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Abstract 

A particularly well-studied evolutionary model is the vinegar fly Drosophila melanogaster , a cosmopolitan insect of ancestral southern- 
central African origin. Recent work suggests that it expanded out of Africa ∼9,000 years ago, and spread from the Middle East into 
Europe ∼1,800 years ago. During its global expansion, this human commensal adapted to novel climate zones and habitats. Despite 
much work on phenotypic differentiation and adaptation on several continents (especially North America and Australia), typically 
in the context of latitudinal clines, little is known about phenotypic divergence among European populations. Here, we sought to 
provide a continent-wide study of phenotypic differentiation among European populations of D. melanogaster . In a consortium-wide 
phenomics effort, we assayed 16 fitness-related traits on a panel of 173 isofemale lines from 9 European populations, with the majority 
of traits measured by several groups using semi-standardized protocols. For most fitness-related traits, we found significant differen- 
tiation among populations on a continental scale. Despite inevitable differences in assay conditions among labs, the reproducibility 
and hence robustness of our measurements were overall remarkably good. Several fitness components (e.g., viability, development 
time) exhibited significant latitudinal or longitudinal clines, and populations differed markedly in multivariate trait structure. Notably, 
populations experiencing higher humidity/rainfall and lower maximum temperature showed higher viability, fertility, starvation re- 
sistance, and lifespan at the expense of lower heat-shock survival, suggesting a pattern of local adaptation. Our results indicate that 
derived populations of this tropical fly have been shaped by pervasive spatially varying multivariate selection and adaptation to 
different climates on the European continent. 

Keywords: phenotypic variation, fitness traits, population differentiation, adaptation, D. melanogaster , Europe 
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ntroduction 

ver the last century, the vinegar fly Drosophila melanogaster has 
merged as a premier experimental model system for studying 
arious aspects of evolution, especially the process of adapta- 
ion and its genetic and phenotypic basis ( Casillas & Barbadilla,
017 ; David & Capy, 1988 ; David et al., 2004 ; Flatt, 2020 ; Hedrick 
 Murray, 1983 ; Hoffmann & Weeks, 2007 ; Keller, 2007 ; Lachaise 
 Silvain, 2004 ; Lachaise et al., 1988 ; Lewontin, 1974 ; Parsons,
975 ; Powell, 1997 ; Prasad & Joshi, 2003 ). In particular, over the 
ast decade, many population genomics studies have improved 

ur understanding of the demography and adaptation in natu- 
al populations of this species (e.g., Barghi et al., 2019 ; Bergland 

t al., 2014 , 2016 ; Chen et al., 2024 ; Coughlan et al., 2022 ; Fabian 

t al., 2012 ; Garud et al., 2021 ; Grenier et al., 2015 ; Huang et al.,
014 ; Kapun et al., 2020 , 2021 ; Kolaczkowski et al., 2011 ; Lack et 
l., 2015 , 2016 ; Langley et al., 2012 ; Machado et al., 2021 ; Mackay et 
l., 2012 ; Pool et al., 2012 ; Turner et al., 2008 ), as well as using ex- 
erimentally evolved populations (e.g., Burke et al., 2010 ; Fabian 

et al., 2018 ; Graves et al., 2017 ; Hoedjes et al., 2019 ; Kawecki et al.,
2021 ; Orozco-terWengel et al., 2012 ; Schlötterer et al., 2015 ; Turner
et al., 2011 ). 

This cosmopolitan insect originated in the seasonally dry
Miombo and Mopane woodlands of tropical southern-central
Africa before expanding across and then out of the African con-
tinent, causing a bottleneck in population size ( Coughlan et al.,
2022 ; Lachaise & Silvain, 2004 ; Lachaise et al., 1988 ; Mansourian et
al., 2018 ; Nunes et al., 2008 ; Pool et al., 2012 ; Sprengelmeyer et al.,
2020 ). While previous work has dated the out-of-Africa split time
(bottleneck) to have occurred ∼12–19k years ago (kya) ( Arguello
et al., 2019 ; Duchen et al., 2013 ; Li & Stephan, 2006 ; Thornton
& Andolfatto, 2006 ), a new study suggests that the out-of-Africa
event occurred ∼9 kya ( Chen et al., 2024 ). This out-of-Africa split
was followed by an expansion into East Asia ∼2.8–4.4 kya ( Chen
et al., 2024 ), and a spread from the Middle East into Europe ∼1.8
kya ( Sprengelmeyer et al., 2020 ). Australia and North America
were colonized even more recently, i.e., only ∼100–150 years ago
( Hoffmann & Weeks, 2007 ; Keller, 2007 ; and references therein). 
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During this history of expansion and globalization, this ances- 
trally tropical insect and human commensal adapted to new cli- 
mate zones and ecological niches, including equatorial tropical 
rainforests, savanna grasslands, deserts, temperate grasslands, 
and alpine areas ( Fabian et al., 2015 ; Keller, 2007 ; Lachaise & 

Silvain, 2004 ; Lachaise et al., 1988 ; Mansourian et al., 2018 ; Pool 
et al., 2012 ; Sprengelmeyer and Pool 2021 ). Indeed, consistent 
with local adaptation ( Kawecki & Ebert, 2004 ), a large body of 
work has documented spatially varying selection and clines in 

D. melanogaster populations along latitudinal (and sometimes also 
altitudinal) gradients on multiple continents (reviewed in Adrion 

et al., 2015 ; David & Capy, 1988 ; de Jong & Bochdanovits, 2003 ; 
Flatt, 2020 ; Hoffmann & Weeks, 2007 ; Paaby & Schmidt, 2009 ). 

Previous studies of clinality in D. melanogaster have established 

multiple lines of evidence for spatially varying selection: (1) cli- 
nal differentiation among populations in fitness traits such as 
viability, size, pigmentation, lifespan, and reproductive diapause 
(e.g., Coyne & Beecham, 1987 ; David, 1982 ; David & Bocquet,
1975a , 1975b ; David et al., 1977 , 1985 ; Fabian et al., 2015 ; Gibert 
et al., 2004 ; Gilchrist & Partridge, 1999 ; Hangartner et al., 2015 ; 
Klepsatel et al., 2014 ; Pitchers et al., 2013 ; Rajpurohit & Nevded,
2013 ; Robinson et al., 2000 ; Schmidt et al., 2005a , 2005b ; Schmidt 
& Conde, 2006 ; Van‘t Land et al., 1999 , 2000 ; Zwaan et al., 2000 ); (2) 
clinal genetic variation for individual markers or polymorphisms 
or at the level of whole genomes (e.g., Agis & Schlötterer, 2001 ; 
Bergland et al., 2016 ; Betancourt et al., 2021 ; Bogaerts-Márquez et 
al., 2021 ; Božičević et al., 2016 ; Fabian et al., 2012 ; Kapun et al.,
2016a , 2020 , 2021 , 2023 ; Kolaczkoswki et al., 2011 ; Mateo et al.,
2018 ; Oakeshott et al., 1982 ; Reinhardt et al., 2014 ; Singh et al.,
1982 ; Turner et al., 2008 ); and (3) functional relationships between 

specific clinally varying polymorphisms and fitness-related traits 
(e.g., Betancourt et al., 2021 ; Durmaz et al., 2018 , 2019 ; Erickson et 
al., 2020 ; Glaser-Schmitt et al., 2021 ; Kapun et al., 2016b ; Lee et al.,
2013 ; Paaby et al., 2010 , 2014 ; Schmidt et al., 2008 ; Yu & Bergland,
2022 ). 

In addition, several studies have found pervasive genomic and 

phenotypic evidence for temporally (seasonally) varying selec- 
tion acting in North American and European populations of D. 
melanogaster (e.g., Behrman et al., 2015 , 2018 ; Bergland et al., 2014 ; 
Bitter et al., 2024 ; Cogni et al., 2015 ; Kapun et al., 2016a ; Machado 
et al., 2021 ; Nunez et al., 2024 ; Rodrigues et al., 2021 ; Rudman et 
al., 2022 ). Together, these studies have greatly advanced our un- 
derstanding of the mechanisms of spatially and temporally vary- 
ing selection and the spatio-temporal scale of adaptation. 

In contrast to North America ( Schmidt et al., 2005a , 2005b ), 
India ( Rajpurohit et al., 2017 ), Australia ( Hangartner et al., 2015 ; 
Hoffmann & Weeks, 2007 ), and sub-Saharan Africa ( Fabian et al.,
2015 ), however, we still have little systematic knowledge of phe- 
notypic patterns of spatial differentiation and clinal adaptation 

among European populations of D. melanogaster (e.g., Ayrinhac et 
al., 2004 ; Draye & Lints, 1996 ; Draye et al., 1994 ; Imasheva et al.,
1994 ). For instance, most work on European D. melanogaster has 
examined only a handful of populations and traits (reviewed in 

Flatt, 2020 ). Thus, large-scale patterns of phenotypic differenti- 
ation, such as phenotypic clines or patterns of local adaptation, 
remain quite poorly understood for European populations of the 
vinegar fly. 

Here, we sought to address this major knowledge gap by lever- 
aging the collaborative resources and workforce of the European 

Drosophila Population Genomics Consortium, DrosEU ( https://dr 
oseu.net/) ( Figure 1 ). In our previous work, we provided the first 
continent-wide analysis of patterns of genetic variation among 
European populations based on pool-sequencing data from 32 

populations ( Kapun et al., 2020 ). In that study, we found evidence
for continent-wide selective sweeps and identified many candi- 
date loci for local adaptation, as well as spatial frequency clines
for inversion polymorphisms and transposable elements ( Kapun 

et al., 2020 ; also see Kapun et al., 2021 ; Machado et al., 2021 ;
Drosophila Evolution over Space and Time consortium [ https://de
st.bio/]). Yet, patterns of phenotypic differentiation among these 
European populations remained largely unknown. 

To complement our population genomic analyses with in- 
formation about fitness-relevant phenotypes, we performed a 
continent-wide phenotypic analysis of representative populations 
using an isofemale line approach ( David et al., 2005 ; Parsons &
Hosgood, 1967 ; see below). In summer and fall 2018, we sam-
pled nine European populations, spanning 21◦ latitude and 41◦

longitude across the continent, and established a panel of 173
isofemale lines ( ∼20 lines per population; Figure 1 ). In early 2019,
lines were shipped to participating research groups, with the bulk
of the phenotyping performed in 2019 and 2020. We assayed
this DrosEU Phenotyping Panel (DPP) of isofemale lines for 16
traits (this study; see Table 1 ), most of which represent major
phenotypic components of Darwinian fitness, including traits re- 
lated to growth, size, survival, stress resistance, and reproduction
( Flatt, 2020 ). 

Measuring phenotypic traits on isofemale lines, i.e., full-sib 
families derived from single, inseminated females, is a convenient 
method for studying quantitative traits and their genetic archi- 
tecture ( David et al., 2005 ; Parsons & Hosgood, 1967 ). By “cap-
turing” genotypes from a natural population, isofemale lines pro- 
vide a useful “proxy” for genetic variation: Over time, as inbreed-
ing becomes maximal, all phenotypic variation within lines even- 
tually represents environmental variation, whereas all variation 

among lines eventually represents genetic variation (e.g., David 

et al., 2005 , 2005 ; Falconer & Mackay, 1996 ; Geber, 1990 ; Parsons
& Hosgood, 1967 ). A related point is that isofemale lines effec- 
tively preserve the ancestral genetic variation present in the out-
bred population, and the lines can be used to reconstitute the
ancestral population ( Nouhaud et al., 2016 ). Although freshly es-
tablished isofemale lines often maintain segregating variation 

for several generations in the lab before becoming fully inbred
( Endler et al., 2016 ), and while such variation could, in princi- 
ple, contribute to lab adaptation, Nouhaud et al. (2016) were un-
able to detect any significant allele frequency changes between 

ancestral Drosophila populations and reconstituted ancestral pop- 
ulations even when isofemale lines were maintained for over 6
years in the lab. Further advantages of this approach include the
fact that the repeatability of phenotypic measurements made 
on isofemale lines is typically quite high ( David et al., 2005 )
and that panels of inbred isofemale lines can be used to per-
form genome-wide association studies (e.g., see Gardeux et al.,
2024 ; Mackay et al., 2012 ). However, potential drawbacks of isofe-
male lines are that the inbreeding process can render deleteri-
ous recessive alleles homozygous and might lead to artifactual 
positive correlations among line means for fitness components 
when there was a negative correlation in the outbred population
( Rose, 1984 ). 

Our continent-wide phenotypic study of European D.
melanogaster involved > 100 researchers from 26 research groups 
in 17 countries ( Figure 1 ). This effort resulted in > 400,000 indi-
vidual fly observations based on semi-standardized experimental 
protocols and followed by the analysis of >> 100 statistical
models. The high dimensionality and large size of our dataset
make our study an example of “phenomics,” i.e., the acquisi-
tion of comprehensive, high-dimensional phenotype data, an 
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Figure 1. (A) Map of the nine locations where European populations of Drosophila melanogaster were sampled by the DrosEU consortium. PT, Portugal 
(Recarei = RE); ES, Spain (Gimenells = GI [Lleida]); TR, Turkey (Yesiloz = YE); DE, Germany (Munich = MU); AT, Austria (Mauternbach = MA); UA, 
Ukraine (Uman = UM); DK, Denmark (Karensminde = KA); FI, Finland (Akaa = AK); and RU, Russia (Valday = VA) (see Supplementary Table S1 and our 
GitHub website ; also see Kapun et al., 2020 , 2021 ). (B) Map showing the locations of the labs that contributed to phenotyping, an effort involving > 100 
researchers in 26 groups in 17 countries. Lines were maintained by É. Sucena (Instituto Gulbenkian de Ciência, Oeiras, Portugal) and shipped to 
recipient labs for phenotyping ( Table 1 ; see also Supplementary Table S2 ). 
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mportant challenge and frontier in evolutionary biology (see 
oule, 2010 ; Houle et al., 2010 ). As we assayed the majority of 

raits in multiple labs in parallel, our unprecedented pheno- 
yping effort allowed us to examine the reproducibility of the 
ata (see Table 1 and the Results and discussion section). The 
uantification of such repeatability has not been done on such a 

arge scale before, yet it is important, particularly as phenotypic 
easurements of Drosophila strains are typically not replicated 

cross labs. 
Because of the massive size of our phenomic dataset, here we 

an only provide a summary of our most important findings. A 

omplete description of all our methods and data, including nu- 
erous results and analyses that are not shown in the main text, 

an be found on our dedicated GitHub website ( https://esradm.g 
thub.io/DrosEU_PhenotypingWG/). 

esults and discussion 

o study patterns of phenotypic variation and differentiation 

mong the nine European populations ( Figure 1 ), we defined 

6 major traits, including several developmental, morphological, 
eproductive, behavioral, and stress- and survival-related traits 
 Table 1 ). 

Most of these traits represent major components of fitness, in- 
luding several classical life-history traits ( Charlesworth, 1994 ; 
latt, 2020 ; Roff, 1992 ; Stearns, 1992 ), and might thus be pheno- 
ypic targets of selection. For several of these traits, we measured 

istinct “aspects” or “proxies,” as shown in the second column 

f Table 1 . 
The majority of traits were measured in multiple labs 

13/16 = 81%) and both males and females. All assays were car- 
ied out at 25◦C, 12 hr light:12 hr dark, and a minimum relative 
ir humidity of 60% (unless stated otherwise; for details, see the 
upplementary Materials ). Because strict standardization of pro- 
ocols was practically challenging to implement across all 26 par- 
icipating research groups, we opted to be pragmatic and to use 
 “semi-standardized” study design. In practice, this meant that 
hile we strived to use standardized protocols whenever possi- 

ble, we allowed for flexibility across labs in terms of implementing
experimental conditions and protocols. In part, this flexibility was
also necessitated by lockdowns due to the COVID-19 pandemic. 

Major components of fitness vary markedly 

among European populations 

To quantify the extent of phenotypic differentiation among popu-
lations, we used linear models ( Figure 2A ). Due to inevitable differ-
ences in study design, data collection, and data structure among
labs, it was often not possible to fit a single global trait-specific
model that could integrate all data across labs measuring the
same trait. Therefore, we fitted lab-specific models instead (see
the Supplementary Materials ; also see Website Section 2.1 ). 

Our analyses revealed pervasive differentiation among Euro-
pean populations of D. melanogaster for most of the phenotypic
traits measured ( Figure 2A ). For the great majority ( ∼70%) of the
97 linear models (i.e., combinations of traits, sexes, and labs), the
factor Population explained a statistically significant proportion of
the total phenotypic variance ( Figure 2A ; see Website Section 2.1
for plots of trait value estimates). The marked differences among
European D. melanogaster in major fitness-related traits are consis-
tent with adaptive differentiation among these populations. It is
important to point out, however, that differences among popula-
tions in fitness-related traits measured in the lab do not necessar-
ily imply that such differences are adaptive in nature ( Lewontin,
2000a , 2000b ). 

While the range of marginal R2 values for the factor Popula-
tion was very broad (0.009 [fertility]–0.26 [pigmentation]; mean
across all estimates = 0.081; standard error [ SE ] = 0.006), much
of the phenotypic variance in our dataset might be genetically
based. This interpretation is supported by our estimates of broad-
sense heritabilities ( H2 ; estimated as “isofemale” heritabilities or
intraclass correlation coefficients; David et al., 2005 ; Hoffmann
& Parsons, 1988 ; Parsons, 1983 ) of the traits measured in individ-
ual labs (range across all individual estimates = 0.01 [locomotor
activity]–0.67 [wing area]; mean = 0.36; SE = 0.018; for details, see
Website Section 2.4 ). These estimates agree well with previous es-
timates in D. melanogaster ( Roff & Mousseau, 1987 ); they are also
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Table 1. Sixteen phenotypic traits assayed in our study. 

Phenotypic trait Trait aspect Sex Labs (PIs) 

1. Viability – Mixed PG, SG, KH, PS, MSR, BZ 
2. Developmental time Egg-to-pupa Mixed PS 

Egg-to-adult M PG, SG, KH, PS, MSR, BZ 
F 

3. Dry weight – M HC, KH, BO 

F 
4. Thorax length – M IK, NP, MR, PS 

F 
5. Wing area Right M BO, NP, MR, MSR 

F 
Left M 

F 
6. Fertility – F JCB, CF 
7. Lifespan Line level M JP, EP 

F 
Population level M TF 

F 
8. Cold shock mortality – M JG, IK, JV 

F 
9. Chill coma recovery time – M JV, JM 

F 
10. Heat shock mortality – M JP, JV 

F 
11. Diapause – F AB, TF, CS 
12. Locomotor activity Activity M ET 

Circadian phase 
Absolute phase 
Period 
ND (nocturnal/diurnal ratio) 

13. Circadian eclosion timing ZT_hours_MESA Mixed CW 

ZT_hours_LSPR 
Period_MESA 

Period_LSPR 
Rhythmicity_LSPR_amplitude 
Rhythmicity_JTK_p_BH_corrected 

14. Pigmentation Total F JA, PG, PS 
Sixth tergite 
Fifth tergite 
Fourth tergite 

15. Starvation resistance – M JG, BO, EP 
F 

16. Parasitoid resistance – Mixed JH 

Note : The following investigators and their teams contributed to the DrosEU phenotyping effort (in alphabetical order): Jessica Abbott (JA); Alan Bergland (AB); 
Jean-Christophe Billeter (JCB); Hervé Colinet (HC); Claudia Fricke (CF); Thomas Flatt (TF); Patricia Gibert (PG); Josefa González (JG); Sonja Grath (SG); Katja Hoedjes 
(KH); Jan Hrcek (JH); Iryna Kozeretska (IK); Julian Mensch (JM); Banu Onder (BO); John Parsch (JP); Elena Pasyukova (EP); Nico Posnien (NP); Michael G. Ritchie (MR); 
Christian Schlötterer (CS); Paul Schmidt (PS); Marina Stamenkovic-Radak (MSR); Eran Tauber (ET); Jorge Vieira (JV); Christian Wegener (CW); and Bas J. Zwaan (BZ). 
For more details, see Supplementary Table S2 and our GitHub website . 
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broadly consistent with the observation of significant genetic dif- 
ferentiation among these nine (as well as other) European popu- 
lations in our previous genomic analyses ( Kapun et al., 2020 , 2021 ; 
Machado et al., 2021 ; also see https://dest.bio/). 

Trait estimates are reproducible despite 

differences in assay conditions 

We often observed, sometimes large, differences in trait value 
estimates among labs ( Figure 2A ; also see Website Section 2.1 ), 
potentially attributable to differences in environmental condi- 
tions among labs. Such environmental variance might include 
uncontrolled macro-environmental differences (e.g., diet), un- 
known, uncontrollable micro-environmental variance (“develop- 
mental noise”), or inadvertent differences in experimental proto- 
cols and assay conditions ( Ackermann et al., 2001 ; Crabbe et al.,
1999 ; Falconer & Mackay, 1996 ; Flatt, 2005 ). 

For example, while several traits (e.g., thorax length, pigmen- 
tation, bristle number, ovariole number) tend to be quite repeat-
able and rather insensitive to small, uncontrolled variability in 

experimental conditions, others (behavioral, physiological, or life- 
history traits) can be strongly sensitive to variation in conditions
( Figure 2A ; cf. David et al., 2005 ; also see Ackermann et al., 2001 ;
Betancourt et al., 2021 ; Durmaz et al., 2019 ; Flatt et al., 2013 ; Leroi
et al., 1994 ; May et al., 2019 ; Min et al., 2008 ; Rose et al., 1996 ).
Measurements of chill-coma recovery time, for instance, are of- 
ten highly variable, sometimes even under apparently identical 
assay conditions within the same lab ( David et al., 2005 ; cf. Figure
2B ). 

The variability in trait estimates among labs is not surprising
given that we used semi-standardized experimental protocols. For 
example, while many labs used semi-standardized diets (i.e., di- 
ets with the same composition but not using the same brands
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Figure 2. Phenotypic differentiation among European populations of Drosophila melanogaster and reproducibility of trait measurements. (A) Percentage 
of phenotypic variance explained by sampling location ( R2 = variance explained by the fixed-effect factor Population ), for each trait (and sex, where 
applicable). Each dot represents the R2 value extracted from each of the 97 individual linear models. (95 dots represent marginal R2 values from linear 
mixed models; for two trait measurements [viability measured by the PS lab; locomotor activity − absolute phase, measured by the ET lab], we used 
simple linear models and extracted regular R2 values.) Colored dots represent significant model p -values (α = 0.05). Note that circadian eclosion timing 
was not analyzed using a linear modeling approach and is not shown here (see Supplementary Sections 1.6 and 2 ). (B) Pairwise Pearson’s correlation 
coefficients ( r ) between isofemale trait values for the same phenotype estimated by different (pairs of) labs that had measured the same trait, using 
line coefficients extracted from linear models. Colored dots show significant correlations (α = 0.05). Traits that were only measured by a single lab are 
not shown. (C) Results of the meta-analyses for the effect of “Population,” showing (among-population) heterogeneity (Cochran’s Q statistic), extracted 
from subgroup meta-analyses based on population estimates from linear models. Colored dots represent significant differences between subgroups ( = 

populations) after Bonferroni correction ( α’ = α/ n = 0.05/26 = 0.0019). As in (B), traits measured in single labs (as well as thorax length in males) did 
not enter these analyses. For further details, see the Supplementary Materials . 
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f ingredients), other groups used different, non-standardized di- 
ts. Indeed, as expected, differences in diet composition (protein 

P]:carbohydrate [C] ratio) among labs had a significant effect on 

stimates (see Website Section 2.10 ). On the other hand, in the ma- 
ority of cases, differences in the Wolbachia infection status of the 
ssayed isofemale lines had no detectable impact on the studied 

henotypic traits (see Website Section 2.13 ). 
To quantify reproducibility, we calculated pairwise Pearson’s 

orrelations between trait values estimated by labs that had mea- 
ured the same trait. Despite differences in assay conditions 
mong labs, the reproducibility of estimates was overall good, 
ith the majority of correlations between lab estimates being 

ignificantly (albeit only weakly to moderately) positive ( Figure 
B ; Website Section 2.3 ). For example, population means for dry 
eight, wing area, and starvation resistance were significantly 
ositively correlated among labs, indicating robust reproducibility. 
ikewise, even for some complex and/or highly environmentally 
ensitive traits, such as lifespan and reproductive diapause, corre- 
ations were positive and significant. Conversely, for other quan- 
itative traits such as development time, fertility, chill-coma re- 
overy time, and heat-shock mortality, reproducibility was low, in 

greement with previous findings (e.g., see David et al., 1998 , 2005 ). 
uch differences between traits in their reproducibility might re- 
ect differences in their degree of environmental sensitivity (phe- 
otypic plasticity versus environmental canalization) ( Flatt, 2005 ; 
lso see Flatt, 2020 ; Houle, 1992 , 1998 ; Price & Schluter, 1991 ; 
tearns et al., 1995 ). From an experimental point of view, a not 
utually exclusive alternative is that some traits are more “noisy”

nd inherently more difficult to measure than others, especially 

when protocols are not strictly standardized ( Ackermann et al.,
2001 ; David et al., 1998 , 2005 ; May et al., 2019 ). Thus, the fact that
the significant pairwise correlations in Figure 2 tend to be only
weakly to modestly positive likely reflects differences in assay
conditions among labs and/or genotype-by-assay environment in-
teractions. 

To obtain estimates of phenotypic differences among popula-
tions that are unlikely to be confounded by differences in assay
conditions among labs, we performed meta-analyses ( Balduzzi
et al., 2019 ) of linear models across labs (“studies”) and quanti-
fied heterogeneity among subgroups ( = populations) by estimat-
ing Cochran’s Q (see the Supplementary Materials for method-
ological details). These analyses confirmed significant effects of
population differentiation for viability, lifespan, and wing area
( Figure 2C ): These three complex traits show the strongest, most
consistent evidence for differentiation among European popula-
tions in our data. 

Generally, however, our meta-analyses seemed to be under-
powered, presumably due to the relatively small number of
labs and populations involved. Indeed, meta-analyses based on
Cochran’s Q often tend to be underpowered ( Pereira et al.,
2010 ). Yet, despite most of our meta-analyses being nonsignifi-
cant, phenotypic differentiation among populations was signif-
icant for the majority of traits (see above: Figure 2A ; ∼70% of
linear models showed a significant effect of the factor Popula-
tion at p < 0.05). Moreover, the clear prevalence of significantly
positive correlations between labs underscores the overall high
degree of reproducibility of our data across labs (see above;
Figure 2B ). 
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Figure 3. Principal component analysis (PCA) plots and loadings for the first principal component (PC1) and the second principal component (PC2) in 
(A) males and (B) females. The same nine phenotypic traits were used in both PCAs. Confidence ellipses (95%) are drawn for each of the nine 
populations. Phenotypic traits with greater-than-average contributions (loadings) to a given principal component are shown in the accompanying x - 
and y -axis vector plots. Note that in males, the y -axis (PC2) is inverted so that the direction of phenotypic trait correlations matches across the two 
sexes. For further details, see the Supplementary Materials ; also see Website Section 2.8 . 
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Our finding of high reproducibility despite variability in experi- 
mental procedures among labs is interesting given a body of work 
suggesting that “heterogenization” of samples or study design can 

improve reproducibility ( Karp, 2018 ; Nakagawa et al., 2024 ; Richter 
et al., 2009 , 2010 ; Usui et al., 2021 ; Van Der Staay et al., 2010 ; Voelkl 
& Würbel, 2016 , Voelkl et al., 2018 , 2020 ). The reason for this is 
the “standardization fallacy,” i.e., the notion that more stringent 
standardization of protocols will necessarily improve the repro- 
ducibility of experimental outcomes ( Voelkl & Würbel, 2016 ). Con- 
trary to this idea, many environmental factors may be difficult or 
impossible to rigorously standardize across labs even when this 
is deliberately being attempted ( Crabbe et al., 1999 ). Individuals 
and measurements might therefore be less variable within a sin- 
gle lab than among labs; together with the fact that many envi- 
ronmental factors might defy strict standardization, this can lead 

to idiosyncratic, less reproducible results among labs ( Voelkl & 

Würbel, 2016 ). Thus, paradoxically, less standardized studies that, 
together, cover overlapping ranges of environmental conditions, 
and therefore explore a broader part of the underlying reaction 

norm, might improve reproducibility, especially when environ- 
mental heterogeneity is introduced systematically ( Nakagawa et 
al., 2024 ; Richter et al., 2009 ; Voelkl & Würbel, 2016 ). This calls for 
improving study designs through collaborative multi-institutional 
studies that perform experiments in parallel and include “hetero- 
genization” of the design ( Nakagawa et al., 2024 ; Richter et al.,
2009 ; Voelkl & Würbel, 2016 ). Such coordinated multi-lab stud- 
ies are, however, rare in evolutionary biology (e.g., Ackermann et 
al., 2001; for a recent small-scale example involving two research 

groups, see Durmaz et al., 2019 ; Betancourt et al., 2021 ). 

Fitness components are genetically correlated in 

multivariate trait space 

Many components of fitness are thought to be phenotypically, 
physiologically, and genetically correlated with each other: As 

they interact to jointly determine fitness, they should be viewed
from a multivariate perspective ( Charlesworth, 1993 ; Fabian et al.,
2015 ; Flatt, 2020 ; Flatt & Heyland, 2011 ; Houle, 2001 ; Lande, 1982 ;
Lande & Arnold, 1983 ; Roff, 2007 ; Schmidt et al., 2005b ; Sinervo
& Svensson, 2002 ; Stearns, 1992 ; Svensson, 2023 ; Svensson et al.,
2021 ). 

To study multivariate phenotypes, we derived “compound” es- 
timates across labs for each trait and line from the linear models
( Supplementary Materials ). Pairwise Pearson correlations of these 
estimates revealed many pairs of traits that were significantly ge-
netically correlated ( Website Section 2.7 ). We explored the main
axes of variation in the ensemble of these traits (scaled to unit
variance) using principal component analyses (PCAs). Initially, we 
included 13 traits measured on females only plus viability (see
the Supplementary Materials ; Website Section 2.8 ); we then con-
ducted a comparison of males and females using only the nine
traits that had been measured separately in both sexes ( Figure 3 ).

In the 13-trait phenotype PCA, the first principal component 
(PC1) was defined by positive correlations of size, notably wing
area (0.774), thorax length (0.592), and dry weight (0.753) as well
as starvation resistance (0.502), and a negative correlation with 

lifespan ( −0.453). PC2 revealed positive correlations between via- 
bility (0.782), fertility (0.633), starvation resistance (0.560), lifespan 

(0.417), and heat-shock mortality (0.435) (see plots and full load-
ings table in Website Section 2.8 ). Interestingly, the traits with the
strongest loadings for these two axes, wing area (PC1: 0.774) and
viability (PC2: 0.782), were also those with the largest Q values in
the meta-analysis (see Figure 2C ), reinforcing that these traits rep-
resent reliable markers of population differentiation in European 

D. melanogaster . 
When comparing males and females, the overall patterns of 

trait correlation were similar ( Figure 3 ). In both sexes, PC1 was
defined by positive correlations between dry weight, wing area,
and starvation resistance (0.783, 0.745, and 0.560 for females; 
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.722, 0.664, and 0.677 for males); PC2 included a negative cor- 
elation between thorax length and lifespan ( −0.424 and 0.671 
or females; 0.604 and −0.699 for males). PC3 included a neg- 
tive correlation between heat-shock mortality and cold-shock 
ortality (0.553 and −0.564 for females; −0.412 and 0.367 for 
ales [for full loadings tables, see Website Section 2.8 ]). Yet, we 

lso found several differences between the sexes. Correlations be- 
ween traits were stronger in males than in females: The first four 
Cs explained 70.08% of the variance in males, but only 63.11% in 

emales. Additionally, some traits showed sex-specific patterns 
f correlation. Interestingly, chill-coma recovery time was posi- 
ively correlated with cold shock mortality in males (both PC1 
nd PC3), but negatively correlated with cold shock mortality in 

emales (PC3). Furthermore, several traits (starvation resistance, 
ing area, and heat-shock mortality) showed sex-specific corre- 

ations along PC2 ( Figure 3 ). 
Several of the above-mentioned correlations between fitness 

omponents have been observed before, e.g., in selection exper- 
ments and/or in natural populations, such as the correlation be- 
ween proxies of body size or weight and starvation resistance, 
r between lifespan and starvation resistance (e.g., see de Jong & 

ochdanovits, 2003 ; Durmaz et al., 2019 ; Fabian et al., 2015 ; Flatt,
020 ; Gardeux et al., 2024 ; Klepsatel et al., 2013 ; Prasad & Joshi,
003 ; Stearns & Partridge, 2001 ). Similarly, negative correlations 
etween size and lifespan have been found previously, yet not sys- 
ematically so—this relationship is highly strain-specific and can 

lso depend on temperature ( Khazaeli et al., 2005 ; also see Flatt,
020 ; Norry & Loeschcke, 2002 ). 

uropean populations vary in multivariate trait 
tructure 

ext, we asked whether European populations of D. melanogaster 
ight differ in their multivariate trait correlation structure; sig- 

ificant differences across space could indicate spatially varying 
election on multivariate suites of fitness components. 

Confidence ellipses for populations showed considerable sepa- 
ation along PC1 and PC2, particularly in males, as seen in Figure 3 . 
o quantify the degree of multivariate differentiation among pop- 
lations, we carried out population reallocation procedures and 

alculated Mahalanobis distances following discriminant func- 
ion analysis (DFA) for both sexes separately (in females using the 
ame set of traits as the PCA, and in males using the nine mea- 
ured traits plus viability; for details, see the Supplementary Mat 
rials and Website Section 2.9 ). 

Multivariate discrimination resulted in quite high levels of 
dentifiability of populations (see Website Section 2.9 ). We found 

hat 76.9% of male and 72.7% of female line estimates could 

e successfully reclassified according to their population of ori- 
in. The highest reclassification rates were for Turkey, with 100% 

f males and 95% of females reclassified correctly. Furthermore, 
mong male flies, the highest intergroup Mahalanobis distances 
eparated Turkey from Ukraine (24.05) and Finland (23.16), while 
ow Mahalanobis values were observed separating Finland from 

ermany (3.25) and Austria from Russia (3.77). Among females, 
he highest Mahalanobis distances separated Ukraine from Spain 

25.78) and Turkey from Finland (22.48), whereas low Mahalanobis 
alues separated Russia from Germany (3.39) and Denmark (3.41) 
for details, see Website Section 2.9 ). These results suggest that 
he Turkish population is the most distinct among the popula- 
ions sampled, but that others, such as Ukraine, Finland, and 

pain, also show strong differences in their multivariate trait 
tructure. 

Our results are thus consistent with ample scope for spatially
varying, multivariate (including correlational) selection operating
on European populations of D. melanogaster , similar to previous
findings for North American and African populations, which differ
markedly in multivariate trait structure (e.g., Fabian et al., 2015 ;
Schmidt et al., 2005b ). Notably, many of the populations that ex-
hibit strong differences in their multivariate trait structure (i.e.,
Turkey, Finland, and Spain) are also among the geographically
most distant populations in our dataset. 

Climatic factors explain spatial patterns of trait 
differentiation 

Many studies have documented spatially (clinally) varying selec-
tion among D. melanogaster populations on multiple continents
(especially in North America and Australia), both at the genetic
and phenotypic levels (see the Introduction section and references
therein), but still little is known about clinal patterns on the Euro-
pean continent. A few studies have identified clines at the genetic
level, e.g., for individual adaptive (e.g., indel) polymorphisms, neu-
trally evolving SNPs in short introns, as well as for transposable
elements and inversion polymorphisms ( Costa et al., 1992 ; David
et al., 1986 ; Kapun et al., 2020 , 2021 ; Sandrelli et al., 2007 ; Tauber
et al., 2007 ), yet the evidence remains limited. Similarly, pheno-
typic clines in Europe remain understudied (see the Introduction
section; for a recent overview, see Flatt, 2020 ). 

We observed significant latitudinal differentiation among pop-
ulations for viability, development time, wing area, thorax length,
fertility, starvation resistance, heat-shock mortality, and lifespan
(results depended on both lab and sex; for details, see Website Sec
tion 2.6 ). These results are broadly consistent with findings from
other continents (see the Introduction section). For example, the lat-
itudinal cline for wing area is in qualitative agreement with a sim-
ilar cline in wing length among populations from Eastern Europe,
the Caucasus, and Central Asia ( Imasheva et al., 1994 ). Similarly,
three labs found a consistent effect of latitude of origin on viability
across populations, suggesting the existence of a positive latitudi-
nal cline for this trait in Europe (see Website Section 2.6 ). To the
best of our knowledge, a European cline for this major fitness trait
has not been reported, but a similar cline has been found in South
America ( Folguera et al., 2008 ; but see Van‘t Land et al., 1999 ). 

Similarly, we observed longitudinal clines for particular traits
such as developmental time, pigmentation, chill-coma recovery
time, and female reproductive diapause (results depended on lab
and sex; see Website Section 2.6 ). These longitudinal phenotypic
clines are particularly interesting because (1) we have previously
identified a pattern of major east–west genetic structure that di-
vides the European continent into a western and an eastern clus-
ter of populations ( Kapun et al., 2020 , 2021 ) and (2) longitudinal
phenotypic clines remain practically unknown for D. melanogaster
to date, with very few exceptions (see Fabian et al., 2015 ). 

On several continents, genetic and phenotypic patterns of cli-
nality are affected by chromosomal inversion polymorphisms
( Adrion et al., 2015 ; de Jong & Bochdanovits, 2003 ; Durmaz
et al., 2018 ; Hoffmann & Weeks, 2007 ; Kapun & Flatt, 2019 ;
Kapun et al., 2016a , 2016b , 2023 ; Lemeunier & Aulard, 1992 ).
For example, we have previously observed latitudinal clines for
In(3L)P , In(3R)C , and In(3R)P , as well as longitudinal clines for
In(2L)t and In(2R)NS , across Europe ( Kapun et al., 2020 ). Here,
we found that population-specific mean frequencies of several
polymorphic inversions ( In(2L)t , In(2R)NS , In(3L)P , In(3R)P , and
In(3R)Mo ) were significantly correlated with population-specific
estimates of fitness traits (see Website Section 2.14 ), yet Bon-
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Figure 4. Correlation between phenotype principal component 2 and climate principal component 2, using all female phenotypic traits plus viability, 
and climatic data from the previous 30 years. Climatic and phenotypic variables with greater-than-average contributions (loadings) to a given 
principal component are shown in the accompanying x - and y -axis vector plots, respectively. For the corresponding results on males, which look 
qualitatively similar but were not significant after permutation testing, see Website Section 2.12 for details. 
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ferroni correction rendered these correlations nonsignificant. We 
also found that the presence versus the absence of inversions had 

significant effects on particular traits at the line level (see Website 
Section 2.14 ). Again, however, most p -values were nonsignificant 
after Bonferroni adjustment, except for a significant effect of 
In(3R)P on male heat-shock mortality. These preliminary obser- 
vations suggest that inversion polymorphisms might contribute 
to spatial patterns of trait differentiation across the European 

continent. 
Several major fitness components thus vary clinally across lat- 

itude and/or longitude in European populations of D. melanogaster . 
However, although latitude and longitude are often correlated 

with climatic variables such as temperature, they merely rep- 
resent indirect proxies for causative climatic or other spatially 
varying factors. Moreover, clinality can also arise from demo- 
graphic processes such as admixture or isolation by distance, 
not only spatially varying selection ( Bergland et al., 2016 ; Flatt,
2016 ; Kapun et al., 2016a ). Studying climatic variables might thus 
provide more direct and accurate evidence for the role of en- 
vironmental factors in shaping population differentiation and 

adaptation. 
To obtain summary climate variables, data for 14 climatic 

measures from the last 30 days and the last 30 years were re- 
trieved from the NASA database, and their dimensionality was 
reduced using separate PCAs, with the resultant PC1 and PC2 ex- 
plaining 94.7% (30-day data) and 89.8% (30-year data) of the to- 
tal variation. Because long-term climatic trends are more likely 
to shape broad patterns of phenotypic evolution, we focused on 

the PCs obtained using 30-year data here. PC1 was driven by 
a negative correlation between average temperature (earth skin 

temperature, temperature at 2 m, and wet bulb temperature) 

and the number of frost days, while PC2 was driven by a nega-
tive correlation between maximum temperature (earth skin and 

2 m) and relative humidity plus precipitation (for further de-
tails, see the Supplementary Materials and Website Section 2. 
12 ). We then tested whether these two climate summary vari-
ables were useful in predicting multivariate phenotypes (PCs 
1, 2, and 3 of the phenotype PCAs; Website Section 2.12 ) us-
ing linear models, and confirmed results with a permutation 

procedure. 
This analysis revealed a significant association between cli- 

mate PC2 and phenotype PC2 for the 13-trait PCA ( F = 78.151,
df = 1, p < 0.0001; permutation p = 0.009): Notably, European
populations experiencing higher humidity and rainfall and lower 
maximum temperatures ( Bogaerts-Márquez et al., 2021 ) exhibit 
higher values for major fitness-related traits, including viability,
fertility, starvation resistance, and lifespan ( Figure 4 ). However,
these populations are also characterized by increased heat-shock 
mortality; thus, local adaptation to milder, wetter climates comes 
at the expense of decreased heat tolerance, suggesting that there
is a trade-off between viability, fertility, starvation resistance, and 

lifespan on the one hand and heat-shock survival on the other
hand. 

Thermal tolerance is mediated by the expression of heat-shock 
proteins (HSPs; Hoffman et al., 2013 ), with selection for thermal
stress resistance contributing to higher constitutive levels of HSP 
( Sørensen et al., 2017 ). However, increases in HSP copy number
or expression also negatively affect other phenotypic traits such
as metabolic rate, fecundity, and survival ( Hoekstra & Montooth,
2013 ; Okada et al., 2014 ; Roberts & Feder, 2000 ; Silbermann &
Tatar, 2000 ), suggesting that pleiotropic effects of HSPs and other
genes involved in thermal stress responses might be an important
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actor underpinning phenotypic variation across climatic gradi- 
nts ( Chen et al., 2018 ). More generally, and consistent with our 
ndings here, previous studies of Drosophila spp. have found that 

ncreased heat resistance is often associated with reduced viabil- 
ty, dry weight, fecundity, fertility, cold resistance, ethanol resis- 
ance, and mating frequency (see Hoffman et al., 2003 ). 

Our finding of a trade-off between a suite of fitness compo- 
ents and heat-shock survival across space (i.e., between different 
limates) adds to a growing number of studies in D. melanogaster 
hat have found evidence for patterns of local adaptation driven 

y spatially varying selection ( Anderson et al., 2003 ; Betancourt et 
l., 2021 ; de Jong & Bochdanovits, 2003 ; Durmaz et al., 2018 , 2019 ; 
abian et al., 2015 ; Kapun et al., 2016b ; Paaby & Schmidt, 2009 ; 
aaby et al., 2014 ; Schmidt & Paaby, 2008 ; Schmidt et al., 2005a , 
005b ; reviewed in Flatt, 2020 ). 

It is also noteworthy that we failed to find a negative corre- 
ation between early fertility and lifespan (see Figure 4 ). This is 
nteresting, as many studies in Drosophila have reported negative 
enetic correlations between early fecundity and lifespan, indica- 
ive of a trade-off (e.g., reviewed in Flatt, 2011 , 2020 ; Stearns & 

artridge, 2001 ). Whether the positive association between fertil- 
ty and lifespan observed here is artifactual, e.g., due to inbreed- 
ng ( Rose, 1984 ) or exposure to novel lab environments ( Service & 

ose, 1985 ) or whether cooler and wetter European climates are 
cologically more “benign” in terms of selectively favoring higher 
ertility and survival remains unclear. Whatever might be the 
ase, negative correlations between survival and reproduction are 
ot always found, and even when they exist, multiple confound- 

ng factors can obscure them (e.g., see discussion in Flatt, 2011 , 
020 ; Klepsatel et al., 2013 ; and references therein). 

The association between climate PC2 and phenotype PC2 for 
he female and male nine-trait phenotype PCAs was, however, not 
ignificant following permutation testing ( p = 0.057 and p = 0.11, 
espectively), perhaps due to the absence of viability from these 
CAs. 

Interestingly, associations between phenotype PC2 and climate 
C2 had stronger support when considering 30-day data as com- 
ared to 30-year data (significant permutations for phenotypic 
CAs; see Website Section 2.12 ), consistent with recent observa- 
ions suggesting that short-term changes in the environment on 

he order of a few weeks or less can drive seasonal adaptation in 

ies (see Bitter et al., 2024 ; Machado et al., 2021 ; Nunez et al., 2024 ; 
udman et al., 2022 ; also cf. discussion in Hoffmann & Flatt, 2022 ). 

ummary and conclusions 

ere, we have undertaken a large-scale, collaborative phenomics 
ffort to provide the first continent-wide, systematic characteriza- 
ion of patterns of phenotypic differentiation and clinality among 
uropean populations of the vinegar fly D. melanogaster , a classical 
odel system for studying fundamental questions in evolution- 

ry biology. Our most important findings and conclusions can be 
ummarized as follows: 

(1) European populations of D. melanogaster are significantly 
differentiated with respect to numerous phenotypic com- 
ponents of fitness, which might be subject to spatially vary- 
ing (diversifying) selection. 

(2) The majority of trait estimates were significantly positively 
correlated between pairs of labs that measured the same 
trait, suggesting a high degree of reproducibility despite dif- 
ferences in assay conditions among labs. 

(3) PCA revealed that numerous traits were significantly corre-
lated with each other, and DFAs showed that European pop-
ulations differ markedly in their multivariate trait struc-
ture, suggesting ample scope for multivariate spatially
varying selection on phenotypic components of fitness. 

(4) Consistent with spatially varying selection being driven by
climatic gradients, several fitness components exhibited
significant latitudinal or longitudinal clinality among pop-
ulations. Most notably, egg-to-adult survival (viability) and
egg-to-adult development time varied latitudinally and lon-
gitudinally, respectively. 

(5) Populations subject to higher humidity/rainfall and to
lower maximum temperatures were characterized by
higher values for viability, fertility, starvation resistance,
and lifespan, yet exhibited lower heat-shock survival, sug-
gesting a trade-off between these fitness components and
revealing local climate adaptation. Together with previ-
ous and current genomic analyses of these populations
( Bogaerts-Márquez et al., 2021 ; Kapun et al., 2020 , 2021 ;
Machado et al., 2021 ), it will clearly be of great interest to
unravel the genetic basis underlying these phenotypic pat-
terns of climate adaptation. 

Many additional analyses and results, which we could not dis-
cuss due to space limitations, can be found on our GitHub website
at https://esradm.github.io/DrosEU_PhenotypingWG/; we encour-
age readers to explore and make use of this rich phenomic dataset
and resource. 

The second resource that we wish to make available to the
community is our multipopulation panel of isofemale lines, the
DrosEU Phenotyping Panel (DPP). The DPP might be a useful
complement to other existing D . melanogaster panels, such as
the Drosophila Genetic Reference Panel (DGRP; Mackay et al.,
2012 ), the Drosophila Population Genomics Project (DPGP; Pool
et al., 2012 ), the Drosophila Genome Nexus (DGN; Lack et al.,
2015 , 2016 ), and the Global Diversity Lines (GDL; Grenier et
al., 2015 ). The DPP is available upon request from Élio Sucena
( jesucena@ciencias.ulisboa.pt ); genomic analyses of the DPP by
our consortium are currently underway. 

Materials and methods 

A detailed description of our materials and methods is given in
the Supplementary Materials associated with the manuscript and
also on our dedicated GitHub website at https://esradm.github.io
/DrosEU_PhenotypingWG/. 

Supplementary material 
Supplementary material is available online at Evolution Letters . 

Data and code availability 

Raw data and the complete compilation of code, statistical mod-
els, analyses, and results are available on GitHub ( https://esradm
.github.io/DrosEU_PhenotypingWG/) and are archived on Zenodo
( https://doi.org/10.5281/zenodo.15310170 ). 

Author contributions 

Contributions defined according to CRediT ontology ( https://ca
srai.org/credit/); authors in alphabetical order: T.A.F.deA.: inves-
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/evlett/article/9/4/473/8193117 by Professor Bussm

ann user on 17 O
ctober 2025

https://esradm.github.io/DrosEU_PhenotypingWG/
https://esradm.github.io/DrosEU_PhenotypingWG/;
mailto:jesucena@ciencias.ulisboa.pt
https://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qraf014#supplementary-data
https://esradm.github.io/DrosEU_PhenotypingWG/
https://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qraf014#supplementary-data
https://esradm.github.io/DrosEU_PhenotypingWG/
https://doi.org/10.5281/zenodo.15310170
https://casrai.org/credit/


Evolution Letters (2025), Vol. 9 | 483
tigation; J.A.: investigation, methodology, writing—original draft 
preparation, writing—review & editing; C.A.: investigation; E.A.: 
investigation, methodology; T.B.: investigation; A.B.: formal analy- 
sis, investigation, methodology, software, visualization, writing—
review & editing; A.B.: conceptualization, writing—review & 

editing; J.-C.B.: investigation; D.C.: investigation; E.C.: investiga- 
tion; H.C.: investigation, methodology, data curation, supervi- 
sion, writing—original draft preparation, writing—review & edit- 
ing; N.C.: investigation, supervision; S.C.: investigation; S.D.: in- 
vestigation; E.D.: investigation; T.D.: formal analysis, investiga- 
tion, writing—review & editing; S.R.-D.: investigation; P.D.: for- 
mal analysis, investigation, writing—review & editing; E.D.M.: 
conceptualization, data curation, formal analysis, investigation, 
methodology, project administration, resources, software, super- 
vision, validation, visualization, writing—original draft prepara- 
tion, writing—review & editing; M.E.: investigation; K.E.: inves- 
tigation; P.E.: investigation; P.E.: investigation, methodology; F.F.: 
investigation; B.F.: investigation; T.F.: conceptualization, fund- 
ing acquisition, investigation, methodology, project adminis- 
tration, resources, supervision, writing—original draft prepara- 
tion, writing—review & editing; C.F.: investigation, methodology; 
P.G.: investigation, methodology, project administration, data cu- 
ration, supervision, funding acquisition; A.G.-S.: investigation, 
methodology, resources, writing—review & editing; A.G.: inves- 
tigation; J.G.: supervision, writing—review & editing; S.G.: in- 
vestigation, methodology, writing—review & editing; L.G.: inves- 
tigation; E.H.: formal analysis, visualization, writing—original 
draft preparation; K.M.H.: investigation, methodology, data cu- 
ration, supervision, writing—original draft preparation, writing—
review & editing; J.H.: methodology, funding acquisition; S.J.: in- 
vestigation, resources; M.J.: investigation, methodology; M.K.: re- 
sources, writing—review & editing; M.K.: formal analysis, in- 
vestigation, writing—original draft preparation, writing—review 

& editing; E.K.: conceptualization, data curation, formal analy- 
sis, investigation, methodology, project administration, resources, 
software, supervision, validation, visualization, writing—original 
draft preparation, writing—review & editing; H.K.: investigation; 
I.K.: methodology, supervision, data curation, resources; L.E.K.: 
investigation; N.K.: investigation, methodology; V.L.: investiga- 
tion; M.L.: investigation, methodology; O.M.M.: data curation, 
formal analysis, writing—review & editing; S.-L.M.: investiga- 
tion, methodology; M.M.: investigation: J.M.: investigation, su- 
pervision, writing—review & editing; M.M.: investigation; M.S.M.: 
investigation; V.M.: investigation, methodology; L.M.: investiga- 
tion, methodology; D.V.M.: methodology, resources; S.M.: investi- 
gation; B.S.O.: investigation, supervision, resources, methodology; 
J.P.: funding acquisition, resources; E.G..P.: investigation, method- 
ology, resources, supervision, writing; A.P.: investigation, method- 
ology, data curation; T.F.P.: investigation; N.P.: investigation, valida- 
tion, writing—review & editing; O.P.: investigation; F.A.P.: investi- 
gation; M.R.: investigation, validation; M.G.R.: conceptualization, 
formal analysis, supervision, writing—review & editing; N.V.R.: 
investigation, methodology; O.Y.R.: investigation, methodology; 
M.S.V.: investigation, methodology; data curation; C.S.: supervi- 
sion, writing—review & editing; P.S.: conceptualization, investiga- 
tion; M.F.S.: investigation; T.S.: investigation; S.S.S.: investigation; 
S.S.: investigation, methodology, data curation, writing—original 
draft preparation; M.S.-R.: investigation, supervision, resources; 
É.S.: investigation, resources; A.V.S.: investigation, methodology, 
formal analysis, validation, writing; M.T.: investigation, method- 
ology, data curation, formal analysis, writing; E.T.: investigation, 
formal analysis, supervision, resources, writing—review & edit- 
ing; V.T.: investigation; M.V.T.: investigation, methodology; E.A.T.: 

investigation, methodology; V.T.: formal analysis, visualization,
writing—original draft preparation; J.H.: investigation; D.W.: inves- 
tigation; E.R.V.: investigation, methodology; C.P.V.: formal analysis,
investigation, methodology, software, validation, writing—review 

& editing; C.V.: investigation, methodology; J.V.: conceptualiza- 
tion, formal analysis, investigation, methodology, software, valida- 
tion, writing—original draft preparation, writing—review & edit- 
ing; X.W.: investigation; C.W.: investigation, formal analysis, re- 
sources, writing—review & editing; J.Z.: investigation; B.Z.: inves- 
tigation, funding acquisition, methodology, resources, writing—
original draft preparation. 

Funding 

This research was supported by a Special Topics Network 
(STN) grant from the European Society of Evolutionary Biol- 
ogy (ESEB) to the DrosEU consortium as well as by individ-
ual grants and fellowships (grantees in alphabetical order): J.A.: 
Swedish Research Council (VR) grants 2015-04680 and 2020- 
05412; A.J.B.: European Research Council (ERC CoG TE_INVASION); 
S.D.: Ministry of Science, Technological Development and Inno- 
vation of the Republic of Serbia (NITRA) grant 451-03-66/2024- 
03/200007; K.E.: Ministry of Science, Technological Development 
and Innovation of the Republic of Serbia (NITRA) grant 451-03-
66/2024-03/200007; P.E.: Ministry of Science, Technological De- 
velopment and Innovation of the Republic of Serbia (NITRA) 
grant 451-03-66/2024-03/200007; P.E.: Jane Coffin Childs Memo- 
rial Fund for Medical Research 61-1673: T.F.: Swiss National Sci-
ence Foundation (SNSF) grants 31003A-182262, 310030_219283,
FZEB-0-214654; C.F.: Deutsche Forschungsgemeinschaft (DFG) 
grants 2973/5-1 and 2973/11; J.G.: Ministerio de Ciencia, Inno- 
vación y Universidades/Agencia Estatal de Investigación (MI- 
CIU/AEI/10.13039/501100011033/) grant PID2020-115874GB-I00; 
Ministerio de Ciencia, Innovación y Universidades/Agencia Estatal 
de Investigación (MICIU/AEI/10.13039/501100011033 and FEDER,
UE) grant PID2023-148838NB-I00; Departament de Recerca i Uni- 
versitats Generalitat de Catalunya grant 2021 SGR 00417; S.G.: 
Deutsche Forschungsgemeinschaft (DFG) grants 271330745 and 

514085304; K.M.H.: Marie Skłodowska-Curie Individual Fellowship 

(H2020-MSCA-IF-2015) 701949; J.H.: Czech Ministry of Education,
grant; European Research Council (ERC CZ LL2001); M.J.: Min- 
istry of Science, Technological Development and Innovation of 
the Republic of Serbia (NITRA) grant 451-03-65/2024-03/200178; 
M.K.: Academy of Finland grant 322980; E.K.: European Molecular 
Biology Organization (EMBO) ALTF 248-2018; M.S.M.: ALW Open 

Programme grant 101185; J.P.: Deutsche Forschungsgemeinschaft 
(DFG) grants 255619725 (GR 4495/2-2) and 503272152 (GR 4495/4- 
1); E.G.P.: Russian state budget, assignment NRC “KI”; A.P.: Min-
istry of Science, Technological Development and Innovation of 
the Republic of Serbia (NITRA) grant 451-03-66/2024-03/200007; 
N.P.: Deutsche Forschungsgemeinschaft (DFG) grants PO 1648/7- 
1, PO 1648/3-1, PO 1648/3-2; M.S.V.: Ministry of Science, Techno-
logical Development and Innovation of the Republic of Serbia (NI-
TRA) grant 451-03-65/2024-03/200178; C.S.: Austrian Science Fund 

(FWF) grants 10.55776/P32935, 10.55776/W1225, 10.55776/P33734; 
P.S.: National Institutes of Health (NIH) R01GM137430; M.S.-R.: 
Ministry of Science, Technological Development and Innovation 

of the Republic of Serbia (NITRA) grant 451-03-47/2023-01/200178; 
M.T.: Ministry of Science, Technological Development and Inno- 
vation of the Republic of Serbia (NITRA) grant 451-03-66/2024- 
03/200007; E.T.: Israel Science Foundation (ISF) 2121/23; C.V.: 
Agence Nationale de la Recherche (ANR) grant Longevity ANR- 
 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/evlett/article/9/4/473/8193117 by Professor Bussm

ann user on 17 O
ctober 2025



484 | Durmaz Mitchell et al.

2
U
g

C
T
2
b

A
W
f
t
c
f
a
(
t
H
K
g
o
c

R
A

A

A

A

A

A

B

B

0-CE02-0015, J.V.: Fundação para a Ciência e a Tecnologia (FCT) 
IDB/04293/2020; C.W.: Deutsche Forschungsgemeinschaft (DFG) 
rant WE 2652/7-1. 

onflict of interest 
he authors declare no conflict of interest. Note: After February 
4, 2022, no collaborative actions or exchanges have taken place 
etween Ukrainian and Russian scientists within our project. 

cknowledgments 

e are grateful to two anonymous reviewers and Erik Svensson 

or valuable comments on our manuscript. We are indebted to 
he members of the DrosEU community for their support and 

ollaboration over the years, and we thank the European Society 
or Evolutionary Biology (ESEB) for having generously funded our 
ctivities between 2016 and 2022 with a Special Topic Networks 
STN) grant. We also wish to thank Yonatan Babore, Luis Cas- 
aneda, Patrick Favre, Liam Forsythe, Anna Grandchamp, Lennart 
üper, Shahzad Khan, Ozan Kiratli, Melissa Erika Klug, Susanne 
lühspies, Nadine Landgraf Koelln, Qinyang Li, Liam Miller, Mar- 
ot Paris, Marisa A. Rodrigues, and Axel Wiberg for their help with 

ur project as well as Pavlo A. Kovalenko for his assistance with 

ollecting flies in 2018. 

eferences 

ckermann , M., Bijlsma, R., James, A. C., Partridge, L., Zwaan, B. J., & 

Stearns, S. C. (2001). Effects of assay conditions in life history ex- 
periments with Drosophila melanogaster . Journal of Evolutionary 
Biology , 14 (2), 199–209. https://doi.org/10.1046/j.1420-9101.2001 
.00281.x 

drion , J. R., Hahn, M. W., & Cooper, B. S. (2015). Revisiting clas- 
sic clines in Drosophila melanogaste r in the age of genomics. 
Trends in Genetics , 31 , 434–444. https://doi.org/10.1016/j.tig.2015.0 
5.006 

gis , M., & Schlötterer, C. (2001). Microsatellite variation in natu- 
ral Drosophila melanogaster populations from New South Wales 
(Australia) and Tasmania. Molecular Ecology , 10 , 1197–1205. https: 
//doi.org/10.1046/j.1365-294X.2001.01271.x 

nderson , A. R., Collinge, J. E., Hoffmann, A. A., Kellett, M., & McKech- 
nie, S. W. (2003). Thermal tolerance trade-offs associated with the 
right arm of chromosome 3 and marked by the hsr-omega gene 
in Drosophila melanogaster . Heredity , 90 , 195–202. https://doi.org/10 
.1038/sj.hdy.6800220 

rguello , J. R., Laurent, S., & Clark, A. G. (2019). Demographic history 
of the human commensal Drosophila melanogaster. Genome Biology 
and Evolution , 11 , 844–854. https://doi.org/10.1093/gbe/evz022 

yrinhac , A., Debat, V., Gibert, P., Kister, A. -G., Legout, H., 
Moreteau, B., Vergilino, R., & David, J. R. (2004). Cold adapta- 
tion in geographical populations of Drosophila melanogaster : Phe- 
notypic plasticity is more important than genetic variability. 
Functional Ecology , 18 , 700–706. https://doi.org/10.1111/j.0269-846 
3.2004.00904.x 

alduzzi , S., Rücker, G., & Schwarzer, G. (2019). How to perform a 
meta-analysis with R: A practical tutorial. Evidence Based Mental 
Health , 22 , 153–160. https://doi.org/10.1136/ebmental- 2019- 3001 
17 

arghi , N., Tobler, R., Nolte, V., Jakšić, A. M., Mallard, F., Otte, K. A., 
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