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Pathology-oriented multiplexing enables 
integrative disease mapping

The expression and location of proteins in tissues represent key determinants of health 
and disease. Although recent advances in multiplexed imaging have expanded the 
number of spatially accessible proteins1–3, the integration of biological layers (that is, 
cell structure, subcellular domains and signalling activity) remains challenging. This is 
due to limitations in the compositions of antibody panels and image resolution, which 
together restrict the scope of image analysis. Here we present pathology-oriented 
multiplexing (PathoPlex), a scalable, quality-controlled and interpretable framework. It 
combines highly multiplexed imaging at subcellular resolution with a software package 
to extract and interpret protein co-expression patterns (clusters) across biological 
layers. PathoPlex was optimized to map more than 140 commercial antibodies at 80 nm 
per pixel across 95 iterative imaging cycles and provides pragmatic solutions to  
enable the simultaneous processing of at least 40 archival biopsy specimens. In a 
proof-of-concept experiment, we identified epithelial JUN activity as a key switch in 
immune-mediated kidney disease, thereby demonstrating that clusters can capture 
relevant pathological features. PathoPlex was then used to analyse human diabetic 
kidney disease. The framework linked patient-level clusters to organ disfunction and 
identified disease traits with therapeutic potential (that is, calcium-mediated tubular 
stress). Finally, PathoPlex was used to reveal renal stress-related clusters in individuals 
with type 2 diabetes without histological kidney disease. Moreover, tissue-based 
readouts were generated to assess responses to inhibitors of the glucose cotransporter 
SGLT2. In summary, PathoPlex paves the way towards democratizing multiplexed 
imaging and establishing integrative image analysis tools in complex tissues to support 
the development of next-generation pathology atlases.

Spatial biology technologies have gained increased attention recently 
as they provide molecular insights into transcriptomic and proteomic 
expression while preserving histological context1. The term multi-
plexed imaging refers to the expansion of antibody-based labelling 
beyond conventional limits (that is, 3–4 antibodies per section)2,3. 
Multiple commercial systems are available with varying performance 
and cost. For example, methods based on mass spectrometry4,5 require 
specialized equipment and antibody conjugation to metals, enabling 
spatial projections with high precision and reproducibility at cellu-
lar resolution (between 250 and 1,000 nm per pixel). Alternatively, 
microscopy-based methods6,7 are more economically accessible and 
rely on the cyclic detection of DNA-conjugated antibody panels or direct 
immunofluorescence using fixed integrated widefield microscopy. 
Although such methods achieve an image resolution of 200–300 nm 
per pixel, there is a trade-off between detection speed and signal ampli-
fication. Results from studies that used both mass spectrometry and 
microscopy-based methods8,9 aligned well with comprehensive reviews 
of the literature10 that reported panels ranging between 30 and 60 
antibodies. This body of work set the foundation for the development 
of image analysis strategies that focused on the identification of cell 
identities and states through cell segmentation11–14.

In 2018, iterative indirect immunofluorescence imaging (4i)15 was 
introduced as an open-source tool for multiplexed imaging and 

advanced image analysis. These techniques were based on the use of 
unmodified commercial antibodies in cyclic rounds of immunofluo-
rescence imaging through simple steps of chemical elution and flexible 
light microscopy. 4i was originally applied in vitro using 41 antibodies 
at a resolution of 165 nm per pixel, which enabled the detection of func-
tional multilayered subcellular features of cell injury through pixel-level 
analysis. To our knowledge, there is only one study that recreated the 
original 4i protocol in multicellular specimens16 with sufficient mul-
tiplexed imaging depth (21 imaging cycles for 54 markers) and image 
resolution (160 nm per pixel) to perform pixel-based image analysis. 
However, despite being one of the largest and most complex datasets 
available, the outputs derived from multiplexed imaging have primarily 
been used to recapitulate known cellular events during organ develop-
ment. In this context, we postulate that the potential of multiplexed 
imaging methods to define tissue-based integrative features associated 
with health and disease remains underexplored.

Current state-of-the-art
A study10 that discussed the current landscape of antibody-based mul-
tiplexed imaging showed that there is a diverse range in performance 
among the methods. From all the different criteria that can be used to 
define the advantages and limitations of each method, we propose two 
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criteria to evaluate the potential to support image analysis tools that 
aim to integrate multiple biological layers (Supplementary Fig. 1a): 
the number of markers (panel size) and the image resolution per 
pixel. Although it is evident that panel size directly affects the scope 
of processes that can be analysed, image resolution and the biological 
insights gained from it are harder to appreciate. To illustrate the impor-
tance of image resolution, we compared a mass-spectrometry-based 
method (Supplementary Fig. 1b) and a microscopy-based method 
(Supplementary Fig. 1c) for analysing kidney samples using markers 
of cell identity and DNA. This comparison highlighted an obvious 
resolution mismatch that had a clear impact on the ability to deline-
ate subcellular structures (for example, nuclei and even nucleoli) and 
the borders of neighbouring cells (for example, renal endothelial and 
epithelial cells).

Among the reported multiplexing methods10, the average panel 
size is approximately 37 markers with an average resolution of 267 nm 
per pixel. The most used systems, such as imaging mass cytometry 
(IMC; 40 markers at 1,000 nm per pixel) and co-detection by index-
ing (CODEX; 56 markers at 250 nm per pixel), provide reliable refer-
ences of current commercial standards. Thus, it is not surprising that 
most studies in the field of antibody-based spatial proteomics fun-
damentally rely on single-cell segmentation as a core step, similar to 
the approaches used in spatial transcriptomics17,18. That is, neither the 
resolution nor the panel size provide the foundation for more integra-
tive image analysis. Furthermore, most studies of organs that have high 
cell density (for example, the kidney) typically report cell identity and 
state19,20 but do not provide integrative data across biological domains.  

These limitations represent an opportunity for the next generation 
of multiplexed imaging methods to scale panel sizes beyond current 
limits. Moreover, computational tools can be built to extract hallmarks 
of health and disease by weighting and connecting the contributions 
of each biological layer (Supplementary Fig. 2).

Towards next-generation multiplexed imaging
Here we introduce PathoPlex, a scalable, quality-controlled and inter
pretable framework. It combines highly multiplexed imaging at sub-
cellular resolution with an open-source software package to facilitate 
integrative analyses of formalin-fixed paraffin-embedded (FFPE) 
specimens (Fig. 1a).

In brief, multiplexed imaging is performed in iterative cycles, 
whereby indirect immunofluorescence labelling is conducted first, fol-
lowed by image acquisition by fluorescence microscopy (for example, 
widefield or confocal) and subsequent antibody elution (Fig. 1a, part 1).  
To prevent tissue lifting, we recommend coating the glass surfaces 
with poly-d-lysine for small-scale experiments or with (3-aminopropyl)
triethoxysilane (APTES) for large-scale experiments, as APTES is more 
efficient at preventing tissue detachment compared with poly-d-lysine 
(Methods). In this report, our largest experiment included 95 imaging 
cycles with antibodies against 150 proteins and 20 quality-control 
imaging cycles with only secondary antibodies for a total of 170 layers. 
After detailed examination, we included 142 (122 protein and 20 quality 
control) layers for analyses, which generated >600 billion available 
pixels. It is worth noting that the tissues remained stable and did not 
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show signs of damage within 95 imaging cycles, which suggests that 
this is not the limit of the technology.

To accommodate the scale of these datasets and to enable modular 
composition and extendibility of bioinformatic analyses, we devel-
oped a high-performance computing library for spatial proteomics 
(which we term spatiomic) that leverages various algorithms based 
on graphics processing units (GPUs)21,22, integrates common data for-
mats23 and is freely available as a Python package through the PyPi 
registry (Fig. 1a, part 2). The package spatiomic features multiple reg-
istration algorithms to align images of individual markers for joint 
analyses. To identify protein co-expression patterns, spatiomic includes 
modules to preprocess images, obtain a representative subsample, 
reduce dimensionality using self-organizing maps (SOMs), construct 
a similarity-based neighbourhood graph and perform graph cluster-
ing24. Co-expression patterns can be consistently identified across all 
images of an experimental dataset and spatially projected. As these 
co-expression patterns are generated on the basis of pixel-level cluster-
ing, from now on, we refer to them as ‘clusters’.

Each cluster has the potential to represent a biological process and 
warrants further interpretation (Fig. 1b). As a first step, the individual 
contribution of each marker to the cluster was analysed to define the 
specific co-expression pattern that each cluster represents. For this 
reason, the mean normalized intensity (the level of contribution per 
marker) and the log2-transformed fold change in relation to the mean 
of other clusters (the specific contribution of each marker) were sys-
tematically evaluated. As each marker represents proteins with known 
or predicted locations, distributions and expression patterns, it can be 
projected back into space for visual validation. Cluster abundance was 
used as a quantifiable metric to statistically compare conditions and 
to isolate differentially expressed clusters. Notably, changes in cluster 
abundance can result not only from differences in protein expression 
levels but also from changes in protein distribution (for example, cyto-
plasmic to nuclear shifts).

As an overview, we first provided proof-of-principle and quality- 
control datasets in three different organs (<30 markers at a resolution 
of 160 nm per pixel). PathoPlex was then validated using the kidney 
as a model organ with high cellular density and structural complexity 
through in-depth analyses of three additional datasets (Fig. 1c). These 
datasets were obtained from the following sources: (1) an experimental 
mouse model of immune-mediated kidney disease (34 markers at 80 nm 
per pixel); (2) clinical biopsy samples from individuals diagnosed with 
advanced diabetic kidney disease (DKD) (61 markers at 160 nm per 
pixel); and (3) research biopsy samples from individuals diagnosed 
with youth-onset type 2 diabetes (T2D) (142 markers at 80 nm per pixel) 
without pathological signs of DKD, including a subset of individuals 
with short-term treatment with SGLT2 inhibitors.

Proof-of-principle and quality controls
Proof-of-principle experiments were performed on the basis of rep-
resentative samples from autoimmune hepatitis, meningioma and 
focal segmental glomerulosclerosis (Supplementary Fig. 3) and con-
trols in human liver, brain and kidney, respectively (Supplementary 
Fig. 4) showing broad applicability in pathology and a wide poten-
tial for marker selection, including transcription factors, enzymes, 
structural proteins, subcellular domains, cell surface receptors and 
phosphorylation targets.

Quality-control criteria for PathoPlex were first established in murine 
tissues and then extended to human specimens. In brief, consecutive 
imaging cycles of an antibody panel constituted the first level of con-
trol. This step was important because incomplete elution might lead 
to cross-reactivity with subsequent cycles or residual signals from 
the previous cycle. The second level of control involved direct imag-
ing after elution to confirm the lack of fluorescent signals (Extended 
Data Fig. 1a). The third level of control included imaging cycles using 

secondary antibodies without previous incubation of primary antibod-
ies (secondary-only cycles). This step ensured the absence of remnant 
viable primary antibodies and generated additional layers that could 
be included in image analyses (Extended Data Fig. 1b). The fourth level 
of control involved successful re-staining after multiple imaging cycles 
(Extended Data Fig. 1c). This stage was used to confirm that the epitope 
is preserved and the effectiveness of antibody elution. Furthermore, 
we applied practical quality-control steps for human tissue samples 
throughout 95 imaging cycles. This strategy showed complete elu-
tion efficiency using secondary-only cycles (Extended Data Fig. 1d and 
Supplementary Figs. 5 and  6) and effective re-stainings after 60 cycles 
(Extended Data Fig. 1e and Supplementary Fig. 7).

Once all the imaging cycles were completed, image alignment was 
performed to account for potential shifts during the various cycles.  
It is well established that nuclei can be easily stained, but commonly used 
labels are either unstable (for example, 4′,6-diamidino-2-phenylindole 
(DAPI)) or expensive (for example, DRAQ5). For this reason, we intro-
duce N-hydroxysuccinimide ester (NHS-E), a pan-protein label com-
monly used in super-resolution microscopy25. NHS-E consistently 
generated reference images for alignment and showed equally high 
performance compared with nuclear references (Supplementary 
Fig. 8). Moreover, NHS-E can be used to segment tissue-containing 
areas to limit the analysis of regions with potential nonspecific binding. 
Unlike DAPI or DRAQ5, which need constant re-staining every imag-
ing cycle, NHS-E requires a single application at the beginning of the 
protocol and remains stable for up to 95 cycles.

Practical considerations
PathoPlex combines different strategies to optimize performance 
and to minimize the potential introduction of batch effects, including 
adaptable microscopy, accessible and customizable imaging set-ups 
and low-cost automatization of liquid handling (Extended Data Fig. 2a). 
PathoPlex can be implemented using any inverted system for fluores-
cence microscopy, including widefield, spinning disk and confocal, 
which provides flexibility in terms of image resolution, scanning time 
and file size (Extended Data Fig. 2b).

It is worth mentioning that classical pathology protocols and some 
multiplexing technologies may inadvertently introduce batch effects, 
as specimens are processed as individual slides. By contrast, PathoPlex 
uses imaging chambers that enable the parallel processing of multiple 
tissues in single runs. Each imaging chamber is organized as an inde-
pendent and self-contained experiment by including both control 
and experimental samples (Extended Data Fig. 2c). Considering the 
size of average unmodified histopathological samples, commercial 
solutions can be used to process between 2 and 24 intact samples at 
the same time (Extended Data Fig. 2d). However, as the number of 
wells increases, manual pipetting increases the likelihood of user error. 
Although this source of error can be mitigated through automation, 
commercially available liquid-handling systems are often expensive 
and not accessible to the wider scientific community. For this reason, 
PathoPlex introduces two practical 3D printing-based strategies to 
simplify liquid handling. The first approach involved the creation 
of a large unified single-well imaging chamber (11 × 7.4 cm) using a 
3D-printed frame (Extended Data Fig. 2e and Supplementary Fig. 9a) 
that can hold 40 intact human kidney biopsy samples (approximately 
100 mm2 in size) and even higher numbers of smaller biopsy samples 
(for example, with size extrapolation, this equates to approximately 
77 skin biopsy samples). The second strategy involved the automa-
tion of staining and elution cycles. To achieve this, we repurposed a 
3D printer as a low-cost liquid handling system, with the printer head 
controlling liquid addition and removal (Extended Data Fig. 2f, Sup-
plementary Fig. 9b and Supplementary Video 1). This approach pro-
duced successful staining and elution cycles (Extended Data Fig. 2g), 
saving approximately 70% hands-on time with minimal user input 
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(Supplementary Fig. 9c). Although an automated solution for multi-
plexed imaging using 4i principles has been previously reported26, our 
universal framework provides users with the flexibility to design their 
experiment according to their needs, including sample size and image  
resolution.

Proof-of-concept in experimental disease
Next, we performed a proof-of-concept experiment, whereby PathoPlex 
was used to analyse the pathophysiology of a well-characterized mouse 
model of immune-mediated kidney disease27. These mice exhibit a 
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clear disease course that ranges from acute injury to crescentic glo-
merulonephritis (CGN). That is, protein loss in the urine (proteinuria), 
the subsequent development of pathological lesions (crescents) in 
the renal-filtering units (glomeruli) and progressive loss of kidney 
function. A total of 34 markers were used at a resolution of 80 nm per 

pixel to acquire approximately 5 billion pixels in 40 regions of interest 
(ROIs) centred on individual glomeruli (Fig. 2a). The antibody panel 
was designed to detect cell identities, subcellular compartments and 
signalling pathway activity (Supplementary Table 1). From a total of  
33 generated clusters, 27 clusters were biologically defined 
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(Supplementary Table 2). Significant changes in cluster abundance 
during the disease course (Fig. 2b) were used as a metric to define inte-
grative features (Fig. 2c) that reflected well-characterized pathogenic 
processes28–31.

Additional histopathological sections from the same experimental 
animals were carefully evaluated by two expert renal pathologists in 
a blinded fashion, who were specifically asked to diagnose and stage 
disease and to quantify structural changes (Extended Data Fig. 3a). 
Images of CGN were defined by significant vascular injury and the pres-
ence of crescentic lesions, whereas acute injury was determined by 
the vacuolation of tubular cells (Extended Data Fig. 3b). In line with 
these findings, cluster 26 (which included contributions from early 
endosome antigen 1 and ezrin) was more abundant in disease than in 
control samples (Extended Data Fig. 3c), a finding that represented 
a characteristic feature of acute disease (Extended Data Fig. 3d). 
Notably, the spatial distribution of cluster 26 corresponded to the 
location and pattern used by expert pathologists for diagnosis and 
staging (Extended Data Fig. 3e). This result suggests that PathoPlex 
can detect pathogenesis-related tissue alterations— similar to those 
used by human experts—in an unsupervised manner.

Identification of pathway activity
Previous studies have shown that modulation of JNK signalling can lead 
to substantial protective effects in kidney autoimmunity and fibro-
sis32,33. The proposed cellular targets of JNK inhibitors have mostly 
been immune cells (that is, activated macrophages). However, effector 
cells of crescent formation are parietal epithelial cells (PECs). During 
crescent formation, these cells are activated through processes that 
are mediated by growth factors (for example, platelet-derived growth 
factor (PDGF))34, and their increased potential for proliferation and 
migration is regulated through the de novo expression of the glyco-
protein CD44 (ref. 35) and the tetraspanin CD9 (ref. 36).

We performed bulk RNA sequencing on nuclei isolated from mice 
with immune-mediated kidney disease to clarify this issue (Extended 
Data Fig. 4a). Analyses of the differentially expressed genes (Extended 
Data Fig. 4b) identified the transcription factor JUN with the highest 
activity score (Extended Data Fig. 4c), as calculated from the differ-
ential expression of JUN-regulated targets (Extended Data Fig. 4d). 
Notably, JUN has a crucial role in AP-1 activation through JNK, which 
mediates CD44 signalling37. As a readout of JUN activity, its phospho-
rylated protein product JUN(Ser63) (pJUN) was included in our anti-
body panel. Cluster 21 featured pJUN as a top contributor and was 
consistently increased in both acute and CGN disease states compared 
with controls (Fig. 2d). Cluster 21 was essentially restricted to PECs 
and tubular cells, with a high frequency in tubular cells during acute 
injury and a gradual increase in PECs during disease progression to 
CGN (Fig. 2e). As tubular cells do not represent an effector population 

during crescent formation, we turned our full attention to the role of 
JUN activity in PECs.

Multimodal cross-species validation
As an initial validation step, we evaluated the effect of JUN activity 
modulation in PECs. To this end, PEC activation (that is, increased migra-
tion) was induced in vitro using PDGF36. PEC migration was attenuated 
with the JNK inhibitor ( JNKi) CC930 (also known as tanzisertib) in two 
independent experimental set-ups. Results from both of these experi-
ments confirmed that CC930 has a direct effect on activated murine 
PECs (Fig. 2f). In a second validation step, we analysed human biopsy 
samples from patients diagnosed with CGN to delineate JUN activity 
during the progression of human crescentic lesions (n = 12 patients and 
n = 3 healthy participants). Normal glomeruli from healthy individuals 
and from individuals with CGN showed that pJUN was expressed in 
scattered PECs without CD44 expression. As pathological lesions in 
CGN develop in a focal pattern, some glomeruli appeared normal and 
only a subset exhibited crescent characteristics, all in the same patient 
sample. Although some glomeruli showed abundant pJUN+CD44– PECs, 
pJUN+CD44+ PECs were exclusively found in CGN samples (Fig. 2g), 
which indicated an association between JUN activity and PEC activa-
tion in human specimens. In a third validation step, CGN was modelled 
in rats to test the efficacy of CC930 as a preventive strategy (before 
disease induction) or as a therapeutic strategy initiated 7 days after dis-
ease induction (Fig. 2h). Proteinuria was substantially decreased in the 
preventative study (Fig. 2i) and glomerular damage was mitigated with 
interventional treatment (Fig. 2j), which included substantial modu-
lation of CD44 expression in PECs (Fig. 2k and Extended Data Fig. 5). 
Together, these data confirmed that PathoPlex-derived clusters can 
identify actionable pathological features with high spatial precision.

Integrative mapping of human disease
Next, we sought to apply PathoPlex to unravel the complexities of 
human disease. The performance of PathoPlex was tested in clinical 
specimens with patient-level heterogeneity in one of the most com-
mon clinical features of end-organ damage in diabetes, namely DKD38. 
A total of 38 human kidney specimens (from 18 individuals without 
diabetes (controls) and 20 individuals with advanced DKD) were pro-
filed in 422 ROIs using 61 markers (Supplementary Table 3) to obtain 
>100 billion pixels at 160 nm per pixel (Fig. 3a). PathoPlex identified  
18 clusters with differential abundance between control and DKD sam-
ples (Supplementary Table 4). For example, cluster 19 (with contribu-
tors from apoptosis inducing factor mitochondria associated 1 (AIFM1) 
and transient receptor potential cation channel subfamily C member 6 
(TRPC6)) was increased in tissues from individuals with DKD and local-
ized primarily in the proximal tubules. This result was corroborated 

Fig. 3 | PathoPlex as a tool to analyse human DKD. a, Schematic overview  
of the experimental design to compare control and DKD specimens (n = 38  
18 controls, 20 DKD; ROIs = 422). Details of the antibody panel are provided 
in Supplementary Table 3. RCC, renal cell carcinoma. b, Scheme of cluster 
identification to differential abundance and cluster definition. We show the 
example of C19, which represents metabolic tubular injury (with TRPC6 and 
AIFM1 as top contributors). c, Single-cell segmentation reveals disease-specific 
cell-level metaclusters (MCs). PTs, proximal tubules; PTMs, post-translational 
modifications. d, Mean cluster abundances correlate with patient-level renal 
function (linear regression with 95% confidence interval). For this example, 
cluster 28 represents ECM remodelling and is inversely associated with 
estimated glomerular filtration rate (eGFR). e, Unsupervised bicluster analysis 
for patient stratification differentiates between DKD and control specimens 
with perfect accuracy and isolates a subset of biologically meaningful clusters. 
f, Druggabilty profiling of standard care. The top contributors of clusters 

selected in b were used as a DKD signature that was extended using open-access 
tools (that is, STRING), and then cross-referenced to the CTD to select a subset 
of drugs. Multiple medications for the standard care of diabetes interacted 
with our expanded DKD signature. g, Drug–protein interactions were 
quantified for our DKD signature. One example is PDE5 inhibitors as potential 
modulators of TRPC6–AIFM1 through cGMP signalling, which was confirmed 
through a re-analysis of public single-nucleus RNA-sequencing data47. 
Differential cluster abundance analysis used a two-sided t-test with Benjamini–
Hochberg correction. Cluster composition analysis relied on a two-sided t-test 
with Holm–Šidák correction. Correlation analysis was performed using 
two-sided Spearman’s rank coefficient. For other comparisons, two-sided 
t-test, Mann–Whitney or Kruskal–Wallis tests were used depending on the 
number of comparisons. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.  
Scale bars, 100 µm (b–d). Diagrams in a,e,f and g were created using BioRender 
(https://biorender.com).

https://biorender.com
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when projected onto conventional histopathology images (Fig. 3b). 
We validated the expression of TRPC6 in proximal tubules using both 
immunogold in electron microscopy (Extended Data Fig. 6a) and IMC- 
based antibody expression (Extended Data Fig. 6b). Analyses of a mouse 
model of DKD (Extended Data Fig. 6c) also confirmed that TRPC6 
expression is increased in proximal tubules (Extended Data Fig. 6d).

Our analysis revealed multiple additional differentially regulated clus-
ters that reflected known biological processes, including ERK-mediated 
and integrin-mediated signalling in multiple nephron segments 
(Extended Data Fig. 7). To connect these findings to cell-level features, 
we performed deep-learning-based cellular segmentation using Cell-
Pose39 (Supplementary Fig. 10) to characterize the co-occurrence of 
multiple clusters in well-defined cell-level metaclusters. For exam-
ple, metacluster 16, which was increased in DKD, contained clusters 
that represented multiple processes associated with proximal tubule 
injury (Fig. 3c). Notably, a subset of clusters showed strong correla-
tions with kidney function (Extended Data Fig. 8), including cluster 28 
(extracellular matrix (ECM) remodelling) (Fig. 3d), thereby linking  
subcellular pathological features to patient-level organ function.

Computational cross-validation
To further validate the biological relevance of PathoPlex-derived 
clusters, we calculated the multivariate cluster join counts for each 
biopsy sample independently and then averaged them at the condi-
tion level (Extended Data Fig. 9). These subcellular and intercellular 
spatial networks recapitulated aspects of kidney architecture by arrang-
ing them into functional compartments, including glomerular and 
tubular segments, individual cell types (for example, podocytes) and 
ECM. Moreover, the networks highlighted pathophysiological changes  
(for example, an increased connection between proximal tubule micro-
tubules and Ca2+ signalling). Next, we applied a nonlinear co-occurrence 
prediction model across cell-sized windows (MISTy)40, which identi-
fied groups of condition-specific mutually predictive clusters that 
reflected functional (for example, glomerular, tubular and interstitial) 
and subcellular (for example, nuclear or cytoplasmic) compartments 
that defined immune activation, ECM remodelling, metabolic stress 
and cell injury (Extended Data Fig. 10). We also performed image-level 
pseudotime analysis with a multiscale model41 to propose a path from 
individuals without diabetes but with varying kidney function to indi-
viduals with DKD. This analysis resulted in the identification of two 
potential trajectories of pathogenesis that showed a strong association 
with histopathological changes (Extended Data Fig. 11a). For trajec-
tory 1, determinant features included tubulointerstitial fibrosis, which 
reflected the loss of kidney function in a subpopulation of individuals 
without diabetes (Extended Data Fig. 11b). For trajectory 2, specific 
features included podocyte injury, Ca2+-mediated mitochondrial stress 
in proximal tubules and glucocorticoid receptor (GR) dysfunction, 
which reflected diabetic end-organ damage in individuals with impaired 
kidney function (Extended Data Fig. 11c).

To reinforce the value of PathoPlex as a foundational tool to per-
form unsupervised disease phenotyping, we used UnPaSt42 to conduct 
label-free biclustering based on cluster abundances. UnPaSt was able 
to accurately discriminate between control and DKD samples (Fig. 3e). 
Bicluster-specific clusters reflected the increased abundance of func-
tional integrity features (that is, podocyte physiology and metabolism) 
in control specimens, and of pathogenic features in DKD samples (that 
is, macrophage infiltration, immune activation, AIFM1–TRPC6 signal-
ling, endoplasmic reticulum (ER) stress, ECM remodelling, and GR, 
β-catenin, histone H2B and ubiquitylation dysfunction). In summary, 
PathoPlex-derived clusters can be immediately used to extend the 
scope of computational analyses to add layers of biological context 
(that is, pseudotime, niche profiling and feature subclassification) 
and to connect PathoPlex to the broader computational spatial biol-
ogy ecosystem.

Druggability profiling
Next, we aimed to leverage PathoPlex-derived clusters to infer addi-
tional clinically relevant information, such as potential opportunities 
for drug repurposing. First, we selected the top contributing proteins 
from each cluster to define a cluster-based DKD signature that was 
extended using the search tool for the retrieval of interacting genes 
and proteins (STRING)43. Then we cross-referenced our extended DKD 
signature with the Comparative Toxicogenomics Database (CTD)44. 
Notably, different drug classes used in the standard treatment of dia-
betes45 interacted with the proteins represented in our extended DKD 
signature (Fig. 3f), including SGLT2 inhibitors38. Next, we analysed a 
publicly available single-cell RNA-sequencing dataset46 generated from 
recently diagnosed young individuals with T2D without overt DKD 
and included a subset of patients receiving an SGLT2 inhibitor. This 
analysis confirmed our extended DKD signature at the transcriptional 
level and revealed a partial transcriptional modulation in proximal 
tubules with SGLT2 inhibitor treatment (Extended Data Fig. 12 and 
Supplementary Table 5). This result suggests that individuals with 
diabetes may benefit from additional interventions to reverse them to 
the healthy reference state. For this reason, we quantified the number 
of known drug–protein interactions for members of our extended DKD 
signature. This analysis led to the identification of potential targets 
to revert cell communities to the healthy reference state, including 
phosphodiesterase-5 inhibitors as potential regulators of TRPC6 sig-
nalling. As an additional external validation step, we used a public 
single-nucleus RNA-sequencing dataset from a rat model of DKD47 to 
assess the link between cGMP signalling and TRPC6-mediated mito-
chondrial stress in proximal tubules (Fig. 3g). Although transcriptomic 
detection of TRPC6 was insufficient to confirm a direct effect on this 
target, cGMP modulation was associated with the attenuation of several 
components of our extended DKD signature. Together, our findings 
confirm that the applicability of PathoPlex-derived clusters extends 
beyond the definition of integrative pathological features. Indeed, 
they can link the spatial context to single-cell transcriptomics and 
even pharmacological modelling.

Beyond classical pathology
Up to this point, our experiments included well-defined disease and 
control groups with recognizable pathological features identifiable 
through traditional histopathological methods. In our final experiment, 
PathoPlex was applied to 18 human kidney research biopsy samples 
without overt histopathological changes to test the limits and added 
value of PathoPlex. We aimed to identify early stages of kidney stress 
in T2D and to further profile the impact of SGLT2 inhibitors on these 
integrative features of cellular stress. To this end, archival tissue speci-
mens from 5 healthy individuals, 6 individuals with T2D not treated with 
SGLT2 inhibitors (T2D+SGLT2i–) and 7 individuals with T2D treated with 
SGLT2 inhibitors (T2D+SGLT2i+) from a previous study46 were selected 
for analysis. A total of 142 markers (122 biological and 20 quality con-
trol; Supplementary Table 6) were imaged at 80 nm per pixel, which 
systematically covered glomerular and non-glomerular regions across  
284 ROIs. This strategy generated >600 billion pixels, which contrib-
uted to 140 clusters (Fig. 4a). A total of 24 clusters showed significant 
regulation between groups (Fig. 4b), which revealed specific biological 
processes with distinct subcellular locations (Fig. 4c). Significant dif-
ferences encompassed increases in clusters that represented stromal 
cell filopodia, the mesangial matrix and vascular smooth muscle cells. 
Moreover, reductions in clusters associated with structural and func-
tional features of proximal tubules (that is, cell adhesion, brush border 
integrity, JAK2–H2B-mediated cell cycle, mitochondrial integrity and 
lactate transport), peritubular capillary integrity, mitochondrial and 
ER integrity in the distal tubule and nitric oxide production in the col-
lecting duct were observed.
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Fig. 4 | PathoPlex as a tool to decode kidney injury before DKD. a, Schematic 
overview showing the experimental design (n = 18 cases; ROIs = 284). Details  
of the antibody panel are provided in Supplementary Table 6. For this 
experiment, we used human research specimens from healthy individuals  
and individuals with T2D treated or not with SGLT2 inhibitors (SGLT2i).  
The images on the right show 140 clusters projected. b, Differential cluster 
abundance for each comparison. The key for clusters also applies to c and d.  
c, Examples of integrative subcellular clusters that were differentially 
regulated. Images were selected from all available ROIs (n = 284). d, Mean 
effect of SGLT2i on regulated clusters, showing examples of persistently 
dysregulated (C14, C40, C43, C48, C51, C87 and C116), statistically improved 

(C38 and C41) and normalized (C19 and C35) clusters. HC, healthy controls.  
e, Cluster-based model of glomerular and tubulointerstitial alterations before 
the development and in late stages of DKD, accounting for effects of SGLT2i. 
Differential cluster abundance analysis used a two-sided t-test with Benjamini–
Hochberg correction. Scale bars, 100 µm (a,c). BB, brush border; CD, collecting 
duct; DT, distal tubule; EC, endothelial cell; FIB, fibroblasts; HSP, heat shock 
protein; IC, intercalated cell; MAM, mitochondria-associated endoplasmic 
reticulum membrane; NO, nitric oxide; ROS, reactive oxygen species; TAL, thick 
ascending limb; VSMC, vascular smooth muscle cell. Diagrams in a were created 
using BioRender (https://biorender.com).
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SGLT2 inhibitors attenuated changes in peritubular capillaries and 

mitochondrial integrity in proximal tubules, and increased gluconeo-
genesis in proximal tubules. SGLT2 inhibitors were also characterized 
by the decreased abundance in a cluster representing lysosomal and 
proteasomal stress in endothelial cells. However, SGLT2i treatment 
did not fully reverse the T2D-specific changes in cluster abundance. 
First, the fold changes of significantly differentially abundant clusters 
in T2D+SGLT2i– samples relative to control samples were defined to 
represent the baseline effect of T2D. Then, the same comparison was 
performed between T2D+SGLT2i+ and control samples to represent 
the effect of SGLT2 inhibitors on T2D. This comparison indicated that 
SGLT2 inhibitors promoted a reconstitution of peritubular capillary 
and mitochondrial integrity in proximal tubules, together with a partial 
reversal of the increase in clusters representing vascular smooth muscle 
and stromal filopodia (Fig. 4d). These data demonstrate the potential 
of PathoPlex to uncover features of injury before disease onset that are 
inaccessible to classical histopathology.

Finally, on the basis of the two diabetes datasets generated in this 
study (Figs. 3 and 4), we propose a continuum of early glomerular and 
tubulointerstitial alterations that precede quantifiable reductions 
in end-organ function and that eventually converge in DKD. These 
alterations include an impaired glomerular filtration barrier, podo-
cyte loss, ECM remodelling and tubular injury following prolonged 
hyperglycaemia (Fig. 4e). Although some early changes seemed to be 
attenuated by SGLT2 inhibitors, further studies are required to fully 
profile the potential long-term preventive effects of this intervention 
throughout the entire clinical course of DKD. In summary, our results 
demonstrate the utility of PathoPlex to extract meaningful integrative 
features from even non-pathological tissues. Notably, the framework 
also provided further pathophysiological evidence to support the use of 
SGLT2 inhibtors31 as an early intervention in T2D. Our results highlight 
the potential need for further treatments to optimally preserve kidney 
health in individuals with T2D at high risk of DKD.

Discussion
Multiplexed imaging is a rapidly growing field10,48 and its contribution 
to a deeper understanding of tissue biology is illustrated by the recent 
generation of organ-level atlases, for example, in placenta8 and intes-
tine9 using MIBI-TOF and CODEX, respectively. Moreover, previous 
efforts to characterize archival pathological tissues have provided 
new insights into the tumour microenvironment using IMC in breast 
cancer49,50 and melanoma51 as well as in post-mortem COVID-19 speci-
mens using IBEX52. Despite these recent successes, widespread appli-
cation of these technologies has been hampered by several factors. 
These include access to commercial equipment, antibody panel size 
(average of 37 markers) and composition (that is, mostly focused on 
cell identity), limited spatial resolution (average of 267 nm per pixel), 
high-throughput in single specimens and insufficiently defined quality 
control steps. Here we provided a detailed protocol for highly multi-
plexed imaging at subcellular resolution for archival FFPE tissues. The 
use of PathoPlex for multiplexed imaging includes the following advan-
tages: (1) no dependency on commercial equipment; (2) open-access 
3D printing-based solutions for sample preparation and automation; 
(3) compatibility with any inverted fluorescence microscope, rang-
ing from widefield to high-end confocal microscopy; (4) scalability 
in antibody panel size (>120), image resolution (up to 80 nm per pixel 
using confocal microscopy) and sample sizes (that is, intact clinical 
tissues); (5) use of unmodified antibodies broadly accessible to the 
scientific community; (6) introduction of stringent quality-control 
steps to define best practices; and (7) minimization of batch effects 
through the parallel processing of up to 40 clinical biopsy samples 
(approximately 4,000 mm2 of available tissue). Together, PathoPlex 
paves the way for universal access to multiplexed imaging in clinical 
specimens. It also unlocks one of the largest and most comprehensive 

biobanks inadvertently created to a wide array of users: FFPE archives 
in clinical pathology centres and research institutes. It is now up to 
users to build on this resource to explore well-characterized patient 
cohorts, generate antibody panels that best address their scientific 
or clinical questions and to leverage the most efficient and suitable 
microscopy systems.

As emerging multiplexed imaging technologies generate larger and 
more complex datasets, image analysis tools need to adapt. Although 
cell segmentation and identification of cell states remain the most 
accepted methodologies for both technical development53 and bio-
logical interpretability54, unsupervised methods are starting to gain 
attention. Recent examples of pixel-based image analysis tools for 
multiplexed imaging data include cellular changes during normal reti-
nal development in human organoids16 and the generation of quanti-
tative annotations both independently and in conjunction with cell 
segmentations in various human tissues55. However, PathoPlex provides 
integrative features that recapitulate health, stress and overt disease, 
which can be pharmacologically modulated. As part of PathoPlex, we 
provide spatiomic, an efficient, scalable and streamlined end-to-end 
workflow for the community to analyse multiplexed imaging datasets 
of over half a trillion pixels. Overall, PathoPlex introduces a shift away 
from characterizing tissues solely at the cellular level (cell typing and 
their spatial organization) and towards a data-driven approach that 
captures the most distinctive biological signatures across spatial scales 
based on spatial co-expression patterns derived from individual pixels.

Recent advances in community-based strategies include minimum 
information guidelines56 and a public repository for antibodies com-
patible with multiplexed imaging57. These initiatives highlight the 
importance of continuous development in this new and rapidly growing 
field. Although PathoPlex shows promise, several areas require fur-
ther optimization. PathoPlex enables users to perform more imaging 
cycles, which provides an opportunity to expand antibody panel sizes 
and in turn can extend their scope. However, time efficiency remains 
crucial for implementation in research and even more so as a clinical 
application. For this reason, we consider that robotic automation or 
sample size enrichment through parallel processing of multiple tissue 
microarrays may be considered in the future. Furthermore, as anti-
body panels can rapidly expand, standardizing quality-control metrics 
(that is, validation, secondary-only cycles and re-staining) will benefit 
potential PathoPlex users and the growing multiplexed imaging com-
munity. Moreover, PathoPlex enables the generation of datasets with 
sizes beyond current standards (>600 billion pixels), which present an 
analytical challenge that is currently best addressed by GPU accelera-
tion. In this context, we recognize the need to implement additional 
features to minimize user reliance on specialized hardware. Finally, our 
work raises important computational questions regarding the need to 
establish integrative ontology terms that combine multiple biological 
layers to facilitate broad interpretability. Moreover, the increasing 
technical requirements to transfer, share, store and process data at a 
scale will soon challenge available resources.
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Methods

Archival tissues
Human samples. FFPE tissues were collected and prepared according 
to institutional protocols. For Fig. 2, validation kidney biopsy speci-
mens from individuals with ANCA-associated CGN were obtained from 
the Hamburg Glomerulonephritis Registry (https://www.sfb1192.de/
en/register). For Fig. 3, control kidney specimens were obtained from 
nephrectomies performed on individuals with renal cell carcinoma in 
collaboration with the Division of Nephrology and Clinical Immunol-
ogy, RWTH Aachen University Medical Center. Kidney biopsy samples 
from individuals with DKD were obtained from the Department of Neph-
rology and the Department of Pathology Georges Pompidou European 
Hospital, Assistance Publique–Hôpitaux de Paris. For Fig. 4, nested pro-
tocol research kidney biopsy samples were obtained from volunteers 
(adolescents and young adults; n = 13) with T2D (12–21 years of age, T2D 
onset at <18 years of age, T2D duration 1–10 years and HbA1c < 11%) from 
the Renal HEIR and the IMPROVE-T2D studies. The participants were 
recruited from the Type 2 Diabetes and Metabolic Bariatric Surgery 
clinics at the Children’s Hospital Colorado Anschutz Medical Campus 
in Aurora. T2D was defined according to criteria of the American Dia-
betes Association plus the absence of glutamic acid decarboxylase, 
islet cell, zinc transporter 8 and/or insulin autoantibodies. The Renal 
HEIR and IMPROVE-T2D cohorts have intentionally harmonized study 
protocols. Medication use was recorded for all participants, and T2D 
treatment, including SGLT2 inhibitors, was determined by their medi-
cal provider. Normative kidney reference tissue from research biopsy 
samples were provided by five healthy young adult participants in the 
CROCODILE study (NCT04074668). For Supplementary Figs. 3 and 4, 
kidney biopsy samples were obtained from the Hamburg Glomerulone-
phritis Registry (https://www.sfb1192.de/en/register), liver specimens 
were provided by the Institute of Pathology, University Medical Center 
Hamburg-Eppendorf and brain specimens were provided by the Insti-
tute of Neuropathology, Freiburg University Hospital. Ethics approv-
als were obtained from the Institutional Review Board of the RWTH 
Aachen University Medical Center (EK-016/17), the local ethics commit-
tees of the Chamber of Physicians in Hamburg (PV4806) and Freiburg 
(Ethikvotum 10008/09), the Paris Ethics Committee (IRB00003888, 
FWA00005831) and the Colorado Ethics Committee (NCT03584217 
and NCT03620773). All tissue collections were performed in accord-
ance with the ethical principles stated by the Declaration of Helsinki.

Rodent samples. Archival FFPE tissues from experimental immune- 
mediated kidney disease and DKD were collected according to insti
tutional protocols of Hamburg, Melbourne, Heidelberg and Paris 
(N047/20, MMCB/2006/29, H2052-2071/23 and 358-86/609EEC, 
respectively). All experimental animals were housed at an ambient 
temperature of 20 ± 2 °C, humidity of 55 ± 10% and a light–dark cycle 
of 12–12 h. In brief, mouse crescentic nephritis was induced accord-
ing to an established protocol58. Rat tissues were obtained from two 
experimental set-ups32,59. Administration of a JNK inhibitor (CC930, 
dose of 60 mg kg–1 in 0.5% carboxymethyl cellulose) or vehicle alone was 
performed twice daily by oral gavage. The prevention study (therapy 
started at day 0 and animals were killed on day 1) was performed in 
outbred male Sprague–Dawley rats, as this strain is known to develop 
heavy proteinuria59. The therapeutic study (therapy started at day 7  
after disease induction and continued until animals were killed on 
day 28) was performed in inbred male Wistar Kyoto rats, which are 
prone to developing crescent formation. In both studies, proteinu-
ria measurements and histopathology were performed according to 
standardized protocols32,59. Btbr-Lepob/ob (Btbrob/ob) mice were obtained 
by crossing two heterozygous Btbrob/WT mice purchased from The Jack-
son Laboratory. This model shows morphological and physiological 
traits of DKD (that is, hyperglycaemia, albuminuria and glomerular 
hypertrophy). Wild-type littermates were used as controls.

Highly multiplexed imaging
Sample preparation. Depending on the number of samples, a suitable- 
sized glass surface was selected and coated with poly-d-lysine (1 mg ml–1;  
Merck, A-003-E) for 30 min or with APTES (Merck, 440140) 10% v/v 
in acetone (Merck, 320110) for 2 min and then dried overnight before 
mounting the sections. We initially used poly-d-lysine for all our experi-
ments but realized that significant lifting was progressively observed in 
all organs tested, including kidney, lung, colon, liver and brain. Lifting 
was initially mild in kidney samples but highly prominent in lung and 
colon specimens. For example, we observed partial but meaningful 
tissue lifting in 76 out of 498 ROIs (15%) by the end of 49 imaging cycles 
(Fig. 3). Furthermore, from 23 lung specimens analysed over 8 imaging 
cycles, lifting was already observed in 7 of them (30%). These observa-
tions across multiple tissue types led us to conclude that poly-d-lysine 
coating exhibits organ-dependent and time-dependent reliability limi-
tations, for which we recommend potential users to perform pilot  
studies in their organ of interest. However, after a comprehensive lit-
erature review, we identified APTES as an ideal coating agent. Using 
APTES, tissue lifting occurred in only 1% of kidney specimens (Fig. 4). 
After coating, FFPE tissues were cut at a thickness of 2–3 μm and care-
fully mounted on the coated glass surface (for example, µ-Slide 2-well 
glass-bottom (Ibidi, 80287), µ-Slide 8-well glass-bottom (Ibidi, 80827), 
Cell Imaging Plate 24-well glass-bottom (Eppendorf, 0030741021) or 
Nexterion glass (Schott, 1868767)). To prevent dissolution of the plastic 
components in the chambered coverslips and plates by the solvent used 
for deparaffinization, the walls of each well were protected by a seal 
of transparent silicone (Pattex) or a ring of solvent-resistant plastic, 
respectively.

The following steps were performed only once before initiating the 
sequence of cycles.

Deparaffinization and rehydration. Samples were treated with the 
following set of solutions: Histo-Clear (National Diagnostic, HS-200) 
three cycles of 10 min each, followed by an ethanol series consisting 
of three cycles of 100% ethanol (10 min), two cycles of 70% ethanol 
(5 min), one cycle of 50% ethanol (5 min) and finally, triple immersion 
in double-deionized water (ddH2O) for 5 min each.

Antigen retrieval. Samples were immersed in target retrieval solution 
pH 9 (Agilent, S236784-2) and heated for 15 min using a steamer (Braun; 
FS 3000). Afterwards they were left to cool down to room temperature 
for 30–60 min. Sections were then incubated for 15 min in EnVision 
FLEX wash buffer (Agilent, K800721-2).

Blocking. To limit nonspecific antibody binding, samples were incubated 
in a blocking solution consisting of 5% BSA (Merck, A7906) in Dulbecco’s 
PBS (Thermo Fisher Scientific, 14190094) for 1 h at room temperature. 
Afterwards, samples were washed three times for 5 min with wash buffer.

Elution. An elution buffer was prepared according to a previously  
described formulation15, which consisted of 0.5 M glycine (Carl Roth, 
3908.2), 3 M urea (Merck, U5378), 3 M guanidine hydrochloride (Merck, 
G4505) and 70 mM TCEP (Merck, C4706) mixed in ddH2O and adjusted 
to pH 2.5. Samples were incubated in elution buffer once for 5 min and 
then three times for 10 min on a shaker, followed by three washes of 
5 min with wash buffer.

NHS-E labelling. Whenever used as a reference for alignment, NHS-E 
(Thermo Fisher Scientific, A10168) diluted in PBS (1:400) was added 
to the samples for 1 h at room temperature. After 1 h, samples were 
washed three times for 5 min with wash buffer.

The following steps were completed for every subsequent cycle 
of staining and carried out in a light-free environment to prevent the 
crosslinking of antibodies.

https://www.sfb1192.de/en/register
https://www.sfb1192.de/en/register
https://clinicaltrials.gov/ct2/show/NCT04074668
https://www.sfb1192.de/en/register
https://clinicaltrials.gov/ct2/show/NCT03584217
https://clinicaltrials.gov/ct2/show/NCT03620773
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Primary antibody stain for indirect immunofluorescence. Samples 
were incubated with primary antibodies in EnVision FLEX antibody 
diluent (Agilent, K800621-2) for either 1 h at room temperature (Fig. 2) 
or overnight at 4 °C (Figs. 3 and 4), followed by three washes of 5 min 
with wash buffer. We provide confirmation of each staining pattern 
for every antibody in Supplementary Data 1 and 2. We also validated 
the practical feasibility of 1-h incubations at room temperature under 
non-multiplexed and multiplexed imaging conditions (Supplementary 
Fig. 11).

Secondary antibody and nuclear stain for indirect immunofluo-
rescence. Appropriately matched secondary antibodies (and directly 
conjugated primary antibodies) and the nuclear markers DAPI (Merck, 
D9542, 1:200) or DRAQ5 (Abcam, ab108410, 1:200) were mixed in anti-
body diluent and incubated for 1 h at room temperature. Afterwards, 
samples were washed three times for 5 min with wash buffer.

Imaging. An imaging buffer was prepared according to a previously des
cribed formulation15, which consisted of 700 mM N-acetyl-l-cysteine 
(Merck; A9165) mixed in ddH2O and adjusted to pH 7.4. Imaging buffer 
was added to samples for imaging and then washed three times for 
5 min with wash buffer before elution.

Antibody elution. Samples were incubated with elution buffer once 
for 5 min and then three times for 10 min on a shaker, followed by three 
washes of 5 min with wash buffer.

Thereafter, these steps were repeated until the desired number of 
antibodies was reached. Together, each cycle (using 1 h of incubation 
time for primary antibodies) can be completed in under 4 h of bench 
work. All cycles per experiment (antibodies and order) are described 
in Supplementary Table 7. Periodic acid Schiff (PAS) staining was per-
formed after the last immunofluorescence staining only in Fig. 3 fol-
lowing a standard protocol, including incubation with periodic acid 
(Th. Geyer, 3257.1) to oxidize the sections, followed by Schiff’s reagent 
(Merck, 1090330500) to label glycol-containing structures. The sec-
tions were then counterstained with Mayer’s haematoxylin (Agilent 
Technologies, S330930-2).

Primary antibodies and lectins
For human samples. ABCG2 (Santa Cruz, sc-377176; 1:200); ACE-2 
(R&D Systems, AF933; 1:200); adiponectin (Thermo Fisher Scien-
tific, MA1-054; 1:200); AIF (Cell Signaling Technology, 5318; 1:200); 
AKAP12 (Proteintech, 25199-1-AP; 1:600); AKR1B1 (Thermo Fisher Sci-
entific, PA5-82915; 1:500); AKR1C1 (Thermo Fisher Scientific, MA5-
32842; 1:200); alpha B-crystallin (Proteintech, 68001-1-Ig; 1:1,000); 
ANXA3 (Sigma-Aldrich, HPA013398; 1:200); αSMA–FITC conjugate 
(Sigma-Aldrich, F3777; 1:800); aquaporin 2 (Alomone Labs, AQP-
002; 1:400); β-actin (Sigma-Aldrich, A5441; 1:1,500); β-catenin (Ab-
cam, ab6302; 1:2,000); β-tubulin (Cell Signaling Technology, 2128; 
1:150); calbindin-D (Sigma-Aldrich, C9848; 1:3,000); calpain small 
subunit 1 (Abcam, ab92333; 1:200); calpastatin (Abcam, ab244460; 
1:200); calreticulin (Abcam, ab92516; 1:300); carbonic anhydrase 
IX (R&D Systems, AF2188; 1:50); catalase (Proteintech, 66765-1-Ig; 
1:300); CD3 (Abcam, ab11089; 1:200); CD4 (R&D Systems, AF-379-NA; 
1:100); CD8 (Agilent, M710301-2; 1:200); CD34 (Agilent, GA63261-2;  
1:50); CD41 (Thermo Fisher Scientific, PA5-79526; 1:500); CD42b 
(Abcam, ab227669; 1:100); CD44 (Cell Signaling Technology, 5640S; 
1:200); CD44–Alexa Fluor 647 conjugate (BioLegend, 103018; 1:200); 
CD68 (BioLegend, 916104; 1:200); CD79α (Agilent, M705001-2; 1:200); 
CD200 (R&D Systems, AF2724; 1:100); CD206 (Proteintech, 60143-
1-Ig; 1:2,000); FOS (Abcam, ab190289; 1:600); claudin 1 (Abcam,  
ab15098; 1:500); claudin 10 (Thermo Fisher Scientific, 38-8400; 
1:100); collagen I (Southern Biotech, 1310-01; 1:200); collagen III 
(Abcam, ab7778; 1:200); collagen IV (Abcam, ab6586; 1:200); colla-
gen V (Abcam, ab7046; 1:100); cubilin (R&D Systems, AF3700; 1:200), 

cyclin B1 (Cell Signaling Technology, 12231; 1:100); cytochrome c 
(Abcam, ab110325; 1:200); cytokeratin 7 (Agilent, GA61961-2; 1:300); 
cytokeratin 8 (R&D Systems, MAB3165-SP; 1:300); cytokeratin 19 
(Abcam, ab52625; 1:300); C1QA (Proteintech, 67063-1-Ig; 1:1,000); 
DACH1 (Sigma-Aldrich, HPA012672; 1:200); decorin (R&D Systems, 
AF143, 1:50); E-cadherin (R&D Systems, AF648; 1:200); EEA1 (Santa 
Cruz, sc-137130; 1:100); EHD3 (LSBio, LS-C133741; 1:150); endomucin 
(Sigma-Aldrich, HPA005928; 1:100); eNOS (Abcam, ab76198; 1:200); 
ezrin (Cell Signaling Technology, 3145S; 1:300); FAM189A2 (Thermo 
Fisher Scientific, PA5-63414; 1:200); fibronectin (Abcam, ab2413; 
1:200); FKBP51 (R&D Systems, AF4094-SP; 1:50); FXYD4 (Thermo Fisher 
Scientific, PA5-63570; 1:200); GFAP (Thermo Fisher Scientific, 14-9892-
82; 1:200); glucocorticoid receptor (Cell Signaling Technology, 3660; 
1:2,000); glutathione peroxidase 1 (R&D Systems, AF3798; 1:100); 
glutathione peroxidase 3 (R&D Systems, AF4199; 1:50); glycophorin A  
(R&D Systems, MAB1228-SP; 1:500); GRP78 (Proteintech, 11587-1-AP; 
1:200); HB-EGF (R&D Systems, AF-259; 1:100); histone H3 (Cell Sign-
aling Technology, 4499; 1:400); HMOX1 (Thermo Fisher Scientific, 
MA1-112; 1:200); HSD11B2 (R&D Systems, MAB8630-SP; 1:100); KIM-1 
(R&D Systems, AF1750; 1:200); IBA1 (Thermo Fisher Scientific, MA5-
27726; 1:500); IDH1 R132H (Dianova, DIA-H09, 1:200); IL-1RA (Abcam, 
ab124962; 1:200; specificity issues were raised by the provider after 
our experiments were completed. We kept it in the panel as none of our 
findings were affected and we did not perform any biological inferenc-
es on the basis of this antibody); iNOS (Thermo Fisher Scientific, MA5-
41652; 1:200); integrin-α1 (R&D Systems, AF5676; 1:300); integrin-α3 
(Proteintech, 66070-1-Ig; 1:2,000); integrin-β1 (Abcam, ab179471; 
1:800); Ki-67 (Agilent, M724029-2; 1:200); laminin (Abcam; ab11575, 
1:200); LAMP1 (Cell Signaling Technology, 9091; 1:300); LC3B (Cell 
Signaling Technology, 3868; 1:300); LEL-DyLight 649 conjugate (Vector 
Laboratories, DL-1178; 1:300); LTL biotinylated (Vector Laboratories, 
B-1325-2; 1:500); MCT1 (Thermo Fisher Scientific, MA5-18288; 1:300); 
MerTK (R&D Systems, AF591; 1:200); MPO (R&D Systems, MAB3174; 
1:200); nephrin (Progen, GP-N2; 1:150); neurofilament (Agilent, IR607; 
1:200); NOX4 (R&D Systems, MAB8158;, 1:300); NQO1 (Proteintech, 
67240-1-Ig; 1:2500); OLIG2 (Bio SB, BSB 2561; 1:200); p62 (Cell Signal-
ing Technology, 39749; 1:400); PCK1 (Proteintech, 66862-1-Ig; 1:400); 
PCNA (Abcam, ab29; 1:2,000); PDGFRβ (Cell Signaling Technology, 
3169; 1:100); PDI (Cell Signaling Technology, 45596S; 1:400); periostin 
(R&D Systems, AF3548; 1:150); phospho-AMPKα (Cell Signaling Tech-
nology, 2535; 1:200); pJUN (Abcam, ab32385; 1:200); phospho-ERK1/2 
(Cell Signaling Technology, 4370; 1:250); phospho-ezrin–radixin–
moesin (Cell Signaling Technology, 3726; 1:200); phospho-GSK3β 
(Cell Signaling Technology, 9323; 1:100); phospho-histone H3 (Cell 
Signaling Technology, 9701; 1:200); phospho-JAK2 (Thermo Fisher 
Scientific, MA5-42424; 1:100); phospho-ribosomal protein S6 (Cell 
Signaling Technology, 4858S; 1:300); phospho-SMAD2 (Thermo Fisher 
Scientific, 44-244G; 1:200); phospho-SMAD3 (Thermo Fisher Scientific, 
PA5-104940; 1:200); phospho-STAT1 (Cell Signaling Technology, 9167S; 
1:400); phospho-STAT3 (Abcam, ab76315; 1:200); PITX2 (R&D Systems, 
AF7388; 1:100); podocin (Sigma-Aldrich, P0372; 1:3,000); proteasome 
20S LMP7 (Abcam, ab3329; 1:400); RAB5A (Cell Signaling Technology, 
46449; 1:300); RAB7 (Abcam, ab137029; 1:200); RAP1GAP (Abcam, 
ab244259; 1:300); RCAS1 (Cell Signaling Technology, 12290; 1:200); 
sclerostin (Thermo Fisher Scientific, PA5-37943; 1:100); SIRT1 (Cell 
Signaling Technology, 8469; 1:200); SLC12A3 (Thermo Fisher Scien-
tific, MA5-41643; 1:200); SOD1 (Proteintech, 67480-1-Ig; 1:400); SOD2 
(Thermo Fisher Scientific, PA5-30604; 1:300); SRB1 (Abcam, ab217318; 
1:300); STAT2 (R&D Systems, MAB16661; 1:200); survivin (Cell Signal-
ing Technology, 2808; 1:300); talin 1 (Abcam, ab71333; 1:200); TRPC6 
(Abcam, ab233413; 1:200); ubiquityl-histone H2B (Cell Signaling Tech-
nology, 5546T; 1:200); uromodulin (R&D Systems, AF5144; 1:300); 
villin 1 (Abcam, ab52102; 1:200); vimentin (Progen, GP53; 1:200); von  
Willebrand factor (Agilent, A008229-2; 1:200); WT1 (Agilent, IS05530-2;  
1:200); and ZO-1 (Thermo Fisher Scientific, 61-7300; 1:250).



For mouse samples. ACE-2 (R&D Systems, AF933; 1:200); AIF (Cell 
Signaling Technology, 5318; 1:200); AKAP12 (Proteintech, 25199-1-AP; 
1:600); ANXA3 (Sigma-Aldrich, HPA013398; 1:200); αSMA-FITC con-
jugate (Abcam, F3777; 1:800); aquaporin 2 (Alomone Labs, AQP-002; 
1:400); calreticulin (Abcam, ab92516; 1:300); caspase 1 p20 (Thermo 
Fisher Scientific, PA5-99390; 1:200); CD3 (Abcam, ab1108; 1:200); 
CD4 (Abcam, ab183685; 1:200); CD41 (Thermo Fisher Scientific, 
PA5-79526; 1:500); CD42b (Abcam, ab227669; 1:100); CD44-Alexa 
Fluor 647 conjugate (BioLegend, 103018; 1:200); CD45 (Cell Sign-
aling Technology, 70257; 1:200); FOS (Abcam, ab190289; 1:600); 
collagen I (Southern Biotech, 1310-01; 1:200); collagen IV (Abcam, 
ab6586; 1:200); cytochrome c (Abcam, ab110325; 1:200); DACH1 
(Sigma-Aldrich, HPA012672; 1:200); E-cadherin (R&D Systems, AF648; 
1:200); endomucin (Santa Cruz, sc-65495; 1:200); fibronectin (Abcam, 
ab2413; 1:200); histone H3 (Cell Signaling Technology, 4499; 1:400); 
IBA1 (Thermo Fisher Scientific, MA5-27726; 1:500); IL-1RA (Abcam, 
ab124962; 1:200; specificity issues were raised by the provider after 
our experiments were completed. We kept it in the panel as none of 
our findings were affected and we did not perform any biological infer-
ences on the basis of this antibody); Ki-67 (Abcam, ab15580; 1:200); 
lamin B1 (Santa Cruz, sc-374015; 1:200); laminin (Abcam, ab11575; 
1:200); LTL biotinylated (Vector Laboratories, B-1325-2; 1:500); nephrin 
(Progen, GP-N2; 1:150); PCNA (Abcam, ab29; 1:2,000); PDI (Cell Signal-
ing Technology, 45596S; 1:400); phospho-ezrin–radixin–moesin (Cell 
Signaling Technology, 3726; 1:200); podocin (Sigma-Aldrich, P0372; 
1:3,000); podoplanin (R&D Systems, AF3244-SP; 1:200); synaptopodin 
(Synaptic Systems, 163 004; 1:200); tyrosine hydroxylase (Cell Signal-
ing Technology, 45648; 1:200); ubiquityl-histone H2B (Cell Signaling 
Technology; 5546T; 1:200); β-actin (Sigma-Aldrich; A5441, 1:1500); 
vimentin (Progen, GP53; 1:200); and von Willebrand factor (Agilent, 
A008229-2; 1:200).

Secondary antibodies and biotin-binding proteins
Secondary antibodies were diluted in a ratio ranging from 1:200 to 
1:300. The following antibodies were used: goat anti-guinea pig IgG 
Alexa Fluor 488 (Thermo Fisher Scientific, A-11073); goat anti-guinea 
pig IgG Alexa Fluor 555 (Thermo Fisher Scientific, A-21435); donkey 
anti-mouse IgG Alexa Fluor 488 (Thermo Fisher Scientific, A-21202); 
donkey anti-mouse IgG Alexa Fluor 555 (Thermo Fisher Scientific, 
A-31570); donkey anti-mouse IgG Alexa Fluor 647 (Thermo Fisher Sci-
entific, A-31571); donkey anti-rabbit IgG Alexa Fluor 488 (Thermo Fisher 
Scientific, A-21206); donkey anti-rabbit IgG Alexa Fluor 555 (Thermo 
Fisher Scientific; A-31572); donkey anti-rabbit IgG Alexa Fluor 647 
(Thermo Fisher Scientific, A-31573); donkey anti-goat IgG Alexa Fluor 
488 (Thermo Fisher Scientific, A-11055); donkey anti-goat IgG Alexa 
Fluor 555 (Thermo Fisher Scientific, A-21432); donkey anti-rat IgG Alexa 
Fluor 488 (Thermo Fisher Scientific, A-21208); donkey anti-rat IgG Alexa 
Fluor 555 (Thermo Fisher Scientific, A78945); donkey anti-sheep IgG 
Alexa Fluor 488 (Thermo Fisher Scientific, A-11015); donkey anti-sheep 
IgG Alexa Fluor 555 (Thermo Fisher Scientific, A-21436); streptavidin 
Alexa Fluor 488 (Thermo Fisher Scientific, S11223); and streptavidin 
Alexa Fluor 555 (Thermo Fisher Scientific, S21381).

Immunofluorescence in rat and human specimens
FFPE tissues were cut at a thickness of 2–3 μm, carefully affixed onto 
Superfrost Plus adhesion slides (Epredia, J1800AMNZ) and dried over-
night at 37 °C. Subsequently, samples underwent sequential treat-
ment involving triple immersion in xylene (10 min each) followed by an 
ethanol series (5 min each) consisting of three rounds of 100% ethanol, 
two rounds of 70% ethanol, one round of 50% ethanol and finally triple 
immersion in ddH2O (5 min each). The immunostaining procedure 
mirrored the one used for PathoPlex samples but substituted 5% BSA  
with SuperBlock blocking buffer (Thermo Fisher Scientific, 37535) 
during the blocking step. Finally, after immunostaining, samples were 
mounted using ProLong Gold (Thermo Fisher Scientific, P36930).

Microscopy systems
For Fig. 2, images were acquired using a LSM 800 confocal micro-
scope plus AiryScan (Zeiss, ZEN2.6) with the optimized ×63 objective  
(NA: 1.4). For Fig. 3, a Thunder Imager Live Cell and 3D assay (Leica Micro
systems) fitted with a ×40 (NA: 1.10) or ×63 (NA: 1.40) objective was 
used to acquire images, which were processed using a computational 
clearing algorithm (Leica Microsystems)60. The positional data of 
the imaged region for each sample were stored in Leica Application 
Suite X software (v.3.7.6, Leica Microsystems), which ensured con-
sistent capture of the identical location for each cycle. For Fig. 4, a 
CellDiscoverer 7 with LSM 900 (Zeiss, ZEN 3.5 System) and AiryScan 
Multiplex fitted with a ×50 (NA: 1.20) objective and ×0.5 zoom was used 
to acquire images. Supplementary Table 8 summarizes the approximate 
microscopy times per experiment, considering image acquisition as 
the most important contributing factor. However, there are additional 
practical contributors, including chamber repositioning, movement 
delay between the ROI and data storage, which should be accounted 
for during implementation.

3D printing
Tinkercad (Autodesk; https://www.tinkercad.com) was used to cre-
ate designs for the 3D-printed parts. The design of the headpiece was 
adjusted on the basis of a previously proposed design61. The BLTouch 
Cover Size Fixed was designed by louise_tguk on Thingiverse (https://
www.thingiverse.com/thing:5013058). The chamber frame, the table 
for the chamber frame, the corner frame, the stage, the solution con-
tainer, stands 1 and 2 for the solution container, the discard container, 
the base plate, the headpiece, the alignment guide, the BLTouch cover 
size fixed and the BLTouch cover box were printed using PLA filament 
1.75 mm (Flashforge). The inner frame was printed using NinjaFlex TPU 
filament 1.75 mm (NinjaTek). The dewaxing container, the dewaxing 
container holder, the dewaxing carrier and the carrier handle were 
printed using PolyLite PETG filament 1.75 mm (Polymaker). An Ender-5 
Plus printer (Creality) was used. The following settings were imple-
mented in Ultimaker Cura (v.4.13.1; Ultimaker): nozzle size, 0.40 mm; 
layer height, 0.20 mm; wall thickness, 2.0 mm (PLA and PETG for con-
tainers), 1.2 mm (PLA and PETG for others) and 0.80 mm (TPU); top and 
bottom thickness, 2.0 mm (PLA and PETG for containers), 0.8 mm (PLA 
and PETG for others and TPU); nozzle temperature, 190 °C (PLA) and 
235 °C (PETG and TPU); bed temperature, 69 °C (PLA), 75 °C (PETG) and 
50 °C (TPU); fan speed, 100%; print speed, 60 mm s–1 (PLA), 40 mm s–1 
(PETG) and 20 mm s–1 (TPU); first-layer print speed, 20 mm s–1 (PLA), 
15 mm s–1 (PETG) and 10 mm s–1 (TPU); infill, 20% and zigzag; build-plate 
adhesion, brim. Masking tape was used to create an adhesive surface 
on the bed.

3D printer-based liquid-handling system
To prepare for the use of the liquid-handling system, several preliminary 
steps were required. These encompassed manual deparaffinization, 
antigen retrieval and mounting the Nexterion glass with sample sec-
tions onto the chamber frame. The deparaffinization process described 
above required the use of a dewaxing container, a container holder, a 
dewaxing carrier and carrier handle printed with PETG. After comple-
tion of dewaxing, the Nexterion glass with sections underwent antigen 
retrieval and washing procedures as outlined above. After washing, 
any excess wash buffer present at the edges of the glass was carefully 
removed. The Nexterion glass was then inserted into the bottom of the 
chamber frame, and its edges were securely sealed using silicone. It was 
crucial to allow the silicone to dry for a minimum of 15 min. To prevent 
the samples from drying out during this process, regular application of 
wash buffer to the samples was necessary while ensuring that the sili-
cone did not become excessively wet. Once the silicone was completely 
dry, the inner frame was positioned in the frame and samples were 
covered with wash buffer. The following process used a liquid-handling 

https://www.tinkercad.com
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system based on a 3D printer (Ender-5 Plus). For light shielding, the 3D 
printer was covered by a 3D Printer enclosure (Creality). The window 
on the front of the enclosure needed to be covered with an opaque 
material to shield the inside from light. The BLTouch built into the 
Ender-5 Plus was also partially shielded by attaching the BLTouch Cover 
Size Fixed. Our liquid-handling system was based on three different 
g-codes: (1) ‘BSA to Elu.gcode’, which automated the process from 
blocking with BSA during the initial cycle to elution and the pouring of 
imaging buffer; (2) ‘1st Ab to Img.gcode’, which automated the process 
of washing the imaging buffer, incubating the primary and second-
ary antibodies and pouring the imaging buffer; and (3) ‘Elu to Img.
gcode’, which automated the process of washing the imaging buffer, 
elution and pouring the imaging buffer. The settings of the solution 
containers corresponding to each g-code are shown in Supplementary 
Table 9. The solution container stand consists of numbered sections 
ranging from 1 to 12, which are designated for container installation. 
Each solution-filled container was placed in the section with the cor-
responding number on the stand. The corner frames were inserted into 
the holes at the four corners of the table. Solution container stands 1 
and 2 with solution containers, the discard container, the stage, the 
table and the chamber frame were placed on the base plate. Specifi-
cally, solution container stand 1 needed to be positioned at the front 
side of the base plate. To prepare for the operation of the 3D printer, 
the print bed was removed and autolevelling was disabled. Once each 
g-code was initiated, after calibrating the home position, the printer 
head moved slightly backward and the printer stage was lowered. The 
printer then paused for 60 s before resuming operation. During this 
pause, the headpiece and BLTouch cover box were attached to the 
printer head and BLTouch, respectively, and the base plate, complete 
with all the necessary components and solutions, was placed on the 
printer stage using the alignment guide. Once installation was com-
plete, the enclosure was completely closed. The washing, staining and 
elution processes were then automatically performed by pushing down 
on the solution containers and table with a rod in the headpiece. The 
BSA to Elu.gcode, 1st Ab to Img.gcode and Elu to Img.gcode programs 
were completed in approximately 2 h 15 min, 3 h 10 min and 1 h 15 min, 
respectively. The dimensions of the chamber frame match those of 
ready-made plates used for imaging cultured cells. For an example of 
how this solution works, see Supplementary Video 1.

PEC cell line for migration assays
Primary PECs were thawed and cultured at 5% CO2 and 37 °C in endo
thelial cell basal medium (ECBM; PromoCell, C-22210) and 20% FBS 
(Thermo Fisher Scientific; 10500064) until 70%–80% confluence. 
The maintenance culture was passaged three times a week by gentle 
trypsinization using trypsin-EDTA 0.05% (Thermo Fisher Scientific, 
25300054).

Migration assays were performed using Culture-Insert 2 wells in 
μ-Dish 35 mm (Ibidi, 81176). Each well was seeded with 30,000 PECs 
in 100 μl ECBM without supplements and with 1% FBS and incubated 
overnight. The insert was then removed, which created a gap of 500 μm 
between cells. PECs were stimulated with either PDGF-BB (Thermo 
Fisher Scientific, 315-18-50UG, per manufacturer’s recommendations 
of 2.0 ng ml–1) or with PDGF-BB and tanzisertib HCl (CC-930; Selleck 
Chemicals, S8490) or PDGF-BB and vehicle, in this case DMSO (Merck; 
D2650). All combinations were diluted using ECBM without supple-
ments and with 1% FBS. Images were taken every 10 min for 23 h using 
the Personal Automated Lab Assistant (Leica Microsystems). Areas of 
migration were measured using Fiji.

Scratch assays were performed using glass-bottom FluoroDishes 
seeded with 50,000 cells in 2 ml ECBM with 1% FBS at 5% CO2 and 37 °C. 
After 48 h, cells reached 90% confluence and were ready for the experi-
ment, in which a sterile plastic 1,000 μl micropipette tip was used to 
scratch the cell monolayer to create a wound of around 1,000 μm. 
Next, the cell monolayer was gently washed with ECBM with 1% FBS 

to remove dead cell debris. To use the nucleus for tracking, PECs were 
stained with 80 nM Hoechst 33342 (Thermo Fisher Scientific) for 20 min 
at 5% CO2 and 37 °C and washed once with Dulbecco’s PBS (Thermo 
Fisher Scientific, 14190094). Afterwards, 2 ml fresh ECBM with 1% FBS 
was added for image acquisition. Time-lapse imaging was performed 
using a Leica DMi8 M/C/A inverted microscope equipped with ×10 
Plan Apo objective (Leica Microsystems). Images at both sides of the 
wound were acquired every 5 min with an ORCA-Flash4.0 digital cam-
era (Hamamatsu Photonics) using MetaMorph (v.7.10.3.279) software 
(Molecular Devices). To visualize the wound, adjacent positions were 
stitched using the Stitching plugin from Fiji ImageJ. Tracking of the 
first 8 h of migration was performed with the TrackMate plugin from 
Fiji (v7.10.2) and custom-made scripts62. Mean square displacement 
was calculated using the CelltrackR package63.

Transmission electron microscopy
For electron microscopy with immunogold labelling, kidneys were 
removed, cut into 2-mm-thick razor blade sections and immersion-fixed 
in freshly prepared 4% paraformaldehyde for 24 h at 4 °C. The sam-
ples were then resliced into 50-µm-thick sections using a vibratome. 
Vibratome sections were incubated with the primary antibody against 
TRPC6 (rabbit, final concentration 1:200). After washing and overnight 
incubation at 4 °C with the secondary antibody, goat anti-rabbit 1:100 
(Nanoprobes), sections were silver enhanced with HQ silver (Nano-
probes) for 8 min in the dark at 4 °C, washed in 0.1 M phosphate buffer, 
treated with OsO4 (0.5% for 45 min at room temperature) and stained 
with uranyl acetate (1% w/v in 70% v/v ethanol, 30 min at room tem-
perature). After dehydration, sections were embedded in epoxy resin, 
Durcupan ACM (Sigma-Aldrich). Next, 50-nm ultrathin sections were 
cut using an UC6 ultramicrotome (Leica Microsystems) and analysed 
using an 80 kV Zeiss Leo 910 transmission electron microscope.

Imaging mass cytometry
Tissue sections were dewaxed in xylene and rehydrated, followed by 
staining using a standard protocol for immunohistochemistry accord-
ing to the protocol by Fluidigm. Nuclei were labelled with iridium, 
and TRPC6 antibody (Abcam, ab105845) was coupled to 174Yb heavy 
metal. Data acquisition was performed on a Helios time-of-flight mass 
cytometer (CyTOF) coupled to a hyperion imaging system (Fluidigm). 
Areas for ablation were selected on the basis of haematoxylin and eosin 
staining performed on an adjacent slide. All data were collected using 
the commercial Fluidigm CyTOF software (v.01).

Pathological examination of crescentic nephritis
Images were evaluated by two expert pathologists in a blinded fashion 
to define disease states as either control, acute or crescentic phase. 
Next, multiple metrics were also calculated in a blinded fashion, includ-
ing tubular injury score (0–3+), cell numbers per cross section, percent-
age of cellular crescents and percentage of tubular injury.

Bulk RNA-sequencing sample preparation and analysis
Glomeruli were isolated at day 4 after NTS treatment and in control 
groups after kidney perfusion with Dynabeads (Invitrogen), preserved 
in RNAlater and stored at −80 °C until processing. For preparation of 
nuclei, nuclei were extracted from the isolated glomeruli according 
to a modified protocol64. The nucleus suspension was incubated on 
the magnet to remove magnetic beads used for the isolation of the 
glomeruli. Nuclei were mixed with RLT buffer (Qiagen) and frozen at 
−80 °C. Total nuclei RNA was extracted using RNeasy Micro kits (Qiagen) 
according to the manufacturer’s recommendations.

Bulk RNA-sequencing data were processed using our previously 
published open-source Snakemake65 workflow for RNA-sequencing 
analysis with pytximport66. In brief, raw FASTQ files provided by the 
sequencing facility were assessed for quality with FastQC67, followed 
by trimming of adapter sequences and removal of low-quality reads 



with fastp68. Next, processed sequences were selectively aligned to 
a reference gentrome based on Ensembl GRCh38 (release 112)69 and 
transcript counts were quantified with Salmon70. We used pytximport 
to estimate gene counts from transcript abundances with counts_from_
abundance set to length_scaled_tpm. Differentially expressed genes 
were identified using PyDESeq2 (ref. 71) with log2-transformed fold 
shrinkage. Genes were considered differentially expressed if their 
log2-transformed fold change value was greater than 0.5 or lower than 
−0.5 and their false-discovery-rate-adjusted P value was less than 0.01. 
The results from PyDESeq2 were used to infer transcription factor 
activity based on the CollecTRI72 gene regulatory network reference 
with decoupler-py73 univariate linear modelling.

Python library for spatial proteomics
Commonly used functions for the analysis of PathoPlex imaging data 
were combined into the spatiomic Python package. spatiomic com-
prises different submodules that facilitate data loading, image registra-
tion, image preprocessing, dimensionality reduction, spatial analyses, 
neighbourhood graph construction and clustering. In this section, 
we describe the architecture of this software package and the general 
functionality it includes. Parameter choices and detailed workflows 
are described in subsequent sections. Both the computational analysis 
library and the code for all analyses are available online through GitHub 
and Zenodo, as detailed in the Code and Data availability sections.

spatiomic comes with support for multiple common microscopy 
imaging formats and flexibly supports AnnData74 objects, NumPy75 
arrays and pandas DataFrames76. It uses cuml, cucim and cugraph from 
the RAPIDS ecosystem21 as well as cupy77 for GPU-accelerated compu-
tations, which enables analyses to scale to billions of data points with 
affordable hardware with a time requirement of just minutes to hours 
depending on dataset size. The library was extensively unit-tested, 
typed and documented. Documentation, including a full example note-
book detailing how to apply spatiomic analyses to PathoPlex data, is 
available at: https://spatiomic.org/.

To enable modular composition of analyses, spatiomic encompasses 
several submodules as described below.

Data submodule. The data.read class offers a method for parsing 
common microscopy imaging formats such as .tiff, .lif and .czi files 
through readlif, tifffile and aicspylibczi bindings. A random subsample 
of imaging data can be obtained through the data.subsample class. 
The submodule further contains functionality to subset multichannel 
images to a specified list of channels and to export data to AnnData74 
objects, which enables interoperability with the scverse23.

Process submodule. The process submodule offers common func-
tions for preprocessing imaging data. This includes the clip class for 
channel-wise histogram clipping to either absolute values or percen-
tiles, the zscore class for channel-wise z scoring and the normalize class 
for the channel-wise scaling of intensity values to a given range. It also 
includes the register class, which exposes different methods for image 
registration and registration evaluation.

Dimension submodule. Dimensionality reduction is an important 
step in many single-cell and spatial omics analyses. spatiomic provides 
classes that help reduce the dimensionality of both the channel dimen-
sion and the data point dimension. The former is possible through the 
integration of the dimension.pca, dimension.tsne and dimension.umap 
classes, which internally rely on the Python packages scikit-learn78, 
umap-learn79 and cuml21. The latter is achieved by incorporating the 
dimension.som class, which enables GPU-accelerated training of SOMs 
thanks to an XPySOM22 integration. To train SOMs with the Pearson cor-
relation as distance metric, we extended XPySOM with a CuPy-based 
function, which is available from GitHub (https://github.com/com-
plextissue/xpysom).

Neighbour submodule. The neighbour submodule exposes classes 
that enable the creation of k-nearest and shared nearest neighbour 
graphs, which facilitates the construction of similarity-based graphs 
for graph clustering and distance-based neighbourhood graphs for 
spatial analysis.

Cluster submodule. Clustering algorithms enable the unsupervised 
identification of similar (protein co-expression) patterns, which facili-
tates automatic partitioning of complex signals into biologically mean-
ingful groups. spatiomic.cluster includes classes for GPU-accelerated 
clustering with the Leiden graph clustering algorithm24, k-means and 
hierarchical agglomerative clustering.

Spatial submodule. The spatial submodule incorporates functions 
for the explorative analysis of spatial distribution patterns in both 
immunofluorescence and clustered images, including global and local  
univariate and bivariate measures of spatial distribution based on 
PySAL80. It further includes code for efficient join count quantifica-
tion and spatial vicinity graph construction and interoperability tools 
for use together with PySAL80, thereby ensuring compatibility with a 
wide range of spatial statistics applications81.

Tool submodule. The tool submodule contains utility functions for 
additional evaluation or analysis. It enables quantification of cluster 
abundance and identification of significantly differentially expressed 
clusters, calculation of mean immunofluorescence marker intensities 
per cluster and identification of cluster-defining immunofluorescence 
markers.

Plot submodule. spatiomic includes plotting functions based on mat-
plotlib82 and seaborn83 that facilitate visualizing common plots, for 
example, image registration metrics, SOM training-quality metrics, 
cluster projections, spatial adjacency graphs as well as cluster contribu-
tor histograms and volcano plots.

System and time requirements. spatiomic is designed to be flexible 
and adaptable to the scale of multiplexed imaging data and available 
computing resources. The only mandatory system requirement is  
Python (v.3.10) or higher. Although many individual functions run in 
seconds, and a complete exemplary workflow (excluding data down-
load) can be completed in less than 3 min on a standard personal laptop, 
spatiomic substantially benefits from CUDA-enabled GPUs compatible 
with the RAPIDS ecosystem for larger datasets. At the scale of analysis 
presented in this paper, three specific steps took several hours to com-
plete on a single GPU. First, image registration time scales linearly with 
the number of ROIs acquired and imaging cycles. Second, the time for 
SOM training scales linearly with the training sample size, the number 
of training iterations and the number of SOM nodes. Finally, the trans-
fer of cluster labels from the trained SOM to all images in the dataset 
scales linearly with the number of acquired ROIs and the number of 
SOM nodes. Therefore, users are encouraged to evaluate and test para
meter choices to optimize performance for their specific experimental  
design. For example, smaller, more homogeneous datasets may benefit 
from smaller training subsamples and SOM sizes, which will result in 
faster analysis. Moreover, users should select hardware that is appropri-
ate for their analytical needs and desired turnaround time.

Image registration and autofluorescence correction
Image registration is the first step of every computational analysis of 
PathoPlex images. Given the cyclical nature of image acquisition and 
imperfect repositioning of standard microscopy systems, aligning 
signals from all imaging cycles to a common reference is a prerequisite 
for joint analyses.

We propose two different ways of aligning iteratively acquired immu-
nofluorescence images: on the basis of either a nuclear or a pan-protein 
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stain as a registration reference. Although nuclear markers are widely 
used for registration, a pan-protein marker enables the alignment of 
images and facilitates the delineation of the portion of the image cov-
ered by tissue, thereby lowering the computational burden for down-
stream processing and reducing the cluster annotation time by masking 
the empty background. To combat autofluorescence due to red blood 
cells (RBCs) in samples with abundant RBCs, we further used a RBC 
marker to specifically remove this source of noise. Detailed parameter 
choices and method descriptions are provided for the respective exper-
imental datasets in the subsequent subsections. Differences between 
datasets, such as the use of NHS-E for foreground segmentation and 
the use of glycophorin A for erythrocyte segmentation in selected 
datasets, represent the iterative improvement of PathoPlex, with earlier 
experiments informing strategies for further scaling in subsequent 
experiments. In particular, the preprocessing steps described in this 
section refer only to the transformation of nuclear staining or NHS-E for 
registration purposes and do not indicate the transformation of marker 
intensities as used for further analysis, unless indicated otherwise.

Mouse CGN experiment. To align cycles from the CGN mouse dataset 
(Fig. 2), nuclear reference images (DAPI in cycles 1–17, DRAQ5 in cycles 
18–42) were clipped image-wise to the range between the 1st and 99.9th 
intensity percentiles. Intensity values were z scored and normalized to 
the range 0–1. Gaussian blur with a sigma of 1 was then applied to the 
nuclear reference images to reduce noise and to improve comparabil-
ity across cycles, followed by histogram matching of all subsequent  
images to the histogram of the reference image from the first cycle. 
These processed nuclear images were then aligned to the processed 
refence nuclear image obtained in the first imaging cycle. To this end, 
all intensity values below the 70th intensity percentile were set to 0 in 
both the reference nuclear staining and the staining to be aligned to 
increase the contrast between the nuclei (constituting less than 30% 
of the imaged pixels in all images) and the unstained background, fol-
lowed by x and y offset detection between images with the phase_cross_ 
correlation function of the Python package scikit-image84, as included 
in spatiomic.process.register. All channels were projected onto the 
first cycle on the basis of the detected offset. Finally, the maximum 
offset detected between any two cycles was subtracted from all sides 
of all registered images, which resulted in square-sized and equally 
sized images.

Human advanced DKD experiment. For the study of specimens from 
individuals with advanced DKD and from individuals without diabetes 
(Fig. 3), all images were first corrected for camera distortion using the 
remap function of OpenCV85 by linear interpolation based on a reference 
image of a micrometre-scale microgrid captured with the respective 
microscope objective. Histogram matching of the nuclear channel for 
each cycle to the reference nuclear channel of the first cycle was used 
to increase the similarity between nuclear images. Following that, the 
phase cross-correlation offset detection, as implemented in spatiomic.
process.register.get_shift, was used to align all images to the first imag-
ing cycle on the basis of the x and y offsets between the nuclear (DRAQ5) 
channels. For each field of view (FOV), the overlap across all cycles was 
calculated and the images were cropped to the respective overlap area.

Human early diabetes treatment experiment. This experiment (Fig. 4) 
leveraged NHS-E, a pan-protein stain, as a registration reference. To 
facilitate registration and further image processing, we applied local 
mean downscaling with a 2 × 2 pixel kernel to all imaging data. We then 
clipped the NHS-E histogram to the range between the 1st and 95th 
percentiles and normalized the NHS-E intensity to the range 0–1. After 
NHS-E preprocessing, Gaussian blurring with a sigma of 1, thresholding 
at the 70th percentile and phase correlation-based offset detection with 
an upsampling factor of 5 were applied to identify the x and y offset 
between NHS-E images from all cycles, using the first imaging cycle as 

the reference. After correcting for this offset, SIFT-based homography 
detection86 was performed and images from subsequent cycles were 
warped to match the reference from the first cycle. Pre-registration 
and post-registration structural similarity index metrics (SSIMs) were 
evaluated for all registration pairs. Manual registration checks were 
performed for images with the following criteria: the SSIM decreased 
following registration; the SSIM after registration was lower than 0.3; 
any offset was greater than 300 pixels; or the SSIM after registration 
was lower than 0.8 and the SSIM improvement lower than 0.05. To 
account for RBC-derived autofluorescence, glycophorin A intensi-
ties across all images were clipped to the range between the 90th 
and 99.5th percentiles, and Otsu thresholding was used to binarize 
signals and to create RBC masks. Masks were smoothed through the 
removal of small objects <72 pixels, two iterations of binary dilation 
and hole filling. To remove signals from empty background without 
tissue, processed NHS-E signals were combined across all cycles by 
minimum projection (thus excluding areas with lifting at any point) 
for each image and Otsu thresholding was used to binarize signals. All 
images were then restricted to the area covered by the NHS-E mask but 
not included in the RBC mask. Autofluorescence correction was per-
formed using secondary-antibody cycles acquired repeatedly through-
out the experiment. For each primary-antibody imaging cycle, tissue 
autofluorescence was estimated by interpolating the signals from the 
nearest preceding and subsequent secondary-only cycles at the same 
wavelength, thereby accounting for minor fluctuations in autofluores-
cence. This estimated autofluorescence was then subtracted from the 
corresponding channels with lower intensity clipping at zero.

Other immunofluorescence samples. To achieve reliable and accurate 
results, we used an iterative registration framework called Elastix87 
and a Python wrapper package called PyElastix88. To improve contrast 
and to mitigate the effects of varying signal strength across cycles, 
we applied histogram equalization to the nuclear channels. We also 
reduced the computational load by rescaling the images by a factor 
of 0.25. The first cycle was established as a reference, and subsequent 
cycles were aligned to it using normalized correlation as the optimi-
zation metric. The registration process involved iterative steps at six 
different resolution levels, with 1,000 iterations per level. We used the 
rigid Euler transform to account for x and y offsets as well as rotation. 
Further preprocessing was performed for brain samples with reduced 
contrast by truncating pixel intensity values to high percentiles. This 
approach focused on the sparsely available nuclei. All registrations were 
manually verified, and if individual registrations were unsuccessful, 
minor adjustments were made to the downsampling factor, spatial 
sample number or iteration number until satisfactory registration was 
achieved to maximize image inclusion.

Alignment of PAS staining to immunofluorescence images. Owing 
to differences in size and lens characteristics between the immunofluo-
rescence and PAS images, additional processing steps were required 
to align the two modalities. First, lens-specific calibration matrices 
were used to remove optical distortions as described above for the  
human advanced DKD experiment. Next, the PAS images were rescaled 
to match the physical pixel resolution of the immunofluorescence  
images. As only greyscale images were used for registration, the PAS  
images were converted from RGB to greyscale using the OpenCV85 
Python library. For the greyscale version of the immunofluorescence 
image stack, three structural marker channels (DRAQ5, LTL and col-
lagen IV) were selected and combined into a single channel using 
weighted addition. To enhance visual similarity between the greyscale 
PAS and immunofluorescence variants, the PAS image was inverted, 
and histogram equalization was applied to both the PAS and immuno-
fluorescence images. To establish an initial alignment for registration 
of the immunofluorescence onto the PAS image, the PAS images were 
centrally cropped to match the smaller size of the immunofluorescence 



images (3,000 × 4,000 versus 2,048 × 2,048 pixels, respectively). Once 
the x and y offsets in this subregion were determined by the registra-
tion algorithm, the original multichannel immunofluorescence images 
were transformed accordingly. The full-size RGB PAS images were also 
cropped to the size of the transformed immunofluorescence images 
to facilitate overlaying of the registration results.

Suitability of registration reference markers. In a subsequent in-
vestigation, our goal was to evaluate the suitability of DAPI, DRAQ5 
and NHS-E as registration reference labels. To achieve this goal, we 
acquired images of all three marker channels for each imaging spot 
in each cycle. For each image requiring registration, transformations 
based on each of the three markers were independently computed. 
The corresponding DRAQ5 channel of each image was adjusted to  
account for the detected transformation, and the structural similarity 
index measure was computed by comparing it to the DRAQ5 chan-
nel of the reference cycle. This approach ensured that the different 
registration references could be compared using DRAQ5 as a qual-
ity metric, which consistently provided reliable and high-contrast  
images. All registrations were manually reviewed, and in instances 
where registration was not successful, minor adjustments were made 
to the downsampling factor, the spatial sample number or the iteration 
number until a satisfactory registration was achieved. This process 
ensured that no image had to be discarded and that high-quality align-
ments were obtained.

Quality control of automated elution
Complete elution of bound antibodies between cycles is key to 
the cyclic acquisition of images. To quantify elution efficiency, 
secondary-antibody-only staining cycles were acquired throughout the 
experiments to establish a baseline autofluorescence profile. For each 
primary-antibody staining, the 50th and 99.95th intensity percentiles 
were quantified and compared with the secondary-antibody-only cycles 
acquired at the same wavelength using secondary antibodies directed 
against the host species of the primary antibody. For instances when 
at least one value was equal to or lower than any intensity from the 
secondary-antibody-only cycles (as may be the case for non-abundant 
markers, for example, markers for rare immune cells or phospho-
rylation states), the images were manually re-evaluated to include  
specific staining.

Generation and interpretation of protein co-expression clusters
Protein co-expression clusters are the standard output of PathoPlex 
analyses with spatiomic, which captures specific co-expression patterns 
of different proteins at the pixel level. These patterns are jointly identi-
fied for all imaging data from each respective PathoPlex experiment, 
which results in a consistent clustering across all samples and facilitates 
comparisons of spatial expression or co-expression of immunofluores-
cence markers. Identification of these pixel-level clusters is a multistep 
process that consists of weighted random subsampling of the data to 
ensure equal representations of all desired variables, signal preprocess-
ing, training of a SOM to identify representative co-expression signals 
and finally similarity graph-based clustering. Once clusters were identi-
fied, their constituting signals were compared to all other clusters and 
projected in space to infer the biological processes they represent. Last, 
cluster abundance was quantified and compared across conditions to 
delineate regulated signals. We applied this overall concept to each 
experimental dataset with parameters specified as described in the 
subsequent subsections.

Weighted random subsampling. To limit bias due to different data 
sizes between samples and to reduce the computational burden 
of pixel-based clustering, a weighted subsample of approximately  
5 million (10 million for the early human diabetes dataset) random  
pixel positions per imaging plate were sampled. For each imaging 

plate (n = 1 for all experiments, except for the human advanced DKD 
experiment, for which n = 2 imaging plates were used), the number of 
subsampled pixel positions was equally distributed across all disease 
states, and for each disease state, all samples were equally weighted. 
Finally, each FOV of a given sample was given the same weight in the 
subsample. For the early human diabetes treatment dataset, the sub-
sample also considered equal numbers of pixels from periglomerular, 
glomerular and tubular images.

Histogram clipping and normalization. Immunofluorescence mark-
ers differ in intensity range and abundance, which therefore requires 
preprocessing steps to improve comparability. On the basis of weighted 
random subsamples, histogram clipping and range normalization 
classes contained in the spatiomic.process submodule were fitted. After 
channel-wise fitting of the classes on the random weighted subsample, 
all channels of all images of each respective dataset were transformed 
according to the established clipping limits and normalization and scal-
ing settings. For mouse samples and the advanced DKD experiment, 
histogram clipping was performed based on the 50th (lower) and 99.7th 
(upper) percentiles for each respective marker in the subsample. Ow-
ing to the extensive marker panel for the larger early human diabetes 
treatment experiment, coupled with the increased sensitivity of the 
confocal microscopy system used for this dataset, histogram clipping 
was performed based on absolute intensity thresholds established 
by human expert annotation in a condition-blind fashion, with each 
marker evaluated on random patches extracted from random images, 
followed by normalization of the clipped images.

SOM fitting. Pixel-based clustering was used to isolate groups of simi-
lar immunofluorescence marker signals (clusters), which formed the 
basis of all downstream analyses. The first step towards this clustering 
is the fitting of SOMs to the dataset to reduce data-point dimensional-
ity and to ensure computational feasibility of graph clustering as well 
as to improve representation of signals that are relatively rare in the 
training data. For each imaging plate (n = 2 for the human advanced 
diabetes experiment, n = 1 for all other datasets), a SOM was trained 
on the corresponding weighted random subsample. The SOM was 
initialized with a grid size of 500 × 500 nodes (400 × 400 for the early 
diabetes experiment) and used the Euclidean distance metric for the 
mouse CGN dataset and the advanced human diabetes dataset with the 
cosine similarity metric used for the early human diabetes experiment. 
The training process used spatiomic.dimension.som. For human sam-
ples, a final learning rate of 10−4 and a final Gaussian neighbourhood 
sigma of 10−3 (3 × 10−3 for the early human diabetes dataset) were used. 
For the mouse samples, the default settings for the learning rate and 
neighbourhood size were used. The training process was repeated for 
50 iterations for all datasets.

Graph clustering and batch integration. On the basis of the repre-
sentation of the signals contained in each experiment as provided by 
the respective SOM nodes, we used Leiden graph clustering to identify 
clusters of protein co-expression patterns and applied the clusters to 
all pixels from all images for each dataset. First, the similarity-based 
neighbourhood graph of SOM nodes was built using spatiomic.neigh-
bor.knn_graph using cosine (early diabetes treatment experiment) 
or Euclidean distance (all other experiments). When image acquisi-
tion was performed using multiple plates (Fig. 3), the neighbourhood 
graph construction step was modified to use an adaptation of the 
batch-balanced k-nearest neighbours89 algorithm, implemented in 
spatiomic.neighbor.knn_graph. A neighbour count of k = 40 for each 
respective plate was used. When only one imaging plate was used (all 
other experiments), a neighbour count of k = 40 (k = 50 for the early 
human diabetes experiment) was used without any batch integration. 
After graph construction, we used the Leiden24 graph clustering algo-
rithm to identify clusters of similar protein co-expression patterns. 
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A Leiden resolution of 2.5 and an iteration count of 10,000 were used 
for the advanced DKD experiment, a resolution of 2.0 and an iteration 
count of 1,000 for the early human diabetes treatment experiment 
and a Leiden resolution of 1.0 and an iteration count of 10,000 for the 
mouse CGN experiment samples.

Cluster identity. To assign biological identities to protein co-expression 
clusters derived from PathoPlex output, we used a two-step approach 
that combined statistical overrepresentation with spatial distribution 
analysis and signal interpretation by human experts. Owing to compu-
tational constraints, statistical analyses were performed on subsampled 
data (used with the early diabetes experiment, with 500,000 pixels 
randomly selected from the weighted random subsample) or the repre-
sentative SOM nodes (all other datasets). For each cluster, we calculated 
the mean normalized intensity and the log2-transformed fold change 
of marker intensity (relative to all pixels or nodes not assigned to that 
cluster), which reflected the signal strength and cluster specificity, 
respectively. Significance was assessed using a two-tailed t-test with 
Benjamini–Hochberg (early diabetes dataset) or Holm–Šidák (all other 
datasets) correction for multiple testing (implemented in spatiomic.
tool.get_stats). Dominant markers in each cluster (termed high con-
tributors) were identified by ranking markers based on the product of 
their mean intensity and log2-transformed fold change, and retaining 
only those with mean normalized intensity ≥ 0.2, adjusted P < 0.05 
and log2-transformed fold change ≥ 1. Intensity histograms further 
visualized marker distribution patterns in each cluster for all markers 
and were also considered for cluster interpretation. Individual clusters 
were spatially projected onto the corresponding immunofluorescence 
and—where available—PAS-stained images. Human experts then visu-
ally validated and refined cluster identities by assessing their spatial 
distribution, considering morphological structures and correlations 
with immunofluorescence signals and integrating contextual biologi-
cal knowledge.

Selection of specific foreground clusters. As multiplexed imaging 
data from Figs. 2 and 3 did not include a pan-protein marker in their 
panel, no foreground segmentation was performed before pixel-level 
clustering, which resulted in multiple clusters that corresponded to 
empty background areas. To account for this limitation (largely cir-
cumvented by NHS-E and a larger antibody panel in Fig. 4), we restricted 
extended analyses (but not differential cluster abundance analyses) to 
specific foreground clusters only or we treated all background clusters 
as a single cluster. For Fig. 4, we similarly assessed the specificity of all 
clusters and quantified their relative frequency, focusing visualizations 
and biological assessment to clusters deemed to represent specific 
signal (excluding minor imaging artefacts, autofluorescence signals 
and imperfect foreground segmentation) and accounting for >0.1% of 
foreground pixels. The specificity of clusters, defined as the extent to 
which clusters correspond to clear biological processes and/or struc-
tures, both at the spatial and at the molecular level, was assessed indi-
vidually by a panel of three experts. In controversial cases, the experts 
presented their arguments until a unanimous decision for exclusion was 
reached. If arguments for exclusion were not unanimously accepted, 
the cluster was not excluded.

Cluster abundance and differential abundance analysis. Cluster 
abundances were analysed by quantifying the number of pixels assig
ned to each cluster for each field of view in a dataset using spatiomic.
tool.count_clusters. The abundances were normalized to a range of 0–1 
to facilitate comparison and interpretation across FOVs. For the mouse 
CGN and the advanced diabetes experiment, these normalized abun-
dances were further aggregated to obtain the mean cluster abundance 
per field of view for each mouse or patient. Differential abundance anal-
ysis was performed by quantifying the log2-transformed fold change 
in cluster abundance between different experimental and clinical 

conditions by performing a two-sided t-test. To account for the higher 
number of unique clusters and larger sample sizes, P values for the 
advanced DKD and the early diabetes treatment experiments were cor-
rected for multiple testing with Benjamini–Hochberg false discovery 
rate adjustment. Statistical testing used the spatiomic.tool.get_stats 
function. Results were visualized with spatiomic.plot.volcano for all 
datasets. For visualization purposes, the volcano plots were restricted 
to feature clusters determined to represent specific foreground signal. 
Moreover, to assess the impact of batch integration, quality control 
was performed by comparing differences in log2-transformed fold 
changes in inter-group cluster abundances between the imaging plates 
(Supplementary Fig. 12).

Extended analyses based on pixel-level clusters
Based on our foundational pixel-level protein co-expression clusters, 
we used multiple downstream applications to connect the output from 
PathoPlex with community resources and public knowledge bases, 
showcasing how pixel-level data can be aggregated at different levels 
to derive information across multiple biological scales.

Biclustering. UnPaSt42 is a biclustering method initially developed for 
unsupervised patient stratification based on omics data. UnPaSt iden-
tifies differentially expressed biclusters in a two-dimensional matrix 
with samples (for example, images or patients) in columns and features 
(for example, clusters) in rows. A differentially expressed bicluster is a 
submatrix consisting of samples and features such that these features 
are overexpressed or underexpressed in these samples compared with 
all other samples in the input data matrix. We applied UnPaSt with bi-
narization P value threshold of P = 0.05, direction = ‘both’ (to identify 
biclusters consisting of both upregulated and downregulated clusters) 
and all other parameters set to default to image-level and patient-level 
cluster intensities. As UnPaSt is not deterministic, consensus biclusters 
were built on the basis of results of ten independent runs.

Druggability profiling. To evaluate the druggability of the molecular 
signature of advanced DKD and to identify potential therapeutics, we 
combined drug–protein interaction data from the CTD44 with STRING90 
protein–protein interaction data. Initially, we manually identified 
AIFM1, TRPC6, CALR, HSPA5, ITGB1 and CTNNB1 as possible targets 
involved in the altered signalling cascades revealed by PathoPlex 
based on the significantly differentially expressed clusters and their 
molecular composition. Next, we used STRING data for Homo sapiens 
to link every potential target to a broader network of interacting pro-
teins. We only considered direct interactions with a confidence score  
exceeding 0.75. In a subsequent step, CTD chemical–gene interaction 
data were used to extract possible therapeutics that affect proteins in 
our target networks. This search was limited to compound–protein 
interactions described in mice (Mus musculus), rats (Rattus norve
gicus) or humans. Only interactions that did not involve co-treatment 
and did not affect the reaction of another externally administered 
compound were included. Our goal was to determine the impact of 
existing pharmacological treatments on the extended protein net-
works and to explore the potential for repurposing drugs authorized for 
other indications; therefore, we further filtered the results, preserving 
only entries for which the chemical name had a matching entry in the  
European Medicines Agency’s list of authorized agents (date of consul-
tation: 23 August 2023). In a second step, to further assess the impact 
of current antidiabetic drugs, results from all protein networks were 
combined and filtered for compounds containing ‘glutid’, ‘gliflozin’,  
‘glitazon’, ‘gliptin’, ‘metformin’, ‘pril’ or ‘sartan’.

Pixel cluster-assisted cell-level metaclustering. Although pixel 
clusters provide valuable subcellular and extracellular information, 
they can also be used to inform existing cell-level clustering workflows. 
To quantify the co-occurrence of pixel-level clusters within cell-level 



metaclusters, we first applied the Cellpose39 segmentation model 
using the parameters model_type = “nuclei” and diameter = 30 to the 
pre-processed DRAQ5 channel of each image. Statistical testing of 
nucleus counts per image was performed using statannotations91 
with a two-sided nonparametric Mann–Whitney U-test, comparing 
diabetes and control samples. Centroids of all identified nuclei were 
then expanded radially by the smaller of either 5 µm or 50% of the 
shortest Delaunay triangulation edge length to approximate cell areas. 
Within these estimated areas, the relative abundances of pixel-level 
clusters were calculated to produce feature vectors for each cell. To 
identify cell-level metaclusters, a k-nearest neighbour graph was 
constructed using spatiomic.neighbor.knn_graph with neighbor_
count = 50 followed by Leiden24 clustering with a resolution of 1.0. 
Condition-specificity of meta-clusters was confirmed by averaging 
their relative abundances across images at the patient level. Within 
each cell-level metacluster, the fraction of pixels corresponding to 
each pixel-level cluster was quantified, which provided a quantification 
of the cell-level co-occurrence patterns of pixel clusters. Differences in 
normalized metacluster abundance at the patient-level between condi-
tions were visualized through a two-component principal component 
analysis using spatiomic.dimension.pca with default parameters and 
significance was established through a Mann–Whitney U-test with 
Bonferroni correction.

Pseudotime analysis. PILOT41 is a previously published, multiscale, 
unsupervised method that uses optimal transport to compute the dis-
tance between data points and infer a disease trajectory. First, we used 
the normalized abundance of the clusters as the cluster proportions for 
each FOV from all samples. Next, we computed the distances between 
the clusters as a cost matrix. In the subsequent step, we used the cluster 
proportions and the cost matrix to compute the Wasserstein distance92 
(W1) between the data points. Then, we obtained the trajectory of the 
disease by applying the diffusion map93 to the distance matrix of the 
samples. Finally, we used the assigned pseudotimes of the data points 
to reveal the changes in the proteins or clusters. In summary, PILOT 
uses stepwise nonlinear models to determine significantly changing 
proteins or clusters across the disease trajectory.

Cluster join counts analysis. The immediate spatial neighbourhood 
analysis was based on join counts between unique clusters that were 
used to create an adjacency graph using spatiomic.spatial.vicin-
ity_composition. First, for each pixel position, the eight surround-
ing pixel positions (Chebyshev distance of 1 pixel; that is, first-order 
queen neighbourhood) were examined to count the instances of nearby 
clusters. This process was applied to all pixels in all images using a 
vectorized approach. The cluster counts were then aggregated at the 
dataset level for images of the same disease condition. Next, connec-
tions between identical clusters were discarded, and the remaining con-
nections were normalized to a range of 0–1. Non-foreground clusters 
were discarded. The resulting adjacency matrix was used to construct 
a directed graph for each condition, with the graph representing the 
relationships between clusters. Although the entire adjacency matrix 
was quantified and evaluated, a neighbourhood cluster abundance of 
7.5% was established as minimum value to be included in the graph plot 
for visualization purposes, focusing the visualization on the most com-
mon adjacencies. The graph layout was calculated using the software 
packages Graphviz94 and NetworkX95.

Condition-specific structural patterns. Condition-specific structural 
patterns were identified using MISTy40 (mistyR v.1.6.1). To that end,  
image data (112 images from advanced DKD samples and 310 from con-
trol samples) were aggregated at two different resolutions by summing 
the cluster counts in bins with a side length of 10 μm (62 × 62 pixels). 
Clusters capturing empty background, unstained tissue parts and 
nonspecific signals were collapsed into a single background cluster. 

To account for truncated bins at the edges of slides, we transformed 
the counts into proportions. We used these cluster proportions per 
bin as an intrinsic representation of the structure in a bin (MISTy intra
view). To capture the broader tissue structure, we constructed the 
paraview by summing up the cluster proportions of the 20 nearest 
neighbours using family = “constant”, l = 20. To construct the paraview 
for the high-resolution aggregation, we computed the weighted sum 
of the cluster proportions of the 80 nearest neighbours using a Gauss-
ian kernel with a bandwidth of 2.5 μm (corresponding to 15 pixels) 
(family = “gaussian”, l = 2.5, nn = 80). With these view compositions 
per aggregation, a MISTy model was independently trained for each 
sample. The MISTy models identified significant structural patterns in 
the different spatial contexts by associating the proportion of pixels 
belonging to each cluster in each spatial context to the target propor-
tions in the intraview. MISTy can learn both simple linear relationships 
(for example, cluster X has a higher proportion if cluster Y has a lower 
proportion) and complex nonlinear relationships. By combining the 
predictions from the intraview and paraview for each cluster, MISTy 
enabled us to disentangle whether the prediction for a given cluster 
improves, and to what extent, when taking different spatial contexts 
into account. To compare the MISTy importance scores between condi-
tions, we first computed the mean results per sample due to differing 
numbers of imaged FOVs. We then aggregated the MISTy results per 
patient and finally per condition (advanced DKD and controls). For 
each level of aggregation, group and view, we generated a graph rep-
resenting the inferred relationships between clusters. In each graph, 
the nodes represent the clusters and the edges between the clusters 
were weighted by the importance scores inferred by the MISTy model 
(thresholded to conserve only significant relationships with impor-
tance > 1.0). The graph layout was calculated using Graphviz94 and 
NetworkX95.

Single-cell and single-nucleus RNA sequencing
To contrast our findings at the protein-level with transcriptomic 
data and to establish a bridge to proposed treatments of DKD, we 
leveraged two public RNA-sequencing datasets with pharmacological 
intervention or different treatment data, covering rodent and human  
samples.

Processing single-cell RNA-sequencing data. Data were down-
loaded from the Gene Expression Omnibus (accession: GSE220939). 
Files from individual patients were converted to AnnData74 objects, 
and information on the diabetes and SGLT2i treatment status of each 
patient was added. To remove ambient RNA contamination, Cell-
bender96 (v.0.3) training was performed on each sample individually 
with a training fraction of 0.5 for 100 epochs. Observations with a 
Cellbender cell probability ≤ 0.5 were discarded. Next, all observa-
tions were combined into a single AnnData object, quality-control 
metrics were quantified and cell clustering was performed using the 
Python package scanpy97. As part of this step, mitochondrial, ribosomal 
and haemoglobin genes were identified, and quality control metrics 
were calculated using the calculate_qc_metrics function. Barcodes 
containing ≥50% mitochondrial RNA, ≥20% rRNA or ≥5% haemoglo-
bin genes were discarded. Barcodes with reads for less than 500 or 
more than 5,000 genes were discarded to correct for doublets, as 
were genes detected in at most 4 observations. The total number of 
reads per cell was normalized and the counts were log1p transformed. 
To reduce dimensionality, the first 50 principal components were 
computed using scanpy’s pca method with the arpack singular value 
decomposition solver. As inter-individual batch effects were present, 
Harmony98 data integration was performed with standard param-
eters, using the harmonypy99 implementation available through the 
external module of scanpy. On the basis of the adjusted principal 
components, the 50 nearest neighbours of each cell were identified 
using the neighbours function of scanpy97, which was configured to 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE220939
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use the Pearson correlation similarity metric. Graph clustering was 
performed using the Leiden algorithm72 with a resolution of 0.5. On 
the basis of cell-identity genes (adapted from a previous study46 and 
PanglaoDb100), clusters were manually annotated to represent different 
cell types. Cell types and transcripts related to the pathways altered at 
the protein level were chosen, and gene counts were visualized using 
the dotplot function of scanpy97. Statistics per cell type of interest were 
calculated on the depth-normalized gene counts using the get_stats 
function of spatiomic, configured to revert log1p transformation. Non-
parametric independent Wilcoxon rank-sum testing was performed 
using the ranksum function of scipy101 with Benjamini–Hochberg  
correction.

Processing single-nucleus RNA-sequencing data. Preprocessed 
data were downloaded from the Gene Expression Omnibus (accession: 
GSE209821). Gene counts were read into R using Seurat and converted 
to AnnData74 with SeuratData and SeuratDisk. In the next step, the  
AnnData object was read using the scanpy97 Python library, and pro-
vided metadata were combined with the gene counts. The provided 
counts had already been filtered for quality-control metrics and cluster 
labels from a previous study were provided47, thus, only depth nor-
malization to the median read depth was performed. Observations 
were further filtered to only retain proximal tubule cells from con-
trols, untreated mice or mice treated with soluble guanylate cyclase 
activators. Differential expression statistics of genes corresponding 
to defining markers of clusters upregulated in the proximal tubular 
compartment in the advanced DKD PathoPlex experiment were cal-
culated based on depth-normalized gene counts using the spatiomic.
tool.get_stats function, configured to run nonparametric independent 
Wilcoxon rank-sum testing using the ranksum function of scipy101 with 
Holm–Šidák correction.

Signal intensity of TRPC6 and AIFM1 in Btbrob/ob mice
To further evaluate the expression of TRPC6 and AIFM1 in the proximal 
tubule of kidneys with metabolic damage, we assessed their expression 
in Btbrob/ob mice and control mice at 12 and 24 weeks of age. Immuno-
fluorescence was performed on 5 FOVs per sample, with n = 3 samples 
per group and time point, which produced a total of n = 12 samples and 
60 FOVs. The proximal tubule area was segmented by thresholding the 
LTL channel to an intensity greater than 1,500, followed by filling holes 
smaller than 1,000 pixels and removing objects smaller than 20,000 
pixels. After proximal tubule segmentation, a random subsample of 
50,000 pixel positions was selected from the proximal tubule area 
of each FOV. These subsamples were combined for each unique con-
dition and time point. Changes in TRPC6 and AIFM1 expression were 
visualized through histograms of marker intensities, grouped by time 
point and condition. Statistical analysis was performed using the stat-
sannotations91 Python package, for which the subsampled intensities 
served as input, with the corresponding condition as the label for each 
intensity. An independent t-test based on the statannotations91 Python 
package was used to assess statistical differences in TRPC6 expression 
between conditions at each time point.

General statistical analysis
Statistical analyses, including cluster composition, differential cluster 
abundance and differential gene expression, were performed using 
spatiomic.tool.get_stats and statannotations. These tools internally 
rely on scipy101 and statsmodels102 and were used to perform either 
Benjamini-Hochberg or Holm–Šidák-corrected two-tailed t-tests (for 
cluster composition and differential abundance analysis), Mann–
Whitney U-tests (for differences in nucleus counts and cell-level 
metacluster abundance) or nonparametric Wilcoxon rank-sum tests 
(for differential gene expression from single-cell and single-nucleus 
RNA-sequencing data). Bulk RNA-sequencing differential gene expres-
sion analysis was performed using PyDESeq2, combining single-factor 

analysis using Wald tests with log2-transformed fold change shrinkage 
with approximate posterior estimation generalized linear models103. 
Detailed descriptions of these tests, including information on input 
data and additional filters, are provided throughout the Methods. All 
other statistical analyses, including the quantification of changes in 
cell migration, clinical parameters (for example, proteinuria or eGFR), 
sample-specific variables (such as age), PEC activation, injury patterns 
in CGN and principal component analysis, were performed using 
GraphPad Prism (v.9). Violin plots report median and interquartile 
values. Significance was evaluated using the unpaired t-tests with 
Welch’s correction comparing two continuous variables, a paired 
t-test for before and after settings, and the Brown–Forsythe, Welch 
ANOVA and Dunnett’s tests when comparing three continuous vari-
ables. Correlation analyses were performed using Spearman rank 
coefficients. Principal components were selected on the basis of 
the percentage of total explained variance using normalized cluster 
abundances at the image-level or the patient-level as input. Statistical 
significance was defined as P < 0.05 for all analyses, with a thresh-
old of P < 0.01 applied for specific cases as outlined throughout the  
methods.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The bulk RNA-sequencing data from NTS-treated mice have been 
deposited into the Hamburg University Research Data Repository 
(https://doi.org/10.25592/uhhfdm.17394). The public single-cell and 
single-nucleus RNA-sequencing datasets used in this study are avail-
able through Gene Expression Omnibus with accessions GSE220939 
and GSE209821. PathoPlex animal multiplexed imaging data are avail-
able from Zenodo (https://doi.org/10.5281/zenodo.15212140)104. For 
human data, as a patient re-identification key is retained internally for 
scientific continuity of ongoing projects, and historical versions of data 
containing patient identifiers persist in secure institutional servers and 
physical laboratory records, the raw microscopy data cannot be fully 
anonymized and therefore cannot be deposited in a public repository 
in accordance with General Data Protection Regulation. Raw data can 
be made available upon reasonable request and subject to a material 
and data user agreement that ensures appropriate safeguards for data 
protection and privacy in compliance with General Data Protection 
Regulation. The senior corresponding author will respond to data 
requests, aiming to answer within 72 h, and provide data up to 1 month 
after the material and data user agreement has been signed by both 
parties. Source data are provided with this paper.

Code availability
The code for the 3D printer-based liquid-handling system and the STL 
files for 3D printing, the spatiomic library code and the code for the anal-
ysis of all datasets are available from Zenodo (https://doi.org/10.5281/
zenodo.15211354)105. The latest development version of spatiomic  
can be accessed from GitHub (https://github.com/complextissue/ 
spatiomic). The documentation for spatiomic is available at: https:// 
spatiomic.complextissue.com and includes example workflows for  
common analyses, including code to download example data. The  
following resources are available from GitHub: bulk RNA-sequencing  
workflow (https://github.com/complextissue/snakemake-bulk- 
rna-seq-workflow/); MistyR (https://github.com/saezlab/mistyR/); 
PILOT (https://github.com/CostaLab/PILOT/); UnPaSt (https://github.
com/ozolotareva/UnPaSt) and the custom XPySOM adaptation that 
includes support for the Pearson correlation distance metric (https://
github.com/complextissue/xpysom).
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Extended Data Fig. 1 | Practical quality control steps. (a) Full elution of 
antibodies and (b) absence of remnant signals when re-staining with secondary 
antibodies. (c) Specificity of staining and constancy of re-stained structures 
over multiple imaging cycles. (d) Secondary-only cycles do not show signal 
amplification. (e) Re-staining of SOD1 after 61 cycles, showing very strong 
agreement between intensity distributions. vWF, von Willebrand factor; SRB1, 
Scavenger receptor class B member 1; PDI, Protein disulfide isomerase; EZR, 
Ezrin; p-rp-S6, phospho-ribosomal protein S6; p-H3, phospho-histone-H3; 
PCNA, Proliferating cell nuclear antigen; COL4, Collagen type IV; LAMP1, 

lysosomal-associated membrane protein 1;VMT, Vimentin; FN, Fibronectin; 
WT1, Wilms tumor 1; ACE2, Angiotensin-converting enzyme 2; CK19, Cytokeratin 
19; ANXA3, Annexin 3; LTL, Lotus tetragonolobus lectin; α-SMA, alpha-smooth 
muscle actin (ACTA2); SYNPO, Synaptopodin; EMCN, Endomucin; NPHN, 
Nephrin; ab, antibody; AF, autofluorescence; PDPN, Podoplanin; LMN, Laminin; 
AQP2, Aquaporin 2; E-CAD, E-cadherin; SOD1: Superoxide Dismutase 1; HSD11B2: 
11-β-hydroxysteroid dehydrogenase type 2; u-H2B: ubiquitylated histone  
2B. Scale bars represent 100 µm.
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Extended Data Fig. 2 | Practical solutions to minimize bias introduction.  
(a) Schematic overview of all strategies deployed. (b) PathoPlex is compatible  
with multiple microscopy systems, including widefield, spinning disk and  
laser confocal, which directly determine imaging time, file size and image 
resolution. (c) Strategies to minimize bias introduction are based on creating 
self-contained batches, where tissues are processed in parallel using imaging 
chambers that contain specimens representing all experimental groups, 
including controls. (d) Suggested imaging chambers for histopathological 
studies (2–24 wells). (e) Multi-well pipetting can be performed manually or 

using liquid handling systems. Alternatively, 3D printing can be used to 
customize a 1-well imaging chamber, which simplifies liquid handling. (f) In 
addition, a 3D printer can also be used as a liquid handling system. The printer 
head is used to automate liquid addition and removal. (g) Specificity, and 
elution controls of 3D printer-based imaging cycles. LMNB1, Lamin B1 (cycle 1); 
EMCN, Endomucin (cycle 1); α-SMA, alpha-smooth muscle actin or ACTA2  
(cycle 2); VMT, Vimentin (cycle 4); AKAP12, A-Kinase Anchoring Protein 12 
(cycle 4); Secondary ab (QC cycle; cycle 6). Scale bars represent 100 µm. Parts  
of panels a, c and e were created using BioRender (https://biorender.com).

https://biorender.com


Extended Data Fig. 3 | PathoPlex complements pathology evaluations.  
2 expert pathologists analyzed all samples and defined all 3 groups with 100% 
accuracy. (a) Quantitative pathology analyses to differentiate acute injury  
and CGN vs controls, showing compartment-specific changes in acute injury 
and CGN. Each dot represents one mouse (N = 3 controls, N = 3 acute injury,  
and N = 6 CGN; red line represents medians). Two-sided t tests and Mann 
Whitney tests were used. (b) While mice with CGN have overt lesions, those  
with acute injury show only minor abnormalities, namely subtle vacuolation  

in the proximal tubuli (green). (c) Volcano plot showing all regulated clusters 
comparing controls to acute injury, featured cluster 26 (C26). (d) Principal 
component (PC) analysis revealed clear separation between images from 
controls (blue) and acute injury (orange) specimens with C26 being the  
top contributor to PC1. (e) Spatial projections of cluster 26 (C26) show a 
regulation pattern in the luminal side of kidney tubuli, a similar location to the 
one used for pathologists to define acute injury. ****P < 0.0001, ***P < 0.001; 
EEA1: Early Endosome Antigen 1, EZR: Ezrin. Scale bars represent 60 µm.
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Extended Data Fig. 4 | Transcriptional profiling in experimental crescentic 
nephritis identifies JUN as a top regulated gene. (a) Schematic description  
of experimental design with nephrotoxic serum (NTS) glomerulonephritis and 
glomerular nuclear isolation for bulk RNA sequencing. (b) Volcano plots show 
transcriptionally regulated genes at day 3 post NTS injection. (c) Transcription 
factor activity score, and (d) differential expression of JUN-regulated targets, 

where blue means downregulated by JUN and red means upregulated by  
JUN. Differential gene expression analysis was performed using PyDESeq2 
combining single-factor analysis using Wald tests with log2 fold-change 
shrinkage using approximate posterior estimation generalized linear models. 
Parts of panel a were created using BioRender (https://biorender.com).

https://biorender.com


Extended Data Fig. 5 | c-Jun activity in a rat model of crescentic nephritis. 
(a) Percentage of CD44+phospho-c-Jun+ parietal epithelial cells (PECs)  
among controls, NTS injected day 1 (alone and vehicle) and NTS injected  
day 1 with a preventive JNK inhibitor (JNKi) administration. (b) Percentage of 
CD44+phospho-c-Jun+ PECs among NTS injected day 7 (alone), NTS injected 
d28 (alone and vehicle) and NTS injected day 28 with JNKi administration 
started at day 7 post NTS injection.
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Extended Data Fig. 6 | Validation of TRPC6 expression in experimental 
diabetic kidney disease. (a) Expression of TRPC6 in normal murine proximal 
tubuli using immunogold in electron microscopy. This is a representative 
image from 3 biological replicates. (b) Expression of TRCP6 using Imaging 
Mass Cytometry in the human kidney (controls and diabetic kidney disease; 
DKD). These are representative images from 2 biological replicates per condition. 

(c) Schematic representation of a murine model of obesity and early  
DKD, showing albuminuria at 24 weeks of age. (d) Increased expression 
(distributional shift in pixel intensity) of TRPC6 in proximal tubuli in  
ob/ob mice at 24 weeks of age. Scale bar in (a) represents 250 nm and scale  
bars in (b) represent 50 µm. Parts of panel c were created using BioRender 
(https://biorender.com).

https://biorender.com


Extended Data Fig. 7 | Projecting clusters onto histopathology staining. 
Histopathological staining allows cluster assignment to exact structural 
locations. (a) Cluster 0 (ERK-mediated podocyte signaling) and (b) cluster 14 

(integrin-mediated nephron signaling). In both cases, cluster abundance was 
regulated in DKD. ****P < 0.0001. Scale bars represent 100 µm.
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Extended Data Fig. 8 | Cluster abundance associates with clinical kidney 
function. Cluster abundances correlate with clinical renal function 
(estimated glomerular filtration rate; eGFR). (a) Cluster 11 (impaired distal 

nephron metabolism) and (b) cluster 39 (dysregulated glucocorticoid receptor 
signaling). Scale bars represent 100 µm.



Extended Data Fig. 9 | Multivariate cluster join counts analysis.  
(a) Schematic representation of our approach to characterize direct spatial 
interactions between neighbouring clusters. (b) Spatial interactions highlight 
changes in associations across disease states and scales. GR, Glucocorticoid 
receptor; PTMs, Post-translational modifications; PTs, proximal tubular  
cells; DT, distal tubule; CD, collecting duct; ER, Endoplasmic reticulum;  

MVs, microvesicles; ECM, Extra cellular matrix; activ, activation; podo, 
podocytes; physio, physiology; metab, metabolism; cytoskel, cytoskeletal;  
ECs, endothelial cells; GECs, glomerular endothelial cells; mTOR, mammalian 
target of Rapamycin; macro, macrophages; lyso, lysosomes; microtub, 
microtubules; mechanotrans, mechanotransduction; Cell adh, cell adhesion; 
Myofib, myofibroblasts.
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Extended Data Fig. 10 | Condition-specific structural patterns.  
(a) Schematic representation of our approach to characterize cluster- 
cluster predictions using MISTy. (b) Cluster predictions highlight changes 
across disease states and scales. GR, Glucocorticoid receptor; PTMs, 
Post-translational modifications; PTs, proximal tubular cells; DT, distal  
tubule; CD, collecting duct; ER, Endoplasmic reticulum; MVs, microvesicles; 

ECM, Extra cellular matrix; activ, activation; podo, podocytes; physio, 
physiology; metab, metabolism; cytoskel, cytoskeletal; ECs, endothelial cells; 
GECs, glomerular endothelial cells; mTOR, mammalian target of Rapamycin; 
macro, macrophages; lyso, lysosomes; microtub, microtubules; mechanotrans, 
mechanotransduction; Cell adh, cell adhesion; Myofib, myofibroblasts.



Extended Data Fig. 11 | Image-level pseudotime analysis from cluster 
mapping using PILOT. (a) Pseudotime analysis was performed based on our 
interpretable clusters, identifying a path from controls to diabetic kidney 
disease (DKD) that correlates with histopathological changes. This path can  
be separated into two trajectories. (b) Trajectory 1 defined a transition based 
on estimated glomerular filtration rate (eGFR), marking the range in renal 
function in our non-diabetic controls. Pseudotime was strongly associated 

with clusters representing loss of tubular integrity, extracellular matrix 
remodelling (ECM; fibrosis) and myofibroblast expansion (fibrosis).  
(c) Trajectory 2 was strongly associated with clusters representing podocyte 
injury, mitochondrial stress in proximal tubuli (PTs) and glucocorticoid 
receptor (GR) dysfunction. PILOT uses non-linear regression methods and 
leverages the Wald test to evaluate the difference in the fitted model for each 
cluster vs. the model fitted for background clusters.
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Extended Data Fig. 12 | External validation of DKD features. (a) Cell types 
identified via single-cell RNA-sequencing. Even in early diabetic kidney disease, 
transcripts related to ER stress, Ca2+-mediated tubular injury, integrin beta  
1-, and GR-signaling (b), as well as ECM remodelling and pro-fibrotic signaling 
(c) showed differential gene expression patterns compatible with differences 
observed at the protein level found in advanced diabetic kidney disease.  
SGLT2 inhibitor (SGLT2i)-treated patients exhibited incomplete modulation  

of transcriptomic changes. TAL: Thick ascending limb; PT: Proximal tubule;  
PC: Principal cell; ECs: Endothelial cells; IC: Intercalated cell; PC/CNT: Principal 
cells / Connecting tubule; DCT: Distal convoluted tubule; Mes/VSMC/Fib: 
Mesangial cells/Vascular smooth muscle cells/Fibroblasts; ATL/PEC: Ascending 
thin limb/Parietal epithelial cells; GECs: Glomerular endothelial cells; Mac/
Mono: Macrophages/Monocytes; Lymph: Lymphocytes.
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parties. 

Research involving human participants, their data, or biological material 
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism. 
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Note that full information on the approval of the study protocol must also be provided in the manuscript. 
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Life sciences study design 
All studies must disclose on these points even when the disclosure is negative. 

Sample size 

Data exclusions 

2 

Given the limited sample size, we did not take into account sex as selection criteria or as part of our analysis. 

Parts of our study were conducted on kidney biopsies from three cohorts (France, Germany and USA). This was not 
considered in the analysis. 

As our experiments were performed in archival tissues, we did not control population characteristics. We report age in one 
of of clinical cohorts as it may represent a confounding factor. However, we do not correct or adjust for it given our limited 
sample size. 

The first study used specimens from patients who presented with renal impairment and/or proteinuria and were diagnosed 
with diabetic kidney disease after biopsy was performed. As a control group, we used the noncancerous portion of kidney 
tissue from patients who had undergone nephrectomy for renal cell carcinoma. 
The second study included research biopsies from 3 groups of subjects: (1) healthy controls, (2) patients with type 2 diabetes 
that received SGLT2 inhibitors, and (3) patients with type 2 diabetes that did not receive SGLT2 inhibitors. Patients 
volunteered for a kidney biopsy as there was no clinical indication. 

Ethical approvals were obtained from the Institutional Review Board (IRB) of the RWTH Aachen University Medical Center 
(EK-016/17), the local Ethics Committees of the Chamber of Physicians in Hamburg (PV4806) and Freiburg (Ethikvotum 
10008/09), the Paris Ethics Committee (IRB00003888, FWA00005831), and the Colorado Ethics Committee (NCT03584217 
and NCT03620773). All tissue collections were performed in accordance with the ethical principles stated by the Declaration 
of Helsinki. 

This study reports a new technology and applies it to 3 different case studies, one in an experimental model of immune-mediated kidney 
disease, one in a clinical cohort of patients with advanced diabetic kidney disease, and one in a research cohort of patients with early type 2 
diabetes. No statistical method were used to determine sample size as they were chosen based on availability of archival biopsy material 
(n=18-20 per group in clinical biopsies and 5-7 in research biopsies). Previous experience for experimental immune-mediated kidney disease 
(at least n=3 for each experimental group): PMID: 33622974 , PMID: 32446933 and PMID: 40050432 

Stained images in which the primary antibody did not pass quality controls (e.g. comparison to previous literature or antibody validation 
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 Reporting for specific materials, systems and methods 
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems Methods 

 Antibodies 
Antibodies used 

3 

steps) or images containing artifacts (e.g. tissue that detached from the glass) were excluded from the analysis. 

During the developmental phase, experiments were repeated and successfully reproduced at least 3 times, this includes short multiplexed 
imaging experiments for proof-of-principle, quality control tests, 3D printing, coating agents and repositioning workflows. After the method 
and steps were established, we proceeded to experimental cases. All multiplex imaging experiments (Figures 2, 3 and 4) were performed on a 
minimum of 3 samples per experimental group. For Figure 2, a total of 10 mice were analyzed. For Figure 3, a total of 38 patients and for 
Figure 4 a total of 18 patients. Negative controls were performed at least once for each sample used, including cycles with secondaries only. 
Additional quality control steps are extensively discussed in the methodology section. Every attempt to replicate the data has been successful. 

We worked with archival tissue specimens to showcase the development and application of a new technology. No randomization was 
conducted as we had no impact on tissue collection and allocation. 

When possible, blinding was used. For example, when analyzing early phase of crescentic glomerulonephritis, as structures did not appear 
pathological or in the characterization of the in vivo effectiveness of the JNK inhibitor (where lesions were not evident). When pathological 
lesions were present, then blinding was not possible as pathological groups would become evident. For human studies, all groups were 
included in imaging chambers, so all steps were performed for all groups in parallel and under identical conditions. As we needed to correlate 
with clinical parameters, blinding was not possible. 

Primary antibodies and lectins 
For human samples. ABCG2 (Santa Cruz; sc-377176, 1:200), ACE-2 (R&D Systems; AF933, 1:200), Adiponectin (Thermo Fisher 
Scientific; MA1-054, 1:200), AIF (Cell Signaling Technology; 5318, 1:200), AKAP12 (Proteintech; 25199-1-AP, 1:600), AKR1B1 (Thermo 
Fisher Scientific; PA5-82915, 1:500), AKR1C1 (Thermo Fisher Scientific; MA5-32842, 1:200), Alpha B Crystallin (Proteintech; 68001-1- 
Ig, 1:1000), ANXA3 (Sigma-Aldrich; HPA013398, 1:200), αSMA-FITC conjugate (Sigma-Aldrich; F3777, 1:800), Aquaporin 2 (Alomone 
Labs; AQP-002, 1:400), β-Actin (Sigma-Aldrich; A5441, 1:1500), β-Catenin (Abcam; ab6302, 1:2000), β-Tubulin (Cell Signaling 
Technology; 2128, 1:150), Calbindin-D (Sigma-Aldrich; C9848, 1:3000), Calpain small subunit 1 (Abcam; ab92333, 1:200), Calpastatin 
(Abcam; ab244460, 1:200), Calreticulin (Abcam; ab92516, 1:300), Carbonic Anhydrase IX (R&D Systems; AF2188, 1:50), Catalase 
(Proteintech; 66765-1-Ig, 1:300), CD3 (Abcam; ab11089, 1:200), CD4 (R&D Systems; AF-379-NA, 1:100), CD8 (Agilent; M710301-2, 
1:200), CD34 (Agilent; GA63261-2, 1:50), CD41 (Thermo Fisher Scientific; PA5-79526, 1:500), CD42b (Abcam; ab227669, 1:100), CD44 
(Cell Signaling Technology; 5640S, 1:200), CD44-Alexa Fluor 647 conjugate (Bio Legend; 103018, 1:200), CD68 (Bio Legend; 916104, 
1:200), CD79α (Agilent; M705001-2, 1:200), CD200 (R&D Systems; AF2724, 1:100), CD206 (Proteintech; 60143-1-Ig, 1:2000), c-Fos 
(Abcam; ab190289, 1:600), Claudin 1 (Abcam; ab15098, 1:500), Claudin 10 (Thermo Fisher Scientific; 38-8400, 1:100), Collagen I 
(Southern Biotech; 1310-01, 1:200), Collagen III (Abcam; ab7778, 1:200), Collagen IV (Abcam; ab6586, 1:200), Collagen V (Abcam; 
ab7046, 1:100), Cubilin (R&D Systems; AF3700, 1:200), Cyclin B1 (Cell Signaling Technology; 12231, 1:100), Cytochrome C (Abcam; 
ab110325, 1:200), Cytokeratin 7 (Agilent; GA61961-2, 1:300), Cytokeratin 8 (R&D Systems; MAB3165-SP, 1:300), Cytokeratin 19 
(Abcam; ab52625, 1:300), C1QA (Proteintech; 67063-1-Ig, 1:1000), DACH1 (Sigma-Aldrich; HPA012672, 1:200), Decorin (R&D 
Systems; AF143, 1:50), E-Cadherin (R&D Systems; AF648, 1:200), EEA1 (Santa Cruz; sc-137130, 1:100), EHD3 (LSBio; LS-C133741, 
1:150), Endomucin (Sigma-Aldrich; HPA005928, 1:100), eNOS (Abcam; ab76198, 1:200), Ezrin (Cell Signaling Technology; 3145S, 
1:300), FAM189A2 (Thermo Fisher Scientific; PA5-63414, 1:200), Fibronectin (Abcam; ab2413, 1:200), FKBP51 (R&D Systems; 
AF4094-SP, 1:50), FXYD4 (Thermo Fisher Scientific; PA5-63570, 1:200), GFAP (Thermo Fisher Scientific; 14-9892-82, 1:200), 
Glucocorticoid Receptor (Cell Signaling Technology; 3660, 1:2000), Glutathione Peroxidase 1 (R&D Systems; AF3798, 1:100), 
Glutathione Peroxidase 3 (R&D Systems; AF4199, 1:50), Glycophorin A (R&D Systems; MAB1228-SP, 1:500), GRP78 (Proteintech; 
11587-1-AP, 1:200), HB-EGF (R&D Systems; AF-259, 1:100), Histone H3 (Cell Signaling Technology; 4499, 1:400), HMOX1 (Thermo 
Fisher Scientific; MA1-112, 1:200), HSD11B2 (R&D Systems; MAB8630-SP, 1:100), KIM-1 (R&D Systems; AF1750, 1:200), IBA1 
(Thermo Fisher Scientific; MA5-27726, 1:500), IDH1 R132H (Dianova; DIA-H09, 1:200), IL-1RA (Abcam; ab124962, 1:200 – specificity 
issues were raised by the provider after our experiments were completed. We have kept it in the panel as none of our findings were 
affected and we did not perform any biological inferences based on this antibody), iNOS (Thermo Fisher Scientific; MA5-41652, 
1:200), Integrin-α1 (R&D Systems; AF5676, 1:300), Integrin-α3 (Proteintech; 66070-1-Ig, 1:2000), Integrin-β1 (Abcam; ab179471, 
1:800), Ki-67 (Agilent; M724029-2, 1:200), Laminin (Abcam; ab11575, 1:200), LAMP1 (Cell Signaling Technology; 9091, 1:300), LC3B 
(Cell Signaling Technology; 3868, 1:300), LEL-DyLight 649 conjugate (Vector Laboratories; DL-1178, 1:300), LTL biotinylated (Vector 
Laboratories; B-1325-2, 1:500), MCT1 (Thermo Fisher Scientific; MA5-18288, 1:300), MerTK (R&D Systems; AF591, 1:200), MPO (R&D 
Systems; MAB3174, 1:200), Nephrin (Progen; GP-N2, 1:150), Neurofilament (Agilent; IR607, 1:200), Nox4 (R&D Systems; MAB8158, 
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The parietal epithelial cell (PEC) line was provided by A/Prof. Olivia Lenoir and Prof. Pierre-Louis Tharaux 

1:300), NQO1 (Proteintech; 67240-1-Ig, 1:2500), OLIG2 (Bio SB; BSB 2561, 1:200), p62 (Cell Signaling Technology; 39749, 1:400), 
PCK1 (Proteintech; 66862-1-Ig, 1:400), PCNA (Abcam; ab29, 1:2000), PDGFRβ (Cell Signaling Technology; 3169, 1:100), PDI (Cell 
Signaling Technology; 45596S, 1:400), Periostin (R&D Systems; AF3548, 1:150), Phospho-AMPKα (Cell Signaling Technology; 2535, 
1:200), Phospho-c-Jun (Abcam; ab32385, 1:200), Phospho-Erk1/2 (Cell Signaling Technology; 4370, 1:250), Phospho-Ezrin/Radixin/ 
Moesin (Cell Signaling Technology; 3726, 1:200), Phospho-GSK-3β (Cell Signaling Technology; 9323, 1:100), Phospho-Histone H3 (Cell 
Signaling Technology; 9701, 1:200), Phospho-JAK2 (Thermo Fisher Scientific; MA5-42424, 1:100), Phospho-S6 Ribosomal Protein (Cell 
Signaling Technology; 4858S, 1:300), Phospho-SMAD2 (Thermo Fisher Scientific; 44-244G, 1:200), Phospho-SMAD3 (Thermo Fisher 
Scientific; PA5-104940, 1:200), Phospho-STAT1 (Cell Signaling Technology; 9167S, 1:400), Phospho-STAT3 (Abcam; ab76315, 1:200), 
PITX2 (R&D Systems; AF7388, 1:100), Podocin (Sigma-Aldrich; P0372, 1:3000), Proteasome 20S LMP7 (Abcam; ab3329, 1:400), Rab5A 
(Cell Signaling Technology; 46449, 1:300), RAB7 (Abcam; ab137029, 1:200), RAP1GAP (Abcam; ab244259, 1:300), RCAS1 (Cell 
Signaling Technology; 12290, 1:200), Sclerostin (Thermo Fisher Scientific; PA5-37943, 1:100), SirT1 (Cell Signaling Technology; 8469, 
1:200), SLC12A3 (Thermo Fisher Scientific; MA5-41643, 1:200), SOD1 (Proteintech; 67480-1-Ig, 1:400), SOD2 (Thermo Fisher 
Scientific; PA5-30604, 1:300), SRB1 (Abcam; ab217318, 1:300), STAT2 (R&D Systems; MAB16661, 1:200), Survivin (Cell Signaling 
Technology; 2808, 1:300), Talin 1 (Abcam; ab71333, 1:200), TRPC6 (Abcam; ab233413, 1:200), Ubiquityl-Histone H2B (Cell Signaling 
Technology; 5546T, 1:200), Uromodulin (R&D Systems; AF5144, 1:300), Villin 1 (Abcam; ab52102, 1:200), Vimentin (Progen; GP53, 
1:200), von Willebrand Factor (Agilent; A008229-2, 1:200), WT1 (Agilent; IS05530-2, 1:200), ZO-1 (Thermo Fisher Scientific; 61-7300, 
1:250). 
For mouse samples. ACE-2 (R&D Systems; AF933, 1:200), AIF (Cell Signaling Technology; 5318, 1:200), AKAP12 (Proteintech; 25199-1- 
AP, 1:600), ANXA3 (Sigma-Aldrich; HPA013398, 1:200), αSMA-FITC conjugate (Abcam; F3777, 1:800), Aquaporin 2 (Alomone labs; 
AQP-002, 1:400), Calreticulin (Abcam; ab92516, 1:300), Caspase 1 p20 (Thermo Fisher Scientific; PA5-99390, 1:200), CD3 (Abcam; 
ab1108, 1:200), CD4 (Abcam; ab183685, 1:200), CD41 (Thermo Fisher Scientific; PA5-79526, 1:500), CD42b (Abcam; ab227669, 
1:100), CD44-Alexa Fluor 647 conjugate (Bio Legend; 103018, 1:200), CD45 (Cell Signaling Technology; 70257, 1:200), c-Fos (Abcam; 
ab190289, 1:600), Collagen I (Southern Biotech; 1310-01, 1:200), Collagen IV (Abcam; ab6586, 1:200), Cytochrome C (Abcam; 
ab110325, 1:200), DACH1 (Sigma-Aldrich; HPA012672, 1:200), E-Cadherin (R&D Systems; AF648, 1:200), Endomucin (Santa Cruz; 
sc-65495, 1:200), Fibronectin (Abcam; ab2413, 1:200), Histone H3 (Cell Signaling Technology; 4499, 1:400), IBA1 (Thermo Fisher 
Scientific; MA5-27726, 1:500), IL-1RA (Abcam; ab124962, 1:200 – specificity issues were raised by the provider after our experiments 
were completed. We have kept it in the panel as none of our findings were affected and we did not perform any biological inferences 
based on this antibody), Ki67 (Abcam; ab15580, 1:200), Lamin B1 (Santa Cruz; sc-374015, 1:200), Laminin (Abcam; ab11575, 1:200), 
LTL biotinylated (Vector Laboratories; B-1325-2, 1:500), Nephrin (Progen; GP-N2, 1:150), PCNA (Abcam; ab29, 1:2000), PDI (Cell 
Signaling Technology; 45596S, 1:400), Phospho-Ezrin/Radixin/Moesin (Cell Signaling Technology; 3726, 1:200), Podocin (Sigma- 
Aldrich; P0372, 1:3000), Podoplanin (R&D Systems; AF3244-SP, 1:200), Synaptopodin (Synaptic Systems; 163 004, 1:200), Tyrosine 
Hydroxylase (Cell Signaling Technology; 45648, 1:200), Ubiquityl-Histone H2B (Cell Signaling Technology; 5546T, 1:200), β-Actin 
(Sigma-Aldrich; A5441, 1:1500), Vimentin (Progen; GP53, 1:200), von Willebrand Factor (Agilent; A008229-2, 1:200). 

Secondary antibodies and biotin-binding proteins 
Secondary antibodies were diluted in a ratio ranging from 1:200 to 1:300. Antibodies: goat anti-guinea pig IgG Alexa Fluor 488 
(Thermo Fisher Scientific; A-11073), goat anti-guinea pig IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-21435), donkey anti-mouse 
IgG Alexa Fluor 488 (Thermo Fisher Scientific; A-21202), donkey anti-mouse IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-31570), 
donkey anti-mouse IgG Alexa Fluor 647 (Thermo Fisher Scientific; A-31571), donkey anti-rabbit IgG Alexa Fluor 488 (Thermo Fisher 
Scientific; A-21206), donkey anti-rabbit IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-31572), donkey anti-rabbit IgG Alexa Fluor 
647 (Thermo Fisher Scientific; A-31573), donkey anti-goat IgG Alexa Fluor 488 (Thermo Fisher Scientific; A-11055), donkey anti-goat 
IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-21432), donkey anti-rat IgG Alexa Fluor 488 (Thermo Fisher Scientific; A-21208), 
donkey anti-rat IgG Alexa Fluor 555 (Thermo Fisher Scientific; A78945), donkey anti-sheep IgG Alexa Fluor 488 (Thermo Fisher 
Scientific; A-11015), donkey anti-sheep IgG Alexa Fluor 555 (Thermo Fisher Scientific; A-21436), streptavidin Alexa Fluor 488 (Thermo 
Fisher Scientific; S11223), streptavidin Alexa Fluor 555 (Thermo Fisher Scientific; S21381). 

Validation 

 Eukaryotic cell lines 
Policy information about cell lines and Sex and Gender in Research 

Cell line source(s) 

Authentication 

Mycoplasma contamination 

Commonly misidentified lines 
(See ICLAC register) 

 Animals and other research organisms 
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research 

Laboratory animals 

4 

To ensure that antibodies were validated and their staining quality was reliable, we relied on multiple levels of evidence. These 
include vendor specifications (i.e. recommended concentrations), the absence of primary antibody after elution steps, established 
staining patterns for every included antibody in the scientific literature, and references to available data from the Human Protein 
Atlas. These quality control steps were performed by at least 3 different team members. This process was repeated for every 
antibody included in this study. We provide confirmation of each staining pattern for every antibody in Supplementary Data 1 and 2. 

In order to preserve their identity, all cell lines were maintained at low passages. This practice ensures consistency in the 
characteristics and behavior of the cells. 

It was confirmed that all cell lines were free of any contamination of mycoplasma. 

No commonly misidentified cell lines were used in this study. 

All experimental animals were housed at ambient temperature of 20 ± 2 °C, humidity of 55 ± 10% and a light/dark cycle of 12 h/12h. 
Archival tissues from 8-12 week old C57BL/6J mice were used for the experimental glomerulonephritis experiment. 
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10-12 week-old Sprague Dawley rats were used for prevention experiments with JNK inhibitors, and Wister Kyoto (WKY) rats were 
used for therapeutic experiments. 12 and 24-week old BTBR-Lepob/ob (BTBRob/ob) mice were used as DKD model. 

5 

This study did not involve any wild animals. 

All studies were performed in male rodents as kidney disease is more severe in males and our aim was to maximize pathological 
effects and potential interventions. 

This study did not involve any samples collected from the field. 

All animal experimental protocols were approved by the respective IRB in Hamburg, Melbourne (N047/20 and MMCB/2006/29), Paris 
(358-86/609EEC) and Heidelberg (H2052-2071/23) 

Not applicable 

Not applicable 

Not applicable 
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