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Abstract

This thesis deals with the Willmore equation under Dirichlet boundary conditions,
which can be seen as a frame invariant clamped plate equation. We restrict ourselves
to surfaces of revolution, which are constructed by rotating a curve around the x-axis.
Therefore the Dirichlet condition consists of prescribing two concentric boundary cir-
cles, at which the surface will be clamped horizontically.
By working strictly below a Willmore energy threshold of 4π, we can employ a varia-
tional approach to show existence of a smooth minimiser for non-symmetric boundary
data. We also present some numerical results, which are obtained by a shooting
method.
If we impose more restrictive but still explicit smallness conditions on the boundary,
the profile curve of our minimiser is a graph over the x-axis. To prove this result we
combine an order reduction argument by Langer & Singer with a modification method
for minimising sequences by Dall’Acqua, Deckelnick & Grunau.
If we only consider symmetric boundary conditions, we can show non-uniqueness by
constructing additional solutions via the above mentioned order reduction method by
Langer & Singer. In this setting the same method can be employed to show symmetry
with respect to the y-axis of the profile graph of a minimiser.
With the same technique we will also prove a Bernstein-type result for Willmore sur-
faces of revolution with a profile graph over the whole x-axis.



Zusammenfassung

Diese Arbeit befasst sich mit der Willmore Gleichung unter Dirichlet Randdaten,
welche als ein koordinateninvariantes Modell für eine eingespannte Platte gesehen wer-
den kann. Dabei schränken wir uns auf axialsymmetrische Flächen ein, welche durch
Rotieren einer Kurve um die x-Achse konstruiert werden. Also bestehen unsere Dirich-
let Bedingungen aus zwei konzentrischen Kreisen, an denen wir die Fläche horizontal
einspannen.
Indem wir unter einer Schranke von 4π für die Willmore Energie arbeiten, können
wir Existenz eines glatten Minimierers für nicht-symmetrische Randdaten zeigen. Für
dieses Problem geben wir außerdem einige numerische Resultate, welche durch eine
Schießmethode erstellt wurden.
Wenn wir restriktivere aber immer noch explizite Kleinheitsbedingungen an die Rand-
daten stellen, können wir sogar zeigen, dass die Profilkurve eines Minimierers ein Graph
über der x-Achse ist. Der Beweis kombiniert ein Ordnungsreduktionsargument von
Langer & Singer mit einer Modifikationsmethode für Minimalfolgen von Dall’Acqua,
Deckelnick & Grunau.
Unter symmetrischen Randdaten zeigen wir ein Nichteindeutigkeitsresultat, indem wir
die oben genannten Methode von Langer & Singer nutzen. In derselben Problemklasse
mit denselben Methoden können wir auch zeigen, dass der Profilgraph eines Minimier-
ers symmetrisch bezüglich der y-Achse sein muss.
Auf dieselbe Art finden wir sogar ein Bernsteinartiges Resultat für den Profilgraph
einer axialsymmetrischen Willmorefläche.



Editorial notes

Most of the results of this thesis have been published in the series of papers [24–26]
and extend the findings of the present authors diploma thesis [23]. Here the material
is rearranged for a more coherent approach.
The results of [26] are in Chapter 9. Amos Koeller’s contribution (i.e. [26, Section 2]) is
not included in this thesis, since in [25] a stronger result was proven later (cf. Theorem
1.3). Nevertheless the present author would not have been able to show this result
without the experience gained by the joint work with Amos Koeller. The contributions
of Hans-Christoph Grunau to [25] will be highlighted throughout the exposition. The
results of [25] can be found in the Sections 3, 5.3 and 7. The findings of [24] are in the
Sections 5.1, 5.2 and 8.
The results of the present author given in Chapter 6 and the appendix have not been
published yet.
For the reader’s convenience the parts of the present authors diploma thesis [23], which
are needed here, are summarized in the Chapters 2 and 4.
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Ganz besonders ist natürlich meine Familie. Meine Mutter und mein Vater waren
immer da, danke dass ihr stolz auf mich seid, es bedeutet mir sehr viel. Meine Groß-
eltern, die sich immer Sorgen um mich machen und dem gesamten restlichen Clan
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1. Introduction

1.1. The Willmore equation

This thesis deals with certain critical points of the Willmore energy of a smooth regular
2-dimensional surface S ⊂ R3, which is defined by

We(S) =

∫
S

H2 dA. (1.1)

H denotes the mean curvature of the surface S, i.e. the mean of the principal curva-
tures. It describes a kind of bending energy for thin plates, which was already studied
by Poisson in [47], but technical difficulties prevented a deeper analysis at the time.
This energy was picked up by Thomsen in [53], in which he discussed the Möbius
invariance of the integral and found the Euler-Lagrange equation

∆SH + 2H(H2 −G) = 0. (1.2)

Here ∆S denotes the Laplace-Beltrami and G the Gauss curvature of S with respect to
the first fundamental form. Every surface satisfying this equation is called a Willmore
surface. This naming goes back to Willmore in [55], in which he revived the discussion
about Willmore surfaces. In [11] Bryant was able to classify Willmore surfaces under
an additional constraint, which gives a deep connection to minimal surfaces.
The Willmore energy can be seen as a natural modification of the area functional,
which greatly motivated the development of nonlinear partial differential equations of
second order in the last century. It is the present author’s opinion that the Willmore
energy will play a similar role for higher order equations.
Apart from pure mathematical interest the Willmore energy already plays an impor-
tant role in physical applications, e.g. Helfrich modeled the elastic energy of thin shells
in [30] or Ou-Yang described thin biomembranes in [45]. Other possible applications
are e.g. in image inpainting (see e.g. [14]).
Many beautiful results concerning closed Willmore surfaces have been proven. Exis-
tence for minimisers with prescribed genus are established in [5,52] and an analysis of
branch points and singularities was carried out in [35,36]. By working below an energy
threshold compactness results for sequences of Willmore surfaces have been proven in
e.g. [9, 49]. Under additional symmetry assumptions closed Willmore surfaces were
constructed in [32]. Finally Marques & Neves proved the famous Willmore conjecture
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1. Introduction

in [42] and therefore found the ’optimal’ doughnut.
Recently constrained minimisation of the Willmore energy has been considered as well.
For example prescribing the conformal class (see e.g. [51]), the isoperimetric ratio (see
e.g. [34]) or using Lagrangian and Hamiltonian deformations (see e.g. [40]).
In contrast this thesis deals with a Dirichlet boundary problem for the Willmore equa-
tion. A discussion of suitable boundary problems was done by Nitsche in [44]. Since
the Willmore equation is of fourth order, maximum principles, de Giorgi-Nash-Moser-
Stampacchia-type arguments or Schwarz reflection principles cannot be applied. Fur-
thermore the Laplace-Beltrami operator depends on the unkown surface and therefore
the equation is highly nonlinear. Variational approaches are difficult as well, since the
Willmore energy is invariant under Möbius transformations (see [53]) and minimising
sequences do not have to be bounded in the Sobolev space H2. Nevertheless a general
existence result for branched Willmore immersions was shown by Schätzle in [50]. He
worked in the sphere S3 to overcome certain compactness problems and therefore it is
not clear, whether the point ∞ can be excluded, when the surface is pulled back to
R3 by the stereographic projection. Also it seems very little topological or geometrical
information about a solution can be be extracted of the proof. To obtain such solu-
tions Deckelnick & Grunau started examining elastic rods in [19, 21] under Dirichlet
and Navier boundary conditions, which were later extended to a full discussion in [41]
by Mandel. Later surfaces of revolution were considered by Dall’Acqua, Deckelnick &
Grunau in [17], to obtain 2-dimensional Willmore surfaces, where explicit geometric
properties can be proven. We like to pursue a similar approach and consider Willmore
surfaces of revolution as well. Here such a surface of revolution S(c) is defined by a
sufficiently smooth regular curve c : [0, 1] → R × (0,∞) via the following parameteri-
sation

[0, 1]× [0, 2π] 3 (t, ϕ) 7→ f(t, ϕ) = (c1(t), c2(t) cosϕ, c2(t) sinϕ). (1.3)

These surfaces of revolution in conjunction with the Willmore energy have applica-
tions in e.g. modelling of lipid bilayers (see e.g. [27] and references therein). The
corresponding Dirichlet problem, with which this thesis is mainly concerned, can be
stated as  ∆S(c)H + 2H(H2 −G) = 0, in (0, 1)

c(0) = (−1, α−), c(1) = (1, α+), ċ2(0) = ċ2(1) = 0,
ċ1(0), ċ1(1) > 0,

(1.4)

with α−, α+ > 0. This thesis gives an existence result for non-symmetric Dirichlet
data and qualitative properties are shown. In the symmetric case (i.e. α− = α+)
additional problems, like uniqueness and symmetry of a profile curve, are adressed.
These results are discussed more closely in Section 1.2.
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1.2. Main results

1.2. Main results

Our first main result is concerned with existence of a solution of the Dirichlet prob-
lem (1.4), with non-symmetric data. In case of symmetric boundary conditions (i.e.
α = α− = α+) Dall’Acqua, Deckelnick & Grunau showed existence in [17] by a vari-
ational approach in the class of graphs. This existence result was later extended to
arbitrary boundary angles in [18], but the data still had to be symmetric. Under natu-
ral boundary conditions existence was shown with symmetric boundary data in [6,20]
and later extended to arbitrary α−, α+ > 0 in [7], also by a variational approach. In
this setting c can be parameterised as a graph over the x-axis. The authors of these
papers inserted catenoids into a minimising sequence to obtain a priori bounds. The
resulting curve would automatically satisfy H = 0 at the boundary. In our setting we
have to respect the prescribed boundary angle, which is not necessarily preserved, if a
catenoid is inserted. Therefore our reasoning is more involved than in [7].
We also proceed by a variational approach. Hence the following objects will come in
handy. The class of admissible curves is denoted by

Mα−,α+ := {c ∈ H2([0, 1],R× (0,∞)) : c(0) = (−1, α−), c(1) = (1, α+),

ċ2(0) = ċ2(1) = 0, ċ1(0), ċ1(1) > 0, |ċ| 6= 0}.
(1.5)

The infimum of the Willmore energy is called

W e
α−,α+

:= inf{We(S(c)) : c ∈Mα−,α+
}. (1.6)

In contrast to [7] we are not able to show existence for every α−, α+ > 0, hence we
impose an explicit smallness condition on W e

α−,α+
. This theorem is joint work with

Hans-Christoph Grunau.

Theorem 1.1 (see [25] Theorem 1.1). Let α−, α+ > 0 and satisfy W e
α−,α+

< 4π.
Then there exists a c ∈Mα−,α+ ∩ C∞([0, 1],R× (0,∞)) with

We(S(c)) = W e
α−,α+

.

This minimiser does not intersect itself.

Our reasoning consists of four major steps: First we reformulate the problem in the
upper half plane (see (2.12)). Then we reparameterise a minimising sequence propor-
tionally to hyperbolic arclength. This allows us to show boundedness in H2, iff the
hyperbolic arclength of the sequence is bounded (see Theorem 3.1). In Section 3.2 we
establish these bounds by working below the energy threshold of 4π. Section 3.3 is
dedicated to proving regularity of a solution. Injectivity of the minimiser can only be
shown later (see Remark 5.20), after an order reduction argument of the underlying
differential equation by Langer & Singer is established and analysed (see Chapters 4
and 5). Numerical examples of solutions c can be found in the Appendix A.2.
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1. Introduction

Imposing smallness conditions for boundary value problems to show existence of Will-
more surfaces has already been done by Nitsche in [44], although these are very severe
and by no means explicit. Recently existence of Willmore immersions without symme-
try assumptions satisfying free boundary conditions and prescribed surface area were
established in [2]. Also in this paper smallness assumptions had to be imposed on the
surface area. Compactness under an energy threshold was also observed for closed
Willmore immersions in [3], in which a bubbling phenomenon was discovered, which
leads to a loss of compactness.
Unfortunately existence for arbitrary α−, α+ for (1.4) in contrast to Theorem 1.1 was
not established in this thesis. Theorem 6.1 gives a partial answer and in Chapter B an
idea on how to proceed further is presented. The idea mainly consists in employing a
shooting method, which is similar to the proof of Theorem 1.4.

In [17] and [18] the profile curve of a Willmore surface of revolution, satisfying
symmetric Dirichlet data, is also a graph. This observation simplifies the description
of such surfaces a lot. Under natural boundary conditions this holds true for every set
of boundary values (see [7]), since these solutions are close to catenoids. In our case
this cannot be expected (see Lemmas 7.6 and 7.7). Nevertheless we are able to prove
a similar result under more restrictive but remarkably explicit smallness conditions
on the boundary data. Please note that this question is still widely open for two-
dimensional Willmore graphs (cf. [22]) and we hope that our reasoning here gives
some insight in this case as well.

The idea for the following smallness condition is due to Hans-Christoph Grunau and
is sketched in Figure 1.1.

Assumption 1.2 (see [25] Assumption 1.2). A pair (α−, α+) ∈ R+×R+ satisfies the
Assumption 1.2, iff the following is true:

• If α− ≤ α+, then for all x ∈ R

p1,α+
(x) < α− cosh

(
1 + x

α−

)
.

• If α− > α+, then for all x ∈ R

p−1,α−(x) < α+ cosh

(
1− x
α+

)
.

Here px0,r denotes the upper half circle with centre (x0, 0), radius r and is given by

px0,r(x) =

{ √
r2 − (x− x0)2, x ∈ (x0 − r, x0 + r)

0, else.

4



1.2. Main results

Figure 1.1.: Smallness assumption for boundary data.

Under these assumptions the following theorem holds, which is joint work with
Hans-Christoph Grunau.

Theorem 1.3 (see [25] Theorem 1.3). If the pair (α−, α+) ∈ R+ × R+ satisfies As-
sumption 1.2 the following Dirichlet problem possesses a graph u : [−1, 1]→ (0,∞) as
solution: {

∆S(u)H + 2H(H2 −G) = 0, in (−1, 1)
u(±1) = α±, u

′(±1) = 0.
(1.7)

Moreover u satisfies
We(S(u)) = W e

α−,α+
< 4π.

For the proof (see Theorem 7.5) we use two main ingredients: First we analyse
the Euler-Lagrange equation by an order reduction argument by Langer & Singer
(see [37]) in Chapters 4 and 5. Then we proceed by inserting suitable parts of catenoids
and half circles, if necessary. This insertion idea was first developed by Dall’Acqua,
Deckelnick & Grunau in [17] and developed further by the present author and Amos
Koeller in [26, Section 2]. He showed existence of a graphical minimiser for symmetric
boundary data this way. Since Theorem 1.3 gives a stronger result, his contribution is
not included in this thesis, although it inspired in parts the present author’s reasoning
for Theorem 1.3.

A similar but more general order reduction argument was also developed by Bryant
& Griffiths in [12] shortly before [37], but the more ad-hoc and geometric nature
of [37] enables us to reach our results more directly. These arguments were also recently
picked up and extended in [31] to analyse Willmore tori restricted to conformal classes.
On the other hand compactness results were also obtained in [43] for a constrained
minimisation problem for the Willmore energy by also inserting suitable comparison
functions into a minimising sequence.

From this point on all results on Dirichlet boundary value problems for Willmore
surfaces of revolution are restricted to the symmetric case, i.e. α := α− = α+.
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1. Introduction

Uniqueness for Willmore graphs with natural boundary data has been proven in [8].
For Dirichlet data more restrictions seem to be necessary to show a similar result. For
disk type Willmore surfaces with constant boundary angle such a result was obtained
in [46] and later extended to star-shaped domains in [16]. For Willmore surfaces
of revolution nonuniquness was only proven under natural boundary conditions (see
e.g. [7]) but for symmetric Dirichlet data numerical evidence was found in [18]. Here
we give a nonuniqueness result:

Theorem 1.4 (see [24] Theorem 1.1). There exists an α∗ ≥ 0 such that the following
Dirichlet Problem possesses at least two different solutions ∀α > α∗.{

∆S(u)H + 2H(H2 −G) = 0, in (−1, 1)
u(±1) = α, u′(±1) = 0.

(1.8)

One solution was already constructed in [17] by a variational approach. We obtain
another solution by a shooting method in Theorem 8.5. Again a Langer & Singer order
reduction method (see [37]) is employed (see chapters 4 and 5) to analyse a solution
of an initial value problem (see (4.8)) with suitable initial data. A similar kind of
shooting method is explained in Section A.1 to numerically obtain a set of solutions
of (1.4) in Section A.2.

Whether a minimiser of a variational problem inherits the symmetry of the boundary
data is interesting, since e.g. solutions can be obtained in a simpler manner. For
example the answer for the Newton problem of minimal aerodynamical resistance
is ’no’ (see e.g. [13, Section 1.3]), but Palmer was able to prove the opposite for
Willmore graphs under zero boundary conditions in [46]. Here we show, that an
energy minimising profile graph of the Willmore energy under symmetric Dirichlet
boundary data has to be symmetric as well.

Theorem 1.5 (see [26] Theorem 1.1). Every energy minimising solution u : [−1, 1]→
(0,∞) of (1.8) is symmetric with respect to the y-axis.

This result is joint work with Amos Koeller, but his contribution is not integrated
into this thesis. He proved existence of an energy minimising graph under symmetric
Dirichlet data, but we can use Theorem 1.3 to replace this result. The present author’s
contribution is an a priori energy estimate (see Lemma 9.5) for non-even solutions of
(1.8), which is again shown by the order reduction argument provided by Langer &
Singer (see [37]). This estimate directly contradicts the energy estimate for a minimiser
in Theorem 1.3. This result has another consequence: The a priori estimates obtained
in [17] (they are cited in this thesis in Theorem 8.6), which were achieved in a class of
of even functions, can directly be applied to a minimiser in Mα,α.

Since for minimal surfaces Bernstein’s result holds and the Willmore energy and the
area functional are related, a similar result is to be expected. For Willmore graphs
such results under additional constraints (e.g. L2 bounds) were found in [8,15]. In our

6



1.2. Main results

situation the topological class differs, but we are able to provide a similar result with
catenoids instead of planes:

Theorem 1.6 (see [24] Theorem 1.2). Let u : R → (0,∞) be smooth and let S(u)
satisfy the Willmore equation (1.2). Then there exists a Möbius transformation T :
R× (0,∞)→ R× (0,∞) such that

{(x, u(x)) : x ∈ R} = {T (x, cosh(x)) : x ∈ R}.

This theorem quickly drops out of the order reduction argument by Langer & Singer
(see [37]) by analysing every possible solution of the underlying differential equation
(see Theorem 5.4). This result especially means, that there are no surfaces of revolution
with periodic profile graphs satisfying the Willmore equation (cf. [23]).
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2. Geometric background

This chapter does not contain any new results, but collects basic knowledge for the
reader’s convenience. These facts will be needed to prove the main results and have
already been gathered in the present author’s diploma thesis [23].

2.1. Surfaces of revolution and the upper half plane

In this section we derive the basic formulae we need for our calculations. These are
based on [4].
For a surface of revolution S(c), given by a curve c ∈ Mα−,α+

(see (1.5)), the metric
tensor is

(gij)i,j=t,ϕ =

(
(ċ1)2 + (ċ2)2 0

0 (c2)2

)
. (2.1)

The second fundamental form can then be calculated as

(hij)i,j=t,ϕ =
1

|ċ|

(
c̈1ċ2 − c̈2ċ1 0

0 ċ1c2

)
. (2.2)

with respect to the ’interior’ normal

ν(t, ϕ) =
1

|ċ|
(ċ2(t),−ċ1(t) cosϕ,−ċ1(t) sinϕ). (2.3)

Here we use |ċ| =
√

(ċ1)2 + (ċ2)2 to denote the euclidean length of a vector. Now we
can write down the mean curvature H. For this we use the sign convention, that H is
positive if the surface is mean convex and negative if it is mean concave with respect
to the interior normal ν.

H =
1

2

c2c̈1ċ2 − c2c̈2ċ1 + |ċ|2ċ1

|ċ|3c2
, (2.4)

and finally the Willmore energy is

We(S(c)) =
π

2

∫ 1

0

(c2c̈1ċ2 − c2c̈2ċ1 + |ċ|2ċ1)2

|ċ|5c2
dt. (2.5)

9



2. Geometric background

Now we reformulate the problem by introducing the elastic energy for curves on the
upper half plane H2 = {(x, y) : y > 0}, equipped with the hyperbolic metric

ds2 =
dx2 + dy2

y2
, (2.6)

which will also be denoted by g(·, ·). The Christoffel symbols are given by

Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = 0, Γ1
21 = Γ1

12 = Γ2
22 = −1

y
, Γ2

11 =
1

y
. (2.7)

The covariant derivative of a curve c can then be calculated as

∇ċċ =

(
c̈1 − 2

ċ1ċ2

c2

)(
1
0

)
+

(
c̈2 − (ċ2)2

c2
+

(ċ1)2

c2

)(
0
1

)
. (2.8)

Since the hyperbolic metric is conformal to the euclidean metric, the unit normal can
be choosen as

N =
1√

gc(ċ, ċ)

(
−ċ2
ċ1

)
. (2.9)

We use this sign convention, because

(
ċ√

gc(ċ,ċ)
, N

)
becomes positively oriented. With

this we obtain the geodesic curvature (please keep in mind, that |ċ| =
√

(ċ1)2 + (ċ2)2

denotes the usual euclidean length)

κ[c] =
gc(∇ċċ, N)

gc(ċ, ċ)
=
c̈2ċ1c2 − c̈1ċ2c2 + ċ1(ċ2)2 + (ċ1)3

|ċ|3
. (2.10)

and in turn can introduce the hyperbolic elastic energy of a curve c by

Wh(c) :=

∫ 1

0

(κ[c](t))2 ds(t) =

∫ 1

0

(c̈2ċ1c2 − c̈1ċ2c2 + ċ1(ċ2)2 + (ċ1)3)2

|ċ|5c2
dt. (2.11)

The next observation goes back to Bryant & Griffiths in [12] and connects the Willmore
energy with the hyperbolic elastic energy

2

π
We(S(c)) = Wh(c)− 4

[
ċ2√

(ċ1)2 + (ċ2)2

]1

0

. (2.12)

This and [28, Lemma 8.2] shows, that the associated surface of revolution of a critical
point of Wh satisfies the Willmore equation (1.2). Finally we state three equations
which will be useful on several occasions: The Frenet equations for a curve c parame-

10



2.2. Möbius transformations

terised by hyperbolic arclength with geodesic curvature κ[c] are (see (2.8))

c̈1 − 2
1

c2
ċ1ċ2 = −κ[c]ċ2, (2.13)

c̈2 − 1

c2
(ċ2)2 +

1

c2
(ċ1)2 = κ[c]ċ1. (2.14)

If on the other hand c can be reparameterised as a smooth graph u : [−1, 1]→ (0,∞),
the hyperbolic elastic energy becomes

Wh(u) =

∫ 1

−1

u′′(x)2u(x)

(1 + u′(x)2)
5
2

+
1

u(x)
√

1 + u′(x)2
dx. (2.15)

2.2. Möbius transformations

This section provides some lemmas and definitions concerning Möbius transformations
and their connection to the Willmore energy. We start with inversions, which will be
needed to define Möbius transformations. Additional information concerning these
special kind of maps can be found in [48, chapter 4].

Definition 2.1 (see [48] Equations (4.1.1) and (4.1.2)).

1. A map ρ : Rn → Rn is called an inversion at a hyperplane, iff there is an a ∈ Rn
with |a| = 1 and a t ∈ R exist, such that

∀x ∈ Rn ρ(x) = x+ 2(t− 〈a, x〉)a.

Here 〈·, ·〉 denotes the euclidean scalar product.

2. A map σ : Rn ∪ {∞} → Rn ∪ {∞} is called an inversion at a sphere, iff there is
an a ∈ Rn and an r > 0 exist, such that

σ(x) =


a+

(
r

|x−a|

)2

(x− a), x ∈ Rn \ {a},
a, x =∞,
∞, x = a.

Without loss of generality we can assume, that an inversion at a hyperplane maps
∞ to ∞. A Möbius transformation is now defined as follows.

Definition 2.2 (see [48] p. 116). A map T : Rn∪{∞} → Rn∪{∞} is called a Möbius
transformation, iff it can be expressed as a finite composition of inversions at spheres
and/or hyperplanes.

11



2. Geometric background

Examples of Möbius transformations are translations and dilations (see e.g. [23, Ex-
ample 2.31] or [48, chapter 4]). Thomsen showed in [53] the following invariance for the
conformal Willmore energy Wk(S) :=

∫
S

(H2 −G) dA under a Möbius transformation
T which are regular on S:

Wk(S) = Wk(T (S)). (2.16)

Here S ⊂ R3 denotes a smooth, regular, two dimensional surface.

With this equation and (2.12), or by direct calculations, we have on the upper half
plane H2 the following lemmas.

Lemma 2.3 (see e.g. [23] Corollary 3.11). Let T : R2∪{∞} → R2∪{∞} be a Möbius
transformation of the upper half plane, i.e. T (H2) = H2. Then Wh (cf. (2.11)) is
invariant under T .

We also have some pointwise properties.

Lemma 2.4 (see e.g. [23] Theorem 6.6). A Möbius transformation of the upper half
plane is an isometry of H2 with respect to the hyperbolic metric (2.6).

Lemma 2.5 (see e.g. [23] Theorem 6.8). Let L > 0 and c : [0, L] → H2 be a reg-
ular curve with geodesic curvature κ[c]. Let additionally T : H2 → H2 be a Möbius
transformation of the upper half plane and κ[T (c)] be the geodesic curvature of T (c).
Then

∀t ∈ [0, L] |κ[c](t)| = |κ[T (c)](t)|.

Lemma 2.6 (see e.g. [23] Theorem 6.7). Let p ∈ H2 and V ∈ TpH2 with |V |g = 1.
Then there exists a Möbius transformation T with T (H2) = H2 and z > 0 such that

T (p) = (0, z), dT (p)V = (z, 0).

2.3. Killing vector fields and curves with constant
hyperbolic curvature

This section introduces Killing vector fields and studies their integral curves in H2.

Definition 2.7 (see e.g. [39] Exercise 13.13). Let (M, g) be a regular Riemannian
surface. Then a vector field V on M is called a Killing vector field, iff the flow
ΦV : M × R → M of V satisfies the following condition: For every t ∈ R the map
ΦV (·, t) : M →M is an isometry with respect to g.

Remark 2.8 (see e.g. [23] Remark 5.3). Every integral curve of a Killing vector field
is parameterised proportionally to arclength.

12



2.3. Killing vector fields and curves with constant hyperbolic curvature

Lemma 2.9 (see e.g. [33] 1.6.7). V is a Killing vector field on a regular Riemannian
surface (M, g), iff in local coordinates

∀i, j = 1, . . . ,dim(M) :
∑
k

(
V k

∂gij
∂xk

+ gjk
∂V k

∂xi
+ gik

∂V k

∂xj

)
= 0.

Example 2.10 (see e.g. [23] Example 5.8). V is a Killing vector field on H2, iff

V (x, y) = a

(
x2−y2

2
xy

)
+ b

(
x
y

)
+ c

(
1
0

)
,

with real parameters a, b, c ∈ R.

Theorem 2.11 (see e.g. [23] Theorem 5.14). Let (M, g) be a two dimensional regular
Riemannian surface with a Killing vector field V and the corresponding flow ΦV . Then
every integral curve t 7→ ΦV (·, t) of V possesses constant geodesic curvature.

The following lemma was not part of the present author’s diploma thesis, but deals
with Killing fields and helps to find special integral curves.

Lemma 2.12 (see e.g. [24] Lemma A.5). Let V be a Killing vector field on a regular
Riemannian surface (M, g). Let p ∈M be critical for |V (·)|g. Then the integral curve
of V starting in p is a geodesic.

Proof. Using normal coordinates in p and the differential equation in Lemma 2.9 we
obtain ∇V (p)V (p) = 0. Together with Theorem 2.11 this yields the desired result.

With Theorem 2.11 in mind we look for curves in H2 with constant geodesic curva-
ture.

Example 2.13 (see e.g. [23] Example 6.9). Let a, b, c, d ∈ R and

CL : R→ R2, t 7→ (a, b) + t(c, d)

be a straight line with CL(R) ∩ H2 6= ∅. Then the geodesic curvature in H2 can be
calculated by

κ[CL] =
c√

c2 + d2
.

Example 2.14 (see e.g. [23] Example 6.10). Let r > 0 and M = (M1,M2) ∈ R2

define an euclidean circle by

Cr,M (t) := r(sin t, cos t) + (M1,M2), t ∈ [0, 2π).

If we further assume Cr,M (R)∩H2 6= ∅, we can compute the geodesic curvature in the
intersection:

κ[Cr,M ] = −M
2

r
.
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2. Geometric background

The following lemma classifies every curve with constant geodesic curvature in H2.

Lemma 2.15 (see e.g. [10] chapter 3 or [23] Remark 6.12). Let κ[c] ∈ R be the constant
geodesic curvature of a regular curve c in H2. Then, if

1. |κ[c]| ∈ [0, 1): c is a circle, meeting the x-axis in two different points, or c is a
straight line, which is not parallel to the x-axis.

2. |κ[c]| = 1: c is a circle, meeting the x-axis in exactly one point, or c is a straight
line parallel to the x-axis.

3. |κ[c]| > 1: c is a circle, which does not intersect the x-axis.

14



3. Existence for curves

This chapter is dedicated to proving Theorem 1.1 except the injectivity (embedded-
ness) of the solution, which is shown in Chapter 5, see Remark 5.20. It consists of the
Sections 3,4 and 5 of [25] and applies a variational method. In Section 3.1 we examine
a special kind of parameterisation to eliminate the inner invariance of Wh (cf. (2.11)).
To apply these results, a priori estimates on the hyperbolic arclength are required,
which are being deduced in Section 3.2. This will give us a weak solution of (1.4),
while in Section 3.3 C∞ regularity is shown.

3.1. A suitable parameterisation

This section is taken directly out of [25, Section 3]. Here we introduce a special
form of the elastic energy by reparameterising an admissible curve. Let c ∈ Mα−,α+

be parameterised proportionally by hyperbolic arclength and let L be the hyperbolic
arclength of c. The idea to employ this special kind of parameterisation was already
used by Langer & Singer in [38], but on compact manifolds in combination with the
L2-flow of Wh(·). By using this parameterisation we obtain

L2 = g(ċ, ċ) =
(ċ1)2 + (ċ2)2

(c2)2
, (3.1)

and the geodesic curvature κ[c] satisfies

κ[c]2 = g

(
∇ ċ

L

ċ

L
,∇ ċ

L

ċ

L

)
=

1

L4
g(∇ċċ,∇ċċ). (3.2)

Differentiating (3.1) yields
ċ1c̈1 + ċ2c̈2 = L2c2ċ2. (3.3)

Let us now turn to the elastic energy itself:∫ 1

0

κ[c]2 ds =
1

L3

∫ 1

0

g(∇ċċ,∇ċċ) dt

=
1

L3

∫ 1

0

1

(c2)2

((
c̈1 − 2

ċ1ċ2

c2

)2

+

(
c̈2 − (ċ2)2

c2
+

(ċ1)2

c2

)2
)
dt

15



3. Existence for curves

=
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 − 4

c̈1ċ1ċ2

c2
+ 4

(
ċ1ċ2

c2

)2

+ (c̈2)2 − 2
c̈2(ċ2)2

c2
+ 2

c̈2(ċ1)2

c2
+

(ċ2)4

(c2)2
− 2

(
ċ1ċ2

c2

)2

+
(ċ1)4

(c2)2

)
dt

=
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 4

c̈1ċ1ċ2

c2
+ 2

(
ċ1ċ2

c2

)2

− 2
c̈2(ċ2)2

c2
+ 2

c̈2(ċ1)2

c2
+

(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

(3.1)
=

(3.3)

1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 4

c̈1ċ1ċ2

c2
+ 2

(
ċ1ċ2

c2

)2

+ 2
c̈1ċ2ċ1

c2
− 2

L2(ċ2)2c2

c2
+ 2

c̈2

c2
(L2(c2)2 − (ċ2)2) +

(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

(3.3)
=

1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2

c̈1ċ1ċ2

c2
+ 2

(
ċ1ċ2

c2

)2

− 2L2(ċ2)2 + 2c̈2c2L2 + 2
c̈1ċ1ċ2

c2
− 2L2(ċ2)2 +

(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

=
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 + 2

(
ċ1ċ2

c2

)2

+ 2c̈2c2L2 − 4L2(ċ2)2 +
(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt

=
1

L3

(∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 + 2

(
ċ1ċ2

c2

)2

− 2L2(ċ2)2

+
(ċ2)4

(c2)2
+

(ċ1)4

(c2)2

)
dt+ 2L2

∫ 1

0

c̈2
1

c2
− (ċ2)2

(c2)2
dt

)
=

1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2L2(ċ2)2 +

(ċ2)4

(c2)2
+ 2

(
ċ1ċ2

c2

)2

+
(ċ1)4

(c2)2

)
dt

+
2

L

[
ċ2

c2

]1

0

(3.1)
=

1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2L2(ċ2)2 + L4(c2)2

)
dt

+
2

L

[
ċ2

c2

]1

0

.
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3.2. Estimates on hyperbolic arclength

To summarize our findings we state the following equation

Wh(c) =
1

L3

∫ 1

0

1

(c2)2

(
(c̈1)2 + (c̈2)2 − 2L2(ċ2)2

)
dt+ L+

2

L

[
ċ2

c2

]1

0

. (3.4)

With this equation in mind we can prove the following theorem:

Theorem 3.1 (see [25] Theorem 3.1). Let (cn)n∈N ⊂ Mα−,α+
be a minimising se-

quence for Wh(c) with bounded hyperbolic arclength. Then there exists a curve c ∈
Mα−,α+ with

Wh(c) = Wh
α−,α+

:= inf{Wh(v) : v ∈Mα−,α+
}.

Proof. Reparameterise cn : [0, 1] → H2 proportionally by hyperbolic arclength. Let
Ln be the hyperbolic arclength of cn. Since Ln is bounded, c2n is bounded from above
and below. (3.1) then gives us upper bounds on |ċ1| and |ċ2|. With (3.4) there exists
a C > 0 such that

C >

∫ 1

0

(c̈1n)2 + (c̈2n)2 dt.

Hence we can extract a subsequence, which is weakly convergent in H2((0, 1),H2) and
strongly convergent in C1([0, 1],H2) to a curve c : [0, 1]→ H2. The boundary data are
preserved, since we have convergence in C1. This, (3.1) and the bound on Ln ensure,
that c is parameterised proportionally by hyperbolic arclength. This in turn gives us
ċ 6= 0, since c2 is bounded from above as well as from below. Hence c belongs to

Mα−,α+
. Since 1

c2n
converges in C0([0, 1]), the fractions

c̈1n
c2n

and
c̈2n
c2n

converge weakly in

L2((0, 1),H2). Together with the lower semi-continuity of a norm and (3.4) this yields

Wh
α−,α+

≤Wh(c) ≤ lim inf
n→∞

Wh(cn) ≤Wh
α−,α+

= inf{Wh(v) : v ∈Mα−,α+
}.

3.2. Estimates on hyperbolic arclength

This section directly corresponds to [25, Section 4]. If we wish to apply Theorem 3.1 to
obtain a solution of (1.4), we have to find an upper bound for the hyperbolic arclength
of a minimising sequence. We can achieve this, if we work strictly below the threshold
of 8 for the elastic energy. The main idea is contained in the following lemma, which
was found by Hans-Christoph Grunau.

Lemma 3.2 (see [25] Lemma 4.1). Let c ∈Mα−,α+
and 0 < t1 < t2 < 1 with

ċ1(t1) = ċ1(t2) = 0 and ċ2(t1) · ċ2(t2) < 0.
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3. Existence for curves

Then the elastic energy satisfies
Wh(c) ≥ 8.

Proof. Let us distinguish two cases. The first one is ċ2(t1) < 0. Equation (2.12) yields

Wh(c) = Wh(c)
∣∣
[0,t1]

+Wh(c)
∣∣
[t1,t2]

+Wh(c)
∣∣
[t2,1]

≥Wh(c)
∣∣
[t1,t2]

=
2

π
We(S(c))

∣∣
[t1,t2]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t2
t1

≥ 8

The other case is ċ2(t1) > 0. The boundary data and again equation (2.12) yield

Wh(c) = Wh(c)
∣∣
[0,t1]

+Wh(c)
∣∣
[t1,t2]

+Wh(c)
∣∣
[t2,1]

≥Wh(c)
∣∣
[0,t1]

+Wh(c)
∣∣
[t2,1]

=
2

π
We(S(c))

∣∣
[0,t1]

+
2

π
We(S(c))

∣∣
[t2,1]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t1
0

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]1

t2

≥ 8

Hans-Christoph Grunau discovered the following lemma for graphs and the present
author extended it to curves. It uses the same idea as in Lemma 3.2.

Lemma 3.3 (see [25] Lemma 4.2). Let (cn)n∈N ⊂ Mα−,α+ be a sequence, which
satisfies supnWh(cn) < 8. Then there exists a constant C > 0 with

∀t ∈ [0, 1], ∀n ∈ N : C < c2n(t).

Proof. We proceed by contradiction. Let us assume that no such bound exists. Hence
after possibly passing to a subsequence, we can find (tn)n∈N ⊂ [0, 1] with

c2n(tn) = min
t∈[0,1]

c2n(t)→ 0, (n→∞).

Because of the boundary data we have ċ2n(tn) = 0 for n large enough. Let us for now
assume the existence of another two sequences 0 < t−n < tn < t+n < 1 with∣∣∣∣∣ ċ2n√

(ċ1n)2 + (ċ2n)2
(t−n )

∣∣∣∣∣→ 1 and

∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

(t+n )

∣∣∣∣∣→ 1.
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3.2. Estimates on hyperbolic arclength

We will show the existence of these sequences later. For now we can use the idea from
Lemma 3.2: Let us assume for the first case that ċ2n(t−n ) < 0 with n large enough.
Then with (2.12) we obtain for n large enough

Wh(cn)
∣∣
[0,tn]

= Wh(cn)
∣∣
[0,t−n ]

+Wh(cn)
∣∣
[t−n ,tn]

≥Wh(cn)
∣∣
[t−n ,tn]

=
2

π
We(S(cn))

∣∣
[t−n ,tn]

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]tn
t−n

≥ 4 + o(1).

If we assume on the other hand that ċ2n(t−n ) > 0 for large n, then

Wh(cn)
∣∣
[0,tn]

= Wh(cn)
∣∣
[0,t−n ]

+Wh(cn)
∣∣
[t−n ,tn]

≥Wh(cn)
∣∣
[0,t−n ]

=
2

π
We(S(cn))

∣∣
[0,t−n ]

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]t−n
0

≥ 4 + o(1).

We can work completely analogously in the interval [tn, 1] and obtain

Wh(cn) = Wh(cn)
∣∣
[0,tn]

+Wh(cn)
∣∣
[tn,1]

≥ 8 + o(1),

which would be a contradiction. Now we have to show the existence of t−n and t+n :
Again we proceed by contradiction and assume, that such sequences t−n , t+n do not
exist. After passing to a further subsequence we can find a δ > 0 such that

∀n ∈ N,∀t ∈ [0, 1] :

∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

(t)

∣∣∣∣∣ ≤ 1− δ. (3.5)

Squaring the inequality gives us for all t ∈ [0, 1]

⇒ (ċ2n)2 ≤ (1− δ)2 · ((ċ1n)2 + (ċ2n)2)

⇒ 0 ≤ (ċ2n)2(1− (1− δ)2) ≤ (1− δ)2(ċ1n)2.

Since the curves are regular (ċ 6= 0), we obtain

∀t ∈ [0, 1] : ċ1n 6= 0.

Hence the curve cn can be reparameterised as a graph on [0, 1]. This way we obtain
a sequence of functions un ∈ H2([−1, 1], (0,∞)) representing the curves on [0, 1]. To
obtain a contradiction we first have to show that |xn| := |c1n(tn)|9 1. Thanks to (3.5)
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3. Existence for curves

there exists a C > 0, such that ∀x ∈ [−1, 1] we have |u′n(x)| ≤ C. The mean value
theorem yields

|xn ± 1| ≥ min{α−, α+}
C

+ o(1) > 0

for n large enough. Since the elastic energy is a geometric functional, it is invariant
under reparameterisation. This yields together with (2.15) and (2.6)

8 ≥Wh(cn)
∣∣
[0,tn]

= Wh(un)
∣∣
[−1,xn]

=

∫ xn

−1

u′′n(x)2un(x)

(1 + u′n(x)2)
5
2

dx+

∫ xn

−1

1

un(x)
√

1 + u′n(x)2
dx

≥
∫ xn

−1

1

un(x)
√

1 + u′n(x)2
dx.

=

∫ xn

−1

1

1 + u′n(x)2
ds(x)

≥ 1

1 + C2

∫ xn

−1

ds(x)→∞,

since the hyperbolic arclength tends to infinity. This is the case, because un(xn)→ 0.
The proof for t+n is analogous to t−n by working on [tn, 1].

The proof of the next lemma is based on the previous one and provides an upper
bound.

Lemma 3.4 (see [25] Lemma 4.3). Let (cn)n∈N ⊂ Mα−,α+ be a sequence, which
satisfies supnWh(cn) < 8. Then there exists a constant C > 0 with

∀t ∈ [0, 1], ∀n ∈ N : C > |cn(t)|.

Proof. As in Lemma 3.3 we will proceed by contradiction. After possibly passing to a
subsequence we may assume the existence of a sequence (ξn)n∈N ⊂ [0, 1] with

max{|cn(t)|, t ∈ [0, 1]} = |cn(ξn)| → ∞, (n→∞).

We transform this problem in such a way, that we can directly apply our approach
from Lemma 3.3. To do this we need the Cayley transformation Q : H2 → {(x, y) ∈
R2 : |(x, y)| < 1} =: D2 given by Q(x, y) = 1

x2+(1+y)2

(
x2 − 1 + y2,−2x

)
. Since it is an

isometry between the Poincaré disk D2 and H2, the elastic energy remains invariant
under this transformation. Now we need a rotation around (0, 0) ∈ R2 with angle
ϕ > 0. Let us denote this function by Rϕ : R2 → R2. Please keep in mind that Rϕ
does not change the elastic energy in D2, since it is an isometry of this manifold. Let
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3.2. Estimates on hyperbolic arclength

us now define the transformed curves:

cn,ϕ : [0, 1]→ H2 with cn,ϕ(t) := Q−1(Rϕ(Q(cn(t)))).

Figure 3.1 explains the transformation. Since ϕ > 0 we can find a sequence (tϕn)n∈N ⊂

Figure 3.1.: Transformation of curves, such that an extremum tends to zero.

(0, 1) for n large enough with

c2n,ϕ(tϕn) = min
t∈[0,1]

c2n,ϕ(t)→ 0.

Let ε > 0 be fixated but arbitrary. Since Rϕ, Q and Q−1 are smooth and cn satisfies
the boundary data, we can find a small angle ϕ > 0 with∣∣∣∣∣ ċ2n,ϕ(0)

ċ1n,ϕ(0)

∣∣∣∣∣ < ε and

∣∣∣∣∣ ċ2n,ϕ(1)

ċ1n,ϕ(1)

∣∣∣∣∣ < ε.

This also yields ∣∣∣∣∣∣ ċ2n,ϕ(0)√
(ċ1n,ϕ(0))2 + (ċ2n,ϕ(0))2

∣∣∣∣∣∣ ≤
∣∣∣∣∣ ċ2n,ϕ(0)

ċ1n,ϕ(0)

∣∣∣∣∣ < ε,

and the same result for t = 1. As in in the proof of Lemma 3.3 we can find two
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3. Existence for curves

sequences 0 < tϕ,−n < tϕn < tϕ,+n < 1 for n large enough, which satisfy∣∣∣∣∣∣ ċ2n,ϕ√
(ċ1n,ϕ)2 + (ċ2n,ϕ)2

(tϕ,±n )

∣∣∣∣∣∣→ 1, (n→∞).

Let us assume for large n, that we have ċ2n,ϕ(tϕ,−n ) > 0 and ċ2n,ϕ(tϕ,+n ) > 0. Then the
elastic energy can be estimated with (2.12) as follows

Wh(cn) = Wh(cn,ϕ) ≥Wh(cn,ϕ)
∣∣
[0,tϕ,−n ]

+Wh(cn,ϕ)
∣∣
[tϕn,t

ϕ,+
n ]

=
2

π
We(S(cn,ϕ))

∣∣
[0,tϕ,−n ]

+
2

π
We(S(cn,ϕ))

∣∣
[tϕn,t

ϕ,+
n ]

+ 4

 ċ2n,ϕ√
(ċ1n,ϕ)2 + (ċ2n,ϕ)2

t
ϕ,−
n

0

+ 4

 ċ2n,ϕ√
(ċ1n,ϕ)2 + (ċ2n,ϕ)2

t
ϕ,+
n

tϕn

≥ 8 + o(1)− ε > 8− 2ε,

for n large enough. The remaining cases can be dealt with in the same way. By
choosing ε < 1

2 (8− supnWh(cn)), we finally reach a contradiction.

Now we can tackle our main estimate for the hyperbolic arclength:

Theorem 3.5 (see [25] Theorem 4.4). Let (cn)n∈N ⊂ Mα−,α+ be a sequence with
supnWh(cn) < 8. Let Ln be the hyperbolic arclength of cn. Then there exists a
constant C > 0 with

∀n ∈ N : Ln ≤ C.

Proof. Again we proceed by contradiction. So let us assume, that after passing to
a subsequence we obtain Ln → ∞ for n → ∞. By reparameterising the curves
proportionally by hyperbolic arclength, we achieve with Lemma 3.3 and (3.1) the
following uniform convergence on [0, 1] for (n→∞)

(ċ1n)2 + (ċ2n)2 = (c2n)2L2
n →∞. (3.6)

With Lemma 3.4 and the mean value theorem we obtain three sequences:

∞ > C >

∣∣∣∣c1n(2

6

)
− c1n

(
1

6

)∣∣∣∣ = |ċ1n(tn,1)|1
6
,

1

6
< tn,1 <

2

6
,

∞ > C >

∣∣∣∣c2n(4

6

)
− c2n

(
3

6

)∣∣∣∣ = |ċ2n(tn,2)|1
6
,

3

6
< tn,2 <

4

6
,

∞ > C >

∣∣∣∣c1n(6

6

)
− c1n

(
5

6

)∣∣∣∣ = |ċ1n(tn,3)|1
6
,

5

6
< tn,3 <

6

6
.
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3.3. Regularity of a solution

(3.6) then yields for n→∞

|ċ2n(tn,1)| → ∞,
|ċ1n(tn,2)| → ∞,
|ċ2n(tn,3)| → ∞.

This yields ∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

∣∣∣∣∣ (tn,1)→ 1,∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

∣∣∣∣∣ (tn,2)→ 0,∣∣∣∣∣ ċ2n√
(ċ1n)2 + (ċ2n)2

∣∣∣∣∣ (tn,3)→ 1.

As before we would need to distinguish some cases, but we will just demonstrate the
case ċ2n(tn,1) < 0 and ċ2n(tn,3) < 0.

Wh(cn) ≥Wh(cn)
∣∣
[tn,1,tn,2]

+Wh(cn)
∣∣
[tn,3,1]

=
2

π
We(S(cn))

∣∣
[tn,1,tn,2]

+
2

π
We(S(cn))

∣∣
[tn,3,1]

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]tn,2
tn,1

+ 4

[
ċ2n√

(ċ1n)2 + (ċ2n)2

]1

tn,3

≥ 8 + o(1).

For the other cases one just needs to adjust the intervals of integration and then the
desired contradiction follows.

3.3. Regularity of a solution

This section is taken from [25, Section 5]. To show regularity of a weak solution of
(1.4), we will proceed similarly to [17, Theorem 4, step 2]. First we calculate an Euler-
Lagrange equation for the elastic energy Wh(·). Let c ∈ Mα−,α+

be a critical point
of the hyperbolic elastic energy. We may parameterise this c proportionally by its
hyperbolic arclength L. With the help of (2.10) we obtain for any testing function
ϕ ∈ H2

0 ([0, 1],R2):
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3. Existence for curves

d

dε
κ[c+ εϕ]

∣∣∣∣
ε=0

=
1

|ċ|3
(
ϕ̈2ċ1c2 + ϕ̇1c̈2c2 + c̈2ċ1ϕ2 − ϕ̈1ċ2c2

− c̈1ϕ̇2c2 − c̈1ċ2ϕ2 + ϕ̇1(ċ2)2 + 2ċ1ϕ̇2ċ2 + 3ϕ̇1(ċ1)2
)

− 3
ϕ̇1ċ1 + ϕ̇2ċ2

|ċ|5
(
c̈2ċ1c2 − c̈1ċ2c2 + ċ1(ċ2)2 + (ċ1)3

)
=

1

|ċ|3
(
ϕ̈2ċ1c2 + ϕ̇1c̈2c2 + c̈2ċ1ϕ2 − ϕ̈1ċ2c2

− c̈1ϕ̇2c2 − c̈1ċ2ϕ2 + ϕ̇1(ċ2)2 + 2ċ1ϕ̇2ċ2 + 3ϕ̇1(ċ1)2
)

− 3
ϕ̇1ċ1 + ϕ̇2ċ2

|ċ|2
κ[c].

The derivative of Wh(·) in c(·) is

0 =
d

dε

∫ 1

0

κ[c+ εϕ]2 ds

∣∣∣∣
ε=0

=

∫ 1

0

(
2κ[c]

d

dε
κ[c+ εϕ]

∣∣∣∣
ε=0

|ċ|
c2

+ κ[c]2
(
ċ1ϕ̇1 + ċ2ϕ̇2

c2|ċ|
− |ċ|

(c2)2
ϕ2

))
dt

=

∫ 1

0

(
2
|ċ|
c2
κ[c]

(
1

|ċ|3

(
ϕ̇1c̈2c2 − ϕ̈1ċ2c2 + ϕ̇1(ċ2)2 + 3ϕ̇1(ċ1)2

+ ϕ̈2ċ1c2 + c̈2ċ1ϕ2 − c̈1ϕ̇2c2 − c̈1ċ2ϕ2 + 2ċ1ϕ̇2ċ2
)

− 3κ[c]
1

|ċ|2
(ϕ̇1ċ1 + ϕ̇2ċ2)

)
+ κ[c]2

(
ċ1ϕ̇1 + ċ2ϕ̇2

c2|ċ|
− |ċ|

(c2)2
ϕ2

) )
dt. (3.7)

Let η ∈ C∞c ([0, 1],R) be arbitrary. We define

µ(t) =

∫ t

0

∫ y

0

η(s) ds dy + βt2 + γt3

β =

∫ 1

0

η(s) ds− 3

∫ 1

0

∫ y

0

η(s) ds dy

γ = 2

∫ 1

0

∫ y

0

η(s) ds dy −
∫ 1

0

η(s) ds.

The idea for this comparison function stems from [17, Theorem 4, step 2]. Thanks to
the choice of γ and β, we have µ(0) = µ(1) = µ̇(0) = µ̇(1) = 0. We also observe the
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3.3. Regularity of a solution

following estimates
β, γ, ‖µ‖C1 ≤ C‖η‖L1 .

If we set ϕ(t) = (µ(t), 0), we get ϕ ∈ H2
0 ([0, 1],R2). By inserting this into (3.7), we

obtain for every η ∈ C∞c (0, 1)∣∣∣∣∫ 1

0

κ[c](t)η(t)
ċ2

|ċ|2
dt

∣∣∣∣ ≤ C(c)‖η‖L1 , (3.8)

since every term in (3.7) with the exception of the one with ϕ̈1 (which gives us the
left hand side of (3.8)) can be estimated with the help of c ∈ H2([0, 1],R2) and
κ[c] ∈ L2([0, 1]). Because the hyperbolic arclength is fixed, 1

|ċ|2 is bounded from below

as well (see (3.1)). This and (L1)∗ = L∞ ensure that κ[c]ċ2 ∈ L∞([0, 1]).
We have to repeat this process for ϕ(t) = (0, µ(t)), to obtain a bound for κ[c]. With
the same arguments as above, we get∣∣∣∣∫ 1

0

κ[c](t)η(t)
ċ1

|ċ|2
dt

∣∣∣∣ ≤ C(c)‖η‖L1 , (3.9)

for every η ∈ C∞c ([0, 1]). Hence κ[c]ċ1 ∈ L∞([0, 1]). If we combine this with the bound
on κ[c]ċ2 and (3.1), we finally get κ[c] ∈ L∞([0, 1]). The Frenet equations (2.13) and
(2.14) yield c ∈W 2,∞([0, 1],R2).
Now we can show higher differentiability: For arbitrary η ∈ C∞c ([0, 1]) we define

ν(t) =

∫ t

0

η(s) ds− 3t2
∫ 1

0

η(s) ds+ 2t3
∫ 1

0

η(s) ds. (3.10)

and get

ν(0) = ν(1) = ν̇(0) = ν̇(1) = 0, ‖ν‖C0 ≤ C‖η‖L1 and ‖ν̇‖L1 ≤ C‖η‖L1 .

If we now choose ϕ(t) = (ν(t), 0), insert it into (3.7) and combine it with the already
established L∞-bounds on κ and c̈, we obtain∣∣∣∣∫ 1

0

κ[c](t)η̇(t)
ċ2

|ċ|2
dt

∣∣∣∣ ≤ C(c)‖η‖L1 . (3.11)

The functional F (η) :=
∫ 1

0
κ[c](t)η̇(t) ċ2

|ċ|2 dt is defined on W 1,1([0, 1]), since κ[c] ∈
L∞([0, 1]). (3.11) now allows us to extend it to a functional F̃ on L1([0, 1]), since
W 1,1([0, 1]) is dense in L1([0, 1]) and F is bounded w.r.t. to ‖ · ‖L1 . The Riesz
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3. Existence for curves

representation theorem (see e.g. [54, Thm. II.2.4]) then yields a g ∈ L∞([0, 1]) with

∀f ∈ L1([0, 1]) F̃ (f) =

∫ 1

0

g(t)f(t) dt.

If we go back to C∞c ([0, 1]) as a domain of definition for F̃ , we obtain

∀η ∈ C∞c ([0, 1])

∫ 1

0

g(t)η(t) dt =

∫ 1

0

κ[c](t)η̇(t)
ċ2

|ċ|2
dt.

Since 1
|ċ|2 6= 0 the curvature satisfies κ[c]ċ2 ∈W 1,∞([0, 1]).

Repeating this argument with ϕ = (0, ν(t)), we also obtain κ[c]ċ1 ∈ W 1,∞([0, 1]).
Since ċ 6= 0 and ċ is continous, we finally achieve κ[c] ∈W 1,∞([0, 1]). Then the Frenet
equations (2.13) and (2.14) yield that c ∈W 3,∞([0, 1],R2).
For higher regularity another form of the Euler-Lagrange equation is more appropriate.
Langer & Singer deduced it in [37, p. 3]. By reparameterising c proportionally by
hyperbolic arclength and denoting L as the hyperbolic arclength of c, it can be stated
as follows

2

L2
κ̈[c](t) = −κ[c](t)3 + 2κ[c](t). (3.12)

So κ̈[c] satisfies an equation with right-hand side in W 1,∞([0, 1]), which in return gives
us κ[c] ∈W 3,∞([0, 1]) = C2,1([0, 1]). Hence the Frenet equations (2.13) and (2.14) yield
c ∈ C4([0, 1]). By straightforward bootstrapping we finally obtain c ∈ C∞([0, 1]).
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4. Order reduction for the
Euler-Lagrange Equation

This chapter does not provide any new results. It instead collects very important
knowledge, concerning the analysis of the Euler-Lagrange equation of Wh. It was
conducted by Langer & Singer in [37] and picked up by the present author in his
diploma thesis [23], in which the following results are gathered as well.

4.1. Analysis of the curvature equation

Reparameterising a critical point of Wh by hyperbolic arclength yields with (3.12)
(see [37, Equation (1.2)])

K̈ = K − 1

2
K3. (4.1)

K denotes the geodesic curvature of such a critical point parameterised by hyperbolic
arclength. Every curve in H2 with geodesic curvature satisfying this equation is called
an elastica (see [37, p. 3 bottom]). Multiplying it with K̇ and integrating yields
(see [37, Equation (2.1)])(

K̇(s)
)2

= K2(s)− 1

4
K4(s)−K2

0 +
1

4
K4

0 + (K̇0)2, (4.2)

with constants K0, K̇0 ∈ R. Since the left hand side is always non-negativ and the
right hand side would tend to −∞, if |K| → ∞, every solution and its derivative are
bounded. Hence it can be extended on the whole real numbers (see e.g. [23, Corollary
4.2 and Remark 4.3]). The following lemma helps us to classify solutions of (4.1) (also
cf. [37, p. 6]).

Lemma 4.1 (see [23] Theorem 4.15). Let K : R → R be a smooth solution to (4.1).
Then there exists a point s ∈ R with K̇(s) = 0.

Solutions of (4.1) can be expressed with the help of Jacobian elliptic functions
(see [37, table 2.7]). The following definitions and properties of these functions are
taken from [1, Section 16.1]: Let 0 < k < 1 and

Fk(ϕ) =

∫ ϕ

0

1√
1− k2 sin2 ψ

dψ. (4.3)
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4. Order reduction for the Euler-Lagrange Equation

Since F ′k > 0 we can invert it and define

AM(s, k) = F−1
k (s). (4.4)

The Jacobian elliptic functions can then be expressed as

sn(s, k) = sin(AM(s, k)), cn(s, k) = cos(AM(s, k)),

dn(s, k) =
√

1− k2 sn2(s, k).
(4.5)

The non-trivial solutions of (4.1) are classified by the following three lemmas, since if
K is a solution of (4.1), then −K is as well. Therefore we also employ the following
classification even if the initial curvature K0 is negativ.

Lemma 4.2 (see [37] table 2.7c). Let K ∈ C2(R) be a solution of (4.1) with K(0) =
K0 ∈ (0, 2) and K̇(0) = 0, then

K(s) =

{
2r dn(r(s+ s0), k), if K0 6=

√
2,√

2, if K0 =
√

2,

with

r =

{
K0

2 , if K0 ∈ (
√

2, 2),√
4−K2

0

2 , if K0 ∈ (0,
√

2),

}
∈
(

1

2

√
2, 1

)
,

k =

√
2r2 − 1

r
∈ (0, 1),

s0 =

{
0, if K0 ∈ (

√
2, 2),

1
rFk(π2 ), if K0 ∈ (0,

√
2).

These solutions are called orbitlike, or in the constant case, circular.

Lemma 4.3 (see [37] table 2.7c). Let K ∈ C2(R) be a solution of (4.1) with K(0) = 2
and K̇(0) = 0, then

K(s) =
2

cosh(s)
.

This solution is called asymptotically geodesic.

Lemma 4.4 (see [37] table 2.7c). Let K ∈ C2(R) be a solution of (4.1) with K(0) =
K0 > 2 and K̇(0) = 0, then

K(s) = K0 cn(rs, k)

with

r =

√
−1 +

1

2
K2

0 , k =
K0

2r
.

These solutions are called wavelike.
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4.2. A Killing field for an elastica

4.2. A Killing field for an elastica

The next natural step to understand the shape of a possible elastica would be to
integrate the Frenet equations (2.13) and (2.14). Langer & Singer instead found a
different way and were able to reduce the order of the underlying differential equation
with the following lemma.

Lemma 4.5 (see [37] Proposition 2.1). Let −∞ ≤ a < b ≤ ∞ and γ : (a, b) → H2

be an elastica parameterised by hyperbolic arclength with curvature K : (a, b) → R
satisfying (4.1). Then the vector field

Jγ = K2γ̇ + 2K̇

(
−γ̇2

γ̇1

)
has a unique extension to a Killing vector field J on the whole upper half plane H2.

Remark 4.6 (see [23] p. 49 bottom). If we combine Lemma 4.5 with Example 2.10,
we find parameters a, b, c ∈ R, such that an elastica γ with curvature K satisfies

K2γ̇1 − 2K̇γ̇2 = a
(γ1)2 − (γ2)2

2
+ bγ1 + c (4.6)

K2γ̇2 + 2K̇γ̇1 = aγ1γ2 + bγ2. (4.7)

Lemma 4.7 (see [37] Proposition 2.2). Let −∞ ≤ a < b ≤ ∞ and γ : (a, b) → H2

be an elastica parameterised by hyperbolic arclength with curvature K : (a, b) → R
satisfying (4.1). Let s0 ∈ (a, b) be critical for K. Let also J be the extension of Jγ
given by Lemma 4.5. Then the integral curve I of J starting in γ(s0) is tangent to
γ(s0). The geodesic curvature κ[I] of I is as follows:

κ[I] =
2

K(s0)
.

4.3. A suitable initial value problem and bounding circles

This section summarizes Paragraph 7 of [23], in which explicit bounds for an elastica
are given in means of initial data. These bounds have already been mentioned in [37, p.
8 and Figure 2]. For this let γ : R → H2 be a smooth elastica parameterised by
hyperbolic arclength with curvature K. Lemma 4.1 yields an s0 ∈ R with K̇(s0) = 0.
Since (4.1) is autonomous and because of the Lemmas 2.3, 2.6 and the Frenet equations
(2.13), (2.14), γ satisfies without loss of generality the following initial value problem
(see [23, (AWP), p. 49]).{

∇γ̇ γ̇ = KN, ∇γ̇N = −Kγ̇, K̈ = K − 1
2K

3

γ(0) = (0, z) , γ̇(0) = (z, 0) , K(0) = K0, K̇(0) = 0.
(4.8)
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4. Order reduction for the Euler-Lagrange Equation

Here K0 ∈ R and z > 0. N is a unit normal of γ defined by N = (−γ̇2, γ̇1).
The Killing field J of Lemma 4.5 can be expressed with Example 2.10 and the initial
conditions to (see [23, p. 49 bottom])

J(x, y) = a

(
x2−y2

2
xy

)
+ c

(
1
0

)
. (4.9)

We are especially interested in wavelike elastica, since we need those to construct
additional solutions in chapter 8. Hence let |K0| > 2. Then the following lemma
holds.

Lemma 4.8 (see [37] p. 8 and [23] Chapter 7). Let γ be a solution of (4.8) with
|K0| > 2. Then two euclidean circles B+, B− ⊂ R2 exist, which are the only integral
curves of J (cf. Lemma 4.5), that are tangent to γ. Moreover γ touches B+, iff the
geodesic curvature K has a maximum and it touches B−, iff K has a minimum.

Let us call Br+(x+) = B+ and Br−(x−) = B−. Let K0 > 2, then with Lemma 4.7
and Example 2.14 r+ and x+ can be calculated to (see [23, p. 52]):

r+ =
z

1− 2
K0

, x+ = (0,m+), m+ = −z
2
K0

1− 2
K0

. (4.10)

B+ crosses the x-axis at two points xs > 0 and −xs < 0. The Pythagorean theorem
yields (see [23, p. 52])

xs =
√
r2
+ −m2

+ = z

√
K0 + 2

K0 − 2
. (4.11)

This in turn gives us (see [23, p. 53])

r− =
xs√

1−
(

2
K0

)2
= r+, x− = (0,m−), m− = xs

2
K0√

1−
(

2
K0

)2
= −m+. (4.12)

The formulae for K0 < −2 are completely analogous. Especially the formula for xs
does not change at all.

In the orbitlike case we could also derive such formulae, but we only need the
existence of bounding circles, which can be expressed in more general terms (see also
Figure 4.1):

Lemma 4.9 (see [37] Figure 2 and Section 7.3 in [23]). Let γ : R→ H2 be an arbitrary
orbitlike elastica (cf. Lemma 4.2). Then there exists a point p ∈ H2 and two open Balls
B1 ⊂ B2 ⊂ H2 with centre at p w.r.t. the hyperbolic metric, such that B1,2 ⊂ H2 and

γ(R) ⊂ B2 \B1.
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4.3. A suitable initial value problem and bounding circles

Furthermore the boundaries of B1 and B2 are integral curves of the extended Killing
vectorfield J (cf. Lemma 4.5) and one of them always touches γ, when the geodesic
curvature K has an extremum.

Figure 4.1.: An orbitlike elastica with bounding circles.

In the circular case γ is a circle (see Lemma 2.15 or [23, Section 7.1]). If on the
other hand the curvature of γ equals zero, Lemma 2.15 yields γ to be a straight line
parallel to the y-axis or a half circle centered on the x-axis.

The last cases are K0 = ±2. These correspond to catenoids and Möbius transforms
thereof:

Lemma 4.10 (see [23] Theorem 7.5). Let γ be a solution of (4.8) with K0 = 2. Then

γ(t) = (zt, z cosh t).

Reflecting this solution at the circle of radius z and centre (0, 0) yields with the help
of Lemma 2.5:

Lemma 4.11 (see [23] Theorem 7.6). Let γ be a solution of (4.8) with K0 = −2.
Then

γ(t) =
z

t2 + cosh2 t
(t, cosh t).

A sketch of this solution can be found in Figure 6.3.
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5. Wavelike elastica

This chapter is dedicated to an analysis of wavelike elastica (cf. Lemma 4.4). These
curves play a crucial role in the chapters 6, 7 and 8. It mainly consists of the sections
6 and 7 of [24] as well as the second part of section 6 of [25].

5.1. A perpendicular geodesic and a Bernstein type
result

This section is a modified version of [24, Section 6]. We start with a special property
of wavelike elastica, which orbitlike elastica do not possess. This was already observed
by Langer & Singer in [37]. For the reader’s convenience we give a proof, which is
taylored to our situation here.

Lemma 5.1 (see [37] Proposition 2.3, [24] Lemma 6.1). Let γ : R → H2 be a wave-
like elastica parameterised by hyperbolic arclength. Then there exists a unique integral
geodesic Σ of the Killing field J (c.f. Lemma 4.5). Moreover it crosses γ perpendicu-
larly and if and only if the geodesic curvature of γ is zero.

Proof. Let us first show existence of such an integral curve: Let p = γ(s∗) ∈ H2

with K(s∗) = 0. The goal is to show, that the hyperbolic length of J is critical
at p (see Lemma 2.12). γ̇(s∗) is perpendicular to Jγ(s∗) (see Lemma 4.5). Hence
these two vectors are linearly independent. Since integral curves of Killing fields are
parameterised proportional to arclength, we obtain d|J(p)|2g(J(p)) = 0. (4.2) yields

d|J(p)|2g(γ̇(s∗)) =
d

dt
|Jγ(t)|2g

∣∣∣∣
t=s∗

= 8K(s∗)K̇(s∗) = 0

Now we prove uniqueness: Without loss of generality γ satisfies the initial value prob-
lem (4.8) (see the beginning of section 4.3) with |K0| > 2. J is of the form as in
(4.9) and therefore has at most two zeros on the x-axis. The bounding circles found in
section 4.3 after Lemma 4.8 are integral curves of J and cross the x-axis twice at the
zeros of J . Hence Σ is an upper half circle also crossing these points and is therefore
unique. Sketches of the situation can be found in the Figures 6.1 and 8.1.

Remark 5.2. The uniqueness part of the proof of Lemma 5.1 also shows the following:
If the extended Killing vectorfield J (see Lemma 4.5) of a wavelike solution has only

33



5. Wavelike elastica

one zero on the x-axis, then the geodesic Σ has to be a straight line parallel to the
y-axis.

A sketch of the situation of the following lemma can be found in Figure 6.1.

Lemma 5.3 (see [24] Corollary 6.2). Let γ : R→ H2 be a wavelike solution of (4.8).
Let Σ be the geodesic circle found in Lemma 5.1, let Σ+ be the open domain bounded
by Σ and the x-axis. Then Σ meets the x-axis at the exact same points as the bounding
circles found in Lemma 4.8. Furthermore the geodesic curvature K(s) is positive, iff
γ(s) ∈ Σ+ for every s ∈ R. On the other hand we have for Σ− := H2 \ (Σ+ ∪Σ), that
K(s) is negative, whenever γ(s) ∈ Σ−.

Proof. Σ being a circle and crossing the x-axis, where B+ and B− do, follows from
the proof of Lemma 5.1. The initial values (4.8) combined with Lemma 4.7, Example
2.14 and γ being perpendicular to Σ yield the curvature conditions.

Although the following Bernstein-type result (cf. Theorem 1.6) does not concern
wavelike solutions exclusively, these have to be ruled out in a more elaborate manner.

Theorem 5.4 (see [24] Theorem 1.2). Let u : R→ (0,∞) be a smooth function and let
S(u) be the corresponding surface of revolution given by (1.3). Let S(u) additionally
solve the Willmore equation (1.2). Then there exists a Möbius transformation T of
the upper half plane with

{(x, u(x)), x ∈ R} = {T ((x, cosh(x)), x ∈ R}.

Proof. Let γ̃ be the reparameterisation of (·, u(·)) to arclength. The Lemmas 4.9 and
2.15 rule out the possibility of γ̃ being orbitlike or of constant curvature, since it would
mean, that γ̃ is bounded in the direction of the x-coordinate.
Let us now denote with γ the Möbius transformed γ̃ according to Lemma 2.6 satisfying
(4.8). Now we have to rule out the possibility of γ̃ being wavelike. The only way a
Möbius transformation of the upper half plane can map γ in such a way, that it
becomes unbounded in the x direction, is consisting of an inflection at a sphere (see
Figure 5.1), such that the bounding circles B− and B+ of γ̃ become straight lines.
These lines cross the x-axis once and therefore the geodesic Σ found in Lemma 5.1 of
γ̃ has to be a straight line parallel to the y-axis (see Remark 5.2). γ̃ still crosses this
line perpendicularly and infinitely often. This contradicts γ̃ being a graph.

5.2. Flow coordinates

This part is taken from [24, section 7]. For the remainder of this section, γ satisfies the
initial value problem (4.8) with |K0| > 2 and z > 0. Our first main goal is to establish
coordinates of H2, in which the Killing field J (see Theorem 4.5) becomes one of the
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5.2. Flow coordinates

Figure 5.1.: A bounded and an unbounded wavelike elastica.

basis vectors in the tangent bundle. Langer & Singer used similar coordinates in the
sphere (see [37, p. 8]) to deduce the same kind of formulae we will find later. The
construction is analogous to the proof of [39, Theorem 9.22]. The idea is to follow
integral curves of J , which start at the y-axis. Hence we will need the flow of J ,
denoted by ΦJ : H2 × R→ H2.

Lemma 5.5 (see [24] Lemma 7.1). The Killing field J can be written with a =

−K0(K0−2)
z and c = zK0(K0+2)

2 as

J(x, y) = a

(
x2−y2

2
xy

)
+ c

(
1
0

)
.

Proof. The initial condition (4.8) and the two zeros ±xs = ±z
√

K0+2
K0−2 of J on the

x-axis (see (4.11)) combined with (4.9) yield

J1(0, z) = −a1

2
z2 + c = K2

0z

J1(xs, 0) = a
1

2
x2
s + c = 0.

Please keep in mind, that (4.11) is independent of the sign of K0. Subtracting these
two equations gives us

a

2

(
z2 + x2

s

)
= −K2

0z

⇒ a = − 2K2
0z

z2 + z2K0+2
K0−2

= −K0(K0 − 2)

z
.

By inserting this into c = K2
0z + a

2z
2, we obtain the desired result.
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5. Wavelike elastica

Lemma 5.6 (see [24] Lemma 7.2). Let Iy be the integral curve of J , which starts at
(0, y) ∈ H2. Let also κ[Iy] be the geodesic curvature of Iy. Then

κ[Iy] = 1− 2

1 + z2K0+2
K0−2

1
y2

∈ (−1, 1).

Proof. The formulae from Lemma 5.5, combined with the Christoffel symbols (2.7) are
used to calculate the covariant derivative ∇JJ(0, y):

∇JJ(0, y) =

(
ax(ax

2−y2
2 + c) + (−ay)(axy)− 2

y (axy(ax
2−y2

2 + c))

ay(ax
2−y2

2 + c) + ax(axy) + 1
y (ax

2−y2
2 + c)2 − 1

y (axy)2

)∣∣∣∣
x=0

=

(
0

ay(c− ay
2

2 ) + 1
y (c− ay

2

2 )2

)
.

The needed unit normal vector is given by ν = (0, y). The curvature of an integral
curve of a Killing field is constant (see Lemma 2.11), which yields:

κ[Iy] =
g(∇JJ, ν)

g(J, J)
(0, y) =

1

y2
(ay2(c− ay

2

2
) + (c− ay

2

2
)2)

y2

(−ay22 + c)2

= 1 + ay2 1

c− ay2

2

= 1 + 2
1

2c
ay2 − 1

.

Lemma 5.5 finishes the proof.

Lemma 5.7 (see [24] Lemma 7.3). Let (y, t) ∈ R+ × R be arbitrary, then

gΦJ ((0,y),t)

(
∂ΦJ
∂y

((0, y), t),
∂ΦJ
∂t

((0, y), t)

)
= 0.

Proof. Please note, that

∂

∂y
ΦJ((0, y), t) = dΦJ((0, y), t)

(
0
1

)
.

Since J is invariant under its own flow (see [39, Corollary 9.43]), we have

∂

∂t
ΦJ((0, y), t) = J(ΦJ((0, y), t)) = dΦJ((0, y), t)J((0, y))

= dΦJ((0, y), t)

(
|J((0, y))|g

0

)
.

The result then follows from ΦJ being an isometry.
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The following theorem introduces the flow coordinates .

Theorem 5.8 (see [24] Theorem 7.4). The map F : R+ ×R→ H2 given by F (y, t) =
ΦJ((0, y), t) is a diffeomorphism.

Proof. Let us first prove surjectivity of F : The Lemmas 5.6, 4.8 and 2.15 imply, that
every integral curve of J is a circle crossing the x-axis at exactly two points (0,±xs)
(cf. (4.11)). Let p ∈ H2 be arbitrary. Then the centre (0,mp) of a circle meeting p and
(0,±xs) is given by the following geometrical construction: Connect p and (0, xs) by
a straight line and find the perpendicular bisector of this line. It will cross the y-axis
somewhere and this point is (0,mp). Using the north pole of this circle as a starting
point for an integral curve of J yields surjectivity. This construction is explained by
Figure 5.2.

x

x

Figure 5.2.: Surjectivity of F .

Injectivity follows easily from ΦJ being a flow of a smooth vector field, with integral
curves crossing the y-axis exactly once.
Finally the regularity of F and F−1 is due to Lemma 5.7 in combination with the
inverse function theorem.

Remark 5.9 (see [24] Remark 7.5). The metric tensor of H2 in flow coordinates (see
Theorem 5.8) is given by

(F ∗g)(y, t) =

(
|∂yΦJ |2g 0

0 |J |2g

)
.

Definition 5.10 (see [24] Definition 7.6). With Theorem 5.8 we find smooth functions
tγ : H2 → R and Yγ : H2 → R+ satisfying

∀p ∈ H2 : F (Yγ(p), tγ(p)) = p.
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5. Wavelike elastica

Now we analyse these function and give some explicit formulae.

Lemma 5.11 (see [24] Lemma 7.7). Let a and c be given as in Lemma 5.5. Then
∀s ∈ R

Yγ(γ(s)) = −|Jγ(s)|g
a

− sign(K(s))

√
|Jγ(s)|2g
a2

+ 2
c

a
.

Proof. γ(s) lies on an integral curve of J . If we follow this curve back to the y-axis, we
will find Yγ(γ(s)). Integral curves of Killing fields are parameterised proportionally by
arclength. Hence the hyperbolic length |Jγ(s)|g of the tangent of this curve is the same
when it meets the y-axis. By Lemma 5.5 we obtain a quadratic polynomial for Yγ ,
which yields two possible solutions. Lemma 5.3 then eliminates the wrong solution:

|J(0, Yγ(γ(s)))|2g =
(−a 1

2Y
2
γ + c)2

Y 2
γ

= |Jγ(s)|2g

a<0, c>0⇒ Y 2
γ + 2

|Jγ(s)|g
a

Yγ − 2
c

a
= 0

5.3⇒ Yγ(γ(s)) = −|Jγ(s)|g
a

− sign(K(s))

√
|Jγ(s)|2g
a2

+ 2
c

a
.

Remark 5.12 (see [24] Equation (5.4)). The hyperbolic length of J(γ(s)) can be
expressed with Lemma 4.5, (4.8) and (4.2):

|Jγ(s)|2g = K4(s) + 4(K̇(s))2 = 4K2(s)− 4K2
0 +K4

0 .

Bryant & Griffiths already found the following formula (see [12, p. 569]). Langer
& Singer used it to obtain quantitative information on the wavelength of elastica
(see [37, Proposition 5.1]) and deduced it similar to our reasoning (see [37, p. 8]). For
the reader’s convenience we give a proof of the statement.

Lemma 5.13 (see [37] p. 8 bottom). Let γ be a wavelike solution of (4.8) with
geodesic curvature K. Then ∀s ∈ R

tγ(γ(s)) =

∫ s

0

K(l)2

K(l)4 + 4K ′(l)2
dl =

∫ s

0

K(l)2

4K(l)2 − 4K2
0 +K4

0

dl.

Proof. The goal is to derive tγ(γ(·)). We proceed by analysing the covariant gradient
∇tγ =

∑
j g

ij∂jtγ . In flow coordinates (see Theorem 5.8) we obtain ∂j(tγ(F (y, t))) =
δ2j , because tγ(F (y, t)) = t. But this derivative is the second basis vector, which by
construction is J(F (y, t)). By Remark 5.9 we get ∇tγ = J

|J|2g
. By combining this with
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Theorem 4.5 we obtain

d

ds
tγ(γ(s)) = dtγ(γ(s))γ̇(s) = g(∇tγ , γ̇) = g

(
Jγ
|Jγ |2g

, γ̇

)
=

K2

|Jγ |2g
.

Remark 5.12 finally yields the desired result.

To solve the initial value problem (4.8) for wavelike elastica, we have to find an
explicit expression for the flow coordinates, which were introduced in Theorem 5.8.
The idea is to parameterise an arbitrary circle proportionally to hyperbolic arclength,
because these are the integral curves of J .
Let us consider a circle Cr,(0,m) (see Example 2.14). Let it additionally cross the x-axis
at (xs, 0) with xs > 0 (cf. (4.11)). Let also (0, y) be the north pole of Cr,(0,m). Then
the Pythagorean theorem yields

m = y − r, m2 + x2
s = r2, (5.1)

which in turn gives us

m = m(y) = y − x2
s + y2

2y
, r = r(y) =

x2
s + y2

2y
. (5.2)

Cr,(0,m) can be parameterised by standard trigonometrical functions (see Example
2.14):

Cr,(0,m)(t) =

(
0
m

)
+ r

(
sin t
cos t

)
. (5.3)

We have |m| < r, because the circle meets the x-axis. This ensures ω = arccos(mr )
to be well defined. With this in mind we can calculate the arclength of Cr,(0,m) by
standard trigonometric functions:∫ t

0

r

m+ r cos `
d` =

∫ t

0

1
m
r + cos `

d` =

∫ t

0

1

cosω + cos `
d`

=

∫ t

0

1

2 cos(ω+`
2 ) cos(ω−`2 )

d`

=
1

2

∫ t

0

sin(ω+`
2 + ω−`

2 )

cos(ω+`
2 ) cos(ω−`2 )

1

sinω
d`

=
1

2 sinω

∫ t

0

tan

(
ω + `

2

)
+ tan

(
ω − `

2

)
d`

=− 1

sinω

[
ln | cos

ω + `

2
| − ln | cos

ω − `
2
|
]t

0
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=− 1

sinω
ln

∣∣∣∣cos ω+t
2

cos ω−t2

∣∣∣∣ .
Since 0 < cos(ω) + cos(`) = 2 cos

(
ω+`

2

)
cos
(
ω−`

2

)
(it is the second coordinate of

Cr,(0,m)), we can leave out the absolute values and obtain∫ t

0

r

m+ r cos `
d` = − 1

sinω
ln

(
cos ω+t

2

cos ω−t2

)
. (5.4)

Let s = s(t) =
∫ t

0
r

m+r cos ` d` the arclength of the circle. Rearranging the equation
yields

s = − 1

sinω
ln

(
cos ω+t

2

cos ω−t2

)
⇔ exp(−s sinω) =

cos ω+t
2

cos ω−t2

=
cos ω2 cos t2 − sin ω

2 sin t
2

cos ω2 cos t2 + sin ω
2 sin t

2

⇔ (1− exp(−s sinω)) cos
ω

2
cos

t

2
= (1 + exp(−s sinω)) sin

ω

2
sin

t

2

⇔ t = 2 arctan

(
1− exp(−s sinω)

1 + exp(−s sinω)
cot

ω

2

)
,

which defines a new function:

φ(s) = 2 arctan

(
1− exp(−s sinω)

1 + exp(−s sinω)
cot

ω

2

)
. (5.5)

If we collect all these results, we obtain

F (y, t) = Cr(y),(0,m(y)) (φ(|J(0, y)|gt)) . (5.6)

5.3. A closer analysis of the shape of a wavelike elastica

This section is the second part of [25, Section 6]. Here we like to give some additional
properties of wavelike elastica, which will prepare the proof of Theorem 1.3. At first
we show, that a non-projectable solution of (1.4), which was constructed in Theorem
1.1, has to be wavelike. Then we give a few lemmas, which give a closer description of
the behaviour of a wavelike elastica.

The following lemma will help us in finding a zero in the curvature of a solution.

Lemma 5.14 (see [25] Lemma 6.8). Let −∞ ≤ a < b ≤ ∞ and c : (a, b) → H2 be
regular and parameterised by hyperbolic arclength with curvature κ[c]. Additionally let

40



5.3. A closer analysis of the shape of a wavelike elastica

a < t1 ≤ t2 < b with

ċ1(t1) = ċ1(t2) = 0, ċ2(t1) · ċ2(t2) > 0, c̈1(t1) · c̈1(t2) ≤ 0.

Then there exists a t∗ ∈ [t1, t2] satisfying κ[c](t∗) = 0.

Proof. The Frenet equation (2.13) yields

c̈1(t1) = −κ(t1)ċ2(t1)

c̈1(t2) = −κ(t2)ċ2(t2).

By multiplying both equations we obtain

0 ≥ c̈1(t1)c̈1(t2) = κ(t1)κ(t2)ċ2(t1)ċ2(t2).

Then the intermediate value theorem gives us the desired zero.

The next lemma shows, that a non-projectable solution of (1.4) has to be wavelike.

Lemma 5.15 (see [25] Lemma 6.9). Let c : [0, 1] → H2 be a solution of (1.4) with
Wh(c) < 8 and let 0 < t∗ < 1 satisfy ċ1(t∗) = 0. Then c is wavelike (cf. Lemma 4.4)
and the geodesic from Lemma 5.1 is an upper half circle centered on the x-axis.

Proof. First we will show the existence of a zero in the curvature. Due to the discussion
in Section 4.1 the solution then has to be wavelike. For this we need to distinguish
three cases:

i) c̈1(t∗) = 0: Equation (2.10) yields a zero in the geodesic curvature.

ii) c̈1(t∗) < 0: In this case c1 has a local maximum in t∗. Hence there exists an
ε > 0, such that ∀t ∈ (t∗, t∗ + ε) : ċ1(t) < 0. Then ċ1(1) > 0 yields the existence
of a t∗ ∈ (t∗, 1) in which c1 has a local minimum. Now we can distinguish two
cases (since c is regular, we have ċ2(t∗) 6= 0 and ċ2(t∗) 6= 0):

a) ċ2(t∗) · ċ2(t∗) < 0: Lemma 3.2 gives us Wh(c) ≥ 8, which is a contradiction.

b) ċ2(t∗) · ċ2(t∗) > 0: Reparameterising c by hyperbolic arclength, yields with
Lemma 5.14 a zero of the geodesic curvature in [t∗, t∗].

iii) c̈1(t∗) > 0: This case can be treated as case ii): c1 has a local minimum in t∗.
As seen above we can find a local maximum in (0, t∗). With the same distinction
in subcases we also obtain a zero in the curvature.

This shows, that the solution c has to be wavelike. Let us turn to the shape of the
geodesic Σ given by Lemma 5.1. Let t0 denote our zero of the geodesic curvature κ[c].
We proceed by contradiction and assume Σ to be a parallel line to the y-axis. Since Σ
is perpendicular to ċ(t), iff κ[c](t) = 0, Equation (2.10) yields c̈1(t∗) 6= 0. The existence
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proof for the zero in the curvature now yields a t∗ ∈ (0, 1) \ {t∗} with ċ1(t∗) = 0. The
proof also shows, that we can assume without loss of generality t∗ < t0 < t∗. The
perpendicularity of Σ also gives us ċ2(t0) = 0. Let us now put everything together and
assume for a moment that ċ2(t∗), ċ2(t∗) > 0. Equation (2.12) yields

Wh(c) ≥Wh(c)
∣∣
[0,t∗]

+Wh(c)
∣∣
[t0,t∗]

=
2

π
We(S(c))

∣∣
[0,t∗]

+
2

π
We(S(c))

∣∣
[t0,t∗]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
0

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
t0

≥ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
0

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
t0

= 8.

This is a contradiction to Wh(c) < 8. So Σ has to be a half circle centered on the
x-axis.
The other cases can be treated analogously.

Now we collect a few lemmas, which will help us in proving Theorem 1.3 by giving
us an idea of the behaviour of a wavelike elastica. We start with an estimate for the
elastic energy in terms of the period of the curvature. It will also be needed to show
Theorem 1.5.

Lemma 5.16 (see [25] Lemma 6.4). Let K ∈ C2(R) be wavelike with parameters
K0 > 2, k and r given as in Lemma 4.4. Additionally let n ∈ N be arbitrary. Then
the following estimate holds ∫ n 1

rFk(
π
2 )

0

(K(s))2 ds ≥ nπ.

One may observe that 1
rFk(π2 ) is a 1

4 -period of K(·).

Proof. By using nFk
(
π
2

)
= Fk

(
nπ2
)
, we find

∫ 1
rnFk(

π
2 )

0

(K(s))2 ds = K2
0

∫ 1
rFk(n

π
2 )

0

cn2(rs, k) ds

= K2
0

∫ 1
rFk(n

π
2 )

0

cos2(F−1
k (rs)) ds

= K2
0

∫ nπ2

0

1

r
cos2(x)

1√
1− k2 sin2(x)

dx
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≥ K2
0√

1
2K

2
0 − 1

∫ nπ2

0

cos2(x) dx

=
K2

0√
1
2K

2
0 − 1

n
π

4
.

Now we need to estimate the prefactor:

(K2
0 − 4)2 ≥ 0

⇒ K4
0 ≥ 8K2

0 − 16 = 16

(
K2

0

2
− 1

)
⇒ K2

0√
K2

0

2 − 1
≥ 4.

The next lemma helps us in determining locally the sign of the geodesic curvature
of a wavelike elastica. Langer & Singer already observed this in [37, Proposition 5.1]
and they even gave a more precise statement. For the readers convenience we will
point out how to obtain the proof by arguments, which are scattered throughout the
Sections 5.1 and 5.2. Figure 5.3 explains the geometric meaning of the next lemma.

Figure 5.3.: Constant hyperbolic increment on the geodesic Σ.

Lemma 5.17 (see [37], Proposition 5.2 (iii) and [25] Lemma 6.10). Let γ : R→ H2 be
a wavelike (see Lemma 4.4) elastica parameterised by hyperbolic arclength with geodesic
curvature K. Let J be the Killing vector field given by Theorem 4.5 and let ΦJ be the
corresponding flow of J . Let Σ denote the geodesic given by Lemma 5.1 and let p ∈ Σ.
Let further be s1 < s2, such that K(s1) = K(s2) = 0 and |s1 − s2| is minimal. Then
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there exist parameters t1 < t2 with ΦJ(p, t1) = γ(s1) and ΦJ(p, t2) = γ(s2). Moreover,
the hyperbolic distance of γ(s1) and γ(s2) is the same for any such pair of points. This
means, if there exists another pair s̃1 < s̃2 satisfying the same assumptions, we have

distg(γ(s1), γ(s2)) = distg(γ(s̃1), γ(s̃2)) > 0.

Proof. Theorem 5.8 in combination with Lemma 2.6 and (4.8) shows the existence of
the parameters t1, t2.
Since J is a Killing vector field, every integral curve of J is parameterised proportion-
ally by hyperbolic arclength: Let t ∈ R, then

gΦ(p,t)

(
∂

∂t
Φ(p, t),

∂

∂t
Φ(p, t)

)
= gΦ(p,t)(J(Φ(p, t)), J(Φ(p, t))) = gp(J(p), J(p)).

Also every integral curve possesses constant geodesic curvature (see Theorem 2.11).
Hence they have to be euclidean circles (see Lemma 2.15). Since K is periodic, Lemma
5.13 shows, that the above mentioned distance of γ(s1) and γ(s2) is constant.

The next lemma will help us spot extrema of the geodesic curvature.

Lemma 5.18 (see [25] Lemma 6.11). Let γ : R → H2 be a wavelike elastica (see
Lemma 4.4) parameterised by hyperbolic arclength. The corresponding Killing vector
field will be denoted by J respectively Jγ (see Theorem 4.5). Let K denote the geodesic
curvature of γ. Furthermore let s0 ∈ R with K(s0) = 0 and s1 > s0 minimal, such
that |K(s1)| is maximal. Finally let I be an arbitrary integral curve of J . Then the
number of elements in γ([s0, s1]) ∩ I is at most 1.

Proof. Equation (4.2) (also see Remark 5.12) yields

g(Jγ , Jγ) = 4K2 + const.

Since K2 is strictly increasing on [s0, s1], g(Jγ , Jγ) has to be strictly monotone as
well. Theorem 5.8 and Lemma 5.11 give us a one to one correspondence between the
hyperbolic length of Jγ and the set of integral curves of J , as long as K does not
change sign. Thus the lemma follows.

By the next lemma a wavelike solution has to be injective.

Lemma 5.19 (see [25] Lemma 6.12). As before let γ : R→ H2 be a wavelike elastica
(cf. Lemma 4.4) parameterised by hyperbolic arclength and J the corresponding Killing
vector field (cf. Theorem 4.5). We set J⊥ := (−J2, J1) as the perpendicular vector
field of J . Let now I ⊂ H2 be an integral curve of J⊥ defined on its maximal interval
of existence. Then I intersects γ exactly once.
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Proof. First let us fixate the notation: K is the geodesic curvature of γ, ΦJ the flow
of J and Jγ the local variant of J (see Theorem 4.5). Lemma 2.6 and Lemma 5.5 (see
also the discussion at the beginning of Section 4.3) allow us without loss of generality
to write J as

J(x, y) = a

(
x2−y2

2
xy

)
+ c

(
1
0

)
,

with a < 0 and c > 0. Since ΦJ is an isometry and hence preserves orthogonality, we
have that for all t ∈ R the curve ΦJ(I, t) is again an integral curve of J⊥. Furthermore
Theorem 5.8 gives us that ΦJ((0, ·), ·) is a diffeomorphism of H2 with ΦJ({(0, y), y >
0},R) = H2. If we fixate a p ∈ I, then there exists a t ∈ R, such that ΦJ(p, t) ∈
{(0, y), y > 0}. We have achieved, that ΦJ(I, t) ⊂ {(0, y), y > 0}, because ΦJ(I, t)
is an integral curve of J⊥. If we assume the existence of a q ∈ {(0, y), y > 0} with
q /∈ ΦJ(I, t), we could further extend ΦJ(I, t) as an integral curve to the whole of
{(0, y), y > 0}. This would contradict I being defined on its maximal interval of
existence. Hence we can assume without loss of generality that

I = {(0, y), y > 0}.

Multiplying γ̇ and Jγ yields

g(Jγ , γ̇) = (K(s))2 ≥ 0. (5.7)

Now we proceed by contradiction and assume that s1 < s2 ∈ R exist and satisfy

Figure 5.4.: If I meets γ at least twice, then there exists a sign change in g(Jγ , γ̇).

γ(s1), γ(s2) ∈ I. For every y > 0 the Killing vector field satisfies J1(0, y) > 0 and
J2(0, y) = 0. In combination with (5.7) and Lemma 5.1 this yields without loss of
generality K(s2) = 0. Then K(s1) 6= 0. Otherwise γ(s1) and γ(s2) would both lie
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5. Wavelike elastica

on the unique geodesic Σ (see Lemma 5.1). Since Σ is an upper half circle (see e.g.
Lemma 5.3), this would be a contradiction. Now we can find an ε 6= 0 such that
ΦJ(I, ε) meets γ at least twice with different signs for g(Jγ , γ̇). This contradicts (5.7).
Figure 5.4 explains the situation.

Remark 5.20 (see [25] Remark 6.14). Lemma 5.19 and Lemma 5.15 show, that
our energy minimising solution found in Theorem 1.1 does not intersect itself. This
completes the proof of Theorem 1.1.
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6. A set of solutions with large
difference in the boundary data

This chapter gives a partial answer to the question of existence of solutions for (1.4),
if |α− − α+| is large. This idea has not yet been published.

6.1. Finding a set of solutions

The following solutions will be constructed via a shooting method, which is similar to
the way non-uniqueness for (1.8) is established in Section 8.2.

Theorem 6.1. There exists a continuously differentiable curve α : (−∞,−2) →
(0,∞)×(0,∞), such that for every K0 ∈ (−∞,−2) there exists a smooth cK0

: [0, 1]→
H2 satisfying

∆S(cK0
)H + 2H(H2 −G) = 0, in (0, 1)

cK0
(0) = (−1, α1(K0)), cK0

(1) = (1, α2(K0)), ċ2K0
(0) = ċ2K0

(1) = 0,
ċ1K0

(0), ċ1K0
(1) > 0.

Furthermore we have
lim

K0↗−2
|α1(K0)− α2(K0)| =∞.

K0 ∈ (−∞,−2) is the minimal geodesic curvature of cK0 w.r.t. the hyperbolic metric
of H2. The Willmore energy satisfies

lim inf
K0↗−2

We(S(cK0)) ≥ 4π.

Proof. We will employ a shooting method, which was already used in [24], but with
opposite sign on K0 (see also Section 8.2). Therefore let γ be the solution of the initial
value problem (4.8) with z = 1 and initial curvature K0 < −2. Hence γ is wavelike
with curvature K given as in Lemma 4.4 (please note, that if K is a solution of (4.1),
then −K is as well). Let J be the Killing vector field from Lemma 4.5. The Lemmas
5.1, 5.3, 4.8 and Equation (4.11) yield a sketch of γ in Figure 6.1:

Claim 1. There exists an s : (−∞,−2)→ (0,∞), such that

γ̇2(s(K0)) = 0, γ̇1(s(K0)) = γ2(s(K0)), K(s(K0)) > 0.
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6. A set of solutions with large difference in the boundary data

Figure 6.1.: Sketch of wavelike elastica γ with initial curvature K0 < −2.

Furthermore s(K0) is a local minimum of γ2.

Proof. Let s0 > 0 be minimal, such that K(s0) is a maximum. Lemma 5.19 yields
γ1(s0) > 0 and hence (4.7) and Lemma 4.8 give us

γ̇1(s0) > 0, γ̇2(s0) < 0.

Let s1 > s0 minimal with K(s1) = 0. With the Lemmas 5.1 and 5.3 we have

γ̇1(s1) > 0, γ̇2(s1) > 0.

Hence smin, defined by γ2(smin) = mins∈[s0,s1] γ
2(s), satisfies

smin ∈ (s0, s1).

Since it is a minimum, we have γ̇2(smin) = 0. We set s(K0) := smin. Since γ is
parameterised by hyperbolic arclength (cf. (3.1)), we have |γ̇1(s(K0))| = |γ2(s(K0))|.
Let us assume γ̇1(s(K0)) < 0. Then (2.10) yields K(s(K0)) < 0, which contradicts
γ(s(K0)) ∈ Σ+ (see Lemma 5.3).
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6.1. Finding a set of solutions

Claim 2. The map s : (−∞,−2)→ (0,∞) found in Claim 1 is continuously differen-
tiable.

Proof. We will apply the inverse function theorem to gain the desired regularity. We
proceed by contradiction and assume

γ̈2(s(K0)) = 0.

The Frenet equation (2.13) yields

γ̈1(s(K0)) = 0. (6.1)

The other Frenet equation (2.14) gives us

γ̈2(s(K0)) = γ2(s(K0))(K(s(K0))− 1), (6.2)

since γ is parameterised by hyperbolic arclength (see also Claim 1). This yields
K(s(K0)) = 1. Differentiating (4.6) and (4.7) yields with b = 0 (This computa-
tion was already carried out in [26, Equation (3.8)] and will also be needed in Section
9.1)

2KK̇

(
γ̇1

γ̇2

)
+K2

(
γ̈1

γ̈2

)
+ 2K̈

(
−γ̇2

γ̇1

)
+ 2K̇

(
−γ̈2

γ̈1

)
=a

(
γ1γ̇1 − γ2γ̇2

γ̇1γ2 + γ1γ̇2

)
.

(6.3)

With the second coordinate of (6.3) combined with (4.1) and Lemma 5.5 we obtain

0 = K2(s(K0))γ̈2(s(K0)) = a(γ2(s(K0)))2 − 2K̈(s(K0))γ2(s(K0))

= γ2(s(K0))(−K0(K0 − 2)γ2(s(K0))− 2K(s(K0)) + (K(s(K0)))3)

= γ2(s(K0))(−K0(K0 − 2)γ2(s(K0))− 1).

Since K0 < −2, we have −1 > 0, a contradiction.

Claim 3. The map s : (−∞,−2)→ (0,∞) from Claim 1 satisfies

lim
K0↗−2

∣∣∣∣ 1

γ1(s(K0))
− γ2(s(K0))

γ1(s(K0))

∣∣∣∣ =∞.

Proof. Since K(s(K0)) > 0, γ(s(K0)) ∈ Σ+ (see Lemma 5.3). On the other hand the
crossing point xs (see (4.11)) of the geodesic Σ with the x-axis satisfies (please note,

49



6. A set of solutions with large difference in the boundary data

that the derivation of xs is independent of the sign of K0)

lim
K0↗−2

xs = lim
K0↗−2

√
K0 + 2

K0 − 2
= 0.

This implies
lim

K0↗−2
γ(s(K0)) = 0,

which yields the claim.

If we translate γ
∣∣
[0,s(K0)]

to the left by γ1(s(K0))
2 and dilate it by 2

γ1(s(K0)) , the

resulting curve satisfies (1.4) with

α1(K0) := α− =
2

γ1(s(K0))
, α2(K0) := α+ = 2

γ2(s(K0))

γ1(s(K0))
.

Now only the asymptotic of the energy remains to be shown, for which the following
claim will be useful.

Claim 4. With the notation of Lemma 4.4 we have

lim
K0↗−2

∫ 1
rFk(

π
2 )

0

(K(s))2 ds = 4.

Proof. With r =
√
−1 + 1

2K
2
0 and k = K0

2r we have

∫ 1
rFk(

π
2 )

0

(K(s))2 ds = K2
0

∫ 1
rFk(

π
2 )

0

cn2(rs, k) ds

= K2
0

∫ 1
rFk(

π
2 )

0

cos2(F−1
k (rs)) ds

= K2
0

∫ π
2

0

1

r
cos2(x)

1√
1− k2 sin2(x)

dx

=
K2

0√
1
2K

2
0 − 1

∫ π
2

0

cos2(x)√
1− K2

0

2K2
0−4

sin2(x)
dx.

=
K2

0√
1
2K

2
0 − 1

∫ π
2

0

cos2(x)√
2K2

0−4−K2
0 sin2(x)

2K2
0−4

dx
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6.2. Asymptotic behaviour

=
K2

0√
1
2K

2
0 − 1

∫ π
2

0

√
2K2

0 − 4
cos2(x)√

2K2
0 − 4−K2

0 +K2
0 cos2(x)

dx

= 2K2
0

∫ π
2

0

cos2(x)√
K2

0 − 4 +K2
0 cos2(x)

dx.

Since K2
0 − 4 ≥ 0, the integrand satisfies∣∣∣∣∣ cos2(x)√

K2
0 − 4 +K2

0 cos2(x)

∣∣∣∣∣ ≤ cos2(x)

|K0 cos(x)|

≤ 1

2
.

The dominated convergence theorem yields∫ 1
rFk(

π
2 )

0

(K(s))2 ds = 2K2
0

∫ π
2

0

cos2(x)√
K2

0 − 4 +K2
0 cos2(x)

dx

→ 8

∫ π
2

0

cos2(x)

2| cos(x)|
dx = 4.

The geodesic curvature K has at least one minimum in s = 0 and one maximum
in s = 2 1

rFk
(
π
2

)
(see again Lemma 4.4). Claim 4, the symmetry properties of K and

(2.12) yield the desired result.

Remark 6.2. Experiments in matlabTM (see Figure 6.2) conducted with the help
of (5.6) and the Lemmas 5.11 and 5.13, give rise to the conjecture, that α+ stays
bounded, as K0 approaches −2.

6.2. Asymptotic behaviour

In this section we study the behaviour of the solution γ, constructed in the proof of
Theorem 6.1, at the boundary, when K0 converges to −2. This question is similar
to [29], in which the answer was gained by comparison functions. Here we use a
different approach and employ the continuity for initial value problems in terms of
their initial data. Let us start with the left boundary γ(0):
Since solutions of an initial value problem are continous in their initial data, γ tends
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6. A set of solutions with large difference in the boundary data

-2.4 -2.35 -2.3 -2.25 -2.2 -2.15 -2.1 -2.05 -2

0
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0.3

0.35

0.4

0.45

Figure 6.2.: α+ seems to stay bounded, if K0 is close to −2.

at s = 0 locally uniformly to the solution of the following problem (cf. (4.8)){
∇γ̇0 γ̇0 = κ[γ0]N, ∇γ̇0N = −κ[γ0]γ̇0, κ̈[γ0] = κ[γ0]− 1

2κ[γ0]3

γ0(0) = (0, 1) , γ̇0(0) = (1, 0) , κ[γ0](0) = −2, κ̇[γ0](0) = 0.

The solution is given by Lemma 4.11 and illustrated by Figure 6.3.

Let us study the other boundary γ(s(K0)). Our reasoning will include formulae,
which have already been used in [26, Section 3.2] by the present author (see also
Section 9.1):
As in the other case we calculate the asymptotic of K(s(K0)) and K̇(s(K0)). Let us
start with K(s(K0)):
Since γ2(s(K0)) is a local minimum of γ2 (see Claim 1), (6.2) yields

K(s(K0)) ≥ 1. (6.4)

By inserting (6.1) and (6.2) into the second row of (6.3) we obtain

γ2(s(K0))K2(s(K0))(K(s(K0))− 1) + 2γ2(s(K0))K̈(s(K0)) = a(γ2(s(K0)))2,
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6.2. Asymptotic behaviour

Figure 6.3.: A catenoid reflected at a sphere.

which can be further simplified by (4.1) to

K(s(K0))(2−K(s(K0)) = aγ2(s(K0)). (6.5)

Lemma 5.5 yields lim
K0↗−2

a = −8, which in combination with the proof of Claim 3 gives

us
lim

K0↗−2
K(s(K0)) = 2. (6.6)

Let us now turn to K̇(s(K0)):
(4.7) yields with b = 0 and Claim 1

2K̇(s(K0)) = aγ1(s(K0)). (6.7)

Therefore we have
lim

K0↗−2
K̇(s(K0)) = 0. (6.8)

We now dilate and translate γ in such a way, that γ1(s(K0)) = 0 and γ2(s(K0)) = 1.
Since (4.1) is autonomous we can assume without loss of generality, that s(K0) = 0.
As with the other boundary γ tends locally uniformly around s = 0 to the solution of
the following initial value problem:{

∇γ̇0 γ̇0 = κ[γ0]N, ∇γ̇0N = −κ[γ0]γ̇0, κ̈[γ0] = κ[γ0]− 1
2κ[γ0]3

γ0(0) = (0, 1) , γ̇0(0) = (1, 0) , κ[γ0](0) = 2, κ̇[γ0](0) = 0,

which is solved by Lemma 4.10 to be a catenoid.
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7. Projectable solutions

This chapter is dedicated to Theorem 1.3. It is proven in Section 7.1 and the discussion
in Section 7.2 shows, that a similar statement cannot be expected for every boundary
value. These two sections are taken from [25, Section 7] and [25, Appendix A].

7.1. Existence of projectable solutions under smallness
conditions

This section comes from [25, Section 7]. In it we will prove, that the solution obtained
in Theorem 1.1 is a graph (·, u(·)), if we assume the smallness condition 1.2. It will be
an important argument to compare the energy of our solution to special comparison
functions, which we calculate now:

Example 7.1 (see [25] Example 7.1). The euclidean Willmore energy of a revolved
upper half circle centered on the x-axis is

We(S(px0,r)) = 4π

for all x0 ∈ R and r > 0.

Proof. Since an upper half circle is a geodesic with respect to the hyperbolic metric,
the elastic energy is zero. (2.12) yields the desired result, because this circle meets the
x-axis perpendicularly.

Example 7.2 (see [25] Example 7.2). The hyperbolic elastic energy of a catenoid ccat
is

Wh(ccat) = 8.

Proof. The geodesic curvature of ccat parameterised by hyperbolic arclength can be
expressed as (see Lemma 4.10)

K(s) =
2

cosh(s)
.

Integration yields

Wh(ccat) =

∫ ∞
−∞

(
2

cosh(s)

)2

ds = 4
[

tanh(x)
]∞
−∞ = 8.

55



7. Projectable solutions

To get a grasp of the local elastic energy of a curve, we need the following lemma,
which is basically the same as Lemma 3.2:

Lemma 7.3 (see [25] Lemma 7.3). Let c : [0, 1]→ H2 be a smooth regular curve, such
that there exists a t∗ ∈ (0, 1) with ċ1(t∗) = 0. c should also satisfy ċ2(0) = ċ2(1) = 0.
Then its hyperbolic elastic energy satisfies

Wh(c) ≥ 4.

Proof. Without loss of generality we can assume that ċ2(t∗) > 0. Then we have with
the help of (2.12) that

Wh(c) = Wh(c)
∣∣
[0,t∗]

+Wh(c)
∣∣
[t∗,1]

≥ 2

π
We(S(c))

∣∣
[0,t∗]

+ 4

[
ċ2√

(ċ1)2 + (ċ2)2

]t∗
0

≥ 4.

To apply Theorem 1.1 we need a suitable comparison function, which was found by
Hans-Christoph Grunau:

Lemma 7.4 (see [25] Lemma 7.4). If the pair (α−, α+) satisfies Assumption 1.2, then

Wh
α−,α+

= inf{Wh(v) : v ∈Mα−,α+
} < 8.

Proof. Without loss of generality we assume α− ≤ α+. Furthermore let

cosh−(x) = α− cosh

(
1 + x

α−

)
and cosh+(x) = α+ cosh

(
1− x
α+

)
.

Now define t 7→ (x(t), r(t)) in such a way, that the upper half circle px(t),r(t)(·) is
tangent to the graph of cosh+ at (1 − t, cosh+(1 − t)). Since cosh+ is smooth, x(·)
and r(·) are continuous. Assumption 1.2 also ensures that px(0),r(0) = p1,α+

and
cosh− do not meet. Since cosh− and cosh+ do meet, we can find a first time t0 > 0,
such that a t̃ > t0 exists, for which px(t0),r(t0) is tangent to the graph of cosh− in

(1 − t̃, cosh−(1 − t̃)). Figure 7.1 gives a sketch of the situation. We can define the
desired comparison function by

vα−,α+
(x) =

 cosh−(x), x ∈
[
−1, 1− t̃

]
px(t0),r(t0)(x), x ∈

(
1− t̃, 1− t0

]
cosh+(x), x ∈ (1− t0, 1]
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7.1. Existence of projectable solutions under smallness conditions

Figure 7.1.: Comparison function for the elastic energy.

Since vα−,α+
∈ C1,1([−1, 1]), it is also an element of Mα−,α+

. Since px(t0),r(t0) is a
geodesic w.r.t. to the hyperbolic metric, it does not contribute to the hyperbolic elastic
energy Wh. The proof of Example 7.2 then shows

Wh
α−,α+

≤Wh(vα−,α+) < 8.

We are now able to tackle the main result of this section. Parts of this proof are by
Hans-Christoph Grunau. These will be highlighted during the exposition.

Theorem 7.5 (see [25] Theorem 7.5). Let the pair (α−, α+) ∈ R+×R+ obey Assump-
tion 1.2. Also let c ∈ C∞([0, 1],H2) ∩Mα−,α+

satisfy

We(S(c)) = W e
α−,α+

= inf{We(S(v)) : v ∈Mα−,α+}.

(Existence is proven by Theorem 1.1 and Lemma 7.4). Then c can be represented as
a graph (·, u(·)) with u ∈ C∞([−1, 1], (0,∞)).

Proof. Without loss of generality we can assume

α− ≤ α+.

Otherwise we simply reflect c at the y-axis. Let L > 0 be the hyperbolic arclength of
c and γ : [0, L] → H2 the reparameterisation by hyperbolic arclength with γ̇1(0) > 0.
Then the corresponding geodesic curvature K : [0, L] → R satisfies (4.1). Lemma
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4.5 gives us the Killing vector field J , which is the unique extension of Jγ = K2γ̇ +

2K̇(−γ̇2, γ̇1). We proceed by contradiction and assume, that there exists a minimal
s∗ ∈ (0, L) with γ̇1(s∗) = 0. Lemma 5.15 yields K to be wavelike (cf. Lemma 4.4) and
the unique geodesic Σ (cf. Lemma 5.1) to be an upper half circle with centre on the
x-axis.
We can now state the following observation concerning the geodesic curvature of γ:

Claim 5. K possesses at most two zeros in [0, L].

Proof. Assume the existence of at least three zeros of K in [0, L]. Then [0, L] contains
at least one period of K. Lemma 5.16 yields Wh(γ) ≥ 4π > 8, a contradiction to
Lemma 7.4.

For the remainder of the proof we need to distinguish two major cases. For now let

γ̇2(s∗) > 0.

Now we have to prove a claim concerning Σ, which is described by Figure 7.2 (cf.
Lemma 5.3).

Claim 6. From an euclidean viewpoint the geodesic Σ seperates H2 into an unbounded
part Σ− and a bounded part Σ+. For all s ∈ [0, L] we then have:
γ(s) ∈ Σ−, iff K(s) < 0. On the other hand γ(s) ∈ Σ+, iff K(s) > 0.
We also have that K(s∗) ≥ 0.

Figure 7.2.: Decomposition of H2 by means of the geodesic curvature K.

Proof. Unfortunately we cannot directly apply Lemma 5.3 since γ does not necessarily
satisfy (4.8). So we need another distinction of cases:

1. γ̈1(s∗) 6= 0: This means we have an extremum of γ1 in s∗. Since s∗ is minimal
the boundary datum γ̇1(0) > 0 yields s∗ to be a local maximum of γ1. Please
note that then γ̈1 < 0. With γ̇1(L) > 0 we can then find an s∗ ∈ (s∗, L) minimal
with γ̇1(s∗) = 0 and γ̈1(s∗) ≥ 0. The minimality ensures ∀s ∈ (s∗, s∗) γ̇

1(s) < 0.
By Lemma 7.3 (cf. Lemma 3.2) we also obtain ∀s ∈ [s∗, s∗] that γ̇2(s) > 0,
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7.1. Existence of projectable solutions under smallness conditions

because Wh(γ) < 8. Let us take a look at the curvature K: Equation (2.10)
yields

K(s∗∗) = − γ̈
1γ̇2γ2

|γ̇|3
(s∗∗).

Here s∗∗ denotes, that the equation is satisfied for s∗ and s∗. Hence K(s∗) > 0 and
K(s∗) ≤ 0. On the other hand the sign conditions on γ̇ (∀s ∈ (s∗, s∗) γ̇

1(s) < 0,
γ̇2(s) > 0), Σ being a geodesic circle and γ crossing Σ perpendicularly in zeros
of K yield γ(s∗) ∈ Σ+ and γ(s∗) ∈ Σ−. Figure 7.3 explains this situation.

Figure 7.3.: Proof of curvature decomposition of H2, part 1.

2. γ̈1(s∗) = 0: Equation (2.10) yields K(s∗) = 0. Lemma 5.1 then yields γ(s∗) ∈ Σ.
Since Σ is a half circle, γ(s∗) has to be the north pole of this geodesic. Since we
have chosen s∗ to be minimal, we can reparameterise γ

∣∣
[0,s∗)

as a smooth graph

(x, u(x)) with u : [−1, γ1(s∗)) → (0,∞). The geodesic curvature κ[u], which
represents K in this parameterisation, can be calculated by (cf. (2.10))

u′′(x)u(x)

(1 + (u′(x))2)
3
2

+
1√

1 + (u′(x))2
= κ[u](x). (7.1)

We also have lim
x↗γ1(s∗)

u′(x) = +∞. The mean value theorem yields a sequence

ξk ↗ γ1(s∗) with

u′′(ξk)

(
γ1(s∗)− 1

k
+ 1

)
= u′

(
γ1(s∗)− 1

k

)
− u′(−1)→∞.

For k ∈ N big enough we obtain u′′(ξk) ≥ 0. For these k equation (7.1) then
gives us κ[u](ξk) > 0. This yields a sequence sk ↗ s∗ with K(sk) > 0. Since
γ1(s∗) lies on the north pole of Σ and γ̇2(s∗) > 0, we have γ(sk) ∈ Σ+ for k ∈ N
big enough.
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As a corollary to the proof of Claim 6 we have the following:

Claim 7. There exists an s0 ∈ (0, L) with K(s0) = 0 and in which the geodesic
curvature changes sign from positive to negative. This point also satisfies s∗ ≤ s0 and
∀s ∈ (s∗, s0) we have γ̇1(s) 6= 0.
If K(s∗) > 0, there exists exactly one s∗ ∈ [s0, L) with γ̇1(s∗) = 0 and K(s∗) ≤ 0.
If on the other hand K(s∗) = 0, we do not have another point s ∈ [0, L] \ {s∗} with
γ̇1(s) = 0.

Proof. The proof of Claim 6 already showed most of the statement. All that is left is
the uniqueness property of s∗. The aforementioned proof yields an s∗ ∈ [s∗, L) with
γ̇1(s∗) = 0, K(s∗) ≤ 0, γ̇2(s∗) > 0 and ∀s ∈ (s∗, s∗) γ̇

1(s) 6= 0 (If K(s∗) = 0 we set
s∗ := s∗). Let us proceed by contradiction and assume that a minimal s̃ ∈ (s∗, L) with
γ̇1(s̃) = 0 exists. Lemma 3.2 yields γ̇2(s̃) > 0.
Here we need to distinguish a few cases to demonstrate how the above mentioned
arguments apply:

1. K(s∗) > 0: The arguments for Claim 6, case 1, show that K(s∗) ≤ 0, since
γ(s∗) ∈ Σ−. Figure 7.3 gives a sketch of the situation. Now two subcases need
to be considered (see Figure 7.4):

(a) γ̈1(s̃) = 0: The proof of Claim 6, case 2, yields a δ > 0, such that ∀s ∈
(s̃ − δ, s̃) we have K(s) > 0. K(s∗) ≤ 0 and Lemma 4.4 (K behaves like a
cosine) yield three zeros of K, which contradicts Claim 5.

(b) γ̈1(s̃) 6= 0: As in Claim 6, case 1, K(s̃) > 0 and we find an s1 ∈ (s̃, L] with
K(s1) = 0. K(s∗) ≤ 0 and Lemma 4.4 yield a zero of K between s∗ and s̃.
Hence we found three zeros of K, contradicting Claim 5.

2. K(s∗) = 0: The proof of Claim 6, case 2, gives us a δ > 0, such that ∀s ∈
(s∗, s∗ + δ] we have K(s) < 0. Hence equation (7.1) yields γ to be a strictly
concave graph on (s∗, s∗+ δ]. Now we need to consider two subcases (see Figure
7.5):

(a) γ̈1(s̃) 6= 0: Since γ̇1(s∗+ δ) > 0 we can apply the arguments of case 1 of the
proof of Claim 6. Hence K(s̃) > 0 and we find an s1 ∈ (s̃, L] with K(s1) = 0.
K(s∗ + δ) < 0 yields again at least three zeros of K contradicting Claim 5.

(b) γ̈1(s̃) = 0: Since γ is a graph on (s∗, s̃) the arguments of case 2 of the proof
of Claim 6 yield K(s̃) = 0 and the existence of a δ̃ > 0, such that for all
s ∈ [s̃ − δ̃, s̃) we have K(s) > 0. In combination with K(s∗ + δ) < 0 we
obtain at least three zeros of K, contradicting again Claim 5.
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7.1. Existence of projectable solutions under smallness conditions

Figure 7.4.: Uniqueness of s∗ and s∗, case 1.

Claim 7 also means we have at most two points s∗ ≤ s∗, such that γ̇1(s∗∗) = 0 (cf.
Figure 7.6). For the sake of simplicity we set s∗ := s∗, if we only have one such point.
Claim 5 shows, that K has at most two zeros. With this in mind we distinguish the
following cases to prove our main result:

1. K(L) < 0:
Claim 7 and Claim 5 show, that ∀s ∈ [s∗, L] we have K(s) ≤ 0. Let us take
a closer look at the behaviour of γ on [s∗, L]. For this let us reparameterise γ
locally around s = L as a smooth graph (·, u(·)). The geodesic curvature κ[u]
then satisfies (7.1). Since ∀s ∈ (s∗, L]: K(s) < 0 the function u has to be strictly
concave until γ1(s∗) =: x0 < γ1(L) with lim

x↘x0

u′(x) = ∞. By comparing this

to Assumption 1.2 we obtain ∀s ∈ [s∗, L]: γ2(s) ≤ p1,α+
(γ1(s)), because the

geodesic curvature of p1,α+
is zero. Then the intermediate value theorem and

the boundary data give us an ŝ ∈ (0, s∗] with γ2(ŝ) = p1,α+
(γ1(ŝ)).

To construct a suitable comparison curve for γ, let us define a family of catenoids
cats : [0,∞) → H2 by cats(0) = γ(s), ˙cats(0) = γ̇(s) and by cats being param-
eterised by hyperbolic arclength. For reasons of consistency cats is defined as
a straight line parallel to the y-axis, whenever γ̇1(s) = 0. By the smallness
condition 1.2 cat0 cannot intersect p1,α+

. The existence of ŝ on the other hand
gives us an s̄ ∈ (0, ŝ], such that cats̄ is tangent to p1,α+ . Figure 7.6 explains the
situation. Two different situations can now arise. To distinguish these subcases
let us define x̄ ∈ R as the point, in which p1,α+

(x̄) is tangent to cats̄. The first
case reflects the situation described by Figure 7.6.

a) x̄ ≤ 1:
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7. Projectable solutions

Figure 7.5.: Uniqueness of s∗ = s∗, case 2.

For the following let p̃ : R → H2 be the reparameterisation of p1,α+
by

hyperbolic arclength, satisfying p̃2(0) = p1,α+
(x̄). Let s̃ ∈ R be given by

cats̄(s̃) = p̃(0). Furthermore we need L̃ ≥ 0 defined by p̃(L̃) = (1, α+).
Now we can write down our comparison curve:

v(s) =


γ(s), s ∈ [0, s̄)

cats̄(s− s̄), s ∈ [s̄, s̄+ s̃)

p̃(s− (s̄+ s̃)), s ∈ [s̄+ s̃, s̄+ s̃+ L̃].
(7.2)

By construction v ∈ C1,1([0, s̄ + s̃ + L̃],R2) and satisfies the boundary
conditions. Let us compare v to γ

∣∣
[s̄,L]

in terms of the Willmore energy (see

(2.12)):

We(S(γ))
∣∣
[s̄,L]
≥We(S(γ))

∣∣
[s∗,L]

=
π

2
Wh(γ)

∣∣
[s∗,L]

− 2π

[
γ̇2√

(γ̇1)2 + (γ̇2)2

]L
s∗

≥ 2π.

On the other hand Example 7.1 shows We(S(v))
∣∣
[s̄,L̃]

< 2π. All in all we

have
We(S(γ)) > We(S(v)),

because catenoids are minimal surfaces. Hence γ would not have been an
energy minimiser, a contradiction.
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7.1. Existence of projectable solutions under smallness conditions

Figure 7.6.: A comparison curve for γ.

b) x̄ > 1 :
This assumptions yields the existence of an s1 ∈ (0, s̄] with γ2(s1) > α+.
Additionally this point has to satisfy γ1(s1) < γ1(s∗), since we would oth-
erwise find an s ∈ (s1, L) with γ̇1(s) = 0 and γ̇2(s) < 0. In combination
with Lemma 3.2 this would be a contradiction. The perpendicularity con-
dition with Σ then ensures γ(s1) ∈ Σ−. This in turn means K(s1) < 0.
Since this s1 exists, we can find an s2 ∈ [0, s1) with K(s2) > 0. This is
due to a concavity argument in combination with (7.1). Figure 7.7 gives
a sketch of the situation. Claim 7 states that K changes sign in s0 from

Figure 7.7.: Behaviour of γ with x̄ > 1.

positive to negative. This gives us at least three zeros in K, which is a
direct contradiction to Claim 5.
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7. Projectable solutions

2. K(L) > 0:
The Claims 5 and 7 imply K(0) > 0 and the existence of exactly two zeros of
K. In turn Claim 6 yields γ(0), γ(L) ∈ Σ+. Let (x0, 0) ∈ R2 be the centre of Σ.
Since every integral curve of J is an euclidean circle (c.f. Lemma 2.11 and Lemma
2.15) and J satisfies Example 2.10, every centre of it is of the form (x0, y) ∈ R2.
We discuss in detail the case x0 ≥ −1. Otherwise we have x0 < −1 < 1 and the
same arguments as below can be applied around γ(L). Let s0 > 0 be the first
zero of K. Now we like to show the existence of an s̃ ∈ [0, s0), such that K(s̃) is
a maximum. Lemma 5.16 would then give us Wh(γ) ≥ 3π > 8, a contradiction.
Let us now assume such an s̃ ∈ [0, s0) does not exist. We can extend γ as a
solution of the differential equation (4.1) to (−∞, L] (see e.g. (4.2)). We can
choose s1 < 0 to be maximal with K(s1) = 0. Then we can find an s̄ ∈ (s1, 0)
with K(s̄) being a maximum. Lemma 4.8 yields γ(s̄) ∈ B+. Let I ⊂ H2 be the
integral curve of J starting at γ(0) = (−1, α−). With −1 ≤ x0 and again Lemma
4.8 the derivative γ̇(0) = (α−, 0) points strictly inward with respect to I. The
intermediate value theorem gives us at least two intersecting points of γ|(s̄,s0)

with I. This contradicts Lemma 5.18, because the proof of this lemma shows,
that therein the order of the zero of K and the extremum of K can be reversed.
Thus we apply this argument in the intervall [s̄, s0]. Figure 7.8 describes the
situation.

Figure 7.8.: Existence of a maximum of K by contradiction.

Now we can switch to the other major case:

γ̇2(s∗) < 0.

With similar arguments we can give analogous statements to the Claims 6 and 7. Let
us point out the difference:
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7.1. Existence of projectable solutions under smallness conditions

Claim 8. From an euclidean viewpoint the geodesic Σ seperates H2 into an unbounded
part Σ− and a bounded part Σ+. For all s ∈ [0, L] we then have:
K(s) < 0, iff γ(s) ∈ Σ−. On the other hand γ(s) ∈ Σ+, iff K(s) > 0.
We also have K(s∗) ≤ 0.

Proof. Case γ̈1(s∗) 6= 0 can be proven with precisely the same arguments as in Claim
6. Case γ̈1(s∗) = 0 is a bit more involved:

Figure 7.9.: Case γ̇1(s∗) < 0: Curvature decomposition of H2, case γ̈1(s∗) = 0.

As illustrated by Figure 7.9, Lemma 5.19 gives us ω, δ > 0, such that γ can be
reparameterised on (s∗, s∗ + ω) as a smooth graph u : (γ1(s∗), γ1(s∗) + δ) → (0,∞)
with lim

x↘γ1(s∗)
u′(x) = −∞. The mean value theorem yields a sequence ξk ↘ γ1(s∗)

with k ∈ N large enough, such that

u′′(ξk)

(
δ − 1

k

)
= u′(γ1(s∗) + δ)− u′

(
γ1(s∗) +

1

k

)
→∞.

For k large enough we obtain u′′(ξk) ≥ 0. Hence (7.1) yields κ[u](ξk) > 0.

By using the argument as for Claim 8, the proof of the next claim is completely
analogous to Claim 7.

Claim 9. There exists an s0 ∈ (0, L) with K(s0) = 0 and in which the geodesic
curvature changes sign from negative to positive. This point also satisfies s∗ ≤ s0 and
∀s ∈ (s∗, s0) we have γ̇1(s) 6= 0.
If K(s∗) < 0, there exists exactly one s∗ ∈ [s0, L) with γ̇1(s∗) = 0 and K(s∗) ≥ 0.
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7. Projectable solutions

If on the other hand K(s∗) = 0 we do not have another point s ∈ [0, L] \ {s∗} with
γ̇1(s) = 0.

As in the first major case we identify without loss of generality s∗ := s∗, if K(s∗) = 0.
Again we have to distinguish cases by the sign of the geodesic curvature:

1. K(0) < 0: Here we need to consider two subcases:

a) K(L) > 0:
We will show α− > α+, which would contradict our general assumption
from the beginning of the proof. Claim 5 and Claim 9 yield exactly one
zero s0 ∈ [s∗, s∗] of the geodesic curvature K. If we reparameterise γ as
a smooth graph (·, u(·)) at γ(0), this u would be strictly concave. This
is due to K(s) ≤ 0 for all s ∈ [0, s∗] and equation (7.1). We then have
γ2(s0) < γ2(0), since Lemma 7.3 yields ∀s ∈ [s∗, s∗] γ̇

2(s) < 0.
If we assume α+ > γ2(s0), we would find an ŝ ∈ (s0, L) with γ̇1(ŝ) = 0 and
γ̇2(ŝ) > 0, because γ(L) ∈ Σ+ and γ̇1(L) > 0. Figure 7.10 explains the
situation. Lemma 3.2 finally yields a contradiction.

Figure 7.10.: α− > α+ or Wh(γ) > 8.

b) K(L) < 0:
This case was proven by an idea of Hans-Christoph Grunau: Claim 5 and
Claim 9 yield exactly two zeros s0 < s1 of K with s0 ∈ [s∗, s∗] and s∗ < s1.
Our aim is to construct a suitable comparison function to show that γ
cannot be a minimiser for the Willmore energy. As in case γ̇(s∗) > 0,
subcase K(L) < 0, we define a family of catenoids cats : R→ H2, s ∈ [0, s∗),
such that cats(0) is tangent to γ(s). Additionally we parameterise every
catenoid by hyperbolic arclength.
At first we have to show that γ meets cat0 only at γ(0): As shown in case
γ̇2(s∗) < 0, subcase K(L) > 0, we have for all s ∈ (0, s1] γ2(s) < α−. Since
cat20(t) is monotonically increasing for t > 0, γ|(0,s1] and cat0(R) do not
meet. On the other intervall [s1, L] the curvature satisfies K ≤ 0. Since
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7.1. Existence of projectable solutions under smallness conditions

p1,α+ is a geodesic circle, the boundary datum γ̇2(L) = 0 yields for all
s ∈ [s1, L] p1,α+

(γ(s)) ≥ γ2(s). With Assumption 1.2 γ meets cat0 only in
γ(0). Figure 7.11 gives a sketch of the situation.

Figure 7.11.: Situation for γ̇2(s∗) < 0, K(0) < 0 and K(L) < 0.

For s↗ s∗ the vertex of cats approaches zero. Then the boundary data for
γ yield an s̄ ∈ (0, s∗) and an s̃ ∈ (s̄, L), such that cats̄ touches γ at γ(s̃).
Before we can define a comparison curve, we have to show γ̇1(s̃) > 0. Since
∀s ∈ [s∗, s∗] we have γ1(s) ≤ γ1(s∗) and γ2(s) ≤ γ(s∗), the catenoid cats̄
does not intersect γ|[s∗,s∗]. Claim 9 on the other hand shows, that γ can be
reparameterised as a graph on [0, L] \ [s∗, s∗]. This yields γ̇1(s̃) > 0.
The resulting situation is sketched in Figure 7.12.

Figure 7.12.: Inserting a catenoid.

Let L̃ > 0 be the point with cats̄(L̃) = γ(s̃). We can now define the desired
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comparison curve:

v(s) =


γ(s), s ∈ [0, s̄)

cats̄(s− s̄), s ∈ [s̄, s̄+ L̃)

γ(s− (s̄+ L̃) + s̃), s ∈ [s̄+ L̃, s̄+ L̃+ L− s̃].
(7.3)

Since catenoids are minimal surfaces, their associated mean curvature van-
ishes. Hence their Willmore energy is zero. This in turn yields We(S(v)) <
We(S(γ)). Equality cannot arise, because it would mean, that γ would be
a catenoid. This is not possible due to the boundary data.

2. K(0) > 0:
Claim 9 and Claim 5 yield exactly two zeros of K. This gives K(L) > 0. By
Claim 8 the proof is from here on out completely analogous to γ̇(s∗) > 0, subcase
K(L) > 0.

7.2. Estimates on the infimum of the Willmore energy

This section shows, that the projectability property of a solution of (1.4) can in general
not hold. It is taken from [25, Appendix A]. At first we provide an estimate, which
proves, that the elastic energy is not uniformely bounded for (α−, α+) in the class of
graphs. This lemma is by Hans-Christoph Grunau:

Lemma 7.6 (see [25] Lemma A.1). If α+ > α− + 1, then for every function u ∈
C1,1([−1, 1], (0,∞)) satisfying u(−1) = α−, u(1) = α+ and u′(±1) = 0 we have

Wh(u) ≥ α+ − 1

10
.

Proof. Equation (2.15) yields

Wh(u) =

∫ 1

−1

u′′(x)2u(x)

(1 + u′(x)2)
5
2

+
1

u(x)
√

1 + u′(x)2
dx

≥
∫ 1

−1

u′′(x)2u(x)

(1 + u′(x)2)
5
2

dx

=

∫ 1

−1

u(x)
√

1 + (u′(x))2

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

We may now choose x1 ∈ (−1, 1), such that u′(x1) ≥ 1
2 and u

∣∣
[x1,1]

≥ α+ − 1. We
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7.2. Estimates on the infimum of the Willmore energy

conclude:

Wh(u) ≥
∫ 1

−1

u(x)
√

1 + (u′(x))2

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

≥
∫ 1

x1

u(x)
√

1 + (u′(x))2

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

≥ (α+ − 1)

∫ 1

x1

(
u′′(x)

(1 + (u′(x))2)
3
2

)2

dx

≥ α+ − 1

|1− x1|

(∫ 1

x1

u′′(x)

(1 + (u′(x))2)
3
2

dx

)2

=
α+ − 1

1− x1

(
u′(x1)√

1 + (u′(x1))2

)2

≥ α+ − 1

2

 1
2√

1 + 1
4

2

=
α+ − 1

10
.

If α+ tends to ∞, the elastic energy of graphs will tend to ∞ as well.

In contrast to Lemma 7.6 the following lemma shows, that in the class of curves the
infimum of the elastic energy is bounded for small α− and big α+:

Lemma 7.7 (see [25] Lemma A.3). Let (α−, α+) ∈ (0,∞)2 satisfy

α+√
2 + 1

+
α−√
2− 1

≥ 2 and α+ > α−(
√

2 + 1)4,

then
W e
α−,α+

< 2π2.

Proof. Thanks to (2.12) it suffices to show Wh
α−,α+

= inf{Wh(v) : v ∈Mα−,α+
} < 4π.

Let us define two circles (see Example 2.14):

Cα− := C α−√
2−1

,
(
−1,α−+

α−√
2−1

) and Cα+
:= C α+√

2+1
,
(

1,α+−
α+√
2+1

)
Example 2.14 yields

κ[Cα± ] = −
√

2

and therefore the elastic energy of one half of a circle is with the help of mapleTM

∫ π

0

(κ[Cα− ])2(t) ds(t) =

∫ π

0

2 α−√
2−1

α−√
2−1

cos(t) + α− + α−√
2−1

dt = 2π.
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7. Projectable solutions

Analogously we obtain
∫ 0

−π(κ[Cα+
])2(t) ds(t) = 2π.

α+ > α−(
√

2 + 1)4 is equivalent to

α+ − 2
α+√
2 + 1

> α− + 2
α−√
2− 1

.

Hence Cα− and Cα+
do not intersect. On the other hand the line Gπ

2
, which is parallel

to the y-axis and starts at Cα−(π2 ), intersects Cα+

∣∣
[−π,0]

because α+√
2+1

+ α−√
2−1
≥ 2.

We can now define a family of geodesics (upper half circles) Gt, which are tangent to
Cα− at Cα−(t). Since G0 does not intersect Cα+ we find a t0 ∈ (0, π2 ) such that Gt0
touches Cα+

. As in Lemma 7.4 we obtain a comparison curve v with

Wh(v) < 4π

Figure 7.13 sketches the situation.

Figure 7.13.: A comparison curve for small α− and big α+.

Remark 7.8 (see [25] Remark A.4). The choice of the circles Cα− and Cα+
in Lemma

7.7 is not accidental. They are part of the Clifford torus and therefore minimal in the
class of possible circles for the construction made above (see e.g. [37, Theorem 4.1] or
the proof of the Willmore conjecture [42]).
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8. Non-uniqueness results

This chapter is taken from [24, Section 8] and deals with non-uniqueness properties of
the Dirichlet problem (1.4). We need to make certain restrictions for our constructions
to work. Therefore we will only examine symmetric profile curves or graphs, i.e.
α := α− = α+.

8.1. Non-uniqueness with curves

In this section we will examine the following Dirichlet problem, where the angle at the
boundary is prescribed with a β ∈ R (cf. [24, Equation (8.1)]):

∆S(c)H + 2H(H2 −G) = 0, in (0, 1)

c(0) = (−1, α), c(1) = (1, α), − ċ
2(0)
ċ1(0) = ċ2(1)

ċ1(1) = β,

ċ1(0), ċ1(1) > 0,

(8.1)

with α > 0 and β ∈ R. The positivity of the first component of the derivative at
the boundary ensures c to be locally a graph. [18, Theorem 1] gives us a graphical
solution for every α > 0 and β ∈ R. Now we will find non-graphical solutions for
certain boundary data, which showcases the possibly wide variety of solutions, when
no bounds on the Willmore energy are given.

Theorem 8.1 (see [24] Theorem 8.1). There exists infinitely many different pairs
(α, β) ∈ R+×R, for which (8.1) does possess a solution, which cannot be parameterised
as a graph.

Proof. Let γ : R → H2 be a wavelike solution (see Lemma 4.4) of the initial value
problem (4.8) (i.e. |K0| > 2). Let B+ be the lower bounding circle found in Lemma
4.8 and let Σ be the orthogonal geodesic found in Lemma 5.1 (see Figures 8.1 and 5.1).
Let sn > 0 be a sequence, such that γ(sn) ∈ B+. With Lemma 5.13 the hyperbolic
progress of γ(sn) to γ(sn+1) on B+ can be chosen as a constant for all n ∈ N, which
implies the sequence sn to be monotonically increasing. Theorem 4.7 and Example

2.14 yield γ̇1(sn) > 0 and 0 > γ̇2(s1)
γ̇1(s1) >

γ̇2(s2)
γ̇1(s2) > . . .. If we choose s1 sufficently big,

such that γ([0, s1]) crosses Σ at least twice, we find a sign change in γ̇1 (see Lemma
5.1). This implies γ([−s1, s1]) cannot be parameterised as a graph. After a suitable
dilation γ1(±s1) = ±1 is fulfilled. By reparameterising γ([−s1, s1]) we find a solution
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Figure 8.1.: Sketch of a wavelike elastica with initial curvature K0 > 2.

of (8.1). Repeating the argument for every n ∈ N yields the desired result, because
dilations preserve angles.

Remark 8.2 (see [24] Remark 8.2). The sequence of solutions γ([−sn, sn]) constructed
in Theorem 8.1 possesses unbounded Willmore energy for n→∞, because the squared
hyperbolic curvature repeats itself everytime γ meets B+. Hence the hyperbolic ar-
clength tends to ∞ as well.

8.2. A second family of projectable solutions

This section is taken from [24, Section 8.2]. Here we will prove Theorem 1.4 by
constructing a new set of solutions with a shooting method. This method is similar
to the one employed in Section 6.1, but we will use the opposite sign of the initial
geodesic curvature. The solutions obtained here differ from solutions found in [17],
since the geodesic curvature has zeros.
For the remainder of this section we will focus on wavelike solutions γ of (4.8) with

K0 > 2.
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With Lemma 4.8 we find two bounding circles B+, B− of γ, which intersect the x-axis
at exactly two points xs > 0 and −xs < 0 (see (4.11)). Let J be the unique extension
of Jγ (see Lemma 4.5) as a Killing field to H2 with parameters a < 0, c > 0 given as
in Lemma 5.5. Please note, that the proof of Lemma 5.5 also shows

x2
s = −2

c

a
. (8.2)

As usual let K be the geodesic curvature of γ. Further let s∗ > 0 denote half of the
period of K. This implies K(s∗) = −K0. We start with a lemma, which hints at γ
being locally a graph.

Lemma 8.3 (see [24] Lemma 8.3). Let s∗ ∈ [0, s∗] be in such a way, that ∀s ∈ [0, s∗] :
γ1(s) < xs. Then γ

∣∣
[−s∗,s∗] can be parameterised as a graph.

Proof. If we assume J1((x, y)) = 0 at a certain point (x, y) ∈ H2, then a simple cal-
culation based on Lemma 5.5 and (8.2) shows x2 ≥ x2

s. With J1((0, ·)) > 0 this yields
J1(γ(s)) > 0 for all s ∈ [0, s∗].
Let us now proceed by contradiction. If we assume that γ

∣∣
[0,s∗]

cannot be parame-

terised as a graph, then there exists an s̃ ∈ [0, s∗] with γ̇1(s̃) = 0. Equation (4.7) then
gives us K2(s̃)γ̇2(s̃) = aγ1(s̃)γ2(s̃). This yields γ̇2(s̃) < 0. By (4.6) with K̇(s̃) ≤ 0 in
mind we obtain

0 ≥ −2K̇(s̃)γ̇2(s̃) = J1(γ(s̃)) > 0,

which is an obvious contradiction.

Now we will examine γ in case of a large K0. For this we will estimate the wavelength
of γ (see Lemma 5.13). Langer & Singer already gave a formula pointing into that
direction (see [37, Proposition 5.2 (iii)]), but it is restricted to the hyperbolic distance
of crossing points of γ with the perpendicular geodesic Σ (see Lemma 5.1).

Lemma 8.4 (see [24] Lemma 8.4). Let s ∈ [0, s∗] be arbitrary, then

distg(γ(s), {(0, y) ∈ R2 : y > 0}) ≤ π K2
0√

K2
0 − 4(K2

0 − 4)
→ 0, if K0 →∞.

Proof. First we will estimate tγ (see Lemma 5.13) with the help of Lemma 4.4:

tγ(γ(s)) =

∫ s

0

K2

4K2 − 4K2
0 +K4

0

ds ≤
∫ s∗

0

K2

4K2 − 4K2
0 +K4

0

ds

=

∫ s∗

0

cn2(rs, k)

4 cn2(rs, k)− 4 +K2
0

ds ≤
∫ s∗

0

1

K2
0 − 4

cn2(rs, k) ds

=
1

K2
0 − 4

∫ 1
rAM

−1(π,k)

0

cos2(AM(rs, k)) ds
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=
1

K2
0 − 4

1

r

∫ π

0

cos2(x)
1√

1− k2 sin2(x)
dx

≤ 1

K2
0 − 4

1

r

1√
1− k2

∫ π

0

cos2(x) dx

=
π

2

1

K2
0 − 4

1√
1
2K

2
0 − 1

1√
1− K2

0

4(−1+ 1
2K

2
0 )

=
π

2

1

K2
0 − 4

2√
2K2

0 − 4

√
−4 + 2K2

0

−4 +K2
0

= π
1√

K2
0 − 4(K2

0 − 4)
.

There exists a unique integral curve connecting γ(s) and the y-axis (see Theorem 5.8).
Since these curves are parameterised proportional by arclength, we can calculate the
hyperbolic length of these curves by tγ and |Jγ |g:

distg(γ(s), {(0, y) ∈ R2 : y > 0}) ≤ |Jγ(s)|gtγ(γ(s)) ≤ max |Jγ |gtγ(γ(s∗))

≤ π
K2

0√
K2

0 − 4(K2
0 − 4)

.

(4.11) yields with K0 > 0

xs = z

√
K0 + 2√
K0 − 2

= z

√
1 + 2

K0√
1− 2

K0

≥ z. (8.3)

Now we are ready to tackle our main result in this section.

Theorem 8.5 (see [24] Theorem 8.5). There exists an α∗ ≥ 0, such that for every
α > α∗ the Dirichlet problem{

∆S(u)H + 2H(H2 −G) = 0, in (−1, 1)
u(±1) = α, u′(±1) = 0.

(8.4)

possesses a solution u : [−1, 1]→ R+ with two sign changes in the geodesic curvature.

Proof. Let γ be a wavelike solution of (4.8) with K0 > 2, z = 1 and geodesic curvature
K. Let us fixate some further notations: B− is the outer bounding circle of γ and
B+ the respective inner bounding circle (see Lemma 4.8). Let additionally be Σ the
perpendicular geodesic found in Lemma 5.1 and let xs > 0 be the crossing point of
these circles with the x-axis (see Equation (4.11)). Figure 8.1 gives a sketch of the
situation. Let s∗, s∗ > 0 be minimal with K(s∗) = 0 and K(s∗) = −K0.
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8.2. A second family of projectable solutions

1. γ(s∗) ∈ Σ, the minimality of s∗ and Lemma 5.3 yield γ̇2(s∗) > 0. On the other
hand we have γ̇2(s∗) < 0, because K̇(s∗) = 0 implies γ(s∗) ∈ B− and thus
K(s∗)

2γ̇2(s∗) = J2(γ(s∗)) < 0 (see Lemmas 4.5 and 5.5). The intermediate
value theorem then yields an s̃ ∈ (s∗, s∗) with γ̇2(s̃) = 0.

2. Now we will show, that γ
∣∣
[−s̃,s̃] can be reparameterised as a graph u. Since for

all s ∈ [0, s∗] γ(s) ∈ Σ+ (see Lemma 5.3), we obtain γ1(s) < xs. Lemma 8.3 and
the symmetry to the y-axis then yield, that γ([−s∗, s∗]) can be parameterised as
a graph u. Since u solves an ordinary differential equation, it can be uniquely
extended to an x∗ > γ1(s∗). By γ being bounded, we obtain lim

x↗x∗
u′(x) = ±∞.

Lemma 5.3 implies for all s ∈ [s∗, s∗], that K(s) ≤ 0. Equation (7.1) yields u to
be concave as long as the geodesic curvature is negative. Hence u′(x∗) = −∞ or
x∗ ≥ γ1(s∗). Either way we can choose s̃ in such a way, that γ([−s̃, s̃]) can be
parameterised as a graph, since we have u′(γ(s∗)) > 0.

3. The second coordinate of the Frenet equation (see (2.14)) gives us in s̃:

γ̈2(s̃) = K(s̃)γ̇1(s̃)− (γ̇1(s̃))2

γ2(s̃)
< 0,

since γ
∣∣
[−s̃,s̃] is graph und therefore γ̇1(s̃) > 0. The inverse function theorem in

combination with the concavity argument from above yields the existence of a
unique smooth function s̃ : (2,∞)→ R+ with γ̇2(s̃(·)) = 0 and s∗ < s̃(·) < s∗.

4. Finally we can find a dilation ΞK0
: H2 → H2, centered at the origin, such that

ΞK0(γ(s̃(K0))) = (1, α(K0)). Lemma 8.4 and (8.3) yield

α(K0) =
γ2(s̃(K0))

γ1(s̃(K0))
→∞ if K0 →∞.

In combination with s̃(·) being continous the desired result follows.

Combining Theorem 8.5 with the following existence result yields the proof of The-
orem 1.4, because the solution found in this theorem possesses positive curvature.

Theorem 8.6 (see Theorem 1.1 in [17] and Proposition 6.7 in [18]). For every α > 0,
there exists a smooth, even function u ∈ C∞([−1, 1], (0,∞)), such that the correspond-
ing surface of revolution solves the Dirichlet problem for the Willmore equation{

∆S(u)H + 2H(H2 −G) = 0 in (−1, 1)
u(±1) = α, u′(±1) = 0.
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8. Non-uniqueness results

This solution u is even and has the following additional properties:

∀x ∈ [0, 1] : 0 ≤ x+ u(x)u′(x), u′(x) ≤ 0,

∀x ∈ [−1, 1] : α ≤ u(x) ≤ α+ 1, |u′(x)| ≤ 1

α
,

∀x ∈ (−1, 1) the hyperbolic curvature satisfies κ[u](x) > 0.

Remark 8.7. Numerical experiments conducted in matlabTM using (5.6) in combi-
nation with the Lemmas 5.11 and 5.13 give rise to the conjecture that the optimal α∗

(see Thm. 8.5) is strictly positive (see Figure 8.2). Another topic that has to be left

2 2.5 3 3.5 4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 8.2.: Boundary values in comparison to the initial curvature.

open is the question of a possible convergence of the solution γ, if K0 tends to 2. Due
to the experiments mentioned above the present author conjectures γ to tend to two
Möbius inverted Catenoids with negative geodesic curvature (see Lemma 4.11, Figures
6.3, B.2 and the discussion in Section 6.2), which meet at an irregular point at the
origin (see Figure 8.3).
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Figure 8.3.: Plot of symmetric solution with α = 1.1278, K0 = 2.0001.
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9. Symmetry for energy-minimising
solutions

This section is dedicated to proving Theorem 1.5. It is taken out of [26, Section 3].
Amos Koellers contribution to this article consists solely of [26, Section 2], which is
not contained in this thesis. This chapter is organized as follows. First some necessary
conditions for a non-even solution are derived. These conditions are used in Section
9.2 to show, that such a solution possesses high Willmore energy.
Since we are dealing with a symmetry problem, we set α := α− = α+.

9.1. Necessary conditions for non-symmetric solutions

This section is taken from [26, Section 3.2]. Some of the following formulae have
already been derived in Chapter 6 for symmetric Killing fields J (see Lemma 4.5).
Since we are especially interested in the non-symmetric case, the resulting formulae
are a bit more involved. Differentiating (4.6) and (4.7) by hyperbolic arclength yields
(cf. (6.3) for the symmetric case)

2KK̇

(
γ̇1

γ̇2

)
+K2

(
γ̈1

γ̈2

)
+ 2K̈

(
−γ̇2

γ̇1

)
+ 2K̇

(
−γ̈2

γ̈1

)
=a

(
γ1γ̇1 − γ2γ̇2

γ̇1γ2 + γ1γ̇2

)
+ b

(
γ̇1

γ̇2

)
.

(9.1)

The subscript + shall now indicate that the corresponding object is evaluated at
the right border, for example K+ = κ[u](1). The subscript − represents the left
border analogously. The boundary conditions with the parameterisation by hyperbolic
arclength (cf. (3.1)) yield

γ2
± = α, γ1

± = ±1, γ̇2
± = 0, γ̇1

± = α. (9.2)

Inserting this into (4.6) yields

αK2
± = a

1− α2

2
± b+ c.
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9. Symmetry for energy-minimising solutions

By subtracting these two equations we obtain

α(K2
+ −K2

−) = 2b. (9.3)

On the other hand (4.7) yields
2K̇± = ±a+ b. (9.4)

By adding these two equations we obtain

K̇+ + K̇− = b (9.5)

Now we make use of the Frenet equations evaluated at the boundary (see (2.13), (2.14)
and cf. (6.1), (6.2))

γ̈1
± = 0, γ̈2

± = α(K± − 1).

Combining this with the second row of (9.1) yields

αK2
±(K± − 1) + 2αK̈± = aα2,

which can be further simplified by (4.1) to (cf. (6.5))

2K± −K2
± = aα. (9.6)

With these equations in mind we can prove our first lemma concerning even solu-
tions:

Lemma 9.1 (see [26] Lemma 3.5). A smooth solution u : [−1, 1]→ (0,∞) of (1.8) is
even if and only if

κ[u](−1) = κ[u](1).

Proof. If u is even the above equation simply follows from (7.1) and the boundary
conditions.
Let us now consider a solution u of (1.8) with κ[u](−1) = κ[u](1). Let γ be this
solution reparameterised as a curve by hyperbolic arclength with geodesic curvature
K. The equations (9.3) and (9.5) then imply

K̇− = −K̇+.

By reflecting γ at the y-axis we obtain a curve γ̃. This operation is a Möbius trans-
formation, so γ̃ still solves (1.8) and still satisfies the ordinary differential equation in
(4.8) with the following initial conditions:

γ̃(0) = (1, α), ˙̃γ(0) = (−α, 0), κ[γ̃](0) = −K− = −K+, κ̇[γ̃](0) = −K̇− = K̇+.

If we now switch the orientation of γ̃ (meaning γ̃(s) 7→ γ̃(L − s)) we obtain a curve
which satisfies the same initial data as γ. Hence this curve has to be γ itself.
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9.1. Necessary conditions for non-symmetric solutions

We can now turn to conditions for non-even solutions:

Lemma 9.2 (see [26] Corollary 3.6). Let u : [−1, 1]→ (0,∞) be a smooth solution of
(1.8), which shall be non-even. Then

κ[u](−1) + κ[u](1) = 2.

Proof. By a simple subtraction we deduce from (9.6)

0 = 2(K+ −K−)− (K2
+ −K2

−) = (K+ −K−)(2− (K+ +K−)).

Lemma 9.1 now yields the desired result.

Lemma 9.3 (see [26] Corollary 3.7). Let u : [−1, 1]→ (0,∞) be a smooth, non-even
solution of (1.8). Then

u′′(−1) = −u′′(1), u′′(1) 6= 0.

Proof. Evaluating (7.1) at the boundary and adding the resulting equations yield to-
gether with Lemma 9.2 u′′(−1) = −u′′(1). u′′(1) 6= 0 follows from Lemma 9.1.

The following lemma is paramount in proving the energy estimate stated in Lemma
9.5:

Lemma 9.4 (see [26] Corollary 3.8). Let u : [−1, 1]→ (0,∞) be a smooth, non-even
solution of (1.8). Then the curvature K reparameterised by hyperbolic arclength is
periodic with fundamental period P > 0, satisfying

P ≤
∫ 1

−1

√
1 + u′(ξ)

u(ξ)
dξ.

Hence the fundamental period is smaller than the hyperbolic arclength of u.

Proof. We show the following claim, which is sufficient by the Lemmas 4.1, 4.2, 4.3
and 4.4.

There exist − 1 < x1 < x2 < x3 < 1 and a C ∈ R such that

κ[u](x1) = κ[u](x2) = κ[u](x3) = C.

By Lemma 9.3 we can assume without loss of generality that u′′(−1) < 0 and u′′(1) > 0.
Due to the boundary data u has to have a strict maximum in x = −1 and strict
minimum in x = 1. With u(−1) = u(1) we find −1 < x− < x+ < 1 satisfying

u′(x+) = 0, u′′(x+) ≤ 0, u′(x−) = 0, u′′(x−) ≥ 0.
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9. Symmetry for energy-minimising solutions

Equation (7.1) yields

κ[u](−1) < 1, κ[u](x−) ≥ 1, κ[u](x+) ≤ 1, κ[u](1) > 1.

The intermediate value theorem yields the desired result.

9.2. A priori energy estimates

This section is taken from [26, Section 3.3] and is dedicated to proving the following
energy estimate:

Lemma 9.5 (see [26], Theorem 3.9). Let u : [−1, 1]→ (0,∞) be a smooth solution of
(1.8), which shall be non-even. Then

We(S(u)) > 4π.

With Lemma 9.4 in mind, we have to estimate the elastic energy for the fundamental
period of the functions given in Lemma 4.2 and Lemma 4.4. The presented proof in
the orbitlike case is by Hans-Christoph Grunau, but it was already observed by Langer
& Singer (see [37, page 19]):

Lemma 9.6 (see [37] p. 19, [26] Lemma 3.10). Let K : R → R be non constant and
given as in Lemma 4.2 with parameters K0, k, r. Then∫ 1

rFk(π)

0

K2(s)ds > 8.

Proof. Let K, K0, r and k be given as in Lemma 4.2. Since (4.1) is autonomous, we
can assume without loss of generality, that |K0| >

√
2 and therefore s0 = 0. Then∫ 1

rFk(π)

0

K2(s) ds =

∫ 1
rFk(π)

0

4r2 dn2(rs, k) ds

= 4r2

∫ 1
rFk(π)

0

(1− k2 sin2(F−1
k (rs))) ds

= 4r

∫ π

0

1− k2 sin2(x)√
1− k2 sin2(x)

dx

= 8

∫ π
2

0

√
r2 − (2r2 − 1) sin2(x) dx.
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Now we consider the function

(
1

2
, 1) 3 ρ→ φ(ρ) =

∫ π
2

0

√
ρ− (2ρ− 1) sin2(x) dx

and show φ(ρ) > 1. With φ(1) =
∫ π

2

0
cos(x) dx it suffices to prove φ′(ρ) < 0 for

ρ ∈ ( 1
2 , 1).

2φ′(ρ) =

∫ π
2

0

1− 2 sin2 x√
ρ− (2ρ− 1) sin2 x

dx =

∫ π
2

0

cos(2x)√
ρ− (2ρ− 1) sin2 x

dx

=

∫ π
4

0

cos(2x)√
ρ− (2ρ− 1) sin2 x

dx+

∫ π
2

π
4

cos(2x)√
ρ− (2ρ− 1) sin2 x

dx

=

∫ π
4

0

cos(2x)√
ρ− (2ρ− 1) sin2 x

dx+

∫ π
4

0

cos(π − 2x)√
ρ− (2ρ− 1) cos2 x

dx

=

∫ π
4

0

cos(2x)

 1√
ρ− (2ρ− 1) sin2 x

− 1√
ρ− (2ρ− 1) cos2 x

 dx

< 0.

Since φ(1) = 1 the proof is finished.

The elastic energy over a fundamental period of a wavelike solution has already been
estimated in Lemma 5.16

Let us now summarize our findings to obtain the proof of Lemma 9.5:

Proof. Let u be a non-even solution of (1.8) and K the geodesic curvature parame-
terised by hyperbolic arclength with fundamental period P > 0. According to Lemma
9.4 the fundamental period is contained in the hyperbolic arclength of u. Equation
(2.12) in combination with the Lemmas 9.6 and 5.16 yield

We(S(u)) =
π

2
Wh(u) ≥ π

2

∫ P

0

K2(s) ds{
≥ π

2 · 4π > 4π
> π

2 · 8 = 4π.

Let us now summarize the important steps of the proof of Theorem 1.5:
Existence and regularity of an energy minimising solution u : [−1, 1]→ (0,∞) of (1.8)
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is given by Theorem 1.3, which also yields

We(S(u)) < 4π.

If we combine this with our energy estimate Lemma 9.5, we obtain Theorem 1.5.
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A. A numerical scheme

In this chapter a numerical algorithm to solve the Dirichlet problem (1.4) is presented.
This procedure only works in a reliable way, if numerical results of [18] for the symmet-
ric problem (1.8) are used. This algorithm is explained in Section A.1 and resulting
plots are given in Section A.2.

A.1. A shooting/perturbation method

The numerical method to obtain the results shown in Section A.2 is a shooting method
for ordinary differential equations, taylored to our situation. Let α−, α+ ∈ (0,∞) and
let γ : R× R× R→ H2 be a smooth solution of (see also (4.8)){

∇γ̇ γ̇ = KN, ∇γ̇N = −Kγ̇, K̈ = K − 1
2K

3

γ(0,K0, K̇0) = (−1, α−) , γ̇(0,K0, K̇0) = (α−, 0) , K(0) = K0, K̇(0) = K̇0.
(A.1)

Here N = (−γ̇2, γ̇1) denotes a unit normal, which is possible since γ(·,K0, K̇0) is
parameterised by hyperbolic arclength. Hence γ(·,K0, K̇0) is the profile curve of a
Willmore surface of revolution. We now look for a triple (L,K0, K̇0) ∈ R+ ×R2, such
that

γ(L,K0, K̇0) = (1, α+), γ̇(L,K0, K̇0) = (α+, 0). (A.2)

Then γ(·,K0, K̇0)
∣∣
[0,L]

solves (1.4). This initial value problem was solved in matlabTM

by a Runge-Kutta method.
We solved (A.2) by Newton’s method. For convergence we used a perturbation ap-
proach and solved the symmetrical case first. This case was already solved numerically
in [18], which gave us K0. K̇0 was then obtained by (9.4) and (9.6). Since we are treat-
ing the symmetrical case, we have b = 0 in these formulae. Hence we only had to guess
a suitable starting value for the arclength L.
After we solved the symmetrical case, we perturbed α+ in small steps and used the
already obtained solutions as starting points for Newton’s method.

Unfortunately the shooting method alone seems to be very difficult to implement,
if we want to show existence of a solution of (1.4). In Theorem 8.1 solutions with
arbitrary big hyperbolic arclength were found. Hence the differential equation is not
enough to derive a priori bounds on the arclength, which in turn means the Brouwer
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A. A numerical scheme

fixed-point theorem cannot be applied.
On the other hand a perturbation method via the inverse function theorem is also very
difficult to implement, since we do not have an explicit formula for a solution in the
symmetric case. The present author was not able to overcome these obstacles directly
and chose a variational approach instead (See Section 3 and Theorem 1.1).
This variational approach needs smallness conditions on the boundary data. A shoot-
ing method restricted to wavelike elastica (cf. Lemma 4.4) may overcome this problem
as indicated by the Sections 6.1 and B.

A.2. A set of solutions of the Dirichlet problem

This section collects a few numerical solutions of (1.4). The applied method is de-
scribed in Section A.1. The caption of the figures give some parameters. α− is the
height at the left border and α+ is the height at the right border respectively. K0

is the initial geodesic curvature and K̇0 is the initial derivative of that curvature (cf.
(A.1)). L is the hyperbolic arclength and We the Willmore energy of the respective
surface of revolution.
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A.2. A set of solutions of the Dirichlet problem

We start with solutions, where the left height α− is fixated and the right height
α+ grows: If α− and α+ are very close to each other, Figure A.1 shows a hill near

-1 -0.5 0 0.5 1

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Figure A.1.: α− = 0.5, α+ = 0.6, K0 = 1.535312, K̇0 = −0.702980, L = 3.350976,
We = 5.396793.

the middle of the solution. This kind of hill was already observed for symmetric data
in [17].
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1.6

Figure A.2.: α− = 0.5, α+ = 1.5, K0 = 2.045919, K̇0 = −0.469671, L = 2.470591,
We = 4.865637.

When α− and α+ are a bit further apart, the hill seen in Figure A.1 seems to vanish
as exhibited by Figure A.2. This indicates, that the solution is strictly monotone.
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Figure A.3.: α− = 0.5, α+ = 4.0, K0 = 2.446962, K̇0 = 0.543533, L = 2.697657,
We = 9.564734.

The projectivity of the solution seems to start breaking down at about x = −0.5, if
the distance of α− and α+ is moderate.
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Figure A.4.: α− = 0.5, α+ = 5.7, K0 = 2.362879, K̇0 = 0.672563, L = 3.054481,
We = 10.984159.

Figure A.4 illustrates, that the non-projectivity issue grows worse, if the distance of
α− and α+ becomes bigger. On the other hand, the monotony of the second coordinate
γ2 seems to stay.
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Figure A.5.: α− = 0.5, α+ = 19.9, K0 = 2.105029, K̇0 = 0.372020, L = 4.633284,
We = 12.568947.

Figure A.5 shows the behaviour of a solution, when α− and α+ are very far away
from each other. The upper part seems to grow like an inflating balloon. It probably
behaves asymptotically like a Möbius inverted catenoid around α+ (cf. Lemma 4.11
or Figure 6.3).
The lower part around α− probably converges to a part of an asymptotically geodesic
solution as well, which would not be symmetric (see Figure B.2).
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The next set of solutions features a fixated α− = 1 and a falling α+: As seen in
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Figure A.6.: α− = 1.0, α+ = 0.95, K0 = 1.102888, K̇0 = −0.442682, L = 2.028232,
We = 3.176068.

Figure A.1 we observe a hill near the middle in Figure A.6, if α− and α+ are very
close to each other.
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Figure A.7.: α− = 1.0, α+ = 0.577350, K0 = 0.767184, K̇0 = −0.294503, L =
2.591920, We = 4.070799.

Figure A.7 features the disappearence of the hill of Figure A.6. The solution seems
to become monotone again.
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Figure A.8.: α− = 1.0, α+ = 0.065233, K0 = 1.025679, K̇0 = −0.823972, L =
5.145433, We = 6.592535.

In contrast to Figure A.3 the projectivity of the solution does not seem to break
down easily, if α+ tends to 0 (see Figure A.8).
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B. Future research

The biggest problem left open in this thesis is existence of solutions of (1.4) for ar-
bitrary α−, α+ > 0. The present author likes to present an idea on how to possibly
proceed:
First a numerical observation is needed to underline the following method. Here we
utilised the same numerical scheme as in Section A.1. Lemma 5.15 shows that a non-
projectable solution of (1.4) under energy constraints is wavelike (cf. Lemma 4.4). In
the symmetrical case, i.e. α− = α+, the solution is most likely orbitlike (cf. Theorem
8.6). Hence the type of solution changes, if α− is fixed and α+ grows (cf. Figures
A.1, A.2 and A.3). Equation (4.2) gives us the possibility to distinguish the type of
solutions found in Section A.2 by their extremal curvature in terms of their initial
data. Shortly before the change a solution looks like Figure B.1. It being orbitlike is
not obvious from the solution itself, but their extension gives a better clue (cf. Lemma
5.19). The dashed lines represent these extensions, while the solid line is the solution
of the Dirichlet problem itself. Even before projectability is lost, the type of solution
changes to wavelike (see Figure B.3). The intermediate solution between these two
seems to be an asymptotically geodesic one (cf. Lemma 4.3) as shown in Figure B.2.
These can be obtained by e.g. reflecting a catenoid at an upper half circle, in such a
way that the result is not symmetric to some straight line parallel to the y-axis.

The roadmap to show existence for every α−, α+ > 0 would be as follows:
First α− > 0 has to be fixed. Afterwards an α∗+ > α− has to be found, for which the
solution of (1.4) is of the asymptotically geodesic type. Then for every α+ ∈ (α−, α

∗
+)

one needs to show, that Wh
α−,α+

< 8 to obtain solutions by Theorem 1.1 in this regime.
This conjecture is supported by Lemma 7.2, which shows that the hyperbolic energy
of such a solution of asymptotically geodesic type is at most 8.
The next step consists in finding solutions for α+ > α∗+ in the wavelike class. For this
a shooting method seems appropriate as seen in Section 6.1. But instead of fixing the
initial derivative of the geodesic curvature to be zero, it needs to be varied as well.

This α∗+ may also yield a better smallness condition for projectivity than Assumption
1.2, since every solution with right boundary value between α− and α∗+ seems to be
orbitlike.
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Figure B.1.: Orbitlike solution: α− = 0.5, α+ = 1.25, K0 = 1.892309, K̇0 =
−0.556467, L = 2.581276.
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Figure B.2.: Asymptotically geodesic solution: α− = 0.5, α+ = 1.2894, K0 = 1.9176,
K̇0 = −0.5448, L = 2.5594.
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Figure B.3.: Wavelike solution: α− = 0.5, α+ = 1.3, K0 = 1.924355, K̇0 = −0.541498,
L = 2.553789.
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[18] A. Dall’Acqua, S. Fröhlich, H.-Ch. Grunau, and F. Schieweck. Symmetric Will-
more surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv.
Calc. Var., 4:1–81, 2011.

[19] K. Deckelnick and H.-Ch. Grunau. Boundary value problems for the one-
dimensional Willmore equation. Calc. Var. Partial Differential Equations, 30:293–
314, 2007.

[20] K. Deckelnick and H.-Ch. Grunau. A Navier boundary value problem for Willmore
surfaces of revolution. Analysis (Munich), 29:229–258, 2009.

[21] K. Deckelnick and H.-Ch. Grunau. Stability and symmetry in the Navier problem
for the one-dimensional Willmore equation. SIAM J. Math. Anal., 40:2055–2076,
2009.

[22] K. Deckelnick, H.-Ch. Grunau, and M. Röger. Minimising a relaxed Willmore
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List of Symbols

a, b, c Parameters for Killing field on H2.

α+ Positive real number. Height for boundary value problem on the right side.

α− Positive real number. Height for boundary value problem on the left side.

α Positive real number. Height for boundary value problem, if α− = α+.

B+ Bounding circle for wavelike γ, i.e. γ touches B+, iff the geodesic curvature
is maximal.

B− Bounding circle for wavelike γ, i.e. γ touches B−, iff the geodesic curvature
is minimal.

c Regular curve in H2.

C Constant varying from line to line.

distg Distance w.r.t. hyperbolic metric.

F Flow coordinates of H2.

G Gauss curvature.

g(·, ·) First fundamental form of H2.

γ Elastic curve parameterised by hyperbolic arclength.

H Mean curvature.

H2 = {(x, y) ∈ R2 : y > 0} with hyperbolic metric ds2 = dx2+dy2

y2 .

J Killing field on H2. Extension of Jγ to H2.

Jγ = K2γ̇ + 2K̇N along γ.

K Geodesic curvature of γ, satisfying K̈ = K − 1
2K

3.

κ[c] Geodesic curvature of c w.r.t. the hyperbolic metric.

K0 Initial geodesic curvature for initial value problem for elastic curve.
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List of Symbols

K̇0 Initial derivative of geodesic curvature for initial value problem for elastic
curve.

L Hyperbolic arclength of a curve.

| · | Euclidean length.

| · |g Length of vector w.r.t. hyperbolic metric.

∆S Laplace-Beltrami operator for a regular immersion S.

Mα−,α+ =
{c ∈ H2([0, 1],R× (0,∞)) : c(0) = (−1, α−), c(1) = (1, α+),

ċ2(0) = ċ2(1) = 0, ċ1(0), ċ1(1) > 0, |ċ| 6= 0}.

N Unit normal of a curve c, such that the tangent of c and N are positively
oriented.

N Natural numbers without 0.

px0,r Upper half circle with centre (x0, 0) and radius r.

ΦJ Flow of J .

R Real numbers.

∇WV Covariant derivative of V in direction W w.r.t. hyperbolic metric.

S(·) Surface of revolution, generated by a profile curve.

Σ Geodesic crossing wavelike γ perpendicularly. Integral curve of J .

Σ+ Subset of H2, in which a wavelike elastica has positive geodesic curvature.

Σ− Subset of H2, in which a wavelike elastica has negative geodesic curvature.

tγ Second coordinate of γ in flow coordinates.

u Positive function.

We Willmore energy.

W e
α−,α+

= inf{We(S(c)) : c ∈Mα−,α+
}.

Wh Elastic energy.

Wh
α−,α+

= inf{Wh(v) : v ∈Mα−,α+
}.

xs Zero of J on x-axis. Point in which Σ crosses x-axis.

Yγ First coordinate of γ in flow coordinates.
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Index

Bernstein-type, 34

Cayley transformation, 20

Dirichlet problem, 2
existence

shooting method, 47, 97
variational approach, 17

non-uniqueness
non-projectable, 73
projectable, 76

numerical solution, 87
projectability, 57
regularity, 23
symmetry, 84

elastica, 27
asymptotically geodesic, 28
circular, 28
orbitlike, 28
wavelike, 28, 33

Euler-Lagrange equation, 1

flow coordinates, 37
Frenet equations, 10

geodesic curvature, 10

inversion, 11
at a hyperplane, 11
at a sphere, 11

Jacobian elliptic function, 28

Killing vector field, 12

Möbius transformation, 11
mean curvature, 9

perpendicular geodesic, 33
Poincaré disk, 20

smallness assumption, 4
surface of revolution, 2

upper half plane, 10
Christoffel symbol, 10
covariant derivative, 10
elastic energy, 10
hyperbolic metric, 10

Willmore
energy, 1
equation, 1
surface, 1
surface of revolution, 2
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