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1. Introduction. While permutation groups that act with low fixity are inter-
esting in their own right, from a purely group theoretic perspective, we became
interested in them because of applications to Riemann surfaces. As far as we
know, the notion of fixity goes back to Ronse (see [5]): We say that a group G
has fixity k ∈ N on a set Ω if and only if k is the maximum number of fixed
points of elements of G# on Ω. More background on our motivation and on
applications can be found in [3], which was the first article that we published
on groups that act with low fixity. Since this project had started in 2012, Kay
Magaard and the third author have received numerous questions about special
cases of group actions with low fixity, and often about soluble groups. There-
fore, the main purpose of this paper is to prove results for soluble groups that
act with fixity 2 or 3.

Our two main theorems can also be obtained by using the main results
in [3,4]. However, this would not lead to a shorter proof, and moreover, we
thought that we might reveal interesting details about groups that act with
low fixity if we add the solubility hypothesis and work out an independent
proof of specialised results. Finally, if we had quoted results from previous,
more general work, then this would potentially have included using the CFSG,
which is clearly not necessary here.

Here is the main hypothesis for the remainder of this paper:

Hypothesis 1.1. Suppose that G is a finite, transitive permutation group with
permutation domain Ω. Suppose further that k ∈ N and that G acts with
fixity k on Ω.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-025-02156-4&domain=pdf
http://orcid.org/0000-0001-8502-4295


340 P. Hähndel et al. Arch. Math.

Theorem 1.2. Suppose that Hypothesis 1.1 holds, that G is soluble, and that
k = 2. Then one of the following is true:
(1) G has a regular normal subgroup.
(2) G has a normal subgroup of index 2 with two orbits of equal length, acting

as a Frobenius group on each of them.
(3) G ∼= Alt4 or G ∼= Sym4 and |Ω| = 6.

Theorem 1.3. Suppose that Hypothesis 1.1 holds, that G is soluble, and that
k = 3. Then one of the following is true:
(1) G has a regular normal subgroup.
(2) G has a normal subgroup F of index 3 or 6 that has three orbits on Ω, of

equal length, and such that F acts on each of them as a Frobenius group.
(3) |Ω| = 6 and G has structure (C3 × C3) : C4, with point stabilisers iso-

morphic to Sym3.

Note that every soluble Frobenius group F can be used to construct an
example for Case (2) of Theorems 1.2 and 1.3, respectively: Let Δ be a set
such that F acts on it as a Frobenius group. Let k ∈ {2, 3} and let Ω be the
disjoint union of k copies of Δ. Now the action of F on Δ naturally extends to
an action of F on Ω, where the k orbits of F are the k distinct copies of Δ. If
C is a group of order k that cyclically permutes the F -orbits while respecting
the action of F, then G = F � C acts transitively with fixity k on Ω.

We can also construct examples for Case (1) of Theorems 1.2 and 1.3:
Suppose that G is a soluble group that contains a non-trivial proper normal
subgroup N with a complement H such that |NN (H)| ∈ {2, 3}. Let Ω be the
set of right cosets of H in G. Then G acts with fixity 2 or 3 on Ω via right
multiplication, depending on whether |NN (H)| = 2 or |NN (H)| = 3, and N is
a regular normal subgroup.

We are able to keep the preliminaries short, referring to earlier work, and
then we focus on results that will later be applied to soluble groups. Some
of our analysis is written in a more general way because it was not always
necessary to suppose that the group is soluble, and this might have useful
applications later. A natural case distinction comes from the cases of fixity 2
and fixity 3, which we look at in separate sections. We also want to mention
that soluble groups of fixity 4 are also worth investigating, but we did not
include our first results here because they are preliminary and, already, quite
technical and intricate.

2. Preliminaries. All groups in this article are meant to be finite, and we use
standard notation for orbits and point stabilisers. Let Ω be a finite set and
suppose that a group G acts on Ω. Then for all Δ ⊆ Ω, all g ∈ G, and all
H ≤ G, we let fixΔ(H) := {δ ∈ Δ | δh = δ for all h ∈ H} denote the fixed
point set of H in Δ and abbreviate fixΔ(〈g〉) by fixΔ(g). For all n ∈ N, we
denote the cyclic group of order n by Cn.

Next we collect a few facts from previous papers for reference in this article:

Lemma 2.1. Suppose that Hypothesis 1.1 holds and let α ∈ Ω.
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(i) If 1 �= X ≤ Gα, then |NG(X) : NGα
(X)| ≤ k. In particular, if fixΩ(X) =

{α}, then NG(X) ≤ Gα.
(ii) If x ∈ G#

α , then |CG(x) : CGα
(x)| ≤ k. In particular, if fixΩ(x) = {α},

then CG(x) ≤ Gα.
(iii) |Z(G)| divides k.

Proof. We have proven these statements (and some more) in [1] as Lemma 2.2.
�

3. Soluble groups that act with fixity 2.

Hypothesis 3.1. Suppose that Hypothesis 1.1 holds and that k = 2. Suppose
further that N is an abelian minimal normal subgroup of G and let p be a
prime and n ∈ N be such that |N | = pn. We let Ω̄ denote the set of N -orbits
on Ω and we set Ḡ := G/N.

Lemma 3.2. Suppose that Hypothesis 3.1 holds. Then one of the following
holds:
(1) N acts semi-regularly on Ω or
(2) |N | = 4, the N -orbits have length 2, and |Ω| = 6. Moreover, G ∼= Alt4 or

Sym4.

Proof. Suppose that (1) does not hold and let α ∈ Ω. Then Nα �= 1 and
Nα �= N because N � G. We note that |αN | is a power of p and therefore
the number of fixed points of Nα on αN is divisible by p. Then our fixity 2
hypothesis forces p = 2, and Nα fixes exactly two points. If |αN | > 2, then
|N | ≥ 4 and acts with fixity 2 on a set of size at least 4, which means that
|Z(N)| ≤ 2. But this is false because N is abelian. Now all N -orbits have size
2, which means that the point stabilisers have index 2 and intersect trivially,
and therefore |N | = 4 and |Ω| ≤ 6. This implies (2).

If |Ω| = 4, then G is isomorphic to a transitive subgroup of Sym4 and
|Ω̄| = 2. We prove that N is exactly the kernel of the action of G on Ω̄:
If g ∈ G# acts trivially on Ω̄, then it acts as a transposition or a double-
transposition on Ω, while stabilising the two N -orbits, both of which have
size 2. There are only three possibilities for that, which gives that g ∈ N.
Consequently Ḡ acts faithfully on Ω̄. Now |G| = 8 and G ∼= D8, which does
not have a minimal normal subgroup of order 4.

If |Ω| = 6, then G is isomorphic to a transitive subgroup of Sym6 and |Ω̄| =
3. If g ∈ G# acts trivially on Ω̄, then, because of the fixity 2 hypothesis, it acts
as a double-transposition or as a triple-transposition on Ω, while stabilising
each N -orbit. There are only four possibilities for that, hence g ∈ N and it
follows that Ḡ acts faithfully and transitively on Ω̄. Now Ḡ ∼= Sym3 or Ḡ ∼=
Alt3, and we recall that N is elementary abelian of order 4. Then G ∼= Sym4

or G ∼= Alt4. �

Lemma 3.3. Suppose that Hypothesis 3.1 holds and that N acts semi-regularly
on Ω. Then Ḡ acts with fixity at most 2 on Ω̄. If g ∈ G \ N is such that ḡ ∈ Ḡ
fixes exactly two N -orbits, then it either fixes a unique point on each of them
or N = Z(G) has order 2.
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Proof. Assume for a contradiction that g ∈ G \ N has prime order r and is
such that ḡ fixes at least three distinct points ᾱ, β̄, and γ̄ on Ω̄. If r �= p,
then g fixes at least one point on each N -orbit that it stabilises, which gives
a contradiction. Thus r = p and, since g /∈ N, we know that H := N〈g〉 has
order pn+1. It follows that |Hα| = p and that the number of fixed points of
Hα on ᾱ is divisible by p. Then our fixity 2 hypothesis gives that p = 2. We
conclude that each point stabiliser in H has order 2 and fixes exactly two
points, both in the same N -orbit.

The 2n − 1 elements in N# act fixed point freely on Ω, which means that
they act as a product of |Ω|

2 transpositions, respectively. Next we count the
elements of H that fix a point (and hence exactly two points) on ᾱ: These
are the conjugates of g. Since H is a 2-group and acts with fixity 2 on ᾱ, we
know that |Z(H)| = 2 and therefore CH(g) = Z(H) · 〈g〉 has order 4, giving
that g has exactly |H|

4 = 2n−1 conjugates in H. In a similar way, we find 2n−1

elements that fix two points on β̄ and on γ̄, respectively. In conclusion, we
have 3 · 2n−1 elements in H that fix two points and 2n − 1 elements that have
no fixed points, giving too many elements for H in total. This contradiction
proves our first statement.

For the second statement, we let g ∈ G be such that ḡ fixes exactly two
N -orbits ᾱ and β̄. Again let H := N〈g〉. First we suppose that there exists
an element h of prime order r �= p in H. Since |ᾱ| = |N | = pn is not divisible
by r, it follows that h fixes at least one point. This is true for β̄ as well, and
then the fixity 2 hypothesis gives that h fixes exactly one point on ᾱ and on
β̄, respectively. Of course h ∈ H\N, which means that h is H-conjugate into
〈g〉 and therefore g fixes exactly one point on ᾱ and β̄, as stated.

Now suppose that H is a p-group. Since H stabilises ᾱ, of size |N | < |H|,
we have that Hα �= 1. Let h ∈ H#

α be an element of order p. Then the
number of fixed points of h on ᾱ is divisible by p, which forces p = 2, and
also, we see that Hα has exactly two fixed points, both in ᾱ, and regular
orbits otherwise. This implies that o(h) = 2 and in fact |Hα| = 2. Since
|ᾱ| = N, we conclude that |H| = 2 · |N |. Let Δ := ᾱ ∪ β̄. Then H contains |N |

2
involutions that generate point stabilisers for the action on ᾱ and the same
number of (different!) involutions that generate point stabilisers for the action
on β̄. Together with the involutions in N, this gives 2·2n−1+(2n−1) involutions.
This number is 2n+1 − 1 and exhausts the number of non-trivial elements of
H. Hence H is elementary abelian. Lemma 2.1, together with the fact that N
acts semi-regularly, gives that |H| = 4 and |N | = 2. Then N = Z(G), again
as stated. �

Lemma 3.4. Suppose that Hypothesis 3.1 holds, that N acts semi-regularly on Ω
and that |Ω̄| = 6. Then Ḡ is not isomorphic to Sym4 or to Alt4.

Proof. Assume for a contradiction that Ḡ is isomorphic to Sym4 or to Alt4.
We can see, for example using GAP [6], that there are three types of transitive
subgroups of Sym6 that are isomorphic to Alt4 or Sym4, and each time there
is an elementary abelian normal subgroup of order 4 with three orbits of size
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2 and such that each involution fixes exactly two points. Therefore, we choose
N ≤ V � G such that V̄ � Ḡ is elementary abelian of order 4.

First assume that p �= 2. Then a Sylow 2-subgroup T of V is isomorphic
to V̄ , and it acts coprimely on N, which gives that N = 〈CN (t) | t ∈ T#〉. Let
t ∈ T#. Then t̄ fixes a point on Ω̄, whence t stabilises an N -orbit.

Since this orbit has length pn and p is odd, we see that t fixes a point in Ω.
Then the fixity 2 action yields that a subgroup of CN (t) of index at most 2,
hence CN (t) itself, is contained in a point stabiliser (see Lemma 2.1(ii)). This
is impossible because N acts semi-regularly.

We deduce that p = 2 and therefore N is a 2-group. Let v ∈ V \N and
assume, for a final contradiction, that ᾱ is a fixed point of v̄ in Ω̄. Then
|N〈v〉| > |N | = |ᾱ| and therefore we may suppose that v ∈ Vα. Then v fixes
exactly two points on ᾱ and 〈v〉 = Vα has order 2. Therefore αV has size 2n+1.
This gives 2n pairs of points that are fixed by involutions in V, which gives 2n

involutions in V for each V -orbit, and there are at least three of them by the
first paragraph above. Moreover, there are 2n−1 involutions in N ≤ V without
fixed points. This gives at least 3 ·2n +2n −1 involutions in V, a group of order
2n+2, and we conclude that V is elementary abelian. Since V acts faithfully
and transitively on αV , and with fixity 2, this contradicts Lemma 2.1(iii). �
Proof of Theorem 1.2. Assume that the theorem is false and choose G to be a
minimal counterexample. By hypothesis, G is non-trivial and soluble, therefore
it has a non-trivial minimal normal subgroup N and we may suppose that
Hypothesis 3.1 holds, with all its notation. If N does not act semi-regularly,
then we apply Lemma 3.2 and we see that (2) holds. This gives Case (3) of
our theorem, which is a contradiction. Therefore N acts semi-regularly on Ω.

If |Ω̄| = 1, then N acts regularly on Ω, as in (1), which gives another
contradiction.

If |Ω̄| = 2, then we let F � G denote the kernel of the action of G on Ω̄.
We note that N ≤ F and that |G : F | = 2 because G is transitive and the
N -orbits have equal lengths. By hypothesis, there is some g ∈ G that fixes
exactly two points α, β ∈ Ω. Then g stabilises the N -orbits ᾱ and β̄, whereas
all elements in G \ F interchange the N -orbits. Hence g ∈ Fα. If β /∈ ᾱ, then
F acts as a Frobenius group on its orbits, as in (2). This is a contradiction,
and therefore β ∈ ᾱ. Then Lemma 3.3 implies that N = Z(G) has order 2,
and it follows that |Ω| = 4. Now G is isomorphic to a transitive subgroup of
Sym4, with centre of order 2, and this only leaves the possibility G ∼= D8. In
particular, G has a regular normal subgroup, which gives (1). Again, this case
is impossible, and we continue with the case where |Ω̄| ≥ 3.

Lemma 3.3 gives that Ḡ is transitive and acts with fixity at most 2 on
Ω̄. Let α ∈ Ω. Then Gα �= 1, and Gα stabilises ᾱ. Therefore Ḡ does not act
regularly on Ω̄. If Ḡ acts as a Frobenius group, with Frobenius kernel F̄ , and
if F � G is its full pre-image in G, then F acts regularly on Ω. This is (1)
again, which gives a contradiction. Consequently Ḡ acts with fixity 2 on Ω̄.
We recall that G is a minimal counterexample, which means that Ḡ satisfies
one of the cases (1), (2), or (3). Case (3) does not hold because of Lemma 3.4.
If Case (1) holds, then the full pre-image of a regular normal subgroup of Ḡ
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is a regular normal subgroup of G, as in (1). This is not possible. Therefore
Case (2) holds, and we let F � G be such that F̄ acts as a Frobenius group on
its two orbits Ω̄1 and Ω̄2. Let K̄ be the Frobenius kernel of F̄ in this action,
and let H̄ be a Frobenius complement. Then |K̄| = |Ω̄1| is coprime to |H̄|. Let
a ∈ G be such that ā ∈ H̄. If o(a) divides |Ω̄1|, then o(ā), which is a divisor
of o(a), also does, and this contradicts the fact that |H̄| and |K̄| have coprime
orders because they are a complement and the kernel of a Frobenius group.
Therefore o(a) does not divide |Ω̄1|. The element a stabilises Ω̄1, and it cannot
act semi-regularly on Ω̄1, hence it must fix a point. The same holds for Ω̄2,
and then the fixity 2 hypothesis gives that a fixes exactly two points in Ω,
one on each F -orbit. Once more, this leads to Case (2), and this is our final
contradiction. �

4. Soluble groups that act with fixity 3.

Hypothesis 4.1. Suppose that Hypothesis 1.1 holds and that k = 3. Suppose
further that N is a minimal normal subgroup of G and let p be a prime and
n ∈ N be such that |N | = pn. We let Ω̄ denote the set of N -orbits on Ω and
we set Ḡ := G/N.

Lemma 4.2. Suppose that Hypothesis 4.1 holds. Then N acts semi-regularly on
Ω or the following is true:

|Ω| = 6, |N | = 9, with N -orbits of length 3, G has structure (C3 ×C3) : C4,
and the point stabilisers are isomorphic to Sym3.

Proof. We suppose that α ∈ Ω is such that Nα �= 1. If N = Nα, then the
transitive action of G on Ω forces N to fix all points in Ω, which is impossible.
Therefore ᾱ := αN has size |N : Nα| ≥ 2, and it is a power of p because N is
a p-group. Now the number of fixed points of Nα on ᾱ is divisible by p, which
by our fixity hypothesis forces p ∈ {2, 3}.

Case 1: p = 2.
First we notice that, by Lemma 2.1(iii), this implies that |N | ≥ 4 and

N ∩ Z(G) = 1. Also, N is an abelian 2-group that acts with fixity 2 on ᾱ.
Using Lemma 2.1(ii), this is possible only if |ᾱ| = 2. Since G acts with fixity
3, there must be an element β ∈ Ω\ᾱ. The transitive action of G yields that
Nβ is conjugate to Nα, hence it fixes two points on β̄ := βN . Nα and Nβ both
have index 2 in N, and the fixity 3 hypothesis forces Nα ∩ Nβ = 1, which
means that |N | = 4 and |Ω| ∈ {4, 6}. Now |Ω| = 6 because otherwise any
element of G with three fixed points fixes everything. Checking all possibilities
for subgroups of Sym6 that act with fixity 3 (for example with GAP [6] or using
Lemma 2.7 in [4]), we see that this does not occur, and hence this case is
impossible.

Case 2: p = 3.
Then similar arguments give that |ᾱ| = 3, that Nα fixes three points on ᾱ,

and that there exists an element β ∈ Ω \ ᾱ. Now Nα and Nβ both have index
3 in N, hence Nα ∩ Nβ = 1, which means that |N | = 9 and |Ω| ∈ {6, 9, 12}.

If |Ω| = 6, then we can apply Lemma 2.7 in [4], where Case (3) must hold
and gives exactly the second possibility in the lemma.
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If |Ω| = 9, then N has three orbits of size 3 and therefore it contains three
subgroups of order 3 that each fix exactly one of these orbits point-wise. These
three point stabilisers contain six non-trivial elements in total, which means
that we can choose x ∈ N in such a way that it does not fix any point on Ω. In
particular, 〈x〉 is a subgroup of N of order 3, and with its fixed point profile it
cannot be conjugate to any other subgroup of N of order 3. This contradicts
the fact that N is a minimal normal subgroup of G.

Finally, we assume that |N | = 9 and |Ω| = 12. In particular, N has exactly
four orbits on Ω, each of size 3, and G is isomorphic to a transitive subgroup
of Sym12 with a minimal normal subgroup of order 9. We denote the N -orbits
by ᾱ, β̄, γ̄, and δ̄ and we let K denote the kernel of the action of G on Ω̄. Then
the fixity 3 hypothesis gives that each element in K# must act non-trivially
on at least three of the four elements of Ω̄, and at the same time N ≤ K.
Assume that x ∈ K has prime order, but not order 3. Then x fixes at least one
point on each N -orbit, which contradicts Hypothesis 4.1. Thus K is a normal
3-subgroup of G. This case can then be finished using GAP [6]. �

The second case of this lemma does actually occur and is therefore men-
tioned as Case (3) of Theorem 1.3. In the group Alt6, there is a subgroup with
the given structure and action on {1, . . . , 6}, namely 〈(1, 2, 3), (2, 5, 3, 6)(1, 4)〉
(with minimal normal subgroup 〈(1, 2, 3), (4, 5, 6)〉). From now on, we will
therefore suppose that Hypothesis 4.1 holds and that N is semi-regular.

Lemma 4.3. Suppose that Hypothesis 4.1 holds and that N acts semi-regularly.
Then Ḡ acts with fixity at most 3 on Ω̄.

Proof. Assume for a contradiction that g ∈ G is such that ḡ has prime order
r and fixes at least four points ᾱ, β̄, γ̄, and δ̄ on Ω̄. Let H ≤ G be the full
pre-image of 〈ḡ〉. If r �= p, then we let h ∈ H be an element of order r and
we note that r does not divide the lengths of the orbit ᾱ, which means that
h must fix a point on it. The same holds for the other fixed points of ḡ on Ω̄,
which gives at least four fixed points of h on Ω and contradicts our fixity 3
hypothesis.

Therefore r = p and we see that H has order pn+1. We recall that H
stabilises the N -orbits ᾱ, . . . , δ̄ of size pn, which implies that H does not act
regularly on these orbits. In fact, it follows that the point stabilisers in H have
order p and that they each fix exactly p points, all in one N -orbit, respectively.
Together with our fixity 3 hypothesis, this forces p ∈ {2, 3}, and there are
4 · pn−1 possibilities for such point stabilisers in H. Each of them has order p,
hence contains p − 1 non-trivial elements, and this gives us (p − 1) · 4 · pn−1

elements of order p in H that each fix p points. Moreover, we have pn − 1
elements of order p that do not have any fixed points, coming from N. In sum,
this gives too many elements of order p in H, which means that we have a
contradiction. �

Lemma 4.4. Suppose that Hypothesis 4.1 holds, that N is semi-regular, and
that g ∈ G# and α ∈ Ω are such that g fixes exactly three points in ᾱ. Then
one of the following holds:
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(1) ᾱ is the unique N -orbit that is stabilised by g, or
(2) |N | ∈ {3, 9}.

Proof. Without loss, g has prime order r, by our fixity 3 hypothesis, and we
suppose that (1) does not hold. Then let β ∈ Ω be such that β̄ is another
N -orbit that is stabilised by g. Our fixity 3 hypothesis implies that g acts
without fixed points on β̄. Both orbits have length |N | because N acts semi-
regularly, and now we see that |N | = |ᾱ| = pn ≡ 3 modulo r, but at the same
time r divides |N |. Therefore r = p = 3. Let P := N · 〈g〉, which is a 3-group,
and assume for a contradiction that |N | ≥ 27. Then |P | ≥ 81 and P acts
transitively and with fixity 3 on ᾱ. Then Lemma 2.20 in [4] implies that P has
maximal class, with point stabilisers of order 3 that fix exactly three points
on ᾱ.

We can check with GAP [6] that this is not possible if |P | = 81. Hence
|P | ≥ 35. We let g ∈ M ≤ P be such that |P : M | = 3, in particular M � P
and M is not transitive on ᾱ because g ∈ M. Now ᾱ consists of three M -orbits,
N ∩M �M has index 3 in M, and we can argue as above, counting elements of
order 3 that act fixed-point-freely or that fix exactly three points on ᾱ. Then
it follows that M has exponent 3 and class at least 3, which is impossible. �
Lemma 4.5. Suppose that Hypothesis 4.1 holds, that N is semi-regular, and
that g ∈ G# fixes exactly three points α, β, γ in Ω. Then one of the following
holds:
(1) β, γ ∈ ᾱ, or
(2) ᾱ, β̄, and γ̄ are pairwise distinct, which means that ḡ fixes three points in

Ω̄.

Proof. Suppose that (1) does not hold, without loss β /∈ ᾱ, and suppose that
g has prime order r. Then g stabilises β̄ as well, and it fixes one or two points
on ᾱ because of our global fixity 3 hypothesis. This means that |N | = |ᾱ| ≡ 1
or 2 modulo r. If γ ∈ ᾱ or γ ∈ β̄, then g has a unique fixed point on one of the
orbits and two on the other, and hence |N | is congruent to 1 and 2 modulo r
at the same time. This is impossible. Thus γ /∈ ᾱ ∪ β̄, which gives (2). �

For the next lemma, we recall that, if k, l ∈ N0 and a group acts as a (k, l)-
group on a set, then this means that all non-trivial group elements have either
exactly k fixed points or exactly l fixed points.

Lemma 4.6. Suppose that Hypothesis 4.1 holds, that N is semi-regular, that
|Ω̄| ≥ 2, and that Ḡ acts as a (0, 2)-group on Ω̄. Then |N | ∈ {3, 9}.

Proof. By Hypothesis 4.1 we have some element g ∈ G# that fixes exactly
three points on Ω. Then the corresponding N -orbits are stabilised by g, which
means that ḡ fixes exactly two points ᾱ and β̄ of Ω̄. Then Lemma 4.5 gives
that the three fixed points of g in Ω are all contained in one N -orbit (which is
possibility (1) in the lemma). Then Lemma 4.4 is applicable, where (1) does
not hold, and (2) is exactly our statement. �
Lemma 4.7. Suppose that Hypothesis 4.1 holds. Then every one of the following
conditions guarantees that G has a regular normal subgroup:
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(i) |N | = 3 and |Ω| = 9.
(ii) |Ω̄| ≤ 2, including the cases |N | ∈ {3, 9} and |Ω| ∈ {6, 18}.
(iii) N is semi-regular and Ḡ has a regular normal subgroup with respect to

the action on Ω̄.

Proof. In Case (i), we check the transitive subgroups of Sym9 that act with
fixity 3, and then with GAP [6] we can always find a regular normal subgroup.

In Case (ii), we begin with the case where |Ω̄| = 1. Then N is transitive,
hence regular by Lemma 4.2 (because the second case there cannot occur now).
Next suppose that |Ω̄| = 2.

Let α, β ∈ Ω be such that ᾱ and β̄ are exactly the two elements in Ω̄.
Let g ∈ G be of prime order and such that g fixes exactly three points on
Ω, as guaranteed by our hypothesis. Then g cannot interchange ᾱ and β̄, but
it stabilises them both, and then Case (2) of Lemma 4.4 must hold. Now
|N | ∈ {3, 9}. It follows that Ω has 6 or 18 elements, depending on whether
|N | = 3 or |N | = 9. Again we use GAP [6] in order to check for transitive
subgroups of Sym6 or Sym18 that act with fixity 3 and that have a minimal
normal subgroup as in our situation, and then we obtain that G has a regular
normal subgroup.

In Case (iii), we suppose that R̄�Ḡ acts regularly on Ω̄ and we let R denote
its full pre-image in G. Then R � G. If α, β ∈ Ω are in distinct N -orbits, then
the transitive action of R̄ gives an element x ∈ R such that x̄ maps ᾱ to β̄.
Now N〈x〉 ≤ R contains an element that maps α to β, which means that R is
transitive. If β ∈ ᾱ, then we find an element in N ≤ R that maps α to β.

Finally, if α ∈ Ω and y ∈ Rα, then ȳ fixes the point ᾱ or Ω̄, which implies
that ȳ = 1 and y ∈ N. Since Nα = 1 by hypothesis in (iii), we deduce that
all point stabilisers in R are trivial and that R is indeed a regular normal
subgroup of G. �

Lemma 4.8. Suppose that Hypothesis 4.1 holds, that N is semi-regular and that
|Ω̄| = 3. Then G has a normal subgroup that is regular or that has index 3 or
6, with three orbits and Frobenius group action.

Proof. We let K �G denote the kernel of the action of G on Ω̄. We know that
N ≤ K and that G/K is isomorphic to a transitive subgroup of Sym3 because
G is transitive on Ω. Let R ≤ G be such that K ≤ R and |R/K| = 3. If x ∈ R
fixes a point α ∈ Ω, then it stabilises the orbit ᾱ, and therefore it cannot
interchange the three elements of Ω̄ in a 3-cycle. Therefore x ∈ K stabilises all
three orbits, and we deduce that the elements in R\K do not fix any points
of Ω. If K acts regularly on each of its orbits, then R acts regularly on all of
Ω, and it has index 1 or 2 in G, which is one of our possibilities.

Suppose that K does not act regularly on its orbits and let y ∈ K be an
element of prime order r such that y fixes a point α ∈ Ω. Then y stabilises
ᾱ and counting gives two possibilities: y has exactly one fixed point on each
N -orbit, and then K acts as a Frobenius group on each N -orbit, leading to
one of our possibilities again or y has order 2 or 3, with two or three fixed
points on ᾱ and no fixed points on the remaining N -orbits.



348 P. Hähndel et al. Arch. Math.

If o(y) = 2, then N and K are 2-groups, and they act with fixity 2 on ᾱ.
Since |Z(G)| divides 3 by Lemma 2.1(iii), we know that |N | �= 2 and therefore
|ᾱ| ≥ 4. Now |N〈y〉| = 2n+1 and the 2n − 1 involutions from N act without
fixed points, whereas there must be 3 · 2n−1 pairs of points that are fixed by
the conjugates of y. Together, this gives 2n+1 − 1 involutions, which implies
that N〈y〉 is elementary abelian, contrary to the fact that this group has a
centre of order at most 2 (Lemma 2.1(ii)).

If o(y) = 3, then N and K are 3-groups and we argue in a similar way, in
parallel to Lemma 4.4. If |N | ≤ 9, then we can use GAP ([6]) and check the
possibilities, and we obtain that the first case of our lemma holds. If |N | = 27,
then we count the elements in N · 〈y〉 that have three fixed points. These are
conjugate to g or to g−1, which gives 2 · |N | such elements in total, and it
follows that all elements in N · 〈y〉 have order at most 3. Then we can use GAP
[6] again to check that this is impossible for a 3-group that acts with fixity 3.
Now |N | ≥ 81 and we can argue as in the corresponding case of Lemma 4.4,
leading to a contradiction. �

Lemma 4.9. Suppose that Hypothesis 4.1 holds, that |Ω̄| ≥ 3, and that Ḡ acts
with fixity 2 on Ω̄. Then G has a regular normal subgroup.

Proof. We apply Theorem 1.2 to Ḡ and Ω̄ and look at the three cases. Case
(i) immediately gives our claim, because of Lemma 4.7.

Next we consider Case (ii), and we let F̄ denote a normal subgroup of Ḡ of
index 2, with two orbits on Ω̄, acting as a Frobenius group on each of them.
This means that Ḡ acts as a (0,2)-group on Ω̄, and Lemma 4.6 gives that
|N | ∈ {3, 9}. Let F denote the full pre-image of F̄ in G and let K denote
the full pre-image of the Frobenius kernel of F̄ . Finally, let H̄ be a Frobenius
complement in F̄ , with full pre-image H in G, and let M ≤ G be the full
pre-image of NḠ(H̄) in G. Then |M : H| = 2 because Ḡ acts by conjugation
on the set of Frobenius complements of F̄ , and we deduce that Ḡ = K̄ � M̄.
Let ᾱ and β̄ ∈ Ω̄ be the two fixed points of H̄, one in each F̄ -orbit. Then M̄
interchanges them, which implies that M is transitive on the set Δ := ᾱ ∪ β̄.
This set has size 2 · |N | ∈ {6, 18}, and M acts with fixity at most 3 on it.
Now we can use GAP ([6]) and find a regular subgroup R of M in the action
on Δ. Then K̄ � R̄ is a regular normal subgroup of Ḡ and Lemma 4.7 gives
our statement.

Finally, we prove that Case (iii) does not even occur. Otherwise |Ω̄| = 6,
Ḡ is isomorphic to Alt4 or Sym4, and we recall that G acts with fixity 3 on
Ω. Let g ∈ G be an element of prime order r and with exactly three fixed
points. Then g /∈ N, but g stabilises at least one N -orbit and therefore 1 �= ḡ
is contained in a point stabiliser in Ḡ. The way that Ḡ acts on a set of size
6 with fixity 2 implies that the point stabilisers are 2-groups and that Ḡ acts
as a (0, 2)-group. In particular, ḡ is a 2-element, it fixes exactly two points ᾱ
and β̄ on Ω̄, and o(g) = 2. The three fixed points of g on Ω are all contained
in one N -orbit, say ᾱ, which forces |ᾱ| = |N | to be congruent to 3 modulo 2,
but also divisible by 2. This is impossible. �
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Proof of Theorem 1.3. Let N be a minimal normal subgroup of G. Since G is
non-trivial and soluble, we know that N is non-trivial and elementary abelian,
and we may suppose that Hypothesis 4.1 holds, including all the notation
there. If the second case of Lemma 4.2 is true, then we can stop because this
is included as (3) in the theorem. Otherwise N acts semi-regularly and Ḡ acts
with fixity at most 3 on Ω̄ by Lemma 4.3.

If |Ω̄| ≤ 2, then Lemma 4.7(ii) implies our claim. If |Ω̄| = 3, then we apply
Lemma 4.8.

From now on, we suppose that |Ω̄| ≥ 4, and we recall that Ḡ acts with
fixity at most 3 on Ω̄. It does not act regularly because G has non-trivial point
stabilisers. If Ḡ acts as a Frobenius group with Frobenius kernel K̄, then K̄
is a regular normal subgroup of Ḡ. Then Lemma 4.7(iii) yields that (1) holds.
If Ḡ acts with fixity 2, then Lemma 4.9 gives that G has a regular normal
subgroup.

Finally, we are left with the case where Ḡ acts with fixity 3 on Ω̄. Still,
|Ω̄| ≥ 4, and now we assume for a contradiction that the theorem is false.
We let G be a minimal counterexample and we apply the theorem to Ḡ. If
Case (1) holds, then Ḡ has a regular normal subgroup, and then so does G,
by Lemma 4.7 (iii). Case (2) of our theorem leads to a more detailed analysis
for Ḡ and G, which is why we leave this case for last.

If Case (3) of the theorem holds, then |Ω̄| = 6 and Ḡ has the structure (C3×
C3) : C4. Since we know the point stabiliser structure as well, we have details
about the fixed points of elements in Ḡ: Fixity 3 is exhibited by elements of
order 3 of Ḡ that stabilise exactly three N -orbits and interchange the remaining
three, and elements of order 2 in the point stabilisers have exactly two fixed
points. Next we investigate the consequences for N in this situation. Given
that Ḡ is a {2, 3}-group, it is natural to distinguish the cases where N is a
2-group, a 3-group, or a p-group for some prime p ≥ 5.

First assume that p = 2. If |N | = 2, then |Ω| ≥ 8 and we recall that some
element of order 3 of Ḡ fixes three N -orbits, and then a pre-image has to fix all
six elements of Ω in these orbits. This contradicts our main fixity hypothesis.
If |N | ≥ 4, then we let α ∈ Ω be such that s ∈ Gα is a 2-element and s̄ fixes
two N -orbits. Let β ∈ Ω be such that s stabilises ᾱ and β̄. We note that s is
a 2-element and that ᾱ has |N | elements, which forces s to have exactly two
fixed points on αN and no other fixed points on Ω. In particular, s acts like
an odd permutation on Ω. At the same time, it is the square of an element of
order 4 (from the structure of Ḡ and because N acts semi-regularly), and this
is a contradiction.

Next assume that p = 3. We let α ∈ Ω be such that x ∈ Gα is a 3-element
and x̄ fixes three N -orbits. Since the fixed points of x in Ω must lie in the
fixed N -orbits, this situation forces x to fix three points in one of the N -
orbits and otherwise to have regular orbits. Now Lemma 4.4(b) must hold,
i.e., |N | ∈ {3, 9}.

If |N | = 3, then we first note that |G : CG(N)| ≤ 2. We recall the structure
of Ḡ: The elements of order 4 square to elements that fix exactly two points
in Ω̄. Hence if g ∈ G has order 4, then g2 has two fixed points, but also
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g2 ∈ CG(N). Since |N | = 3, g2 fixes a point in the stabilised N -orbits, and
then N fixes these points as well. This is a contradiction because N acts semi-
regularly. Now |N | = 9 and we let M � G be such that |G : M | = 4, again
using the structure of Ḡ. In particular, M ∈ Syl3(G), |M | = 81, and we recall
that fixity 3 is exhibited by 3-elements. Lemma 2.20 of [4] gives that M has
maximal class, and we see that Z(M) has order 3 and is contained in N. On
the other hand, Z(M) � G, which means that N is not a minimal subgroup.
This is a contradiction.

We conclude that p ≥ 5. Now let α ∈ Ω and let x ∈ G#
α . Then x fixes two or

three points, and therefore CN (x) = 1. On the other hand, Gα
∼= Ḡᾱ

∼= Sym3

is a Frobenius group that acts by conjugation on the abelian group N, with
coprime orders. This means that 8.3.5 from [2] is applicable, and it gives a
contradiction.

Finally, we turn to Case (2) of our theorem for Ḡ. Then we let F̄ � Ḡ be
as described there, and we let F � G denote the full pre-image of F. Then
|G : F | ∈ {3, 6} and therefore, if we let R ≤ G denote the full pre-image of a
Sylow 3-subgroup of G/F, then it has index 1 or 2 in G. In particular, R � G.

Suppose that F acts semi-regularly on Ω. Since N ≤ F, the F -orbits on
Ω are unions of N -orbits, and then the transitivity of G on Ω implies that
there are three F -orbits and that the elements in R \ F interchange them in a
3-cycle. Together, this gives that R acts regularly on Ω, and (1) holds.

Now suppose that there is some α ∈ Ω such that Fα �= 1. Then x ∈ Fα

stabilises ᾱ and the F -orbit ᾱF̄ . In particular, x̄ is contained in one of the
Frobenius complements in F̄ , which means that it fixes exactly one point in
each F̄ -orbit, and therefore x stabilises three N -orbits in total. This gives two
possibilities: x fixes exactly one point on each N -orbit that it stabilises, or it
has order 3 and fixes three points in ᾱ. In particular, F acts like a (0, 3)-group
on Ω. In the first case, F acts like a Frobenius group on each of its orbits, as
in (2). In the second case, we turn to Lemma 4.4. We recall that x stabilises
three N -orbits, with three fixed points on one of them, and then the lemma
implies that |N | ∈ {3, 9}.

Case 1: |N | = 3.
Then we argue similarly to Lemma 4.9. Hence we let K̄ denote the Frobe-

nius kernel of F̄ , with full pre-image K in G, we let H̄ be a Frobenius comple-
ment in F̄ , with full pre-image H in G, and we let M ≤ G be the full pre-image
of NḠ(H̄) in G. Then Ḡ = K̄ � M̄ and H̄ fixes exactly three N -orbits. Their
union Δ has size 9, M acts faithfully, transitively, and with fixity 3 on it, and
then we can see with GAP [6] that M has a normal subgroup R that acts reg-
ularly on Δ. Then K̄ � R̄ is a regular normal subgroup of Ḡ and Lemma 4.7
gives our statement.

Case 2: |N | = 9.
We recall that N acts semi-regularly. Let C := CG(N) and assume that

some c ∈ C# fixes a point ω ∈ Ω. Then a subgroup of index at most 3 of N
is contained in Gω (by Lemma 2.1(i)), which is impossible. Thus C acts semi-
regularly on Ω, and G/C is isomorphic to a subgroup of Aut(N) ∼=GL2(3). We
started the present case with x ∈ F#

α and we saw that o(x) = 3 and that x
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fixes exactly three points in an N -orbit. This means that, if we consider the
action of G/C on the set of C-orbits, then the point stabilisers have order
divisible by 3, hence they contain a Sylow 3-subgroup of G/C, respectively.
The index of the point stabilisers in |G/C| divides 24 because |GL2(3)| = 24 ·3,
which means that the size of the set that G/C acts on divides 24. We conclude
that the number of C-orbits on Ω is 2k, where 1 ≤ k ≤ 4. This implies that
there is no F -orbit that is contained in a C-orbit.

Conversely, assume for a contradiction that α ∈ Ω is such that αC ⊆ αF .
Then C stabilises the set αF and acts semi-regularly on it. If d ∈ N is the
number of C-orbits in αF , then it follows that Ω consists of 3 · d = 2k C-
orbits, which is not possible. In particular, C � F, and therefore C ∩ F �= C.
Since |G : F | ∈ {3, 6}, it follows that |C : C ∩ F | ∈ {3, 6} as well. We recall
that F and C are normal subgroups of G, both containing N. This implies
that C permutes the set of F -orbits, which are unions of N -orbits, and vice
versa. Moreover, the previous paragraph gives that C/C ∩ F permutes the
three F -orbits regularly, and then |C : C ∩ F | = 3.

We recall that F̄ acts as a Frobenius group, and we let K̄ denote its Frobe-
nius kernel and K the full pre-image in G. Then the F -orbits are exactly the
K-orbits, CK � G, and we will prove that CK acts regularly, as in (1). For
this, it suffices to prove that |CK| = |Ω|. We note that C ∩F = C ∩K, because
C acts semi-regularly on Ω, and then |CK| = |C|·|K|

|C∩K| = 3 · |K| = |Ω|.
This concludes the proof. �
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