
Correction of Residual Artifacts in Prospectively 

Motion-corrected MR-data 

 

Dissertation 

zur Erlangung des akademischen Grades 

 

Doctor rerum naturalium 

(Dr. rer. nat) 

 genehmigt durch die Fakultät für Naturwissenschaften  

der Otto-von-Guericke-Universität Magdeburg  

 

von    Master of Science, Uten Yarach 

geb. am   12. April 1979 in Nan (Thailand) 

Gutachter:  Prof. Dr. rer. nat. Oliver Speck   

   Prof. Dr. Nikolaus Weiskopt 

eingereicht am: 01 Juni 2016 

verteidigt am:  16 Dezember 2016 



 

 

 

 

 

 

 

 

 

 

 

 

To my parents and my wife (Chanakarn) 



iii 

 

ABSTRACT 

Head motion during magnetic resonance imaging (MRI) acquisition can degrade image 

quality below levels acceptable for clinical diagnosis. Over the years, numerous motion 

correction techniques have been presented and can be categorized into methods for 

retrospective and prospective correction. Prospective motion correction (PMC) 

approaches have been receiving increased attention due to the fact that they can prevent 

k-space inconsistencies and spin history effects. Furthermore, no extra imaging time is 

required when an external tracking system is used. However, even with highly accurate 

and precise tracking and low-latency PMC, large-scale motion can lead to residual 

artifacts that cannot be compensated for with rigid body adjustment alone. The relative 

motion of the coil sensitivities, the distortion associated with gradient nonlinearity (GNL) 

and magnetic field inhomogeneities (∆B0) due to tissue-specific susceptibilities are 

widely discussed in the literature. 

The main objective of this study was to develop retrospective corrections to minimize the 

aforementioned residual artifacts in the intra-scan motion MRI after applying PMC. The 

corrections were integrated into the augmented sensitivity encoding (augmented SENSE) 

reconstruction, which was recently introduced for retrospectively correcting the rigid 

body motion and simultaneously alleviating the relative motion of coil sensitivity in 

multiple-coil MRI data. The distortions caused by GNL and ∆B0 were considered in 

image domain using the pixel shift method. The type-1 of NUFFT that can map data from 

uniform k-space to non-uniform image space, and is capable of preserving high spatial 

frequency components was exploited. Our experiments suggest that including the 

corrections of the relative motion of coil sensitivity, as well as the geometric distortions 

due to magnetic field variations (GNL and ∆B0), can further improve the quality of  large-

scale motion MR images acquired using the prospective motion correction.  
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ZUSAMMENFASSUNG 

Kopfbewegungen während der Bildakquise durch Magnetresonanzbildgebung (MRI) 

kann die Bildqualität unter das für die klinische Akzeptanz notwendige Niveau 

verringern. In den letzten Jahren wurde eine Viezahl an Methoden zur 

Bewegungskorrektur präsentiert, welche in retro- und prospektive Korrektur kategorisiert 

werden können. Ansätze der prospektiven Bewegungskorrektur (prospective motion 

correction, PMC) erlangten verstärkt Aufmerksamkeit, da sie k-Raum-Inkonsistenzen 

und Spin-Verlaufs-Effekte verhindern können. Weiter ist von Vorteil, dass keine 

zusätzliche Zeit zur Bildgebung benötigt wird, wenn ein externes Tracking-System 

benutzt wird. Jedoch können, trotz hochgenauem und präzisem Tracking und PMC 

geringer Latenz, starke Bewegungen zu übrigbleibenden Artefakten führen, die nicht 

allein durch Transformationen starrer Körper kompensiert werden können. 

Relativbewegungen der Spulensensitivitäten, Verzerrungen aufgrund von Gradienten-

Nichtlinearität (GNL) und Magnetfeldinhomogenitäten (∆B0) aufgrund 

gewebespezifischer Suszeptibilitäten wurden gemeinhin als relevante Quellen dieser 

Artefakte diskutiert. 

Das Hauptziel dieser Studie ist die Entwicklung retrospektiver Korrekturen, um die oben 

genannten residuellen Artefakte durch Bewegungen unter Anwendung von PMC zu 

minimieren. Die Korrekturen wurden in die augmented sensitivity encoding-

Rekonstruktion (augmented SENSE) integriert, welche zuletzt zur retrospektiven 

Korrektur der Bewegung starrer Körper unter gleichzeitiger Berücksichtigung der 

Verschiebung der Spulensensitivitäten vorgestellt wurde. Die Verzerrungen durch     

und ∆B0 wurden im Bildraum durch pixelweise Verschiebung berücksichtigt. Die nicht-

uniforme schnelle Fouriertransformation vom Typ 1 (type-1 NUFFT), die Komponenten 

hoher Raumfrequenzen erhalten kann, wurde hierfür ausgenutzt. Die Experimente legen 

nahe, dass die Korrektur sowohl der Relativbewegung der Spulensensitivitäten als auch 

der Verzerrungen durch Magnetfeldveränderungen (GNL und ∆B0) die Bildqualität von 

PMC-gestützter Bildgebung unter starker Bewegung weiter verbessert. 
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1. INTRODUCTION 

1.1. Motivation  

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality. Unlike 

Computed Tomography (CT), MRI does not use ionizing radiation. In addition, MRI 

provides a large number of flexible contrast parameters. These provide excellent soft 

tissue contrast. MRI can also be sensitized to many specific parameters. These include 

imaging brain oxygen saturation changes due to neuronal activity; measuring blood flow 

velocities; measuring temperature; and measuring the concentration of metabolites. MRI 

is also the only way to directly image diffusion of water molecules in vivo. However, 

patient motion during MRI acquisition remains a severe problem and may degrade image 

quality below levels acceptable for clinical diagnosis. Numerous motion correction 

techniques have been presented over the past few decades. They can be categorized into 

methods for retrospective and prospective corrections based on motion information that 

originates from MR-data, i.e. navigator echoes (Ehman et al., 1989) and self-navigated 

(Pipe, 1999), or from external motion detection devices (Derbyshire et al., 1998). When 

motion occurred only infrequently during an examination, the image quality can be 

improved after either the corrupted signals were rejected or replaced by resampled signals 

(Bydder et al., 2002b; Pipe, 1999). Retrospective correction (Atkinson et al., 1999; 

Batchelor et al., 2005) was applied in the image reconstruction process by reversing the 

motion effects on the corrupted signals. As a way of preventing inconsistent k-space data, 

real-time prospective motion correction (PMC) (Thesen et al., 2000; Ward et al., 2000; 

Zaitsev et al., 2006) has been proposed with continuous or repeated position 

determination, followed by gradient and RF adjustment immediately before each 

excitation to result in data as if no movement had occurred. Furthermore, no extra 

imaging time is required when an external tracking system, which commonly computes 

pose in six degrees of freedom, is used (Zaitsev et al., 2006). 
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Even with highly accurate and precise tracking and low-latency PMC, large-scale motion 

may lead to residual artifacts (Maclaren et al., 2013) that cannot be compensated for with 

rigid body adjustment alone. Apart from the inherent tracking problem (Maclaren et al., 

2011), the commonly discussed artifact sources are the relative motion of the coil 

sensitivity (Aksoy Bammer, 2008; Atkinson et al., 2004; Bammer et al., 2007; Benerjee 

et al., 2013; Luengviriya, 2010) as well as the geometric distortions caused by GNL (Hu 

et al., 2005; Polzin et al., 2004) and the subject-related field inhomogeneity (∆B0) (Ooi et 

al., 2013).  

The coil sensitivity misalignment due to physiological movement within the static RF 

receive coils will cause variation of signal intensity and phase and lead to images with 

shading artifacts after combination of single coil images (Atkinson et al., 2004; Banerjee 

et al., 2013). This artifact appears more visible in parallel imaging with high acceleration 

factors (Aksoy et al., 2008), and also becomes more challenging with a large number of 

small array coils (Luengviriya, 2010). A previous study (Bammer et al., 2007) introduced 

an effective technique for reconstructing the motion dataset, and also considering the 

relative motion of coil sensitivity artifact, and is termed ‘augmented sensitivity encoding 

(augmented SENSE) reconstruction’ – namely, the k-space data were divided into several 

pipelines based on the motion poses, and compensated for coil sensitivity mismatch 

individually in an iterative fashion. The sensitivity maps accounted in (Bammer et al., 

2007) were measured for all motion poses. However, Benerjee et al., (2013) reported that 

the coil sensitivities relative to the motion poses can be prepared by adjusting the initial 

calibration data. This strategy worked well at the low field strength (i.e., 1.5T) which coil 

loading effect caused by the body being imaged is small, in comparison to higher field 

strengths. Therefore, this thesis observes the impact of the relative motion of coil 

sensitivity artifacts and determines the necessity of its correction at 7T MRI.     

Motion within a non-linear gradient manifests as spatial distortion and blurring since 

object geometry at multiple object poses within the non-linear gradient fields, and thus 

the k-space data become inconsistent between phase encoding steps as demonstrated by 

Polzin et al. (2004) and other authors (Hu et al., 2005). This effect is more pronounced in 
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peripheral regions where gradient deviations are strongest. In general, not only GNL can 

result in spatial distortion due to motion, but B0 inhomogeneity caused by magnetic 

properties of the subject (e.g., air-tissue interfaces) is a relevant source of geometric 

distortions (Jezzard et al., 1995; Jezzard et al., 1999; Ooi et al., 2013). Particularly, its 

effect is increased at a high field strength such as 7T (Speck et al., 2008). Recently, the 

locations and sizes of B0 field shifts within the brain at 7T for different head movements 

were reported (Sulikoswa et al., 2014). These observations showed that the local field 

changes strongly depend on the subject orientation. Consequently, PMC at high field may 

be impacted by this variation even in conventional Cartesian MRI acquisitions with low 

readout-bandwidth (BW) that are often chosen to optimize signal-to-noise (SNR) or 

contrast-to-noise (CNR) ratios in structural imaging. In static and conventional MRI, the 

distortion correction is widely considered in post-processing steps (Baldwin et al., 2007; 

Jezzard et al., 1995) rather by taking part in during image reconstruction. This traditional 

pipeline becomes impractical for intra-scan motion MRI, since the set of k-space is 

interfered by the different magnetic field displacements, resulting not only distortion but 

also blurring in image space.  Therefore, this thesis is to develop the retrospective 

corrections to minimize the geometric distortions within intra-scan motion MRI after 

applying PMC at 7T MRI. 

1.2. Thesis Outline  

Chapter 2 is a brief introduction to MRI. It covers some basic MR physics; signal 

generation; signal reception; spatial encoding; and image generation. The rigid body 

motion artifact, its existing correction methods, and the residual artifacts after the motion 

correction are presented. The advance image reconstruction algorithms such as the 

gridding, the NUFFT, and the augmented SENSE are described. 

Chapter 3 demonstrates the influence of coil sensitivities within intra-scan motion data 

with PMC enabled, and the necessity of its correction. The mathematical model, the coil 

sensitivity estimations, and the reconstruction algorithm are described. Both fully-

sampled and under-sampled of intra-scan motion MR data are observed.  
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Chapter 4 proposes the MR signal model corrupted by the gradient nonlinearity. The 

gradient displacement field which is key information for this model is obviously 

explained. The iterative correction scheme using type-1 of NUFFT is highlighted. The 

use of proposed reconstruction to improve the quality of images is demonstrated. 

Chapter 5 proposes the correction of subject-specific susceptibility induced geometric 

distortion in PMC data. The distorted space obtained from the B0 field map is derived. B0 

field variations at different head orientations are investigated. The method of 

implementation in phantom and in vivo brain are presented. 

Chapter 6 includes a detailed discussion of the proposed correction techniques. 

Finally, Chapter 7 includes the unresolved challenges that require further investigations, 

and the conclusion. 
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2. BACKGROUND 

MRI has been widely used as a non-invasive clinical and research modality for the study 

of human anatomy. It exploits the phenomenon of nuclear magnetic resonance (NMR) in 

an external magnetic field, whereby nuclei absorb and re-emit certain radio frequency 

(RF) waves during changes in the nuclear spin state. Image formation using NMR signals 

was developed by Lauterbur and Mansfield (Lauterbur, 1989; Mansfield et al., 1977) 

based on spatial encoding principles, which won them the 2003 Nobel Prize in 

Physiology and Medicine. Since then, MRI has undergone dramatic improvements in all 

the features that define image quality, such as resolution, SNR, contrast enhancement and 

speed. Specific structures, such as arteries, lesions, white matter fiber tracts, can also be 

visualized by manipulating RF fields and local magnetic field. 

2.1. Principle of MRI 

2.1.1. Basic NMR physics 

MRI is based on the interaction of a nuclear spin with external magnetic fields. All 

atomic nuclei consist of nucleons (protons and neutrons) that possess a quantum 

mechanical property called spin. If the nucleus consists of an odd number of nucleons, 

the nuclear spin is greater than zero, the nucleus is NMR-active, and a magnetic dipole 

moment, or simply a magnetic moment, can be associated with the nucleus. The dominant 

nucleus in biological tissues is the proton in hydrogen. The interaction of the NMR-active 

nuclei, e.g., the proton, with the external magnetic field results in the precession of the 

spin about the external field direction, which is called the Larmor precession. 

The Larmor precession occurs at a specific frequency, called the Larmor frequency, 

which depends on the strength of the external magnetic field and the characteristics of the 

nucleus: 
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where    is the Larmor frequency, B0 is the external magnetic field, and   is a constant 

called the gyro-magnetic ratio, which depends on the nucleus involved.  

In a classical model, the precession of the spins around the magnetic field occurs out of 

phase with each other in the presence of a static external magnetic field. This out-of-

phase precession results in a net macroscopic magnetization in the direction of the 

external magnetic field, i.e., the longitudinal direction, since the transverse magnetization 

components cancel out due to the out-of-phase precession
1
. This is usually referred to as 

the equilibrium magnetization, denoted by M0. Note that, by definition, magnetization is 

a vector field equal to the volume density of permanent or induced magnetic dipole 

moments in a magnetic material. 

To detect this magnetization, it can be rotated away from its alignment along the B0 axis 

by applying a radio frequency (RF) magnetic field for a short time, i.e., an RF pulse, with 

                                                 

1
 The B0 direction is referred to as the longitudinal direction and is often assumed to be in 

the direction of the  -axis. Perpendicular to B0 the direction is the transverse plane, i.e., 

the   -plane. 

 

 

 

 

 

 

 

 

 



 

7 

 

its frequency tuned to the Larmor frequency (see Figure 2.1). The RF pulse is produced 

by an RF transmit coil, which is often used as the receiving coil as well. The RF magnetic 

field is also referred to as the B1 field. The duration and power of the RF pulse 

determines the flip angle ( ) by which the magnetization is rotated. 

   ∫|     |

 

 

                      

The application of the RF pulse tilts the net macroscopic magnetization away from the B0 

direction, resulting in a net (macroscopic) transverse magnetization component 

precessing at the Larmor frequency. The produced magnetic field precesses along with 

the magnetization, yielding a changing flux in the receive coil and therefore a current 

based on Faraday’s law. 

 

Figure 2.1. The magnetization vector is tilted away from the longitudinal equilibrium in 

the B0 direction towards the transverse plane by the application of an RF pulse, B1, at the 

Larmor (resonance) frequency. 

2.1.2. Spatial Localization for Imaging 

The precession frequency given in Eq. 2.1 can be modified by applying additional 

magnetic field gradients, thereby forcing the Larmor frequency to be spatially dependent. 
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An additionally applied magnetic field gradient  ⃗        2 yields the following 

spatially dependent precession frequency  : 

   ⃗          ⃗     ⃗                  

Thus, by exploiting magnetic field gradients in all three spatial dimensions, one is able to 

fully spatially encode the object under investigation. MRI is described in more detail 

below. 

2.1.2.1. Selective Excitation 

At the beginning of every conventional 2D MRI experiment the slice to be 

imaged must be selected, normally in the z-direction. To this end, a selective RF 

excitation pulse is required, which excites only spins in a well-defined frequency range. 

Such RF pulses have a well-defined shape such as Gaussian or Sinc with a finite 

frequency bandwidth      around the center frequency    . For small flip angles, the 

actual excitation profile of such pulses can roughly be approximated by a simple Fourier 

transformation of the temporal modulation function of the RF pulse (small tip angle 

approximation (Pauly et al., 2011)). In this case, a sinc-type excitation pulse corresponds 

to a box-car-shaped excitation profile, a Gaussian RF pulse to a Gaussian excitation 

profile. By applying a frequency-selective RF pulse with frequency bandwidth      in 

combination with a constant magnetic field gradient           only spins within a 

distinct slice with thickness    are excited. 

   
    

    
               

                                                 

2
    and    can be neglected because | ⃗⃗ |   | ⃗⃗  ⃗ | 
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The slice position    is adjusted by the carrier frequency     of the pulse, which can be 

chosen slightly off-resonant from the Larmor frequency given in Eq. 2.1. Exploiting 

again Eq. 2.3, the frequency offset corresponds to an offset in the slice position. 

   
      

    
               

To compensate for spin dephasing caused by the slice gradient, an inverted gradient must 

be applied after slice-selection. 

2.1.2.2. K-Space Formalism 

According to Eq. 2.3 magnetic field gradients  ⃗    result in a spatially dependent 

Larmor frequency. In the presence of such a gradient, the signal      picked up by the 

receiver is composed of the sum of all spins in the object under investigation with spin 

density    ⃗  (neglecting relaxation effect and magnetic field inhomogeneities) at 

position  ⃗: 

     ∫   ⃗     ∫  ( ⃗   )   
 
    ⃗  

      ∫   ⃗      ∫  ⃗(  )    ⃗
 
    ⃗                     

By substituting  ⃗⃗   ∫  ⃗       
 

 
, where   denotes the time the magnetic field gradient is 

applied, and omitting the exponential term with spatially independent modulation 

frequency   , the relation in Eq. 2.6 yields: 

 ( ⃗⃗)  ∫   ⃗      ⃗⃗ ⃗   ⃗                                 

In this form, the received signal   can be recognized as the Fourier transformation of the 

spin density    ⃗  at position  ⃗. Therefore, the spin density (or the image) can be 

determined by simply applying the inverse Fourier transformation to the received signal.  
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   ⃗  ∫ ( ⃗⃗)     ⃗⃗ ⃗   ⃗⃗                                 

By introducing the reciprocal space vector  ⃗⃗⃗ ⃗, the so-called k-space can be defined, which 

is spanned by three orthogonal k-vectors allowing a simple description of the spatial 

encoding used in MRI (Twieg, 1983). This concept, and how it is carried out in practice 

is described in the following sections and discussed in more detail, for example, in 

(Haacke, 1999). 

2.1.2.3. Frequency Encoding 

After slice selection, one spatial dimension is encoded by a spatial frequency 

modulation, which the so-called frequency encoding. Here, frequency encoding is carried 

out in the  -direction by applying a constant magnetic field gradient     
   

  
, during 

data acquisition. The longer and stronger the gradient    is applied, the higher is the 

spatial frequency content in the received one-dimensional signal: 

      ∫   ⃗                                                          

In practice, the signal is sampled at    discrete points in intervals of     while a constant 

gradient    is on. Thus, the discrete steps traversed in the    direction in k-space 

are            . In most cases, frequency encoding is performed by starting at a 

maximum negative spatial frequency    
    and ending at a maximum positive spatial 

frequency    
   . To obtain the echo maximum at    = 0, before the actual frequency 

encoding is carried out, the spins are dephased by applying a negative gradient in the  -

direction (see Figure 2.2). 

2.1.2.4. Phase Encoding 

The phase of the NMR signal can be used to encode a second spatial dimension, 

here the y-direction, within the excited slice. The so-called phase encoding is carried out 

between the slice excitation and the signal acquisition. To this end, a magnetic field 
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gradient, the phase encoding gradient     
   

  
, is applied in the  -direction 

(perpendicular to the  -direction) for a duration   , thereby generating sinusoidal 

modulations of the spin phases in the sample. Thereafter, all spins precess with the same 

frequency, but now with a spatially dependent phase: 

                            

This modulation persists throughout the following read-out procedure. In contrast to 

frequency encoding, the phase encoding process has to be repeated several times by 

changing either the gradient strength    or the phase encoding time    in order to cover 

the entire two dimensional k-space. With         , the two-dimensional signal 

originating from the excited slice can be written as 

 (     )  ∬                                           

In Figure 2.2 (left), the sequence of RF and gradient pulses are shown for a simple 

gradient echo experiment using a conventional spin-warp trajectory for phase encoding 

(Edelstein et al., 1980). After slice selection (1) the starting point for the read-out 

procedure is set by applying a negative gradient in the  -direction and (normally at the 

same time) a phase encoding gradient in the  -direction (2), followed by the actual read-

out procedure (3). This corresponds to moving at a certain    position in k-space in the 

  -direction from left (   
   ) to right (   

   ). 
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Figure 2.2. Schematic description of spatial encoding in MRI. On the left, a typical spin-

warp gradient echo pulse sequence is displayed, and on the right, the corresponding k-

space trajectory. In step (1), the slice selection is carried out by an RF excitation applied 

during a normally constant gradient in  -direction. In step (2), the rephase lobe of the 

slice select gradient is applied. Normally at the same time, a negative gradient lobe in   is 

switched, moving the trajectory in k-space to    
   . Simultaneously, a phase encoding 

gradient applied in the  -direction moves the trajectory to a specific   -value. The actual 

read-out procedure (3) follows, which corresponds to travelling in the   -direction in k-

space from left to right. (from Breuer, 2006). 

This procedure must be repeated with multiple phase encoding gradients running from 

   
    to    

    in    equidistant steps to cover the entire k space in the   -direction. 

     
    
  

                     
   

     

  
                                        

The concept of phase encoding can be extended to the remaining third dimension instead 

of using slice selection. By applying an additional phase encoding gradient    in the  -

direction, the signal originating from the excited slab can be spatially encoded in the slice 

direction. A relatively thick slab is excited and encoded in multiple thin partitions. 
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 (        )  ∭                                                      

Using the Fourier transform definition, it is clear from the form of Eq. 2.13 that the total 

signal  (        ) is the Fourier transform pair,         , defined in k-space. The 

gradients can be varied to change the frequency and phases of the isochromat to fill k-

space. Once this has been done, the data can be inverse Fourier transformed to display the 

image.  

However, this is an idealized model of the processes involved in an MRI scan. In order 

that the spins are displayed accurately in the image, they must feel the magnetic field 

strength that the system expects them to. If they experience a field that is stronger or 

weaker than that intended for their position, then their Larmor frequency will be altered 

accordingly. This means that when decoded, the spin will be displayed in the wrong 

position, distorting the image. 

2.2.  The Geometric distortion in MRI  

NMR modality, just like other modalities, does have some limitations: the limitations are 

related to the homogeneity of the field generating devices used to form the image. In 

other words, geometric distortion can arise from magnetic field inhomogeneity and the 

non-linearity of the gradient field. It can be a serious problem in some MRI applications 

where high geometric accuracy is required. In some cases, non-uniformity of the 

magnetic field can be large enough, for example in the presence of metal objects, to cause 

significant degradation of the image. Magnetic field inhomogeneities refer here to the 

cause of dephasing of nuclear spins during data acquisition, which in turn leads to a loss 

of NMR signal. The final resulting effect is a noticeable reduction in image intensity.  

The distortion caused by gradient field non-linearity is very small near to the magnet 

center or iso-center, but increases when moving away from the center. It is strongest at 

the field of view boundary. It can be as large as 6-8 cm (Baldwin et al., 2007; Doran et 

al., 2005; Wang et al., 2004b), so the correction of geometric distortion here is necessary. 
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The current generations of MRI scanners have been designed with short gradient rise 

times of less than 200 ms, to achieve shorter rise times. The gradient design is restricted 

to be shorter and with fewer turns. Such restrictions have led to an increase in the 

gradient field nonlinearity which results in image distortions. The effects of the gradient 

field nonlinearity which is a consequence of imperfections and limitation of the gradient 

coil design, depends on the geometry of the gradient coils and its effects, which are 

constant in time and independent of the imaging sequence which is used.  

 

Figure 2.3. Schematic shows the geometric distortion of a typical gradient profile along 

the z-axis, with decreasing linearity (red line) as the distance from the magnet iso-center 

increases. The black dotted line shows the desired linear gradient profile (from Zhuo et 

al., 2006). 
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Figure 2.4. Gradient field non-linearity artifact. a) MR image obtained with SE sequence 

and large field of view, b) Image obtained with a vendor-supplied correction algorithm 

shows correction of the geometric distortion (from Mahesh, 2004). 

The most complex form of geometric distortion with MR scanning is object-specific. 

This distortion is complex, because it depends on both the present material and the shape 

of the structure being imaged. The phantom-based quantifications are very useful to 

assess the general scan quality but they cannot take into account the object dependent 

parameters, such as magnetic susceptibility differences, chemical shift and flow. 

Sumanaweera (1994) presented a study of air-tissue and bone-tissue susceptibility effects 

at 1.5T MRI, and concluded that the distortion at bone-tissue interfaces is negligible 

compared to the typical 1 mm MR image resolution, but the distortion at air-tissue 

interfaces has the size up to 2 mm. It is possible to correct those spatial mis-registrations 

due to susceptibility differences and chemical shift by manipulation of the parameter 

settings of the used sequence during acquisition, but nevertheless one must still be 

careful, because the air-tissue effect can be significant. Lüdeke et al have shown the local 

field deviation can be up to 10 ppm (Ludeke et al., 1985; Michiels et al., 1994). 

Furthermore, the geometric distortions can differ depending on the sequence. For 

example, geometric distortions due to the inhomogeneity in the main magnetic field and 
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the susceptibility difference are less in spin echo sequences than gradient echo sequences. 

Therefore, the selections of sequence parameters along with optimized scanner 

calibration are therefore important optimization aspects. 

2.3. The Standard Distortion Correction Model 

For simplification, relaxation during the acquisition is ignored in the following. The one-

dimensional MRI signal ( ) in uniform Cartesian imaging can be generated by freely 

precessing magnetization ( ) in the presence of a linear magnetic field (B) as  

     ∫          ∫         
 
   

    

                              

Ideally, the magnetic fields only include the static homogenous B0 and constant 

gradient   . 

∫         
 

 

                             

In reality, the static and gradient fields are not perfectly linear. The non-linear 

terms       ,        are always superimposed. Thus Eq. 2.15 becomes 

∫         
 

 

                                           

After signal demodulation, the signal equation in the presence of field inhomogeneities 

becomes  

     ∫          (                 )                        
    

 

          ∫       
      (  

             
  

)
  

    

                 

Setting             , the signal equation transforms to: 
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 (    )  ∫       
        (  

             
  

)
  

    

                

A coordinate transformation operator is defined as:  

    [ ]    
             

  
      [  ]                    

where  [ ] is the operator that maps true object locations (scanner’s coordinate) to 

distorted image locations.  

    (  
   

        
    

  
)                    

Substituting variables    and     for   and    leads to: 

 (    )  ∫
     [  ] 

           [  ]     
     [  ]     

               
    

                

A standard Fourier transform of  (    ) yields the distorted image (  ) with both a 

geometry and intensity distortions.  

   { (    )}     
     [  ] 

           [  ]     
     [  ]     

                   

To correct this problem, the displacement fields (warping function,  [ ]) and its 

derivative (Jacobian of the transformation,       
     [  ]     

     [  ]     ) 

are required. During warping the distorted image back to undistorted image, the 

interpolation (Thevenaz et al., 2000) plays a key role for resampling the new pixel values. 
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2.4. Motion Artifact in MRI 

2.4.1. Origin of Motion Artifact 

Despite major advances in MR pulse sequence design and image reconstruction, motion 

still remains a significant problem, with high clinical and public health costs. Both 

ghosting and blur are common image artifacts from motion during the acquisition that 

often mask subtle lesions, obscure morphological details characteristic for pathology, or 

simply just lower diagnostic confidence. This can become particularly problematic for 

inexperienced referring physicians who cannot read through artifacts, or surgeons who 

must interpret scans to plan and perform their procedures. Moreover, gains in resolution 

are typically accomplished via increased scan time and are often offset by motion 

artifacts. Similarly, for 2D imaging, when motion occurs between the acquisitions of 

slices that form a 3D volume, the integrity of this volume is compromised. Due to 

through-plane motion, spins that have been partially saturated by previous slice 

excitations can enter the imaging slice and lead to altered SNR or contrast. Overall, 

motion leads to strong image artifacts that often render studies meaningless, particularly 

if patients are uncooperative, or have certain (neurological) disorders that cause 

involuntary movements. Sadly, some patients are simply too ill or suffer from too much 

pain to remain stationary.  

For high-resolution MRI with long scan times, the head motion causes motion artifacts 

primarily in the phase-encoding direction (intra-scan motion). The frequency encoding 

direction is less affected since the k-space data corresponding to the readout direction are 

collected over a relatively short period of a few milliseconds or less, and can be regarded 

as instantaneous on the time scale of most physiologic motion. However, in the phase 

encoding direction, the positions are encoded by a step-wise changing magnetic field 

gradient prior to the acquisition of each line of k-space. Therefore, the time interval 

between two neighboring points in the phase encoding direction is TR, which ranges 

from tens of milliseconds or several seconds and cannot be regarded as instantaneous. 

Such motion will cause additional phase shifts to the spins from line to line, which will 
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corrupt the spatial encoding and give rise to ghosting. Head motion is usually random 

motion, which makes the artifacts smeared out along the phase encoding direction and 

can obscure pathology (see Figure 2.5) 

 

Figure 2.5. GRE T2* weighted image on a volunteer who was asked to slightly moved 

his head throughout the scan (BMMR Magdeburg). 

2.4.2. Effect of Rigid Body Motion on k-Space  

Rigid body motion has a well–defined influence on the raw k–space data. The effects 

described in this section are the basis for all rigid body motion estimation and correction 

techniques operating in inverse space. An important property of k–space is the fact that 

the effects of translation and rotation of an object can be separated. Translations only 

affect the phase and rotations only affect the magnitude of the raw signal.  For 

explanatory purposes, the following descriptions assume a standard 2DFT data 

acquisition with frequency encode direction the   ( ) direction and phase encode 

direction in the   ( ) direction. Motion can, of course, occur in all three dimensions. 
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2.4.2.1. Translation in k-Space 

The simplest motion by an object is rigid body translation, and many of the 

motions observed in MR imaging can be considered to be simple translations. According 

to the Fourier Shift Theorem, which is derived at the section 2.7.1, a translation in the 

spatial domain is equivalent to a phase change in the spatial frequency domain. Typically 

in MRI, translational motion occurs slowly as compared to the time of a single excitation 

and readout of one k-space data line or view. Motion in the short time window between 

the RF excitation and the data readout is termed intra-view motion and is usually 

considered to be negligible. More important is the inter-view motion, occurring between 

successive data readout repetitions. If the translational position of an object varies from 

TR to TR, phase inconsistencies are present in each phase-encoded line of the sampled k-

space and image artifacts will appear in the phase encode direction of the spatial domain 

image reconstruction. The phase corruption,   , for a certain k-space sample is 

described by Eq. 2.23 where    
and    

are the k-space locations of the sample, and    

and    are the relative displacements of the object from a reference position. 

  (     )    (         )                 

If the translation is inter-view, the relative displacement of the object will be constant for 

an entire line of k-space in the    
(frequency encode, FE) direction. Therefore, the 

displacement in the FE direction,   , will impose a ramp of additional phase on the 

acquired samples, and the displacement in the PE direction,   , will cause an additional 

constant phase. Even a single displacement at some point in the data acquisition will 

cause a phase inconsistency in the    
(PE) direction of the acquired k-space. Such an 

inconsistency violates the assumption of the Fourier inversion that the longitudinal 

magnetization, i.e. the object, was in the same state from TR to TR. Translation in the 

through-plane (slice select) direction is also detrimental. Small through-plane 

displacements can cause a modulation of k-space magnitude in the PE direction, which 

also results in ghosting artifacts. If the acquired MR dataset is 3D with phase encodes in 
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both the    
and    

directions, the   displacement will add a similar phase constant term, 

and ghosting in the reconstructed image volume will occur in both the   and   directions. 

2.4.2.2. Rotation in k-Space 

Rotation is a change in orientation, and almost any real anatomical motion has 

some component of rotation. If an object imaged with MR rotates in an unknown way 

during data acquisition, the sampled k-space will not be the part of k-space intended for 

collection. According to the Fourier Rotation Theorem, which is derived at the section 

2.7.1, the rotation of an object in the spatial domain is also a rotation in the spatial 

frequency domain. Therefore, the acquired k-space view of a rotated object will be 

assigned incorrect (     ) coordinates when it is placed in the rectilinear grid of acquired 

2DFT data. In the likely scenario that the object rotation is primarily inter-view, the data 

inconsistencies will primarily be in the PE direction. The strategies for overcoming 

rotational motion are similar to those to overcome translational motion except for the 

methods that attempt to correct already acquired k-space data. In the case of translation 

correction, only a simple phase correction needs to be applied. In the case of rotation, one 

needs to replace a particular k-space sample with a completely different value, i.e. the 

value that really belongs to that particular (     ) coordinate. If that exact k-space 

coordinate was not acquired, interpolation will be necessary to estimate its value based on 

neighboring points (Atkinson et al., 2003). This process is computationally more difficult 

and becomes increasingly more so with larger or more frequent rotational motions. 

2.5. Corrections of Rigid Body Motion Artifact 

Optimized pulse sequences (Frahm et al., 1986) and accelerated image acquisition 

(Lustig et al., 2007) are usually employed to reduce data acquisition periods in time, such 

that motion becomes negligible. By acquiring k-space data faster than the typical time 

scale of motion, artifacts can be reduced to a minimum. However, they are still restricted 

for high SNR and high resolution structural MRI. Therefore, other correction schemes 
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that can be used with nearly all imaging sequences have been proposed. They are 

generally referred to as retrospective and prospective motion corrections. 

2.5.1. Retrospective Correction 

Retrospective motion correction addresses motion artifacts after the acquisition of a 

complete set of raw image data. Linear motion is accounted for by using a phase ramp in 

k-space (Korin et al., 1989), image rotation by rotation of profiles in k-space (Atkinson et 

al., 2003; Maas et al., 1997). Retrospective motion correction is thus a reordering of k-

space data from the acquired regular grid to an irregular grid which matches the static 

image.  

Without the prior knowledge of motion information, an autofocus method has been 

proposed by Atkinson et al. (1999). This can reduce motion artifacts using an 

optimization procedure that finds the patient motion that minimizes a focus criterion-

entropy in the image. A similar technique has also been combined with parallel imaging 

(Atkinson et al., 2004). A general framework to correct for arbitrary motion can be 

modeled by setting up a forward equation from the ideal object to corrupted k-space data 

(Batchelor et al., 2005). Using matrix descriptions, motion is modeled as linear mapping 

and motion correction is reduced to an inverse problem for a generalized encoding matrix 

including MR encoding and motion related spatial transformations. The inversion is 

performed using the LSQR routine in MATLAB. This requires a cost function to assess 

the image and to allow the algorithm to converge (again, entropy is used).  

Aksoy et al. (2006) demonstrates that the motion information between subsequent k-

space profiles/interleaves relative to a reference point can be alternatively determined 

using intrinsic navigator images (e.g. low resolution spiral) by co-registering each 

navigator image to the reference image, then an augmented parallel imaging 

reconstruction (Bammer et al., 2007) was performed in order to avoid local under-

sampling and variable sampling density as well as to address coil sensitivity alterations 

induced by motion within the coil sensitivity field. Bammer et al. (2007) also suggested 

that the effect of altered coil sensitivity needs to be considered regardless of using either 
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prospective or retrospective motion correction techniques or parallel imaging based scan 

acceleration is used.  

Motion correction can also be achieved using information inherent in the MRI acquisition 

itself. Pipe et al. (1999) introduced the data acquisition with periodically rotated 

overlapping parallel lines with enhanced reconstruction (PROPELLER) that allows for 

intrinsic compensation for translational or rotational head motion during data acquisition. 

This technique is based on multiple-shot fast spin-echo (FSE), in which several k-space 

lines are acquired in each TR, forming a blade centered at the origin of k-space. The 

blade is then rotated around its center between shots, resulting in a k-space sampling 

pattern that resembles a propeller. The central disc of k-space is sampled by all blades 

and can be used as a 2D navigator. Comparison of this k-space disc between blades 

allows correction of the subject's in-plane rotation and translation, as well as 

identification of blades with corrupted data and exclusion of such blades from the final 

reconstruction.  

The drawbacks of these methods are 1) computationally intensive during the 

reconstruction process; 2) the increased scan time related to redundant k-space sampling;, 

and 3) they might work well only for in-plane motion. They are generally inadequate for 

through-plane and/or large-scale motions, primarily because they cannot correct for the 

spin history effect (i.e., changes in saturation level of longitudinal magnetization due to 

motion-induced changes in the image-slice location).  

2.5.2. Prospective Correction  

The goal of PMC is to keep the acquisition field of view (FOV) constant, relative to the 

moving object. This implies that the FOV can be adapted to the object pose (position and 

orientation) by changing the gradient encoding and system RF settings. It is usually 

restricted to the correction of rigid body motion, for example, of the head. This section 

follows the idea of Maclaren et al. (2013). 
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2.5.2.1. Theory 

Several theoretical descriptions of prospective motion correction exist (Manke et 

al., 2003; Nehrke et al., 2005; Shechter et al., 2004) and will not be repeated here. It is 

useful, however, to summarize the main results of their finding. It is assumed that a point 

in the imaged object undergoes a transformation with 12 degrees of freedom representing 

rotation, scaling, shearing, and translation. This transformation, which is generally 

referred to as an affine transformation, can be described by 

     ⃗          ⃗    ⃗                   

where      is a time-varying linear transformation (representing rotation, scaling, and 

shearing) and t(t) is a time-varying translation vector. The translation of the 

object,   ⃗   , can be then compensated for by changing the radiofrequency (RF) transmit 

frequency and receiving phase. However, to compensate for     , the original gradient 

waveform,  ⃗   , must be transformed to  ⃗     by 

  ⃗          ⃗                      

Eq. 2.25 states that to compensate for an affine transformation of the object, the gradient 

waveforms must be transformed by     , meaning that they must undergo a rotation, 

scaling, or shearing (all linear operations). This is possible with conventional linear 

gradients (nonlinear warping, on the other hand, would not be correctable). However, the 

tracking device is usually limited to measure rigid body motion with 6 degrees of 

freedom (rotation and translation). In this case, it is assumed that only rigid-body motion 

occurs. Thus, the scaling and shearing operators are excluded from Eq. 2.25 and can be 

rewritten as: 

  ⃗          ⃗              

where the rotation matrix      represents the rotation of the image object over time. 

Thus, to correct for rotations, the read, phase, and slice-encoding gradients (the logical 

gradients) are represented by different combinations of the x, y, and z gradients (the 

physical gradients) as the object rotates (see Figure 2.6b).  
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Figure 2.6. (a) Prospective motion correction uses tracking data describing the current 

pose of the imaged object to update the pulse sequence in real time. (b) After a rotation, 

gradient directions are modified so that any given voxel in the sample experiences the 

same field as it would have if the rotation had not occurred. This process necessitates the 

recalculation of the physical gradient waveforms that are needed to generate the desired 

logical gradient. In the example shown, the frequency encode gradient initially requires 

only one physical gradient,   ; after head rotation, the frequency encode gradient 

requires both    and   . 

2.5.2.2. Obtaining Tracking Data 

In general, PMC applies motion detection techniques and adapts the MRI pulse 

sequence during its run-time (often referred to as real-time). Obviously, motion tracking 

techniques for PMC need to deliver pose information frequently and fast enough. The 

tracking techniques are usually classified as optical methods, field detection methods, and 

navigator methods. 

Optical methods are completely independent from the MR sequence timing. They include 

laser systems (Eviatar et al., 1997), bend-sensitive optical fibers (Herbst et al., 2011), and 

camera systems. Camera systems have recently become popular, due to technology 
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improvements in both cameras and computing. Methods successfully used for motion 

correction include out-of-bore stereo camera systems (Speck et al., 2006; Zaitsev et al., 

2006), out-of-bore single camera systems (Andrews-Shigaki et al., 2011), in-bore single 

camera systems (Aksoy et al., 2011; Qin et al., 2009), and in-bore systems with multiple 

cameras (Yancey et al., 2011). All currently used optical systems require a marker. 

Examples of markers include reflective spheres (Zaitsev et al., 2006), or new technology 

such as moiré phase tracking (Maclaren et al., 2012), which generates moiré patterns 

allowing accurate determination of through-plane rotations. The last example allows the 

use of particularly small targets (diameter 1.2 cm or less) with a single camera and has 

been shown to be a suitable alternative for conventional three dimensional (3D) motion 

capture (Weinhandl et al., 2010). Of course, in all of these examples, a marker must be 

rigidly attached to the head. 

Field detection methods are a completely different approach with a long history in MRI. 

The scanner gradient fields are measured to localize the object. The method requires the 

use of a short sequences of pulses to obtain position information from a small sample of 

MR visible material fixed inside a miniature receive coil. This approach was first 

conceived in 1986, by Ackerman et al. (1986) for catheter tracking. Dumoulin et al. 

(1993) also pioneered developments in this area. A proof-of-principle study for slice-by-

slice prospective motion correction using such a system was published by Derbyshire et 

al. (1998). More recent implementations, such as that of Ooi et al. (2011; 2009), refer to 

these as ‘‘active markers.’’ Active markers have been used for prospective motion 

correction in structural brain scans (Ooi et al., 2009) and in echo-planar imaging (EPI) 

(Ooi et al., 2011). A similar technique has been recently applied to measure gradient 

waveforms by Barmet et al. (2008; 2009), who decouple tracking from MR imaging by 

using RF-shielded probes and separate transmit/receive chains. Recently, they have also 

demonstrated the possibility of computing the probe position during simultaneous MRI 

by applying ‘‘tones’’ (Haeberlin et al., 2015) simultaneously with the conventional 

gradient waveforms. Field detection methods require several probes or active markers to 

be attached to the subject (a minimum of three markers are required, positioned 

noncollinearly and connected in a rigid arrangement).  
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MR navigators used for motion correction include navigators operating in k-space, such 

as cloverleaf navigators (van der Kouwe et al., 2006), orbital navigators (Fu et al., 1995; 

Ward et al., 2000), and spherical navigators (Welch et al., 2002) as well as image-based 

navigators, such as PROMO (White et al., 2010) or EPI navigators (Alhamud et al., 

2012). K-space navigators repeatedly sample parts of k-space and quantify rotations and 

translations of the object by measuring rotations and phase shifts in the k-space data. 

Depending on the trajectory used, this can allow motion quantification in all 6 degrees of 

freedom. Image-based navigators use low-resolution images or volumes. These generally 

require longer time to acquire than k-space navigators but allow the user to define the 

region of interest for motion quantification, thus avoiding non-rigid regions (e.g., the 

neck). Alternatively, it is possible to detect, but not quantify, motion by comparing the 

relative intensity of a free induction decay signal between multiple receive coils (Kober 

et al., 2011). Navigator methods with sufficient accuracy for prospective motion 

correction all require unused time in the sequence to obtain accurate motion information 

[e.g., about 48 ms. for PROMO (White et al., 2010)], which makes them incompatible 

with some sequences. This spoils one of the main advantages of prospective correction, 

namely that the technique can be applied to most MR sequences. Nevertheless, if time in 

the sequence is available, as is often the case in spectroscopy, this method is very 

practical. Navigator methods have an advantage over optical tracking and field detection 

methods, in that they require no additional hardware and that there is no need for a 

marker to be attached to the subject.  

2.5.2.3. Data Transfer and Sequence Update 

Regardless of the tracking modality used (optical, field detection, or navigators), a 

key component of prospective correction involves the transfer of the pose estimation data 

to the imaging sequence. However, changing the tracking modality makes a significant 

difference to how this is performed. Navigator techniques, for example, often use the 

feedback facility made available by the scanner manufacturer. As this is vendor specific, 

it is not discussed here. In the case of external tracking systems, pose data are often 

computed on an external computer and sent to the scanner computer using a network 
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connection. For this purpose, data are sent via user datagram protocol (UDP) [e.g., 

(Andrews-Shigaki et al., 2011; Zaitsev et al., 2006)] or transmission control protocol 

(TCP) [e.g., (Feinberg et al., 2010; Qin et al., 2009)]. The initial position and orientation 

(pose) of the imaging volume is known and serves as the reference pose. During the scan 

only the differences between the current pose and its initial pose are required. The 

position and orientation of the imaging volume is then modified corresponding to these 

differences. The new imaging volume parameters are handed over to the scanner, which 

calculates the gradients and frequencies accordingly. The calculation requires time 

(typically milliseconds) and the updated gradient waveforms need to be transferred to the 

executing digital signal processor (DSP) before they can be applied. The procedure is 

soft- and hardware dependent but usually requires the identification of suitable periods 

within the sequence to insert the update mechanism. 

Adjustments of the MR scanner’s gradients and frequencies require the motion data in 

scanner coordinates. Following the terminology introduced in Zaitsev et al. (2006), 

referred to the process of determining the transform as cross-calibration. There are a 

number of ways in which this cross-calibration procedure can be performed. Aksoy et al. 

(2011; Forman et al., 2010) use a 60 s cross-calibration procedure based on a precisely 

manufactured marker (Forman et al., 2010) that is visible to both the scanner and the 

camera. Two other common approaches involve recording motion of a phantom using 

both the tracking system and the MR scanner (using image registration). Depending on 

the exact implementation details, these approaches are called iterative or non-iterative. 

The non-iterative approach involves collecting numerous datasets and solving for the 

transform that best fits the data. The iterative approach, as described in (Zaitsev et al., 

2006), applies prospective correction using the latest version of the transform. If the 

transform is accurate, the resulting images will be perfectly aligned, due to motion 

correction. If the transform is inaccurate, then errors in the image alignment will result; 

these are used to fine-tune the transform. Calibration based on image registration can 

produce very good results, but there are several confounding effects to be aware of. These 

include field distortions (caused by rotating the phantom during calibration), gradient 

nonlinearities, and imperfect fixation of the tracking marker to the phantom.  
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2.6. Further Considerations after Rigid Body Motion Correction 

PMC has been demonstrated to be efficient in the prevention of motion artifacts 

originating from displacements between acquisition steps as well as sequence specific 

motion effects such as signal dropouts due to dephasing or misalignment of the encoding 

direction for diffusion or flow measurements. PMC also accounts for spin-history effects 

when through-plane motion otherwise causes the magnetization to enter or exit the 

excited imaging volume. However, inherent tracking precision and accuracy (Maclaren et 

al., 2011) as well as delay between pose detection and sequence update can lead to 

residual artifacts that degrade correction data. Aksoy et al. (2012) described a hybrid 

prospective and retrospective correction method to mitigate the adverse effects of 

tracking errors. This involves retrospectively finding a transform by minimizing image 

entropy in a similar way to previous work by Atkinson et al. (1999). As k-space lines are 

rotated off the Cartesian grid, and a gridding reconstruction is used to resample the data. 

Their results show that application of the retrospective stage significantly improves 

image quality by reducing artifacts caused by poor cross-calibration.  

However, large-scale motion may lead to other residual artifacts that cannot be 

compensated for with rigid body adjustment alone. The widely discussed artifact sources 

are with regard to the relative motion of the coil sensitivity (Aksoy Bammer, 2008; 

Banerjee et al., 2013; Luengviriya, 2010) as well as the geometric distortions caused by 

    (Hu et al., 2005; Polzin et al., 2004) and the object-induced static magnetic field 

inhomogeneity (   ) (Boegle et al., 2010; Ooi et al., 2013). 

2.6.1. Relative Motion of Coil Sensitivity  

Phased-array head coils have become the standard practice for state-of-the-art high 

resolution MRI of the brain. Phased-array head coils contain a number of surface coils, 

which are arranged in an integrated design which surrounds the head (e.g., 8-, 12-, or ever 

32-channel head coils). A surface coil is only capable of receiving a signal near its spatial 

position and even though the sensitivity decreases with depth in the patient, images with 

very high local SNR can be obtained. The major advantage of a multichannel, phase-
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array head coil is that it provides higher SNR and allows the application of parallel 

acquisition techniques, which can be used to speed up MRI. However, when motion 

occurs in measurements with stationary multi-coil receive arrays, the coil sensitivities 

will change relative to the moving object. This effect introduces erroneous signal 

intensity variations across the EPI time series. Not taking the coil sensitivities into 

account may therefore lead to misinterpretations of the BOLD signal. Even outside the 

scope of functional MRI (fMRI) applications, the existing literature on interactions 

between head motion, coil sensitivity and the quality of MRI results is rather limited at 

present. In one example, rotating a phantom after acquiring coil sensitivity map data was 

found to cause slight ghosting artifacts in images reconstructed using Generalized Auto-

calibrating Partially Parallel Acquisitions (GRAPPA) (Zhao et al., 2008). Inter-scan head 

motion was also shown to perturb maps of coil sensitivity and to have a negative impact 

on the accuracy of quantitative T1 mapping (Papp et al., 2015). Another study that 

investigated the use of the iterative self-consistent parallel imaging reconstruction 

(SPIRiT) method (Lustig et al., 2010) showed that residual aliasing remained if a subject 

moved between acquisitions of the coil sensitivity map and the under-sampled images 

(Tian et al., 2015). Such artifacts appear more prominently in parallel imaging with high 

reduction factors and for arrays of small receiver coils with strong sensitivity profile 

variations in space.  

2.6.2. Gradient Nonlinearity Induced Geometrical Distortion 

Conventional image reconstruction techniques in clinical magnetic resonance imaging 

(MRI) typically assume that spatial encoding is performed with gradient fields that vary 

linearly across the entire imaging FOV. In practice, however, the gradient fields 

inevitably contain a higher order; nonlinear components due to engineering limitations or 

manufacturing imperfections; or to reduce peripheral nerve stimulation (Glover et al., 

1986; Harvey et al., 1999). The unaccounted GNL causes image geometric distortion and 

negatively affects applications where high geometric accuracy is required, such as large-

scale longitudinal studies and pretreatment planning (Chen et al., 2006; Doran et al., 

2005; Gunter et al., 2009; Janke et al., 2004b; Schad et al., 1992). In stationary MR 
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imaging, GNL effects are seen as warping (geometric distortions) of the object 

particularly at the edges of large FOV, which can be corrected since the gradient field 

distribution is known (Jovicich et al., 2006). Unlike in static imaging, motion during the 

acquisition with GNL leads to blurring in addition to spatial distortion because imaging 

data acquired at multiple object locations within the non-linear gradient fields have 

different geometry. Thus, the k-space data of the object become inconsistent between 

phase encoding steps. This effect is again strongest in peripheral regions (Hu et al., 2005; 

Polzin et al., 2004), and has not been studied in relation to prospective motion correction 

for MRI. 

2.6.3. Tissue Magnetic Susceptibility Induced Geometrical Distortion 

Motion-induced magnetic field changes may occur due to the main magnetic field 

inhomogeneity and object induced field changes. These local magnetic field changes are 

frequently considered as the main source of geometric distortions (Jezzard et al., 1995; 

Jezzard et al., 1999; Ooi et al., 2013). They are most prominent in EPI, which is very 

sensitive to field inhomogeneity due to the low effective phase-encoding bandwidth. 

These static geometric distortions can be considered after the image reconstruction using 

the pixel shift method (Jezzard et al., 1995). Recently, the size and location of B0 field 

shifts within the brain at 7T for different types of head movement were studied by 

Sulikowska et al. (2014). Their results showed that the maximum B0 field changes at the 

frontal lobe for pitch and yaw rotations were 4±2 and 8±11 Hz/degree, respectively. 

Other authors have reported maximum B0 field differences caused by head movement of 

160 Hz at 2.89T (Maclaren et al., 2013) and 50 Hz at 3T (Jezzard et al., 1999). The local 

field changes strongly depend on the subject orientation. Consequently, PMC at high 

field may be impacted by this variation even in conventional sequences (i.e., Spin-Echo 

and Gradient-Echo) with low readout-bandwidth (BW) that are often chosen to optimize 

SNR or CNR ratios in structural imaging.  
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2.7. Image Reconstruction for MRI 

The inverse fast Fourier transform (FFT) has served the MR community very well as the 

conventional image reconstruction method for k-space data with Cartesian sampling. 

Unfortunately, in the presence of motion or non-uniform sampled MRI (Atkinson et al., 

2003; Fessler et al., 2003), the inverse FFT is unable to be directly applied to reconstruct 

the images. Discrete Fourier transformation is a possible method with a much heavier 

computation burden. Currently, the widely used method is to first regrid the samples onto 

regular Cartesian grid, and then to apply inverse FFT. These methods include gridding 

(Jackson et al., 1991; Meyer et al, 1992; O'Sullivan, 1985), non-uniform FFT (NUFFT) 

(Dutt et al., 1993; 1995; Fessler et al., 2003; Nguyen et al., 1999), etc. 

2.7.1. Fourier Theorems 

2.7.1.1. Fourier Shift Theorems 

Let          be the Fourier transform of a 2-D object        as stated in Eq. 

2.27. 

  (     )   {      }  ∬            [       ]       
  

          

Let           be the Fourier transform of             , a translated version of 
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If one makes the substitution         and        , the result is 
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The integral in Eq. 2.29 is the same as in Eq. 2.27. Thus, the Fourier transform of the 

shifted object is equal to the original Fourier transform with additional phase terms at 

each location of k-space dependent on the         shifts as shown in Eq. 2.30. 

  (     )      [         ] (     )               

2.7.1.2. Fourier Rotation Theorem 

Let         be equivalent to          which is a rotated version of        

                  {      }              

where the rotation transformation matrix   is defined by 
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where   is the rotation angle about the origin. The Fourier transform   (     ) of 

       is given by 
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Using a change of variables to x' and y' we have 
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where the substitutions for   and   have been made according to 

  

  

             

              
                               

Rearranging the exponents to be in the canonical form produces 
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where the new k-space coordinates   
  and   

  are related to the original k-space 

coordinates    
and    

by 
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which is the same rotational transformation of the spatial domain coordinates expressed 

in Eq.2.33. Therefore we can say that           is equal to the original Fourier transform 

         after it has been rotated to the coordinate frame of (  
    

 ). In other words, the 

rotation of the object caused an equivalent rotation of its conjugate k-space. 

2.7.2. Gridding Reconstruction Algorithm 

When k-space is sampled on a uniform grid, an inverse FFT can be used to quickly 

reconstruct the image. The computational advantage of the FFT can be used for non-

Cartesian k-space trajectories if the data is first interpolated or gridded onto a uniform 

grid and then applied to the inverse FFT. The most general and currently widely used 

method of reconstruction in MRI is referred to as the gridding reconstruction algorithm 

(Jackson et al., 1991; Meyer et al, 1992; O'Sullivan, 1985). As illustrated in Figure 2.7, 
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all the non-Cartesian points in a certain distance ∆ (window width) interpolate on the 

Cartesian grid point in the center.  

 

Figure 2.7. Gridding interpolation, the “+” denotes a Cartesian grid point which value is 

unknown and the “·” represent the surrounding non-Cartesian samples which contribute 

to the interpolation on “+”. ∆ is the width of the convolution kernel. (from Xuguang, 

2011). 

The entire method is summarized by the following equation. 

   {[         ]   }                          

where    is the data in k-space gridded onto a Cartesian grid,     is the sampled data 

on the k-space trajectory,   is the density compensation function,   is the convolution 

function used for gridding the data,   denotes the Cartesian grid sampling function, and 

  denotes convolution. There are four main steps to gridding: 

 Multiply the data that is sampled on the k-space trajectory,     with a density 

compensation function,  , to account for the unequal sampling of k-space. 

 Convolve the weighted data with a chosen convolution function,  , and resample 

onto a Cartesian grid,  . 

 Apply an inverse FFT to reconstruct an image. 
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 Perform deapodization to remove the effect of the convolution function by 

dividing the result by the Fourier Transform of the convolution function, this is 

denoted by     in Eq. 2.39. 

In the first step, the non-uniform sampling density is usually corrected by a density 

compensation function, or DCF. The DCF can be defined and computed in a variety of 

ways. This step is important in reducing the reconstruction error in the image. Jackson et 

al. (1991) introduced a numerical method called the area density function, or ADF, as 

density compensation. An iterative method which extends the ADF was provided by Pipe 

et al. (1999). Meyer et al. (1992) introduced an analytic function as the DCF for spiral 

sampling trajectory. Hoge et al. (1997) described another analytic DCF for spiral 

trajectory which is based on the Jacobian determinant for the transformation between the 

Cartesian grid and the spiral trajectory parameters of time and interleaf rotation angle. 

Rasche et al. (1999b) proposed a Voronoi-diagram method to compute DCF. The DCF is 

the inverse of the area of the Voronoi cell around each sample. The Voronoi-diagram 

approach is a powerful method to compute the local density. It can be used on both 2D 

and 3D problems.  

The optimal gridding method is to first convolve with an infinite sinc function and then 

perform resampling (O'Sullivan, 1985). For practical reasons, this infinite function needs 

to be replaced by a finite convolving function. This finite convolution kernel will 

contribute two artifacts into the reconstructed image. Firstly, the inverse of the Fourier 

transform of this kernel has side lobes, which will be aliased back to the image causing 

an artifact. Also, the central lobe is typically not flat. It shows a roll-off effect. Thus the 

intensity of the image is changed. This can be corrected by a post-compensation step, 

which requires dividing the image by this central lobe. Jackson et al. (1991) compare the 

performance of several kinds of kernels including two-term cosine (Hamming window, 

Hanning window), three-term cosine (Blackman window), Gaussian window and Kaiser-

Bessel kernel, and conclude that in the sense of minimum aliasing energy in the 

reconstructed image, the Kaiser-Bessel kernel with an optimal parameter is the best 

choice. To reduce the artifact in the reconstructed image, an over-sampling ratio is 
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applied to the reconstruction. Gridding is usually applied on a larger (denser) grid in k-

space, and then only the center region of the image after inverse FFT is kept (Jackson et 

al., 1991; Moriguchi et al., 2000; Rosenfeld, 1998). Typically a double sized (2x) grid, 

which corresponds to over-sampling ratio of 2, is used.  

Gridding is widely used due to its simple and easy implementation. The kernel width is 

typically small, 2-4 according to Jackson et al. (1991), making it still a fast algorithm to 

implement. However, one drawback of the gridding method is the definition and 

computation of the density compensation. This is typically time consuming. 

2.7.3. Non-Uniform Fast Fourier Transform (NUFFT) reconstruction 

Algorithm 

In non-uniform Cartesian MRI, the Fourier transformation from image was remapped to a 

non-uniform k-space grid. This is achieved by interpolating the uniformly spaced samples 

to the non-uniform sample locations. Instead of k-space interpolation of the grids, it is 

possible to directly calculate the non-uniform Fourier transform by means of the non-

uniform discrete Fourier transform (NDFT). The NDFT has the form: 

      ∑    
                               

   

   

 

where    are equally-spaced signal samples, ranging from 1 to   and   , the non-

uniformly spaced frequency nodes ranging from 1 to  . The Fourier transform thus 

needs to be computed for every non-uniform frequency node. The result of the NDFT is 

exact but has a computational cost of       operations. In real-world applications, the 

computation time required by the NDFT will be too large to be practical. The NUFFT is 

an approximation of the NDFT that allows a fast solution to the non-uniform transform 

problem. Since the introduction of the technique by Dutt and Rokhlin (1993), several 

NUFFT methods have been proposed (Beylkin, 1995; Liu et al., 1998). The NUFFT has 

been extended to multidimensional transforms (Greengard et al., 2004; Sarty et al., 2001). 

In this study we use the NUFFT implementation by Fessler et al. (2003). 
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Mathematically, the NUFFT can be described by: 

   ∑    
  

  
 
                               

   

   

 

 ̂     ∑                                        

 

   

 

where    denotes the resampled FFT with   points of signal   and  ̂     is the 

approximated non-uniform frequency samples of signal  . The       ’s are the 

appropriate frequency interpolation coefficients (Fessler et al., 2003) and    is the 

neighborhood size used in the interpolation. Determining the optimal interpolation 

coefficients and applying them in a computationally efficient manner (through pre-

computing) is a key to all NUFFT methods. 

There are many ways to choose the interpolation function. Dutt et al. (1993) introduced a 

Gaussian based interpolation. Starty et al. (2001) proposed a generalized FFT (GFFT) 

and demonstrated that a Gaussian kernel can provide a more accurate reconstruction 

compared to the Kaiser-Bessel based gridding method. Beylkin (1995) used the B-spline 

based interpolation. Anderson et al. (1996) took the Taylor series expansion method. 

Fessler et al. (2003) introduced a min-max interpolation, which is a fixed-width 

interpolator that minimizes the worst case approximation error of all signals with unit 

norm. Sha et al. (2003) used a similar criterion by using a kernel matrix that fit for the k-

space trajectory in the sense of least square approximation error. The performance of the 

NUFFT method with min-max interpolation was shown to be more accurate than other 

interpolation methods. 

2.7.4. The Gridding versus the NUFFT 

The gridding operation is a method to interpolate the grid data based on the non-equally 

spaced samples. The k-space operation includes a density compensation, convolution and 

resampling. Note that the gridding operation is in k-space only; the entire reconstruction 



 

39 

 

process contains an “interpolation” step followed by inverse FFT. On the other hand, 

NUFFT reconstruction directly relates the image and the k-space samples, making the 

Fourier transformation an embedded step. The reconstruction procedure is a loop of FFT, 

interpolation and image updating. Moreover, NUFFT is not only applicable for non-

uniform k-space but also for non-uniform image space (image distortion) known as type-

1 of NUFFT (Greengard et al., 2004). In addition, an iterative NUFFT is also easy to 

incorporate regularizations based on image processing techniques such as smoothing, 

edge-preserving, etc. (Sutton et al., 2003).  

2.7.5. Augmented Sensitivity Encoding Reconstruction Algorithm 

Augmented SENSE reconstruction was recently introduced in order to retrospectively 

correct the rigid body motion in MRI of the brain. This reconstruction also addressed the 

effect of relative motion of a receiving sensitivity field. Here, we briefly describe the 

motion effect and correction of the resulting artifacts. A full description can be found in 

the article by Bammer et al. (2007). 

An MR signal,  , sampled at time    (i.e., at a point       in k-space) relates to the object 

   in the spatial domain     as        

      ∑        
           

 

                           

and the matrix of signals,  , from the entire measurement can be expressed as 

                    

where   is the so-called forward or encoding operator. In Cartesian-sampled MRI with 

linear gradient fields and one homogeneous receiver coil, this operator only consists of a 

discrete Fourier transformation (DFT).  

In cases of non-uniform sampling,       is not on a uniform Cartesian grid and the simple 

matrix   in Eq. 2.44 should be replaced by the gridding method (Jackson et al., 1991; 

Rasche et al., 1999a), so  
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where   represents fast Fourier transformation and           is a forward resampling 

operator transferring the k-space data from a uniform Cartesian to a non-uniform 

Cartesian grid. 

Now we consider the motion effect on the MR signals. The motion of the object is 

described by a matrix   and its inversion     , whereas   is the corresponding 

transformation rule to   in k-space. The operator   acts on an unperturbed image    

which results in a motion-corrupted image  : 

                           

with    is inverse fast Fourier transform. The MR signals relate to the unperturbed image 

as 

                              

In the presence of motion, solving Eq. 2.47 leads to the unperturbed image.  

For multi-channel imaging, the signal at time    from a coil   can be described as the 

sensitivity encoding equation (Preussmann et al., 1999): 

       ∑      
        

           

 

                          

where        is the complex spatial receive sensitivity of coil  . In matrix form, the 

encoding matrix   can be calculated as           . If the object moves while the coil is 

fixed with respect to the FOV, the MR-signal matrix from each coil would be 

                        
                   

More explicitly, the encoding matrix   which is specific to pose   and coil   can be 

defined as 
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        (    

   )               

Eq. 2.49 shows that, in principle, the exact unperturbed image is obtained only after the 

two transformations in spatial and Fourier spaces are taken into account. In the text, we 

refer to two different processes of motion correction involving            and      
  as 

signal and sensitivity map correction, respectively.  

It is obvious that the encoding scheme in Eq. 2.50 appears much more complex than the 

conventional Fourier encoding as shown in Eq. 2.44. This linear system is too large to be 

handled by the direct inverse methods. Thus, desired image    corresponding to the 

encoding operator in Eq.2.43 was generally estimated via a linear least-square approach 

that minimizes the squared Euclidean norm of the residual (Eq. 2.51) using the conjugate 

gradient (CG) method. 

   
  

{∑‖           ‖ 
  

   

}                         
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 The Conjugate Gradient (CG) Algorithm 

The method of conjugate gradient describes a class of iterative techniques having the 

property of guaranteed convergence in a finite number of iterations (Golub et al., 1996). 

Also, even when the system is ill conditioned, good estimates of the largest and smallest 

eigenvalues are not needed to determine the algorithm parameters. The basic idea of this 

method is to eliminate the residual error (i.e., the difference between the right-hand and 

left-hand sides of the linear system equation) along directions that are all mutually 

orthogonal with under transformation with the system matrix and spanning the space of 

the solution. The original formulation of this iteration requires the system to be real, 

square, symmetric and positive definite for the algorithm to work and provide a unique 

solution to the system. The conjugate gradient algorithm for solving the normal equation 

        (  : a complex conjugate of  ) is shown below. 

1. Compute the intermediate image      . 

2. Set the initial solution     . 

3. Set the initial residual     . 

4. Set the first direction    .  

5. Update the solution in CG loop; 

 

for i=0, 1, 2,…Nit (Nit: number of iterations) 

       

        
  
   
   

  

        
  
   
   

  

       
    
     

  
   

  

end 
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3. CORRECTION OF RELATIVE MOTION OF COIL 

SENSITIVITY 

The work presented in this chapter was accepted as a poster presentation: 

Yarach U, Stucht D, Godenschweger F, Speck O. The Correction of Motion-Induced 

Coil Sensitivity Miscalibration in Parallel Imaging with Prospective Motion Correction. 

In: Proceedings of the 23
rd

 Annual Meeting of the ISMRM, 2015, Toronto, Canada. 

3.1. Preface 

It is now commonplace in MRI to use multichannel receiver coils that increase SNR and 

enable parallel imaging reconstruction approaches, but which inevitably have non-

uniform spatial sensitivity. When motion occurs in measurements with stationary multi-

coil receive arrays, the coil sensitivities will change relative to the moving object. With 

PMC, the coil sensitivities effectively move relative to a stationary object. The 

interactions between head motion and receive radiofrequency (RF) coils result in the 

variation of signal amplitude and phase, leading to shading artifacts particularly when 

applying the parallel MR imaging (Atkinson et al. 2004, Banerjee et al. 2013). Recently, 

this effect in inter-scan motion was observed; it introduced erroneous signal intensity 

variations across the EPI time series, and also generated a negative impact on the 

accuracy of quantitative T1 mapping (Papp et al., 2015). Their studies show the 

improvement of parameter maps when addressing the effect of inter-scan motion on the 

receiving sensitivity field.  

Several MRI applications (Brown et al., 2010; Stucht et al., 2015) require very high 

spatial resolution which can be achieved by high field MRI systems, such as 7T scanners. 

However, high resolution scans may require long acquisition times, which in turn 

increase the discomfort for the subject and the risk of intra-scan motion. Although the 

rigid body motion within intra-volume can be successfully corrected by PMC, the relative 
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motion of coil sensitivity may increase the variation of quantitative MR parameter maps 

(Callaghan et al., 2015).  

In this chapter, we demonstrate a systematic study quantifying artifacts from the relative 

motion of coil sensitivity within intra-scan motion data with PMC enabled, and the 

necessity of the sensitivity profile correction step, which was proposed by Bammer et al. 

(2007), termed augmented SENSE reconstruction as described in section 2.7.5. Both 

fully-sampled and under-sampled MR data acquired at different motion scales were 

observed. 

3.2. Theory 

We remind the readers that this chapter attempts to investigate the effect of the relative 

motion of coil sensitivity within the intra-scan dataset which was acquired using the 

uniform Cartesian sampling technique. In rigid body motion, the Eq. 2.49 describes the 

corrupted MR signals that are acquired by either uniform Cartesian or non-uniform 

Cartesian sampling techniques, since both cases require the gridding operator to resample 

the motion data. In the next section we describe the encoding operator of Cartesian MR 

signal after applying PMC. 

3.2.1. The Encoding Operator 

The motion corrupted MR signal received from multiple coil arrays is described in Eq. 

2.49. With highly accurate PMC, the object motion   can be fully compensated by the 

gradient rotation matrix      determined by the tracking system consisting of six 

parameters of rigid body motion (i.e,               = Id, Id: identity matrix). 

This means that the PMC can maintain k-space consistency during the data acquisition. 

Thus, k-space gridding (           ) is no longer required, the encoding operator with 

PMC can simplify to 
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For simplicity, the coil sensitivity of channel   specific to object pose   (      was used 

here instead of     {    
   }.    is a Cartesian sampling mask (1=sampled, 

0=otherwise).   

The key information required for Eq. 3.1 is information on the spatial distribution of the 

RF coil sensitivities. In general, the sensitivity information can be obtained with any 

established sensitivity estimation method (Bydder et al., 2002a; Griswold et al., 2006; Lin 

et al., 2003; Pruessmann et al., 1999). For example, the sensitivity map can be obtained 

with an additional body coil image that is assumed to have homogeneous sensitivity. In 

the absence of a body coil image, the square-root of the sum-of-squares (RSS) image can 

also be used. Another common method is to use a low resolution image that is either 

acquired with an extra navigator or with a self-navigated trajectory, for example a 

variable density spiral (Kim et al., 2003). The self-navigation approach avoids the need 

for a separate calibration scan and errors from mis-registration. The separate calibration 

scan based method for coil sensitivity estimation is described in detail in (Pruessmann et 

al., 1999) and is illustrated in Figure 3.1.  

 

Figure 3.1. Illustration of the sensitivity map determination. The ratio between an 

individual surface coil image (a) and a body coil image (b) gives the surface coil 

sensitivity estimate (c). The object support mask (d) is generated using the threshold 

point of the reference image. To reduce noise, a local polynomial fit is applied in the 

limits of the object mask to get a smoothed sensitivity map (e). 

3.2.2. Image Reconstruction Algorithm  

 In general, the desired reconstructed images    encoded by the operator   in Eq.3.1 can 

be obtained by the standard CG method. However, this method may exhibit unstable 
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convergence behavior. This is because the encoding matrix seems seriously ill-

conditioned due to the large dimension used, as well as the fact that the measured data is 

usually corrupted by noise. To overcome this difficulty, L2-regularization was also 

incorporated, 

   
  

{∑‖           ‖ 
   ‖   ‖ 

  

   

}                     

The regularization parameter   (lambda) is a positive real constant, and   is here an 

identity matrix. The processing steps of iterative reconstruction for the present purpose 

are as follows: 

Prior iteration, the intermediate image   is estimated by summing all products of 

multiplication between the matrix         and the measured data vector     .         is an 

inversion of        in Eq. 3.1, termed decoding or a reconstruction operator. It consists of 

the inverse FFT (  ) and the complex conjugate of the coil sensitivity (       ). 

  ∑       

   

      ∑           

   

      

                                    

  is the total pose number, and    is the total channel number. 

During iteration, the proposed reconstruction algorithm consists of four steps in each 

iteration: data encoding, data decoding, channel and pose combination, and the CG unit. 

Given the vector residuum      (        from the previous iteration  , the current 

iteration of number     is carried out as follows. 

Step 1, data encoding of pose  , channel  : 

                                             



 

47 

 

The previous      is encoded by        to get the partial k-space data of each pose and 

channel     . This step consists of coil-wise multiplication by coil sensitivity, followed 

by FFT, and then multiplied by the sampling mask. The sampling mask keeps only 

acquired k-space lines, the rest are set to zeros.   

 Step 2, data decoding of pose  , channel  : 

                                               

The partial k-space data      are reconstructed by        , obtaining the partial image of 

each pose and channel     . This step performs inverse FFT, followed by an individual 

weighting by a complex conjugate of coil sensitivity.  

 Step 3, channel and pose combination:  

      ∑{∑    

  

   

}

 

 

                      

The partial complex image       of different channels and poses are combined. 

Step 4, the CG unit: (L2-norm based regularization) 

Finally, the combined image        is fed back into the CG unit. The residuum after CG 

is then used as the initialization for the next iteration.  

 A schematic diagram of the proposed algorithm is shown in Figure 3.2. The four 

steps above are repeated until the maximum iteration number or the stopping criteria are 

reached. 
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Figure 3.2. Schematic diagram of the augmented CG-SENSE. The main diagram of the 

four steps in each iteration is shown on the left. The right diagram shows the 

implementation details of the data encoding (red dashed box) and the data decoding 

(black dashed box). The notation * denotes complex conjugate. 

The performance of both reconstruction techniques were evaluated by calculation of the 

root mean square error (RMSE), which was computed as 

     √
∑ [            ]  
    

 
               

where     is the reference image (no motion) and    is the reconstructed image,   

denotes the total number of pixels. 

3.3. Materials and Methods  

3.3.1. Numerical simulations 

The artifact quantification and the performance of the augmented SENSE were first 

tested in numerical simulations using a Shepp-Logan phantom assuming a 2D axial 
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image (FOV=256 mm
2
, pixel size=1 mm

2
). The ideal prospective motion correction was 

assumed. This means that the coil sensitivity profiles moved around the static phantom. 

The data encoding in Eq. 3.3 was applied to the static phantom in order to generate the 

motion-corrupted MR signal of each pose and channel     . The      was simulated 

using Biot–Savart’s law (Ulaby,  997). It is assumed that the coils are placed in space 

such that the coil plane is parallel to the    field. The coils are circular, with centers 

which are equidistant to the origin, and their axes are uniformly distributed radii (See the 

illustration of the setup in Figure 3.3).  

 

Figure 3.3. Coil array setup for the generation of sensitivity maps. 

The 8-channel coil (D=1.2xFOV/2, R=100 mm.), and the highly localized 12-channel 

coil (D=1.2xFOV/2, R=70 mm.) were used. The example of 1
st
 channel profiles from 8- 

and 12-channel coils are illustrated in Figure 3.4a. Since the sensitivity profiles changed 

much more during rotations about its circular cross section, than during translations along 

its longitudinal axis, therefore, only in-plane rotation (around the z-axis) was observed in 

this study. The rotation pattern shown in Figure 3.4b that creates 8-time motion for each 

dataset (i.e.,  =8, 32 k-space lines along phase direction per pose) were applied to rotate 

the sensitivity profiles around the object. This pattern was scaled by factors 2.5, 5, 7.5, 

and 10 to create the maximum rotations of 5, 10, 15, and 20 degrees, respectively. These 

same patterns with different motion amplitudes were applied to simulate the corrupted k-

space data in multiple RF receiver coils (  = 8, and 12). Note that identical information 
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as used in artifact generation was applied in the correction process when using the 

augmented SENSE reconstruction. On the other hand, only the coil sensitivities specific 

to the initial pose were employed in conventional SENSE.  

 

Figure 3.4. (a) The example of 1
st
 channel profiles from 8- and 12-channel simulated 

coils. The 12-ch coil shows more localized signal than the 8-ch coil. With PMC enabled, 

the sensitivity profile seemed to be rotated by -30 degrees when the subject rotated 30 

degrees (lower row). (b) The in-plane rotation pattern was used to simulate the MR 

corrupted signal. 

3.3.2. MRI Experiments 

All experiments were performed on an ultra-high field whole-body 7T MRI scanner 

(Siemens Healthcare, Erlangen, Germany) equipped with a 70mT/m whole body gradient 

system (SC72). PMC was performed with a tracking system consisting of a single camera 

mounted inside the scanner bore and a tracking marker with a multilayer structure, which 

generates moiré patterns for accurate orientation measurement (Maclaren et al., 2012). 

Communication with the tracking system was implemented directly on the real-time 

control unit of the scanner as previously described in (Zaitsev et al., 2006).  

3.3.2.1. Phantom experiments 

The data collection protocols are as follows: 
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1. Scan 1: the homogeneous phantom was scanned at the constant pose with PMC 

enabled by using the low-resolution 3D Fast Low Angle Short (FLASH) with 

matrix: 208x208x208, voxel size: 3x3x3 mm, TR/TE: 6.00/2.55 ms, and readout 

bandwidth (BW): 750 Hz/pixel. This dataset was used to generate the coil 

sensitivity maps that correspond to the first half of k-space data in scan 2. 

2. Scan 2: The intra-volume motion with PMC enabled was performed by rotating 

the phantom approximately 5 degrees half-way through the scan. The acquisition 

parameters were 3D FLASH with voxel size: 1x1x1 mm, TR/TE, the matrix size, 

and BW were same as in the scan 1. 

3. The scan 1 was repeated in order to provide the coil sensitivity maps that 

correspond to the second half of k-space data in scan 2.  

4. The phantom was moved back to the initial pose. 

5. Steps 2-4 were repeated. The amplitudes of intra-volume motion in the scan 2 

were increased. 

Note that there was restricted movement from outside the scanner when using a small 

head coil (24- or 32-channel), therefore, the larger 8-channel head coil (Rapid 

Biomedical, Rimpar, Germany) that allows greater motion was used in phantom 

experiments. 

3.3.2.2.  In Vivo applications 

The previous phantom experiments were performed in order to quantify the 

impact of the relative motion of coil sensitivity at different amplitudes of motion. And the 

augmented SENSE was implemented to reconstruct the corrupted data under the 

condition that the coil sensitivity maps at any motion pose are given. However, it is 

impractical and time consuming to acquire the calibration data for updating the coil 

sensitivities before or after every adjustment of intra-scan motion. Instead, the calibration 

data acquired at the beginning was regridded. After regridding, this data was used to 

estimate the coil sensitivity corresponding to motion data. 
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The study was carried out with one healthy male volunteer after receiving informed 

consent according to the IRB-approved protocol. All data were acquired with PMC 

enabled using a 24-channel head coil (Nova Medical, Wilmington, MA, USA). The 

marker was securely attached to a mouth guard which was individually molded to the 

volunteer’s upper teeth using medical grade hydroplastic (see Figure 3.5). The data 

collection protocols are as follows: 

1. Scan 1: The low resolution calibration data was acquired at the constant pose with 

PMC enabled. The imaging sequence and parameters were same as the scan 1 in 

phantom study.  

2. Scan 2: The intra-scan motion with PMC enabled was performed using 3D 

MPRAGE with matrix: 208x208x208, voxel size: 1x1x1 mm, TR/TE/TI; 

1800/1.99/1050 ms, and BW; 750 Hz/pixel. The volunteer was instructed to 

perform head rotations during the scan.  

 

Figure 3.5. A volunteer with the mouth piece and tracking marker taken from 

approximately the same angle as where the moiré phase tracking (MPT) camera would be 

located in the scanner bore. (from BMMR, Magdeburg). 
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3.3.3. Data processing 

The reconstruction was offline performed using MATLAB (version 12, The MathWorks 

Inc.), running on a Linux system. Before performing augmented SENSE reconstruction, 

both the k-pace line/group specific motion poses and the coil sensitivities at any motion 

pose need to be prepared as the following steps.  

 Position Binning 

Following the steps were described by Banerjee et al. (2013). The first step is to 

partition (segment) the acquired data into bins, in which all of the data within a bin have 

been collected while the object was considered to be in a single position. The number of 

bins is determined dynamically as the algorithm partitions the data. Position binning uses 

the position estimates already determined by the PMC system, which can be expressed by 

six parameters for each acquisition segment: three translation parameters           , 

collectively denoted by  ⃗⃗ , and three rotation parameters           , collectively denoted 

by  ⃗⃗ , where   indexes the acquisition segments. The relative motion between any two 

phase encoding lines (phases)    and    can be expressed by two scalar numbers 

representing the net translation and rotation between the two phase:    ‖ ⃗⃗    ⃗⃗  ‖ 

and    ‖ ⃗⃗    ⃗⃗  ‖, where ‖ ‖ denotes the L2 norm. In this work,    and    are 

computed by comparing the     phase to all previously acquired data phases. If a 

preexisting bin is found in which    and    between all bin members and the     phase 

are below preset translation and rotation thresholds, the phase is added to that bin. If no 

matching bin is found, a new bin is created. Once the data assigned to bins is complete, 

the mean position parameters (translations and rotations) are computed as an average of 

N phase encoding lines associated with data allocated to that bin. 

 The coil sensitivity profile preparation 

The sensitivity maps obtained by the steps in Figure 3.1 may be insufficient for 

reconstructing the motion data since the fact that large motion can result in acquired data 
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outside the measured coil sensitivity maps. In addition, the low resolution calibration data 

inherently produce the ringing artifacts around the image edges. Therefore, the further 

processing steps were required. Firstly, the low-pass filter so-called cosine taper window 

was applied to minimize ringing artifacts. Then, filtered data were zero-filled to a size 

corresponding to the reconstructed images, i.e. in this case 208 x 208 x 208. Inverse 

Fourier transformation takes the data from k-space to image space. Each surface coil 

image was divided by their RSS to yield raw sensitivity map. Although the interpolation-

extrapolation method such as polynomial fitting can be used to reduce noise from the 

maps and provide local extrapolation, the extrapolation area is very small, as shown in 

figure 3.1e. Here, we used the 2D thin-plate spline (TPS) function (Lui et al., 2007) for 

smoothing the coil sensitivity. Each 2D raw coil sensitivity map (in the slice direction) 

was multiplied by the binary mask obtained from the RSS image (see Figure 3.6b). A 

small set of support points was then randomly selected within the masked region and 

used to solve Eq. 22 in (Lui et al., 2007) (see Figure 3.6c). This set of control points 

consists of only 10% of the total points inside the masked region. As can be seen, the 

thin-plate spline function not only provides a good fitting to the support points within the 

object, but also provides a reasonable extrapolation beyond the boundary of the object 

(see Figure 3.6d). 
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Figure 3.6. The estimation of coil sensitivity map using 2D thin-plate spline (TPS) 

fitting. (a) An example of a raw coil sensitivity map calculated by dividing the coil image 

with the RSS image. (b) The raw sensitivity map is masked to exclude the region outside 

the subject and regions of low signal intensity. (c) A small set of random control points 

are selected within the masked region. These control points are used to fit a 2D thin-plate 

spline function to the real and imaginary part of the sensitivity map independently. (d) 

The fitting of the sensitivity map. The fitted maps are smooth and provide both sensitivity 

interpolation and extrapolation. (e) A line profile of the sensitivity map through the center 

of the map. The blue curve indicates the raw sensitivity, while the red curve indicates the 

TPS fitted sensitivity. 

Note that the calibration data corresponding to each motion bin can be prepared by 

regridding this single dataset using the mean position vector of that position bin. A 

diagram of the regridding operation is shown in Figure 3.8. The TPS-based coil 

sensitivity estimation described above was applied to each regridded data. Finally, all 

sensitivity maps were incorporated in augmented SENSE reconstruction.  
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Figure 3.7. A diagram of the regridding operation for calibration data preparation. The 

top row shows the relative positions of the subject, imaging volume, and the stationary 

coils initially (a), after subject motion (b) and after prospective motion correction (c). The 

bottom row shows a scheme of the regridding operation for preparing calibration data 

suitable for the PMC data with position state (c). Please note that the initial position state 

is identical for the partial (a) and calibration data (d). After regridding, the relative 

position between the imaging volume and the stationary coils is identical for the partial 

PMC data (c) and the calibration data (e). 
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3.4. Results 

3.4.1. Simulation Results 

Figure 3.8 shows the signal change observed in the first set of simulations, which were 

designed to investigate the effects of shifting the phantom poses within the 8-channel 

head matrix receiver coil. The relative motion of coil sensitivity can degrade the quality 

of perfect PMC images. The degradations increased with larger motion and under-

sampled data. Simulated artifacts are shown for examples of 0, 10, 15, and 20 degrees in-

plane rotation under RSS and standard SENSE for fully sampled and 2x under-sampled 

data, respectively. Note that the sensitivity maps which are specific to the initial pose 

were used for standard SENSE. The artifactual signal change does not coincide with the 

anatomical features of the phantom, which are mostly deep within the phantom, but 

rather is prominent in regions where the coil sensitivity maps change most rapidly, near 

the phantom’s surface (shown in the 2
nd

 and 4
th

 columns).  
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Figure 3.8. The identical windowed images for different rotation scales, reconstructed by 

RSS (1
st
 column) and standard SENSE (3

rd
 column), the artifacts increases with stronger 

motion in both fully sampled (R=1) and under-sampled (R=2) data. The image 

differences (2
nd

 and 4
th

 columns) between each reconstructed image and reference (no 

motion image) also increase with larger motion and higher reduction factor. 

Conversely, Figure 3.9 shows that the augmented SENSE can significantly reduce the 

artifacts for all motion amplitudes as well as under-sampled data – the intensity of the 

corrupted images was recovered to almost the level of the reference after 20 iterations. 
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Figure 3.9. The identical windowed images for different rotation scales, reconstructed by 

augmented SENSE. The artifacts are notably reduced in all motion amplitudes, for both 

fully sampled (R=1) and under-sampled (R=2) data. The images in 2
nd

 and 4
th

 columns 

show the differences between each reconstructed image and reference (no motion image). 
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Figure 3.10 shows the RMSE values. For the standard reconstruction, the RMSEs of 

highly localized 12-channel receiver coil are slightly higher than 8-channel coil in both 

fully sampled and 2x under-sampled data. Moreover, they are increased as a function of 

motion amplitude. For augmented SENSE, the RMSEs of both coil type, both datasets 

and all motion amplitudes are very small, lower than 0.05. 

 

Figure 3.10. Normalized RMSE of simulations. Augmented SENSE provides smaller 

errors than standard reconstruction (RSS for R=1, and SENSE for R=2) in all motion 

amplitudes and all coil types. 

3.4.2. Phantom Results 

Figure 3.11 illustrates the signal change caused by the relative motion of coil sensitivity. 

For fully sampled data (R=1), the artifact appears somewhat small when ~5 and ~9 

degrees of rotation were performed. The image became largely inhomogeneous when a 

large rotation (~25 degrees) was performed. For under-sampled data (R=2 and 3), only 

no motion images were likely to be acceptable. The rest were corrupted; the artifacts 

increased proportionally with the motion amplitudes. 
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Figure 3.11. The identical windowed images reconstructed by RSS (R=1), and standard 

SENSE (R=2, 3). (1
st
 column) no motion was performed during data acquisition. (2

nd
-4

th
 

columns) ~5, ~9, ~25 degrees of rotation around z-axis half-way through a scan were 

performed. 

Figure 3.12 shows that the artifacts appear remarkably reduced after applying the 

augmented SENSE reconstruction. Although the homogeneity was much improved in 

large motion case, the residual artifacts were still higher than the small or no motion 

cases. Figure 3.13 shows the RMSE values obtained by the standard and the augmented 

SENSE reconstructions. In all experiments the augmented SENSE have always smaller 

RSME values. All the tests require only 20 CG iterations. The regularization parameters 

(λ), reported in the figures, are relative to the best reconstructions. 
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Figure 3.12. The identical windowed images reconstructed by augmented SENSE. (1
st
-

3
rd

 columns) ~5, ~9, ~25 degrees of rotation around z-axis half-way through a scan were 

performed. 

 



 

63 

 

 

Figure 3.13. Normalized RMSE of homogeneous phantom experiments. Augmented 

SENSE provides smaller errors than standard reconstruction (root-sum-of-squares for 

R=1, and SENSE for R=2, 3)   in all motion amplitudes. 

3.4.3. In vivo Results 

Figure 3.14a shows the motion pattern when the subject performed the head rotation 

during the data acquisition. A maximum rotation around the z-axis of approx. 12° was 

detected. Figure 3.14b illustrates the motion data with different acceleration factors (R=1, 

2, and 3) reconstructed by the standard reconstruction (i.e., root-sum-of-squares for fully 

sampled data (R=1) and SENSE for under-sampled data (R=2, 3)). The quality of fully 

sampled and 2x under-sampled images appears likely to be comparable to the images 

obtained by the augmented SENSE (see Figure 3.15c). However, the residual folding 

artifact still remains high in the 3x under-sampled image obtained by the standard 

SENSE. In contrast, the abovementioned artifact was remarkably reduced in the images 

obtained by the augmented SENSE. 

Figure 3.15 shows the artifact in the larger motion (approx. 26° rotation around z-axis 

and 22 mm. translation in x-axis). Although, the RSS provides an acceptable image for 

fully sampled data (R=1), the small details are missing as indicated in Figure 3.15b. For 

under-sampled data, the augmented SENSE shows much better improvement.     
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Note that the regularized parameters (λ) superimposed on all reconstructed images are the 

appropriate values which were selected manually. 

 

Figure 3.14. (a) The motion occurred during the acquisition of the corresponding images 

in b and c. (b) and (c) The identical windowed images for fully sampled and synthetic 

under-sampled data are reconstructed by standard techniques (1
st
 columns) and 

augmented SENSE (3
rd

 columns), respectively. The image differences (2
nd

 and 4
th

 

columns) between each reconstructed image and reference (no motion image) are shown. 
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Figure 3.15. (a) The identical windowed images for fully sampled and synthetic under-

sampled data reconstructed by standard techniques (1
st
 row) and augmented SENSE (2

nd
 

row), respectively. (b) The enlarged images correspond to the same color boxes in (a). (c) 

The motion pattern occurred during the acquisition of the corresponding images in (a). 
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4. CORRECTION OF GRADIENT NONLINEARITY 

INDUCED GEOMETRIC DISTORTION 

The work presented in this chapter was accepted for publication: 

Yarach U, Luengviriya C, Danishad A, Stucht D, Godenschweger F, Schulze P, Speck O 

(2015) Correction of gradient nonlinearity artifacts in prospective motion correction for 

7T MRI. Magn Reson Med, 73(4), 1562-1569.  

4.1. Preface 

Standard GNL correction techniques, such as those widely available on commercial MR 

systems, are implicitly based on the assumption that an infinite set of continuous, noise-

free k-space samples have been acquired (Glover et al., 1986). In this correction scheme, 

following inverse (continuous) Fourier transformation of the dataset, the nominal and 

actual images of the continuous physical object are related by a (continuous, conformal) 

coordinate mapping and intensity scaling based on the mapping’s Jacobian determinant 

(Doran et al., 2005). Presuming that this mapping is both a priori known and bijective 

(i.e., invertible), the actual object image can be recovered from the distorted one simply 

by inverting these operations. In practice, however, only a finite set of discrete samples is 

acquired, and image domain interpolation is used to approximate the coordinate mapping 

operation (Doran et al., 2005; Glover et al., 1986; O'Donnell et al., 1985). Recently, a 

model-based MR image reconstruction method with integrated GNL correction was 

reported (Tao, Trzasko, Shu, HustonBernstein, 2015). As opposed to the conventional 

method where distortion is corrected after image reconstruction, this method 

prospectively accounts for the GNL effect during reconstruction and was shown to reduce 

the blurring and resolution loss caused by the conventional method, while still correcting 

the geometric distortion. For acquisitions with full k-space sampling, this method can be 

performed using type-1 of NUFFT. This advance method was mainly proposed for 
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mitigated GNL effect in static MRI. It may be also applicable for inter-scan motion MRI. 

However, its application for intra-scan motion MRI is not obvious. 

Unlike in static or inter-scan motion MR applications, the GNL in inter-scan motion 

manifests as spatial distortion and blurring since object geometry at multiple object poses 

within the non-linear gradient fields and thus the k-space data become inconsistent 

between phase encoding steps. Recently, the correction of GNL for MR data acquired by 

using the continuous table motion technique, which is one kind of intra-scan motion, was 

introduced (Polzin et al., 2004). The fact that the subject and the receive coils move 

simultaneously in this acquisition scheme. As a consequence, there is no impact of the 

coil sensitivity misalignment. Only the impact of GNL was considered in their study. 

They applied a standard GNL correction (Glover et al., 1986) to the complex partial 

image and added it up to the previous corrected partial image via a non-iterative pathway, 

as shown in Figure 4.1. In practice, there are several challenges associated with the 

image-based interpolation required for the standard GNL’s correction. Due to the intrinsic 

smoothing effect of interpolation, there is often a noticeable loss in image quality, 

particularly in the presence of high spatial frequency components (Slavens, 2008; Tao et 

al., 2015; Thevenaz et al., 2000). Furthermore, image discretization can also be 

problematic, particularly when GNL causes the target object to shrink substantially and 

force a large amount of information into only a few pixels or even a single pixel. 
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Figure 4.1. Processing steps for moving table reconstruction. Raw data shown for 2D (or 

3D) coronal acquisition with frequency-encoding along physical Z, phase encoding along 

X (and Y). Each acquisition corresponds to entire set of k-space data acquired at a range 

of table positions. 1) Data from individual phase encoding is Fourier-transformed along 

the frequency-encoding direction. 2) The result is placed in a zero-filled matrix at a 

location corresponding to its position in k-space along the phase (and slice) encoding 

axis. 3) This 2D (or 3D) volume is then Fourier-transformed along the phase- (and slice-) 

encoding direction(s). 4) The resulting slice (or imaging volume) is then corrected for 

gradient nonlinearity. 5) The result is shifted by an integer amount corresponding to the 

table travel distance and added to the previously reconstructed data. 6) The procedure is 

repeated for each phase-encoding step and across all acquisitions. 7) After all phase-

encoding steps have been processed, the magnitude is calculated. (from Polzin et al., 

2004). 
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As shown in (Fessler 2010; Tao et al., 2015; 2015) and also in the chapter 3, the model-

based reconstruction is a powerful framework for solving a variety of inverse problems in 

imaging. In this chapter, the encoding (forward) operator described in Eq. 3.1 was 

extended further by the spatial warping operator (i.e., the GNL’s effect). Since the data in 

spatial domains do not fall on uniform grid, the NUFFT-based iterative reconstruction 

was employed instead of the standard FFT. The effectiveness of the proposed iterative 

method with respect to the GNL artifact was evaluated through numerical simulations as 

well as phantom studies.  

4.2. Theory 

4.2.1. The Signal Model 

More detail can be found in Tao et al. (2015). In practice only a finite number of k-space 

samples can be collected and will contain noise. As a result, the Fourier domain signal 

measured during a Cartesian MRI acquisition with non-ideal spatial encoding gradients 

can be modeled as: 

 [ ]  ∫          [ ]      
    

  [ ]            

Where      is the (presumed a priori known) distortion field caused by GNL;   [ ] is ᴋ-

th signal measurement at k-space position  [ ]; and   is the zero-mean proper complex 

Gaussian noise. 

The problem of reconstructing the continuous image function,     , from a finite 

measurement vector,  , is intrinsically ill-posed without auxiliary assumptions about the 

target signal. Typically, a finite series representation of      is assumed (Fessler, 2010), 

that is,      ∑  [ ]     [ ]  , where      is the (continuous) pixel basis function, 

 [ ] is the pixel position vector, and  [ ] is the corresponding display coefficient of the  -

th pixel. Assuming a Dirac delta pixel model (i.e.,          ), the signal model in Eq. 

4.1 gives:  
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 [ ]    ∑ ∫  [ ]     [ ] 

    
 

    [ ]         [ ]  

       ∑  [ ]
 

    [ ]    [ ]   [ ]                     

Denoting the forward matrix operator  [   ]      [ ]    [ ] , the ensemble of measured 

data can be modeled in affine algebraic form as: 

                     

For fully sampled Cartesian imaging, the set of k-space samples lie on a discrete uniform 

grid. Although image pixels are also generally assumed to lie on a similar uniform grid 

( [ ]), the presence of a distortion field (i.e., when    [ ]   [ ]) causes these to be 

displaced in the discrete forward model according to    [ ] . Therefore, the nominal 

spatial grid of an image reconstructed under Eq. 4.3 may actually be non-uniform. Thus, 

  essentially represents a non-uniform to uniform linear mapping for the Cartesian case. 

Note that without GNL, that is    [ ]   [ ], the forward operator   reverts to the 

standard discrete Fourier transform (DFT) matrix. The forward operator,   in Eq. 4.3 can 

be efficiently implemented using the type-I non-uniform fast Fourier transformation 

(NUFFT) which is defined as follows: 

                      

where   is a matrix representing convolution interpolation operation that maps the 

irregular image grid onto an oversampled uniform image grid, F is an oversampled DFT 

(implemented using FFT), and D is pixel-wise deapodization function (i.e., diagonal 

matrix) that compensates for blurring induced by a convolutional kernel,  .  

 The encoding operator of PMC for Cartesian sampled MRI 

We remind the readers that the motion corrupted MR signal received from multiple 

coil arrays was described in Eq. 2.49. After applying the highly accurate PMC, the 
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forward operator      that assumes linear magnetic field gradients across the sample is 

clearly shown in Eq. 3.1. When the GNL is also considered, the FFT in Eq. 3.1 can be 

replaced by operator   (Eq. 4.4). Thus, the forward operator with considered GNL 

specific to pose   and coil   can be defined as: 

                        
                    

 The warped coordinate preparation 

Unlike the FFT, the NUFFT requires the explicit transformed coordinate which is 

called here the warped coordinate caused by GNL. In this study, the warped coordinates 

were prepared by applying the warping operator     to the uniform     grid points. 

More explicitly, the operator     consists of a set of rigid (    
 

) as well as non-rigid 

(             ).           

                                                [  
    

    
 ]     [     ]

  

                                                     [        ]
      

 [     ]  

  
      (        )                                                        

  
                 

  
                 

where          are the gradient nonlinearities in each of the three directions. They are 

functions of the spatial coordinates at any pose  . Obtaining an accurate description of 

the gradient field distribution is not a simple task. The most general approach is to 

expand the field using spherical harmonics as the basis function (Janke et al., 2004a). The 

field generated by a gradient field (          ) can be written in spherical coordinates 

as follows, where                is a spherical harmonics (SPH) expansion of order n 

and degree m of each component of the gradient field, and has the form 
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                 [                             ]                    

              ∑∑              

  

             

In this equation,   stands, in turn, for Cartesian coordinates    , and  ; and      and   

are spherical coordinates in an ideal coordinate system;         and         are constants: 

the so-called ‘SPH coefficients’. The associated Legendre functions are             .  

4.2.2. The Image Reconstruction Algorithm  

The desired reconstructed images according to the operator   in Eq.4.5 were obtained by 

using the L2-norm based regularization. The processing steps using the CG method are 

the same as described above, but the FFT and iFFT are replaced by the NUFFT and its 

adjoint (iNUFFT), respectively. A schematic diagram of the proposed algorithm is shown 

in Figure 4.2. The four steps described in chapter 3 are repeated until the maximum 

iteration number or the stopping criteria are reached. 

 

Figure 4.2. Schematic diagram of the augmented CG-SENSE with integrated GNL 

correction. 

 

 



 

73 

 

4.3. Materials and Methods  

4.3.1. Numerical Simulations 

The performance of the proposed reconstruction was first tested in numerical simulations 

using a Shepp-Logan phantom assuming a 2D axial image (FOV=256 mm
2
, pixel size=1 

mm
2
). The ideal prospective motion correction was assumed. This means that the coil 

sensitivity profiles moved around the static phantom. The data encoding in Eq. 4.5 was 

applied to the static phantom in order to generate the motion-corrupted MR signal of each 

pose and channel. The 8-channel coil specific motion pose (    ) was simulated by using 

Biot–Savart’s law as illustrated in chapter 3. The GNL field at the any pose was prepared 

by using spherical harmonics information specific for the gradient system of the 7T 

scanner. The 8-time intra-scan motion was assumed (every 32 k-space lines in a phase 

direction per pose). Note that to avoid the interference of the relative motion of coil 

sensitivity; the in-plane rotation was kept the same, only the translation in the z-direction 

was assumed to generate three corrupted datasets, including mild motion (0-10 mm), 

moderate motion (0-20), and large motion (0-30 mm). The motion patterns are shown in 

Figure 4.4. The identical information as used in artifact generation was applied in the 

image reconstruction 

4.3.2. The MRI Phantom Experiments 

All experiments were performed on an ultra-high field whole-body 7T MRI scanner 

(Siemens Healthcare, Erlangen, Germany) equipped with a 70mT/m whole body gradient 

system (SC72). PMC was applied to all scans. A 24-channel head coil (Nova Medical, 

Wilmington, MA, USA) was used. The acquisition parameters were 3D FLASH with 

matrix: 2 6x2 6x 6 ; voxel size:  x x  mm; TR/TE:   /3.2 ms; and BW: 849 Hz/pixel. 

The structure phantom was scanned at four different constant poses to avoid any effects 

of internal motion in the object and potential inaccuracies, such as delays of the pose 

tracking. For the initial pose the phantom was placed at the center of the scanner (iso-

center) then the table was moved -  ,   , and 2  mm away from the iso-center for the 2
nd
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– 4
th
 poses, respectively. All poses were scanned with PMC enabled. Synthetic 3D data 

corrupted by residual artifacts after PMCs were created by combining the raw data of 

four poses, assuming mild, moderate, and large motions.  

4.3.3. Data Processing 

The reconstruction was performed using MATLAB (version 12, The MathWorks Inc.), 

running on a Linux system. Before performing the image reconstruction, the data binning 

and the coil sensitivities corresponding to motion pose were prepared as same as 

described in chapter 3. The GNL specific motion pose was analytically expanded as a 

linear combination of spherical harmonics (Eq. 4.7 and 4.8). Note that the higher-order 

SPH coefficients ( =3,  , 7, and 9) were provided by the scanner manufacturer. Figure 2 

shows the absolute error in cm for a 40 cm FOV within a Sonata (SC72) gradient coil set 

in whole-mode for each axis. It can be seen from the colour maps that there is very little 

error (less than 1cm) at the center portion of the FOV, but over 8cm of position error 

toward the FOV extremities. Furthermore, the forward and inverse of type-1 NUFFT 

operators using min-max interpolation on a denser grid (2x oversampling) were 

calculated using Fessler’s NUFFT package (Fessler, 2  4).  
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Figure 4.3. Gradient error as a function of position in centimeters within a 40cm field of 

view. 

4.4. Results 

4.4.1. Simulation Results 

Figure 4.4 shows that the gradient nonlinearity can degrade the quality of perfect PMC 

images. The degradations increased with larger motion, i.e., the translations in the   

direction were increased. Note that the shading artifact caused by coil sensitivity in all 

images appears small, visible, and identical due to corruption by the small and same 

patterns of in-plane rotation (  ). Figure 4.5a shows that although the coil sensitivity 

artifact was already compensated for by the augmented SENSE, the residual artifact 

caused by GNL still remains and increases proportionally to the motion amplitudes. This 

remaining error was significantly reduced by the augmented SENSE with integrated GNL 

correction (see Figure 4.5b). Both shape and intensity of the corrupted images were 

recovered to almost the level of the reference after a few iterations. Figure 4.5c shows the 
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RMSE values for mild, moderate, and large motions. Without GNL correction, the RMSE 

values were 0.37, 0.41 and 0.55, respectively. With GNL correction, the values were 

largely reduced to 0.09, 0.09, and 0.11, respectively.  

 

Figure 4.4. Identically windowed RSS images for three scales of motion. The artifact 

caused by GNL increases with stronger motion. 
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Figure 4.5. Three datasets at different scales of motion reconstructed by the augmented 

SENSE (a). Augmented SENSE with integrated GNL correction (b). The RMSE values 

obtained from both reconstructions (c). 
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4.4.2. MRI Phantom Results 

Figure 4.6 can confirm that the changes of the B0 field were relatively small; this is 

approx. 8 times smaller than displacements caused by gradient non-linearity when the 

phantom was moved ~25 mm in z-direction. This is due to the use of high sampling 

bandwidth (849 Hz/pixel). Moreover, the phantom is also somewhat homogeneous. 

Therefore, gradient imperfections are the dominant cause of residual artifacts after rigid 

body motion correction.  

 

Figure 4.6. The change of displacements of the three gradients (        ) and the main 

magnetic field    corresponding to the chosen coronal slice at isocenter (Pose1) and -25 

mm off-isocenter in the Z direction (Pose2). Note that the    induced shift is much 

smaller than the gradient distortion for the FLASH sequence used. 
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Figure 4.7 shows the images obtained by the standard Fourier reconstruction. The central 

slice closed to iso-center was less affected; when the object moving within the ranges of -

10-0 and -10-10 mm. in the  -direction. The reconstructed images appear mostly to be 

free of artifact. However, in larger motion (-10-20 mm.), the blurring artifacts are slightly 

visible, particularly at the image edges (zoomed out region). For the peripheral slice (+55 

mm. away from the iso-center), the standard reconstruction provided undesired images. 

The artifacts are highly visible even with mild motion and increase proportionally to the 

amplitude of motion.  

Figure 4.8 shows high image quality. The blurring at the image edges of both central and 

peripheral slices became invisible when these images were obtained by the iterative 

augmented SENSE with integrated GNL correction via type-1 of NUFFT operator.  

Figure 4.9 indicates that the RMSE values of the large motion data obtained from 

augmented SENSE without and with GNL corrections reduce from 0.085 to 0.049 

(central slice), and 0.21 to 0.10 (peripheral slice), respectively. 
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Figure 4.7. Three synthetic motion datasets including mild (-10-0 mm), moderate (-10-10 

mm), and large (-10-20 mm) reconstructed by the standard Fourier transformation. 
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Figure 4.8. Three synthetic motion datasets including mild (-10-0 mm), moderate (-10-10 

mm), and large (-10-20 mm) reconstructed by the augmented SENSE with integrated 

GNL correction. 
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Figure 4.9. The RMSE values obtained from augmented SENSE without and with GNL 

correction. 

It should be noted that when there is no interaction between the object’s motions and 

receiving coils the images obtained by the RSS coil combination (for fully sampled data) 

are equivalent to the images shown in Figure 4.7, otherwise there is a shading artifact 

smear everywhere on the RSS images, as shown in Figure 4.10a. The shading artifact can 

be compensated if the coil sensitivities specific to motion pose are given and done via the 

augmented SENSE reconstruction (see Figure 4.10b). The central regions improve 

considerably while the residual blurring artifacts remain for both the edge of the center 

slice and more strongly at the periphery. This suggests that the artifacts cannot be 

compensated completely by this step alone. Again the shape errors in particular at the 

edge of the phantom only disappear when the gradient warp correction is integrated (see 

Figure 4.10c).  
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Figure 4.10. (a) Mixed k-space data from arbitrary poses lead to a strong artifact. (b and 

c) The 15
th

 iteration of augmented SENSE images. (b) The intensity appear highly 

uniform after sensitivity maps correction, but blurring artifacts at the edge (white arrows) 

still remain after sensitivity map correction. (c) High image quality with very little 

remaining artifacts (white arrows) was achieved by the proposed method. (d) The 

patterns of mixing experimental phantom k-space from eight different poses (32 lines per 

pose). 
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5. CORRECTION OF B0 SUSCEPTIBILITY INDUCED 

GEOMETRIC DISTORTION  

The work presented in this chapter was accepted for publication: 

Yarach U, Luengviriya C, Stucht D, Godenschweger F, Schulze P, Speck O (2015). 

Correction of   -induced Geometric Distortion Variations in Prospective Motion 

Correction for 7T MRI. Magn Reson Mater Phy, 1-14 (Epub ahead of print). 

5.1. Preface 

In principle, not only GNL can result in spatial distortion due to motion but B0 

inhomogeneity caused by magnetic properties of the subject (e.g., air-tissue interfaces) is 

a relevant source of geometric distortions (Boegle et al., 2010; Jezzard at al., 1995; 1999; 

Ooi et al., 2013). Its effect is particularly, increased at a high field strength, such as 7T 

(Speck et al., 2008). Recently, the locations and sizes of B0 field shifts within the brain at 

7T for different head movements were reported (Sulikowska, 2014). These observations 

showed that the local field changes strongly depend on the subject orientation. As a 

consequence, the MRI applications with PMC at high field may be impacted by this 

variation even in conventional Cartesian MRI acquisitions (i.e., Spin-Echo and Gradient-

Echo) with low readout-bandwidth (BW) that are often chosen to optimize signal-to-

noise (SNR) or contrast-to-noise (CNR) ratios in structural imaging. The B0 field shifts 

cause two effects: geometric distortions and signal dropouts. In this study, however, only 

the geometric distortion was investigated. A common approach for geometric distortion 

correction in a static or inter-scan motion MRI (e.g., EPI images) is based on physical 

analysis and the acquisition of dual echo gradient echo images, which provide an estimate 

of the magnetic field map through data acquisition at two different echo times (Jezzard et 

al., 1995). The geometric distortion correction using a field map is performed through 

voxel shift unwarping directly computed from the estimated phase field map value at 
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each voxel. This standard correction is often applied after the image reconstruction; the 

image post-processing. 

The fact that k-space data acquired during intra-scan motion is inconsistent between the 

phase encoding steps since a subject experiences within the B0 inhomogeneity which, 

changes relative to the subject orientations. A standard correction may be impractical 

since all corrupted k-space data are already combined during the reconstruction process. 

In this study, we investigated B0 field variations at different head orientations, and 

proposed a reconstruction scheme to mitigate ∆B0-induced geometric distortion in the 

intra-scan motion MRI after PMC. The model-based reconstruction scheme described in 

chapter 4 was extended by the susceptibility-induced distortion correction. The 

effectiveness of the proposed iterative NUFFT method with respect to such residual 

artifacts was evaluated through numerical simulations as well as phantom studies. Finally 

the proposed method was applied to human brain MRI.  

5.2. Theory 

In this work, we considered the susceptibility-induced artifact as a spatial warping 

function. Thus, the MR signal influenced by this artifact can be modeled as shown in Eq. 

4.5. However, as we mentioned in chapter 4, the NUFFT requires the transformed 

coordinates where affected by both GNL and B0 field shifts. Therefore, the warping 

operator     shown in Eq. 4.6 needs to be extended by    which is the B0-related 

displacement (pixel shift map). 
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Note that for non-EPI sequences, the bandwidth in the phase encoding direction is 

infinite. Therefore, B0-related distortions need only be considered along the single 

frequency (read) encoding direction of the image. For example, if the read encoding 

gradient is aligned with the x axis, phase encoding is performed along the y and z axes for 

a 3D MRI (Eq. 5.1).  

5.2.1. Measuring Field Map (   Field Mapping) 

The proposed reconstruction is required to convert the phase change map (field map) into 

a map of voxel shifts           that can be used to unwarp the distorted images via the 

type-1 of NUFFT. Therefore, the effectiveness of proposed reconstruction relies on the 

accurate measurement of a field map. MRI-based B0 field mapping (Jezzard et al., 1995; 

Weisskoff et al., 1992) is dependent on the complex detection of the MR signal, which 

gives angular phase ( ) information on the transverse magnetization generated by the 

application of a RF excitation field at the Larmor frequency (  ) to the aligned nuclear 

spins. Following excitation, the magnetization phase at the echo time (  ) is given by 

                  

where    is the initial phase given by the RF excitation and   is related to the local static 

field perturbation (in a rotating reference frame of   with no chemical shift) by 

                    



 

87 

 

where ∆B0 is the field perturbation and   is the gyromagnetic ratio of hydrogen, and Eq. 

5.2 becomes 

                       

Now consider two images acquired at two different echo times (           ) with 

real and imaginary components related to their magnitudes and complex phase by Euler’s 

formula:               
    and               

    with phases    

        and           . 

The phase difference of the two images is  

                                        

Noting that  

   
           

                                          

where    
  is the complex conjugate of     and the phase difference is also equal to 

                
                 

Then the magnetic field variation is easily computed by 

    
  

    
                  

Where the phase differences which is now also given by 

        (
         

         
)                 

Phase differences which are greater than    must be unwrapped due to the periodic 

nature of the tangent function. Figure 5.1 shows an example of wrapped and unwrapped 

phase differences. Existing phase unwrapping algorithms fall into either spatial or 

temporal categories. An example of the spatial technique is the Phase Region Expanding 
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Labeler for Unwrapping Discrete Estimates (PRELUDE), which optimizes a cost 

function that identifies neighborhoods of unwrapped phases and iteratively merges the 

regions until a single unwrapped region remains (Jenkinson, 2003). The temporal 

approach typically acquires several sets of images with increasingly longer   . The 

initial phase difference with minimum    is assumed to be unwrapped (by choosing a 

small    ), and successive phase differences with increasing     can have values of 

    added until it falls within the unwrapped regime. As each new phase difference is 

computed, the trend can provide a better estimate of the slope and improve the field map 

with each additional image set (Kock et al., 2009). 

 

Figure 5.1. 1
st
 column: the phase difference images with the remaining wrapped phase. 

2
nd

 column: the phase difference images after phase unwrapping. The given scales are in 

a unit of radians.  

Furthermore, the B0 field map can be converted into a pixel shift in the read encoding 

direction according to the following equation, 

          
     

      
 

  

          
            

where        is the readout bandwidth (Hz per pixel).  
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5.2.2. Image Reconstruction Algorithm  

The processing steps of the reconstruction are the same as described in chapter 3, but the 

FFT and iFFT are replaced by the type-1 NUFFT and its adjoint (iNUFFT), respectively. 

5.3. Materials and Methods  

5.3.1. Simulations 

The performance of the proposed reconstruction was first tested in numerical simulations 

using a Shepp-Logan phantom assuming a 2D axial image (FOV=256 mm
2
, pixel size=1 

mm
2
). The intensity values in a circular region with diameter 32 mm within the upper 

circular part of this phantom were replaced by zeros to represent an air inclusion (see 

Figure 5.4a). The ideal prospective motion correction was assumed. The data encoding in 

Eq. 4.5 with respect to both GNL and B0-related distortions was applied to the static 

phantom in order to generate the motion-corrupted MR signal of each pose and channel. 

The 8-channel coil specific motion pose (    ) was simulated by using Biot–Savart’s law 

as illustrated in chapter 3. The GNL at the any pose was expanded using spherical 

harmonics information specific for the gradient system of the 7T scanner used in the 

experimental studies (described in chapter 4). The object-specific field maps (in Hz) at 

air/water interfaces were analytically calculated by plugging the coordinate        which 

is specific to any pose   ([        ]
      

 [     ] ) into Eq.  .  . 

                     {  
    

 
 

                  
    

     
  

    
    

    
   

 
 ⁄

} 

                     {  
    

 
}                                                           ( .  ) 

     {          } 

where  ,   ,           , and            are the gyromagnetic ratio of hydrogen, main 

magnetic field (7 Tesla), the magnetic fields outside, and inside the sphere of water of 
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radius   (16 mm), respectively. The 𝜒    and 𝜒      are the air and water susceptibility 

with values of -0.72x10
-6

 and -9.77x10
-6

, respectively. This field map was divided by a 

readout-bandwidth (assumed 200 Hz/pixel in the x-direction), obtaining the displacement 

  (      ) in a unit of pixels. These voxel shift maps were applied to warp the object 

images in the read encoding direction using type-1 of NUFFT. Note that the 

transformation matrix     
 

, created by using the motion information shown in Figure 

5.2b. The examples of the displacement gradients and field maps at any pose are 

illustrated in Figure  .2a. Identical information as used in artifact generation was applied 

in the correction processes.  
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Figure 5.2. The simulated magnetic field displacements and the motion patterns: (a) The 

gradient displacements (       ) and field maps (∆B0) corresponding to pose 1, 2, and 

8. (b) The 2D rigid motion patterns of eight motion poses (32 phases/pose). 

5.3.2. MRI Experiments 

All experiments were performed on an ultra-high field whole-body 7T MRI scanner 

(Siemens Healthcare, Erlangen, Germany) equipped with a 70mT/m whole body gradient 

system (SC72). The PMC was applied to all scans. 
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5.3.2.1. Phantom experiments 

An 18 cm diameter homemade phantom with a central air inclusion (ping pong 

ball) and further small structures was built (see Figure 5.3). This phantom was filled with 

silicone oil, whose dielectric properties resulted in minor RF-excitation inhomogeneity 

only (Wey et al., 2006). The phantom was scanned at two different constant poses with 

PMC enabled. In the second pose, the phantom was rotated ~33 degrees around the y-

axis. An 8-channel head coil (Rapid Biomedical, Rimpar, Germany) was used. Each 

constant pose was scanned at two different echo times (TE). Both TE’s data were used to 

estimate the B0 field map (∆B0) for each pose. The acquisition parameters were 3D 

FLASH with matrix: 192x192x144, voxel size: 1x1x1.3 mm, TR/TE1/TE2: 

6.00/2.55/3.06 ms, and BW=250 Hz/pixel. The synthetic corrupted data were created by 

combining the raw data of the two poses, assuming 2, 3, 4, 6, and 12 motions (i.e., 96, 64, 

48, 32, and 16 k-space lines along phase direction per pose). 

 

Figure 5.3. An in-house made phantom. 

5.3.2.2. In Vivo experiments 

Two studies were carried out with one healthy male volunteer after informed 

consent according to the IRB-approved protocol. All data were acquired with PMC 

enabled using a 32-channel head coil (Nova Medical, Wilmington, MA, USA). The 

marker was securely attached to a mouth guard which was individually molded to the 

volunteer’s upper teeth using medical grade hydroplastic. 
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1. The characterization of size and location of    field shifts within the brain at 

the different head orientations was performed using dual TE 3D FLASH with 

matrix; 256x256x176, voxel size; 1x1x1 mm, TR/TE1/TE2; 10.00/3.06/5.84 

ms, and BW; 250 Hz/pixel. The volunteer was imaged at five orientations 

produced by roll rotation (around the z-axis of the scanner). The volunteer 

was instructed to move the head between poses but otherwise remain still.  

2. The application of the proposed method to real motion with PMC enabled was 

performed using 3D MPRAGE with the same resolution as 3D FLASH, 

TR/TE/TI; 1800/1.99/1050 ms, and BW; 200 Hz/pixel. After the first half of 

the acquisition, the volunteer was instructed to perform a one-time head 

rotation around the z-axis. The motion pattern from the tracking log file is 

shown in Figure 5.9d. The field maps were also measured before and after 

motion and incorporated into the proposed reconstruction. 

5.3.3. Data processing 

The reconstruction was performed using MATLAB (version 12, The MathWorks Inc.), 

running on a Linux system. Before performing the image reconstruction, the data binning 

corresponding to motion pose was prepared the same as described in chapter 3. The voxel 

shift maps (VSM,   ) were generated as follows. First, the phase differences were 

calculated via the sum over channels    of the Hermitian inner product, 

      (∑   
      

 

  

   

) 

Second, since the phase-wrapping artifacts remain particularly near regions with large 

susceptibility, the phase differences were unwrapped using FSL-PRELUDE. Then, the 

unwrapped phases were multiplied by FSL-BET’s binary mask (FMRIB Software 

Library, 2012). They were divided by (   ) to yield the field maps in the unit of Hz, 

followed by a 3x3x3 median filter to reduce noise. Finally, the field map was converted 

to the VSM using Eq. 7-9 in (Robinson et al., 2011). The coil sensitivities were estimated 
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from the central 64x64x64 k-space data of 3D FLASH specific to motion pose. These 

data were truncated by a cosine tapper window, and then transformed to images by FFT. 

Each individual-channel image was divided by the RSS image. The GNL specific motion 

pose was analytically expanded as a linear combination of spherical harmonics (Eq. 4.7-

4.8). Furthermore, the forward and inverse of NUFFT operators using min-max 

interpolation on a denser grid (2x oversampling) were calculated by using Fessler’s 

NUFFT package (2  4).  

5.4. Results 

5.4.1. Simulation results 

Figure 5.4b shows that the RSS combination yielded images with severe artifacts caused 

by ∆B0, GNL, and coil sensitivities misalignment. After applying standard augmented 

SENSE the residual geometric distortions and field artifacts remain (5.4d) particularly in 

the regions where the field effects are strongest as pointed out by the white (GNL’s 

effect) and yellow arrow (∆B0’s effect) in the subtraction image (5.4e). Integrating the 

GNL corrections into the reconstruction, the strong distortion around the periphery can be 

effectively reduced (5.4f). The RMSE value was reduced from 0.24 to 0.06 (5.4g).  

Further improvements can be achieved when taking both ∆B0 and GNL corrections into 

account (5.4h). Note that the regularization technique was not applied to this simulation, 

since we found that the outcome did not depend on regularization. This is likely due to 

the absence of noise. The very small residual difference (5.4i) may be due to an 

imperfection in the interpolation. The pixel values at transformed coordinates are only an 

approximation by considering a few closely neighboring known pixels. Consequently, the 

image will lose quality in particular in regions of strong distortion.  
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Figure 5.4. The reference (a), RSS (b), and corrected images (c, e and g) are identically 

windowed. The corrected images were reconstructed by the augmented SENSE (c), with 

integrated GNL correction (e), and with integrated GNL and ∆B0 corrections (g). The 

image differences (d, f, and h) are the subtraction between each corrected image and 

reference. The RMSEs were superimposed on the upper left of the subtraction images. 

5.4.2. Phantom Results 

Figure 5.5a demonstrates the gradient displacements and B0 inhomogeneity associated 

with two object positions. The susceptibility induced field inhomogeneities at air/oil 

boundaries were up to 670 Hz. It is obvious and expected that their orientations strongly 

depend on the object pose. The upper row of Figure 5.5b shows two individual distorted 

images reconstructed by the RSS method. The GNL and ∆B0 resulted in strong shape 

differences as pointed out by white arrows (GNL’s effect) and black arrows (∆B0’s effect) 

in the subtraction image.  The bottom row of Figure 5.5b shows that after GNL and ∆B0 

corrections, their shapes appear highly similar to each other, i.e., the subtracted image 

showed very small differences, demonstrating the correct estimation of GNL and ∆B0 in 



 

96 

 

this static situation. Inhomogeneity-induced signal loss due to intra-voxel dephasing was 

still present and is likely the main cause of the residual differences.  

 

Figure 5.5. (a) The displacements of imaging gradients and B0 field maps corresponding 

to pose1 and pose2. (b) Upper row: the images at different poses were acquired with 

PMC enabled leading to identical orientations despite large object motion, but still 

showing distortions due to GNL and ∆B0. (b) Bottom row: the image quality can be 

improved after GNL and ∆B0 correction. 
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Figure 5.6 shows all variants of these combined data reconstructed by the different 

reconstruction schemes. The RSS method yielded images with severe artifacts caused by 

GNL, ∆B0, and coil sensitivities misalignment ( 
st
 column). Although, augmented SENSE 

largely reduced the sensitivity maps artifact, the spatial distortions and the blurring at the 

periphery and air/oil boundaries remain largely visible (2
nd
 column).  These regions 

further improved when both GNL and ∆B0 were addressed in augmented SENSE (4
th
 

column). Nevertheless, high intensity variations near air/oil boundaries still remained 

high.  

Figure  .7a- .7c show that the intensity variations near air/oil boundaries were 

remarkably reduced when using the regularization technique. The regularization 

parameter plays a crucial role in balancing the data-fidelity and regularization terms: 

small λ-values can lead to noisy estimates (5.7a) while a large λ (5.7c) results in over 

smoothing and loss of details. They also stabilized the solution, i.e., RMSEs at high 

iteration counts remain constant in contrast to conventional CG (λ= ) where RMSEs 

increase ( .7d).  

Figure 5.8 illustrates the effectiveness of the proposed reconstruction on the under-

sampled data; the fully sampled data were artificially under-sampled using 

acceleration/reduction factors R=2 and 3. The aliasing artifacts at high reduction factor 

(R=3) appear smaller in comparison to the image obtained by the standard reconstruction. 

This may be due to the geometry of coil sensitivity maps between two poses are different. 

The reconstructed images obtained the proposed reconstruction also appear closely 

similar to the reference as shown in the image differences (2
nd

 and 4
th

 columns). 

Conversely, the differences between the standard reconstructed image and the reference 

remain high. 
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Figure 5.6. All images are identically windowed; 1
st
 column: RSS images; 2

nd
 and

 
3

rd
 

columns: images reconstructed by 30 iterations of augmented SENSE without and with 

integrated ∆B0 and GNL corrections, respectively.  
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Figure 5.7. (a-c) The reconstructed images obtained by different iterative counts and 

different regularization parameters. (d) RMSE values are as functions of iteration counts 

and regularization parameters. The standard CG (λ=0) provided a diverging solution at 

high iteration counts. 
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Figure 5.8. (1
st
 and 2

nd
 rows) The under-sampled data (R=2 and 3) were reconstructed by 

30 iterations of augmented SENSE without and with integrated ∆B0 and GNL corrections, 

respectively. (2
nd

 and 4
th

 columns) The difference between each reconstructed image and 

the reference.   

5.4.3. In Vivo Results 

Figures 5.9a and 5.9c show examples of B0 field maps at identical slice positions relative 

to the volunteer’s head, scanned at five poses with prospectively corrected image 

orientation. The B0 field variations at the frontal lobes (5.9a) and the temporal lobe (5.9c) 

were up to 650 Hz and 400 Hz, respectively. Their amplitude and orientation changes 

relative to pose1 (0 degree) are shown in Figure 5.9b and 5.9d as field differences. The 

motion induced field differences in the above mentioned regions were up to 250 Hz and 

150 Hz, respectively. This maximum observable B0 shift (250 Hz) can cause 2.50 and 

1.25 pixel shifts for the typical bandwidth of 100 and 200 Hz/ pixel, respectively. 
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Figure 5.9. The susceptibility effects on the B0 field in the brain during motion. The field 

map information acquired at five different constant poses (0°,    °,     °,     °, and   2 ° 

around z-axis of the scanner). (a) and (c): the B0 field maps for the frontal lobes (sagittal 

plane) and the temporal lobes (coronal plane), respectively. (b) and (d): the field 

differences between each field map and the field map obtained in the 0° reference 

position. 

Figure 5.10a illustrates the B0 field maps calculated from the full k-space, and the central 

k-space data with zero padding. The field map obtained from the central 32x32x32 k-

space data appears largely different from the reference as shown in the field differences 

(5.10b). We found that the central 64x64x64 k-space data still provided the proper field 

map with small field differences (5.10b). In this study, these low-res field maps were 

chosen for the reconstruction in order to demonstrate that the reconstruction can be 
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accomplished with a low-res field map. Applying fast imaging sequences (Frahm et al., 

1986) to acquire the low-res field maps per motion pose may be possible. 

 

Figure 5.10. (a): the B0 field maps at the frontal region of the brain reconstructed at 

different resolutions from the same k-space data. (b): the field differences between each 

field map and the field map obtained from full k-space data. 

Figure 5.11d shows the motion pattern when the subject performed the head rotation 

during the data acquisition. A maximum rotation around the z-axis of approx. 23 degrees 

was detected. The motion data reconstructed by RSS (1
st
 column) show blurring near the 

strong B0 field inhomogeneity and gradient field nonlinearity as pointed by yellow arrow 

(a1) and white arrow (a2), respectively. Moreover, noise and blurring artifacts are 

obviously seen everywhere in Figure 5.11(a3). When the motion data was divided into 

two groups according to the tracking information, and then reconstructed by the 

augmented SENSE with integrated GNL correction the peripheries appear much sharper 

(e.g., white arrow in b2). However, the blurring generated by ∆B0 as indicated by the 

yellow arrow (b1) still remains. Finally, the augmented SENSE with integrated ∆B0 and 

GNL corrections can further improve the reconstructed image leading to a notable 

reduction of the above-mentioned artifacts (3
rd

 column). It is obvious that the blurring 
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artifact in the yellow circle regions (c3) appears much less visible when compared with 

the same region of GNL corrected image (b3). 

 

Figure 5.11. 1
st
 column (a1-a3): RSS images of the prospectively motion-corrected 

acquisition. 2
nd

 column (b1-b3): images after 10 iterations of augmented SENSE with 

integrated GNL. 3
rd

 column (c1-c3): images with integrated ∆B0 and GNL corrections. 

The axial images in the 2
nd

 row and the sagittal images in the 3
rd

 row correspond to the 

white lines in images a1 and a2, respectively. The yellow circles in b3 and c3 highlight 

the artifact from ∆B0 and the image improvement, respectively. (d): six parameters of 3D 

motion from tracking log file (x, y, z shifts and Rx, Ry, Rz rotations). 
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Figure 5.12 demonstrates the effectiveness of the proposed method for undersampled 

acquisition. The full k-space data were artificially accelerated by factor 2x2 along both 

phase directions (phase and slice directions). Although, the standard SENSE (Pruessmann 

et al., 1999) provided the acceptable images (1
st
 column), the remaining aliasing artifacts 

due to coil sensitivity misalignment and also the blurring artifacts caused by ∆B0 and 

GNL are clearly visible as shown in the red circles. Note that sensitivity maps specific to 

the pose during the first half of the acquisition were used in standard SENSE. Superior 

image quality with very little remaining artifacts was achieved after applying the 

augmented SENSE with integrated ∆B0 and GNL corrections (2
nd

 column). Note that the 

regularization parameters superimposed on the reconstructed images were manually 

selected.  
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Figure 5.12. The 2x2 undersampled k-space data reconstructed by the standard SENSE 

and the augmented SENSE with integrated ∆B0 and GNL. The axial images in the 2
nd

 and 

3
rd

 rows correspond to the white lines #1 and #2, respectively. The sagittal images in the 

4
th

 row correspond to the white lines #3. 
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6. DISCUSSION 

PMC has great benefits for reducing motion artifacts, increasing image quality without 

time penalty when using external tracking, and avoiding sedation or rescanning of 

uncooperative patients. However, PMC alone may not be sufficient to restore image/data 

quality when there is large motion, and therefore, additional retrospective corrections 

become necessary to either correct some of the changes associated with real-time 

adjustments of scan coordinates or to implement PMC with other imaging applications.  

In this work, the residual motion-related artifacts are categorized into three main types: 1) 

intensity shading caused by the fact that the RF receiving coils are fixed relative to 

moving subject, 2) the system imperfection, (i.e., gradient non-linearity induced 

geometric distortion), and 3) the subject-induced susceptibility effect on geometric 

distortion.  

This work is also the first time that correction techniques have been presented, with 

respect to all the above residual artifacts. All corrections were combined into one step via 

the NUFFT model-based iterative regularized reconstruction. However, the performance 

of this reconstruction algorithm was highly dependent on the input parameters, such as 

the sensitivity maps, the magnetic displacement fields, the regularization parameters and 

the stopping criteria. A detailed discussion of the proposed correction scheme is 

presented in the following section. 

6.1. The Coil Sensitivity  

In chapter 3, there was strong concurrence between experiments and simulations in that 

the relative motion of coil sensitivity artifact was slightly visible in the fully sampled 

data, even with large motion scales. Nevertheless, the in vivo experiment provided 

evidence that some small structures near to the surface coil were highly interfered with in 

large motions (see Figure 3.15). The augmented SENSE can effectively recover this 
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obstacle. Furthermore, this reconstruction scheme was more advantageous for PMC data 

acquired using parallel imaging techniques. Recently, the effect of the motion-induced 

coil sensitivity alteration on non-Cartesian under-sampled data was investigated by 

Aksoy et al. (2008). Their results also suggest that it is necessary to correct for coil 

sensitivities in the case of large motions and high reduction factors. They give two 

reasons for this alteration: First, the change in coil sensitivity exposure increases with 

motion, and second, the retrospective counter-rotation of k-space trajectories for motion 

correction causes under-sampling in k-space, resulting in a higher “effective” reduction 

factor. However, we expect that this alteration in both Cartesian and non-Cartesian MRI 

that is PMC enabled, could be smaller than the use of a retrospective motion correction 

scheme, because the k-space trajectories are already realigned during data acquisition.  

In this study, the quality of the reconstructed images relied on the sensitivity maps, which 

are key information required for the augmented SENSE reconstruction. Bammer et al. 

(2007) show that the coil sensitivity information can be directly retrieved from the 

navigator images, which were acquired using the spiral pulse sequence. The scan-time for 

this data was ~3-5 milliseconds for 2D low-res data. However, it may take longer when 

acquiring 3D data. Because of thr scan-time requirement to acquire the exact sensitivity 

data after adjustment of the imaging volume, Banerjee et al. (2013) propose that a 3D 

single dataset, acquired in the beginning of the actual scan, can be adjusted for each 

corresponding motion data. Their results show that the sensitivity maps calculated from 

single calibration data are sufficient for reconstructing the under-sampled data under the 

1.5T scanner. In this study, the single calibration data was also used in the in vivo 

experiments (under 7T scanner). Small aliasing artifacts still remained (see Figure 3.14 

and 3.15). This may be because of the influence of the coil loading effect, which depends 

in part on the dielectric properties of the load (subject) (Harvey, 2010). The effects of coil 

loading complicate MRI to the extent that resonant coils are often tuned or adjusted to 

compensate for the generally undesirable loading effect caused by the body being 

imaged, particularly at high field strength.  
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In phantom experiments, although the exact measured data were used to generate the coil 

sensitivities, the artifacts still remained high with a large motion even without data sub-

sampling. These remaining artifacts are more likely an intensity variation rather than an 

aliasing artifact (see Figure 3.12, R=1 and 2). This may be due to the fact that the 

phantom was filled with oil, which shakes over a scan time, particularly when a large 

motion was performed. Consequently, the initial magnetizations are not fully returned 

before the next excitation pulse. This phenomenon is referred to as the ‘spin-history 

effect’, which can generate an intensity modulation (Muresan et al., 2005). 

Note that the residual tracking errors may also interfere in the case of the frequent 

motion. To avoid such problem, therefore, one-time motion data were observed in this 

study. However, this correction scheme is expected to work well for the frequent motion 

datasets, when the mentioned interference is minimized. 

6.2. Gradient Non Linearity Induced Distortion 

Geometric distortions are a well-known problem in MRI, leading to pixel shifts with 

errors of up to several millimeters, thereby interfering with precise localization of 

anatomical structures (Archip et al., 2008). Aspects of geometric distortion due to 

gradient field non-linearity are the barrel distortion (2D and 3D); the potato chip effect 

(slice-selection, 2D);, and the bow-tie effect (2D) (Sumanaweera et al., 1994). Correction 

of the potato chip distortion in multi-slice 2D acquisitions is not addressed in this work, 

which focuses on 3D imaging. Both potato chip and bow-tie effects can be reduced 

considerably in 3D imaging, where phase encoding is used in two directions with full 

volume excitation and weak or a no slice selection gradient (Walton., 1997). The 

remaining barrel distortion in 3D acquisition can be corrected by applying a theoretically 

derived correction field as implemented in this study. Variations of the 2D slice selection 

distortion due to motion cause inconsistencies in single slice k-space data that will 

require a different approach for correction.  

The application of the proposed method to experimental data demonstrated a clear 

improvement in image quality, especially in off-center slices. This can also confirm that 
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the vendor SPH-based gradient displacement is adequate for minimizing the geometric 

distortion in 3D PMC data. Note that the diameter of the Shepp-Logan phantom was 

approximately 220 mm and thus larger than the experimental phantom (~150 mm). The 

gradient non-linearity artifact is thus more prominent in the simulation than in the 

experimental data, especially in image edges. We demonstrated that this effect was more 

pronounced in off-center areas, i.e. for large objects and large object motion. As studied 

by Wang et al (2004a), the gradient field non-linearity in five different gradient sets 

varied strongly. Within a volume of (240 mm)
3
, the geometric errors are between 10 and 

25 mm in MRI systems equipped with fast gradient systems, while MRI systems 

equipped with conventional gradient systems showed only 2 to 4 mm errors. Other 

authors have reported maximum distortions over similar (but not identical) imaging 

volumes of: 9 mm at 1.5T (Doran et al., 2005), 7 mm at 3T (Baldwin et al., 2007). In this 

study, the maximum gradient-related displacements based on the manufacturer’s SPH 

coefficients in measurement volumes of 200, 240 or (300 mm)
3
 were 6.7, 14.5 or 43.8 

mm, respectively. Therefore, the relevance of the GNL in PMC data will vary depending 

on the design of the gradient system.  

The information about the gradient coil                               (see Eq. 4.6 

and  . ) provided by the manufacturer is not always readily available. Optionally, several 

phantom-based distortion correction methods have been reported. Baldwin et al. (2007) 

characterized and corrected distortion using a three-dimensional (3D) grid phantom and 

elastic-body spline-kernel transformation function. Carmanos et al. (2010) constructed a 

DUPLO-based phantom and proposed distortion correction using information 

characterized by that phantom and spherical harmonic expansion. Schad et al. (1987)  

carried out an early investigation on two-dimensional (2D) MRI distortion correction 

using a 2D polynomial equation. Menuel et al. (2005) used phantom including cylindrical 

rods as fiducial points. Langlois et al. (1999) proposed a correction method based on the 

Fourier transform and a simple cubic phantom. This method obtained information about 

distortion to allow correction of both gradient nonlinearity and background field 

inhomogeneity for many subsequent patients via scans of a phantom of well-known 
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geometry. The gradient displacements obtained by the abovementioned methods may be 

incorporated into the proposed reconstruction. 

6.3.    Susceptibility Induced Distortion 

The geometric distortion caused by susceptibility differences is much more complex, due 

to the field inhomogeneity’s dependency on the material (e.g., tissue, bone, and air), 

shape of the object, and its orientation relative to the static B0 field. Recently, the size and 

location of B0 field shifts within the brain at 7T for different types of head movement 

were studied by Sulikowska et al. (2014). Their results show that the maximum B0 field 

changes at the frontal lobe for pitch and yaw rotations are 4±2 and 8±11 Hz/degree, 

respectively. Other authors have reported maximum B0 field differences caused by head 

movements of 160 Hz at 2.89T (Maclaren et al., 2013) and 50 Hz at 3T (Jezzard et al., 

1999). In the present study, however, the field shifts are larger than those reported in 

previous studies. The motion induced field differences in the temporal and the frontal 

lobe were up to 150 Hz and 250 Hz, respectively. This may be because the scale of 

motion in our study is large with rotations of up to 25 degrees. In addition, the field maps 

were acquired with very high spatial resolution and therefore localized field variations 

were detected with little smoothing. In the simulation, residual artifacts after perfect PMC 

were clearly visible (see Figure 5.4b). These can be largely corrected by the proposed 

correction scheme (see Figure 5.4h). In the in vivo experiments, the largest    field 

change due to head movement during the acquisition was 250 Hz, which caused 1.25 

pixels shift for a readout BW of 200 Hz/pixel. This field change generated a residual 

blurring artifact as illustrated in Figure 5.11. However, this artifact is somewhat small. 

The images reconstructed by RSS and standard SENSE appeared slightly degraded, but 

still acceptable. This is due to the use of a small head coil (32-channel) that restricted 

movement. Conversely, when using a larger head coil that allows greater motion, the 

artifacts may become a more relevant challenge as demonstrated in the phantom 

experiments. The proposed reconstruction may become more important to improve the 

image quality especially when scanning heads of children or uncooperative patients. In 

addition, correction of distortions due to    variation may be most important in 
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sequences that are highly susceptible to field variations, such as multi-shot EPI, for which 

the correction may be more relevant even for smaller motions than in the examples in this 

study with a less sensitive FLASH acquisition.  

It is important to note that the proposed reconstruction required an accurate field map. In 

this study, all acquired GRE data had sufficiently high SNR and small ∆TE. As a result, 

artifact-free phase differences and field maps can be achieved by using a fast and simple 

method (i.e., the Hermitian inner product, HP). However, Lu et al. (2008) showed that the 

naive HP exhibits higher noise sensitivity than SENSE-based methods (Bernstein et al., 

1994; Walsh et al., 2000). In addition, using long TEs or high ∆TE may cause severely 

wrapped phase data that require phase unwrapping with more advanced but 

computationally expensive methods, e.g. UMPIRE (Robinson et al., 2014).  

6.4. Regularization Parameter 

Basically, the choice of the regularization parameter λ depends on the noise level (Lin et 

al., 2008). Difference choices of parameter λ result in a trade-off between the smoothness 

of the signal, when ‖   ‖ 
  is small, and a good fit-to-data if ‖     ‖ 

  is small. It 

should be noted that, even λ=  in simulation studies (chapters 3, 4, and  ) the best 

approximate solutions can still be achieved. This is likely due to the absence of noise. 

However, in experimental studies, regularization played an important role in optimizing 

the high intensity variations in regions where the magnetizations were perturbed by the 

strong field inhomogeneities (see Figure 5.6). Moreover, regularization can also prevent 

divergence of the solution at high iteration counts (see Figure 5.7). In this study, the 

optimal λ was manually adjusted for subjective good image-quality. Optionally, several 

quantitative methods for selection of λ such as the L-curve method (Vogel, 1996), 

generalized cross-validation (Golub et al., 1979) and the discrepancy principle 

(Galatsanos et al., 1992) may be useful to select the most appropriate λ for the proposed 

reconstruction. In addition, the tridiagonal regularization matrix also provides a smoother 

solution (Hansen, 1998) rather than using an identity matrix (the result is not shown in 

this study). This is advantageous for the regions with high-intensity variation.   
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6.5. The NUFFT 

Although, the inverse FFT has served the MR community very well for image 

reconstruction, it is unable to directly apply to a motion or to non-uniform sampled MR-

data. Fortunately, the NUFFT can overcome such a limitation, and has been widely used 

(Atkinson et al., 2003; Fessler et al., 2003). The NUFFT not only effectively works for 

non-uniform k-space data, but also non-uniform image data (Capozzoli et al., 2013; Tao 

et al., 2015), which is commonly referred to type-1 of NUFFT. The effectiveness of the 

NUFFT type-1 for correcting the geometric distortion caused by GNL in a static MRI 

with Cartesian sampling is presented in Tao et al. (2015). The application of the NUFFT 

method for correcting the geometric distortion in prospectively motion-corrected MR-

data with Cartesian sampling is demonstrated for first time in this work.  

The geometric distortion correction, which is also called image warping, is the process of 

transforming a sampled image from one coordinate system to another. The two 

coordinate systems are related to each other by the mapping function of the spatial 

transformation. In general, during the warping procedure, an interpolation is required for 

resampling the intensity values in the new coordinates. Several commonly used 

interpolation algorithms have been suggested, such as nearest neighbor interpolation, 

linear interpolation, and spline interpolation (Gonzalez et al., 2006). The linear and spline 

interpolations are most commonly used in medical image processing, because they are 

computationally efficient (Lehmann et al., 1999; Unser, 2002). Unfortunately, they tend 

to smooth the image, particularly in the presence of high spatial frequency components 

(Thevenaz et al., 2000). In contrast, NUFFT-based interpolation (Fessler et al., 2003) can 

effectively preserve high spatial frequency components including boundaries and small 

structures (e.g., the cerebellar gyri as well as the morphology of vascular structures) as 

demonstrated by Tao et al. (2015).  Moreover, the NUFFT is also practical for the partial 

image obtained from a few lines of k-space, as demonstrated in this work. Recently, 

Capozzoli et al. (2013) concur that the NUFFT significantly outperforms, in terms of 

accuracy, other techniques, such as nearest neighbor, piecewise linear, four-point and six-

point cubic, and the truncated Sinc. However, its accuracy depends on the choices of the 
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convolving window and the oversampling rate. Using a large window and a high 

oversampling rate is a computational burden. The tradeoff between accuracy and 

processing speed, as well as memory requirements, may be managed by changing the 

window size of the kernel and the over sampling rate (Song et al., 2009). Some work has 

been done to fine optimal parameters to balance accuracy and computational costs. For 

example, Beatty et al. (2005) used a minimal oversampling rate, from 1.125 to 1.375 

instead of the typically employed grid oversampling ratio of two, to reduce the high 

computational memory demand in 3D. 
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7. UNRESOLVED CHALLENGES AND CONCLUSION 

7.1. Unresolved Challenges 

First, the explicit determination of coil sensitivities for each motion pose is time 

consuming. Although the sensitivity maps can be prepared by adjusting the initial 

calibration dataset as demonstrated in chapter 3, the artifacts still remain. However, it is 

fortunate that the coil sensitivity estimation does not require high resolution (Bammer et 

al., 2007; Pruessmann et al., 1999; Qu et al., 2007). Thus, using a fast pre-scan for 

acquiring low-res sensitivity maps prior to imaging (Frahm et al., 1986) may be possible.  

Second, although several techniques for dynamic characterization of the B0 field have 

been developed (Hutton et al., 2002; In et al., 2012), they require additional scan time and 

assume that the subject remains still for each measurement step. For stronger motion, the 

distortion caused by B0 field inhomogeneity has been considered for single-shot EPI time 

series where each acquisition can provide a field map (Ooi et al., 2011; 2013). Extension 

to multi-shot EPI and other spin-warp sequences is not obvious. Recently, there have 

been several efforts to predict field maps from air/tissue susceptibility distributions of the 

anatomy using magnetic field models (Jenkinson et al., 2004; Kock et al., 2006) which 

neither require additional scan time nor suffer from low SNR at air/tissue boundaries. 

Boegle et al. (2010) show that the quality of distortion correction using the model-based 

field maps in phantom experiments with arbitrary orientations is comparable to distortion 

correction based on measured field maps of the same object. The distortion-free PMC 

imaging of a large moving object may be feasible if such corrections are employed. 

Third, even if the field maps can be determined for each motion pose, local signal 

dropouts cannot be recovered retrospectively. Such signal variations due to intra-voxel 

dephasing are likely to be the cause of residual artifacts in the corrected images (see 

Figure 5.5b: the corrected images are geometrically correct, but show significant signal 

loss around the air inclusion). Dynamic shimming may be able to address this aspect in 
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part. Recently, Ward et al (2002) introduced real-time auto shimming by means of a 

navigator pulse sequence (shim NAV) to acquire field information for first order shim-

compensated EPI acquisition in the presence of subject motion. A 3D EPI navigator 

(Hess et al., 2011) was also employed to achieve simultaneous motion and shim 

correction in single voxel MR spectroscopy. Keating et al. (2012), showed that fast B0 

mapping for an MRS voxel (20x20x1.17 mm3) can be performed in approximately 120 

msec. Moreover, field map free dynamic shimming (Shi et al., 2015) using a larger 

number of field map templates, together with non-linear registration methods can produce 

a homogeneous field without acquisition time penalty. Knowing the higher than first 

order dynamic field fluctuations around the head may be helpful. These fluctuations can 

be monitored by field cameras (Barmet et al., 2008) concurrently with image acquisition. 

Feedback of these global field changes into the high order shim coils (Duerst et al., 2015) 

or reconstruction (Wilm et al., 2011) may minimize the field fluctuation-induced artifacts 

in motion correction. 

Finally, the proposed reconstruction is much more time consuming than traditional 

Fourier reconstruction, due to the separation of data into several pipelines and iterative 

calculations. The applications of parallel computing by graphics processing units (GPUs) 

(Hansen et al., 2008), and coil compression techniques (Zhang et. al., 2013) that reduce 

the data from many channels into fewer virtual coils, may be ideally suited to improve the 

reconstruction speed.  

7.2. Conclusion 

This work provides evidence that large scale head motion in relation to a fixed multi-

channel receiver coil can introduce unwanted signal variations in particular when using 

parallel imaging. This residual artifact was mitigated when the coil sensitivities specific 

motion were given. The coil sensitivity maps can be prepared by directly measuring or 

adjusting a single calibration datum. The correction process can be done via the proposed 

model-based iterative reconstruction. 
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This work also demonstrates that geometric distortions due to gradient non-linearity can 

induce residual artifacts even in perfectly prospectively motion-corrected data, in 

particular in off-center regions. These artifacts can be minimized by the proposed 

technique that accounts the NUFFT type-1 instead of FFT. Unlike FFT, the NUFFT can 

directly be used to transform the distorted image to uniform k-space. The combined 

correction of gradient non-linearity and sensitivity map variation leads to a pronounced 

reduction of residual motion artifacts in prospectively motion-corrected data of the 

homogeneous object. 

In an in vivo experiment, not only the gradient field nonlinearity caused the geometric 

distortion after PMC application, but also caused the subject-induced susceptibility effect, 

especially at air/tissue interfaces. The field changes occur as the subject’s orientation 

changes relative to the    field. We found that if the magnetic displacements at any 

orientation are given, this residual artifact can be alleviated by the proposed model-based 

iterative reconstruction. The combined corrections of gradient non-linearity, sensitivity 

map variation, and subject-induced distortions leads to a more pronounced reduction of 

residual motion artifacts in non-homogeneous object and human brain with PMC 

application. 
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