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The expression and location of proteins in tissues represent key determinants of health
and disease. Although recent advances in multiplexed imaging have expanded the
number of spatially accessible proteins' >, the integration of biological layers (that is,
cellstructure, subcellular domains and signalling activity) remains challenging. Thisis
duetolimitations in the compositions of antibody panels and image resolution, which
together restrict the scope of image analysis. Here we present pathology-oriented
multiplexing (PathoPlex), a scalable, quality-controlled and interpretable framework. It

combines highly multiplexed imaging at subcellular resolution with a software package
toextract and interpret protein co-expression patterns (clusters) across biological
layers. PathoPlex was optimized to map more than 140 commercial antibodies at 80 nm
per pixel across 95 iterative imaging cycles and provides pragmatic solutions to

enable the simultaneous processing of at least 40 archival biopsy specimens.Ina
proof-of-concept experiment, we identified epithelial JUN activity as akey switchin
immune-mediated kidney disease, thereby demonstrating that clusters can capture
relevant pathological features. PathoPlex was then used to analyse human diabetic
kidney disease. The framework linked patient-level clusters to organ disfunctionand
identified disease traits with therapeutic potential (that is, calcium-mediated tubular
stress). Finally, PathoPlex was used to reveal renal stress-related clusters inindividuals
with type 2 diabetes without histological kidney disease. Moreover, tissue-based
readouts were generated to assess responses to inhibitors of the glucose cotransporter
SGLT2. In summary, PathoPlex paves the way towards democratizing multiplexed
imaging and establishing integrative image analysis tools in complex tissues to support
the development of next-generation pathology atlases.

Spatial biology technologies have gained increased attention recently
asthey provide molecularinsights into transcriptomic and proteomic
expression while preserving histological context’. The term multi-
plexed imaging refers to the expansion of antibody-based labelling
beyond conventional limits (that is, 3-4 antibodies per section)?>.
Multiple commercial systems are available with varying performance
and cost. For example, methods based on mass spectrometry** require
specialized equipment and antibody conjugation to metals, enabling
spatial projections with high precision and reproducibility at cellu-
lar resolution (between 250 and 1,000 nm per pixel). Alternatively,
microscopy-based methods®” are more economically accessible and
relyonthecyclic detection of DNA-conjugated antibody panels or direct
immunofluorescence using fixed integrated widefield microscopy.
Although such methods achieve an image resolution of 200-300 nm
per pixel, thereis atrade-off between detection speed and signal ampli-
fication. Results from studies that used both mass spectrometry and
microscopy-based methods®® aligned well with comprehensive reviews
of the literature' that reported panels ranging between 30 and 60
antibodies. Thisbody of work set the foundation for the development
of image analysis strategies that focused on the identification of cell
identities and states through cell segmentation' ™,

In 2018, iterative indirect immunofluorescence imaging (4i)" was
introduced as an open-source tool for multiplexed imaging and

advanced image analysis. These techniques were based on the use of
unmodified commercial antibodies in cyclic rounds of immunofluo-
rescence imaging through simple steps of chemical elution and flexible
light microscopy. 4i was originally applied in vitro using 41 antibodies
ataresolution of165 nm per pixel, which enabled the detection of func-
tional multilayered subcellular features of cell injury through pixel-level
analysis. To our knowledge, there is only one study that recreated the
original 4i protocol in multicellular specimens with sufficient mul-
tiplexed imaging depth (21imaging cycles for 54 markers) and image
resolution (160 nm per pixel) to perform pixel-based image analysis.
However, despite being one of the largest and most complex datasets
available, the outputs derived from multiplexed imaging have primarily
been used torecapitulate known cellular events during organ develop-
ment. In this context, we postulate that the potential of multiplexed
imaging methods to define tissue-based integrative features associated
with health and disease remains underexplored.

Current state-of-the-art

Astudy' that discussed the currentlandscape of antibody-based mul-
tiplexed imaging showed that thereis a diverse range in performance
among the methods. Fromall the different criteria that canbe used to
define the advantages and limitations of each method, we propose two
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Fig.1|PathoPlex. a, PathoPlex represents acombinationbetween a universal
framework for highly multiplexed imaging in pathological tissues (left) and a
Python library (spatiomic) to analyse protein co-expression patterns (PCPs)

criteriatoevaluate the potential to supportimage analysis tools that
aim to integrate multiple biological layers (Supplementary Fig. 1a):
the number of markers (panel size) and the image resolution per
pixel. Althoughiit is evident that panel size directly affects the scope
of processes that can be analysed, image resolution and the biological
insights gained fromitare harder toappreciate. Toillustrate the impor-
tance of image resolution, we compared amass-spectrometry-based
method (Supplementary Fig. 1b) and a microscopy-based method
(Supplementary Fig. 1c) for analysing kidney samples using markers
of cell identity and DNA. This comparison highlighted an obvious
resolution mismatch that had a clear impact on the ability to deline-
ate subcellular structures (for example, nuclei and even nucleoli) and
theborders of neighbouring cells (for example, renal endothelial and
epithelial cells).

Among the reported multiplexing methods', the average panel
sizeisapproximately 37 markers with an average resolution of 267 nm
per pixel. The most used systems, such as imaging mass cytometry
(IMC; 40 markers at 1,000 nm per pixel) and co-detection by index-
ing (CODEX; 56 markers at 250 nm per pixel), provide reliable refer-
ences of current commercial standards. Thus, it is not surprising that
most studies in the field of antibody-based spatial proteomics fun-
damentally rely on single-cell segmentation as a core step, similar to
theapproaches used in spatial transcriptomics'®, That s, neither the
resolution nor the panelsize provide the foundation for more integra-
tiveimage analysis. Furthermore, moststudies of organs that have high
celldensity (for example, the kidney) typically report cellidentity and
state®* but do not provide integrative data across biological domains.
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These limitations represent an opportunity for the next generation
of multiplexed imaging methods to scale panel sizes beyond current
limits. Moreover, computational tools can be built to extract hallmarks
of health and disease by weighting and connecting the contributions
of each biological layer (Supplementary Fig. 2).

Towards next-generation multiplexed imaging

Here weintroduce PathoPlex, ascalable, quality-controlled and inter-
pretable framework. It combines highly multiplexed imaging at sub-
cellular resolution with an open-source software package to facilitate
integrative analyses of formalin-fixed paraffin-embedded (FFPE)
specimens (Fig. 1a).

In brief, multiplexed imaging is performed in iterative cycles,
whereby indirectimmunofluorescence labelling is conducted first, fol-
lowed by image acquisition by fluorescence microscopy (for example,
widefield or confocal) and subsequent antibody elution (Fig.1a, part1).
To prevent tissue lifting, we recommend coating the glass surfaces
with poly-D-lysine for small-scale experiments or with (3-aminopropyl)
triethoxysilane (APTES) for large-scale experiments, as APTES is more
efficientat preventing tissue detachment compared with poly-D-lysine
(Methods). Inthisreport, our largest experimentincluded 95imaging
cycles with antibodies against 150 proteins and 20 quality-control
imaging cycles with only secondary antibodies for a total of 170 layers.
After detailed examination, we included 142 (122 protein and 20 quality
control) layers for analyses, which generated >600 billion available
pixels. It is worth noting that the tissues remained stable and did not
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show signs of damage within 95 imaging cycles, which suggests that
this is not the limit of the technology.

Toaccommodate the scale of these datasets and to enable modular
composition and extendibility of bioinformatic analyses, we devel-
oped a high-performance computing library for spatial proteomics
(which we term spatiomic) that leverages various algorithms based
ongraphics processing units (GPUs)*%, integrates common data for-
mats? and is freely available as a Python package through the PyPi
registry (Fig. 1a, part 2). The package spatiomic features multiple reg-
istration algorithms to align images of individual markers for joint
analyses. Toidentify protein co-expression patterns, spatiomicincludes
modules to preprocess images, obtain a representative subsample,
reduce dimensionality using self-organizing maps (SOMs), construct
asimilarity-based neighbourhood graph and perform graph cluster-
ing?*. Co-expression patterns can be consistently identified across all
images of an experimental dataset and spatially projected. As these
co-expression patterns are generated on the basis of pixel-level cluster-
ing, from now on, we refer to them as ‘clusters’.

Each cluster has the potential to represent a biological process and
warrants further interpretation (Fig. 1b). As afirst step, the individual
contribution of each marker to the cluster was analysed to define the
specific co-expression pattern that each cluster represents. For this
reason, the mean normalized intensity (the level of contribution per
marker) and the log,-transformed fold change in relation to the mean
of other clusters (the specific contribution of each marker) were sys-
tematically evaluated. As each marker represents proteins with known
or predictedlocations, distributions and expression patterns, it canbe
projected backinto space for visual validation. Cluster abundance was
used as a quantifiable metric to statistically compare conditions and
toisolate differentially expressed clusters. Notably, changes in cluster
abundance canresult not only from differences in protein expression
levelsbut also from changes in protein distribution (for example, cyto-
plasmic to nuclear shifts).

As an overview, we first provided proof-of-principle and quality-
control datasetsin three different organs (<30 markers at aresolution
of 160 nm per pixel). PathoPlex was then validated using the kidney
asamodel organ with high cellular density and structural complexity
throughin-depth analyses of three additional datasets (Fig.1c). These
datasets were obtained from the following sources: (1) an experimental
mouse model ofimmune-mediated kidney disease (34 markers at 80 nm
per pixel); (2) clinical biopsy samples fromindividuals diagnosed with
advanced diabetic kidney disease (DKD) (61 markers at 160 nm per
pixel); and (3) research biopsy samples from individuals diagnosed
withyouth-onset type 2 diabetes (T2D) (142 markers at 80 nm per pixel)
without pathological signs of DKD, including a subset of individuals
with short-term treatment with SGLT2 inhibitors.

Proof-of-principle and quality controls

Proof-of-principle experiments were performed on the basis of rep-
resentative samples from autoimmune hepatitis, meningioma and
focal segmental glomerulosclerosis (Supplementary Fig. 3) and con-
trols in human liver, brain and kidney, respectively (Supplementary
Fig. 4) showing broad applicability in pathology and a wide poten-
tial for marker selection, including transcription factors, enzymes,
structural proteins, subcellular domains, cell surface receptors and
phosphorylation targets.

Quality-control criteria for PathoPlex were first established in murine
tissues and then extended to human specimens. In brief, consecutive
imaging cycles of an antibody panel constituted the first level of con-
trol. This step was important because incomplete elution might lead
to cross-reactivity with subsequent cycles or residual signals from
the previous cycle. The second level of control involved direct imag-
ing after elution to confirm the lack of fluorescent signals (Extended
DataFig. 1a). The third level of control included imaging cycles using
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secondary antibodies without previous incubation of primary antibod-
ies (secondary-only cycles). This step ensured the absence of remnant
viable primary antibodies and generated additional layers that could
beincludedinimage analyses (Extended Data Fig. 1b). The fourth level
of controlinvolved successful re-staining after multipleimaging cycles
(Extended DataFig.1c). This stage was used to confirm that the epitope
is preserved and the effectiveness of antibody elution. Furthermore,
we applied practical quality-control steps for human tissue samples
throughout 95 imaging cycles. This strategy showed complete elu-
tion efficiency using secondary-only cycles (Extended Data Fig.1d and
Supplementary Figs. 5and 6) and effective re-stainings after 60 cycles
(Extended Data Fig. 1e and Supplementary Fig. 7).

Once all the imaging cycles were completed, image alignment was
performed to account for potential shifts during the various cycles.
Itiswellestablished that nucleicanbeeasily stained, but commonly used
labels are either unstable (for example, 4/,6-diamidino-2-phenylindole
(DAPI)) or expensive (for example, DRAQS). For this reason, we intro-
duce N-hydroxysuccinimide ester (NHS-E), a pan-protein label com-
monly used in super-resolution microscopy®. NHS-E consistently
generated reference images for alignment and showed equally high
performance compared with nuclear references (Supplementary
Fig. 8). Moreover, NHS-E can be used to segment tissue-containing
areasto limit the analysis of regions with potential nonspecific binding.
Unlike DAPI or DRAQS, which need constant re-staining every imag-
ing cycle, NHS-E requires a single application at the beginning of the
protocol and remains stable for up to 95 cycles.

Practical considerations

PathoPlex combines different strategies to optimize performance
and to minimize the potential introduction of batch effects, including
adaptable microscopy, accessible and customizable imaging set-ups
and low-cost automatization of liquid handling (Extended Data Fig. 2a).
PathoPlex canbeimplemented using any inverted system for fluores-
cence microscopy, including widefield, spinning disk and confocal,
which provides flexibility in terms of image resolution, scanning time
and file size (Extended DataFig. 2b).

Itisworth mentioning that classical pathology protocols and some
multiplexing technologies may inadvertently introduce batch effects,
asspecimens are processed asindividual slides. By contrast, PathoPlex
uses imaging chambers that enable the parallel processing of multiple
tissues in single runs. Each imaging chamber is organized as an inde-
pendent and self-contained experiment by including both control
and experimental samples (Extended Data Fig. 2c). Considering the
size of average unmodified histopathological samples, commercial
solutions can be used to process between 2 and 24 intact samples at
the same time (Extended Data Fig. 2d). However, as the number of
wellsincreases, manual pipetting increases the likelihood of user error.
Although this source of error can be mitigated through automation,
commercially available liquid-handling systems are often expensive
and not accessible to the wider scientific community. For this reason,
PathoPlex introduces two practical 3D printing-based strategies to
simplify liquid handling. The first approach involved the creation
of alarge unified single-well imaging chamber (11 x 7.4 cm) using a
3D-printed frame (Extended Data Fig. 2e and Supplementary Fig. 9a)
that can hold 40 intact human kidney biopsy samples (approximately
100 mm?in size) and even higher numbers of smaller biopsy samples
(for example, with size extrapolation, this equates to approximately
77 skin biopsy samples). The second strategy involved the automa-
tion of staining and elution cycles. To achieve this, we repurposed a
3D printer as a low-cost liquid handling system, with the printer head
controlling liquid addition and removal (Extended Data Fig. 2f, Sup-
plementary Fig. 9b and Supplementary Video 1). This approach pro-
duced successful staining and elution cycles (Extended Data Fig. 2g),
saving approximately 70% hands-on time with minimal user input
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Proof-of-conceptin experimental disease

Next, we performed a proof-of-concept experiment, whereby PathoPlex
was used to analyse the pathophysiology of a well-characterized mouse
model ofimmune-mediated kidney disease?. These mice exhibit a
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clear disease course that ranges from acute injury to crescentic glo-
merulonephritis (CGN). Thatis, proteinlossin the urine (proteinuria),
the subsequent development of pathological lesions (crescents) in
the renal-filtering units (glomeruli) and progressive loss of kidney
function. A total of 34 markers were used at a resolution of 80 nm per
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of drugs. Multiple medications for the standard care of diabetes interacted
with our expanded DKD signature. g, Drug-proteininteractions were
quantified for our DKD signature. One exampleis PDES inhibitors as potential
modulators of TRPC6-AIFM1through cGMP signalling, which was confirmed
through are-analysis of public single-nucleus RNA-sequencing data*’.
Differential cluster abundance analysis used a two-sided t-test with Benjamini-
Hochberg correction. Cluster composition analysis relied onatwo-sided ¢-test
with Holm-Sidak correction. Correlation analysis was performed using
two-sided Spearman’s rank coefficient. For other comparisons, two-sided
t-test, Mann-Whitney or Kruskal-Wallis tests were used depending on the
number of comparisons. ****P<0.0001, ***P<0.001,**P< 0.01,*P< 0.05.
Scalebars,100 um (b-d). Diagramsin a,e,f and g were created using BioRender
(https://biorender.com).

(Supplementary Table 2). Significant changes in cluster abundance
duringthe disease course (Fig. 2b) were used as a metric to define inte-
grative features (Fig. 2c) that reflected well-characterized pathogenic
processes?3.,

Additional histopathological sections from the same experimental
animals were carefully evaluated by two expert renal pathologists in
ablinded fashion, who were specifically asked to diagnose and stage
disease and to quantify structural changes (Extended Data Fig. 3a).
Images of CGN were defined by significant vascular injury and the pres-
ence of crescentic lesions, whereas acute injury was determined by
the vacuolation of tubular cells (Extended Data Fig. 3b). In line with
these findings, cluster 26 (which included contributions from early
endosome antigen 1and ezrin) was more abundant in disease thanin
control samples (Extended Data Fig. 3c), a finding that represented
a characteristic feature of acute disease (Extended Data Fig. 3d).
Notably, the spatial distribution of cluster 26 corresponded to the
location and pattern used by expert pathologists for diagnosis and
staging (Extended Data Fig. 3e). This result suggests that PathoPlex
can detect pathogenesis-related tissue alterations— similar to those
used by human experts—in an unsupervised manner.

Identification of pathway activity

Previous studies have shown that modulation of JNK signalling can lead
to substantial protective effects in kidney autoimmunity and fibro-
sis®***, The proposed cellular targets of JNK inhibitors have mostly
beenimmune cells (thatis, activated macrophages). However, effector
cells of crescent formation are parietal epithelial cells (PECs). During
crescent formation, these cells are activated through processes that
aremediated by growth factors (forexample, platelet-derived growth
factor (PDGF))**, and their increased potential for proliferation and
migration is regulated through the de novo expression of the glyco-
protein CD44 (ref. 35) and the tetraspanin CD9 (ref. 36).

We performed bulk RNA sequencing on nuclei isolated from mice
withimmune-mediated kidney disease to clarify this issue (Extended
DataFig. 4a). Analyses of the differentially expressed genes (Extended
Data Fig. 4b) identified the transcription factor JUN with the highest
activity score (Extended Data Fig. 4c), as calculated from the differ-
ential expression of JUN-regulated targets (Extended Data Fig. 4d).
Notably, JUN has a crucial role in AP-1 activation through JNK, which
mediates CD44 signalling®. Asareadout of JUN activity, its phospho-
rylated protein product JUN(Ser63) (pJUN) was included in our anti-
body panel. Cluster 21 featured pJUN as a top contributor and was
consistentlyincreased inboth acute and CGN disease states compared
with controls (Fig. 2d). Cluster 21 was essentially restricted to PECs
and tubular cells, with a high frequency in tubular cells during acute
injury and a gradual increase in PECs during disease progression to
CGN (Fig.2e). Astubular cells do not represent an effector population

during crescent formation, we turned our full attention to the role of
JUN activity in PECs.

Multimodal cross-species validation

As aninitial validation step, we evaluated the effect of JUN activity
modulationin PECs. To thisend, PEC activation (thatis, increased migra-
tion) wasinduced invitro using PDGF*. PEC migration was attenuated
with theJNK inhibitor (JNKi) CC930 (also known as tanzisertib) in two
independent experimental set-ups. Results from both of these experi-
ments confirmed that CC930 has a direct effect on activated murine
PECs (Fig. 2f). In asecond validation step, we analysed human biopsy
samples from patients diagnosed with CGN to delineate JUN activity
duringthe progression of human crescentic lesions (n =12 patients and
n =3healthy participants). Normal glomeruli from healthy individuals
and from individuals with CGN showed that pJUN was expressed in
scattered PECs without CD44 expression. As pathological lesions in
CGNdevelopinafocal pattern, some glomeruliappeared normal and
only asubsetexhibited crescent characteristics, allin the same patient
sample. Although some glomerulishowed abundant pJUN"CD44 PECs,
pJUN*CD44" PECs were exclusively found in CGN samples (Fig. 2g),
whichindicated an association between JUN activity and PEC activa-
tionin humanspecimens. Inathird validation step, CGN was modelled
inrats to test the efficacy of CC930 as a preventive strategy (before
diseaseinduction) or asatherapeutic strategy initiated 7 days after dis-
easeinduction (Fig.2h). Proteinuria was substantially decreasedin the
preventative study (Fig. 2i) and glomerular damage was mitigated with
interventional treatment (Fig. 2j), which included substantial modu-
lation of CD44 expression in PECs (Fig. 2k and Extended Data Fig. 5).
Together, these data confirmed that PathoPlex-derived clusters can
identify actionable pathological features with high spatial precision.

Integrative mapping of human disease

Next, we sought to apply PathoPlex to unravel the complexities of
human disease. The performance of PathoPlex was tested in clinical
specimens with patient-level heterogeneity in one of the most com-
mon clinical features of end-organ damage in diabetes, namely DKD™,
Atotal of 38 human kidney specimens (from 18 individuals without
diabetes (controls) and 20 individuals with advanced DKD) were pro-
filed in 422 ROIs using 61 markers (Supplementary Table 3) to obtain
>100 billion pixels at 160 nm per pixel (Fig. 3a). PathoPlex identified
18 clusters with differential abundance between control and DKD sam-
ples (Supplementary Table 4). For example, cluster 19 (with contribu-
tors fromapoptosis inducing factor mitochondria associated 1 (AIFM1)
and transient receptor potential cation channel subfamily Cmember 6
(TRPC6)) wasincreased in tissues fromindividuals with DKD and local-
ized primarily in the proximal tubules. This result was corroborated
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when projected onto conventional histopathology images (Fig. 3b).
We validated the expression of TRPC6 in proximal tubules using both
immunogoldinelectron microscopy (Extended DataFig. 6a) and IMC-
based antibody expression (Extended Data Fig. 6b). Analyses of amouse
model of DKD (Extended Data Fig. 6¢) also confirmed that TRPC6
expression is increased in proximal tubules (Extended Data Fig. 6d).
Ouranalysis revealed multiple additional differentially regulated clus-
tersthatreflected known biological processes, including ERK-mediated
and integrin-mediated signalling in multiple nephron segments
(Extended DataFig.7). To connect these findings to cell-level features,
we performed deep-learning-based cellular segmentation using Cell-
Pose® (Supplementary Fig. 10) to characterize the co-occurrence of
multiple clusters in well-defined cell-level metaclusters. For exam-
ple, metacluster 16, which was increased in DKD, contained clusters
thatrepresented multiple processes associated with proximal tubule
injury (Fig. 3c). Notably, a subset of clusters showed strong correla-
tions with kidney function (Extended DataFig. 8), including cluster 28
(extracellular matrix (ECM) remodelling) (Fig. 3d), thereby linking
subcellular pathological features to patient-level organ function.

Computational cross-validation

To further validate the biological relevance of PathoPlex-derived
clusters, we calculated the multivariate cluster join counts for each
biopsy sample independently and then averaged them at the condi-
tion level (Extended Data Fig. 9). These subcellular and intercellular
spatial networks recapitulated aspects of kidney architecture by arrang-
ing them into functional compartments, including glomerular and
tubular segments, individual cell types (for example, podocytes) and
ECM. Moreover, the networks highlighted pathophysiological changes
(forexample, anincreased connection between proximal tubule micro-
tubules and Ca* signalling). Next, we applied anonlinear co-occurrence
prediction model across cell-sized windows (MISTy)*°, which identi-
fied groups of condition-specific mutually predictive clusters that
reflected functional (for example, glomerular, tubular and interstitial)
and subcellular (for example, nuclear or cytoplasmic) compartments
that defined immune activation, ECM remodelling, metabolic stress
and cellinjury (Extended Data Fig.10). We also performed image-level
pseudotime analysis with a multiscale model* to propose a path from
individuals without diabetes but with varying kidney function to indi-
viduals with DKD. This analysis resulted in the identification of two
potential trajectories of pathogenesis that showed a strong association
with histopathological changes (Extended Data Fig. 11a). For trajec-
tory 1, determinant features included tubulointerstitial fibrosis, which
reflected theloss of kidney functioninasubpopulation of individuals
without diabetes (Extended Data Fig. 11b). For trajectory 2, specific
featuresincluded podocyteinjury, Ca**-mediated mitochondrial stress
in proximal tubules and glucocorticoid receptor (GR) dysfunction,
whichreflected diabetic end-organ damagein individuals withimpaired
kidney function (Extended Data Fig. 11c).

To reinforce the value of PathoPlex as a foundational tool to per-
formunsupervised disease phenotyping, we used UnPaSt*? to conduct
label-free biclustering based on cluster abundances. UnPaSt was able
toaccurately discriminate between control and DKD samples (Fig. 3e).
Bicluster-specific clusters reflected theincreased abundance of func-
tionalintegrity features (thatis, podocyte physiology and metabolism)
incontrol specimens, and of pathogenic features in DKD samples (that
is, macrophage infiltration,immune activation, AIFM1-TRPCé6 signal-
ling, endoplasmic reticulum (ER) stress, ECM remodelling, and GR,
B-catenin, histone H2B and ubiquitylation dysfunction). Insummary,
PathoPlex-derived clusters can be immediately used to extend the
scope of computational analyses to add layers of biological context
(thatis, pseudotime, niche profiling and feature subclassification)
and to connect PathoPlex to the broader computational spatial biol-
ogy ecosystem.
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Druggability profiling

Next, we aimed to leverage PathoPlex-derived clusters to infer addi-
tional clinically relevantinformation, such as potential opportunities
for drug repurposing. First, we selected the top contributing proteins
from each cluster to define a cluster-based DKD signature that was
extended using the search tool for the retrieval of interacting genes
and proteins (STRING)*. Then we cross-referenced our extended DKD
signature with the Comparative Toxicogenomics Database (CTD)*.
Notably, different drug classes used in the standard treatment of dia-
betes* interacted with the proteins represented in our extended DKD
signature (Fig. 3f), including SGLT2 inhibitors>®. Next, we analysed a
publicly available single-cell RNA-sequencing dataset* generated from
recently diagnosed young individuals with T2D without overt DKD
and included a subset of patients receiving an SGLT2 inhibitor. This
analysis confirmed our extended DKD signature at the transcriptional
level and revealed a partial transcriptional modulation in proximal
tubules with SGLT2 inhibitor treatment (Extended Data Fig. 12 and
Supplementary Table 5). This result suggests that individuals with
diabetes may benefit from additional interventionstoreverse themto
the healthy reference state. For this reason, we quantified the number
of known drug-proteininteractions for members of our extended DKD
signature. This analysis led to the identification of potential targets
to revert cell communities to the healthy reference state, including
phosphodiesterase-5 inhibitors as potential regulators of TRPC6 sig-
nalling. As an additional external validation step, we used a public
single-nucleus RNA-sequencing dataset from a rat model of DKD* to
assess the link between cGMP signalling and TRPC6-mediated mito-
chondrial stress in proximal tubules (Fig. 3g). Although transcriptomic
detection of TRPC6 was insufficient to confirm a direct effect on this
target, cGMP modulation was associated with the attenuation of several
components of our extended DKD signature. Together, our findings
confirm that the applicability of PathoPlex-derived clusters extends
beyond the definition of integrative pathological features. Indeed,
they can link the spatial context to single-cell transcriptomics and
even pharmacological modelling.

Beyond classical pathology

Up to this point, our experiments included well-defined disease and
control groups with recognizable pathological features identifiable
through traditional histopathological methods. In our final experiment,
PathoPlex was applied to 18 human kidney research biopsy samples
without overt histopathological changes to test the limits and added
value of PathoPlex. We aimed to identify early stages of kidney stress
in T2D and to further profile the impact of SGLT2 inhibitors on these
integrative features of cellular stress. To this end, archival tissue speci-
mens from 5 healthy individuals, 6 individuals with T2D not treated with
SGLT2inhibitors (T2D*SGLT2i") and 7 individuals with T2D treated with
SGLT2inhibitors (T2D*SGLT2i*) from a previous study** were selected
for analysis. A total of 142 markers (122 biological and 20 quality con-
trol; Supplementary Table 6) were imaged at 80 nm per pixel, which
systematically covered glomerular and non-glomerular regions across
284 ROIs. This strategy generated >600 billion pixels, which contrib-
uted to 140 clusters (Fig. 4a). A total of 24 clusters showed significant
regulation between groups (Fig.4b), which revealed specific biological
processes with distinct subcellular locations (Fig. 4¢). Significant dif-
ferences encompassed increasesin clusters that represented stromal
cellfilopodia, the mesangial matrix and vascular smooth muscle cells.
Moreover, reductions in clusters associated with structural and func-
tional features of proximal tubules (that s, celladhesion, brush border
integrity, JAK2-H2B-mediated cell cycle, mitochondrial integrity and
lactate transport), peritubular capillary integrity, mitochondrial and
ERintegrity in the distal tubule and nitric oxide productionin the col-
lecting duct were observed.
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SGLT2inhibitors attenuated changes in peritubular capillaries and
mitochondrial integrity in proximal tubules, and increased gluconeo-
genesisin proximal tubules. SGLT2 inhibitors were also characterized
by the decreased abundance in a cluster representing lysosomal and
proteasomal stress in endothelial cells. However, SGLT2i treatment
did not fully reverse the T2D-specific changes in cluster abundance.
First, the fold changes of significantly differentially abundant clusters
in T2D'SGLT2i™ samples relative to control samples were defined to
represent the baseline effect of T2D. Then, the same comparison was
performed between T2D*SGLT2i" and control samples to represent
the effect of SGLT2 inhibitors on T2D. This comparisonindicated that
SGLT2 inhibitors promoted a reconstitution of peritubular capillary
and mitochondrialintegrity in proximal tubules, together witha partial
reversal of theincrease in clusters representing vascular smooth muscle
and stromal filopodia (Fig. 4d). These data demonstrate the potential
of PathoPlex to uncover features of injury before disease onset that are
inaccessible to classical histopathology.

Finally, on the basis of the two diabetes datasets generated in this
study (Figs.3and 4), we propose a continuum of early glomerular and
tubulointerstitial alterations that precede quantifiable reductions
in end-organ function and that eventually converge in DKD. These
alterations include an impaired glomerular filtration barrier, podo-
cyte loss, ECM remodelling and tubular injury following prolonged
hyperglycaemia (Fig. 4e). Although some early changes seemed to be
attenuated by SGLT2 inhibitors, further studies are required to fully
profile the potential long-term preventive effects of this intervention
throughout the entire clinical course of DKD. Insummary, our results
demonstrate the utility of PathoPlex to extract meaningful integrative
features from even non-pathological tissues. Notably, the framework
alsoprovided further pathophysiological evidence to support the use of
SGLT2inhibtors*asanearly interventionin T2D. Our results highlight
the potential need for further treatments to optimally preserve kidney
healthinindividuals with T2D at high risk of DKD.

Discussion

Multiplexed imaging is a rapidly growing field"**® and its contribution
toadeeper understanding of tissue biology isillustrated by the recent
generation of organ-level atlases, for example, in placenta® and intes-
tine’® using MIBI-TOF and CODEX, respectively. Moreover, previous
efforts to characterize archival pathological tissues have provided
new insights into the tumour microenvironment using IMC in breast
cancer**® and melanoma® as well as in post-mortem COVID-19 speci-
mens using IBEX*. Despite these recent successes, widespread appli-
cation of these technologies has been hampered by several factors.
These include access to commercial equipment, antibody panel size
(average of 37 markers) and composition (that is, mostly focused on
cellidentity), limited spatial resolution (average of 267 nm per pixel),
high-throughputinsingle specimens and insufficiently defined quality
control steps. Here we provided a detailed protocol for highly multi-
plexedimaging at subcellular resolution for archival FFPE tissues. The
use of PathoPlex for multiplexed imaging includes the following advan-
tages: (1) no dependency on commercial equipment; (2) open-access
3D printing-based solutions for sample preparation and automation;
(3) compatibility with any inverted fluorescence microscope, rang-
ing from widefield to high-end confocal microscopy; (4) scalability
inantibody panelsize (>120), image resolution (up to 80 nm per pixel
using confocal microscopy) and sample sizes (that is, intact clinical
tissues); (5) use of unmodified antibodies broadly accessible to the
scientific community; (6) introduction of stringent quality-control
steps to define best practices; and (7) minimization of batch effects
through the parallel processing of up to 40 clinical biopsy samples
(approximately 4,000 mm? of available tissue). Together, PathoPlex
paves the way for universal access to multiplexed imaging in clinical
specimens. Italso unlocks one of the largest and most comprehensive
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biobanksinadvertently created to awide array of users: FFPE archives
in clinical pathology centres and research institutes. It is now up to
users to build on this resource to explore well-characterized patient
cohorts, generate antibody panels that best address their scientific
or clinical questions and to leverage the most efficient and suitable
microscopy systems.

As emerging multiplexed imaging technologies generate larger and
more complex datasets, image analysis tools need to adapt. Although
cell segmentation and identification of cell states remain the most
accepted methodologies for both technical development® and bio-
logical interpretability®*, unsupervised methods are starting to gain
attention. Recent examples of pixel-based image analysis tools for
multiplexed imaging datainclude cellular changes during normal reti-
nal development in human organoids™ and the generation of quanti-
tative annotations both independently and in conjunction with cell
segmentationsinvarious human tissues®. However, PathoPlex provides
integrative features thatrecapitulate health, stress and overt disease,
which canbe pharmacologically modulated. As part of PathoPlex, we
provide spatiomic, an efficient, scalable and streamlined end-to-end
workflow for the community to analyse multiplexed imaging datasets
of over halfatrillion pixels. Overall, PathoPlex introduces a shift away
from characterizing tissues solely at the cellular level (cell typing and
their spatial organization) and towards a data-driven approach that
captures the most distinctive biological signatures across spatial scales
based on spatial co-expression patterns derived fromindividual pixels.

Recent advances in community-based strategies include minimum
information guidelines*® and a public repository for antibodies com-
patible with multiplexed imaging®. These initiatives highlight the
importance of continuous developmentin this new and rapidly growing
field. Although PathoPlex shows promise, several areas require fur-
ther optimization. PathoPlex enables users to perform more imaging
cycles, which provides an opportunity to expand antibody panel sizes
and in turn can extend their scope. However, time efficiency remains
crucial forimplementation in research and even more so as a clinical
application. For this reason, we consider that robotic automation or
sample size enrichment through parallel processing of multiple tissue
microarrays may be considered in the future. Furthermore, as anti-
body panels canrapidly expand, standardizing quality-control metrics
(thatis, validation, secondary-only cycles and re-staining) will benefit
potential PathoPlex users and the growing multiplexed imaging com-
munity. Moreover, PathoPlex enables the generation of datasets with
sizes beyond current standards (>600 billion pixels), which present an
analytical challenge thatis currently best addressed by GPU accelera-
tion. In this context, we recognize the need to implement additional
featuresto minimize user reliance on specialized hardware. Finally, our
work raisesimportant computational questions regarding the need to
establish integrative ontology terms that combine multiple biological
layers to facilitate broad interpretability. Moreover, the increasing
technical requirements to transfer, share, store and process dataata
scale will soon challenge available resources.
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Methods

Archival tissues

Human samples. FFPE tissues were collected and prepared according
to institutional protocols. For Fig. 2, validation kidney biopsy speci-
mens fromindividuals with ANCA-associated CGN were obtained from
the Hamburg Glomerulonephritis Registry (https://www.sfb1192.de/
en/register). For Fig. 3, control kidney specimens were obtained from
nephrectomies performed onindividuals with renal cell carcinomain
collaboration with the Division of Nephrology and Clinical Immunol-
ogy, RWTH Aachen University Medical Center.Kidney biopsy samples
fromindividuals with DKD were obtained from the Department of Neph-
rology and the Department of Pathology Georges Pompidou European
Hospital, Assistance Publique-Hopitaux de Paris. For Fig. 4, nested pro-
tocol research kidney biopsy samples were obtained from volunteers
(adolescents and youngadults; n =13) with T2D (12-21 years of age, T2D
onsetat <18 years of age, T2D duration1-10 years and HbAlc < 11%) from
the Renal HEIR and the IMPROVE-T2D studies. The participants were
recruited from the Type 2 Diabetes and Metabolic Bariatric Surgery
clinicsatthe Children’s Hospital Colorado Anschutz Medical Campus
in Aurora. T2D was defined according to criteria of the American Dia-
betes Association plus the absence of glutamic acid decarboxylase,
islet cell, zinc transporter 8 and/or insulin autoantibodies. The Renal
HEIR and IMPROVE-T2D cohorts have intentionally harmonized study
protocols. Medication use was recorded for all participants, and T2D
treatment, including SGLT2 inhibitors, was determined by their medi-
cal provider. Normative kidney reference tissue fromresearch biopsy
samples were provided by five healthy young adult participantsinthe
CROCODILE study (NCT04074668). For Supplementary Figs.3and 4,
kidney biopsy samples were obtained from the Hamburg Glomerulone-
phritis Registry (https://www.sfb1192.de/en/register), liver specimens
were provided by the Institute of Pathology, University Medical Center
Hamburg-Eppendorfand brain specimens were provided by the Insti-
tute of Neuropathology, Freiburg University Hospital. Ethics approv-
als were obtained from the Institutional Review Board of the RWTH
Aachen University Medical Center (EK-016/17), the local ethics commit-
tees of the Chamber of Physicians in Hamburg (PV4806) and Freiburg
(Ethikvotum 10008/09), the Paris Ethics Committee (IRBOO003888,
FWA00005831) and the Colorado Ethics Committee (NCT03584217
and NCT03620773). All tissue collections were performed in accord-
ance with the ethical principles stated by the Declaration of Helsinki.

Rodent samples. Archival FFPE tissues from experimental immune-
mediated kidney disease and DKD were collected according to insti-
tutional protocols of Hamburg, Melbourne, Heidelberg and Paris
(N047/20, MMCB/2006/29, H2052-2071/23 and 358-86/609EEC,
respectively). All experimental animals were housed at an ambient
temperature of 20 £ 2 °C, humidity of 55 + 10% and a light-dark cycle
of 12-12 h. In brief, mouse crescentic nephritis was induced accord-
ing to an established protocol*. Rat tissues were obtained from two
experimental set-ups®*, Administration of a JNK inhibitor (CC930,
dose of 60 mg kg™'in 0.5% carboxymethyl cellulose) or vehicle alone was
performed twice daily by oral gavage. The prevention study (therapy
started at day O and animals were killed on day 1) was performed in
outbred male Sprague-Dawley rats, as this strain is known to develop
heavy proteinuria®. The therapeutic study (therapy started at day 7
after disease induction and continued until animals were killed on
day 28) was performed in inbred male Wistar Kyoto rats, which are
prone to developing crescent formation. In both studies, proteinu-
ria measurements and histopathology were performed according to
standardized protocols®*%. Btbr-Lep®®°" (Btbr"*°") mice were obtained
by crossing two heterozygous Btbr’®*" mice purchased from TheJack-
son Laboratory. This model shows morphological and physiological
traits of DKD (that is, hyperglycaemia, albuminuria and glomerular
hypertrophy). Wild-type littermates were used as controls.

Highly multiplexed imaging
Sample preparation. Depending onthe number of samples, asuitable-
sized glass surface was selected and coated with poly-D-lysine (1 mg ml™?;
Merck, A-003-E) for 30 min or with APTES (Merck, 440140) 10% v/v
inacetone (Merck, 320110) for 2 min and then dried overnight before
mounting the sections. We initially used poly-D-lysine for all our experi-
mentsbut realized that significant lifting was progressively observedin
all organs tested, including kidney, lung, colon, liver and brain. Lifting
was initially mild in kidney samples but highly prominent in lung and
colon specimens. For example, we observed partial but meaningful
tissue liftingin 76 out of 498 ROIs (15%) by the end of 49 imaging cycles
(Fig.3). Furthermore, from 23 lung specimens analysed over 8imaging
cycles, lifting was already observedin 7 of them (30%). These observa-
tions across multiple tissue types led us to conclude that poly-D-lysine
coating exhibits organ-dependent and time-dependent reliability limi-
tations, for which we recommend potential users to perform pilot
studies in their organ of interest. However, after acomprehensive lit-
erature review, we identified APTES as an ideal coating agent. Using
APTES, tissue lifting occurred in only 1% of kidney specimens (Fig. 4).
After coating, FFPE tissues were cut at a thickness of 2-3 pmand care-
fully mounted onthe coated glass surface (forexample, p-Slide 2-well
glass-bottom (Ibidi, 80287), p-Slide 8-well glass-bottom (Ibidi, 80827),
Cell Imaging Plate 24-well glass-bottom (Eppendorf, 0030741021) or
Nexterion glass (Schott, 1868767)). To prevent dissolution of the plastic
componentsinthechambered coverslips and plates by the solvent used
for deparaffinization, the walls of each well were protected by a seal
of transparent silicone (Pattex) or a ring of solvent-resistant plastic,
respectively.

The following steps were performed only once before initiating the
sequence of cycles.

Deparaffinization and rehydration. Samples were treated with the
following set of solutions: Histo-Clear (National Diagnostic, HS-200)
three cycles of 10 min each, followed by an ethanol series consisting
of three cycles of 100% ethanol (10 min), two cycles of 70% ethanol
(5min), one cycle of 50% ethanol (5 min) and finally, triple immersion
indouble-deionized water (ddH,0) for 5 min each.

Antigen retrieval. Samples were immersed intarget retrieval solution
pH 9 (Agilent, S236784-2) and heated for 15 min using a steamer (Braun;
FS3000). Afterwards they were left to cool down to room temperature
for 30-60 min. Sections were then incubated for 15 min in EnVision
FLEX wash buffer (Agilent, K800721-2).

Blocking. To limit nonspecific antibody binding, samples were incubated
inablockingsolution consisting of 5% BSA (Merck, A7906) in Dulbecco’s
PBS (Thermo Fisher Scientific, 14190094) for 1 h at room temperature.
Afterwards, samples were washed three times for 5 min with wash buffer.

Elution. An elution buffer was prepared according to a previously
described formulation®, which consisted of 0.5 M glycine (Carl Roth,
3908.2),3 Murea (Merck, U5378),3 M guanidine hydrochloride (Merck,
G4505) and 70 mM TCEP (Merck, C4706) mixed in ddH,0 and adjusted
to pH 2.5.Samples were incubated in elution buffer once for 5 minand
then three times for 10 min on a shaker, followed by three washes of
5 min with wash buffer.

NHS-E labelling. Whenever used as a reference for alignment, NHS-E
(Thermo Fisher Scientific, A10168) diluted in PBS (1:400) was added
to the samples for1h at room temperature. After 1 h, samples were
washed three times for 5 min with wash buffer.

The following steps were completed for every subsequent cycle
of staining and carried out in a light-free environment to prevent the
crosslinking of antibodies.
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Primary antibody stain for indirectimmunofluorescence. Samples
were incubated with primary antibodies in EnVision FLEX antibody
diluent (Agilent, K800621-2) for either 1 hat room temperature (Fig.2)
or overnight at 4 °C (Figs. 3 and 4), followed by three washes of 5 min
with wash buffer. We provide confirmation of each staining pattern
for every antibody in Supplementary Data 1and 2. We also validated
the practical feasibility of 1-hincubations at room temperature under
non-multiplexed and multiplexed imaging conditions (Supplementary
Fig. 11).

Secondary antibody and nuclear stain for indirect immunofluo-
rescence. Appropriately matched secondary antibodies (and directly
conjugated primary antibodies) and the nuclear markers DAPI (Merck,
D9542,1:200) or DRAQS (Abcam, ab108410, 1:200) were mixed in anti-
body diluent and incubated for 1 h at room temperature. Afterwards,
samples were washed three times for 5 min with wash buffer.

Imaging. Animaging buffer was prepared accordingtoapreviously des-
cribed formulation®, which consisted of 700 mM N-acetyl-L-cysteine
(Merck; A9165) mixed in ddH,0 and adjusted to pH 7.4. Imaging buffer
was added to samples for imaging and then washed three times for
5 min with wash buffer before elution.

Antibody elution. Samples were incubated with elution buffer once
for 5 minand then three times for 10 minon ashaker, followed by three
washes of 5 min with wash buffer.

Thereafter, these steps were repeated until the desired number of
antibodies was reached. Together, each cycle (using 1 h of incubation
time for primary antibodies) can be completed in under 4 h of bench
work. All cycles per experiment (antibodies and order) are described
inSupplementary Table 7. Periodic acid Schiff (PAS) staining was per-
formed after the last immunofluorescence staining only in Fig. 3 fol-
lowing a standard protocol, including incubation with periodic acid
(Th. Geyer, 3257.1) to oxidize the sections, followed by Schiff’s reagent
(Merck,1090330500) to label glycol-containing structures. The sec-
tions were then counterstained with Mayer’s haematoxylin (Agilent
Technologies, S330930-2).

Primary antibodies and lectins

For human samples. ABCG2 (Santa Cruz, sc-377176;1:200); ACE-2
(R&D Systems, AF933;1:200); adiponectin (Thermo Fisher Scien-
tific, MA1-054; 1:200); AIF (Cell Signaling Technology, 5318;1:200);
AKAPI12 (Proteintech, 25199-1-AP;1:600); AKR1B1(Thermo Fisher Sci-
entific, PA5-82915; 1:500); AKR1C1 (Thermo Fisher Scientific, MAS5-
32842;1:200); alpha B-crystallin (Proteintech, 68001-1-Ig; 1:1,000);
ANXA3 (Sigma-Aldrich, HPA013398; 1:200); aSMA-FITC conjugate
(Sigma-Aldrich, F3777; 1:800); aquaporin 2 (Alomone Labs, AQP-
002;1:400); B-actin (Sigma-Aldrich, A5441; 1:1,500); 3-catenin (Ab-
cam, ab6302;1:2,000); B-tubulin (Cell Signaling Technology, 2128;
1:150); calbindin-D (Sigma-Aldrich, C9848;1:3,000); calpain small
subunit 1 (Abcam, ab92333;1:200); calpastatin (Abcam, ab244460;
1:200); calreticulin (Abcam, ab92516; 1:300); carbonic anhydrase
IX (R&D Systems, AF2188; 1:50); catalase (Proteintech, 66765-1-1g;
1:300); CD3 (Abcam, ab11089;1:200); CD4 (R&D Systems, AF-379-NA;
1:100); CDS8 (Agilent, M710301-2; 1:200); CD34 (Agilent, GA63261-2;
1:50); CD41 (Thermo Fisher Scientific, PA5-79526; 1:500); CD42b
(Abcam, ab227669; 1:100); CD44 (Cell Signaling Technology, 5640S;
1:200); CD44-AlexaFluor 647 conjugate (BioLegend, 103018;1:200);
CD68 (BioLegend, 916104;1:200); CD79a (Agilent, M705001-2;1:200);
CD200 (R&D Systems, AF2724;1:100); CD206 (Proteintech, 60143-
1-1g; 1:2,000); FOS (Abcam, ab190289; 1:600); claudin 1 (Abcam,
ab15098; 1:500); claudin 10 (Thermo Fisher Scientific, 38-8400;
1:100); collagen I (Southern Biotech, 1310-01; 1:200); collagen I
(Abcam, ab7778;1:200); collagen IV (Abcam, ab6586; 1:200); colla-
genV(Abcam, ab7046;1:100); cubilin (R&D Systems, AF3700;1:200),

cyclin Bl (Cell Signaling Technology, 12231; 1:100); cytochrome ¢
(Abcam, ab110325;1:200); cytokeratin 7 (Agilent, GA61961-2; 1:300);
cytokeratin 8 (R&D Systems, MAB3165-SP; 1:300); cytokeratin 19
(Abcam, ab52625;1:300); C1QA (Proteintech, 67063-1-Ig; 1:1,000);
DACHI (Sigma-Aldrich, HPA012672;1:200); decorin (R&D Systems,
AF143,1:50); E-cadherin (R&D Systems, AF648;1:200); EEA1 (Santa
Cruz, sc-137130;1:100); EHD3 (LSBio, LS-C133741;1:150); endomucin
(Sigma-Aldrich, HPA005928;1:100); eNOS (Abcam, ab76198;1:200);
ezrin (Cell Signaling Technology, 3145S; 1:300); FAM189A2 (Thermo
Fisher Scientific, PA5-63414; 1:200); fibronectin (Abcam, ab2413;
1:200); FKBP51 (R&D Systems, AF4094-SP; 1:50); FXYD4 (Thermo Fisher
Scientific, PA5-63570;1:200); GFAP (Thermo Fisher Scientific, 14-9892-
82;1:200); glucocorticoid receptor (Cell Signaling Technology, 3660;
1:2,000); glutathione peroxidase 1 (R&D Systems, AF3798; 1:100);
glutathione peroxidase 3 (R&D Systems, AF4199;1:50); glycophorin A
(R&D Systems, MAB1228-SP; 1:500); GRP78 (Proteintech, 11587-1-AP;
1:200); HB-EGF (R&D Systems, AF-259; 1:100); histone H3 (Cell Sign-
aling Technology, 4499; 1:400); HMOXI1 (Thermo Fisher Scientific,
MAI1-112;1:200); HSD11B2 (R&D Systems, MAB8630-SP; 1:100); KIM-1
(R&D Systems, AF1750; 1:200); IBA1 (Thermo Fisher Scientific, MAS5-
27726;1:500); IDH1R132H (Dianova, DIA-H09,1:200); IL-1RA (Abcam,
ab124962;1:200; specificity issues were raised by the provider after
our experiments were completed. We kept itinthe panel as none of our
findings were affected and we did not perform any biological inferenc-
esonthebasis of thisantibody); iNOS (Thermo Fisher Scientific, MAS5-
41652;1:200); integrin-ol (R&D Systems, AF5676;1:300); integrin-o3
(Proteintech, 66070-1-Ig; 1:2,000); integrin-B1 (Abcam, ab179471;
1:800); Ki-67 (Agilent, M724029-2; 1:200); laminin (Abcam; ab11575,
1:200); LAMP1 (Cell Signaling Technology, 9091; 1:300); LC3B (Cell
Signaling Technology, 3868;1:300); LEL-DyLight 649 conjugate (Vector
Laboratories, DL-1178;1:300); LTL biotinylated (Vector Laboratories,
B-1325-2;1:500); MCT1 (Thermo Fisher Scientific, MA5-18288;1:300);
MerTK (R&D Systems, AF591;1:200); MPO (R&D Systems, MAB3174;
1:200); nephrin (Progen, GP-N2;1:150); neurofilament (Agilent, IR607;
1:200); NOX4 (R&D Systems, MAB8158;,1:300); NQO1 (Proteintech,
67240-1-1g;1:2500); OLIG2 (Bio SB, BSB 2561;1:200); p62 (Cell Signal-
ing Technology, 39749;1:400); PCK1 (Proteintech, 66862-1-Ig;1:400);
PCNA (Abcam, ab29;1:2,000); PDGFRf (Cell Signaling Technology,
3169;1:100); PDI (Cell Signaling Technology, 45596S;1:400); periostin
(R&D Systems, AF3548;1:150); phospho-AMPKa (Cell Signaling Tech-
nology, 2535;1:200); pJUN (Abcam, ab32385;1:200); phospho-ERK1/2
(Cell Signaling Technology, 4370; 1:250); phospho-ezrin-radixin-
moesin (Cell Signaling Technology, 3726; 1:200); phospho-GSK3[3
(Cell Signaling Technology, 9323; 1:100); phospho-histone H3 (Cell
Signaling Technology, 9701; 1:200); phospho-JAK2 (Thermo Fisher
Scientific, MA5-42424;1:100); phospho-ribosomal protein Sé (Cell
Signaling Technology, 4858S;1:300); phospho-SMAD2 (Thermo Fisher
Scientific,44-244G;1:200); phospho-SMAD3 (Thermo Fisher Scientific,
PA5-104940;1:200); phospho-STAT1(Cell Signaling Technology, 9167S;
1:400); phospho-STAT3 (Abcam, ab76315;1:200); PITX2 (R&D Systems,
AF7388;1:100); podocin (Sigma-Aldrich, P0372;1:3,000); proteasome
20S LMP7 (Abcam, ab3329;1:400); RAB5A (Cell Signaling Technology,
46449;1:300); RAB7 (Abcam, ab137029; 1:200); RAP1GAP (Abcam,
ab244259;1:300); RCASI (Cell Signaling Technology, 12290; 1:200);
sclerostin (Thermo Fisher Scientific, PA5-37943;1:100); SIRT1 (Cell
Signaling Technology, 8469;1:200); SLC12A3 (Thermo Fisher Scien-
tific, MA5-41643;1:200); SOD1 (Proteintech, 67480-1-Ig; 1:400); SOD2
(ThermoFisher Scientific, PA5-30604;1:300); SRB1 (Abcam, ab217318;
1:300); STAT2 (R&D Systems, MAB16661;1:200); survivin (Cell Signal-
ing Technology, 2808;1:300); talin 1(Abcam, ab71333;1:200); TRPC6
(Abcam, ab233413;1:200); ubiquityl-histone H2B (Cell Signaling Tech-
nology, 5546T;1:200); uromodulin (R&D Systems, AF5144;1:300);
villin1(Abcam, ab52102;1:200); vimentin (Progen, GP53;1:200); von
Willebrand factor (Agilent, A008229-2;1:200); WT1(Agilent, 1S05530-2;
1:200); and ZO-1 (Thermo Fisher Scientific, 61-7300;1:250).



For mouse samples. ACE-2 (R&D Systems, AF933;1:200); AIF (Cell
Signaling Technology, 5318;1:200); AKAP12 (Proteintech, 25199-1-AP;
1:600); ANXA3 (Sigma-Aldrich, HPA013398; 1:200); aSMA-FITC con-
jugate (Abcam, F3777;1:800); aquaporin 2 (Alomone Labs, AQP-002;
1:400); calreticulin (Abcam, ab92516;1:300); caspase 1 p20 (Thermo
Fisher Scientific, PA5-99390; 1:200); CD3 (Abcam, ab1108; 1:200);
CD4 (Abcam, ab183685; 1:200); CD41 (Thermo Fisher Scientific,
PA5-79526;1:500); CD42b (Abcam, ab227669; 1:100); CD44-Alexa
Fluor 647 conjugate (BioLegend, 103018; 1:200); CD45 (Cell Sign-
aling Technology, 70257; 1:200); FOS (Abcam, ab190289; 1:600);
collagen I (Southern Biotech, 1310-01; 1:200); collagen IV (Abcam,
ab6586; 1:200); cytochrome ¢ (Abcam, ab110325; 1:200); DACH1
(Sigma-Aldrich, HPA012672;1:200); E-cadherin (R&D Systems, AF648;
1:200); endomucin (Santa Cruz, sc-65495;1:200); fibronectin (Abcam,
ab2413;1:200); histone H3 (Cell Signaling Technology, 4499;1:400);
IBA1 (Thermo Fisher Scientific, MA5-27726;1:500); IL-1IRA (Abcam,
ab124962;1:200; specificity issues were raised by the provider after
our experiments were completed. We kept it in the panel as none of
our findings were affected and we did not perform any biological infer-
ences on the basis of this antibody); Ki-67 (Abcam, ab15580; 1:200);
lamin B1 (Santa Cruz, sc-374015; 1:200); laminin (Abcam, ab11575;
1:200); LTL biotinylated (Vector Laboratories, B-1325-2;1:500); nephrin
(Progen, GP-N2;1:150); PCNA (Abcam, ab29;1:2,000); PDI (Cell Signal-
ing Technology, 45596S;1:400); phospho-ezrin-radixin-moesin (Cell
Signaling Technology, 3726;1:200); podocin (Sigma-Aldrich, P0372;
1:3,000); podoplanin (R&D Systems, AF3244-SP; 1:200); synaptopodin
(Synaptic Systems, 163 004;1:200); tyrosine hydroxylase (Cell Signal-
ing Technology, 45648;1:200); ubiquityl-histone H2B (Cell Signaling
Technology; 5546T; 1:200); B-actin (Sigma-Aldrich; A5441, 1:1500);
vimentin (Progen, GP53;1:200); and von Willebrand factor (Agilent,
A008229-2;1:200).

Secondary antibodies and biotin-binding proteins

Secondary antibodies were diluted in a ratio ranging from 1:200 to
1:300. The following antibodies were used: goat anti-guinea pig IgG
Alexa Fluor 488 (Thermo Fisher Scientific, A-11073); goat anti-guinea
pig IgG Alexa Fluor 555 (Thermo Fisher Scientific, A-21435); donkey
anti-mouse IgG Alexa Fluor 488 (Thermo Fisher Scientific, A-21202);
donkey anti-mouse IgG Alexa Fluor 555 (Thermo Fisher Scientific,
A-31570); donkey anti-mouse IgG Alexa Fluor 647 (Thermo Fisher Sci-
entific, A-31571); donkey anti-rabbit IgG Alexa Fluor 488 (Thermo Fisher
Scientific, A-21206); donkey anti-rabbit IgG Alexa Fluor 555 (Thermo
Fisher Scientific; A-31572); donkey anti-rabbit IgG Alexa Fluor 647
(Thermo Fisher Scientific, A-31573); donkey anti-goat IgG Alexa Fluor
488 (Thermo Fisher Scientific, A-11055); donkey anti-goat IgG Alexa
Fluor 555 (Thermo Fisher Scientific, A-21432); donkey anti-rat IgG Alexa
Fluor 488 (Thermo Fisher Scientific, A-21208); donkey anti-rat IgG Alexa
Fluor 555 (Thermo Fisher Scientific, A78945); donkey anti-sheep IgG
AlexaFluor 488 (Thermo Fisher Scientific, A-11015); donkey anti-sheep
IgG Alexa Fluor 555 (Thermo Fisher Scientific, A-21436); streptavidin
Alexa Fluor 488 (Thermo Fisher Scientific, S11223); and streptavidin
Alexa Fluor 555 (Thermo Fisher Scientific, S21381).

Immunofluorescence in rat and human specimens

FFPE tissues were cut at a thickness of 2-3 pm, carefully affixed onto
Superfrost Plus adhesionslides (Epredia, JISOOAMNZ) and dried over-
night at 37 °C. Subsequently, samples underwent sequential treat-
mentinvolving tripleimmersionin xylene (10 min each) followed by an
ethanol series (5 min each) consisting of three rounds of 100% ethanol,
two rounds of 70% ethanol, one round of 50% ethanol and finally triple
immersion in ddH,O (5 min each). The immunostaining procedure
mirrored the one used for PathoPlex samples but substituted 5% BSA
with SuperBlock blocking buffer (Thermo Fisher Scientific, 37535)
duringtheblocking step. Finally, afterimmunostaining, samples were
mounted using ProLong Gold (Thermo Fisher Scientific, P36930).

Microscopy systems

For Fig. 2, images were acquired using a LSM 800 confocal micro-
scope plus AiryScan (Zeiss, ZEN2.6) with the optimized x63 objective
(NA:1.4).ForFig.3,aThunderImager Live Celland 3D assay (Leica Micro-
systems) fitted with a x40 (NA: 1.10) or x63 (NA: 1.40) objective was
used to acquireimages, which were processed using acomputational
clearing algorithm (Leica Microsystems)®°. The positional data of
the imaged region for each sample were stored in Leica Application
Suite X software (v.3.7.6, Leica Microsystems), which ensured con-
sistent capture of the identical location for each cycle. For Fig. 4, a
CellDiscoverer 7 with LSM 900 (Zeiss, ZEN 3.5 System) and AiryScan
Multiplex fitted with a x50 (NA:1.20) objective and x0.5zoomwas used
toacquireimages. Supplementary Table 8 summarizes the approximate
microscopy times per experiment, considering image acquisition as
the mostimportant contributing factor. However, there are additional
practical contributors, including chamber repositioning, movement
delay between the ROl and data storage, which should be accounted
for during implementation.

3D printing

Tinkercad (Autodesk; https://www.tinkercad.com) was used to cre-
ate designs for the 3D-printed parts. The design of the headpiece was
adjusted on the basis of a previously proposed design®.. The BLTouch
Cover Size Fixed was designed by louise_tguk on Thingiverse (https://
www.thingiverse.com/thing:5013058). The chamber frame, the table
for the chamber frame, the corner frame, the stage, the solution con-
tainer, stands 1and 2 for the solution container, the discard container,
the base plate, the headpiece, the alignment guide, the BLTouch cover
size fixed and the BLTouch cover box were printed using PLA filament
1.75 mm (Flashforge). The inner frame was printed using NinjaFlex TPU
filament 1.75 mm (NinjaTek). The dewaxing container, the dewaxing
container holder, the dewaxing carrier and the carrier handle were
printed using PolyLite PETG filament 1.75 mm (Polymaker). An Ender-5
Plus printer (Creality) was used. The following settings were imple-
mented in Ultimaker Cura (v.4.13.1; Ultimaker): nozzle size, 0.40 mm;
layer height, 0.20 mm; wall thickness, 2.0 mm (PLA and PETG for con-
tainers),1.2 mm (PLA and PETG for others) and 0.80 mm (TPU); top and
bottom thickness,2.0 mm (PLA and PETG for containers), 0.8 mm (PLA
and PETG for others and TPU); nozzle temperature, 190 °C (PLA) and
235°C (PETG and TPU); bed temperature, 69 °C (PLA), 75 °C (PETG) and
50 °C (TPU); fanspeed, 100%; print speed, 60 mm s (PLA),40 mm s
(PETG) and 20 mm s (TPU); first-layer print speed, 20 mm s (PLA),
15 mm s™ (PETG) and 10 mm s (TPU); infill, 20% and zigzag; build-plate
adhesion, brim. Masking tape was used to create an adhesive surface
onthe bed.

3D printer-based liquid-handling system

Toprepare for the use of the liquid-handling system, several preliminary
steps were required. These encompassed manual deparaffinization,
antigen retrieval and mounting the Nexterion glass with sample sec-
tions onto the chamber frame. The deparaffinization process described
above required the use of a dewaxing container, a container holder, a
dewaxing carrier and carrier handle printed with PETG. After comple-
tion of dewaxing, the Nexterion glass with sections underwent antigen
retrieval and washing procedures as outlined above. After washing,
any excess wash buffer present at the edges of the glass was carefully
removed. The Nexterion glass was theninserted into the bottom of the
chamber frame, and its edges were securely sealed using silicone. It was
crucialtoallow thesilicone to dry for aminimum of 15 min. To prevent
the samples fromdrying out during this process, regular application of
wash buffer to the samples was necessary while ensuring that the sili-
conedid notbecome excessively wet. Once the silicone was completely
dry, the inner frame was positioned in the frame and samples were
covered with wash buffer. The following process used aliquid-handling
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system based ona 3D printer (Ender-5Plus). For lightshielding, the 3D
printer was covered by a 3D Printer enclosure (Creality). The window
on the front of the enclosure needed to be covered with an opaque
material to shield the inside from light. The BLTouch built into the
Ender-5Plus was also partially shielded by attaching the BLTouch Cover
Size Fixed. Our liquid-handling system was based on three different
g-codes: (1) ‘BSA to Elu.gcode’, which automated the process from
blocking with BSA during the initial cycle to elution and the pouring of
imaging buffer; (2) ‘1st AbtoImg.gcode’, which automated the process
of washing the imaging buffer, incubating the primary and second-
ary antibodies and pouring the imaging buffer; and (3) ‘Elu to Img.
gcode’, which automated the process of washing the imaging buffer,
elution and pouring the imaging buffer. The settings of the solution
containers corresponding to each g-code are shownin Supplementary
Table 9. The solution container stand consists of numbered sections
ranging from 1to 12, which are designated for container installation.
Each solution-filled container was placed in the section with the cor-
responding number onthe stand. The corner frames were inserted into
the holes at the four corners of the table. Solution container stands 1
and 2 with solution containers, the discard container, the stage, the
table and the chamber frame were placed on the base plate. Specifi-
cally, solution container stand 1 needed to be positioned at the front
side of the base plate. To prepare for the operation of the 3D printer,
the print bed was removed and autolevelling was disabled. Once each
g-code was initiated, after calibrating the home position, the printer
head moved slightly backward and the printer stage was lowered. The
printer then paused for 60 s before resuming operation. During this
pause, the headpiece and BLTouch cover box were attached to the
printer head and BLTouch, respectively, and the base plate, complete
with all the necessary components and solutions, was placed on the
printer stage using the alignment guide. Once installation was com-
plete, the enclosure was completely closed. The washing, staining and
elution processes were then automatically performed by pushing down
on the solution containers and table with a rod in the headpiece. The
BSAtoElu.gcode, 1st AbtoImg.gcode and Eluto Img.gcode programs
were completedinapproximately 2 h15 min,3 h10 minand1h15 min,
respectively. The dimensions of the chamber frame match those of
ready-made plates used for imaging cultured cells. For an example of
how this solution works, see Supplementary Video 1.

PEC cellline for migration assays

Primary PECs were thawed and cultured at 5% CO, and 37 °C in endo-
thelial cell basal medium (ECBM; PromoCell, C-22210) and 20% FBS
(Thermo Fisher Scientific; 10500064 ) until 70%-80% confluence.
The maintenance culture was passaged three times a week by gentle
trypsinization using trypsin-EDTA 0.05% (Thermo Fisher Scientific,
25300054).

Migration assays were performed using Culture-Insert 2 wells in
p-Dish 35 mm (Ibidi, 81176). Each well was seeded with 30,000 PECs
in 100 pl ECBM without supplements and with 1% FBS and incubated
overnight. The insert was thenremoved, which created agap of 500 pm
between cells. PECs were stimulated with either PDGF-BB (Thermo
Fisher Scientific, 315-18-50UG, per manufacturer’srecommendations
of 2.0 ng ml™) or with PDGF-BB and tanzisertib HCI (CC-930; Selleck
Chemicals, S8490) or PDGF-BB and vehicle, in this case DMSO (Merck;
D2650). All combinations were diluted using ECBM without supple-
ments and with 1% FBS. Images were taken every 10 min for 23 h using
the Personal Automated Lab Assistant (Leica Microsystems). Areas of
migration were measured using Fiji.

Scratch assays were performed using glass-bottom FluoroDishes
seeded with 50,000 cellsin2 mIECBM with1% FBS at 5% CO, and 37 °C.
After48 h, cellsreached 90% confluence and were ready for the experi-
ment, in which a sterile plastic 1,000 pl micropipette tip was used to
scratch the cell monolayer to create a wound of around 1,000 pm.
Next, the cell monolayer was gently washed with ECBM with 1% FBS

toremove dead cell debris. To use the nucleus for tracking, PECs were
stained with 80 nMHoechst 33342 (Thermo Fisher Scientific) for 20 min
at 5% CO, and 37 °C and washed once with Dulbecco’s PBS (Thermo
Fisher Scientific,14190094). Afterwards, 2 ml fresh ECBM with 1% FBS
was added forimage acquisition. Time-lapse imaging was performed
using a Leica DMi8 M/C/A inverted microscope equipped with x10
Plan Apo objective (Leica Microsystems). Images at both sides of the
wound were acquired every 5 min withan ORCA-Flash4.0 digital cam-
era(Hamamatsu Photonics) using MetaMorph (v.7.10.3.279) software
(Molecular Devices). To visualize the wound, adjacent positions were
stitched using the Stitching plugin from Fiji ImageJ. Tracking of the
first 8 h of migration was performed with the TrackMate plugin from
Fiji (v7.10.2) and custom-made scripts®%. Mean square displacement
was calculated using the CelltrackR package®.

Transmission electron microscopy

For electron microscopy with immunogold labelling, kidneys were
removed, cutinto 2-mm-thick razor blade sections and immersion-fixed
in freshly prepared 4% paraformaldehyde for 24 h at 4 °C. The sam-
ples were then resliced into 50-um-thick sections using a vibratome.
Vibratome sections were incubated with the primary antibody against
TRPC6 (rabbit, final concentration 1:200). After washing and overnight
incubation at4 °C with the secondary antibody, goat anti-rabbit 1:100
(Nanoprobes), sections were silver enhanced with HQ silver (Nano-
probes) for8 mininthe dark at4 °C,washedin 0.1 M phosphate buffer,
treated with 0sO, (0.5% for 45 min at room temperature) and stained
with uranyl acetate (1% w/v in 70% v/v ethanol, 30 min at room tem-
perature). After dehydration, sections were embedded in epoxy resin,
Durcupan ACM (Sigma-Aldrich). Next, 50-nm ultrathin sections were
cut using an UC6 ultramicrotome (Leica Microsystems) and analysed
using an 80 kV Zeiss Leo 910 transmission electron microscope.

Imaging mass cytometry

Tissue sections were dewaxed in xylene and rehydrated, followed by
staining using a standard protocol forimmunohistochemistry accord-
ing to the protocol by Fluidigm. Nuclei were labelled with iridium,
and TRPC6 antibody (Abcam, ab105845) was coupled to 174Yb heavy
metal. Dataacquisition was performed on a Helios time-of-flight mass
cytometer (CyTOF) coupled to ahyperionimaging system (Fluidigm).
Areas for ablation were selected on the basis of haematoxylin and eosin
staining performed on an adjacentslide. All data were collected using
the commercial Fluidigm CyTOF software (v.01).

Pathological examination of crescentic nephritis

Images were evaluated by two expert pathologistsin ablinded fashion
to define disease states as either control, acute or crescentic phase.
Next, multiple metrics were also calculated in ablinded fashion, includ-
ing tubularinjury score (0-3+), cellnumbers per cross section, percent-
age of cellular crescents and percentage of tubular injury.

Bulk RNA-sequencing sample preparation and analysis
Glomeruli were isolated at day 4 after NTS treatment and in control
groups after kidney perfusion with Dynabeads (Invitrogen), preserved
in RNAlater and stored at —80 °C until processing. For preparation of
nuclei, nuclei were extracted from the isolated glomeruli according
to amodified protocol®. The nucleus suspension was incubated on
the magnet to remove magnetic beads used for the isolation of the
glomeruli. Nuclei were mixed with RLT buffer (Qiagen) and frozen at
-80 °C. Total nuclei RNA was extracted using RNeasy Microkits (Qiagen)
according to the manufacturer’s recommendations.

Bulk RNA-sequencing data were processed using our previously
published open-source Snakemake® workflow for RNA-sequencing
analysis with pytximport®. In brief, raw FASTQ files provided by the
sequencing facility were assessed for quality with FastQC®, followed
by trimming of adapter sequences and removal of low-quality reads



with fastp®®. Next, processed sequences were selectively aligned to
areference gentrome based on Ensembl GRCh38 (release 112)*° and
transcript counts were quantified with Salmon’®, We used pytximport
to estimate gene counts from transcript abundances with counts_from_
abundance set to length_scaled_tpm. Differentially expressed genes
were identified using PyDESeq?2 (ref. 71) with log,-transformed fold
shrinkage. Genes were considered differentially expressed if their
log,-transformed fold change value was greater than 0.5 or lower than
-0.5andtheir false-discovery-rate-adjusted P value was less than 0.01.
The results from PyDESeq2 were used to infer transcription factor
activity based on the CollecTRI”> gene regulatory network reference
with decoupler-py” univariate linear modelling.

Python library for spatial proteomics
Commonly used functions for the analysis of PathoPlex imaging data
were combined into the spatiomic Python package. spatiomic com-
prises different submodules that facilitate dataloading, image registra-
tion,image preprocessing, dimensionality reduction, spatial analyses,
neighbourhood graph construction and clustering. In this section,
we describe the architecture of this software package and the general
functionality it includes. Parameter choices and detailed workflows
aredescribedin subsequent sections. Both the computational analysis
library and the code for all analyses are available online through GitHub
and Zenodo, as detailed in the Code and Data availability sections.

spatiomic comes with support for multiple common microscopy
imaging formats and flexibly supports AnnData™ objects, NumPy”
arrays and pandas DataFrames™. It uses cuml, cucim and cugraph from
the RAPIDS ecosystem® as well as cupy”” for GPU-accelerated compu-
tations, which enables analyses to scale to billions of data points with
affordable hardware with a time requirement of just minutes to hours
depending on dataset size. The library was extensively unit-tested,
typed and documented. Documentation, including a full example note-
book detailing how to apply spatiomic analyses to PathoPlex data, is
available at: https://spatiomic.org/.

To enable modular composition of analyses, spatiomic encompasses
several submodules as described below.

Data submodule. The data.read class offers a method for parsing
common microscopy imaging formats such as .tiff, .lif and .czi files
through readlif; tifffile and aicspylibczi bindings. Arandom subsample
of imaging data can be obtained through the data.subsample class.
The submodule further contains functionality to subset multichannel
images to a specified list of channels and to export data to AnnData™
objects, which enables interoperability with the scverse®.

Process submodule. The process submodule offers common func-
tions for preprocessing imaging data. This includes the clip class for
channel-wise histogram clipping to either absolute values or percen-
tiles, the zscore class for channel-wise z scoring and the normalize class
for the channel-wise scaling of intensity values toagivenrange. It also
includestheregister class, which exposes different methods forimage
registration and registration evaluation.

Dimension submodule. Dimensionality reduction is an important
step inmany single-cell and spatial omics analyses. spatiomic provides
classes that help reduce the dimensionality of both the channel dimen-
sionand the data point dimension. The former is possible through the
integration of the dimension.pca, dimension.tsne and dimension.umap
classes, which internally rely on the Python packages scikit-learn’,
umap-learn’ and cuml®. The latter is achieved by incorporating the
dimension.som class, which enables GPU-accelerated training of SOMs
thanks to an XPySOM? integration. To train SOMs with the Pearson cor-
relation as distance metric, we extended XPySOM with a CuPy-based
function, which is available from GitHub (https://github.com/com-
plextissue/xpysom).

Neighbour submodule. The neighbour submodule exposes classes
that enable the creation of k-nearest and shared nearest neighbour
graphs, which facilitates the construction of similarity-based graphs
for graph clustering and distance-based neighbourhood graphs for
spatial analysis.

Cluster submodule. Clustering algorithms enable the unsupervised
identification of similar (protein co-expression) patterns, which facili-
tates automatic partitioning of complex signals into biologically mean-
ingful groups. spatiomic.cluster includes classes for GPU-accelerated
clustering with the Leiden graph clustering algorithm?, k-means and
hierarchical agglomerative clustering.

Spatial submodule. The spatial submodule incorporates functions
for the explorative analysis of spatial distribution patterns in both
immunofluorescence and clustered images, including global and local
univariate and bivariate measures of spatial distribution based on
PySAL®, It further includes code for efficient join count quantifica-
tionand spatial vicinity graph construction and interoperability tools
for use together with PySAL®, thereby ensuring compatibility with a
wide range of spatial statistics applications®..

Tool submodule. The tool submodule contains utility functions for
additional evaluation or analysis. It enables quantification of cluster
abundance and identification of significantly differentially expressed
clusters, calculation of meanimmunofluorescence marker intensities
per cluster and identification of cluster-defining immunofluorescence
markers.

Plot submodule. spatiomicincludes plotting functions based on mat-
plotlib%? and seaborn® that facilitate visualizing common plots, for
example, image registration metrics, SOM training-quality metrics,
cluster projections, spatial adjacency graphs as well as cluster contribu-
tor histograms and volcano plots.

System and time requirements. spatiomic is designed to be flexible
and adaptable to the scale of multiplexed imaging data and available
computing resources. The only mandatory system requirement is
Python (v.3.10) or higher. Although many individual functions runin
seconds, and a complete exemplary workflow (excluding data down-
load) canbe completedinless than3 minonastandard personallaptop,
spatiomic substantially benefits from CUDA-enabled GPUs compatible
with the RAPIDS ecosystem for larger datasets. At the scale of analysis
presented in this paper, three specific steps took several hours to com-
pleteonasingle GPU. First,image registration time scales linearly with
the number of ROIs acquired and imaging cycles. Second, the time for
SOM trainingscales linearly with the training sample size, the number
of trainingiterations and the number of SOM nodes. Finally, the trans-
fer of cluster labels from the trained SOM to all images in the dataset
scales linearly with the number of acquired ROIs and the number of
SOMnodes. Therefore, users are encouraged to evaluate and test para-
meter choices to optimize performance for their specific experimental
design. For example, smaller, more homogeneous datasets may benefit
from smaller training subsamples and SOM sizes, which will result in
faster analysis. Moreover, users should select hardware that is appropri-
ate for their analytical needs and desired turnaround time.

Image registration and autofluorescence correction
Image registration is the first step of every computational analysis of
PathoPlex images. Given the cyclical nature of image acquisition and
imperfect repositioning of standard microscopy systems, aligning
signals from allimaging cycles toacommonreference s a prerequisite
for joint analyses.

We propose two different ways of aligning iteratively acquired immu-
nofluorescence images: onthebasis of either anuclear or apan-protein
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stainas aregistration reference. Although nuclear markers are widely
used for registration, a pan-protein marker enables the alignment of
images and facilitates the delineation of the portion of the image cov-
ered by tissue, thereby lowering the computational burden for down-
stream processing and reducing the cluster annotation time by masking
the empty background. To combat autofluorescence due to red blood
cells (RBCs) in samples with abundant RBCs, we further used aRBC
marker to specifically remove this source of noise. Detailed parameter
choicesand method descriptions are provided for the respective exper-
imental datasets in the subsequent subsections. Differences between
datasets, such as the use of NHS-E for foreground segmentation and
the use of glycophorin A for erythrocyte segmentation in selected
datasets, represent theiterative improvement of PathoPlex, with earlier
experiments informing strategies for further scaling in subsequent
experiments. In particular, the preprocessing steps described in this
sectionrefer only to the transformation of nuclear staining or NHS-E for
registration purposes and do notindicate the transformation of marker
intensities as used for further analysis, unless indicated otherwise.

Mouse CGN experiment. To align cycles from the CGN mouse dataset
(Fig.2), nuclear reference images (DAPlin cycles1-17, DRAQS5 in cycles
18-42) were clipped image-wise to the range between the 1stand 99.9th
intensity percentiles. Intensity values were z scored and normalized to
the range 0-1. Gaussian blur with a sigma of 1 was then applied to the
nuclear reference images to reduce noise and to improve comparabil-
ity across cycles, followed by histogram matching of all subsequent
images to the histogram of the reference image from the first cycle.
These processed nuclear images were then aligned to the processed
refence nuclearimage obtained in the firstimaging cycle. To this end,
allintensity values below the 70th intensity percentile were set to 0 in
both the reference nuclear staining and the staining to be aligned to
increase the contrast between the nuclei (constituting less than 30%
oftheimaged pixelsinallimages) and the unstained background, fol-
lowed by xandy offset detection betweenimages with the phase_cross_
correlation function of the Python package scikit-image®, asincluded
in spatiomic.process.register. All channels were projected onto the
first cycle on the basis of the detected offset. Finally, the maximum
offset detected between any two cycles was subtracted from all sides
of all registered images, which resulted in square-sized and equally
sized images.

Human advanced DKD experiment. For the study of specimens from
individuals withadvanced DKD and fromindividuals without diabetes
(Fig.3), allimages were first corrected for camera distortion using the
remap function of OpenCV® by linear interpolation based onareference
image of a micrometre-scale microgrid captured with the respective
microscope objective. Histogram matching of the nuclear channel for
each cycle to the reference nuclear channel of the first cycle was used
toincrease the similarity between nuclear images. Following that, the
phase cross-correlation offset detection, asimplemented in spatiomic.
process.register.get_shift, wasused to alignallimages to the firstimag-
ing cycle onthe basis of thexand y offsets between the nuclear (DRAQS)
channels. For eachfield of view (FOV), the overlap across all cycles was
calculated and theimages were cropped to the respective overlap area.

Human early diabetes treatment experiment. This experiment (Fig.4)
leveraged NHS-E, a pan-protein stain, as aregistration reference. To
facilitate registration and further image processing, we applied local
mean downscaling with a2 x 2 pixel kernel to allimaging data. We then
clipped the NHS-E histogram to the range between the 1st and 95th
percentiles and normalized the NHS-E intensity to the range 0-1. After
NHS-E preprocessing, Gaussian blurring with a sigmaof 1, thresholding
atthe 70th percentile and phase correlation-based offset detection with
an upsampling factor of 5 were applied to identify the x and y offset
between NHS-Eimages from all cycles, using the firstimaging cycle as

thereference. After correcting for this offset, SIFT-based homography
detection® was performed and images from subsequent cycles were
warped to match the reference from the first cycle. Pre-registration
and post-registration structural similarity index metrics (SSIMs) were
evaluated for all registration pairs. Manual registration checks were
performed forimages with the following criteria: the SSIM decreased
following registration; the SSIM after registration was lower than 0.3;
any offset was greater than 300 pixels; or the SSIM after registration
was lower than 0.8 and the SSIM improvement lower than 0.05. To
account for RBC-derived autofluorescence, glycophorin A intensi-
ties across all images were clipped to the range between the 90th
and 99.5th percentiles, and Otsu thresholding was used to binarize
signals and to create RBC masks. Masks were smoothed through the
removal of small objects <72 pixels, two iterations of binary dilation
and hole filling. To remove signals from empty background without
tissue, processed NHS-E signals were combined across all cycles by
minimum projection (thus excluding areas with lifting at any point)
for eachimage and Otsu thresholding was used to binarize signals. All
images were thenrestricted to the area covered by the NHS-E mask but
notincluded in the RBC mask. Autofluorescence correction was per-
formed using secondary-antibody cycles acquired repeatedly through-
out the experiment. For each primary-antibody imaging cycle, tissue
autofluorescence was estimated by interpolating the signals from the
nearest preceding and subsequent secondary-only cycles at the same
wavelength, thereby accounting for minor fluctuationsin autofluores-
cence. This estimated autofluorescence was then subtracted from the
corresponding channels with lower intensity clipping at zero.

Otherimmunofluorescence samples. To achievereliable and accurate
results, we used an iterative registration framework called Elastix®
and aPythonwrapper package called PyElastix®. Toimprove contrast
and to mitigate the effects of varying signal strength across cycles,
we applied histogram equalization to the nuclear channels. We also
reduced the computational load by rescaling the images by a factor
of 0.25. Thefirst cycle was established as areference, and subsequent
cycles were aligned to it using normalized correlation as the optimi-
zation metric. The registration process involved iterative steps at six
different resolution levels, with 1,000 iterations per level. We used the
rigid Euler transform to account for x and y offsets as well as rotation.
Further preprocessing was performed for brain samples with reduced
contrast by truncating pixel intensity values to high percentiles. This
approachfocused onthe sparsely available nuclei. All registrations were
manually verified, and if individual registrations were unsuccessful,
minor adjustments were made to the downsampling factor, spatial
sample number or iteration number until satisfactory registration was
achieved to maximize image inclusion.

Alignment of PAS staining to immunofluorescence images. Owing
todifferencesinsize and lens characteristics between the immunofluo-
rescence and PAS images, additional processing steps were required
to align the two modalities. First, lens-specific calibration matrices
were used to remove optical distortions as described above for the
humanadvanced DKD experiment. Next, the PAS images were rescaled
to match the physical pixel resolution of the immunofluorescence
images. As only greyscale images were used for registration, the PAS
images were converted from RGB to greyscale using the OpenCV®
Python library. For the greyscale version of the immunofluorescence
image stack, three structural marker channels (DRAQS5, LTL and col-
lagen IV) were selected and combined into a single channel using
weighted addition. To enhance visual similarity between the greyscale
PAS and immunofluorescence variants, the PAS image was inverted,
and histogram equalization was applied to both the PAS and immuno-
fluorescenceimages. To establish aninitial alignment for registration
of theimmunofluorescence onto the PAS image, the PAS images were
centrally cropped to match the smaller size of the immunofluorescence



images (3,000 x 4,000 versus 2,048 x 2,048 pixels, respectively). Once
the x and y offsets in this subregion were determined by the registra-
tion algorithm, the original multichannelimmunofluorescence images
were transformed accordingly. The full-size RGB PAS images were also
cropped to the size of the transformed immunofluorescence images
to facilitate overlaying of the registration results.

Suitability of registration reference markers. In a subsequent in-
vestigation, our goal was to evaluate the suitability of DAPI, DRAQ5
and NHS-E as registration reference labels. To achieve this goal, we
acquired images of all three marker channels for each imaging spot
ineachcycle.Foreachimage requiring registration, transformations
based on each of the three markers were independently computed.
The corresponding DRAQS channel of each image was adjusted to
account for the detected transformation, and the structural similarity
index measure was computed by comparing it to the DRAQS chan-
nel of the reference cycle. This approach ensured that the different
registration references could be compared using DRAQS5 as a qual-
ity metric, which consistently provided reliable and high-contrast
images. All registrations were manually reviewed, and in instances
where registration was not successful, minor adjustments were made
tothe downsamplingfactor, the spatial sample number or theiteration
number until a satisfactory registration was achieved. This process
ensured that noimage had to be discarded and that high-quality align-
ments were obtained.

Quality control of automated elution

Complete elution of bound antibodies between cycles is key to
the cyclic acquisition of images. To quantify elution efficiency,
secondary-antibody-only staining cycles were acquired throughout the
experiments to establish abaseline autofluorescence profile. For each
primary-antibody staining, the 50th and 99.95th intensity percentiles
were quantified and compared with the secondary-antibody-only cycles
acquired at the same wavelength using secondary antibodies directed
against the host species of the primary antibody. For instances when
at least one value was equal to or lower than any intensity from the
secondary-antibody-only cycles (as may be the case for non-abundant
markers, for example, markers for rare immune cells or phospho-
rylation states), the images were manually re-evaluated to include
specific staining.

Generation and interpretation of protein co-expression clusters
Protein co-expression clusters are the standard output of PathoPlex
analyses with spatiomic, which captures specific co-expression patterns
of different proteins at the pixel level. These patterns are jointly identi-
fied for all imaging data from each respective PathoPlex experiment,
whichresultsina consistent clustering across all samples and facilitates
comparisons of spatial expression or co-expression ofimmunofluores-
cence markers. Identification of these pixel-level clusters is amultistep
process that consists of weighted random subsampling of the data to
ensure equal representations of all desired variables, signal preprocess-
ing, training of a SOM to identify representative co-expression signals
and finally similarity graph-based clustering. Once clusters were identi-
fied, their constituting signals were compared to all other clusters and
projectedinspacetoinfer the biological processesthey represent. Last,
cluster abundance was quantified and compared across conditions to
delineate regulated signals. We applied this overall concept to each
experimental dataset with parameters specified as described in the
subsequent subsections.

Weighted random subsampling. To limit bias due to different data
sizes between samples and to reduce the computational burden
of pixel-based clustering, a weighted subsample of approximately
5 million (10 million for the early human diabetes dataset) random
pixel positions per imaging plate were sampled. For each imaging

plate (n =1for all experiments, except for the human advanced DKD
experiment, for which n = 2imaging plates were used), the number of
subsampled pixel positions was equally distributed across all disease
states, and for each disease state, all samples were equally weighted.
Finally, each FOV of a given sample was given the same weight in the
subsample. For the early human diabetes treatment dataset, the sub-
samplealso considered equal numbers of pixels from periglomerular,
glomerular and tubular images.

Histogram clipping and normalization. Immunofluorescence mark-
ers differ inintensity range and abundance, which therefore requires
preprocessing steps toimprove comparability. On the basis of weighted
random subsamples, histogram clipping and range normalization
classes containedin the spatiomic.process submodule were fitted. After
channel-wise fitting of the classes on the random weighted subsample,
allchannels of allimages of each respective dataset were transformed
accordingto theestablished clipping limits and normalization and scal-
ing settings. For mouse samples and the advanced DKD experiment,
histogram clipping was performed based on the 50th (lower) and 99.7th
(upper) percentiles for each respective marker in the subsample. Ow-
ing to the extensive marker panel for the larger early human diabetes
treatment experiment, coupled with the increased sensitivity of the
confocal microscopy system used for this dataset, histogram clipping
was performed based on absolute intensity thresholds established
by human expert annotation in a condition-blind fashion, with each
marker evaluated onrandom patches extracted from randomimages,
followed by normalization of the clipped images.

SOM fitting. Pixel-based clustering was used to isolate groups of simi-
larimmunofluorescence marker signals (clusters), which formed the
basis of all downstream analyses. The first step towards this clustering
isthefitting of SOMs to the dataset to reduce data-point dimensional-
ity and to ensure computational feasibility of graph clustering as well
as toimprove representation of signals that are relatively rare in the
training data. For each imaging plate (n = 2 for the human advanced
diabetes experiment, n =1for all other datasets), a SOM was trained
on the corresponding weighted random subsample. The SOM was
initialized with agrid size of 500 x 500 nodes (400 x 400 for the early
diabetes experiment) and used the Euclidean distance metric for the
mouse CGN dataset and the advanced human diabetes dataset with the
cosine similarity metric used for the early human diabetes experiment.
Thetraining process used spatiomic.dimension.som. For human sam-
ples, afinal learning rate of 10 and a final Gaussian neighbourhood
sigmaof107 (3 x 107 for the early human diabetes dataset) were used.
For the mouse samples, the default settings for the learning rate and
neighbourhood size were used. The training process was repeated for
50 iterations for all datasets.

Graph clustering and batch integration. On the basis of the repre-
sentation of the signals contained in each experiment as provided by
therespective SOM nodes, we used Leiden graph clustering to identify
clusters of protein co-expression patterns and applied the clusters to
all pixels from all images for each dataset. First, the similarity-based
neighbourhood graph of SOM nodes was built using spatiomic.neigh-
bor.knn_graph using cosine (early diabetes treatment experiment)
or Euclidean distance (all other experiments). When image acquisi-
tion was performed using multiple plates (Fig. 3), the neighbourhood
graph construction step was modified to use an adaptation of the
batch-balanced k-nearest neighbours® algorithm, implemented in
spatiomic.neighbor.knn_graph. A neighbour count of k =40 for each
respective plate was used. When only one imaging plate was used (all
other experiments), a neighbour count of k=40 (k=50 for the early
human diabetes experiment) was used without any batch integration.
After graph construction, we used the Leiden? graph clustering algo-
rithm to identify clusters of similar protein co-expression patterns.
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ALeidenresolution of 2.5 and aniteration count of 10,000 were used
forthe advanced DKD experiment, aresolution of2.0 and aniteration
count of 1,000 for the early human diabetes treatment experiment
and alLeidenresolution of 1.0 and an iteration count 0f 10,000 for the
mouse CGN experiment samples.

Cluster identity. To assign biological identities to protein co-expression
clusters derived from PathoPlex output, we used a two-step approach
that combined statistical overrepresentation with spatial distribution
analysis and signal interpretation by human experts. Owing to compu-
tational constraints, statistical analyses were performed on subsampled
data (used with the early diabetes experiment, with 500,000 pixels
randomly selected from the weighted random subsample) or the repre-
sentative SOMnodes (all other datasets). For each cluster, we calculated
the mean normalized intensity and the log,-transformed fold change
of marker intensity (relative to all pixels or nodes not assigned to that
cluster), which reflected the signal strength and cluster specificity,
respectively. Significance was assessed using a two-tailed t-test with
Benjamini-Hochberg (early diabetes dataset) or Holm-Sidak (all other
datasets) correction for multiple testing (implemented in spatiomic.
tool.get_stats). Dominant markers in each cluster (termed high con-
tributors) were identified by ranking markers based on the product of
their meanintensity and log,-transformed fold change, and retaining
only those with mean normalized intensity > 0.2, adjusted P < 0.05
and log,-transformed fold change > 1. Intensity histograms further
visualized marker distribution patternsin each cluster for all markers
and were also considered for cluster interpretation. Individual clusters
were spatially projected onto the correspondingimmunofluorescence
and—where available—PAS-stained images. Human experts then visu-
ally validated and refined cluster identities by assessing their spatial
distribution, considering morphological structures and correlations
withimmunofluorescence signals and integrating contextual biologi-
calknowledge.

Selection of specific foreground clusters. As multiplexed imaging
datafrom Figs. 2 and 3 did not include a pan-protein marker in their
panel, noforeground segmentation was performed before pixel-level
clustering, which resulted in multiple clusters that corresponded to
empty background areas. To account for this limitation (largely cir-
cumvented by NHS-Eand alarger antibody panelinFig. 4), werestricted
extended analyses (but not differential cluster abundance analyses) to
specificforeground clusters only or we treated all background clusters
asasinglecluster. For Fig. 4, we similarly assessed the specificity of all
clusters and quantified their relative frequency, focusing visualizations
and biological assessment to clusters deemed to represent specific
signal (excluding minor imaging artefacts, autofluorescence signals
andimperfect foreground segmentation) and accounting for >0.1% of
foreground pixels. The specificity of clusters, defined as the extent to
which clusters correspond to clear biological processes and/or struc-
tures, both at the spatial and at the molecular level, was assessed indi-
vidually by apanel of three experts. In controversial cases, the experts
presented their arguments untila unanimous decision for exclusion was
reached. If arguments for exclusion were not unanimously accepted,
the cluster was not excluded.

Cluster abundance and differential abundance analysis. Cluster
abundances were analysed by quantifying the number of pixels assig-
ned to each cluster for each field of view in a dataset using spatiomic.
tool.count_clusters. The abundances were normalized to arange of 0-1
tofacilitate comparison and interpretation across FOVs. For the mouse
CGN and the advanced diabetes experiment, these normalized abun-
danceswere further aggregated to obtain the mean cluster abundance
per field of view for eachmouse or patient. Differential abundance anal-
ysis was performed by quantifying the log,-transformed fold change
in cluster abundance between different experimental and clinical

conditions by performing a two-sided ¢-test. Toaccount for the higher
number of unique clusters and larger sample sizes, P values for the
advanced DKD and the early diabetes treatment experiments were cor-
rected for multiple testing with Benjamini-Hochberg false discovery
rate adjustment. Statistical testing used the spatiomic.tool.get_stats
function. Results were visualized with spatiomic.plot.volcano for all
datasets. For visualization purposes, the volcano plots were restricted
tofeature clusters determined to represent specific foreground signal.
Moreover, to assess the impact of batch integration, quality control
was performed by comparing differences in log,-transformed fold
changesininter-group cluster abundances between the imaging plates
(Supplementary Fig.12).

Extended analyses based on pixel-level clusters

Based on our foundational pixel-level protein co-expression clusters,
we used multiple downstream applications to connect the output from
PathoPlex with community resources and public knowledge bases,
showcasing how pixel-level data can be aggregated at different levels
to derive information across multiple biological scales.

Biclustering. UnPaSt* is a biclustering method initially developed for
unsupervised patient stratification based on omics data. UnPaSt iden-
tifies differentially expressed biclusters in a two-dimensional matrix
with samples (for example, images or patients) in columns and features
(forexample, clusters) inrows. A differentially expressed bicluster is a
submatrix consisting of samples and features such that these features
are overexpressed or underexpressed in these samples compared with
all other samplesin the input data matrix. We applied UnPaSt with bi-
narization P value threshold of P = 0.05, direction = ‘both’ (to identify
biclusters consisting of both upregulated and downregulated clusters)
andall other parameters set to default toimage-level and patient-level
clusterintensities. As UnPaSt is not deterministic, consensus biclusters
were built on the basis of results of ten independent runs.

Druggability profiling. To evaluate the druggability of the molecular
signature of advanced DKD and to identify potential therapeutics, we
combined drug-protein interaction data from the CTD* with STRING*®
protein-protein interaction data. Initially, we manually identified
AIFM1, TRPC6, CALR, HSPAS, ITGB1 and CTNNBI1 as possible targets
involved in the altered signalling cascades revealed by PathoPlex
based on the significantly differentially expressed clusters and their
molecular composition. Next, we used STRING data for Homo sapiens
tolink every potential target to a broader network of interacting pro-
teins. We only considered direct interactions with a confidence score
exceeding 0.75.In asubsequent step, CTD chemical-gene interaction
datawere used to extract possible therapeutics that affect proteinsin
our target networks. This search was limited to compound-protein
interactions described in mice (Mus musculus), rats (Rattus norve-
gicus) or humans. Only interactions that did notinvolve co-treatment
and did not affect the reaction of another externally administered
compound were included. Our goal was to determine the impact of
existing pharmacological treatments on the extended protein net-
works and to explore the potential for repurposing drugs authorized for
other indications; therefore, we further filtered the results, preserving
only entries for which the chemical name had a matching entry in the
European Medicines Agency’s list of authorized agents (date of consul-
tation: 23 August 2023). Inasecond step, to further assess the impact
of current antidiabetic drugs, results from all protein networks were
combined and filtered for compounds containing ‘glutid’, ‘gliflozin’,
‘slitazon’, ‘gliptin’, ‘metformin’, ‘pril’ or ‘sartan’.

Pixel cluster-assisted cell-level metaclustering. Although pixel
clusters provide valuable subcellular and extracellular information,
they can also be used to inform existing cell-level clustering workflows.
To quantify the co-occurrence of pixel-level clusters within cell-level



metaclusters, we first applied the Cellpose® segmentation model
using the parameters model_type = “nuclei” and diameter =30 to the
pre-processed DRAQS channel of each image. Statistical testing of
nucleus counts per image was performed using statannotations”
with a two-sided nonparametric Mann-Whitney U-test, comparing
diabetes and control samples. Centroids of all identified nuclei were
then expanded radially by the smaller of either 5 pm or 50% of the
shortest Delaunay triangulation edge length to approximate cell areas.
Within these estimated areas, the relative abundances of pixel-level
clusters were calculated to produce feature vectors for each cell. To
identify cell-level metaclusters, a k-nearest neighbour graph was
constructed using spatiomic.neighbor.knn_graph with neighbor_
count =50 followed by Leiden?* clustering with a resolution of 1.0.
Condition-specificity of meta-clusters was confirmed by averaging
their relative abundances across images at the patient level. Within
each cell-level metacluster, the fraction of pixels corresponding to
each pixel-level cluster was quantified, which provided a quantification
ofthecell-level co-occurrence patterns of pixel clusters. Differencesin
normalized metacluster abundance at the patient-level between condi-
tions were visualized through a two-component principal component
analysis using spatiomic.dimension.pcawith default parameters and
significance was established through a Mann-Whitney U-test with
Bonferroni correction.

Pseudotime analysis. PILOT* is a previously published, multiscale,
unsupervised method that uses optimal transport to compute the dis-
tance between data points and infer a disease trajectory. First, we used
the normalized abundance of the clusters as the cluster proportions for
eachFOVfromallsamples. Next, we computed the distances between
the clusters as a cost matrix. Inthe subsequent step, we used the cluster
proportions and the cost matrix to compute the Wasserstein distance®
(W1) between the data points. Then, we obtained the trajectory of the
disease by applying the diffusion map® to the distance matrix of the
samples. Finally, we used the assigned pseudotimes of the data points
toreveal the changes in the proteins or clusters. In summary, PILOT
uses stepwise nonlinear models to determine significantly changing
proteins or clusters across the disease trajectory.

Cluster join counts analysis. Theimmediate spatial neighbourhood
analysis was based on join counts between unique clusters that were
used to create an adjacency graph using spatiomic.spatial.vicin-
ity_composition. First, for each pixel position, the eight surround-
ing pixel positions (Chebyshev distance of 1 pixel; that is, first-order
queen neighbourhood) were examined to count the instances of nearby
clusters. This process was applied to all pixels in all images using a
vectorized approach. The cluster counts were then aggregated at the
dataset level for images of the same disease condition. Next, connec-
tions betweenidentical clusters were discarded, and the remaining con-
nections were normalized to a range of 0-1. Non-foreground clusters
were discarded. The resulting adjacency matrix was used to construct
adirected graph for each condition, with the graph representing the
relationships between clusters. Although the entire adjacency matrix
was quantified and evaluated, a neighbourhood cluster abundance of
7.5% was established as minimum value to be included in the graph plot
for visualization purposes, focusing the visualization on the most com-
mon adjacencies. The graph layout was calculated using the software
packages Graphviz® and NetworkX®”.

Condition-specific structural patterns. Condition-specific structural
patterns were identified using MISTy*® (mistyR v.1.6.1). To that end,
image data (112images from advanced DKD samples and 310 from con-
trol samples) were aggregated at two different resolutions by summing
the cluster counts in bins with a side length of 10 um (62 x 62 pixels).
Clusters capturing empty background, unstained tissue parts and
nonspecific signals were collapsed into a single background cluster.

To account for truncated bins at the edges of slides, we transformed
the counts into proportions. We used these cluster proportions per
binasanintrinsicrepresentation of the structureinabin (MISTyintra-
view). To capture the broader tissue structure, we constructed the
paraview by summing up the cluster proportions of the 20 nearest
neighbours using family = “constant”,1=20. To construct the paraview
for the high-resolution aggregation, we computed the weighted sum
ofthe cluster proportions of the 80 nearest neighbours using a Gauss-
ian kernel with a bandwidth of 2.5 pum (corresponding to 15 pixels)
(family = “gaussian”, 1 = 2.5, nn = 80). With these view compositions
per aggregation, a MISTy model was independently trained for each
sample. The MISTy modelsidentified significant structural patternsin
the different spatial contexts by associating the proportion of pixels
belongingto each clusterin each spatial context to the target propor-
tionsintheintraview. MISTy canlearnboth simple linear relationships
(forexample, cluster X has ahigher proportionif cluster Y hasalower
proportion) and complex nonlinear relationships. By combining the
predictions from the intraview and paraview for each cluster, MISTy
enabled us to disentangle whether the prediction for a given cluster
improves, and to what extent, when taking different spatial contexts
into account. Tocompare the MISTy importance scores between condi-
tions, we first computed the meanresults per sample due to differing
numbers of imaged FOVs. We then aggregated the MISTy results per
patient and finally per condition (advanced DKD and controls). For
eachlevel of aggregation, group and view, we generated a graph rep-
resenting the inferred relationships between clusters. In each graph,
the nodes represent the clusters and the edges between the clusters
were weighted by theimportance scoresinferred by the MISTy model
(thresholded to conserve only significant relationships with impor-
tance >1.0). The graph layout was calculated using Graphviz®* and
NetworkX®”.

Single-cell and single-nucleus RNA sequencing

To contrast our findings at the protein-level with transcriptomic
data and to establish a bridge to proposed treatments of DKD, we
leveraged two public RNA-sequencing datasets with pharmacological
intervention or different treatment data, covering rodentand human
samples.

Processing single-cell RNA-sequencing data. Data were down-
loaded from the Gene Expression Omnibus (accession: GSE220939).
Files from individual patients were converted to AnnData™ objects,
andinformation on the diabetes and SGLT2i treatment status of each
patient was added. To remove ambient RNA contamination, Cell-
bender®® (v.0.3) training was performed on each sample individually
with a training fraction of 0.5 for 100 epochs. Observations with a
Cellbender cell probability < 0.5 were discarded. Next, all observa-
tions were combined into a single AnnData object, quality-control
metrics were quantified and cell clustering was performed using the
Python package scanpy®. As part of this step, mitochondrial, ribosomal
and haemoglobin genes were identified, and quality control metrics
were calculated using the calculate_qc_metrics function. Barcodes
containing >50% mitochondrial RNA, >20% rRNA or >5% haemoglo-
bin genes were discarded. Barcodes with reads for less than 500 or
more than 5,000 genes were discarded to correct for doublets, as
were genes detected in at most 4 observations. The total number of
reads per cell was normalized and the counts were loglp transformed.
To reduce dimensionality, the first 50 principal components were
computed using scanpy’s pcamethod with the arpack singular value
decompositionsolver. Asinter-individual batch effects were present,
Harmony®® data integration was performed with standard param-
eters, using the harmonypy®® implementation available through the
external module of scanpy. On the basis of the adjusted principal
components, the 50 nearest neighbours of each cell were identified
using the neighbours function of scanpy®’, which was configured to
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use the Pearson correlation similarity metric. Graph clustering was
performed using the Leiden algorithm’? with a resolution of 0.5. On
the basis of cell-identity genes (adapted from a previous study*® and
PanglaoDb'??), clusters were manually annotated to represent different
celltypes. Cell types and transcripts related to the pathways altered at
the protein level were chosen, and gene counts were visualized using
the dotplot function of scanpy?”. Statistics per cell type of interest were
calculated on the depth-normalized gene counts using the get_stats
function of spatiomic, configured torevert loglp transformation. Non-
parametric independent Wilcoxon rank-sum testing was performed
using the ranksum function of scipy’® with Benjamini-Hochberg
correction.

Processing single-nucleus RNA-sequencing data. Preprocessed
datawere downloaded from the Gene Expression Omnibus (accession:
GSE209821). Gene counts were read into Rusing Seurat and converted
to AnnData™ with SeuratData and SeuratDisk. In the next step, the
AnnData object was read using the scanpy®” Python library, and pro-
vided metadata were combined with the gene counts. The provided
counts had already been filtered for quality-control metrics and cluster
labels from a previous study were provided*, thus, only depth nor-
malization to the median read depth was performed. Observations
were further filtered to only retain proximal tubule cells from con-
trols, untreated mice or mice treated with soluble guanylate cyclase
activators. Differential expression statistics of genes corresponding
to defining markers of clusters upregulated in the proximal tubular
compartment in the advanced DKD PathoPlex experiment were cal-
culated based on depth-normalized gene counts using the spatiomic.
tool.get_stats function, configured to run nonparametricindependent
Wilcoxon rank-sum testing using the ranksum function of scipy'® with
Holm-Sidak correction.

Signal intensity of TRPC6 and AIFM1 in Btbr°”° mice

To further evaluate the expression of TRPC6 and AIFM1in the proximal
tubule of kidneys with metabolic damage, we assessed their expression
in Btbr°”*® mice and control mice at 12 and 24 weeks of age. Immuno-
fluorescence was performed on 5 FOVs per sample, with n =3 samples
per group and time point, which produced a total of n =12 samples and
60 FOVs. The proximal tubule areawas segmented by thresholding the
LTL channelto anintensity greater than1,500, followed by filling holes
smaller than 1,000 pixels and removing objects smaller than 20,000
pixels. After proximal tubule segmentation, arandom subsample of
50,000 pixel positions was selected from the proximal tubule area
of each FOV. These subsamples were combined for each unique con-
dition and time point. Changes in TRPC6 and AIFM1 expression were
visualized through histograms of marker intensities, grouped by time
pointand condition. Statistical analysis was performed using the stat-
sannotations® Python package, for which the subsampled intensities
served asinput, withthe corresponding condition as the label for each
intensity. Anindependent t-test based on the statannotations® Python
package was used to assess statistical differences in TRPC6 expression
between conditions at each time point.

General statistical analysis

Statistical analyses, including cluster composition, differential cluster
abundance and differential gene expression, were performed using
spatiomic.tool.get_stats and statannotations. These tools internally
rely on scipy'® and statsmodels'® and were used to perform either
Benjamini-Hochberg or Holm-Sidak-corrected two-tailed ¢-tests (for
cluster composition and differential abundance analysis), Mann-
Whitney U-tests (for differences in nucleus counts and cell-level
metacluster abundance) or nonparametric Wilcoxon rank-sum tests
(for differential gene expression from single-cell and single-nucleus
RNA-sequencing data). Bulk RNA-sequencing differential gene expres-
sion analysis was performed using PyDESeq2, combining single-factor

analysis using Wald tests with log,-transformed fold change shrinkage
with approximate posterior estimation generalized linear models'®.
Detailed descriptions of these tests, including information on input
dataand additional filters, are provided throughout the Methods. All
other statistical analyses, including the quantification of changesin
cell migration, clinical parameters (for example, proteinuria or eGFR),
sample-specific variables (such as age), PEC activation, injury patterns
in CGN and principal component analysis, were performed using
GraphPad Prism (v.9). Violin plots report median and interquartile
values. Significance was evaluated using the unpaired ¢-tests with
Welch’s correction comparing two continuous variables, a paired
t-test for before and after settings, and the Brown-Forsythe, Welch
ANOVA and Dunnett’s tests when comparing three continuous vari-
ables. Correlation analyses were performed using Spearman rank
coefficients. Principal components were selected on the basis of
the percentage of total explained variance using normalized cluster
abundances at the image-level or the patient-level as input. Statistical
significance was defined as P < 0.05 for all analyses, with a thresh-
old of P< 0.01 applied for specific cases as outlined throughout the
methods.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The bulk RNA-sequencing data from NTS-treated mice have been
deposited into the Hamburg University Research Data Repository
(https://doi.org/10.25592/uhhfdm.17394). The public single-cell and
single-nucleus RNA-sequencing datasets used in this study are avail-
able through Gene Expression Omnibus with accessions GSE220939
and GSE209821. PathoPlex animal multiplexed imaging data are avail-
able from Zenodo (https://doi.org/10.5281/zenod0.15212140)'**. For
human data, as a patient re-identification key is retained internally for
scientific continuity of ongoing projects, and historical versions of data
containing patientidentifiers persistin secureinstitutional serversand
physicallaboratory records, the raw microscopy data cannot be fully
anonymized and therefore cannot be depositedina public repository
inaccordance with General Data Protection Regulation. Raw data can
be made available upon reasonable request and subject to a material
and data user agreement that ensures appropriate safeguards for data
protection and privacy in compliance with General Data Protection
Regulation. The senior corresponding author will respond to data
requests, aiming to answer within 72 h, and provide dataup tol month
after the material and data user agreement has been signed by both
parties. Source data are provided with this paper.

Code availability

The codeforthe 3D printer-based liquid-handling systemand the STL
filesfor 3D printing, the spatiomiclibrary code and the code for the anal-
ysis of all datasets are available from Zenodo (https://doi.org/10.5281/
zen0do.15211354)'%, The latest development version of spatiomic
can be accessed from GitHub (https://github.com/complextissue/
spatiomic). The documentation for spatiomic is available at: https://
spatiomic.complextissue.com and includes example workflows for
common analyses, including code to download example data. The
following resources are available from GitHub: bulk RNA-sequencing
workflow (https://github.com/complextissue/snakemake-bulk-
rna-seq-workflow/); MistyR (https://github.com/saezlab/mistyR/);
PILOT (https://github.com/CostaLab/PILOT/); UnPaSt (https://github.
com/ozolotareva/UnPaSt) and the custom XPySOM adaptation that
includes support for the Pearson correlation distance metric (https://
github.com/complextissue/xpysom).
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EMCN, Endomucin (cycle1); a-SMA, alpha-smooth muscle actinor ACTA2
(cycle 2); VMT, Vimentin (cycle 4); AKAP12, A-Kinase Anchoring Protein 12
(cycle4); Secondary ab (QC cycle; cycle 6). Scale bars represent 100 pm. Parts
of panelsa, cand e were created using BioRender (https://biorender.com).
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JUN. Differential gene expression analysis was performed using PyDESeq2
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(c) Trajectory 2 was strongly associated with clusters representing podocyte
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receptor (GR) dysfunction. PILOT uses non-linear regression methods and
leverages the Wald test to evaluate the differencein the fitted model for each
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Extended DataFig.12 | External validation of DKD features. (a) Cell types
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oftranscriptomic changes. TAL: Thick ascending limb; PT: Proximal tubule;
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The bulk RNA-sequencing data from NTS-treated mice have been deposited into the Hamburg University Research Data Repository with https://doi.org/10.25592/
uhhfdm.17394. The public single cell and single nucleus RNA-sequencing datasets used in this study are available through Gene Expression Omnibus with
accessions GSE220939 and GSE209821. PathoPlex animal multiplexed imaging data is available through Zenodo with DOI: https://doi.org/10.5281/
zenodo.15212140. In addition, Source data are provided with this paper.

For human data, as a patient re-identification key is retained internally for scientific continuity of ongoing projects, and historical versions of data containing patient
identifiers persist in secure institutional servers and physical laboratory records, the raw microscopy data cannot be fully anonymized and therefore cannot be
deposited in a public repository in accordance with General Data Protection Regulation (GDPR). Raw data can be made available upon reasonable request and
subject to a material and data user agreement (MDUA) that ensures appropriate safeguards for data protection and privacy in compliance with GDPR. The senior
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parties.
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Reporting on sex and gender Given the limited sample size, we did not take into account sex as selection criteria or as part of our analysis.

Reporting on race, ethnicity, or  Parts of our study were conducted on kidney biopsies from three cohorts (France, Germany and USA). This was not
other socially relevant considered in the analysis.
groupings

Population characteristics As our experiments were performed in archival tissues, we did not control population characteristics. We report age in one
of of clinical cohorts as it may represent a confounding factor. However, we do not correct or adjust for it given our limited
sample size.

Recruitment The first study used specimens from patients who presented with renal impairment and/or proteinuria and were diagnosed
with diabetic kidney disease after biopsy was performed. As a control group, we used the noncancerous portion of kidney
tissue from patients who had undergone nephrectomy for renal cell carcinoma.

The second study included research biopsies from 3 groups of subjects: (1) healthy controls, (2) patients with type 2 diabetes
that received SGLT2 inhibitors, and (3) patients with type 2 diabetes that did not receive SGLT2 inhibitors. Patients
volunteered for a kidney biopsy as there was no clinical indication.

Ethics oversight Ethical approvals were obtained from the Institutional Review Board (IRB) of the RWTH Aachen University Medical Center
(EK-016/17), the local Ethics Committees of the Chamber of Physicians in Hamburg (PV4806) and Freiburg (Ethikvotum
10008/09), the Paris Ethics Committee (IRBO0003888, FWA00005831), and the Colorado Ethics Committee (NCT03584217
and NCT03620773). All tissue collections were performed in accordance with the ethical principles stated by the Declaration
of Helsinki.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size This study reports a new technology and applies it to 3 different case studies, one in an experimental model of immune-mediated kidney
disease, one in a clinical cohort of patients with advanced diabetic kidney disease, and one in a research cohort of patients with early type 2
diabetes. No statistical method were used to determine sample size as they were chosen based on availability of archival biopsy material
(n=18-20 per group in clinical biopsies and 5-7 in research biopsies). Previous experience for experimental immune-mediated kidney disease
(at least n=3 for each experimental group): PMID: 33622974 , PMID: 32446933 and PMID: 40050432
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Data exclusions  steps) or images containing artifacts (e.g. tissue that detached from the glass) were excluded from the analysis.

Replication During the developmental phase, experiments were repeated and successfully reproduced at least 3 times, this includes short multiplexed
imaging experiments for proof-of-principle, quality control tests, 3D printing, coating agents and repositioning workflows. After the method
and steps were established, we proceeded to experimental cases. All multiplex imaging experiments (Figures 2, 3 and 4) were performed on a
minimum of 3 samples per experimental group. For Figure 2, a total of 10 mice were analyzed. For Figure 3, a total of 38 patients and for
Figure 4 a total of 18 patients. Negative controls were performed at least once for each sample used, including cycles with secondaries only.
Additional quality control steps are extensively discussed in the methodology section. Every attempt to replicate the data has been successful.

Randomization We worked with archival tissue specimens to showcase the development and application of a new technology. No randomization was
conducted as we had no impact on tissue collection and allocation.

Blinding When possible, blinding was used. For example, when analyzing early phase of crescentic glomerulonephritis, as structures did not appear
pathological or in the characterization of the in vivo effectiveness of the JNK inhibitor (where lesions were not evident). When pathological
lesions were present, then blinding was not possible as pathological groups would become evident. For human studies, all groups were
included in imaging chambers, so all steps were performed for all groups in parallel and under identical conditions. As we needed to correlate
with clinical parameters, blinding was not possible.
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Antibodies
Antibodies used Primary antibodies and lectins

For human samples. ABCG2 (Santa Cruz; sc-377176, 1:200), ACE-2 (R&D Systems; AF933, 1:200), Adiponectin (Thermo Fisher
Scientific; MA1-054, 1:200), AIF (Cell Signaling Technology; 5318, 1:200), AKAP12 (Proteintech; 25199-1-AP, 1:600), AKR1B1 (Thermo
Fisher Scientific; PA5-82915, 1:500), AKR1C1 (Thermo Fisher Scientific; MA5-32842, 1:200), Alpha B Crystallin (Proteintech; 68001-1-
lg, 1:1000), ANXA3 (Sigma-Aldrich; HPA013398, 1:200), aSMA-FITC conjugate (Sigma-Aldrich; F3777, 1:800), Aquaporin 2 (Alomone
Labs; AQP-002, 1:400), B-Actin (Sigma-Aldrich; A5441, 1:1500), B-Catenin (Abcam; ab6302, 1:2000), B-Tubulin (Cell Signaling
Technology; 2128, 1:150), Calbindin-D (Sigma-Aldrich; C9848, 1:3000), Calpain small subunit 1 (Abcam; ab92333, 1:200), Calpastatin
(Abcam; ab244460, 1:200), Calreticulin (Abcam; ab92516, 1:300), Carbonic Anhydrase IX (R&D Systems; AF2188, 1:50), Catalase
(Proteintech; 66765-1-Ig, 1:300), CD3 (Abcam; ab11089, 1:200), CD4 (R&D Systems; AF-379-NA, 1:100), CD8 (Agilent; M710301-2,
1:200), CD34 (Agilent; GA63261-2, 1:50), CD41 (Thermo Fisher Scientific; PA5-79526, 1:500), CD42b (Abcam; ab227669, 1:100), CD44
(Cell Signaling Technology; 5640S, 1:200), CD44-Alexa Fluor 647 conjugate (Bio Legend; 103018, 1:200), CD68 (Bio Legend; 916104,
1:200), CD79a (Agilent; M705001-2, 1:200), CD200 (R&D Systems; AF2724, 1:100), CD206 (Proteintech; 60143-1-Ig, 1:2000), c-Fos
(Abcam; ab190289, 1:600), Claudin 1 (Abcam; ab15098, 1:500), Claudin 10 (Thermo Fisher Scientific; 38-8400, 1:100), Collagen |
(Southern Biotech; 1310-01, 1:200), Collagen Il (Abcam; ab7778, 1:200), Collagen IV (Abcam; ab6586, 1:200), Collagen V (Abcam;
ab7046, 1:100), Cubilin (R&D Systems; AF3700, 1:200), Cyclin B1 (Cell Signaling Technology; 12231, 1:100), Cytochrome C (Abcam;
ab110325, 1:200), Cytokeratin 7 (Agilent; GA61961-2, 1:300), Cytokeratin 8 (R&D Systems; MAB3165-SP, 1:300), Cytokeratin 19
(Abcam; ab52625, 1:300), C1QA (Proteintech; 67063-1-Ig, 1:1000), DACH1 (Sigma-Aldrich; HPA012672, 1:200), Decorin (R&D
Systems; AF143, 1:50), E-Cadherin (R&D Systems; AF648, 1:200), EEA1 (Santa Cruz; sc-137130, 1:100), EHD3 (LSBio; LS-C133741,
1:150), Endomucin (Sigma-Aldrich; HPA005928, 1:100), eNOS (Abcam; ab76198, 1:200), Ezrin (Cell Signaling Technology; 3145S,
1:300), FAM189A2 (Thermo Fisher Scientific; PA5-63414, 1:200), Fibronectin (Abcam; ab2413, 1:200), FKBP51 (R&D Systems;
AF4094-SP, 1:50), FXYD4 (Thermo Fisher Scientific; PA5-63570, 1:200), GFAP (Thermo Fisher Scientific; 14-9892-82, 1:200),
Glucocorticoid Receptor (Cell Signaling Technology; 3660, 1:2000), Glutathione Peroxidase 1 (R&D Systems; AF3798, 1:100),
Glutathione Peroxidase 3 (R&D Systems; AF4199, 1:50), Glycophorin A (R&D Systems; MAB1228-SP, 1:500), GRP78 (Proteintech;
11587-1-AP, 1:200), HB-EGF (R&D Systems; AF-259, 1:100), Histone H3 (Cell Signaling Technology; 4499, 1:400), HMOX1 (Thermo
Fisher Scientific; MA1-112, 1:200), HSD11B2 (R&D Systems; MAB8630-SP, 1:100), KIM-1 (R&D Systems; AF1750, 1:200), IBA1
(Thermo Fisher Scientific; MA5-27726, 1:500), IDH1 R132H (Dianova; DIA-HO9, 1:200), IL-1RA (Abcam; ab124962, 1:200 — specificity
issues were raised by the provider after our experiments were completed. We have kept it in the panel as none of our findings were
affected and we did not perform any biological inferences based on this antibody), iNOS (Thermo Fisher Scientific; MA5-41652,
1:200), Integrin-al (R&D Systems; AF5676, 1:300), Integrin-a3 (Proteintech; 66070-1-Ig, 1:2000), Integrin-B1 (Abcam; ab179471,
1:800), Ki-67 (Agilent; M724029-2, 1:200), Laminin (Abcam; ab11575, 1:200), LAMP1 (Cell Signaling Technology; 9091, 1:300), LC3B
(Cell Signaling Technology; 3868, 1:300), LEL-DyLight 649 conjugate (Vector Laboratories; DL-1178, 1:300), LTL biotinylated (Vector
Laboratories; B-1325-2, 1:500), MCT1 (Thermo Fisher Scientific; MA5-18288, 1:300), MerTK (R&D Systems; AF591, 1:200), MPO (R&D
Systems; MAB3174, 1:200), Nephrin (Progen; GP-N2, 1:150), Neurofilament (Agilent; IR607, 1:200), Nox4 (R&D Systems; MAB8158,
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1:300), NQO1 (Proteintech; 67240-1-Ig, 1:2500), OLIG2 (Bio SB; BSB 2561, 1:200), p62 (Cell Signaling Technology; 39749, 1:400),
PCK1 (Proteintech; 66862-1-Ig, 1:400), PCNA (Abcam; ab29, 1:2000), PDGFRB (Cell Signaling Technology; 3169, 1:100), PDI (Cell
Signaling Technology; 455968, 1:400), Periostin (R&D Systems; AF3548, 1:150), Phospho-AMPKa (Cell Signaling Technology; 2535,
1:200), Phospho-c-Jun (Abcam; ab32385, 1:200), Phospho-Erk1/2 (Cell Signaling Technology; 4370, 1:250), Phospho-Ezrin/Radixin/
Moesin (Cell Signaling Technology; 3726, 1:200), Phospho-GSK-3p (Cell Signaling Technology; 9323, 1:100), Phospho-Histone H3 (Cell
Signaling Technology; 9701, 1:200), Phospho-JAK2 (Thermo Fisher Scientific; MA5-42424, 1:100), Phospho-S6 Ribosomal Protein (Cell
Signaling Technology; 4858S, 1:300), Phospho-SMAD?2 (Thermo Fisher Scientific; 44-244G, 1:200), Phospho-SMAD3 (Thermo Fisher
Scientific; PA5-104940, 1:200), Phospho-STAT1 (Cell Signaling Technology; 91675, 1:400), Phospho-STAT3 (Abcam; ab76315, 1:200),
PITX2 (R&D Systems; AF7388, 1:100), Podocin (Sigma-Aldrich; P0372, 1:3000), Proteasome 20S LMP7 (Abcam; ab3329, 1:400), Rab5A
(Cell Signaling Technology; 46449, 1:300), RAB7 (Abcam; ab137029, 1:200), RAP1GAP (Abcam; ab244259, 1:300), RCAS1 (Cell
Signaling Technology; 12290, 1:200), Sclerostin (Thermo Fisher Scientific; PA5-37943, 1:100), SirT1 (Cell Signaling Technology; 8469,
1:200), SLC12A3 (Thermo Fisher Scientific; MA5-41643, 1:200), SOD1 (Proteintech; 67480-1-lg, 1:400), SOD2 (Thermo Fisher
Scientific; PA5-30604, 1:300), SRB1 (Abcam; ab217318, 1:300), STAT2 (R&D Systems; MAB16661, 1:200), Survivin (Cell Signaling
Technology; 2808, 1:300), Talin 1 (Abcam; ab71333, 1:200), TRPC6 (Abcam; ab233413, 1:200), Ubiquityl-Histone H2B (Cell Signaling
Technology; 5546T, 1:200), Uromodulin (R&D Systems; AF5144, 1:300), Villin 1 (Abcam; ab52102, 1:200), Vimentin (Progen; GP53,
1:200), von Willebrand Factor (Agilent; AO08229-2, 1:200), WT1 (Agilent; 1ISO5530-2, 1:200), ZO-1 (Thermo Fisher Scientific; 61-7300,
1:250).

For mouse samples. ACE-2 (R&D Systems; AF933, 1:200), AIF (Cell Signaling Technology; 5318, 1:200), AKAP12 (Proteintech; 25199-1-
AP, 1:600), ANXA3 (Sigma-Aldrich; HPA013398, 1:200), aSMA-FITC conjugate (Abcam; F3777, 1:800), Aquaporin 2 (Alomone labs;
AQP-002, 1:400), Calreticulin (Abcam; ab92516, 1:300), Caspase 1 p20 (Thermo Fisher Scientific; PA5-99390, 1:200), CD3 (Abcam;
ab1108, 1:200), CD4 (Abcam; ab183685, 1:200), CD41 (Thermo Fisher Scientific; PA5-79526, 1:500), CD42b (Abcam; ab227669,
1:100), CD44-Alexa Fluor 647 conjugate (Bio Legend; 103018, 1:200), CD45 (Cell Signaling Technology; 70257, 1:200), c-Fos (Abcam;
ab190289, 1:600), Collagen | (Southern Biotech; 1310-01, 1:200), Collagen IV (Abcam; ab6586, 1:200), Cytochrome C (Abcam;
ab110325, 1:200), DACH1 (Sigma-Aldrich; HPA012672, 1:200), E-Cadherin (R&D Systems; AF648, 1:200), Endomucin (Santa Cruz;
sc-65495, 1:200), Fibronectin (Abcam; ab2413, 1:200), Histone H3 (Cell Signaling Technology; 4499, 1:400), IBA1 (Thermo Fisher
Scientific; MA5-27726, 1:500), IL-1RA (Abcam; ab124962, 1:200 — specificity issues were raised by the provider after our experiments
were completed. We have kept it in the panel as none of our findings were affected and we did not perform any biological inferences
based on this antibody), Ki67 (Abcam; ab15580, 1:200), Lamin B1 (Santa Cruz; sc-374015, 1:200), Laminin (Abcam; ab11575, 1:200),
LTL biotinylated (Vector Laboratories; B-1325-2, 1:500), Nephrin (Progen; GP-N2, 1:150), PCNA (Abcam; ab29, 1:2000), PDI (Cell
Signaling Technology; 455965, 1:400), Phospho-Ezrin/Radixin/Moesin (Cell Signaling Technology; 3726, 1:200), Podocin (Sigma-
Aldrich; P0372, 1:3000), Podoplanin (R&D Systems; AF3244-SP, 1:200), Synaptopodin (Synaptic Systems; 163 004, 1:200), Tyrosine
Hydroxylase (Cell Signaling Technology; 45648, 1:200), Ubiquityl-Histone H2B (Cell Signaling Technology; 5546T, 1:200), B-Actin
(Sigma-Aldrich; A5441, 1:1500), Vimentin (Progen; GP53, 1:200), von Willebrand Factor (Agilent; A008229-2, 1:200).
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Secondary antibodies and biotin-binding proteins

Secondary antibodies were diluted in a ratio ranging from 1:200 to 1:300. Antibodies: goat anti-guinea pig IgG Alexa Fluor 488
(Thermo Fisher Scientific; A-11073), goat anti-guinea pig IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-21435), donkey anti-mouse
1gG Alexa Fluor 488 (Thermo Fisher Scientific; A-21202), donkey anti-mouse 1gG Alexa Fluor 555 (Thermo Fisher Scientific; A-31570),
donkey anti-mouse IgG Alexa Fluor 647 (Thermo Fisher Scientific; A-31571), donkey anti-rabbit IgG Alexa Fluor 488 (Thermo Fisher
Scientific; A-21206), donkey anti-rabbit IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-31572), donkey anti-rabbit IgG Alexa Fluor
647 (Thermo Fisher Scientific; A-31573), donkey anti-goat 1gG Alexa Fluor 488 (Thermo Fisher Scientific; A-11055), donkey anti-goat
1gG Alexa Fluor 555 (Thermo Fisher Scientific; A-21432), donkey anti-rat IgG Alexa Fluor 488 (Thermo Fisher Scientific; A-21208),
donkey anti-rat IgG Alexa Fluor 555 (Thermo Fisher Scientific; A78945), donkey anti-sheep IgG Alexa Fluor 488 (Thermo Fisher
Scientific; A-11015), donkey anti-sheep IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-21436), streptavidin Alexa Fluor 488 (Thermo
Fisher Scientific; S11223), streptavidin Alexa Fluor 555 (Thermo Fisher Scientific; $21381).

Validation To ensure that antibodies were validated and their staining quality was reliable, we relied on multiple levels of evidence. These
include vendor specifications (i.e. recommended concentrations), the absence of primary antibody after elution steps, established
staining patterns for every included antibody in the scientific literature, and references to available data from the Human Protein
Atlas. These quality control steps were performed by at least 3 different team members. This process was repeated for every
antibody included in this study. We provide confirmation of each staining pattern for every antibody in Supplementary Data 1 and 2.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The parietal epithelial cell (PEC) line was provided by A/Prof. Olivia Lenoir and Prof. Pierre-Louis Tharaux

Authentication In order to preserve their identity, all cell lines were maintained at low passages. This practice ensures consistency in the
characteristics and behavior of the cells.

Mycoplasma contamination It was confirmed that all cell lines were free of any contamination of mycoplasma.

Commonly misidentified lines  No commonly misidentified cell lines were used in this study.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

£20¢ [udy

Laboratory animals All experimental animals were housed at ambient temperature of 20+2°C, humidity of 55+10% and a light/dark cycle of 12h/12h.
Archival tissues from 8-12 week old C57BL/6J mice were used for the experimental glomerulonephritis experiment.




10-12 week-old Sprague Dawley rats were used for prevention experiments with JNK inhibitors, and Wister Kyoto (WKY) rats were
used for therapeutic experiments. 12 and 24-week old BTBR-Lepob/ob (BTBRob/ob) mice were used as DKD model.

Wild animals This study did not involve any wild animals.

Reporting on sex All studies were performed in male rodents as kidney disease is more severe in males and our aim was to maximize pathological
effects and potential interventions.

Field-collected samples  This study did not involve any samples collected from the field.

Ethics oversight All animal experimental protocols were approved by the respective IRB in Hamburg, Melbourne (N047/20 and MMCB/2006/29), Paris
(358-86/609EEC) and Heidelberg (H2052-2071/23)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants
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Seed stocks Not applicable

Novel plant genotypes ~ Not applicable

Authentication Not applicable
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