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Abstract 

Due its superior technological properties in food manufacturing, palm oil represents 75% of 

the worldwide edible plant oil production, which is one of the most important sectors of the 

global food industry. For the deodorization process, a distillative sub-process of crude oil 

refining to remove undesired volatile minor compounds, the heat-induced formation of 3-

monochloropropane-1,2-diol and glycidol, as well as their fatty acid ester, could be proven. 

These substances have been defined as being potentially carcinogenic, tumorigenic and 

nephrotoxic to humans by regulatory authorities and research groups, resulting in the 

definition of threshold levels for refined oils and manufactured foods. Recent studies, aiming 

at minimization of these contaminants, propose the Short-Path-Distillation (SPD) as 

promising alternative for the standard deodorization process due to comparatively mild 

thermal distillation conditions at high vacuum and other features. In this regard, the SPD is 

systematically analyzed and optimized model-based by an innovative stochastic modelling 

approach in this work. This approach comprises the Response Surface Methodology (RSM) 

for model derivation and Bayesian model analysis. The RSM provides a set of linear process 

models which comprise the effects and interactions of SPD process variables on the palm oil 

quality parameters. These models are just valid for the individual process analyzed but 

provide informations of general validity on the qualitative nature of effects and interactions 

that aid design and scale-up of comparable SPD processes. Subsequently, a coherent 

Bayesian model analysis methodology is implemented and applied to the set of linear models 

to account for the uncertainty of models and results with respect to the error of 

experimentation. By that approach, probability distributions over the range of alternative 

results are estimated that provide the mode estimate, expected value estimate and 

corresponding uncertainty measures (standard deviation), which are applied to the analysis 

of the SPD process. The Bayesian estimation of parameter values of the linear model terms 

(identified by RSM) is achieved by estimation of the Bayesian posterior parameter probability 

distribution via Gibbs-sampling (special case of the Metropolis-Hastings-Algorithm (Markov-

Chain-Monte-Carlo method)). This sampling process is accelerated by an integrated sub-

algorithm as proposed by Müller (1991). Alternative models for a defined quality parameter 

(RSM provides models of 1st and 2nd grade) are discriminated by estimation of the Bayesian 

relative model probability according to the method proposed by Chib-Jeliazkov (2001). The 

Bayesian validation of models, as well as Bayesian evaluation of model performance, model 

predictions and experimental results, is achieved by implementation of the method proposed 

by Geweke (2007). To ensure a correct implementation and application of all stochastic 

methods and algorithms for the real-life problem of SPD optimization, a validation of method 

implementation and understanding is achieved by initial application to a simple model and 

simulated experimental data (derived from that model by random addition of noise).  All 

experiments achieved for model derivation show concentrations of 3-MCPD and related 

substances (such as glycidol) that are negligible and / or within the error experimentation. 

Thus, the derivation of statistically significant model terms is not possible. As the measured 

values are also far below all discussed threshold levels it can be stated, that the SPD is 

definitely capable of meeting the corresponding process and product quality requirements. 

The RSM provides model proposals of 1st and 2nd grade for the oil quality parameters 

rancimat, acid value and tocopherol, which are further discriminated and analyzed by 

Bayesian means. In this regard, process settings are identified and experimentally verified, 

which ensure the compliance with oil quality standards with the desired stochastic certainty. 

With respect to method and product quality requirements, evidence is provided in this work 

for the outstanding performance of the SPD and the stochastic methods applied. 
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1 Introduction  

The production of edible oils and fats represents one of the most important sectors of the 

food industry worldwide due to its quantitative and functional importance for the production of 

many foods. In 2003, the total global production of edible oils and fats reached approximately 

105 million tons, of which 75% were applied for human consumption. Among edible plant 

oils, palm oil represents the most significant type, followed by soybean, rapeseed and 

sunflower oil. From 1999 to 2009, the global production of crude palm oil (CPO) nearly 

doubled by increasing from 20.6 to 45.4 million tons. Due to its superior oxidation and heat 

stability, as well as the fact that it maintains a solid consistency at room temperature, palm oil 

is of special importance for the food industry, particularly for bakery products, drippings, 

margarine and confectionaries (OVID, 2015; USDA, 2010). 

Aside from its technological advantages, palm oil represents a valuable source of nutrients 

as it provides many liposoluble vitamins, such as tocopherols and carotenoids, essential 

polyunsaturated fatty acids and secondary phytonutrients (Rimbach et al., 2010; O’Brien, 

2009 and BVE, 2010). Most crude oils are not suitable for human consumption and food 

production due to the fact that various associated minor compounds, such as free fatty acids 

(FFA), oxidation products, phospholipids, carotenoids and pesticides, negatively affect the 

sensory, nutritional and technological product properties.  

It has to be mentioned here that, besides its economical, technological and nutritional 

benefits, the environmental, health and ethical aspects of modern palm oil production have 

been recently discussed very critically. A further detailed analysis and discussion of this 

issue is not objective of this work. 

1.1 Modified processes for control of 3-MCPD fatty acid ester formation 

Thus, a preceding treatment of the oil by a sequence of different sub-processes, known as 

the refining process, is necessary to remove these undesired substances. One of these sub-

processes is the so-called deodorization, which is a distillation process that applies an 

additional steam strip to remove volatile compounds at temperatures of up to 250°C 

(Bockisch, M., 1993, pp. 484-486; 531-537). In 2006, the heat induced contaminants 3-

monochloropropane-1,2-diol (3-MCPD) and glycidol, as well as their fatty acid esters (3-

MCPD-FE and G-FE), could be detected for the first time in refined fats and oils (Zelinková et 

al., 2006, pp. 1290-1298). The detection of these contaminants was confirmed by CVUA 

Stuttgart (Weißhaar, R., 2008). For free 3-MCPD nephrotoxic and tumorigenic properties 

could be discovered at higher doses for rats (Sunahara et al., 1993). 

Due to these facts, the Scientific Committee on Food (SCF) of the EU-Commission and a 

FAO/WHO committee (JECFA) defined a tolerable daily intake (TDI) of 2 µg·(kg body 
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weight)-1 of 3-MCPD by taking a safety factor of 500 into account. Recently, the International 

Agency for Research on Cancer (IARC) defined free 3-MCPD as being “potentially 

carcinogenic to humans”. In the course of developing suitable analytic methods for 3-MCPD-

FE detection, also high amounts of G-FE, which is also considered as being harmful to 

human health, were detected especially in refined palm oil (Bakhiya et al., 2011; Habermeyer 

et al., 2011). Free glycidol exhibits mutagenic and carcinogenic properties and has been 

defined as being “probably carcinogenic to humans” by the IARC.  

Furthermore, the ALARA-principle is valid for G-FE, which means that its content in refined 

edible plant oils and manufactured products has to be kept “as low as reasonably possible”. 

The German Federal Institute of Risk Assessment (BfR) assumes that 3-MCPD-FE and G-

FE are enzymatically cleavaged into free 3-MCPD / G and free FFA in the human 

gastrointestinal tract by 100%, which means that all threshold levels and recommendations 

that have been defined for the free substances so far are also valid for the ester. The 

European Food Safety Authority (EFSA) agrees with that assessment, which is additionally 

supported by recent research on the metabolism of 3-MCPD-FE and G-FE (Creuzenberg 

and Berger-Preiß, 2011; BfR, 2009). Various studies have provided evidence that the 

deodorization process, which is a fundamental part of plant oil refining, is crucial for the 

formation of 3-MCPD-FE and G-FE due to the exposure of the oil to high temperatures 

(Hrncirik, 2010; Lin et al., 2010; Bhaggan / Werleman, 2010).  

Consequently, many German and international institutes and authorities have defined 

specific threshold levels and initiated research projects aiming at the development of 

strategies to minimize the 3-MCPD-FE and G-FE content in refined plant oils. In a recent 

project initiated and funded by the Research Association of the German Food Industry (FEI), 

various minimization strategies were identified on laboratory scale which are capable of 

controling the content of these contaminants in the oil by modification of the refining 

conditions (Pudel et al., 2011) and a subsequent removal from the product by adsorbents 

(Strijowski et al., 2011). One promising strategy regarding the modification of the refining 

process is the replacement of the standard strip steam deodorization by a Short-Path-

Distillation (SPD) process that is capable of significantly reducing the formation of heat 

induced contaminants by applying comparatively mild thermal conditions at high vacuum 

(Pudel et al., 2011; FEI, 2011, pp. 47-73; TTZ OvGU, 2012; ASW, 2012). 

1.2 Short-Path-Distillation (SPD) and its potential 

The potential of the SPD to minimize the formation of 3-MCPD-FE and G-FE, as well as to 

replace the standard deodorization process, is investigated in this work. For this purpose, the 

effects of the significant process variables of the SPD on the formation of these contaminants 

and major oil quality parameters are systematically analyzed for palm oil through the 

application of sophisticated stochastic methods of model-based process optimization. Palm 
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oil is chosen examplaryly as model oil due to its comparatively high 3-MCPD-FE and G-FE 

formation capacity and global economic importance. Process variable settings are identified 

and evaluated model-based at which a minimization of the formation of contaminants along 

with the compliance of the oil quality standards can be realized.  

The deodorization of edible plant oils via SPD is a very complex process. Various physico-

chemical effects and interactions influence the distillative separation of substances from the 

oil, some of which are supposed to be separated while others are supposed to remain in the 

product. The key effect in this context is the dependency of the vapour pressure of these 

substances on the temperature and ambient pressure which is given by the vapour pressure 

curve individually for each substance, thus enabling substance separation by differences in 

curve progression. Additionally, these effects and interactions depend on the complex 

technological design as well as various process variables to be adjusted. Thus, mechanistic 

modelling approaches are limited by the large number of effects, interactions and operative 

characteristics that should be considered in a suitable model, but unfortunately are not 

appropriately characterized or just too complex to be modeled properly in many cases.  

1.3 Response Surface Methodology (RSM) 

A novel process and product optimization approach is the modelling of processes by 

application of the Response Surface Methodology (RSM), which is a self-contained statistical 

modelling approach that is based on statistical design of experiments (DoE). The RSM 

identifies significant effects and interactions of the process variables (e.g. temperature and 

stirrer speed of SPD) towards the target values (e.g. oil quality parameter), which are 

additionally quantified by corresponding terms in a linear model that sums up these effects 

with respect to a certain target value. This approach is in line with the so-called “black box” 

principle which treats the outcome of a process (product quality parameters) as a function of 

the input (process variables) without considering the physico-chemical or technological sub-

processes that convert the input into the output. The outcome of the RSM is actually a set of 

linear models of varying complexity that describe the dependency of a target value on the 

process variables being considered. The RSM therefore offers the opportunity to model and 

optimize a process without requiring a deeper knowledge on the fundamental physico-

chemical sub-processes. This is based on a minimized number of statistically defined 

experimental process settings which maximize the information on the process contained in 

the corresponding experimental data. The lack of information regarding the key physico-

chemical and technological processes inside the “black box” indicates that such a model is 

only valid for the operative and environmental process constants at which the experiments 

were achieved. Thus a model derived for a laboratory scale facility and process is only 

suitable for giving recommendations for other (e.g. industrial scale) comparable facilities and 

processes and for setting reasonable limits to the spectrum of process settings to be 
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examined for their optimization. For a detailed specific process modelling the experimental 

setup and model derivation has to be achieved separately for each diverging process setup 

(e.g. oil type, facility type and scale). The implementation of the RSM, as well as the analysis 

of its potential in process modelling and optimization, will be achieved by the laboratory scale 

approach of palm oil SPD that is presented in this work. Moreover a generalized algorithm is 

provided in this work that enables the derivation of experimental setup and process models 

for each diverging technological process of interest. 

Through RSM, the parameter values of the potential model terms (effects and interactions on 

the target value respectively) are calculated directly from the experimental results with a 

subsequent statistical evaluation of significance. A major drawback of the RSM is, however, 

that the error of experimentation is not considered in terms of weighing and evaluation of 

experimental results and models / conclusions derived from the same. Furthermore, a 

comprehensive evaluation of reliability and uncertainty of the calculated results for model 

parameterization, model solutions, model performance and model selection is not provided. 

However, such an analysis and evaluation is inevitable for a self-contained model-based 

process optimization approach.  

1.4 Bayesian model analysis 

Bayesian analysis meets these requirements of a comprehensive model parameterization, 

discrimination and performance evaluation as it is an innovative and self-contained 

probabilistic approach that provides uncertainty measures for model parameterization, model 

selection and model solutions by means of probability distributions over the range of possible 

alternatives. These probability distributions are determined by updating the so-called ‘prior 

distribution’, which is based on previous knowledge (e.g. literature), by the information on the 

true underlying process contained in the experimental data. This updated version of the 

probability distribution is referred to as ‘posterior distribution’. As the posterior probability of 

model parameterizations cannot be calculated directly, its estimation turns out to be the core 

problem and process of Bayesian analysis which is highly complex, both mathematically and 

computationally. Various approaches have been developed in an attempt to limit problems 

related to the complexity of this estimation. A sophisticated approach is the generation of a 

representative sample from the posterior distribution by application of Gibbs-sampling, a 

version of the Metropolis-Hastings-Algorithm which in turn is a Markov-Chain-Monte-Carlo 

approach (Chib and Greenberg 1995; Hastings, 1970; Tierney, 1994; Hartmann et al., 1974; 

Kreyszig, E., 1972; Chib, S. and Jeliazkov, I., 2001, pp. 270-281). As this algorithm requires 

significant computational effort Müller et al. (2004) proposed an efficient method to increase 

its speed and efficiency, which is referred to as Müller-algorithm in this work. This algorithm 

is incorporated into the Gibbs-sampling algorithm to accelerate Markov-Chain convergence 

towards the Bayesian posterior distribution. Additional problems are the discrimination of 
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alternative models by posterior model probability estimation, model validation and evaluation 

of model predictions.  

Chib and Jeliazkov derived a self-contained and mathematically proven Bayesian random 

sampling method to estimate the posterior relative model probability as a model 

discrimination measure (Chib, S. and Jeliazkov, I., 2001, pp. 270-281). This method is based 

on the posterior parameter distribution sample and related data (e.g. likelihoods) provided by 

the Gibbs-sampling algorithm. Finally, a comprehensive evaluation of model performance 

requires model validation and analysis of model predictions.  Unfortunately, Bayesian theory 

and application is less developed in this field. Geweke (2007) developed a coherent and 

mathematically proven theory for an exclusive Bayesian model validation and evaluation of 

simulation results in terms of probability. It is a random sampling method that is also based 

on the data output of the Gibbs-sampling. He further applied a case study to provide 

evidence for the practical suitability of this theory (Geweke, 2007).  

In this paper, the Short-Path-Distillation of palm oil is modeled and optimized through the 

application of RSM and Bayesian analysis. Alternative models of varying complexity and with 

significant model terms are derived by RSM. The model terms are then parameterized via 

Bayesian determination of posterior parameter distributions and most probable parameters. 

The optimum process variable setting is then determined for each model. Additionally, the 

relative model probability (model discrimination), probability distribution of model predictions 

and model validity are determined by Bayesian means in an attempt to provide a 

comprehensive stochastic approach of model selection and evaluation of model 

performance. The model based calculated optimum process setting and, thus, model 

performance is experimentally proven in this document. 
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2 Theoretical background 

In this chapter an introduction is given into the theoretical background in chemistry, process 

engineering and stochastic, wich is relevant for this thesis. 

2.1 The 3-MCPD fatty acid ester and related substances in foods 

This chapter describes the physico-chemical properties, formation and occurrence of 3-

MCPD fatty acid ester and related substances, such as glycidol, in foods. The physiological 

impact and toxicity, regulative approaches and recent research efforts regarding these 

substances are also exposed in detail in this work.  

2.1.1 3-MCPD  

3-MCPD and glycidol are judged as so called food born toxicants (SGS, 2014). They are 

formed heat induced in thermal production processes of fatty and salty foods. Precursors are 

constituents of the raw material. A major process in that context is the conventional refining 

of edible oils and fats. Other critical products and processes will be described in the further 

subchapters. The following product groups are particulary pressured: 

 Backery products 

 Bread 

 Drippings, chip fat and coconut oil 

 Fish fingers 

 Fried meat 

 Hazelnut spreads 

 Margarine 

 Pizza 

 Red seasoning sauce 

 Refined baby nutrition 

 Rissoles 

 Sausages 

 Smoked meat and fish products  

 Spice paste 

2.1.1.1 Physico-chemical characterization of 3-MCPD 

3-monochloropropane-1,2-diol (3-MCPD) is part of the chloropropanol group and thus 

contains a polyvalent alcohol in its molecular backbone. In this molecular structure one or 

more hydroxyl groups of the alcohol are substituted by a chlorine atom. The chemical basis 

of 3-MCPD is glycerin, in which a terminal hydroxyl group is substituted by a chlorine atom 

(Hamlet et al., 2002b, pp. 619-631). A substance which is chemically closely related is 3-

http://www.linguee.de/englisch-deutsch/uebersetzung/smoked+meat+and+fish+products.html
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MCPD-FE. In this fatty acid ester one or two hydroxyl groups of 3-MCPD are esterified with 

long chain fatty acids of variable length (see Figure 2.1). 3-MCPD-FE are nonpolar and 

consequently lipophilic. This is in contrast to the free form (polar), which is lipophobic (Baltes 

and Matissek, 2011, pp. 309–311; Hamlet et al., 2002b).  

 

Figure 2.1: Alternative structures of 2-MCPD, 3-MCPD and glycidol (fatty acid esters respectively) 
1): 3-MCPD;   2): 2-MCPD;   3): 2-MCPD-diester;   4): 3-MCPD-monoester; 

5): 3-MCPD-diester;   6): Glycidyl-FE; 𝐑𝟏, 𝐑𝟐 =Acyl residue of fatty acid; 𝐑𝟑 =Alcyl residue of fatty acid 

Fig 2.1 presents alternative structures of 2- and 3-MCPD in free form, 2- and 3-MCPD-FE 

and gylcidyl-FE (Crews et al., 2013). 

2.1.1.2 Occurrence of 3-MCPD 

Free 3-MCPD has been detected in doses that are critical to human health in refined edible 

oils and in foods that are produced from these raw materials. This chemical substance can 

be detected in cereal products, cheese and meat, as well as in artificial additives; a relevant 

example of an artificial additive is modified starch. Hamlet et al. (2002a/b) and Crews et al. 

2002) thoroughly summarized foodstuffs containing 3-MCPD.  

The formation of 3-MCPD begins as a heat induced thermal reaction. Therefore, its presence 

can be detected at higher contents in foods that have been subject to intensive heat 

treatment during the production process. Exemplaryly the concentration of 3-MCPD 

increases from about 0,01 𝑚𝑔 ∙ 𝑘𝑔−1 to 0,32 𝑚𝑔 ∙ 𝑘𝑔−1 during the toasting of bread. Thereby, 

the content is strongly dependent on the browning factor (Crews et al., 2001). 

The content of 3-MCPD varies significantly among different edible oils. The content level, 

however, is strongly dependent on the formation potential, which is subject to the precursor 

content, as well as the technical parameters of the refining process. For palm oil, 

3-MCPD-FE and related compounds can be detected at a level of up to 14 𝑚𝑔 ∙ 𝑘𝑔−1 (FEI 

2011, pp. 47–73; Zelinková et al., 2006).  

On the contrary, natural and unrefined edible oils exhibit a significantly lower content of 3-

MCPD due to the lack of intensive heat treatment during the production process. 
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A content of 74 µg ∙ kg−1 of bound 3-MCPD was found in natural olive oil, while the refined 

product exhibited a content of 1464 µ𝑔 ∙ 𝑘𝑔−1. Thus, the content in the refined product is 

approximately twenty times larger (19.78) compared to the natural product. Animal fats and 

oils are usually unrefined; therefore, it is not surprising that 3-MCPD and 3-MCPD-FE are not 

detectable in food products that are mainly based on animal fats and oils (Zelinková et al., 

2006). 

Finally, it should be noted that the content of 3-MCPD-FE exceeds the amount of free 

3-MCPD in most of the tested samples by factor 396 (Svejkovska et al., 2004, pp. 190 - 196). 

2.1.1.3 Appearance of 3-MCPD 

Precursors of the formation of 3-MCPD in vegetable oils are lipids and chlorinated 

substances that are contained in the raw material, with the latter acting as chloride donators 

for the formation of 3-MCPD. This reaction was especially demonstrated during the refining 

process of palm oil. To initiate the reaction of lipids with chlorinated substances through heat, 

high temperatures are required. 

Organic chlorinated substances are taken up by the palm tree via fertilizers and pesticides. 

During the plant growth and the production process of the crude oil, these compounds are 

transformed into mono chlorides. During the refining process of edible palm oil they react 

with lipids to 3-MCPD (Craft et al., 2011). 

Also triacylglycerides (TAG) are important lipoid precursors which represent 90 to 95% of the 

the raw oil. Other lipids like glycerin, monoacylglycerides (MAG) and phospholipids are not 

considered as being essential for the heat induced formation of 3-MCPD during 

deodorization in practice. These compounds are eliminated before from the oil during the so-

called ‘de-gumming’ process, which is an essential sub-process of plant oil refining. 

Diaclyglycerides (DAG) can also be active in the process of 3-MCPD-FE formation (Craft et 

al., 2013). With a content of at least 4 % in the raw oil DAG significantly contribute to the 

formation potential of 3-MCPD and related compounds like glycidol (Matthäus et al., 2011, 

pp. 380-386; FEI 2011, pp. 47–73).  

For fruit pulp oils and palm oil, contents of DAG between 6 and 10% could be detected in the 

total raw material. This is a comparatively high level in comparison to other edible oils. The 

reason for this high level can be attributed to the activities of lipases (Bockisch, 1993, p. 463; 

Matthäus et al., 2011, pp. 380-386; Böttcher, 2007).  

Beginning with a temperature between 120°C and 130°C, the organic chloride compounds of 

the raw oil are decomposed which results in free chloride ions. These intermediates are 

required for the formation process (Nagy et al., 2011) of 3-MCPD-FE, for which only four 

subsequent reactions need to be considered in a hydrophobic environment (Figure 2.2). 
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In all four cases the 3-MCPD-FE formation is initiated by a nucleophilic attack of a negatively 

charged chloride ion on the acylglycerin group in the TAG, DAG or MAG molecule. 

In the first two reaction mechanisms (Figure 2.2 a/b), a direct nucleophilic attack of a chloride 

ion on a carbon atom in the glycerin backbone occurs for substances that carry either an 

ester group (a) or a hydroxyl group (b). 

In the other two mechanisms (Figure 2.2 c/d) acylglycerin is produced as an intermediate in 

the first step of the process. In the second step of the process c, an acyloxonium ion is split 

from the acylglycerin. In the third step, the 3-MCP-FE molecule is generated while H2O is 

split-off. In the alternative reaction d, an epoxide molecule is split from the acylglycerin in 

step 2 (Rahn and Yaylayan, 2011). 

 
Figure 2.2: Alternative mechanisms for 3-MCPD-FE formation                                                           

a): direct nucleophilic attack of cloride ion on esterified glycerin carbon atom;                                                    
b): direct nucleophilic attack of chloride ion on hydroxylated glycerine carbon atom;                                           

c): formation of cyclic acyloxonium ion from glycerin and subsequent  nucleophilic attack of chlorine ion on 
carbon atom in oxonium ring;                                                                                                                                

d): formation of epoxide ring from glycerin and subsequent nucleophilic attack of chlorine ion on carbon atom in 
epoxide ring                                                                                                                                                     

(Rahn und Yaylayan, 2011) 

The formation of 3-MCPD-FE in vegetable oils and vegetable fats is strongly dependent on 

environmental conditions. The thermal conditions of the refining process show a direct 

impact on the final 3-MCPD-FE content. In this regard the most important refining sub-

process for the production of palm oil is the deodorization, where the highest temperatures of 

the entire refining process can be measured (Pudel et al., 2011; Zelinková et al., 2006). 
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There is a positive correlation between the temperature applied to the deodorization of palm 

oil and the overall 3-MCPD-FE content in the final product. For process temperatures below 

200°C, the formation of 3-MCPD from triglycerides and chlorinated substances cannot be 

observed (Destaillats et al., 2012, pp. 29-37). 

For the deodorization of bleached palm oil, an increase of the 3-MCPD-FE content from 

4 mg ∙ kg−1 to 9 mg ∙ kg−1 can be observed when the process temperature is increased from 

180°C to 250°C. Despite of this, the content of 3-MCPD-FE is reduced back to 6 mg ∙ kg−1 

when the temperature is further increased to 280 °C. A potential reason for this decrease at 

elevated temperatures is thermal decomposition (Zulkurnain et al., 2012, pp. 799-805). Also 

an increase of the 3-MCPD-FE content could be observed for palm oil when the 

concentration of organic and inorganic chlorinated substances is increased (FEI 2011, pp. 

47–73; Destaillats et al., 2012, pp. 29-37). 

2.1.2 Glycidol 

The glycidol molecule (2,3-epoxi-1-propanol) is formed in two mirror-inverted molecular 

forms. Glycidol is an organic chemical compound from the group of epoxides and alcohols. It 

is a flavourless, odourless and colourless liquid. In presence of water, glycidol is formed in a 

slow process (Synowietz, 1984). 

2.1.2.1 Physico-chemical characterization of glycidol 

The formation of 3-MCPD-FE occurs along with the formation of glycidol in its free form and 

Glycidyl-FE. Under the influence of heat, both reactions were observed in vegetable fats and 

oils, as well as in the foodstuffs produced from those materials.  

Glycidol is an epoxide of glycerin. As in case of 3-MCPD, the free hydroxyl group of glycidol 

can become part of an ester bond with free fatty acids. Furthermore, 3-MCPD can be formed 

by reaction of glycidol with chlorine ions (see Figure 2.2). 

2.1.2.2 Occurrence of glycidol 

A detectable content of Glycidyl-FE and 3-MCPD-FE was observed in refined oils, with 

refined palm oil exhibiting the highest concentrations. Palm oil can reach a Glycidyl-FE 

concentration of up to 10 mg ∙ kg−1 after the refining process.  

The presence of this substance could also be verified for foodstuffs containing refined oils, 

e.g. mayonnaise (Crews et al., 2013). The formation of Glycidyl-FE is initiated during the 

deodorization (sub-process of refining) when the temperature exceeds 200°C. Beyond that 

mark the concentration of Glycidyl-FE in palm oil increases proportionally with increasing 

temperature. E.g. for the temperature range of 240°C to 270°C, an above average increase 

of up to 45 𝑚𝑔 ∙ 𝑘𝑔−1 was demonstrated in experiments (FEI 2011, pp. 47–73). 
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The content of DAG in crude plant oil plays an essential role in the formation process of 

Glycidyl-FE. Crude oils with a high DAG content of 87% also showed a high Glycidyl-FE 

formation capacity in refining experiments. Moreover, the level of Glycidyl-FE was ten times 

higher than in refined oils produced from crude oils with a DAG content of 5%.  

It is noteworthy that α-MAG can also act as a precursor in the Glycidyl-FE formation process. 

However, this substance plays only a subordinated role as its concentration in raw materials 

is usually negligible. Finally, TAG exhibit only a low potential for the formation of Glycidyl-FE 

(Destaillats et al., 2011; Craft et al., 2013). 

2.1.2.3 Appearance of glycidol 

The heat induced formation mechanism of Glycidyl-FE is shown in Figure 2.3 for a 

diacylglycerine molecule (DAG) and in Fig 2.4 for a monoacylglycerine molecule (α-MAG). 

The formation of Glycidyl-FE from DAG can be described as a heat induced intramolecular 

relocation; it is similar to the formation of 3-MCPD-FE. 

 

Figure 2.3: Glycidyl-FE formation starting with DAG molecule 

The proton of the hydroxyl group is transferred to the neighboring oxygen atom that is 

contained in the esterified fatty acid. An acyloxonium ion occurs as reactive intermediate. By 

a nucleophilic attack of the negatively charged oxygen the oxiran ring is closed. Through the 

relocation of electrons, the fatty acid is split off the molecular backbone. The transformation 

of an α-MAG molecule to Glycidyl-FE is accompanied by a transfer of protons and a split-off 

of H2O (Figure 2.4). 
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Figure 2.4: Glycidyl-FE formation starting with a MAG molecule 

Finally, a 3-MCPD-monoester can act as a precursor in the Glycidyl-FE formation process. 

However, this reaction only plays a subordinate role in food production (Destaillats et al., 

2011). 

2.1.3 Relevance of 3-MCPD and glycidol for nutrition and food industry 

Previous experiments using animals have proven the carcinogenic properties of free 3-

MCPD and glycidol (Abraham et al., 2013; BfR, 2009). The presence of these substances in 

refined vegetable oils is therefore detrimental to the oil-producing and oil–processing 

industry. More than 90% of vegetable oils are dedicated to the production of foods and 

supplements for human nutrition. The crude oils are refined prior to further use in nutritional 

products in order to ensure the desired sensory and technological properties (Böttcher, 2007;  

OVID, YEAR). Free 3-MCPD is hereby classified as a ‘potential human carcinogen’ and the 

joint FAO/WHO Expert Committee on Food Additives defined its Tolerable Daily Intake (TDI) 

with 2 µg ∙ (kg body weight)−1  (WHO et al., 2007).  

Currently, no toxicological studies for bound 3-MCPD exist. But it is known, however, that 

bound 3-MCPD-FE is cleavaged in the human gostro-intestinal-tract into free 3-MCPD by 

100%. Thus the same toxicity is assumed for the bound form as well (Abraham et al., 2013). 

Although the majority of edible plant oil products is not heavily regulated, some products do 

have established limits for the amount of 3-MCPD that is allowed to be present. Two 

examples are soy sauce and hydrolysed vegetable protein (HVP) for which a critical value of 

20 µg ∙ kg−1 for 3-MCPD has been established by EU regulation no. 1881/2006 (EK, 2006).  

Consequently, the threshold levels defined so far indicate, that the edible plant oil industry is 

only allowed to manufacture products that contain a maximum of 5 mg ∙ kg−1 3-MCPD. This 

regulation limit is based on an average adult with a bodyweight of 60 kg and a fat 
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consumption rate of 25 g ∙ per day−1 (Gemeinschaftsausschuss für die Analytik von Fetten, 

2012). 

It is assumed that free glycidol also exhibits genotoxic and carcinogenic effects. As for 3-

MCPD, it is supposed that Glycidyl-FE are completely cleavaged into free glycidol and fatty 

acids during the digestive processes.  

As long as no threshold level or TDI is defined for glycidol or its fatty acid esters, the ALARA 

principle (As Low As Reasonably Achievable) is recommended. According to this principle 

the amount of Glycidyl-FE that is present in a product should be reduced to the smallest 

value possible. Through the use of this strategy the detrimental impact on humans is 

expected to be reduced to the lowest possible level (BfR, 2009). 

Refined edible oils are also used as an essential ingredient in the production of baby milk 

powder and baby foods. The detection of health-critical doses of 3-MCPD in products 

intended for babies and infants negatively affects the image of the edible plant oil industry. A 

study on twenty food products found doses ranging from 62 µg ∙ kg−1  to 588 µg ∙ kg−1          

3-MCPD (Crews et al., 2002; Zelinková et al., 2009). According to a model calculation, these 

doses would exceed the TDI for a baby by a factor of twenty (BfR, 2007) under the following 

two conditions: First, the baby only consumes nutrients from foods designed for infants. 

Second, the 3-MCPD is released from the 3-MCPD-FE during production. In this study, it 

was also assumed that the TDI defined for adults is also valid for babies without a correction 

factor. 

2.1.4 Minimizing strategies for 3-MCPD-FE und glycidyl-FE in plant oils 

This subchapter gives an overview on ten technological strategies that can be used to 

reduce the content of 3-MCPD-FE and Glycidyl-FE in refined edible plant oils. 

The first approach is to replace crude oil types with high precursor concentrations (e.g. palm 

oil) by those with lower ones (e.g. rapeseed oil). This approach is already in practice in the 

refining industry. However, it is not a feasible approach for a broad range of products. 

Especially palm oil exhibits major technological and economic adavantages which make it 

superior to other oils with respect to food production. Furthermore, the crop yield for palm 

tree plantations is 4,2 t ∙ ha−1, which greatly exceeds the crop yields for sunflower, rapeseed 

and soy (0,69 t ∙ ha−1 on average). Also the demand for edible oils will rise by 500% until 

2050 according to recent studies. Therefore, palm oil is of particular interest for feeding the 

world’s population in the future (Junker, 2011; BVE, 2010). These aspects show that it is of 

special importance to identify contaminant reduction strategies for oil types with high 

precursor contents and formation potential, rather than just replacing one oil type by another. 
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A second approach is to improve the quality of crude oil, which has a deep impact on the 

content of toxic substances in refined oil down the production line. Quality parameters in this 

sense are the content of free fatty acids (FFA), phosphor, DAG and MAG in the crude oil. 

When low quality crude oil is used in the refining process, the level of 3-MCPD may be up to 

five times higher in the end product, compared to high quality crude oil. The level of Glycidyl-

FE in the refined product is also positively correlated with the DAG content in the crude oil. 

Thus, manufacturers typically prefer crude oil of superior quality. 

The DAG and FFA contents of the crude oil are also dependent on harvest and storage 

conditions, as well as the production method. All three factors strongly influence the 

formation of contaminants. Furthermore, late harvesting and extended storage times, as well 

as damage to the oil fruits, may cause enzymatic reactions which consequently cause lipid 

split-offs. Therefore, processing immediately after harvest, and thus limiting storage time, is 

important for the quality of the refined final product (Craft et al., 2012; Zulkurnain et al., 2012, 

pp. 799-805). 

The third approach is to reduce the content of inorganic chlorinated compounds. Organic 

chlorinated compounds are synthesized by the plant metabolism from inorganic chlorinated 

compounds that have been absorbed before (e.g. chlorinated pesticides and fertilizers). 

These organic chlorinated compounds act as a chloride donor for the subsequent 3-MCPD 

formation. Therefore, the reduction of the content of inorganic chlorinated compounds is an 

effective strategy for improving the quality of the refined final product. Avoiding chlorinated 

pesticides and fertilizers during cultivation thus improves the overall quality of the end 

product. Furthermore, improving water quality is also helpful in this regard (Craft et al., 2011; 

FEI, 2011, pp. 47–73). 

The fourth approach is to wash out chlorinated compounds by a washing step prior to the 

refining process. De-ionized water, chlorine free alcohol and hexan can be used for removal 

of these precursors. Through this method, the 3-MCPD content in refined plant oils can be 

reduced by one-third (Craft et al., 2011; FEI, 2011, pp. 47–73).  

The fifth alternative is the application of two modified refining sub-processes, de-gumming 

(the removal of gums from the oil) and bleaching, prior to deodorization. Both process steps 

can lead to a reduction in the content of 3-MCPD-FE and related compounds by 40%. If 

acids are not used after the de-gumming step, the 3-MCPD content can be further reduced; 

in refined palm oil this reduction effect may range from a maximum of 2 mg ∙ kg−1 down to 

about 0,1 mg ∙ kg−1 (factor twenty). 

Alternative six is to apply acid-activated bleaching earth to the refining process. It is assumed 

that the acid-based protonation of lipids inhibits the formation of reactive precursors. An 

alteration of the refining conditions in this context can only be hardly introduced by the 
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industry. The reason is that by this approach the oil quality is suffering. Oil quality is, 

however, another important factor in the whole production process (FEI, 2011, pp. 47–73; 

Ramli et al., 2011; Zulkurnain et al., 2012, pp. 799-805). 

Alternative number seven is to add auxiliary materials to the deodorization and to treat the 

refined product with absorbers in an effort to reduce 3-MCPD-FE and related substances to a 

minimum. Although this approach is considered to be effective, it is still under development 

and actually not ready for industrial-scale implementation (FEI, 2011, pp. 47–73).  

The eigth alternative takes into consideration that the generation of 3-MCPD-FE und 

Glycidyl-FE is induced by heat during the production process. The formation of these 

compounds only takes place in the upper heat region of the deodorization process. Thus, the 

contaminant formation in the final product can be controlled by reducing the maximum 

temperatures that are applied to the deodorization process. Unfortunatally this approach 

conflicts with the goal of fulfilling other oil quality criteria such as acid value or oxidation 

stability (Pudel et al., 2011; FEI, 2011, pp. 47–73). 

The ninth alternative is to apply a two-step deodorization (two successive standard 

deodorization processes with different duration and temperature). In comparison to a one-

step method, it can reduce the content of 3-MCPD-FE by up to 80%. With this approach, all 

quality criteria are fulfilled. The process for industrial use of the two-step deodorization is 

under development. 

The present thesis focuses on the tenth approach, which is the Short-Path-Distillation (SPD), 

and its potential advantages for the refining industry. The SPD is a sophisticated and 

technically highly complex process that enables the reduction of contaminant formation, 

along with satisfactory oil quality, by operating at fine vacuum and with special technical 

characteristics (FEI, 2011, pp. 47–73). 

2.2 Principle of Short-Path-Distillation (SPD) 

Standard deodorization in plant oil refining has been identified as being crucial for the heat 

induced formation of 3-MCPD and Glycidyl-FE due to a heat exposition of up to 120 min at 

260°C - 270°C (Pudel et al., 2011). Recent research results (FEI, 2011) indicate the potential 

of the SPD to replace the standard deodorization regarding the control of contaminant 

formation while ensuring oil quality. A process has been already developed by which 

bleached palm oil has been deodorized successfully at a temperature of 170°C and a 

pressure of 0,13 mbar concomitant with meeting the standard quality specifications. The 

formation of 3-MCPD- and G-FE was not considered here (Ooi et al., 1996).  
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In this thesis a detailed investigation and process optimization of palm oil Short-Path-

Distillation (SPD) towards contaminant formation and standard industrial quality parameters 

is presented. 

Specific technological characteristics of the SPD enable the efficient distillative separation of 

volatile compounds from a liquid multicomponent mixture at comparatively mild conditions:  

 Vacuum down to 10-3 mbar (lowers the boiling point) 

 Low residence time of oil volume unit on evaporator surface (reduced heat 

exposition) 

 Evaporation from a thin liquid layer 

 Turbulent recirculation of the film by agitation 

 Short path between evaporator and condenser 1  

Especially the short path optimizes separation by avoiding re-condensation at the evaporator 

surface due to collision of molecules. Here the laboratory plant VKL-70-5 manufactured by 

the company VTA GmbH has been applied (VTA, 2010). This plant is characterized by a 

double-wall glas cylinder as evaporator with an inside axially arranged glas spiral as 

condenser. Both can be adjustably tempered from inside via thermo oil by a thermostat. The 

pre-tempered oil is fed from the tank to the inner evaporator surface from the top of the 

evaporator by an adjustable pump. Radially arranged rolls dispense the oil on the inner 

evaporator surface as thin film whose thickness and turbulent recirculation can be influenced 

by the adjustable rotator speed. The distillate (substances to be separated) flows down the 

condenser and the residue (refined oil) down the evaporator surface into separate tempered 

receiver tanks (see also subchapter 4.1). 

2.3 Model based process optimization 

For most technological processes the influence of process variables (e.g. temperature) and 

initial conditions (e.g. initial educt concentration) on the process output (e.g. quality criteria of 

a product) is of high technological and physico-chemical complexity. Thus, unsystimatical 

and arbitrary (e.g. trial-and-error) process adjustment approaches are not suitable for a time 

and cost efficient identification of process settings that meat the optimization criteria of the 

process output. Mathematical process models simulate the effects of the most significant 

process variables and initial conditions on the target values (product quality parameters) over 

the whole range of reasonable adjustments. The model terms and respective constants are 

determined systematically by a limited number of specific optimized experimental settings 

(control of experimental effort). This enables the cost-efficient prediction of process 

                                                           
1
 It is below the mean free path of the evaporated compounds at this pressure. 
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outcomes at process settings which have not been experimentally tested and, thus, the 

identification of process settings that fulfill the optimization goal.  

2.3.1 Comparison of mechanistic and stochastic approaches 

Mechanistic models aim to picture the dynamics and kinetics of distinct physico-chemical and 

technological sub-processes by appropriate mathematical expressions. The required 

characteristic apparative, kinetic and material constants are determined experimentally or 

taken from the literature. These models can be easily adapted to different process setups by 

just adapting the values of the respective constants. Therefore an appropriate mechanistic 

process modeling requires detailed knowledge on all relevant sub-processes. Statistical 

modelling is the number one choice for the design and control of processes in many 

industries today. The primary advantage towards mechanistic modeling is that no deeper 

knowledge on technological and physico-chemical sub-processes is required and also in 

many cases a more precise simulation is provided as all potential effects and interactions 

can be theoretically considered. Unfortunately, statistic models are only valid for the process 

setup they were determined at and there is no technological and physico-chemical means of 

defining the parameters in such models. Mechanistic models, however, are usually based on 

the laws of physics, chemistry and process engineering. Therefore, the parameters of such 

models are able to be defined in a much more concrete manner and adaptable to alterations 

in process setups (Staby, Arne, 2014). 

2.3.2 Stochastic approaches 

The measured experimental data is affected by a randomly occurring error in 

experimentation which is in most cases Gaussian distributed. Thus it is unknown to what 

extent the measured data set, and therefore also the model and its parameterization 

calculated from that data, approach the real underlying process. 

Given a defined underlying process and error of experimentation, a broad range of different 

experimental data sets can occur with different probability. As model selection, model 

parameterization and model solutions are a function of the experimental data, they approach 

the real underlying process only with a certain probability. The higher the error of 

experimentation is, the larger is the range of possible results and the lower is the reliability of 

results. That is true for model parameterization and solutions that can occur for a defined 

underlying process. This makes us aware of the fact that process modelling is always 

accompanied by uncertainties in model selection, parameterization and solution. 

Consequently a comprehensive stochastic evaluation of model performance is required, 

which evaluates these factors and their validity in terms of probability and range of possible 

alternatives. 
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2.3.2.1 Statistic Design of Experiments and Response Surface Methodology 

This chapter describes the principles of the Response Surface Methodology (RSM). RSM is 

based on Statistical Design of Experiments (SDoE) and is an approach which includes 

experimental designs of a test plan of different complexity which in turn enable the derivation 

of linear process models of different complexity. The less complex full factorial design 

enables the derivation of process models of 1st grade. Specifically, 1st grade means that the 

model is based on a degenerated polynomial that comprises all linear effects of the process 

variables towards the target value as well as all possible interactions (up to highest grade). 

This is followed by 2nd grade models which are determined from more complex Central 

Composite Designs (CCD). Such models are based on full polynomials of 2nd grade that 

comprise all linear effects and quadratic effects of the process variables towards the target 

value as well as interactions up to 1st grade (two-factor-interactions). Both experimental 

designs, models respectively, will be applied and derived in this thesis for the model-based 

optimization of the Short-Path-Distillation (SPD). 

2.3.2.1.1 Principles and targets of RSM 

In order to optimize production processes, informations on the influence of process variables 

on the process output are required. In this regard, evaporator temperature and rotation 

speed of the stirrer are examples for process variables that are relevant for the SPD. Product 

quality parameter (process output) for an SPD process applied to palm oil deodorization 

could be the content of tocopherol or the acid value, for example. Moreover, the acid value is 

the amount of a base (mg˖(g oil)-1) that is required to neutralize any acids that are contained 

in the oil. 

The effect of the process variables on the target values is analyzed and optimized model 

based. As the deodorization of bleached palm oil by SPD is characterized by very complex 

physico-chemical and technological processes, mechanistic modeling approaches are limited 

by complexity and insufficient knowledge. The RSM is a self-contained stochastic approach 

that models the effects and interactions of process variables towards a target value without 

considering the physico-chemical and technological sub-processes being responsible for that 

effects. This so called “black box” approach models the output (target values) just as function 

of the input (process variable) by corresponding terms in a linear model that sums up the 

effects and interactions of process variables towards a defined target value. This derivation 

of a process model is based on a Statistical Design of Experiments (SDoE). By this approach 

the minimum number of experimental settings that is necessary for model derivation is 

defined by mathematical means. This optimization of experimental settings represents the 

minimization of the experimental effort necessary to calculate the single effects and 

interactions to be considered in the model. Thus, the information on the true underlying 
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process contained in the experimental data is optimized. Generally, models of different 

complexity can be derived based on experimental designs of different complexity. Here 

models of 1st and 2nd grade are derived and compared in performance. For each target value 

the dependency on the process variables to be considered is modeled. The necessary 

adjustments of the process variables to meet product quality requirements can be predicted 

by such mathematical models. Thus, RSM enables the optimization of one or more process 

variables simultaneously based on process models. 

For the deodorization of vegetable oils by SPD, it can be observed that process variables 

influence the process output in multiple ways. The derivation of mathematical models 

enables the simulation of these effects. In this context, RSM is a cost efficient approach 

which also provides graphical presentation of the process dynamics as basis for optimization 

approaches (Box and Draper, 2007, p. 1). Therefore the combination of SPD and RSM is a 

promising approach for optimizing the deodorization process. 

2.3.2.1.2 Principles and targets of SDoE  

Initial statistical pilot studies are applied in SDoE to determine the overall feasibility of a 

potential experiment with respect to a certain goal (e.g. identification of significant effects) 

and, thus, are the basis for SDoE. Variable factors of experimental settings, along with the 

exact number of experiments, are fixed ex ante here. Each experiment must be executed as 

part of a whole set of experiments, which is the test plan of the SDoE. Moreover, each target 

value is determined for each trial separately. 

Multiple statistically meaningful ways exist for the SDoE, all of which vary in the number of 

experiments required and the complexity of the mathematical models derived from these 

experiments.  

The basic rules for modeling are, that for more complex models also more complex designs 

with a higher number of experiments are required and that the prediction quality increases 

with the number of process variable effects and interactions that are considered in the model.   

It should be kept in mind, however, that the additional effort (cost) for the experiments is not 

always justified by an increase in accuracy. When the target of a design is to optimize 

multiple goals, a separate model can be desiged for each individual goal. This approach is 

known as ‘analysis and planning under multiple objectives’ (Scheffler, 1986, pp. 11–46). 

When experiments are complex and cost intensive (e.g., in the case of SPD) SDoE is the 

method of choice. With the minimum number of optimized trials required, a maximum of 

information on process dynamics can be gained and the whole process can be optimized 

through the incorporation of models derived from the SDoE. Specifically, product quality is 

improved and costs are reduced (Kleppmann, 2008, pp. 1–24; Scheffler, 1986, pp. 11–46).  
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2.3.2.1.3 2m full factorial design and models of 1st grade  

Each process variable, or factor, in a full factorial design for the derivation of a 1st degree 

model exhibits exactly two settings, xmax and xmin, which are the maximum and minimum 

values that can be reasonably achieved within the range considered. Each process variable 

range can be defined individually. The following questions aid this definition: ’What happens 

in practice?’ and ’What are the limiting factors of my test facility?’ 

Test plans for mathematical models of higher degrees exhibit more than two values to be 

achieved for each factor. In a full factorial design of type 2m with m process variables, the test 

plan includes exactly n = 2m experiments. All possible combinations of process variable 

settings must be tested (see Table 2.1). The experimental results indicate the influence of 

each analyzed process variable towards the target values measured. This in turn enables the 

derivation of linear models and a model based optimization of the process in the next step 

(Scheffler, 1986, pp. 11–46). 

A 2m full factorial design enables the researcher to calculate the individual linear effects of m 

factors (process variables) towards the target values measured for each experiment. 

Interactions between factors up to highest grade can also be calculated. The mathematical 

model is derived based on a degenerated polynomial that comprises these linear effects and 

interactions. Eq. 2.1 exhibits the general form, Eq. 2.2 a model for four process variables as 

applied here for the SPD.  

The limitation to 2m full factorial designs and 1st grade models is not feasible for more 

complex problems. To identify and model also effects of quadratic or higher order more than 

two values for each factor must be analyzed in a more complex SDoE, thus enabling the 

derivation of more complex models.  

�̂� = ß0 + ∑ ß𝑗 ∙ 𝑥𝑗
𝑚
𝑗=1 + ∑ ∑ ß𝑗𝑘 ∙𝑚

𝑘=𝑗+1
𝑚
𝑗=1 𝑥𝑗 ∙ 𝑥𝑘 + ∑ ∑ ∑ ß𝑗𝑘𝑙 ∙ 𝑥𝑗 ∙ 𝑥𝑘 ∙ 𝑥𝑙

𝑚
𝑙=𝑘+1

𝑚
𝑘=𝑗+1

𝑚
𝑗   …. 

Equation 2.1: Polynomial for model of 1
st
 grade (general form) 

From the test plan and the referring experimental results also the interdependencies between 

factors (exposed in Eq. 2.1 for the general case and in Eq. 2.2 for 4 factors) can be 

calculated. For all possible combinations of input values xj, target value ŷ can be calculated 

by Eq. 2.1 and Eq. 2.2 (NIST/SEMATECH, 2012; Scheffler, 1986, pp. 32–36; Kleppmann, 

2008, pp. 24, 198).  

�̂� = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3 + 𝛽14𝑥1𝑥4 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4

+ 𝛽34𝑥3𝑥4 + 𝛽123𝑥1𝑥2𝑥3 + 𝛽124𝑥1𝑥2𝑥4 + 𝛽234𝑥2𝑥3𝑥4 + 𝛽1234𝑥1𝑥2𝑥3𝑥4 

Equation 2.2: Model of 1
st
 grade for 4 factors 

ŷ is the target value calculated by the model and xj is the adjustment of process variable j in 

normalized form. The one-dimensional coefficients 𝛽𝑗 are estimations for the model 

parameters of the corresponding linear effects. These coefficients are determined from the 
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experimental results referring to the experiments of the test plan. They quantify the change in 

the target value that is caused by the change of the normalized process variable from a 

medium adjustment to ±1. 

In the same manner, the coefficients βjk and βjkl, for example, contain more than one 

dimension as they quantify the interactions between two and three process variables 

regarding their effect on the target value. The constant β0 is the effect that takes place when 

all process variables of the model are adjusted to the mean value of the analysis range.  A 

correlation (COR) or interaction between process variables (factors respectively) is present 

when the effect of one factor towards the target value is dependent on the adjustment of one 

or more other factors. In this context, e.g. the term 𝛽12x1x2 in Eq. 2.2 represents a two factor 

correlation (2FCOR). With COR, it is possible to gain information from a model about the 

reciprocal influences of process variables. This enables the interpreter to gain insight into 

physico-chemical processes and further aids the development and scale-up of production 

processes (Scheffler, 1986, pp. 15-19; 32-36; Kleppmann, 2008, pp. 24, 99, 198). 

Figure 2.4 graphically illustrates a full factorial experimental design of type 2³. The three 

dimensions / axes of the design represent the three factors (x1, x2, x3) with two normalized 

values each (max = +1 and min = -1). 

 
Figure 2.5: 2

3 
full factorial design (Siebertz et al. 2010, p. 8) 

Table 2.1 shows all normalized values for the process variables (factors) of the process for a 

23 full factorial design. The variable y relates to the experimental results for the target values 

to be optimized which are measured for the experimental settings represented by each 

corner point of the cube in Figure 2.5 (Siebertz et al. 2010, p. 7). 
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Experiment x1 x2 x3 Result  

1 +1 +1 +1 y1 

2 -1 +1 +1 y2 

3 +1 -1 +1 y3 

4 -1 -1 +1 y4 

5 +1 +1 -1 y5 

6 -1 +1 -1 y6 

7 +1 -1 -1 y7 

8 -1 -1 -1 y8 

Table 2.1: 2
3
 full factorial design with three factors on two normalized levels each 

A model of 1st grade for four process variables, as applied for analysis of SPD, considers 

single effects and interactions up to 3rd grade (see Eq. 2.2). It is based upon a 24 full factorial 

design (see Table 2.2) with n=16 experiments. 

 

Table 2.2: Trial and calculation matrix for a 2
4
 full factorial design 

The trial matrix in Table 2.2 contains the settings of the process variables for the 

experiments, where 1 and -1 are the normalized minimum and maximum of the variable 

range analyzed. This table also shows the normalized settings of the interactions which are 

the product of the referring single variable settings. These normalized interaction settings, as 

well as the ‘setting’ of the constant model term in the second column of Tabel 2.2, are not of 

practical relevance for experimentation but only for the calculation of model parameter values 

from the experimental results. 

Normalization is achieved according to Eq. 2.3 where x ̃ij
 is the normalization of the ith setting 

of process variable j and xij is the non-normalized setting of variable j (Eq. 2.4). 

x ̃ij
=

xij − x̅j

xmax,j − x̅j
 

Equation 2.3: Normalization of factor values 

x̅j is the arithmetic mean of the value xmin,j and  xmax,j (Eq. 2.4).  
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x̅j =
xmax,j + xmin,j

2
 

Equation 2.4: Calculation of arithmetic mean 

From the results of all n experiments, the parameters ßj of the 1st grade model (Eq. 2.1 and 

Eq. 2.2) are calculated according to Eq. 2.5, where yi is the experimental result for a specific 

target value of the ith experiment and fj(xi) is the normalized setting of the jth process variable 

(factor respectively) in the ith experiment (Bandemer et al., 1973, p. 9). 

 

βj =
∑ fj(xi)yi

n
i=1

n
 

Equation 2.5: Estimation of parameters ßj 

Significant parameters / model terms are identified by statistical significance analysis. For 

this purpose it is assumed that the interactions of higher than 2nd order are quantitatively or 

theoretically reasonable negligible and thus represent an estimate for the error variance of 

experimentation. The validity of these interactions as such an estimate is statistically proven 

by application of the Bartlet-criterion. The significance of the remaining parameters is then 

determined by calculation of the ratio between variance of the referring effect (or interaction) 

and the error variance, followed by statistical assessment of significance via F-test. Thus, 

statistical significant effects can be identified and summarized to a potential model candidate. 

By that procedure a model candidate of 1st grade can be derived for each target value 

considered. The model adequacy is tested for each model candidate by calculation of the 

relative variance according to Eq. 2.6 followed by a statistical assessment via F-test. In Eq. 

2.6 n is the number of experiments of the SDoE, p is the number of model parameters and nT 

is the total number of experiments achieved (differs from n in case of multiple repetition of 

SDoE). The summed squares QSL and QSF are calculated according Eq. 2.7 and 2.8 where 

ni is the number of repetitions of the ith experiment of the test plan, y̅i is the average result of 

the ith experiment, ŷi is the model solution at the process variable setting of the ith experiment 

and yil is the result of the lth repetition of the ith experiment. 

v =

QSL
n − p
QSF

nT − n

 

Equation 2.6: Relative variance for model adequacy testing 

 

QSL = ∑ni(y̅i − ŷi)
2

n

i=1

 

Equation 2.7: Summed squares QSL 
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QSF = ∑∑(yil − y̅i)
2

n

l=1

n

i=1

 

Equation 2.8: Summed Squares QSF 

 

2.3.2.1.4 Central composite design (CCD) and models of 2nd grade 

A statistical linear model of 1st grade comprises linear effects of the process variables 

towards the target value, as well as interdependencies of 1st grade and higher order. In many 

technical processes, the effects of process variables are the result of more complex 

underlying physico-chemical sub-processes. Furthermore, their curve progression most likely 

contains exponential characteristics. If the proportion of exponential parts in the curve is 

limited, linear models can typically approach a process with sufficient accuracy. However, if a 

process exhibits significant non-linear characteristics in this regard, a model considering 

square effects becomes the method of choice. A polynomial of 2nd degree is suitable to 

describe the square effects of process variables towards the target values. With these 

models, local maxima and minima for the target value can be calculated. 

ŷ = ß0 + ∑ ßj ∙ xj

m

j=1
+ ∑ ßjj ∙ xj

2
m

j=1
+ ∑ ∑ ßjk ∙ xj ∙ xk 

m

k=j+1

m

j=1
 

Equation 2.9: Polynomial of 2
nd

 grade (general form)  

Eq. 2.10 demonstrates the application of the general 2nd grade polynomial (see Eq. 2.9) to an 

example with four factors.  

�̂� = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽33𝑥3
2 + 𝛽44𝑥4

2 + 𝛽12𝑥1𝑥2 + 𝛽13𝑥1𝑥3

+ 𝛽14𝑥1𝑥4 + 𝛽23𝑥2𝑥3 + 𝛽24𝑥2𝑥4 + 𝛽34𝑥3𝑥4 
 

Equation 2.10: Polynomial of 2
nd

 grade for four factors 

The more complex a model is, the more experimental data input is needed to estimate its 

parameters. Thus, the system dynamics of a 2nd grade model can be described by the results 

of additional experimental trials compared to the 1st grade model (full factorial design 

respectively). For the resolution of all linear and quadratic effects, as well as all interactions 

up to highest order, a 3m full factorial design is required. In such design, factors must be 

adjusted to three settings. However, this subset of test plans usually demands an enormous 

test effort that cannot be commercially justified. For this reason they are rarely used in 

practice.  

Another subset of plans is the Central Composite Design (CCD), which enables the 

determination of the parameters in a reduced 2nd grade model, which is based on a 

polynomial of 2nd grade (Eq. 2.9 and Eq. 2.10), with less experimental effort compared to 3m 

full factorial designs (Klein, 2011, p. 150 and Scheffler, 1986, p. 201–208). CCDs represent 
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an enhancement of 2m full factorial designs by specific mathematically defined additional 

experiments which enable the resolution of the reduced model of 2nd grade exposed in Eq. 

2.9 and 2.10. These designs include a 2m full factor design in their core which is enhanced by 

the star points and the central point of the core (at this point, all normalized process variables 

are adjusted to zero). Thus the central point can be also interpreted as the average point of 

all factors (Kleppmann, 2008, p. 198). This enhancement of the core mathematically enables 

the identification and estimation of squared effects of the process variables on the target 

values while interactions of higher than 1st order are neglected (compare Eq. 2.9 and 2.10). 

Figure 2.6 graphically exposes a CCD for three factors. 

The total number of experiments of a CCD is denoted as 𝑁𝑡𝑜𝑡   and defined in Eq. 2.11.This 

value sums up the number of trials for the core (Nw), the number of trials for the starpoints 

(NSt) and the number of trials for the center point (N0).  

𝑁𝑡𝑜𝑡 = 𝑁𝑊 + 𝑁𝑆𝑡 + 𝑁0 = 2𝑚 + 2𝑚 + 1 

Equation 2.11: Number of trials in CCD 

 

The derivation of Eq. 2.5 for the estimation of parameters of 1st grade models is based on 

symmetry (all experimental settings are symmetric with respect to the center) and 

orthogonality of the calculation matrix as basic requirement. To enable an analogous 

estimation of parameters of a 2nd grade model (compare Eq. 2.9 and 2.10) from the 

corresponding calculation matrix of a CCD, also this matrix has to exhibit orthogonal 

properties which are provided by coordinate transformation. The latter results in the 

orthogonal calculation matrix (orthogonal CCD respectively) exposed in Table 2.3 and the 

corresponding transformed 2nd grade model given by Eq. 2.15 (for the general case).          

Eq. 2.14 exposes the calculation of the transformation factor and Eq. 2.13 the calculation of 

the extension factor where q is the index of partial designs which is zero in case of full central 

composite designs (as applied in this work for the analysis of the SPD).  

The total number of trials needed for an orthogonal CCD is dependent on the parameters cw, 

cSt and co of the variables N0, NSt and NW in Eq. 2.12 (Scheffler, 1986, p. 224). 

 𝑛𝑡𝑜𝑡 = 𝑛𝑊 + 𝑛𝑆𝑡 + 𝑛0 = 𝑐𝑊 + 𝑐𝑆𝑡𝑁𝑆𝑡 + 𝑐0𝑁0 

Equation 2.12: Total number of trials in orthogonal CCD  

For the analysis of quadratic effects by an orthogonal CCD, each factor is tested on three 

additional levels. The total number of levels for each factor is therefore increased to five (±1, 

± 𝛿 and 0; compare Figure 2.6). In orthogonal CCDs, star points have a distance of δ to the 

center point (Siebertz et al., 2010, p. 38–40 and NIST/SEMATECH, 2012). 

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
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𝛿² = √2
𝑚−𝑞

2
−1 (√𝑛 − 2

𝑚−𝑞
2 ) 

Equation 2.13: Calculation of extension factor  

γ =
2𝑚−𝑞 + 2𝛿2

𝑛
 

Equation 2.14: Calculation of coordinate transformation factor  

 

Figure 2.6: Orthogonal CCD for 3 factors with central and star points (Siebertz et al. 2010) 

Figure 2.6 graphically exposes an orthogonal CCD for 3 process variables. Table 2.3 

exhibits the calculation and trial matrix of an orthogonal CCD for the general case. The 

parameter values of the non-transformed model (Eq. 2.9 and Eq. 2.10) are calculated from 

the experimental results and the calculation matrix according to Eq. 2.16 and 2.17 where 

m is the number of process variables, xij the normalized setting of variable j in the ith 

experiment and yi the measured result for the target value from the ith experiment. The 

values for c, δ and γ are calculated by complex mathematical operations according to Eq. 

2.13, 2.14 and 2.17. They can be also taken from tables in the literature for common cases 

(Scheffler, 1986, p. 222-244). Parameter significances are again determined by calculation 

of the ratio between the variance of the referring effect (or interaction) and the error 

variance. The error variance can be estimate from negligible model terms (as exposed for 

models of 1st degree), the initial assumption that the tested model is adequate (the validity 

of this assumption is proofed subsequently) or from multiple repetitions of experiments. For 

each of these alternatives the significance of model terms is tested by a F-test of the 

relative variance (as exposed for models of 1st degree) or t-test of the individual confidence 

intervals. Thus six different ways for the determination of significant model terms are 

possible and achieved here which might produce different models of 2nd degree for a 
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certain target value. These statistical methods are considered as basic knowledge of 

statistics and are therefore not further exposed in detail here. 

 

𝑦 = 𝑎1 + ∑𝛽𝑗𝑥𝑗 + ∑𝛽𝑗𝑗(𝑥𝑗
2 − 𝛾) + ∑ ∑ 𝛽𝑗𝑘𝑥𝑗𝑥𝑘

𝑛

𝑘=𝑗+1

𝑚

𝑗=1

𝑚

𝑗=1

𝑚

𝑗=1

 

Equation 2.15: Transformed model of 2
nd

 grade (general form) 

 

ß0 = 𝑎1 − 𝛾 ∙ ∑𝑏𝑗𝑗

𝑚

𝑗=1

 𝑤𝑖𝑡ℎ  𝑎1 = 𝑐1 ∙ ∑𝑌𝑖

𝑛

𝑖=1

 

ß𝑗 = 𝑐2 ∙ ∑𝑥𝑖𝑗 ∙ 𝑌𝑖    𝑓or   𝑗 = 2, … ,𝑚 + 1

𝑛

𝑖=1

 

ß𝑗 = 𝑐3 ∙ ∑(𝑥𝑖𝑗
2 − 𝛾) ∙ 𝑌𝑖    𝑓or   𝑗 = 𝑚 + 2,… ,2𝑚 + 1

𝑛

𝑖=1

 

ß𝑗 = 𝑐4 ∙ ∑𝑥𝑖𝑗 ∙ 𝑥𝑖𝑘 ∙ 𝑌𝑖   𝑓or   𝑗 = 2𝑚 + 2,… , 𝑝

𝑛

𝑖=1

 

Equation 2.16: Alternative formulas for the calculation of model parameters ßj 

 

𝑐𝑗 = 𝑚𝑗
−1 

𝑤𝑖𝑡ℎ 𝑚1 = 𝑛,𝑚2 = 𝑛𝛾,𝑚3 = 2𝑚−𝑞(1 − 𝛾)2 + 2(𝛿2 − 𝛾)2 + (2𝑚 − 1)𝛾2,𝑚4 = 2𝑚−𝑞 

Equation 2.17: Values cj for the calculation of model parameters  
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Trial number Calculation matrix 

Subset 

 

  
Trial matrix 

(experiments)             

X0 X1 X2 … Xm X1
2-γ … Xm

2-γ X1X2 … Xm-1Xm 

1 1 -1 -1 … -1 1-γ … 1-γ 1 
 

1  
Core: 
2m-q  

factor 
plan 

2 1 1 -1 
 

-1 1-γ … 1-γ -1 
 

1 

 
⁞ 

    
⁞ 

 
⁞ 

   
2m-q 1 

    
1-γ … 1-γ 

   
2m-q+1 1 δ 0 … 0 δ2-γ 

 
-γ 0 … 0 

 
 

Star 
points 

 
 

2m-q+2 1 -δ 0 … 0 δ2-γ 
 

-γ 0 … 0 

 
1 0 δ 

 
0 -γ 

 
-γ 0 … 0 

 
⁞ ⁞ -δ 

 
0 -γ 

 
-γ 0 … 0 

   
⁞ 

 
⁞ ⁞ 

  
⁞ 

 
⁞ 

 
1 0 0 … 0 -γ 

 
-γ 0 … 0 

 
1 0 0 … δ -γ 

 
δ2-γ 0 … 0 

2m-q+2m 1 0 0 … -δ -γ 
 

δ2-γ 0 … 0 

n=2m-q+2m+1 1 0 0 … 0 -γ 
 

-γ 0 … 0 
Center 
point 

Table 2.3: Orthogonal CCD (general case) 

 

2.3.2.2 Bayesian model fit, discrimination and validation 

By the procedure exposed so far, model candidates of 1st and 2nd grade are derived by RSM 

for each analyzed target value of the SPD. Each model comprises the effects and 

interactions of the process variables towards a specific target value, which have been 

identified by RSM as being significant for the process. These alternative models are further 

analyzed and assassed by sophisticated Bayesian approaches which comprise model fit, 

discrimination, validation and performance analysis.  

2.3.2.2.1 Bayesian concept 

The Bayesian theory on model parameterization (fit respectively), discrimination, evaluation 

and validation provides the required measures of result uncertainty by means of probability 

distributions over the range of possible results. The Bayesian law of conditional probabilities, 

which is the basis of the Bayesian methods applied here, is a strictly probabilistic approach 

that provides the mathematical linkage between inverse conditional probabilities (Eq. 2.18). 

p(θ|y,M) =
p(y|θ,M) ∙ p(θ|M)

p(y|M)
 

Equation 2.18: Bayesian law of conditional probabilities 
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The Eq. 2.18 exhibits the Bayesian theorem for the probability of model parameter values, 

where p(θ|y, M) is the probability of the parameter vector θ given the experimental data y and 

the model M (=posterior probability), p(y|θ,M) is the probability of the data y given the model 

M and the parameter vector θ (=likelihood), p(θ|M) is the probability of the parameter vector 

θ given the model 𝑀 (=prior probability) and p(y|M) is the probability of the data y given the 

model M (=marginal likelihood). Bayesian model parameterization, fit of models respectively, 

is achieved by means of posterior probabilities of model parameter vectors, which represent 

all possible model parameterizations (parameter values respectively). 

The marginal likelihood is the integral of the numerator of Eq. 2.18 over the whole parameter 

range (Eq. 2.19). 

𝐩(𝐲|𝐌) = ∫ 𝐩(𝐲|𝛉,𝐌) ∙ 𝐩(𝛉|𝐌) 𝐝𝛉
𝛉

 

Equation 2.19: Bayesian marginal likelihood 

The prior probability of a certain parameter vector is based on prior knowledge about process 

parameters (e.g. information on parameterization from the literature). If there is no prior 

knowledge all parameter vectors within the range considered are given the same probability 

(uniform probability distribution). 

The likelihood can be explained as the probability that the measured data occurs, with 

respect to the error of experimentation, if the model M with the parameterization θ was true. It 

can be calculated by Eq. 2.20 if a Gaussian probability distribution of the error of 

experimentation was assumed (as in this work). 

p(y|θ,M) =
1

√(2 ∙ π)d
∙ e−

1
2
∙(y−μ)T∙Σ−1∙(y−μ)

 

Equation 2.20: Bayesian likelihood (assumed Gaussian distribution) 

In Eq. 2.20 the parameter d is the dimension of the parameter space, µ the solution of the 

model M at parameterization θ and Σ the covariance matrix of the error of experimentation 

when reproducing y. The latter can be experimentally determined by at least double 

realization of one defined experiment. 

 

2.3.2.2.2 Posterior probability estimation 

A mayor problem of Bayesian analysis is to provide an estimate of the marginal likelihood as 

this integral is analytically almost never solvable (Chib, S. and Jeliazkov, I., 2001, pp. 270-

281). 
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In determination of the posterior parameter distribution this problem can be avoided by direct 

sampling from this distribution by Gibbs-sampling which is a special case of the Metropolis-

Hastings-Algorithm (Markov-Chain-Monte-Carlo method). It can be shown that this algorithm 

produces Markov-Chains that converge towards the desired posterior parameter distribution, 

which means that at chain convergence all following chain steps form a representative 

sample of the posterior parameter distribution. As this algorithm is based on drawing random 

numbers from certain probability distributions, it represents a Markov-Chain-Monte-Carlo 

(MCMC) method.  

The approach starts with an arbitrarily chosen initial parameter vector 𝜃 from the parameter 

space considered. This is the first state of the Markov-Chain. Then a new parameter vector, 

which is the so called “candidate vector” θ∗ is drawn randomly from a certain parameter 

distribution over the parameter space considered. This distribution - by which the candidate 

vector is proposed - is the so-called “proposal density”. The relative posterior probability of 

current state θ and candidate θ∗ can be calculated according to Eq. 2.21. Both posterior 

probabilities share the same value for the marginal likelihood. The latter can therefore be 

eliminated from the ratio. Thus the posterior probability ratio can be calculated from the 

likelihoods and prior probabilities. This ratio is then subject to the probability of move 

α(θ, θ∗|y,M) exposed in Eq. 2.21 which is the probability that the candidate is accepted as 

next state of the Markov-Chain. 

α(θ, θ∗|y,M) = min{1,
p(y|θ∗, M) ∙ p(θ∗|M)

p(y|θ,M) ∙ p(θ|M)
} 

Equation 2.21: Probability of move 

Eq. 2.21 specifies that θ∗ is always accepted if the ratio was larger than 1. Otherwise the 

acceptance probability equals the ratio value. In practical programming the latter is realized 

by randomly drawing a random number from a standard uniform distribution. If the random 

number was smaller than the posterior probability ratio the candidate is accepted, otherwise 

rejected. Mathematical evidence has been provided that the chain of accepted parameter 

vectors converges towards the desired posterior probability distribution which means that at 

chain convergence all following accepted parameter vectors are a representative sample of 

that distribution. From that sample, the distribution as well as its characteristic constants 

(expected value, variance) can be estimated. (Chib, S. and Jeliazkov, I., 2001, pp. 270-281; 

Chib and Greenberg 1995; Hastings, 1970; Tierney, 1994; Hartmann et al., 1974; Kreyszig, 

E., 1972). In practice Bayesian point estimation, which is the estimation of model parameter 

values and events (e.g. process outcomes at defined process settings) by Bayesian means, 

applies the posterior probability distribution (e.g. for model parameters or process outcomes). 

Characteristic distribution parameters serve as point estimators. The type of point estimator 
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applied depends on the chosen risk function to be minimized. Risk functions represent 

different ways of measuring the distance between the estimate and the unknown actual 

parameter or event. The most common point estimate is the expected value which minimizes 

the mean squared error of estimation. The expected value of a distribution can be estimated 

by the arithmetic mean of events, which converges to the expected value as the number of 

events (sample size) approaches infinity. Another point estimator is the posterior mode which 

maximizes the probability of matching the actual value (minimizes the uncertainty of 

estimation). Both point estimators are applied in this work and compared in results and 

performance. Also other point estimators exist and are occasionally used. 

2.3.2.2.3 Müller-Algorithm 

The Gibbs-sampling, which is applied in this work to generate a representative sample from 

the Bayesian posterior parameter distribution, is a version of the Metropolis-Hastings-

algorithm, which in turn is a Markov-Chain-Monte-Carlo method. Thus, the representative 

sample of the posterior distribution is taken as sample from the converged Markov-Chains. 

The velocity of chain convergence significantly determines the computational effort and 

duration of this approach. Müller (1991) provided mathematical evidence that the chain 

convergences is the faster the more similar the proposal density is to the desired posterior 

distribution. As the chain actually converges towards the posterior distribution an update for 

the proposal density can be calculated in defined intervals from the Markov-Chain output 

which then accelerates the chain convergence. The current chain state θ is applied as mean 

of the proposal density. Müller et al. (1991) state, that the variance of the proposal density is 

of general importance for the velocity of chain convergence. If the variance is too small, the 

proposals are on average too close to the current state and thus exhibit a high probability to 

be accepted. This means that the parameter range to be investigated is not properly 

screened, which therefore lowers the informative value of the sample. If the variance is too 

large, the whole parameter range is properly screened but proposals occur more frequently 

that differ much from the current state and, thus, exhibit a lower probability to be accepted. 

Due to that fact the variance of the proposal density has to be balanced in a defined interval 

to realize an acceptance rate that ensures proper screening of the parameter range and 

chain convergence velocity. Based on practical experience Müller et al. (Müller et al., 1991) 

define an optimal acceptance rate between 80 % and 20 % and propose a multiplication of 

the variance by factor 1,2 and 0,7 respectively if this range is exceeded. These tunes of the 

variance are achieved in a defined interval between the re-estimations of the proposal 

density from the Markov-Chain. 
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To limit the computational effort and to gain a representative sample from the posterior 

distribution it is necessary to identify the step at which the Markov-Chain has converged. 

Also the number of following Markov-Chain steps that form an appropriate representative 

sample has to be known. For this purpose a Monte-Carlo simulation is achieved previously to 

identify the sample size that is required to estimate the distribution parameters (mean, 

variance) with the desired accuracy. An equal number of identical Markov-Chains is then run 

in parallel so that the exact state of chain convergence can be determined at every chain 

point by calculating the mean and variance over all parallel chains at this point. From the 

point of chain convergence a sample of same size is then taken over all chains as 

representative sample of the posterior distribution. From that sample, the probabilities for 

distribution intervals (refered to the interval mean), the expected value and variance 

(uncertainty in model parameterization) can be estimated for the posterior parameter 

distributions (Müller et al., 1991). This sample also serves as basis for model discrimination, 

validation and evaluation of model predictions as exposed in the subsequent sub-chapters 

for the Bayesian approaches applied here. 

2.3.2.2.4 Bayesian model discrimination by Chib and Jeliazkov-method 

If alternative models are available, Bayesian analysis provides a probability measure by 

which these models can be compared and selected. Concomitant with Bayesian theory the 

probability of a model is given by Eq.  2.22, where Ml is the lth of all available alternative 

models. 

p(Ml|y) =
p(y|Ml) ∙ p(Ml)

∫ p(y|M) ∙ p(M) ∙ dM
M

 

Equation 2.22: Probability of a model 

As the denominator in Eq. 2.22 is a constant being equal for each model, the probability ratio 

of a model Mi and Mj can be calculated according to Eq. 2.23. 

p(Mi|y)

p(Mj|y)
=

p(y|Mi) ∙ p(Mi)

p(y|Mj) ∙ p(Mj)
 

Equation 2.23: Probability ratio of a model 𝐌𝐢 and 𝐌𝐣  

The left side of Eq. 2.23 is also called “posterior odds ratio” where  
p(Mi)

p(Mj)
 is the ratio of prior 

model probability (based on prior knowledge) and 
p(y|Mi)

p(y|Mj)
 is the so called “Bayes-factor” 

(Congdon, P., 2006). According to Eq. 2.19,  p(y|M) is equal to the marginal likelihood. 

Thus the problem of relative model probability estimation turns out to be a problem of 

marginal likelihood estimation. 
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The marginal likelihood is the normalizing constant of Eq. 2.18 which is equal for each 

parameter vector θ. Thus Eq. 2.18 can be transformed for a defined parameter vector θ∗ into 

Eq. 2.24 that provides an estimate for the marginal likelihood regarding a defined model Ml.  

p(y|Ml) =
p(y|θ∗, Ml) ∙ p(θ∗|Ml)

p(θ∗|y,Ml)
 

Equation 2.24: Estimate for the marginal likelihood - Version 1 

The likelihood and prior probability of θ∗ can be determined as exposed above. Thus the 

estimation of the marginal likelihood reduces to the problem of estimating the posterior 

probability of θ∗ which is referred to as posterior ordinate. For practical reasons Eq. 2.24 is 

transformed to Eq. 2.25 by taking logarithms which is especially important for higher 

dimensional parameterization problems. 

 

log p(y|Ml) = log p(y|θ∗, Ml) + log p(θ∗|Ml) − log p(θ∗|y,Ml) 

Equation 2.25: Estimate for the marginal likelihood - Version 2 

Chib and Jeliazkov propose a Markov-Chain-Monte-Carlo (MCMC) approach by which the 

marginal likelihood can be determined by a one block sampling from the posterior parameter 

distribution (Chib, S. and Jeliazkov, I., 2001, pp. 270-281). The generation of a 

representative sample of the posterior parameter distribution has been exposed above. It is 

mathematically proven, that at chain convergence the chain reversibility condition, given by 

Eq. 2.26, is valid for a current chain state θ and a candidate θ∗. 

p(θ, θ∗|y,Ml) ∙ P(θ|y, Ml) = p(θ∗, θ|y,Ml) ∙ P(θ∗|y,Ml) 

Equation 2.26: Chain reversibility condition 

Here P(θ|y,Ml) is the posterior probability of parameter vector θ. p(θ, θ∗|y,Ml) is the 

probability of move from θ to θ∗, which is the product of the probability of proposal 

q(θ, θ∗|y,Ml) and probability of acceptance α(θ, θ∗|y,Ml) of θ∗given θ (Eq. 2.27). 

p(θ, θ∗|y,Ml) = q(θ, θ∗|y,Ml) ∙ α(θ, θ∗|y,Ml) 

Equation 2.27: Probability of move from 𝛉 m to 𝛉∗ 

An integration of both sides of Eq. 2.26 over the whole parameter space yields a solution for 

the posterior probability P(θ∗|y,Ml) of a candidate θ∗ , which is given by Eq. 2.28. 

P(θ∗|y,Ml) =
p(θ, θ∗|y,Ml) ∙ p(θ|y,Ml)

p(θ∗, θ|y,Ml)
=

∫ p(θ, θ∗|y,Ml) ∙ p(θ|y,Ml) dθ
θ

∫ p(θ∗, θ|y,Ml) dθ
θ

 

Equation 2.28: Posterior probability of a candidate 𝛉∗  
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As these integrals are in most cases analytically not solvable, a solution has to be estimated 

to gain an estimate of P(θ∗|y,Ml). Chib and Jeliazkov propose an approach to estimate these 

integrals from the data output of the Gibbs-sampling (Metropolis-Hastings-algorithm 

respectively) as exposed above for the generation of Markov-Chains (Chib, S. and Jeliazkov, 

I., 2001, pp. 270-281). This approach is given by the following Eq. 2.29. 

P̂(θ∗|y,Ml) =

1
K

∙ ∑ q(θ(g), θ∗|y,Ml) ∙ α(θ(g), θ∗|y,Ml)
K
g=1

1
J ∙ ∑ α(θ∗, θ(j)|y,Ml)

J
j=1

 

Equation 2.29: Posterior probability estimate of a candidate 𝛉∗ 

Here {θ1, θ2, … , θK} is a random sample from the posterior parameter distribution which is 

produced by the Markov-Chains according to the Gibbs-sampling. q(θ(g), θ∗|y, Ml) is the 

probability for a proposal of a candidate vector θ∗ given a parameter vector θ(g). 

α(θ(g), θ∗|y,Ml) is the probability of acceptance of  θ∗ given θ(g). The likelihood values which 

are necessary to calculate the proposal and acceptance probabilities in Eq. 2.29 have to be 

stored for each element of the posterior parameter sample during the random walk of each 

Markov-Chain. Chib and Jeliazkov state that a suitable candidate θ∗ should have a high 

probability under the posterior distribution (Chib, S. and Jeliazkov, I., 2001, pp. 270-281). 

Thus the mode of the posterior distribution that can be estimated from the posterior sample is 

applied as candidate θ∗ here. The sample size has to be chosen high enough so that the 

sample represents the posterior parameter distribution with the desired accuracy. This is 

done as exposed above. {θ1, θ2, … , θJ} is a random-sample from the proposal density 

q(θ∗, θ|y,Ml) with the fixed candidate θ∗ as expected value of the assumed Gaussian 

proposal density. As exposed above the actual distribution of the converging Markov-Chain 

is applied as proposal density during the Markov-Chain run, as this procedure accelerates 

chain convergence. From the point at which the converging distribution has reached the 

posterior distribution its distribution parameters (mean, variance) stay constant.  

Therefore the variance of the posterior distribution is applied here for the proposal density. 

α(θ∗, θ(j)|y,Ml) is the probability of accepting θ(j) from the proposal density sample given θ∗. 

In practice J is chosen equal to K (Chib, S. and Jeliazkov, I., 2001, pp. 270-281). In the 

implementation of the methods exposed above in MATLAB all probabilities that are assumed 

to be Gaussian distributed were normalized by transformation to the standard Gaussian 

distribution to ensure comparability and interpretability of probabilities and results. To avoid 

computational problems with higher dimensional probability distribution (as occurred in this 

work) only decimal logarithms of probabilities were applied. Consequently in practical 

programming application all equations which are computationally implemented were 

transformed by the laws of logarithmic calculation. As the method applied here is a Markov-
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Chain-Monte-Carlo method, also proposals can occur by chance, which exhibit such low 

probabilities that they are automatically set to zero by MATLAB and cannot be further 

mathematically processed, thus causing a process breakdown. This problem is considered 

computationally by setting such zeros equal to the smallest possible value MATLAB can 

handle. As such events are very rare and exhibit comparatively extremely low probabilities its 

contribution to overall samples and probabilities can be neglected. Thus it is justified to set 

an extremely small value, which is computationally not manageable, to another higher value 

that is manageable but still comparatively extremely small. 

2.3.2.2.5 Bayesian model validation and performance evaluation by Geweke-method 

The Bayesian approaches exposed so far account for model parameterization and model 

discrimination. In that context, a Baysian point estimate for the model parameters is 

determined, as well as a relative model probability estimate. The model-based estimation of 

process outcomes, as well as evaluation of simulation results, model performance and model 

validity, by Bayesian means (point-estimation, uncertainty measures) has not been taken into 

consideration so far. This important modelling problem is treated by means of prior and 

posterior probability distributions of simulation results and functions of these results, which 

are compared to the experimental data. 

For model validation, Box introduced the concept to apply checking functions zi = gi(y) 

where zi is the ith value that is calculated from the data y by the ith function gi (Box, 1980; 

Box and Wilson, 1951, pp. 1-45). Geweke (2007) proposed a method to determine the prior 

and posterior probability distributions of potential experimental data y (process outcome at 

defined process variable settings respectively) and also defined function values zi that 

actually occur if the model tested is true. To provide evidence for proper model performance 

and validity, the real experimental data y0 and the function value zi
0 = gi(y

0) have to be in 

support of these distributions. The probability distributions expose, which event could be 

theoretically observed with respect to the error variance of experimentation if the model was 

true and thus offer a measure for the uncertainty of model predictions, events to be expected 

and conclusions drawn from experimental observations. 

Eq. 2.30 gives the prior probability distribution of hypothetical events, theoretically measured 

data y  respectively, that could theoretically occur if the model was true. 

p(y|Ml) = ∫ p(θ|Ml) ∙ p(y|θ,Ml)dθ
θ

 

Equation 2.30: Prior probability distribution of hypothetical events 

p(θ|Ml) is the prior probability of the parameter vector θ and p(y|θ,Ml) the likelihood of the 

data y regarding θ. It has to be recalled here, that y is a vector in which each element 
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represents a value for a specific process variable setting (e.g. time point of a time depending 

process). Thus p(y|Ml) is multi-dimensional in case of multiple process variable settings to 

be considered. In practice the distribution p(y|Ml) for each single dimension or process 

variable setting is estimated separately. This is done by random sampling of parameter 

vectors from the prior parameter distribution p(θ|Ml). For each parameter vector the model-

solution over the whole process variable range considered is calculated from the model Ml. 

These model solutions are then stored yielding a large sample of solutions for each process 

variable setting. For each of these solutions of the process variable setting actually analyzed, 

the probability of theoretically occurring experimental data y is calculated over the whole 

spectrum of y considered. In other words, for each parameter and process variable setting 

the likelihood is calculated over the whole spectrum of data y that could theoretically occur in 

practice. Practically, for each process variable setting the spectrum of data y that is 

considered is divided into small intervals. Then for each parameter vector of the sample the 

likelihoods of the interval means are calculated and saved to the referring interval. 

Subsequently from these probability measures (which are saved for each interval) a 

probability distribution p(y|Ml) over the data space considered is calculated. This is done for 

each single process variable setting. The distribution p(y|Ml) for a defined variable setting 

therefore shows the probability of experimental data to occur if the model was true (with 

respect to prior knowledge about model parameterization and the error variance of 

experimentation). The actually experimentally measured data y0 has to be in support of that 

distribution. Otherwise the model can be considered as being not suitable to simulate the 

true underlying process at the referring process setting.  

In this work a uniform distribution over the parameter range investigated is chosen as prior 

knowledge from which a sample is drawn by application of a MATLAB routine that generates 

uniformly distributed random numbers on an interval [0 1]. The sample size has to be chosen 

in order to properly represent the distribution. This is done by a Monte-Carlo simulation as 

exposed above. 

p(zi|Ml) = ∫ p(θ|Ml) ∙ p(zi|θ,Ml)dθ
θ

 

Equation 2.31: Prior probability of values 𝐳𝐢  

Eq. 2.31 gives the prior probability of values zi = gi(y). The meaning of the probabilities in 

Eq. 2.31 as well as the calculation of the prior probability distribution p(zi|Ml) is analogues to 

that of y, but only with the difference that zi is a function of (calculated from) y. For model 

suitability and validity the value zi
0 calculated from the actually experimentally measured data 

y0 has to be in support of that prior distribution. Eq. 2.32 and Eq. 2.33 give the posterior 

probabilities of the data y and the function value zi = gi(y), respectively. 
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p(y|y0, Ml) = ∫ p(θ|y0, Ml) ∙ p(y|θ,Ml)dθ
θ

 

Equation 2.32: Posterior probability of hypothetical events 

p(θ|y0, Ml) is the posterior probability of parameter vector θ and p(y|θ,Ml) the likelihood of 

data y regarding the parameter vector θ. 

p(zi|y0, Ml) = ∫ p(θ|y0, Ml) ∙ p(zi|θ,Ml)dθ
θ

 

Equation 2.33: Posterior probability of values 𝐳𝐢 

p(θ|y0, Ml) is the posterior probability of parameter vector θ and p(zi|θ,Ml) is the likelihood of 

zi regarding the parameter vector θ. 
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3 Objectives 

The overall objective of this work is the model based analysis and optimization of the 

SPD process towards 3-MCPD and related substances, as well as major oil quality 

parameters. For this purpose an initial theoretical analysis of the SPD process is required 

in order to define the major oil quality parameters and to identify the most significant 

influencing process variables. Based on these preliminary considerations a coherent and 

sophisticated stochastic process modeling and analysis concept shall be implemented 

and applied in order to optimize the process variables towards the target values. This 

concept comprises the RSM for identification of statistically significant linear model terms 

(effects and interactions of process variables towards the target values) and a Bayesian 

approach towards model fit, discrimination and analysis. Each method requires an initial 

implementation and validation by a literature example in order to provide a proper 

understanding of the method dynamics, as well as a functioning algorithm for a 

successful application to the real-life problem of SPD optimization. For each target value, 

linear process models shall be derived and analyzed. A model based process 

optimization shall be achieved for each single target value and additionally towards 

multiple optimization goals. The simulated optimum process settings shall be 

experimentally tested and verified. 

3.1 Implementation and application of RSM methodology 

The RSM is a statistical approach that provides linear process models based on SDoE. 

Dependend on the size and setup of the SDoE, process models of different complexity 

can be derived that comprise diverse effects and interactions of the process variables 

towards the target values. The SDoE maximizes the information on the true underlying 

process, which is contained in the experimental data, by a minimum of well designed 

experiments (control of costs). A more complex SDoE theoretically yields the more 

precise model by consideration of additional effects. The RSM is applied in this work, as 

it is a sophisticated non-mechanistic modeling approach, that enables precise modeling 

of processes without deeper knowledge of the physico-chemical and technological sub-

processes. It just quantifies the process output (target values) as function of the process 

input (process variables) at an optimum cost-value ratio by application of SDoE. In this 

work a full factorial and orthogonal central composite design shall be setup with respect 

to the most significant process variables and target values identified before for the SPD. 

For each target value a model of 1st and 2nd grade with statistically significant model 

terms (effects and interactions respectively) shall be derived. This shall be initially 

achieved for a literature example to ensure a proper method implemention and 

understanding of method dynamics for an efficient application to SPD.  
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3.1.1 Implementation and validation of RSM principles by literature example 

The aim of implementing a simple literature example is to prove that the methods to be 

applied to modeling of SPD are correctly understood and implemented by algorithms in 

Matlab. The literature example just provides the initial process data, the mathematical 

theory and the modeling results. It does not provide the implementation of the method by 

algorithms in Matlab. So if the programmed algorithm provides identical results from the 

initial process data then this is considered as proof that the method is understood and 

correctly implemented. 

3.1.1.1 Derivation and analysis of a 1st grade model  

The theory of full factorial design setup, as well as derivation of statistically significant 

and validated 1st grade models, shall be implemented and analyzed for a literature 

example. This example provides the initial data (range of process variable settings and 

experimental results for the SDoE) and the final 1st grade model. As proof for a correct 

method understanding and implementation the method theory shall be implemented by 

an algorithm in Matlab that produces the same 1st grade model from the provided initial 

data. This prior study shall ensure a proper method application to the real life problem of 

SPD optimization. 

3.1.1.2 Derivation and analysis of a 2nd grade model   

The same procedure as exposed in 3.1.1.1 shall be achieved here for the same reasons 

regarding the setup of an orthogonal central composite design and derivation of a 2nd 

grade model, respectively. Again a literature example only provides input data and final 

results. Additionally, also a complex method for the analysis of multivariate 2nd grade 

models shall be implemented and verified here by a literature example. In case of 

optimization towards multiple objectives (especially in case of conflicts of objectives) this 

method enables the visualization and analysis of areas (process variable settings 

respectively) which provide the same target values (Lin et al., 2011). This method shall 

be applied to the real life problem of SPD optimization towards multiple objectives if a 

comparable situation (areas of identical solutions) occurs. 

3.1.2 Application of RSM to the real life problem of SPD optimization 

Based on the method implementation and verification for a literature example in 3.1.1, a 

1st and 2nd grade model shall be derived from a full factorial and orthogonal central 

composite design here for the SPD. In 3.1.1 the method shall be implemted by algorithm 

that can be directly applied to the real life problem at hand. In this subchapter initially the 

SDoEs shall be set up and the corresponding experiments shall be achieved. Afterwards 
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1st and 2nd grade models with statistically significant model terms (effects and 

interactions, respectively) shall be derived from the experimental results and validated. 

Beyond modeling results, also general observations regarding process and experiments 

shall be exposed and discussed as they might contribute to a proper understanding of 

SPD dynamics and optimization. 

3.1.2.1 Setup of Design of Experiments 

Initially a complex theoretical analysis of the SPD and the optimization problem at hand 

shall be achieved to identify the mayor process variables and target values that shall be 

subject to the SDoE and process modeling. For each process variable the range of 

analysis shall be reasonably defined and applied to the algorithm (programmed in 3.1.1) 

that provides the full factorial and orthogonal central composite design. The experiments 

shall be achieved and the pre-defined target values shall be measured for each 

experimental setup of the DoEs. 

3.1.2.2 Model derivation for target value 3-MCPD and related substances 

From the experimental results of the full factorial and orthogonal central composite 

design statistically significant models of 1st and 2nd grade for 3-MCPD and related 

substances shall be derived and validated by statistical means. 

3.1.2.3 Model derivation for target value rancimat 

From the experimental results of the full factorial and orthogonal central composite 

design statistically significant models of 1st and 2nd grade for the rancimat value shall be 

derived and validated by statistical means. 

3.1.2.4 Model derivation for target value acid value 

From the experimental results of the full factorial and orthogonal central composite 

design statistically significant models of 1st and 2nd grade for the acid value shall be 

derived and validated by statistical means. 

3.1.2.5 Model derivation for target value tocopherol 

From the experimental results of the full factorial and orthogonal central composite 

design statistically significant models of 1st and 2nd grade for the tocopherol content shall 

be derived and validated by statistical means. 
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3.1.2.6 General observations during the trials 

Special characteristics and dynamics observed during experimentation shall be exposed 

and anylzed regarding their importance for a proper understanding and characterization 

of the SPD process and result interpretation. 

3.2 Bayesian model fit, discrimination and performance analysis 

The Bayesian methodology applied in this work is a coherent and self-contained 

approach for model fit, discrimination and analysis by probibablistic means. In contrast to 

most conventional approaches, which fit the experimental data (e.g. RLS-methods), it 

explicitly estimates the true underlying process and hypothetical events by consideration 

of experimentation noise. Additionally, an uncertainty measure of results is provided by 

probability distributions over the range of hypothetical alternatives. Initially the Bayesian 

methodology shall be implemented for a literature example to ensure an effecient method 

implemention by a functioning algorithm in Matlab, as well as a proper understanding of 

method dynamics and result interpretation. This preliminary studie is cutting-edge for an 

efficient application to the real-life problem of SPD modelling and optimization. Thus 

closing, the Bayesian model fit, discrimination and analysis approach shall be applied to 

the models derived by RSM for the SPD in order to optimize the process variables 

towards the single target values, as well as towards multiple optimization goals. 

3.2.1 Implementation and validation of the Bayesian methodology by the 

example of a growth model 

The Bayesian methodology applied here for model fit, discrimination and analysis shall 

be initially implemented for a simple growth model example by an algorithm in Matlab. 

This algorithm shall be constructed in a way to enable its direct application to the SPD 

just by exchanging models and initial data in the respective m-files.  A verification of 

method and algorithm, as well as an efficient application to SPD, requires an initial 

comprehensive study of method dynamics and results by a simple example. This study 

can be subdivided into six central questions which shall be answered below. 

3.2.1.1 Does the implemented method generally provide chain convergence and 

true process recovery? 

Does the implemented theory produce a chain convergence from a prior to a posterior 

distribution? 

How far is the method / algorithm able to recover the true model, parameterization and 

observation from a direct solution of this known model (simulated non-interfered 
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experimental data) when starting the MCMC-process from a parameterization much 

different from the real one? 

3.2.1.2 What is the influence of prior knowledge? 

In which way does the choice of the prior knowledge influences the analytic results and 

how can incorrect / inadequate prior knowledge superimpose the information about the 

true underlying process contained in the experimental data?  

This analysis is crucial for the right choice of the prior knowledge in the analysis of the 

Short-Path-Distillation process.  

3.2.1.3 How to interpret the output of the Gibbs-sampling? 

How has the output of the Gibbs-sampling, the Markov-Chains respectively, to be 

interpreted in terms of determination of the posterior parameter distribution and model 

parameterization (model fit respectively)?   

3.2.1.4 Is the method capable to recover the true process? 

Is the method and algorithm implemented here able to recover the true underlying model 

and parameterization from a model solution that has been interfered by noise equivalent 

to that of the real experimental data?  

3.2.1.5 How are the results for the real experimental data influenced by the prior 

variance? 

Which results do the method and algorithm implemented here provide for the real 

experimental data and how does the choice of the prior variance influence these results?  

3.2.1.6 Are the results reproducible with acceptable precision? 

Are the results of the Bayesian method applied here reproducible with acceptable 

precision when the method is applied to identical data sets at identical conditions (start 

values, a priori knowledge etc.)? In other words: Is the method correctly tuned (sample 

sizes, number of Markov-Chains etc.) in order to provide a sufficient reproducibility?  

3.2.2 Application of the Bayesian methodology to the real life problem of 

SPD optimization 

The Bayesian methodology for model fit, discrimination and analysis, as well as the 

corresponding algorithm, shall be applied to the SPD models for the target values 

rancimat value, acid value and tocopherol (derived by RSM, compare 3.1.2). An 

application to models for 3-MCPD-FE and related substances (e.g. G-FE) wil not be 
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achieved as it will be shown in chapter 5.1.2 that the contaminant concentrations 

measured for the SDoE are so low, that model derivation by RSM is not possible here. 

Thus, the SPD is generally considered as suitable to meet the process requirements with 

respect to contaminant formation. As already mentioned above the method and its 

implemention shall be analyzed and verified before to enable an efficient application to 

SPD (compare 3.2.1). For a comprehensive Bayesian analysis and optimization of the 

SPD, the following results shall be provided for each target value (model respectively) in 

terms of point estimates and uncertainty measures: Bayesian model fit, discrimination (in 

case of alternative models), validation, optimum process variable setting and 

probabability of experimental observations at this settings. Also the Markov-Chain 

convergence (during model fit) and the model parameter probability distributions shall be 

exposed and analyzed. Finally the possibilities of process optimization towards multiple 

goals shall be discussed. 

3.2.2.1 Model fit, discrimination, validation and analysis of rancimat models  

A 1st grade and 2nd grade SPD process model, which have been derived by RSM for the 

target value rancimat, shall be fit and discriminated by the Bayesian methodology applied 

in this work. Also a model validation shall be achieved by Bayesian means, as well as an 

analysis of experimental observations to be expected at the optimum process setting. An 

exemplary exposition and discussion of the Markov-Chain concergence shall provide 

evidence for a proper sampling from the posterior parameter distribution. The latter shall 

be exemplary compared to the prior distribution to proof the capability of the method to 

update prior knowledge and to reduce prediction uncertainties by extracting the 

information on the true underlying process contained in the experimental data. 

3.2.2.2 Model fit, discrimination, validation and analysis of acid value models 

The same objectives that have been exposed for the rancimat value (compare 3.2.2.1) 

are also valid here for the acid value. 

3.2.2.3 Model fit, discrimination, validation and analysis of tocopherol models 

The same objectives that have been exposed for the rancimat value (compare 3.2.2.1) 

are also valid here for the tocopherol content. 

3.2.2.4 Conclusions for the process optimization towards multiple target values 

Based on the validated process models and the respective optimum process settings for 

the single target values, it shall be discussed if a simultaneous optimization (minimization 

or maximization within the range of analysis) of all target values is possible. If not, the 



4 Materials and Methods 

44 

 

conflicts in objectives shall be clearly identified and possibilities for acceptable 

compromises shall be discussed. 

4 Materials and Methods 

This chapter comprises the exposition of the SPD plant, as well as the characterization of 

the feed stock and analytic methods. For the SPD, the complete technological set up and 

the major process variables are exposed. Also the basic physico-chemical processes, 

which are involved in the deodorization of edible oil by SPD, are explained. The 

representation of the analytic methods includes the determination of 3-MCPD-FE and 

related substances, rancimat value, acid value and tocopherol content. 

4.1 Short Path Distillation (SPD)  

The term ‘short path distillation’, or SPD, is derived from the short distance between 

evaporator and condenser surface (see also Figure 4.1 below). In a SPD unit, the vapor is 

generated on the evaporator surface from the feed oil, while the latter flows down that 

surface by gravity. The feed oil is agitated and distributed evenly on the entire inner 

evaporator surface by rotating whippers / rolls. The vapor stream directly passes over from 

the evaporator to the condenser surface. As the distance between these surfaces is below 

the mean free path of vapour molecules, it is called “short path”. Thus, re-condensation of 

vapour on the evaporator surface is avoided and the vapor stream is almost instantly 

condensed on the condenser surface. This also keeps the vapor from building up vapor 

pressure, which would lower the mass transport rate due to suboptimal concentration 

gradients of volatile compounds. The technological design of SPD enables extreme 

vacuums down to 0.001 mbar. Consequently, heat sensitive materials undergo purification 

at much lower temperatures due to boiling point lowering, which prevents undesired heat 

induced formation and degradation processes. Finally, it should be mentioned that SPD in 

industrial scale is a continuous process. 

In comparison to standard batch distillation processes, the special features of SPD enable 

the separation of liquid feed into liquid fractions, which consist of two or more components, 

under gentle conditions (Frank, 1969, p. 18; Goffic, F. E. and Albers, M., 2002, pp. 292-

295). The special features of SPD are as followed: 

 Reduced boiling temperature through fine vacuum as low as 10-3 mbar (mild 

conditions) 

 Limited heat exposure by reduced residence time 

 No static pressure loss due to thin film evaporation 
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 Efficient heat transfer 

 Large surface per volume unit 

 Continuous feed agitation / homogenization (surface renewal, avoidance of 

temperature gradients)  

 Short steam path and one-time vaporization; avoidance of gas haze 

SPD belongs to the process group of thin-film distillation technologies (UIC, 2007). In this 

group, distillation from a thin film takes place at fine vacuum. SPD is often used when 

standard batch distillation is not suitable to separate thermo-sensitive liquid mixtures 

without thermal deterioration.   

The significant lowering of pressure in the SPD process enables a substantial reduction of 

the required boiling temperatures. If the pressure is reduced by one decimal power, then 

the boiling temperature will also be reduced by approximately 25°C (Bethge, 1996, pp. 84-

87). This enables the SPD unit to separate heat-sensitive components, which are 

contained in a certain liquid, with significantly reduced thermal deterioration (Krell, 1976, 

pp. 303; 312). 

In the literature, various types of distillation processes are described. The distillation types 

can be distinguished based upon the specific pressure range applied (Table 4.1). SPD is 

thereby rated as applying a medium to low vacuum range, which is also called a fine 

vacuum (Frank, 1969, p. 19). 

 

Table 4.1: Vacuum distillation processes differentiated by applied pressure range 

The basic design of an evaporator unit with integrated condenser is demonstrated for the 

SPD in Figure 4.2. It consists of a cylindric double-walled evaporator with an axially 

arranged condenser unit inside. Both, the condenser and evaporator can be cooled / 

heated by various media from the inside due to the double-walled design with accessible 

innerspace. The liquid to be distilled is delivered to the upper inner surface of the cylinder 

wall. The liquid material then flows downwards. Through the utilization of additional units, 

e.g. a wiper assembly of rotating rolls, the liquid is evenly distributed on the inner cylinder 

(evaporator respectively) surface. Thus, the liquid appears as a thin film on the heated 

inner surface of the evaporator. 

Distillation Vacuum Pressure range [mbar]

Thin-film dist. rough 1013,3 - 1,3

SPD low & medium 1,3 - 1,3∙10-3

Molecular dist. high 1,3∙10-3- 1,3∙10-5
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Figure 4.1: Basic design of SPD evaporator unit with integrated condenser 

The components with lower boiling point evaporate from the liquid mixture of substances 

and are afterwards condensed on the surface of the condenser, which exhibits a lower 

temperature compared to the evaporator. Down the evaporator surface, the feed is 

separated into distillation residues and distillate, which are finally collected in tempered 

tanks. From these tanks the liquids can be drained separately. Each volume element of the 

liquid is less than one minute in direct contact with the heated surface of the evaporator, 

this is primarily caused by the construction of the SPD plant. Additionally, the liquid is 

spread as a thin film on the evaporator surface by a stirrer unit, which ensures an optimal 

heat transfer. Only by this setup a fast heating of the liquid can be achieved (Bethge, 1996, 

pp. 84-87; Stahl, 1991). Figure 4.2 exhibits the evaporator unit of the technical scale SPD 

plant VKL-70-5 (VTA GmbH, Niederwinkling) applied for this thesis. The unit is made of 

glas with an axially arranged spiral condenser inside. 
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Figure 4.2: Technical scale SPD evaporator unit (glas) with integrated spiral condenser 

By axial arrangement of the (e.g. spiral) condenser in the cylindrical evaporator, the distance 

between evaporator and condenser surface can be minimized. Thus, it is possible to reduce 

the working pressure of the plant down to 1,3∙10-5 mbar. Processing at this pressure range is 

called molecular distillation. Under these conditions, the distance between the evaporator 

and condenser surface is below the mean free path of the vapour molecules. This avoids 

collision of vapour molecules and re-condensation on the liquid film on the evaporator 

surface.  Thus the vapour molecules can directly reach the surface of the condenser, which 

increases the separation efficiency. In pressure ranges lower than optimal for SPD, the 

process of diffusion begins. This causes collision of vapour molecules (leaking from the 

liquid) with diffusing substances in the ‘short path’, which are on their way from the 
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evaporator to the condenser surface or vice versa (dependent on the actual concentration 

gradients) (Bethge, 1996, pp. 84-87; Stahl, 1991; Masch, 1950). 

The significant dependency of the mean free path of vapour molecules on the pressure is 

exposed by the example of triglycerides. The mean free path for triglycerides with a 

molecular weight of roughly 800 g∙mol-1 is shown for different fine-vacuum pressures in Table 

4.3 (Wittka, F. 1940, pp. 557-567). 

  

Table 4.2:  Mean free path of triglyceride depending on pressure 

In a molecular distillation no classical boiling with blistering occurs. Instead, a molecular 

evaporation, which starts on the surface of the liquid film, can be observed. The equilibrium 

at the interface between liquid and gaseous phase is disturbed by condensation at the 

condenser surface and subsequent separation. This equilibrium is repeatedly renewed by the 

ongoing evaporation process, while the concentration of components with lower boiling point 

is constantly and significantly reduced in the liquid film (Krell, 1976, p. 322). 

With an integrated whipper (e.g. rotating rolls, which are radially arranged directly at the inner 

evaporator surface, as applied in this thesis), a continuous renewal of the liquid film is 

achieved.  

An n-component mixture is separated during distillation at a constant temperature according 

to the proportions given by Eq. 4.1 (Hickman, K. C. D.; 1944, pp. 76-77; Krell, 1976, pp. 318-

324).  

p1

√M1
, 

p2

√M2
, … ,

pn

√Mn
 

Equation 4.1: Separation of n-component mixture at constant temperature 

If the temperature increases, the vapor pressure of the involved substances also increases. 

Thus, a physical correlation exists between these two factors, which is given by the Clausius-

Clapeyron equation (Eq. 4.2). Here p is the pressure, T the temperature in Kelvin, ∆H the 

enthalpy of evaporation and ∆V the change in molar volume at transition from liquid to 

gaseous phase. Eq. 4.2 can be integrated over the temperature range considered, if the 

enthalpy of evaporation is considered as being constant over that range. This integration 

leads over to Eq. 4.3, where R is the gas constant and p1 and T1 are the known saturation 

vapour pressure and referring temperature of an initial state. p2 is the saturation vapour 

pressure of interest at temperature T2. Thus, Eq. 4.3 can be converted into Eq. 4.4 where 
∆𝐻

𝑅
 

Pressure [mbar] Mean free path [mm]

10∙10-3
7

4∙10-3
25

1,3∙10-3
50
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and c are constants which are in practice experimentally determined or given by the literature 

for a defined volatile substance. Given a measured data set of the saturation vapour 

pressure p at different temperature T, these constants can be experimentally determined as 

slope and axis intercept from the plot (regression curve respectively) of ln 𝑝 versus 
1

𝑇
 

according to Eq. 4.4. Figure 4.3 examplaryly shows the plot of the integrated Clausius-

Clapeyron equation (compare Eq. 4.4) for a certain liquid (e.g. fatty acid) with measured data 

(blue points) and regression curve (dashed blue line). Also a non-logarithmic plot (𝑝 = 𝑓(𝑇)) 

is common for the vapour pressure curve according to the Clausius-Clapeyron equation.  

𝑑𝑝

𝑑𝑇
=

∆𝐻

∆𝑉 ∙ 𝑇
 

Equation 4.2:  Clausius-Clapeyron equation 

𝑙𝑛
𝑝2

𝑝1
=

∆𝐻

𝑅
∙ (

1

𝑇1
−

1

𝑇2
) 

Equation 4.3:  Integrated Clausius-Clapeyron equation (version 1) 

ln 𝑝 =
−∆𝐻

𝑅
∙ (

1

𝑇
) + 𝑐 

Equation 4.4:  Integrated Clausius-Clapeyron equation (version 2) 

 

The calculation of p at different operation temperature T for volatile oil constituents is, for 

example, required to identify the ideal process conditions for the distillative separation of 

substances, as well as for the calculation of the distillate output. 

Vapour pressure curves exhibit the dependency of the vapour pressure of defined 

substances on the temperature and, thus, ease the distillative separation of substances in 

liquid mixtures as well as the definition of the most suitable process conditions to be 

applied in this regard. The top peak of the curves indicates the boiling temperature at 

normal environmental pressure. If the residence time of a volume unit oil in the plant 

increases, a separation of substances can be reached at a lower temperatures (Hickman, 

K. C. D. (1944), p. 87; Krell, 1976, p. 334). 

Crude palm oil consists of 94%-98% triglycerides (basicly palmitic and oleic acid), 500-

700 ppm carotinoids, 60-100 mg ∙ (100g)−1 tocopherol/tocotrienol, as well as approx. 5 % 

diacylglycerids and FFA (O'Brien, 2009, pp. 43–48; Ooi et al., 1994, pp. 423-426). 

Undesired oudoring and flavouring substances, which are separated in the final distillation 

step of refining (the so-called deodorization), are minor components such as FFA, ketones, 

unsaturated aldehydes, hydrocarbons and lactons (Bockisch, 1993, ch. 7; Ooi et al., 1992). 



4 Materials and Methods 

50 

 

A separation of these substances is possible because they exhibit higher vapour pressures 

at defined temperature in comparison to triglycerides, as well as a comparatively smaller 

molecular weight (Krell, 1976, pp. 318–323).  

 

Figure 4.3: Vapor pressure curve of liquid – Plot of integrated Clausius-Clapeyron equation      
(Open access source: http://chem.libretexts.org) 

A substantial part of the tocopherols is removed from the distillate during the standard 

deodorization process (Rimbach et al., 2010, ch. 8). Tocopherols are characterized by a 

molecular weight of M=415 g∙mol-1 and a saturation vapour pressure of p=0,2 mbar (200°C). 

In comparison to triglycerides, they exhibit a smaller molecular weight but comparable 

vapour pressure (Fregolente et al., 2006, p. 184).  

Various studies provide elimination curves of free fatty acids from palm oil (Rawlings, 1939, 

pp. 231-232; Holló et al., 1964, pp. 936-941). A maximum temperature of 140°C to 180°C for 

a complete elimination was determined. Furthermore, it was revealed that triglycerides 

(molecular weight of 800 g∙mol-1) are distillative separated at temperatures above 200°C. 

Based on these facts, the definition of the temperature range, to be applied and investigated 

for the SPD in this work, was achieved. 

Although the evaporator unit is the basic feature of SPD, which enables the separation of 

undesired volatile compounds from the oil by the technological and physico-chemical 

principles exposed so far above, a complete SPD plant is much more complex. A proper and 

efficient operation of the evaporator unit requires a lot of technical and technological systems 

of high complexity. Figure 4.4 and 4.5 exhibit the total setup of the SPD plant VKL-70-5 (VTA 

GmbH, Niederwinkling) applied for this thesis.  
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Figure 4.4: Setup of SPD plant VKL-70-5 (VTA GmbH, Niederwinkling) 

 

Figure 4.5: Setup scheme of SPD plant VKL-70-5 (VTA GmbH, Niederwinkling) 
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The following Table 4.4 exhibits the major technical parameters of the SPD plant VKL-70-5 

(VTA GmbH, Niederwinkling) applied for this thesis. Annex A comprises all relevant figures 

and pictures of the SPD process and plant.  

Feed supply 

Reservoir 2 L volume, Duran-glas 

Pump Tempered gear pump, 2,8 L∙h
-1

 max. feed rate 

Pipeline Stainless steel, double-walled 

Evaporator unit  VKL70-5 FDRR SKR 

Material Duran-Glas 

Inner evaporator surface 0,052 m² 

Max. evaporation temperature 300°C 

Outer condenser surface (spiral) 0,080 m² 

Whipper system 
SKR Block Whipper System 

(3 whipper strings, PTFE/Graphit) 

Whipper speed 40 - 500 rpm 

Destillate and residue output 

Pump Tempered gear pump; 2,8 L∙h
-1

 max.feed rate 

Evacuation system 

Minimum pressure 

(valid for clean and dry system) 

< 1∙10
-3

 mbar with diffusion and rotary vane 

pump 

< 1∙10
-2

 mbar with rotary vane pump 

Cold trap 2,5 dm²; Duran-Glas 

Oil diffusion pump 40 𝐿 ∙ 𝑠−1 max. feed rate 

2-stage rotary vane pump 2,5 𝑚³ ∙ ℎ−1 max. feed rate 

 

Table 4.3:  Technical parameters of SPD plant  

 

4.2 Feed stock  

All chemicals used in the experiments, unless marked otherwise, were manufactured by Carl 

Roth GmbH & Co. KG (Karlsruhe, Germany). The bleaching earth was supplied by Süd-

Chemie (Munich, Germany). 

The crude palm oil used for the experiments was supplied by Cargill B.V. (Schiphol, 

Netherlands). It was partially refined as part of a previous treatment. The parameters for this 

standard refining process are further described in Table 4.5. The refined oil was stored at 

constant cooling (6°C) until it was applied in the SPD experiments. 

Prior to the refining process, the crude palm oil showed a tocopherol content of          

25,4 𝑚𝑔 ∙ (100𝑔)−1 and an acid value of 10,3 (𝑚𝑔 𝐾𝑂𝐻) ∙ 𝑘𝑔−1. The rancimat value of the 

raw palm oil was 0,55 h. After the partial refining (compare Tabel 4.5) a comparatively 

constant acid value of approx. 10,0 𝑚𝑔 𝐾𝑂𝐻 ∙ 𝑘𝑔−1 was measured; this is equivalent to a 

FFA content of 4,8 %. 
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1. Drying 

Temperature  [°C] 95 

Duration [min] 15 

Pressure [mbar] 100 

2. Degumming 

Temperature [°C] 60  (Acid addition) 
95  (Degumming) 

Duration [min] 20 (+10 for heating-up) 

Pressure [mbar] ca. 990 

Citric Acid (50%) [m-%] 0.06 

3. Bleaching 

Bleaching earth Tonsil Supreme 118 FF 

Temperature [°C] 95 

Wet-bleaching 

Duration [min] 10 

Pressure [mbar] ca. 990 

Dry-bleaching 

Duration [min] 20 

Pressure [mbar] 20-30 

4. Filtration 

Plate filters 

Vaccum filtration 

Table 4.4: Process parameters of the partial refining process of crude palm oil 

4.3 Experimental and analytic methods 

The methods exposed in this chapter were applied for the realization of the SPD experiments 

and analysis of the samples. 

4.3.1 Experimental methods  

The experiments were carried out on a single-stage short path distillation plant (SPD) 

manufactured by Verfahrenstechnische Anlagen GmbH & Co KG (Niederwinkling, Germany). 

The specific setup and operation of this type of plant is described in subchapter 4.1.  

Precisely, 400 g of bleached palm oil was weighed in a glass beaker for each individual 

experiment. The substance was then fused in a water bath at a constant temperature of 

60°C.  

Such refining intermediates often contain varying degrees of gases that are acquired from 

the surrounding air. For this reason, a degasification process prior to the vacuum distillation 

is usually a standard step. Moreover, during the course of the injection of the refining 

intermediates into the empty SPD plant, many soluble gases escape from the liquid. The 

escaping gases occupy a substantial amount of space within the vacuum, which can initialize 

foam generation and ultimately lead to a significant increase in the pressure within the SPD 

plant (Frank, W., 1969, pp. 46–48; Wittka, F. 1940, pp. 557-567; Pingris, A, 1958). No 

foaming was observed in the experiments of this work. The distillation was performed in four 

subsequent distillation cycles. Therefore, a separate degasification of the palm oil for each 
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cycle was waived in the experiments because degasification was completed in the first of the 

multiple distillation steps. 

Initially, the SPD plant was heated to the required temperature and evacuated (p<0,001 

mbar) by a rotary vane and a diffusion pump prior to each experiment. Precisely 100 g of the 

partially refined oil (compare Tabel 4.5) were then placed in the storage tank of the SPD 

plant, which was kept at a constant temperature of 50°C.   

The 100 g (out of 400 g in total) that were placed in the storage tank were used to rinse the 

unit. The rinsing procedure was performed with exactly the same inflow and agitator speed 

as required for the next experiment in the SDoE. This step of the process is intended to 

remove oil residues and contaminants acquired by prior experiments. The distillation 

residues of this intermediate rinsing step were released from the plant and rejected. 

The remaining 300 g of the partially refined oil were then put into the storage tank (at 50°C) 

and the primary distillation process was initiated with the adequate process parameters 

defined in the SDoE. The distillation process required constant monitoring in order to avoid 

the feeding pump from running dry. In such a case, gas could potentially penetrate the plant 

leading to a reduction of the vacuum. 

As four distillation cycles were achieved immediately in succession, the distillation residue of 

a single cycle was re-introduced into the plant and distilled again. The quality parameter 

values (e.g. acid value) were only realized through the total separation distance of all cycles. 

The recommendations for the construction and adjustment of a SPD plant resulting from this 

thesis mainly refer to that total separation distance. 

Upon completion of the four distillation cycles of each individual experiment, the remaining 

residue was released from the plant and weighed. A condenser temperature of below 60°C 

resulted in a solid condensate. In this case, the condenser temperature had to be increased 

in order to re-liquify the distillate and to enable its release from the plant. 

Equation 4.5 exposes the correlation of pump frequency v (in [Hz] ) and volume flow �̇� of the 

feed (in [ml∙min-1] ), which was experimentally determined for the SPD plant applied and for 

the adjustment range considered in the SDoE. Thus, this correlation is only valid within this 

adjustment range and aids the derivation of recommendations for up-scaling and design of 

SPD plants from the results of this work.  

�̇� = 0,6864 ∙ 𝑣 − 2,5773 

Equation 4.5:  Calculation of feed volume flow from pump frequency 

To provide precise data and an error of experimentation for an efficient process modeling 

and optimization, each experiment was performed twice.  
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4.3.2 Analytic methods 

The acid value was directly determined on-site after each experiment from the remaining 

distillation residue. The remaining sample was stored in a cool place until it was dispatched 

to the Max-Rubner-Institute (Detmold, Germany) for further analysis of the other quality 

parameters. 

The following analytic methods were applied for measuring the key quality parameters of the 

refined and deodorized oil: The total content of 3-MCPD-FE and related substances was 

determined by the DGF-Method C-VI 18(19) part A and the content of 3-MCPD-FE by the 

DGF-Method C-VI 18(19), part B. The content of G-FE was calculated by subtracting the 

content of 3-MCPD-FE from the content of 3-MCPD-FE and related substances. The acid 

value was determined according to the DGF-Method C-V 2(81), and the Rancimat value with 

a Rancimat-analyzer manufactured by Metrohm AG. The tocopherol content was determined 

by the rapid method for the quantitative determination of individual tocopherols in fats and 

oils (Müller-Mulot et al., 1976., pp. 257-262; Amundsen, N.R., 1966; Hartmann et al., 1974). 

The acid value is an indicator of the FFA content in fats and oils. Moreover, this indicator 

expresses the amount of potassium hydroxide [mg] that is needed for the neutralization of 

the FFA contained in 1 g fat or oil. As this is the only analysis that was achieved self-reliant 

on-site it is described in detail below. 

For each sample, 10 g of the distilled and melted palm oil were dissolved in 40 ml of an 

ethanol/diethyl ether mixture (1/1 v/v). The FFA contained in the sample was then neutralized 

by titration with 0,1 N potassium hydroxide solution (normality/factor: 0.966) and 

neutralization was controled by color changeover of ethanolic thymolphthalein. The acid 

value was determined three times for each sample. The average value was applied to 

process modeling and analysis. 

The calculation of the acid value (AV) from the amount of potassium hydroxide needed for 

the neutralization was achieved by use of the following equation:  

 

AV [
𝑚𝑔 𝐾𝑂𝐻

𝑔 𝐹𝑒𝑡𝑡
]  =

56,1∙F∙a

E∙10
. 

Equation 4.6:  Determination of the Acid Value 

The variable a denotes the amount of spent KOH-solution in [ml], F is the normality factor of 

KOH (here 0,1) and E is the weight in [g] of the sample. 56,1 is the molar mass of KOH in 

[g∙mol-1]. 
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5 Analysis and discussion of results 

Objective of this work is the model based optimization of SPD towards major oil quality 

parameters by application of the RSM for model derivation and the Bayesian methodology 

for model fit, discrimination, validation and analysis. Both approaches are implemented and 

studied at first for a literature example to ensure a proper functioning and understanding of 

these methods for the final application to the real-life problem of SPD optimization. Therefore 

in this chapter the results for method implementation and analysis (example) as well as for 

the practical method application (SPD) are presented for both, the RSM and the Bayesian 

approach. As a model to be analyzed has to be derived first, this chapter starts with the RSM 

(model derivation) followed by the Bayesian methodology (model fit, discrimination, validation 

and analysis). Both sections are subdivided into the application to an example 

(implementation, analysis) and the application to SPD (optimization of real-life problem).  

5.1 Implementation and application of RSM methodology 

Investigations on the effects and interactions of one and more variables towards a target 

value by SDoE and derived models are known as RSM (Box and Wilson, 1951, pp. 1-45). 

The following three-dimensional RSM sample graph demonstrates the dependency of the 

rancimat target value on the input variables pump power (process variable X4) and 

evaporator temperature (process variable X2) for a SPD process with four process variables 

to be considered. A third statistically significant process variable, the stirrer rotation (process 

variable X3), remains constant at optimum setting, as it is not possible to obtain a visual 

representation of the dependencies of the rancimat value on three variables by a graph. The 

graph is based on a model of 1st grade derived from a full factorial design. 

 

Figure 5.1: Model of 1
st
 grade for rancimat value at optimum stirrer rotation 

Models of 1st and 2nd degree derived from full factorial and orthogonal central composite 

designs provide an approximation of the true underlying process to be optimized towards the 
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target values. Such approaches are frequently used today, even when little is known about 

the process itself. The methodology was first introduced in the early 1950s (Davis, O., 1963). 

MATLAB is an abbreviation for Matrix Laboratory. It is a software that is used by researchers 

worldwide as tool for technical computing and visualization (modeling, simulation, 

prototyping, scientific and engineering graphics). The m.file is a MATLAB user script by 

which mathematical and computational methods / procedures can be implemented and 

executed by algorithms.  

5.1.1 Implementation and validation of RSM principles by a literature 

example 

The aim of implementing this literature example is to proof, that the methods to be applied to 

modeling and analysis of SPD are correctly understood and implemented by algorithms in 

Matlab. The example just provides the initial process data, the mathematical theory and the 

modeling results. It does not provide the implementation of the method by algorithms in 

Matlab. So if the programmed algorithm provides identical results from the initial process 

data then this is considered as proof that the method is understood and correctly 

implemented. 

A complex derivation and analysis of a first and second grade model for a literature example 

(Sundmacher, 2007, pp. 1221-1264) was implemented by the author. This pretest was 

completed in order to verify, that the RSM method applied here for derivation of a process 

model for SPD is correctly implemented and thus provides reliable results. The literature 

example only provided initial process data, some mathematical theory and the modelling 

results. However, it did not provide sources for the implementation of the method. As the 

authors’ own coding provided identical results from the same process data, the pretest 

proved that the method could be correctly implemented. 

The algorithms / m-files programmed in MATLAB for this investigation will be provided on a 

storage device and will be available with the thesis. Annex B gives a detailed description of 

all m-files. The line numbers given in this description refer to the line of code in the 

respective function.2  

5.1.1.1 Derivation and analysis of a first grade model 

A model of 1st grade is derived here by implementation of an example from the literature, in 

which the dependency of the tenacity of steel on the carbon, silicium and manganese content 

is analyzed (Sundmacher, 2007, pp. 1221-1264). The model is derived as exposed in 

subchapter 2.3.2.1 by application of a full factorial design. The determination of model term 

                                                           
2
 The program is provided on a storage device which is part of this work. 
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significances and model validation is achieved according to the methods applied in the 

literature example and exposed in chapter 2.3.2.1. Annex B contains a description of the 

program / algorithm by which this theory has been implemented. The program is provided on 

the storage device, which is part of that work. This program yields the same results from the 

same initial conditions as exposed in the literature example. Thus, it can be stated that the 

theory has been understood and correctly implemented regarding the setup of a full factorial 

design and derivation of a 1st grade model from its experimental results. Table 5.1 exposes 

the process variable range, Table 5.2 the full factorial design and referring experimental 

results and Eq. 5.1 the resulting 1st grade model of the literature example implemented here. 

 

Table 5.1: Process variable range for literature example RSM 1
st
 grade model 

 

 

Table 5.2: Full factorial design and results for literature example RSM 1
st
 grade model 

 

�̂� = 49,54 + 3,40 ∗ 𝑋1 + 1,86 ∗ 𝑋2 + 0,6313 ∗ 𝑋3 + 0,5438 ∗ 𝑋2 ∗ 𝑋3 

Equation 5.1: Model 1
st
 grade literature example RSM  

 

5.1.1.2 Derivation and analysis of a second grade model 

A model of 2nd grade is derived here by implementation of an literature example, which 

analysis the dependency of the product yield on the reaction temperature, reaction time and 

initial molar fraction for a certain chemical production process (Sundmacher, 2007, pp. 1221-

1264). The model is derived as exposed in chapter 2.3.2.1 by application of an orthogonal 

Factor                     Range of analysis 

Min Max

Carbon [%] 0,14 0,26

Silicium [%] 0,26 0,56

Manganese [%] 0,45 0,55

Exp.           Calculation matrix       Tenacity [N∙mm -2 ]

Trial matrix               Repetition Mean

ß0 ß1 ß2 ß3 ß12 ß13 ß23 ß123 1 2 3 4

1 +1 -1 -1 -1 +1 +1 +1 -1 44,4 44,4 45,1 43,8 44,452

2 +1 +1 -1 -1 -1 -1 +1 +1 50,5 51,5 49,2 51,9 50,775

3 +1 -1 +1 -1 -1 +1 -1 +1 48,1 45,4 45,7 48,8 47

4 +1 +1 +1 -1 +1 -1 -1 -1 53,2 54,5 52,1 54 53,45

5 +1 -1 -1 +1 +1 -1 -1 +1 43,3 43,2 46,5 44,7 44,425

6 +1 +1 -1 +1 -1 +1 -1 -1 52,1 49,2 51,9 51,3 51,125

7 +1 -1 +1 +1 -1 -1 +1 -1 48,7 47 50 49,5 48,8

8 +1 +1 +1 +1 +1 +1 +1 +1 53,8 58,8 56,2 56,6 56,35
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central composite design. The determination of parameter significances and model validation 

is achieved according to the methods applied in the literature example and as exposed in 

subchapter 2.3.2.1. Annex B contains a description of the program / algorithm by which this 

theory has been implemented. The program is provided on the storage device which is part 

of that work. This program yields the same results from the same initial conditions as 

exposed in the literature example. Thus it can be stated that the theory has been understood 

and correctly implemented regarding the setup of an orthogonal central composite design, as 

well as the setup and analysis of a 2nd grade model which has been derived from the 

experimental results. Table 5.3 exposes the process variable range, Table 5.4 the orthogonal 

central composite design and referring experimental results and Eq. 5.2 the resulting           

2nd grade model of the literature example implemented here. 

 

Table 5.3: Process variable range for literature example RSM 2
nd

 grade model 

 

 

Table 5.4: Orthogonal CCD and results for literature example RSM 2
nd

 grade model  

(γ=0,73 ; δ=1,22) 

Factor                      Range of analysis 

Min Max

Reaction temperature [°C] 142 152

Initial molar fraction  [%] 35 40

Reaction time [h] 7 10

Exp.                                                                                                   Calculation matrix Results

Trial Matrix

ß0 ß1 ß2 ß3 ß11 ß22 ß33 ß12 ß13 ß23 Product yield [%]

1 +1 -1 -1 -1 1-γ 1-γ 1-γ +1 +1 +1 55,9

2 +1 +1 -1 -1 1-γ 1-γ 1-γ -1 -1 +1 70,7

3 +1 -1 +1 -1 1-γ 1-γ 1-γ -1 +1 -1 67,5

4 +1 +1 +1 -1 1-γ 1-γ 1-γ +1 -1 -1 68,6

5 +1 -1 -1 +1 1-γ 1-γ 1-γ +1 -1 -1 63,3

6 +1 +1 -1 +1 1-γ 1-γ 1-γ -1 +1 -1 68,0

7 +1 -1 +1 +1 1-γ 1-γ 1-γ -1 -1 +1 68,8

8 +1 +1 +1 +1 1-γ 1-γ 1-γ +1 +1 +1 62,4

9 +1 δ 0 0 δ2-γ ˗γ ˗γ 0 0 0 67,8

10 +1 ˗δ 0 0 δ2-γ ˗γ ˗γ 0 0 0 63,1

11 +1 0 δ 0 ˗γ δ2-γ ˗γ 0 0 0 68,4

12 +1 0 ˗δ 0 ˗γ δ2-γ ˗γ 0 0 0 66,2

13 +1 0 0 δ ˗γ ˗γ δ2-γ 0 0 0 68,0

14 +1 0 0 ˗δ ˗γ ˗γ δ2-γ 0 0 0 65,4

15 +1 0 0 0 ˗γ ˗γ ˗γ 0 0 0 67,7
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�̂� = 67,08 + 1,81x1 + 1,11x2 − 1,32x1
2 − 3,09x1x2 − 2,19x1x3 − 1,21x2x3 

Equation 5.2: Model 2
nd

 grade literature example RSM 

 

For the example taken from the literature the RSM yields an equation of the form  

�̂� = b0 + b1x1 + b2x2 + b11x1
2 + b12x1x2 + b13x1x3 + b23x2x3  

Equation 5.3: Model 2nd grade literature example RSM (general form) 

 

The corresponding response surface of the 2nd grade model cannot be directly visualized and 

analyzed, as the target value depends on three process variables.  To account for that 

deficit, Eq. 5.3 is transformed into the normal form by coordinate transformation. Eq. 5.3 is 

given in matrix form by Equation 5.4. 

ŷ = b0 + bTx + xTBx  

Equation 5.4: Model 2
nd

 grade in matrix form 

with b = [

b1

b2

b3

] and B =

[
 
 
 
 b11

b12

2

b13

2
b12

2
b22

b23

2
b13

2

b23

2
b33]

 
 
 
 

 . 

By achieving the coordinate transformation  

(x − x∗) = Mz  

Equation 5.5: Coordinate transformation 

the normal form of Eq. 5.4 is given as 

ŷ − ŷ(x∗) = λ1z1
2 + ⋯+ λmzm

2    

Equation 5.6: Model 2
nd

 grade in normal form 

where (x − x∗) is the difference between an coordinate vector x and the extremum coordinate 

vector x∗  (the function value ŷ  reaches a extremum here),  ŷ − ŷ(x∗) is the difference 

between the function value ŷ and extremum ŷ(x∗), M is the matrix of normalized eigenvectors 

and Λ is the diagonal matrix of the eigenvalues  λ of matrix B.  This coordinate transformation 

procedure applied here is referred to as the canonic analysis of the RSM and the resulting 

Eq. 5.6 is referred to as the Response Surface. The coordinates x∗ of the extremum ŷ(x∗) 

are given by Eq. 5.7. 

 



5 Analysis and discussion of results 

61 

 

x∗ = −0,5B−1b  

Equation 5.7: Coordinates of extremum 

When ŷ, ŷ − ŷ(x∗) respectively, is fixed to a defined value, then Eq. 5.6 can be easily 

analyzed and visualized in a 3-D plot. In that case the equation describes (the plot shows, 

respectively) all process settings in z-coordinates that result in the fixed function value, fixed 

difference respectively. When ŷ is chosen equal to ŷ(x∗), and thus ŷ − ŷ(x∗) = 0, then the 

resulting equation shows all process settings at which the extremum is reached. This case is 

therefore suitable for analysis of process optimization. When the process has to be optimized 

towards multiple target values than the intersections of the referring optimization equations 

contain all process settings at which all target values are optimized. In the vector / matrix b 

and B of the non-transformed Eq. 5.4, for each process variable the effects of that variable 

on the target value (direct single effects, interactions) are stored as parameter values. Eq. 

5.7 enables the calculation of a process setting x∗ at which the target value reaches an 

extremum. This extremum is then applied to the coordinate transformation in Eq. 5.5 leading 

to the normal form given by Eq. 5.6, which gives the difference between target value and 

extremum at a defined setting of the transformed process variable z. When the left side of 

that equation is set to zero then the resulting equation describes all process settings at which 

the extremum is reached. It is very important to emphasize that it is not known so far, if x∗ is 

a minimum or maximum. Thus process optimization requires further analysis of the 

Response Surface. This analysis is achieved as explained and visualized (Figure 5.2) below.  

 

Figure 5.2: Response Surface in x-coordinate system (normalized, non-transformed)                      
for literature example 
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The equation of the Response Surface shows, that one process setting, at which the 

extremum is reached, is located in the origin of the z-coordinate system where all z-variables 

are set to zero. At this process setting a yield of 67,08 % is realized. To analyze if the 

extremum is a minimum or maximum and to understand, how the target value changes with 

variation of the z-coordinates, the z-axes are plot into the x-coordinate system within the 

range of x-variables that is subject to investigation. The latter is exposed as cube (room of 

investigation) in Figure 5.2. Additionally the coordinates of the intersections of the z-axes 

with the side surfaces of the cube and the referring target values are calculated. This 

procedure is applied to analyze how the target value changes in the direction of the particular 

z-axes.  

 

Figure 5.3: Response Surface - Process variable settings for yield extreme value                
(literature example) 

Figure 5.2 shows, that the origin (yield 67,08%) is a minimum and that it is most suitable to 

realize higher target values by process variable variation in the plain spanned by the Z2- and 

Z3-axis. The contour plot of this plain in Figure 5.2 shows how the target values change with 

variation of the Z2- and Z3-variables (the target value increases with transition of the color 

from the blue into the red color spectrum). The green point marks the z-coordinate setting at 

which the maximum for the target value in the Z2- and Z3-plain is reached. It has to be 

outlined here that the plot of the Z2- and Z3-plain in the origin just shows the dynamics of 

target value change in that plain. Nevertheless it is possible that higher target values can be 

reached within the room of investigation in another parallel Z2- and Z3-plain. When a certain 

target value of interest has been defined, then the left side of the Response Surface function 

turns to a defined constant value, so that all z-coordinate settings which result in the defined 

target value can be visualized by a 3-D plot in the z-coordinate system. Figure 5.3 shows 
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exemplaryly all z-variable settings at which the minimum is reached. Such plots further serve 

as basis for defining the most suitable process setting for a defined target value with respect 

to other target values or economical criteria (e.g. lowest possible temperature to reduce 

energy costs or detrimental heat exposure). 

5.1.2 Application of RSM to the real life problem of SPD optimization 

In this chapter linear stochastic process models of 1st and 2nd grade are derived for the real 

life problem of SPD optimization according to the RSM theory exposed in subchapter 2.3.2.1. 

The implementation of that approach by algorithms in Matlab is exposed by the program 

description in Annex B.3 The process models derived here by RSM are further subject to 

Bayesian model fit, discrimination and analysis in 5.2.2. 

5.1.2.1 Setup of Design of Experiments  

An efficient process modeling and optimization is based upon a careful setup of a SDoE, 

which in turn requires a thorough analysis and selection of significant product quality 

parameters and influencing process variables. This initial analysis and SDoE setup is 

exposed below. 

As target values for the optimization of SPD the following oil quality parameters have been 

identified: Acid value, rancimat value and tocopherol content, as well as 3-MCPD- and G-FE 

content.  

The acid value is a measure for the FFA content and the rancimat value is a measure for the 

oxidation stability. Tocopherols support the oxidation stability due to its antioxidant properties 

and are of nutritional importance as they contribute to the supply of liposoluble vitamins.  

For an SPD plant, the following factors have been identified as most influencing regarding 

the target values: Temperature of the evaporator (TEvaporator [°C]), temperature of the 

condenser (TCondenser [°C]), stirring speed (NStirrer [rpm]) of the rotating whipper unit and the 

feed flow rate of the feeding pump, which is adjusted by the pump frequency (PPump [Hz]). 

The correlation between pump frequency and feed flow rate is given by Eq. 4.5. The 

identification of these process parameters and their dependent quality parameters can be 

considered as a result and a pre-condition of the SDoE. Also the residence time of an oil 

volume unit in the evaporator unit of the SPD plant, as well as the thickness of the oil film on 

the evaporator surface, can be considered as significant process variables influencing the oil 

quality. As these factors are a function of stirrer speed and pump requency anyway, and 

could not be experimentally determined in this experimental setup, they are not further 

considered in this work. 

To measure and model the impact of these process variables on the quality parameters, an 

experimental design (SDoE) has to be defined at first. This step must be in accordance with 

                                                           
3
 The program is provided on a storage device which is part of this work. 
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the theoretical principles that are described in Chapter 2.3.2.1. The Response Surface 

Methodology (RSM) enables the derivation and analysis of process models based on the 

SDoE results. The investigation ranges of the process variables are primarily dependent on 

the technical adjustment capabilities of the plant itself. Also the results of pretests and 

theoretical considerations of the process play an important role in that context. 

The temperature of the evaporator was varied between 150°C and 210°C, as pretests 

showed that temperatures below 150°C could not produce acceptable acid values even 

when the distillation process was repeated in more than one cycle. When the evaporator 

temperature was adjusted to the maximum value of 210°C, two cycles of the palm oil through 

the SPD plant were required in order to achieve an acid value in the predefined range. The 

second cycle is necessary due to the limited separation range of this type of plant. If the 

temperature was reduced to the minimum of 150°C, four cycles were required to achieve the 

same result. In this case, the acid value is reduced in each cycle of the distillation process 

through a constant deposition of FFA. To provide acceptable acid values and comparability 

of experimental results for process modeling, in each experiment of the SDoE four cycles of 

the SPD were achieved. 

The choice of the temperature range for the SDoE was also influenced by the literature. 

However, only experimental assemblies that used the same pressure range for deodorization 

and de-acidification were analyzed in that context. 

Ooi identified an optimal evaporation temperature (TEvaporator [°C]) for the process in the range 

between 150°C and 170°C (Ooi et al., 1996). In comparable experiments other authors 

found, that for a complete separation of FFA a temperature of at least 180°C is essential. 

Furthermore, undesirable flavorings and fragrances could successfully be eliminated from 

the oil at this temperature. These studies also concluded that the separation of triglycerides 

begins at temperatures above 200°C (Rawlings, 1939; Holló et al., 1964, pp. 936-941;  

Masch, 1950). These findings were the main reason to fix the maximum temperature to 

210°C for the test series. 

The expectation before testing was, that with an increasing evaporator temperature, the 

output of distillate would also increase due to an increased vapor pressure. The latter is 

caused by the fact that at higher evaporator temperatures the molecules absorb more 

energy, which is required for the transition from liquid to gaseous phase. In this state, gas 

can leave the thin oil film spanned on the surface of the evaporator (Frank, 1969, pp. 18; 52-

54). 

The condenser temperature was varied in the test series between 40°C and 78°C. Thus, the 

impact of this process variable on the degree of separation could be determined by analysis 

of the target values in the deodorized oil (residue). One of the experimental results was, that 
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condensates had a firm consistency at a condenser temperature of below 60°C. At 

condenser temperatures of 60°C and higher, the condensates had a liquid consistency. 

Stirring speed (NStirrer [rpm]) and frequency of feeding pump (PPump [Hz]) were adjusted from 

the minimum values of 100 rpm and 20 Hz to the maximum values of 390 rpm and 86 Hz. 

Both process variables influence the thickness of the oil film on the evaporator surface. They 

also influence the residence time of oil in the evaporator chamber. The ultimate target of 

adjusting these process variables is to achieve a continuous and homogeneous oil film of 

minimal thickness being spanned on the evaporator surface. Moreover, the contact time 

between palm oil and evaporator surface should be long enough to guarantee the separation 

of undesired volatile substances. This aspect can be fine-tuned with minor adjustments in the 

feed flow rate. 

The principal task of the whipper unit is to achieve a balanced distribution of the liquid film on 

the surface of the evaporator. The liquid film must have a predefined thickness and it must 

be constantly renewed to guarantee the homogeneity of the oil film (Frank, 1969, p. 18). 

The evaporation efficiency of FFA and tocopherols from oil depends on the consistency and 

the flow speed of the oil film. The expectation was that the contents of both substances in the 

oil would be gradually reduced with an increasing stirrer speed and with a decreasing feeding 

speed. Decreasing the feeding speed makes the oil film thinner and prolongs the time of 

contact with the evaporator surface. In theory, the separation of volatile FFA, flavorings, 

fragrances and tocopherols is stimulated by a decreased feeding speed. 

It is well-known that rancidity is accelerated by oxidative processes (Metrohm, 2015). 

Stability and sensory characteristics of oil are negatively correlated with its FFA content and 

positively correlated with its tocopherols content (Rimbach et al., 2010, pp. 171; 180-181). A 

high rancimat value is therefore a good indicator of proper oxidation stability and shelf-life. 

The temperatures of the feed and distillation residues were kept constantly at 50°C 

throughout the whole experimental design. The impact of those parameters on the quality of 

the product is insignificant. Thus they were adjusted to the minimum technologically possible 

temperature. By this adjustment additional thermal stress for the product can be avoided. 

With a temperature of 50°C palm oil is still liquid and therefore technologically easy to 

handle. The pressure was adjusted to its technologically achievable minimum value of 

10-3 mbar. 

The experiments for the deodorization of palm oil by SPD were performed according to an 

orthogonal CCD with a 24-full factorial design as the so-called “kernel” or “core” of the CCD. 

Based on this SDoE, models with statistically significant model terms (effects and 

interactions, respectively) were derived according to the theory exposed in chapter 2.3.2.1.  

Based on the results of the full factorial design, models of 1st grade were determined. A 

model of 1st grade describes the dependency of the target value on linear effects of the 

process variables and their interactions up to highest order.  
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Furthermore, models of 2nd grade were set up based on the results of the orthogonal CCD. 

Models of 2nd grade, however, always require a significantly higher number of experiments 

(cost factor). This in turn provides more information on the SPD process. In theory, such 

models can therefore more precisely approach the true underlying process by additional 

identification of non-linear quadratic effects of the process variables towards the target 

values. 

The general approach is to start with a full factorial design to derive models of 1st grade, 

which demands less testing effort. This approach enables process modeling by identification 

of linear effects of process variables as well as interactions. Under favorable conditions, this 

might be sufficient for the model based treatment of the optimization problem at hand. To 

decide on further ex-ante testing by additional experiments of an orthogonal CCD, a careful 

weighing of the particular cost-benefit relationship and the required degree of accuracy is 

neccessary. Through the reduced number of experiments in less complex experimental 

designs, a reduction of costs and effort is achieved. A potential loss in information is 

consciously accepted in this case. 

To generally evaluate the performance and sufficiency of a model of 1st grade, models of 1st 

and 2nd grade are set up and compared with respect to their experimental effort, their 

preciseness and the expected potential benefit of the additional information gained by using 

a model of 2nd grade (Scheffler, 1986). From these results, proposal can be derived for the 

optimal choice of experimental designs for modeling and optimization approaches of other 

comparable and / or scaled-up SPD setups. For example, significant effort and costs can be 

saved if a 1st grade model is considered as being generally sufficient (in terms of precision 

and cost-benefit ratio) for modeling and optimization of comparable SPD setups. 

 

 

Table 5.5: Process variable range and process constants of SPD for a 2
4
 full factorial design 

Table 5.5 shows the minimum and maximum values of the key process variables for the 24 

full factorial design, which is also the kernel of the orthogonal CCD. Such values must be 

determined ex-ante when the test plan is set up. The experimental settings of a full factorial 

design are direct combinations of these values. The additional experimental setups for the 

orthogonal CCD (Table 5.7) have to be calculated with the use of formulas according to the 

Process variable Non-normalized Normalized (dimension free)

Min. Max. Mean Min. Max. Mean

 X1= TCondenser [°C] 40 78 59 -1 1 0

 X2= TEvaporator [°C] 150 210 180 -1 1 0

 X3= NStirrer [rpm] 100 390 245 -1 1 0

 X4= PPump [Hz] 20 86 53 -1 1 0

Constant Adjustment

Tfeed, Tresidue [°C] 50

Pressure [mbar] 10-3
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theory exposed in chapter 2.3.2.1. The matrices of the full factorial and orthogonal central 

composite design in Table 5.6 and 5.7 provide the normalized process variable settings for 

experimentation and model term estimation. The conversion between normalized and non-

normalized values follows Eq. 2.3 in chapter 2.3.2.1. 

 

 

Table 5.6: 2
4
 full factorial design (normalized) 

The 24 full factorial design is the so called “kernel” or “core” of the corresponding larger 

orthogonal CCD. The latter additionally exhibits six star points and one central point. A 

complete orthogonal CCD for four process variables is presented in Table 5.7. The 

normalized settings of the process variables x1, x2, x3 and x4 represent the trial matrix which 

exhibits the actual experimental settings / adjustments. The additional settings of the model 

constant x0 and the interactions are not practically adjustable.They result from multiplication 

of the settings of the corresponding process variables and are applied for parameter 

estimation of the respective model terms (compare theory in chapter 2.3.2.1). In Tabel 5.7 

the interactions of higher than 1st order of the 1st grade model (e.g. x1x2x3), as exposed in 

Tabel 5.6, are replaced by quadratic effects (e.g. x1
2-ϒ). 
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Table 5.7: Orthogonal central composite design for four process variables (normalized) 

To avoid potential disruptive effects, the experiments were not performed in the numerical 

order of the experimental design. The true order was determined randomly (Scheffler, 1986, 

p. 14). 

The set up of the SDoE, as well as the derivation of the process models from the results, was 

achieved by the program described in Annex B according to the theory exposed in Chapter 

2.3.2.1.  

All experiments of the SDoE were achieved twice with the arithmetic mean being applied to 

all further calculations such as model derivation. No outliers were defined in order to prove 

the capability of the Baysian approach to filter noise from the experimental data. The models 

derived from the SDoE results enable the calculation of optimum process settings. 

In the following subchapters all presented values for experimental data and model 

parameters are rounded up to the second decimal place. In practical programming and 

computing all calculations were achieved with the highest possible accuracy. 

  

exp.                                                                                  calculation matrix subset

                 trial matrix

X0 X1 X2 X3 X4 X1
2-γ X2

2-γ X3
2-γ X4

2-γ X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

1 1 1 1 1 1 0,2 0,2 0,2 0,2 1 1 1 1 1 1

2 1 1 1 1 -1 0,2 0,2 0,2 0,2 1 1 -1 1 -1 -1

3 1 1 1 -1 1 0,2 0,2 0,2 0,2 1 -1 1 -1 1 -1

4 1 1 1 -1 -1 0,2 0,2 0,2 0,2 1 -1 -1 -1 -1 1

5 1 1 -1 1 1 0,2 0,2 0,2 0,2 -1 1 1 -1 -1 1

6 1 1 -1 1 -1 0,2 0,2 0,2 0,2 -1 1 -1 -1 1 -1

7 1 1 -1 -1 1 0,2 0,2 0,2 0,2 -1 -1 1 1 -1 -1 core:

8 1 1 -1 -1 -1 0,2 0,2 0,2 0,2 -1 -1 -1 1 1 1 24  full

9 1 -1 1 1 1 0,2 0,2 0,2 0,2 -1 -1 -1 1 1 1 factorial

10 1 -1 1 1 -1 0,2 0,2 0,2 0,2 -1 -1 1 1 -1 -1 design

11 1 -1 1 -1 1 0,2 0,2 0,2 0,2 -1 1 -1 -1 1 -1

12 1 -1 1 -1 -1 0,2 0,2 0,2 0,2 -1 1 1 -1 -1 1

13 1 -1 -1 1 1 0,2 0,2 0,2 0,2 1 -1 -1 -1 -1 1

14 1 -1 -1 1 -1 0,2 0,2 0,2 0,2 1 -1 1 -1 1 -1

15 1 -1 -1 -1 1 0,2 0,2 0,2 0,2 1 1 -1 1 -1 -1

16 1 -1 -1 -1 -1 0,2 0,2 0,2 0,2 1 1 1 1 1 1

17 1 1,414 0 0 0 1,2 -0,8 -0,8 -0,8 0 0 0 0 0 0

18 1 -1,414 0 0 0 1,2 -0,8 -0,8 -0,8 0 0 0 0 0 0

19 1 0 1,414 0 0 -0,8 1,2 -0,8 -0,8 0 0 0 0 0 0

20 1 0 -1,414 0 0 -0,8 1,2 -0,8 -0,8 0 0 0 0 0 0 star points

21 1 0 0 1,414 0 -0,8 -0,8 1,2 -0,8 0 0 0 0 0 0

22 1 0 0 -1,414 0 -0,8 -0,8 1,2 -0,8 0 0 0 0 0 0

23 1 0 0 0 1,414 -0,8 -0,8 -0,8 1,2 0 0 0 0 0 0

24 1 0 0 0 -1,414 -0,8 -0,8 -0,8 1,2 0 0 0 0 0 0

25 1 0 0 0 0 -0,8 -0,8 -0,8 -0,8 0 0 0 0 0 0 center point
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5.1.2.2 Model derivation for target value 3-MCPD and related substances 

 

Table 5.8: Results orthogonal central composite design for 3-MCPD and related substances 

Table 5.8 exhibits the results of the orthogonal CCD for 3-MCPD and related substances. 

The measured values are in all cases very close to or already within the standard deviation 

of experimentation. Thus a model derivation is not possible here as a statistically significant 

contaminant formation, which can be clearly differentiated from the error in experimentation / 

measurement, cannot be observed here. In either case, the measured values are close to 

zero and far below all discussed threshold values and critical concentrations. The formation 

of 3-MCPD and related substances in SPD is therefore negligible and not subject to further 

analysis and modeling. It can be stated here, that the SPD process applied in this work is 

suitable to produce nearly contaminant free deodorized oils within the analyzed range of 

process variable settings. Thus regarding contaminant formation, the SPD is a promising 

alternative and sophisticated technological approach for a sustainable production of healthy 

refined edible oils. 

5.1.2.3 Model derivation for target value rancimat 

Table 5.9 shows the results for two repetitions of the orthogonal CCD for the rancimat value.  

The model derivation has been achieved on the mean values and without definition and 

exclusion of outliers. This procedure should provide evidence that the RSM and Bayesian 

approach applied here is capable of handling even experimental data that is significantly 

interfered by noise. 

 

Table 5.9: Results orthogonal central composite design for rancimat value 

Table 5.10 exhibits the derivation of 1st and 2nd grade process models with significant model 

terms, which have been determined by six different methods of statistical significance testing. 

The model derivation and validation has been achieved according to the methods exposed 

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13

3-MCPD and related

substances [mg*kg-1] 
0,13 0,15 0,53 0,05 0,40 0,23 0,10 0,18 0,13 0,08 0,05 0,18 0,18

Experiment 14 15 16 17 18 19 20 21 22 23 24 25

3-MCPD and related

substances [mg*kg-1] 
0,43 0,15 0,13 0,15 0,10 0,15 0,25 0,43 0,08 0,13 0,08 0,18

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13

Rancimat [h] Run 1 8,68 3,51 9,6 3,7 12,4 12,2 12,3 11,6 7,72 3,88 10,2 3,64 12,3

Run 2 8,77 4,02 9,96 4,09 13,3 11,4 12,7 11,4 7,25 3,62 8,4 4,07 11,2

Experiment 14 15 16 17 18 19 20 21 22 23 24 25

Rancimat [h] Run 1 11 12,5 11 10,2 10 4,4 11,3 9,42 10,1 10,7 3,97 10,8

Run 2 11 12,5 11,3 9,95 9,4 3,96 12,7 10,1 9,75 11,8 3,55 9,15



5 Analysis and discussion of results 

70 

 

theoretically in chapter 2.3.2.1. It can be observed that these methods yield four different 

process models with statistically significant model terms. None of these models proofed to be 

valid according to the statistical validation method and criterion applied here.  The Tables 

5.10., 5.12 and 5.14 expose the statistically significant model parameters ß, model terms 

resoectively, for the target values rancimat value, acid value and tocopherol according to Eq. 

2.2 and Eq. 2.10.  ß0 refers to the model constant, ß1 to the linear effect of the condenser 

temperature, ß2 to the linear effect of the evaporator temperature, ß3 to the linear effect of the 

stirrer rotation and ß4 to the linear effect of the pump power. The terms ß11 to ß22 refer to the 

respective quadratic effects, whereas the terms with mixed indices (e.g. ß12) refer to the 

respective interactions of the process variables towards the target values. For each model 

derivation method, the Tables 5.10, 5.12 and 5.14 exhibt, which model terms (effect, 

interaction) have been identified as significant by notation of the corresponding parameter 

value ß. Terms that have not been denoted with a parameter value ß, have not been 

identified as being significant by statistical means. 

 

Table 5.10: Derivation of 1
st
 and 2

nd
 grade models by RSM for rancimat value 

Below, the applied methods for significance testing and validation are specified.  

 Method 1/a : Estimation of error variance from negligible model terms and 

determination of parameter significance by relative variance (F-Test) . 

 Method 1/b : Estimation of error variance from negligible model terms and 

determination of parameter significance by individual confidence intervals (t-test). 

 Method 2/a : Estimation of error variance from multiple experiment realisation and 

determination of parameter significance by relative variance (F-Test) . 

 Method 2/b : Estimation of error variance from multiple experiment realisation and 

determination of parameter significance by individual confidence intervals (t-test). 

 Method 3/a : Estimation of error variance from the assumption that the model is valid 

and determination of parameter significance by relative variance (F-Test). 

 Method 3/b : Estimation of error variance from the assumption that the model is valid 

and determination of parameter significance by individual confidence intervals (t-test). 

 Method model validation RSM :  F-Test on ratio of summed squares. 

The objective of applying the RSM is just to identify statistically significant model terms, 

process models respectively, based on the results of the SDoE. The 1st grade model and the 

Model
Method of

significance
                                                                                                                                                                                                          Model term Validation 

testing ß0 ß1 ß2 ß3 ß4 ß11 ß22 ß33 ß44 ß12 ß13 ß14 ß23 ß24 ß34

1st grade 1 / a 9,05 -2,77 1,74 1,00 No

1 / a 9,05 -2,77 1,74 1,00 No

1 / b 9,05 -2,77 1,74 -0,67 1,00 No

2nd grade 2 / a 9,05 -2,77 1,74 0,53 0,50 -0,67 1,00 No

2 / b 9,05 0,22 -2,77 1,74 0,53 -0,39 0,50 -0,67 1,00 No

3 / a 9,05 -2,77 1,74 1,00 No

3 / b 9,05 -2,77 1,74 0,53 0,50 -0,67 1,00 No
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2nd grade model determined by method 2/b are then parameterized (fit to the experimental 

data, respectively), validated and analyzed by Bayesian means in 5.2. The 2nd grade model 

has been chosen exemplarily for further analysis as the analysis and comparison of all 

derived models is beyond the scope of this work. 

5.1.2.4 Model derivation for target value acid value 

Table 5.11 shows the results for two repetitions of the orthogonal CCD for the rancimat 

value.  The model derivation has been achieved on the mean values and without definition 

and exclusion of outliers. This procedure should provide evidence that the RSM and 

Bayesian approach applied here is capable of handling even experimental data that is 

significantly interfered by noise. 

 

Table 5.11: Results orthogonal central composite design for acid value 

Table 5.12 exhibits the derivation of 1st and 2nd grade process models with significant model 

terms, which have been determined by six different methods of statistical significance testing. 

The model derivation and validation has been achieved according to the methods exposed 

theoretically in chapter 2.3.2.1. Also compare 5.1.2.3 for the significance testing and 

validation methods applied here. It can be observed that these methods yield three different 

process models with statistically significant model terms. All models are valid according to 

the statistical validation method applied here.  

 

Table 5.12: Derivation of 1
st
 and 2

nd
 grade models by RSM for acid value 

The objective of applying the RSM is just to identify statistically significant model terms, 

process models respectively, based on the results of the SDoE. The 1st grade model and the 

2nd grade model determined by method 1/a are then parameterized (fit), validated and 

analyzed by Bayesian means in chapter 5.2. The 2nd grade model has been chosen 

exemplarily for further analysis as the analysis and comparison of all derived models is 

beyond the scope of this work. 

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13

Acid value Run 1 0,33 0,36 0,33 0,28 1,6 0,57 1,56 0,87 0,29 0,25 0,2 0,32 0,69

[mg KOH*kg -1 ] Run 2 0,27 0,26 0,21 0,26 0,78 0,55 1,57 0,45 0,28 0,19 0,24 0,32 0,54

Experiment 14 15 16 17 18 19 20 21 22 23 24 25

Acid value Run 1 0,48 1,02 0,28 0,47 0,26 0,38 1,39 0,49 0,35 0,44 0,45 0,34

[mg KOH*kg -1 ] Run 2 0,23 0,63 0,31 0,38 0,23 0,19 0,81 0,31 0,33 0,41 0,3 0,32

Model
Method of

significance
                                                                                                                                                                                                           Model term Validation 

testing ß0 ß1 ß2 ß3 ß4 ß11 ß22 ß33 ß44 ß12 ß13 ß14 ß23 ß24 ß34

1st grade  1 / a 0,52 0,12 -0,24 0,14 -0,11 -0,15 Yes

 1 / a 0,49 0,11 -0,25 0,12 0,16 -0,11 -0,15 Yes

 1 / b 0,49 0,11 -0,25 0,12 0,16 -0,11 0,05 0,04 -0,15 Yes

2nd  grade  2 / a 0,49 0,11 -0,25 0,12 0,16 -0,11 -0,15 Yes

 2 / b 0,49 0,11 -0,25 0,12 0,16 -0,11 -0,15 Yes

 3 / a 0,49 0,11 -0,25 0,12 0,16 -0,11 -0,15 Yes

 3 / b 0,49 0,11 -0,25 0,12 0,16 -0,11 -0,15 Yes
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5.1.2.5 Model derivation for target value tocopherol 

Table 5.13 shows the results for two repetitions of the orthogonal CCD for the tocopherol 

content.  The model derivation has been achieved on the mean values and without definition 

and exclusion of outliers. This procedure should provide evidence that the RSM and 

Bayesian approach applied here is capable of handling even experimental data that is 

significantly interfered by noise. 

 

Table 5.13: Results orthogonal central composite design for tocopherol 

Table 5.14 exhibits the derivation of 1st and 2nd grade process models with significant model 

terms, which have been determined by six different methods of statistical significance testing. 

The model derivation and validation has been achieved according to the methods exposed 

theoretically in chapter 2.3.2.1. Also compare 5.1.2.3 for the significance testing and 

validation methods applied here. It can be observed that these methods yield three different 

process models with statistically significant model terms. Except the 2nd grade model 

determined by method 3/a, all models are valid according to the statistical validation method 

applied here.  

 

Table 5.14: Derivation of 1
st
 and 2

nd
 grade models by RSM for tocopherol 

The objective of applying the RSM is just to identify statistically significant model terms, 

process models respectively, based on the results of the SDoE. The 1st grade model and the 

2nd grade model determined by method 1/a are then parameterized (fit), validated and 

analyzed by Bayesian means in chapter 5.2. The 2nd grade model has been chosen 

exemplarily for further analysis as the analysis and comparison of all derived models goes 

beyond the scope of this work. 

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13

Tocopherol Run 1 10,52 1,25 15,46 1,10 43,99 32,23 45,94 34,99 9,26 1,01 17,08 29,39 45,38

[mg*100g -1 ] Run 2 11,32 0,98 15,87 1,06 44,03 32,22 47,62 37,25 8,63 0,91 15,04 0,98 43,00

Experiment 14 15 16 17 18 19 20 21 22 23 24 25

Tocopherol Run 1 28,92 42,98 29,39 23,06 16,88 0,94 42,83 17,35 23,30 31,58 2,30 24,70

[mg*100g -1 ] Run 2 29,30 45,13 32,64 24,66 20,39 1,04 45,33 16,87 25,72 36,62 1,35 17,87

Model
Method of

significance
                                                                                                                                                                          Model term Validation 

testing ß0 ß1 ß2 ß3 ß4 ß11 ß22 ß33 ß44 ß12 ß13 ß14 ß23 ß24 ß34

1st grade 1 / a 23,59 -14,85 -2,16 5,24 Yes

1 / a 22,55 -14,93 -2,25 6,47 2,07 -1,45 Yes

1 / b 22,55 -14,93 -2,25 6,47 1,42 2,07 -1,45 -1,1 -1,1 Yes

2nd grade 2 / a 23,59 -14,85 -2,16 5,24 Yes

2 / b 23,59 -14,85 -2,16 5,24 Yes

3 / a 23,59 -14,85 5,24 No

3 / b 23,59 -14,85 -2,16 5,24 Yes
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5.1.2.6 General observations during the trials 

After the short path distillation (SPD) process, deodorized palm oil exhibited almost the same 

dark orange color as raw palm oil. For comparison see samples 1 and 3 (left to right) in 

Figure 5.4.  The color is an indicator, that no separation of carotene from the crude palm oil 

took place. In contrast, during the standard deodorization, the carotene is heat induced 

decomposed and its volatile decomposition products are removed from the palm oil. The 

standard deodorized palm oil can be seen in sample 4 of Figure 5.4 on the right site 

(Rimbach et al. 2010, p. 181; Bockisch, 1993, pp. 557–558). 

 

Figure 5.4: Color comparison of palm oil after various refining stages 

During the experiments, the dependency of the output of palm oil distillate on the feed flow 

rate was analyzed. The amount of distillate increased with decreasing feed flow rate. For the 

evaporator temperature the correlation with the process output was even more significant. 

With an increasing evaporator temperature also the volume of distillate remarkably 

increased.  

With this experimental setup, the color of the distillate became darker orange with each 

additional distillation cycle. This indicates an increasing separation of carotene from the oil 

(Rimbach et al., 2010, p. 174). In the first cycle of the distillation, a bright yellow distillate was 

deposited on the condenser. This sample then became darker with each distillation cycle. In 

the final cycle, the distillate reached an orange color that was comparable to the distillation 

residue. Through further analysis of the residues could be confirmed, that it still contained 

some degree of carotene. Finally, the beginning of diacylglycerine (DAG) separation was 

confirmed analytically for the experiments of the SDoE that were achieved at the highest 

evaporator temperatures. 

In contrast, with a minimum evaporator temperature and a maximum feed flow rate 

(according SDoE), the output of distillate decreased from 17 g to 13 g. At evaporator 

temperatures of below 150°C the distillate became bright yellow (Figure 5.4, second from 

right). 
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As expected, the acid value of the distillation residue was reduced with each additional 

distillation cycle. The most intensive decrease of the acid value was found after the first 

cycle, with a lower feed flow rate leading to a greater decrease.  At a condenser temperature 

of below 50°C, the condensate was dispersed in solid form (see Annex A – SPD). 

Also in the cold trap prior to the vacuum pumps, very small quantities (0.1 g) of a yellow 

distillate with a very intensive and pungent odor could be observed. In the literature is 

assumed that these are volatile flavors and fragrances (Bockisch, 1993, pp. 74–78). Figure 

5.5 shows a color comparison between a bright distillate on the left and a residue on the right 

gained at an evaporation temperature of 150°C 

 

Figure 5.5: Comparison of distillation residues and condensates 

The pressure in the empty and evacuated plant was 10-3 mbar, which eventually increased to 

10-2 mbar when the palm oil was first introduced into the evacuated plant in the first cycle. In 

the following distillation cycles, the pressure decreased again to the starting value of 

10-3 mbar (see also Annex a – pictures of an SPD plant).  
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5.2 Bayesian model fit, discrimination and performance analysis  

A 1st grade model is based on a smaller full factorial design that enables the identification 

of the linear effects of process variables towards the target values, as well as the 

identification of interactions (up to 3rd order in case of four process variables). A Bayesian 

model parameterization and performance analysis of a 1st grade model, which is based 

only on the experimental data of the full factorial design, also provides results that just 

refer specifically to that particular SDoE and data. For example, a valid model is only valid 

for the estimation and simulation of the linear effects and interactions that can be 

determined from this particular SDoE. 

One primary reason for applying Bayesian model fit, discrimination and analysis methods 

is to clarify the question of whether the improved performance of a 2nd grade model 

justifies a higher experimental and computational effort in comparison to a 1st grade model. 

To answer this question, a 1st grade model must therefore also be applied to the data set 

of the orthogonal CCD with respect to Bayesian model fit, validation and discrimination. In 

order to correctly calculate the relative model probability, both alternative models have to 

be applied to the same data set. Otherwise, the first grade model would naturally be 

favored due to a higher likelihood of the candidate vector which is caused by a much 

smaller number of data points/experimental settings involved in the likelihood calculation 

(Eq. 2.23).  

If a 1st grade model is parameterized (fit) and valid with respect to the orthogonal CCD 

data, it can be stated, that this model is sufficient for simulating the true underlying 

process. In other words, the consideration of existing quadratic effects through additional 

experimental and computational effort by an orthogonal CCD is not crucial for simulating 

the true underlying process with sufficient accuracy. This is true because these quadratic 

effects are negligible compared to the linear effects. The latter have already been identified 

by the smaller full factorial design. Such a situation could theoretically occur along with a 

relative model probability that clearly favors a more complex 2nd grade model.  

It is a well-accepted fact, that in most cases 2nd grade models are more flexible due to a 

larger number of model terms, which yields a better data fit by nature. As previously 

mentioned, slightly increased likelihoods for single data points or experimental settings can 

cause substantial differences between the results of 1st and 2nd grade models regarding 

the likelihood of the total data set (the overall likelihood of a data set is the product of the 

individual likelihoods for the single experimental settings). This, in turn, might significantly 
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influence the relative model probability. However, this does not necessarily mean that the 

1st grade model is insufficient. 

In this work, all prior distributions, likelihoods and proposal densities applied are assumed 

to be Gaussian. According to the theory and principles applied (compare chapter 2.3.2.2), 

1000 Markov-Chains were run in parallel with 20 update cycles of the proposal density 

each. Within each update cycle 10 tuning cycles of the proposal density were achieved 

with 20 chain steps within each tuning cycle (4000 chain steps in total for each Markov-

Chain). The Bayesian law (Eq. 2.18) shows, that the posterior probability is affected by the 

prior probability. The more distinct the prior knowledge (low standard deviation) is, the 

higher is its influence on the posterior probability distribution. 

5.2.1 Implementation and validation of the Bayesian methodology by the 

example of a growth model 

The objective of implementing the Bayesian methodology at first for the simple example of a 

microbial growth model is to verify the correct understanding and implementation of the 

mathematical theory, as well as the analysis of the method dynamics and results. This 

procedure provides a reliable basis for an efficient method application and adjustment to the 

real life problem of model based SPD optimization. It also enables a correct interpretation of 

the method results. 

It has to be initially mentioned at this point, that all following simulation and model analysis 

experiments have been achieved by application of the posterior mean (estimate of expected 

value) and mode as Bayesian point estimates for model parameterization and candidate 

vector for model discrimination. Actually, these alternatives only affect the result of the model 

discrimination. The model validation and distribution of experimental observations, are not 

affected by that choice. Thus, only for the relative model probability alternative results occur 

and are presented in the tables below. The relative model probability for the mode as 

candidate vector is presented in brackets. 

5.2.1.1 Does the implemented method provide chain convergence and true 

underlying process recovery? 

Does the implemented theory produce a chain convergence from a prior to a posterior 

distribution? 

How far is the method / algorithm able to recover the true model, parameterization and 

observation from a direct solution of this known model (non-interfered data) when starting the 

MCMC-process from a parameterization much different from the real one? 
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To answer these questions a simulation experiment was achieved in which the Bayesian 

methodology for model fit, discrimination and analysis was applied to a simulated 

experimental data set, which was derived as direct solution from the so-called Moser-model 

with a defined known parameterization. This experiment is denoted as ‘Solution Moser 2’. 

Table 5.15 shows the conditions for this simulated experimental data generation. (The model 

parameter values applied here are the results of an RLS-fit to the actual experimental data in 

Table 5.24 which are rounded up to the second decimal place in Tabel 5.15. In practice, all 

further computations were achieved with the non-rounded data output of the program / 

algorithms.) 

 

 

 

Table 5.15: Initial conditions of simulated experimental data generation 

Table 5.16 shows the corresponding simulated experimental data to which the Bayesian 

methodology of model fit, discrimination and analysis was applied. This data is the basis of 

the experiment ‘Solution Moser 1’ as well, which is exposed in the next sub-chapter. For 

presentation purposes, the data in Table 5.16 was rounded up to the second decimal 

place. All computations were achieved with the non-rounded data output from the random 

sampling of the simulated experimental data. 

 

Table 5.16: Simulated experimental data: Direct solution from Moser-Model 

Table 5.17 exhibits the initial conditions and results of the Bayesian model fit and 

discrimination with respect to the simulated experimental data in Tabel 5.16. Initial 

conditions are the mode and variance of the prior parameter distribution, which are applied 

as prior knowledge about the parameterization of the Michaelis-Menten- and Moser-model. 

                            Generation of model solution

Model      Parameters for model solution

µmax KS YXS n

Moser 0,46 21,50 0,48 2,50

Michaelis-Menten 0,47 14,17 0,48

                     Random addition of noise to model solution

Processvariable                                                Standard deviation for sampling [%]

Direct solution Random sampling

Cell concentration 0 0,1

Substrate concentration 0 0,05

Data source Process variable

Time [h] 0 1 2 3 4 4,5 5 5,5 6 6,5 7 8

Cell conc. 

[g*L
-1

]
10,00 15,79 24,92 39,33 62,11 78,01 97,86 121,62 131,86 130,82 130,82 130,82

Substrate conc.

 [g*L
-1

]
200,00 188,02 169,10 139,27 92,09 59,17 18,06 1,00 1,00 1,00 1,00 1,00

Data

Solution  

Moser 

1 und  2
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This distribution is assumed to be Gaussian, where distribution mode and expected value 

are equal. Results are the parameterization and residual least squares (RLS) of a RLS-fit, 

as well as the Bayesian point estimates, posterior distribution parameter estimates 

respectively,  which are the estimates of distribution variance, mode and expected value . 

Additionally the Bayesian relative model probability is exposed (last column). The values 

exposed in Table 5.17 are rounded -up to the second decimal place for space reasons. All 

computations were achieved with non-rounded data output of the programs / algorithms.  

 

Table 5.17: Initial conditions and results of model fit and discrimination towards a direct solution 
from a Moser-Model – Approach 2 

Table 5.18 shows the parameter start values of the Markov-Chains. From that start values 

the Markov-Chains converge towards the posterior probability distribution with respect to 

the prior knowledge on model parameterization and the likelihood.  

 

Table 5.18: Start values of Markov-Chains 

Answering the two initial questions of 5.2.1.1 is important in order to prove, that the 

mathematical theory is understood and correctly implemented by a functional / precise 

algorithm. For this purpose the prior knowledge has to be as neutral as possible. If it is, in 

contrast, exactly defined and much different from the true parameterization (which is 

known in this constructed testing scenario) it would drive the final solution away from the 

true one, which shall be recovered here from the data only and without interference from 

the assumed prior knowledge. Thus, the chosen prior is a distribution, which is centered on 

the RLS-fit parameterization (equal to the parameterization of the true underlying model 

from which the simulated experimental data was derived) with a comparatively large 

standard deviation of 25% (compare Table 5.15 and 5.17). If the Bayesian method applied 

Data source Model                                                         Prior knowledge* Method                                                                                 Parameterization    Discrimination

Specific value                                                   Parameter 

µmax KS YXS n RLS
PMM /

PMoser

Michealis- Parameter µmax KS YXS Bayes Parameter**
0,47

(0,46)

2,31

(0,64)

0,50

(0,48)

Menten Mode 0,46 0,60 0,48 Variance 3,23*10-4 5,81 7,20*10-4 0,24

Solution
Standard

dev. [%]
25 25 25 RLS Parameter 0,46 0,60 0,48

0,09

(0,1)

Moser 2 Parameter µmax KS YXS n Bayes Parameter**
0,46

(0,46)

21,05

(22,77)

0,49

(0,49)

3,05

(2,59)

Moser Mode 0,46 21,50 0,48 2,50 Variance 7,51*10-4 118,26 4,98*10-4 0,89 1,68*10-14

Standard

dev. [%]
25 25 25 25 RLS Parameter 0,46 21,50 0,48 2,50

* arbitrarily chosen for analytic reasons; dimension of mode is based on RLS fit to actual exp. Data

**no brackets: posterior expected value estimate (mean);  in brackets: posterior mode estimate

Model                                                      Start values of Markov-Chains

Michealis-Menten Parameter µmax KS YXS

Start value 0,6 18 0,6

Moser Parameter µmax KS YXS n

Start value 0,6 24 0,6 1,5
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here is implemented and functioning correctly, then the information about the true 

underlying parameterization is extracted from the data and the Markov-Chains converge 

towards the known true parameterization with decreasing variance for sensitive 

parameters (compare explanation of this effect below). In the opposite case a significantly 

different posterior probability distribution (especially with respect to the distribution mode 

and expected value) would emerge. As true underlying model the Moser-Model was 

applied here with the data and conditions exposed in Table 5.15 and 5.16. Table 5.17 

shows the results of the Bayesian model fit and discrimination. It has to be underlined, that 

the mean (estimate of distribution expected value) of the posterior distribution sample 

(values without brackets) differs from the mode estimate (values in brackets) for both 

models, especially for the parameters Ks and n (Moser-model). This inidicates, that even 

though a Gaussian prior and likelihood is applied (mode and expected value are equal in 

this case), the posterior distribution might exhibit an asymmetric non-Gaussian shape. It is 

important to mention in that context that Chib and Jeliazkov recommend the 

parameterization with the highest posterior probability as candidate vector for model 

discrimination, as this might significantly influence the accuracy of relative model 

probability estimation (Chib, S. and Jeliazkov, I., 2001, pp. 270-281). Thus, the distribution 

mode and expected value (their estimates respectively) are differentiated explicitly in this 

work. The results in Table 5.17 show, that the parameter values for µmax and YXS of the true 

underlying Moser-Model are recovered precisely by the estimates of the posterior 

distribution mode and expected value, whereas the posterior mode estimate for KS differs 

by 6% and the expected value estimate of n by 22% from the true values. It also has to be 

underlined here, that for µmax and YXS the posterior variance is very small (high certainty of 

prediction), whereas it is very large for KS and n (high uncertainty of prediction). This is not 

an indication for an insufficient implementation / functioning of the method. The variance of 

the Bayesian posterior distribution is a fundamental output of the Bayesian method 

implemented here and defines the range of parameter values with significant possibility in 

the light of the data. This range does not only depend on the error of experimentation 

applied, but also on the parameter sensitivity. This means that for model parameters with 

comparatively low sensitivity (comparatively low influence on model solutions), also a 

comparatively broad range of parameter values produces similar model solutions and 

therefore also exhibits a comparatively high probability of approaching the true value. 

Thus, the posterior variance is also an indicator for parameter sensitivity.  

The Bayesian method applied here produces variances of the posterior distribution by 

nature, as it assumes a defined error of experimentation for the experimental data (even if 

it was drawn directly from a defined known model as done in this example). Thus, the 

results for the parameters KS and n in Table 5.17 are quite plausible and do not disagree 
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with correct method implementation and method performance. On the contrary, these 

results underline the capability of the method to provide proper uncertainty measures, 

which result from the explicit consideration of errors of experimentation that might interfer 

the experimental data.  

Figures C.9 to C.12 in Annex C examplaryly show the convergence of the distribution 

mean and variance of the Michaelis-Menten-Model (MM-Model) and Moser-Model 

parameters. A  steady convergence of the Markov-Chains from the start values to the 

posterior means can be clearly observed with a stable posterior mean (point of completed 

convergence) at least from the 10th  (a=10 in program) update of the proposal density 

(estimation of the covariance matrix, respectively). With a relative model probability of 

PMM/PMoser=0,09985 (posterior mode estimate as candidate vector) the Moser-Model could 

be identified as being significantly  more probable in the light of the data and thus could be 

recovered as true underlying model. The application of the posterior mean (expected value 

estimate respectively) as candidate vector for model discrimination produces similar 

results in this case. The conventional approach of comparing RLS for model choice 

exhibits a much more distinct decision for the Moser-Model. This is caused by the fact that 

by application of RLS, the model is directly fit to the crude experimental data (which is a 

direct model solution in this case), whereas the Bayesian approach considers the potential 

interference of that data by experimentation noise. The latter approach thus also assigns a 

certain probability to alternative data sets that in turn assign certain probabilities to the 

competing Michaelis-Menten-Model (MM-Model). By nature, this process yields a less 

distinct favouring of the Moser-Model by Bayesian relative model probability estimation, 

which is in practice more realistic due to explicit consideration of experimentation noise 

and, thus, alternative events. Due to the observations exposed so far it can be stated, that 

the Bayesian method applied here produces converging Markov-Chains and is capable of 

identifying the true underlying model and parameterization from non-interferred data at 

completely different starting values. 

Figure C.13 to C.30 in Annex C show for both models the prior and posterior parameter 

distribution (exemplary for one parameter due to space reasons; similar for other 

parameters) and model fit, as well as the model validation and posterior probability of 

experimental  observations according to the method proposed by Geweke (Geweke, 2007, 

pp. 3529-3550). According to Figure C.19 to C.26 both models are accepted as being valid 

as in all cases the experimental value is in support of the distribution (within the 5%- and 

95%-quantile). This means, that both models approach the true underlying process with 

the desired accuracy.  
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Figures C.27 to C.30 examplaryly show the posterior probability of experimental 

observations for the timepoint t=5 h for the Michaelis-Menten- and Moser-Model. For both 

models, the experimental value (which is a direct solution of the Moser-Model assumed as 

true underlying process) is located in the centre of the distribution and is therefore in 

excellent support of the distribution. Thus, it can be stated that both models proofed to be 

suitable for a precise estimation of the experimental observations to be expected. For the 

Moser-Model the experimental value matches the posterior mean whereas it differs slightly 

for the MM-Model. This observation / result underlines the capability of the Bayesian 

method applied here to estimate the true event with sufficient precision and to identify the 

most probable true underlying process. Additionally, it provides a very usefull measure of 

prediction uncertainty by means of posterior distributions. The uncertainty / distribution is 

subject to the error of experimentation applied to the Bayesian process. It has to be 

mentioned here, that a broad range of other experimental observations could possibly 

occur if the applied model was true due to the fact that also a broad range of other 

experimental data sets could possibly occur due to the assumed error of experimentation. 

Due to the above mentioned results, analysis and interpretation, it can be stated that the 

Bayesian method theoretically exposed in chapter 2.3.2.2 has been implemented correctly 

by algorithms and exhibits the requested performance in terms of the analytic measures / 

output and the predictions that can be derived from that. 

5.2.1.2 What is the influence of prior knowledge? 

In which way does the choice of the prior knowledge influences the analytic results and 

how can incorrect / inadequate prior knowledge superimpose the information about the 

true underlying process contained in the experimental data?  

To answer this questions, two simulation experiments were carried out in which the 

Bayesian methodology for model fit, discrimination and analysis was applied to the same 

simulated experimental data set that was derived as direct solution from the Moser-Model 

with a known parameterization (same data set as in 5.2.1.1, see Tabel 5.16). The two 

simulation approaches, which are denoted as ‘Solution Moser 1’ and ‘Solution Moser 2’ 

(the latter is also subject to the preceding sub-chapter), only differ in the choice of the prior 

mode (equal to expected value as prior distribution is assumed to be Gaussian) as prior 

knowledge on the model parameterization. Table 5.15 shows the conditions for this 

simulated experimental data generation and Table 5.16 the corresponding simulated 

experimental data. The start values of the Markov-Chains were equal for all simulation 

experiments and are exposed in Table 5.18. Table 5.19 exhibits the initial conditions and 

results of two different approaches of Bayesian model fit and discrimination towards the 
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direct solution from a Moser-Model (Tabel 5.15 and 5.16). The approaches only differ in 

the choice of the prior mean.  

 

Table 5.19: Initial conditions and results of model fit and discrimination towards a direct solution 
from a Moser-Model – Approach 1 and 2 

The results of the second approach, which is denoted as ‘Solution Moser 2’, are exposed 

in Annex C and have been already discussed in 5.2.1.1. For the first approach, which is 

denoted as ‘Solution from Moser 1’, the results for Markov-Chain convergence, posterior 

parameter distribution, comparison of model fits, model validation and posterior distribution 

of observations are exposed in Annex D. 

The analysis achieved here is crucial for the right choice of the prior knowledge in the 

analysis of the SPD process. So how does the prior knowledge applied to the Bayesian 

methodology influence the analytic results? The Bayesian process implemented here 

starts with a defined parameter start vector which is identical for both approaches. From a 

proposal density, which is centered on this start vector, a so called candidate vector is 

drawn by random sampling. The relative posterior probability of the current state (equals 

start vector in the first process step) and the proposal is then calculated according Eq. 2.21 

and 2.20 from the prior probabilities and the likelihoods. Dependent on the relative 

posterior probability, proposals are accepted as new states of the Markov-Chain according 

to the procedure exposed in chapter 2.3.2.2.2. At chain convergence all accepted states 

form a representative sample of the posterior parameter distribution. This means, that for a 

defined parameter vector, in comparison to other vectors, the probability to be accepted as 

Data source Model                                                         Prior knowledge* Method                                                                                 Parameterization    Discrimination

Specific value                                                   Parameter 

µmax KS YXS n RLS
PMM /

PMoser

Michealis- Parameter µmax KS YXS Bayes
Parameter**

0,50

(0,49)

6,12

(5,61)

0,53

(0,52)

Menten Mode 0,6 18 0,6 Variance 4,06*10-4 9,3 7,64*10-4 0,24

Solution
Standard

dev. [%]
25 25 25

RLS
Parameter 0,46 0,6 0,48

0,01

(0,01)

Moser 1 Parameter µmax KS YXS n
Bayes

Parameter**
0,47

(0,46)

22,39

(22,81)

0,51

(0,49)

1,84

(1,85)

Moser Mode 0,6 24 0,6 1,5 Variance 7,83*10-4 40,065 6,12*10-4 0,079 1,68*10-14

Standard

dev. [%]
25 25 25 25

RLS
Parameter 0,46 21,5 0,48 2,5

Michealis- Parameter µmax KS YXS Bayes Parameter**
0,47

(0,46)

2,31

(0,64)

0,50

(0,48)

Menten Mode 0,46 0,60 0,48 Variance 3,23*10-4 5,81 7,20*10-4 0,24

Solution
Standard

dev. [%]
25 25 25 RLS Parameter 0,46 0,60 0,48

0,09

(0,1)

Moser 2 Parameter µmax KS YXS n Bayes Parameter**
0,46

(0,46)

21,05

(22,77)

0,49

(0,49)

3,05

(2,59)

Moser Mode 0,46 21,50 0,48 2,50 Variance 7,51*10-4 118,26 4,98*10-4 0,89 1,68*10-14

Standard

dev. [%]
25 25 25 25 RLS Parameter 0,46 21,50 0,48 2,50

*arbitrarily chosen for analytic reasons; dimension of mode is based on RLS fit to actual exp. Data (Sol. Moser 2) or MC-start value (Sol. Moser 1)

**no brackets: posterior expected value estimate (mean);  in brackets: posterior mode estimate
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part of the posterior sample (Eq. 2.21), and thus also the posterior probability distribution, 

depends by equal parts on the ratio of prior probabilities and likelihoods. Equation 2.21 

shows, that in case of equal prior probabilities (this equals no prior knowledge on model 

parameterization) the prior probability ratio can be eliminated which reduces the posterior 

probability ratio to the likelihood ratio. In this case the posterior distribution is only subject 

to the information contained in the experimental data. In contrast to that, this information 

can be superimposed by contrary prior knowledge, if a likelihood ratio that favors a certain 

parameter vector faces a prior probability ratio that favors the other vector. This shows that 

the prior knowledge to be applied has to be wisely chosen by terms of prior mode (equals 

prior expected value in case of Gaussian distribution) and uncertainty of this knowledge 

(prior variance). A careless choice and application of prior knowledge can nullify the entire 

experimental information and effort. The larger the variance of the prior distribution, the 

more the parameter vectors equal in prior probability and the less prior knowledge is 

applied to the Bayesian process. The importance of the prior mode positioning therefore 

declines with increasing variance. Contrary to that, the difference in prior probability 

between parameter vectors increases with decreasing variance. In this case, also the 

importance of prior mode positioning, as well as of the prior knowledge applied, increases. 

To illustrate the effect of prior probability choice and application, the experiment denoted 

‘Solution Moser 1’ is achieved and compared to the experiment ‘Solution Moser 2’, which 

just differs in the choice of the prior mode (compare Tabel 5.19). For the experiment 

‘Solution Moser 1’ the prior mode is shifted to the start values of the Markov-Chains, which 

differ significantly from the known real parameterization (compare Tabel 5.15). The data in 

Table 5.19 shows for both models and for all parameters, that by shifting the mode of the 

prior knowledge in a defined direction, also the posterior mode and expected value 

estimate is shifted in this direction. By choosing the above mentioned start values as prior 

mode (‘Solution Moser 1’), this shift has been achieved much more crucial for the 

Michaelis-Menten-Model. This means, that for this model the information on model 

parameterization contained in the data is much more superimposed by the imprecise prior 

knowledge applied. Indeed, for the Michaelis-Menten-Model the applied prior mode for 

parameter KS differs much more from the parameterization to be expected (e.g. RLS-fit 

parameterization), compared to the Moser-Model. The comparison of the relative model 

probabilities also shows, that additionally this asymmetric application of bad prior 

knowledge to the different models also effects model discrimination. A model upon which 

more impreciseness in prior knowledge is imposed loses probability. In the study 

presented here, the relative model probability is changed by the power of ten due to the 

application of more imprecise prior knowledge to the Michaelis-Menten-Model in 

experiment ‘Solution Moser 1’. Figure D.35 and D.36 show that the Bayesian fit of the 
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Michaelis-Menten-Model to the experimental data is less precise compared to the Moser-

Model and the experiment ‘Solution Moser 2’ (especially for the cell concentration). This is 

caused by the above mentioned assymetric superimposition of the information contained in 

the experimental data by imprecise prior knowledge, which discriminates the Michaelis-

Menten-Model. This causes the situation that the experimental value for the cell 

concentration is not in support of the distribution of experimental observations that could 

occur if the Michaelis-Menten-Model was true (Figure D.49). Nevertheless, both models 

are validated by the experimental values for solution mean and variance that are in very 

good support of the distributions (Figure D.41 to D.48). Thus by Bayesian means, despite 

of favouring the Moser-Model by more precise prior knowledge, both models describe the 

true underlying process with the desired accuracy. Figure D.31 to D.34 show an excellent 

stable convergence of the Markov-Chains from the start vectors to the posterior mean 

(converged from update 10 on). This indicates, that the parameter sample taken from the 

Markov-Chains is a valid representative of the posterior distribution. Figure D.37 to D.40 

exemplarly show for both models and for a defined single parameter the efficiency of the 

Bayesian process of updating the distribution mean (estimate of expected value) and 

narrowing the prediction uncertainty (variance) by extracting the information on the true 

underlying process contained in the experimental data. 

5.2.1.3 How to interpret the output of the Gibbs-sampling? 

How has the output of the Gibbs-sampling, the Markov-Chains respectively, to be 

interpreted in terms of determination of the posterior parameter distribution and model 

parameterization (model fit respectively)? 

For this analysis the simulation experiment denoted as ‘Random sampling Michaelis-

Menten’ was achieved, in which simulated experimental data was generated by adding 

random noise to a direct solution of the Michaelis-Menten-Model. Table 5.15 shows the 

conditions of simulated experimental data generation and Table 5.18 the start vectors of 

the Markov-Chains, which were equal for all simulation experiments. In Table 5.20 the 

resulting simulated experimental data is exposed. For presentation reasons it has been 

rounded-up to the second decimal place. All further computations were achieved with the 

non-rounded data output of the program / algorithm. 

 

Table 5.20: Simulated experimental data: Random sampling from Michaelis-Menten-Model 

Data 

source

Process

 variable

Time [h] 0 1 2 3 4 4,5 5 5,5 6 6,5 7 8

Cell conc. 

[g*L
-1

]
9,64 16,80 28,06 35,89 51,50 59,93 81,04 106,12 113,01 99,99 114,63 102,23

Substrate conc.

 [g*L
-1

]
190,01 179,89 169,20 138,63 105,73 81,12 51,33 20,60 1,04 1,10 0,98 0,95

Data

Random 

sampling

Michaelis-

Menten 
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Table 5.21 exhibts the initial conditions and results of model fit and discrimination with 

respect to this simulated experimental data in Tabel 5.20. 

 

Table 5.21: Initial conditions and results of model fit and discrimination towards a random sample 
from the Michaelis-Menten-Model 

All figures regarding this subchapter and experiment are comprised in Annex E. 

For the simulation experiment denoted as ‘Random sampling Michaelis-Menten’  the 

calculation of the parameter posterior mean (estimate of posterior expected value) from 

the Markov-Chain output for the Moser-Model (at chain convergence) results in a 

parameter vector that exhibits a comparatively very low likelihood (probability that the exp. 

data occurs given the Moser-Model with that parameterization (with respect to error in 

experimentation)), which is significantly lower than the likelihoods of most parameter 

vectors in the posterior sample, especially in comparison to the mode estimate. Studies 

showed, that for this simulated experimental data set especially slight changes in the 

parameter n of the Moser-Model cause significant changes of the likelihood, which can be 

referred to regions of the experimental data that are comparatively highly affected by 

errors in experimentation (in the example presented here, these are the last five data 

points of the cell concentration). Thus, inaccuracies in estimation of the parameter n 

significantly affect the likelihood of a parameter vector and corresponding modeling results. 

Actually, it could be shown, that the mean of parameter n calculated from the Markov-

Chain output significantly differs from the value of the parameter vector with the highest 

posterior probability (posterior mode estimate). In fact, this is the reason for the 

comparatively very low likelihood observed for the parameter mean. The analysis of the 

data set ‘Random sampling Michaelis-Menten’ therefore reveals, that the mean and 

variance calculated from a representative distribution sample are suitable indicators for 

determination of Markov-Chain convergence (they are characteristic constants of a 

distribution that therefore stay stable at Markov-Chain convergence) but the mean is in 

some cases not identical with the posterior mode estimate. The latter is subject to the fact, 

that the mean of a representative posterior sample is just identical to the posterior mode, if 

Data source Model                                                           Prior knowledge* Method                                                                                 Parameterization Discrimination

Specific value                                                   Parameter 

µmax KS YXS n RLS
PMM /

PMoser

Michealis- Parameter µmax KS YXS Bayes Parameter** 0,45 5,75 0,53

Random  Menten Mode 0,48 15,31 0,51 Variance 2,12*10-4 8,18 4,85*10-4 481

sampling
Standard

dev. [%]
50 50 50 RLS Parameter 0,48 15,31 0,51 23,36

Michaelis- Parameter µmax KS YXS n Bayes Parameter** 0,52 3,24 0,51 0,53

Menten Moser Mode 0,44 5,85 0,54 2,18 Variance 1,7*10-3 8,52 8,83*10-4 1,32 501,7

Standard

dev. [%]
50 50 50 50 RLS Parameter 0,44 5,85 0,54 2,18

* mode is based on RLS fit to simulated exp. Data

** mode estimate of posterior distribution
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the posterior distribution was symmetric with respect to the sample mean (e.g. Gaussian 

distribution). Although the likelihood and prior distribution are assumed to be Gaussian in 

some cases, an asymmetric non-Gaussian posterior distribution might occur in which the 

sample mean might differ significantly from the sample mode (as in this case). For 

example, Table 5.19 above shows for some experiments significant differences between 

the mean and mode estimate (in brackets) of the posterior parameter distribution. Thus, 

the choice of distribution expected value and mode as point estimate for Bayesian model 

parameterization might exhibit significant differences in model prediction in case of 

assymetric posterior distributions. Chib and Jeliazkov also propose to apply parameter 

vectors with a high probability under the posterior distribution as candidate vectors for the 

estimation of the relative model probability, as it influences the precision of this estimation 

(Chib, S. and Jeliazkov, I., 2001, pp. 270-281). If for one model a candidate vector from a 

posterior region with high probability is chosen and for the other model a candidate vector 

from a low-probability region, then the former is automatically favoured in relative model 

probability estimation due to comparatively higher likelihoods. This case might occur, when 

the mean is chosen as candidate vector from an asymmetric posterior distribution. Indeed, 

it could be shown, that the choice of the posterior mean as candidate vector caused very 

extreme and unrealistic relative model probability values due to the extreme likelihood 

differences between the candidate vectors of Michaelis-Menten- and Moser-Model. The 

results in Table 5.19 also indicate, that the application of posterior mean and mode 

estimate as candidate vector can lead to different values for the relative model probability. 

These values do not differ in the general prediction regarding model choice but in the 

clearness of that prediction. An imprecise relative model probability estimate caused by 

suboptimal choice of the candidate vector might therefore also affect the result of Bayesian 

model averaging approaches in which simulations are subject to different models whose 

solutions are proportionally mixed with respect to the relative model probability. To allow 

for the above mentioned effects and results, the Bayesian point estimates for model 

parameterization, and thus the candidate vector for the relative model probability 

estimation, are derived from the posterior sample as mode estimate (most probable 

sample vector respectively) in further Bayesian analysis. For this purpose, for all 

parameter vectors of the posterior sample the product of likelihood and prior is calculated 

as relative measure for the posterior probability (the marginal likelihood is a normative 

constant being equal for all parameter vectors of the posterior sample; compare Eq. 2.18). 

For the above mentioned reasons, this principle of determination of Bayesian 

parameterization (candidate vector respectively) is applied to all further programming and 

analysis in this work as the most accurate and constructive approach. To provide further 

evidence for that approach, for some experiments in 5.2.2 also the application of the 
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distribution mean is achieved for analysis and interpretation reasons (as mentioned 

above). Figure E.53 to E.56 show for both models and all parameters the convergence of 

the distribution parameters mean and variance towards the posterior values. A stable 

convergence can be observed from the covariance update number 10 on. This shows 

again, that the Bayesian method applied here has been correctly implemented and 

produces a stable chain convergence. Thus, it is also a valid procedure to consider all 

parameter vectors from update 10 on as representative posterior sample. Figure E.57 to 

E.58 show the comparison of RLS- and Bayes-Fit for both models.  It has to be 

emphasized that the RLS-fits do not show significant differences. Also the RLS-values 

which are a measure for conventional model discrimination approaches do not differ 

significantly (the Michaelis-Menten-Model is slightly favoured) whereas the Bayesian 

approach shows significant differences in model fit and clearly favours the Michaelis-

Menten-Model with a relative model probability value of 23,36. This underlines that, in 

contrast to conventional model discrimination methods, the Bayesian methodology 

implemented here is capable of recovering the true underlying process from experimental 

data affected by. This is possible, as the Bayesian methodology explicitly considers errors 

of experimentation / noise by the sophicticated mathematical concept exposed in 

subchapter 2.3.2.2. Figure E.59 to E.62 exemplaryly show the prior and posterior 

parameter distribution for parameter 2 of the Michaelis-Menten-Model and parameter 3 of 

the Moser-Model. The validation of both models is given by Figure E.63 to E.70. Although 

the relative model probability clearly favours the Michaelis-Menten-Model both models are 

valid with respect to all Bayesian validation criteria applied here. This means, that both 

models are considered as being able of modeling the true underlying process with the 

desired accuracy. Figure E.71 to E.74 exemplaryly show the posterior probability of 

experimental observations at time point t=5 h for both models. For both models the 

experimental values are in good support of the distribution of values that are expected to 

occur if the models were true. This underlines the result of model validation, as both 

models predict observations that support the experimental values and are thus capable of 

modeling the true underlying process. Nevertheless, the experimental values are slightly 

better supported by the distributions of the Michaelis-Menten-Model which corresponds to 

the result of relative model probability estimation which favours the Michaelis-Menten-

Model as being a more probable estimation of the true underlying process. 

   5.2.1.4 Is the method capable to recover the true process? 

Is the method and algorithm implemented here able to recover the true underlying model 

and parameterization from a model solution that has been interfered by noise (standard 

deviation of experimentation) equivalent to that of the real experimental data? 
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To proof the suitability of method and algorithm in this sense, two different experiments 

have been achieved, in which experimental data has been simulated by adding random 

noise (equivalent to the error of experimentation of the real experimental data) to solutions 

of a defined Michaelis-Menten- and Moser-Model, respectively. The Bayesian method 

implemented here has been applied to this simulated experimental data in order to proof 

the ability to recover the underlying true model and parameterization which is known in this 

special case. Also the capability of the Bayesian method and algorithm to provide 

uncertainty measures of predictions has to be proofed and results to be interpreted. 

Table 5.15 exhibits the conditions of direct model solution and simulated experimental data 

generation. Table 5.20 shows the simulated experimental data (random addition of noise) 

for the Michaelis-Menten-Model. Table 5.21 shows the initial conditions and results of 

Bayesian model fit and discrimination for the Michaelis-Menten- and Moser-Model with 

respect to that simulated experimental data.  Annex E comprises all figures belonging to 

that experiment. Table 5.22 shows the simulated experimental data generated from the 

Moser-Model, which is subject to Bayesian model fit and discrimination. 

 

Table 5.22: Simulated experimental data: Random sampling from Moser-Model 

Table 5.23 exhibits the initial conditions and results of the Bayesian model fit and 

discrimnination of Michaelis-Menten- and Moser-Model with respect to the data in Table 

5.22. 

 

Table 5.23: Initial conditions and results of model fit and discrimination towards a random sample 
from the Moser-Model 

Data 

source

Process

 variable

Time [h] 0 1 2 3 4 4,5 5 5,5 6 6,5 7 8

Cell conc. 

[g*L
-1

]
9,21 15,16 23,40 35,66 63,22 74,66 99,97 144,29 127,19 133,22 142,14 144,39

Substrate 

conc.

 [g*L
-1

]

208,49 179,64 161,69 137,73 88,58 57,50 16,93 0,99 0,95 0,97 0,97 0,96

Data

Random 

sampling

Moser 

Data source Model                                                           Prior knowledge* Method                                                                                 Parameterization Discrimination

Specific value                                                   Parameter 

µmax KS YXS n RLS
PMM /

PMoser

Michealis- Parameter µmax KS YXS Bayes Parameter** 0,50

(0,50)

4,77

(4,77)

0,49

(0,48)

Random Menten Mode 0,58 18,5 0,58 Variance 4,28*10-4 11,21 5,32*10-4 2,11*103

sampling
Standard

dev. [%]
50 50 50 RLS Parameter 0,58 18,5 0,58

0,23

(0,72)

Moser Parameter µmax KS YXS n Bayes Parameter** 0,48

(0,48)

90,88

(89,81)

0,48

(0,48)

5,08

(4,69)

Moser Mode 0,49 94,96 0,52 4,78 Variance 1,30*10-3 2,39*103 7,36*10-4 4,68 1,36*103

Standard

dev. [%]
50 50 50 50 RLS Parameter 0,49 94,97 0,52 4,78

* arbitraryly chosen for analytic reasons; mode is based on RLS fit 

** no brackets: posterior mean; in brackets: posterior mode estimate
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Annex F comprises all figures belonging to that simulation experiment.  

For the random sample from the Michaelis-Menten-Model the RSL-fit provides a RLS ratio 

Michaelis-Menten/Moser of 481/501 (Tabel 5.21). If this was the only measure / decision 

basis for model discrimination this would be just a marginal hint that the Michaelis-Menten-

Model (with the referring parameterization from the RLS fit) specifies the true underlying 

process. The RLS fit just minimizes the summed squares of distances between 

experimental data and model solution but does not take into consideration which 

experimental data might be more or less interfered by error in experimentation. The latter 

is explicitly considered / achieved by the Bayesian method applied here, yielding a relative 

model probability Michaelis-Menten/Moser of 23,4 (Tabel 5.21) which is a clear proof that 

in contrast to the RLS-Method the Bayesian-Method is capable of filtering the individual 

noise from the experimental data to some extent,  which yields a clear recovery of the 

Michaelis-Menten-Model as true underlying process. As prior knowledge the 

parameterization from the RLS-fit has been applied with a comparatively large standard 

deviation of 50% of the total parameter value. This represents very little prior knowledge 

being centered on the region of the real underlying parameterization (which is similar to 

RLS fit parameterization). By doing so, the influence of the prior knowledge is minimized 

and maximum priority is placed upon the information contained in the experimental data on 

model parameterization and probability. It has to be emphasized, that for the parameters 

µmax and YXS the Bayesian estimates are close to that of the true underlying values with 

very little variance (uncertainty) while for parameter KS the value is much different with 

comparatively very large uncertainty. This is subject to the low sensitivity of KS, which 

means that for this parameter a comparatively large variation shows a comparatively low 

change in model solutions. Thus a comparatively broad range of parameter values for KS 

yields similar solutions, making it hard for the Bayesian method applied here to decide on 

a narrow spectrum of parameter values with high probability, especially in the presence of 

noise interfering the experimental data. Figure E.57 and E.58 show, that for both models 

the simulations with Bayesian and RLS parameterization are very similar. This underlines 

the interpretation of the parameterization results exposed above (models with 

comparatively different values for insensitive parameters might have similar solutions). 

Figure E.59 to E.62 show exemplarily the prior and posterior parameter probability 

distribution. It has to be emphasized here, how drastically the application of the Bayesian 

method reduces the uncertainty of parameterization by extracting the information 

contained in the experimental data. The posterior parameter distribution sample is then 

further mathematically processed yielding a measure for model validation (Figure E.63 to 

E.70) and the desired predictions for experimental observations at defined process 

settings in terms of most probable observation and its uncertainty (variance). Both models 
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are valid to estimate the true underlying process with respect to the validation criteria. 

Figure E.71 to E.74 exemplaryly show the probability distribution of experimental 

observations for t=5 that could theoretically occur if the Michaelis-Menten- and Moser-

Model were true.  In 90% of all cases (or experiment repetitions at equal conditions) the 

experimental observations will be located between the 5%- and 95%-quantile. As 

probability distributions (especially those of Gaussian nature) are theoretically endlessly on 

both sides (which means that even very extreme values have a certain probability, 

although extremely small, to be experimentally observed with respect to the error of 

experimentation / measurement) the range of practical relevant values is reduced to the 

90% most probable events.  For the Michaelis-Menten-Model the simulated experimental 

data (which is the interfered solution of the Michaelis-Menten-Model at t=5) is for the 

substrate concentration right in the center of the distribution. In terms of Bayesian theory 

and interpretation, it means that this experimental value has (in comparison to the range 

considered) a comparatively high probability to be experimentally observed. As the 

occurrence of noise interfering the real underlying value is assumed to be Gaussian 

distributed with zero noise as expected value,  it also means that the observed 

experimental result is comparatively very close to the true underlying value (if the model 

was true). The experimental observation for the cell concentration is not that stringently 

centered in the middle of the distribution compared to the substrate concentration, but is 

nevertheless still in good support of that distribution (among the 20% of most probable 

events). Thus this experimental observation can be considered as being still an acceptable 

estimate of the true underlying value (if the model was true). In general it has to be 

emphasized that the posterior parameter distribution ascribes to each parameterization in 

the range considered a certain probability that this parameter is the true parameterization 

of the real underlying process if the referring model was true. Thus, the range of possible 

observations between the 5%- and 95%-quantile can be considered as the range that 

contains by 90% probability the true non-interfered value (if the model was true). If the 

experimentally observed value is in strong support of that distribution and if the model is 

valid, than it can be assumed that this value is not significantly interfered by noise and is 

thus a good estimate of the true non-interfered value.  If an experimentally observed value 

is not in support of the distribution, than it can be assumed, that the value is either 

extremely interfered by noise (among the 10% of extreme observations at the distribution 

borders) or the model is a just a poor approximation of the true underlying process (check 

model validation in that case). According to the Bayesian validation principle exposed in 

subchapter 2.3.2.2, the Michaelis-Menten-Model is valid with respect to all four validation 

criteria (Figure E.63 to E.66). For the substrate concentration the validation criteria mean 

and variance are centered pretty much in the middle of the distribution while for the cell 
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concentration the validation is less stringent. This observation is in agreement with the 

location of the experimental cell concentration (at t=5 h) within the posterior distribution of 

experimental observation (Figure E.71) and might hint to a more precise approximation of 

the true underlying process by the Michaelis-Menten-Model for the substrate 

concentration. Due to the Bayesian validation method applied here, also the Moser-Model 

is a valid approximation of the true underlying process (Figure E.67 to E.70). The location 

of the experimental validation criteria within the distribution is comparable to that of the 

Michaelis-Menten-Model and can be interpreted analogues. Also the simulated 

experimental results at t=5 h (Figure E.73 to E.74) are in good support of the distribution of 

possible experimental observations, with the cell concentration being more centered. The 

same interpretation approach as exposed above for the Michaelis-Menten-Model can be 

applied here. As conclusion it can be stated that both models are a valid approximation of 

the true underlying process with respect to the Bayesian analysis principles applied here. 

The simulated experimental data is in all cases in good support of the distribution of values 

that could be experimentally observed if the referring model was true. The Michaelis-

Menten-Model could be clearly recovered as true underlying process by the Bayesian 

relative model probability. Thus it can be stated with respect to this simulation experiment, 

that the Bayesian methodology applied here has been implemented correctly and is able to 

describe and recover the true underlying process (reality) which is known in this artificial 

experimental setup. 

For the random sample from the Moser-Model, the RSL -fit provides a RLS ratio Michaelis-

Menten/Moser of 2113/1360. If this is the only measure (decision basis) for model 

discrimination, this would be a clear proof that the Moser-Model with the referring 

parameterization from the RLS-fit specifies the true underlying process. The Bayesian 

method applied here yields a relative model probability of Michaelis-Menten/Moser of 

0,7207 which is again a clear proof that the Bayesian-Method is capable of clearly 

recovering the true underlying process. Again, as prior knowledge the parameterization 

from the RLS-fit has been applied with a comparatively large standard deviation of 50% of 

the total parameter value for the reasons already exposed above for the simulated 

experimental data from the Michaelis-Menten-Model. It has to be emphasized, that for the 

Moser-Model the posterior variance (uncertainty of prediction) of the parameters µmax and 

YXS is very small in comparison to the parameters KS and n (compare Table 5.23). Here 

also the interpretation / explanation exposed above for the simulated experimental data 

from the Michaelis-Menten-Model is valid. The function and interpretation of the distribution 

of experimental observations is not explained here again, as this has been already done in 

detail above for the simulated experimental data from the Michaelis-Menten-Model. 

According to the Bayesian validation principle exposed in subchapter 2.3.2.2, the Moser-
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Model is only valid with respect to the cell concentration mean and variance (Figure F.89 

to F.92). The same situation can be observed for the validation of the MM-Model (Figure 

F.85 to F.88), whereas here also the variance of the cell concentration is almost outside 

the validation range (almost identical with 95%-quantile). These validation results therefore 

support the conclusion drawn from the relative model probability. Nevertheless, none of 

these models is valid with respect to the true underlying process (from which this 

experimental data has been derived) with sufficient probability. This result is caused by the 

comparatively high noise that has been randomly added to the Moser-Model solutions and, 

thus, interfers this data. Compared to the random sample from the Michaelis-Menten-

Model (Tabel 5.21) also the RLS, which can be considered as measure for the extent of 

total random noise addition in this case, are significantly higher, which causes the 

observed differences in validation. As conclusion it can be stated, that the Bayesian 

method applied here is also in this case able to recover the true underlying model as the 

most probable one. This is possible here even from data which is significantly more 

interfered. But also due to that comparatively high interference, both models are rejected 

as not being valid. These observations again proof the functioning of the method applied, 

as the model from which the data has been drawn is identified as most probable. But 

model proposals are also clearly rejected by that Bayesian method, when the real 

underlying process is superimposed by too much noise. The latter also shows the limit of 

the method to provide validated models by extracting the information contained in 

interfered experimental data. 

5.2.1.5 How are the results for the real experimental data influenced by the prior 

variance? 

Which results does the method and algorithm implemented here provide for the real 

experimental data and how does the choice of the prior variance influence these results? 

Table 5.24 shows the real experimental data. The true underlying process from which this 

data originates is unknown. The data is interfered by noise / error in experimentation. The 

standard deviation is known and has been also applied for random addidition of noise to 

the simulation experiments (compare Table 5.15). 

 

Table 5.24: Real experimental data 

Data source Process variable                                                                                                     Data

Time [h] 0 1 2 3 4 4,5 5 5,5 6 6,5 7 8

Experiment Cell conc. [g*L
-1

 ] 10 15 24 37 53 70 84 96 101 107 104 111

Substrate conc. [g*L
-1

] 200 183 179 146 107 78 51 21 1 0 0 0
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Table 5.25 exhibits the initial conditions and results for three Bayesian model fit and 

discrimination approaches towards the real experimental data. Run 1 and 2 are 

characterized by identical initial conditions (for reasons of reproducibility analysis). Run 3 

only differs from Run 1 and 2 in the choice of the prior variance (the prior mean is also 

identical).  

Annex G comprise all figures referring to the model fit, discrimination and analysis 

approaches of the real experimental data ‘Exp. data (Run 1)’ and ‘Exp. data (Run 3)’. The 

results for ‘Exp. data (Run 2)’ are not exposed in the Annex G as they are completely 

identical to that of ‘Exp. data (Run 1)’. The simulation approaches ‘Exp. data (Run 1)’ and 

‘Exp. data (Run 2)’ additionally provide results for the posterior mean and mode estimate 

as Bayesian point estimate for model parameterization. The relative model probability is 

the only result in this analysis that depends on the choice of the point estimate (candidate 

vector respectively). Therefore, no separate results are exposed in Annex G as they are 

valid for both approaches. 

 

Table 5.25: Initial conditions and results of model fit and discrimination towards the real 
experimental data 

Data source Model                                                           Prior knowledge* Method                                                                                 Parameterization Discrimination

Specific value                                                     Parameter 

µmax KS YXS n RLS
PMM /

PMoser

Michealis- Parameter µmax KS YXS Bayes Parameter** 0,46

(0,47)

13,60

(15,08)

0,48

(0,48)

Menten Mode 0,6 18 0,6 Variance 1,61*10-4 4,67 4,02*10-4 161,91

Exp. data

Standard

dev. [%]
50 50 50 RLS Parameter 0,47 15,99 0,48

5,39

(4,14)

(Run 1)
Parameter µmax KS YXS n Bayes Parameter** 0,44

(0,43)

23,19

(24,88)

0,47

(0,47)

1,30

(1,31)

Moser Mode 0,6 24 0,6 1,5 Variance 7,14*10-4 35,7 4,29*10-4 0,02 185,57

Standard

dev. [%]
50 50 50 50 RLS Parameter 0,42 0,66 0,47 0,81

Michealis- Parameter µmax KS YXS Bayes Parameter*** 0,47 15,08 0,48

Menten Mode 0,6 18 0,6 Variance 1,61*10-4 4,67 4,02*10-4 161,91

Exp. data

Standard

dev. [%]
50 50 50 RLS Parameter 0,47 15,99 0,48 4,29

(Run 2) Parameter µmax KS YXS n Bayes Parameter*** 0,43 24,88 0,47 1,31

Moser Mode 0,6 24 0,6 1,5 Variance 7,14*10-4 35,7 4,29*10-4 0,02 185,57

Standard

dev. [%]
50 50 50 50 RLS Parameter 0,42 0,66 0,47 0,81

Michealis- Parameter µmax KS YXS Bayes Parameter** 0,48

(0,47)

16,26

(15,10)

0,50

(0,48)

Menten Mode 0,6 18 0,6 Variance 8,95*10-5 1,77 3,34*10-4 161,91

Exp. data

Standard

dev. [%]
10 10 10 RLS Parameter 0,47 15,99 0,48

22,25

(21,34)

(Run 3)
Parameter µmax KS YXS n Bayes Parameter** 0,44

(0,44)

24,35

(22,63)

0,50

(0,47)

1,31

(1,27)

Moser Mode 0,6 24 0,6 1,5 Variance 5,48*10-4 5,52 5,96*10-4 0,01 185,57

Standard

dev. [%]
10 10 10 10 RLS Parameter 0,42 0,66 0,47 0,81

*mode equals MC start values; variance chosen according to aim of experiment

**no brackets: posterior mean; in brackets: posterior mode estimate

***posterior mode estimate
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In the first analysis (‘Exp. data (Run 1)’ and its repetition ‘Exp. data (Run 2)’) a standard 

deviation of 50% of the prior mode has been applied, in the second analysis (‘Exp. data 

(Run 3)’) of 10% respectively. The first approach represents significant smaller prior 

knowledge compared to the second approach, which gives the information contained in the 

experimental data much more influence on the formation of the posterior distribution. In all 

approaches, identical prior modes have been chosen that differ significantly from the range 

assumed for the posterior mode (dimension estimated by RLS-fit). This is done in order to 

study, to what extent the choice of the prior mode and variance superimposes the 

information on the model parameterization contained in the experimental data and thus 

interfers analysis results. For the Moser-Model the prior mode differs more from the 

assumed posterior range (compare corresponding RLS-parameters, especially for 

parameters KS and n). For the analysis with 50% prior standard deviation, the relative 

model probability (calculated with the posterior mode estimate as candidate vector) is 4,29 

(4,14 respectively) which represents a decision for the Michaelis-Menten-Model that is 

much more clearly than one would assume when only  the RLS ratio is considered. This 

again proofs the advantage of the Bayesian approach towards the RLS fit as already 

exposed and analyzed in the preceeding chapters. The latter just minimizes the summed 

squares of distances between experimental data and model solution but does not take into 

consideration, which experimental data might be more or less interfered by error in 

experimentation. This is explicitly achieved by the Bayesian method applied here yielding a 

more distinct decision for the Michaelis-Menten-Model, which is a clear proof that in 

contrast to the RLS-Method the Bayesian-Method is capable of filtering the individual noise 

from the experimental data to some extent. The analysis with 10% standard deviation 

shows a relative model probability of 21,34, which means a significantly more distinct 

decision for the Michaelis-Menten-Model compared to the result of the analysis with 50% 

standard deviation. This effect is referred to the fact, that for the Moser-Model the prior 

mean differs much more from the assumed range of the posterior mode (compared to the 

Michaelis-Menten-Model). This means, that in case of a declining prior variance (e.g. from 

50% to 10% as in this case) the parameterization of the Moser-Model is much more 

influenced by imprecise prior knowledge and less influenced by the experimental data 

(compared to the Michaelis-Menten-Model). This automatically leads to an increased 

relative model probability favoring the Michaelis-Menten-Model. For the analysis with 10% 

prior variance all validation criteria are fulfilled for the Michaelis-Menten-Model, with the 

mean and variance of the substrate concentration being in much better support of the 

distribution compared to the corresponding values of the cell concentration (Figure G.113 

to G.116). This can be interpreted as a hint that the model performance is better for the 

substrate concentration. Although the Michaelis-Menten-Model has been identified as 
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being much more probable with respect to prior knowledge and exp. data the same 

observations / conclusions can made for the Moser-Model regarding validation (Figure 

G.117 to G.120). Thus, the Moser-Model is also a suitable validated approach to simulate 

the true underlying process. For the analysis with 50% prior variance (Figure G.99 to 

G.106) the same observations / conclusions can be made as already exposed for the 

analysis with 10% variance. Thus it can be stated for the experimental data, that both 

approaches yield validated models with acceptable forecast properties for both the Moser- 

and the Michaelis-Menten-Model. The choice of prior variance does not affect the model 

choice but rather affects model averaging due to the magnitude of the relative model 

probability. 

5.2.1.6 Are the results reproducible with acceptable precision? 

Are the results of the Bayesian method applied here reproducible with acceptable 

precision when the method is applied to identical data sets at identical conditions (start 

values,  prior knowledge etc.)? In other words: Is the method correctly tuned (sample 

sizes, number of Markov-Chains etc.) in order to provide a sufficient reproducibility?  

To answer this question, two repetitions of the Bayesian methodology implemented here 

were applied to the same experimental data set (Table 5.24) at identical conditions. These 

conditions, as well as the corresponding results, are exposed in Table 5.25 (simulations 

‘Exp. data (Run 1)’ and ‘Exp. data (Run 2)’). The corresponding figures are comprised only 

for the simulation ‘Exp. data (Run 1)’ in Annex G as the results / figures showed to be 

identical for both repetitions. 

The Bayesian method applied here is based on a Markov-Chain-Monte-Carlo process and 

other random sampling approaches (Monte-Carlo methods), in which representative 

samples are drawn randomly from distributions of interest. Due to the nature of random 

sampling, samples drawn from a distribution can only provide an estimate of a distribution 

and its characteristic parameters. By nature, a distribution can only be determined with 

100% precision when the sample size is infinite, which is computationally not practicable. 

But already at a certain sample size, the sample can be considered as being 

representative, as at this size the results calculated from different samples (at same 

sampling conditions) only differ within an acceptable range. To provide a functional 

implementation of the Bayesian method that yields reliable results, it is inevitable to tune 

all sampling processes in order to ensure reproducibility of results with acceptable 

precision. In this work, I decided to play safe, which means, that all sampling processes 

are adjusted rather too precise. This requires a lot of computational effort but ensures the 

generation of reliable results, which in turn also enables to draw reliable conclusions from 

the data regarding method results and dynamics. The Bayesian method implemented here 
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has been applied two times to the experimental data at identical conditions (prior 

knowledge, sample sizes etc.). The mean and variance, which are calculated over the 

parallel Markov-Chains (at identical step) in defined intervals, are applied as characteristic 

distribution parameters and indicators of chain convergence. The posterior mode estimate 

has been taken as candidate vector for calculation of the relative model probability. The 

results can be taken from Table 5.25 (simulations ‘Exp. data (Run 1)’ and ‘Exp. data (Run 

2)’).  The posterior mode estimates, as well as the posterior variances, are identical for 

both runs up to the forth decimal place (for presentation reasons results are only exposed 

to second decimal place in Table 5.25). The relative model probability of run 1 is only 3,5% 

lower than that of run 2 (this deviation is not relevant for discrimination / decision). Thus, 

one can conclude from these results, that the Bayesian method applied here has been 

properly implemented / tuned in order to provide an acceptable reproducibility of results.  

5.2.2 Application of the Bayesian methodology to the real life problem of 

SPD optimization 

In 5.2.1 different simulation studies were achieved for the example of two simple growth 

models in order to provide evidence for the correct method implementation, as well as to 

ensure proper understanding of the method dynamics and results interpretation. By this 

procedure, the initial conditions for an efficient application of the Bayesian methodology 

to the real life problem of SPD optimization are provided. All conclusions regarding 

method implementation, adjustment and result interpretation, which have been derived 

from these initial studies, were applied to the analysis and optimization of SPD. Below, 

the analysis and optimization of the process variables condenser temperature, 

evaporator temperature, stirrer rotation and pump power towards the target values 

rancimat value, acid value and tocopherol concentration is exposed. The analysis is 

achieved independently for each target value by separate process models. As prior 

knowledge on model parameterization a Gaussian distribution with RSM-

parameterization as mode and a standard deviation of 50% (regarding mode) is applied. 

For relative model probability estimation both models are considered to exhibit equal prior 

probability. Finally, the possibilities of simultaneously process optimization towards 

multiple goals (all target values) are discussed. This is of special importance in case of 

conflicts regarding modeling and optimization goals. 

5.2.2.1 Model fit, discrimination, validation and analysis of rancimat models  

In 5.1.2.3 a model of 1st grade, as well as different models of 2nd grade, were derived via 

RSM. In order to determine significant model terms for the 2nd grade model, three different 

methods for error variance estimation were applied. For each of these alternatives the 

significance of model terms was tested by F-test of the relative variance or t-test of the 
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individual confidence intervals. (These methods are considered as basic statistic 

knowledge in this work and, thus, are not further exposed in detail.) This results in six 

alternative methods to derive a candidate for the 2nd grade model. Some of these methods 

confirm the 1st grade model, while others generate models with significantly more model 

terms and a higher level of complexity. This results in models of varying complexity. 

Neither the 1st grade model nor one of the 2nd grade models is valid according to statistic 

validitiy testing by RSM. 

 

Table 5.26: Bayesian parameterization and validity testing of 1
st
 and 2

nd
 grade model for rancimat  

The model proposals exposed in Table 5.26 were applied to Bayesian model fit, 

discrimination and analysis. Both models were fit to the experimental data by using the 

Bayesian method implemented in this work. Table 5.26 exhibits for each significant model 

term (identified by RSM) the mode and variance estimate of the corresponding Bayesian 

posterior parameter distribution. For the reasons exposed in chapter 5.2.1, the posterior 

mode estimate is applied to all further modelling and analysis as Bayesian point estimate 

of model parameterization. 

Figure H.121 to H.124 exemplarily show the convergence of the Markov-Chain for the 4th 

parameter of the 1st grade model.  The distribution mean and variance estimates were 

calculated from the parallel Markov-Chains as characteristic distribution parameters that 

can be applied as convergence indicators. It can be stated here, that a chain convergence 

of the Markov-Chain can be observed from the second estimation cycle of the covariance 

matrix.  

Figure H.122 and H.124 show, that from the beginning of the second estimation cycle on, 

the mean and the variance estimate of the distribution just slightly oscillate in a very small 

region around the posterior values. These deviations can be explained by the inaccuracies 

of distribution parameter estimation. The estimation of the posterior distribution was only 

achievable by the use of random sampling methods which are limited to a sample size that 

can be properly handled by a computer algorithm. In this situation, the estimates of 

distribution variance and mean only deviate in the third decimal place. These deviations 

are negligible with respect to model parameterization and results. The chain convergence 

for all other parameters of the 1st and 2nd  grade model is similar and thus will not be further 

discussed here or exposed in Annex H. 

Model Distribution                                                                                                                                                                                      Model term Validation 

parameter ß0 ß1 ß2 ß3 ß4 ß11 ß22 ß33 ß44 ß12 ß13 ß14 ß23 ß24 ß34

1st grade Mode 9,04 -2,78 1,73 0,99 Yes

Variance 0,01 0,01 0,01 0,02

2nd grade Mode 9,04 0,29 -2,72 1,58 0,41 -0,28 0,56 -0,19 0,86 No

Variance 0,01 0,02 0,01 0,01 0,02 0,03 0,03 0,01 0,01
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It must be emphasized, that the 2nd grade model is significantly more probable than the 1st 

grade model with respect to Bayesian means (Table 5.27). Nevertheless, only the 1st 

grade model is valid according to the Bayesian validation criteria (Table 5.26, Figure H.130 

to H.133). 

 

Table 5.27: Relative model probability estimation of rancimat models 

 At first sight, this may seem to be a contradiction. However, a more detailed analysis of 

this issue reveals, that this is a realistic result that might be obtained from a Bayesian 

model discrimination and analysis. 

The applied Gibbs-sampling process yields a posterior distribution sample of parameter 

vectors that, theoretically, could occur with respect to the experimental data if the model 

was true (valid). Nevertheless, the latter is an assumption that could potentially be wrong. 

The mode estimate of the posterior distribution is applied to the relative model probability 

estimation in the form of a candidate vector (irrespective of model validity). It does 

explicitly not consider or contain any information regarding the uncertainty of this model 

parameterization, which is given by the posterior distribution variance. However, if the 

model is valid, this estimation can be considered as being most probable with respect to 

likelihood and prior.  Equations 2.23 and 2.24 show, that the relevant values for each 

candidate vector in the relative model probability estimation are the likelihood and the 

prior-posterior-ratio.   

As previously mentioned, the likelihood might exhibit a decisive function in model 

discrimination by relative model probability estimation. This situation especially occurs in 

the case of large differences in the number of model terms, where more complex linear 

models fit the experimental data much better by nature due to a higher flexibility. This 

results in a larger likelihood of the candidate vector for the more complex 2nd grade model 

which might be decisive for the discrimination result. It is crucial to mention at this point, 

that the relative model probability does not determine model validity, but only determines 

which model would be most probable if both models were true (valid). It should be 

emphasized, that under this assumption, there is always a most probable model and 

parameterization by nature irrespective of the grade of deviation from the experimental 

Probabilities of

candidate vector

Log

likelihood

Log prior

probability

Log posterior

ordinate

Model grade 1 -23,3 (-23,3) -1,62  (-3,6)  -1,59 (-3,6)

Model grade 2 -18,3 (-18,3) -4,3 (-4,3) -5,7 (-5,7)

Relative probability

Pmod 1/Pmod 2 
3,3*10-7 (3,3*10-7)
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data. More complex models are favoured by nature in this context due to a larger likelihood 

as already exposed above. The aim of modelling is to model the true underlying process 

and not the experimental data.  An experimental data set is merely a snapshot of the true 

underlying process which is more or less interfered by errors of experimentation. Thus, the 

question of whether the model is a valid approach to the true underlying process has to be 

treated separately, irrespective of the fit or likelihood of an experimental data set belonging 

to that process.  

The model validity is determined by the method proposed by Geweke (subchapter 

2.3.2.2.5). In this context, functions of the experimental data are applied. The functions 

chosen and applied here are the mean and variance of the total experimental data set. 

These functions represent the inner structure of a data set which is less affected or 

interfered by experimentation errors compared to single data points. With respect to the 

posterior parameter sample and error of experimentation a posterior probability distribution 

of function values, which might occur if the model is true and a valid approximation of the 

true underlying process, can be determined (compare chapter 2.3.2.2.5). This distribution 

can be viewed as fingerprint of the inner structure of hypothetical experimental data sets 

that refer to a certain true underlying process.  

If the mean and variance of the real experimental data set are in support of the distribution, 

then the model is valid. Figure H.132 and H.133 show, that the validation method applied 

here rejects the 2nd grade model as the inner structure of the real experimental data is not 

in support of the values to be expected if the model was a valid approximation of the true 

underlying process.  

Figure H.130 and H.131 show, that the inner structure of the real experimental data is 

clearly in support of the posterior distribution of the 1st grade model. In other words, it 

strongly agrees with the values to be expected if the 1st grade model was true. The effects 

comprised in the 1st grade model can thus be confirmed as being valid for the true 

underlying process. It can be also stated that the additional model terms and effects of the 

2nd grade model are not confirmed and thus represent classical experimental data 

overfitting by additional terms. It is overfitting because, on the one hand, these effects or 

terms improve the fit of a single experimental data set due to higher model flexibility. On 

the other hand, they adulterate and interfer the recovery and approach of the true 

underlying process. Thus, the validation method applied here proves to be capable of 

identifying insignificant model terms (effects) and model overfitting. It must be emphasized 

here, that the significance of the additional model terms of the 2nd grade model has been 

questionable anyway since the beginning of the analysis. This model has been confirmed 

by only one of the six statistical methods applied in the context of model generation via 
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RSM (compare 5.1.2.3). The Bayesian method applied here proved to be suitable for 

counterchecking the statistical generation of models by RSM and the corresponding 

modelling results. Thus, it is an appropriate method that aids in avoiding imprecision of 

simulations by overfitting. The 1st grade model is also valid with respect to the data set of 

the orthogonal central composite design as no additional knowledge is provided by this 

design, compared to the smaller full factorial design, regarding effects of the true 

underlying process.  

This practical example perfectly illustrates the major drawback of conventional curve-fitting 

and discrimination by RLS in comparison to the Bayesian approach applied here. 

Minimization of RLS only provides an appropriate fit and modeling of the experimental data 

and a decision on the model that fits the experimental data the best. In contrast, the 

Bayesian approach identifies the model and parameterization that is most probable and 

valid with respect to the true underlying process to be simulated. 

For the rancimat value, a 1st grade model derived by RSM (determination of significant 

model terms by method 1/a) and a 2nd grade model also derived by RSM (determination of 

significant parameters by method 2/b) have been parameterized by Bayesian Markov-

Chain-Monte-Carlo, the Metropolis-Hastings-Algorithm respectively, and discriminated by 

the application of the Chib and Jeliazkov’s proposed method (Chib, S. and Jeliazkov, I., 

2001, pp. 270-281). A relative model probability of 1st grade to 2nd grade model of 3,3*10-7 

was computed.  

This extremely clear decision for the model of 2nd grade leads to the question of whether 

this value is realistic in the context of the Bayesian method applied here or just caused by 

deficiencies of this method regarding the discrimination of models that differ in the 

numbers of parameters. If the method is adequate regarding this dimensionality aspect, 

then the question arises by which mechanisms / dynamics such extreme relative 

probability values are obtained.  

During the Bayesian parameterization process for each model by Gibbs-sampling, no 

problems can arise due to differences in the dimension of the prior parameter distribution. 

This is subject to the fact that during the parameterization process each model is 

exclusively analyzed and compared without interactions with the competing model. The 

posterior parameter sample is exclusively formed by the comparison of parameter vectors 

of the same model with respect to likelihood and prior probability (compare chapter 

2.3.2.2.2 and Eq. 2.21). Thus, the prior probabilities, which influence the probability of 

accepting a proposed new state given a current state, are derived from the same 

distribution and therefore have the same dimension. Furthermore, also model validation 

and the calculation of the posterior distribution of experimental observations at defined 
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process settings are not subject to dimensionality differences in model parameterizations. 

This is due to the fact that each model is exclusively analyzed here without any 

interactions between the competing alternative models. 

When models are discriminated by the application of the method proposed by Chib and 

Jeliazkov, the relative model probability is calculated as the ratio of the marginal likelihood 

estimates in accordance with Eq. 2.23 and 2.24 (Chib, S. and Jeliazkov, I., 2001, pp. 270-

281). In principal, three different characteristic values for each model are set into relation 

here: The posterior ordinate, the likelihood and the prior probability of the candidate vector. 

Equation 2.23 and 2.24 show, that the relative model probability can be interpreted as the 

product of the likelihood ratio and the ratio of the quotients of prior probability and posterior 

ordinates. With regards to the likelihood, it is assumed that no problems arise from 

differences in the number of model parameters. This is true because, irrespective of 

parameterization, each model yields solutions for the same target value (e.g., rancimat 

value) at identical process variable settings which are compared to the same experimental 

data in terms of likelihood values. The likelihood is the probability of experimental data 

occurrence given a defined model and error of experimentation (Eq. 2.19). Thus, the 

comparison of likelihoods that refer to models with different number of parameters is valid 

here. Even though the candidate vectors and their prior and posterior probabilities differ 

significantly in dimension, this does not affect or interfere the relative model probability 

estimate because no single probabilities for the candidate vectors are set into relation but 

quotients of prior and posterior probability. Through this standardization and normalization, 

comparable quantities of equal dimension are applied. These quantities therefore avoid the 

interference of relative model probability estimates due to differences in dimensionality. 

Thus, also the comparison of prior and posterior probabilities of candidate vectors with 

different dimension is valid here.  

This assessment has been practically proven by two different model discrimination 

approaches. In the first approach the model discrimination and corresponding algorithm is 

applied to the original 1st grade model with four parameters and the 2nd grade model with 

nine parameters. In the second approach the model of 1st grade is simulated based on the 

model of 2nd grade. This is achieved by applying the model structure of the 2nd grade 

model to the 1st grade model and then setting the parameter values of the additional model 

terms to zero. Thus, formally and technically models of same structure and parameter 

vectors of same dimensions are compared. Table 5.27 shows, that both approaches 

(results of second approach in brackets) yield the same results except for that of the prior 

and posterior ordinates of the candidate vector which are subject to the dimension of the 

parameter vector. Nevertheless, these differences are balanced out by the application of 

probability ratios as exposed above. The ratios of the prior and posterior probability 



5 Analysis and discussion of results 

102 

 

(posterior ordinate) for the candidate vectors are nearly equal, with only negligible 

differences caused by the random sampling methods applied. The results in Table 5.27 

correspond to Eq. 2.23 and 2.24 and demonstrate that the higher probability of the 2nd 

grade model of up to 7 decimal powers is primarily caused by differences in the likelihoods 

of the candidate vectors. 

 

Table 5.28: Likelihood values of exp. data for 1
st
 and 2

nd 
grade model of rancimat value  

The likelihood of a data set is the product of the likelihoods which refer to the experimental 

results of the individual process settings. Table 5.28 shows the extent to which the 

individual experimental settings contribute to the overall likelihood value. The most 

significant experimental settings in that context are indicated in red.  It is obvious, that the 

additional experimental settings of the orthogonal CCD (setting 17 to 25) are most 

important in that context. These settings are essential for the identification of the additional 

significant model terms of the 2nd grade model, which contribute significantly to the higher 

likelihood of the respective candidate vector due to the improved overall flexibility and, 

thus, experimental data fit. Table 5.27, Eq. 2.23 and Eq. 2.24 show, that (besides the 

likelihood) the ratio between prior and posterior probability of the candidate vectors 

exhibits a minor contribution to the higher probability of the 2nd grade model (2 decimal 

powers). For the 2nd grade model, the posterior probability is significantly lower compared 

to the prior probability which results in a higher value for the prior-posterior-ratio of the 2nd 

grade model candidate vector. For the 1st grade model, however, the values are nearly 

equal. 

 

Table 5.29: Optimum process settings for rancimat value (Bayesian model parameterization) 

Table 5.29 shows the optimum process setting (within the range of analysis) for a 

maximized rancimat value. Figure H.128 exposes the posterior distribution of hypothetical 

experimental observations at optimum setting for the 1st grade model. The actual 

experimental result is in perfect support of the distribution, which underlines the validity 

and accuracy of that modeling approach. The quality criterion of minimum 8 h is fulfilled 

Exp. setting 1 2 3 4 5 6 7 8 9 10 11 12 13

Rancimat [h] 8,725 3,765 9,78 3,895 12,825 11,815 12,45 11,51 7,485 3,75 9,315 3,855 11,73

Log likelihood  of Model grade 1 -0,45 -0,43 -0,85 -0,49 -0,45 -0,78 -0,41 -0,53 -2,01 -0,43 -0,48 -0,47 -0,9

candidate vector Model grade 2 -0,53 -0,58 -0,69 -0,5 -0,4 -0,51 -0,53 -0,41 -1,25 -0,4 -0,79 -0,42 -0,63

Exp. setting 14 15 16 17 18 19 20 21 22 23 24 25

Rancimat [h] 10,985 12,535 11,165 10,09 9,715 4,18 11,98 9,745 9,945 11,265 3,76 9,98

Log likelihood  of Model grade 1 -0,41 -0,4 -0,4 -1,18 -0,72 -1,03 -1,11 -0,75 -0,98 -0,43 -6,2 -1,03

candidate vector Model grade 2 -0,41 -0,44 -0,48 -0,43 -0,71 -0,4 -0,4 -0,4 -0,42 -0,83 -4,02 -1,71

                  Optimum setting       Max. rancimat [h] 

Process

variable
X1 X2 X3 X4 Simulation Experiment

Model grade 1 Free -1 Free 1 12,56 12,54

Model grade 2 1 -1 1 1 12,87 Not valid



5 Analysis and discussion of results 

103 

 

within the whole range of relevant possible events (between 5%- and 95%-quantile) that 

might occur at optimum process setting if the model was true (valid). Thus it can be stated, 

that there is only a negligible chance that the quality criterion is not fulfilled at the optimum 

process setting calculated from the 1st grade model. The graphical exposition of the 1st 

grade model, given by Figure H.125, helps to identify areas of process settings that might 

fulfill the rancimat quality criterion and also other optimization goals. As can be seen in this 

figure, there is also a broad range of other process variable settings which fulfill this 

criterion. This is of special importance for optimization towards multiple objectives that are 

characterized by conflicts regarding process adjustments. 

5.2.2.2 Model fit, discrimination, validation and analysis of acid value 

In 5.1.2.4 models of 1st and 2nd grade with statistically significant model terms were 

derived by RSM. The models exposed in Table 5.30 were selected to be parameterized, 

discriminated and analyzed by Bayesian means here. The Figures regarding Markov-

Chain convergence, parameter distributions, distributions of experimental observations 

and validation are comprised in Annex I. 

 

Figure I.134 to I.137 exemplaryly show for the 1st grade model the Markov-Chain 

convergence for one model parameter. The convergence dynamics are similar for all 

other model parameters. Therefore they are not exposed in that work for reasons of 

space. A stable convergence of the distribution parameters towards a boundary posterior 

value can be clearly observed. The chain oscilliates around that boundary value already 

from update number 3 on. Therefore it is valid to take all chain steps from update number 

10 on as representative sample of the posterior distribution. In this case it is obvious, that 

the computational effort, which is necccessary to gain a representative sample of 

sufficient size, can be reduced significantly here. It can be also observed here, that in 

some cases the mean of the Markov-Chains does not approach the mode estimate of the 

posterior distribution. In this case, the posterior distribution is not symmetric with respect 

to the distribution expected value, which therefore differs from the mode. 

 

Table 5.30:  Bayesian parameterization and validity testing of 1
st
 and 2

nd
 grade model for acid value 

Figure I.140 and I.141 expose the prior and posterior parameter distribution exemplary for 

one parameter of the 1st and 2nd grade model. It has to be emphasized, how drastically 

the Bayesian method applied here reduces the uncertainty (variance) of predictions by 

extracting the information on model parameterization contained in the experimental data. 

Model Distribution                                                                                                                                                                         Model term Validation 

parameter ß0 ß1 ß2 ß3 ß4 ß11 ß22 ß33 ß44 ß12 ß13 ß14 ß23 ß24 ß34

1st grade Mode 0,49 0,11 -0,26 0,12 -0,11 -0,15 Yes

Variance 6,56*10-4 6,93*10-4 8,01*10-4 7,33*10-4 8,02*10-4 8,83*10-4

2nd grade Mode 0,49 0,12 -0,25 0,11 0,16 -0,12 -0,14 Yes

Variance 6,71*10-4 6,64*10-4 8,05*10-4 6,85*10-4 1,6*10-3 8,16*10-4 8,92*10-4
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The figures are similar for all other model parameters and are therefore not exposed in 

that work due to space reasons. 

Figure I.144 to I.147 show for both models and validation criteria that the experimental 

values are in very good support of the posterior distribution. Thus, both models are 

validated beyond doubt with respect to the true underlying process to be modeled. It has 

to be emphasized here, that also the 1st grade model has been fit and analyzed regarding 

its performance on the results of the orthogonal CCD. Therefore it can be stated here, 

that by means of Bayesian analysis the 1st grade model is sufficient to model the true 

underlying process. Although the 2nd grade model provides more accuracy due to an 

additional model term, this effect therefore can be considered as being not crucial for an 

appropriate modeling of the true underlying process. Thus, the additional experimental 

effort of the orthogonal CCD, which is necessary for identification of that model term / 

effect, is not essential in that contex and could be saved in optimization approaches of 

scaled-up and / or similar SPD processes. The squared effect of the evaporator 

temperature on the acid value is statistically significant but plays a minor role compared 

to the other various linear effects and interactions of the process variables on this target 

value. 

 

Table 5.31: Relative model probability estimation of acid value models 

 

Table 5.32: Likelihood values of exp. data for model of 1
st
 and 2

nd
 grade acid value  

Table 5.31 shows, that according to the Bayesian relative model probability the 2nd grade 

model is significantly more probable. This is no contradiction to the fact, that both models are 

valid, as the latter evaluates the general suitability of a model irrespective of competing 

models. A more complex 2nd grade model exhibits a higher probability by nature as it 

approaches the experimental data much better due to a higher flexibility. This aspect is 

represented by the likelihood value, which is much larger for the 2nd grade model and 

Probabilities of

candidate vector

Log

likelihood

Log prior

probability

Log posterior

ordinate

Model grade 1 -15,89 -2,43 -2,42

Model grade 2 -13,27 -2,80 -2,82

Relative probability

Pmod 1/Pmod 2 
2,2*10-3

Exp. setting 1 2 3 4 5 6 7 8 9 10 11 12 13

Acid value [mg KOH*g -1 ] 0,30 0,31 0,27 0,27 1,19 0,56 1,57 0,66 0,29 0,22 0,22 0,32 0,62

Log likelihood  of Model grade 1 -0,52 -0,43 -0,45 -0,40 -0,42 -0,60 -1,84 -0,41 -0,50 -0,42 -0,41 -0,45 -0,82

candidate vector Model grade 2 -0,45 -0,40 -0,41 -0,41 -0,46 -0,89 -1,60 -0,52 -0,43 -0,48 -0,40 -0,40 -0,81

Exp. setting 14 15 16 17 18 19 20 21 22 23 24 25

Acid value [mg KOH*g -1 ] 0,36 0,83 0,30 0,43 0,25 0,29 1,10 0,40 0,34 0,43 0,38 0,33

Log likelihood  of Model grade 1 -0,54 -0,41 -0,42 -1,00 -0,49 -0,73 -1,23 -0,49 -0,67 -1,09 -0,45 -0,71

candidate vector Model grade 2 -0,45 -0,41 -0,40 -0,54 -0,43 -0,42 -0,45 -0,42 -0,41 -0,51 -0,76 -0,41
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contributes almost exclusively to the difference in model probability. The ratio of prior 

probability and posterior ordinate is almost equal for both models (compare Tabel 5.31). By 

that observation, again, the special importance of the candidate vector choice and likelihood 

in relative model probability estimation is underlined. Table 5.32 exposes the contribution of 

the single process settings to the overall likelihood of the experimental data set with respect 

to the candidate vector. Again, it is the additional process settings of the orthogonal CCD that 

decisively contribute to the likelihood differences of the candidate vectors. These additional 

process settings are crucial for the identification of the additional squared effects of the 2nd 

grade model. It provides a better fit of the total orthogonal CCD data and thus a higher 

likelihood of this data set with respect to the candidate vector.  

Table 5.33: Optimum process settings for acid value (Bayesian model parameterization) 

Table 5.33 exhibits the process settings (within the range of analysis), which minimize the 

acid value with respect to the 1st and 2nd grade model. For these process settings also the 

simulation and experimental results are exposed. It can be stated here, that the quality 

requirements of at least 0,5 mg KOH*g-1 can be realized by the SPD at these process 

settings. As the acid values, which are achievable at the process settings exposed in Table 

5.33, are much lower compared to the quality requirement, it can be assumed, that there is 

also a broad range of alternative process settings at which the quality requirement for the 

acid value is fulfilled. This is of special importance for optimization towards multiple 

objectives which are characterized by conflicts regarding process variable adjustment. The 

existence of alternative process settings for each objective allows for compromises in 

optimization towards multiple objectives. 

Figure I.142 and I.143 show the posterior distribution of experimental observations at the 

optimum process setting for the 1st and 2nd grade model.  The experimental values (compare 

Table 5.33) are in very good support of that distribution, which again underlines model 

validity and prediction accuracy. It also has to be mentioned here, that the entire relevant 

range of possibly occurring events (between 5%- and 95%-quantile) agrees with the quality 

criterion to be fulfilled. Therefore, there is only a negligible possibility of missing the quality 

criterion at the simulated optimum process setting. 

Figure I.138 and I.139 graphically expose the dynamics of the 1st and 2nd grade model (for a 

constant optimum pump power). Such graphics aid the identification of process settings in 

process optimization towards multiple goals.   

             Optimum setting  Min. acid value [mg KOH*g -1 ]

Process

variable
X1 X2 X3 X4 Simulation Experiment

Model grade 1 -1 1 free 1 0,1966 0,25

Model grade 2 -1 -0,0174 free -1 0,1365 0,2
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5.2.2.3 Model fit, discrimination, validation and analysis of tocopherols 

In 5.1.2.5 models of 1st and 2nd grade with statistically significant model terms were derived 

by RSM. The models exposed in Table 5.34 were selected to be parameterized, 

discriminated, validated and analyzed by Bayesian means in this chapter. The Figures 

regarding Markov-Chain convergence, parameter distributions, distributions of experimental 

observations and validation are comprised in Annex J. 

 

Figure J.148 to J.151 exemplaryly show for the 1st grade model the Markov-Chain 

convergence for one model parameter. The convergence dynamics are similar for all other 

model parameters. Therefore they are not exposed in that work for reasons of space. A 

stable convergence of the distribution parameters towards a boundary posterior value can be 

clearly observed. The chain oscilliates around that boundary value already from update 

number 2 on. Therefore it is valid to take all chain states from update number 10 on as 

representative sample of the posterior distribution (as done in this work). In this case it is 

obvious, that the computational effort, which is necccessary to gain a representative sample 

of sufficient size, can be reduced significantly here 

 

 

Table 5.34:  Bayesian parameterization and validity testing of 1
st
 and 2

nd
 grade models for 

tocopherol 

Figure J.154 and J.155 expose the prior and posterior parameter distribution exemplary for 

one parameter of the 1st and 2nd grade model. It has to be emphasized, how drastically the 

Bayesian method applied here reduces the uncertainty (variance) of predictions by extracting 

the information on model parameterization contained in the experimental data. The figures 

are similar for all other model parameters and are therefore not exposed in that work due to 

space reasons. 

Figure J.158 to J.161 show for both models and validation criteria that the experimental 

values are in very good support of the posterior distribution. Thus, both models are validated 

beyond doubt with respect to the true underlying process to be modeled. It has to be 

emphasized here, that also the 1st grade model has been fit and analyzed regarding its 

performance on the orthogonal CCD data. Therefore it can be stated here, that by means of 

Bayesian analysis the 1st grade model is sufficient to model the true underlying process. 

Although the 2nd grade model provides more accuracy due to two additional model terms, this 

effect and interection can be considered as being not crucial for an appropriate modeling of 

Model Distribution                                                                                                                                    Model term Validation 

 parameter ß0 ß1 ß2 ß3 ß4 ß11 ß22 ß33 ß44 ß12 ß13 ß14 ß23 ß24 ß34

1st grade Mode 22,55 -14,92 -2,25 6,47 Yes

Variance 0,11 0,14 0,13 0,14

2nd grade Mode 22,50 -14,99 -2,23 6,53 2,05 -1,56 Yes

Variance 0,11 0,14 0,13 0,14 0,27 0,13
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the true underlying process. Thus, the additional experimental effort of the orthogonal CCD, 

which is necessary for identification of that model terms, is not essential in that contex and 

could be saved in modeling and optimization of similar and / or scaled-up SPD processes. 

The squared effect of the evaporator temperature on tocopherol, as well as the interaction 

between condenser and evaporator temperature, are statistically significant but play a minor 

role compared to the other various effects of the process variables on this target value. 

 

Table 5.35: Relative model probability estimation of tocopherol models 

 

Table 5.36: Likelihood values of exp. data for model of 1
st
 and 2

nd
 grade tocopherol  

Table 5.35 shows, that by means of Bayesian relative model probability estimation, the 2nd 

grade model is significantly more probable. This is no contradiction to the fact that both 

models are valid as the latter evaluates the general suitability of a model irrespective of 

competing models. A more complex 2nd grade model exhibits a higher probability by nature, 

as it approaches the experimental data much better due to a higher flexibility. This aspect is 

represented by the likelihood value which is much larger for the 2nd grade model and 

contributes almost exclusively to the difference in model probability (the ratio of prior 

probability and posterior ordinate is almost equal for both models). By that observation, 

again, the special importance of the candidate vector choice and likelihood in relative model 

probability estimation is underlined. Table 5.36 exposes the contribution of the single process 

settings to the overall likelihood of the experimental data set with respect to the candidate 

vector. It can be observed here, that experimental settings from all parts of the orthogonal 

CCD contribute to the higher likelihood of the 2nd grade model. 

Probabilities of

candidate vector

Log

likelihood

Log prior

probability

Log posterior

ordinate

Model grade 1 -38,48 -1,65 -1,61

Model grade 2 -33,31 -2,40 -2,43

Relative probability

Pmod 1/Pmod 2 
5,80*10-6

Exp. setting 1 2 3 4 5 6 7 8 9 10 11 12 13

Tocopherol [mg*100g -1 ] 10,92 1,12 15,67 1,08 44,01 32,22 46,78 36,12 8,94 0,96 16,06 15,19 44,19

Log likelihood  of Model grade 1 -0,47 -0,77 -0,43 -0,82 -0,81 -1,33 -0,43 -1,03 -1,05 -0,72 -0,41 -11,1 -0,88

candidate vector Model grade 2 -0,4 -1,35 -0,42 -0,47 -0,4 -0,58 -0,56 -0,47 -2,2 -0,4 -0,76 -8,11 -1,37

Exp. setting 14 15 16 17 18 19 20 21 22 23 24 25

Tocopherol [mg*100g
-1

] 29,11 44,05 31,02 23,86 18,63 0,99 44,08 17,11 24,51 34,1 1,82 21,29

Log likelihood  of Model grade 1 -0,41 -0,75 -0,78 -0,53 -1,58 -0,42 -0,41 -0,79 -0,51 -0,84 -10,7 -0,52

candidate vector Model grade 2 -0,58 -0,48 -0,48 -1,09 -0,78 -0,99 -0,73 -0,43 -0,42 -1,63 -7,79 -0,41
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Table 5.37: Optimum process settings for tocopherol (Bayesian model parameterization) 

Table 5.37 exhibits the process settings (within the range of analysis) which maximize the 

tocopherol content with respect to the 1st and 2nd grade model. For these process settings 

also the simulation and experimental results are exposed. The tocopherol content should be 

as high as possible due to its special nutritional and antioxidant properties.  It can be 

assumed, that there is a broad range of alternative process settings at which acceptable 

tocopherol contents can be realized. This is of special importance for optimization towards 

multiple objectives which are characterized by conflicts regarding process variable 

adjustment. The existence of alternative process settings for each objective allows for 

compromises in process optimization towards multiple goals. 

Figure J.156 and J.157 show the posterior distribution of experimental observations at the 

optimum process setting for the 1st and 2nd grade model.  The experimental values (compare 

Table 5.37) are in very good support of that distribution which, again, underlines model 

validity and prediction accuracy.  

Figure J.152 and J.153 graphically expose the dynamics of the 1st grade model (for a 

constant optimum pump power) and the 2nd grade model (for a constant optimum stirrer 

rotation). Such graphics aid the identification of process settings in process optimization 

towards multiple goals.   

5.2.2.4 Conclusions for the process optimization towards multiple target values 

Table 5.29, 5.33 and 5.37 exhibt the process settings at which an optimization (maximization 

or minimization) of the respective target values can be realized. For the rancimat and acid 

value, the stirrer rotation is a statistically insignificant process variable, which therefore can 

be adjusted to the minimum value to increase the tocopherol content. The adjustment of the 

condenser temperature is (within the range of analysis) not statistically relevant for the 

rancimat value and exhibits (according to the 2nd grade model) only a comparatively small 

influence on the tocopherol content by interaction with the evaporator temperature (compare 

corresponding model term in Table 5.34). Regarding this interaction, the change in the 

tocopherol content, which is caused by a switch of the condenser temperature from minimum 

to maximum (and vice versa), is considered as being negligible with respect to the dimension 

of the totel tocopherol content and the fact, that there are no mandatory threshold levels for 

this quality parameter. Thus, the condenser temperature can be minimized to serve the 

important objective of acid value minimization (mandatory quality parameter with threshold 

level at 0,5 mg KOH*g-1). The condenser temperature exhibits the same dynamics in the 1st 

              Optimum setting  Max. tocopherol [mg*100g -1 ]

Process

variable
X1 X2 X3 X4 Simulation Experiment

Model grade 1  Free -1 -1 1 46,19 45,42

Model grade 2 1 -1 -1 1 48,22 46,78
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and 2nd grade model for the acid value. Its lowering also lowers the acid value. In contrast to 

that, these models yield an opposite optimum setting for the pump power, which is subject to 

the fact, that the 2nd grade model includes an additional quadratic effect of the evaporator 

temperature, which influences also the optimum setting of other process variables due to 

complex interactions. As far as the adjustment of the pump power is concerned, a conflict in 

objectives between the acid value minimization (compare 2nd grade model) on the one hand 

and the rancimat value and tocopherol content on the other hand can be observed. 

Decreasing the pump power positively affects the acid value but negatively affects tocopherol 

content and rancimat value. The opposite situation occurs for the evaporator temperature. 

Thus, the adjustment of pump power and evaporator temperature has to compromise 

between different objectives. The exact choice has to be subject to further analysis with 

respect to the individual needs and requirements of the SPD operator or customer, such as 

individual quality requirements (final application of the product), energetic aspects and 

process duration.  

For the actual situation and process at hand, the pump power would be adjusted to the mean 

of the analysis range and the evaporator temperature to the acid value optimum. At this 

adjustment, an acid value of 0,41 mg KOH*g-1 is predicted by the 2nd grade model  (below 

the threshold level of 0,5 mg KOH*g-1) as well as a rancimat value of 9,1 h by the 1st grade 

model (above threshold level of 8 h). An adjustment of the pump power to the maximum 

value would optimize the rancimat value but would also lead to an acid value of 0,52 mg 

KOH*g-1 according to the 2nd grade model (above the threshold value).  

The opposite situation would occur for the adjustment of the pump power to the minimum. 

On the one hand this situation would optimize the acid value but on the other hand would 

also result in a rancimat value of 7,4 h according to the 1st grade model (evaporator 

temperature adjusted to the optimum for the acid value as mentioned above).  
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6 Summary and Outlook 

6.1 Summary 

According to the actual state of research, the heat induced formation of 3-MCPD-FE and 

related substances during the deodorization process of edible oils is a seriouse problem due 

to significant carcinogenic and mutagenic properties of these substances. This is especially 

true for refined palm oil, which exhibits critical concentrations and is also of special economic 

importance for the worldwide food industry.  

Actually, the optimization and modification of the refining process is the only alternative to 

reduce the contaminant formation at present, as the control of the precursor concentrations 

(e.g. chlorinated residues of pesticides, mono- and diglycerides) during the crude oil 

production is not possible yet due to divergent economic and political interests of the 

producers (main producing countries, respectively). Among the different stages of the 

refining process the modification and optimization of the deodorization process is the most 

promising approach to lower the heat induced formation of 3-MCPD-FE and related 

substances below the recommended threshold value.  

In this work, the Short Path Distillation (SPD) proved to be a sophisticated and highly 

effective deodorization technology, which is capable of coping with the heat induced 

contaminant formation while ensuring the basic quality standards of refined palm oil. Actually, 

the contaminant formation could be reduced close to the limit of detection, while ensuring the 

threshold levels for acid and rancimat value. This could be realized along with a 

comparatively high total tocopherol content in the refined edible palm oil. A major reason for 

that capability are the special technological characteristics of SPD, which are the operation at 

fine vacuum, the evaporation of volatile compounds from a thin and constantly renewed 

liquid film, as well as the efficient separation of these volatile compounds via a short path to 

the axially arranged condenser unit.  

The Response Surface Methodology (RSM) is a sophisticated statistic approach to derive 

linear process models for process optimization from a set of mathematically designed 

experiments (SDoE) which maximize the information on the true underlying process at a 

minimum of experimental effort (costs). This method could be successfully implemented and 

studied for a literature example in a first step. Afterwards it could be successfully transfered 

and applied to the real life problem of SPD optimization. Statistically significant models could 

be identified for the major oil quality criteria acid value, rancimat value and tocopherol 

content. The measured concentrations of 3-MCPD and related substances were mostly close 

to the limit of detection or within the standard deviation of experimentation. Thus, a further 

model based minimization was not possible and necessary here.  

The Bayesian methodology for model fit, discrimination, validation and analysis could be 

successfully implemented and studied for a simple growth model example. This approach 
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ensured, that the special features of this methodology, as well as the interpretation of results 

and dynamics, are correctly understood and thus could be efficiently applied to the real life 

problem of SPD optimization. Consequently, these initial studies (example growth model) 

were logically structured into six basic questions / problems (compare chapter 3.2.1 and 

5.2.1), which are essential for a proper method validation and application.  

It can be stated here, that due to the successful accomplishment of these initial tasks a 

proper basis for an efficient application of the methodology to the real life problem of SPD 

optimization could be provided. Thus, a set of validated process models could be provided, 

which enable the identification of process settings at which single and multiple objectives of 

process optimization could be successfully achieved and experimentally proofed.   

Additionally, the Bayesian methodology provided important probibablistic measures for the 

decision among model alternatives and the uncertainty of results / predictions. These 

features especially enable the evaluation and reduction of risks and costs. Therefore it can 

be stated in summary, that this thesis provides a coherent stochastic approach of model 

generation (RSM) and analysis (Bayesian methodology) by which a comprehensive analysis, 

assessment and optimization of the SPD process could be achieved. By these means, 

mathematical evidence for the suitability of the SPD to control contaminant formation, while 

ensuring other major quality parameters, could be provided. 

Finally a program / algorithm could be developed, that also enables a convenient application 

of this coherent stochastic process optimization method to any kind of other technological 

processes. 

6.2 Outlook 

In the near future the awareness of the consumer for healthy foods will further increase due 

to a global trend towards a sustainable production of healthy foods and an increased focus of 

science, politics and media on this topic.  

This development is additionally enforced by an increasing political and legal pressure in this 

context. Thus it is expected, that the application of innovative and mild refining methods for 

the production of healthy and contaminent free edible plant oils will be intensified by the 

producers. This is especially true for palm oil, as it is indispensable for the world wide food 

industry due to its unique technological properties and crop yield, but also exhibits a high 

potential of contaminant formation at conventional deodorization conditions.  

The SPD proved to be the most suitable method in this context. Actually, an industrial large 

scale application of this technology is primaryly limited to high-value products, such as 

pharmaceuticals, due to the high investment costs. Nevertheless, it is expected for the near 

future that also the production of refined bulk products, such as palm oil, will switch over to 

SPD due to a significantly increasing public, political and legal pressure regarding health and 

quality standards. Also increasing energy costs, as well as an increasing awarenesss for 
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energy consumption and climate change (concomitant with a corresponding legislation), will 

force the refining industry to switch over from highly energy consuming conventional 

deodorization processes to SPD. Thus, a coherent model based analysis and optimization of 

SPD is a future-oriented approach that will gain increasingly more scientific attention.  

In general, model-based process and product optimization approaches will gain more 

attention and importance also in the industrial food production. A major reason is the 

increasing global competition and an increasing consumer demand for cheap and high-

quality products. This inevitably leads to an increased demand for a systematical 

understanding of inner process dynamics and a precise identification of process settings that 

optimize costs and quality. These demands cannot be fulfilled by trial-and-error approaches 

anymore, but require coherent and self-contained mathematical approaches that provide a 

maximum of information at a minimum of experimental effort (costs).  

The method of choice in this context is the application of RSM (SDoE, respectively), as it is a 

so-called black-box approach that does not require a deeper understanding of physico-

chemical processes. At the moment a major drawback for a widely and routinely use of that 

method in the food industry is the simple fact, that there is still little affinity to mathematical 

R&D approaches in that industrial sector. But this situation will be inevitably overcome by the 

simple need to be competitive regarding prices and quality in a globalized market. Thus, it 

can be stated here, that it is quite a future-oriented approach to treat product and process 

optimization problems in the food production by means of RSM (SDoE, respectively).  

The Bayesian approach towards model fit, discrimination and analysis is highly sophisticated, 

as it provides an estimation of the true underlying process with respect to the error of 

experimentation, as well as uncertainty measures of results and predictions. This enables a 

coherent assessment of risks and costs, which is inevitable for a modern R&D-management.  

In contrast, conventional approaches (such as RLS-methods) only provide modelling of the 

experimental data, which might significantly diverge from the true underlying process due to 

experimentation noise (especially in case of few repetitions of experimental settings). Thus, 

Bayesian analysis can be considered as a highly efficient process and product optimization 

tool even in the R&D of the food industry.  

This is especially true with respect to the above mentioned future requirements of food R&D 

and production in a globalized market. Nevertheless, a major drawback for a standard 

application is the high mathematical complexity, as well as the high computational effort. This 

is especially true for the food industry for the reasons mentioned above. To ease the 

practical application, future research should focus on the design of easily handable tools that 

do not require deeper mathematical knowledge, as well as on the reduction of the 

computational effort (time consumption). The latter is basically caused by the application of 

Markov-Chain-Monte-Carlo approaches, which are based on random sampling / random 

processes. In this context the method performance depends on the sample size, which in 
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turn determins the computation time. Therefore future research should also focus on the 

acceleration of Markov-Chain convergence and the generation of more representative 

samples at lower sample sizes.  

In this thesis process modeling and optimization was achieved based on the model with the 

higher probability. Nevertheless all competing models exhibit a certain probability of being 

true. This fact is considered in Bayesian model averaging approaches that generate a 

concerted simulation, which is proportionally mixed according to the relative probability of the 

competing models. Further research should therefore also focus on the implementation of a 

Bayesian model averaging approach, and evaluation of the same, with respect to the 

approach applied in this work. In this context it is of special interest, if the improved 

preciseness justifies the additional computational and programming effort. 
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Annex A – Pictures of SPD process and plant  
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Figure A.1: Basic design of SPD evaporator unit with integrated condenser 
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Figure A.2: Technical scale SPD evaporator unit (glas) with integrated spiral condenser 
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Figure A.3: Vapor pressure curves of fatty acids 

 

Figure A.4: Setup of SPD plant VKL-70-5 (VTA GmbH, Niederwinkling) 
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Figure A.5: Setup scheme of SPD plant VKL-70-5 (VTA GmbH, Niederwinkling) 

 

 

Figure A.6: Layer thickness of palm oil on the the evaporator wall 
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Figure A.7: Solid condensat refined in a SPD plant at high (left) and low (right) evaporation temperatures 

 

Figure A.8: Blistering within palm oil when entering an SPD plant with a high inflow speed  
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Annex B – Technical description of MATLAB functions  

 

RSM literature example 

Derivation of 1
st

 grade model (implementation literature example): 

A model of 1
st
 grade is derived here by implementation of an example from the literature. The model is derived as 

exposed in chapter 2.3.2.1.3 by application of a full factorial design. The determination of parameter significances 

and model validation is achieved according to the methods applied in the literature example and as exposed in 

chapter 2.3.2.1.3.  

Experimental_Design_Model_1
st
_Grade_Example_Literature.m : 

This function calculates a full and fractional factorial design (normalized calculation matrix and non-normalized 

experimental setup) for the determination of a model of 1
st
 grade. This file has to be run first for an RSM based on 

a model of 1
st
 grade. RSM_Short_Path_Model_1st_Grade.m thus requires to run this file first (in 

RSM_Short_Path_Model_2nd_Grade.m  the setup of the experimental design is already included). 

 3-6: The process variable range which is subject to analysis is defined. 

 8: The exponent m / m-q for the trial number calculation for full / fractional design is defined with m being 

the total number of process variables and q the fractional factor. 

 10-125: The setup of the trial and calculation matrix as well as the notation of effects referring to the 

columns of these matrices is achieved for both a full and fractional design (defined by the value of z). 

 19-23: The matrix Eff is introduced that contains the notation of the variable effects and interactions 

referring to the corresponding columns in the calculation matrix (compare matrix T_M below). 

 25-38: Definition of normalized process variable settings of the independent process variables for the 

trials of the experimental design. For the full factorial design these process variable settings are referred 

to as kernel for the design of next higher order. The kernel is part of the total calculation matrix T_M for 

the parameters of all model terms (single effects, interactions). 

 41-91: Calculation of the normalized settings of the interactions for the referring normalized process 

variable settings of the single trials (rows) in the matrix “Kernel”. These settings for the interactions are 

saved to the matrix “I_A” and essential part of the calculation matrix from which the model parameters 

are calculated with respect to the experimental results for the experimental trials also defined in that 

calculation matrix (compare matrix “Kernel” as part of calculation matrix). Also the notations of the 

interactions referring to the columns in “I_A” are defined in Vector “eff”. 

 96-106: Combination of dummy variable (for first term in the model equation), matrix “Kernel” 

(normalized settings of process variables) and matrix “I_A” (settings for the interactions) are combined 

yielding the calculation matrix “T_M”. Saving calculation matrix and referring notations of effects to the 

workspace. 

 110-123: The non-normalized experimental settings are calculated and saved to the workspace.  

 129-140: Here the effects of the fractional design are defined that are set equal. The interactions of 

highest order of the 2
m-q

-design are considered as being negligible and set equal to the additional 

variables of the corresponding 2
m
-design. 

 143-184: Identification of the trials of the 2
m
-design that form the corresponding 2

m-q
-designs. Setup of 

these fractional designs which together form the 2
m
-design. 

 

RSM_Model_1
st
_Grade_Example_Literature.m: 

Requires output from file “Experimental_Design_Model_1
st
_Grade_Example_Literature.m” which thus has to be 

run before. 

 5: Definition of whether a full and / or fractional factorial design has to be set up. 

 8-13: The critical values for the Bartlett-Criterion are defined. According to chapter 2.3.2.1.3 the Bartlett-

Criterion is a criterion to check if the mean summed squares of the negligible model terms are a valid 

estimate for the error variance of experimentation. For validity the criterion has to be smaller than the 
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critical value. The Bartlett-Criterion and the referring critical value is displayed in the command window 

after each calculation cycle in order to check the procedure validity. 

 16-18: The critical values for the F-Test are defined. By application of that test for each model term that 

is considered as being essential the relative variance is calculated. If that value for the relative variance 

is larger than the referring critical value of the F-distribution then the parameter / model term is significant 

and remains in the equation (otherwise not). The relative variances as well as the critical F-values are 

displayed in the command window after each calculation cycle to check which parameters / model terms 

are significant. 

 20-21: Here the negligible (pos_1) and considered (pos_2) model parameters are defined. The negligible 

parameters are applied for the estimation of the error variance and calculation of the Bartlett-Criterion. At 

first the interactions of highest order / interactions that are considered to be negligible are chosen and 

the program is run. In the command window then the relative variance and critical values for the F-Test 

are displayed to identify significant parameters / model terms. The insignificant parameters with the 

lowest error variance are then incorporated into the negligible model terms in vector “pos_1” (also 

correct “pos_2” in this sense!) and the relative variances of the remaining model terms in “pos_2” are 

calculated again by running the program. This procedure is repeated until only significant model terms 

remain. 

 23-26: Definition of the experimental data for four trials referring to the order and definition of 

experiments in matrix “T_M”. 

 31-38: Tr_1 contains the numbers of the experiments in T_M which are subject to further analysis 

dependent on whether a full or fractional design is applied (defined by “mode_design”). 

 42-44: For each process setting calculation of the mean from all four experiment repetitions. 

 48-59: Calculation of the parameter estimates for all model terms of the model of 1
st
 grade. 

 64-69: Calculation of the summed squares of the negligible model terms and the average of these 

summed squares. These values are required for calculation of the Bartlett-Criterion. 

 73-77: Calculation of the log summed squares of the negligible model terms. This value is required for 

calculation of the Bartlett-Criterion.  

 78-83: Calculation of Bartlett-Criterion. Display of Bartlett-Criterion, degrees of freedom and critical 

values in command window to check if the average of the summed squares of the negligible parameters 

(calculated in line 64-69) is a valid estimate of the error variance which then can be applied for 

calculation of the relative variances of the parameter terms. 

 87-91: Calculation of the summed squares of the considered / non-negligible model terms. 

 93-98: Calculation of the relative variances of the considered / non-negligible parameter terms which are 

applied for determination of model term significance via F-test. 

 100-107: Display of relative variances, degrees of freedom, and critical value for the F-test. For 

significant model terms / parameters the relative variance value is larger than the critical value. 

 109-118: Setup of parameter vector containing all parameter values for the significant model terms. For 

non-significant model terms the parameter value is set to zero. The order of parameters in “para_vec” 

follows the order and notations in vector “Order_and_Specifications_of_Effects_Full_Design_Large” 

which has been saved to the workspace before. 

 119: Calling function “Validation_Model_1st_Grade_Example_Literature.m” in which the model is further 

analyzed. 

 

Validation_Model_1st_Grade_Example_Literature.m: 

 5-14: Calculation of the model estimates for the different process variable settings of the experimental 

trials in matrix “T_M” (experimental design applied). Calculation of the summed squares QSL for model 

validation.  

 16-23: Calculation of the summed squares QSF for model validation.  

 25: Calculation of the relative variance for model validation via F-test. The model is valid if the relative 

variance is smaller or equal to the critical F-value. 
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Derivation of 2
nd

 grade model (implementation of literature example): 

A model of 2
nd

 grade is derived here by implementation of an example from the literature. The model is derived as 

exposed in chapter 2.3.2.1.4 by application of an orthogonal central composite design. The determination of 

parameter significances and model validation is achieved according to the methods applied in the literature 

example and as exposed in chapter 2.3.2.1.4. 

RSM_Model_2nd_Grade_Example_Literature.m: 

 7-9: The critical values for the F-Test are defined. By application of that test for each model term that is 

considered as being essential the relative variance is calculated. If that value for the relative variance is 

larger than the referring critical value of the F-distribution then the parameter / model term is significant 

and remains in the equation (otherwise not). The relative variances as well as the critical F-values are 

displayed in the command window after each calculation cycle to check which parameters / model terms 

are significant. 

 11-12: Here the negligible (pos_1) and considered (pos_2) model parameters are defined. The negligible 

parameters are applied for the estimation of the error variance and calculation of the Bartlett-Criterion. At 

first the interactions of highest order / interactions that are considered to be negligible are chosen and 

the program is run. In the command window then the relative variance and critical values for the F-Test 

are displayed to identify significant parameters / model terms. The insignificant parameters with the 

lowest error variance are then incorporated into the negligible model terms in vector “pos_1” (also 

correct “pos_2” in this sense!) and the relative variances of the remaining model terms in “pos_2” are 

calculated again by running the program. This procedure is repeated until only significant model terms 

remain. 

 15-20: The critical values for the Bartlett-Criterion are defined. The Bartlett-Criterion is a criterion to 

check if the mean summed squares are a valid estimate for the variance of the error of experimentation. 

For validity the criterion M has to be smaller than the critical value. The Bartlett-Criterion and the 

referring critical value is displayed in the command window after each calculation cycle in order to check 

the procedure validity. 

 23: Experimental data according the to the order of experiments in matrix “T_M” (rows). 

 25-36: Definition of minimum, maximum and range to be investigated for the process variables. 

 38-43: Definition of the values for the characteristic constants of the orthogonal central composite design 

which are essential for further calculations and analysis such as calculation of parameter estimates. 

 49-62: Definition of normalized process variable settings of the independent process variables for the 

trials of the full factorial experimental design which is the kernel orthogonal central composite design 

applied here. The kernel is part of the total calculation matrix T_M for the parameters of all model terms 

(single effects, quadratic effects, interactions). 

 65-73: Definition of the normalized process variable settings for the star points. 

 76: Definition of the normalized process variable setting for the center point. 

 80: Combining normalized process variable settings for the kernel (full factorial design, star points and 

center point). The resulting matrix actually is the trial matrix that only contains the normalized settings of 

the process variables (the single linear effects respectively) for the experiments (rows). 

 84-93: Calculation of the normalized settings of the interactions for the referring normalized process 

variable settings of the single trials (rows). These settings for the interactions are saved to the matrix 

“I_A_1” and are essential part of the calculation matrix from which the model parameters are calculated 

with respect to the experimental results for the experimental trials also defined in that calculation matrix. 

 96-101: Calculation of the normalized settings of the squared effects for the referring normalized process 

variable settings of the single trials (rows). These settings for the interactions are saved to the matrix 

“C_E” and are essential part of the calculation matrix from which the model parameters are calculated 

with respect to the experimental results for the experimental trials also defined in that calculation matrix. 

 105: Setup of the calculation matrix “T_M” that shows for each experimental trial the settings of the 

process variables / model terms. Setup of “T_M” by combination of its parts (single effects, interactions, 

squared effects) that have been calculated above. 

 107-114: Calculation of the characteristic constants c and m for calculation of the parameter estimates. 

 118-147: Calculation and display (in workspace) of model parameters. 

 153-168: Calculation of the summed squares of the model terms. 

 170-175: Calculation of the average of the summed squares referring to the negligible model terms. This 

value is an estimate of the error variance if the Bartlett-Criterion is fulfilled. 
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 177-181: Calculation of the log summed squares of the negligible model terms. This value is required for 

calculation of the Bartlett-Criterion.  

 182-187: Calculation of Bartlett-Criterion. Display of Bartlett-Criterion, degrees of freedom and critical 

values in command window to check if the average of the summed squares of the negligible parameters 

(calculated in line 170-175) is a valid estimate of the error variance which then can be applied for 

calculation of the relative variances of the parameter terms. 

 189-192: Calculation of the relative variances of the considered / non-negligible parameter terms which 

are applied for determination of model term significance via F-test. 

 193-198: Display of relative variances, degrees of freedom, and critical value for the F-test. For 

significant model terms / parameters the relative variance value is larger than the critical value. 

 138-147: Setup of parameter vector containing all parameter values for the significant model terms. For 

non-significant model terms the parameter value is set to zero.  

 216-254: In this section significant parameters are identified from the relative variances by application of 

an error variance estimate that is calculated with respect to the assumption that the model is adequate. 

This section has to be activated when this method is applied. The preceding method (estimation of error 

variance from negligible model terms) does not have to be inactivated as its results for error variance 

and relative variance of parameters are overwritten by following methods. 

 216-224: Calculation of model estimates / solutions for each experimental process variable setting by 

application of all model terms. 

 226-236: Calculation of the error variance estimate from the model estimates / solutions and the referring 

experimental observations. 

 233-236: Calculation of the relative variance for each model term with respect to the error variance 

estimate and the summed squares of the model terms. 

 238-241: Display of relative variance and critical value of an F-Test to determine significant parameters / 

model terms. 

 243-254: Sorting out significant parameters / model terms. Position and value of the parameter / model 

term are saved to the vectors “pos” and “para_vec”. 

 259-295: In this section significant parameters are not identified from the relative variance by a F-Test 

but alternatively from the individual confidence intervals by a t-Test. The error variance estimate applied 

here is determined by one of the estimation methods implemented above (negligible model terms or 

assumption of model adequacy) dependent on whether the latter method is activated or not. This section 

has to be activated if this method is applied. 

 259-274: Calculation of the variances of the parameters / model terms. 

 275: Definition of the critical value for the t-Test. 

 277-282: Calculation of the individual confidence interval values for the parameters / model terms which 

are compared to the critical value as a criterion for decision on significance (via t-Test). 

 283-295: Sorting out significant parameters. Position and value of significant parameters are saved to 

the vectors “para_vec” and “pos”. 

 

Analysis of 2
nd

 grade model: 

Analysis_Model_2
nd

_Grade_Example_Script.m: 

 4-12: Definition of minimum and maximum of the normalized variable range which is subject to modeling 

and analysis via RSM. In non-transformed x-variables. 

 14-21: Definition of the corner points of the range of process variable settings (normalized) that is subject 

to modeling by RSM and the experimental design respectively. In this three-dimensional case these are 

the corner points of the cube representing the full factorial design for three process variables. 

 23-48: Plot of the border lines of the spectrum / cube of modeling and analysis. 

 48-59: Axes labeling, definition of title and legend. 

 62-64: Definition of the matrices and vectors in the matrix form of the model equation given by Eq. 5.4. 

 65: Calculation of the extremum variable setting according to Eq. 5.7. 

 66: Calculation of eigenvalue Matrix  Λ and normalized eigenvector matrix M. 

 68-69: Calculation of function value from non-transformed coordinates at corner point P1 and extremum 

coordinates. 

 71-76: Plot of extremum in non-transformed coordinates / coordinate system. 

 78-84: Definition of the center points of the side planes of the cube representing the area of process 

variable settings that are subject to analysis / modeling. 
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 86-89: Definition of the direction vectors of the axes of the non-transformed coordinate system. 

 93-154: For each z-axis the intersection with each side plane of the cube (range of analysis) is 

calculated. Also read in this context file / program description “test.m”. 

 145-151: For each z-axis and side plane is checked if the intersection is located on the side plane of the 

cube. 

 157-170: Plot of intersections and z-axes into the figure in x-coordinates. 

 173-218: The direction of the z-axes in the x-coordinate system are checked and labeled in z-

coordinates. In other words: Until now just the origin of the z-coordinate system and the intersections 

with the cube side planes are known and can be plot (transformed into x-coordinates) into the x-

coordinate system / figure. It is not known so far in which direction of the z-axes which are plot into the x-

coordinate system the value of z decreases and increases. This has to be checked by calculating the 

direction vector between origin of z-coordinate system and intersections in z-coordinates. 

 173-190: For each intersection of z-axis and cube side plane the direction vector in z-coordinates from 

intersection to the origin of the z-coordinate system is calculated to identify the axes directions. 

 192-218: To each intersection of z-axis and cube side plane the referring z-axis direction (algebraic sign 

of z-values on this side of the z-coordinate system origin) is plot into the figure. 

 220-245: For each intersection of a z-axis with a cube side plane the x- and z-coordinates as well as the 

referring function / target value is calculated. The latter is plot into the figure right next to the referring 

intersection. This is essential to identify how the target values depend on z-coordinate variation in a 

certain direction. 

 249-292: For further analysis the Z2-Z3-plane is plot with referring target values into the x-coordinate 

system. The point within that plane at which the target value reaches a maximum is calculated and plot 

with x-coordinates and function value into the figure. 

 296-361: The model is plot for a defined target value (either extremum (origin of z-coordinate system) or 

maximum within range of analysis can be chosen in line 337-338) in z-variables. The plot shows all 

process variable settings in z-coordinates at which the referring target value is reached. 

 296-329: For the range of normalized x-coordinates which is subject to analysis the corresponding range 

of z-coordinates is calculated. The latter is required to limit the analysis / plot of the canonic equation 

form to the range of practical relevance. 

 332-345: Calculation of the z-coordinates of the canonic function form for a defined target value 

(difference between target value and extremum respectively). 

 346-361: 3-D plot of the figure in the z-coordinate system. 

 

test.m: 

 In this file the matrix algebra method applied here to calculate the intersection between a plane and axis 

in a three-dimensional room is verified by a simple example in which the intersection coordinates are 

known before and have to be recovered from the parameters characterizing axis and plane (direction 

vectors, point coordinates). The calculation procedure is described sufficiently in the file. Thus no further 

explanations are required here. 

 

RSM Short-Path-Distillation 

The following program / algorithms achieve the derivation of linear stochastic process models of 1
st
 and 2

nd
 grade 

according to the theory exposed in chapter 2.3.2.1.3 and 2.3.2.1.4. The process models derived here are then 

subject to Bayesian model fit, discrimination, validation and analysis. 

Experimental_Design_Model_1
st
_Grade.m : 

This function calculates a full and fractional factorial design (normalized calculation matrix and non-normalized 

experimental setup) for the determination of a model of 1
st
 grade. This file has to be run first for an RSM based on 

a model of 1
st
 grade. RSM_Short_Path_Model_1st_Grade.m thus requires to run this file first (in 

RSM_Short_Path_Model_2nd_Grade.m the setup of the experimental design is already included). 

 3-7: The process variable range which is subject to analysis is defined. 

 9: The exponent m / m-q for the trial number calculation for full / fractional design is defined with m being 

the total number of process variables and q the fractional factor. 
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 11-127: The setup of the trial and calculation matrix as well as the notation of effects referring to the 

columns of these matrices is achieved for both a full and fractional design (defined by the value of z). 

 20-25: The matrix Eff is introduced that contains the notation of the variable effects and interactions 

referring to the corresponding columns in the calculation matrix (compare matrix T_M below). 

 27-40: Definition of normalized process variable settings of the independent process variables for the 

trials of the experimental design. For the full factorial design these process variable settings are referred 

to as kernel for the design of next higher order. The kernel is part of the total calculation matrix T_M for 

the parameters of all model terms (single effects, interactions). 

 43-93: Calculation of the normalized settings of the interactions for the referring normalized process 

variable settings of the single trials (rows) in the matrix “kernel”. These settings for the interactions are 

saved to the matrix “I_A” and are essential part of the calculation matrix from which the model 

parameters are calculated with respect to the experimental results for the experimental trials also defined 

in that calculation matrix (compare matrix “Kernel” as part of calculation matrix). Also the notations of the 

interactions referring to the columns in “I_A” are defined in Vector “eff”. 

 98-108: Combination of dummy variable (for first term in the model equation), matrix “Kernel” 

(normalized settings of process variables) and matrix “I_A” (settings for the interactions) are combined 

yielding the calculation matrix “T_M”. Saving calculation matrix and referring notations of effects to the 

workspace. 

 112-125: The non-normalized experimental settings are calculated and saved to the workspace.  

 131-142: Here the effects of the fractional design are defined that are set equal. The interactions of 

highest order of the 2
m-q

-design are considered as being negligible and set equal to the additional 

variables of the corresponding 2
m
-design. 

 145-186: Identification of the trials of the 2
m
-design that form the corresponding 2

m-q
-designs. Setup of 

these fractional designs which together form the 2
m
-design. 

 

RSM_Short_Path_Model_1
st
_Grade.m: 

Requires output from file “Experimental_Design_Model_1
st
_Grade.m” which therefore has to be run before. 

 5: Definition of either a full factorial or fractional factorial design is applied. 

 7-22: Definition of minimum, maximum and range to be investigated for the process variables. 

 25-30: The critical values for the Bartlett-Criterion are defined. The Bartlett-Criterion is a criterion to 

check if the mean summed squares are a valid estimate for the variance of the error of experimentation. 

For validity the criterion M has to be smaller than the critical value. The Bartlett-Criterion and the 

referring critical value is displayed in the command window after each calculation cycle in order to check 

the procedure validity. 

 33-35: The critical values for the F-Test are defined. By application of that test for each model term that 

is considered as being essential the relative variance is calculated. If that value for the relative variance 

is larger than the referring critical value of the F-distribution then the parameter / model term is significant 

and remains in the equation (otherwise not). The relative variances as well as the critical F-values are 

displayed in the command window after each calculation cycle to check which parameters / model terms 

are significant. 

 37-42: Here for each modeling approach (acid value, rancimat, peroxide value and tocopherols) the 

negligible (pos_1) and considered (pos_2) model parameters are defined. The negligible parameters are 

applied for the estimation of the error variance and calculation of the Bartlett-Criterion. At first the 

interactions of highest order / interactions that are considered to be negligible are chosen and the 

program is run. In the command window then the relative variance and critical values for the F-Test are 

displayed to identify significant parameters / model terms. The insignificant parameters with the lowest 

error variance are then incorporated into the negligible model terms in vector “pos_1” (also correct 

“pos_2” in this sense!) and the relative variances of the remaining model terms in “pos_2” are calculated 

again by running the program. This procedure is repeated until only significant model terms remain. 

 44-51: Definition of the experimental data for two trials referring to the order and definition of 

experiments in matrix “T_M”. 

 53-59: Tr_1 contains the numbers of the experiments in T_M which are subject to further analysis 

dependent on whether a full or fractional design is applied (defined by “mode_design”). 

 61-63: Definition of experimental values that are deleted due to a reasonable outlier. 

 77-89: Calculation of the parameter estimates for all model terms of the model of 1
st
 grade. 
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 93-98: Calculation of the summed squares of the negligible model terms and the average of these 

summed squares. These values are required for calculation of the Bartlett-Criterion. 

 102-106: Calculation of the log summed squares of the negligible model terms. This value is required for 

calculation of the Bartlett-Criterion.  

 107-112: Calculation of Bartlett-Criterion. Display of Bartlett-Criterion, degrees of freedom and critical 

values in command window to check if the average of the summed squares of the negligible parameters 

(calculated in line 93-98) is a valid estimate of the error variance which then can be applied for 

calculation of the relative variances of the parameter terms. 

 116-120: Calculation of the summed squares of the considered / non-negligible model terms. 

 122-127: Calculation of the relative variances of the considered / non-negligible parameter terms which 

are applied for determination of model term significance via F-test. 

 128-136: Display of relative variances, degrees of freedom, and critical value for the F-test. For 

significant model terms / parameters the relative variance value is larger than the critical value. 

 138-147: Setup of parameter vector containing all parameter values for the significant model terms. For 

non-significant model terms the parameter value is set to zero. The order of parameters in “para_vec” 

follows the order and notations in vector “Order_and_Specifications_of_Effects_Full_Design_Large” 

which has been saved to the workspace before. 

 148: Calling function “Analysis_Model_1st_Grade_Short_Path.m” in which the model is further analyzed. 

 

Analysis_Model_1st_Grade_Short_Path.m: 

 5-25: Calculation of the model estimates for the different process variable settings of the experimental 

trials in matrix “T_M” (experimental design applied). Calculation of the summed squares QSL for model 

validation. This is achieved with respect to experimental data that has been deleted as outlier. 

 27-38: Calculation of the summed squares QSF for model validation. This is achieved with respect to 

experimental data that has been deleted as outlier. 

 40: Calculation of the relative variance for model validation via F-test. The model is valid if the relative 

variance is smaller or equal to the critical F-value. 

 42-45: Definition of process variable spectrum and interval at which the function value is calculated for 

the three-dimensional function plot.  

 46: In case of more than two process variables in the function that is subject to the three-dimensional 

plot only two process variables stay variable while the others have to be fixed to a defined value. 

 47: For the process variables that are subject to the three-dimensional plot a two-dimensional grid is 

defined from the corresponding variable spectrum / interval (line 42-45). Each intersection of the grid is a 

point for which the coordinates vor the two process variables are saved. The grid is equal to the plane in 

the three-dimensional plot that is spanned by the coordinate axis of the referring process variables. 

Ensure to define the input and output in function “meshgrid” for the right process variables. 

 48-56: Calculation of the function value for each grid point / process variable coordinates. Ensure to 

activate the right function to be analyzed here and that the right process variables in the function stay 

variable while the others are fixed to a defined value.  

 58-72: Three dimensional plot of the function. Ensure to activate the corresponding axes labeling and 

title here. 

 75-77: Searching for the process variable setting at which the function value is minimized. To search for 

a maximum the function equation has to be multiplied by -1 in “Func_1st_Grade_Short_Path.m”. 

 

Func_1
st
_Grade_Short_Path.m: 

 3-9: The minimization routine “fminsearch” also proposes automatically process variable settings which 

are outside the normalized range of process settings that is subject to the design of experiments and 

process analysis. As the experimental data and all results derived from that are only valid within that 

variable range the extremum within that range has to be identified. Thus all proposals for the variable 

setting that are outside that range have to be limited to the corresponding limiting values. 

 11-16: Calculation of the function values for the proposed process variable setting. Saving the optimum 

values to the workspace. Ensure to activate the right model with the right algebraic notation here 

depending on whether a minimum or maximum shall be identified. Be aware that vector X contains the 

process variables of the model in numeric order. Therefore it might for example happen that in third 

place of vector X the setting for the forth process variable “pump power” is saved if the third process 

variable “stirrer rotation” is not significant with respect to the target / function value. 
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RSM_Short_Path_Model_2nd_Grade.m: 

 7-9: The critical values for the F-Test are defined. By application of that test for each model term that is 

considered as being essential the relative variance is calculated. If that value for the relative variance is 

larger than the referring critical value of the F-distribution then the parameter / model term is significant 

and remains in the equation (otherwise not). The relative variances as well as the critical F-values are 

displayed in the command window after each calculation cycle to check which parameters / model terms 

are significant. 

 11-16: Here the negligible (pos_1) and considered (pos_2) model parameters for the different modeling 

approaches (rancimat, tocopherol, acid value) are defined. The negligible parameters are applied for the 

estimation of the error variance and calculation of the Bartlett-Criterion. At first the interactions of highest 

order / interactions that are considered to be negligible are chosen and the program is run. In the 

command window then the relative variance and critical values for the F-Test are displayed to identify 

significant parameters / model terms. The insignificant parameters with the lowest error variance are 

then incorporated into the negligible model terms in vector “pos_1” (also correct “pos_2” in this sense!) 

and the relative variances of the remaining model terms in “pos_2” are calculated again by running the 

program. This procedure is repeated until only significant model terms remain. 

 19-24: The critical values for the Bartlett-Criterion are defined. The Bartlett-Criterion is a criterion to 

check if the mean summed squares are a valid estimate for the variance of the error of experimentation. 

For validity the criterion M has to be smaller than the critical value. The Bartlett-Criterion and the 

referring critical value is displayed in the command window after each calculation cycle in order to check 

the procedure validity. 

 27-32: Experimental data for the different target values / modeling approaches according to the order of 

experiments in matrix “T_M”. 

 37-38: Definition of experimental values that are sorted out as reasonable outliers. 

 40-50: Calculation of the vector “Y” that contains for each experimental setting the mean of all repetitions 

of that experiment with respect to reasonable outliers. 

 53-68: Definition of minimum, maximum and range to be investigated for the process variables. 

 70-75: Definition of the values for the characteristic constants of the orthogonal central composite design 

that are essential for further calculations and analysis such as calculation of parameter estimates. 

 81-94: Definition of normalized process variable settings of the independent process variables for the 

trials of the full factorial experimental design which is the kernel orthogonal central composite design 

applied here. The kernel is part of the total calculation matrix T_M for the parameters of all model terms 

(single effects, quadratic effects, interactions). 

 97-105: Definition of the normalized process variable settings for the star points. 

 108: Definition of the normalized process variable setting for the center point. 

 112: Combining normalized process variable settings for the kernel (full factorial design, star points and 

center point). The resulting matrix actually is the trial matrix that only contains the normalized settings of 

the process variables (the single linear effects respectively) for the experiments (rows). 

 115-124: Calculation of the normalized settings of the interactions for the referring normalized process 

variable settings of the single trials (rows). These settings for the interactions are saved to the matrix 

“I_A_1” and are essential part of the calculation matrix from which the model parameters are calculated 

with respect to the experimental results for the experimental trials also defined in that calculation matrix. 

 127-132: Calculation of the normalized settings of the squared effects for the referring normalized 

process variable settings of the single trials (rows). These settings for the interactions are saved to the 

matrix “C_E” and are essential part of the calculation matrix from which the model parameters are 

calculated with respect to the experimental results for the experimental trials also defined in that 

calculation matrix. 

 136: Setup of the calculation matrix “T_M” that shows for each experimental trial the settings of the 

process variables / model terms. Setup of “T_M” by combination of its parts (single effects, interactions, 

squared effects) that have been calculated above. 

 138-145: Calculation of the characteristic constants c and m for calculation of the parameter estimates. 

 149-178: Calculation and display (in workspace) of model parameters. 

 184-199: Calculation of the summed squares of the model terms. 

 201-206: Calculation of the average of the summed squares referring to the negligible model terms. This 

value is an estimate of the error variance if the Bartlett-Criterion is fulfilled. 
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 208-212: Calculation of the log summed squares of the negligible model terms. This value is required for 

calculation of the Bartlett-Criterion.  

 213-218: Calculation of Bartlett-Criterion. Display of Bartlett-Criterion, degrees of freedom and critical 

values in command window to check if the average of the summed squares of the negligible parameters 

(calculated in line 170-175) is a valid estimate of the error variance which then can be applied for 

calculation of the relative variances of the parameter terms. 

 220-223: Calculation of the relative variances of the considered / non-negligible parameter terms which 

are applied for determination of model term significance via F-test. 

 224-229: Display of relative variances, degrees of freedom, and critical value for the F-test. For 

significant model terms / parameters the relative variance value is larger than the critical value. 

 231-243: Setup of parameter vector containing all parameter values for the significant model terms. For 

non-significant model terms the parameter value is set to zero.  

 247-285: In this section significant parameters are identified from the relative variances by application of 

an error variance estimate that is calculated with respect to the assumption that the model is adequate. 

This section has to be activated when this method is applied. The preceding method (estimation of error 

variance from negligible model terms) does not have to be inactivated as its results for error variance 

and relative variance of parameters are overwritten by following methods. 

 247-255: Calculation of model estimates / solutions for each experimental process variable setting by 

application of all model terms. 

 257-262: Calculation of the error variance estimate from the model estimates / solutions and the referring 

experimental observations. 

 264-267: Calculation of the relative variance for each model term with respect to the error variance 

estimate and the summed squares of the model terms. 

 270-272: Display of relative variance and critical value of an F-Test to determine significant parameters / 

model terms. 

 274-285: Sorting out significant parameters / model terms. Position and value of the parameter / model 

term are saved to the vectors “pos” and “para_vec”. 

 289-321: In this section significant parameters are identified from the relative variances by application of 

an error variance estimate that is calculated from multiple realizations of an experiment. This section has 

to be activated when this method is applied. The preceding methods (estimation of error variance from 

negligible model terms and estimation of error variance with the assumption that the model is true) does 

not have to be inactivated as its results for error variance and relative variance of parameters are 

overwritten by following methods. 

 289-300: Calculation of the error variance from multiple realizations of the experimental setting. 

 302-305: Calculation of the relative variance of the model terms / parameters. 

 306-309: Display of relative variances and critical value. Saving relative variances to the workspace. 

 310-321: Sorting out significant parameters. Position and value of significant parameters are saved to 

the vectors “para_vec” and “pos”. 

 326-362: In this section significant parameters are not identified from the relative variance by a F-Test 

but alternatively from the individual confidence intervals by a t-Test.). The error variance estimate 

applied here is determined by one of the estimation methods implemented above (negligible model 

terms or assumption of model adequacy) dependent on whether the latter method is activated or not. 

This section has to be activated if this method is applied. 

 326-340: Calculation of the variances of the parameters / model terms. 

 242: Definition of the critical value for the t-Test. 

 344-348: Calculation of the individual confidence interval values for the parameters / model terms which 

are compared to the critical value as a criterion for decision on significance (via t-Test). 

 350-362: Sorting out significant parameters. Position and value of significant parameters are saved to 

the vectors “para_vec” and “pos”. 

 367: Calling function Analysis_Model_2nd_Grade_Short_Path.m for further model analysis. 

 

Analysis_Model_2nd_Grade_Short_Path.m: 

 5-25: Calculation of the model estimates for the different process variable settings of the experimental 

trials in matrix “T_M” (experimental design applied). Calculation of the summed squares QSL for model 

validation. This is achieved with respect to experimental data that has been deleted as outlier. 

 27-38: Calculation of the summed squares QSF for model validation. This is achieved with respect to 

experimental data that has been deleted as outlier. 
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 40: Calculation of the relative variance for model validation via F-test. The model is valid if the relative 

variance is smaller or equal to the critical F-value. 

 43-47: Searching for the process variable setting at which the function value is minimized. To search for 

a maximum the function equation has to be multiplied by -1 in “Func_2nd_Grade_Short_Path.m”. 

 50-53: Definition of process variable spectrum and interval at which the function value is calculated for 

the three-dimensional function plot.  

 54-56: In case of more than two process variables in the function that is subject to the three-dimensional 

plot only two process variables stay variable while the others have to be fixed to a defined value. 

 57: For the process variables that are subject to the three-dimensional plot a two-dimensional grid is 

defined from the corresponding variable spectrum / interval (line 50-53). Each intersection of the grid is a 

point for which the coordinates vor the two process variables are saved. The grid is equal to the plane in 

the three-dimensional plot that is spanned by the coordinate axis of the referring process variables. 

Ensure to define the input and output in function “meshgrid” for the right process variables. 

 58-67: Calculation of the function value for each grid point / process variable coordinates. Ensure to 

activate the right function to be analyzed here and that the right process variables in the function stay 

variable while the others are fixed to a defined value.  

 69-83: Three dimensional plot of the function. Ensure to activate the corresponding axes labeling and 

title here. 

 

Func_2nd_Grade_Short_Path.m: 

 5-15: The minimization routine “fminsearch” also proposes automatically process variable settings which 

are outside the normalized range of process settings that is subject to the design of experiments and 

process analysis. As the experimental data and all results derived from that are only valid within that 

variable range the extremum within that range has to be identified. Thus all proposals for the variable 

setting that are outside that range have to be limited to the corresponding limiting values. 

 17-23: Calculation of the function values for the proposed process variable setting. Saving the optimum 

values to the workspace. Ensure to activate the right model with the right algebraic notation here 

depending on whether a minimum or maximum shall be identified. Be aware that vector X contains the 

process variables of the model in numeric order. Therefore it might for example happen that in third 

place of vector X the setting for the forth process variable “pump power” is saved if the third process 

variable “stirrer rotation” is not significant with respect to the target / function value. 

 

Bayesian fit, discrimination and analysis of growth models  

In the following the m-files of the program are described in the order they are applied to the computational 

process. The numbers indicate the line of the specific m-file currently explained. 

Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m: 

With this file the whole computational process of the Bayesian method applied here is started.  This file provides 

estimates of the expected value (vector “mean_vec”) as well as the variance (vector “var_vec”) of the model 

parameter probability distribution at defined steps during the convergence of this distribution towards the 

posterior. These estimates are needed to graphically expose the convergence process and to identify the point of 

chain convergence. This file thus also provides a representative sample of parameter vectors from the posterior 

distribution which is taken from the parallel Markov-Chains after convergence (vector “Par_Smpl”). Additionally a 

vector “lik” is provided that contains the likelihood values of the parameter vectors contained in the vector 

“Par_Smpl”. The latter two vectors are applied to the calculation of expected value and variance of the posterior 

model parameter distribution as well as the relative model probability for model discrimination. The output of this 

file which is basically the output of the Bayesian Markov-Chain process is saved to the workspace. It is necessary 

for further data analysis by Bayesian means in the file “Data_Analysis.m” which loads the data from the 

workspace automatically. It is recommended to save the output of this file on a data storage medium. In this case 

a Bayesian model fit, analysis and discrimination by file “Data_Analysis.m” can be achieved without running the 

whole Markov-Chain process again which is extremely time consuming. 
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 4-8: Calls file “Input_Growth_Model.m” to introduce the basic data input necessary for the further 
computational process. In the following this data is defined as data matrix “input” which is assigned to 
the workspace and is globally valid / accessible to all associated m-files. 

 10-13:  Here the process variables of the Bayesian Markov-Chain-Monte-Carlo process as well as its 
specific acceleration method are set up. These variables are the number of updates / re-estimates of the 
covariance matrix of the proposal density, the number of tunes of the covariance matrix of the proposal 
density within each re-estimation cycle of that matrix, the number of steps of the Markov-Chain within 
each tuning cycle of that matrix and finally the number of parallel Markov-Chains. 

 15: In the following loop the variable “t” defines the model treated. For model discrimination both models 
(t=1:2) have to be analyzed by Bayesian Markov-Chain-Monte-Carlo yielding the output mentioned 
above for each model. 

 17-21: Vector “Param” contains the start values for the parallel Markov-Chains. In the following the 
vector “Cov_Mat” takes up the re-estimated covariance matrix of the proposal density which is updated 
in each cycle of the loop initiated in line 23. The vectors “mean_vec” and “var_vec” take up the estimates 
of expected value und variance of the converging model parameter distribution as exposed above. The 
vector “par_tot” takes up the parameter vectors for each step of all parallel Markov-Chains. Except the 
last step of the preceding cycle this vector is cleared after each covariance re-estimation cycle to safe 
CPU and memory. In the last cycle (for which chain convergence has to be assured) the content of 
vector “par_tot” is saved as “Par_Smpl” (line 71) which is needed for further computation as exposed 
above. 

 23: This loop starts 1000 parallel Markov-Chains with 20 update cycles of the covariance matrix of the 
proposal density. Each update cycle contains of 10 tuning cycles of that matrix and each tuning cycle of 
20 Markov-Chain steps. Thus each Markov-Chain consists of 10.000 steps in total. Covariance matrix 
update and tuning is implemented here according to the principle exposed in chapter. 

 29: Here m-file “Mltpl_Chn_Rndm_Wlk_Growth_Model.m” is called which achieves 10 tuning steps of 
the covariance matrix of the proposal density within each update cycle. Within in each tuning cycle of file 
“Mltpl_Chn_Rndm_Wlk_Growth_Model.m” 20 steps are achieved for each of the parallel Markov-Chains. 
File “Mltpl_Chn_Rndm_Wlk_Growth_Model.m” provides the vector “par_tot” (see above) and the vector 
“lik” that contains the referring likelihood values for the parameter vectors in “par_tot”. 

 32-59: m-file “Mltpl_Chn_Rndm_Wlk_Growth_Model.m” provides the output of 10 tuning cycles each 
consisting of 20 steps for each of the 1000 parallel Markov-Chains. The last 20 steps for each of the 
1000 parallel Markov-Chains are used to estimate the expected value and covariance which represent 
an estimation of the current state of the parameter probability distribution converging to the posterior 
distribution. After each re-estimation cycle these distribution parameters are saved in the vectors 
‘mean_vec’ and ‘var_vec’ for further use (see above). 

 61-63: The actual variance of the parameter probability distribution is applied to the covariance matrix of 
the proposal density for the next re-estimation cycle. 

 67-72: The vector ‘par_tot’ that contains the parameter vectors of all parallel Markov-Chains of each 
entire re-estimation cycle is cleared (saving CPU) except the last  vector of each chain which is required 
as starting point for the next re-estimation cycle. For the last re-estimation cycle (completed convergence 
has to be assured by graphical analysis) the parameter vectors for all parallel Markov-Chains are saved 
in the vector “Par_Smpl” which is at completed convergence a representative sample of the required 
posterior parameter probability distribution. 

 76-156: Plot of the convergence of the parameter probability distribution towards the posterior 
distribution. Plots are achieved for both models and each of the characteristic distribution parameters 
(expected value and variance).  

 

Mltpl_Chn_Rndm_Wlk_Growth_Model.m: 

 For each re-estimation cycle m-file “Mltpl_Chn_Rndm_Wlk_Growth_Model.m” achieves 10 tuning steps 
of the covariance matrix of the proposal density with each step consisting of 20 steps each for 1000 
parallel Markov-Chains. The procedure of running parallel Markov-Chains with iterative tuning of the 
proposal density is implemented here.  File “Mltpl_Chn_Rndm_Wlk_Growth_Model.m” provides the 
vectors “par_tot” and “lik” whose further function has been already exposed above.  

 5: This loop achieves 10 tuning steps of the covariance matrix of the proposal density each being based 
on 20 steps of 1000 parallel Markov-Chains each. 

 10: File “Rndm_Wlk_Growth_Model.m” achieves 20 steps of 10000 parallel Markov-Chains each. This 
file provides for each tuning cycle the vectors “par”, “Acc_Prob_Vec” and “Lik” which contain for each 
Markov-Chain the parameter vectors and the referring acceptance probability and likelihood value. 

 12-23: After each tuning cycle achieved by file “Rndm_Wlk_Growth_Model.m” the latest chain steps 
achieved in that file are added to vector “par_tot” for each of the parallel Markov-Chains.  

 25: In the context of line 12-23 the referring likelihood values of the parameter vectors, chain steps 
respectively, are added analogously. 

 27-40: Calculation of the average acceptance probability of the additional chain steps generated in the 
latest tuning cycle by file “Rndm_Wlk_Growth_Model.m”. Tuning of the covariance matrix of the proposal 
density (average acceptance probability as decision criterion). 
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Rndm_Wlk_Growth_Model.m: 

 For each tuning cycle of file “Mltpl_Chn_Rndm_Wlk_Growth_Model.m” file 
“Rndm_Wlk_Growth_Model.m” achieves 20 steps for 1000 parallel Markov-Chains. As output this file 
provides the vectors “par”, “Acc_Prob_Vec”  und “Lik” whose function and further processing has been 
exposed above. 

 6-9: The input data required for the Bayesian Markov-Chain process is uploaded. 

 10-12: The vectors taking up the process output subsequently are defined. 

 14-201: This loop achieves 1000 Markov-Chains one after another. Within that loop 20 chain steps are 
achieved. 

 16-21: Definition of the start vector for each chain. If the Markov-Chain has to be started (first re-
estimation cycle and first tuning cycle) the input start vector is applied. Otherwise the last vector of the 
chain to be elongated (last vector of the last cycle) is applied as start vector. As all chains have to be 
subject to identical conditions, all chains are started (first re-estimation cycle and first tuning cycle) from 
the same start vector defined in the file “input.m”. 

 25-197: This inner loop achieves 20 chain steps for each chain called up by the outer loop (line 14-201, 
see above). 

 27-89: In this statement for each chain step the latest accepted state / parameter vector of the chain 
actually treated is defined as well as the proposed new state / parameter vector of that chain.  

 27-58: For the first step of a chain (N=1) the latest accepted state is the start vector defined in line 16-21. 
Regarding the proposal of a new parameter vector as potential new chain state two situations have to be 
distinguished for the first chain step (N=1): The first situation (line 29-38) is that the program is still in the 
first covariance estimation cycle (a=1). Here no covariance of the actual state of the converging 
parameter probability distribution has been estimated so far as this is done at the end of each estimation 
cycle (see Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m line 32-59 and 61-63). In this case the 
proposed candidate vector is initially sampled randomly from a Gaussian distribution with the start 
vectors defined in file “input.m” as mean and a standard deviation of 50%. This procedure is chosen to 
initially provide a broad parameter range for the Bayesian Markov-Chain process within which the 
random process can narrow the investigated parameter range to a coarse estimate of the range of 
values that are most possible in the light of the experimental data. The second situation (line 38-56) is 
that the program is in the second or an upper re-estimation cycle and thus a covariance matrix of the 
actual state of the converging parameter probability distribution has been already estimated (see 
Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m line 32-59 and 61-63). The proposed parameter 
vector is in this case generated by random sampling from a Gaussian distribution with the latest 
estimated covariance matrix as variance and the start vector (compare line 16-21) as mean. 

 58-89: For the second and all following chain steps (N˃1) two situations can be distinguished: The first 
situation (line 60-69) is that the program is still in the first covariance estimation cycle (a=1). For this 
case the same procedure for proposal of a candidate parameter vector is valid as exposed for the first 
chain step (N=1) above. The second situation (line 69-87) is that the program is in the second or an 
upper covariance re-estimation cycle. In this case the latest accepted state / parameter vector from a 
preceding chain step is defined as origin for the proposal of a candidate parameter vector to be accepted 
or rejected as next chain state. The proposed candidate is derived by random sampling from a Gaussian 
distribution with the latest accepted chain state as mean and the latest estimate of the covariance matrix 
as variance. 

 97-169: Calculation of prior probability and likelihood of the actual state and the parameter vector that 
has been proposed as next candidate. As prior knowledge about model parameterization a Gaussian 
distribution with the start vectors defined in file “input.m” as mean and a standard deviation of 25% is 
applied. The choice of such a rather small prior knowledge (instead the results of a residual least 
squares fit could be applied as improved prior knowledge about the mean combined with a standard 
deviation that has been calculated from a repeated residual least squares fit of the model to data that 
has been generated by repeated random addition of noise to the experimental data) has been made to 
improve the exposition of the performance of the Bayesian method applied here, especially the 
convergence towards the posterior distribution. All probabilities are calculated here as log values for the 
reasons exposed in the beginning of the description of file “Posterior_Ordinate_Growth_Model.m” below. 

 171-195: Implementation of the criterion and decision of candidate vector acceptance or rejection. The 
formula for the calculation of the criterion is converted here to calculate a log value for the criterion from 
the log probabilities. That log value is re-converted into a non-log value that is then applied for the 
acceptance-rejection-decision. 

 199: Saving the chain of accepted chain states / parameter vectors for the chain that has been actually 
treated by the loop from line 14-201. 
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Input_Growth_Model.m : 

This file contains all input data on the models to be analyzed as well as the experimental data required for the 

computational process. 

 4-6: Experimental data of the microbial growth process. Substrate and cell concentration at the different 
time points of sampling. 

 7-10: Values of the model parameterization which are used as start values for the Markov-Chain process 
applied to the Bayesian determination of the most probable parameterization. These start values 
represent the prior knowledge on the process 

 12: Error / standard deviation of experimental analysis / measurement in percent of total value. 

 17-33: In order to show that the Bayesian method applied here is really able to identify the model that is 
more likely to describe the real underlying process it is assumed that the real underlying process is of 
Michaelis-Menten- or Moser-type with parameterization given in vector P_MM or P_Moser. With respect 
to the standard deviation of measurement given above probable experimental data of the process is 
generated.  On the basis of that experimental data the Bayesian method should identify the Michaelis-
Menten- or Moser-model as more probable compared to the other one. If the real experimental date in 
line 4-6 or the direct model solution (line 14-15) shall be subject to further computation line 17-33 have to 
be deactivated. 

 14-15: Calculation of the solution for cell and substrate concentration at the time points given above for a 
Michaelis-Menten- or Moser-model with the parameterization in vector P_MM or P_Moser. This data is 
considered as being representative for the real underlying process. 

 20-30: Generation of artificial experimental data by random sampling from a Gaussian probability 
distribution with the standard deviation given above. Noise is added randomly to the model solution 
calculated in line 14-15 to simulate a probable experimental outcome. 

 32-35: The experimental data applied to the computational process is re-defined if the direct model 
solution or the model solution with randomly added noise is applied as artificial experimental data. 
Activate / deactivate the corresponding lines. 

 39-50: Definition of prior knowledge on model parameterization. 

 39-46: RLS-fit of models to original or simulated experimental data. RLS-fit parameterization can be 
applied as prior knowledge on model parameterization. Inactivate when different prior knowledge is 
applied (compare line 47-50). 

 47-50: Activate / inactivate if either parameter start values or RLS-fit to real experimental data are 
applied as prior knowledge on model parameterization. 

 

Start_ODE_Solver_MM.m: 

 5-15: Calculates the solution at the time points given by the vector tspan for a Michealis-Menten model 
with the parameterization given by the vector p.  

 18-25: In the loop all zero-concentrations are set to one as otherwise just zero-variances can be 
calculated yielding covariance matrices with a zero in the main diagonal with which no Gaussian 
probabilities can be calculated anymore causing an abort of the computational process. This approach is 
acceptable as such low concentrations are negligible compared to the concentrations and process 
regions of interest. 

 

Start_ODE_Solver_Moser.m: 

Analogous to description for file “Start_ODE_Solver_MM.m “. 

MM_Model.m: 

 Contains the Michaelis-Menten model which is called by the ODE-Solver to calculate the deviation of the 
cell and substrate concentration within the next step of the time interval. 

 

Moser_Model.m: 

 Contains the Moser model which is called by the ODE-Solver to calculate the deviation of the cell and 
substrate concentration within the next step of the time interval. 
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Data_Analysis.m 

This file achieves the Bayesian model fit, analysis and discrimination based on the output of file 

“Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m” which is the representative parameter sample from the 

posterior distribution and associated likelihood values as well as mean and variance values from the complete 

convergence process of the Markov-Chain. The data to be processed has to be provided directly by running file 

“Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m” or has to be loaded into the workspace from a data storage 

medium on which the data output from a preceding run of that file has been saved before. 

 5-211: Estimation of the log marginal likelihoods for both models. The computations described in the 
following are thus just achieved for the model actually analyzed which is indicated by the value of 
variable t. 

 7-13: The input data is loaded upon which the Bayesian analysis achieved here and the applied Markov-
Chain output is based (see “input.m” above). 

 17-23: The required input data and output of the Markov-Chains referring to the Michaelis-Menten model 
is loaded from the workspace. 

 27-33: The required input data and output of the Markov-Chains referring to the Moser model is loaded 
from the workspace. 

 37-43: An average of the posterior expected value and variance estimates is calculated as final estimate. 
These average values are saved to the workspace. The parameter G defines the number of estimate 
values to be taken for averaging. It is important to only apply estimates calculated from the converged 
chains. For that purpose the point of convergence has to be identified before graphically. 

 45-65: For all parameter vectors of the posterior sample a comparable posterior probability measure is 
calculated from the prior probability and likelihood. The denominator of posterior probability estimation 
(compare Eq. 2.18) is a normative constant which is equal for all parameter vectors of the posterior 
sample and, thus, not required to estimate the mode. From these posterior probability measures the 
posterior mode estimate is calculated which is further applied as Bayesian point estimate for model 
parameterization and as candidate vector for relative model probability estimation.  

 67-73: Posterior mode and variance estimates are saved to the workspace. 

 75-147: Plot of the convergence of the parameter probability distribution towards the posterior 
distribution. The convergence plots are achieved for expected value and variance estimates as 
distribution parameters and for both models. 

 149-169: For both models the model solutions for a Bayesian parameterization (most probable 
parameterization as calculated above) and additionally for a residual least squares fit of the model to the 
experimental data are calculated. File “Fit_Model_Equation_RLS.m” achieves the residual least squares 
fit of either model to the experimental data dependent on the actual setting of variable t that indicates 
which model is actually analyzed. 

 171-197: For the model actually analyzed (dependent on the actual value of variable “t”) the model 
solution for a Bayesian parameterization and a residual least squares fit are plot together with the 
experimental data.  This is done to graphically evaluate the goodness of fit and the differences in model 
solution between Bayesian and residual least squares parameterization.  

 199-217: Calculation of the relative model probability as model discrimination criterion by the method 
proposed by Chib and Jeliazkov.  

 199-200: The variance of the posterior parameter probability is defined and applied for the estimation of 
the marginal likelihood for each model according to the method proposed by Chib and Jeliazkov. 
According to that proposed method also the mode estimate of the posterior probability distribution is 
defined and applied as candidate vector for the estimation of the marginal likelihood as it exhibits the 
highest probability under that distribution. The choice of a candidate vector with a high probability under 
the posterior distribution is recommended. 

 203: Call of file “Posterior_Ordinate_Growth_Model.m”. This file achieves the calculation of the posterior 
ordinate as well as the log prior probability and log likelihood of the candidate vector. To ensure a high 
precision of the marginal likelihood estimate a parameter sample from the posterior distribution has to be 
applied that is sufficiently representative. Thus, the whole representative sample taken from the Markov-
Chains is applied for the posterior ordinate estimation. This comprises a sample of 200 parameter 
vectors from 1000 parallel Markov-Chains each which is by far sufficient even for a four dimensional 
probability distribution in case of the Moser-model. As far as possible by means of mathematical 
calculation rules, all computational procedures in the course of marginal likelihood estimation are 
achieved by use of log probabilities. This approach is necessary, as especially in case of likelihood 
calculations extremely low probabilities can occur which are not computational manageable anymore by 
the program. 

 203: Calculation of the log marginal likelihood from the output of “Posterior_Ordinate_Growth_Model.m”. 

 205-209: Saving the log marginal likelihoods of the models to the workspace. 

 211: End of log marginal likelihood estimation loop. 

 213-214: Loading of the log marginal likelihood estimates for final calculation of the relative model 
probability. 

 216-219: Calculation of the relative model probability and saving to the workspace. 
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Fit_Model_Equation_RLS.m: 

Achieves the residual least squares fit of either model to the experimental data dependent on the actual setting of 

variable t that indicates which model is actually analyzed. 

 5-7: The residual least squares fit is achieved by the Matlab-routine “fminsearch”. It takes the optimizer 
setting defined in vector “opt” and the parameter start values defined in file “input.m” also as start 
values for the optimization. The routine calls the file “Model_Equation.m” in which for either model the 
model solution for the parameterization proposed by the optimization routine is calculated. This file of 
course also contains the definition of the optimization criterion that is calculated from the model 
solution and has to be optimized (in this case the residual least squares that have to be minimized). 

 9-15: The optimum parameterization that minimizes the residual least squares, as well as the 
corresponding residual least squares value, are saved to the workspace. 

 

Model_Equation.m: 

In this file for either model the model solution for the parameterization proposed by the optimization routine is 

calculated. This file of course also contains the definition of the optimization criterion that is calculated from the 

model solution and has to be optimized (in this case the residual least squares that have to be minimized). This 

file calls the file “Start_ODE_Solver_MM.m “ (see above), “Start_ODE_Solver_Moser.m“ (see above) 

respectively, by which the model solution for a model parameter vector V at the measuring points defined in file 

“input.m” is calculated for the model actually analyzed. 

 11: Calculation of the model solution for the Michealis-Menten model for the parameter vector V at 
the measuring points defined in file “input.m”. 

 13-15: Definition and calculation of the residual least squares as optimization criterion for the fit of 
the Michealis-Menten model. 

 18: Calculation of the model solution for the Moser model for the parameter vector V at the 
measuring points defined in file “input.m”. 

 20-22: Definition and calculation of the residual least squares as optimization criterion for the fit of 
the Moser model. 

 

Start_ODE_Solver_MM_Plot.m: 

This file is called to calculate the model solutions “y_int” for a custom defined interval “x_int” at a model 

parameterization “V”. The difference to file “Start_ODE_Solver_MM.m” is, that the latter provides only the model 

solutions for the experimental measuring points defined in file “input.m” while the former provides the number of 

solutions that is required for a appropriate plot. 

 

Start_ODE_Solver_Moser_Plot.m: 

Analogous to file “Start_ODE_Solver_MM_Plot.m”. 

 

Posterior_Ordinate_Growth_Model.m: 

In this file estimates of the posterior ordinate as well as the log prior probability and log likelihood of the candidate 

vector are calculated which are essential for the estimation of the log marginal likelihood. This is achieved for 

each model according to the method proposed by Chib and Jeliazkov. Log probabilities are applied as far as 

possible for computational reasons as explained for “Data_Analysis.m”. Extremely low likelihood values are set to 

zero at a certain level by the program automatically and thus cannot be logarithmized anymore yielding a NaN 

(“not a number”) entry that causes a breakdown of the computational process. Thus all zero likelihood values are 

set to 10
-300

 which is a value that one the one hand still can be logarithmized but on the other hand is so small 

that it is still negligible for the computational result compared to the values from the considerable parts of the 

distribution which are relevant for the computational result. 
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 3-9: Defining and loading necessary experimental input data. 

 12-16: Calculation of the model solutions for the candidate parameter vector by the files 
“Start_ODE_Solver_MM.m” and “Start_ODE_Solver_Moser.m”, respectively (see explanation above). 
These solutions are necessary for calculation of the likelihood. 

 20-23: Definition of the size of the posterior parameter distribution sample and the random sample from 
the Gaussian distribution characterized by the applied covariance matrix and candidate vector.  

 27-37: Calculation of the log likelihood of the candidate vector  

 39-57: Calculation of the prior probability of the candidate vector. 

 59-104: Calculation of the numerator of the posterior ordinate estimate for each model. 

 60-102: In this loop for each parameter vector of the representative sample of the posterior distribution 
the prior probability is calculated as well as the probability of the candidate vector of being proposed in a 
Markov-Chain process if this parameter vector is the last accepted chain state (covariance matrix applied 
to the proposal density equals covariance matrix estimate of posterior probability distribution). 

 68-73: Calculation of the log prior probability of a sample vector for the Michaelis-Menten model. 

 75-76: Calculation of the referring probability of proposal as exposed above. 

 80-85: Calculation of the log prior probability of a sample vector for the Moser model. 

 87-88: Calculation of the referring probability of proposal as exposed above. 

 91-95: Calculation of acceptance probability of the candidate vector if the sample vector was the last 
accepted chain state and the proposal density equal to the covariance matrix applied to posterior 
ordinate estimation. 

 97: Calculation of the probability of move from sample to candidate vector in a Bayesian Markov-Chain 
which is the product of proposal and acceptance probability. 

 104: Calculation of the numerator by averaging the probability of move over the whole posterior 
parameter distribution sample. 

 108-171: Drawing a random sample from a Gaussian probability distribution with the candidate vector as 
expected value and the covariance matrix applied here for posterior ordinate estimation as distribution 
variance. As proposed by Chib and Jeliazkov, the sample size should be chosen equal to the size of the 
posterior parameter distribution sample. For each sample vector, calculation of the probability of this 
vector to be accepted in a Bayesian Markov-Chain if the last accepted state was the candidate vector. 
The acceptance probability is calculated from the referring prior probabilities and likelihoods. 

 114-142: Calculation of the log prior probability of the sampled vector for the model that is actually 
analyzed. 

 144-164: Calculation of the model solution for the sampled parameter vector and the referring likelihood 
value. 

 166-170: Calculation of the non-log acceptance probability. Probability values larger than 1 are set to 1 
as a probability of more than 100% is impossible. 

 173: Calculation of the denominator as acceptance probability average over the whole sample. 

 174-176: Saving all important intermediate results to the workspace. 

 178: Calculation of the posterior ordinate. 
 

Plot_Prior_Post_Para_Distr.m: 

This function requires a representative sample of the posterior parameter probability distribution of the model to 

be analyzed. This can be provided by running function Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m 

before or loading its output into the workspace. Plot_Prior_Post_Para_Distr.m produces a representative sample 

from the prior parameter probability distribution and produces a comparative graphical exposition of the prior and 

posterior probability distribution for all parameters and models. The output of that function is saved to the 

workspace and is needed for further analysis in by the function Bayesian_Model_Validation_Growth_Model.m. 

The function Plot_Prior_Post_Para_Distr.m offers two different opportunities to generate a representative sample 

from the prior parameter distribution. The first one is to sample from a certain Gaussian-Distribution which has 

been accepted as prior knowledge (e.g. a Gaussian-Distribution with a certain expected value (e.g. 

parameterization from a least-squares fit of the model to the data) and a deviation of 50% of the expected value 

as uncertainty). The second one is the repeated generation and model fit of artificial “experimental” data from the 

real experimental date by Monte-Carlo-Simulation (exp. data that could have occurred with respect to the known 

error of experimentation). By that a sample of hypothetic parameterizations is produced whose probability 

distribution can be applied as prior knowledge. 

 4: Definition of the model and parameter sample to be analyzed (to be adapted). 

 5: Calls the required input (initial data base) from the workspace. 

 6: Definition of the representative sample size to be drawn and analyzed. 

 8-198: This loop achieves the whole process (compare above) one after another for the two different 

models. 
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 11-12: Has to be activated if the first opportunity of introducing prior knowledge (compare above) was 

applied (definition of distribution variance and expected value). Otherwise inactivate. 

 15-19: Calls the required posterior samples from the workspace. 

 21-28: A representative posterior sample of the required sample size defined before is created from the 

output of the various Markov-Chains. 

 32-61: Generation of the prior sample. 

 39-57: Has to be activated if the second opportunity of introducing prior knowledge (compare above) was 

applied. Otherwise inactivate. 

 40-52: Generation of simulated “experimental” data sets to be fit by the models. 

 54-57: Model fit to simulated “experimental” data. The model parameter vector is stored to the prior 

sample vector. 

 59: Has to be activated if the first opportunity of introducing prior knowledge (compare above) was 

applied (random sampling from the distribution defined in 11-12). Otherwise inactivate. 

 63: Sample has to be saved to the workspace for further use in 

Bayesian_Model_Validation_Growth_Model.m. 

 65-77: Definition of required vectors and measures. 

 78-186: For the model actually analyzed the prior and posterior distributions are calculated from the 

samples and are plot together into a single figure for each parameter.  

 80-85: Definition of posterior distribution expected value and variance. Generation of posterior random 

sample (estimation of distribution by assumption of Gaussian nature). These function lines are activated 

if a suitable plot from the posterior Markov-Chain sample was not possible. The Markov-Chain sample 

arranged in line 21-28 is overwritten here. Otherwise inactivate. 

 86-89: Calculation of minimum, maximum, mean and definition of sample analysis range for prior and 

posterior sample. 

 91-100: Sorting of prior sample events into the intervals of the analysis range. Calculation of mean and 

probability for each interval. 

 102-105: Calculation of prior cumulative probability for localization of 5% and 95 % quantile. 

 107-117: Localization of prior quantiles for plot. 

 120-131: Plot of figures for the prior probability distribution. 

 133-185: Processing of posterior sample analogous to processing of prior sample. 

 187-197: Saving data to be further used to the workspace. 

 

Bayesian_Model_Validation_Growth_Model.m : 

In this file the prior and posterior probability of experimental observations at defined process conditions as well as 

the model validation as proposed by Geweke  is computed corresponding to the theory exposed in chapter 

2.3.3.2.4. . This function requires for each model to be analyzed a representative sample from the prior and 

posterior parameter distribution. The prior sample is provided by function Prior_Parameter_Distribution.m or by 

the function described here (in case of a defined standard deviation and expected value of the parameter 

distribution assumed as prior knowledge).  A representative sample from the posterior parameter distribution 

(output of Mltpl_Chn_Rndm_Wlk_Cov_Updt_Growth_Model.m) has to be saved to the workspace before this 

function can be used. 

 3-6: Loading the data required for analysis from Input_Growth_Model.m. The vector “para” has to be 

adapted to the model to be analyzed (input.Parameter_Startvalues{1,…}). 

 7-9: In the vector C the experimental data is stored to ease the further programming. 

 11: Here the process variable settings are defined for which the probability of experimental observations 

has to be calculated from the Bayesian parameterized models. The whole range of settings has to be 

chosen here (X=[1:length(Cx)]) to achieve the model validation. 

 13: The size of the sample to be drawn from the prior and posterior distribution has to be defined. To 

produce a representative sample at least a size of 10
4
 is proposed. This choice significantly influences 

the computing time. 

 15-387: This loop achieves all analytic tasks (probability distribution of observations, model validation) 

for the prior (t=1) and posterior (t=2) probability. 

 17-26: In case of posterior analysis the posterior parameter sample of the model to be analyzed is 

uploaded from the workspace and sorted into P_S to ease further programming and computing. Adapt 

line 18 according to the model to be analyzed! . 
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 32-63: For each parameter vector of the parameter sample to be analyzed the model solutions of the 

model to be analyzed are calculated at the process settings defined in 11. 

 34-47: In case of analysis of the prior distribution a sample can be loaded from the workspace (e.g. 

output from Plot_Prior_Post_Para_Distr.m ) or is produced here by random sampling from a prior 

distribution with “para” as expected value and defined standard deviation (both defined in line 41). 

Inactivate / activate the program lines according to the method chosen. 

 51-54: Calculation of model solutions. Activate the model to be analyzed! 

 56-58: Sorting out the model solutions at the process settings to be analyzed. 

 60-61: Saving the model solution separately for cell and substrate concentration for each parameter 

vector of the parameter sample. 

 70-385: In this loop the calculation of the probability distribution of observations at the process settings 

defined above as well as the model validation is achieved here either for the cell (t=1= or the substrate 

(t=2) concentration. 

 75-189:  For the process variable settings to be analyzed the probability distribution of observations is 

calculated (the actual process variable, distribution and model have been defined in the higher-ranking 

loops). Inactivate this loop if only the model validation should be achieved. 

 77: For the process setting actually analyzed the solutions for each parameter vector of the parameter 

sample are sorted into vector “y_vec”. 

 78-92: The spectrum of observations to be analyzed for the possibility of occurrence is defined. The 

minimum and maximum value has to be adjusted by hand for each figure / analysis to gain a significant 

plot / exposition of the distribution. 

 96-106: For each interval of the observation spectrum the probability that this value can be 

experimentally observed is calculated for each solution in “y_vec”  with respected to the error of 

experiment repetition. 

 112-119: The relative probability of occurrence is calculated for each interval value. 

 121-146: The position of 5%- and 95%-Quantile as well as the position of experimental and most 

probable value in the observation spectrum analyzed are calculated. 

 148-187: Plot of the probability distribution of observations for the distribution, model and process 

variable actually analyzed (defined by the higher-ranking loops). Including plot of quantiles, exper. and 

most probable value. 

 191-383: Computation of model validation for the distribution, model and process variable actually 

analyzed (calculation for the process settings defined in line 11; choose all process settings exp. 

analyzed here for an optimal validation). 

 197-212: Vector “Y_Vec” contains for each sampled parameter vector (column) the model solutions 

(row) (with respect to the distribution, model and process variable actually analyzed (defined by higher-

ranking loops)). For each of these model solutions a sample of theoretically occurring observations is 

generated by random sampling with respect to the error of experiment repetition / measurement. Mean 

and variance are calculated for each sampled observation. 

 199-211: Generation of a sample of size “Smpl_Sz” of theoretically occurring observations from a 

defined observation. Calculation of mean and variance for each sampled observation. 

 202-207: For each process setting of a defined model solution a theoretically occurring observation is 

calculated separately with respect to the error of exp, repetition / measurement. 

 213-225: Calculation of minimum and maximum of the solution means and variances calculated in line 

197-212. Definition of the spectrum / interval of the mean and variance values for further analysis. 

 226-247: Sorting of all theoretically occurring mean and variance values (calculated / sampled in line 

199-211) into the corresponding spectrum intervals. Calculation of relative probabilities for the intervals. 

 249-250: Calculation of mean and variance of the experimental observed data. 

 252-262: Calculation of the cumulative probability distribution for the further localization of quantiles. 

 264-279: For the observation mean: Localization of the position in the relative probability distribution for 

the 5%- and 95%-Quantiles as well as for the experimental values. 

 281-321: Plot of the relative probability distributions including quantiles and exp. values for model 

validation. 

 324-339: For the observation mean: Localization of the position in the relative probability distribution for 

the 5%- and 95%-Quantiles as well as for the experimental values. 

 341-381: Plot of the relative probability distributions including quantiles and exp. values for model 

validation. 
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Bayesian fit, discrimination and analysis of SPD models  

In the following the m-files of the program are described in the order they are applied to the computational 
process. The numbers indicate the line of the specific m-file currently explained. 
 
Mltpl_Chn_Rndm_Wlk_Cov_Updt_KWD.m: 
 
With this file the whole computational process of the Bayesian method applied here is started.  This file provides 
estimates of the expected value (vector “mean_vec”) as well as the variance (vector “var_vec”) of the model 
parameter probability distribution at defined steps during the convergence of this distribution towards the 
posterior. These estimates are needed to graphically expose the convergence process and to identify the point of 
chain convergence. This file thus also provides a representative sample of parameter vectors from the posterior 
distribution which is taken from the parallel Markov-Chains after convergence (vector “Par_Smpl”). Additionally a 
vector “lik” is provided that contains the likelihood values of the parameter vectors contained in the vector 
“Par_Smpl”. The latter two vectors are applied to the calculation of expected value and variance of the posterior 
model parameter distribution as well as the relative model probability for model discrimination. The output of this 
file which is basically the output of the Bayesian Markov-Chain process is saved to the workspace. It is necessary 
for further data analysis by Bayesian means in the file “Data_Analysis.m” which loads the data from the 
workspace automatically. It is recommended to save the output of this file on a data storage medium. In this case 
a Bayesian model fit, analysis and discrimination by file “Data_Analysis.m” can be achieved without running the 
whole Markov-Chain process again which is extremely time consuming. 
 

 5-6: Calls file “Input_KWD.m” to introduce the basic data input necessary for the further computational 
process. In the following this data is defined as data matrix “input” which is assigned to the workspace 
and is globally valid / accessible to all associated m-files. 

 7-10:  Here the process variables of the Bayesian Markov-Chain-Monte-Carlo process as well as its 
specific acceleration method are set up. These variables are the number of updates / re-estimates of the 
covariance matrix of the proposal density, the number of tunes of the covariance matrix of the proposal 
density within each re-estimation cycle of that matrix, the number of steps of the Markov-Chain within 
each tuning cycle of that matrix and finally the number of parallel Markov-Chains. 

 12: In the following the variable “t” defines the model treated. For model discrimination both models 
(t=1:2) have to be analyzed by Bayesian Markov-Chain-Monte-Carlo yielding the output mentioned 
above for each model. 

 14-18: Vector “Param” contains the start values for the parallel Markov-Chains. In the following the 
vector “Cov_Mat” takes up the re-estimated covariance matrix of the proposal density which is updated 
in each cycle of the loop initiated in line 20. The vectors “mean_vec” and “var_vec” take up the estimates 
of expected value und variance of the converging model parameter distribution as exposed above. The 
vector “par_tot” takes up the parameter vectors for each step of all parallel Markov-Chains. Except the 
last step of the preceding cycle this vector is cleared after each covariance re-estimation cycle to safe 
CPU and memory. In the last cycle (for which chain convergence has to be assured) the content of 
vector “par_tot” is saved as “Par_Smpl” (line 60) which is needed for further computation as exposed 
above. 

 20: This loop starts 1000 parallel Markov-Chains with 20 update cycles of the covariance matrix of the 
proposal density. Each update cycle consists of 10 tuning cycles of that matrix and each tuning cycle of 
20 Markov-Chain steps. Thus each Markov-Chain consists of 10.000 steps in total. Covariance matrix 
update and tuning is implemented here. 

 25: Here m-file “Mltpl_Chn_Rndm_Wlk_KWD.m” is called which achieves 10 tuning steps of the 
covariance matrix of the proposal density within each update cycle. Within in each tuning cycle of file 
“Mltpl_Chn_Rndm_Wlk_KWD.m” 20 steps are achieved for each of the parallel Markov-Chains. File 
“Mltpl_Chn_Rndm_Wlk_KWD.m” provides the vector “par_tot” (see above) and the vector “lik” that 
contains the referring likelihood values for the parameter vectors in “par_tot”. 

 27-54: m-file “Mltpl_Chn_Rndm_Wlk_KWD.m” provides the output of 10 tuning cycles each consisting of 
20 steps for each of the 1000 parallel Markov-Chains. The last 20 steps for each of the 1000 parallel 
Markov-Chains are used to estimate the expected value and covariance which represent an estimation 
of the current state of the parameter probability distribution converging to the posterior distribution. After 
each re-estimation cycle these distribution parameters are saved in the vectors ‘mean_vec’ and ‘var_vec’ 
for further use (see above). 

 56-58: The actual variance of the parameter probability distribution is applied to the covariance matrix of 
the proposal density for the next re-estimation cycle. 

 60-65: The vector ‘par_tot’ that contains the parameter vectors of all parallel Markov-Chains of each 
entire re-estimation cycle is cleared (saving CPU) except the last  vector of each chain which is required 
as starting point for the next re-estimation cycle. For the last re-estimation cycle (completed convergence 
has to be assured by graphical analysis) the parameter vectors for all parallel Markov-Chains are saved 
in the vector “Par_Smpl” which is at completed convergence a representative sample of the required 
posterior parameter probability distribution. 
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 69-105: Plot of the convergence of the parameter probability distribution towards the posterior 
distribution. Plots are achieved for both models and each of the characteristic distribution parameters 
(expected value and variance).  

 109-119: Saving all output of the Markov-Chain process that is required for further analysis to the 
workspace. 
 

 
Mltpl_Chn_Rndm_Wlk_KWD.m: 
 

 For each re-estimation cycle m-file “Mltpl_Chn_Rndm_Wlk_KWD.m” achieves 10 tuning steps of the 
covariance matrix of the proposal density with each step consisting of 20 steps each for 1000 parallel 
Markov-Chains. The procedure of running parallel Markov-Chains with iterative tuning of the proposal 
density is implemented here. File “Mltpl_Chn_Rndm_Wlk_KWD.m” provides the vectors “par_tot” and 
“lik” whose further function has been already exposed above.  

 5: This loop achieves 10 tuning steps of the covariance matrix of the proposal density each being based 
on 20 steps of 1000 parallel Markov-Chains each. 

 10: File “Rndm_Wlk_KWD.m” achieves 20 steps of 10000 parallel Markov-Chains each. This file 
provides for each tuning cycle the vectors “par”, “Acc_Prob_Vec”  and “Lik” which contain for each 
Markov-Chain the parameter vectors and the referring acceptance probability and likelihood value. 

 12-23: After each tuning cycle achieved by file “Rndm_Wlk_KWD.m” the latest chain steps achieved in 
that file are added to vector “par_tot” for each of the parallel Markov-Chains.  

 25: In the context of line 12-23 the referring likelihood values of the parameter vectors, chain steps 
respectively, are added analogously. 

 27-39: Calculation of the average acceptance probability of the additional chain steps generated in the 
latest tuning cycle by file “Rndm_Wlk_Growth_Model.m”. Tuning of the covariance matrix of the proposal 
density that applies the average acceptance probability as decision criterion. 
 
 

Rndm_Wlk_KWD.m: 
 

 For each tuning cycle of file “Mltpl_Chn_Rndm_Wlk_KWD.m” file “Rndm_Wlk_KWD.m” achieves 20 
steps for 1000 parallel Markov-Chains. As output this file provides the vectors “par”, “Acc_Prob_Vec” 
and “Lik” whose function and further processing already has been exposed above. 

 3-8: The input data required for the Bayesian Markov-Chain process is uploaded. 

 10-12: The vectors taking up the process output subsequently are defined. 

 14-149: This loop achieves 1000 Markov-Chains one after another. Within that loop 20 chain steps are 
achieved. 

 16-27: Definition of the start vector for each chain. If the Markov-Chain has to be started (first re-
estimation cycle and first tuning cycle) the input start vector is applied. Otherwise the last vector of the 
chain to be elongated (last vector of the last cycle) is applied as start vector. As all chains have to be 
subject to identical conditions for the reasons all chains are started (first re-estimation cycle and first 
tuning cycle) from the same start vector defined in the file “input.m”. 

 31-145: This inner loop achieves 20 chain steps for each chain called up by the outer loop (line 14-149, 
see above). 

 33-76: In this statement for each chain step the latest accepted state / parameter vector of the chain 
actually treated is defined, as well as the proposed new state / parameter vector of that chain.  

 35-55: For the first step of a chain (N=1) the latest accepted state is the start vector defined in line 16-22. 
Regarding the proposal of a new parameter vector as potential new chain state two situations have to be 
distinguished for the first chain step (N=1): The first situation (line 35-44) is that the program is still in the 
first covariance estimation cycle (a=1). Here no covariance of the actual state of the converging 
parameter probability distribution has been estimated so far as this is done at the end of each estimation 
cycle (see Mltpl_Chn_Rndm_Wlk_Cov_Updt_KWD.m line 27-58). In this case the proposed candidate 
vector is initially sampled randomly from a Gaussian distribution with the start vectors defined in file 
“input.m” as mean and a standard deviation of 50% (line 39-42). This procedure is chosen to initially 
provide a broad parameter range for the Bayesian Markov-Chain process within which the random 
process can narrow the investigated parameter range to a coarse estimate of the range of values that 
are most possible in the light of the experimental data. The second situation (line 44-53) is that the 
program is in the second or an upper re-estimation cycle and thus a covariance matrix of the actual state 
of the converging parameter probability distribution has been already estimated (see 
Mltpl_Chn_Rndm_Wlk_Cov_Updt_KWD.m line 27-58). The proposed parameter vector is in this case 
generated by random sampling from a Gaussian distribution with the latest estimated covariance matrix 
as variance and the start vector (compare line 16-22) as mean. 

 55-76: For the second and all following chain steps (N˃1) two situations can be distinguished: The first 
situation (line 57-66) is that the program is still in the first covariance estimation cycle (a=1). For this 
case the same procedure for proposal of a candidate parameter vector is valid as exposed for the first 
chain step (N=1) above. The second situation (line 66-74) is that the program is in the second or an 
upper covariance re-estimation cycle. In this case the latest accepted state / parameter vector from a 



Annex B – Technical description of MATLAB functions 

139 

 

preceding chain step is defined as origin for the proposal of a candidate parameter vector to be accepted 
or rejected as next chain state. The proposed candidate is derived by random sampling from a Gaussian 
distribution with the latest accepted chain state as mean and the latest estimate of the covariance matrix 
as variance. 

 78-117: Calculation of prior probability and likelihood of the actual state and the parameter vector that 
has been proposed as next candidate. As prior knowledge about model parameterization a Gaussian 
distribution with the start vectors defined in file “input.m” as mean and a standard deviation of 50% is 
applied. The choice of such a rather small prior knowledge (instead the results of a residual least 
squares fit could be applied as improved prior knowledge about the mean combined with a standard 
deviation that has been calculated from a repeated residual least squares fit of the model to data that 
has been generated by repeated random addition of noise to the experimental data) has been made to 
maximize the impact of the experimental data on the posterior distribution. All probabilities are calculated 
here as log values for the reasons exposed in the beginning of the description of file 
“Posterior_Ordinate_KWD.m” below. 

 119-143: Implementation of the criterion and decision on candidate vector acceptance or rejection. The 
formula for the calculation of the criterion is converted here to calculate a log value for the criterion from 
the log probabilities. That log value is re-converted into a non-log value that is then applied for the 
acceptance-rejection-decision. 

 147: Saving the chain of accepted chain states / parameter vectors for the chain that has been actually 
treated by the loop from line 14-160. 

 
 
Input_KWD.m : 
 
This file contains all input data on the models to be analyzed as well as the experimental data required for the 
computational process. 
 

 3-10: Experimental data for the target values acid value, rancimat and tocopherol at the different process 
variable settings of the SDoEs applied here 

 12-22: Definition of the process variable settings of the SDoEs applied here. 

 25-31: Values of the model parameterizations which are used as start values for the Markov-Chain 
process applied to the Bayesian determination of the most probable parameterization.  

 33-44: Expected value of prior parameter probability distribution. 

 42-44: Error / standard deviation of experimental analysis. 
 

 
Start_Model_KWD.m: 
 

 5-7: Definition and uploading of input data required for calculation of model solutions. 

 12-28: Definition of 1
st
 and 2

nd
 grade models for the target values. Calculation of model solutions for all 

process variable settings analyzed. 
 

 
Data_Analysis.m: 
 
This file achieves the Bayesian model analysis and discrimination based on the output of file 
“Mltpl_Chn_Rndm_Wlk_Cov_Updt_KWD.m” which is the representative parameter sample from the posterior 
distribution and associated likelihood values as well as mean and variance values from the complete convergence 
process of the Markov-Chain.  
 

 5-182: Estimation of the log marginal likelihoods for both models. The computations described in the 
following are thus just achieved for the model actually analyzed which is indicated by the value of 
variable t. 

 7-22: The input data is defined and loaded upon which the Bayesian analysis achieved here is based 
(see “input.m” above). 

 24-29: From the variances, which have been calculated as estimate for the posterior from the converged 
Markov-Chain, an average is calculated as final estimate for the posterior probability distribution. The 
parameter G defines the number of values from the chain end to be taken for averaging. It is important to 
only apply values from the converged chain. For that purpose the point of convergence has to be 
identified before graphically. 

 30-38: It is analyzed in this work if differences in the number of parameters between two models cause 
dimensionality problems in model discrimination. For this purpose the 1

st
 grade model is converted into 

the same structure as the second grade model by adding additional model terms which are 
characterized by parameter distributions with expected values and variances of value zero. For 
computational reasons the values have to be set to negligible values close to zero. The vectors which 
store the variances and expected values of model parameterization are adapted according to that 
proposed procedure. Activate the corresponding lines. 
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 40-78: For each parameter vector of the posterior sample the numerator of the posterior probability 
estimate (the denominator is a normalizing constant that is equal for each parameter vector) is 
calculated to identify the parameterization with the highest posterior probability (mode). This procedure 
accounts for the fact that in case of distribution non-symmetry the distribution expected value is not 
identical with the mode. The latter is applied as Bayesian model parameterization and candidate vector 
for the posterior ordinate estimation. In case of analysis of dimensionality problems in model 
discrimination (as exposed above for line 30-38) the parameter vector of the 1

st
 grade model has to be 

adapted to the 2
nd

 grade structure (activate corresponding lines). 

 80-86: Saving mode and variance estimate of the posterior distribution to the workspace. 

 88-155: Plot of the convergence of the parameter probability distribution towards the posterior 
distribution. The convergence plots are achieved for mean and variance as basic distribution parameters 
and for both models. 

 157-165: For both models the process variable setting is calculated at which the target value is 
maximized or minimized. 

 167-168: Definition of covariance matrix and candidate vector for posterior ordinate estimation. 

 170: Call of file “Posterior_Ordinate_KWD.m”. This file achieves the calculation of the posterior ordinate 
as well as the log prior probability and log likelihood of the candidate vector. To ensure a high precision 
of the marginal likelihood estimate a parameter sample from the posterior distribution has to be applied 
that is sufficiently representative. Thus the whole representative sample taken from the Bayesian 
Markov-Chain output is applied for the posterior ordinate estimation. As far as possible by means of 
mathematical calculation rules all computational procedures in the course of marginal likelihood 
estimation are achieved by use of log probabilities. This approach is necessary as especially in case of 
likelihood calculations extremely low probabilities can occur which are not computational manageable 
anymore by the program. 

  174: Calculation of the log marginal likelihood from the output of “Posterior_Ordinate_Growth_Model.m”. 

 176-180: Saving the log marginal likelihoods of the models to the workspace. 

 182: End of log marginal likelihood estimation loop. 

 184-185: Loading of the log marginal likelihood estimates for final calculation of the relative model 
probability. 

 186-188: Calculation of the relative model probability and saving to the workspace. 
 

 
Func_KWD_x_opt.m: 
 
Contains the model functions which are applied by the Matlab-routine “fminsearch” for the calculation of the 
function minimum. 
 

 3: Definition of the model parameterization. The mode estimate of the posterior parameter distribution 
(Bayesian model parameterization) is applied. 

 5-11: The Matlab-routine “fminsearch” also proposes process variable settings which are outside the 
range of normalized process variable settings investigated. In this case the proposals are limited to the 
minimum / maximum of the range. 

 13-24: Process models of 1
st
 and 2

nd
 grade for the target values of interest. In case of analysis of the 

above mentioned dimensionality problems in model discrimination, a model of 2
nd

 grade structure has 
to be also activated for the 1

st
 grade model (compare models for rancimat). 

 26-32: Saving proposed process variable setting and corresponding function value to the workspace. In 
each optimization cycle of the Matlab-routine “fminsearch” the value saved so far in the previous cycle 
is overwritten by the actual one. Thus at the end of the optimization procedure just the optimum 
process variable setting and corresponding function value remains in the workspace. This procedure is 
chosen as the last proposal and output of the function “fminsearch” in line 165 of 
Data_Analysis_KWD.m is not limited to the normalized process variable range analyzed and thus 
might exceed that range. 
 

 
Posterior_Ordinate_KWD.m: 
 
In this file estimates of the posterior ordinate as well as the log prior probability and log likelihood of the candidate 
vector are calculated which are essential for the estimation of the log marginal likelihood. This is achieved for 
each model according to the method proposed by Chib and Jeliazkov. Log probabilities are applied as far as 
possible for computational reasons as explained for “Data_Analysis.m”. Extremely low likelihood values are set to 
zero at a certain level by the program automatically and thus cannot be logarithmized anymore yielding a NaN 
(“not a number”) entry that causes a breakdown of the computational process. Thus all zero likelihood values are 
set to 10

-300
 which is a value that one the one hand still can be logarithmized but on the other hand is so small 

that it is still negligible for the computational result (compared to the values from the considerable parts of the 
distribution which are relevant for the computational result). (Example: Line 27-29.) 
 

 4-9: Defining and Loading necessary experimental input data. 
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 11: Calculation of the model solutions for the candidate parameter vector by the file “Mod_Sol_KWD.m”. 

 15-18: Definition of the size of the posterior parameter distribution sample and the random sample from 
the Gaussian distribution which is characterized by the applied covariance matrix and candidate vector. 
The choice of the sampled distribution and the sample size is implemented. 

 20-32: Calculation of the log likelihood of the candidate vector  

 34-41: Calculation of the prior probability of the candidate parameter vector. 

 43-81: Calculation of the numerator of the posterior ordinate estimate for each model. 

 44-79: In this loop for each parameter vector of the representative sample of the posterior distribution the 
prior probability is calculated as well as the probability of the candidate vector of being proposed and 
accepted in a Markov-Chain process if the parameter vector from the posterior sample is the last 
accepted chain state (the proposal density has to be equal to the covariance matrix applied here to the 
marginal likelihood estimation (=variance of the posterior probability distribution)). 

 47-48: Definition of the posterior sample vector to be analyzed in the current cycle of the loop. 

 49-57: Transformation of the 1
st
 grade model parameter vector to the 2

nd
 grade model structure (in case 

of analysis of dimensionality problems in model discrimination). 

 58-63: Calculation of the log prior probability of the posterior sample vector. 

 65-67: Calculation of the referring probability of proposal as exposed above. 

 68-72: Calculation of the acceptance probability of the candidate vector if the sample vector was the last 
accepted chain state and the proposal density equal to the covariance matrix applied to posterior 
ordinate estimation. 

 74: Calculation of the probability of move from sample to candidate vector in a Bayesian Markov-Chain 
which is the product of proposal and acceptance probability. 

 81: Calculation of the numerator by averaging the probability of move over the whole posterior parameter 
distribution sample. 

 89-125: Drawing a random sample from a Gaussian probability distribution with the candidate vector as 
expected value and the covariance matrix applied here for posterior ordinate estimation as distribution 
variance. As proposed by Chib and Jeliazkov the sample size should be chosen equal to the size of the 
posterior parameter distribution sample. For each sample vector calculation of the probability of this 
vector to be accepted in a Bayesian Markov-Chain if the last accepted state was the candidate vector. 
The acceptance probability is calculated from the referring prior probabilities and likelihoods. 

 91-92: Random sampling of a vector. 

 93-96: Transformation of the 1
st
 grade model parameter vector to the 2

nd
 grade model structure (in case 

of analysis of dimensionality problems in model discrimination). 

 97-100: Calculation of the log prior probability of the sampled vector. 

 105-118: Calculation of the model solution for the sampled parameter vector and the referring likelihood 
value. 

 120-124: Calculation of the non-log acceptance probability. Probability values larger than 1 are set to 1 
as a probability of more than 100% is impossible. 

 128: Calculation of the denominator as acceptance probability average over the whole sample. 

 129-131: Saving all important intermediate results to the workspace. 

 133: Calculation of the posterior ordinate. 
 

 
Mod_Sol_KWD.m: 
 
Calculates for each model parameter vector the model solution for a defined target value. 
 

 3: Definition of the model parameterization.  

 6-21: For a defined parameter vector and model the function value for each process variable setting is 
calculated. 

 7-20: Process models of 1
st
 and 2

nd
 grade for the target values of interest. In case of analysis of the 

above mentioned dimensionality problems in model discrimination, a model of 2
nd

 grade structure has 
to be also activated for the 1

st
 grade model (compare models for rancimat). 

 
 
Plot_Prior_Posterior_Parameter_Distribution.m: 
 
This function requires a representative sample of the posterior parameter probability distribution of the model to 
be analyzed. This can be provided by running function Mltpl_Chn_Rndm_Wlk_Cov_Updt_KWD.m before or 
loading its output into the workspace. Plot_Prior_Posterior_Parameter_Distribution.m produces a representative 
sample from the prior parameter probability distribution and produces a comparative graphical exposition of the 
prior and posterior probability distribution for all parameters and models. The output of that function is saved to 
the workspace and is needed for further analysis by the function Bayesian_Model_Validation.m. The function 
Plot_Prior_Posterior_Parameter_Distribution.m generates a representative sample from the prior parameter 
distribution by sampling from a certain Gaussian-Distribution which has been accepted as prior knowledge (e.g. a 
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Gaussian-Distribution with a certain expected value (e.g. parameterization from a least-squares fit of the model to 
the data) and a deviation of 50% of the expected value as uncertainty).  
 

 5: Calls the required input (initial data base) from the workspace. 

 6: Definition of the representative sample size to be drawn and analyzed. 

 8-163: This loop achieves the whole process (compare above) one after another for the two different 
models. 

 11-17: Drawing a random sample from the prior distribution with vector “para” as expected value and a 
standard deviation which has to be defined in line 13 in percent of the expected value. 

 20-24: Calls the required posterior samples from the workspace. 

 25-31: A representative posterior sample of the required sample size defined before is created from the 
output of the various Markov-Chains. 

 33-44: Definition of required measures and definition of vectors that take up the required results to be 
calculated from the distribution samples. 

 46-149: For the model actually analyzed the prior and posterior distributions are calculated from the 
samples and are plot together into a single figure for each parameter.  

 48-53: Calculation of mean, variance, maximum and minimum of the prior distribution. Definition of 
sample analysis range for the prior sample. 

 55-65: Sorting of prior sample events into the intervals of the analysis range. Calculation of mean and 
probability for each interval. 

 67-70: Calculation of prior cumulative probability for localization of 5% and 95 % quantile. 

 72-82: Localization of prior quantiles for plot. 

 84-95: Plot of figures for the prior probability distribution. 

 97-148: Processing of posterior sample analogous to processing of prior sample. 

 151-161: Saving data to be further used to the workspace. 
 
 
Bayesian_Model_Validation.m : 
 
In this file the prior and posterior probability of experimental observations at defined process conditions as well as 
the model validation as proposed by Geweke is computed. This function requires for each model to be analyzed a 
representative sample from the prior and posterior parameter distribution. The prior sample is provided by 
function Plot_Prior_Posterior_Parameter_Distribution.m or by the function described here (in case of a defined 
standard deviation and expected value of the parameter distribution assumed as prior knowledge).  A 
representative sample from the posterior parameter distribution (output of 
Mltpl_Chn_Rndm_Wlk_Cov_Updt_KWD.m) has to be saved to the workspace before this function can be used. 
 

 3-5: Loading the data required for analysis from Input_KWD.m. The vectors “para” and “SZ_2” have to 
be adapted to the model to be analyzed. 

 7-22: Definition of the process variable settings which are subject to further analysis as well as the 
experimental observations at these process settings. Only activate these elements here which are 
actually subject to analysis! 

 24: Definition of the sample size of the prior and posterior sample to be applied to further analysis. 

 26-394: This loop achieves all analytic tasks (probability distribution of observations, model validation) 
for the prior (t=1) and posterior (t=2) probability. 

 28-37: In case of posterior analysis the posterior parameter sample of the model to be analyzed is 
uploaded from the workspace and sorted into P_S to ease further programming and computing. Adapt 
line 29 according to the model to be analyzed! 

 41-82: For each parameter vector of the parameter sample to be analyzed the model solutions of the 
model to be analyzed are calculated at the process settings defined in line 7-22. 

 43-56: In case of analysis of the prior distribution a sample can be loaded from the workspace (e.g. 
output from Plot_Prior_Posterior_Parameter_Distribution.m ) or is produced here by random sampling 
from a prior distribution with “para” as expected value and defined standard deviation (line 50). Inactivate 
/ activate the program lines according to the method chosen. 

 63-78: Calculation of model solutions. Activate the model to be analyzed! 

 80: Saving the model solution separately for each parameter vector of the parameter sample. 

 87-214: In this loop the calculation of the probability distribution of observations at the process settings 
defined above is achieved either for the cell (t=1) or the substrate (t=2) concentration. 

 89: For the process setting actually analyzed the solutions for each parameter vector of the parameter 
sample are sorted into vector “y_vec”. 

 89-92: The spectrum of observations to be analyzed for the possibility of occurrence is defined. The 
minimum and maximum value has to be adjusted by hand for each figure / analysis to gain a significant 
plot / exposition of the distribution. 

 96-105: For each interval of the observation spectrum the probability that this value can be 
experimentally observed is calculated for each solution in “y_vec” with respected to the error of 
experiment repetition. 



Annex B – Technical description of MATLAB functions 

143 

 

 111-118: The relative probability of occurrence is calculated for each interval value. 

 120-152: The position of 5%- and 95%-quantile as well as the position of experimental and most 
probable value in the observation spectrum analyzed are calculated. 

 155-212: Plot of the probability distribution of observations for the distribution, model and process 
variable actually analyzed (defined by the higher-ranking loops). Including plot of quantiles, exp. and 
most probable value. 

 216-392: Computation of model validation for the distribution, model and process variable actually 
analyzed (calculation for the process settings defined in line 7-16; choose all process settings exp. 
analyzed here for an optimal validation). 

 218-237: Vector “Y_Vec” contains for each sampled parameter vector (column) the model solutions 
(row) (with respect to the distribution, model and process variable actually analyzed (defined by higher-
ranking loops)). For each of these model solutions a sample of theoretically occurring observations is 
generated by random sampling with respect to the error of experiment repetition / measurement. Mean 
and variance are calculated for each sampled observation. 

 224-236: Generation of a sample of size “Smpl_Sz” of theoretically occurring observations from a 
defined observation. Calculation of mean and variance for each sampled observation. 

 239-244: Calculation of minimum and maximum of the solution means and variances calculated in line 
222-237. Definition of the spectrum / interval of the mean and variance values for further analysis. 

 246-267: Sorting of all theoretically occurring mean and variance values (calculated / sampled in line 
222-237) into the corresponding spectrum intervals. Calculation of relative probabilities for the intervals. 

 269-270: Calculation of mean and variance of the experimental observed data. 

 272-282: Calculation of the cumulative probability distribution for the further localization of quantiles. 

 284-299: For the observation mean: Localization of the position in the relative probability distribution for 
the 5%- and 95%-quantiles as well as for the experimental values. 

 301-336: Plot of the relative probability distributions including quantiles and exp. values for model 
validation. 

 339-354: For the observation variance: Localization of the position in the relative probability distribution 
for the 5%- and 95%-Quantiles as well as for the experimental values. 

 356-391: Plot of the relative probability distributions including quantiles and exp. values for model 
validation. 
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Annex C – Figures for 5.2.1.1 

 Run 1: Application of the parameterization with the highest posterior probability as 

candidate vector for model discrimination 

o Concergence of Markov-Chains (exemplary) 

 

Figure C.9: Convergence mean MM-Model 

 

 

Figure C.10: Convergence variance MM-Model 
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Figure C.11: Convergence mean Moser-Model 

 

  

Figure C.12: Convergence variance Moser-Model 
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o Model fit 

 

Figure C.13: Bayesian- and RLS-Model-Fit of MM-Model 

 

 

Figure C.14: Bayesian- and RLS-Model-Fit of Moser-Model 
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o Prior and posterior parameter distributions (exemplary) 

 

Figure C.15: Prior probability distribution of parameter 2 MM-Model 

 

 

Figure C.16: Posterior probability distribution of parameter 2 MM-Model 
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Figure C.17: Prior probability distribution of parameter 3 Moser-Model 

 

 

Figure C.18: Posterior probability distribution of parameter 3 Moser-Model 
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o Model validation 

 

Figure C.19: Validation mean cell concentration MM-Model 

 

 

Figure C.20: Validation variance cell concentration MM-Model 
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Figure C.21: Validation mean substrate concentration MM-Model 

 

 

Figure C.22: Validation variance substrate concentration MM-Model 
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Figure C.23: Validation mean cell concentration Moser-Model 

 

 

Figure C.24: Validation variance cell concentration Moser-Model 
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Figure C.25: Validation mean substrate concentration Moser-Model 

 

 

Figure C.26: Validation variance substrate concentration Moser-Model 
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o Posterior probability distribution of experimental observations (exemplary) 

 

Figure C.27: Posterior probability of cell concentration at time t=5 h Michaelis-Menten-Model 

 

 

Figure C.28: Posterior probability of substrate concentration at time t=5 h Michaelis-Menten-Model 
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Figure C.29: Posterior probability of cell concentration at time t=5 h Moser-Model 

 

 

Figure C.30: Posterior probability of substrate concentration at time t=5 h Moser-Model 

 

 Run 2: Application of the posterior mean as candidate vector for model 

discrimination 

The figures exposed for Run 1 are also valid here as these results are not 

dependent on the choice of the candidate vector. The results only differ for the 

relative model probability (compare Table 5). 
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Annex D – Figures for 5.2.1.2 

 Run 1: Application of the parameterization with the highest posterior probability as 

candidate vector for model discrimination 

 

o Concergence of Markov-Chains (exemplary) 

 

Figure D.31: Convergence mean MM-Model 

 

 

Figure D.32: Convergence variance MM-Model 
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Figure D.33: Convergence mean Moser-Model 

 

 

Figure D.34: Convergence variance Moser-Model 
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o Comparisan of Bayesian- and RLS-Model-Fit 

 

Figure D.35: Bayesian- and RLS-Model-Fit of MM-Model 

 

 

Figure D.36: Bayesian- and RLS-Model-Fit of Moser-Model 
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o Prior and posterior parameter distributions (exemplary) 

 

Figure D.37: Prior probability distribution of parameter 2 MM-Model 

 

 

Figure D.38: Posterior probability distribution of parameter 2 MM-Model 
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Figure D.39: Prior probability distribution of parameter 3 Moser-Model 

 

 

Figure D.40: Posterior probability distribution of parameter 3 Moser-Model 
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o Model validation 

 

Figure D.41: Validation mean cell concentration MM-Model 

 

 

Figure D.42: Validation variance cell concentration MM-Model 
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Figure D.43: Validation mean substrate concentration MM-Model 

 

 

Figure D.44: Validation variance substrate concentration MM-Model 
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Figure D.45: Validation mean cell concentration Moser-Model 

 

 

Figure D.46: Validation variance cell concentration Moser-Model 
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Figure D.47: Validation mean substrate concentration Moser-Model 

 

 

Figure D.48: Validation variance substrate concentration Moser-Model 
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o Posterior probability distribution of experimental observations (exemplary) 

 

Figure D.49: Posterior probability of cell concentration at time t=5 h Michaeli-Menten-Model 

 

 

Figure D.50: Posterior probability of substrate concentration at time t=5 h Michaeli-Menten-Model 
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Figure D.51: Posterior probability of cell concentration at time t=5 h Moser-Model 

 

 

Figure D.52: Posterior probability of substrate concentration at time t=5 h Moser-Model 

 

 Run 2: Application of the posterior mean as candidate vector for model 

discrimination 

The figures exposed for Run 1 are also valid here as these results are not 

dependent on the choice of the candidate vector. The results only differ for the 

relative model probability (compare Table 5.19). 
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Annex E – Figures for 5.2.1.3 

Application of the parameterization with the highest posterior probability as candidate vector 

for model discrimination 

o Concergence of Markov-Chains (exemplary) 

 

Figure E.53: Convergence mean MM-Model 

 

 

Figure E.54: Convergence variance MM-Model 
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Figure E.55: Convergence mean Moser-Model 

 

 

Figure E.56: Convergence variance Moser-Model 
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o Comparisan of Bayesian- and RLS-Model-Fit 

 

Figure E.57: Bayesian- and RLS-Model-Fit of MM-Model 

 

 

Figure E.58: Bayesian- and RLS-Model-Fit of Moser-Model 
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o Prior and posterior parameter distributions (exemplary) 

 

Figure E.59: Prior proabability distribution of parameter 2 MM-Model 

 

 

Figure E.60: Posterior proabability distribution of parameter 2 MM-Model 
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Figure E.61: Prior proabability distribution of parameter 3 Moser-Model 

 

 

Figure E.62: Posterior proabability distribution of parameter 3 Moser-Model 
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o Model validation 

 

Figure E.63: Validation mean cell concentration MM-Model 

 

 

Figure E.64: Validation variance cell concentration MM-Model 
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Figure E.65: Validation mean substrate concentration MM-Model 

 

 

Figure E.66: Validation variance substrate concentration MM-Model 
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Figure E.67: Validation mean cell concentration Moser-Model 

 

 

Figure E.68: Validation variance cell concentration Moser-Model 
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Figure E.69: Validation mean substrate concentration Moser-Model 

 

 

Figure E.70: Validation variance substrate concentration Moser-Model 
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o Posterior probability distribution of experimental observations (exemplary) 

 

Figure E.71:  Posterior probability of cell concentration at time t=5 h Michaeli-Menten-Model 

 

 

Figure E.72: Posterior probability of substrate concentration at time t=5 h Michaeli-Menten-Model 
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Figure E.73: Posterior probability of cell concentration at time t=5 h Moser-Model 

 

 

Figure E.74: Posterior probability of substrate concentration at time t=5 h Moser-Model 

  



Annex F – Figures for 5.2.1.4 

177 

 

Annex F – Figures for 5.2.1.4 

  Run 1: Application of the parameterization with the highest posterior probability as 

candidate vector for model discrimination 

 

o Concergence of Markov-Chains (exemplary) 

  

Figure F.75: Convergence mean MM-Model 

 

 

Figure F.76: Convergence variance MM-Model 
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Figure F.77:  Convergence mean Moser-Model 

 

 

Figure F.78: Convergence variance Moser-Model 
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o Comparison of Bayesian- and RLS-Model-Fit 

 

Figure F.79: Bayesian- and RLS-Model-Fit of MM-Model 

 

 

Figure F.80: Bayesian- and RLS-Model-Fit of Moser-Model 
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o Prior and posterior parameter distributions (exemplary) 

 

Figure F.81: Prior proabability distribution of parameter 2 MM-Model 

 

 

Figure F.82: Posterior proabability distribution of parameter 2 MM-Model 
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Figure F.83: Prior proabability distribution of parameter 4 Moser-Model 

 

 

Figure F.84: Posterior proabability distribution of parameter 4 Moser-Model 
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o Model validation 

 

Figure F.85: Validation mean cell concentration MM-Model 

 

 

Figure F.86: Validation variance cell concentration MM-Model 
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Figure F.87: Validation mean substrate concentration MM-Model 

 

 

Figure F.88: Validation variance substrate concentration MM-Model 
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Figure F.89: Validation mean cell concentration Moser-Model 

 

 

Figure F.90: Validation variance cell concentration Moser-Model 
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Figure F.91: Validation mean substrate concentration Moser-Model 

 

Figure F.92: Validation variance substrate concentration Moser-Model 

 

o Posterior probability distribution of experimental observations (exemplary) 

Not necessary as neither model is valid. Thus experimental values are 

expected to be not in support of distributions. 

 Run 2: Application of the posterior mean as candidate vector for model 

discrimination 

The figures exposed for Run 1 are also valid here as these results are not dependent 

on the choice of the candidate vector. The results only differ for the relative model 

probability (compare Table 5.23). 
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Annex G – Figures for 5.2.1.5 and 5.2.1.6 

  Simulation ‘Exp. data (Run 1)’: The figures / results exposed here do not depend 

on the choice of the candidate vector for model discrimination. They are also 

identical for simulation ‘Exp. data (Run 2)’ which is a repetition of the simulation at 

identical conditions. The parameter distributions are not exposed here as this has 

been already done exemplarily for the other simulation experiments. The 

characteristic measures for comparison of the prior and posterior parameter 

distribution can be taken from Table 5.25. A graphical exposition does not provide 

any additional information here. Also the distribution of experimental observations 

is not relevant for the analysis of the real experimental data as the basic objective 

here is the model fit and discrimination, as well as its dependency on the prior 

variance. The analysis and discussion of experimental observation distributions has 

been achieved sufficiently for some examples in the preceeding simulation 

experiments. There is no additional use to achieve that here again. 

 

o Concergence of Markov-Chains (exemplary) 

 

Figure G.93: Convergence mean MM-Model 
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Figure G.94: Convergence variance MM-Model 

 

 

Figure G.95: Convergence mean Moser –Model 
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Figure G.96: Convergence variance Moser –Model 

 

o Comparison of Bayesian- and RLS-Model-Fit 

 

Figure G.97: Bayesian- and RLS-Model-Fit of MM-Model 
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Figure G.98: Bayesian- and RLS-Model-Fit of Moser-Model 

 

o Model validation 

 

Figure G.99: Validation mean cell concentration MM-Model 
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Figure G.100: Validation variance cell concentration MM-Model 

 

 

Figure G.101: Validation mean substrate concentration MM-Model 
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Figure G.102: Validation variance substrate concentration MM-Model 

 

 

Figure G.103: Validation mean cell concentration Moser-Model 
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Figure G.104: Validation variance cell concentration Moser-Model 

 

 

Figure G.105: Validation mean substrate concentration Moser-Model 
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Figure G.106: Validation variance substrate concentration Moser-Model 

 

 Simulation ‘Exp. data (Run 3)’: The figures / results exposed here do not depent on 

the choice of the candidate vector for model discrimination. The parameter 

distributions are not exposed here as this has been already done exemplarily for 

the other simulation experiments. The characteristic measures for comparison of 

the prior and posterior parameter distribution can be taken from Table 5.25. A 

graphical exposition does not provide any additional information here. Also the 

distribution of experimental observations is not relevant for the analysis of the real 

experimental data as the basic objective is the model fit, discrimination and 

validation here as well as its dependency on the prior variance. The analysis and 

discussion of experimental observation distributions has been achieved sufficiently 

for some examples in the preceeding simulation experiments. There is no 

additional use to achieve that here again. 
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o Concergence of Markov-Chains (exemplary) 

 

Figure G.107: Convergence mean Michaelis-Menten–Model 

 

 

Figure G.108: Convergence variance Michaelis-Menten–Model 
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Figure G.109: Convergence mean Moser–Model 

 

 

Figure G.110: Convergence variance Moser–Model 
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o Comparison Bayesian- and RLS-Model-Fit 

 

Figure G.111: Bayesian- and RLS-Model-Fit of MM-Model 

 

 

Figure G.112: Bayesian- and RLS-Model-Fit of Moser-Model 
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o Model validation 

 

Figure G.113: Validation mean cell concentration MM-Model 

 

 

Figure G.114: Validation variance cell concentration MM-Model 
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Figure G.115: Validation mean substrate concentration MM-Model 

 

 

Figure G.116: Validation variance substrate concentration MM-Model 
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Figure G.117: Validation mean cell concentration Moser-Model 

 

 

Figure G.118: Validation variance cell concentration Moser-Model 



Annex G – Figures for 5.2.1.5 and 5.2.1.6 

200 

 

 

Figure G.119: Validation mean substrate concentration Moser-Model 

 

 

Figure G.120: Validation variance substrate concentration Moser-Model 
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Annex H – Figures for 5.2.2.1 

o Concergence of Markov-Chains (exemplary) 

 

Figure H.121: Convergence mean parameter 4 model 1
st
 grade rancimat value 

 

Mode prior distribution

Mode estimate posterior distr.

 

Figure H.122: Convergence mean parameter 4 model 1
st
 grade rancimat value (zoom) 
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Figure H.123: Convergence variance parameter 4 model 1
st
 grade rancimat value 

 

 

Figure H.124: Convergence variance parameter 4 model 1
st
 grade rancimat value (zoom) 
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o Bayesian model fit 

 

Figure H.125: Model 1
st
 grade rancimat value (Bayesian fit) 

 

o Prior and posterior parameter distributions (exemplary) 

 

Figure H.126: Prior and posterior probability distribution of parameter 4 model 1
st
 grade rancimat 

value 
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Figure H.127: Prior and posterior probability distribution parameter 9 model 2
nd

 grade rancimat 
value 

 

o Posterior probability distribution of experimental observations (exemplary) 

 

Figure H.128: Posterior probability of exp. observations at opt. setting model 1
st
 grade rancimat 

value 
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Figure H.129: Posterior probability of exp. observations at opt. setting model 2
nd

 grade rancimat 
value 

 

o Model validation 

 

Figure H.130: Validation mean rancimat value model 1
st
 grade 
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Figure H.131: Validation variance rancimat value model 1
st
 grade 

 

 

Figure H.132: Validation mean rancimat value model 2
nd

 grade 
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Figure H.133: Validation variance rancimat value model 2
nd

 grade 
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Annex I – Figures for 5.2.2.2 

o Concergence of Markov-Chains (exemplary) 

 

Figure I.134: Convergence mean parameter 2 model 1
st
 grade acid value 

 

Mode prior distribution

Mode estimate posterior distr.

 

Figure I.135: Convergence mean parameter 2 model 1
st
 grade acid value (zoom) 



Annex I – Figures for 5.2.2.2 

209 

 

  

Figure I.136: Convergence variance parameter 2 model 1
st
 grade acid value 

 

  

Figure I.137: Convergence variance parameter 2 model 1
st
  acid value (zoom) 
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o Bayesian model fit 

 

Figure I.138: Model 1st grade acid value for optimum pump power (Baysian fit) 

 

 

Figure I.139: Model 2
nd

 grade acid value for optimum pump power (Baysian fit) 
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o Prior and posterior parameter distribution (exemplary) 

 

Figure I.140: Prior and posterior probability distribution of parameter 6 model 1
st
 grade acid value 

 

 

Figure I.141: Prior and posterior probability distribution of parameter 7 model 2
nd

 grade acid value 
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o Posterior probability distribution of experimental observations (exemplary) 

 

Figure I.142: Posterior probability of exp. observations at opt. setting model 1
st
 grade acid value 

 

 

Figure I.143: Posterior probability of exp. observations at opt. setting model 2
nd

 grade acid value 
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o Model validation 

 

Figure I.144: Validation mean acid value model 1
st
 grade 

 

 

Figure I.145: Validation variance acid value model 1
st
 grade 
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Figure I.146: Validation mean acid value model 2
nd

 grade 

 

 

Figure I.147: Validation variance acid value model 2
nd

 grade 
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Annex J – Figures for 5.2.2.3 

o Convergence of Markov-Chains (exemplary) 

 

Figure J.148: Convergence mean parameter 1 model 1
st
 grade tocopherol 

 

Mode prior distribution

Mode estimate posterior distr.

 

Figure J.149: Convergence mean parameter 1 model 1
st
 grade tocopherol (zoom) 
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Figure J.150: Convergence variance parameter 1 model 1
st
 grade tocopherol 

 

 

Figure J.151: Convergence variance parameter 1 model 1
st
 grade tocopherol (zoom) 
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o Bayesian model fit 

 

Figure J.152: Model 1
st
 grade tocopherol for optimum pump power (Baysian fit) 

 

 

Figure J.153: Model 2
nd

 grade tocopherol for optimum stirrer rotation (Baysian fit) 
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o Prior and posterior parameter distribution (exemplary) 

 

Figure J.154: Prior and posterior probability distribution of parameter 3 model 1
st
 grade tocopherol 

 

 

Figure J.155: Prior and posterior probability distribution of parameter 5 model 2
nd

 grade tocopherol 
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o Posterior probability distribution of experimental observations (exemplary) 

 

Figure J.156: Posterior probability of exp. observations at opt. setting model 1
st
 grade tocopherol 

 

 

Figure J.157: Posterior probability of exp. observations at opt. setting model 2
nd

 grade tocopherol 
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o Model validation 

 

Figure J.158: Validation mean tocopherol model 1
st
 grade 

 

 

Figure J.159: Validation variance tocopherol model 1
st
 grade 
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Figure J.160: Validation mean tocopherol model 2
nd

 grade 

 

 

Figure J.161: Validation variance tocopherol model 2
nd

 grade 
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