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ARTICLE INFO ABSTRACT

Keywords: Structural and biotic homogenization can result from forestry practices lacking promotion of canopy gaps and
Soil ecosystem functioning deadwood. This can lead to biodiversity loss and impaired ecosystem functions. Enhancing structural complexity
Mechanistic context dependency (ESC) has been proposed to counteract these effects, but its impact on soil properties remains insufficiently

Forest soil
Sustainable forestry
BETA-FOR

understood. Overall, we hypothesize that ESC enhances soil abiotic properties, their spatial variability, and
microbial functioning, with effects modulated by environmental context and increasing over time. Data were
collected from 148 patches (50 x 50 m) in eight beech forests across Germany. In half of the patches, structural
complexity was enhanced by felling 30 % of the basal area of living trees through two spatial pat-
terns—aggregated (one large gap) and distributed (small gaps)—combined with leaving or removing deadwood
(stumps, logs, snags). The other half served as controls, representing managed, homogeneous production forests.
Soil carbon (C) %, nitrogen (N) %, and C:N ratio increased near deadwood. Soil microbial biomass and activity
were significantly affected in three of eight forest sites, effects ranging from —30 % to +62 %. Higher soil water
content was associated with increased microbial biomass, and greater understorey biomass correlated with a
lower microbial respiratory quotient. However, no temporal trends were observed over five years. Although soil
properties showed resistance to structural interventions, site-specific effects underline the importance of soil
moisture and the understorey vegetation for microbial functioning. Further research building on our results is
needed to develop practical forest management strategies to clarify how structural complexity may support soil
functioning and ecosystem resilience.

1. Introduction and little deadwood (Aszalos et al., 2022; Paletto et al., 2014). This
reduction of habitat diversity can cause biodiversity loss (Newbold et al.,

Homogenization of landscapes is a serious human-made threat to 2015; Rousseau et al., 2019) and impair ecosystem functioning (Hooper
biodiversity (McGill et al., 2015). In production forests, intensive silvi- et al., 2012; Soliveres et al., 2016). This has far-reaching consequences
cultural management can lead to landscape homogenization by creating for human well-being (Cardinale et al., 2012; Wall et al., 2010). Thus, it
stands missing early-successional stages, with usually small canopy gaps is essential to identify sustainable approaches for managing forests for
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timber production while promoting biodiversity and maintaining mul-
tiple ecosystem functions (Messier et al., 2022; Topanotti et al., 2023).
Structural complexity of forests has received growing attention
(Beugnon et al., 2024; Ray et al., 2023), alongside timber harvesting
methods that aim to retain key structural elements, such as standing live
trees and deadwood (e.g., Churchland et al., 2021; Lewandowski et al.,
2019). Here, we consider the expansion of canopy gaps and the presence
of deadwood in a forest as enhancing its structural complexity (Keeton,
2006; Miiller et al., 2023). In gaps, more light and water reach the forest
floor (Galhidy et al., 2006; Latif and Blackburn, 2010; Ritter et al.,
2005), while deadwood can alter soil properties (Blonska et al., 2017;
Moghimian et al., 2020). However, there is a knowledge gap regarding
the effect of forest structure and complexity on belowground organisms
that drive important ecosystem functions.

Current estimates suggest that ~59 % of all species on Earth inhabit
the soil (Anthony et al., 2023), and they play a crucial role in the
mineralization of organic matter, nutrient cycling, and carbon (C)
sequestration (Bardgett and van der Putten, 2014; van der Heijden et al.,
2008). Soil basal respiration, microbial biomass, and the respiratory
quotient are useful indicators for soil ecosystem functions (Cesarz et al.,
2022; Eisenhauer et al., 2010). For example, higher soil microbial
biomass correlates with higher wood mass loss (Gottschall et al., 2019),
and higher soil microbial activity correlates with soil C sequestration
(Lange et al., 2015).

Soil microbial community diversity, biomass, and activity are sen-
sitive to nutrient availability, soil pH, and moisture (Fierer and Jackson,
2006; Mulder et al., 2005; Serna-Chavez et al., 2013). Enhancing a
forest's structural complexity through added canopy gaps and deadwood
can influence these variables, and it likely also affects soil biodiversity
and functioning. For example, forest gaps can result in higher under-
storey biomass and diversity (Galhidy et al., 2006; Mueller et al., 2016),
which in turn can enhance root exudates and increase soil microbial
biomass (Chen et al., 2019; Eisenhauer et al., 2017; Lange et al., 2015).
Deadwood, in turn, provides an important substrate for fungi and other
wood-decomposing organisms (Dove and Keeton, 2015; Dyson et al.,
2024). Depending on tree species, type (stump/log), and decay stage,
deadwood can enhance soil water content, soil organic C, total nitrogen
(N), enzymatic activity, and soil respiration, while contrasting effects on
soil pH have been recorded (Blonska et al., 2017; Moghimian et al.,
2020; Perreault et al., 2020; Piaszczyk et al., 2019; Wambsganss et al.,
2017). Taken together, canopy gaps and deadwood can lead to higher
variability of physicochemical soil properties due to the patchy impact
of deadwood as well as the heterogeneity of the regenerating vegetation
in canopy gaps (Moghimian et al., 2020; Perreault et al., 2020; Ritter
etal., 2005). As a result, a more heterogeneous habitat for soil organisms
can increase their diversity (Curd et al., 2018; Eisenhauer, 2016). More
diverse communities are often linked to increased functioning (Bell
et al., 2005; Colombo et al., 2016). Therefore, we expect that increased
structural complexity leads to changes in both abiotic and biotic soil
properties.

Different environmental contexts in a forest might modulate the ef-
fect of increased structural complexity on soil organisms and their ac-
tivity. Here, we refer to the concept of mechanistic context dependency
(Catford et al., 2022), where the relationship between variables (e.g.,
enhanced structural complexity and biotic soil properties) is influenced
by interaction effects with other factors (e.g. abiotic soil properties or
the understorey vegetation). Since soil water and nutrient availability
are strong predictors of soil microbial properties (Serna-Chavez et al.,
2013), the potential changes in these abiotic properties at a site may
affect the influence of other factors on soil microbial properties (Cesarz
et al., 2022). For instance, in experimental forest stands, tree diversity
and identity were reported to have a greater impact on soil microbial
properties in drier and nutrient-poor soils than in more moist and
nutrient-rich soils (Cesarz et al., 2022; Lu and Scheu, 2021). Another
example is that the effect of structural complexity on the understorey
may vary with soil conditions (Leuschner and Ellenberg, 2017),
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potentially influencing the effect on soil microbial properties
(Eisenhauer et al., 2010; Lange et al., 2015). Thus, we expect that the
strongest microbial responses may occur at sites where structural
complexity induces the largest changes in soil abiotic conditions or
understorey vegetation, such as in relatively dry or nutrient-poor forests,
highlighting the importance of environmental context in shaping
belowground responses to structural interventions.

While mechanistic context dependency highlights the variability of
biodiversity-ecosystem functioning relationships across different spatial
contexts, effects might also change over time. Experimental research
indicates that the impact of biodiversity on ecosystem functioning be-
comes more pronounced over time (Bongers et al., 2021; Guerrero-
Ramirez et al., 2017; Reich et al., 2012), but there is a lack of time series
data on forest soils investigating such relationships. As the effects of
plant species richness on belowground properties (Ravenek et al., 2014;
Strecker et al., 2016) and the influence of deadwood on soil develop
gradually (Moghimian et al., 2020; Perreault et al., 2020), the impact of
structural complexity on soil microbial properties may also change over
time.

This study aims to address these research gaps by investigating the
effects of enhanced structural complexity of forest stands on abiotic soil
properties, soil microbial activity, biomass, and the respiratory quotient
in different environmental contexts in eight forests in Germany. Time
series data are available for five years for one of these forests. We hy-
pothesize that (Hla) canopy gaps and deadwood enhance soil water
content, pH, and nutrient levels and (H1b) increase their spatial vari-
ability (Moghimian et al., 2020; Ritter et al., 2005). As a consequence,
we expect (H2) a general increase in soil microbial activity, biomass, and
a decrease of the respiratory quotient, indicating an increase of the ef-
ficiency of the microorganisms, in forests with greater structural
complexity (Bell et al., 2005; Eisenhauer, 2016). Thirdly (H3), we expect
this effect to be mechanistically context-dependent and more pro-
nounced in forest sites where enhanced structural complexity has a
stronger effect on soil water content, soil nutrient availability, and the
understorey vegetation (Cesarz et al., 2022). Finally (H4), we expect the
influence of enhanced structural complexity on soil microbial activity,
biomass, and the respiratory quotient to increase over the first five years
(Guerrero-Ramirez et al., 2017).

2. Methods
2.1. Study design

This study was conducted in the BETA-FOR experiment (Miiller et al.,
2023). To investigate the hypotheses in different environmental con-
texts, eight deciduous - primarily beech-dominated - forest sites in
Germany were selected, and study patches were established (Miiller
et al., 2023). One site is located in the forest of the University Wiirzburg
(U03), five sites are in and close to the Bavarian Forest National Park
(B04, B05, B06, BO7, P08), one site is close to Saarbriicken (S10), and
one close to Liibeck (L11; Fig. 1A). The forest sites differ in their envi-
ronmental context (Table 1; Fig. 2). Each forest site consists of a control
district and a treatment district (Fig. 1B). In the treatment district, the
structural complexity was enhanced (Enhancement of structural
complexity = ESC districts) by creating canopy gaps and deadwood
through different silvicultural interventions. These treatment districts
will be referred to as ESC districts. The interventions in the ESC districts
were always applied to 30 % of the stand basal area of living trees of the
50 x 50 m patch. The tree removal was conducted in two spatial vari-
ants: aggregated and distributed. In the aggregated variant, all trees
were removed centrally, creating one large contiguous gap (30 m
diameter). In contrast, in the distributed variant, trees were removed
uniformly throughout the whole patch, resulting in small-scale canopy
openings, while the same volume of timber as in the aggregated variant
was removed. Further, four deadwood treatments were crossed with the
two spatial variants (aggregated vs distributed): stumps, logs, snags, or
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Fig. 1. Locations of the study sites across Germany (A), schematic representation of a site with the ESC (enhancement of structural complexity) and the control
district (B), illustration of the individual treatments within an ESC district along two axes, i.e., canopy gaps in aggregated and distributed configuration and different
deadwood structures (C), and schematic representation of the sampling method (D). We captured within-patch heterogeneity by sampling across combinations of
canopy cover (open vs. closed) and deadwood presence. Ideally, one sample was taken from each of the following: (1) deadwood under open canopy, (2) no
deadwood under open canopy, (3) deadwood under closed canopy, and (4) no deadwood under closed canopy. Sampling began at the patch center, from which three
subpatches were selected to best represent all condition combinations. Panel (D) shows an example distribution of sampling points and conditions within a patch.

Table 1

Environmental context of the eight forest sites (ordered by pH), including the year the ESC districts were established (Year of experimental intervention). For tem-
perature (Temp.), soil C:N ratio, soil pH (measured in CaCl, solution), and soil water content, the mean of the control patches was used to characterize each forest site.
Temperature refers to the average at 2 m height in 2023, measured at the patch center. Geology/lithology, soil type, and vegetation type each represent the dominant

category within the respective forest site (ESC and control patches).

Forest Elevation Temp. CN pH  Year of Geology/ Lithology Soil type Vegetation type
site [m] [°C] ratio experimental
intervention

P08 496 11.3 22.6 2.7  2015/16 Carboniferous/ Weakly podzolic Cambisol Luzulo-Fagetum
granite

B05 1080 8.2 19.3 2.7  2015/16 Carboniferous/ Weakly podzolic Cambisol Lugulo-Fagetum
granite

BO7 928 9.0 19.4 2.8  2015/16 Carboniferous/ Weakly podzolic Cambisol Luzulo-Fagetum
granite

L11 41 13.4 19.1 3.0 2016/17 Young moraine/ Weakly podzolic stagnic Galio-Fagetum
basal till Cambisol

B06 829 9.8 19.4 3.0 2015/16 Carboniferous/ granite, gneiss Cambisol Luzulo-Fagetum

B04 888 9.4 17.8 3.0 2015/16 Carboniferous/ Weakly podzolic Cambisol Lugzulo-Fagetum
gneiss

S10 296 13.2 19.3 3.9 2015/16 Upper carboniferous/ silt- and Stagnic Cambisol Galio-Fagetum
mudstone

uo03 311 10.6 13.6 5.7  2018/19 Muschelkalk/ limestone Chromic Cambisol Hordelymo-

Fagetum

logs and snags remaining (Fig. 1C). To create snags, trees were cut below
the crown with a harvester to retain standing deadwood. Forest site U03,
an add-on and a long-term site, included six additional patches accom-
modating three more deadwood treatments to allow investigation of a
higher level of spatial heterogeneity (though not the focus of this study).
Across all forest sites, deadwood treatments resulted in an average
deadwood volume equivalent to 45 m? deadwood hectare™! (& 29 m3).
Patches in the control district were not treated and thus represent a
normally thinned forest or a currently unmanaged former commercial
forest (in the national park). Within each district (10-20 ha), there are
nine patches, each measuring 50 x 50 m. In the ESC districts, one of
these nine patches remained untreated to increase within-district het-
erogeneity. Given that our study focuses on the effects of treated (ESC)
versus untreated (control) conditions on soil properties and microbial

functioning, we excluded the untreated patch within the ESC district
from all analyses to avoid biased results. The contiguous control and
treatment districts are in close proximity and have similar geology, soil
types, and tree species composition. Thus, in total, 70 ESC patches ((7
forests * 8 patches) + 14 (the eighth forest with 14 patches) = 70) and
78 control patches ((7 forests * 9 patches) + 15 (the eighth forest and all
control patches) = 78) were included in our analysis, resulting in 148
patches overall.

2.2. Soil sampling and analyses
Four soil cores (diameter 5 cm, depth 10 cm) per patch were taken

within a 12 m radius around the center of the patch after roughly
removing the litter layer. The four sampling points were selected to
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Fig. 2. Principal component biplot of the environmental context of patches of this study comprising elevation, soil pH, air temperature, and soil carbon-to-nitrogen
(C:N) ratio. Data was standardized, points are colour-coded for different forest sites and each ellipse shows a forest site with 95 % confidence intervals.

represent the heterogeneity of the patch with the canopy gaps and
deadwood axes. This resulted in samples taken next to deadwood vs. no
deadwood and open vs. closed canopy (Fig. 1D). This was done in
October 2023 on all sites. U03 was additionally sampled each autumn
since 2018 to study the ESC effect over time. Samples were constantly
cooled and sieved (2 mm) before further processing. Soil C, N, and pH
were measured on the sampling point level (4 per patch); microbial
biomass, basal respiration, and soil water content were measured from
samples pooled per patch.

Prior to microbial measurements, samples were kept for three days at
+20 °C to acclimate the soil microbial community to a consistent and
standardized temperature. We used an automated Oy-micro-
compensation apparatus (Scheu, 1992) to assess soil basal respiration
and microbial biomass. Basal respiration represents the mean oxygen
consumption per hour (ul O3 h™! g soil dw™!) without any substrate
addition. This indicates the active portion of the soil microbial com-
munity at the time and soil condition of sampling. For this, the mean
oxygen consumption between the hours 10-20 was taken. Microbial
biomass C was determined through substrate-induced respiration, which
measures the respiratory response of microorganisms to added glucose
and water (Anderson and Domsch, 1978). An aqueous solution con-
taining 8 mg of glucose per gram of dry soil was added. The lowest
substrate-induced respiration observed over three consecutive hours
within the first 10 h was taken as the maximum initial respiratory
response (MIRR), taking place before microbial growth started. Micro-
bial biomass (ug C g ! soil dw) was calculated as 38 x MIRR, based on
calibration against fumigation methods (Beck et al., 1997). This method
measures the full potential of the living microbes that can use glucose.
The respiratory quotient is calculated by dividing the basal respiration
by the microbial biomass. It determines the ratio of built-up C to in-
vestment in respiration. If the respiratory quotient is low, substrate use
is efficient, as more microbial biomass can be built up with less respi-
ration. We use the respiratory quotient as an indicator of substrate use
efficiency and refer to it as such.

Soil water content was determined by weighing the fresh sample,
drying it at 75 °C for three days, and reweighing it (IAEA, 2008; Siin-
nemann et al., 2021). As this measurement reflects the soil water content
at the moment of sampling, it is only suitable to compare different
patches that were sampled under the same weather conditions.
Accordingly, ESC and control districts of the same forest site were

always sampled within a short period of time (i.e., within a maximum of
four days), while different forest sites were sampled up to three weeks
apart. To avoid, for example, a heavy rain event at one forest site
influencing our results, soil water content is only used for comparison
within a forest site and not between forest sites. To measure soil pH, 10 g
of air-dried soil was mixed with 25 ml of 0.01 M CaCls solution, shaken,
and allowed to sit for 1 h. The pH was then recorded using a pH meter
(Orion Star A211, Thermo Scientific, MA) (Bonisch et al., 2024; FAO,
2021). For determination of C and N content, soil samples were dried at
30 °C for 72 h, ground, and then transferred into tin capsules (20 mg
each). The analysis was conducted using dry combustion with a Vario EL
cube IR elemental analyzer (Dietrich et al., 2021; Farina et al., 1991).
The C and N content were provided as the percentage of the element's
mass relative to the sample mass, and the C:N ratio was calculated from
these values. Soil water content was measured at the patch level from a
pooled soil sample, while all other abiotic soil variables were recorded
for every sampling point per patch (n = 4).

2.3. Further environmental variables

During the vegetation period of 2023, five hemispheric photographs
were taken on all patches to measure the canopy openness. One
photograph was captured at the center of each patch, while the others
were taken between 12 and 20 m apart from the center in a cross-shaped
pattern in all four cardinal directions. No people or equipment appeared
in the images. The camera used was a Nikon D7200, equipped with a
Sigma 4.5 mm F2.8 EX DC Circular Fisheye HSM lens, mounted on a
tripod at a height of 1 m and oriented directly upwards. The diffuse site
factor (DIFFSF), representing the proportion of diffuse solar radiation
penetrating the canopy, was calculated from these images using “Seg-
mentation” software v1.0.0.1 (developed by the Chair of Photogram-
metry, TUD, in 2006) and “Hemisphere Tool v1.1 beta” (February 2018,
developed by the same chair). For further analyses, an average DIFFSF
per patch was used and referred to as canopy openness.

The deadwood volume was assessed on all patches. On the ESC
patches, all deadwood that was experimentally created (standing, lying,
stumps, habitat trees) was recorded. On the control patches, only
naturally dead standing trees and fresh stumps from thinning were
considered. For standing deadwood, a taper of 1 mm per decimeter was
assumed. The volume of crowns and lying deadwood was calculated
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2
using the formula: (W) *length*n. Deadwood with a diameter

under 7 cm, including snags and logs, was excluded from documenta-
tion. Thus, the value corresponds to the coarse woody debris present.
For simplicity, we will refer to deadwood throughout the manuscript.

Air temperatures at 2 m height were measured with one EL-USB2
(Lascar Electronics Ltd., UK) data logger per patch. The loggers were
installed in TX COVER (Technoline, Germany) logger shields, which
were mounted on wooden poles at the patch centers. Air temperatures
were measured every 30 min. Data gaps, resulting from logger mal-
functions, were imputed from information of loggers from the same
district using the R package ‘MissForest’ (Stekhoven and Biithlmann,
2012). The temperature time series were aggregated to mean tempera-
tures of the year 2023 for each site.

Surveys and aboveground biomass harvest of the understorey were
conducted in the vegetation period of 2023 on five subpatches (4 m
radius each) per patch. During the vegetation surveys, all herbaceous
and woody species up to the height of 1 m were recorded. For under-
storey biomass harvest, in each subpatch, app. 0.5 m? (70 x 70 cm) of
aboveground understorey vegetation was harvested in a location that
was representative of the patch and subpatch in terms of species biomass
and richness. The biomass was oven-dried (60 °C for 72 h) and weighed.
Biomass values were summed per patch and standardized to 1 m?.

2.4. Statistical analysis

All statistical analyses were conducted in R v.4.2.2 (R Core Team,
2022). To test for differences in environmental conditions (soil pH, air
temperature at 2 m, soil C:N ratio, elevation) among forest sites, we
performed a principal component analysis (PCA) using the function
prcomp from the package ‘stats’ (R Core Team, 2022).

To test whether the forest interventions that increase light avail-
ability and deadwood occurrence affect abiotic variables (soil water
content %, soil pH, soil C:N ratio, soil C%, and soil N%), we used both
continuous and categorical explanatory variables (H1a). As continuous
variables, we used canopy openness (the proportion of visible sky) to
represent light and deadwood volume (in m®). Categorical variables
included the spatial pattern of tree removal (control vs. distributed vs.
aggregated) and the presence of deadwood within 30 cm of the sampling
point (yes or no). Importantly, deadwood volume (continuously; overall
deadwood volume per patch) and deadwood occurrence (categorically;
spatially explicit presence of deadwood next to sampling point) repre-
sent distinct concepts. Deadwood occurrence was recorded for each
sampling point whereas all other explanatory variables were used at the
patch level. We fitted one model for each abiotic soil variable separately,
using tree removal variant, canopy openness, deadwood volume, and
deadwood occurrence as fixed effects without including interaction
terms. Deadwood volume was log-transformed due to its non-linear
relationship with many variables (Miiller et al., 2010). For the patch-
level data (soil water content %), forest site was included as a random
effect, while for data on sampling point level (soil C%, N%, soil C:N
ratio, and soil pH), patch nested within forest site was used as a random
effect.

To test if our interventions lead to higher heterogeneity in our
response variables (H1b), we calculated the coefficient of variation (CV)
for non-pooled samples per patch (n = 4). We fitted a linear mixed-
effects model with the CV as the response variable, district (control vs.
ESC) as fixed factor, and forest site as random effect. Given that soil
water content was only determined at the patch level (and not at the
higher spatial resolution), we did not test the effect of deadwood
occurrence on soil water content (H1a) and also not the effect of district
(control vs. ESC) on the CV of soil water content (H1b).

To test whether ESC affected the microbial functions (soil basal
respiration, soil microbial biomass, and respiratory quotient) and if the
effects on the three biotic soil properties differ between forest sites (H2),
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we fitted linear mixed-effect models with district and forest site, and
their interaction as fixed effects, respectively. The devices on which
basal respiration and microbial biomass were measured was always
included as a random effect.

To test if greater increases in soil abiotic and understorey properties
lead to greater increases in soil biotic properties (H3), we calculated a
mean per forest site and district combination (e.g., U03 control and U03
ESC) for soil basal respiration, soil microbial biomass, respiratory quo-
tient, soil water content, soil C:N ratio, soil C%, understorey plant spe-
cies richness and aboveground biomass. We calculated the relative
difference between ESC and control district for every forest site and
variable, hereafter referred to as effect size. As we cannot form pairs of
control and ESC patches, this had to be done at the district level. We then
tested the relationship between the effect sizes of abiotic/ understorey
variables and effect sizes of biotic variables. To get an overview of forest
site-specific effects of ESC on the abiotic soil variables, we fitted models
with district, forest site, and their interaction as explanatory variables.

To test if the effect of ESC on soil properties increased over the first
five years of the experiment (H4), we analyzed data from 2019 to 2023
from UO03. Since the samples from 2018 were taken only two weeks after
ESC establishment, we excluded this year's data to avoid any disturbance
effects. We fitted linear mixed-effects models with district (categorical
variable) and year (continuous variable), as well as their interaction as
fixed effects and patch and measurement device as random effects.
Further, we calculated the effect size of ESC on soil basal respiration, soil
microbial biomass, and the respiratory quotient for each year (relative
difference between control and ESC district, respectively) and fitted
linear models with year as a continuous variable as the explanatory
variable and the effect size as the response variable.

Throughout the study, we fitted beta regression models for per-
centage data (beta distributed errors), and for non-percentage data, we
used models with normally distributed errors. Linear models were fitted
using the package ‘stats’ (R Core Team, 2022), linear mixed-effects
models were fitted using the ‘lme4’ package (Bates et al., 2015), and
beta regression models were fitted using the package ‘glmmTMB’
(Brooks et al., 2017). The function anova from the package ‘stats’ (R
Core Team, 2022) was used to produce p-values. For mixed-effects
models, p-values for fixed effects were computed using the ‘ImerTest’
package (Kuznetsova et al., 2017), which provides Satterthwaite's de-
grees of freedom approximation. Assumptions of the models were
visually checked using the R package ‘performance’ (Liidecke et al.,
2021). If necessary, variables were log-transformed to improve model
fit. This was done for pH, C:N CV, C% CV, and N% CV for H1 analyses
and for basal respiration and the respiratory quotient for H2 analyses. To
assess the significant interactions, post-hoc tests were conducted using
the ‘emmeans’ package (Lenth, 2021), and compact letter displays were
derived using the package ‘multcomp’ (Hothorn et al., 2008). For all
figures, predicted values (marginal effects) were computed using the
function ggpredict from the package ‘ggeffects’ (Liidecke, 2018). All
graphs were created with the ‘ggplot2’ package (Wickham, 2016). The
estimated marginal means from the post-hoc tests were used to calculate
the change of soil properties in percentage.

3. Results
3.1. Physicochemical properties of soil

The spatial variant of tree removal, canopy openness, and deadwood
volume per patch did not significantly affect soil water content, soil pH,
soil C:N ratio, soil C%, and soil N% across all forest sites (Fig. 3, Table S1
in supporting information). Deadwood occurrence near the sampling
point did not change soil pH significantly (Fig. 3G), but significantly
increased the soil C:N ratio (+ 2 %; Fig. 3K), soil C% (4 8 %; Fig. 30),
and soil N% (+ 6 %; Fig. 3S). Neither soil pH, nor the C:N ratio, nor C%
or N% showed a higher CV in the ESC districts than in the control dis-
tricts (Fig. S1 and Table S2 in supporting information).
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Fig. 3. Soil water content (A - C), soil pH (D - G), soil C:N (H—K), soil C% (L - O), and soil N% (P - S) as affected by spatial variant of tree removal (left column; C =
control, D = distributed, A = aggregated), canopy openness (second column), deadwood volume per patch (second column from right; m®), and deadwood
occurrence near sampling point (right column). P-values are from beta regression models (soil water content, C%, N%) and linear mixed-effect models (soil pH, soil C:
N ratio); significant results (p < 0.05) are bold and panels highlighted in blue. Model predictions are shown with 95 % confidence intervals; dashed lines indicate non-
significant effects, and raw data are shown in the background. Sample sizes (n) are indicated for categorical predictors.

3.2. Soil respiration, microbial biomass, and the respiratory quotient

Across forest sites, soil basal respiration, soil microbial biomass, and
the respiratory quotient did not differ between control and ESC districts
(though district was marginally significant for microbial biomass, post-
hoc tests did not show a significant difference between districts).
However, the interaction between forest site and district was significant
for basal respiration, indicating that the specific location is important
(Fig. 4, Table S3 in supporting information). Specifically, basal respi-
ration was significantly higher in the ESC district in L11 (4 62 %) and
lower in the ESC district in PO8 (— 30 %; Fig. 4A). The effect of the
interaction between forest site and district on soil microbial biomass was
marginally significant and showed a significant increase in the ESC
district in B06 (+ 42 %; Fig. 4B). The respiratory quotient was not
significantly different between control and ESC districts in any of the
forest sites (Fig. 4C).

3.3. Mechanistic context dependency of effects

Here, we tested if the relative change between control and ESC in one
variable (=effect size) is associated with a corresponding effect size of
another variable for 15 combinations of a variable (abiotic soil proper-
ties and understorey vegetation properties) with a biotic microbial
variable (Fig. 5, Table S4 in supporting information). This could indicate
a positive or negative correlation, depending on the trend of the data, or
a lack of association if the changes in one effect size don't appear to
predict changes in the other. In two out of the 15 combinations, we
found a significant relationship, and in one combination, a marginally
significant effect (Fig. 5). We observed a significant positive relationship
between the change in soil microbial biomass and soil water content
(Fig. 5B). The effect size of ESC on the respiratory quotient was signif-
icantly negatively affected by the effect size of ESC on understorey
biomass (Fig. 5L) and marginally negatively affected by observed plant
species richness (Fig. 50).

An overview of ESC effects on abiotic soil properties can be found in
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Fig. 4. Soil basal respiration (A), soil microbial biomass (B), and soil respiratory quotient (C) in 2023 per forest site and district (control: red; enhanced structural
complexity (ESC): blue). P-values are from linear mixed-effect models (D = District; FS = Forest site); significant values (p < 0.05) are bold. Asterisks indicate
significant within-site differences from post-hoc tests following (marginally) significant FS x D interactions. Model predictions are shown with 95 % confidence
intervals (error bars); larger points indicate means, raw data per patch in the background. Forest sites are ordered by increasing soil pH.

Table S5 in the supporting information. Soil pH was not affected by ESC
in any of the forest sites. Soil water content was significantly higher in
the ESC districts of three forest sites (B06: + 35 %; L11: + 23 %; S10: +
26 %). Soil C:N ratio was significantly increased by ESC in one forest site
and decreased in another (B0O4: + 11 %; P08: - 8 %). Soil C% and N%
were significantly lower in the ESC district of one forest site (B05: - 31 %
(C%); —29 % (N%)).

3.4. Temporal development of effects

ESC did not significantly influence soil basal respiration, soil mi-
crobial biomass, and the respiratory quotient across the five years of
investigation in U03 (Fig. 6, Table S6 in supporting information). Soil
basal respiration and respiratory quotient decreased significantly with
time, whereas soil microbial biomass was stable. No significant inter-
action of year and district was found for any of the three soil biotic
properties. Year had no significant effect on the effect size (relative
difference in mean values) between control and ESC districts for the
response variables basal respiration, microbial biomass, and respiratory
quotient in U03 (Fig. S2 and Table S7 in supporting information).

4. Discussion

Due to intensive management, production forests frequently become
structurally homogenized on the landscape scale, leading to a loss of
biodiversity and ecosystem functions. Here, we studied the effects of
experimentally enhanced structural complexity (ESC) in forests on soil
abiotic and biotic properties over space and time.

4.1. Effects of canopy gaps and deadwood on physicochemical properties
of soil (H1)

Enhanced light availability and deadwood only partially influenced

the physicochemical properties of the soil (H1). Soil pH and soil water
content remained unchanged, while soil near deadwood showed an in-
crease in C%, N%, and the C:N ratio. Even though several studies
observed increased soil water content in canopy gaps within one to two
years after gap creation (Galhidy et al., 2006; Latif and Blackburn, 2010;
Ritter et al., 2005), our findings align with a study on 3-6-year-old gaps
that found no consistent increases (Lenk et al., 2024). These results
suggest that increases in soil water content are only short-term and may
be influenced by gap size and closure dynamics. In smaller gaps, like
those in our distributed variant, rapid closing due to the crown plasticity
of neighboring trees (Schroter et al., 2012) may lead to higher inter-
ception by the canopy, while in larger gaps, like our aggregated variant,
increasing natural regeneration may take up the available soil water
(Kovacs et al., 2020; Ritter et al., 2005). Similarly, we also found no
effect of increased deadwood volume on soil water content, likely
because the mechanisms by which deadwood enhances soil moistur-
e—through absorbing and storing water, and incorporating organic
material into the soil—tend to intensify gradually over time with
ongoing decomposition (Bionska et al., 2018; Edelmann et al., 2023;
Piaszczyk et al., 2019). However, increased soil C% and N% near
deadwood suggest some organic material has already been integrated
into the soil, the effects remain weak and have not yet influenced soil
water content. During early decomposition, deadwood can act as a net N
source (Bantle et al., 2014). However, fungal N translocation from sur-
rounding substrates into deadwood (Schimel and Hattenschwiler, 2007)
may counteract this effect, which could explain why we observed only a
weak increase in soil nitrogen around deadwood. The effects on soil C%
and N% near deadwood, but not for deadwood volume on patch level,
emphasize the small-scale effect of deadwood on soil, as shown in pre-
vious studies (Minnich et al., 2021; Moghimian et al., 2020; Stutz et al.,
2017). This, in turn, underscores the crucial role of deadwood in
fostering a heterogeneous soil habitat for microorganisms.

Soil pH was not altered by the presence of deadwood or open
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Fig. 5. Relationships between the effect size of enhanced structural complexity (ESC) on soil basal respiration (left), soil microbial biomass (middle), and respiratory
quotient (right) with the effect sizes of ESC on soil water content (A - C), C:N ratio (D - F), C% (G - I), understorey biomass (J - L), and observed understorey plant
species richness (M - O). Black lines show model predictions with 95 % confidence intervals; points show the raw data, colour-coded by forest site. P-values are from
linear models; significant values (p < 0.05) are bold. Significant relationships are shown with solid lines and non-significant ones with dashed lines. The red line
indicates the zero baseline; values above it show an increasing effect and values below it a decreasing effect by ESC.

canopies. Even though literature is inconsistent about the effect of
deadwood on soil pH, strong effects are often associated with highly
decayed deadwood (Moghimian et al., 2020; Perreault et al., 2020; Stutz
et al., 2017). For instance, Gonzalez-Polo et al. (2013) and Blonska et al.
(2023) observed the most significant impact on soil properties when
deadwood had reached advanced decay (stage V: no leaves, twigs, or

bark, with a soft, powdery wood consistency), whereas the deadwood in
our patches is better classified as medium decay stage (stage II: leaves
absent, but twigs and bark present, with a solid wood consistency).
Importantly, the development of deadwood into higher decay stages can
take decades (Vrska et al., 2015). Contrary to previous studies (e.g.
Perreault et al., 2020), variability (CV) of physicochemical soil
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properties did not increase in ESC patches. Even though this was not
expected, it is consistent with the generally weak effect on the abiotic
soil properties and may change as time progresses.

4.2. Effect of ESC on soil respiration, microbial biomass, and the
respiratory quotient (H2)

Enhanced structural complexity did not generally increase soil basal
respiration, microbial biomass, or decrease the respiratory quotient
across the different forest sites (H2). Nevertheless, ESC increased basal
respiration in one of the sites and decreased it in another, while soil
microbial biomass increased in ESC patches of a third site. These
inconsistent effects suggest a mechanistic context dependency (H3). The
previously discussed absence of strong general effects of ESC on the
physicochemical soil properties is in line with the absence of an overall
effect on biotic soil properties as these two sets of properties are func-
tionally connected (Fierer and Jackson, 2006; Serna-Chavez et al.,
2013). We therefore also expect the effects on biotic properties to be
more pronounced in a few years.

Another consideration is that deadwood affects soil microbial ac-
tivity and biomass at a finer scale (Blonska et al., 2024; Minnich et al.,
2021). Pooling the four soil samples from each patch before measuring
soil biotic properties may dilute small-scale effects, such as those near
deadwood. Given the high heterogeneity of soils (Llado et al., 2018; Vos
et al., 2013), short-term ESC effects might only be detectable at a small
scale or could be overshadowed by other environmental factors.

Further, this study focused on only two broad soil functions (and
their ratio, i.e., respiratory quotient). We recommend future research to
include testing for more specialized functions (i.e., those functions car-
ried out by a small group of specialized microorganisms), more precise
indicators for functions (i.e., measuring microbial carbon use efficiency

using isotope labelling instead of the respiratory quotient), soil multi-
functionality, and examining the community composition of soil or-
ganisms to understand their responses to enhanced structural
complexity (Ali, 2023; Churchland et al., 2021; Lang et al., 2023; Lew-
andowski et al., 2015; Zheng et al., 2019).

4.3. Mechanistic context dependency of ESC effects (H3)

None of the measured abiotic soil variables was altered by ESC in the
same way as the biotic variables; thus, the effects cannot simply be
explained by a change in abiotic factors in the specific forest sites (e.g.
nutrient availability increased in one forest site and decreased in
another explaining the change of basal respiration). However, ESC
induced changes in soil water content and understorey properties were
linked to changes in microbial properties (H3). In forest sites with a
higher increase in soil water content in response to ESC, soil microbial
biomass increased more strongly. Notably, we did not find the same
relationship for soil water content and soil basal respiration, even
though soil water content is known to strongly affect soil basal respi-
ration (Moghimian et al., 2020; Serna-Chavez et al., 2013; Siebert et al.,
2023).

Besides abiotic soil variables, changes in understorey vegetation
might mediate ESC effects on soil microbial properties. However, no
significant relationships were found between changes in understorey
biomass or plant species richness and changes in microbial activity or
biomass, respectively. This contradicts previous studies that have shown
increased microbial activity and biomass with higher plant diversity in
grasslands and forests (Chen et al., 2019; Eisenhauer et al., 2010, 2011;
Lange et al., 2015; Strecker et al., 2016). While the effects might take
longer to become apparent (Eisenhauer et al., 2010; Strecker et al.,
2016), relationships in forests might differ from relationships in
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grasslands (Xu et al., 2020), and understorey plant species richness ef-
fects could be diminished by the tree canopy and the forest microclimate
(De Frenne et al., 2021). Notably, a greater increase in understorey plant
biomass led to a stronger decrease in the respiratory quotient, indicating
higher substrate- use efficiency of the soil microbial community, as more
microbial biomass can be built up with less respiration (Eisenhauer
et al., 2013). A tendency towards the same effect was found for changes
of understorey plant species richness on changes of the respiratory
quotient. Possibly, these findings were the result of altered resource
quality and quantity due to more root biomass and root exudates by the
understorey plant community (Eisenhauer et al., 2017). However, when
calculating the effect sizes for each forest site, we obtained only eight
data points, so these results should be interpreted with caution. None-
theless, these results highlight the potentially important role of soil
water content and the understorey vegetation as key factors that connect
enhanced structural complexity to increased soil microbial functioning.
More detailed investigations of the microbial communities (e.g., taxo-
nomic composition and functional diversity) may provide more insights.

To better understand the context-dependency of ESC effects, future
studies should examine which site-specific factors and interactions in-
fluence responses to ESC. While increasing the sample size could help,
this may be impractical; controlled experiments with varied environ-
mental conditions and structural complexity offer a more feasible
alternative for uncovering underlying mechanisms.

In addition to spatial variability, context-dependency may also occur
over time. For example, deadwood effects on soil properties have been
found to be stronger in summer than in autumn (Gonzalez-Polo et al.,
2013). Since we sampled in autumn—when microbial diversity typically
peaks (Du et al., 2018; Voriskova et al., 2014)—future studies should
include multiple seasons to better capture temporal dynamics
(Lewandowski et al., 2015, 2019).

4.4. Temporal development of ESC effects over the first five years (H4)

There was no significant effect of enhanced structural complexity in
any of the years from 2019 to 2023 on soil basal respiration, microbial
biomass, and soil respiratory quotient. Accordingly, we did not find an
increasing effect over time (H4), suggesting that either the forest context
does not favor an ESC effect or that it takes longer to materialize under
these conditions. A former study also found no effect of canopy gaps on
soil microbial biomass over the seven years after gap establishment, but
found effects on the soil microbial community composition over the first
four years (Lewandowski et al., 2015). This emphasizes the need to
investigate microbial community composition in addition to the
ecosystem functions. Findings about temporal effects from grassland
studies, where the relationship between plant species richness and mi-
crobial properties strengthens over time (Strecker et al., 2016), may not
directly apply to our setting. Forest gaps usually regenerate quickly
under low ungulate browsing pressure, resulting in increased under-
storey biomass and plant diversity (Sabo et al., 2019). However, this
natural regeneration process likely differs from how plant diversity de-
velops in experimental grassland studies, where vegetation is estab-
lished on bare soil. Nonetheless, the relationship between biodiversity
and ecosystem functioning strengthening over time (Guerrero-Ramirez
et al., 2017; Strecker et al., 2016) might still apply to forest understorey
vegetation and soil microbial properties. We recommend investigating
soil ecosystem functions over longer time frames in different forest sites
to explore if treatment effects and their temporal development differ.

4.5. Conclusions

In conclusion, the focal soil abiotic and biotic properties showed
remarkable resistance to interventions enhancing forest structural
complexity. Despite these limited overall responses, the interventions
had significant but variable effects on certain soil properties. For
instance, while nutrient availability increased near deadwood, soil pH
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and water content remained unaffected — thus providing only partial
support for H1. Contrary to H2, no general effect of enhanced structural
complexity (ESC) on microbial activity, biomass, or the respiratory
quotient was observed. Instead, responses varied between sites, high-
lighting the importance of site-specific conditions. Notable links be-
tween increased soil water content and microbial biomass, as well as
between understorey plant biomass and the respiratory quotient (an
indicator of microbial substrate use efficiency), support the context-
dependent relationships proposed in H3. These findings indicate that
the pathways connecting structural complexity and soil functioning are
indirect, influenced by local conditions, and emphasize the important
roles of soil moisture and understorey vegetation in shaping microbial
communities. The anticipated temporal strengthening of effects (H4)
was not supported within the conditions and timeframe of this study. To
advance the development of practical forest management strategies that
enhance soil ecosystem functioning, we encourage experiments that
combine structural enhancement with active understorey management,
controlled manipulation of deadwood decay stages, and assessments of
microbial community composition and functional diversity, while
covering longer timeframes. Such approaches will clarify how structural
complexity can support both aboveground biodiversity and the soil
processes essential for long-term forest resilience and ecosystem
functioning.
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