saturated
set is the dimension of its convex hull. The next lemma states that every fiber graph can be
written as a fiber graph on a full dimensional saturated set.

Lemma 3.1.4. For any d-dimensional saturated set F ⊂ Zm and any set of directionsM⊂ Zk,
there exists a full dimensional saturated set F ′ ⊂ Zd and a set of directions M′ ⊂ Zd such
that F(M) ∼= F ′(M′).

Proof. We can assume that d < m. The affine transformation given in Lemma 1.2.2 preserves the
dimension and the transformed set of directions is still a set of directions. Thus, we can assume that
F = FA,b for an integer matrix A ∈ Zn×k with k ≥ n, b ∈ Zn, and dim(kerZ(A)) = k−n ≥ d. We
can add rows to A and b without changing the identity F = FA,b so that dim(kerZA) = k−n = d.
First, we transform A into its Hermite normal form, that is, we write A = (H, 0) · C for
a unimodular matrix C ∈ Zk×k and a matrix H ∈ Zn×n of full rank. Let H−1 ∈ Qn×n and
C−1 ∈ Qk×k be the inverse matrices of H and C respectively. Since C is unimodular, C−1 ∈ Zk×k
and thus let C1 ∈ Zk×n and C2 ∈ Zk×d such that C−1 = (C1, C2) and consider the affine map

ψ : Qd → Qk, x 7→ C−1
(
H−1b
−x

)
.

Clearly, ψ is injective and it is straightforward to check that the image of the polytope P ′ :=
{v ∈ Qd : C2 · v ≤ C1H

−1b} ⊂ Qd is P := {x ∈ Qk
≥0 : Ax = b}. Since F = P ∩ Zk 6= ∅, the

matrix H satisfies H−1b ∈ Zn (see [31, Theorem 2.3.6]) and since C is unimodular, F ′ := P ′ ∩Zd
gets mapped to F . In particular, dim(F ′) = dim(F) = d. That is, P ′ is full dimensional in Qd.
Now, consider the set of moves

M′ := {ψ−1(v)− ψ−1(u) : v, u ∈ F , v − u ∈M},

thenM′ = −M′ andM′ cannot contain multiples. Let ψ(v′) = v and ψ(u′) = u for v′, u′ ∈ F ′,
then v′ − u′ ∈M′ if and only if v− u ∈M. Thus, all edges in F ′(M′) are mapped bijectively to
edges in F(M) under ψ, which proves that these graphs are isomorphic.

The set of moves constructed in the proof of Proposition 3.1.1 is in fact a set of directions and
combined with Lemma 3.1.4, the following definition is well.

Definition 3.1.5. The fiber dimension fdim(G) of a graph G is the smallest d ∈ N such that
there is a full dimensional saturated set F ⊂ Zd and a set of directionsM⊂ Zd with G ∼= F(M).
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Remark 3.1.6. In general, the fiber dimension of a graph G is different than its dimension
dim(G) as defined in [52]. For example, the complete graph K5 is realized as fiber graph in Q3

(see Theorem 3.3.4 and Figure 3.2), in contrast to dim(K5) = 4. The Euclidean dimension
Edim(G) of a graph G is the smallest d ∈ N such that G is isomorphic to a graph with nodes in Rd
where two nodes are adjacent if and only if they have unit distance. Clearly, Edim(G) ≥ dim(G)
for any graph G and hence the fiber dimension is different than the Euclidean dimension, too.

Remark 3.1.7. The generic embedding in Proposition 3.1.1 and Lemma 3.1.4 imply that the
fiber dimension of any graph G = (V,E) is at most |V | − 1. Trivially, the empty set is a set of
directions, and hence all graphs with |V | ≤ 1 satisfy fdim(G) = 0 and all graphs where |V | ≥ 2
but E = ∅ have fiber dimension one (see also Section 3.2).

Remark 3.1.8. Let F ⊂ Zd be a saturated set and M ⊂ Zd be a set of directions. Proposi-
tion 1.2.7 shows that whenM is a Markov basis for F such that 2 ·dim(F) = |M|, then F(M) is
bipartite. Needless to say, not all bipartite fiber graphs satisfy 2·dim(F) = |M|, as the embedding
of the 8-circuit in Q1 with a set of four directions shows (Proposition 3.2.7). In general, any sym-
metric Markov basisM⊂ Zd for a saturated set F ⊂ Zd satisfies 1

2 · |M| ≥ dim(Q ·M) = dim(F),
and hence Proposition 1.2.7 yields a lower bound on the number of directions in an embedding
of non-bipartite graphs: If G is a connected graph with χ(G) > 2 and fdim(G) = d, then any
fiber graph embedding in Zd needs strictly more than 2d directions.

We now explore upper bounds on the fiber dimension. Our first observation is that some graph
products are compatible with the cartesian product of saturated sets in Zd. Let G1 = (V1, E1)
and G2 = (V1, E2) be two graphs. The cartesian product G1 ×G2 is the graph on V1 × V2 where
(v1, v2) is adjacent to (u1, u2) if either v1 = u1 and {v2, u2} ∈ E2 or if v2 = u2 and {v1, u1} ∈ E1.
Another product is the tensor product G1 ⊗G2, which is the graph on V1 × V2 where (v1, v2) is
adjacent to (u1, u2) if {v1, u1} ∈ E1 and {v2, u2} ∈ E2.

Proposition 3.1.9. Let G1, . . . , Gn be graphs, then fdim(×ni=1Gi) ≤
∑n
i=1 fdim(Gi).

Proof. It suffices to prove the inequality for n = 2. Let F1,F2,M1,M2 such that Gi ∼= Fi(Mi).
The cartesian product F := F1 × F2 is saturated and has dimension dim(F1) + dim(F2).
Additionally, letM := {(m, 0)T : m ∈M1} ∪ {(0,m)T : m ∈M2}. It is straightforward to check
that F(M) = F1(M1)×F2(M2). Hence, fdim(G1 ×G2) ≤ dim(F).

Proposition 3.1.10. Let G1, . . . , Gn be graphs, then fdim(⊗ni=1Gi) ≤
∑n
i=1 fdim(Gi).

Proof. This proof is similar to the proof of Proposition 3.1.9. WithM =M1 ×M2 the set of
directions for F = F1 ×F2, the graph F(M) equals F1(M1)⊗F1(M2).

Remark 3.1.11. The inequality in Proposition 3.1.9 is sharp forK2×K2 = C4 (see Theorem 3.3.4
and Proposition 3.2.7).

Proposition 3.1.12. Let G be a graph and v ∈ V (G), then fdim(G) ≤ fdim(G− v) + 1.

Proof. Write V (G) = {v0, . . . , vn} with v0 = v. Let d := fdim(G− v) and let φ : G− v → F(M)
be a graph isomorphism that embeds G − v in dimension d for a saturated set F ⊂ Zd and a
set of directionsM⊂ Zd. Let F ′ := {0, (1, φ(v1)), . . . , (1, φ(vn))} ⊂ Z1+d, then F ′ is saturated
and convQ(F ′) has dimension d+ 1. Let N ⊆ {v1, . . . , vn} be the neighborhood of v in G and
considerM′ = {(0,m) : m ∈M} ∪ {±(1, φ(vi)) : vi ∈ N}. Then G ∼= F ′(M′).
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As in [52], we obtain a upper bound on the dimension in terms of the chromatic number χ(G) of
the graph G, that is the smallest natural number k ∈ N such that G has a k-coloring of its
nodes [40, Chapter 5]. Our approach works as follows: First, we construct sets of integer points
which represent the color classes of the graph in such a way that we can freely assign moves
within them. In a second step, we map the nodes of the graph on these sets and construct the
set of directions accordingly.

Theorem 3.1.13. Let G be a graph with a k-coloring in which r color classes have cardinality 1,
then fdim(G) ≤ 2k − r − 1.

Proof. Write V (G) = V1 ∪ · · · ∪ Vk and set ni := |Vi|. Define for i ∈ [k]

Fi := {(ei, j · ei)T ∈ N2k : j ∈ [ni]} ⊂ N2k

and let F := ∪ki=1Fi and P := convQ(F). To show that P ∩ Z2k = F , let u ∈ P ∩ Z2k. Since
every Fi is saturated, there exists wi ∈ Fi and λ1, . . . , λk ∈ Q with 0 ≤ λi ≤ 1 for all i ∈ [k] and∑k
i=1 λi = 1 such that u =

∑k
i=1 λiwi. The projection of F onto the first k coordinates is the set

of integer points of the standard simplex and thus saturated. The projection of u onto its first k
coordinates is ei for some i ∈ [k]. The only way to build an integer vector u is thus λj = 0 for
j 6= i and λi = 1, i.e. u = wi ∈ Fi.
Let us now construct a graph on F = P ∩ Z2k which is isomorphic to G. For that, let

φ : ∪ki=1Vi → ∪ki=1Fi be any bijection which maps elements from Vi to Fi and consider the
set of directions M = {φ(v) − φ(w) : {v, w} ∈ E(G)}. By construction of M, φ is a graph
homomorphism from G to F(M). Since edges in G do only connect nodes from different color
classes, the first k coordinates of any element inM do only contain elements from {−1, 0, 1} and
thusM cannot contain multiples. Next, let s ∈ [ni] and t ∈ [nj ] such that (ei, sei)T − (ej , tej)T =
φ(u) − φ(v) ∈ M with v, w ∈ V (G). It follows immediately that φ(v) = (ej , tej)T and hence
φ(u) = (ei, sei)T . Thus, φ maps edges from G to F(M) bijectively and hence fdim(G) ≤ dim(F).
The vertices of the polytope P are {(e1, e1)T , (e1, n1e1)T , . . . , (ek, ek)T , (ek, nkek)T } and since
ni = 1 for r indices i ∈ [k], P has 2k − r vertices and thus dim(F) = dim(P) ≤ 2k − r − 1.

Corollary 3.1.14. For any graph G, fdim(G) ≤ 2 · χ(G)− 1.

Remark 3.1.15. The upper bound in Theorem 3.1.13 is sharp for K3 (Theorem 3.3.4). By the
Four color theorem [7], every planar graph can be written as a fiber graph in Z7.

3.2 Fiber dimension one
There are more graphs of fiber dimension one than paths. To work with this class, we first
specialize our definition of a fiber graph to the 1-dimensional case. Recall that a finite set of
integers D ⊂ N is primitive if no of its elements is a divisor of any other element.

Definition 3.2.1. Let n ∈ N≥1 and let D ⊆ [n − 1] a primitive set. The difference graph GnD
has nodes [n] and two nodes i and j are adjacent if |i− j| ∈ D.

Proposition 3.2.2. A graph has fiber dimension 1 if and only if it is a difference graph.

Remark 3.2.3. Primitive sets, finite and infinite ones, are attractive objects in number theory [5,
121, 2]. The number of primitive sets in [n] is sequence A051026 in OEIS [107] and its first
elements are shown in Table 3.1.
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# nodes 3 4 5 6 7 8
# primitive sets 5 7 13 17 33 45
# graphs 3 4 7 11 16 28

Table 3.1: Number of different difference graphs on n nodes.

Remark 3.2.4. In a difference graph on [n], the graph-degree of i and n+ 1− i coincides. Let
G be a difference graph on n nodes and n − 1 ≥ d1 ≥ d2 ≥ . . . ≥ dn ≥ 0 be the node degrees.
When n is even, then |{i ∈ [n] : di = j}| is even for any j ∈ [n− 1]. When n is odd, then all but
one degree appear an even number of times in G. The di that appears an odd number of times
must be even since

∑n
i=1 di is even by the Handshaking lemma. However, not every graph with

these properties is a difference graph (Example 3.2.5).

Example 3.2.5. Let G be the 3 × 3 grid graph, that is the cartesian product of two paths
of length 3. The degree sequence of G is d := (4, 3, 3, 3, 3, 2, 2, 2, 2) and it fulfills the second
conditions from Remark 3.2.4. A complete enumeration of all possible degree sequences of
difference graphs on 9 nodes yield that d cannot be realized as a difference graph. Thus,
fdim(G) > 1. Proposition 3.1.9 gives the upper bound fdim(G) ≤ 2 and hence equality.

Lemma 3.2.6. Let n ∈ N with n ≥ 2 and D ⊆ [n− 1]. If GnD is connected, then gcd(D) = 1.

Proof. Since n ≥ 2, there exists a path between 1 and 2 in GnD. Let d1, . . . , dk ∈ D be the distinct
integers that appear in that path and write 1 +

∑k
i=1 λidi = 2 for λ1, . . . , λk ∈ Z \ {0}. Then

gcd(d1, . . . , dk) divides 1.

Proposition 3.2.7. For any n ∈ N≥3,

fdim(Cn) =
{

1, if n 6∈ {3, 4, 6}
2, if n ∈ {3, 4, 6}

.

Proof. Let n ≥ 3 with n ∈ N \ {3, 4, 6}. We first show that there exists an integer k ∈ N
with 2 ≤ k < n

2 such that gcd(k, n) = 1. Let φ : N → N be Euler’s totient function. Since
n ∈ N \ {3, 4, 6} and n ≥ 3, φ(n) ≥ 4 and we have for all k ∈ [n], gcd(k, n) = 1 if and only if
gcd(n− k, k) = 1. In particular, elements in [n] that are coprime to n come in pairs (k, n− k)
with k < n − k. Thus, since φ(n) ≥ 4, there must exists k ∈ [n] with 1 < k < n

2 such that
gcd(k, n) = 1. We now show that Gn{k,n−k} is a circuit of length n. Clearly, n−k is not a multiple
of k since this would imply that n is a multiple of k as well which in turn would contradict
gcd(n, k) = 1 since k > 1. Any node in Gn{k,n−k} has degree 2 and hence it suffices to prove that
this graph is connected. Since k and n are coprime, 〈k + nZ〉 = Zn. Now, take distinct i, j ∈ [n],
then there exists s ∈ N such that j + nZ = i+ sk + nZ in Zn. For any r ∈ [s], let ir ∈ [n] such
that ir + nZ = i+ rk+ nZ. Either ir − (n− k) or ir + k (but not both) are in [n] and since their
congruence classes in Zn coincide, ir−1 and ir are adjacent in Gn{k,n−k}. Since is = j, i and j are
connected. It follows that Cn = Gn{k,n−k}.

Let now n ∈ {3, 4, 6}. Removing one node from Cn yields a path and hence fdim(Cn) ≤ 2 due
to Proposition 3.1.12. It suffices to show that fdim(Cn) > 1 for n ∈ {3, 4, 6}. If n = 3, then
C ∼= K3 and the claim follows from Theorem 3.3.4 proven in the next section. If n ∈ {4, 6},
assume that there exists D ⊆ [n − 1] such that Cn ∼= GnD is a difference graph. This already
implies |D| = 2 since if |D| ≥ 3 or |D| = 1, the node 1 has either degree greater than 3 or is a
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leaf respectively. Thus, we can write D = {d1, d2}. Since GnD is connected, gcd(d1, d2) = 1 by
Lemma 3.2.6. Hence, the only possible choices for {d1, d2} to be primitive are {2, 3} if n = 4 and
{2, 3}, {2, 5}, {3, 4}, {3, 5}, and {4, 5} if n = 6. In none of these cases, Gn{d1,d2} is a circuit.

Figure 3.1: The difference graphs G5
{2,3} = C5 and G10

{3,7} = C10.

3.3 Complete graphs
We now turn our attention to complete graphs and we give fiber graph embeddings that yield
upper bounds on their fiber dimension in the logarithm of the number of their nodes. Our first
results concerns the star graph, which has fiber dimension two:

Proposition 3.3.1. For any n ∈ N, fdim(K1,n) = 2 if n ≥ 3 and fdim(K1,n) = 1 if n < 3.

Proof. The star graph K1,n is a path for n < 3 and hence has fiber dimension one. For n ≥ 3,
let v ∈ V (K1,n) be the node with maximal degree n. Removing v from K1,n gives a graph
on n ≥ 3 nodes without edges, i.e. the fiber dimension of this graph is one by Remark 3.1.7.
Proposition 3.1.12 says that fdim(K1,n) ≤ 2. Assume that fdim(K1,n) = 1 and let D ⊆ [n] be a
primitive set such that K1,n ∼= Gn+1

D . The graph isomorphism maps v to some j ∈ [n+ 1] and
since j must be adjacent to all nodes in [n+ 1] \ {j}, we have 1 ∈ D. Primitiveness of D gives
D = {1} and thus Gn+1

D is a path.

Our next intermediate goal is the computation of fdim(Kn). The following lemma is the key
ingredient to prove that fdim(Kn) is at least logarithmic in n.

Lemma 3.3.2. Let L ⊆ Zd be a lattice of full rank and let F ⊂ Zd be a set such that for any
distinct v, w ∈ F , v − w 6∈ L. Then |F| ≤ |Zd/L|.

Proof. Write F = {v1, . . . , vn} and consider the linear map φ : Zd → Zd/L, φ(v) = v + L.
By assumption, φ(vi − vj) 6= 0 in Zd/L for all i, j ∈ [n] with i 6= j. Assume that there are
i, j ∈ [n−1] with i 6= j such that φ(vn−vi) = φ(vn−vj). Then φ(vi−vj) = φ(vi−vn+vn−vj) =
φ(vi − vn) − φ(vj − vn) = 0, a contradiction. Thus, φ(vn − vi) 6= φ(vn − vj) for all distinct
i, j ∈ [n − 1]. That is, |{φ(vn − vi) : i ∈ [n − 1]}| = n − 1. The proposition follows from
n− 1 = |{φ(vn − vi) : i ∈ [n− 1]}| ≤ |Zd/L| − 1

Remark 3.3.3. Since |Zn/L| = det(L), Lemma 3.3.2 can be seen as a discrete analogue of
Blichfeldt’s theorem [31, Theorem 2.4.1].

Theorem 3.3.4. For any n ∈ N, fdim(Kn) = dlog2 ne.

Proof. The complete graph is embedded trivially into {0, 1}m with log2 n ≤ m and hence its fiber
dimension is at most dlog2 ne. Conversely, let d := fdim(Kn) and F ⊂ Zd be a d-dimensional
saturated set andM⊂ Zd a set of directions such that Kn

∼= F(M). Assume there are v, w ∈ F
such that v − w ∈ 2 · Zd. Since (v + w)i is even for all i ∈ [d], v + w ∈ 2Zd. In particular,
1
2(v + w) ∈ Zd and since F is saturated, 1

2(v + w) ∈ F . This implies that v − w ∈ M and
1
2(v−w) ∈M. Thus, v−w 6∈ 2Zd. Due to Lemma 3.3.2, n = |F| ≤ 2d and thus d ≥ dlog2 ne.
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Figure 3.2: Fiber graph embeddings of K5,K6, and K7 in Q3.

When we replace a node v in a graph G by a set of nodes W such that each node w ∈ W
inherits the neighbors of v, then the fiber dimension of G increases at most in log |W |:

Proposition 3.3.5. Let H be a graph on {v1, . . . , vr} and let G be the graph obtained from H
where every node vi is replaced by a finite set Wi such that any node in Wi is adjacent to any
node in Wj if and only if {vi, vj} ∈ E(H). Then

fdim(G) ≤ fdim(H) + dlog2 max{|W1|, . . . , |Wr|}e.

Proof. Set ni := |Wi| for i ∈ [r], m := dlog2 max{ni : i ∈ [r]}e, and s := fdim(H). We prove
the upper bound by writing G as a fiber graph in Zs+m. First, let F = {w1, . . . , wr} ⊂ Zs be a
saturated set andM⊂ Zs a set of directions such that H ∼= F(M) and such that vi gets mapped
to wi by the isomorphism. For any i ∈ [r], choose an arbitrary set Fi ⊆ {0, 1}m of size ni. This
is possible since ni ≤ 2m. The set

F ′ := ∪ri=1{wi} × Fi ⊆ {0, 1}s+m

has cardinality
∑r
i=1 ni and is saturated since all subsets of {0, 1}s+m are. Choose a bijective

map φ : ∪ri=1Wi → F ′ that maps nodes from Wi to Fi and letM′ :=M×{−1, 0, 1}m. Note that
sinceM is a set of directions,M′ is as well. For distinct i, j ∈ [r], all elements of {wi} × Fi are
adjacent to all elements of {wj}×Fj whenever wi and wj are adjacent in F(M) ∼= H. Moreover,
since 0 6∈ M, there are no edges within the sets {wi} × Fi and thus F ′(M′) ∼= G.

Corollary 3.3.6. For any n1, . . . , nr ∈ N, fdim(Kn1,...,nr) ≤ dlog2 re+ dlog2 max{ni : i ∈ [r]}e.

Proof. This is a direct consequence of Proposition 3.3.5 with H = Kr and Theorem 3.3.4.

3.4 Distinct pair-sum polytopes
For the remainder, we investigate a universal upper bound on the fiber dimension by generalizing
the simplex embedding in Proposition 3.1.1. A priori, a move in a set of directions give rise to
distinguished edges in a fiber graph. This is different for fiber graphs on saturated sets whose
convex hull satisfy the following property:

Definition 3.4.1. A lattice polytope P ⊂ Qd with n := |P ∩ Zd| is a distinct pair-sum polytope
if |P ∩ Zd + P ∩ Zd| =

(n
2
)

+ n.

Let P ⊂ Qd be a distinct pair-sum polytope and write P∩Zd = {v1, . . . , vn}. Distinct pair-sum
polytopes are well-studied objects in discrete geometry [27, 30, 17] and their name comes from
the property that all the possible sums 2v1, . . . , 2vn, v1 + v2, v1 + v3, . . . , vn−1 + vn are distinct.
The next proposition is the reason why they are interesting from a fiber graph perspective:
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Proposition 3.4.2. Let P ⊂ Qd be a distinct pair-sum polytope and F := P ∩ Zd. For any
graph G on |F| nodes, there exists a set of directionsM⊂ Zd such that G ∼= F(M).

Proof. Let n := |F|, pick an arbitrary bijection φ : V (G)→ F , and define

M := {φ(u)− φ(v) : u and v adjacent in G}.

First, we show thatM does not contain multiples. Assume, there are m,m′ ∈ M and λ ∈ N
with λ ≥ 2 such that m = λ ·m′. Let v, w ∈ F with v − w = m, then w + λ ·m′ = v. The fact
that w,w+m′, w+ 2m′ ∈ F are distinct elements that fulfill (w+m′) + (w+m′) = w+ (w+ 2m′)
contradicts that P is a distinct pair-sum polytope and henceM is a set of directions. We claim
thatG ∼= F(M). Clearly, every edge in G is mapped to an edge in F(M). Conversely, let v, w ∈ F
such that v−w ∈M. Then there exists adjacent nodes v′, w′ ∈ V (G) with φ(v′)−φ(w′) = v−w.
We have to prove that φ(v′) = v and φ(w′) = w. If not, then φ(v′) + w = φ(w′) + v implies that
two different sums yield the same element in F + F , which again gives a contraction.

It may be of interest whether the reverse of Proposition 3.4.2 is true, that is whether all
lattice polytopes with n lattice points that admit an embedding of all graphs on n nodes are
distinct pair-sum polytopes. In [27], a distinct pair-sum polytope in Qn on 2n lattice points was
constructed for any n ∈ N. This gives rise to the following result.

Proposition 3.4.3. Let G be a graph on 2n nodes, then fdim(G) ≤ n.

Proof. This is [27, Theorem 3] together with Proposition 3.4.2.

Explicit classifications of distinct-pair sums in small dimensions are discussed in [30, 17].
Generally, lower bounds on the fiber dimension can be translated to relations between the number
of lattice points and the dimension of the ambient space of distinct pair-sum polytopes. The next
proposition demonstrates this for complete graphs and rediscovers a bound which was already
proven in [27, Theorem 2].

Proposition 3.4.4. Let P ⊂ Qd be a distinct pair-sum polytope, then |P ∩ Zd| ≤ 2d.

Proof. Let F := P ∩ Zd and n := |F|. According to Proposition 3.4.2, there exists a set of
directions M ⊂ Zd such that Kn

∼= F(M). By the definition of the fiber dimension and
Theorem 3.3.4, dlog2 ne = fdim(Kn) ≤ d, i.e. n ≤ 2d.

Remark 3.4.5. For any n ∈ N, there exists a distinct pair-sum polytope on n lattice points,
namely the (n−1)-dimensional simplex convQ(0, e1, . . . , en−1) ⊂ Qn−1. Thus, for fixed n ∈ N, we
can ask for the smallest natural number d ∈ N such that there exists a distinct pair-sum polytope
in Qd on n lattice points. Clearly, d ≤ n − 1 and Proposition 3.4.4 on the other hand gives
dlog2 ne ≤ d. Given such a minimal d for fixed n, Proposition 3.4.2 implies the fiber dimension
of any graph on n nodes is bounded from above by d. However, the embedding of graphs into
distinct pair-sum polytopes is far from optimal since, for instance, a path on n nodes has fiber
dimension 1 and thus the distance to d is made arbitrarily large. For complete graphs on the
other hand, this bound is best-possible. Finding further classes of graphs for which the bound
induced by the embeddings into distinct pair-sum polytopes is asymptotically tight provides new
insights on the structure of these polytopes in the spirit of Proposition 3.4.4.
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3.5 Computational aspects
Is there an algorithm that decides whether fdim(G) ≤ d holds for a given graph G and a given
natural number d ∈ N? We do not have an answer to this question, but given that it is NP-hard
to decide whether the Euclidean dimension (Remark 3.1.6) of a graph is less than two [103], it is
very likely that, if the fiber dimension can be computed algorithmically, its computation is hard
as well. In this section, we develop an algorithm that decides fdim(G) ≤ 2 and state obstacles
that prevent our method to work for higher dimensions. Clearly, the case fdim(G) ≤ 1 is easy
to decide since there is, up to translation, precisely one saturated set in Z with n elements,
namely [n]. Thus, deciding whether a given graph G on n nodes has fiber dimension one, i.e.
is a difference graph, is done by enumerating all primitive sets D ⊆ [n− 1] and comparing GnD
with G (see also Example 3.2.5). In discrete geometry, two higher dimensional saturated sets are
identified with each other when they are isomorphic in the following sense:

Definition 3.5.1. Two saturated sets F ,F ′ ∈ Zd are affinely isomorphic if there is ψ : Qd → Qd

bijective affine with ψ(F) = F ′. They are unimodularly isomorphic if additionally ψ(Zd) = Zd.

A version of this definition for lattice polytopes is in [122]. Not only is the number of lattice
points and the dimension preserved under affine isomorphism, it is also compatible with fiber
graphs in the following sense:

Lemma 3.5.2. Let F ,F ′ ∈ Zd be saturated and affinely isomorphic sets, then for any set of
directionsM⊂ Zd there is a set of directionsM′ ⊂ Zd such that F(M) ∼= F ′(M′).

Proof. Let ψ : Qd → Qd be the affine and bijective function that maps F to F ′ and let A ∈ Qd×d

and b ∈ Qd such that ψ(x) = Ax + b for all x ∈ Qd. Then F ′ = {Au + b : u ∈ F}. Since
rank(A) = d, the setM′ = {A ·m : m ∈M} is a set of directions, providedM⊂ Zd is one. It
is then easy to show that F(M) ∼= F ′(M′).

By Lemma 3.5.2, one naive approach to decide whether a given graph G on n nodes has
fdim(G) ≤ d is to enumerate all saturated sets in Zd with n elements up to unimodular
isomorphism, to enumerate then for each of these saturated sets all possible sets of directions,
and finally to check whether any of these fiber graphs is graph-isomorphic to G. Beside its
computational effort, this method does not terminate already for d = 3: For m ∈ N, the set

Rm :=


0

0
0

 ,
1

0
0

 ,
0

1
0

 ,
 1

1
m




is the set of all lattice points of the m-th Reeve tetrahedra [102] and the volume of its convex hull
can be made arbitrarily large when m varies. Since the volume is preserved under unimodular
isomorphism, these sets cannot be pairwise unimodular isomorphic. It is hence impossible to
write down all saturated set in Z3 with 4 elements up to unimodular isomorphism. For d = 2,
however, this enumeration process works and one way to see it is by Pick’s theorem, which says
that the volume of the convex hull of any saturated set F ⊂ Z2 is at most |F|. Together with the
next theorem by Lagarias and Ziegler, we can determine all saturated sets with a given volume:

Lemma 3.5.3. Let F ⊂ Zd be a saturated set and v := dvol(convQ(F))e, then F is unimodularly
isomorphic to a saturated set contained in [d · d! · v]d.
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Proof. This is [80, Theorem 2] for the equivalent lattice polytope version of Definition 3.5.1.

Proposition 3.5.4. There is an algorithm that decides fdim(G) ≤ 2 for any graph G.

Proof. Let G be a graph on n nodes. By Pick’s theorem [96], the volume of convQ(F) for any
saturated set F ⊂ Z2 is bounded from above by |F|. Thus, in dimension two, Lemma 3.5.3 says
that any saturated set in Z2 with n elements is unimodular isomorphic to a saturated set that is
contained in [4 ·n]2. Since the set of graphs that can be embedded on a saturated set is preserved
under unimodular isomorphism by Lemma 3.5.2, G satisfies fdim(G) ≤ 2 if and only if there
exists a set of directionsM⊂ Z2 and F ⊆ [4 · n]2 such that G ∼= F(M). There are only finitely
many saturated sets in [4 · n]2, and by going through all of them iteratively and by enumerating
for all of them all possible sets of directions, we can explicitly enumerate all graphs on n nodes
that have fiber dimension at most 2. Comparing then all fiber graphs obtained that way to G,
this method either gives a fiber embedding of G and hence fdim(G) ≤ 2, or fails to find such. In
the latter case, this means that fdim(G) > 2.

The correctness of Proposition 3.5.4 stands and falls with Pick’s theorem, which is false for
d ≥ 3 due to Reeve tetrahedra. One way out is to study weaker notions of isomorphism, that are
still strong enough to make the equivalence classes on saturated sets in Zd with n elements finite.
Although the Reeve tetrahedra are pairwise affinely isomorphic, this notion of isomorphism
also does not suffice to make the equivalence classes finite: For m ∈ N, the saturated sets
Rm ∪ {−e3} ⊂ Z3 have five lattice points, but are not pairwise affinely isomorphic [92]. The
following equivalence relation is tailored for working with fiber dimensions:

Definition 3.5.5. For saturated F ,F ′ ⊂ Zd, write F ≺ F ′ if there is for any set of directions
M⊂ Zd a set of directionsM′ ⊂ Zd with F(M) ∼= F ′(M′) and write F ∼ F ′ if F ≺ F ′ ≺ F .

It is not hard to see that ∼ is an equivalence relation and that it is coarser than affine
isomorphism by Lemma 3.5.2. We do not know whether the equivalence classes of ∼ on saturated
sets in Zd with n elements are finite, but we think that a sufficiently good understanding of ∼ is
the key ingredient towards an algorithmic investigation of the fiber dimension.
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4 Symmetric fiber walks

In this chapter, we discuss the mixing behaviour of fiber walks on sequences (FA,bi(M))i∈N
for a fixed matrix A ∈ Zm×d, a fixed Markov basis M ⊂ kerZ(A), and a sequence (bi)i∈N of
right-hand sides. The main result is that the second largest eigenvalue modulus of the simple fiber
walk is essentially bounded from below by (1− C

i )i∈N when the sequence (bi)i∈N is dominated
(Definition 2.4.5). This implies that the simple fiber walk cannot mix rapidly when (bi)i∈N has
additionally a meaningful parametrization (Definition 4.1.3). We show a similar asymptotics of
the second largest eigenvalue modulus for symmetric fiber walks. The conclusion we draw from
these results is that an adaption of the Markov basis has to take place depending on the right-hand
side b ∈ Zm. In particular, to obtain rapid mixing in this setting, the size of the Markov basis
has to grow. However, adding more moves to a Markov basis on the one hand increases the
rejection rate and on the other hand makes the local sampling process computationally more
expensive. Thus, it is a fine line to find the proper number of moves to add to simultaneously
keep sampling from the Markov basis cheap and to improve the mixing time of the fiber walk. In
Section 4.2, we adapt any given Markov basis so that the underlying graph is the complete graph
with additional loops and we show that this adaption yields an expander in fixed dimension
under mild assumptions on the diameter of the fiber graph (Corollary 4.2.3). The results of this
chapter, except Remark 4.1.8, are based on the autor’s work [119].

4.1 Fixed Markov bases
Despite the fact that the computation of Markov bases has received a lot of attention in the
last decade, mixing results on fiber graphs are rare. The next statement is from [36] and it is
probably one of the first mixing results on fiber graphs. It states that the mixing time of fiber
walks in Z2 that use the unit vectors grows quadratically in the diameter of the fiber graph:

Theorem 4.1.1. There exists constants C1, C2, D1, D2 ∈ Q>0 such that for every ε > 0 and
every saturated set F ⊂ Z2 that has {e1, e2} as Markov basis, the mixing time of the simple fiber
walk S on F({e1, e2}) satisfies

diam(F({e1, e2}))2

C1
· log

(
C2
ε

)
≤ TS(ε) ≤ diam(F({e1, e2}))2

D1
· log

(
D2
ε

)
.

Proof. This is [36, Theorem 1.1] in the language of this thesis.

Remark 4.1.2. The upper bound from Theorem 4.1.1 was generalized in [118] to irreducible
fiber walks in Zd that use {e1, . . . , ed}. However, it is the lower bound that disproves rapid mixing
in Z2: Let F ⊂ Z2 be a full dimensional saturated set and Fi := (i · convQ(F))∩Z2 be the lattice
points in the i-th dilation of its convex hull. Combining Theorem 4.1.1 with Corollary 2.2.11,
the mixing time of the simple fiber walk on Fi is in Ω(i2 · log ε−1) and hence cannot be bounded
by a polynomial in log |Fi| since (|Fi|)i∈N ∈ O(i2).
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We show that a similar effect to Remark 4.1.2 occurs in higher dimension as well. To make
use of our results from Chapter 2 and Theorem 2.4.16 in particular, a connecting piece between
the sequence of right-hand sides (bi)i∈N in NA and its parameter (i)i∈N is needed:

Definition 4.1.3. A sequence (bi)i∈N in NA has a meaningful parametrization if there exists a
polynomial q ∈ Q[t] such that |FA,bi | ≤ q(i) for all i ∈ N.

Example 4.1.4. Let A2 as in Example 1.3.3, then |FA2,i| = i + 1. The sequence (2i)i∈N in
NA2 = N is thus not meaningfully parametrized, whereas the sequence (i)i∈N trivially is. The
computation of the edge-expansion from Example 2.4.3 and Proposition 4.1.9 below show that the
second largest eigenvalue modulus λi of the simple fiber walk on FA2,i(M2) satisfies λi ≥ 1− 1

i .
Since log |FA2,i| = log(i+ 1), the simple fiber walk on (FA2,i(M2))i∈N cannot mix rapidly.

Proposition 4.1.5. Let A ∈ Zm×d and let (bi)i∈N be a sequence in NA with (‖bi‖)i∈N ∈ O(ir)i∈N
for some r ∈ N. Then (bi)i∈N has a meaningful parametrization.

Proof. Denote by a1, . . . , am ∈ Zd the rows of A. Since kerZ(A)∩Nd = {0}, there exist coefficients
λ1, . . . , λm ∈ Q such that w :=

∑m
i=1 λiai ∈ Qd

>0. In particular, for any b ∈ NA and for any
u ∈ FA,b, we have ‖u‖∞ ·mini∈[d]wi ≤ wTu ≤ m · ‖λ‖∞ · ‖b‖∞. Thus,

|FA,b| ≤
(
m · ‖λ‖∞‖b‖∞

mini∈[d]wi

)d
.

Hence, if ‖bi‖ ≤ C · ir for all i ∈ N, then (bi)i∈N has a meaningful parametrization.

Remark 4.1.6. By design, constraint matrices A ∈ Zm×d of log-linear models have the vector
(1, . . . , 1) ∈ Zd in their row space to ensure that all elements of FA,b have the same ‖ · ‖1-norm,
denoted by sb in the following (compare also to [43] and Section 1.4). For all u ∈ FA,b, we have
‖b‖1 = ‖Au‖1 ≤ ‖A‖ · ‖u‖1 = ‖A‖ · sb for any matrix norm ‖ · ‖ that is compatible with ‖ · ‖1.
Since the invariant sb is precisely the sample size in goodness-of-fit tests (Example 1.4.6), a
sequence of right-hand sides (bi)i∈N grows polynomially in i whenever the sample size does, and
hence it has a meaningful parametrization by Proposition 4.1.5 in this case.

The next lemma is one of the lemmas whose statement is almost longer than its proof. It
essentially says which types of lower bounds on the second largest eigenvalue modulus suffice so
that meaningful parametrized sequences cannot mix rapidly.

Lemma 4.1.7. Let A ∈ Zm×d, M ⊂ kerZ(A) be a finite set, (bi)i∈N a sequence in NA with a
meaningful parametrization, and λi the second largest eigenvalue modulus of the simple fiber walk
on FA,bi(M). If there exists an infinite subset I ⊆ N and q ∈ Q[t] with λi ≥ 1− log q(i)

i for all
i ∈ I, then the simple fiber walk on (FA,bi(M))i∈N is not rapidly mixing.

Proof. Assume that the simple fiber walk mixes rapidly. Then there exists a polynomial p ∈ Q≥0[t]
such that for all i ∈ I,

1− 1
p(log |FA,bi |)

≥ λi ≥ 1− log q(i)
i

.

This implies that for all i ∈ I, 1
i · p(log |FA,bi |) · log q(i) ≥ 1. However, since the parametrization

is meaningful, there is f ∈ Q[t] such that |FA,bi | ≤ f(i) and thus p(log |FA,bi |) ≤ p(log f(i)),
which gives a contradiction since I is unbounded in N.
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The next remark is joint work with Caprice Stanley and shows how the results on the diameter
of fiber graphs (Section 2.2) can be used to disprove rapid mixing:

Remark 4.1.8. Let (bi)i∈N be a sequence such that there exists b ∈ NA with bi − i · b ∈ NA for
all i ∈ N and let Wi be any irreducible and aperiodic random walk on FA,bi(M) that has the
uniform distribution as stationary distribution. Then for any u ∈ FA,bi−i·b, u+ FA,i·b ⊆ FA,bi .
Thus, similarly as in Lemma 2.2.1 and Proposition 2.2.10, there exists a constant D ∈ N such
that diam(FA,bi(M)) ≥ D · i for all i ∈ N. With [81, Section 7.1.2], the mixing times satisfies
TWi(0.25) ≥ 1

2 · diam(FA,bi(M)) ≥ 1
2 · i · D. When (bi)i∈N has a meaningful parametrization,

then the mixing time cannot be bounded polynomially in log |FA,bi | and hence (Wi)i∈N is not
rapidly mixing. Moreover, combined with Theorem 1.1.9 and since the stationary distribution is
uniform, we also deduce a lower bound on λ(Wi) which is tailored for Lemma 4.1.7:

λ(Wi) ≥ 1− 2 · log(4 · |FA,bi |)
i ·D

. (4.1.1)

The next result strengthens the lower bound on the second largest eigenvalue modulus
from (4.1.1) even further by using the following connection to the edge-expansion of the graph:

Proposition 4.1.9. For any d-regular and connected graph G, λ(SG) ≥ 1− 2
d · h(G).

Proof. This is [66, Theorem 4.11], which states a lower bound for the second largest eigenvalue
of AG, that is valid for the second largest eigenvalue modulus of SG = 1

dAG.

The lower bound on the diameter from Section 2.2 yields an upper bound on the edge-expansion
(Remark 2.4.19), which in turn gives a lower bound on the second largest eigenvalue modulus
by Proposition 4.1.9. This detour, however, brings us to essentially the same lower bound on
the second largest eigenvalue modulus as stated in (4.1.1). With our stronger bound on the
edge-expansion from Theorem 2.4.16, we get rid of the log q(i) term:

Theorem 4.1.10. Let A ∈ Zm×d,M⊂ kerZ(A) be a finite set, (bi)i∈N be a dominated sequence
in NA, and λi be the second largest eigenvalue modulus of the simple fiber walk on (FA,bi(M))i∈N.
Then there exist constants C,C ′ ∈ N≥1 such that λi ≥ 1− C

i for i ∈ C ′ · N.

Proof. By Proposition 4.1.9, λi ≥ 1− 1
|M| · h(FA,bi(M)) since the simple fiber walk is a random

walk on a | ±M|-regular graph and since adding loops does not change the edge-expansion. The
theorem then follows from Theorem 2.4.16.

It follows immediately from Theorem 4.1.10 that the simple fiber walk on (FA,bi(M))i∈N is no
expander when (bi)i∈N is a dominated sequence and with Lemma 4.1.7, it cannot mix rapidly
when (bi)i∈N has a meaningful parametrization additionally. The next corollary is a template for
possible mitigations of the assumptions of Theorem 4.1.10:

Corollary 4.1.11. Let A ∈ Zm×d and letM⊂ kerZ(A) be a Markov basis for A. Let (bi)i∈N be
from NA with a meaningful parametrization and suppose there is p ∈ Q[t] with p(N) ⊆ N such
that (bp(i))i∈N is dominated. Then the simple fiber walk on (FA,bi(M))i∈N is not rapidly mixing.

Proof. Clearly, there exists C ∈ N>0 such that p(C · (i+ 1)) > p(C · i) for all i sufficiently large.
Let b′i := bp(C·i), then (b′i)i∈N is a subsequence of (bi)i∈N and hence it suffices to show that the
simple fiber walk on (FA,b′i(M))i∈N is not rapidly mixing. Since |FA,b′i | = |FA,bp(C·i) | ≤ q(p(C · i))
for a polynomial q ∈ Q[t], (b′i)i∈N has a meaningful parametrization. Since (bp(i))i∈N is dominated,
the sequence (b′i)i∈N is as well by Lemma 2.4.9. Now, Theorem 4.1.10 implies that the simple
fiber walk on (FA,b′i(M))i∈N is not rapidly mixing.
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Example 4.1.12. Let An,m be the constraint matrix of the independence model (Example 1.3.2
and Example 1.4.7) and assume that n ≥ m. By Remark 4.1.6, we obtain sequences (bi)i∈N with
a meaningful parametrization whenever the sample size grows polynomial in i. If additionally,
bi ≥ s

t · i · (1, . . . , 1)T for fixed s, t ∈ N, then bi·t·n − i · s · (n, . . . , n,m, . . . ,m)T ∈ NAn,m (where
n, . . . , n denotes the m column sums and m, . . . ,m denotes the n row sums) and it follows
that (bi·t·n)i∈N is dominated since the fiber of (n, . . . , n,m . . . ,m)T contains an element with full
support. Corollary 4.1.11 shows that the simple fiber walk on (FAn,m,bi(Mn,m))i∈N is not rapidly
mixing. These assumptions hold for instance when n = m and bi := (i, . . . , i) ∈ N2n, even though
the node-connectivity under the basic movesMn,n is best-possible due to [97, Theorem 2.9].

Remark 4.1.13. LetM = {m1, . . . ,mr} ⊂ kerZ(A) be a Markov basis for A. ExtendingM by
adding a finite number of Z-linear combinations

∑k
i=1 λimi may improves the mixing behaviour

in one particular fiber, but since the cardinality of the new set of moves is still finite, this cannot
lead to rapid mixing asymptotically due to Theorem 4.1.10. This implies, that the Graver basis
has the same asymptotic mixing behaviour as any other finite Markov basis.

The asymptotic behaviour of the second largest eigenvalue modulus as shown in Theorem 4.1.10
is not restricted to simple fiber walks. To prove it for symmetric fiber walks, we apply a common
scheme of Markov chain theory: We study the mixing time of a random walk W1 by comparing
it to the mixing time of a related random walk W2 [35, 45]. More precisely, we compare fiber
walks with the simple fiber walk on a spectral level with the following lemma:

Lemma 4.1.14. Let G = (V,E) be a graph and let W1 and W2 be reversible, aperiodic and
irreducible random walks on G with stationary distributions π1 and π2 respectively. Assume that all
eigenvalues of W2 are non-negative and let C,C ′ > 0 such that π1(x)W1(x, y) ≤ Cπ2(x)W2(x, y)
for all distinct x, y ∈ V and C ′π2(x) ≤ π1(x) for all x ∈ V , then

1− λ(W1) ≤ C

C ′
(1− λ(W2)).

Proof. This is [115, Lemma 2.5]. Notice that λ(·) denotes the spectral gap in [115].

Ideally, we letW2 be the simple fiber walk and compare it directly with any other fiber walkW1.
However, non-negativity of the eigenvalues of the simple fiber walk cannot be guaranteed in general.
In [115], a version of Lemma 4.1.14 is given without the condition on the eigenvalues of W2, but
then the constant C must satisfy the additional inequalities π1(x)W1(x, x) ≤ Cπ2(x)W2(x, x)
for all x ∈ V . Since it might happen that all the moves in a Markov basis can be applied on
a node x in the fiber, we possibly have W2(x, x) = 0 while W1(x, x) > 0 may be true at the
same time. We work around this issue by letting W2 be the lazy version (Definition 1.1.15) of
the simple fiber walk which has non-negative eigenvalues by construction. Its second largest
eigenvalue modulus can be bounded in terms of the edge-expansion of the graph as well:

Lemma 4.1.15. For any d-regular graph G, λ(L(SG)) ≥ 1− 1
d · h(G).

Proof. Let W := L(SG), then the uniform distribution is the stationary distribution of W and
Φ(W) = 1

2 · Φ(SG). With Remark 2.4.2, Φ(W) = 1
2d · h(G) and since all eigenvalues of W are

non-negative, λ(W) = λ2(W) ≥ 1− 2 · Φ(W) = 1− 1
d · h(G).

43



Proposition 4.1.16. Fix A ∈ Zm×d, b ∈ NA, and a Markov basis M for FA,b. Let W be a
reversible, aperiodic and irreducible random walk on FA,b(M) that converges to π : FA,b → (0, 1),
then

1− λ(W) ≤ 4 · max{π(x) : x ∈ FA,b}
min{π(x) : x ∈ FA,b}

· h(FA,b(M)).

Proof. Let L be the lazy simple fiber walk on FA,b(M) and let π be the stationary distribution
of W. Our goal is to compare W and L with Lemma 4.1.14. First, we have for any distinct
x, y ∈ FA,b, W(x, y) = 0 whenever L(x, y) = 0 since both maps are random walks on FA,b(M)
and since L, as the lazy version of the simple fiber walk, has positive transition probabilities on
all edges. For adjacent nodes x, y ∈ FA,b, L(x, y) = 1

2 · (2 · |M|)
−1 > 0 and W(x, y) ≤ 1. Since

the stationary distribution of L is the uniform distribution, we have

π(x) · W(x, y)
(|FA,b|)−1 · L(x, y) ≤ |FA,b| · 4 · |M| ·max{π(x) : x ∈ FA,b} =: C.

With C ′ := |FA,b| ·min{π(x) : x ∈ FA,b} > 0 and Lemma 4.1.14,

1− λ(W) ≤ C

C ′
· (1− λ(L)) = 4 · |M| · max{π(x) : x ∈ FA,b}

min{π(x) : x ∈ FA,b}
· (1− λ(L)).

By definition, L is the lazy version of the simple fiber walk, which in turn is the simple walk on
the | ±M|-regular graph obtained from FA,b(M) after adding loops. Lemma 4.1.15 then yields
1− λ(L) ≤ 1

|M|h(FA,b(M)) and hence the claim.

Corollary 4.1.17. Let A ∈ Zm×d,M⊂ kerZ(A) be a Markov basis, and (bi)i∈N be a dominated
sequence in NA. Let Wi be a reversible, aperiodic, irreducible, and symmetric random walk on
FA,bi(M), then there exist constants C,C ′ ∈ N≥1 such that λ(Wi) ≥ 1− C

i for all i ∈ C ′ · N. If
(bi)i∈N has a meaningful parametrization, then (Wi)i∈N cannot mix rapidly.

Proof. The assumptions imply that for any i ∈ N, the uniform distribution on FA,bi is the
stationary distribution of Wi. Proposition 4.1.16 yield that 1 − λ(Wi) ≤ 4 · h(FA,bi(M)) and
Theorem 4.1.10 together with Lemma 4.1.7 finish the proof.

Remark 4.1.18. Consider the problem of sampling uniformly from FA,b. A symmetric fiber
walk can be seen as a probabilistic Turing machine that takes (d,m,A ∈ Zm×d, b ∈ Zm, ε) as input
and outputs an element from FA,b almost uniformly (with distance at most ε). Neglecting ε, the
binary encoding length of the problem instance is essentially m·d·log(maxk,j Ak,j)+m·log(‖b‖∞).
Theorem 4.1.10 says that already for a fixed matrix A, a fixed Markov basis M, and a ray
(i · b) ∈ NA, the mixing time of the simple fiber walk cannot be bounded by a polynomial in
log(|FA,i·b|). Thus, the number of computations the simple fiber walk needs to converge for inputs
(d,m,A, i · b), where A ∈ Zm×d and b are fixed, cannot be bounded polynomially in the binary
encoding length of the input, even when we can compute a Markov basisM for A efficiently. For
more background details on the complexity of uniform random generation, we recommend [70].

4.2 Adapted Markov bases
The lesson learned from the previous section is that the moves in a Markov bases do not suffice
to provide a good mixing behaviour asymptotically. A possible way out is to adapt the Markov
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basis appropriately so that its size grows with the size of the right-hand side entries. This can be
achieved by adding a varying number of Z-linear combinations of the moves in a way that the
edge-expansion of the resulting graph can be controlled. However, a growth of the set of allowed
moves comes with an increase of the number of loops, i.e. an increase of the rejection rate of the
walk. Let A ∈ Zm×d be a matrix,M = {m1, . . . ,mk} ⊂ kerZ(A) be a Markov basis for A, and
b ∈ NA. For l ∈ N, let

M(l) =


k∑
j=1

λjmj : λ1, . . . , λk ∈ Z,
k∑
j=1
|λj | ≤ l

 ,
define dMA,b := diam(FA,b(M)), and let Mb := M(dMA,b) be the adapted Markov basis for FA,b.
Clearly, the fiber graph FA,b(Mb) is the complete graph and the transition matrix of the simple
fiber walk on FA,b(Mb) is thus

1
|Mb|



1 1 . . . 1 1

1 . . . 1
...

...

1 . . . 1
1 1 . . . 1 1


+ 1
|Mb|



|Mb| − |FA,b| 0 . . . 0 0

0 . . . 0
...

...

0 . . . 0
0 0 . . . 0 |Mb| − |FA,b|


.

In particular, its second largest eigenvalue modulus is 1− |FA,b||Mb| , which proves the next proposition.

Proposition 4.2.1. Let A ∈ Zm×d,M⊂ kerZ(A) be a Markov basis for A and (bi)i∈N a sequence
in NA. Suppose there is r ∈ N such that (|FA,bi |)i∈N ∈ Ω(ir) and (|Mbi |)i∈N ∈ O(ir)i∈N, then the
simple fiber walk on (FA,bi(Mbi))i∈N is an expander.

We discuss in Remark 4.2.5 how to sample moves from the adapted Markov basis. To make use
of Proposition 4.2.1, the growth of the fibers and the adapted Markov bases has to be compared.
Again, Ehrhart’s theory applies to compute the growth of certain fiber sequences. The asymptotic
growth of Mbi depends on the growth of the diameter of FA,bi(M). Hence, we first want to
understand how the number of elements inM(l) grows as a function of l ∈ N.

Lemma 4.2.2. LetM = {m1, . . . ,mk} ⊂ Zd, then (|M(l)|)l∈N ∈ O(lrank(M))l∈N.

Proof. We identify the finite setM with the integer matrix (m1, . . . ,mk) ∈ Zd×k. Denote the
k-dimensional cross-polytope by P := {x ∈ Qk : ‖x‖1 ≤ 1} and let P ′ := {M · x : x ∈ P} be
its image in Qd under M. With this, we can write M(l) = {M · x : x ∈ (l · P) ∩ Zk} and
henceM(l) ⊆ (l · P ′) ∩ Zd. Since P ′ is a polytope, Ehrhart’s theorem [15, Theorem 3.23] gives
|(l ·P ′)∩Zd| ≤ C · ldim(P ′) for some C ∈ Q>0 and since dim(P ′) = rank(M), the claim follows.

Corollary 4.2.3. Let A ∈ Zm×d and letM⊂ kerZ(A) be a Markov basis for A. Let (bi)i∈N be a
sequence in NA such that (|FA,bi |)i∈N ∈ Ω(id−rank(A)) and (dMA,bi)i∈N ∈ O(i)i∈N. Then the simple
fiber walk on (FA,bi(Mbi))i∈N is an expander.

Proof. Let r := dim(kerZ(A)). It suffices to show that |Mbi | ≤ C · ir for a constant C ∈ Q≥0
since the statement then follows from Proposition 4.2.1. Since M is a Markov basis for A,
rank(M) = r and thus Lemma 4.2.2 implies that |M(l)| ≤ C1 · lr for a constant C1 ∈ Q≥0. The
assumption implies that there exists C2 ∈ Q≥0 such that dMA,bi ≤ C2 · i for all i ∈ N. Then,
|Mbi | = |M(dMA,bi)| ≤ |M(C2 · i)| ≤ C1 · Cr2 · ir.
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Expanders are not per se fast, and Corollary 4.2.3 is an asymptotic statement. That means,
for a given matrix A ∈ Zm×d, a given Markov basisM⊂ kerZ(A), and a right-hand side b ∈ NA,
we know by Theorem 4.1.10 that the second largest eigenvalue modulus of the simple fiber walk
that uses M can be arbitrarily close to 1. On the other hand, since (dMA,i·b)i∈N ∈ O(i)i∈N by
Proposition 2.2.10, the second largest eigenvalue modulus of the simple fiber walk that uses the
adapted Markov basisMi·b can be bounded away from 1 strictly. Thus, there exists a threshold
i0 ∈ N such that the adapted Markov basis is faster than the conventional Markov basis on
FA,i·b for i ≥ i0. The exact value of i0 depends on the hidden constants in the asymptotic
formulations of Corollary 4.2.3 and can be quite small, as in Figure 4.1, but also very large so
that the advantages of the adapted Markov bases pay off only for large right-hand sides. For
practitioners, the expander property may hence be to much to ask for. Instead of usingM(l),
one can use the slower growing setM(log l). But already in the simplest example, a logarithmic
adaption of the Markov basis fails to create rapidly mixing fiber walks:

Example 4.2.4. Let Fi := FA2,i−1 and Mi = M2(p(log i)) for a polynomial p ∈ Q[t]. With
Lemma 2.2.1 and Remark 2.4.19, h(Fi(Mi)) ≤ | ±Mi| ·

(
exp

(
p(log i)·log(i)

i−1

)
− 1

)
and Proposi-

tion 4.1.9 yields the following lower bound on the second largest eigenvalue modulus λi of the
simple fiber walk:

λi ≥ 1−
(

exp
(
p(log i) · log(i)

i− 1

)
− 1

)
.

Thus, there cannot exists a polynomial q ∈ Q[t] such that 1− 1
q(log i) bounds λi from above.
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Figure 4.1: The second largest eigenvalue modulus of the simple walk on FA3,i using moves from the
conventional Markov basisM3 and the adapted movesM3(2i).

Remark 4.2.5. Running the simple fiber walk on FA,b(M(l)) for some l ∈ N requires to sample
fromM(l) uniformly and hence a good understanding of this set is necessary. Basically, we shift
the problem of sampling from FA,b for all b ∈ NA where FA,b(M) has diameter l to the problem
of sampling from M(l), which can be seen as some kind of rejection sampling from a larger
saturated set u+M(l) ⊇ FA,b (Example 4.2.7). For large fibers, one applicable move m ∈M(l)
suffices to obtain a sample u+m ∈ FA,b that is very close to uniform. WriteM = {m1, . . . ,mk}
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and r := rank(M). When r = k, then an element λ picked uniformly from {u ∈ Zk : ‖u‖1 ≤ l}
gives rise to an element M · λ that is uniformly generated from M(l). This is not the case
when r > k. One approach to sample from M(l) uniformly in this case is to first compute a
lattice basis B := {b1, . . . , br} ⊂ Zd ofM · Zk in order to get rid of relations among the moves
fromM. Then, we compute for every i ∈ [k] coefficients λi1, . . . , λir such that mi =

∑r
j=1 λ

i
jbj .

For C :=
∑r
j=1 maxi∈[k] |λij |, we haveM(l) ⊆ B(C · l). Thus, after sampling coefficients λ from

{u ∈ Zr : ‖u‖1 ≤ C · l} uniformly, we obtain a move B · λ that is sampled uniformly from a
superset ofM(l). Since |B(C · l)| grows as O(lr)l∈N, Proposition 4.2.1 remains valid. Sampling
from the cross-polytope {u ∈ Zr : ‖u‖1 ≤ C · l} can be done with the heat-bath method as
studied in Chapter 5, which is fast for l→∞ (Example 5.2.13).

Remark 4.2.6. There are many heuristics possible to traverse the fiber with the adapted
Markov basis. For instance, one can sample from M(l) where the probability of coefficients
λ ∈ {u ∈ Zr : u ≤ C · l} is inversely proportional to ‖λ‖1, then shorter moves appear more
frequently than longer moves. Basically, every randomized algorithm that generates elements from
{u ∈ Zk : ‖u‖1 ≤ l} according to some mass function ξ gives rise to a sampling scheme onM(l):
Sample first coefficients λ according to ξ and then use the moveM · λ ∈M(l). Again, uniform
sampling from {u ∈ Zk : ‖u‖1 ≤ l} can be achieved with the heat-bath walk (Example 5.2.13).
To approximate the uniform distribution on the fiber FA,b, it suffices that ξ fulfills ξ(λ) = ξ(−λ)
for all coefficients λ. With an additional Metropolis rejection step (Remark 1.4.4), any mass
function on FA,b with an incomputable normalizing constant can be approximated withM(l).

Example 4.2.7. Let Hk be as in Example 1.3.1 and consider the sequence (FHk,i·e2k+1)i∈N. With
[62, Section 4], it is easy to show that for any k ∈ N, the diameter of FHk,i·e2k+1(Rk) is (2k + 1)i
and hence linear in i. The moves in the reduced Gröbner basis Rk are linearly independent and
hence uniform sampling from the adapted Markov basis Rk((2k + 1)i) is achieved via sampling
uniformly from the cross-polytope {u ∈ Z2k+1 : ‖u‖1 ≤ (2k + 1)i}. The node-connectivity of
FHk,e2k+1(Rk) is 1 (Proposition 2.1.8), but the simple fiber walk in the cross-polytope that uses
the unit vectors does not see the bad connectivity. Rejection sampling from FHk,i·e2k+1 with
upper and lower bounds on the entries of its elements yields sampling from a (2k+1)-dimensional
hyperrectangle i · ([C1]× · · · × [C2k+1]) with constants C1, . . . , C2k+1, which is easy to sample
from, but the rejection rate is larger than sampling from the cross-polytope.

4.3 Varying constraint matrices
Markov bases of constraint matrices coming from statistical problems are often parametrized
and they can be explicitly stated for any parameter. For instance, the basic moves Mn,n of
the independence model (Example 4.1.12) form a Markov basis for An,n for every n ∈ N. Thus,
varying the parameter n provides fiber graphs where the set of moves is adapted canonically.

Example 4.3.1. Let bn := (1, . . . , 1) ∈ N2n, then the elements of FAn,n,bn can be identified with
the elements of the symmetric group Sn. Finding a set of generators such that the corresponding
Cayley graph on Sn is an expander is an active research field in group theory, see for instance [74].
In [38], it was shown that the simple walk on the Cayley graph of Sn that uses the transpositions
mixes rapidly in 1

2n logn many steps. Inspired by shuffling a deck of n cards, a random walk
on Sn that uses riffle shuffles was studied in [13] and shown to be rapidly mixing as well.
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Parametric descriptions of Markov bases can be arbitrarily complicated in general, since by the
Universality theorem [33], any integer vector appears as a subvector of a Markov basis element
of the three-way no interaction model, when the parameters are large enough. Different than in
fixed dimension, where the Markov basis is fixed, the size of the Markov basis is important in the
convergence analysis when the dimension varies because the local sampling process of a move can
be computationally challenging as the Markov basis becomes larger (Remark 4.3.3). The trade-off
between an easily accessible set of moves and a corresponding random walk that has good mixing
properties shows the realms of fiber walks in practice. The next proposition illustrates this for Hk

from Example 1.3.1, where the overwhelming number of moves in its parametric Graver basis
slows the chain down for k →∞, despite the fact that the edge-connectivity of these fibers is
best-possible by Proposition 2.1.9.

Proposition 4.3.2. The simple fiber walk on (FHk,e2k+1(GHk))k∈N is not rapidly mixing.

Proof. According to [62, Section 4], FHk,e2k+1(GHk) is isomorphic to the graph on the nodes
{0, 1}k+1 in which two nodes (i1, . . . , ik+1) and (j1, . . . , jk+1) are adjacent if either ik+1 = jk+1
and ‖i− j‖∞ = 1, or if ii+1 6= jk+1. For any k ∈ N>0, define

Sk := {(0, i, 0) : i ∈ {0, 1}k−1} ∪ {(0, i, 1) : i ∈ {0, 1}k−1},

then |Sk| = 1
2 |FHk,e2k+1 |. Counting the edges that leave Sk yields that for any (0, i, 0) ∈ Sk,

there are k with endpoints in {(1, i, 0) : i ∈ {0, 1}k−1} and 2k−1 with endpoints in {(1, i, 1) : i ∈
{0, 1}k−1}. The same is true for any (0, i, 1) ∈ Sk. Hence, there are (k + 2k−1) · 2 · 2k−1 edges
leaving Sk. The edge-expansion of FHk,e2k+1(GHk) is thus bounded from above by k+ 2k−1. Since
|GHk | = 2 · (4k + 4k), Proposition 4.1.9 implies that the second largest eigenvalue of the simple
fiber walk is bounded from below by

1− k + 2k−1

2 · (4k + 4 · k) .

This together with log |FHk,e2k+1 | = k + 1 gives the statement.

Remark 4.3.3. Let A ∈ Zm×d, b ∈ NA and X ⊆ [d]. Testing the goodness-of-fit of a log-linear
model that has structural zeros requires to sample from sets of the form

FXA,b := {u ∈ FA,b : ui = 0 ∀i ∈ X}.

A priori, a Markov basisM⊂ kerZ(A) for A does not make the fiber graphs FXA,b(M) connected
for all b. The problem when a Markov bases of A still connects sets FXA,b with bi ≥ 1 was studied
in [72] from an algebraic point of view. Interpreting the constraints on the coordinates in X as
linear inequalities, Proposition 2.1.3 tells that the Graver basis GA is a Markov basis for these
sets. However, as the dimension grows, it can be challenging to sample from the Graver basis
uniformly. For instance, the Graver basis of An,m with additional zero-constraints defined by
a set X ⊂ [n]× [m] corresponds to the set of cycles of Kn,m where edges from X are removed.
Already for bipartite graphs, sampling a circuit uniformly is challenging [70, Theorem 5.1].

Example 4.3.4. This example of a simple fiber walk where the dimension varies is from [91].
For a ∈ Rd and b ∈ R, consider the set F(a, b) := {u ∈ {0, 1}d : aTu ≤ b}, that is the set of
solutions to a knapsack instance. The simple fiber walk on F(a, b) that samples at each step
uniformly from ±{e1, . . . , ed} is precisely the random walk studied in [91], and they showed that
it converges in polynomially many steps in the dimension, which is rapid mixing.
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5 Heat-bath walks

We have seen in the previous chapter that a small diameter is a necessary condition for fast
mixing. Since the diameter of all compressed fiber graphs from the same matrix is bounded by a
universal constant from above due to Theorem 2.2.17, they are canonical candidates for rapid
mixing. Heat-bath walks, as studied in [46] recently, are tailored for an execution on compressed
fiber graphs. To define them, let F ⊂ Zd be a finite set and denote for any u ∈ F and m ∈ Zd, the
ray in F through u along m by RF ,m(u) := (u+m ·Z)∩F . Given a mass function π : F → [0, 1],
we define for x, y ∈ F

HπF ,m(x, y) :=


π(y)

π(RF,m(x)) , if y ∈ RF ,m(x)
0, otherwise

.

For a finite setM⊂ Zd equipped with a mass function f :M→ [0, 1], the heat-bath walk is

Hπ,fF ,M =
∑
m∈M

f(m) · HπF ,m. (5.0.1)

Observe that F does not need to be saturated. The heat-bath walk is performed as follows:

Algorithm 2 Heat-bath walk on compressed fiber graphs
Input: F ⊂ Zd,M⊂ Zd, v ∈ F , mass functions f :M→ [0, 1] and π : F → [0, 1], r ∈ N

1: procedure HeatBath:
2: v0 := v
3: FOR s = 0; s = s+ 1, s < r
4: Sample m ∈M according to f
5: Sample vs+1 ∈ RF ,m(vs) according to RF ,m(vs)→ [0, 1], y 7→ π(y)

π(RF,m(vs))
6: RETURN v1, . . . , vr

In other words, the heat-bath walk samples at the current lattice point u ∈ F a move m ∈M
and walks to a random element in the integer ray RF ,m(u). The authors of [39] discovered that
this random walk can be seen as a discrete version of the hit-and-run algorithm [82, 116, 83] that
has been used frequently to sample from the points of a polytope – not only lattice points. The
popularity of the continuous version of the hit-and-run algorithm has not spread to its discrete
analogue, and not much is known about its mixing behaviour. One reason is that it is already
challenging to guarantee that all points in the underlying set F can be reached by a random
walk that uses moves fromM, whereas for the continuous version, a random sampling from the
unit sphere suffices. However, in many situations where a Markov basis is known, the heat-bath
walk is evidently fast. For instance, it was shown in [29] that the heat-bath walk on two-way
contingency tables under the independence model mixes rapidly when the number of rows is fixed
and the basic moves are used. To work around the connectedness issue, a discrete hit-and-run
algorithm was introduced in [12] for arbitrary finite sets F ⊂ Zd. In each step of this random
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walk, a subordinate and unrestricted random walk starts at the current lattice point u ∈ F and
uses the unit vectors to collect a set of proposals S ⊂ Zd. The random walk then moves from
u to a random point in S ∩ F . Generally speaking, the same methodology is applied by the
heat-bath walk, but here, the proposals are on a ray RF ,m(u).

Figure 5.1: Points reached in a simple fiber walk (on the left) and a heat-bath walk (on the right) on a
50× 80 grid using the moves {(1, 0), (0, 1), (2, 1), (1, 2)} after 1000 steps.

In this chapter, we explore the mixing behaviour of heat-bath walks on lattice points with
Markov bases. In Section 5.1, we study in more detail the combinatorial and analytical structure
of their transition matrices and prove upper and lower bounds on their second largest eigenvalues.
We use the canonical path approach from [105] and establish in Theorem 5.2.9 an upper bound
on the second largest eigenvalue modulus when the Markov basis is augmenting (Definition 5.2.1)
and when π is the uniform distribution. From that, we conclude fast mixing results for random
walks on lattice points in fixed dimension. In the end, we briefly discuss how the distribution f
on the movesM affects the speed of convergence (Section 5.3). This chapter is based on the
joint work [108] with Caprice Stanley.

5.1 Spectral analysis
The underlying graph of the heat-bath walk is the compression Fc(M) and when the moves in a
Markov bases are linearly independent, then the heat-bath walk becomes the Glauber dynamics:

Remark 5.1.1. Let F ⊂ Zd be finite andM = {m1, . . . ,md} ⊂ Zd be a linearly independent
Markov basis of F . If the moves are selected uniformly, then the heat-bath walk on F coincides
with the Glauber dynamics on F . To see it, choose u ∈ F and let

F ′ := {λ ∈ Zd : u+ λ1m1 + . . .+ λdmd ∈ F}.

It is easy to check that F ′ is unique up to translation and depends only on F , u, andM. Since
the vectors inM are linearly independent, every element of F can be represented by a unique
choice of coefficients in F ′. Thus, the heat-bath walk on F usingM is equivalent to the heat-bath
walk on on F ′ using the unit vectors as moves. For any unit vector ei ∈ Zd, the ray through
an element v ∈ F ′ is {w ∈ F ′ : wj = vj∀j 6= i} which is precisely the form in the Glauber
dynamics [81, Section 3.3.2].

Although an asymptotically bounded diameter is a necessary condition for good mixing
behaviour, it is not sufficient in general: Let Gn be the disjoint union of two complete graphs Kn

connected by a single edge, then diam(Gn) = 3, but h(Gn) ≤ 1
n implies that the simple walk

on Gn does not mix rapidly. Thus, heat-bath walks are not per se rapidly mixing and this asks
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for a deeper analysis of the spectral decomposition of heat-bath walks. To get started, let us first
recall the basic properties of this random walk (compare also to [39, Lemma 2.2]):

Proposition 5.1.2. Let F ⊂ Zd andM⊂ Zd be finite sets. Let f :M→ [0, 1] and π : F → (0, 1)
be mass functions. Then Hπ,fF ,M is aperiodic, has stationary distribution π, is reversible with
respect to π, and all of its eigenvalues are non-negative. The random walk is irreducible if and
only if {m ∈M : f(m) > 0} is a Markov basis for F .

Proof. For any u ∈ F and any m ∈M, HπF ,m(u, u) > 0, there are halting states and thus Hπ,fF ,M
is aperiodic. By definition, π(x)HπF ,m(x, y) = π(y)HπF ,m(y, x) for all x, y ∈ F and thus Hπ,fF ,M is
reversible with respect to π and π is a stationary distribution. The statement on the eigenvalues
is [46, Lemma 1.2]. LetM′ = {m ∈ M : f(m) > 0} and f ′ = f |M′ , then Hπ,fF ,M = Hπ,f

′

F ,M′ and
thus the heat-bath walk is irreducible if and only ifM′ is a Markov basis for F .

Remark 5.1.3. From a computational point of view, the difference of the simple fiber walk
and the heat-bath walk is Step 4 of Algorithm 2. More computation is necessary for heat-bath
walks at every transition. However, Step 4 can be done efficiently in many cases. As in the
Metropolis-Hastings walk (Remark 1.4.4), an incomputable normalizing constant of π cancels.
For instance, when π is the uniform distribution, then one needs to sample uniformly from
RF ,m(v) in Step 4. If the input of Algorithm 2 is a saturated set F = {u ∈ Zd : Au ≤ b} that is
given in H-representation, then the length of the ray RF ,m(v) can be computed with a number
of operations that is polynomial in the binary encoding length of A and b.

There are situations where the heat-bath walk gives no speed-up compared with the simple
fiber walk (Example 5.1.4). Intuitively, adding more moves to the set of allowed moves should
improve the mixing time of the fiber walk. Surprisingly, this is not true for heat-bath walks:

Example 5.1.4. Consider the fiber graph sequence from Proposition 4.3.2. The underlying
saturated sets are subsets of {0, 1}4k+2 respectively, and thus every ray along a Graver move has
length at most 2. Hence, the transition matrices of the simple fiber walk and the heat-bath walk
coincide. Thus, the heat-bath walk is not rapidly mixing for k →∞.

Example 5.1.5. Let F = [2]× [5] ⊂ N2,M = {e1, e2, 2e1 + e2}, and π the uniform distribution
on F . Since {e2, 2e1 + e2} is not a Markov basis for F , any mass function f :M→ [0, 1] must
have f(e1) > 0 in order to make the corresponding heat-bath walk irreducible. Comparing the
second largest eigenvalue modulus of the heat-bath walks that sample uniformly from {e1, e2}
andM respectively, we obtain

λ

(1
2H

π
F ,e1 + 1

2H
π
F ,e2

)
= 1

2 <
2
3 = λ

(1
3H

π
F ,e1 + 1

3H
π
F ,e2 + 1

3H
π
F ,2e1+e2

)
.

Said in words: Adding 2e1 +e2 to the set of allowed moves slows the walk down. This phenomenon
does not appear for the simple fiber walk on F , where the second largest eigenvalue modulus
improves from ≈ 0.905 to ≈ 0.888 when adding the move 2e1 + e2 to the Markov basis.

For the remainder of this section, we primarily focus on heat-bath walks Hπ,fF ,M that converge
to the uniform distribution π on a finite, but not necessarily saturated, set F . In particular,
we aim for bounds on its second largest eigenvalue by making use of the decomposition from
equation (5.0.1). Our first observations consider its summands HπF ,m that can be well understood
analytically (Proposition 5.1.6) and combinatorially (Proposition 5.1.7).
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= + +

Figure 5.2: Decomposition of the graph in Example 5.1.5.

Proposition 5.1.6. Let F ⊂ Zd be a finite set, m ∈ Zd, and π : F → [0, 1] be the uniform
distribution. Let R1, . . . ,Rk be the disjoint rays through F along m. Then

1. HπF ,m is symmetric and idempotent.
2. img(HπF ,m) = spanR

{∑
x∈R1 ex,

∑
x∈R2 ex, . . . ,

∑
x∈Rk ex

}
.

3. ker(HπF ,m) =
⊕k
i=1 spanR {ex − ey : x, y ∈ Ri, x 6= y}.

4. rank(HπF ,m) = k and dim ker(HπF ,m) = |F| − k.
5. The spectrum of HπF ,m is {0, 1}.

Proof. Symmetry of HπF ,m follows from the definition. By assumption, F is the disjoint union of
R1, . . . ,Rk and hence there exists a permutation matrix S such that SHπF ,mST is a block matrix
whose building blocks are the matrices

1
|Ri|

1 . . . 1
...

...
1 . . . 1

 ∈ Q|Ri|×|Ri|.

Thus, HπF ,m is idempotent and the rank of HπF ,m is k. A basis of its image and its kernel can be
read off directly and idempotent matrices can only have the eigenvalues 0 and 1.

Proposition 5.1.7. Let F ⊂ Zd and M ⊂ Zd be finite sets, π : F → [0, 1] be the uniform
distribution, and let V1, . . . , Vc ⊆ F be the nodes of the connected components of F(M), then

⋂
m∈M

img(HπF ,m) = spanR

∑
x∈V1

ex, . . . ,
∑
x∈Vc

ex

 .
Proof. It is clear by Proposition 5.1.6 that the set on the right-hand side is contained in any
img(HπF ,m) since any Vi decomposes disjointedly into rays along m ∈ M. To show the other
inclusion, write M = {m1, . . . ,mk} and let for any i ∈ [k], Ri1, . . . ,Rini be the disjoint rays
through F parallel to mi. In particular, {Ri1, . . . ,Rini} is a partition of F for any i ∈ [k]. Let
v ∈

⋂k
i=1 img(HπF ,mi). By Proposition 5.1.6, for any i ∈ [k] there exist λi1, . . . , λini ∈ Q such that

v =
ni∑
j=1

∑
x∈Rij

λijex.

If two distinct Markov movesmi andmi′ and two indices j ∈ [ni] and j′ ∈ [ni′ ] satisfyRij∩Ri
′
j′ 6= ∅,

then λij = λi
′
j′ . We show that for any i ∈ [k] and any a ∈ [c], λij = λij′ when Rij and Rij′ are a

subset of Va. This implies the proposition. Take distinct x, x′ ∈ Va and assume that x and x′
lie on different rays of mi and let that be x ∈ Rij and x′ ∈ Rij′ with j 6= j′. Since x and x′ are
in the same connected component Va of F(M), let yi0 , . . . , yir ∈ F be the nodes on a minimal
path in Fc(M) with yi0 = x and yir = x′. For any s ∈ [r], yis and yis−1 are contained in the
same ray Rksts coming from a Markov move mks . In particular, Rts−1

ks−1
∩Rksts 6= ∅ and due to the

observation made above, λij = λk1
t1 = λk2

t2 = . . . = λkrtr = λij′ .
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Definition 5.1.8. Let F ⊂ Zd andM ⊂ Zd be finite sets andM′ ⊆ M. Let V be the set of
connected components of F(M\M′) and R be the set of all rays through F along all elements
ofM′. The ray matrix of F(M) alongM′ is AF (M,M′) := (|R ∩ V |)R∈R,V ∈V ∈ NR×V .

Remark 5.1.9. The ray matrix itself seems to be a very interesting object. For instance, take
any saturated set F ⊂ Z2, then, possibly after translation, we can assume that F ⊆ [n]× [m]
with n and m minimal. LetM = {e1, e2} andM′ = e1, then for all (i, j) ∈ [n]× [m],

AF (M,M′)ij =
{

1, if (i, j) ∈ F
0, if (i, j) /∈ F

.

Thus, the ray matrix encodes the integer points of a lattice polytope in its pattern of non-zero
entries and we think it is appealing to find properties of the lattice polytope which can be read
off the ray matrix and vice-versa.


0 0 0 0 0 0 1
0 0 0 1 1 1 1
1 1 1 1 1 1 0
0 0 1 1 1 0 0


Figure 5.3: A saturated set F ⊂ [3]× [7] and AF ({e1, e2}, {e1}).

Proposition 5.1.10. Let F ⊂ Zd and M ⊂ Zd be finite sets, π : F → [0, 1] be the uniform
distribution, andM′ ⊆M. Then

ker(AF (M,M′)) ∼=
⋂

m∈M\M′
img(HπF ,m) ∩

⋂
m∈M′

ker(HπF ,m).

Proof. Let V1, . . . , Vc be the connected components of F(M \ M′) and R1, . . . ,Rr be the
rays along elements in M′. Let I :=

⋂
m∈M\M′ img(HπF ,m) and K :=

⋂
m∈M′ ker(HπF ,m). By

Proposition 5.1.7, any element of I has the form v =
∑c
i=1(λi

∑
x∈Vi ex) for λ1, . . . , λc ∈ Q.

Assume additionally that v ∈ ker(HπF ,m) for m ∈ M′ and let Ri1 , . . . ,Rij be the rays parallel
to m, then for any k ∈ [j], 0 =

∑
x∈Rik

vx =
∑c
j=1 λj |Rik ∩ Vj |. Put differently, a vector λ ∈ Rc

is in the kernel of (|Ri ∩ Vj |)i∈[r],j∈[c] if and only if
∑c
i=1(λi

∑
x∈Vi ex) ∈ I ∩K.

Conditions on the kernel of the ray matrix allow us to give a lower bound on the second largest
eigenvalue of the heat-bath walk:

Proposition 5.1.11. Let F ⊂ Zd andM⊂ Zd be finite sets and π be the uniform distribution.
LetM′ ⊆M such that ker(AF (M,M′)) 6= {0}, then λ(Hπ,fF ,M) ≥ 1−

∑
m∈M′ f(m) for any mass

function f :M→ [0, 1].

Proof. Using the isomorphism from Proposition 5.1.10, we can choose a non-zero v ∈ QP such
that HπF ,mv = v for all m ∈M \M′ and HπF ,mv = 0 for all m ∈M′. In particular

Hπ,fF ,Mv =
∑
m∈M

f(m)HπF ,mv =
∑

m∈M\M′
f(m)HπF ,mv =

∑
m∈M\M′

f(m)v.

Since f is a mass function, 1−
∑
m∈M′ f(m) is an eigenvalue of Hπ,fF ,M.
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Definition 5.1.12. Let F ⊂ Zd be a finite set and m,m′ ∈ Zd not collinear. The pair (m,m′)
has the intersecting ray property in F if the following holds: For any pair of rays R1,R2 parallel
to m and any pair of rays R′1,R′2 parallel to m′ where both R1 ∩R′1 and R2 ∩R′2 are not empty,
R1 ∩R′2 6= ∅ implies R′1 ∩R2 6= ∅ and |R1| · |R′1|−1 = |R2| · |R′2|−1. Given a finite setM⊂ Zd,
the graph Fc(M) has the intersecting ray property if all pairs (m,m′) with m,m′ ∈M have the
intersecting ray property in F .

Example 5.1.13. The compressed fiber graph on [n1] × · · · × [nd] ⊂ Zd that uses the unit
vectors {e1, . . . , ed} as moves has the intersecting ray property. On the other hand, consider
F = {u ∈ N2 : u1 + u2 ≤ 1} and take the rays R1 := {(0, 0), (0, 1)} and R2 := {(1, 0)} that are
parallel to e2 and the rays R′1 := {(0, 1)} and R′2 := {(0, 0), (1, 0)} that are parallel to e1. Then
R1 ∩R′1 = {(1, 0)} and R2 ∩R′2 = {(0, 1)}, but R1 ∩R′2 = {(0, 0)} 6= ∅ and R′1 ∩R2 = ∅.

Proposition 5.1.14. Let m,m′ ∈ Zd be not collinear and F ⊂ Zd be a finite set. The matrices
HπF ,m and HπF ,m′ commute if and only if (m,m′) has the intersecting ray property in F .

Proof. Let u1, u2 ∈ F . Then

(HπF ,m · HπF ,m′)u1,u2 =
{
|RF ,m(u1)|−1 · |RF ,m′(u2)|−1, if RF ,m(u1) ∩RF ,m′(u2) 6= ∅
0, otherwise

.

Let R1 := RF ,m(u1), R′1 := RF ,m′(u1), R2 := RF ,m(u2), and R′2 := RF ,m′(u2). Thus, it is
straightforward to check that (HπF ,m · HπF ,m′)u1,u2 = (HπF ,m′ · HπF ,m)u1,u2 for all u1, u2 ∈ F if and
only if the pair (m,m′) has the intersecting ray property.

Lemma 5.1.15. Let H1, . . . ,Hn ∈ Rn×n be pairwise commuting matrices. Then any eigenvalue
of
∑n
i=1Hi has the form λ1 + . . .+ λn where λi is an eigenvalue of Hi.

Proof. This is a straightforward extension of the case n = 2 in [67, Theorem 2.4.8.1] and relies
on the fact that commuting matrices are simultaneously triangularizable.

Proposition 5.1.16. Let F ⊂ Zd and M⊂ Zd be finite sets and suppose there exists m ∈ M
such that (m,m′) has the intersecting ray property in F for all m′ ∈ M′ := M \ {m}. Let
V1, . . . , Vc be the connected components of F(M′), πi : Vi → [0, 1] the uniform distribution, and
f ′ = (1− f(m))−1 · f |M′, then

λ(Hπ,fF ,M) ≤ f(m) + (1− f(m)) ·max{λ(Hπi,f
′

Vi,M′) : i ∈ [c]}.

Proof. Let H := Hπ,f
′

F ,M′ be the heat-bath walk on F(M) that samples moves fromM′ according
to f ′, then Hπ,fF ,M = f(m) · HπF ,m + (1 − f(m)) · H. By assumption, all pairs (m,m′) with
m′ ∈ M′ have the intersecting ray property and thus the matrices HπF ,m and H commute
according to Proposition 5.1.14. The eigenvalues of all involved matrices are non-negative and
thus Lemma 5.1.15 implies that the second largest eigenvalue of Hπ,fF ,M has the form λ+λ′ where
λ ∈ {0, f(m)} by Proposition 5.1.6 and where λ′ is an eigenvalue of (1−f(m)) ·H. The matrix H
is a block matrix whose blocks are the matrices Hπ,f

′

Vi,M′ = Hπi,f
′

Vi,M′ and the statement follows.

Proposition 5.1.17. Let F ⊂ Zd andM⊂ Zk be finite sets. If Fc(M) has the intersecting ray
property, then λ(Hπ,fF ,M) ≤ 1−min(f).
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Proof. LetM = {m1, . . . ,mk}. The intersecting ray property and Proposition 5.1.14 give that the
matrices f(m1) ·HπF ,mi , . . . , f(mk) ·HπF ,mk commute pairwise. According to Proposition 5.1.6, the
spectrum of f(mi) · HπF ,mi is {0, f(mi)}. Lemma 5.1.15 yields that the second largest eigenvalue
of Hπ,fF ,M, which equals the second largest eigenvalue modulus since all of its eigenvalues are
non-negative, fulfills λ(Hπ,fF ,M) =

∑
i∈I f(mi) for a subset I ⊆ [k]. Since λ(Hπ,fF ,M) < 1 and∑k

i=1 f(mi) = 1, we have I 6= [k] and the claim follows.

Proposition 5.1.18. Let n1, . . . , nd ∈ N>1, F = [n1]× · · · × [nd], andM = {e1, . . . , ed}. Then
for any positive mass function f :M→ [0, 1], λ(Hπ,fF ,M) = 1−min(f).

Proof. Since Fc(M) has the intersecting ray property, Proposition 5.1.17 shows λ(Hπ,fF ,M) ≤
1−min(f). Assume that min(f) = f(ei). The connected components of Fc({e1, . . . , ed} \ {ei})
are the sets Vj := {u ∈ F : ui = j} for any j ∈ [ni] and the rays through F along ei are
Rk := {k+ s · ei : s ∈ [ni]} for k ∈ [n1]× · · ·× [ni−1]×{0}× [ni+1]× · · ·× [nd]. In particular, any
ray intersects any connected component exactly once. Thus, the matrix (|Rk∩Vj |)k,j is the all-ones
matrix, which has a non-trivial kernel. Proposition 5.1.11 implies λ(Hπ,fF ,M) ≥ 1− f(ei).

Remark 5.1.19. In the special case n := n1 = . . . = nd and f : {e1, . . . , ed} → [0, 1] the uniform
distribution in Proposition 5.1.18, the heat-bath walk on [n]d is known as Rook’s walk in the
literature. In this case, Proposition 5.1.18 appears as [77, Proposition 2.3]. In [88], upper bounds
on the mixing time of the Rook’s walk were obtained with path-coupling.

By the variational characterization of the eigenvalues of a hermite matrix, the second largest
eigenvalue is also the optimal value of a maximization problem:

Proposition 5.1.20. Let F ⊂ Zd be a finite set, M = {m1, . . . ,mk} ⊂ Zd be a Markov basis
for F , and π be the uniform distribution on F . For any i ∈ [k], let Ri1, . . . ,Rini be the disjoint
rays through F along mi. Then

λ(Hπ,fF ,M) = max


k∑
i=1

f(mi) ·
ni∑
j=1

 1
|Rij |

∑
x∈Rij

∑
y∈Rij

wxwy

 :
∑
u∈F

w2
u = 1,

∑
u∈F

wu = 0

 . (5.1.1)

Proof. Let n := |F| and let B := {w ∈ Rn :
∑n
i=1w

2
i = 1,

∑n
i=1wi = 0}. Denote the eigenvalues

of Hπ,fF ,M by 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1. All eigenvalues of Hπ,fF ,M are non-negative, and hence
λn ≥ 0. In particular, λ(Hπ,fF ,M) = λ2. The second Stiefel manifold is the set

V2 (Rn) :=
{
X ∈ Rn×2 : XTX =

[
1 0
0 1

]}
⊂ Rn×2.

Fan’s theorem [53, Theorem 1] shows that maxX∈V2(Rn) trace(XTHπ,fF ,MX) = λ1 + λ2. It is
straightforward to check that

trace(
[
v w

]T
HπF ,mi

[
v w

]
) =

ni∑
j=1

 1
|Rij |

∑
x∈Rij

∑
y∈Rij

(vxvy + wxwy)



55



for any v, w ∈ Rn and i ∈ [k]. Since trace(·) is multiplicative and sinceHπ,fF ,M =
∑k
i=1 f(mi)HπF ,mi ,

λ(Hπ,fF ,M) = max
(v,w)∈V2(Rn)


k∑
i=1

f(mi) ·
ni∑
j=1

 1
|Rij |

∑
x∈Rij

∑
y∈Rij

(vxvy + wxwy)


− 1

 .
Let v := (1, . . . , 1)T 1√

n
∈ Rn and w ∈ B. By the definition of B, (v, w) ∈ V2 (Rn) and thus

λ(Hπ,fF ,M) is greater than the term on the right-hand side of equation (5.1.1). Let w′ be a
normalized eigenvector of λ2, then w′T v = 0 since v is an eigenvalue of λ1 = 1 by the spectral
theorem of symmetric matrices. On the other hand, trace([v w′]THπ,fF ,M[v w′]) = λ1 + λ2 and
thus λ(Hπ,fF ,M) equals the term on the right-hand side of equation (5.1.1).

5.2 Augmenting Markov bases
It follows from our investigation in Section 2.2 that the diameter of all compressed fiber graphs
coming from a fixed integer matrix A ∈ Zm×d can be bounded from above by a constant. However,
Markov moves can be used twice in a minimal path which makes, a priori, the diameter of the
compressed fiber graph larger than the size of the Markov basis. The next definition puts more
constraints on the Markov basis and postulates the existence of a path that uses every move
from the Markov basis at most once.

Definition 5.2.1. Let F ⊂ Zd be a finite set and M = {m1, . . . ,mk} ⊂ Zd. An augmenting
path between distinct u, v ∈ F of length r ∈ N is a path in Fc(M) of the form(

u, u+ λi1mi1 , u+ λi1mi1 + λi2mi2 , · · · , u+
r∑

k=1
λikmik = v

)
∈ Fr+1

with distinct i1, . . . , ir ∈ [k]. An augmenting path is minimal for u, v ∈ F if there exists no
shorter augmenting path between u and v in Fc(M). A Markov basisM for F is augmenting if
there is an augmenting path between any distinct nodes. The augmentation length AM(F) of an
augmenting Markov basisM is the maximum length of all minimal augmenting paths in Fc(M).

The diameter of compressed fiber graphs that use an augmenting Markov basis is at most the
size of the Markov basis. Not every Markov basis is augmenting (Example 2.2.13), but we show
that many natural sets of moves have this property. For fiber graphs coming from an integer
matrix, an augmenting Markov basis for all of its fibers can be computed (Remark 5.2.3).

Example 5.2.2. Let Ad and Md as in Example 1.3.3. We show that Md is an augmenting
Markov basis for FAd,b for any b ∈ N. Let u, v ∈ FAd,b be distinct, then there exists i ∈ [d]
such that ui > vi or ui < vi, thus, we can walk from u to u′ := u+ (ui − vi)(e1 − ei) or from v
to v′ := v + (vi − ui)(e1 − ei). In any case, after that augmentation, the pairs (u′, v) and
(v′, u) coincide in the i-th coordinate and thus we find an augmenting path by induction on the
dimension d. Since these paths use at most d− 1 edges, AMd

(FAd,b) ≤ d− 1 for all b ∈ N.

Remark 5.2.3. Let A ∈ Zm×d with kerZ(A) ∩ Nd = {0} and let b ∈ NA. The Graver basis
is clearly an augmenting Markov basis for FA,b for any b ∈ NA. We claim that when A is
totally unimodular, then AGA(FA,b) ≤ d2(rank(A) + 1). In particular, the augmentation length
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is independent of the right-hand side b. Let u, v ∈ FA,b be arbitrary and let li := min{ui, vi},
wi := max{ui, vi}, and ci := sign(ui − vi) ∈ {−1, 0, 1} for i ∈ N. Then v is the unique optimal
value of the linear integer optimization problem

min{cTx : Ax = b, l ≤ x ≤ w, x ∈ Zd}.

A discrete steepest decent as defined in [32, Definition 3] using Graver moves needs at most
‖c‖1 · d · (rank(A) + 1) ≤ d2 · (rank(A) + 1) many augmentations from u to reach the optimal
value v and [32, Corollary 8] ensures that every Graver move is used at most once. Notice that
in [32], the variable x is constrained to x ≥ 0 instead to x ≥ l, but their argument works in fact
for any lower bound.

The bound on the augmentation length of Graver bases from Remark 5.2.3 can be improved
in situations where the entries of the Graver elements are from {−1, 0, 1}:

Proposition 5.2.4. Let A ∈ Zm×d with GA ⊆ {−1, 0, 1}d and let r ∈ N such that every choice
of r columns of A is linearly independent. Then for all F ∈ FA, we have AGA(F) ≤ d− r.

Proof. Let k := d− r, b ∈ NA, and pick any distinct u, v ∈ FA,b. There is an element g1 ∈ GA
such that u+ g1 v v and u+ g1 ∈ FA,b. Let λ1 ∈ N be maximal such that u1 := u+ λ1g1 v v, in
particular (u+ λ1g1)i1 = vi1 for some i1 ∈ [d] since g1 ∈ {−1, 0, 1}d. Again, there exists g2 ∈ GA
such that u1 + g2 v v, that is (g2)i1 = 0 and u1 + g2 ∈ FA,b. Choose λ2 ∈ N maximal such that
u1 +λ2g2 v v, then (u1 +λ2g2)i2 = vi2 for some i2 ∈ [d]\{i1}. Iterating this procedure, we either
arrive at v with fewer then k repetitions yielding an augmenting path of length at most k, or
we have constructed at the k-th repetition distinct i1, . . . , ik ∈ [d] and λ1, . . . , λk ∈ N such that
the entries of u′ := u+

∑k
i=1 λigi and v corresponding to the coordinates {i1, . . . , ik} coincide.

By construction, (u, u1, . . . , uk) is an augmenting path from u to u′ = uk in the compression
of FA,b(GA). Let a1, . . . , ad ∈ Zm be the columns of A and set I := [d] \ {i1, . . . , ik}, then∑
j∈I aju

′
j =

∑
j∈I ajvj . Since |I| = d− k = r, the assumption on the columns of A gives that

u′j = vj for all j ∈ I and thus u′ = v.

We now show that the lower bound on the augmentation length observed in Example 5.2.2
cannot be improved. We first need the following easy statement:

Lemma 5.2.5. Let v1, . . . , vk ∈ Qd such that any v ∈ spanQ {v1, . . . , vk} can be represented by
a linear combination of r vectors. Then dim(spanQ {v1, . . . , vk}) ≤ r.

Proof. Let B be the collection of all subsets of {v1, . . . , vk} with cardinality r. By the assumption,
∪B∈BspanQ {B} = spanQ {v1, . . . , vk}. Since dim(spanQ {B}) ≤ r for all B ∈ B and since B is
finite, the claim follows.

Proposition 5.2.6. Let P ⊂ Qd be polytope and let M ⊂ Zd be an augmenting Markov basis
for Fi := (i · P) ∩ Zd for all i ∈ N. Then dim(P) ≤ supi∈NAM(Fi).

Proof. Without restricting generality, we can assume that 0 ∈ P. Let V := spanQ {P} be
the Q-span of P, then dim(P) = dim(V ). We must have dim(spanQ {M}) = dim(V ) since
dim(P) = dim(convQ(Fi)) for i sufficiently large and sinceM is a Markov basis for Fi. Define
r := supi∈NAM(Fi). The statement is trivially true if r = ∞. Otherwise, choose a non-zero
v ∈ V and u ∈ relint(P) ⊂ Qd arbitrarily. Then there exists δ ∈ Q>0 such that u+ δv ∈ P . Thus,
1
δu+ v ∈ 1

δP. Let c ∈ N≥1 such that i := c
δ ∈ N and w := c

δu ∈ Zd. Then w + cv = c(1
δu+ v) ∈
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(i · P) ∩ Zd = Fi. By assumption, there exists an augmenting path from w to w + cv that uses r
elements fromM. That is, the element cv from V can be written as a linear combination of r
vectors fromM. Since v was chosen arbitrarily, Lemma 5.2.5 implies dim(P) = dim(V ) ≤ r.

Remark 5.2.7. It is a consequence of Proposition 5.2.6 that for any matrix A ∈ Zm×d and an
augmenting Markov basisM, there exists F ∈ PA such that AM(F) ≥ dim(kerZ(A)).

Our next result utilizes the techniques from [105] to bound the second largest eigenvalue modulus
of random walks. To set up the machinery, G = (V,E) be a graph. For any ordered pair of distinct
nodes (x, y) ∈ V ×V , let px,y ⊆ E be an (x, y)-path in G and let Γ := {px,y : (x, y) ∈ V ×V, x 6= y}
be the collection of these paths, then Γ is a set of canonical paths. For any edge e ∈ E, let
Γe := {p ∈ Γ : e ∈ p} be the set of paths from Γ that use e. For any symmetric random walk
H : V × V → [0, 1] on G, set

ρ(Γ,H) := max{|p| : p ∈ Γ}
|V |

· max
{u,v}∈E

|Γ{u,v}|
H(u, v) .

Observe that symmetry of H is needed to make ρ(Γ,H) well-defined. The quantity ρ(Γ,H) gives
rise to an upper bound on the second largest eigenvalue of H:

Lemma 5.2.8. Let G be a graph, H be a symmetric random walk on G, and Γ be a set of
canonical paths in G. Then λ2(H) ≤ 1− 1

ρ(Γ,H) .

Proof. The stationary distribution of H is the uniform distribution and thus the statement is a
direct consequence of [105, Theorem 5], since ρ(Γ,H) is an upper bound on the constant defined
in [105, equation 4].

Theorem 5.2.9. Let F ⊂ Zd be finite and let M := {m1, . . . ,mk} ⊂ Zd be an augmenting
Markov basis for F . Let π be the uniform and f a positive distribution on F andM respectively.
For i ∈ [k], let ri := max{|RF ,mi(u)| : u ∈ F} and suppose that r1 ≥ r2 ≥ . . . ≥ rk. Then

λ(Hπ,fM,F ) ≤ 1− |F| ·min(f)
AM(F) · AM(F)! · 3AM(F)−1 · 2|M| · r1r2 · · · rAM(F)

.

Proof. Choose for any distinct u, v ∈ F an augmenting path pu,v of minimal length in Fc(M)
and let Γ be the collection of all these paths. Let u+ µmk = v be an edge in Fc(M), then our
goal is to bound |Γ{u,v}| from above. Let S := {S ⊆ [r] : |S| ≤ AM(F), k ∈ S} and take any
path px,y ∈ Γ{u,v}. Then there exists a set S := {i1, . . . , is} ∈ S of cardinality s ≤ AM(F) such
that x+

∑s
j=1 λijmij = y. Since px,y uses the edge {u, v}, there is j ∈ [s] such that ij = k and

λij = µ. Since |λik | ≤ rik , there are at most

s! · (2ri1 + 1) · · · (2rij−1 + 1) · (2rij+1 + 1) · · · (2ris + 1) ≤ s! · 3s−1 ∏
t∈S\{k}

rt

paths in Γ{u,v} that use the moves mi1 , . . . ,mij−1 ,mij+1 . . . ,mis . Since every path in Γ{u,v} uses
moves indexed by some set in S, |Γ{u,v}| ≤

∑
S∈S(|S|! · 3|S|−1∏

t∈S\{k} rt) and thus we get

|Γ{u,v}|
Hπ,fF ,M(u, v)

≤ 3AM(F)−1
∑
S∈S

(
|S|!

∏
t∈S\{k} rt

)
f(mk) · 1

|Rmk (u)|
≤

3AM(F)−1 · AM(F)! · |S| · r1r2 . . . rAM(F)
f(mk)

,

where we have used the assumption r1 ≥ r2 ≥ . . . ≥ rk. Bounding |S| from above by 2|M|, the
claim follows from Lemma 5.2.8 and Proposition 5.1.2, since all eigenvalues are non-negative.
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The constants involved in the very general bound in Theorem 5.2.9 can be vastly improved in
situations where one has more control over the set of moves and the structure of the paths (see
Proposition 5.1.18). When the augmentation length of Markov bases, or their size, grows, then
the upper bound in Theorem 5.2.9 is not very informative to decide whether a sequence mixes
rapidly. However, for a fixed Markov basis in fixed dimension, all bad terms become constants.
In this situation, we are left with the asymptotic comparison of the size of the saturated set and
the length of the rays. Thus, the growth of the following quantity is essential:

Definition 5.2.10. Let F ⊂ Zd andM⊂ Zd be finite sets. The longest ray through F along
vectors ofM is RF ,M := arg max{|RF ,m(u)| : m ∈M, u ∈ F}.

Corollary 5.2.11. Let (Fi)i∈N be a sequence of finite sets in Zd and let πi be the uniform
distribution on Fi. LetM⊂ Zd be an augmenting Markov basis for Fi with AM(Fi) ≤ dim(Fi)
and suppose that ((|RFi,M|)dim(Fi))i∈N ∈ O(|Fi|)i∈N. Then for any mass function f :M→ (0, 1],
(Hπi,fFi,M)i∈N is an expander.

Proof. This is a straightforward application of Theorem 5.2.9.

Corollary 5.2.12. Let P ⊂ Qd be a polytope, Fi := (i · P) ∩ Zd for i ∈ N, and let πi be the
uniform distribution on Fi. LetM⊂ Zd be an augmenting Markov basis for {Fi : i ∈ N} such
that AM(Fi) ≤ dim(P) for all i ∈ N. Then for any mass function f :M→ (0, 1], the sequence
(Hπi,fFi,M)i∈N is an expander.

Proof. Let r := dim(P). We first show that (|RFi,M|)i∈N ∈ O(i)i∈N. WriteM = {m1, . . . ,mk}
and denote by li := max{|(u+mi · Z) ∩ P| : u ∈ P} the length of the longest ray through the
polytope P along mi. It suffices to prove that i · (lk + 1) is an upper bound on the length of
any ray along mk through Fi. For that, let u ∈ Fi such that u+ λmk ∈ Fi for some λ ∈ N, then
1
iu+ λ

imk ∈ P and thus bλi c ≤ lk, which gives λ ≤ i · (lk + 1). With C := max{l1, . . . , lk}+ 1 we
have |RFi,M| ≤ C · i. Ehrhart’s theorem [15, Theorem 3.23] gives (|Fi|)i∈N ∈ Ω(ir)i∈N and since
|RFi,M| ≤ C · i, we have (|RFi,M|r)i∈N ∈ O(|Fi|)i∈N. Corollary 5.2.11 gives the claim.

Example 5.2.13. Fix d, r ∈ N and consider the lattice points of the d-dimensional cross-polytope
of radius r: Cd,r = {u ∈ Zd : ‖u‖1 ≤ r}. ThenMd = {e1, . . . , ed} is a Markov basis for Cd,r for
any r ∈ N. We show thatMd is an augmenting Markov basis whose augmentation length is at
most d. For that, let u, v ∈ Cd,r be distinct elements. We claim that there is i ∈ [d] such that
ui 6= vi and u+(vi − ui)ei ∈ Cd,r. Let S ⊆ [d] be the set of indices where u and v differ and let
s := r − ||u||1. If |S| = 1, the result is clear so assume |S| ≥ 2. If the result does not hold then
for all i ∈ S, |vi| − |ui| > s. Thus,

‖v‖1 =
∑
i/∈S
|ui|+

∑
i∈S
|vi| >

∑
i/∈S
|ui|+

∑
i∈S

s+ |ui| = |Suv| · s+ ‖u‖1 = (|S| − 1) · s+ r.

But we assumed that v ∈ Cd,r. It follows that for any pair of points u, v in Cd,r, there is a walk,
using the unit vectors as moves, that uses each move at most once. Corollary 5.2.11 yields that
for any d ∈ N, the second largest eigenvalue modulus of the heat-bath walk on Cd,r can be strictly
bounded away from 1 for r →∞.

The next proposition demonstrates how a more careful construction of paths in compressed
fiber graphs in the spirit of Theorem 5.2.9 leads to better bounds on the second largest eigenvalue:
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Proposition 5.2.14. Let a ∈ Nd>0, b ∈ N, F = {u ∈ Nd : aT · u ≤ b}, and M := {e1, . . . , ed}.
If π and f are the uniform distributions on F andM respectively, then

λ(Hπ,fF ,M) ≤ 1− |F|
d2

d∏
i=1

ai
b
.

Proof. Observe that M is a Markov basis for F since all nodes are connected with 0 ∈ F .
Let u, v ∈ F be distinct. We first show that there exists k ∈ [d] such that uk 6= vk and
u+ (vk − uk)ek ∈ F . If u ≤ v, the statement trivially holds. Otherwise, there exists k ∈ [d] such
that uk > vk and the vector obtained by replacing the k-th coordinate of u by vk remains in F .
Now, consider for the following path between u and v: Choose the smallest index k ∈ [d] such
that uk 6= vk and such that u+(vk−uk) ·ek ∈ F and proceed recursively with u+(vk−uk) and v.
This gives a path pu,v between u and v of length at most d. Let Γ be the collection of all these
paths. We want to apply Lemma 5.2.8. Thus, let x ∈ F and consider the edge x→ x+ c · es.
Let us count the paths pu,v that use that edge. Let u, v ∈ F and let k1, . . . , kr ∈ [d] be distinct
indices such that

u→ u+ (vk1 − uk1)ek1 → u+ (vk1 − uk1)ek1 + (vk2 − uk2)ek2 → · · · → v

represents the path pu,v constructed as explained above. Assume that pu,v uses the edge
{x, x+ ces} and let kl = s and (vkl − ukl) = c. In particular,

u+ (vk1 − uk1)ek1 + · · ·+ (vkl−1 − ukl−1)ekl−1 = x

x+ (vkl − ukl)ekl + · · ·+ (vkr − ukr)ekr = v.

We see that vkt = xkt for all t < l and that ukt = xkt for all t ≥ l. In particular, vkl = ukl + c =
xkl + c is also fixed. The coordinates ukt and vkt are bounded from above by b

akt
for all t ∈ [r],

and hence there can be at most (
l−1∏
t=1

b

akt

)
·

 r∏
t=l+1

b

akt

 .
Since k1, . . . , kt are distinct coordinate indices, we have

|Γx,x+c·es |
Hπ,fF ,M(x, x+ c · es)

≤ d ·
d∏
i=1

b

ai
.

Lemma 5.2.8 finishes the proof.

The heat-bath walk mixes rapidly when an augmenting Markov basis with a small augmentation
length is used. We think that it is interesting to ask how an augmenting Markov basis can be
obtained and how the augmentation length can be improved.

Question 5.2.15. LetM⊂ Zd be an augmenting Markov basis of A ∈ Zm×d. Are there finitely
many moves m1, . . . ,mk ∈ Zd such that the augmentation length ofM∪ {m1, . . . ,mk} on FA,b
is at most dim(kerZ(A)) for all b ∈ NA?

We believe that sampling with the heat-bath walk is always at least as fast as sampling with
the simple fiber walk. To prove this, the following question has to be answered negatively:

Question 5.2.16. Are there a matrix A ∈ Zm×d, a right-hand side b ∈ NA, and a Markov basis
M⊂ kerZ(A) such that 1

2|M|h(FA,b(M)) > Φ(Hπ,fF ,M)?
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5.3 Best move selection
The stationary distribution of the heat-bath walk on F ⊂ Zd is independent of the actual mass
function on the Markov movesM⊂ Zd. The problem of finding the mass function which leads
to the fastest mixing heat-bath walk can be formulated as the following optimization problem:

min
{
λ(Hπ,fF ,M) : f :M→ (0, 1],

∑
m∈M

f(m) = 1
}
. (5.3.1)

Assume that M = {m1, . . . ,mk} is a minimal Markov basis for F , that is F(M \ {mi}) is
disconnected for all i ∈ [k]. The map λ : Rn×n → [0, 1], which maps an n × n matrix to its
second largest eigenvalue, is a continuous and convex function [18, Section 2.1]. Every µ ∈ (0, 1)k
with

∑k
i=1 µi gives rise to a probability mass function onM and the task is then to compute the

second largest eigenvalue of

H(µ1, . . . , µk) :=
k∑
i=1

µi · HπF ,mi .

Let µ ∈ [0, 1]k with ‖µ‖1 = 1 such that µi = 0 for some i ∈ [k]. Then the random walk H(µ) is
reducible (Remark 1.1.8) and thus λ(H(µ)) = 1. On the other hand, assume that µi = 1 and
µj = 0 for all j ∈ [k] with j 6= i. Then H(µ) = HπF ,mi thus λ(H(µ)) = 1 due to Proposition 5.1.6.
Since none of these particular µ ∈ [0, 1]k yields an optimal solution to (5.3.1), we can extend the
set of distributions onM in the minimization problem, which then becomes

min{λ(H(µ)) : µ ∈ convR(e1, . . . , ek)}.

For instance, it follows from Proposition 5.1.18 that the optimal value of (5.3.1) for F =
[n1]×· · ·×[nd],M = {e1, . . . , ed}, and the uniform distribution π on F is the uniform distribution
onM. Another example where the uniform distribution is the optimal solution to (5.3.1), but
where the verification is more involved, is presented in Example 5.3.2. The next statement implies
that, in fixed dimension, the asymptotic mixing behaviour of heat-bath walks does not depend
on how the moves are selected:

Proposition 5.3.1. Let F ⊂ Zd be finite, M⊂ Zd be a Markov basis of F and π : F → (0, 1]
be a positive mass function. Then for any mass functions f1, f2 :M→ (0, 1],

min
{
f1(m)
f2(m) : m ∈M

}
≤

1− λ(Hπ,f1
F ,M)

1− λ(Hπ,f2
F ,M)

≤ max
{
f1(m)
f2(m) : m ∈M

}
.

Proof. This is a straightforward comparison of Hπ,f1
F ,M and Hπ,f2

F ,M with Lemma 4.1.14.

Example 5.3.2. Let F = [2]× [5] as in Example 5.1.5 and considerM = {e1, 2e1 + e2}. We
investigate for which µ ∈ (0, 1), the transition matrix µHπF ,e1

+ (1−µ)HπF ,2e1+e2
has the smallest

second largest eigenvalue modulus. The characteristic polynomial in Q[µ, x] is

− 1
25x

4(x− 1)(µ+ x− 1)6(−5x2 + 5x+ 2µ2 − 2µ)(−5x2 + 5x+ 4µ2 − 4µ)
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and hence the non-zero eigenvalues are

x1(µ) := 1, x2(µ) := 1− µ,

x3(µ) := 1
2

[
1 +

√
1 + 8

5(µ2 − µ)
]
, x4(µ) := 1

2

[
1−

√
1 + 8

5(µ2 − µ)
]
,

x5(µ) := 1
2

[
1 +

√
1 + 4(µ2 − µ)

]
, x6(µ) := 1

2

[
1−

√
1 + 4(µ2 − µ)

]
.

It is straightforward to check that x5(µ) > 1
2 > x6(µ), x3(µ) > 1

2 > x4(µ). Since µ2 − µ < 0 for
u ∈ (0, 1) and x3(µ) ≥ x6(µ). We can show that x4(µ) ≥ x2(µ) and thus

λ(µHπF ,e1 + (1− µ)HπF ,2e1+e2) = 1
2

[
1 +

√
1 + 8

5(µ2 − µ)
]
.

The fastest heat-bath walk on F(M) which converges to uniform is thus obtained for µ = 1
2 ,

i.e. when the moves are selected uniformly. The second largest eigenvalue in this case is
1
10(5 +

√
15) ≈ 0.887, which is larger than the second largest eigenvalue of the heat-bath walk

that selects uniformly from {e1, e2} (see Proposition 5.1.18).

In our investigation on heat-bath walks with Markov bases, we have seen many cases where
the uniform distribution on the Markov moves yields the fastest mixing behaviour among all
mass functions on the moves, which brings us to the following question:

Question 5.3.3. Is there a saturated set F ⊂ Zd and a Markov basisM⊂ Zd, where the uniform
distribution onM is not the optimal value of (5.3.1) with π being the uniform distribution.
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6 Parity binomial edge ideals

The binomial edge ideal of a graph was introduced independently in [63] and [93] and it constitutes
an example of the beautiful interplay between algebra and graph theory [49, 87, 23, 10]. This
chapter is about a very related class of binomial ideals that arise from a graph G. Let k be any
field and k[x,y] := k[xi, yi : i ∈ V (G)] be the polynomial ring in 2|V (G)| indeterminates, then
the parity binomial edge ideal of G is

IG := 〈xixj − yiyj : {i, j} ∈ E(G)〉 ⊆ k[x,y].

edge ideals, but the combinatorics is subtler. Various properties related to walks in G depend
on whether the walk has even or odd length (and hence the name). If G is bipartite, then
everything reduces to binomial edge ideals as follows: Let V (G) = V1∪̇V2 be a decomposition
into independent sets and consider the ring automorphism of k[x,y] which exchanges xi and yi
if i ∈ V1 and leaves all remaining indeterminates invariant. Under this automorphism, the parity
binomial edge ideal is the image of the binomial edge ideal of G.

The definition of parity binomial edge ideals was suggested by Rafael Villarreal at the MOCCA
Conference 2014 in Levico Terme. He asked if parity binomial edge ideals are radical. Theo-
rem 6.4.5 combined with Remark 6.4.1 says that this is the case if and only if G is bipartite, or
char(k) 6= 2. We also compute the minimal primes of IG in Section 6.3. In Proposition 6.4.4,
we write IG as an intersection of binomial ideals whose combinatorics is simpler, since then a
short induction shows that, under the field assumption, all occurring intersections are radical and
hence IG is radical. A primary decomposition of IG when char(k) = 2 is given in Theorem 6.4.9.
The paper [64] contains a different analysis of radicality of parity binomial edge ideals. In

characteristic two, the parity binomial edge ideal IG coincides with the ideal LG defined there;
thus radicality is clarified by their Theorem 1.2 which here appears as Remark 6.4.1. If the
characteristic of k is not two, the linear transformation xi 7→ xi − yi, yi 7→ xi + yi maps the
parity binomial edge ideal to the permanental edge ideal ΠG defined in [64, Section 3]. Radicality
of this ideal is clarified in [64, Corollary 3.3] by means of a Gröbner bases calculation. Our
approach here is different and was developed completely independently. In particular, our proof
of radicality cannot use the Gröbner basis by Remark 6.2.1.

Section 6.1, Section 6.3, and Section 6.4 are based on the joint work [73] with Thomas Kahle
and Camilo Sarmiento. The final publication is available at Springer via

http://dx.doi.org/10.1007/s10801-015-0657-3.

Inspired by [73, Section 3], the recent article [8] determines the universal Gröbner basis of the
parity binomial edge ideal of complete graphs and poses a conjecture for the general case. In
Section 6.2, we extend our Gröbner basis calculation of the parity binomial edge ideal from [73,
Section 3] to its universal Gröbner basis proving the conjecture of [8] partially.

Convention. Let G be a graph. Throughout we assume that G is connected and in particular
has no isolated nodes if |V (G)| ≥ 2. We freely identify ideals of sub-polynomial rings of k[x,y]
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with their images in k[x,y]. Likewise ideals of k[x,y] that do not use some of the indeterminates
are considered ideals of the respective subrings. For a sequence of nodes P = (i1, . . . , ir) ∈ V (G)r,
G[P ] := G[{i1, . . . , ir}]. A binomial is pure difference if it equals the difference of two monomials.

6.1 Markov bases
We first study the lattice ideal JG := IG : (

∏
i∈V (G) xiyi)∞, which is an important factor in the

primary decomposition of IG. Proposition 2.1.1 says that any of its binomial generating system
is a Markov basis for its underlying lattice, whose combinatorics is studied now. Recall that
walks, paths, cycles, and circuits in graphs have marked start and end nodes in this thesis.

Definition 6.1.1. Let G be a graph. A walk P = (v1, . . . , vr) ∈ V (G)r is odd (even) if its
length r − 1 is odd (even). The interior of P is the set int(P ) = {v1, . . . , vr} \ {v1, vr}.

4

1

3 6 5

2

Figure 6.1: A graph with an even walk, but no even path from 4 to 5. The interior of the walk
(4, 3, 1, 2, 3, 6, 5) is {1, 2, 3, 6}.

Observe that the interior of a cycle depends on the choice of its start and end node. We can
associate to every (i, j)-walk P a binomial in k[x,y] in the following way:

b(P ) :=
{
xixj − yiyj , if P is odd
xiyj − yixj , if P is even

.

Multiplied with an appropriate monomial factor, these binomials become elements of IG:

Lemma 6.1.2. Let P be a walk in G and for k ∈ int(P ), let tk ∈ {xk, yk} arbitrary. Then

b(P ) ·
∏

k∈int(P )
tk ∈ IG.

Proof. Let i be the start and j be the end node of P . We prove the statement by induction
on the length r of P . If r = 1, the statement is true by definition, thus assume that r > 1. If
int(P ) = ∅, then P is either even with i = j, or P is odd, which implies that i has to be adjacent
to j. In both cases, b(P ) ∈ IG. If int(P ) 6= ∅, pick a node s ∈ int(P ). Consider first the case
that P is an odd walk. Exchanging the roles of i and j if necessary, we can assume that the
(i, s)-subwalk of P is odd and that the (s, j)-subwalk is even. Using the induction hypothesis,
the binomials corresponding to these walks multiplied with appropriate monomial factors are
in IG. Now, if ts = xs, then

xixsxj
∏

k∈int(P )\s
tk ≡IG yiysxj

∏
k∈int(P )\s

tk ≡IG yixsyj
∏

k∈int(P )\s
tk

where we have first applied a binomial corresponding to the odd (i, s)-subwalk (which may
traverse j) and then a binomial corresponding to the even (s, j)-subwalk of P (which may

64



traverse i). If ts = ys, then we first apply the (s, j)-walk and then the (i, s)-walk. The induction
step for an even walk is similar and omitted.

Remark 6.1.3. Lemma 6.1.2 also holds for odd cycles in which case we get that monomial
multiples of x2

i − y2
i are contained in IG for any node i that is contained in the same connected

component as an odd cycle.

Let {i, j} ∈ E(G) and denote m{i,j} := ei + ej ∈ ZV (G), then the generator xixj − yiyj has
exponent vector (m{i,j},−m{i,j})T ∈ Z2|V (G)|. The exponent vectors of generators of IG generate
the lattice

LG := Z
{[

me

−me

]
: e ∈ E(G)

}
= imZ

[
AG
−AG

]
⊆ Z2|V (G)|,

where AG is the incidence matrix of G. Thus, LG is the Lawrence lifting of imZ(AG) ⊆ Z|V (G)|.
A standard fact about Lawrence liftings is that the Graver basis of imZ(AG) can be lifted to a
Graver basis of LG, which here equals the universal Gröbner basis and any minimal Markov
basis of LG [14, Proposition 1.1]. To determine the Graver basis of the lattice imZ(AG), let

Modd
G := {ei + ej : there is an odd (i, j)-walk in G}

Meven
G := {ei − ej : there is an even (i, j)-walk in G} \ {0}.

Note in particular that if there is an odd (i, i)-walk, then 2 · ei ∈Modd
G .

Proposition 6.1.4. The Graver basis of imZ(AG) is ±(Modd
G ∪Meven

G ).

Proof. According to Pottier’s termination criterion [31, Algorithm 3.3], it suffices to check that
the sum of two elements of ±(Modd

G ∪Meven
G ) can be reduced to zero sign-consistently. If there

are no cancellations in the sum, for example if the two summands have disjoint support, the sum
is reduced by either of the summands. Cancellation among elements ei1 ± ei2 and ej1 ± ej2 can
only occur if |{i1, i2, j1, j2}| ≤ 3. Without loss of generality assume i2 = j1. Thus, if cancellation
occurs, the sum of two proposed Graver elements must equal ±(ei1 ± ej2) and this is either zero
or another element in ±(Modd

G ∪Meven
G ) by concatenation of walks.

Proposition 6.1.5. For any graph G, JG = 〈b(P ) : P is a walk in G〉.

Proof. This is Proposition 6.1.4 and [14, Proposition 1.1].

Example 6.1.6. Due to the odd cycle in the graph G in Figure 6.1, for all pairs (i, j) of nodes
with i 6= j, both xixj − yiyj and xiyj − xjyi are contained in JG. Hence, the ideal JG has 15
generators for odd walks and 15 for even walks with disjoint endpoints. Since G is not bipartite,
x2
i − y2

i ∈ JG for all i ∈ [6]. In total, a minimal Markov basis of JG consists of 36 generators.

Remark 6.1.7. If G is bipartite, the reachability of nodes with even or odd walks is determined
by membership in the color classes. Consequently, for each spanning tree T ⊆ G we have
JT = JG. This is not true if G has an odd cycle.
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6.2 Universal Gröbner basis
In this section, we extend the computation of the lexicographic Gröbner basis of parity binomial
edge ideals from [73, Section 3] to the computation of their universal Gröbner basis. Recall that
the universal Gröbner basis of an ideal is the union of all its reduced Gröbner bases. We show that
the binomials in the universal Gröbner bases arise from walks as follows: Let P be an (i, j)-walk
in G, then a walk binomial of P is a binomial b(P ) ·

∏
k∈int(P ) tk with tk ∈ {xk, yk} arbitrary.

When the graph has an odd cycle, then the universal Gröbner basis cannot be square-free:

Remark 6.2.1. The parity binomial edge ideal IC3 of the 3-circuit C3 cannot have a square-free
initial ideal with respect to any monomial order. This follows from the fact that IC3 is not
radical in F2[x,y] (Remark 6.4.1). If IC3 had a square-free Gröbner basis over some field k, its
binomials must be pure difference (since the generators of IC3 are pure difference). The pure
difference property yields that this Gröbner basis would also be a square-free Gröbner basis over
every other field, in particular, over F2.

By Lemma 6.1.2, all walk binomials of P are elements of IG. The following condition on a
walk guarantees that its walk binomials are elements of the universal Gröbner basis.

Definition 6.2.2. An (i, j)-walk P in G is minimal if for no k ∈ int(P ), there is an (i, j)-walk
with the same parity as P in G[P \ {k}]. The set of all walk binomials that come from minimal
walks in G is denoted by SG.

There can be infinitely many minimal walks between two nodes (Figure 6.2), but since the
monomial part of any walk binomial is square-free and depends only on the interior of the walk,
the set SG is finite. For a given ideal I ⊂ k[x1, . . . , xn], a binomial

∏n
i=1 x

ui
i −

∏n
i=1 x

vi
i ∈ I is

primitive in I if there exists no binomial
∏n
i=1 x

ai
i −

∏n
i=1 x

bi
i ∈ I such that a ≤ u and b ≤ v.

This is a natural extension of the definition of primitive binomials in toric ideals from [109,
Chapter 4]. A straightforward generalization of [109, Lemma 4.6] beyond toric ideals shows that
every element of the universal Gröbner basis of a pure difference ideal is primitive. In [44, 22],
the set of all primitive binomials of an ideal I is called the Graver basis of I and we follow their
notation. It is not hard to see that the Graver basis of a pure difference binomial ideal is a finite
set [22, Proposition 4.3]. The following was conjectured in [8]:

Conjecture 6.2.3. For any graph G, the universal Gröbner basis of IG, the set SG, and the
Graver basis of IG coincide.

1

5
2

3

4

Figure 6.2: A graph with infinitely many minimal (1, 5)-walks of even and odd length.

It was shown in [8] that Conjecture 6.2.3 is true for complete graphs. We now prove the first
part of this conjecture, i.e. the universal Gröbner basis of IG equals SG for any graph G. The
first step is to reduce walk binomials as in Lemma 6.1.2 to zero by minimal walk binomials:
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Lemma 6.2.4. Let P be a walk in G and tk ∈ {xk, yk} for k ∈ int(P ). Then b(P ) ·
∏
k∈int(P ) tk

reduces to zero modulo SG with respect to any monomial ordering.

Proof. If P is minimal, then all its walk binomials are in SG and the statement holds trivially.
Assume differently that P is a non-minimal (i, j)-walk. Then there exists a minimal (i, j)-walk P ′
of the same parity as P with int(P ′) ( int(P ). Thus, b(P ′) = b(P ) and hence the walk binomial
of P is a monomial multiple of the walk binomial b(P ′) ·

∏
i∈int(P ′) tk ∈ SG.

The main theorem of this section relies on Buchberger’s criterion [76, Theorem 9.12] and
we now recall briefly how it works for pure difference binomial ideals. Let m,m′ ∈ k[x] be
monomials, b1, . . . , br ∈ k[x] be pure difference binomials, and ≺ a monomial ordering. Then m
can be reduced to m′ by {b1, . . . , br} with respect to ≺ if there exist monomials w1, . . . , wr+1
with w1 = m and wr+1 = m′ such that wi − wi+1 is a binomial multiple of bi and such that the
leading monomial of bi divides wi for all i ∈ [r + 1]. A pure difference binomial b ∈ k[x] can be
reduced to zero by a set of binomials B ⊆ k[x] with respect to ≺ if there exists b1, . . . , br ∈ B that
reduce the leading monomial of b to its trailing monomial with respect to ≺. Since this implies
that 0 ∈ k[x] is a ≺-normal-form of b (see [76, Definition 9.6]) with respect to B, the following
theorem immediately implies that Buchberger’s criterion holds for SG.

Theorem 6.2.5. For any monomial ordering ≺ on k[x,y], the s-polynomial of any two elements
of SG reduces to zero modulo SG and ≺.

Remark 6.2.6. Gröbner bases of binomial edge ideals [63] look similar to SG, and also its
determination in [100] uses related techniques on the paths of the underlying graph. However,
there are also many differences: Every reduced Gröbner basis of a binomial edge ideals is
square-free and it suffices to consider paths instead of walks. Both is false for parity binomial
edge ideals and this makes the reduction of their s-polynomials more involved and technical.

The proof of Theorem 6.2.6 splits into a couple of lemmas, all of them dealing with reductions
of different s-polynomials. We state how every possible s-polynomial of elements from SG can be
reduced to zero and the following definition keeps the notation a lot simpler: For a set P ⊆ V (G),
we abbreviate x(P ) :=

∏
p∈P xp and y(P ) :=

∏
p∈P yp. Before starting with the reduction of the

s-polynomial of two walk binomials coming from even walks, we need the following lemma:

Lemma 6.2.7. Let P,Q ⊆ V (G) and p, q ∈ V (G) with p 6∈ P and q 6∈ Q, then

x(Q) · x ((P ∪ p) \ (Q ∪ q)) = x(p \ q) · x ((P ∪Q) \ {p, q}) .

Proof. The proof is immediate by the case distinction p = q, p ∈ Q, or p 6∈ Q ∪ {q}.

Lemma 6.2.8. Let gP , gQ ∈ SG be walk binomials of even walks P and Q. Then spol(gP , gQ)
reduces to zero with respect to SG and any monomial ordering ≺.

Proof. Let P be an even (p1, p2)-walk and Q be an even (q1, q2)-walk with p1 6= p2 and q1 6= q2.
By exchanging p1 with p2 or q1 with q2 if necessary, we can assume that xp1yp2 � yp1xp2 and
xq1yq2 � yq1xq2 . Let P x, P y ⊆ int(P ) be the indices of the monomial part of gP that correspond
to indeterminates of k[x] and k[y] respectively and define Qx, Qy ⊆ int(Q) for gQ analogously,
then gP = b(P ) · x(P x) · y(P y) and gQ = b(Q) · x(Qx) · y(Qy). By our assumption, the leading
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monomial of gP is x(P x∪p1) ·y(P y∪p2) and the leading monomial of gQ is x(Qx∪q1) ·y(Qy∪q2).
Hence, their s-polynomial spol(gP , gQ) is the difference of the monomial

yq1xq2 · x(Qx)y(Qy) · x((P x ∪ p1) \ (Qx ∪ q1)) · y((P y ∪ p2) \ (Qy ∪ q2)) =
=yq1xq2 · x(p1 \ q1) · y(p2 \ q2) · x((P x ∪Qx) \ {p1, q1}) · y((P y ∪Qy) \ {p2, q2})

and the monomial

yp1xp2 · x(P x) · y(Qy) · x((Qx ∪ q1) \ (P x ∪ p1)) · y((Qy ∪ q2) \ (P y ∪ p2)) =
=yp1xp2 · x(q1 \ p1) · y(q2 \ p2) · x((P x ∪Qx) \ {p1, q1}) · y(P y ∪Qy \ {p2, q2}),

where we have applied Lemma 6.2.7 two times respectively. Thus, for

b := yq1xq2 · x(p1 \ q1) · y(p2 \ q2)− yp1xp2 · x(q1 \ p1) · y(q2 \ p2)

and
m := x((P x ∪Qx) \ {p1, q1}) · y(P y ∪Qy \ {p2, q2}),

the s-polynomial satisfies spol(gP , gQ) = (−1)rb ·m, where the parity of r ∈ {1, 2} depends on
which of the monomials yq1xq2 · x(p1 \ q1) · y(p2 \ q2) and yp1xp2 · x(q1 \ p1) · y(q2 \ p2) is greater
with respect to ≺. Now we go through all the cases for the end-points of P and Q.

First, assume that |{p1, p2, q1, q2}| = 4. To demonstrate all the subtleties of the reduction, this
case is shown in detail. We have b = xp1yp2yq1xq2 − yp1xp2xq1yq2 and since xp1yp2 � yp1xp2 and
xq1yq2 � yq1xq2 by assumption, any monomial of b can be divided by the leading monomial of
either b(P ) or b(Q). Assume that r = 2, i.e. yq1xq2xp1yp2 � yp1xp2xq1yq2 . We first want to reduce
spol(gP , gQ) by a binomial b′ = (xp1yp2 − yp1xp2)

∏
k∈int(P ) tk that corresponds to the minimal

(p1, p2)-walk P . For all k ∈ int(P ) \ {q1, q2}, we choose tk as in the monomial factor of gP . If P
traverses q1 or q2, we set tq1 = yq1 and tq2 = xq2 . The leading term of b′ divides the leading term
of spol(gP , gQ) and thus the monomial xp1yp2yq1xq2 ·m can be reduced to yp1xp2yq1xq2 ·m by b′.
That is, spol(gP , gQ) can be reduced to

(yp1xp2xq1yq2 − yp1xp2yq1xq2) ·m = b(Q) · yp1xp2 ·m.

This binomial is a monomial multiple of a walk binomial that corresponds to the (q1, q2)-walk Q
with an analogous modification of variables in {p1, p2}\int(Q). In particular, spol(gP , gQ) reduces
to zero by elements of SG with respect to ≺. The case r = 1 is similar and omitted.

Assume now that |{p1, p2, q1, q2}| = 3. First, suppose that v := p1 = q1 and p2 6= q2, then b =
(yp2xq2−xp2yq2) ·yv. Gluing the even walks P and Q along their common start node v, we obtain
an even (q2, p2)-walk W with int(W ) ⊆ int(P ) ∪ int(Q) ∪ v. Since spol(gP , gQ) = −b(W ) · yv ·m,
the s-polynomial is a monomial multiple of a suitable walk binomial b′ of W that might needs yv
in its monomial factor. Since b′ can be reduced to zero by Lemma 6.2.4, spol(gP , gQ) can be as
well. The case q2 = p2 and p1 6= q1 works similar for a binomial corresponding to a (p1, q1)-walk
and is thus omitted. The next subcase within the case |{p1, p2, q1, q2}| = 3 is v := p2 = q1 and
p1 6= q2. Here, b = y2

vxq2xp1 −x2
vyp1yq2 and the reduction works similar by applying suitable walk

binomials of P and Q. The case q1 = p2 and p2 6= q2 is similar.
Finally, if |{p1, p2, q1, q2}| = 2, then due to p1 6= p2 and q1 6= q2, the only possible case we have

to consider is p1 = q1 and p2 = q2, since the case p1 = q2 and p2 = q1 contradicts our assumption
yq1xq2 � xq1yq2 . But then we have b = 0.
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Due to symmetry, the monomial ordering plays only a minor role in the reduction of s-
polynomials coming from two even walks. For odd walks, there are more cases to distinguish,
but a similar symmetry argument reduces the number of cases to consider as well:

Remark 6.2.9. Let P be an odd (p1, p2)-walk and Q be an odd (q1, q2)-walk. Which monomial
is the leading monomial in walk binomials of P and Q depends on the following cases:
• xp1xp2 � yp1yp2 and xq1xq2 � yq1yq2 ,
• xp1xp2 ≺ yp1yp2 and xq1xq2 ≺ yq1yq2 ,
• xp1xp2 � yp1yp2 and xq1xq2 ≺ yq1yq2 , and
• xp1xp2 ≺ yp1yp2 and xq1xq2 � yq1yq2 .

After exchanging the roles of xi and yi symbolically, the reduction of spol(gP , gQ) in the first
and the second case works similarly. An exchange of the roles of P and Q shows that the same
is true for the third and the fourth case. In the following, we thus only demonstrate the cases:
• xp1xp2 � yp1yp2 and xq1xq2 � yq1yq2 ,
• xp1xp2 � yp1yp2 and xq1xq2 ≺ yq1yq2 .

Our proof that the s-polynomial of two binomials of odd walks reduces to zero distinguishes
the cases that at least one of them is a cycle (Lemma 6.2.11) or none of them is (Lemma 6.2.10).

Lemma 6.2.10. Let gP , gQ ∈ SG be walk binomials of an odd (p1, p2)-walk P and an odd (q1, q2)-
walk Q respectively. If either p1 = p2 or q1 = q2, then spol(gP , gQ) reduces to zero modulo SG
with respect to any monomial ordering ≺.

Proof. Let us first assume that p := p1 = p2 and q := q1 = q2. Clearly we only have to consider
the case p 6= q. Then

spol(gP , gQ) =
{

(x2
py

2
q − x2

qy
2
p) · x((P x ∪Qx) \ {p, q}) · y(P y ∪Qy), if x2

p � y2
p and x2

q � y2
q

(y2
py

2
q − x2

px
2
q) · x((P x ∪Qx) \ p) · y((P y ∪Qy) \ q), if x2

p � y2
p and x2

q ≺ y2
q

and it suffices to consider these cases by Remark 6.2.9. Let bP be the walk binomial of P
whose monomial factor equals the monomial factor gP on all nodes from int(P ) \ q and which
uses the variable yq in the first (i.e. x2

p � y2
p and x2

q � y2
q ) and xq in the second case (i.e.

x2
p � y2

p and x2
q ≺ y2

q ), provided that q ∈ int(P ). Similarly, let bQ be the walk binomial of Q
whose monomial factor equals the monomial factor of gQ on all nodes from int(Q) \ p and which
uses the variable yp if p ∈ int(Q). Then spol(gP , gQ) can be reduced to zero by an application
of bP and bQ in the first case, and an application of bQ and bP in the second case.

For the remainder, assume p := p1 = p2 and q1 6= q2. If we have p = q1, then spol(gP , gQ) is{
(ypxq2 − xpyq2) · yp · y(P y ∪Qy) · x((P x ∪Qx) \ q2), if x2

p � y2
p ∧ xpxq2 � ypyq2

(y3
pyq2 − x3

pxq2) · x((P x ∪Qx) \ p) · y((P y ∪Qy) \ q2), if x2
p � y2

p ∧ xpxq2 ≺ ypyq2

.

In the first case, the s-polynomial is a monomial multiple of a walk binomial belonging to the
even (p, q2)-walk that arises from gluing the odd (p, p)-walk with the odd (q1, q2)-walk along
p = q1. Lemma 6.2.4 gives this case. In the second case, we successively apply walk binomials
from P and Q that use appropriate variables. The case p = q2 is similar. The case p1 6= p2 and
q1 = q2 follows by symmetry. Finally, assume that p 6∈ {q1, q2}, then spol(gP , gQ) equals{

(y2
pxq1xq2 − x2

pyq1yq2) · x((P x ∪Qx) \ {q1, q2, p}) · y(P y ∪Qy), if x2
p � y2

p ∧ xq1xq2 � yq1yq2

(y2
pyq1yq2 − x2

pxq1xq2) · x((P x ∪Qx) \ p) · y((P y ∪Qy) \ {q1, q2}), if x2
p � y2

p ∧ xq1xq2 ≺ yq1yq2

and its reduction to zero works similarly.
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Lemma 6.2.11. Let gP , gQ ∈ SG be walk binomials of an odd (p1, p2)-walk P and an odd
(q1, q2)-walk Q respectively. If p1 6= p2 and q1 6= q2, then spol(gP , gQ) reduces to zero modulo SG
with respect to any monomial ordering ≺.

Proof. By straightforward computations, if xp1xp1 � yp1yp2 and xq1xq2 � yq1yq2 , then

spol(gP , gQ) = (yp1yp2xq1xq2 − yq1yq2xp1xp2) · x((P x ∪Qx) \ {p1, p2, q1, q2}) · y(P y ∪Qy)

and if xp1xp1 � yp1yp2 and xq1xq2 ≺ yq1yq2 , then

spol(gP , gQ) = (yp1yp2yq1yq2 − xq1xq2xp1xp2) · x((P x ∪Qy) \ {p1, p2}) · y((P y ∪Qy) \ {q1, q2}).

In both cases, the s-polynomial of gP and gQ can be reduced to zero by walk binomials from SG
corresponding to P andQ, where we choose the variables corresponding to nodes in {q1, q2}\int(P )
and {p1, p2} \ int(Q) appropriately.

Lemma 6.2.12. Let gP , gQ ∈ SG be binomials of an odd walk P and an even walk Q respectively.
Then spol(gP , gQ) reduces to zero modulo SG with respect to any monomial ordering ≺.

Proof. Let P be an odd (p1, p2)-walk and Q be an even (q1, q2)-walk in G. Let P x, P y, Qx, Qy ⊆
V (G) such that gP = b(P ) · x(P x) · y(P y) and gQ = b(Q) · x(Qx) · y(Qy). We only demonstrate
the case where p1 6= p2, xp1xp2 � yp1yp2 , and xq1yq2 � yq1xq2 since all other cases follow by
symmetry or work similarly. The s-polynomial spol(gP , gQ) is then

(yp1yp2yq2 · x(q1 \ {p1, p2})− yq1xq2 · x({p1, p2} \ q1))·x((P x∪Qx\{q1, p1, p2})·y((P y∪Qy)\q2).

If q1 6∈ {p1, p2}, then suitable walk binomials of P and Q reduce spol(gP , gQ) to zero. If otherwise
q1 ∈ {p1, p2}, say q1 = p1, then

spol(gP , gQ) = (yp1yp2yq2 − yq1xq2xp2) · x((P x ∪Qx \ {p1, p2}) · y((P y ∪Qy) \ q2).

Since yp1 = yq1 , spol(gP , gQ) is a monomial multiple of a binomial that corresponds to the odd
(p2, q2)-walk that arises from gluing the odd walk P with the even walk Q along p1 = q1 and
which uses the variable yp1 = yq1 in its monomial factor. By Lemma 6.2.4, this binomial can be
reduced to zero by elements from SG and hence spol(gP , gQ) can be reduced to zero by SG. The
case q1 = p2 is similar and omitted.

Proof of Theorem 6.2.5. Let gP , gQ ∈ SG be walk binomials of a (p1, p2)-walk P and a (q1, q2)-
walk Q respectively. If P and Q are both even, then the statement follows from Lemma 6.2.8.
If they have different parity, then the statement is Lemma 6.2.12. If both are odd walks and
p1 = p2 or q1 = q2, then the statement is Lemma 6.2.10. If both are odd walks and p1 6= p2 and
q2 6= q2, then the statement is Lemma 6.2.11.

Theorem 6.2.5 implies that SG is a Gröbner basis of IG for any monomial ordering and hence
any reduced Gröbner basis for IG can be extracted from SG by successively reducing its element
further. To show that SG equals the universal Gröbner basis, a little more work has to be done.

Lemma 6.2.13. For any g ∈ SG, there exists a monomial ordering ≺ on k[x,y] such that g is
an element of the reduced Gröbner basis of IG with respect to ≺.
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Proof. Let P be the underlying minimal walk of g and let p1 and p2 be the start and end
node of P respectively. Let tk ∈ {xk, yk} for k ∈ int(P ) such that

∏
k∈int(P ) tk is the monomial

factor of g. Let P x := {k ∈ int(P ) : tk = xk} and P y := {k ∈ int(P ) : tk = yk} and write
P x := {v1, . . . , va} and P y := {w1, . . . , wb}. According to Theorem 6.2.5, the leading monomials
of binomials from SG generate the initial ideal of IG with respect to any monomial ordering.
Thus, it suffices to prove that there is a monomial ordering on k[x,y] so that the leading and
trailing monomial of g cannot be divided by the leading monomial of any other element from SG.

First, assume that P is odd and let ≺ be the lexicographic ordering on k[x,y] induced by

yv1 � xv1 � · · · � yva � xva � xw1 � yw1 � · · · � xwb � ywb � xp1 � xp2 � yp1 � yp2 .

The leading monomial of g is then m := xp1xp2 · x(P x) · y(P y) and the trailing monomial of g is
yp1yp2 · x(P x) · y(P y). Assume that there is a (q1, q2)-walk Q and a walk binomial gQ ∈ SG \ {g}
of Q whose leading monomial divides the leading monomial of g. When that Q is odd, then the
leading monomial m′ of gQ is either xq1xq2 ·

∏
k∈int(Q) t

′
k or yq1yq2 ·

∏
k∈int(Q) t

′
k with t′k ∈ {xk, yk}

for all k ∈ int(Q). In the first case, since m′|m, we have {q1, q2} ⊆ P x ∪ {p1, p2}. Since P is a
minimal walk, {q1, q2} 6= {p1, p2}, thus we can assume that q1 ∈ P x. By the construction of ≺,
we have yq1yq2 � xq1xq2 and hence xq1xq2 ·

∏
k∈int(Q) t

′
k cannot be the leading monomial of gP .

If m′ = yq1yq2 ·
∏
k∈int(Q) t

′
k, then {q1, q2} ⊆ P y and hence xq1xq2 � yq1yq2 , which contradicts

m′ = yq1yq2 ·
∏
k∈int(Q) t

′
k. Thus, Q cannot be an odd walk. If Q is even, we can assume by

symmetry that m′ = xq1yq2 ·
∏
k∈int(Q) t

′
k is the leading monomial of gQ. Since m′|m, we have

q1 ∈ P x ∪ {p1, p2} and q2 ∈ P y. Since q1 ∈ {p1, p2} implies yq1xq2 � xq1yq2 , which in turn
contradicts m′ = xq1yq2 ·

∏
k∈int(Q) t

′
k. We thus must have q1 ∈ P x. This, however, again implies

yq1xq2 � xq1yq2 and hence m′ cannot divide m. In the same way we can show that the trailing
monomial yp1yp2 · x(P x) · y(P y) cannot be divided by leading terms of elements from SG \ {g}.
This gives the statement when g corresponds to an odd walk P .

Next, assume that P is even and consider the lexicographic ordering on k[x,y] induced by

yv1 � xv1 � · · · � yva � xva � xw1 � yw1 � · · · � xwb � ywb � xp1 � yp2 � yp1 � xp2 ,

then the leading monomial of g is m := xp1yp2 · x(P x) · y(P y). Let gQ ∈ SG again be a walk
binomial of a minimal (q1, q2)-walk Q whose leading monomial m′ divides m. First, assume
that Q is even. By renumbering, we can assume that m′ = xq1yq2 ·

∏
k∈int(Q) t

′
k. Thus, we

have q1 ∈ P x ∪ {p1} and q2 ∈ P y ∪ {q2}. If q1 ∈ P x, then yq1 � xq1 and yq1 � yq2 , hence
yq1xq2 � xq1yq2 . This contradicts m′ = xq1yq2 ·

∏
k∈int(Q) t

′
k. Thus, we must have q1 = p1. Since

P is minimal, we cannot have q2 = p2 and thus q2 ∈ P y. Then xq2 � yq2 and xq2 � xp1 = xq1

which yields a contradiction to m′ = xq1yq2 ·
∏
k∈int(Q) t

′
k since yq1xq2 � xq1yq2 . On the other

hand, if Q is odd, then m′ = xq1xq2 ·
∏
k∈int(Q) t

′
k or m′ = yq1yq2 ·

∏
k∈int(Q) t

′
k. In the first case,

we have {q1, q2} ⊂ P x ∪ {p1}. Since q1 = q2 = p1 is not possible since P is even and hence g is
square-free, P x ∩ {q1, q2} 6= ∅. Without restricting generality, we can assume that q1 ∈ P x. Since
q2 ∈ P x ∪ {p1}, we have in this case that yq1yq2 � xq1xq2 contradicting m′ = xq1xq2 ·

∏
k∈int(Q) t

′
k.

The case m′ = yq1yq2 ·
∏
k∈int(Q) t

′
k follows similarly.

Putting all the pieces together, we get a positive answer to the first part of Conjecture 6.2.3.

Theorem 6.2.14. For any graph G, SG is the universal Gröbner basis of IG.

Proof. The universal Gröbner basis UG of IG is by definition the union of all the reduced Gröber
bases of IG. By Lemma 6.2.13, every element in SG is contained in a reduced Gröbner basis and
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hence SG ⊆ UG. On the other hand, by Theorem 6.2.5, the elements in SG fulfill Buchberger’s
criterion for all monomial orderings and hence UG = SG.

Theorem 6.2.14 implies that parity binomial edge ideals of bipartite graphs are radical, which
they must be since they are isomorphic to the binomial edge ideal. If the graph contains an odd
cycle, then every reduced Gröbner basis has an element whose leading monomial has a square.

6.3 Minimal primes
Generally, the minimal primes of a binomial ideal come in groups corresponding to the sets of
indeterminates they contain. To start, we determine the minimal primes of IG that contain
no indeterminates, that is, the minimal primes of the saturation JG. We need the following
notation: For any graph G, let c(G) be the number connected components, c0(G) the number of
bipartite connected components, and c1(G) the number of connected components which contain
an odd cycle. The minimal primes of JG follow then quickly from the next lemma, together with
the results in [48, Section 2].

Lemma 6.3.1. Apart from zero rows, the Smith normal form of[
AG
−AG

]

is the diagonal matrix diag(1, . . . , 1, 2, . . . , 2) whose number of entries 1 is |V (G)| − c(G) and the
number of entries 2 equals c1(G).

Proof. See [59, Theorem 3.3].

The following ideals are the building blocks for the primary decomposition of JG. For any
connected graph G with an odd cycle, let

p+(G) = 〈xi + yi : i ∈ V (G)〉 and p−(G) := 〈xi − yi : i ∈ V (G)〉.

Proposition 6.3.2. Let G be a graph whose bipartite connected components are B1, . . . , Bc0(G)
and whose non-bipartite connected components are N1, . . . , Nc1(G). If char(k) 6= 2, then JG is
radical, and its minimal primes are the 2c1(G) ideals

c0(G)∑
i=1
JBi +

c1(G)∑
i=1

pσi(Ni),

where σ ranges over {+,−}c1(G). On the other hand, if char(k) = 2, then

JG =
c0(G)∑
i=1
JBi +

c1(G)∑
i=1
JNi

is primary of multiplicity 2c1(G) over the minimal prime
∑c0(G)
i=1 JBi +

∑c1(G)
i=1 p+(Ni).
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Proof. Assume first that k is algebraically closed. According to [48, Corollary 2.2], the primary
decomposition of JG is determined by the saturations of the character that defines the lattice
ideal JG. If a graph is disconnected, then its adjacency matrix has block structure according to
the connected components. Therefore it suffices to assume that G is connected. If G is bipartite,
then Lemma 6.3.1 and [48, Corollary 2.2] imply that the lattice ideal JG is prime. We are
thus left with the case that G is connected and not bipartite. Assume first that char(k) 6= 2.
Lemma 6.3.1 and [48, Corollary 2.2] together show that JG is radical and has two minimal
primes. We show that these are precisely p+(G) and p−(G). The first step is JG ⊆ p+(G) using
Proposition 6.1.5. Let i, j ∈ V (G), then xixj − yiyj = xi · (xj + yj)− yj · (xi + yi) ∈ p+(G) and
xiyj − xjyi = xi · (xj + yj) − xj · (xi + yi) ∈ p+(G). Similarly, JG ⊆ p−(G). Now let p ⊇ JG
be a prime ideal. If p contains xi + yi for all i, then it is either equal to p+(G) or not minimal
over JG. If there exists a node i such that xi + yi /∈ p, then since G has an odd cycle and is
connected, for any node j there are both an odd and an even (i, j)-walk in G. Thus,

(xi + yi) · (xj − yj) = xixj − yiyj + xjyi − xiyj ∈ p.

Since p is prime, it contains xj − yj for each j and thus p−(G) ⊆ p. This shows that p−(G) and
p+(G) are the minimal primes of JG. If char(k) = 2, then [48, Corollary 2.2] gives that JG is
primary of multiplicity two over a minimal prime which equals p+(G) = p−(G) by the above
computation. It is now evident that the algebraic closure assumption on k is irrelevant since all
saturations of characters are defined over k.

Remark 6.3.3. The graph G is bipartite if and only if JG is prime.

When decomposing a pure difference binomial ideal, all components except those over the
saturation JG contain monomials (for a combinatorial reason see [71, Example 4.14]). Our next
step is to determine the indeterminates in the minimal primes. To this end, for any S ⊆ V (G)
let GS be the induced subgraph of G on V (G) \ S and mS := 〈xs, ys : s ∈ S〉.

Lemma 6.3.4. Let p be a minimal prime of IG. Then there exists S ⊆ V (G) and a minimal
prime p′ of JGS such that p = mS + p′.

Proof. Let S := {s ∈ V (G) : xs ∈ p and ys ∈ p}. We first show the inclusions

IG ⊆ mS + JGS ⊆ p.

The first inclusion is clear, while for the second, it suffices to check that JGS ⊆ p. Generators
of JGS correspond to (i, j)-walks in GS according to Proposition 6.1.5. Let b be the binomial
corresponding to any such walk, and let {k1, . . . , kr} ⊆ V (G) \S be its interior. By Lemma 6.1.2,
tk1 · · · tkr · b ∈ IG ⊆ p for any choice of indeterminates tkl ∈ {xkl , ykl}, with 1 ≤ l ≤ r. By the
construction of S, there exists some choice such that tk1 · · · tkr /∈ p. Since p is prime, b ∈ p. The
minimal primes of mS + JGS arise as sums of mS and minimal primes of JGS . By minimality, p
equals mS + p′ for some minimal prime p′ of JG.

Not all primes of the form mS + p′ are minimal over IG (see Example 6.3.10). As for binomial
edge ideals, cut points play a crucial role in determining the sets S which lead to minimal primes,
but for parity binomial edge ideals we count connected components differently:

Definition 6.3.5. For any graph G, let s(G) := c0(G)+ c(G) = 2c0(G)+ c1(G). A set S ⊆ V (G)
is a disconnector of G if s(GS) > s(GS\{s}) for every s ∈ S.
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Remark 6.3.6. The empty set is a disconnector of any graph, and disconnectors cannot contain
isolated nodes. A set which deletes all odd cycles from a graph, that is which makes a non-bipartite
graph bipartite, is a disconnector, even though it may preserves connectedness.

Remark 6.3.7. If a graph G has no isolated nodes, then s(G{s}) ≥ s(G) for all s ∈ V (G) and
according to Definition 6.3.5 a node s is a disconnector of G exactly if the inequality is strict.
Moreover, one can conclude from Proposition 6.3.8 that {s} is a disconnector of G if and only if
JG 6⊆ m{s} + JG{s} .

Proposition 6.3.8. Let G be a graph and S ⊆ V (G). Then JG ⊆ mS + JGS if and only if for
all (i, j)-walks in G with i, j ∈ V (GS), there is an (i, j)-walk in GS of the same parity.

Proof. Let JG ⊆ mS + JGS . Let P be an (i, j)-walk in G with i, j 6∈ S, then b(P ) ∈ JG. Since
b(P ) ∈ k[xi, xj , yi, yj ], and no polynomial in JGS uses indeterminates from S, we find b(P ) ∈ JGS .
It follows that b(P ) is the binomial of an element of the Graver basis of JGS and thus corresponds
to an (i, j)-walk in GS of the same parity.
On the other hand, let m ∈ JG be a move corresponding to a (i, j)-walk in G. If i ∈ S or

j ∈ S, then m ∈ mS . If otherwise i, j ∈ V (GS), then m ∈ JGS by assumption.

The next lemma states that the indeterminates contained in a minimal prime correspond to a
disconnector of G, and Theorem 6.3.15 below says when the converse is true as well.

Lemma 6.3.9. Let p be a minimal prime of IG. There exists a disconnector S ⊆ V (G) of G
and a minimal prime p′ of JGS such that p = mS + p′.

Proof. Let S and p′ be as in Lemma 6.3.4. We prove that S is a disconnector. Assume the
converse, then there exists a node s ∈ S such that s(GS) ≤ s(GS\{s}). In particular, {s} is not a
disconnector of GS\{s} by Remark 6.3.7. According to Remark 6.3.7 and Proposition 6.3.8,

JGS\{s} ⊆ m{s} + JGS ⊆ m{s} + p′.

Hence, since the ideal on the right-hand side is prime, choose a minimal prime p′′ of JGS\{s} such
that JGS\{s} ⊆ p′′ ⊆ m{s} + p′. Since xs, ys 6∈ p′′, the containment p′′ ( m{s} + p′ is strict. Then

IG ⊆ mS\{s} + p′′ ( mS + p′ = p

which contradicts the minimality of p.

Let S ⊆ V (G) be a disconnector of G. The induced subgraph GS splits into bipartite
components B1, . . . , Bc0(GS) and non-bipartite components N1, . . . , Nc1(GS). By Proposition 6.3.2
the minimal primes of JGS are

p =
c0(GS)∑
i=1

JBi +
c1(GS)∑
i=1

pσi(Ni), where
{
σi ∈ {+,−}, if char(k) 6= 2
σi = +, if char(k) = 2

. (6.3.1)

Not all of these primes lead to minimal primes of IG because of the following effect:

Example 6.3.10. Let G be the graph in Figure 6.3. The node 4 is a disconnector, and G{4}
consists of the two triangles N1 = {1, 2, 3} and N2 = {5, 6, 7}. Choosing for both triangles the
positive sign component, we obtain the prime ideal

m{4} + p+(N1) + p+(N2) = m{4} + 〈xi + yi : i ∈ [7] \ {4}〉

74



2

1

3 4 5
7

6

Figure 6.3: A graph for which one of the primes in (6.3.1) is not a minimal prime.

which is not minimal over IG since it contains the prime ideal p+(G). On the other hand, the
ideals m{4} + p+(N1) + p−(N2) and m{4} + p−(N1) + p+(N2), each with different signs on the
triangles, are minimal over IG.

A combinatorial condition on σ in (6.3.1) guarantees that a minimal prime of JGS is the
binomial part of a minimal prime of IG (the monomial part being mS). To see it, let s ∈ S be
such that c(GS) > c(GS\{s}), i.e. when adding s back to GS some of its connected components
are joined. Denote by CGS (s) the set of only those connected components of GS which are joined
when adding s.

Definition 6.3.11. Let S ⊆ V (G) be a disconnector of G. A minimal prime p of JGS is
sign-split if for all s ∈ S such that CGS (s) contains no bipartite graphs, the prime summands
of p corresponding to connected components in CGS (s) are not all equal to p+ or all equal to p−.

Remark 6.3.12. If CGS (s) contains at least one bipartite graph, then Definition 6.3.11 imposes
no restriction and every choice of prime summands is sign-split.

Remark 6.3.13. If char(k) = 2, then all signs σ in (6.3.1) are fixed. In this case, Definition 6.3.11
can only be satisfied if CGS (s) contains a bipartite component for each s ∈ S.

Example 6.3.14. Not every disconnector S ⊆ V (G) of G admits a sign-split minimal prime for
JGS , and thus not every disconnector contributes minimal primes to IG. Consider the graph in

Figure 6.4: A disconnector whose binomial parts cannot be sign-split.

Figure 6.4. The set of square nodes is a disconnector that does not contribute minimal primes.
Adding one of the squares back yields the requirement that the primes on the two now connected
triangles have different signs, but these three requirements cannot be satisfied simultaneously.

Theorem 6.3.15. The minimal primes of IG are the ideals mS + p, where S ⊆ V (G) is a
disconnector of G and p is a sign-split minimal prime of JGS .

Proof. According to Lemma 6.3.9, all minimal primes of IG have the form mS + p, where
S ⊆ V (G) is a disconnector and p is a minimal prime of JGS . We first show that if p is sign-split,
this ideal is minimal over IG. Assume not, then by Lemma 6.3.4 there exists a set T ⊆ V (G)
and a minimal prime p̃ of JGT such that

IG ⊆ mT + p̃ ( mS + p. (6.3.2)
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This implies T ( S, since if T = S, then by Lemma 6.3.4 also p̃ = p. Let s′ ∈ S \ T , then
GS ( GS\{s′} ⊆ GT . Since S is a disconnector of G, s(GS) > s(GS\{s′}). We now make a
case distinction on CGS (s′), that is the set of connected components in GS that are joined to
s′ in GS\{s′}. If CGS (s′) contains at least one bipartite component, adding s′ to GS either this
component becomes non-bipartite in GS\{s′} or it is joined to another bipartite component
of GS . In the first case, let B be a bipartite component which becomes non-bipartite. There
exists i ∈ V (B) such that x2

i − y2
i ∈ JGS\{s′} ⊆ JGT ⊆ p̃, but x2

i − y2
i 6∈ JB. Since JB is

a summand of p and since i ∈ V (B), x2
i − y2

i 6∈ mS + p, in contradiction to (6.3.2). In the
second case, let B1 and B2 be the bipartite components of GS which are joined to s′. There are
i1 ∈ V (B1) and i2 ∈ V (B2) such that there exists an (i1, i2)-walk in GS\{s′}. Independent of the
parity of this walk, the corresponding Markov move is not contained in JB1 + JB2 since there
is no applicable move from the Graver basis. Since JB1 and JB2 are summands of p involving
the indeterminates i1 and i2, there is a binomial which is not in mS + p but in JGS\{s′} ⊆ p̃

contradicting (6.3.2). Assume now that all components in CGS (s′) are non-bipartite (there must
be at least two of them since {s′} is a disconnector of GS\{s′}). By assumption, p is sign-split
and hence there exist distinct components N1, N2 ∈ CGS (s) such that p+(N1) and p−(N2) are
summands of p. There is an odd walk from a node i1 ∈ V (N1) to a node i2 ∈ V (N2) in GS\{s′},
and therefore, xi1xi2 − yi1yi2 ∈ JGS\{s′} ⊆ p̃. However, since

xi1xi2 − yi1yi2 6∈ p+(N1) + p−(N2),

also xi1xi2 − yi1yi2 6∈ p. By construction, i1, i2 6∈ S and thus

xi1xi2 − yi1yi2 6∈ mS + p

which contradicts (6.3.2). This shows minimality of mS + p.
Let now mS + p be a minimal prime of IG. The set S is a disconnector by Lemma 6.3.9 and

thus it remains to prove that p is sign-split. To the contrary, assume there is a node s ∈ S
with c(GS\{s}) > c(GS) such that CGS (s) = {N1, . . . , Nk} consists exclusively of non-bipartite
components, k ≥ 2, and all summands of p corresponding to Ni have the same sign, say +.
When adding s back to GS , the components in CGS (s) are joined to a single, non-bipartite
connected component H in GS\{s}, whereas all other components of GS coincide with connected
components of GS\{s}. Since

p+(H) = m{s} +
k∑
i=1

p+(Ni) ( m{s} +
k∑
i=1

p+(Ni),

choosing on all other components of GS\{s} the same prime component as in GS , we obtain a
prime ideal that is strictly smaller than mS + p.

Remark 6.3.16. Example 6.3.10 and Definition 6.3.11 are valid independent of char(k). In the
above proof, the case of char(k) = 2 could be simplified, but everything works in general without
the need for a case distinction.

6.4 Radicality
The intersection of the minimal primes of IG depends on char(k) so that we do not attempt to
compute it directly. Theorem 6.4.5 below says that IG is radical if the characteristic is not two.
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Observe that we have to use the Gröbner basis of IG to show its non-radicality in char(k) = 2.
Here is the principal source of field dependence (see also [63, Theorem 1.2]):

Remark 6.4.1. Fix a field k with char(k) = 2. The parity binomial edge ideal IG is radical
in k[x,y] if and only if G is bipartite. Clearly, if G is bipartite, then IG is radical. Conversely,
let (i1, . . . , ir+1) with ir+1 = i1 be an odd cycle in G. According to Lemma 6.1.2, ((xi1 −
yi1)yi2 · · · yir)2 = (x2

i1 − y
2
i1)y2

i2 · · · y
2
ir ∈ IG. Fix now a monomial ordering ≺ on k[x,y] with

yi ≺ xi for all i ∈ V (G). By Theorem 6.2.5, the leading monomials of SG generate the initial
ideal of IG. Under this monomial ordering, all walk binomials corresponding to odd walks have
two indeterminates from k[x] in their leading monomial. Thus, the only binomials from SG whose
leading monomials divide xi1yi2 · · · yir correspond to minimal even (i1, ik)-walks in G[{i1, . . . , ir}]
with k ∈ {2, . . . , r}. Replacements coming from these binomials lead to monomials where xi1 is
replaced by yi1 and yik is replaced by xik . Thus, xi1yi2 · · · yir 6≡IG yi1yi2 · · · yir and hence IG is
not radical.

Remark 6.4.2. The ideal IG is homogeneous with respect to the multigrading deg(xi) =
deg(yi) = ei, where ei is the i-th standard basis vector of R|V (G)|.

Lemma 6.4.3. Let i ∈ V (G) and m ∈ IG + m{i} be a monomial. Then m ∈ m{i}.

Proof. Since it is generated by pure difference binomials, IG does not contain any monomials.
Thus, any monomial in IG + m{i} is equivalent to one in m{i} modulo term replacements using
binomials in IG, but these do not change membership in m{i} by Remark 6.4.2.

Proposition 6.4.4. For any graph G, IG = JG ∩
⋂
i∈V (G)(IG + m{i}).

Proof. According to [48, Corollary 1.5], the intersection is binomial. Let b be any binomial in
the intersection. For each i ∈ V (G), there are three cases: Either no term of b is individually
contained in IG+m{i}, exactly one is, or both are. In the first case, [48, Proposition 1.10] implies
b ∈ IG. In the second case, it implies that the other monomial is contained in IG, which is
impossible. Thus it suffices to consider binomials b both of whose monomials are contained in
IG + m{i} for all i ∈ V (G). By Lemma 6.4.3, both monomials of b are contained in m{i} for each
i ∈ V (G). Since b ∈ JG, there is r ∈ N and (si, ti)-walks Pi for i ∈ [r] such that

b = xh1yh
′
1b(P1) + · · ·+ xhryh

′
rb(Pr)

with hi, h
′
i ∈ Nn. We can assume that one monomial of b equals one of the monomials of

xh1yh1b(P1). Thus both monomials of xh1yh1b(P1) are divisible by at least one indeterminate
for each i ∈ V (G) and, by Lemma 6.1.2, xh1yh1b(P1) ∈ IG. Replacing b by b− xh1yh1b(P1) and
iterating the argument eventually yields b ∈ IG.

Theorem 6.4.5. Let G be a graph. If char(k) 6= 2, then IG is a radical ideal.

Proof. The proof is by induction on the number of nodes n of G. If G has at most one node,
then IG = 0 and the claim holds. Proposition 6.3.2 shows that IG + m{i} = IG{i} + m{i} for
all i ∈ V (G). Thus Proposition 6.4.4 reads as IG = JG ∩

⋂n
i=1(IG{i} + m{i}). By the induction

hypothesis, IG{i} is radical and thus IG{i} + m{i} is radical. Proposition 6.3.2 says that JG is
radical if char(k) 6= 2 which yields the result.
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Theorem 6.4.9 below contains a primary decomposition of IG in the case char(k) = 2. It uses
the following lemma, which allows to transport decompositions between different characteristics.
Recall that the combinatorics of any binomial ideal I is encoded in its congruence ∼I which
identifies monomials m1,m2, whenever m1 − λm2 ∈ I for some non-zero λ ∈ k. A binomial
ideal is unital if it is generated by monomials and pure differences of monomials. Then each
congruence is the congruence of a unital binomial ideal, though not uniquely.

Lemma 6.4.6. If a decomposition I = J1 ∩ . . . ∩ Js of a unital binomial ideal I into unital
binomial ideals Ji, i = 1, . . . , s is valid in some characteristic, then it is valid in any characteristic.

Proof. The congruence ∼I induced by I is the common refinement of the congruences ∼Ji ,
induced by the Ji, i = 1, . . . , s. Thus, in any characteristic, [71, Theorem 9.12] implies that I
and J1 ∩ . . . ∩ Js can only differ if one of them contains monomials, but the other does not. This
cannot happen since unital binomial ideals contain monomials if and only if they have monomials
among the generators.

According to Example 6.3.14, not all disconnectors contribute minimal primes. From Defini-
tion 6.3.11 it may seem that this is an arithmetic effect. It is not; the primary decomposition
of IG in characteristic two also witnesses it. For the following definition, recall that a hypergraph
is k-colorable if the nodes can be colored with k colors so that no edge is monochromatic.

Definition 6.4.7. Let S ⊆ V (G) be a disconnector, and let s1, . . . , sr ∈ S be the nodes such
that CGS (si) consists exclusively of non-bipartite components of GS . Let H be the hypergraph
whose node set consists of the connected components CGS (s1) ∪ . . . ∪ CGS (sr) and with edge set
{CGS (s1), . . . , CGS (sr)}. The disconnector S is effective if H is 2-colorable.

Remark 6.4.8. A disconnector is effective if and only if, in characteristic zero, it admits sign-split
minimal primes.

Theorem 6.4.9. Let S be the set of effective disconnectors of G. Then

IG =
⋂
S∈S

(mS + JGS ) . (6.4.1)

If char(k) = 2, then (6.4.1) is a primary decomposition of IG.

Proof. For each disconnector S ∈ S, let BS
1 , . . . , B

S
c0(GS) be the bipartite components and

NS
1 , . . . , N

S
c1(GS) the non-bipartite components of GS . Let ΣS ⊆ {+,−}c1(GS) denote the set

of sign patterns that are sign-split. In characteristic zero, by Theorems 6.3.15 and 6.4.5, IG
decomposes as

IG =
⋂
S∈S

⋂
σ∈ΣS

mS +
c0(GS)∑
i=1

JBSi +
c1(GS)∑
i=1

pσi(NS
i )

 .
The intersection remains valid when intersecting over additional ideals containing IG. In
particular, the sign-split requirement can be dropped and ΣS replaced by {+,−}c1(GS). Carrying
out this inner intersection yields the ideals mS + JGS by Proposition 6.3.2, and hence (6.4.1) is
valid in characteristic zero. Since all involved ideals are unital, Lemma 6.4.6 yields that (6.4.1) is
valid in any characteristic. The ideals under consideration are primary if char(k) = 2 according
to Proposition 6.3.2 and thus the second statement follows.
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