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Abstract
The Tauern Window (TW) in the European Eastern Alps is one of the most prominent tectonic windows on earth. Deeper 
structural levels of the orogenic wedge are almost completely exposed, which is why complex collisional deformation pro-
cesses, including indenter tectonics, can be studied. Although the TW has been investigated over decades, its present-day, 
3-D geometry is not completely deciphered. However, it provides insights into its Miocene deformation history, which is still 
debated. The latter was driven by indentation tectonics, which heavily shaped the structure of the TW, especially its western 
part. The aim of this study is to infer the Miocene deformation history from the present-day, 3-D structure of the upper crust 
of the western TW and to relate it to possible deeper crustal deformation processes. For the first time, we uncover the large-
scale structure of the western TW, including two end-member models of the viscous Brenner normal fault by constructing a 
3-D model using the software MOVE™. Our model reveals that the south-vergence of the large-scale antiforms increases in 
westerly direction and their cylindricity decreases in southern direction, thus, towards the front of the Dolomites indenter. 
Protruding middle and lower crust of the Dolomites indenter below the area of the TRANSALP seismic section could be 
responsible, also for the westward plunge of the entire western TW, which might have favoured the development of the 
Brenner normal fault. The Schöberspitzen antiform likely developed pre- or synkinematically to the westward plunge of the 
western TW, thus during the Miocene.
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Introduction

The Tauern Window in the European Eastern Alps is one 
of the largest and best-studied tectonic windows on Earth 
(Fig. 1a). The deformation history of the complex-folded 
units of the Tauern Window began in the Early Cenozoic 
era: The convergence of the Adriatic Plate and the south-
ward subduction of the Penninic Ocean and the European 
continental margin (Subpenninic) led finally to the collision 

between the European Plate (lower plate) and the Adriatic 
Plate (upper plate; e.g., Froitzheim et al. 1994; Handy et al. 
2010; Schmid et al. 2004). Rocks of the Penninic Oceanic 
crust and the Subpenninic were subducted to depths up to 
ca. 65 km (e.g., Dachs 1986, 1990; Hoschek 2001, 2004) 
and subsequently, nappe stacking and duplexing in the oro-
genic wedge initiated (e.g., Schmid et al. 2013 and refer-
ences therein). In the Late Oligocene/Early Miocene, short-
ening, initially accommodated by collisional accretion, was 
replaced by upright (re-)folding of the nappe stack caused 
by the northward indentation of the Dolomites indenter 
(e.g., Ratschbacher et al. 1991a, b; Lammerer and Weger 
1998; Frisch et al. 2000; Linzer et al. 2002; Rosenberg et al. 
2004, 2007, 2018; Stipp et al. 2004; Pomella et al. 2011, 
2012; Scharf et al. 2013; Schmid et al. 2013; Favaro et al. 
2017; Ricchi et al. 2020; Verwater et al. 2021; McPhee and 
Handy 2024; Handy 2025). The Miocene N-S-shortening in 
front of the Dolomites indenter was accompanied by con-
temporaneous W-E-extension, including orogeny-parallel 
normal faulting at the eastern and western end of the Tauern 
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Fig. 1   a Tectonic overview map of the Tauern Window and the East-
ern Alps (modified after Schmid et  al. 2004 and Rosenberg et  al. 
2015). Upper right corner: Tectonic overview map of the European 
Alps, modified after Ortner et  al. (2006) and McPhee and Handy 
(2024). Grey lines are country borders. Magenta line: Periadri-
atic fault system. Lower Plate: Helvetic/Subpenninic and Penninic 
derived. Upper Plate: Adria derived. CA Central Alps, EA Eastern 
Alps, SA Southern Alps, WA Western Alps. b Compiled and simpli-
fied tectonic map of the western Tauern Window (based on maps 
listed in section “Map compilation and structural data analysis”. 
Thin black lines (S1–S7) show the location of newly constructed 

cross-sections in this work through the final 3-D model (see Fig. 8). 
Fault abbreviations in a and b: BNF Brenner normal fault, DAV Def-
ereggen Antholz Vals fault, IF Inntal fault, JF Jaufen fault, KNF 
Katschberg normal fault, MF Mölltal fault, MMF Meran Mauls fault, 
NGF Northern Giudicarie fault, PGF Pustertal Gailtal fault, PF Pas-
seier fault, SGF Southern Giudicarie fault, SEMP Salzach Ennstal 
Mariazell Puchberg fault, SMF Sterzing Mauls fault, TF Tonale Fault, 
ZWD Zwischenbergen Wöllatratten Drau fault, TNBF Tauern north-
ern boundary fault. Bold red lines show faults that are relevant to the 
model with respect to the viscous Brenner normal fault and its pos-
sible northern and southern continuation
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Window (Katschberg normal fault and Brenner normal fault; 
e.g., Selverstone 1988; Behrmann 1988; Axen et al. 1995; 
Fügenschuh et al. 1997, 2012; Frisch et al. 2000; Rosen-
berg and Garcia 2011, 2012; Scharf et al. 2013; Wolff et al. 
2020, 2021, 2024; Wölfler et al. 2023; Fig. 1a) and lateral 
extrusion towards the east along major strike-slip faults, 
like the Inntal fault, the Salzach–Ennstal–Mariazell–Puch-
berg (SEMP) fault, the Mölltal fault and the Pustertal Gail-
tal fault (Fig. 1; e.g., Ratschbacher et al. 1991a, b; Frisch 
et al. 2000; Linzer et al. 2002; Rosenberg et al. 2018 and 
references therein; McPhee and Handy 2024; Handy 2025). 
The previously-described tectonic processes, in combina-
tion with erosion, exhumed and denuded the structure and 
the associated rocks of the usually deep-seated orogenic 
wedge. The Tauern Window is therefore unique, because 
deeper structural levels of the orogenic wedge are almost 
completely preserved and exposed. In particular, its west-
ern end is a key area to examine indenter tectonics (Fig. 1). 
Although, numerous studies have been carried out about 
this topic (e.g., Ratschbacher et al. 1991a, b; Frisch et al. 
2000; Linzer et al. 2002; Rosenberg et al. 2004, 2007, 2018; 
Rosenberg and Schneider 2008; Pomella et al. 2011, 2012; 
Schmid et al 2013; McPhee and Handy 2024; Handy 2025), 
it remains a matter of debate, how indentation took place 
(e.g., indentation direction, rigid or dynamic). A new geo-
logical interpretation of seismic tomography data (McPhee 
and Handy 2024) reveal thickening of the lower crust below 
the nappes of the Tauern Window in the vicinity of the 
TRANSALP seismic section (TRANSALP Working Group 
2002; Lüschen et al. 2004, 2006; Fig. 1). This does not occur 
below the westernmost Tauern Window in the vicinity of the 
trace of the Brenner Base Tunnel (which is currently under 
construction; Fig. 1; Töchterle et al. 2007; Brandner et al. 
2008a), but southwest of it in the southwestern corner of the 
Tauern Window and mainly below the Dolomits indenter. 
McPhee and Handy (2024) interpret the thickening in the 
vicinity of the TRANSALP seismic section as middle and 
lower crustal detachment of the Dolomites indenter, which 
wedges below the Tauern Window in this area.

Interestingly, the upper crustal structure of the western 
Tauern Window also changes laterally over a short distance 
in this area. While in the westernmost Tauern Window, along 
the trace of the Brenner Base Tunnel, (Töchterle et al. 2007; 
Brandner et al. 2008a), tight, south-vergent folds occur, ca. 
25 km further east, in the vicinity of the TRANSALP seis-
mic section (TRANSALP Working Group 2002; Lüschen 
et al. 2004, 2006; Fig. 1), the folds become upright and their 
interlimb angles increase (Figs. 1b, 2; Lammerer et al. 2008; 
Schmid et al. 2013; Rosenberg et al. 2018). Although cross-
sections (e.g., Frisch 1968, 1977; Prey 1980; Ortner et al. 
2006; Töchterle et al. 2007; Lammerer et al. 2008; Veselá 
and Lammerer 2008; Schmid et al. 2013; Rosenberg et al. 
2015; Reiter et al. 2018; Veselá et al. 2022) and 3-D models 

of parts of the western Tauern Window (e.g., Bistacchi et al. 
2008) exist, the complete structure of this area is far from 
being completely understood.

The aim of this study is to present a static 3-D model of 
the large-scale structure of the entire western Tauern Win-
dow, and to examine whether this structure can be correlated 
with the previously described interpretation of McPhee and 
Handy (2024) of an intermediate crustal detachment of the 
Dolomites indenter. The 3-D model also includes the viscous 
Brenner normal fault and two debated end-member models 
of its southern continuation (e.g., Fügenschuh et al. 1997, 
2012; Rosenberg and Garcia 2011, 2012). We used all avail-
able data of the area (maps, cross-sections, structural data; 
see section “Database and methods” and Data availability 
statement) and made use of inter- and extrapolating meth-
ods contained within the software MOVE™. We structurally 
analysed our final model, present new cross-sections, both 
planar in NNW-SSE direction and along the trace of the 
fold axes, and interrelate the upper crustal deformation of 
the western Tauern Window with the aforementioned new 
interpretation of lower crustal dynamics of the Dolomites 
indenter.

Geological setting

Tectonic history

In the following we focus on the Miocene deformation his-
tory (indenter phase), which is largely responsible for the 
shape of the present structure of the western Tauern Win-
dow, particularly its western end.

The indenter phase is characterised by the northward push 
of the Dolomites indenter. The Dolomites indenter, which 
is the eastern domain of the Adriatic indenter (e.g., Frisch 
et al. 2000; Rosenberg et al. 2007; Fig. 1), is located south 
of the Tauern Window. It is bounded by the Periadriatic fault 
system, which comprises the Giudicarie fault system to the 
west and northwest (consisting of a southern and northern 
segment, and the Meran Mauls fault; Fig. 1) and the Pus-
tertal Gailtal fault to the northeast (Fig. 1). The N(NW)-
directed movement of the Dolomites indenter (e.g., Fügen-
schuh et al. 1997; Eizenhöfer et al. 2023; Favaro et al. 2017; 
Laubscher 1971; Linzer et al. 2002; Mancktelow et al. 2001; 
McPhee and Handy 2024; Pennacchioni and Mancktelow 
2007; Scharf et al. 2013; Schmid et al. 1996, 2013; Schmid 
and Kissling 2000; Le Breton et al. 2017; Verwater et al. 
2021; Villani et al. 2024) during the Late Oligocene and 
Miocene (e.g., Pomella et al. 2011, 2012; Schmid et al. 2013 
and references therein) caused approximately 75 km sinis-
tral offset of the Periadric fault system along the Giudicarie 
fault system (e.g., Favaro et al. 2017 and references therein; 
Verwater et al. 2021), and modified the early Cenozoic 
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nappe structure of the Eastern Alps (e.g., Selverstone 1985; 
Ratschbacher et al. 1991a, b; Frisch et al. 2000; Linzer et al. 
2002; Rosenberg et al. 2004, 2007, 2018; Stipp et al. 2004; 
Pomella et al. 2011, 2012; Scharf et al. 2013; Schmid et al. 
2013; Favaro et al. 2017; Ricchi et al. 2020; McPhee and 
Handy 2024; Handy 2025). The highest amount of shorten-
ing occurred in the westernmost Tauern Window in front of 
the tip of the Dolomites indenter (Fig. 1; e.g., Schmid et al. 
2013 and references therein; Rosenberg et al. 2018 and refer-
ences therein; Rudmann et al. 2025).

During the Early Miocene, shortening was first accommo-
dated by upright-folding of the orogenic wedge, and subse-
quently by northward displacement of the entire Subpenninic 
(Europe-derived units), Penninic (Penninic Ocean-derived 
units) and Austroalpine (Adria-derived units) nappe stack 
along the Sub-Tauern ramp (e.g,. Lammerer and Weger 
1998; Lammerer et al. 2008; Rosenberg et al. 2018 and 

references therein; McPhee and Handy 2024; Rudmann 
et al. 2025). At the same time, orogen-parallel extension 
took place, including normal faulting and lateral extru-
sion to the east, which partly compensated the north–south 
shortening. There are large normal faults perpendicular to 
the orogen-strike, which delimit the Tauern Window to 
the east and west, respectively, i.e. the Katschberg normal 
fault and the Brenner normal fault (Fig. 1a; e.g., Selver-
stone 1988; Behrmann 1988; Axen et al. 1995; Fügenschuh 
et al. 1997, 2012; Frisch et al. 2000; Rosenberg and Gar-
cia 2011, 2012; Scharf et al. 2013; Wolff et al. 2020, 2021, 
2024; Wölfler et al. 2023). Along-strike extrusion took place 
along major strike-slip faults, such as the Inntal fault, the 
Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault in the 
north and the Mölltal fault, and the Pustertal Gailtal fault in 
the south (Fig. 1; e.g., Ratschbacher et al. 1991a, b; Frisch 
et al. 2000; Linzer et al. 2002; Rosenberg et al. 2018 and 
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Fig. 2   Cross-sections through the western Tauern Window that 
were used as a basis for the 3-D model. a Brenner Base Tunnel sec-
tion (simplified after Töchterle et  al. 2007 and Rosenberg and Gar-
cia 2011, 2012). Two models have been proposed to show the thick-
nesses of the Penninic and Austroalpine nappes above the today’s 
topography, depending on the influence of the Brenner normal fault 
(Fügenschuh et  al. 1997, 2012; Rosenberg and Garcia 2011, 2012; 
Schmid et al. 2013). Both models are compatible for our model since 
the uppermost surface of our model is the base of the Penninic nappe 

system (see section “Database and methods” for more details), the 
geometry of which is nearly the same in both models. b) Simplified 
cross-section of Schmid et  al. (2013) near the TRANSALP seismic 
section (TRANSALP Working Group 2002; Lüschen et  al. 2004, 
2006). Approximate fault axial surfaces (FAS) are shown as grey 
dashed lines. Fault abbreviations: DAV Defereggen Antholz Vals 
fault, PGF Pustertal Gailtal fault, SMF Sterzing Mauls fault, TNBF 
Tauern northern boundary fault
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references therein; McPhee and Handy 2024; Handy 2025). 
McPhee and Handy (2024) and Handy (2025) suggest that 
the aforementioned strike-slip faults north and south of the 
Tauern Window flatten, converge and merge below the Tau-
ern Window forming an additional sub-horizontal extrusion 
surface below the Tauern Window.

Major tectonic units

The western Tauern Window comprises two major nappe 
systems. The Subpenninic nappe system is the structurally 
lower system and comprises rocks derived from the Euro-
pean continental margin. The Penninic nappe system is the 
structurally higher system, and consists of rocks derived 
from the Penninic Ocean (Figs.1b, 2). The Subpenninic 
Venediger duplex belongs to the Subpenninic nappe sys-
tem and forms the core of the western Tauern Window. It 
consists of at least three nappes (named “gneiss cores” in 
the general literature), which are, from structural lowest to 
highest, the Ahorn nappe, the Tux nappe and the Zillertal 
nappe (Figs. 1b, 2; e.g., Frisch 1977; Lammerer and Weger 
1998; Brandner et al. 2008a; Lammerer et al. 2008; Schmid 
et al. 2013; Reiter et al. 2018; Eizenhöfer et al. 2023). The 
nappes of the Venediger duplex mainly originated from pre-
Alpine meta-plutonites (335–292 Ma; e.g., Veselá et al. 2010 
and references therein). At some locations, relicts of the host 
rock into which the plutons intruded, are still present (“Altes 
Dach”; Frasl 1958). The nappes are covered and separated 
from each other by autochthonous Permo-Mesozoic meta-
sediments (e.g., Fig. 1b; Frisch 1974; Veselá and Lammerer 
2008; Veselá et al. 2008, 2010, 2022). During the Ceno-
zoic Alpine Orogeny, in the course of nappe stacking, parts 
of these metasediments were detached from the basement, 
stacked and in many places isoclinally folded. Nowadays, 
they form nappes on top of the autochthonous cover that 
remained attached to the basement (Frisch 1974, 1980; 
Thiele 1980; Lammerer 1986; Rockenschaub et al. 2003; 
Töchterle et al. 2007, 2011; Lammerer et al. 2008; Veselá 
and Lammerer 2008; Veselá et al. 2022). In this work, we 
call them “Subpenninic hanging-wall nappes” and attribute 
them to the Venediger duplex s. lat. (Figs. 1b, 2).

The base of the Penninic nappe system comprises 
(Permo-)Triassic units (Fig. 1b; Frisch 1974; Töchterle et al. 
2007, 2011; Brandner et al. 2008a, b). Some authors ascribe 
these units to the “Modereck nappe system” (e.g., Rock-
enschaub et al. 2003; Schmid et al. 2013 and references 
therein), whose existence is proven in the central Tauern 
Window (Groß et al. 2020, 2021, 2022). In the western 
Tauern Window, however, several authors (Staub 1924; 
Töchterle et al. 2007, 2011; Brandner et al. 2008a, b) claim 
that there is no tectonic boundary with the overlying Glock-
ner nappe system. We follow these authors and therefore 
attribute these (Permo-)Triassic units to the Penninic nappe 

system, representing its base. Above these units, calcareous 
to non-calcareous schists (“Bündnerschiefer” in Glockner 
facies; Frasl and Frank 1966), as well as ophiolites (e.g., 
Höck and Koller 1989; Koller and Prestal 2003; Rocken-
schaub et al. 2003 and references therein; Schmid et al. 
2013) of the Glockner nappe system follow. A tectonic 
mélange zone separates the Tauern Window from its Aus-
troalpine frame (“Matrei Nordrahmen zone”; e.g., Koller 
and Prestal 2003; Rockenschaub et al. 2003 and references 
therein; Töchterle et al. 2007; Brandner et al. 2008a, c). This 
mélange consists of Lower Austroalpine lenses intermingled 
with “Bündnerschiefer”.

Geometry of the western Tauern Window

Schmid et al. (2013) analysed the overall structure of the 
Tauern Window and its lateral variation along-strike. Their 
cross-sections through the western Tauern Window (Fig. 2) 
show that upright folds in the east (close to the TRANSALP 
seismic section; Fig. 1b; TRANSALP Working Group 2002; 
Lüschen et al. 2004, 2006; Lammerer et al. 2008) turn into 
tighter, south-vergent folds at the western end of the Tauern 
Window, in parts even overturned (Zillertal antiform; Rud-
mann et al. 2025; see also Figs. 1b, 2). In the west, the north-
ern limb of the Tux nappe comprises a higher-order fold. 
This fold is called the “Schöberspitzen antiform” (Figs. 1b, 
2). According to Rosenberg and Schneider (2008) and 
Töchterle et al. (2011), this fold developed at the western 
end of the SEMP fault (Fig. 1), accommodating its sinis-
tral strike-slip motion. The entire western Tauern Window 
plunges westwards, as indicated by the descent of the top of 
the Venediger duplex (Fig. 2).

The Brenner normal fault

The Brenner normal fault forms the western boundary of 
the Tauern Window (Fig. 1b; e.g,. Schmidegg 1953, 1954; 
Behrmann 1988; Selverstone 1988; Axen et al. 1995; Fügen-
schuh et al. 1997, 2012; Rosenberg and Garcia 2011, 2012). 
It consists of a viscous part (Brenner mylonites) between 
Steinach and Sterzing (Behrmann 1988; Selverstone 1988; 
Fig.  1b) and a brittle part that overprints the Brenner 
mylonites (e.g., Prey 1989; Axen et al. 1995; Fügenschuh 
et al. 1997, 2012) and continues north to Innsbruck (Silltal 
fault; Schmidegg 1953, 1954; Fig. 1b). We only focus on 
the viscous Brenner normal fault in this work, because it 
was mainly involved in the process of exhumation of the 
western Tauern Window during the Miocene (Schmid et al. 
2013 and references therein). The thickness of the mylonitic 
shear zone ranges from 0.4 km (Behrmann 1988) to 1.5 km 
(Wolff et al. 2021 and references therein). It dips gently to 
the west with an average angle of 20° (Axen et al. 1995). Its 
northern and southern continuation, however, is a matter of 
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debate: Fügenschuh et al. (1997, 2012) and Töchterle et al. 
(2011) propose that the viscous Brenner normal fault acted 
together with the Tauern northern boundary fault (TNBF) 
as a down-faulting envelope surrounding the western Tau-
ern Window (Fig. 1b). According to their model, the brittle 
Silltal fault proceeding north to Innsbruck developed in a 
later stage. In contrast, Rosenberg and Garcia (2011, 2012) 
and Rosenberg et al. (2018) regard the brittle Silltal fault as 
the brittle, upper crustal part of the Brenner normal fault, 
which was tilted northwards during updoming of the core 
of the western Tauern Window. Rosenberg et al. (2018) 
additionally suggest different mylonites generation sets in 
the Brenner Pass area, where exhumation was highest. Both 
models are based on zircon fission-track data, which date to 
the Miocene in the Penninic and Subpenninic units of the 
western Tauern Window, but to the Paleocene-Eocene in the 
adjacent Austroalpine units north of the TNBF (see compila-
tion of Bertrand et al. 2017). The spatial resolution of the 
available data is, of course, relatively coarse. No closely 
sampled profile is available. Rosenberg and Garcia (2011, 
2012) and Rosenberg et al. (2018) propose a gradual north-
ward increase in age, attributed to the progressive updom-
ing of the western Tauern Window during the Miocene. In 
contrast, Fügenschuh et al. (1997, 2012) assume a discrete 
zircon fission-track age jump across the TNBF, linked to the 
eastward continuation of normal faulting kinematics associ-
ated with the viscous Brenner normal fault. For its northern 
extension, we follow the model of Fügenschuh et al. (1997, 
2012). This is supported by the observation that, northwest 
of Mayrhofen (Fig. 1b), the zircon fission-track sample loca-
tions from the Austroalpine and Penninic nappes across the 
TNBF are quite close (approximately 6 km), yet exhibit a 
significant age difference of approximately 35–45 Ma over 
this short distance (compilation of Bertrand et al. 2017). 
There is thus little room between the two data points for a 
gradual transition similar to the one observed in the core of 
the Tauern Window. However, field evidence of the TNBF 
was only found in the westernmost Tauern Window (Fügen-
schuh et al. 1997, 2012; Töchterle et al. 2011; Schmid et al. 
2013), whilst its eastern extension remains unclear. Nev-
ertheless, we would like to emphasise that both aforemen-
tioned models of the northern continuation of the Brenner 
normal fault are sound, and it is not the purpose of this study 
to rekindle this debate. For that, we refer here to the works 
of Fügenschuh et al. (1997, 2012), Rosenberg and Garcia 
(2011, 2012) and Rosenberg et al. (2018).

The southern continuation of the Brenner normal fault is 
difficult to define, too. There are three possibilities:

(1)	 Enveloping also occurred in the south suggesting that 
the Brenner normal fault transitions towards southeast 
into a viscous precursor of the Sterzing Mauls fault 
(Fig. 1b; Fügenschuh et al. 1997, 2012; see also Bistac-

chi et al. 2010) and, further east, into the Defereggen 
Antholz Vals (DAV) fault. North of the DAV fault, 
zircon fission-track data are Miocene in contrast to 
older zircon fission-track data south of the DAV fault 
(Eocene to Mesozoic ages; Bertrand et al. 2017; Klotz 
et al. 2019), indicating that relative north-side up move-
ment took place along the DAV fault in the Miocene. 
By contrast, zircon fission-track ages across the Ster-
zing Mauls fault are mainly Miocene on both sides, 
suggesting that no important relative uplift happened 
on this fault in the Miocene.

(2)	 The Brenner normal fault merges into the Jaufen fault 
(e.g.,  Fig.  1b; Rosenberg and Garcia 2011, 2012; 
Rosenberg et al. 2018). This would be in line with zir-
con fission-track data of Paleocene-Eocene age indicat-
ing earlier cooling north (hanging-wall) of the Jaufen 
fault (Pomella et al. 2012; Bertrand et al. 2017) and 
Miocene zircon fission-track data in the footwall. How-
ever, according to Fügenschuh et al. (2012) and Luth 
et al. (2013), there is no evidence that the mylonites 
along the Jaufen fault genetically correlate with the 
mylonites of the viscous Brenner normal fault.

(3)	 The Brenner normal fault dies out both to the north 
and south; however, structural evidence is missing (see 
Rosenberg et al. 2018 for discussion).

We therefore consider possibilities (1) and (2) as the most 
realistic in our model.

Database and methods

Map compilation and structural data analysis

Before constructing our 3-D model of the western Tauern 
Window, we first created a compiled and simplified tectonic 
map of the major tectonic units and faults of the western 
Tauern Window (Fig. 1b). We compiled maps of AA.VV. 
(1930a, b, 1960a, b), Amt für Geologie und Baustoffprü-
fung (2007), Brandner et al. (2008c), Rockenschaub and 
Nowotny (2009), Rockenschaub et al. (2011), Moser (2011, 
2012), Kreuss (2013, 2018), Schmid et al. (2013), Autonome 
Provinz Bozen–Südtirol (2014), Moser and Pavlik (2014) 
and GeoSphere Austria (2017). The vectorised data of the 
final tectonic map were inserted into MOVE™ and projected 
onto a 25 m resolution digital terrain model (DTM; Euro-
pean Environment Agency 2016).

In the next step, we integrated structural data, includ-
ing fold axes and foliation planes (data of Schneider 2015, 
Brandner et al. 2008c and from own fieldwork—Table A1 in 
the Supplementary Information; note: fold axes not reported 
on the map of Brandner et al. (2008c), but the dataset used in 
this study was kindly provided by the Brenner Base Tunnel 
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project company (BBT-SE)). We make use of foliation plane 
measurements for constructing nappe surfaces for the 3-D 
modelling (Figs. 3a, 4a; see section “3-D modelling”). Local 
fold axes (Fig. 5; see also Table A1 in the Supplementary 
Information) were analysed to set up the 3-D model and 
were used as a proxy to quantify the lateral changes of both 
the azimuth and the plunge of the large-scale fold axes of 
the nappes of the western Tauern Window (Fig. 4c). The 
plunges of the fold axes were also used to verify the projec-
tion of the tops of the nappes above the present-day topo-
graphic surface and compare it with the cross-section of 
Schmid et al. (2013; Fig. 2b). We analysed fold axes from 
the Ahorn nappe and Tux nappe (panels 1, 3 and 4 in Fig. 5) 
separately from those of the Zillertal nappe (panels 5–7 in 
Fig. 5) and the Schöberspitzen antiform (panel 2 in Fig. 5) 
to identify possible differences in geometry and orientation 
between these antiforms. Equal-area lower-hemisphere ste-
reographic projections and Kamp contours of the fold axes 
were created by using the software package Stereonet 11 
(Allmendinger et al. 2012; Allmendinger 2022).  

3‑D modelling

Major tectonic basement units

Our 3-D model comprises the Penninic and Subpenninic 
nappe systems between ca. 15 km a.s.l. and 5 km b.s.l. We 
modelled the bases of four major tectonic nappes: the Tux 
nappe, the Zillertal nappe, the Subpenninic hanging-wall 
nappes and the Penninic nappe system. We started with the 
base of the structurally highest nappe (Penninic nappe sys-
tem), because it continuously envelopes the Subpenninic 
nappe system below and, thus, best reflects the general struc-
ture of the western Tauern Window. In the following, we 
describe the workflow to construct the base of the Penninic 
nappe system in 3-D, step by step. Each step is visualised 
in Fig. 6, using sketches (see Fig. 4 for two real modelling 
examples). The other nappe bases were modelled in the same 
way; step numbering according to Fig. 6:

(1a and b) In a first step, we digitised the base of the 
Penninic nappe system as polylines in both the Brenner 
Base Tunnel section (Fig. 2a; Töchterle et al. 2007) and the 
cross-section of Schmid et al. (2013; Fig. 2b), close to the 
TRANSALP seismic section (Fig. 1b). We then interpolated 
a preliminary surface between both polylines using a spline 
curve tool (Create Surface from Lines in the Surface tool-
box). Separately, we analysed fold axes as described above 
(Fig. 5).

(2a) We constructed two WSW–ENE along-strike cross-
sections, following the hinges of the preliminary surfaces 
of the Tux nappe and the Zillertal nappe, respectively. In 
these cross-sections, we plotted the intersection of the 
preliminary surface (mesh intersection) and modified it 

to match the projected surface outcrops of the base of the 
Penninic nappe system (line intersection) and the fold 
axes data analysis (see also Fig. 5c). We did this as a first 
approximation of the lateral change of the plunge of the 
fold hinges.

(2b) To model the base of the Penninic nappe system 
west of the Brenner Base Tunnel section, we used its trace 
in the Brenner Base Tunnel section and split it into three 
parts: Trace of the Schöberspitzen antiform, the Tux nappe 
and the Zillertal nappe. These polylines were used as input 
objects for the extrapolation (Extrude Line to Surface 
in the Extend toolbox). For the Tux and Zillertal nappe 
traces, we used the average azimuth and plunge values of 
the fold axes of the respective structure in this area (panel 
4 and 7 of Fig. 5) as the projection direction. The average 
value of the plunge of the Schöberspitzen antiform, if pro-
jected onto the Brenner Base Tunnel cross-section (panel 
2 in Fig. 5), however, does not match its actual position 
of the antiform in the cross-section. We therefore derive 
the plunge of the Schöberspitzen antiform by extrapolat-
ing a surface from their polylines, as mapped on the land 
surface, choosing plunge and plunge azimuth values so 
that the extrapolated surface intersects with the position 
of the Schöberspitzen antiform in the Brenner Base Tunnel 
section (270/25). Close to the Brenner normal fault, we 
constructed a new cross-section (red line west of the Bren-
ner Base Tunnel section). The three newly constructed sur-
faces were then displayed as traces in this cross-section 
(mesh intersection). These traces of the Tux nappe and 
the Zillertal nappe were then used again to extrapolate 
(Extrude Line to Surface in the Extend toolbox), as previ-
ously described, but this time using the orientation of the 
Brenner normal fault as input value, which is 20°W on 
average (Axen et al. 1995). The reason for this is that we 
assume that during exhumation the footwall of the viscous 
Brenner normal fault was dragged parallel to the dip of 
this fault.

(3) The newly created surfaces were then adapted to fit 
the outcrop information on the land surface, i.e. the foliation 
strike and dip, and the lateral change in elevation of the fold 
hinges, which we obtained from step (2a). For this purpose, 
we constructed 15 additional cross-sections. In each cross-
section, we projected the preliminary surface (mesh intersec-
tion), the base of the Penninic nappe system, as mapped on 
the land surface (line intersection) and—for the elevation of 
the fold hinges—the lines constructed in (2a; line intersec-
tion). Dip data of the foliation was used to correct the geom-
etry of the folds. In each cross-section, we thus constructed 
the base of the Penninic nappe system (see also Fig. 4a).

(4) Finally, we interpolated a new surface of the base of 
the Penninic nappe system between the cross-sections, using 
again a spline curve tool (Create Surface from Lines in the 
Surface toolbox).
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Faults

In this paragraph, we focus on the viscous Brenner normal 
fault and its possible northern and southern continuations 
(bold red lines in Figs. 1b and 5). In our interpretation, this 
is the TNBF in the north, following Fügenschuh et al. (1997) 
and Töchterle et al. (2011). In the south, we modelled two 
options to analyse potential geometrical effects on the struc-
ture of the western Tauern Window: continuation into (1) 
the Sterzing Mauls fault (Fügenschuh et al. 1997, 2012) and 
DAV fault (derived from zircon fission-track data, Bertrand 
et al. 2017 and references therein), or (2) the Jaufen fault 
(Rosenberg and Garcia 2012, and derived from zircon fis-
sion-track data, Bertrand et al. 2017 and references therein).

For fault surface modelling, we used extrapolating meth-
ods (Extrude Line to Surface in the Extend toolbox), as we 
did in modelling step (3b). We used the polylines of the 
outcropping faults on our tectonic map as input objects and 
extruded them using the average dip direction and dip of the 
respective fault (see Table 1). Between the Sterzing Mauls 
fault and the eastern end of the DAV fault (on our map), 
we interpolated the along-strike change in dip (Fig. 5 and 
Table 1) by dividing the total change by the number of cross-
sections. For this purpose, we drew a line in each relevant 
cross-section, which presumably predicts the local dip of the 
fault. At the end, we interpolated these lines to a new surface 
(Create Surface from Lines in the Surface toolbox), in the 
same way as we did in modelling step (4).

Finally, we intersected, interpolated and merged the 
isolated faults, which resulted in two Brenner normal fault 
models: (1) TNBF—Brenner normal fault—Jaufen fault, and 
(2) TNBF—Brenner normal fault—Sterzing Mauls fault—
DAV fault.

Nappe geometry analysis and new cross‑sections

Once the base of the Penninic nappe system was modelled, 
we analysed its structure (using Surface Geometry and Con-
tour Map). This was only done with this particular surface, 
because, as mentioned above, it reflects best the structure 
of the western Tauern Window. The following surface 
properties were chosen: elevation, cylindricity, dip and dip 
azimuth.

In the end, we constructed new cross-sections throughout 
the entire model, including the two end-member models of 
the viscous Brenner normal fault: Five NNW-SSE striking, 
planar cross-sections (S1–S5) and two planar cross-sections, 
which trace the fold axes of the Tux nappe and the Zillertal 
nappe (W-ENE; S6–S7). Cross-section traces are shown in 
Fig. 1b. For better visualisation, we only illustrate the Pen-
ninic nappe system, the Subpenninic hanging-wall nappes, 
the Venediger duplex, and the faults above the present sur-
face. From this, we obtained a good representation of the 

lateral changes of the large-scale structure of the western 
Tauern Window.

All modelled surfaces, the attribute analysis of surfaces of 
the Penninic nappe system base (colour-coded), and the new 
cross-sections can be viewed in the 3-D PDF via the link 
in the Data availability statement or in the Supplementary 
Information (Figs. A8 and A9).

Results

The overall folded structure of the western Tauern Window 
is best visualised by reference to the attribute analysis of the 
base of the Penninic nappe system surface (Fig. 7). Since the 
underlying Subpenninic nappe system follows this structure 
(see Figs. A8 and A9 in the Supplementary Information), 
we refer to the base of the Penninic nappe system surface 
to describe the western Tauern Window in general in the 
following.

Elevation and fold axis analyses reveal that the western 
Tauern Window plunges between 13° and 19° to the west 
(Figs. 5, 7a). However, there is a difference between the 
Tux antiform and the Zillertal antiform. Whilst the Tux anti-
form plunges almost continuously to the west-southwest, 
the plunge of the Zillertal antiform in the same direction 
is interrupted and becomes nearly horizontal over a dis-
tance of ca. 10 km, forming a kind of ‘plateau’ (white box 
in Figs. 7a and 8c; see also stereonet plot 6 in Fig. 5). In 
addition, deviation from a cylindrical shape (Fig. 7b; where 
green colour expresses perfect cylindricity) is strong in this 
area and becomes greater towards the west. In contrast, the 
Tux antiform is nearly cylindrical. Only parts of its southern 
limb and the easternmost part of its northern limb deviate 
from a perfectly cylindrical fold. Dip (Fig. 7c) and dip azi-
muth (Fig. 7d) analyses show that the southern limb of the 
Zillertal antiform’s southern limb changes its dip abruptly 
from south-southeast (in the east) to north (in the west). 
Where its southern limb is steepest (90°; at the position, 
where the switch from an upright fold to an overturned fold 
happens), the trend of the fold axis turns to the southwest 
over a short distance, which is also accompanied by a strong 
deviation from cylindricity (just east of the white boxes in 
Fig. 7). West of this area, the southern limb of the Ziller-
tal antiform is overturned. Generally speaking, all attribute 
colour maps show that, starting in the east, the fold axis of 
the Zillertal antiform trends first west-southwest, then west, 
then southwest (as mentioned before) and then again west. 
The Schöberspitzen antiform axis trends west, and the Tux 
antiform plunges west-southwest (Fig. 7; see also Fig. 5).

The developing Schöberspitzen antiform, the steepening 
of the southern limb of the Ahorn and Tux antiform, the 
overturning of the Zillertal antiform and the plunge of the 
entire western Tauern Window, all in western direction, are 
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demonstrated in the cross-sections in Fig. 8. It can also be 
observed that the Tuxer and Zillertal antiform tighten and 
become south-vergent westwards, in contrast to the Ahorn 
antiform, which opens and would seem to become box-
shape-like in the same direction (Fig. 8a).

Regarding the Brenner normal fault and the thickness of 
the Penninic nappe system in its footwall, we found that 
the Penninic nappe system in the footwall of the Brenner 
normal fault is thinner above the Tux nappe than above the 
Zillertal nappe. The maximum distance between top of the 
Tux nappe and the Brenner normal fault (i.e. the thickness 
of the Penninic nappe system) reaches ca. 3 km (Fig. 8b). On 
the contrary, where the Zillertal nappe reaches its ‘plateau’, 
the thickness of the Penninic nappe system is between ca. 
4 and 6 km (Fig. 8c). At a point directly west of the apex of 
the Zillertal nappe, the known trace of the Brenner normal 
fault ends.

The two possible southern continuations of the Bren-
ner normal fault are shown in Fig. 8a (see also Figs. A8 
and A9 in the Supplementary Information). Regarding the 
completely-enveloping variant (TNBF—Brenner normal 
fault—Sterzing Mauls fault—DAV fault), it appears that the 
envelope is quite similar to the form of the Zillertal nappe 
antiform. Regarding the second variant, in which the Bren-
ner normal fault merges with the Jaufen fault, it can be seen 
in cross-section view (Fig. 8a; see also Figs. A8 and A9 in 
the Supplementary Information) that the distance between 
the top of the hinge of the Zillertal antiform and the Brenner 
and Jaufen faults, increases southwards (apparent northern 
dip of the Jaufen fault and the southern part of the Brenner 
normal fault; Fig. 8a; see also Figs. A8 and A9 in the Sup-
plementary Information).

Discussion

Model uncertainties

Our 3-D model is based on the cross-sections of Töchterle 
et al. (2007) and Schmid et al. (2013). The upper ca. 2 km 
of the cross-section of Töchterle et al. (2007) are very well 
constrained, based on data from the Brenner Base Tunnel 

exploration. The area below is more speculative and is 
based mainly on field observations and projections from 
further east. The cross-section of Schmid et al. (2013) is 
based mainly on field observations, information from the 
TRANSALP interpretation (TRANSALP Working Group 
2002; Lüschen et al. 2004, 2006; Lammerer et al. 2008) and 
projections from the surrounding areas—especially above 
the topography. The position of the fold hinge of the Tux 
antiform is consistent with our fold axes analysis. We could 
not verify the position of the fold hinge of the Zillertal anti-
form, because we do not have data from fold axes east of 
box/panel 5 (Fig. 5). If only the data of box/panel 5 (Fig. 5) 
were used for projection, the top of the Zillertal antiform 
in the cross-section of Schmid et al. (2013) would be con-
structed too high. However, the outcrop of the Zillertal core 
east of box/panel 5 (Fig. 5) widens, which may indicate that 
its plunge steepens here.

In cross-section 3 of Schmid et al. (2013), the nappe con-
tacts between the three antiforms are folded. However, we 
did not take these folds into account in our 3-D model. We 
simplified the complex-folded structure of the western Tau-
ern Window, as we want to represent its overall, larger-scale 
structure.

Foliation data east of the map of Töchterle et al. (2007) 
were taken from Schneider (2015). However, the classifica-
tion ranges of these dips are quite large. For our modelling, 
we therefore only use the map and the legend information 
from her dissertation (Schneider 2015), which is why these 
values were taken as trends in the modelling.

The orientation of the Brenner normal fault is based on 
the derived average value of the dip of this fault from Axen 
et al. (1995), based on their rolling hinge model. Field data 
show a shallower dip between 15° (Fügenschuh et al. 1997) 
and 17° (Axen et al. 1995). We tried to apply these shal-
lower values in the extrapolation, which results in a sub-
parallelism to the dip of the Tux antiform (plunge of the Tux 
antiform between 13°–19° in our model). The average value 
of Axen et al. (1995) therefore serves as a maximum value.

A shallower dip of the Brenner normal fault also corre-
lates with plunges of stretching lineations, which are associ-
ated with the viscous Brenner normal fault (Fig. 3b). Their 
plunges do not change eastward, which indicates that the 
viscous Brenner normal fault does not flatten towards the 
east, at least not in the area of the map made by Brandner 
et al. (2008c). However, we cannot exclude that the Brenner 
normal fault becomes shallower in the eastern part of our 
modelling area.

Modelling of the base of the Penninic nappe system 
results in apparent en-échelon folds superimposed on the 
Schöberspitzen antiform. These are modelling artefacts that 
resulted from surface interpolation.

The intersection of our modeled nappe bases with the 
DTM does not always perfectly match the mapped outcrops. 

Fig. 4   3-D modelling examples (a, c) of two cross-sections in the 
map (b). The dashed lines in a and c represent the intersected pre-
surfaces constructed between the cross-sections of Töchterle et  al. 
(2007) and Schmid et  al. (2013). These polylines were modified 
according to foliations (a) and fold axes (c), as well as the outcrops of 
the base of the nappes along the topography (line intersection). W-E 
cross-sections were modified before the NNW-SSE cross-sections 
were constructed to obtain the height of the fold hinges of the Tux 
antiform and the Zillertal antiform (crosses in the fold hinges of a). 
Note: the fold axis dataset used in this study was kindly provided to 
the authors by the Brenner Base Tunnel project company (BBT-SE)

◂
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Fig. 5   Equal-area lower-hemisphere stereographic projections and 
Kamp contours of fold axes of different areas (panels 1–7). Data 
taken from Brandner et al. (2008c), combined with the first author’s 
field data (Table  A1 in the Supplementary Information; see Figs. 
A1–A7 in the Supplementary Information for closer views of the ste-
reographic plots; note: fold axes not reported on the map of Brandner 
et al. (2008c), but the dataset used in this study was kindly provided 
by the Brenner Base Tunnel project company (BBT-SE)). The arrow 

and the corresponding numbers in the boxes represent the mean azi-
muth and plunge of the fold axes of the area of this box. Average dip 
direction and dip is also illustrated for each fault that is relevant for 
the model (bold red symbols). References for these data are given in 
section “Faults”. Fault abbreviations: BNF Brenner normal fault, DAV 
Defereggen Antholz Vals fault, IF Inntal fault, JF Jaufen fault, MMF 
Meran Mauls fault, PGF Pustertal Gailtal fault, PF Passeier fault, 
SMF Sterzing Mauls fault, TNBF Tauern northern boundary fault
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Areas where the intersection of the modeled surface with 
the DTM deviates slightly include the Schöberspitzen area, 
the western intersection of the Ahorn and Zillertal nappes, 
and the small window east of Sterzing (Fig. 1b). However, 
this is unavoidable at our model scale. For visualisation of 
the deviations, we refer to the 3-D PDF (see Data availabil-
ity statement or Supplementary Information, Fig. A9) and 
Fig. A10 in the Supplementary Information.

In our model, we projected the bases of the nappes in 
western direction, based on the westernmost available data. 
In fact, we do not know, whether the western Tauern Win-
dow continues plunging in western direction, or if the nap-
pes deflect west of the tip of the Dolomites indenter.

From the static 3‑D model of the western Tauern 
Window to its Miocene deformation history

The Tux and Zillertal antiforms are similar in that they 
tighten and become south-vergent along-strike in a westerly 
direction and thus, towards the tip of the Dolomites indenter 
(c.f. Figs. 7c, d, 8; Töchterle et al. 2007; Brandner et al. 
2008a), which has a triangular shape in map view (Fig. 1). 
In contrast, the Ahorn antiform opens in a westerly direc-
tion and it seems to become box-shaped, with no marked 
vergence (Fig. 8). However, we observe that the along-strike 
development of the bulge on its northern limb coincides with 
the appearance of the Schöberspitzen antiform. We therefore 
assume that this northern bulge formed in the course of the 
development of the Schöberspitzen antiform. If we addi-
tionally consider the deeper structure published in Reiter 
et al. (2018), the Ahorn antiform does show south-vergence, 
similar to the Tux and Zillertal antiforms.

The nappes in the vicinity of the TRANSALP seismic 
section are upright folds (c.f. Figs. 7c, d, 8; Lüschen et al. 
2004, 2006; Lammerer et al. 2008; Schmid et al. 2013; 
Rosenberg et al. 2018). The stronger deformation of the Zill-
ertal antiform (smaller interlimb angle, non-cylindrical fold; 
Figs. 2, 7, 8) compared to the Tux antiform is most likely 
due to the fact that it is the southernmost antiform and thus 
closest to the Dolomites indenter. Whilst indentation only 
verticalized the southern limb of the Tux antiform, the Zill-
ertal antiform became overturned. The transition point from 
an upright fold in the east to an overturned fold in the west is 

not located directly in front of the indenter’s present-day tip 
(on map view), but it is approximately 5 km eastwards. This 
discrepancy may be due to the reorganisation of the middle 
and lower crust of the Dolomites indenter: interpretation of 
seismic tomography of this area indicates thickening of the 
lower crust in the vicinity of the TRANSALP seismic sec-
tion (McPhee and Handy 2024; Handy 2025). McPhee and 
Handy (2024) interpret this as detached middle and lower 
crust of the Dolomites indenter. This detachment occurred 
along a north-dipping ductile shear zone within the interme-
diate crust in which south-directed thrusts of the Dolomites 
indenter (e.g., Valsugana thrust, Belluno thrust) root (see 
also e.g., Schönborn 1999; Verwater et al. 2021; Eizenhöfer 
et al. 2023). In contrast, thickening of the lower crust is 
not noticeable near the Brenner Base Tunnel (McPhee and 
Handy 2024 and references therein). We conclude that in 
the vicinity of the Brenner Base Tunnel, the upper and lower 
crust of the Dolomites indenter were indented together with-
out being detached, whereas below the TRANSALP section, 
the middle and lower crust of the Dolomites indenter seems 
to be detached and this part wedges below the Subpenninic 
nappe system (Fig. 9). We hypothesise that the gradually-
increasing detachment of the middle and lower crust of the 
Dolomites indenter from west to east is expressed in the 
structure of the upper crust above (i.e. the western Tauern 
Window), by the transition from south-vergent (Ahorn and 
Tux antiforms) and overturned folds (Zillertal antiform) in 
the west to upright folds in the east of our study area.

Consider a perfectly cylindrical fold in a viscous environ-
ment with no particular vergence direction. If an indenter 
pushes normal to the fold axis, (depending on the indenter’s 
shape) the fold would become tighter. Over time, the limb 
facing the indenter would progressively steepen and the 
fold would finally overturn. However, if at one point dur-
ing indentation, the middle and lower crust of the indenter 
detached and underthrusted the fold ahead, folding would 
cease and the entire structure would be pushed upwards 
instead. We hypothesise that this is expressed by the curved 
trend of the Zillertal antiform fold axis and the western 
plunge of the entire western Tauern Window: In the west, 
steady indentation of the entire Dolomites indenter's crust 
caused south-vergence (Ahorn and Tux antiforms) and 
overturning folds (Zillertal antiform), respectively (Fig. 9 

Table 1   Average values of 
dip direction and dip, and the 
related references that were 
used for fault surface modelling 
(see also Fig. 5)

Fault Ø Dip dir./Dip References

Brenner normal fault (viscous) 270/20 Axen et al. (1995)
DAV fault 180/70 Mancktelow et al. (2001)
Jaufen fault 310/25 Luth et al. (2013), Pomella et al. (2016), 

Klotz et al. (2019)
Sterzing Mauls fault 334/80 Töchterle et al. (2007), Klotz et al. (2019)
TNBF 345/30 Töchterle et al. (2011)
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“west”). In the east, the middle and lower crust of the Dolo-
mites indenter detached and indented, at least faster than the 
upper crust, underthrusting, and pushing-up the nappe stack 

of the western Tauern Window (Fig. 9 “east”). The westward 
plunge of the entire western Tauern Window would then 
be a consequence of this underthrusting, which, depending 
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on a larger scale (Figs. A8 and A9). The white box shows the area 
in which the western plunge of the Zillertal antiform is interrupted 
(see also Fig. 7). Fault abbreviations: BNF Brenner normal fault, DAV 
Defereggen Antholz Vals fault, IF Inntal fault, JF Jaufen fault, SMF 
Sterzing Mauls fault, TNBF Tauern northern boundary fault
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on its timing, either favoured the formation of the viscous 
Brenner normal fault, or steepened it (i.e. from an origi-
nally lower dip). From this thought experiment, we can also 
deduce that the upright folds in the east and the steepening 
of the southern limb of the Tux antiform in the west repre-
sent progressive stages of deformation, through which the 
Zillertal antiform must have once passed. That means that 
during an earlier phase of indentation, the western segments 
of both the Tux and Zillertal antiforms likely exhibited simi-
lar geometries to those observed in the east of our study 
area. Then, at a later stage, during ongoing indentation of all 
crustal parts of the Dolomites indenter, the Zillertal antiform 
developed into a structure similar to that of the Tux antiform 
in the west (verticalisation of the southern limb), before it 
experienced maximum deformation directly in front of the 
Dolomites indenter and became overturned. Hence, the pre-
indentation structure of the Venediger duplex might have 

been everywhere very similar in our study area (Rudmann 
et al. 2025; Fig. 9), possibly across the entire Tauern Win-
dow (see also Rosenberg and Berger 2009).

The plunge of the Tux antiform coincides with the dip 
of the viscous Brenner normal fault (e.g., Axen et al. 1995; 
Fügenschuh et al. 1997). In contrast, the plunge of the Zill-
ertal antiform is interrupted over a distance of about 10 km, 
forming a kind of ‘plateau’ that deviates from the dip of 
the Brenner normal fault. This also affects the thickness 
of the Penninic nappe system in the footwall of the Bren-
ner normal fault, which is thinner between the top of the 
Tux antiform and the Brenner normal fault than above the 
‘plateau’ of the Zillertal antiform and the Brenner normal 
fault (see Fig. 8b, c). The cause of this ‘plateau’ could be 
primary, lateral unevenesses or bumps of the Zillertal anti-
form, whereby the increasing plunge of the fold axes towards 
the west could be also associated with the Zillertal nappe 
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being pushed-up by the protuded middle and lower crust 
of the Dolomites indenter. Ca. 10 km from the plateau, in 
along-strike west-southwestern direction, the known trace 
of the Brenner normal fault ends. This is where the two dif-
ferent southern continuations of the viscous Brenner normal 
fault have been proposed: Brenner normal fault—Sterzing 
Mauls fault (Fügenschuh et al. 1997, 2011)—DAV fault 
(derived from zircon fission-track data, Bertrand et al. 2017 
and references therein) or Brenner normal fault—Jaufen 
fault (Rosenberg and Garcia 2011, 2012, and derived from 
zircon fission-track data, Bertrand et al. 2017 and refer-
ences therein). Both scenarios result in the aforementioned 
greater distance between the Zillertal nappe ‘plateau’ and 
the viscous Brenner normal fault. Our model cannot provide 
any indication as to which Brenner normal fault scenario is 
correct. However, it is most likely that it is a combination 
of both scenarios. Zircon fission-track ages suggest top-to-
SE thrusting on the Meran Mauls fault contemporaneously 
with uplift of the western Tauern Window (Pomella et al. 
2012; Bertrand et al. 2017). This means that north-side up 
movement along the DAV fault did not continue along the 
Sterzing Mauls fault to the west, as proposed by Fügenschuh 
et al. (1997, 2012), but along the top-to-SE thrust along the 
Meran Mauls fault (e.g., Pomella et al. 2011, 2012; Luth 
et al. 2013; see also distribution of zircon fission-track data 
in Bertrand et al. 2017). Based on zircon fission-track data 
(Pomella et al. 2012; Bertrand et al. 2017) and structural 
field data (Viola et al. 2001; Luth et al. 2013; Pomella et al. 
2022), the Austroalpine Meran-Mauls basement nappe stack 
was squeezed upwards (top-to-SE thrusting) between the 
NW-dipping Meran-Mauls fault at its base and the NW-dip-
ping Jaufen fault at its top in the Miocene, due to its frontal 
position to the Dolomites indenter. In zircon fission-track 
contour maps (Pomella et al. 2012; Bertrand et al. 2017) 
this appears as a south-westward continuation of the young 
cooling ages characteristic for the Tauern Window.

According to Rosenberg and Schneider (2008) and 
Töchterle et al. (2011), the Schöberspitzen antiform accom-
modated sinistral motion at the western end of the SEMP 
fault. Our 3-D model supports this, because the plunge azi-
muth of the fold axis of the Schöberspitzen antiform (270°) 
is at an acute angle of approximately 20° to the west-south-
west strike of the SEMP fault. The plunge of the fold axis 
of the Schöberspitzen antiform is sub-parallel to parallel to 
the western dip of the Neoalpine nappe contacts, which in 
turn is sub-parallel to the dip of the viscous Brenner normal 
fault. The Schöberspitzen antiform may have formed before 
the western Tauern Window started to tilt westwards and 
thus it rotated to the west in the course of this process, or it 
developed synkinematically with the continuously-increas-
ing westward plunge during Miocene times. This overlaps 
with the activity of the SEMP fault, which is assumed to be 

bracketed between 33 and 12 Ma (Rosenberg and Schneider 
2008; Favaro et al. 2017 and references therein).

Summary and conclusions

Our static 3-D model of the western Tauern Window pro-
vides new, valuable insights into its Miocene deformation 
history:

1.	 Structure: The Tux and Zillertal antiforms were hetero-
geneously deformed during Miocene times. The Tux 
antiform is nearly cylindrical and plunges uniformly to 
the west-southwest. In contrast, the Zillertal antiform’s 
fold axis is curved in map view and its plunge is inter-
rupted over 10 km distance, forming a kind of ‘plateau’.

2.	 The influence of the Dolomites indenter: The deforma-
tion patterns of the western Tauern Window antiforms 
are closely linked to their proximity to the tip of the 
Dolomites indenter (in map view) and heterogeneous, 
asymmetrical indentation as has been suggested in 
recent publications. The upper crustal deformation of 
the nappes of the Tauern Window can be explained with 
decreasing upper crustal shortening of the western Tau-
ern Window towards the east whilst in the same direc-
tion increasing underthrusting of middle and lower crust 
of the Dolomites indenter occurred, which also caused 
the westward plunge of the western Tauern Window.

3.	 The viscous Brenner normal fault: The dip of the vis-
cous Brenner normal fault aligns with the plunge of the 
Tux antiform, but not everywhere, with the variable 
plunge of the Zillertal antiform that includes a subhori-
zontal ‘plateau’. This affects the thickness of the Pen-
ninic nappe system in the footwall of the Brenner nor-
mal fault. The lateral change in plunge of the Zillertal 
antiform could be caused by primary unevenesses (e.g., 
intrusive shape, paleo-relief, horst graben structures) of 
the Zillertal nappe itself. However, the increased plunge 
east of the ‘plateau’ could be also due to the up-push of 
the Zillertal nappe by the protruded middle and lower 
crust of the Dolomites indenter. This in turn either facili-
tated the formation of the viscous Brenner normal fault, 
or (if normal faulting had already begun when detach-
ment occurred) steepened it.

4.	 Schöberspitzen antiform: The Schöberspitzen antiform 
accommodates sinistral motion at the western tip of the 
SEMP fault. The westward plunge of this antiform is 
similar to the plunge of the entire western Tauern Win-
dow. This suggests that the Schöberspitzen antiform 
developed pre- or synkinematically to the westward 
plunge of the western Tauern Window, which evolved 
during the Miocene. The activity of the SEMP fault in 
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the same time period reinforces their temporal connec-
tion.
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