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Zusammenfassung

Die Entwicklung von Hirn-Maschine Schnittstellen (engl.: Brain-Machine-Interface,
BMI), ein interdisziplinärer Forschungsbereich aus Neurowissenschaften, Elektrotech-
nik und Informatik, gewinnt stetig an Bedeutung. Dies liegt vor allem an den mit
dieser Technologie neu aufgekommenen Möglichkeiten, Personen mit schweren Schädi-
gungen des zentralen Nervensystems durch Prothesensteuerung zu unterstützen, ihnen
Kommunikation zu ermöglichen und klinische Anwendungen zu etablieren. Allerdings
ist die Verlässlichkeit von BMI Systemen noch immer unzureichend, obwohl seit mehr
als 25 Jahren intensiv in diesem Bereich geforscht wird. Dies liegt hauptsächlich an der
Signalqualität der medizinisch risikoarmen Messmethoden. Im Gegensatz zu invasiven
Verfahren können damit nur schwache Signale neuronaler Aktivität auf makroskopischer
Ebene gemessen werden, die zudem von einem hohen Rauschsignal begleitet sind. Da-
her ist es nötig, Algorithmen für eine verlässliche Dekodierung zu entwickeln. Eines der
Hauptziele der BMI Forschung ist die Entwicklung von Prothesen, die durch Hirnsignale
gesteuert werden können, um ausgefallene motorische Funktionen, etwa eines Arms,
gelähmter Personen wiederherzustellen. Aufgrund der geringen Informationstransfer-
rate eines nicht-invasiv betriebenen BMIs, ist die kontinuierliche Steuerung eines künst-
lichen Arms wegen der großen Anzahl zu kontrollierender Freiheitsgrade nicht möglich.
In dieser Arbeit werden Strategien untersucht, die es erlauben, mit einem Minimum
von Informationstransfer einen Roboter zu steuern, der autonome Aktionen durch-
führen kann. Für diesen Zweck werden zwei typische Hirnsignale, die abhängig von
visuellen Stimuli moduliert werden, untersucht, wobei die Stimuluspräsentation in einer
virtuellen Umgebung integriert wurde. In Experimenten, in denen das Magnetoen-
zephalogramm in Echtzeit ausgewertet wurde, konnte eine mit Hirnsignalen gesteuerte
Auswahl eines Objektes für einen späteren Greifprozess erfolgreich demonstriert werden.
Anhand dieser Daten konnte ein signifikanter Anstieg des Dekodierungserfolgs gezeigt
werden, wenn eine datengetriebene Konstruktion räumlicher Filter angewandt wird.
Abschließend wird in dieser Arbeit die Implementierung eines asynchron arbeitenden
BMIs vorgestellt, das es ermöglicht, eines von mehreren auswählbaren Objekten von
einem intelligenten, virtuellen Roboter greifen und anheben zu lassen. Mit diesem ab-
schließenden Experiment konnte auch gezeigt werden, dass das MEG potenzielle Vorteile
gegenüber dem üblicherweise genutzten EEG bietet.





Abstract

As an interdisciplinary field encompassing neuroscience, electrical engineering and com-
puter science, brain–machine interfacing (BMI) constitutes a research area of growing
importance. For persons suffering from diseases affecting the central nervous system,
new facilities arise with this concept, comprising prosthesis control, communication and
clinical applications. However, despite extensive focus in the last 25 years, the reliabil-
ity of BMI systems remains at an unsatisfactory level. The main reason is the signal
quality achieved with measurement techniques involving minimal medical risk. Because
only weak signals of macroscopic neural activity can be measured with existing nonin-
vasive techniques, accompanied by a high level of noise, advanced processing algorithms
are required to retrieve reliable decoding results. A major goal of BMI development
is the brain-controlled use of a prosthetic device, restoring the mobility of paralyzed
persons. Due to the low rate of reliable information a noninvasively operated BMI is
commonly able to transfer, the continuous control of a prosthetic device, because it
is required to have many degrees of freedom, appears to be impossible. In this thesis
strategies are investigated, using a minimum of information transfer to control a robotic
device, which autonomously performs an action. Two types of brain signals are con-
sidered for this purpose, depending on visual stimuli which are presented in a virtual
reality environment. In experiments in which the magnetoencephalogram was instanta-
neously processed, a brain-controlled selection of objects for grasping was successfully
performed. A systematic investigation of advanced signal processing and alternative
classification techniques revealed a considerable increase of decoding accuracy when
data-driven spatial filter methods are applied. Finally, an asynchronously working BMI
implementation is introduced, facilitating the grasping and manipulation of one of sev-
eral objects by an intelligent virtual robot. This final experiment also provides evidence
for potential advantages of the MEG over the commonly used EEG.
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1. Introduction

1.1 Aim of the Thesis

A considerable number of patients suffer from neurological disorders which induce se-
vere paralysis. For example, in Germany 196,000 incidents of stroke were registered
in 2008 [73]. Also, spinal chord injury can lead to extensive elimination of movement
ability. Progressive diseases such as amyotrophic lateral sclerosis even can result in a
so-called locked-in state, where no communication is possible due to complete paral-
ysis. In the last decades, a novel technique evolved which provides the potential to
restore communication and lost motor functions in paralyzed patients by interpreting
brain activity measures [165]. This is achieved by decoding voluntarily modulated brain
activity for controlling a device or for generating feedback. Hence, a system following
this approach is known as a brain-machine interface (BMI) and brain-computer inter-
face (BCI), respectively. Due to limitations in clinical rehabilitation and advancement
of brain imaging techniques, BCI research increasingly moves into the focus of a wide
research community. However, several challenges exist with the current state of the art
technology. The main challenge is that brain signals are generally contaminated by a
high level of noise originating from environmental distortions, disturbances from phys-
iological processes and superimposed brain signals unrelated to the task. Furthermore,
the signals of interest can only be acquired from a small fraction of the true network.
Electroencephalography (EEG) is the standard technique for noninvasive signal acqui-
sition in BCI research. Although some invasive brain recording techniques provide
increased signal quality compared to EEG, and evidence has already shown them to
be suitable for prosthesis control [78], the invasive nature of the intervention renders
these modalities inapplicable for daily use and entails a high medical risk. In contrast,
noninvasive techniques are uncritical for the patient’s health but allow only for low
information transfer rates and thus, for less reliable control. Since both invasive and
noninvasive techniques are expected to achieve further development in the future, the
trade-off between benefits and drawbacks have to be considered in future applications.
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This work, however, will concentrate on the investigation of advanced approaches in
the field of noninvasive BMIs, particularly in electrophysiological data recorded with a
high number of sensors.

Although research in the field of BMI started more than three decades ago, develop-
ments still occur at a fundamental level and often are only evaluated under optimal
laboratory conditions. The aim of this thesis is the development of strategies to extend
existing approaches and to improve BMI use for prosthesis control. The most promi-
nent brain signals to be reliably detected on a single trial level and thus commonly
used in various paradigms to drive noninvasive BMIs are steady-state visual evoked
potentials (SSVEP), the P300 potential and sensorimotor rhythms (SMR). Previous
EEG studies based on SMR found support that reliable control with one degree of free-
dom is possible (cursor left vs right), but this is insufficient for controlling a robot arm

with its several joints (shoulder, elbow, hand, etc)̇. Moreover, this approach requires
extensive training to appropriately modulate brain patterns, underscoring the need for
alternative approaches for noninvasive prosthesis control, explained in the following.
This work focuses the development of a BMI, controllable with only a few commands,
that can be accomplished with the low information transfer rate of noninvasive modal-
ities, and that can be applied to control an autonomous robotic system. Given the
advantage of magnetoencephalography (MEG) over EEG due to its higher spatial and
spectral resolution, MEG is the recording technique of choice for the investigations in
this work. The high number of stationary sensors in MEG provides fast access to high
density electrophysiological data. Therefore, this modality is suited to investigate po-
tential informative brain sources, eventually also measurable in natural environments in
the near future with advanced recording systems [181, 193]. Furthermore, well aligned
and highly contrasted visual stimuli in a 2D plane, which are typical in common BMI
experiments, will be transferred to a 3D virtual environment simulating a real world
scenario. Importantly, the overall goal is the implementation of an interface enabling
a user to asynchronously control a robot by voluntary brain wave modulation. Specif-
ically, in the BMI implementations presented here, selection commands are triggered
by decoding the P300 in one experiment and the SSVEP in another one. The direct
comparison between EEG and MEG provides the opportunity to investigate the still
open question, which of these methods yields a superior signal for successful decoding.

The main aims of the thesis can be summarized as follows:

• establish paradigms driven by visual stimuli in virtual reality

• exploit low information transfer rate for flexible movements of an actuator

• improve signal-to-noise ratio in high density electrophysiological data

• find optimal parameters for efficient control

• implement a framework for self-paced actuator control

• explore potential advantages of MEG compared to EEG
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1.2 Advances in Prosthetic BMI Research

The major effort in movement related BMI control was translating movement related
brain activity, commonly SMR, into commands for actuator control. Signals recorded
during imagined movement were also decoded from noninvasive EEG to navigate a
mobile robot [131] or a wheelchair [130], to control grasping and elbow movement of a
robotic arm [142] and to control a hand orthosis [153]. However, the outcome of existing
approaches based on SMR is “far from optimal” [130] and requires “some months of
training” [153].

In the field of invasive recordings it has been shown that using subdural electrodes,
i.e. electrodes with direct contact to brain tissue, arm movement trajectories can be
predicted from electrocorticographic signals [158, 182]. Even more highly invasive elec-
trodes (microelectrode array) penetrating the cortical surface of the brain have been
used to perform reach and grasp movements of a robotic arm [78]. Although providing
more accurate results compared to noninvasive EEG, invasively assessed BMI control
is still not sufficiently reliable to be suited for daily use and requires intensive training.
Furthermore, the measurement technique is accompanied by high medical risk and is
not proved for safe long term use.

The approaches in this work follow the demands of Millán et al. [132] who suggest
that BCI prototypes must be combined with assistive technologies, additional control
channels must be considered, and development of algorithms is required. They also
expect development of novel BCI technology and EEG devices. The review paper
shows that current state of the art of noninvasive BCI is still at a laboratory level and
requires new approaches to bring BCI technology out of the lab.

Chapter 3 deals with the manifold utilizability of brain-machine interfacing, accordingly
providing a detailed overview of the current state of the art in BMI development.

1.3 Relationship of BMI and Mind-Reading

The term mind-reading is frequently used in the context of brain–computer interfacing.
In fact, in multi-voxel pattern analysis studies, predicting a perceptual state of a subject
by means of functional magnetic resonance imaging (fMRI), researchers were able to
decode categories of perceived objects [43, 70], semantic categories of visually presented
words [135] and natural photographs [95] from learned brain activity patterns. However,
this kind of brain-reading is specialized to the task and therefore is only suited for
reading the trained categories. An even stronger proof of reading the mind would be
if perception of the environment were not clearly defined. In this respect decoding the
actual percept of ambiguous visual stimuli [71, 171] is potentially more strongly related
to mind-reading. Also, voluntarily modulated thoughts could be decoded from fMRI
patterns such as attention to one of several moving patterns [91] and lie detection [49].
However, all the methods are limited to detecting only one of a few possible brain states.
These sufficiently distinct states have to be learned by a machine learning algorithm
using many repetitions of a stimulus or task generating prototype patterns of the states.
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Thus, the decoding of brain states, which is also the tool in brain-machine interfacing,
strongly requires the mindful cooperation of the test person.

Currently, the available technology merely permits us to distinguish a small number of
well-defined, deliberately generated thoughts from brain activity recordings with mod-
erate accuracy. Therefore, researchers are still far from the ability to read somebody’s
mind in the sense that free thoughts can be played back by a machine. The currently
existing brain signal acquisition techniques and the limited knowledge of how the brain
functions suggest that free thoughts will not be decipherable in the near future. Nev-
ertheless, the ability to voluntarily control an assistive system by modulation of brain
activity is a promising facility to enable disabled persons to restore mobility and com-
munication by means of a BMI.

1.4 Outline of the Thesis

In this thesis I report new methods to efficiently decode high-density electrophysiological
data for BMI control. A main focus lies on the effective reduction of the input signals
by spatial filtering approaches. The optimal set of processing steps and parameters
is evaluated using experimental data. Three experiments are employed in total to
contribute advances in noninvasive BMI control. Experiments one and two investigate
the feasibility to select targets in a virtual reality scenario by decoding brain signals
elicited from overt and covert attention, directed to visual stimuli. The findings of the
experiments are included in the third experiment which aims at the development of
an efficient scheme for asynchronous initiation of robot commands for grasping. This
final experiment, designed to require an intelligent, autonomous robot, demonstrates
the noninvasive control of an assistive device.

This thesis is structured as follows:

• Chapter 2 outlines the neurophysiological background and presents fundamentals
relevant to implement the data analysis performed in this work.

• Chapter 3 gives an overview of diverse variants of BCI applications and implemen-
tations. Existing approaches are introduced and the state of the art is illustrated.

• Chapter 4 explains approaches, considered to efficiently control noninvasively
driven upper limb prosthetics. Methodological concepts are introduced that suc-
cessively lead to the final BMI-controlled virtual demonstrator for autonomous
grasping.

• Chapter 5 provides information about materials and methodological details of
three experiments, performed to investigate the approaches.

• Chapter 6 presents the results of the planned investigations.

• In Chapter 7 these results are interpreted and discussed.
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• Finally, in Chapter 8 the findings of this study are summarized and future per-
spectives are outlined.
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2. Fundamentals

2.1 Neurophysiological Background

Controlling computers and machines by deliberately modulating brain activity is the
basic principle of a brain–computer interface and a brain–machine interface, respec-
tively. Such control is possible because techniques exist by which brain activity can be
appropriately measured. These techniques are commonly restricted to electrophysio-
logical measurement approaches such as electrocorticography (ECoG), EEG and MEG.
The measured signal is an effect caused by superimposed electrical dipoles generated in
the brain. In this section I will explain the fundamental background of how and where
brain activity evolves.

2.1.1 Generation of Measurable Neuronal Activity

The human nervous system is composed of a vast number of special cells, known as
neurons. Only the brain consists of approximately 1011 neurons [93] that are connected
as a complicated network in which they send signals to communicate. Although a variety
of neuron types exist, their basic structures are similar. In Figure 2.1 a pyramidal cell,
one type of brain neuron among others, is shown with its basic components: cell body,
dendrites, axon, and presynaptic endings. The metabolism of the cell takes place within
the cell body, which contains the nucleus that holds genetic information. The dendrites
commonly form a tree structure, receiving signals from other neurons. Those electrical
impulses are transmitted by the axon of a presynaptic neuron. The connections between
neurons are called synapses. Hence, the axon’s tails are called presynaptic endings and
the receiving dendrites are called postsynaptic dendrites. An axon can transmit a signal
up to 2 m and branch to several neurons in different locations. The transmitted neuronal
signal is known as an action potential.

The basic principle of the generation of an action potential begins at the plasma mem-
brane of the cell body. Here, different electrical potentials are maintained outside and
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Figure 2.1: Structure of a pyramidal cell.

inside the neuron, resulting in the resting membrane potential. Typically, this potential
is about -65 mV inside the neuron with respect to outer potential assumed to be zero.
This potential difference is caused by an unequal distribution of positively charged Na+

and K+ ions as well as negatively charged amino acids and proteins and by the selective
permeability of the cell membrane to K+ ions. A membrane protein acts as an ion
pump, keeping the Na+ concentration in the cell low and the K+ concentration high.
Additionally, ion channels in the membrane that permit a much higher permeability to
K+ than to Na+ ions cause the K+ ions to leave the cell according to the gradient of
concentration, resulting in a negative charge on the inner side of the membrane and a
positive extracellular charge. When the neuron’s membrane potential is reduced due
to an excitatory event, Na+ ions tend to flow into the cell, neutralizing the charge
and even resulting in a positive charge of about 35 mV. Thus, an action potential of
approximately 100 mV is generated. The action potential is conducted by the axon to
another neuron or other cells (such as muscles) according to the all-or-none principle,
meaning that the amplitude is maintained while it is propagated fast to its destina-
tion. The duration of an action potential is about 1 ms. At the presynaptic endings,
neurotransmitters are released that serve as the input signal for the postsynaptic cell.

Typically, a single event processed in the brain induces activation of thousands of neu-
rons that fire synchronously or consecutively. The neurons involved are dispersed over
wide networks in the brain to enable functional organization of bottom-up and top-down
processes and are organized in local clusters. Typically, specific functional processes in
the brain can be attributed to parts of gyri and sulci (explained in Section 2.1.2) that
represent general landmarks of the human brain. These circumstances facilitate the
ability to measure localized brain activity accompanying neurophysiological processes.
In a specific volume of brain tissue, all the electric currents that arise from cellular
processes are superimposed, generating a potential with respect to a reference potential
and inducing a magnetic field, respectively. This forms the basis of electrophysiological
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Figure 2.2: MR image showing a sagittal slice near the interhemispheric cleft. Parts of
the central nervous system are marked by colored overlays.

measurement modalities, such as local field potentials, EEG and MEG. An introduc-
tion of modalities is given in Section 2.2 and a comparison with context to BCI in
Section 3.2.

2.1.2 Functional Organization of the Brain

When we speak of the brain, usually the two cerebral hemispheres with their folded
surface come to mind. In fact, the brain activity that we measure for BCI use, mainly
does have its sources in the cerebrum. However, there are other important structures
that are part of the human central nervous system, all with indispensable functionality.
One of these components is the spinal cord, containing afferent and efferent pathways,
i.e. the nerve tracts conducting signals from and to muscles and internal organs. The
brain stem receives sensory information, contains motor neurons controlling head and
neck muscles and plays a coordinating role for some sensory modalities and attention.
Furthermore, the brain stem is involved in regulating vital functions as blood pressure
and respiration. Another important brain structure is the cerebellum, which coordinates
sensory information and motor functions, and so organizes movements and posture.
Regions of the mesencephalon (midbrain) play an important role in eye movements
and control of skeletal muscles as well as relaying auditory and visual signals. The
diencephalon (interbrain) is composed of the thalamus and hypothalamus, responsible
for coordinating sensory and motor information as well and having extensive connections
to the cerebral cortex and the midbrain. Finally, the cerebral hemispheres consist not
only of the cerebral cortex (gray matter) and the white matter but also include some
subcortical nuclei and structures: the basal ganglia, the hippocampus and amygdala.
Most axons that connect the two hemispheres run through the corpus callosum. In
Figure 2.2 the locations of the main structures are shown, overlaid on a sagittal slice of
an MR image.

The folding of the cerebral cortex results in inward folds (sulci) and outward folds
(gyri). Large sulci divide the cerebral cortex into four lobes, all containing functional
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Figure 2.3: The four lobes, and the location of functionally specialized areas frequently
approached in BCI control.

regions, specialized for particular functional processing and responsible for our cognitive
abilities. See Figure 2.3 for the partitioning of the frontal lobe, temporal lobe, parietal
lobe and occipital lobe. Importantly, sensory information and motor processes are
primarily represented in the hemisphere contralateral to the side where sensation or
movement takes place. Furthermore, although several regions exist where processing
of left and right input and output is positioned symmetrically on the hemispheres,
either hemisphere is also specialized for some functions (e.g. language processing).
For the control of a BCI, focus is placed commonly on only a few prominent areas,
which are considered to generate a control signal. One such ares is the primary motor
cortex which is located on the gyrus precentralis, anterior to the sulcus centralis, which
separates frontal and parietal cortex. The somatosensory cortex, located on the gyrus
postcentralis, i.e. posterior to the sulcus centralis, on the parietal lobe, is also utilised.
The motor cortex may be further partitioned into areas presenting several individual
body parts. The location of these regions on the exterior surface of the cerebral cortex
aids decoding of movement related brain activity. The primary auditory cortex in the
temporal lobe and the primary visual cortex in the occipital lobe provide feasible access
to the early processing of sensory input signals. Finally, the posterior parietal cortex
and the frontal cortex play an important role in BCI implementations based on the
detection of volitionally induced event-related potentials (see Section 3.3).

2.2 Brain Signal Acquisition Techniques

In the last decades several brain imaging techniques have been developed, which rely
on different physical and biochemical properties that accompany neural activity in the
brain. Acquisition techniques can be divided into two categories exploiting two dissim-
ilar effects, one of which is the hemodynamic response. When a large population of
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neurons is firing, the blood flow around this population increases and enhances the con-
centration of oxyhemoglobin and concurrently reduces the level of deoxyhemoglobin.
On the one hand the oxygenation level changes the magnetic properties of the local
cerebral blood flow which can be measured by functional magnetic resonance imaging
(fMRI) [7]. This concept is called blood oxygenation level dependent (BOLD) contrast
[145]. In fact, fMRI provides excellent spatial resolution and consequently precise lo-
calization of neural activation, but the hemodynamic response function (HRF) is slow,
showing its peak between 4 and 6 seconds after the activation occurred. This delay
combined with poor time resolution and the constrained measurement process in a
shielded laboratory, mean that fMRI offers only limited application in BMI, although
real-time fMRI has a wide field of interest as well [171, 179, 219]. On the other hand,
the variation of the oxygenation level can be optically measured using near infrared
spectroscopy (NIRS). The mobility and noninvasiveness of this technique is clearly an
advantage but in addition to the poor temporal resolution caused by the HRF, the user
is faced with a poor spatial resolution as well, which renders this method of low interest
for BMI as well.

A second effect exploited by brain signal acquisition techniques is based on electrophys-
iological properties, i.e. the electrical potential differences and magnetic flux variation
that result from increased and decreased neuronal firing as described in the previous
section. While magnetic fields are solely measured noninvasively above the scalp us-
ing the MEG, electrical activity can be measured at several levels of spatial accuracy
and signal strength, although some of them require invasive intervention. The highest
spatial resolution provides single neuron recordings and local field potentials (LFP),
which are measured within the cortex tissue [33]. The electrocorticogram is measured
beneath the skull, either epidurally or subdurally [183]. The only noninvasive technique
for acquiring electrical potentials is the EEG, which is recorded from the surface of the
scalp, but is faced with the highest signal loss due to the skull and other tissues being
between the sources and the sensors. The modalities used in this work are EEG and
MEG, which is why I will describe these techniques more detailed in the following.

2.2.1 Electroencephalography

The existence of cortical electrical oscillations was already known at the end of the 19th
century. Inspired by these findings from animal experiments, Berger [10] measured the
first human electroencephalogram in 1924. He discovered that a rhythmic oscillation of
about 10 Hz can be measured from the human cortex using an oscillograph. Today, this
rhythm is well known as alpha waves (8–12 Hz) which are prominent in relaxation and
are considered a fundamental rhythm at rest. Later, further rhythms were classified
and can be attributed to cognitive states and functional processing, respectively. These
are delta waves (below 4 Hz), which are often associated with deep sleep, theta waves
(4–8 Hz), which are often related to learning and memory processes as well as sleep,
beta/high beta waves (12–40 Hz), occurring during mental activity and gamma/high
gamma waves (40–100 Hz) involved in learning, memory and information processing. It
is important to understand, that these oscillations are macroscopic observations that
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Figure 2.4: Sample of a standardized EEG montage (A). Electrodes are placed on a
subject’s scalp (B).

occur simultaneously, but vary in their amplitude at different spatial and temporal
locations, depending on the tasks the brain is processing. Furthermore, the set of
cognitive functions related to the different frequency bands is much wider than outlined
above.

Noninvasive EEG signals are typically measured using silver chloride electrodes that
are connected with the scalp by applying a conductive gel, which provides a constant
reference potential to ensure a stable signal given the high impedance. The electrical
potential at the electrode’s position is measured relative to a reference electrode, at-
tached distantly from the region of interest (e.g. over the mastoid process or at the
ear lobe). A cap with standardized positions helps to generalize and reproduce the
measurements over several sessions and between subjects. The skull, the cerebrospinal
fluid, the dura mater and other tissues affect the spectral bandwidth and the spatial
resolution of electrical potentials recorded from the scalp surface, blurring the signals.
Thus, commonly 19 to 32 electrode positions distributed over the head, based on the
10–20 system, are sufficient to acquire scalp EEG recordings. Nevertheless, high density
EEG montages of 64 up to 128 electrodes aid to improve the measurement by taking
multiple simultaneous measurements of one signal source into account. Figure 2.4 shows
an example set-up using standardized positions and labeling. Even numbers refer to
the right hemisphere while odd numbers refer to the left hemisphere. Furthermore, F
stands for frontal lobe, T for temporal lobe, P for parietal lobe, O for occipital lobe, C
for central sulcus, z for zero and Fp for frontal polar, respectively.

EEG is widely used for clinical purposes such as diagnosis of brain disorders, sleep
monitoring or localization of an epileptic focus. In research, it provides an important
application for investigating brain processes. In addition to the spectral properties
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that characterize brain processes, the event related potential (ERP) is the major phe-
nomenon of investigation. An ERP is a typical low-frequent response to a stimulus
that can be measured at certain EEG electrode positions. However, the signal-to-noise
ratio of an EEG signal is too low to prove the existence in a single measurement in-
terval. Thus, typically a considerable number of repetitive measurements is made after
presenting the same stimulus and averaged afterwards. However, in recent decades the
detection of ERPs and spectral changes in single recording intervals has been increas-
ingly investigated using advanced preprocessing and feature extraction techniques as
well as machine learning algorithms. Such pattern recognition approaches provide the
basis for controlling a BCI, which has frequently been approached using EEG due to
its obvious advantages regarding mobility and noninvasiveness (see Chapter 3).

2.2.2 Magnetoencephalography

Closely related to EEG, magnetoencephalography (MEG) is another noninvasive mea-
surement technique, recording the magnetic fields induced by electrical currents result-
ing from neural activity. The development of the method began its course with the first
measurement of magnetic fields of the human brain by Cohen in 1972 [41]. Because
the magnetic fields that accompany brain activity are very weak, in the range of 10−13

Tesla, highly sensitive sensors are required and measurements have to be performed
in a magnetically shielded room. Biomagnetic fields are measured by magnetometers,
which measure the entire magnetic field variation at their positions and by gradiome-
ters, which measure the gradient of the magnetic field, which is much higher for nearby
sources than for distant sources and thus insensitive to background noise from outside
the lab. In MEG the signals detected from superconducting detection coils are am-
plified by superconducting quantum interference devices (SQUID). Both measurement
units only function properly at cryogenic temperatures and therefore are mounted in a
dewar that stores liquid helium. The helmet-like part of the dewar is positioned directly
over the subject’s head. The detection coils are distributed over the head in a shape
such that they are located approximately 2 cm away from the scalp when the subject is
placed for measurement.

Although MEG provides a comparable temporal resolution to EEG and measures an
effect that is proportional to electrical currents, there are important differences between
the methods. First of all, in contrast to electrical potentials measured from the scalp,
the magnetic fields are only minimally disturbed by fluids, bone and tissue. Therefore,
the signals are less blurred and can be detected with higher spatial resolution, using
denser sensor arrays. The absence of a filter effect induced by volume conduction also
means that higher frequencies can be registered. Secondly, the locations of the respon-
sible sources, for simplicity often assumed to be dipoles, are distinct in EEG and MEG.
The reason is the sensitivity of either method to the orientation of the sources. In the
brain, neurons are situated in the cerebral cortex, also known as gray matter, where
they are arranged perpendicularly to the surface. Since the cortex is folded forming gyri
and sulci, the orientation of a neuron depends on its position. Due to the orthogonal
orientation of the magnetic field relative to the dipole direction, EEG and MEG field
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Figure 2.5: Principle of MEG measurement (A). MEG Dewar positioned over a subject
(B).

distributions of a dipole are mutually orthogonal. According to the physical principle of
magnetic field orientation relative to current orientation, the MEG is mainly sensitive
to currents directed tangentially to the head surface, while radially directed currents
can not be registered by the signal detection coils. In contrast, the EEG measures both
electrical potentials originating from radially and from tangentially oriented currents
but mainly from radial. Consequently, MEG registers activity of neurons located in
fissures (sulci) but EEG measures electrical activity of neurons located primarily on
the outer portion of cerebral cortex (gyri). For this reason, MEG not only measures
similar activity with higher spatial resolution but also complements EEG investigations
that fail to acquire signals sufficiently from within sulci and deeper brain regions. See
Figure 2.5 for a demonstration of the MEG measurement principle. Dashed lines in-
dicate magnetic field lines of the dipoles. Note that in the figure one detection coil is
located in front of the depicted slice, measuring the outgoing magnetic field lines and
the other coil is located behind the slice, measuring the ingoing magnetic field lines.
Therefore, the measured signal change is inverted in either SQUID. This circumstance
produces different signal distributions compared to EEG and is thus important for the
interpretation of topographic maps.

2.3 Single-Trial Brain Signal Decoding

In classical neuroscience evidence for a theory is obtained by statistical testing of brain
processes measured during distinct conditions. Generally, to obtain a sufficient test
distribution for deriving statistically significant differences, a high number of trials is
required in which the same task is repeatedly performed. However, in the last decades
there has been growing interest in alternative analysis methods, yielding new oppor-
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tunities to investigate brain function. Machine learning techniques provide interesting
novelties to the field such as the multivariate view on the data rather than univari-
ate significance calculations. Furthermore, the classification of single trials into one of
several categories provides a direct measure for evaluation of separability of the investi-
gated data. Most importantly, the possibility of deriving decisions, recognized in single
data segments, facilitates the ability to provide neuro-feedback in real-time.

In order to control a BCI, the recorded brain signals have to be processed instanta-
neously. After extracting appropriate features that discriminate between brain states,
these features can be used to represent the input space for a decoder function. For this
purpose, statistical learning or machine learning techniques are applied.

Here I will briefly formally define supervised learning, which is the concept behind
most classifiers applied in this work. A classifier learns some function f(xi,α) that
maps input data xi ∈ RN , i = 1, . . . , l given a set of parameters α, to a set of c class
labels yi ∈ {1, . . . , c}, where xi is an input vector, N is the number of variables, also
known as features, and l is the number of observations. The learning process is termed
training, because data with known class labels are provided to construct the model.
The class label ŷ of a test data vector x̂ can then be determined by application of the
learned model, which operates as a decision function:

ŷ = f(x̂,α) (2.1)

One category of classifiers widely used in neuroscience is constituted by classifiers
constructing a linear decision surface in the N -dimensional space, i.e. an (N − 1)-
dimensional linear hyperplane. These classifiers have in common that they can be
defined by the linear discriminant function

y = wᵀx + b0. (2.2)

where y = 0 defines the hyperplane, and y < 0 denotes that x lies on one side, and
on the other side if y > 0. The weight vector w and the bias parameter b0 offer some
useful properties. First of all, b0 can be considered a threshold parameter that separates
−wᵀx into two classes. Geometrically, b0 defines the normal distance from the origin
to the hyperplane by

d =
b0
‖w‖

. (2.3)

Furthermore, the hyperplane is oriented orthogonally to the weight vector x. The
perpendicular distance of a data point x from the hyperplane can be calculated as

r =
sign(y)(wᵀx + b0)

‖w‖
. (2.4)
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The difference between the different approaches to construct linear classifiers is the
algorithm that determines the weight vector w and the bias b0. From the definition in
Equation 2.2, it is obvious that linear classifiers are primarily suited to discrimination
in binary classification problems.

2.4 Signal Processing

An essential factor for successful recognition of brain activity on a single trial basis, as
required for BCI control, is the extraction of appropriate features, providing sufficient
information to discriminate the control commands. Likewise, machine learning tech-
niques often depend on sparse feature spaces in order to find generalizable solutions.
This requires effective feature extraction, and a reduction of features. Often a substan-
tial reduction of features can be achieved at the signal processing stage, where irrelevant
and redundant features are removed. Generally, there are several basic steps that have
to be applied to electrophysiological data, being commonly heavily contaminated with
noise and artifacts. In the following sections I will describe some basic signal processing
steps required in most BCI applications and largely applied in this work.

2.4.1 Preprocessing

Depending on the features on which the focus is placed for driving a decoding algorithm,
essential preprocessing steps are required to remove unwanted content in the time vary-
ing signal. When processing signals representing electrical potentials, like EEG and
ECoG, the potentials are measured relative to a reference potential. There are sev-
eral possibilities for calculating re-referenced signals, in order to remove background
noise. The method applied depends on the expected brain dynamics. Theoretically, all
electrical charges within the brain sum up to zero. Provided a sufficient number of elec-
trodes is available, the common signal over all electrodes represents background noise.
Thus, in those measurements, especially in ECoG, this common signal is removed from
each channel such that each channel primarily provides local signals rather than also
involving global signals. This method is referred to as removing the common average
reference (CAR). In the case in which a localized activity is of interest, differential sig-
nals between two electrodes are used, which can be calculated by simple subtraction of
the two signals leading to bipolar signals. Several other methods of removing location
dependent signal content are conceivable. This topic is closely related to spatial filter-
ing, which is discussed in Section 2.5.1. In MEG, special reference sensors are available,
which register environmental noise, considering magnetic field lines of several orien-
tations. An algorithm for canceling out noise in MEG recorded with those reference
sensors is provided in [177].

When analyzing brain activity, one is interested in the fluctuation of the signal in
response to an event or dependent on a state. The channel signals obtained in EEG and
MEG generally contain a constant signal offset, which is a multiple of the fluctuations.
In some cases, it is an essential step to remove this DC offset of each channel. This
operation can be performed without information loss in all cases. The DC offset is
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removed by subtracting the signal averaged over a baseline interval, whose length and
position relative to the processed interval depends on the task to be analyzed.

A further effective method for removing noise is the spectral filtering of a signal interval,
where hypothetical or empirical knowledge is required. A basic step is to remove the
line noise, which is done by applying a notch filter with cutoff frequencies around
the line frequency and possibly also further harmonics. When analyzing event-related
potentials, slow signal drifts are removed using a high-pass filter, and high frequencies
by using a low-pass filter. Applying both cutoff frequencies simultaneously is known as
a bandpass filter. With a spectral filter, signal changes assumed to be unrelated to the
process can be removed. Finally, if a reduction of features is of interest, or the sampling
rate is unnecessarily high compared to the low-pass cutoff frequency, down-sampling
the signal to a lower sampling rate can be advantageous.

Finally, several kinds of artifacts play an important role in preprocessing electrophys-
iological data. Eye movements and muscle activity constitute the main sources of
artifacts. For the investigation of neural processing these artifacts are often rejected by
visual inspection. However, a BCI ought to deal autonomously with all kinds of signal
distortions, without requiring additional input from an expert. A frequently applied
method for artifact rejection is based on independent component analysis (ICA), where
the signal is separated into several components assumed to originate from independent
sources. However, the computational effort for this algorithm is high, and the reliability
of this approach for removing solely the artifacts is questionable. A simpler approach
is to exclude intervals from the training set that exceed a specific threshold in terms of
amplitude or signal variance. Taking the artifact problem into account in the design of
BCIs, it is of substantial importance to apply an algorithm that is capable of dealing
with outliers in the data.

2.4.2 Event-Related Potentials

One characteristic of the brain is that macroscopic processing of controlled stimuli is
detectable in electrophysiological signals as potential changes relative to a resting po-
tential. These potential changes, also referred to as event-related potentials (ERPs)
emerge as a typical pattern after stimulus presentation, often at several stages of pro-
cessing at different locations. The occurrence of ERPs is usually in the range of tens
to hundreds of milliseconds. For clear identification of an ERP, the channel data are
adjusted such that a baseline interval, usually prior to the stimulus event, has zero
mean. By conversion, positive and negative evolutions relative to a baseline potential
are denoted with the letter P or N respectively, followed by a number indicating the
time in ms or the number of the occurrence. Two prominent examples are the visual
N1, occurring approximately 100 ms after a visual stimulus reaches the retina, and the
P300 (see Figure 2.6 for an idealized depiction). A common approach in traditional
statistical analysis is to average several hundred intervals, recorded after the same type
of stimuli, to reveal significant results. In single trial analysis, as performed with BCIs,
the reliable detection of an ERP is challenging, which is why several epochs usually
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Figure 2.6: Schematic representation of an ERP.

are averaged before a decision is made. A realistic time course of a single trial EEG
measurement is shown in Figure 2.6 as grey line. The challenge is to decide whether
or not this curve is related to the expected ERP. Features that can be extracted from
ERP measurements include spatial and temporal locations of extrema, the slope and
average of hypothetically defined time segments, and template matching measures such
as the Pearson correlation coefficient.

2.4.3 Frequency Analysis

As stated in Section 2.2.1, brain processes are accompanied by task-specific patterns
of spectral activity, measurable in a frequency range of up to 200 Hz. Even when the
brain is in a resting state, during relaxation and during sleep, there is a wide spectrum
of oscillating activity all over the brain. The fact that event related synchronization
(increase) and desynchronization (decrease) of specific frequencies at different locations
compose a characteristic pattern according to a stimulus or task, renders the frequency
domain a promising representation of features for classification of brain processes.

There are many approaches that have been developed for estimating the spectral density
of a time series signal, ranging from parametric techniques such as the autoregressive
model to non-parametric techniques, which are generally based on Fourier analysis. The
basic approach is to estimate the spectrum using the squared discrete Fourier transform
given by:

F (f) =
∆t

N
‖
N∑
n=1

xne−2πifn‖2 (2.5)

where xn is the nth value of the signal, ∆t is the reciprocal sampling rate and frequency
f is limited by the Nyquist frequency, which is half of the sampling rate. Several ad-
vanced spectral estimation techniques aim to reduce the shortcomings of this approach,
frequently combining Equation 2.5 with window functions to reduce spectral leakage.
Furthermore, reduction of variance of the spectral estimate is achieved for instance by
combining multiple segments of the signal (Bartlett method) or multiple orthogonal
window functions (Multitaper method). Because each of the various methods has its
advantages and disadvantages, which method is the best choice depends on the signal
characteristics that are the focus of the analysis.
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2.5 Feature Extraction Techniques for Brain Signals

with High Time Resolution

2.5.1 Spatial Filtering

In analysis of brain signals, one often is faced with activations that are distributed over
several locations and are simultaneously distorted by diverse types of noise. A proven
method for enhancing the signal-to-noise ratio is the application of spatial filters. For
instance, in the field of magnetic resonance imaging, it is a common procedure to
smooth the 3D-volume by applying a Gaussian filter, which is a well-known smoothing
technique in conventional image processing. Furthermore, in EEG analysis a Laplace
filter often is applied to extract local activity. This kind of filter is also adopted from
conventional image processing, where it is primarily applied for edge detection. Several
other methods exist for feature extraction from measured brain signals. I will introduce
some of them in the next sections. In general, a spatial filter is a set of coefficients,
which generate the filtered signal by composing the weighted sum of a set of values,
originally distributed over several locations. Let x ∈ RC be a set of values measured
at C spatial locations at an arbitrary point in time. The filtered signal x̂ ∈ RD is
calculated as

x̂ = Wᵀx (2.6)

where matrix W ∈ RC×D is a set of D spatial filters wj ∈ RC , j = 1, . . . , D. Conse-
quently, the values in x̂, interpretable as filtered channels, are linear combinations of the
values in x of all channels available. Importantly, the number of spatial filters must not
necessarily match the number of sensor locations. Thus, spatial filtering provides not
only the cancellation of noise but can also serve to reduce the number of informative
signals. The way the values in W are determined depends on the particular spatial
filter method.

2.5.2 Common Spatial Patterns

In the past, the common spatial pattern (CSP) method was frequently used as an
optimal spatial filter in the decoding of EEG signals recorded during motor imagery
[23, 167]. CSP filtering is actually a supervised method, since the class labeling must
be known. The method decomposes the multichannel signals, constructing a filter that
separates two classes by maximizing the signal variance of one class and simultane-
ously minimizing the variance of the other class. Generally, CSP analysis is applied to
bandpass filtered signals using apriori knowledge (the frequency band expected to dis-
criminate between the classes) to constrain the signal variation to specific frequencies.
However, this step is not mandatory for the mathematical formulation of the method.
Let X1 ∈ RC×N and X2 ∈ RC×N be matrices of N -point time series signals measured at
C locations, where X1 holds measurements from one class and X2 from another class.
Assuming that the matrices are centered, the covariance matrices R1 and R2 are given
by

Ri = XiX
ᵀ
i (i ∈ {1, 2}). (2.7)
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The spatial filters W are determined by simultaneous diagonalization, such that

WᵀXiW = Λi (i ∈ {1, 2},Λi diagonal) (2.8)

and
Λ1 + Λ2 = I. (2.9)

The diagonalization can be solved with the generalized eigenvalue problem

R1w = λR2w. (2.10)

The generalized eigenvectors wj, j = 1, . . . , C represent the spatial filters in W, where
λi,j = wᵀ

jRiwj correspond to the diagonal elements in Λi. Importantly, in Equa-
tion 2.10, λ = λ1,j/λ2,j and λ1,j + λ2,j = 1, while λi,j ≥ 0. Consequently, a spatial
filter wj indicates high variance in the first class and low variance in the second class
if λ1,j is close to 1 and vice versa. This property is beneficial for discrimination and
qualifies CSP as a powerful feature extraction method. Note that although C spatial
filter components are calculated (W ∈ RC×C), a selection of a few D components is
sufficient in most cases, resulting in W ∈ RC×D. The filtered signal of a sample point
can be calculated using Equation 2.6. Usually, a log transformation of the variance of
the filtered signal x̂ is used as the feature for classification. Thus, CSP is potentially
suited for extracting sparse feature spaces of dimensionality D if spatially distributed,
time variant signals for two class problems have to be analysed. However, the CSP
method tends to overfit [51] and hence is sensitive to instationarities of brain patterns.

2.5.3 Canonical Correlation Analysis

The Canonical Correlation Analysis (CCA) is a multivariate statistical method devel-
oped by Hotelling [87]. A canonical correlation determines the relationship between
two sets of variables. Here I refer to the sets as the set of predictor variables and the
set of outcome variables. It is an extension of the multiple correlation method which
determines the relationship between a set of predictor variables and a single outcome
variable, which furthermore is an extension of ordinary correlation. From this point of
view, ordinary correlation and multiple correlation can be considered as special cases
of canonical correlation.

Let X ∈ RC×N be a matrix of predictor variables xi, i = 1, . . . , C keeping N obser-
vations each (e.g. N -point time series measured at C channels) and Y ∈ RH×N be a
matrix of outcome variables yi, i = 1, . . . , H keeping N outcomes each (e.g. N -point
time series of H model functions). The aim of CCA is to determine two filter matrices
Wx ∈ RC×min(C,H) and Wy ∈ RH×min(C,H) according to Equation 2.6, where Wx and
Wy are determined such that the correlation ρi(x̂i, ŷi), i = 1, . . . ,min(C,H) between

the ith canonical variables in X̂ ∈ Rmin(C,H)×N and Ŷ ∈ Rmin(C,H)×N is maximal:

X̂ = Wᵀ
xX (2.11)

Ŷ = Wᵀ
yY (2.12)
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max
Wx,Wy

ρi(x̂i, ŷi) =
E(x̂ᵀ

i ŷi)√
E(x̂ᵀ

i x̂i)E(ŷᵀ
i ŷi)

. (2.13)

The solution of the optimization problem is closely related to principal component
analysis, where data are linearly combined such that variance is maximal in the first
principal component. Here, the factorization is performed in parallel for both the
predictor variable and the outcome variables, such that the correlation between both
principal components is maximal. Since in practice; variance is not explained by only
the first component, the remaining variance is explained by further components. This
results in min(C,H) canonical variables and canonical correlations, respectively. The
first canonical correlation is that which represents the strongest relationship between
the linearly combined predictor variable x̂1 and the linearly combined outcome variable
ŷ1. Each of the vectors in Wx can be considered as a spatial filter, while the relevance of
filter wx,i decreases with increasing order i of the canonical variable. A comprehensive
explanation of the mathematical background of CCA is given in [24].

For feature extraction of time series signals, two approaches for extracting features are
conceivable. Either the CCA is applied separately to single trials and the canonical
correlation coefficient represents the feature, or the CCA is calculated for a training
set of aggregated trials and the spatial filter coefficients in Wx are used to reduce the
number of channels and simultaneously enhance the signal-to-noise ratio.

2.5.4 Minimum Energy Combination

Minimum Energy Combination (MEC) was first proposed in a work by Friman et al.
[59] for extracting SSVEP features from multiple channels. Similar to the previously
described methods, this method calculates weights to determine a linearly combined
signal from multiple channels, which can be considered a spatial filter.

Following the definitions of the previous section on CCA, we define X ∈ RC×N as a
matrix of N -point time series xi, i = 1, . . . , C measured at C channels and Y ∈ RH×N

as a matrix of H distinct model functions yi, i = 1, . . . , H. Then the measured signals
can be modeled as

X = Wᵀ
yY + Wᵀ

zZ + E (2.14)

where Wy ∈ RH×C contains the amplitude coefficients that contribute to the portion
with which the modeled signals in Y are represented in X. Similarly, Wz ∈ RC×C

contains the weights that compose the interfering signals Z ∈ RC×N in X and finally,
E ∈ RC×N is a matrix of noise. The idea of MEC is to cancel out the majority of the
interfering signals. To achieve this, the potential model signals Y are first removed
from the measured signal X by orthogonal projection:

X̃ = X−XYᵀ(YYᵀ)−1Y. (2.15)

The result is that X̃ ≈Wᵀ
zZ+E contains mainly interfering signals and noise. In order

to minimize the resulting energy of the combined signals wᵀX̃, a weight vector w must
be found by solving the optimization problem

min
w

∥∥∥wᵀX̃
∥∥∥2 = min

w
wᵀX̃X̃ᵀw (2.16)
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constrained by the assumption ‖w‖ = 1. The optimization can be solved by determining
the eigenvalues of X̃X̃ᵀ. The solution is the eigenvector v1 corresponding to the smallest
eigenvalue λ1. Since the eigenvectors v1, . . . ,vC are orthogonal, the signals in X̃ are
uncorrelated. Furthermore, the energy represented by λ1, . . . , λC increases. Note that
the lowest energy in λ1 is determined by components containing the lowest amount of
interfering signals. Thus, the first D eigenvectors represent the components removing
most interfering signals. Normalizing the eigenvectors to equal energy, the spatial filter
matrix W is obtained by

W = (
v1√
λ1

. . .
vD√
λD

)ᵀ. (2.17)

Selecting the number of filtered signalsD is a matter of empirical selection. A suggestion
by Friman et al. [59] is to choose D as the smallest number for which the following
holds:

D∑
i=1

λi >
1

10

C∑
i=1

λi. (2.18)

This approach aims to discard 90% of interfering signals. After applying Equation 2.6,
a signal with improved signal-to-noise ratio is extracted for further processing, given
the measured signals contain the assumed model function.

2.5.5 Maximum Contrast Combination

An extension of the previously described method is the Maximum Contrast Combina-
tion (MCC), which was also introduced in the paper of Friman et al. [59]. The idea
is to maximize the energy of the modelled signal Y simultaneously to minimizing the
energy of the interfering signals Z in Equation 2.14. Considering the contrast function

max
w

‖wᵀX‖2∥∥∥wᵀX̃
∥∥∥2 = max

w

wᵀXXᵀw

wᵀX̃X̃ᵀw
(2.19)

we obtain the optimization problem of maximizing the generalized Rayleigh quotient
of real-valued matrices and vectors. The maximum can be determined by finding the
eigenvector with the largest eigenvalue. Thus, a generalized eigenvalue decomposition
of the matrices XXᵀ and X̃X̃ᵀ reveals the solution of the optimization problem, where
the eigenvectors corresponding to the highest eigenvalues define w. The generalized
eigenvalue decomposition reveals C eigenvectors, where the vectors corresponding to
the D highest eigenvalues are assumed to provide sufficient information to maximize
the signal-to-noise ratio. Following the suggestion of Friman et al. [59], D is selected
by the vectors vi that satisfy λi > N/(N −H), resulting in

W = (vi . . . vC)ᵀ, where {i|λi > N/(N −H)}. (2.20)

After applying Equation 2.6, the filtered signal contains D time series with increased
signal-to-noise ratio, given the modeled signals are included in the measured signals.
This is achieved by removing interfering signals and simultaneously enhancing the en-
ergy of modeled signals, i.e. by maximizing the contrast of an assumed signal and
noise.



3. State-of-the-Art in
Brain–Computer Interfacing

3.1 Intention of Brain–Computer Interfaces

The term brain-computer interface (BCI) refers to a category of implementations aiming
to directly translate brain activity into device commands or feedback presentations.
Various fields of applications are in the focus of this research area which emerged about
three decades ago. Examples include communication devices for spelling [36, 54, 207]
or software control [94, 136, 196], manipulation devices for motor substitution [61,
146], rehabilitation purposes [162], and attention training [117]. Due to the numerous
conceivable applications, several synonymic terms exist in the literature, e.g. brain-
machine interface (BMI), brain–neural–computer interface (BNCI) or simply neural
interface. The general functionality of such a system is shown in Figure 3.1. A BCI can
be considered as a closed–loop system: The user volitionally modulates, depending on
sensory feedback, his neural activity to induce an intentional action. Brain activity is
measured and instantaneously decoded in order to send control signals to an effector.
The effector’s feedback enables the user to respond appropriately, which closes the loop.
The majority of BCI related literature reports findings obtained from offline analyses,
where no connection to a brain was established and nothing was fed back. These so
called open-loop BCIs investigate potential algorithms and speculate about a possible
outcome in a closed-loop system. However, feedback has considerable influence on the
course of an experiment, and consequently, the brain signals would differ from the
activity used for the simulated system.

The target group of a BCI basically is represented by persons who have lost any ability
to initiate muscle activity through the peripheral nervous system. Nevertheless, many
approaches depend on minimal peripheral abilities like eye movements or even combine
sustained peripheral function and brain activity to develop hybrid systems. Currently,
there is strong interest in establishing BCIs in the field of neurorehabilitation (e.g. in
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stroke) and neurofeedback (e.g. for treatment of attention deficit and hyperactivity
disorders (ADHD) [201]). Thus, the target group is much larger than the commonly
referred to locked-in patients. In this work, the focus lies on solutions for complete
paralyzed persons and persons with minimally sustained peripheral functions.

Figure 3.1: Schematic demonstration of a BCI’s closed–loop.

3.2 Invasive BCIs and Noninvasive BCIs

Diverse recording techniques exist, and all have advantages and disadvantages. In
general, the differences refer to signal quality, temporal and spatial resolution, practi-
cability and medical risks. In order to acquire brain signals in the form of electrical
fluctuations with a low signal-to-noise ratio and high spatial resolution, a derivation of
electrical potentials directly from the surface of the cortex is required. An even more
detailed mapping of neural network activity is provided by microelectrode arrays con-
sisting of microwires. These kinds of electrodes are designed to measure single unit
activity (SUA), which means that it is possible to determine the firing rates of indi-
vidual neurons. Microelectrodes are positioned within the gray matter of the brain,
which is why this technique is also termed intracortical recording. While SUA reflects
intracellular or extracellular activity of individual neurons, multi unit activity (MUA)
is the term for the recording of extracellular action potentials from several neurons in
the vicinity of the electrode tip. A third application of microelectrodes is the recording
of local field potentials (LFP). In contrast to SUA and MUA, which measure spike sig-
nals resulting from neural firings, this modality measures the superimposed electrical
activity from a population of neurons in the vicinity of 0.5 up to several millimeters.
The disadvantage of these highly invasive techniques is the fact that the brain tissue
is penetrated, long-term use has not been approved, and the risk of an infection or
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inflammation is extremely high. Due to the high invasiveness of micro electrodes they
are, for obvious ethical reasons, mainly applied in animal research. In the field of BCI,
spike activity driven manipulator control has been demonstrated with rats [38] and
monkeys [34, 210, 220]. Despite the high medical risk, there are also attempts to apply
microelectrode arrays for BCI control in humans [78, 79]. However, beside the problem
of a sterile signal conduction, the main challenge is the fact that chronic implants suf-
fer from tissue reaction. This means that the brain mounts an inflammatory immune
response to foreign materials which causes the reorganization of neurons. Thus, there
is considerable effort required in electrode design to establish biocompatibility of cor-
tical electrodes (see Polikov et al. [160] for a review). The long term establishment of
microelectrode driven BCIs for humans is an ambitious goal of the BrainGate project
[194].

A more frequently used invasive intracranial, i.e. derived from inside the skull, mea-
surement technique in humans is the electrocorticography (ECoG). ECoG electrodes are
placed directly on the cortex tissue (subdural) or on the dura mater (epidural) which
is a membrane enclosing the cerebrospinal fluid. The electrodes are typically arranged
as grids or strips with electrode spacings of 1 cm or a few millimeters (high density
grids). Thus, the spatial resolution is lower compared to LFP, MUA or SUA record-
ings. However, a larger part of the brain is covered providing insights into functional
connectivity in the brain. Although a relatively large neural ensemble is represented
in the electrical activity measured by these kinds of electrodes, the spatial resolution,
the spectral bandwidth and the signal-to-noise ratio (SNR) are superior to noninvasive
acquisition of electrical activity. Despite the fact that a craniotomy is required to place
ECoG electrodes, meaning that a part of the skull is removed, this modality is more and
more frequently applied in brain function research studies [45, 46, 58, 133]. However,
the ethical limitations are similar to those of microelectrode implants. Experimental
investigations with ECoG signals are only possible due to clinical procedures that re-
quire such kinds of intervention. For example, monitoring epileptic seizures for surgery
planning is one possible clinical requirement for ECoG recordings. Some researchers
recognize ECoG as a promising signal platform for BCI [183]. Consequently, there is
much effort to use electrocorticographic signals in the field of BCI research in order
to exhaust potential access to brain signals [30, 115, 184]. A key feature of ECoG is
the advantageous characteristic that extraction of high gamma activity is possible (fre-
quency range between 60Hz and 150Hz), which is not, or only with limited success,
possible with measurements from the scalp. This kind of activity has been found to
accompany many functional processes, like motor execution [45], auditory perception
[44] and language processing [52]. Thus, valuable benefits would be available with the
ECoG modality for development of BCI systems.

The term noninvasive BCIs refers to implementations that do not rely on measure-
ments that induce any injury. Examples of noninvasive recording techniques include the
electroencephalography (EEG), magnetoencephalography (MEG), near-infrared spec-
troscopy (NIRS) and functional magnetic resonance imaging (fMRI). Although NIRS
and fMRI provide very low temporal resolution, there have been considerations of BCI
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applications with these kinds of modalities in the past [39, 179]. A much better tempo-
ral resolution, which facilitates real-time processing in the sense of the human cognitive
processing time scale, is provided by EEG and MEG. Both modalities measure the elec-
trical activity of the brain indirectly by acquiring effects of the superimposed currents of
relatively large population of firing neurons. Specifically, as explained in Section 2.2.1,
the EEG measures changes in the electrical potential on the scalp surface with electrodes
mounted to the skin. In contrast, the MEG measures changes in the magnetic field in-
duced by the currents of electrochemical processes in neurons. The physical relationship
between the direction of magnetic field lines and the electrical potentials of a dipole, as
well as the theory of current flow in neurons and their alignment in the cortex, implies
that EEG and MEG measure complementary signals [68]. The unique advantageous
feature of EEG is the fact that this technique is currently the only noninvasive recording
technique that provides mobile hardware solutions and is applicable outside a lab. For
that reason, most BCI development concentrates on EEG signal acquisition, processing
and decoding [123, 132]. However, EEG suffers concurrently from a very low spatial
resolution and bad detection of higher frequencies, which have been shown to represent
valuable information for BCI control. Reliable BCI control requires control strategies
that rely on activations of spatially well-separated brain regions. Furthermore, the low
signal-to-noise ratio requires repeated or prolonged execution of the control task to per-
mit reliable detection. Thus, only a very small number of different conditions, obtained
during long time intervals, can be distinguished in EEG measurements, leading to a low
information transfer rate for the BCI. While the temporal resolution of MEG is com-
parable to that of EEG at less than 1 ms, the spatial resolution is advantageous in the
sense that a denser array of sensors captures less distorted neuronal signals. The dis-
tortions in electrical potential recordings on the scalp stem from inhomogeneities in the
head, since the different tissues between electrode and cortex have different electrical
conductivities. In contrast, the magnetic permeability of these tissues is constant and
thus has less influence on the magnetic fields. However, there is controversy in the liter-
ature concerning the accuracy of source localization with both modalities. This seems
to originate in the methodological approaches applied. Some studies report comparable
accuracy between EEG and MEG source localization [42], while others have found EEG
to be superior to MEG [120] and vice versa [88, 110], with some able to improve the
localization accuracy by combining EEG and MEG sensors [60, 120]. An uncontrover-
sial aspect, however, is the fact that MEG records complementary signals, namely only
tangential components of dipoles and no radial components as is the case with EEG.
Consequently, MEG could serve to reveal sources not covered by EEG measurements.
Nevertheless, due to its high expense and restrictions according to laboratory environ-
ments, MEG has rarely been considered for obtaining control signals for BCI [31, 128].
Development of new wearable magnetometers, which already is in progress, as initially
demonstrated by Sander et al. [181], could change the view MEG, making it a potential
modality to be used for BCI control.

In conclusion, the question whether invasive or noninvasive modalities are preferable
for a specific BCI remains dependent on the goal of the project. For example, the med-



3.3. Typical Brain Responses for BCI Control 27

ical risk of an invasive BCI must be related to the benefit the user could achieve with
the system. Finally, all of the recording techniques are accompanied by advantages and
disadvantages. Consequently, for all modalities development towards beneficial features
could render the technique more attractive for BCI systems. A summary of advanta-
geous and disadvantageous features of modalities considered for BCI development is
given in Table 3.1. The spatial resolution shown in this Table is an estimate of the
accuracy in determining the source space, which is not necessarily the distance between
the sensors. An important fact concerning NIRS and fMRI is that these modalities
measure the haemodynamic response rather than electrical activity. Thus, neurofeed-
back would be delayed by at least four to five seconds. For completeness, the existence
of further brain activity recording techniques has to be mentioned, e.g. invasive depth
electrodes, noninvasive positron emission tomography (PET), and single-photon emis-
sion computed tomography (SPECT). However, these techniques have less importance
in BCI development.

Modality Invasiveness Time scale Spatial Resolution Mobility
SUA high <1ms 0.01mm bedside
MUA high <1ms 0.1mm bedside
LFP high <1ms 0.5mm bedside
ECoG considerable 1ms 1.25mm bedside
EEG none 1ms 10mm lab/home
MEG none 1ms 5mm lab
NIRS none 0.1s 5mm lab/home
fMRI none 2s 1mm lab

Table 3.1: Features of modalities

3.3 Typical Brain Responses for BCI Control

Although neuroscientific research has identified a large number of brain functions, which
have been proved to show specific effects in certain brain regions, only a couple of brain
signals are used to control neurofeedback systems. The main reason for the restricted
pool of brain signals is that the measured signal must be strong enough to be detectable
in single trials or at least in averages over a few trials. The classical approach to provide
evidence of brain function is to average hundreds of single trials, recorded over several
minutes in order to prove statistical significance of the effect to be verified. In contrast
to the statistical approach, single trial analysis provides a direct measure of relevance,
namely the accuracy with which a trial can be correctly detected. If this accuracy is too
low, reasonable use of a BCI is impossible. A further criterion for a BCI control signal
is that the user must be able to voluntarily induce the brain signal (active BCI) or must
be able to influence the perception of an external stimulus (reactive BCI). Since those
tasks require high attention, BCIs often demand a strenuous cognitive load for users.
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3.3.1 Activity Induced by Real and Imagined Movement

Apparently, in the noninvasive domain only a few phenomena meet the previously de-
fined criteria. A well-known idling rhythm of the brain comprises alpha waves, which
occur in the frequency range around 10Hz and show strongest amplitudes over the vi-
sual cortex with the eyes closed. Alpha waves have been found to be an indicator of
relaxation and, if decreased, of attention. Already in the 1970s biofeedback guided self-
regulation of brain waves was propagated [144]. However, alpha waves are not suited
to actively controlling a BCI; they were merely able to serve for monitoring purposes.
A brain wave related to alpha waves is the sensorimotor rhythm (SMR), which appears
over the sensorimotor cortex during rest and is present in most humans between 10Hz
and 20Hz [14]. In the literature, sensorimotor brain waves between 8Hz and 15Hz are
also referred to as the µ-rhythm [16]. When a person is moving or even imagines mov-
ing, the SMR amplitude decreases. This phenomenon is known as event-related desyn-
chronization (ERD). Consequently, when the person resumes relaxation, event-related
synchronization (ERS) can be observed [155]. Due to the similarity of brain activ-
ity during real movement and imagined movement, when targeting motor substitution
applications, ERD/ERS is utilized in many BCI studies, e. g. [104, 156, 166, 224].
However, the SMR has also been used for BCI control in applications unrelated to
movement, e. g. for spelling [19]. The advantage of this type of signal is that it can be
spontaneously induced by the user and does not depend on external sensory stimula-
tion, enabling active BCI control. However, the number of separable alternatives is low,
allowing a maximum of three controllable degrees of freedom [125]. This is accompanied
by intense user training. Another important fact is that the SMR is not detectable in
a considerable proportion of people, while others are able to learn to modulate their
SMR during extensive training.

A second type of brain signal, which is closely related to the SMR and was also initially
applied for biofeedback self-regulation purposes [17], is the slow cortical potential (SCP).
Technically, the SCP is a slow potential shift occurring over 0.5-10s [223]. Similarly to
the SMR, a negative shift reflects cortical activation while a positive shift is associated
with reduced activation [178]. The so-called thought–translation device, developed by
Birbaumer and colleagues [15, 107], was the first BCI speller relying on SCPs and
importantly, it was validated directly with the target group of users, namely locked-in
patients. The proven complete independence from muscle activity is a clear advantage
of this approach. One drawback of the approach, however, is the intense user training
of more than 100 sessions of 5 to 10 minutes to achieve moderate self-control (70-
80%). Furthermore, only one binary decision can be made within several seconds, which
implies a very low information transfer rate. For communication purposes of locked-in
patients, this might be acceptable, since it restores their ability to communicate at all.

3.3.2 Event-Related Potentials

Another type of brain signal applied for BCI control is the event-related potential
(ERP). The most commonly applied ERP in this field is the P300 potential [76], which is
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evoked approximately 300ms after an unexpected stimulus occurs and can be measured
over anterior parietal sites. Classically, the P300 is evoked in the so-called oddball
paradigm, in which a rare deviant stimulus is randomly presented in a series of irrelevant
standard stimuli. The perception of the rare target stimulus elicits the typically 300ms
delayed positive potential change. The first BCI using this paradigm was a matrix
speller, introduced in 1988 [54]. In this speller a matrix is presented, consisting of a
series of letters (typically 6 by 6) whereby stimulation is realized by shortly changing the
colour intensity of letters in entire columns and rows. The user focuses on the letter to be
selected and pays attention to the intensification of only the target letter while ignoring
the remaining letters. The decoder detects whether or not a resulting P300 response was
elicited and concludes, after a series of row and column stimuli, which was the intended
target letter. This approach was followed by a vast number of studies aiming to improve
the accuracy and the speed of the system [37, 80, 82, 90, 114, 143, 191, 206]. The fastest
system was achieved using invasive recordings (113 bits/min) [30]. In most studies, the
authors argued that the P300 based matrix speller does not depend on eye movements,
due to the attention-based source of the signal. However, it has been shown that the
accuracy of the speller decreases considerably if the user does not focus on the target
letter but rather on a central fixation cross [29]. One reasonable rationale is the fact
that perception and recognition of an intensification in the peripheral visual field is more
difficult, but the main reason appears to be the contribution of stronger visual potentials
that are evoked when fixating the target letter [30, 57]. The main advantage of the
speller is the high number of symbols that can be selected after a short series of stimulus
presentations. Primarily, the detection of the P300 is a binary classification problem,
which reveals the presence or absence of the potential. Relatively fast yet numerous
stimulus repetitions facilitate determination of the time points at which the P300 occurs.
The attended symbol can be determined from these time points. Furthermore, the user
does not need to train for the task or any kind of self-regulation. The popularity of the
paradigm demonstrates the predominance of advantages relative to other item selection
paradigms. Disadvantages of ERPs are the dependence on external stimuli and the
difficulty to perform asynchronous control and detect the user’s idle state, respectively.
Furthermore, the duration needed for one selection is too long to facilitate continuous
prosthesis control.

Another ERP relevant for BCI control is the so-called error potential. An early com-
ponent, which is evoked in fronto-central regions after an error is recognized by a per-
son, is the error-related negativity (ERN). Subsequently, a positive component can be
measured over centro-parietal regions. A reliable detection of error potentials could
facilitate the correction of errors made by the user (erroneous response) [20, 148] or by
the system (erroneous feedback) [32, 56, 185]. Since the accuracy of error detection is
moderate with current approaches, considerable development is required to establish
error correction with beneficial outcome.
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3.3.3 Visual Evoked Potentials

As mentioned above, the visual evoked potential (VEP) plays a sufficient role in gaze-
dependent matrix spellers. The question then arises, whether the VEP alone can be
used to control a BCI. Since the VEP is strongest when stimuli are projected onto the
fovea, fixation of the target stimulus is required. Although efforts in VEP-guided BCI
control based on covert attention have been made, e.g. selective attention [5] and spatial
attention [97, 209], higher information transfer rates can be achieved in overt attention
mode. Accordingly, the decoding of overtly attended VEPs is an indirect decoding of
eye gaze. Similar to the P300 potential, the VEP is too weak in single-trial EEG to
reliably detect a visual stimulus. Consequently, several successive visual stimuli with
known temporal onset must be presented to decode the observed target area. Thus,
transient VEPs [227] require sufficient time to be detected. However, it appears that
rapidly repeated stimuli with constant delay evoke a steady state visual potential over
cortical sites attributed to early stages of visual perception. The frequency of the visual
stimulation produces an amplitude increase of the same frequency in the brain response
[211]. These steady state visual evoked potentials (SSVEP) have been applied in many
studies investigating BCI control [231]. Applications have also been implemented in the
fields of mind speller [36, 212] and device control [216, 217, 230]. Also, demonstrations
of brain-actuated control of prosthetic manipulators operating with two degrees of free-
dom have been reported [85, 140]. Some authors have substituted the frequency-based
stimulation with presentations of binary coded flash sequences referred to as c-VEP
and have reported improved information transfer rates (up to 144 bits/min) compared
to SSVEP [12, 198]. Dependent on the stimulation equipment, a multitude of simulta-
neous oscillations are possible, providing a relatively high number of selectable targets
[62]. Typically frequencies between 6 and 20 Hz are stimulated with BCI systems, but
SSVEPs can be elicited up to 90 Hz [72] and have even been used for BCI control in the
range of 37 to 40 Hz [50]. The high number of selectable items is one advantage. An-
other one is that no user training is required. Importantly, SSVEPs have the potential
to be detected asynchronously to facilitate spontaneous BCI control [36]. Unfortunately,
similarly to all the other noninvasively accessible brain responses, the speed of SSVEP
detection is too slow to control prostheses continuously. A further drawback is that
the perception of the flickering stimuli is unpleasant and can be sensed as annoying,
stressing the user over time.

All the brain signals introduced so far are used in noninvasive BCIs and are primar-
ily applied with EEG. In general, all the signals are global effects following complex
cortical processes in the proximity of the electrode, where a vast quantity of neurons
simultaneously respond to a specific stimulus or task. Due to the low signal-to-noise
ratio provided by EEG, the low number of spatially distinctive patterns measurable,
and the prolonged timing of the paradigms used, realistic control of a prosthesis is im-
possible. In contrast, if it is possible to acquire spatially highly resolved activity from a
small population of neurons or even single neurons, a direct translation of an intended
action could be instantiated. This invasive approach has already been demonstrated in
studies where microelectrodes were implanted in primates [34, 210] and even humans
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[78, 79]. The decoder is represented by a filter, commonly a linear model, that projects
neural activity onto movement parameters. It has also been shown that features of high
gamma activity in human ECoG are tuned to kinematic parameters [105, 133, 158, 182]
and cognitive functions [52, 150]. A strong correlation between neural spike activity
and ECoG high gamma activity has been shown in terms of firing rate and synchrony
[168]. The advantageous spatial resolution of high gamma features is indicated by a
more focal localization compared to lower frequency band features [133]. Concluding
regarding the capabilities of the types of brain signals that have been investigated so
far, invasive measurement techniques currently seem to be the only way to develop a
prosthetic device that directly translates neural motor activity.

3.4 Dependent and Independent BCIs

The design of a BCI strongly depends on the requirements the system has to meet in
order to be suited to the targeted user group. From a theoretical point of view, due to
the poor signal quality compared to alternative communication channels, BCIs appear
to be reasonable only if no other communication channel is available, i.e. the user
has completely lost motor control and remains in a locked-in state. Otherwise, muscle
activity signals from the electromyogram (EMG), speech recognition software or eye
tracking systems could serve as more reliable communication channels. However, in a
variety of applications, BCI research ignores the locked-in requirement. Rather, BCI
is considered as an extension to existing assistive technologies [132], is developed for
entertainment purposes, and is supposed to influence neuroplasticity in rehabilitation
interventions. Nevertheless, only when the BCI is completely decoupled from peripheral
neural activity, is it termed an independent BCI. Other BCIs often depend on eye gaze
or even on further motor capabilities of the user and are termed dependent. Only a few
implementations fulfill the independence constraint. Particularly speller devices often
rely on directing eye gaze to target letters. Focusing attention on a target by eye gaze
is also termed overt attention. In contrast, when a fixation cross is visually focused
upon while a peripheral target is attended, spatial covert attention is applied. Another
possibility for revealing independence from eye movements is to present targets and
standards equally in the center of the visual field but at different points in time. This
approach is called selective covert attention and was, for instance, the approach used
by one study to reveal independence in a P300 based speller [208]. A non-controversial
form of covert attention is applied in paradigms solely based on auditory perception.
However, auditory stimulation yields a low information transfer rate, as demonstrated
in some studies probing auditory BCI control [66, 100]. In summary, only mentally
induced activity may be used to control an independent BCI. This is only possible
with tasks where brain activity which is evoked by the processing of a stimulus itself
is unlikely to be involved in the discrimination of categories, e.g. covert attention, or
in absence of any stimulus, e.g. categorical imagery and mental tasks. Finally, as long
as healthy subjects are employed to test a system, the independence of a BCI is not
proven unless tested with locked-in patients. Some studies with patients suggest that
BCIs considered to be independent, do not necessarily succeed in completely paralyzed
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patients [74, 106]. In contrast, BCI performance appears to be independent by patient’s
physical impairment if residual abilities are present [106, 143, 190]. Consequently, the
conscious abilities to control a BCI of patients who are caught in a completely locked-in
state are not sufficiently identified and thus the need for completely independent BCIs
is an open question [40].

3.5 Synchronous and Asynchronous BCIs

Most BCI systems present cues at defined points in time, expecting the user’s com-
mand within a given interval. The rigid timing provides the advantage that the system
is equipped with a very important piece of information which is very difficult to decode
from brain activity: the onset of a spontaneous, volitional action intended to control
the system. In such a synchronous mode, the user is constrained to perform an action,
whether or not he or she wants to do so. Spellers often work synchronously. This is
acceptable as long as the user wishes to communicate, but when the user relaxes, the
systems turns to writing random text. Even the simplest form of movement initia-
tion, moving a cursor on a screen, has only been shown in cue-based paradigms (e.g.
Wolpaw and McFarland [224]) and often provides no option to rest. In real-life appli-
cations, a system would be required to determine not only which command is to be
executed but also whether a command is intended at all. This is an important require-
ment for BCIs suitable for everyday use, particularly for motor substitution purposes.
However, asynchronous BCIs have rarely been implemented due to the challenging
detection of resting intervals and intrinsic activation onsets, respectively. Successful
implementations of asynchronous BCI applications have been reported for SSVEP de-
tection [36, 85, 140, 147], which is obtained by applying an amplitude threshold to the
ongoing brain activity. Also, a P300 based asynchronous solution was proposed [229].
A more challenging task is the detection of a movement intention. An offline study
of invasively assessed brain activity demonstrated the possibility of detecting intended
movement onset and direction [218]. In an offline EEG study, the detection of self-paced
reaching movement intention was demonstrated [116]. Although asynchronous control
of a mobile robot [131] and a wheelchair [61] controlled by imagery tasks has been
demonstrated, the accuracy of noninvasive BCIs is not suitable for reliable control of
prosthetic devices in a continuous, asynchronous fashion. Nevertheless, asynchronism,
i.e. the capability of spontaneous control, is an essential necessity for prosthetic BCI
control.

3.6 Decoding Brain Activity Measurements

3.6.1 Feature Space Generation

An essential step for reliable decoding of brain activity is the translation of the input
signal to an appropriate feature space. Commonly, measured brain activity is repre-
sented by several thousands of variables, involving redundancy and a high level of noise.
Thus, the aim of feature extraction methods is to identify the informative signal and to
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reduce the number of variables to a number reasonable for classification. For retaining
the time-varying signal course as the feature space, a considerable amount of noise and
redundancy can be removed by preprocessing steps like spectral filtering and resam-
pling (see Section 2.4.1). For instance, such bandpass-filtered signals have been directly
used as features by concatenating the time series of several channels [2, 57, 82] or by
selecting peak values [9] or the averaged signal [188, 208] in hypothetically predefined
time intervals.

A widely used representation of brain signals is the frequency domain. To translate time-
varying signals to spectral features, methods based on the Fourier transform, like the
power spectral density [61, 140, 152] and multi-taper [92, 164], as well as wavelet analysis
[77] have been used. Another form of spectral analysis commonly used to recognize
motor activity is the autoregressive model (AR) [103, 126] and its time-varying variant
termed the adaptive autoregressive model (AAR) [64]. Also, connectivity measures such
as the phase locking value have been shown to be suitable for classifying brain activity
[28].

The translation of the raw data into a different representation is one part of feature
space generation. Another part is the reduction and compression of the feature space,
respectively. One prominent method known in the field of pattern recognition is princi-
pal component analysis (PCA), which is a linear transformation that retains the char-
acteristics inducing highest variance in the data set, ordered in components. Despite
the popularity of this effective dimensionality reduction, this method is only moder-
ately used for BCI control [114]. Instead, because of the representation of the signal
in several channels, in many studies the purpose of feature reduction lies in selecting
informative channels. Often this is done by hypothetically selecting the channels that
are located over brain regions where responses to the task are expected [4, 36, 102, 192].
An algorithmic solution for selecting channels is, for instance, recursive channel elimi-
nation [75, 109], which was derived from the more general approach termed recursive
feature elimination [65]. As a nested method, the final feature set is found after mul-
tiple classification cycles. A similar procedure has been pursued by stepwise regression
[29, 30].

Considerable improvements could be achieved by linearly combining the signals of sev-
eral channels to concentrate the informative signal into a few channels. These spatial
filter methods have been applied for classifying event-related potentials [199], frequency
detection [13, 118] and for extracting ERD features [101, 102, 154]. Particularly when
motor activity was to be classified, spatial filtering showed improved performance [139].
While there are various spatial filtering methods available, they can be divided into
supervised and unsupervised methods, depending on the requirement of involving cat-
egorical information. The additional information provided for calculating supervised
spatial filters permits higher accuracy as compared to unsupervised spatial filters as
shown by Hoffmann et al. [81], who proposed a spatial filter, which is based on a solu-
tion to a generalized eigenvalue problem. Further examples of spatial filters have been
shown by Rivet et al. [176], who propose an algorithm closely related to CCA and by
Wang et al. [215], applying the so-called blind source separation algorithm. Further
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feature extraction methods used for BCI are the matched filter approach [192] and tem-
plate matching [9], generating a feature space that relies on correlations between the
brain signal and a template signal.

All feature extraction and reduction methods described above can be applied in an
automatic fashion. However, frequently the selection of features is performed by the
experimenter’s subjective experience, picking out manually a number of features show-
ing statistical differences [97, 188]. Clearly, this approach makes a BCI impractical
for independent, spontaneous use. Note, that the approaches described in this section
provide an insight into the variety of methods used so far, but there are many more
algorithms and modifications published in the field of BCI.

3.6.2 Decoding Algorithms

The core component of a BCI consists of an appropriate algorithm that translates a set
of features obtained from brain signal recordings into an output signal. In general, two
kinds of output signals can be distinguished, relying on different decoding approaches.
The first kind of signal is a continuous output generated by a function that maps the
feature input to a real-valued output value. Commonly, this is achieved by linear re-
gression or state transition methods like the Kalman filter [124, 158]. For example,
the reconstruction of hand position was obtained by a linear model that maps primate
SUA/MUA [34] and human ECoG recordings [182], respectively, to spatial coordinates.
However, the most commonly used, second kind of output signals is, due to the low
signal-to-noise ratio in noninvasive recordings, the classification of the data samples
into a few distinctive classes. In the majority of cases, only two discrete categories are
distinguished, which is also known as binary classification. The most popular classifiers
for BCIs are linear classifiers. This seems to be due to the high number of features
which is accompanied by a low number of samples, making the training set easily lin-
early separable and providing insufficient information to model nonlinear relationships.
Although diverse approaches using nonlinear classifiers exist, they have not yet been
established for particular BCI applications. So far, a multitude of classifiers and devi-
ated variants have been used for BCI research. The methodological reviews of Lotte
et al. [123] and Bashashati et al. [8] together specify more than 40 classification algo-
rithms, ignoring the diverse combinations with feature extraction methods or classifier
combinations. Thus, only a subset of frequently used algorithms will be mentioned
here. Linear discriminant analysis (LDA) [19, 53, 114, 156] and the related Fisher’s
linear discriminant [89, 102], including its regularized [21, 57, 137, 208] and stepwise
[121, 206] variants, are the most frequently used learning algorithms in the field of BCI.
A further popular classifier for BCIs is the support vector machine (SVM) algorithm
[149, 164, 180, 204]. The option of using radial basis functions (RBF) and other nonlin-
ear kernel functions [63] besides the standard linear kernel renders the SVM a flexible
and powerful learning algorithm. The reason is that the number of features in brain
signal decoding is often high compared to the number of samples. The SVM has proved
to generalize well for this kind of data set (curse-of-dimensionality [18]) thanks to the
regularization parameter. Neural networks (NN) have been applied in many variants
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with multi-layer perceptrons (MLP) being the most frequently applied NNs [63, 89].
Furthermore, decision tree approaches [129] and the advanced method of random forest
classifier [2] have been used for BCI control. In other studies, Bayesian and Gaussian
classifiers [82, 131, 152] as well as the k-nearest neighbor (kNN) approach [96], have
been probed. Another work used k-means clustering to identify the presence of SSVEP
signals [161], showing improved accuracy in asynchronous control mode. In some cases
a simple threshold detection approach appears to be sufficient to decode the brain state
from a small set of features, as it was performed in several studies [9, 108, 184]. Finally,
the choice of which decoding algorithm to use for a specific application depends on the
type of signals to be classified, the feature set used, and the researcher’s preferences.

3.7 Hybrid Approaches

All the characteristics described in the last sections offer advantages and disadvantages.
The idea behind hybrid BCIs is to combine different methods, exploiting their beneficial
features to improve accuracy, reliability, or speed of the system. In BCI development,
a hybrid system could mean the combination of many sorts of methods: Different ac-
quisition modalities, stimulation modalities, types of brain signals, decoding algorithms
and even other biosignals unrelated to brain activity. In their review, Millán et al. sug-
gest that BCIs might be used as additional channels to enhance conventional assistive
technologies, due to the limitations of both BCIs and existing assistive products. To
date, various constellations have been studied for improved brain–machine interaction.
For instance, eye gaze input was combined with EEG-based motor imagery detection,
intended to overcome the Midas Touch problem, which is typical in eye tracking systems
working with the dwell time approach [228]. An indirect measure of eye movement is the
electrooculogram, which has been combined with ERD detection for machine control
[163]. In another study targeting alternative biosignals as additional input channels, the
electromyography was fused with EEG activity [113], which was found to yield higher
performance than individual modalities and was later evaluated in a clinical setting
[152]. Zimmermann et al. [232] demonstrated that biosignal measures can improve
the detection of motor execution with NIRS. In the field of multimodal brain imaging
systems, only the combination of NIRS and EEG [55] has been investigated for BCI
use. Consequently, the investigation of combined EEG and MEG,as targeted in this
work, is due.

The greatest efforts have been made in combining multiple brain signals. Some examples
are the combination of ERD and SSVEP [3, 4, 27, 86], SSVEP and P300 [214, 225, 226]
and ERD and P300 [122], respectively. The combination can consist of simultaneous
application of brain signals for the same task or separated application for distinct com-
mands. Furthermore, the hybrid BCI can process the inputs simultaneously to increase
the input band-width or sequentially to exploit task-specific suitability of the input sig-
nals. For example, one input signal could turn the actual communication device on and
off, which is termed in the literature the so-called “brain switch”. Also, the correction of
erroneous mental commands by detecting error potentials [48, 197] as a complementary
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brain signal can be considered hybrid. Finally, combining feature extraction methods
[35] and classification methods [111] is termed hybrid as well. All studies referred to in
this section report performance enhancement in at least some of their participants. The
variety of hybrid approaches implemented so far, and the evidence for improvements
that can be expected, indicate the significance of hybrid approaches.

3.8 Intelligence in Brain-Controlled Assistive Sys-

tems
The challenge in noninvasive BCI control is that only a limited number of brain states is
available to perform complex tasks. Thus, one approach to improving communication
is to equip the assistive system with intelligent algorithms. For instance, in spelling
applications, intelligent prediction models, commonly applied in mobile devices, such
as the predictive text entry system T9 [2, 83] or a prefix-based language model based
on prediction by partial matching (PPM) [152], are used to enhance the speed of the
system. Recently, a robotic system was introduced, which autonomously grasps a cup
and executes the movement to the mouth [189]. The system is controlled by a single
“go” command, induced by imagination of finger tapping. Although there is consider-
able development required to make such a system applicable for daily use, the concept
points to the crucial trend of development. Another research group described the con-
cept of shared control by driving a telepresence robot, which is remotely controlled by
BCI commands on the one hand but is able to autonomously avoid obstacles on the
other hand [205]. A similar concept was employed in [61], where users controlled an
intelligent wheelchair with three commands induced by motor imagery. The wheelchair
was equipped with sensors and assisted the user in uncertain situations.

A critical question in BCI research is the transferability of a system developed in a
laboratory environment. Additional electromagnetic noise, as well as visual and audi-
tory sources of irritation, could substantially influence the functioning of the system.
One method to simulate this in the lab is the use of virtual reality (VR) techniques.
For example, Leeb et al. [112] simulated a straight run with a wheelchair including
interaction with avatars, where a tetraplegic patient could spontaneously initiate the
forward movement. An important aspect is the fact that when moving through an en-
vironment, the motion in the visual field induces additional brain activity, which could
affect the reliable control of the BCI. This is most critical when motor activity is used
as the control signal, because mirror neurons induce activations similar to actual or
imagined movement when movement is observed [157]. Using a VR environment, it
was shown that navigation through a virtual world is possible using BCI commands
based on motor imagery [186].

3.9 Summary of Existing Approaches and Method-

ological Challenges
In this chapter, I have revealed the variety of BCI applications and potential imple-
mentations that have been reported in this rapidly growing field of research so far. The
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broad spectrum of approaches symbolizes the state of the art in this research field: The
reliable decoding of brain signals, in particular of noninvasively acquired brain signals,
is a challenging task which is not appropriately solved for daily use applications yet.
The main challenges developers are faced with are based on physical and technical lim-
itations. The primary problem is the low signal-to-noise ratio, which could be derived
from several circumstances:

• brain signals are weak and require sensitive high quality amplifiers

• environmental noise contaminates the signal

• physiological activity such as heart beat and eye movements produce noise and
artifacts

• one sensor measures superimposed signals from ongoing activity in the whole brain

• the skull and several tissues attenuate the signal

Thus, a main issue is the preprocessing of the noisy signal and the extraction of a small
number of informative features from the typically high amount of data. The problems
of low spatial resolution and low signal-to-noise ratio decrease with the employment of
invasive techniques, albeit without vanishing. However, the risky circumstances and the
unsolved problem of long-term bioincompability prevent the establishment of invasive
BCIs.

An important fact to consider is that only a few tasks based on perception and at-
tention produce brain responses that are measurable and discriminable in single trials
with noninvasive methods. This means that the user has to perform relatively time
consuming tasks for a simple outcome. Consequently, the current state of the art in
noninvasive BCI does not permit practical continuous real-time control of an artificial
limb. Instead, the research field is dominated by BCIs that operate with cognitive tasks
in a scheduled, well controlled sequence.

Also in terms of classification some challenges exist. In many cases, the classification
data set suffers from a few samples in a high dimensional feature space. Furthermore,
artifacts produce outliers, and the features are often nonstationary over time. To solve
these issues, appropriate feature extraction methods and classifiers are required. One
approach to overcome the lack of reliable classification accuracy is the combination
of several decoding algorithms or input signals, which is often referred to as a hybrid
approach.

Considering the development of noninvasive BCI, the main focus is concentrated on per-
formance improvements in various variants of a few classical paradigms. A weakness in
BCI research is that the majority of studies investigate open-loop BCIs, which do not
regard the effect of feedback. Secondly, almost all noninvasive systems are employed
with EEG. From a practical point of view concerning home usability, this is most rea-
sonable, however, the spatial resolution and spectral bandwidth are limited compared
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to ECoG and MEG. The lack of spatial resolution in noninvasive BCIs is circumvented
in this work by applying MEG recordings in a closed-loop BCI. Established classical
paradigms, commonly applied with plane two-dimensional visual stimulation, are ex-
tended to work in virtual reality. Due to the low information transfer rate achievable
with current techniques, signal processing and decoding algorithms, particularly per-
taining to asynchronous limb control, need to be investigated with measurements of
higher quality. The asynchronous control of an actuator is one of the central goals in
this thesis. Electrocorticography, as an invasive method, allows only limited access to
subject groups, which are comprised of patients suffering from brain diseases requiring
ECoG for an established clinical purpose. In contrast, MEG provides the possibility
of recruiting a wide range of subjects and performing experiments without risks, while
simultaneously providing excellent spatial and temporal resolution. The efficient pro-
cessing of such high-density sensor data, requiring noise reduction and suitable feature
extraction, is in the focus of this work.



4. Approaches to Improve
Brain–Controlled Upper Limb
Actuation

In this chapter several methodological issues are described, and ideas for achieving more
reliable decoding of brain signals are introduced, with the aiming of providing insights
for advanced development of brain–controlled prostheses. The methods outlined in this
chapter are presented as preparation to the experiments described in Chapter 5. In
the following sections I will introduce the paradigms and algorithms that will be used
to successively investigate the ability to drive a robotic device by noninvasive brain
recordings. Details about the experimental set-up, subjects and materials used are
explained in the next chapter.

4.1 Exploiting Low Information Transfer for Com-

plex Tasks

In the last chapter various types of BCIs were described. Considering the features of the
different recording modalities, invasive techniques obviously provide the highest signal
quality and hence, are the most promising for development of accurately working BMIs.
However, the medical risk of implantation, the inflammation risk of wired recording and
the short-term biocompatibility of the state-of-the-art electrodes for cortical derivations
prohibits the use of invasive recording. Furthermore, research work and BMI develop-
ment are very limited due to the fact that, for obvious reasons, subjects can only be
recruited if they have to undergo a clinical intervention. For this reason the majority of
BMI development concentrates on EEG applications. For example, a large EU project
denoted TOBI [151] focused on the design of noninvasive BCI prototypes for assistive
technology and rehabilitation. The main drawback of noninvasive techniques is the
slow information transfer rate which is at most 80bits/min [16]. This rate is much to
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low to continuously drive a robotic device. In order to control three degrees of freedom
(DF) for the pure end-point movement, one has to distinguish seven control signals
(idle and two directions per DF) in short intervals. Due to the challenge in achieving
this requirement with noninvasive techniques, no such system has yet been developed.
Instead, the intention to do something, e.g. open or close a hand, was decoded from
SMR modulation in previous studies demonstrating a two-state application [31].

One aspect of the present work is to simplify the noninvasive brain control of prosthetic
devices. The requirement for this is the use of intelligent semi-autonomous robotics.
The general idea is to exploit the low information transfer rate (ITR) of noninvasive
techniques to build a brain–machine interface that can drive a robotic system able to
autonomously grasp and manipulate objects. With the planned framework the control
of the grasping device is reduced to the problem of decoding the intention to select a
target object or the execution of a predefined robot command from voluntary brain
activations. Interactions with a robot are simulated by presenting a VR scenario to
the subjects. In this scenario, a CAD model of an industrial robot (Mitsubishi RV
E2), equipped with a three finger gripper (Schunk Dexterous Hand SDH) is placed
on a desk. Additionally, objects can be placed on the desk and assigned with areas
for visual stimulation and feedback. Importantly, the virtual robot can simulate a
grasp of the object by applying a grasp planning algorithm [172]. Furthermore, an
example of manipulation, specifically picking up and presenting the object, can be
simulated. The VR scenario and the grasping algorithm have been implemented by the
Fraunhofer Institute for Factory Operation and Automation (IFF) who kindly provided
the environment [98] for the experiments.

In order to use a preferentially high capacity of noninvasive brain signal acquisition,
MEG is utilized in this work since it is the topographically most sensitive method. The
higher number of sensors and the fact that MEG permits higher discrimination accu-
racy compared to EEG when activity of small structured brain areas is classified [164]
suggests that a higher ITR is achievable with this modality. All experiments presented
in this work are performed as a closed-loop BMI, with the MEG data processing done
online. In the initial preliminary experiments only MEG is recorded due to the easier
set-up and the fact that for technical reasons only the MEG data stream is accessible
in real-time. However, EEG recordings simultaneous to MEG recordings are possible
with this system. In the final experiment, this possibility is employed in order to inves-
tigate a potential increase of accuracy by combining both modalities in offline analyses.
Analyses by means of pattern recognition have rarely been performed using MEG data
(e.g. [164, 175]) and consequently even more rarely has a BMI been implemented [31].
Importantly, the brain responses obtained from MEG that are investigated in this study
had not been analysed with pattern recognition techniques until now.

Providing a robotic system that autonomously performs complex movements of every-
day tasks requires only a small set of commands that can be executed by pressing
buttons. In a BMI set-up the button presses must be substituted with virtual selec-
tions. Common assistive technologies like speech recognition and eye-tracking are not
options for the targeted group of users. Thus, mere brain activation is used to perform
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the selection. One intuitional approach would be to set the focus virtually to one of
the selectable items and shift it in a similar manner to shifting the focus in a GUI
with the tabulator key. Motor imagery tasks would be the consequential control sig-
nal. A simple synchronously controlled version of this strategy would require only two
commands (next item and select). As the ITR depends on the number of alternatives,
more commands (e.g. previous item) would enhance the speed of the system. How-
ever, as mentioned above the number of distinguishable MI classes is very limited with
noninvasive techniques. Furthermore, only a limited portion of people are able to suc-
cessfully perform MI driven BCI control [22], a problem which is even more critical in
disabled users [106, 154]. Although similar tree-based approaches have been performed
in some speller implementations [138, 187], MI-control has rarely been used for selection
purposes due to the better performance with paradigms that benefit from visual stimu-
lation. Concerning the limitations of MI based selection and the presumption that users
might have a damaged motor cortex, that approach is not part of this work. Instead,
selections will be decoded by detecting electrical potentials in the brain resulting from
visual stimulation and selective visual attention, respectively.

The first approach is based on the circumstance that the visual perception of a repeated
flashing sequence elicits potentials in the visual cortex that are correlated with the
stimulation. If the intervals between flashes are constant and in a specific range, the
stimulated frequency is reflected in the brain response which is termed steady state
visual evoked potentials (SSVEP). For this paradigm, the ability to direct eye gaze to
the targets is required. The decoding algorithm detects which of several stimulation
frequencies is projected on the retina’s fovea by classifying the brain response evoked
in early visual areas. The advantages of this method compared to MI classification
are that i) it can be detected in relatively short intervals, ii) a high number of classes
can be distinguished and iii) BMI control depends on visual perception rather than on
activations in motor areas. Thus, SSVEP could be a potential brain response that can
be used to perform fast multi-class selections in a VR environment. In a preliminary
set-up the selection success of virtual realistic objects is tested by presenting flicker
stimuli near objects and decoding the focused frequency from relatively short signal
intervals.

The second approach, which is applied in this work in order to investigate brain con-
trolled selection of VR items, utilizes a brain response established in many speller
paradigms, called P300 response. As already outlined in Section 3.3.2, in the so called
oddball paradigm the P300 can be measured over the parietal lobe as a positive de-
flection approximately 300 ms after a rare (deviant) stimulus occurred in a series of
irrelevant (standard) stimuli. Compared to the SSVEP stimuli, longer stimulation in-
tervals will be required but the number of selectable items is much higher and the
flashing stimulus presumably is less annoying than a flickering stimulus [213]. Further-
more, again the activated brain areas do not depend on an intact motor cortex. The
biggest advantage however, is the potential independence of eye movements. Directing
gaze to the target item provides an additional early visual component which reflects a
stronger perception of the target stimulus compared to the standard stimuli [57]. Conse-
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quently, focusing on the target item provides more information and increases detection
accuracy [29]. However, in the targeted set-up the aim is to be independent of eye gaze
and to use only information evoked by selective attention responses. This renders the
selection approach applicable to a wider range of users. Both approaches will reveal,
depending on decoding accuracy, speed and number of alternative selections, an ITR
accompanied by pros and cons of the paradigm. These results will be discussed from
the perspective of enhancing the functionality of the selection set-up. The final system
is intended to permit a user to asynchronously control a virtual grasping robot. In this
case asynchronous control means that the system doesn’t assign the point in time it
expects a command (which is common in most current BMI implementations) but the
user is free to decide when to perform an action.

The results obtained online during the experiments, i.e. the accuracy that is measured
with the provided feedback is most likely not optimal. The initial implementation in-
volves algorithms derived from current knowledge about similar experiments performed
with EEG and ECoG. However, significant potential for improvement of the ITR by
algorithm improvement can be expected. Particularly, the circumstance that MEG
provides a higher sensor density and reflects alternative source locations leads to the
hypothesis that there is potential in optimizing signal processing and feature extraction.
In post-analyses, algorithm refinement will be investigated. This applies to the length of
the stimulation interval, application of spatial filter methods, comparison of classifiers
and dependence on the size of the feature set. The most promising combination for
asynchronous selection will be subject to final system implementation. Even after the
online evaluation of the final system, further improvements are conceivable. A potential
interest exists in the comparison and combination of simultaneous EEG recordings in
order to rank the results obtained and to evaluate the benefits of different modalities.

4.2 Detection of Perceived Steady State Visual Stim-

ulation

4.2.1 Signal Emergence and application in BCIs

The human visual system processes a visual stimulus in a bottom-up fashion while two
pathways are distinguished for higher order processing [134]. Early cerebral processing
of visual information is performed in the primary visual cortex (V1), which is located
in the posterior part of the occipital lobe. From there, the dorsal pathway travels to
the parietal lobe, which processes spatial information and motion. The second stream
is the ventral pathway, which mainly processes visual features and goes to the temporal
lobe. A visual evoked potential (VEP) is a series of typical negative and positive deflec-
tions in brain activity measured over different brain areas following a visual stimulation
onset. The positive and negative waves are attributed to different stages of process-
ing. A first component typically is measured over the occipital cortex 50 to 80 ms after
the stimulation of retinal receptors. With common measurement techniques, evoked
potentials can be visually identified only after averaging numerous intervals of identi-
cal stimuli or tasks. Thus, the low but repeatedly occurring signal remains, while the
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noise, although having much higher signal strength, is cancelled out. Responses to sin-
gle brief visual stimuli are considered transient. In contrast, as Regan [169] has found
in experiments presenting oscillating light, flicker stimuli produce a stable VEP which
is known as the steady state visual evoked potential. The advantage of SSVEPs is the
sustained amplitude and phase characteristic of frequency components over a long time
period. Importantly, the spectral response in the frequency domain of the brain signal
peaks at the stimulation frequency and harmonics. Consequently, spectral analysis of a
sufficiently long stimulation interval facilitates the identification of the perceived flicker
frequency.

In a BCI set-up targeting SSVEP detection, several flicker stimuli oscillating at different
frequencies are presented simultaneously. The user focuses on one of the stimuli in order
to execute a command associated with that stimulator. In the measured brain activity,
the frequency component of the focused stimulator is larger than the frequency compo-
nents of the unattended visual stimulation. This is because the receptors located in the
fovea centralis, i.e. in the subjective center of the visual field, have the highest density
in the retina as well as having a higher impact than peripheral receptors on processing
in the visual cortex. By detecting the most prominent of the stimulated frequencies in
the brain activity, inference of the attended stimulus can be made. The requirement of
directing eye gaze renders this approach a dependent BCI. An approach independent of
eye movements is theoretically possible by selective attention (presenting overlapping
stimuli) [5] or spatial attention paradigms (presenting spatially distributed stimuli) [97]
where the user pays attention to one stimulator while focusing on one fixation point
permanently. However, such approaches exhibit reduced accuracy and limit the number
of alternatives enormously. Consequently, independent BCIs based on SSVEP detection
have rarely been implemented thus far and provide no option for the intended aim of
this work. The range of frequencies suited to the evoking of SSVEPs as indicated in
the literature is between 3 Hz and 50 Hz and above [72]. In fact, stimulation frequencies
higher than 30 Hz are not perceived as flickers, suggesting that the stimulus is processed
in early visual areas but that higher order processing fails. A potential advantage of this
phenomenon is that decoding of a perceptually hidden and consequently non-annoying
stimulus may be possible, although unfortunately, discrimination accuracy of EEG sig-
nals decreases with high stimulation frequencies [213]. Stimulation frequencies for BCI
applications are commonly chosen between 5 Hz and 20 Hz [231]. This frequency range
is also beneficial for virtual reality guided stimulation given the typical frame rates of
60 Hz and 75 Hz provided by TFT displays and projectors.

Although the theory of determining the frequency of an attended visual stimulus from
SSVEP is comprehensible, reliable detection from spectral information is challenging.
This is because the SSVEP is superimposed by spontaneous brain activity from many
other sources, and accompanied by a high noise level. Spontaneous brain activity is
often reflected in oscillations of similar frequencies which further complicates reliable
detection. An advantage of SSVEP frequency analysis is that a priori knowledge is
available, more specifically the information which frequencies are expected to be modu-
lated by the stimulation. One approach to emphasize SSVEPs is to calculate a Fourier
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based signal-to-noise ratio by dividing the Fourier power of the considered frequency by
the average Fourier power of adjacent frequencies. While this seems advantageous for
visualization purposes, there is no obvious advantage for classification since this method
actually just normalizes the Fourier power to a scale which is better comparable between
frequencies.

4.2.2 Employing SSVEP for Item Selection in Virtual Reality

The application of flicker stimuli in BCI set-ups was mainly performed in EEG exper-
iments but never in MEG experiments, although MEG could provide supplementary
information for a more reliable decoding. This part of the work will close this gap
by probing the discrimination accuracy of MEG signals evoked by flicker stimuli in a
virtual reality environment. A large number of dipoles arising from a population of
neurons superimpose their electrical fields such that we are able to measure electrical
potentials on the cortex and even on the scalp. Similarly, the superimposed magnetic
fields induced by the dipoles can be measured outside of and distant from the skull, even
though they are very weak. Therefore, similar to SSVEPs the magnetic equivalent can
be obtained from magnetoencephalographic recordings: the steady state visual evoked
fields (SSVEF).

In a first attempt, I investigate whether SSVEFs can reliably be discriminated, with
the constraint that the stimulator is partly occluded by an object. The time needed to
execute one command should be as short as possible. Here, the duration of the flicker
stimulus is chosen to be 5 s. The number of simultaneously presented frequencies is
four, allowing the discrimination of four different states. Stimulation frequencies are
chosen at 6.67 Hz, 8.57 Hz, 10.0 Hz and 15.0 Hz, such that the periodic time of stimulus
onsets correspond to multiples of a frame duration (1/60 s). Importantly, fundamental
frequencies do not overlap with any harmonic frequency, which could introduce mutual
disturbance. While the stimulation frequencies remain fixed at their positions, the
objects randomly exchange their positions. This guarantees that frequencies can be
detected independently of the occluding object and conversely that objects can be
selected independently of the background oscillations. Furthermore, this provides the
possibility of using the objects movement as a cue. For evaluation purposes the focused
frequency must be known in each trial. Thus, the subject’s task will be to select one
specific object during the entire run. The randomization is performed such that each
object is placed at each of the positions eight times, resulting in 32 trials. A green
coloured ring around an object indicates the position of the frequency decoded by the
SSVEP detection algorithm. All other positions are marked with a red ring indicating
wrong decoding if actually focused upon by the user. In initial training runs random
feedback with a confidence of 70 % is presented. The data of these runs are used for
calibration and to train a classifier. Subsequently, the classifier is used to detect the
frequency that most likely represents the attended oscillating stimulus. Importantly,
all processing steps are performed in real-time, i.e. as soon as a sufficient amount of
acquired data is available. The decoding result is presented in a manner analogous to
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the training runs immediately after processing. This renders possible the approach of a
closed-loop BMI capable of selecting one of four objects in a virtual reality environment.

4.2.3 Online Detection of SSVEFs

The onset of flicker stimulation is marked by an event code which is sent by the BMI
software to the acquisition system, registering the code in an auxiliary digital channel.
This channel operates in real-time in parallel to the MEG data provision to deliver
the onset of events. Thus, the time window cut out for SSVEF detection starts at
the position where the flicker onset event code was received and lasts for 4.5 s. Since
SSVEFs are expected to essentially emerge in visual areas, only a sub array of the
entire MEG sensor field is used, arranged by the manufacturer of the sensor array to
capture activity from occipital brain regions. Therefore, only 59 out of 248 MEG sensor
time series are used for online detection, which keeps the feature space comparatively
small. As a first step, the DC offset is removed and environmental noise is reduced.
The noise cancellation is performed by an algorithm introduced by Robinson [177],
where the amount of signal common to both biomagnetic sensors and reference sensors
is subtracted. Subsequently, spectral features are calculated. The mean amplitude of
frequency f in signal ΦB obtained from sensor s is determined as

F (f, s) =
1

N
‖
N∑
n=1

φn,s · e−2πiftn‖ (4.1)

where φn,s is the magnetic flux in sensor s at sample n. The time point tn at sample
n can be obtained by dividing n by the sample rate fs. Each of the values F (f, s)
defines one feature while each interval (of a trial) represents one observation. Thus, the
resulting training set {X,y} consists of k = 59 × 4 = 236 features and l observations
which are labeled with an index denoting one of the four stimulation frequencies:

X =

x1,1 . . . x1,k
...

. . .
...

xl,1 . . . xl,k

 , xi,j ∈ R (4.2)

y =

y1...
yl

 , yi ∈ {1, 2, 3, 4} (4.3)

The theory of SSVEP emergence presumes that the amplitude at the frequency f in-
creases if a stimulus oscillating with this frequency is observed by the user. Thus,
features representing this frequency may increase in several sensors. Consequently, a
regression approach appears to be appropriate to distinguish the four classes. There-
fore, for this purpose a regularized logistic regression algorithm is used for classification.
The regularization parameter λ penalizes small weights having the effect of an implicit
feature selection. The classifier determines the probability that stimulation frequency
f is observed by the user. The frequency providing the highest probability is selected
and fed back to the participant.
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4.2.4 Optimizing SSVEF Detection for Improved Decoding
with Dense Sensor Arrays

Optimal information transfer rate depends on both the time needed to send a command
and the accuracy with which the decoder recognizes the intention. Furthermore, the
decoding accuracy depends on the quality of the feature representation and the pattern
recognition algorithm used. Some authors reported evidence that the involvement of
harmonics, i.e. frequencies at a multiple of the stimulation frequency, increases the
accuracy in SSVEP detection [141], suggesting another parameter for investigation.
The following approaches aim to find an optimal set of parameters that maximize the
information transfer rate. The data source is provided by the MEG data recorded during
the BMI experiment following the methods in Section 4.2.3. The evaluation of diverse
combinations of parameters and methods is performed in a validation framework that
is compatible with BCI application, namely calibration of a training set is performed
only with past data. This avoids an overestimation of accuracy as is potentially possible
in a cross-validation framework where the amount of training data is consistently high
in every validation cycle. Specifically, the first test set is constituted by the third run
while the first two runs are used for calibration. Each following run is treated as a
separate test set which is tested on a classifier trained on all previous runs but maximal
on the past five runs. In the following I will refer to this validation scheme as simulated
online validation (SOV). The measure applied for evaluation is the decoding accuracy
which is calculated as percent correct detections.

As a common pool of raw data the time series are cut in single trials, starting at
stimulation onset and lasting 5 s. The preprocessing steps are performed identically to
the procedure in the BMI implementation, resulting in a set of 59 time series for each
trial. Only those trials are included where the target frequency is known, i.e. the runs
where the object to be selected was instructed (see Table 5.1). These preprocessed time
series constitute the basis for all analyses. The methods used in the BMI implementation
provide a benchmark for the optimization approach. Specifically, this is the Fourier
transform of a 4.5 s data segment as defined in Equation 4.1 in combination with a
regularized logistic regression (rLR) classifier. In cases of harmonics involvement in
the Fourier feature space, the harmonic frequencies are simply considered as additional
frequencies.

4.2.4.1 Spatial Filtering for SSVEF Detection as an Efficient Noise Reducer
and Feature Extractor

There are several strategies existing in the literature, which can extract SSVEP fea-
tures from EEG time series. One method, suitable for efficiently filtering EEG signals
[23] recorded during motor imagery, is the common spatial pattern method (see Sec-
tion 2.5.2). Since CSP also was successful in SSVEP detection from EEG recordings
[1, 147], it qualifies for one of the feature extraction methods to be investigated with
the recorded MEG data. For this purpose, the time series is first band-pass filtered
using a 2nd order Butterworth filter centered at the frequency of interest (fundamental
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stimulation frequency or optionally the 2nd and 3rd harmonic) where the bandwidth is
2 Hz. Since CSP is basically suited for binary separation, the spatial filter is calculated
for each frequency using bandpass filtered signals of the examined frequency as the first
class and all other frequencies as second class. Class sizes are balanced by discarding
samples of all frequencies equally. Two filters effecting high variance in one class and
two filters causing high variance in the other class are selected to spatially filter the
bandpass filtered time series according to Equation 2.6. Afterwards, the log variances
are calculated as features, resulting in a 16 dimensional feature space (four spatial filters
by four frequencies).

Another approach, offering a promising method for SSVEP detection [118], is the canon-
ical correlation analysis, described in Section 2.5.3. The advantage of paradigms evoking
SSVEPs is that the stimulation frequencies are well known and thus, a reference func-
tion easily can be defined. Here we model the reference functions in Y of Equation 2.12
as pairs of sine and cosine waves for a target frequency and optionally its harmonics:

Y =


sin(2πft1) . . . sin(2πftN)
cos(2πft1) . . . cos(2πftN)

...
. . .

...
sin(2πhnft1) . . . sin(2πhnftN)
cos(2πhnft1) . . . cos(2πhnftN)

 , ti =
i

fs
, i = 1, . . . , N (4.4)

where the fundamental frequency f is the first harmonic and hn is the number of har-
monics to include. By involving sine and cosine functions simultaneously, the model
is phase independent. The weights in Wy define the proportion of sine and cosine,
respectively and regulate the phase shift between the measured and modelled signals.
Obviously, this approach only applies to continuously recorded data since concatena-
tion of measured data with different phase shifts would fail. Thus, for each stimulation
frequency the CCA method is applied to single intervals of multi-channel MEG signals.
The features extracted for classification are the correlation coefficients ρ1 (see Equa-
tion 2.13) corresponding to the first component of a particular frequency. Thus, merely
one feature characterises each frequency, independent of the number of harmonics in-
volved.

The feature extraction methods MEC and MCC as introduced by Friman et al. [59] are
promising tools for SSVEP detection. In Section 2.5.4 and Section 2.5.5 I described the
two methods aiming to enhance the signal-to-noise ratio by determining and applying a
spatial filter. The model signals Y in Equation 2.15 are identical to that in Equation 4.4.
Consequently, the same properties and constraints concerning phase shift hold as for
the CCA approach. The spatially filtered time series signals X̂ are further processed
to obtain a single feature per frequency, comparable to the CCA feature space. The
feature extraction is performed equally for both MEC and MCC according to Friman
et al. [59] as follows. First of all, the SSVEP-cancelled signals X̃ (see Equation 2.15)
are transformed by the estimated filter matrix:

ˆ̃X = WᵀX̃. (4.5)
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Afterwards, an autoregressive model of order p = 15 is fitted to the D time series data

in ˆ̃X, yielding the model parameters αd,j, . . . , αd,p and the prediction error σ2
E,d. The

fitted models are used to interpolate the noise power in the SSVEP frequencies. The
noise level for harmonic h in signal d is then calculated by

σ̂2
h,d =

πN

4

σ2
E,d∣∣∣1 +

∑p
j=1 αd,j exp(−2πijhff−1

s )
∣∣∣2 . (4.6)

Finally, the presence of an SSVEP of a specific frequency is tested by the following test
statistic:

T =
1

Dhn

D∑
d=1

hn∑
h=1

‖Yhx̂d‖2

σ̂2
h,d

. (4.7)

Here, Yh is a pair of sine and cosine modeled signals according to the harmonic h of
frequency f . The feature value determined as T is the average of signal-to-noise ratios
across harmonic frequencies and spatially filtered signals. Thus, if an SSVEP signal at
frequency f is present in X, the feature value is higher than that of the other frequencies.
Similarly to CCA, this approach is applied to single intervals of MEG signals. This is in
contrast to the application of CSP, where an adequate number of intervals is required
to estimate the filter matrix.

4.2.4.2 Validation of Harmonics Involvement for Enhanced Feature Ro-
bustness

So far, four feature extraction methods are the focus of investigation for the decod-
ing of SSVEP emergence in the MEG: Fourier transform, common spatial patterns,
minimum energy combination and maximum contrast combination. The last three
methods provide the possibility of including several harmonics resulting in one measure
per stimulation frequency. Since in the past evidence has been shown that involvement
of harmonics improves SSVEP detection [141], the involvement of the second and third
harmonics of a stimulation frequency is a further parameter to be investigated. With
the CSP method this is performed by adding the additional bandpass filtered signals
as input channels but keeping the number of output channels. Thus, the harmonics
involvement does not increase the number of features. In contrast, the feature space of
the Fourier transform method is extended by adding the harmonic frequency features.

4.2.4.3 Validation of Timing Parameters for Speed Optimization

A considerable impact on a successful detection of SSVEP is the duration of the stimu-
lation. The longer a stimulation lasts, the more accurate is the frequency decomposition
and the more reliable is the prediction. However, a long decision duration implies a low
information transfer rate. Thus, a trade-off between accuracy and stimulus duration
must be found. For this purpose, interval lengths starting from 0.5 s up to 4.5 s in
steps of 0.5 s are used to evaluate the impact of stimulus duration on decoding accu-
racy and information transfer rate. In order to calculate the trade-off, the number of
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bits is determined that can be transferred in one minute, given the number of possible
commands nc. This commonly used measure for BCI evaluation has been proposed by
Wolpaw et al.[222]. Given the probability P ≥ 1/nc the bit rate per trial of length ttrial
is calculated as

Btrial = log2 nc + P log2 P + (1− P ) log2

1− P
nc − 1

, (4.8)

assuming that the probability of each command is the same. The probability P can
be interpreted as the decoding accuracy or the correct prediction rate. To obtain the
information transfer rate per minute one has to multiply Btrial with the number of
possible trials per minute:

B =
60

ttrial
Btrial (4.9)

Thus, B can be higher for shorter intervals although P is lower. This implies that
information is thus transferred faster but with more errors. Correction of the errors
requires additional commands for the BMI application. This is an important point to
consider when choosing the trade-off between accuracy and stimulation time.

4.2.4.4 Validation of Classifier Algorithms

Finally, beside the initially applied rLR, a variety of methods exists to recognize the
attended frequency from the extracted feature space. Here, five additional procedures
are considered to classify the data set into four classes. An easy and straightforward
way to do this is to determine the frequency feature that reveals the highest value. I
will refer to this approach as the argmax classifier:

f = fy, where y = argmax(x), y ∈ 1, . . . , nc, x = (x1, . . . , xnc)
ᵀ. (4.10)

However, this method is only applicable if the features represent a direct measure of
the frequency content in the signals. From the feature spaces considered here, this only
applies to CCA, MEC and MCC. Further conventional classifiers eligible to naturally
discriminate multiple classes are the linear discriminant analysis, the näıve Bayes classi-
fier, the kNN classifier and the nCentroid classifier. All these classifiers are suitable for
the discrimination of m-dimensional vectors while they vary in their tendency to over-
fit in higher dimensional feature spaces. Nevertheless, these are the classifiers among
which the performance is to be compared in this offline analysis.

4.3 Attention Based Event Detection

The previous sections described how to decode the perception of a visual stimulus from
the cognitive system. When using mere perception as a communication channel, the
user has an active influence on his perception. In the case of visual stimulation, the
perceptual change is induced by focusing on a specific stimulus which is performed by
eye movements. However, BMIs conceptually strive for communication channels that
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rely purely on conscious brain wave modulation independent of any peripheral move-
ment. One strategy that satisfies this requirement is to employ the user’s attention to
communicate his or her intention. This can be performed by tracking the user’s atten-
tion in response to specific events. Although with this approach external stimulation is
still required to synchronize the brain responses, no activations of peripheral nerves are
necessary. The only constraints are that the user is able to perceive the stimulus and
that he or she is aware of how to perform the task of attention based communication.

4.3.1 P300 Generation and the Oddball Paradigm

In experiments involving stimulus uncertainty, Sutton et al. [203] discovered that ex-
pected stimuli are differently processed in the brain to unexpected stimuli. Specifically,
when the subject’s guess was different to the following stimulus, a positive EEG com-
ponent has been found peaking about 300 ms after stimulus onset. Today this typical
potential variation is known as the P300 or P3 response. Actually, it is composed of an
early frontal component and a component occurring over parietal locations somewhat
later [159]. Generally, the P300 is not the result of a single process but is thought to
reflect a superposition of a distributed network of memory and attention related ac-
tivations. Typically, a P300 is evoked in a so called oddball paradigm [200]. In this
paradigm an infrequently presented target stimulus is detected by the subject while
more frequently presented background stimuli are to be ignored. When subjects per-
ceive the deviant stimulus, the typical P300 response is evoked. There are several
theories about the underlying brain dynamics. The emergence of the P300 is proved to
be evoked by the novelty of a stimulus [195] as well as being an update mechanism in
passive perception, i.e. without attention to a task. However, the most important point
is that an attentional component evokes a P300 after an anticipated stimulus occurs in
a series of similar but otherwise ignored stimuli. This phenomenon is utilized in many
BCI applications, mostly in matrix speller implementations. The general approach is
to detect the presence of a P300 potential following a short visual stimulus. Due to
the low signal-to-noise ratio, several intervals are averaged before classification or the
classifier output is accumulated. Conceptually, the task of detecting a P300 response is
a binary classification problem. For selection of multiple items, the actual selection is
determined from temporal information pertaining to the stimulus occurrence.

4.3.2 Employing the P300 Potential for Item Selection

Although many P300 speller variants have been investigated using EEG data, only one
study [11] has performed single trial detection of P300 potentials with MEG data so
far, albeit not closed-loop. However, analogously to SSVEF detection, there are legit-
imate grounds to also investigate the magnetic fields of P300 activations for real-time
detection. Here I employ an oddball task with the aim of selection of objects, presented
in a virtual reality environment. Extending the first experiment, six objects are pre-
sented on a table that can be selected by mere attention to the visual stimulus near
the target object. Furthermore, the scenario contains a CAD model of an industrial
robot equipped with a three finger gripper. The virtual robot simulates the movement
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of its original which is able to grasp an object with known position and shape [98]. To
indicate a stimulus event serving for discrimination of standards from targets, the back-
grounds of the objects are flashed in a random order. The randomization is performed
such that two successive flashes of the same objects are prevented. A stimulus appears
every 300 ms and lasts for 100 ms. Each of the objects is flashed five times per trial,
leading to 30 flashes within 9 s. The user focuses on a cross in the centre of the item
arrangement. The object to be selected is covertly attended by the user, which elicits a
characteristic brain response after each perception of a flash behind the attended target
object. For maintaining the user’s attention, mental counting of the target flashes is
beneficial. Grey rings around the objects are used to present a cue for an upcoming
target object in order to be able to supervise the selections. Supervision of selections
is required to reliably train a classifier. Finally, after the decoding is performed, a
green ring indicates the decoded object, while all other objects are marked with red
rings. For demonstration purposes a grasp of the decoded object by the virtual robot
can be presented as feedback. Like the first approach, this experiment also works as a
closed-loop BMI, processing MEG data in real-time.

4.3.3 Online Detection of the P300 Potential

For reliable synchronization of screen events, event signals are sent to the MEG system,
which provides a digital marker simultaneously with the magnetic flux measurements.
Based on these markers, a signal interval is cut out from the online data stream starting
at the first flash onset and lasting 10 s, capturing all flash onsets of one trial and
allowing sufficient time for the evolution of brain potentials after the last flash. This
interval then is band pass filtered between 1 Hz and 12 Hz and down-sampled to 32 Hz.
Subsequently, the preprocessed signals are cut in 1 s intervals starting at each flash onset.
These preprocessing parameters are chosen according to Hoffmann et al. [82], who
demonstrated good performance in EEG experiments and are in line with suggestions
of Farquhar and Hill [53]. Since the P300 is typically evoked in parietal and fronto-
central areas and thus is generally measured over the vertex, i.e. at the top of the head,
only 152 sensors closest to the centre of the sensor array are involved. This serves as
a first reduction of the amount of data. The separated intervals are labelled according
to target and nontarget flashes. Afterwards, a support vector machine classifier is
initially trained for feature selection. The highest sum of weights per sensor in the
vector w of Equation 2.2 is used as a measure to select the 64 most discriminable
sensors. This results in a feature set of 2048 features (64 channels × 32 samples).
Linear SVM is chosen as the classifier, since the classification problem is binary and
high dimensional. It has been shown that SVMs are well-suited for discriminating high
dimensional brain signal data by self-regulation of feature importance [164, 175]. When
single flash intervals of one trial are classified for the presence of a P300 response, the
distance of the test sample to the separating hyperplane is calculated and summed for
each of the six objects. The object with the maximum cumulated distance is assumed
to be the attended object. If each of the intervals following a flash were classified
correctly, the negative distances of standard stimuli would sum to a negative value
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while the positive distances of target stimuli would sum to a positive and therefore
maximal value.

4.3.4 Optimizing P300 Detection for Improved Decoding with
Dense Sensor Arrays

4.3.4.1 Parameter Validation

A first step to achieving improved decoding accuracies is to explore different parameters
to those used in the initial closed-loop system. The difference between MEG and EEG,
in terms of the properties of the measured quantity could reveal different features that
maximize separability. Essentially, the spectral filter coefficients and the length of the
ERP interval could have a significant impact on the classification result. In an SOV
as described in Section 4.2.4, several parameter sets will be evaluated starting with
the parameters used during acquisition with the closed-loop BMI. The parameters to
investigate are the interval length, which is set to additional values of 600 and 800 ms,
and the highpass cut-off frequency which is set to additional values of 0.5 and 0.1 Hz.
Time intervals from 600 to 1000 ms are common in P300 speller systems though it
remains unclear which is the best choice for MEG data. While it is plausible that evoked
potentials do not change faster than 10 Hz (in [53] 12 Hz has been found to be optimal),
slow potentials could very well have an impact on classification results. Therefore,
the two additional frequencies, permitting a longer evolution of brain waves, are taken
into consideration, too. Furthermore, the impact of involving all MEG channels rather
than hypothetically selected channels with a superior location is investigated although
the dimensionality of the classifier feature space further increases. However, the feature
selection method is applied analogously to the feature selection performed in the closed-
loop BMI, keeping the 64 channels for the final classification constant.

The main challenge in detecting event-related potentials from noninvasive electrophysi-
ological data is the low SNR measured at individual sensor positions. In many studies,
this is solved by averaging across several trials at the expense of the time needed to
transfer a symbol. The alternative approach is to classify single event intervals and pool
the classifier output to make the final decision instead of pooling the data and classify-
ing afterwards. This approach is pursued in the closed-loop BMI and is to be compared
with the common approach of pooling the repetitions beforehand in this offline analysis.

4.3.4.2 Spatial Filtering for P300 Recognition as Efficient Noise Reducer
and Feature Extractor

Another option to enhance the SNR is to average the signal from several channels.
However, the ERP is most likely not equally distributed over several spatially distinct
sensor positions. Thus, the coefficients that weight the contribution of a channel to
enhance the signal strength of the brain response to be detected have to be determined
optimally. I introduced such linear combinations of channels in Section 2.5.1 as a spatial
filter. Given the high number of sensors in MEG and the extremely vague knowledge
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about the sensors that capture the P300 response, an analytical determination of opti-
mal spatial filter coefficients is advisable. Here I aim at testing five different methods to
estimate the filter W that weights the MEG signals according to Equation 2.6. The first
one applies the CSP method, the second method applies a whitening transform, and
the other three methods are based on CCA but all applying different model functions
that serve as reference signals. As was determined by Farquhar and Hill [53], best prac-
tice is to use as many channels as possible and let the machine decide which channels
are important. Spatial filters do exactly this, which is why all MEG sensors available
will be involved in the analyses. The preprocessing steps are applied as hitherto, but
interval length and band-pass filter frequencies are set according to the most promising
results of the parameter optimization previously performed.

All spatial filters that I will introduce in the following, have in common that they are
represented by a matrix W, which linearly weights the channel data by simple matrix
multiplication (Equation 2.6). The estimation of W differs between methods in the
assumptions made and in the analytical approach. Importantly, the transformed data
can be considered virtual channels with specific properties, determining the number of
informative virtual channels and with it the number of spatial filters. Thus, spatial
filtering also serves as a means to reduce the feature space. All subspaces of virtual
channels are classified equally as the original channel space using a linear SVM classifier.
Filter matrix estimation and classifier training are performed using a set of training data
and applied to a set of test data. Evaluation is performed by SOV again.

The first spatial filter to be applied for P300 extraction is the CSP method, introduced
in Section 2.5.2. Let X1 ∈ RC×N1 be the concatenated MEG time intervals following
a standard stimulus and X2 ∈ RC×N2 be the concatenated time intervals following a
target stimulus, where C is the number of sensors and N1 and N2 are the total numbers
of samples, i.e. number of trials involved × number of samples in the time interval.
Then, the filter matrix W is determined as described by Equation 2.7 – Equation 2.10.
Since the highest variance of the standard trials is represented by the first columns in
W and the highest variance of target trials is represented in the last columns in W, only
the 32 first and 32 last spatial filters are selected to transform the original sensor space
to a feature space consisting of 64 channels, comparable to the approach not applying
spatial filtering. In contrast to the procedure used in motor imagery BCIs targeting
oscillatory brain responses [23, 167], not the variance in the virtual channels but rather
the entire virtual channel data are used as features, analogous to the feature involvement
in the original sensor space classification. This is done because the variance is not an
adequate measure to distinguish the P300 from ongoing brain activity. Rather, the
time course of event-related components extracted by the spatial filter holds important
information to distinguish the potentials. Once the filter matrix is determined from a
training set of data, it is applied to each unseen data interval to transform the data to
the new feature space.

For ERP classification in EEG data, Farquhar and Hill [53] found that spatial whitening
led to the best performance in several data sets. Because they suggest whitening as the
spatial filter in their best-practice guideline for BCIs, this method is also to be tested
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with the MEG data from the current experiment. The procedure is quite simple: Let
X ∈ RC×N be the concatenated MEG time intervals, regardless of the stimulus. The
filter matrix W is computed as

W = (XXᵀ)−1/2. (4.11)

The transformation X̂ = WX reveals a virtual sensor space, where the virtual sensors
in X̂ are all uncorrelated. Again, W is calculated from training data and applied to
the new data to be validated.

A last method to be used as a spatial filter is the CCA (see Section 2.5.3). While
this method has frequently been applied in detection of steady state brain responses
[12, 13, 118, 174], there is only one study that applied CCA for ERP classification [199].
The application of CCA is rather different in steady state signal detection compared to
ERP detection. When the task is to detect oscillatory signals of a well-defined frequency,
CCA is applied to a single trial where a sine/cosine combination of reference signals is
used to determine the correlation between the brain waves and the potential stimulus
(see Equation 4.4). This approach is independent of the phase of the stimulus, because
the CCA determines the weights regulating the phase, i.e. the ratio of sine and cosine
coefficients, independently in each single trial. In ERP detection, the reference signals
are unknown, i.e. a template of the expected shape of the event-related brain response
can only be estimated. Furthermore, the information available in noninvasive brain
recordings of a short time segment comprising the evoked potential of a single event is
insufficient to reliably determine reliable canonical variates. Thus, to successfully apply
CCA to ERP detection, it is necessary i) to provide an appropriate model function and
ii) to estimate the canonical coefficients representing the spatial filter matrix from a
sufficient amount of data. Three different model functions will be applied to estimate
W with CCA, which will be explained in the next paragraph. The model functions
are the only difference between the last spatial filter methods to be tested. However,
the composition of the input variable sets is common for all methods. Analogous to
the CSP approach, let X1 ∈ RC×N1 be the concatenated MEG time intervals following
a standard stimulus and X2 ∈ RC×N2 be the concatenated time intervals following a
target stimulus, where N1 = T1N , N2 = T2N and T1 and T2 is the number of standard
stimuli and target stimuli, respectively. Then a set of model functions is defined, such
that Y1 ∈ RH×N1 is a concatenation of T1 copies of a set of H model functions defining
the ERP of a standard event, and Y2 ∈ RC×N2 holds T2 copies of H model functions
defining the ERP of a target event. For the final analysis, which estimates Wx from
a set of training data using Equation 2.13, the matrices attributed to standard and
target stimuli are concatenated once more, i.e. X is of size C×N1 +N2 and Y is of size
H×N1+N2. The remaining procedure is as usual: training data and test data provided
in an SOV are transformed with the filter matrix Wx, if more than 64 channels remain,
the at most 64 best channels are selected using ranking of SVM weights, and the final
SVM classifier is trained and tested on the unseen data.
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4.3.4.3 Modeling P300 Reference Functions

A relatively näıve but the most intuitive approach is to model a hypothetical template as
a reference function that incorporates the theory about the expected signal, which has
widely been investigated in the literature. Although the event-related brain responses
are not identical in individuals, the notion is that the correlation of the relative slow
P300 potential and the optimally linearly weighted sensor data is higher in target related
intervals compared to intervals following a standard event. Here we use a Gaussian
function which peaks at µ=300 ms. The standard deviation parameter σ is chosen at
σ1=75 ms for the rising slope and at σ2=150 ms for the falling slope:

f(t) = e−
(t−µ)2

2σ2 where σ =

{
σ1 ∀t ≤ µ

σ2 ∀t > µ.
(4.12)

Thus, a skewed Gaussian shape represents the model function for target events. The
background of the skewness is that the processing of the visual stimulus can start,
at the earliest, roughly 100 ms after onset, which is the time window for early visual
processing. The other assumption is that the potential extends over a longer period than
it requires to evolve. Furthermore, the prolonged descent of the model function also
takes peak latencies later than 300 ms into consideration, which have been reported in
many studies on oddball paradigms [119, 127]. For standard events, the model function
is simply a zero signal. With these reference signals, the CCA method finds a spatial
filter that transforms the sensor data to a component that best fits the template after
target events have occurred and shows minimal variability after standard events. Note
that only one model function is provided instead of a set of model functions, which
reduces the CCA to the multiple correlation method and decomposes only one spatial
filter, generating one virtual channel.

The second approach to generating a set of reference functions is that suggested by
Spüler et al. [199], who determined the reference ERPs as an average over all stan-
dard trials and an average over all target trials, respectively. Thus, as many reference
functions as available channels are generated, each representing a noise-reduced version
of activity in that channel, following target and standard events, respectively. In con-
trast to the previously defined reference function, this approach is less hypothetical but
more data-driven, because no assumptions about the course of the ERP’s waveform are
made. The basic assumption is that the average signal of single channels represents a
good estimate of the channel’s contribution to the ERP. The CCA combines the partial
signals to components highly correlating with linear combinations of the single trial
data. As a result, the spatial filter Wx defines the contributions of each channel to
subcomponents determined from the averaged signals by Wy.

A more data-driven approach has been developed during this work [170] by generating
reference functions as follows. Analogously to the first solution of generating an ERP
template as the reference, activity following standard trials is assumed to be a zero sig-
nal. For the activity following target trials, one model function for each time step in the
interval of interest of size H is defined by setting the value at time point k, k = 1, . . . H
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after onset of a target trial to value 1. Thus, the model functions are easily generated
by setting a zero matrix 0H×H for all standard trials and an identity matrix IH for all
target trials. The concatenation of the respective matrices reveals a weight for each time
step in Wy which is by definition identical to the components in Ŷ (Equation 2.12) at

target onset. Due to the constraint that X̂ and Ŷ are composed such that correlation is
maximal, Wy accounts for optimal temporal composition of sample points after onset
and Wx accounts for optimal spatial composition of channels. Therefore, CCA com-
bined with the suggested reference functions can be considered a spatio-temporal filter.
The advantage of the method is that the evolution of ERP subcomponents is estimated
implicitly by the method applied and thus free of hypotheses. In combination with
high density MEG this could reveal new insights into the generation of target-related
potentials in oddball paradigms, commonly denoted as P300 potentials.

4.4 Asynchronous Control of an Autonomous Effec-

tor with Low Transfer Rates

The design of the paradigms described in the previous sections already illustrates that
ITR is low using noninvasive brain imaging techniques. Even if users perform perfectly,
achieving 100% correct selections, the ITR would be 24 bit/min when selecting one
out of four items every 5 s and 15.5 bit/min when selecting one out of six items every
10 s. This is definitely insufficient to continuously control an upper limb prosthesis
with several degrees of freedom. Nevertheless, noninvasive control of artificial upper
limbs could be possible if the continuous control part is transferred to an intelligent,
autonomous device, which requires only a few commands to submit the user’s intention.
Here, a virtual reality system already introduced in Section 4.3.2 is employed that is
capable of autonomously grasping and picking up an object. Communication between
user and system is possible by visual stimulation and feedback and importantly, by
voluntary brain wave generation. The drawback of the first two paradigms is that they
are synchronously driven, i.e. a predetermined rigid timing scheme is applied, and the
user has no option to determine the start of a grasp or to withhold a grasp and persist
in a resting state. In this section, I will describe a framework, which facilitates the
asynchronous control of an autonomously grasping robotic arm.

4.4.1 Framework for Effective Asynchronous Effector Control

An essential requirement for asynchronous control is that a new command can be trans-
mitted at any point in time. Although the latency between intention and execution still
is relatively high due to the duration of selection a noninvasively driven BCI permits,
the BCI is considered to be asynchronous from the perspective of the onset of the user’s
intention. Regardless of this latency, the framework introduced in this section is con-
trollable in real-time. Similar to the previous approaches, a selection has to be made
which out of several objects has to be grasped. However, in contrast to the previous
approaches, the grasp does not start immediately after the selection is performed, but
rather the system waits for a start command or a reselection. For this purpose, two
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virtual buttons, a start button and a stop button, are required, which can be selected
similarly to the target objects. Furthermore, a fixation cross is required to permit
resting intervals in which no command is transferred. To provide reasonable control
options and to execute the respective commands, several states of the system are de-
fined, which are denoted “start”, “grasping”, “grasped”, “pick up object”, “presenting”,
“replace object”, “retract” and “break”. The virtual scenario showing three of the states
and a state diagram is shown in Figure 4.1. When the robot is in the start position, the

Figure 4.1: Virtual scenario showing the robotic gripper in the states start (A), grasped
(B) and presenting (C) and the state diagram (D). The figure originally has been
published in [173].

system waits for an object number to be selected for grasping. If an object selection
is received, a green ring indicates the object decoded from brain activity. The grasp is
only started, when the item “start button” is selected; otherwise reselection or resting is
expected. Importantly, resting is possible in each of the states, suspending the delivery
of commands. When the gripper is in grasping mode, visual stimulation for object
selection is disabled, because only a stop command is a reasonable action, which will
interrupt the movement. A further stop command retracts the gripper, while a start
command continues the movement. After complying with the force closure condition,
the gripper can be retracted by a stop command, or the object can be picked up by
a start command. When the gripper is in the final position, each reversed movement
can be initiated by the stop command, and each forward movement can be repeated
by a start command. Visual stimulation of objects is only enabled in the states “start”,
“break” and “retract” to prevent user irritation and unwanted selections when object
selection is not reasonable. With this framework it is possible to grasp and manipulate
an object uning only three commands: select, start and stop.
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4.4.2 Employing Flicker Stimuli for Self-Paced Effector Con-
trol

Irrespective of the results, the two approaches based on SSVEF detection and P300
detection reveal, SSVEP detection appears to be more suited to asynchronous con-
trol. Two reasons are that SSVEPs can be decoded in shorter intervals compared
to P300 potentials and that the absence of an SSVEP is easier to decode than the
overall absence of a P300 potential. Furthermore, in the targeted scenario in most
cases only two selectable items are visually highlighted, which violates the concept of
the oddball paradigm having an insufficient number of standard events. Therefore,
the asynchronous BMI is to be controlled by SSVEP detection. Four virtual objects
are tagged with stimulation surfaces flickering in object selection mode at frequencies
6.818 Hz, 7.5 Hz, 8.333 Hz and 9.375 Hz. The start and stop buttons flicker continuously
at 10.714 Hz and 12.5 Hz, respectively. SSVEFs are decoded by means of CCA, accord-
ing to the method described in Section 4.2.4, involving three harmonics. Classification
is performed using the argmax classifier Equation 4.10 but with an extension which
takes an idle state into account. The resting intervals are distinguished from the selec-
tion intervals by applying a confidence threshold thf , which is determined from a set
of calibration data for each of the frequencies f separately. The detection is performed
asynchronously in intervals of 1000 ms involving an interval of the previous 2000 ms of
data. The interval length is chosen to provide a compromise between achieving reli-
able decoding and ensuring an acceptable delay with the goal of achieving a high ITR.
With respect to the uncertainty of a single prediction made from a 2000 ms interval,
the constraint is constituted that three identical selections are predicted consecutively,
while resting intervals are allowed between predictions. This results in a dwell time of
at least 4000 ms for selecting an item. The stage of a prediction is indicated by colored
feedback rings around the decoded item, ranging from light blue over cyan to green for
the final selection. After a selection is made, the next decoding feedback is generated
3 s after the feedback appeared, to provide the user with a short break to plan the next
action.

4.4.3 Validation of Measurement Modalities for SSVEP De-
tection

The MEG device provides the capability of simultaneously recording EEG activity. This
feature facilitates the investigation of the information content in both physiological sig-
nals for decoding brain activity. Here the SSVEP and SSVEF induced during item
selection as described in the previous section is to be compared. In contrast to classical
statistics commonly used to investigate brain function in both modalities, the decoding
accuracy which is determined from single trial classification provides a direct measure
of the data quality that can be achieved with each of the acquisition methods. Since the
CCA method has already been proven to provide good results in SSVEP detection [118],
and this method is well-suited to determining the contribution of individual channels
from among a number of channels, this method is used to systematically investigate the
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contribution of the channels involved to the decoding accuracy. Both MEG and EEG
signals reflect an electrophysiological measure of brain activity that emerges simultane-
ously. Thus, when sampled at the same rate and normalized to a common scale, MEG
and EEG channels can be involved simultaneously in a CCA. The algorithm then finds
the linear combination of channels that maximally correlates with the reference signal,
i.e. an oscillation of a specific frequency.

To investigate the performance outcome after applying several sets of channels, the
MEG and EEG data that were recorded during the robot control task in Section 4.4.2
are used in an offline analysis. For this purpose the data are segmented into intervals
of 4.0 s, starting at the onset of a new selection trial in the calibration runs, are shifted
in 3.0 s steps, and finish at the latest when a decoding result was fed back. Decoding
accuracies are determined in a cross-validation scheme leaving one run out for testing.
The preprocessing and classification is performed analogously to the online experiment.
However, resting state detection is not performed with these data, because the aim is to
investigate the quality of SSVEP/SSVEF detection. The channel sets are generated as
follows. Each initial set consists of only one channel that is selected over the occipital
lobe at a position where the signal commonly is expected. Afterwards, the electrode or
sensor closest to the seed point is added to the channel set. For EEG data, this is done
starting at electrode Oz and involving up to 15 electrodes, while for the MEG channel
set up to 80 sensors are used. The decoding accuracy is determined for each channel
set separately as well as for all combinations between EEG and MEG channel sets.
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5. Experiments for Validation of
Approaches for Improved BMI
control

5.1 Common Experimental Setting

In this chapter I will introduce three experiments aiming at the realization of the ap-
proaches described in the previous chapter. All subjects participated voluntarily and
were paid for participation. Each of the studies presented here was approved by the
ethics committee of the Medical Faculty of the Otto-von-Guericke University of Magde-
burg. All participants gave their written informed consent and received payment for
participation. The experiments have the purpose to evaluate the closed-loop BMI im-
plementations on one hand and to acquire data to validate algorithms in an open-loop
manner on the other hand. The MEG system used in all experiments was a BTi 4DNeu-
roimaging system, equipped with 248 magnetometers. Furthermore, a sampling rate of
678.17 Hz was chosen consistently in each of the experiments.

5.2 SSVEF Based Virtual Reality Object Selection

The initial experiment aims at probing the ability to select objects in a virtual environ-
ment by decoding brain waves measured with MEG. A total of 22 subjects participated
in the experiment. Subjects were seated in a magnetically shielded room, 1 m in front of
a rear projection screen. On the screen a virtual scenario was presented showing a table
with four objects placed in a square alignment and separated by a visual angle of 8.5◦

(see Figure 5.1a). The subject’s task was to focus one of the objects which was specified
before a new run started. When the flicker stimulation started, their gaze was required
to sustain at the circular region surrounding the target object. One stimulation trial
ended after 5 s, followed by random feedback in training runs and decoded feedback in



62 5. Experiments for Validation of Approaches for Improved BMI control

(a) (b)

Figure 5.1: (a) Virtual scenario presented to select one of the objects (mobile phone,
banana, pear, cup) (b) MEG sensors involved for online decoding of SSVEFs (posterior
view).

online runs, respectively. Specifically, the decoded object was marked by a green ring,
the remaining objects by a red ring for 1.5 s. Afterwards, objects randomly changed the
position and thus were stimulated with different frequencies. The subjects had to track
the target object during the entire run, i.e. they had to direct their gaze to the new
position of the target object. The time between the repositioning of objects and the
next stimulation was of 3 s duration. In total, 32 of such trials were performed per run
while subjects performed six to nine runs. Due to incipient system development three
subjects did not receive decoded feedback but random feedback. In order to demon-
strate the authenticity of the system some subjects performed free selection runs where
they chose the target object self-dependent in each single trial. The correctness of the
decoded selection they signalized by pressing one button for correct feedback (right
index finger) and another button for erroneous feedback (right thumb). The exact
number and type of runs performed is listed in Table 5.1. During the experiment MEG
signals of the full sensor array were recorded while only 59 posterior sensors, expected
to capture magnetic fields of occipital brain regions, were processed for online detection
of SSVEFs (see Figure 5.1b). The online processing, designated to determine the item
to be selected, was performed as described in Section 4.2.3. Importantly, the classifier
was updated after each single trial in runs providing feedback. This procedure provides
most recent data and a maximum number of train samples to the decoder. Advanced
analyses using the recorded data were performed as described in Section 4.2.4.

5.3 P300 Based Virtual Reality Object Selection

In a second experiment a different strategy of reading the users intention from brain
waves was pursued. In total, 17 subjects participated in this experiment which was
based on the oddball paradigm (see Section 4.3.1) and utilizes the detection of event
related potentials denoted as P300 potentials. Again, the brain-controlled selection of
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# subjects
instructed selection

free selection
random feedback decoded feedback

1 7 - -
1 8 - -
1 9 - -
1 2 4 -
1 4 4 -
2 4 3 1
1 2 3 1
1 2 5 2
4 2 5 1
9 2 4 2

Table 5.1: Number of subjects performing different combinations of run types.

virtual objects was aimed with this BMI implementation but there are several advan-
tages compared to the first experiment. The main advantage is the independence of
eye gaze which was achieved by instructing the subjects to focus a central fixation cross
during the whole experiment. Furthermore, fixation was visually controlled by moni-
toring eye movements. An important upgrade of the virtual environment software was
the integration of a grasping robot able to pick up and put down the selected objects.
Another gain of the paradigm is a higher number of alternatives that can be selected
with that approach. Here, six objects were used due to constraints of the robot’s work
space. Figure 5.2a depicts the scenario used in this experiment. However, compared to
the first experiment, the length of one selection trial is doubled to 10 s. The MEG was
recorded and immediately processed in order to provide a feedback of the currently de-
coded intention. The task of the subjects was to direct their attention to the background
intensifications of one of the objects while visually focussing a fixation cross. They had
to ignore all background intensifications different from that of the target object. To
ensure that their attention maintained on the stimulus stream, they were instructed to
count the number of intensifications of the target object. The target object was cued as
described in Section 4.3.2 for instructed selections. Instructed selections were required
to collect training data and to evaluate the systems reliability. However, additionally to
instructed selection runs subjects were permitted to freely select an object, proving the
authenticity of the system. Finally, a demonstration of an intelligent grasping algorithm
developed at Fraunhofer IFF was shown by performing an autonomous grasp to the se-
lected object. Feedback was generated according to the processing pipeline described
in Section 4.3.3. The sensors involved in the decoding approach are shown in Figure
5.2b. The classifier was trained after each run conducted in instructed selection mode,
starting with the second run. The number and type of runs performed by subjects
varied and is summarized in Table 5.2. All subjects performed at least seven runs each
consisting of 18 selection trials. Virtual grasping of freely selected objects was tested by
twelve subjects whereas only six trials were performed due to limited time and the slow
movement of the grasping robot. In runs where subjects were free to select the target
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(a) (b)

Figure 5.2: (a) Virtual scenario presented to select one of six objects for grasping (b)
MEG sensors involved for online decoding of P300 potentials.

object, they indicated a wrong decoding result by saying ”no” but gave no response
for a correct decoding result. This information is important to determine the decoding
accuracy also in free selection mode but insufficient to perform offline analysis, because
the subject’s true intention is still unknown.

# subjects
instructed selection

free selection grasp selection
random feedback decoded feedback

1 2 5 - -
1 3 4 - -
1 2 4 2 -
1 4 4 1 -
1 2 5 2 -
1 3 3 2 1
3 3 4 1 1
8 2 4 2 1

Table 5.2: Number of subjects performing different combinations of run types.

5.4 Asynchronous Control of a Grasping Device

In a final experiment, the functionality of the system was further extended by facilitating
asynchronous control of the robot. The usability was also improved by adding the option
to voluntary initiate go and stop commands as well as permitting resting intervals.
The demonstrator was tested by eight subjects who were seated in a magnetically
shielded room, 1 m in front of a screen. The sensor array which was used for online
decoding of SSVEFs comprised 59 occipital sensors, identical to the array used in first
experiment (5.1b). In parallel to the MEG, the EEG was registered at 30 electrode
sites for offline analysis. Impedance was kept below 5 kΩ. The visual scene and the
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control environment as well as the decoding approach used in this experiment were
described in Section 4.4.2. The task of subjects was to initiate control commands
by overtly focusing the stimulation marker of a control item. At each point in time
the subjects were aware of the current decoding state of the system. The experiment
started with 3–4 calibration runs, in which the to be selected item was cued by a
black ring. Selectable items were four objects, two buttons and the fixation cross. The
online feedback was presented in calibration runs but the robot didn’t move in order to
rapidly collect training data. In the first run the resting interval was generally fed back
as correct selected, because the confidence thresholds could be determined only with
a sufficient amount of training data. The classifier was trained after each calibration
run. Afterwards, 3–4 runs were performed in robot-control mode, where the to be
selected control commands were instructed to the subject prior to the start of a run.
The subjects had to select, grasp, and pick up an object and afterwards replace the
object and retract the gripper. The experimenter determined the order of objects to
be grasped. If the system was doing an undesired action, the subjects had to initiate
the respective command to continue the desired action. In robot-control mode a high
amount of resting intervals were required, because the robot moved relatively slow and
subjects had to prevent undesired commands.
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6. Results of Experimental
Investigations

6.1 Online Decoding Results for Object Selection

As shown in Table 5.1, the number of runs used for training, for decoding of instructed
selections and for decoding of free selections varied over subjects. Accordingly, 19
subjects were presented with feedback resulting from SSVEF decoding, either after
selecting a previously instructed object or after freely selecting an arbitrary object.
Importantly, all subjects performed the task well above the chance level of 25%. On
average, in 74.4% (std: 16.6%) of all trials the decoded object was identical with the
actually selected object. A total of 78 runs were performed in instructed selection
mode, with an average decoding accuracy of 72.0% (std: 16.7%). Runs in free selection
mode were performed after the runs in which target objects were instructed, 27 in
total over all subjects. Free selection permitted an average decoding accuracy of 81.3%
(std: 14.3%). A Wilcoxon rank sum test proved that the decoding accuracy in free
selection runs was significantly higher than in instructed selection runs (prs < 0.01).
It is important to note that free selection always proceeded in later runs. Possibly,
therefore, the advanced performance is induced by a superiorly trained classifier and
subject’s increasing experience. A more detailed demonstration of the relationship
between decoding accuracy and the experiment’s progress is depicted in Figure 6.1.
The average decoding accuracy varying as a function of the number of the current run
is indicated by black squares, where error bars indicate the standard error of the mean.
Although the accuracy tends to increase progressively, the correlation is not significant.
To further demonstrate the predominant performance in free selection runs, average
accuracies are also shown separately for instructed selection runs (red crosses) and
free selection runs (blue asterisks). Concerning the speed of the BMI, the information
transfer rate is the commonly used measure in this field. The timing and decoding
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accuracy of the proposed BMI gives an average information transfer rate of 10.0 bit/min,
ranging from 1.4 to 17.4 bit/min for individual subjects.

Figure 6.1: Decoding accuracy per run averaged across subjects. Red crosses and blue
asterisks show the performance of instructed selection runs and free selection runs,
respectively. The dotted line indicates the chance level.

6.2 Optimizing Detection of Steady State Visual

Evoked Magnetic Fields
In an offline analysis the recorded MEG data were analyzed by applying different pa-
rameters (5 feature extraction methods, 9 interval lengths, 3 numbers of harmonics, and
6 types of classifiers). Data from all 22 participants were involved in the analysis. The
validation was performed for each parameter combination described in Section 4.2.4
resulting in one decoding accuracy value per parameter set. Before a detailed analysis
of the results was done, statistically significant differences of the obtained decoding
accuracies were analyzed by means of a 4-way analysis of variance (ANOVA). Sig-
nificant difference was determined for all factors which were “feature space” (F4,16037 =
2897.3, p = 0.0),“interval length”(F8,16037 = 2706.3, p = 0.0),“harmonics involvement”
(F2,16037 = 37.8, p = 0.0) and “classifier” (F5,16037 = 803.3, p = 0.0). Multiple compar-
isons adjusted by a Bonferroni correction revealed a statistically significant difference
for all pairs of feature spaces except FT and CSP as well as CCA and MEC, for all
combinations of interval length, between one and two as well as one and three harmonics
involved, and between all pairs of classifiers except the combinations of LDA, nBayes
and nCentroid. Additional findings will be explained subsequently using nonparametric
statistical testing methods. In these analyses, single parameters are investigated while
other parameters are kept as used in the online experiment.

In a first step the impact of feature extraction methods was investigated. In the of-
fline validation scheme, the average decoding accuracy was 72.3% (std: 16.6%) using a
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Fourier transform and regularized logistic regression, similar to the methods performed
in the online experiment. Because the trials involved in classifier training and in test-
ing for classification was not identical to the closed-loop BMI experiment, the offline
validation result deviates from the online results but the difference is not statistically
significant (prs = 0.76). Using the same classifier method and the same interval length
of 4.5 s, but different feature extraction methods facilitates significantly different re-
sults. While the CSP method revealed a non-significantly lower (psr = 0.45) average
decoding accuracy of 70.5% (std: 16.4%), the performance of CCA, MEC and MCC
was significantly higher (p < 0.001) with accuracies of 92.3% (std: 7.9%), 92.7% (std:
6.6%) and 91.2% (std: 7.3%), respectively.

A second parameter of interest was the length of the interval used to convert the
time series into the feature space. With shorter analysis intervals the decoding ac-
curacy decreases for all feature extraction methods. The decrease is statistically sig-
nificant with interval lengths of 2.5 s and shorter, as indicated by a Bonferroni cor-
rected multiple comparison test of an one-way ANOVA with the factor “interval length”
(F8,593 = 196.6, p < 0.05). Consequently, an interval length of 3.0 s could be used for
faster control of the system without significant loss of accuracy. See Figure 6.2 for
dependence of the performance from the analysis interval for several feature extraction
methods. Importantly, CCA, MEC and MCC show no statistically significant difference
for all intervals except for the interval of length 0.5 s (F2,65 = 4.8, p < 0.05). Although
CCA appears to perform better for this short interval, the accuracy is quite low for BMI
control. In accordance with the results obtained with the 4.5 s interval, CCA, MEC and
MCC reveal significantly higher decoding accuracies than Fourier features for all inter-
val lengths (prs < 0.05) except the 0.5 s interval. Similarly, CSP reveals a slightly lower
decoding accuracy but the difference becomes significant only with interval length 0.5 s,
where accuracy is weak anyway.

Figure 6.2: Decoding accuracy for different interval sizes achieved with different meth-
ods averaged over subjects. The dotted line indicates the chance level.
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A higher degree of spectral information was achieved by adding the second and third
harmonic of each stimulation frequency to the input space of each feature extraction
method. Considering all methods and interval lengths using the rLR classifier, the
harmonics show a statistically significant effect (F2,2969 = 3.2, p < 0.05). However,
none of the methods provide statistically significant higher decoding accuracy at any
interval length, as shown by performing a Wilcoxon rank sum test, although a trend
of slightly improved performance is present in average values. In contrast, a Wilcoxon
sign rank test performs pairwise comparisons and reveals the interval width and feature
extraction method combinations showing significant improvement by adding harmonics.
Significant improvements for all combinations of feature extraction methods and window
lengths are shown in Table 6.1. Single asterisks indicate psr < 0.05 and double asterisks
indicate psr < 0.01. Involvement of harmonics has no effect on MCC features. For some
parameter combinations involvement of two additional harmonics is more advantageous
than adding only one harmonic. Generally, involvement of harmonics has the highest
impact for Fourier, CSP and CCA features while being also beneficial for MEC features.

[s] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Fourier -/- -/- */** */** **/* **/** **/** **/** **/**

CSP -/- -/** -/** **/** **/** -/** */** **/** **/**
CCA -/- */- **/** **/** */* */* -/* */** **/**
MEC -/- -/* **/** */* -/- -/- -/- -/- */**
MCC -/- -/- -/- -/- -/- -/- -/- -/- -/-

Table 6.1: Significance of harmonics involvement. First item indicates significant im-
provement when involving the 2nd harmonic, second item indicate significance of in-
volvement of 2nd and 3rd harmonic.

Finally, the effect different classifiers had on discriminating SSVEFs in the different
feature space representations was investigated. The CCA, MEC and MCC feature
extraction methods can be considered first. A special property of the feature spaces
generated with these methods is that each stimulation frequency is associated with
one feature, i.e. the feature space is four dimensional in this case. Furthermore, the
features represent a direct measure for the amount a frequency is present in the signals,
meaning that higher feature values indicate a higher probability that the frequency is the
target frequency. With this background a quite simple classifier can be applied to those
feature spaces, namely the argmax classifier which selects the frequency that provides
the highest feature value. Interestingly, this classifier performs equally well compared
to all other classifiers (F4,329 = 1.0, p = 0.41). The average decoding accuracy for
the argmax classifier is 91.1% (std: 9.7%), 92.5% (std: 6.6%), 91.1% (std: 7.6%) for
CCA, MEC and MCC, respectively. Comparing rLR pairwise with other classifiers for
the three feature extraction methods, all classifiers except LDA for CCA features and
all classifiers except argmax for MEC and MCC features show a significant difference
(ppaired < 0.05) of decoding accuracy.
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In contrast to the direct frequency-feature representations, the FT and the CSP re-
veal higher dimensional feature spaces due to the involvement of multiple channels
(and harmonics). As pointed out in the beginning of this section, these two methods
showed significantly lower performance than direct frequency-feature methods. Here,
the decoding accuracies achieved with different types of classifiers significantly varies
when applying the FT feature space (F4,109 = 2.6, p < 0.05) but not with CSP features
(F4,109 = 0.42, p = 0.8). Note that the initially chosen classifier used in the online
experiment reveals the highest accuracies. It can be seen with pairwise comparisons
of classifier accuracy that LDA performs significantly lower with FT features and CSP
features, whereas nBayes, kNN and nCentroid perform significantly lower only with FT
features but not with CSP features, indicated by psr < 0.05 in signed rank tests. The
LDA and kNN classifiers show the highest loss in accuracy when using higher dimen-
sional features spaces as with FT and CSP. An overview of achieved decoding accuracies
with different classifiers and methods is shown in Figure 6.3.

Figure 6.3: Decoding accuracy for different feature extraction methods achieved with
different classifiers, averaged over subjects. Chance level is indicated by the dotted line.

In summary, the highest decoding accuracies were achieved by extracting features with
the CCA method and classifying the data by a rLR classifier, even though MEC and
MCC were comparably accurate and all classifiers performed comparably well on these
three feature spaces. Section 4.2.4 states that the reliability of the frequency decompo-
sition increases with longer stimulation intervals. This is confirmed by the experimental
data in which highest accuracy is achieved with time intervals of 4.5 s (c.f. Figure 6.2).
However, long decision times permit the initiation of only a few commands in a given
time. Thus, the information transfer rate was calculated from the decoding accuracy
values, given the respective time interval (Equation 4.9). As a result it is apparent that
the highest ITR averaged over subjects is found at 1.5 s intervals, using two harmonics in
the CCA method and classifying by means of rLR. The bit-rate was 40.0 bit/min on av-
erage with this parameter set whereas the best subject would have achieved 75.3 bit/min
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using a 1.5 s interval and even 87.9 bit/min with the 1.0 s interval. For more detailed
results on other interval sizes and other feature extraction methods see Figure 6.4. Note
that the ITR measure is a theoretical value, estimated from temporally separated signal
intervals which were cut out from the initial, actually longer stimulation interval.

Figure 6.4: Information transfer rate for different interval sizes achieved with different
methods, averaged over subjects.

6.3 Online Decoding Results for Grasp Initiation of

a Selected Object

The performance achieved by subjects in the experiment based on the oddball paradigm
was 78.2% (std: 12.6%) on average across subjects and across all runs which provided
decoded feedback. With respect to the number of objects that were available for se-
lection the guessing level is 16.7%, which implies that the achieved decoding accuracy
ranging from 55.6% to 92.1% for individual subjects was well above chance level. Dis-
tinguishing the runs where selections were instructed or a free choice was made, the
average decoding accuracy of 73.9% was lower for instructed selections compared to
free selections where it was 85.9% on average. A Wilcoxon rank sum test indicates that
this performance difference is statistically significant (prs = 0.03). Importantly, when
virtual grasping rather than visual indication was presented as feedback, the average
accuracy was even higher at 91.2%. Eight of the twelve subjects who performed grasp-
ing runs, achieved perfect control, meaning that the virtual robot grasped the selected
objects in all six trials correctly. The decoding accuracy of each run is depicted in
Figure 6.5. Given the trial length and decoding accuracies, the ITR is 8.1 bit/min on
average, ranging from 3.4 to 12.0 bit/min for individual subjects.
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Figure 6.5: Decoding accuracy per run averaged over subjects. Red crosses show the
performance of instructed selection runs, blue asterisks indicate free selection runs and
the green circle indicates the grasping run. The dotted line indicates the chance level.

6.4 Optimizing Detection of P300 Potentials Evoked

in the MEG

In the online decoding of the P300-guided object selections, hypothetical assumptions
derived from relevant EEG studies defined the parameter set used to extract the feature
space for the classifier. Presumably, the chosen set of parameters was suboptimal for
the high density MEG data. Thus, some parameter variations are investigated to find a
potentially more suited processing chain for the proposed BMI based on MEG. For each
combination of the parameters interval length, high-pass cutoff frequency, number of
channels initially involved, and pooling method the classification was repeated offline.
The obtained decoding accuracies were tested by means of a 4-way ANOVA to deter-
mine significant effects of the parameters. No differences were found for the factors“size
of the analysis interval” (F2,611 = 0.2, p = 0.78) and “size of the sensor array involved”
(F1,611 = 0.3, p = 0.57). However, statistically significant differences were found for
the factors “high-pass cutoff frequency” (F2,611 = 36.5, p < 0.001) and “pooling method”
(F1,611 = 42.5, p < 0.001). A post-hoc test for multiple comparisons using Bonferroni
adjustment shows that the 0.1 Hz and the 0.5 Hz cutoff frequency revealed higher de-
coding accuracies, significantly different from the initially used 1.0 Hz high-pass filter.
Furthermore, pooling the classifier output as performed in the closed-loop BMI, permits
significantly higher accuracy than pooling the MEG epochs before classification.

Using the parameters as chosen for the experiment, a decoding accuracy of 80.8% (std:
10.4%) on average was achieved with the offline analysis. This is not significantly
different (psr = 0.19) from the result achieved in the online experiment. The deviation
can be explained by the differently varying sets of training data that were involved
in online classifier training and with the SOV framework, respectively. The following
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analyses investigate the single parameter influence when remaining parameters are kept
as initially chosen. Regarding the length of the analysis interval, accuracy was 81.7%
(std: 11.0%) on average for 0.8 s and 81.1% (std: 11.6%) for length 0.6 s, which is not
statistically significant different from the accuracy obtained with length 1.0 s (psr >
0.08). Involvement of all available channels also permits a comparably equal (psr =
0.52) decoding accuracy of 81.1% (std: 12.9%) on average. In contrast, the high-pass
cutoff frequency considerably improves decoding accuracy when chosen below 1.0 Hz. A
bandpass filter between 0.5 and 12.0 Hz reveals an average decoding accuracy of 87.4%
(std: 10.1%), which is significantly higher than the achieved performance using 1.0–
12.0 Hz bandpass filtered data (psr < 0.001). A slightly higher averaged accuracy of
88.5% (std: 10.5%) was achieved with the 0.1–12.0 Hz bandpass filter (psr < 0.001) but
the improvement is not significant compared to the results obtained with the 0.5 Hz
cutoff frequency.

Finally, different decoding accuracies were achieved when pooling the data versus pool-
ing the classifier output of single trials. While the standard approach of pooling epochs
is classifying the selections in only 73.0% (std: 13.4%) correctly, the new approach
of pooling the real valued classifier output achieves a statistically significantly higher
(psr < 0.001) accuracy, compared to the initially reported accuracy of 80.6%. The
method of pooling epochs also shows improved accuracy when using a band-pass filter
of 0.1–12.0Ḣz (84.2%, std: 10.4%) compared to the 1.0–12.0 Hz filter but the method
of pooling the real valued classifier output achieves a significantly higher (psr < 0.001)
decoding accuracy (88.5%, std: 10.5%) as well. Note, that decoding accuracy is re-
ported as percent correct selection out of six possible items. Since the actual classifier
determines binary decisions, it is worth focusing on binary decoding accuracy of the
classifier. When epochs are pooled, the classifier input is a noise-reduced signal and
less training samples are involved in the classification. The binary decoding accuracy is
84.2% (std: 7.5%) for the 1.0–12.0 Hz filter and 90.3% (std: 6.0%) for the 0.1–12.0 Hz
filter. In contrast, pooling the classifier output of single events involves more noisy
single epoch signals in the classification scheme. Here the binary decoding accuracy is
72.0% (std: 4.7%) for the 1.0–12.0 Hz filter and 76.9% (std: 4.5%) for the 0.1–12.0 Hz
filter. Although the binary classifier accuracy is considerably lower for single epoch
classification compared to classifying the previously averaged epochs (psr < 0.001), the
summation of five single classifier outputs for each of the six potential targets permits
more accurate item selection than directly ranking the six classifier outputs obtained
from averaged epochs. Altogether, the results indicate that with the current analysis
approach the best performance can be achieved when using the parameters as initially
chosen, except when the bandpass filter was selected too conservatively regarding slow
potentials, and the lower bound is selected equal to or below 0.5 Hz.

Based on these results, an interval length of 0.8 s and a bandpass filter from 0.1–12.0 Hz
appear to be optimal for further analysis regarding spatial filter comparison. Further-
more, pooling the classifier output is retained, but for spatial filtering the full sensor
array is used, because all brain signals available may be used to determine the event-
related brain responses informative for classification. A 1-way ANOVA was calculated
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to determine significant differences between no spatial filtering and the spatial filter
methods CSP, Whitening, CCAtemplate, CCAaverage, and CCAidentity. The result con-
firmed the rejection of the null hypothesis that the decoding accuracies of spatial fil-
ter methods have equal mean (F5,101 = 3.1, p < 0.05). However, Bonferroni-adjusted
multiple comparisons of the means showed that only CCAaverage performs significantly
different from applying no spatial filter. Average accuracies were 89.8% (std: 8.1%)
without spatial filtering, 91.7% (std: 6.3%) using CSP, 92.4% (std: 5.7%) using spatial
Whitening, 92.2% (std: 5.1%) using the template reference function with CCA, 96.1%
(std: 3.0%) using trial average as reference function combined with CCA, and 95.7%
(std: 3.8%) using zeros and the identity matrix as reference function with CCA. Impor-
tantly, the CCA based spatial filtering using the new model of sample point generating
reference functions CCAidentity and CCAaverage achieve the highest decoding accuracies.
A signed rank test using Bonferroni correction revealed significantly higher accuracy of
CCAaverage compared to all other spatial filters except CCAidentity (psr < 0.05). Fur-
thermore, CCAidentity shows higher performance compared to no filtering, CSP and
CCAtemplate. The main results of the P300 detection are summarized in Figure 6.6.
Note that for all spatial filtering methods the data were bandpass-filtered (BPF) be-
tween 0.1 and 12.0 Hz. In the figure, two reference decoding accuracies are shown: the
accuracy achieved with the initial parameter set BPFonline comprising a 1.0–12.0 Hz filter
and the accuracy achieved with the parameter set determined as optimal but without
spatial filtering BPFoptimal.

Figure 6.6: Decoding accuracy for several feature extraction methods averaged over
subjects. Band-pass filtered (BPF) signals are compared with spatial filter methods.
Error bars indicate standard error of the mean, the dotted line indicates the chance
level.
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6.5 Visualizing Determinant Spatio-temporal Com-

ponents

Neuroscience does not only focus on discriminating distinctive brain patterns but is
also interested in investigating where and when activity occurs. Although detailed
analysis and interpretation of brain patterns are out of the scope of this work, I will
demonstrate with a few examples how to assess the most important features revealed
with the different spatial filtering methods reported in the previous section.

A common property of all spatial filter methods applied in Section 6.4 is that a specific
number of channels, regardless of whether selected from the original sensor space or
composed as virtual channels, provide the signals that represent the feature space for
an SVM classification. Although classifications with most methods rely on more than
one component, I will consider only the most prominent component for visualization.
Since channel data are normalized and the regularization parameter is determined such
that overfitting is circumvented, the weight vector (Equation 2.2) can be interpreted to
indicate the importance of specific features. Only the channel that reveals the highest
sum of absolute SVM weight values is used to visualize its spatio-temporal distribution,
assuming that this component determines the classification result strongest. According
to the distributive law, applying the spatial filter W to averaged signals X̄ is equal to
average filtered signals X̂ thus:

¯̂X = WᵀX̄. (6.1)

Hence, the mean components for standard and target epochs can easily be determined
by multiplying the kth spatial filter with the average signal X̄. Analogising to the
calculation of factor loadings in PCA, the correlation of spatially filtered standard and
target epochs and original standard and target signals can be determined to evaluate
the contribution of a channel to this component:

r = corr(X̄,wᵀ
kX̄). (6.2)

The visualization of r reveals a topographic distribution of channel involvement and
provides an estimate where in the brain the component is generated. However, for a
more accurate localization of brain signal components, a source analysis [68] is required.
In Figure 6.7 the signal sequences for standard and target epochs, calculated from
the spatial filter of the most determinant component (according to the SVM weights)
are depicted for one representative subject. The upper left subfigure represents the
mean signal across trials using the band-pass filtered epochs (BPFoptimal) applying the
optimal parameter set as determined in the last paragraph, rather than a spatially
filtered component. Assuming the entries of wk to be wik = 0∀i 6= k, 1|i = k yields
equality for X̄ and wᵀ

kX̄ and implies that rk = 1, given that k is the most determinant
channel. The loadings according to Equation 6.2 of the most determinant subcomponent
determined from spatial filtering are shown in the remaining subfigures of Figure 6.7,
visualized in topographic maps. In the presented case, each of the methods benefits from
a component that reveals a relatively slow wave with a positive peak later than 300 ms.
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This is a prevalent result when applying oddball paradigms [127]. The topographic
maps all show similar patterns of correlations with the strongest components found. The
ingoing (red) and outgoing (blue) magnetic fields are distributed over sensors covering
tempolateral and parietal brain areas.

Figure 6.7: Visualization of determinant components for different spatial filter methods,
exemplary for one subject.

6.6 Evaluation of a Framework for Asynchronous

BMI Control of an Effector

The application of the framework for effective effector control using SSVEF decoding as
proposed in Section 4.4 was successfully feasible in all subjects. In calibration runs, the
average decoding accuracy was 74% for target trials (Tcorr/trials) and 73% for resting
trials (Rcorr/trials). The resting interval predictions of the first run were excluded from
the decoding accuracy calculation due to the fake feedback. Considering the seven se-
lectable items, the guessing level was 14%. The time tselect, needed until a final selection
of an item was generated, was 11.7 s on average. Note that the fastest possible selection
was 5 s in respect of the timing used in the asynchronous paradigm. Concerning robot
control runs, different evaluation measures were calculated because the real intention of
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the user is not always clear in this run mode and the ratio of object selections, button
selections and resting intervals is quite different. The first measure used for evaluation is
the speed of a complete grasp sequence (Gcompl/time) which was 0.52 min−1 on average.
Here is important to note that due to a safe gripper control, the movement of the robot
was relatively slow (grasping: 28 s, picking up: 8 s). This circumstance constrained the
time required for an optimal complete grasp sequence, without completely retracting
the gripper but including selection of the object, to at least 69 s, which corresponds
to a maximum speed of a complete grasp sequence of Gcompl/time = 0.87min−1. An
important result for the self-paced control of a robotic device is that in this set-up false
object selections (Serr) occurred reasonably in only 26% of all object selection trials but
accidentally initiated robot commands (Cerr) occurred very rarely (4.7%). Importantly,
this reliable detection of resting intervals occurred during long intervals in which the
prevention of erroneous selections was required. The results for single subjects are sum-
marized in Table 6.2. Note that the number of trials performed depends on the latency
of a final selection and on the number of undesired selections. One of the subjects
managed to perfectly control the system, without initiating any erroneous selection.

Calibration Robot control
Subject Tcorr Rcorr tselect Gcompl Cerr Serr
# /trials /trials [s] /time /trials /trials
1 56 / 75 18 / 25 12.1 8.2 / 18’04” 3 / 38 3 / 14
2 11 / 27 4 / 10 16.5 7.4 / 24’04” 8 / 44 2 / 13
3 62 / 62 23 / 23 10.9 16.6 / 24’06” 0 / 67 0 / 20
4 40 / 63 15 / 23 10.7 10.2 / 24’23” 2 / 44 6 / 26
5 46 / 64 21 / 23 10.5 12.4 / 24’22” 1 / 50 13 / 33
6 46 / 54 17 / 21 12.8 12.6 / 24’48” 1 / 60 4 / 24
7 60 / 69 16 / 25 9.7 15.0 / 21’39” 1 / 61 14 / 35
8 45 / 67 16 / 23 10.3 10.3 / 23’39” 1 / 53 21 / 38

Table 6.2: Subject performance

6.7 Steady State Magnetic Fields vs. Steady State

Potentials

A re-analysis of the data recorded during calibration runs in the asynchronous robot-
control experiment was performed to compare the facility of both MEG and EEG to
detect steady state visually evoked brain signals from the identical biological source.
Furthermore, a potential benefit of combining the two methods that reflect brain ac-
tivity of complementary sources is investigated. Selecting the maximum value of the
channel sets for EEG, MEG and combined EEG/MEG, the combination of EEG and
MEG reveals the highest decoding accuracies (72.4% on average, std: 13.1%). Accu-
mulating the performances over subjects, the maximum decoding accuracy is achieved
using 6 EEG electrodes and 34 MEG sensors. When using only EEG channels, decod-
ing accuracy was 56.7% on average (std: 19.9%) with 7 electrodes providing the best
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accuracy on average. Finally, MEG data permit the correct decoding of the SSVEF
in 65.0% on average (std: 16.1%). A Wilcoxon signed rank test revealed that individ-
ually achieved EEG/MEG performance is significantly higher than EEG performance
(psr < 0.05) but not than MEG performance alone. Also, individual SSVEF detection
is not better than individual SSVEP detection, although the average value is substan-
tially higher. This is because individual subjects achieve higher accuracy in EEG than
in MEG. See Table 6.3 for more detailed results of individually achieved maximum
decoding accuracy and the number of channels involved.

EEG MEG EEG+MEG
Subject # Acc [%] # Channels Acc [%] # Channels Acc [%] # Channels
1 60.6 4 46.6 38 62.9 4+42
2 41.6 5 45.0 42 61.1 8+66
3 83.3 7 91.7 30 91.7 6+20
4 35.9 5 64.6 38 63.2 3+42
5 51.2 6 52.9 46 56.9 6+30
6 74.2 8 71.0 46 82.5 15+20
7 30.8 14 76.7 20 76.1 1+20
8 75.9 15 71.3 20 85.1 14+20

Table 6.3: Maximally achieved accuracy of individual subjects and the number of chan-
nels involved.

Picking out the maximum performance achieved with single acquisition modalities and
their combination might be too optimistic for comparison, because the optimal number
of channels has to be determined experimentally from training data. Thus, in Figure 6.8
decoding accuracies averaged across subjects are shown dependent on the number of
channels involved. In addition, the maximum improvement achievable by adding chan-
nels of the other modality is shown. A first observation is that beginning with only
one channel, the decoding accuracy increases with the number of channels involved and
converges with 6 channels of EEG and 20 channels of MEG, respectively. Including
more channels doesn’t improve accuracy but tends to decrease it. Importantly, adding
a reasonable number of MEG channels improves the decoding accuracy significantly
compared to using only EEG channels (psr < 0.05). Furthermore, adding EEG chan-
nels to a set of MEG channels improves the decoding accuracy as well. However, while
the involvement of less than 20 MEG channels benefits statistically significantly from
additional EEG channels, the maximum average decoding accuracy is at 63.5% (std:
15.8%) using 34 MEG sensors and EEG channel involvement increases the accuracy
nonsignificantly to 68.6% (std: 14.3%). The results show that the decoding of SSVEP
and SSVEF performs differently between subjects. On average, MEG tends to perform
better, involving a higher amount of channels in the analysis. The combination of both
modalities provides advantages in terms of decoding accuracy, especially compared to
SSVEP decoding using only EEG channels.
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Figure 6.8: Comparison of single modality performance and combined modalities per-
formance. (a) shows decoding accuracy dependent on the number of EEG channels
involved and the maximum achieved accuracy when adding MEG channels. (b) shows
decoding accuracy dependent on the number of MEG channels involved and the max-
imum achieved accuracy when adding EEG channels. Thick lines represent average
accuracy over subject and the shaded area depicts the standard error of the mean. The
dotted line indicates the chance level.



7. Discussion

In the following sections I will discuss which conclusions can be derived from the results
obtained with the experiments and the subsequently tested decoding strategies. Com-
mon to all the experiments is the modality used to acquire the brain data, i.e. measuring
magnetic fields rather than electrical potentials. Using MEG for BCI control has been
hardly investigated thus far [31, 128], and not at all in combination with visual stimu-
lation paradigms. The use of MEG permits measurements at a high sampling rate and
with a high number of channels, which provide a high amount of potentially informative
brain signals. Likewise, a high number of channels creates the additional challenge of
finding the relevant information in the high-density data and reducing the input space
to a low number of features for classification purposes. This was successfully achieved
by means of spatial filtering methods and will be discussed in more detail later in this
chapter.

7.1 Pros and Cons for Using MEG

Despite earlier discussions [42, 68], concerning whether or not MEG effectively provides
higher spatial resolution than EEG, there is no doubt that MEG provides information
originating from supplemental source locations. Bradshaw et al. [25, 26] claimed that
MEG provides higher spatial resolution than EEG, at least for tangential sources that
are not too deep under the scalp surface. Moreover, accuracy of source location, termed
as spatial resolution, which is of interest when investigating brain processes, might differ
from the so called imaging resolution. In order to decode a brain state, source recon-
struction would be a time-consuming transformation of data with a possible loss of
information. For BCI control, the ability to distinguish brain responses employing the
input data space is important. Thus, image resolution is of significance in the intended
use of the signal, since the decoding algorithms are working in the original recording
modality, i.e. in sensor space. Additional to the large information content of the sig-
nal, due to a high number of sensors available in MEG, there is also the advantage of
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short preparation time of the subject or user for a measurement. In fact, the 248 static
sensors of the MEG device used in this work provide fast and comfortable access to
high-density electrophysiological brain data. The major disadvantage of MEG is the
limitation in performing measurements in a laboratory environment. However, there
are indications that the development of mobile measurement techniques for MEG is
feasible [181, 193], providing the prospect of using this technique in the future. How-
ever, even though currently limited to laboratory use, there are also other reasons to go
for MEG investigations for BCIs. The superior representation of cortical activity using
MEG can be exploited to reveal findings valuable for other modalities such as EEG and
ECoG. Algorithm development and uncovering alternative sources could advance the
development of EEG-based BCI systems. Furthermore, a more accurate BCI system
could provide considerable benefit for locked-in patients to communicate more reliably
and faster than with EEG even though limited to occasional sessions in a shielded labo-
ratory. Also, training for demanding neurofeedback applications such as rehabilitation
and ADHD treatment could be performed in MEG providing shorter and less annoying
preparation and possibly more accurate feedback. In this work, promising algorithms
based on spatial filtering were developed to efficiently decode high-density MEG data
during specific paradigms, which might be analogously applicable to high-density EEG
data as well.

7.2 Comparability of BCI Systems

In general a direct comparison of BCI results is a challenging issue. There are several
factors that have considerable impact on the decoding success, being different in almost
every study. This applies to the design of the paradigm, e.g. size and timing of the
stimulus, or the capability of working independently of gaze, as well as technical issues
such as recording modality, amplifier characteristics and number of channels. The
various circumstances must be regarded when relating results to different studies.

Even more challenging is the comparison of BCIs that have different purposes or make
use of different types of brain signals. To overcome this problem, the information
transfer rate (ITR) was introduced as an alternative evaluation measure [222], describing
the number of bits that can theoretically be transferred with the system within a specific
time. However, the ITR also has its limitations and does not provide a reliable measure
to compare between BCI systems. A bit rate should be defined to express the error free
transfer of information, which is not sufficiently considered in Equation 4.8. Indeed,
the false information is considered in the calculated bit rate, but the receiving system
does not know which is the correct and which is the erroneous information. Therefore,
error correction is up to the user, which requires further effort that is similarly error-
prone. For example, an arbitrarily high number of alternatives and a low latency yields
high information transfer rates using Equation 4.8, even if half of the commands are
incorrect. A user-guided correction of the error is successful with a probability of 0.5 as
well. A reasonable communication would be impossible with such a system, although
the ITR is relatively high. Therefore, the most suitable trade-off between accuracy and
speed strongly depends on the application.
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7.3 Detection of SSVEFs

Using a closed-loop BMI, implemented to decode magnetoencephalographic signals, it
was shown for the first time that MEG is well-suited to control a BCI using flickering
visual stimuli in a virtual reality environment. The subjects selected the virtual objects
on a trial-by-trial basis with relatively high variability, but well above chance level. The
decoding accuracy tended to increase over the number of runs but relying on the data
presented here it remains unclear whether this was an effect of user training or whether
the different selection modes influenced the detection accuracy, as a higher degree of
attention could be utilized in the free selection mode.

In order to investigate how other decoding algorithms, timing parameters and features
perform when applied to the recorded data, subsequent off-line analyses were performed,
representing an open-loop BCI. For feature extraction, several data-driven spatial filter
methods were applied.

The common spatial pattern approach known to perform superiorly in the binary clas-
sification of motor imagery [23], performed similarly to the Fourier transform approach.
This might be the case because CSP is weighting the data such that variance is maxi-
mized in one condition and minimized in the other condition and vice versa. Using the
variance of a band-pass filtered signal can be considered a kind of spectral represen-
tation of the signal, because it represents a measure of the amplitude. CSP basically
separates two conditions. Because the maximization of the variance of each condi-
tion is achieved by spatial weighting, i.e. an optimal linear combination of the sensors,
characteristic frequencies of the different conditions ideally are represented in different
channels. However, a spatial separation of different stimulation frequencies in the visual
cortex is not expected. Furthermore, in the second condition, representing a baseline
condition, stimulation intervals of all three other stimulation frequencies were equally
used. Therefore, in this framework CSP seems to act as a feature extraction method
revealing features in a frequency domain providing similar accuracy to a Fourier trans-
form. This result supports the findings of a study [75] which found that CSP increases
classification accuracy of SMR in EEG measurements but not in MEG.

In contrast, the remaining three spatial filter methods, CCA, MEC and MCC showed a
significant increase in performance. Their comparably high decoding accuracies might
be due to the fact that the three methods similarly optimize the spatial filter weights for
one frequency, independent of the other frequencies. Therefore, even largely overlapping
spatial patterns of different frequencies do not affect the feature values obtained. Each
of the methods provides exactly one value for each stimulation frequency where the
height of the value is a representation of the amplitude’s strength. The advantage over
Fourier and CSP is the independent optimal weighting of channels, which enhances the
signal according to sinusoidal model functions and reduces the noise.

For a rapid communication with BCIs, short trial lengths are recommended. However, a
shorter interval of data provides less reliable information and thus reveals less accurate
decoding results. In order to express a trade-off between communication speed and
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accuracy, the information transfer rate could provide an alternative evaluation mea-
sure to determine the optimal analysis window. As expected, a smaller interval size
decreases the decoding accuracy. However, when considering the information transfer
rate, the highest rate is achieved with 1.5 s intervals. According to the shortcomings of
ITR described previously, the corresponding decoding accuracy can be rated as too low
for controlling a BCI and a longer duration for selections should be accepted. A non-
significant loss of accuracy compared to the accuracy achieved at 4.5 s interval length
was found at an analysis window size of 3.0 s.

In SSVEP detection, the involvement of harmonics could provide additional information
to a classifier, as it was evaluated by Müller-Putz et al. [141]. The current work
showed an improvement for the detection of SSVEFs when involving harmonics as well,
in particular when Fourier features were used. Although Bin et al. [13] did not find
such a benefit detecting SSVEP using CCA, in SSVEF detection an improvement in
combination with CCA decoding could be shown.

A final analysis of the SSVEF data was performed to investigate the outcome of dif-
ferent classifier methods applied with the several feature spaces. In total, all classifiers
performed comparably well. In particular, the low dimensional feature spaces based
on spatial filtering show similar results with all classification approaches, presumably
due to the well-structured input space derived from effective feature extraction. The
features that represent all stimulation frequencies have a high value if the frequency is
consciously perceived by the subjects shifting their attention to the stimulator. Thus,
well-structured clusters are formed in the input space which is supported by the fact
that the argmax classifier shows excellent performance with the four dimensional fea-
ture spaces obtained with advanced spatial filter methods. In higher dimensional feature
spaces, as represented with the Fourier transformed data and the common spatial pat-
tern, the variation of the classifiers’ performance is higher. Here the LDA and the
kNN classifier generalize worse than rLR, nBayes and nCentroid, despite a marginal
significance level.

The first experiment showed that visual brain responses, measured with MEG, can be
decoded to control a BMI in a virtual reality environment. So far, MEG was used
in BCI scenarios solely by detection of motor activity [31, 128]. The accuracy of the
algorithms applied for feedback generation showed notable performance on the level of
comparable EEG experiments [140]. However, in a new BCI implementation the prior
predefinition of parameters and algorithms is probably suboptimal. The subsequent
analysis of the data showed that advanced data-driven spatial filtering methods have a
considerable positive impact on the decoding accuracy. Importantly, with these spatial
filters a straightforward classification by determining the maximum feature is possible,
and elaborate classifiers cannot contribute to further improving the discrimination.
Also in EEG experiments CCA, MEC and MCC showed superior performance [13, 59,
118, 217]. These methods benefit from the fact that information of the target signal
is distributed across multiple sensors. Since the algorithms are working on a single
trial basis, the variation of signal-to-sensor mapping (e.g. due to head movement in
MEG) - a known issue in electrophysiological recordings - may not impact classification
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results at all. Importantly, the rLR classifier used for determining feedback online
during the experiment was the best choice, given the Fourier feature set used. Hence,
for future experiments that use SSVEFs to control a BCI, one can conclude that a
feature extraction based on CCA, MEC or MCC might be recommended. Furthermore,
although longer intervals tend to be more accurate, for a faster information transfer
it appears to be sufficient to use shorter stimulation intervals and analysis windows,
respectively.

7.4 Detection of P300 Potentials

The second experiment, implemented to act as a closed-loop BMI in MEG as well, made
use of a different brain signal and employed an advanced version of the virtual reality
scenario in which a robot was simulating a grasp to the selected object. Importantly,
the detection of the user’s attentional shift was achieved from brain signals that were
generated independently from eye movements, as it is often argued that it is required
in the target group of users. Only a few studies take this requirement into account
[6, 121, 207] although it was shown that focusing the target has a considerable positive
impact on decoding accuracy [29], because visual components bias the detection of the
target ERP [11, 57]. The current work presents the first experiment that tested the
ability to control a BCI by performing an oddball paradigm and detecting magnetic field
P300 responses. The subjects’ training time, in which calibration data are acquired, was
only about ten minutes. On average, the decoding accuracies increased with the number
of runs performed. This suggests that user training is beneficial for the performance of
the BMI. However, the learning process is likely bilateral, i. e. the classifier improves
with a higher amount of training samples and the users improve with the time they use
the system [47]. Interestingly, the user’s sense of agency [69] also appears to have an
impact on the performance because when the subjects were free to select the objects, the
performance increased compared to when target objects were instructed. The simulation
of the grasping gesture to the selected object increased the accuracy of the system even
further, supporting the notion that increased attention provides more reliable control.
Note that this observation is speculative, because the impact of learning and the impact
of the sense of agency cannot be separated with the present study.

The decoding accuracy achieved with this experiment was well above guessing level
and is on a relatively high level, given the gaze-independence condition. Nevertheless,
similar to the first experiment, more optimal results may be achieved by reasonable pa-
rameter selection and advanced processing algorithms. The open-loop analysis revealed
that shorter analysis intervals did not significantly change the accuracy, which indicates
that features representing the first 600 ms after the stimulus occurred are sufficient to
determine the non-standard stimulus with comparable accuracy. Furthermore, involv-
ing the full array of channels did not change the performance significantly, indicating
that task specific information is sufficiently represented in the preselected sensor array.
However, the high-pass cutoff frequency was selected too conservatively, since permit-
ting lower fluctuations significantly improved the decoding accuracy. This indicates
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that in the MEG data of the oddball paradigm slow fluctuations play an important role
in characterizing brain response to a deviant stimulus. For example, when the latency
of the P300 potential exceeds 500 ms, a 1 Hz cutoff is inadequate. Furthermore, slow
wave potentials are known to accompany visual oddball stimuli, although primarily
when inter stimulus intervals are long (in the range of seconds) [202]. Possibly, the
importance of slow potentials is specific to MEG, since a comparable study [82] using
the same number of selectable items but using EEG achieves superior results with the
band-pass filter used in the closed-loop experiment. Also, in a study on P300-spelling
[114] a high-pass cutoff frequency of 1 Hz has led to considerable accuracy.

Deviating from other P300 BCIs, in the present closed-loop implementation segments of
MEG data were classified individually and a real-valued classifier output was summed to
identify the target item. This is in contrast to the common method of first averaging the
segments and then determining the most probable selection. An open-loop comparison
of both approaches showed that the first approach achieves higher prediction rates.

The findings of the parameter search were adopted to investigate more advanced fea-
ture extraction algorithms. All algorithms were based on spatial filtering methods,
determining the contribution of channels in a data-driven manner. As an important
result, all spatial filter methods improved the decoding accuracy. This indicates that
spatial filters estimated from the data contribute to a superior signal. Although CSP
is primarily suited to discriminating oscillating signals, the features generated with
the current approach reveal reasonable decoding. A similar result was also found by
Krusienski et al. [102]. However, CSP reveals only slightly higher accuracies as com-
pared to no spatial filtering, confirming the lack of performance boost in MEG as it
was already shown from EEG based SMR decoding [75]. In a study investigating pro-
cessing methods, the analysis step of Whitening was suggested to be the best practice
to decoding ERPs [53]. Although this method also provided accurate results, it did
not perform best. Instead, the highest impact was presented by spatial filtering based
on CCA. Interestingly, the different reference functions applied in this work showed
that unbiased reference functions appear to be advantageous over reference functions
representing hypothetical assumptions, such as the evolution of potential peaking at
300 ms. In the current experiment, the selection of reference functions as suggested by
Spüler et al. [199] showed the best performance but was equally well performing like
the new model for ERP recognition, recently introduced in an own publication [170].
The latter approach provides a further advantage, which is the interpretation of ERP
subcomponents obtained by an unbiased method. In the results section an exemplary
component and the corresponding topographic map is shown for each of the spatial
filter methods. The figure suggests that a relatively late component peaking around
400 ms contributes to the ERP discrimination at most. Although the exact time course
varies with the different spatial filter methods, the general shape is quite similar. This
is also reflected in the topographic maps showing the correlation of averaged target in-
tervals in the sensor space with the respective subcomponent. The figure demonstrates
that all feature extraction methods basically find the discriminating features from a
set of training data and that the extracted patterns are stable throughout methods.
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Furthermore, it is important to note that the template reference function restricts the
extracted component to the hypothetical evolution of the potential. Most likely this
is the reason for the highest deviation of the topographic pattern and the lowest, al-
though still high, accuracy across CCA methods. This demonstrates the advantages of
data-driven spatial filtering involving a minimum of hypotheses. The patterns which
were obtained in Figure 6.7 suggest the localization of at least two dipole sources. The
first is located parietally as expected from EEG and MEG studies [54, 159], indicated
by posterior-central ingoing and outgoing magnetic field lines. The second source ap-
pears to be reverse oriented and located in deeper brain structures, which is in line with
previous findings of hippocampal [67] and thalamic activity [84, 127]. Note that the
figure shows only the most prominent component of one subject but demonstrates the
plausibility and consistency of the decoding approaches.

7.5 Asynchronous Control of a Robot

The constraining of dependent BCIs to only transmit a command when the system
expects to receive one of several commands at a defined point in time makes such
a system extremely inflexible. Only a few BCI developments address this problem
aiming to obtain an asynchronous, self-paced control [36, 61, 85, 116, 130, 140, 147,
221]. With the current experiment another important step towards this development
was accomplished. Importantly, it was demonstrated that noninvasive measurement
techniques can be used, with the help of intelligent robot control, to perform complex
tasks, required in the daily life of severely paralyzed patients. However, the time needed
to submit a command is relatively long, which is particularly critical when emergency
stops are required. An extension of the system to a hybrid approach, e.g. in combination
with eye tracking or detection of eye blinks could help to address those safety issues.
Although the accuracy of performed selections is not perfect, it is on a level which
permits successful control of the system, which also is achieved by the feasibility of
correcting erroneous actions immediately. The lack of decoding accuracy is probably
caused by the narrow arrangement of selectable items, which effects a superposition
of stimulation frequencies in a small area of the visual field. Furthermore, the short
time window, which was chosen to allow for fast selections, decreases the accuracy of
frequency decomposition and consequently causes a decreased decoding accuracy as
shown in Section 4.2.4. Importantly, the erroneous selections primarily apply to the
selections of the objects to be grasped and rarely to the initiation or cancellation of the
grasp. Again, this might be caused by the advantageous positioning of the respective
buttons, but also by the disabled visual stimulation of objects during the robot activity
which effects less potentially superimposing stimuli and provides a smaller number of
selectable alternatives. A further, extremely important issue of self-paced BCI control
is the ability of the system to function in an idle mode, which permits the user to rest
[221]. This requirement is often neglected in asynchronous BCIs but is particularly
necessary in the control of prostheses. In the experiment presented here, the relative
long duration of the robot’s actions allowed the reliability of the system to be proven
in withholding unintended commands.
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7.6 Comparison of Modalities
The potential advantage of MEG over EEG is a long debated and insufficiently resolved
topic [68, 120]. In the past, the primary question of investigations referred to the spa-
tial resolution of either modality. This was approached by determining the localization
accuracy of reconstructed sources [42]. With the classification of single trial data, a
different view on the signal quality assessment has emerged. The decoding accuracy
achieved with a specific modality provides a measurable value of information content,
which can be extracted from the recordings. A study on binary classification of ERD
[75] suggested that MEG permits higher performances in channel space compared to
EEG, but that EEG considerably improves with the CSP method achieving the same
level as channel-based MEG classification. However, in this study, data were acquired
in different sessions and from different subjects who even performed different imagery
tasks, which are critical constraints for comparing two recording techniques. In the cur-
rent work, measurements of EEG and MEG were performed simultaneously, acquiring
their signals from the same activity. Similar to decoding accuracy in classification, the
correlation coefficient provides a direct measure in regression for comparison of modal-
ities. A recently published work [99] showed that reconstructed trajectories of hand
motion from MEG and EEG data generate significantly higher correlations for MEG,
but the amount of this difference was not considered critical by the authors.

In the present study, the recorded data were compared using the same algorithms for
both modalities. The CCA method used to estimate the optimal spatial filter is well
suited for combining both signals to a common feature space. A grid search strategy was
used to determine the optimal set of channels, spread over the visual cortex. It turns out
that the superior modality depends on the subject. On average, MEG achieved higher
accuracies, but due to the individual variation not significantly higher. Additionally,
EEG channels do not significantly improve the accuracy of MEG. However, adding
MEG channels increases the accuracy of EEG channels significantly. The number of
involved channels considerably affects the performance. This suggests that using several
channels rather than only one hypothetically placed channel improves the signal-to-
noise ratio if adequate spatial filters are applied. However, the accuracy enhancement
rapidly converges with increasing number of involved channels, which indicates that a
few channels close to the source are sufficient to extract the available information from
the noisy signal. The individual difference between the performance achieved with EEG
and MEG might be caused by distinct distortions of either signal. While EEG is more
sensitive to muscle activity and eye movements, MEG is more sensitive to environmental
distortions, even when the source is far outside the recording chamber. Furthermore,
single EEG channels might suffer from weakening conductivity over ongoing recording
time. In contrast, the MEG sensor array is fixed while the subject is not, which can lead
to a shifting of the signal to other channels if the subject moves. Another important
issue is that EEG measured in a shielded room does not represent the conditions of
EEG in a natural environment which BCI control is faced with.

The analysis showed that MEG tends to provide a signal that permits a more accurate
decoding of SSVEP signals than EEG. This might be caused by the denser distribu-
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tion of channels over the relevant brain areas, which supports the notion that MEG
provides a higher spatial resolution. Furthermore, using MEG as an additional modal-
ity to EEG improved the performance, which illustrates evidence that MEG provides
complementary information. In traditional approaches for comparing both modalities,
neural generators are determined and the localization accuracy is evaluated. In those
studies, improved reconstruction accuracy with combined EEG/MEG was evident as
well [60, 120]. The authors likewise argued that the improvement was due to the com-
plementary nature of both modalities.
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8. Summary and Future Work

8.1 Summary

In this work I investigated a new approach for instantiating complex movement of a
prosthetic device useful for people who suffer from severe disabilities. The movement is
planned and performed by an intelligent robot. A potential user controls the robot by
the selection of control elements merely by an attentional task. The BMI system de-
codes the brain activity measured as magnetic field variation and detects the intended
control command. The approach was particularly designed to exploit low information
transfer, which is possible using brain signals measured with conventional noninvasive
recording techniques. To simulate a real world scenario, a virtual reality environment
was used, presenting visual stimuli and visualizing the robot movement, grasping an ob-
ject. It was shown that the system can be controlled relatively accurately by self-paced
commands. Importantly, withholding unwanted commands, which only a minority of
BMI implementations can account for, was reliably detected by the system.

In accomplishing this final system, initial experiments were conducted, as with BMI
systems. Two types of brain signals were used to investigate the performance of se-
lecting an item under circumstances that were insufficiently or not yet researched, i.e.
using a virtual environment and decoding from MEG signals. In both paradigms, the
first detecting SSVEP signals, and the second detecting ERPs evoked in an oddball
paradigm, comparable information transfer rates were achieved. Notably, the oddball
paradigm comprises advantageous features such as eye movement independence and less
interfering visual stimulation. The achieved performance was comparable to other im-
plementations in the closed-loop BMI experiments and in subsequent open-loop analyses
advanced processing and decoding algorithms were investigated in order to identify the
most suitable decoding technique. It turned out that spatial filter methods have a con-
siderable impact on the decoding accuracy of high-density channel data as represented
by MEG. A statistical approach known as canonical correlation analysis showed supe-
rior results for both paradigms. Furthermore, classification algorithms marginally affect
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the results if low dimensional feature spaces are used. An important factor influencing
decoding accuracy was constituted by the hypotheses involved in data preprocessing,
such as band-pass filtering the signal.

In the final experiment, EEG activity was recorded simultaneously to MEG. This per-
mitted the direct comparison of either technique, clarifying potential advantages of
MEG, which is assumed to be topographically more sensitive. For the decoding of
steady-state responses affected by narrowly arranged visual stimulators, MEG shows
only a slight advantage over EEG on average. An even higher accuracy is achieved
when EEG and MEG channels are combined, where, in combination with CCA-based
spatial filtering, a data-driven selection of channels is required for best results.

The proposed system is the first BMI implementation which decodes MEG signals to
asynchronously control an autonomously grasping virtual robot. A main feature of the
approach is the simplification of actuator control by reducing the control to selecting
targets and initiating commands, respectively. This requires reliably functioning, in-
telligent robots. Developing such systems is also a challenging task but provides much
better perspectives than the prospect of enormously improved noninvasive measurement
of neural activity.

8.2 Outlook and Critique

For the realization of the BMI experiments the MEG was used. This technique has
strong limitations regarding the mobility of the system and depends on a shielded
environment without local disturbances. A closing door or a passing car within several
meters of the lab can produce large artifacts. Therefore, a transfer of the approach to use
high density EEG electrode arrays is a recommendable next step. The compatibility of
the signal characteristics was demonstrated using data from the final experiment, but
this is not a general proof. Rather, comparison of both acquisition modalities using
other paradigms is required to assess the advantages of either technique. Furthermore,
since the EEG recordings provided a much lower number of channels compared to MEG,
the constraints for comparison are unequal. A denser array of EEG electrodes would
potentially improve the accuracy. A weakness, typical in neuroimaging studies, is the
small number of subjects involved. For a more reliable evaluation more subjects are
required.

Although the proof-of-principle of asynchronous robot control was demonstrated, there
are several shortcomings to be solved. First of all, the accuracy of the final system has
potential for improvements. The accuracy probably suffered from the short distances
between areas of visual stimuli, which was required due to the limited working area of
the robotic gripper used. Narrow projection of stimuli on the retina induce a strong
overlap of stimulation frequencies in the visual cortex. Thus, an improved design of
stimuli size and position could potentially improve the accuracy of the system. A sec-
ond issue is the speed of the system. On the one hand, the time needed to select a
command is relatively long. On the other hand, the virtual robot used performs the
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grasping movements relatively slowly, because the algorithms implement collision detec-
tion and are developed to work with the virtual robot’s real counterpart. The challenge
in autonomous robotics is to perform reliable movements and meet safety issues at
the same time. Thus, further improvements in the grasping algorithm and intelligent
obstacle avoidance may also help to achieve a more reliable BMI-based grasping device.

The VR environment requires the user to look at a computer display. Thus, another
important step is the transfer of visual stimulation to real-world displays, e.g. LED
arrays which could be placed in the vicinity of potential target objects. Furthermore, an
anthropomorphic robotic arm or prosthesis is required, which is able to perform grasping
movements that are similar to human actions and which is capable of performing useful
tasks. The existing grasp planning algorithms also might be extended to expand the
manipulator’s facilities and simultaneously exclude any risk of accidental violation or
damage.

8.3 Conclusions

The BMI demonstrator developed in this work illustrated that asynchronous online
control of an intelligent robotic gripper is possible using MEG signals. In contrast to
experiments based on noninvasively measured motor potentials this approach facilitates
grasping in many degrees of freedom, requiring a very low information transfer rate.
Importantly, the independence of external cues allows spontaneous use of the system.
The subsequent comparison of MEG and EEG data as BMI source signals showed only
a marginal difference of decoding success between the modalities, with MEG slightly
superior to EEG. The combination of both modalities showed the highest performance.
This suggests that MEG provides a supplementary information channel which enhances
the detection accuracy of SSVEPs.

To date a prosthesis reliably driven only by the human brain is a vision of many re-
searchers. The findings of this work represent important steps towards the development
of prosthetic devices controlled by noninvasive BMIs. Furthermore, the evaluation of
spatial filtering methods for both SSVEP and ERP detection provides valuable findings
that most likely can be transferred to EEG analysis which is the currently preferred
technique for BMI design.
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List of Abbreviations

ADHD Attention Deficit Hyperactivity Disorder

BCI Brain-Computer Interface

BMI Brain-Machine Interface

BOLD Blood Oxygenation Level Dependent

BPF Band-pass Filter

CAR Common Average Reference

CCA Canonical Correlation Analysis

CSP Common Spatial Pattern

ECoG Electrocorticogram / Electrocorticography

EEG Electroencephalogram / Electroencephalography

ERD Event-related Desynchronization

ERP Event-related Potential

ERS Event-related Synchronization

fMRI Functional Magnetic Resonance Imaging

HRF Hemodynamic Response Function

ITR Information Transfer Rate

kNN k-Nearest Neighbor

LDA Linear Discriminant Analysis

LFP Local Field Potential

MCC Maximum Contrast Combination



96 List of Abbreviations

MEC Minimum Energy Combination

MEG Magnetoencephalogram / Magnetoencephalography

MR Magnetic Resonance

MUA Multi Unit Activity

NIRS Near Infrared Spectroscopy

P300 Positive Deflection 300 ms After Stimulus Onset

PCA Principal Component Analysis

rLR Regularized Logistic Regression

SCP Slow Cortical Potentials

SMR Sensorimotor Rhythms

SNR Signal-to-Noise Ratio

SOV Simulated Online Validation

SQUID Superconducting Quantum Interference Devices

SSVEF Steady-state Visual Evoked (magnetic) Field

SSVEP Steady-state Visual Evoked (electrical) Potential

SUA Single Unit Activity

SVM Support Vector Machine

VEP Visual Evoked Potential

VR Virtual Reality
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G. Curio, and T. Dickhaus. Neurophysiological predictor of SMR-based BCI
performance. Neuroimage, 51(4):1303–1309, Jul 2010.

[23] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller. Optimiz-
ing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing
Magazine, 25(1):41–56, 2008.



Bibliography 99

[24] J. Bortz. Statistik: Für Human- und Sozialwissenschaftler. Springer-Verlag, 2005.

[25] L. A. Bradshaw, R. S. Wijesinghe, and J. Wikswo, Jr. Spatial filter approach for
comparison of the forward and inverse problems of electroencephalography and
magnetoencephalography. Ann Biomed Eng, 29(3):214–226, Mar 2001.

[26] L. A. Bradshaw and J. Wikswo, Jr. Spatial filter approach for evaluation of the
surface laplacian of the electroencephalogram and magnetoencephalogram. Ann
Biomed Eng, 29(3):202–213, Mar 2001.

[27] C. Brunner, B. Z. Allison, D. J. Krusienski, V. Kaiser, G. R. Müller-Putz,
G. Pfurtscheller, and C. Neuper. Improved signal processing approaches in an
offline simulation of a hybrid brain-computer interface. J Neurosci Methods,
188(1):165–173, Apr 2010.

[28] C. Brunner, R. Scherer, B. Graimann, G. Supp, and G. Pfurtscheller. Online
control of a brain-computer interface using phase synchronization. IEEE Trans
Biomed Eng, 53(12 Pt 1):2501–2506, Dec 2006.

[29] P. Brunner, S. Joshi, S. Briskin, J. R. Wolpaw, H. Bischof, and G. Schalk. Does
the ’P300’ speller depend on eye gaze? J Neural Eng, 7(5):056013, Oct 2010.

[30] P. Brunner, A. L. Ritaccio, J. F. Emrich, H. Bischof, and G. Schalk. Rapid
communication with a ”P300” matrix speller using electrocorticographic signals
(ECoG). Front Neurosci, 5:5, 2011.

[31] E. Buch, C. Weber, L. G. Cohen, C. Braun, M. A. Dimyan, T. Ard, J. Mellinger,
A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer. Think to move: a neu-
romagnetic brain-computer interface (BCI) system for chronic stroke. Stroke,
39(3):910–917, Mar 2008.

[32] A. Buttfield, P. W. Ferrez, and J. d. R. Millán. Towards a robust BCI: error
potentials and online learning. IEEE Trans Neural Syst Rehabil Eng, 14(2):164–
168, Jun 2006.
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