
 | Environmental Microbiology | Research Article

Time-series metatranscriptomics reveals differential salinity 
effects on the methanogenic food web in paddy soil
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ABSTRACT Saltwater intrusion and sea level rise (SWISLR) threaten coastal agroecosys­
tems, yet their impact on the methanogenic food web in rice paddies remains virtu­
ally unknown. Using “double-RNA” metatranscriptomics (rRNA, mRNA), we investigated 
salinity effects on the methanogenic community in straw-amended slurries follow­
ing different preincubation periods. Our results demonstrate that salt stress signifi­
cantly inhibits methane (CH4) production, with the degree of inhibition varying by 
the community’s successional stage. Salinity fundamentally shifted the methanogenic 
food web toward Clostridiaceae dominance, altering key metabolic pathways including 
polymer breakdown, glycolysis, pyruvate metabolism, decarboxylation conversion of 
pyruvate to acetate, and ethanol fermentation. Notably, the accumulation of acetate 
under salt stress fueled acetoclastic methanogenesis by Methanosarcinaceae, mitigat­
ing CH4 production inhibition after a 14-day preincubation. While the strong salinity 
inhibitory effect on the expression of the hydrogenotrophic methanogenesis path­
way by Methanocellaceae diminished with preincubation time, syntrophic propionate 
oxidation activity was highly suppressed after 14-day preincubation. Additionally, the 
expression of the methanol-dependent methanogenesis pathway by Methanomassilii­
coccales increased with prolonged preincubation time. These findings provide critical 
insights into the resilience of the anaerobic food web under salinity stress, with broader 
implications for understanding the impacts of sea level rise on global biogeochemical 
cycles.

IMPORTANCE Seawater intrusion and sea level rise (SWISLR), driven by climate change, 
pose significant threats to coastal agroecosystems, particularly salt­affected paddy 
soils. Despite the importance of these systems in global methane dynamics, the 
specific effects of salinity on the methanogenic food web in rice paddies remain 
poorly understood. Using a “double-RNA” metatranscriptomics approach, this study 
demonstrates that salinity markedly alters methane production and microbial commun­
ity dynamics, with these effects varying across different successional stages of the 
microbial assemblage. The resilience of the methanogenic food web under salinity 
stress is governed by time-dependent metabolic shifts, offering critical insights into 
how SWISLR may influence methane emissions and broader biogeochemical processes in 
coastal agricultural landscapes. These findings highlight the urgent need to incorporate 
SWISLR-related impacts into assessments of coastal agroecosystems’ contributions to 
global methane budgets and climate feedback mechanisms.

KEYWORDS CH4, methanogenesis, CAZyme, metatranscriptomics, salt stress

S altwater intrusion and sea level rise (SWISLR) driven by climate change pose 
significant threats to coastal agroecosystems, particularly salt­affected paddy 

soils, which are critical global carbon stocks and sources of CH4 emissions (1–3). 
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Understanding these impacts is critical because more than 20% of the world’s rice 
paddies, especially those in coastal and delta regions, are already affected by salt 
stress (4, 5). These soils support diverse microbial communities but are highly susceptible 
to environmental stressors, such as salinity, which can influence their capacity as carbon 
sinks (2, 6).

The methanogenic food web in paddy soils plays a central role in the decomposition 
of organic matter, primarily rice straw, by hydrolytic, fermenting, and syntrophic bacteria, 
as well as methanogens, leading to CH4 and CO2 production (7–12). Hydrolytic bacteria 
break down complex plant polymers into simpler oligomers and monomers, which are 
subsequently fermented to short-chain fatty acids and alcohols, fueling methanogenesis 
via acetate, H2–CO2, and methylated compounds (13, 14). Acetoclastic and hydrogeno­
trophic pathways are dominant at a ratio of 2:1 in rice paddies (12, 15). The methano­
genic community can be dramatically affected by various environmental factors, such as 
temperature (14, 16), freeze-thaw cycles (17), dry-wet transitions (18), nitrogen level (19), 
and the soil type (20), while few studies have examined how SWISLR and salinity impact
microbial activity and gene expression within the methanogenic food web in rice field 
soils.

To elucidate the short-term impact of increasing salinity on the metabolic activity 
of particular functional guilds, we conducted a study focusing on different microbial 
populations and their role within the methanogenic food web, including polymer 
hydrolysis, fermentation, and methanogenesis. Our experimental setup involved slurry 
microcosms incubated under anoxic conditions, with the addition of rice straw as a
carbon source. The straw-amended microcosms were preincubated without salt stress 
for 9, 14, 21, and 28 days at 30°C. The 28-day period has been shown to result 
in a complete consumption of the easily degradable rice straw components (15). 
This ultimately involves successional changes in the composition and activity of the 
methanogenic community with progressing polymer breakdown (12, 14). Upon each 
preincubation time, the microbial communities were exposed to zero (control), moderate 
(1.75%), and high (3.50%) salinity for 48 hours (Fig. S1). This experimental approach 
simulates the scenario of SWISLR in paddy lands. We applied a “double-RNA” metatran­
scriptomic approach as our key methodology to monitor both the structural (16S rRNA) 
and functional (mRNA) responses of the complex methanogenic community to salt 
stress (12, 21–23). We aimed to answer the following questions: (i) how do bacteria 
and methanogens respond to varying salinity levels across different stages of commun­
ity succession; and (ii) what underlying microbial mechanisms drive salinity-induced 
dynamics within the anaerobic food web? Although many studies on salt stress in 
anaerobic environments have focused on methanogens, comparatively less attention 
has been given to higher trophic levels involving bacterial communities responsible for 
polymer hydrolysis and fermentation processes. These bacterial guilds play a critical role 
in determining substrate availability for methanogens. In other ecosystems, taxa such as 
Firmicutes and Bacteroidetes have been reported to possess osmotolerant traits, including 
solute transporters or stress proteins (24). However, the expression and functional 
relevance of these traits under SWISLR-like conditions in paddy soils remain poorly 
characterized. We hypothesized that the community successional stage would have a 
differential effect on the salt-induced suppression of CH4 production, while the key 
players in carbon metabolism and CH4 emission would remain dominant under stress 
conditions due to their physiological traits.

RESULTS

Differential salinity effect on CH4 and CO2 production

Moderate (1.75%) and high (3.50%) salinity were applied to investigate their effects on 
the anaerobic food web and CH4 production in rice paddies. Both salinity levels inhibited 
CH4 and CO2 production relative to the control on days (9 + 2), (21 + 2), and (28 + 2), but 
not on day (14 + 2) (Fig. 1A and B). Acetate accumulated under salt stress conditions at 
all four preincubation times, particularly evident on day (14 + 2) (P < 0.001). Propionate 
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was significantly enriched with high significance under salt stress at days (14 + 2) and (28 
+ 2), but not on days (9 + 2) and (21 + 2) (Fig. S2). A significant negative correlation was 
observed between acetate and CH4 production across all four time points (R = −0.63, P < 
0.001) (Fig. S3).

Greater salinity effect on bacteria than methanogens

We applied double-RNA metatranscriptomics to determine the microbial response to 
salt stress. Salt stress significantly affected the bacterial community composition on 
the mRNA level more than on the 16S rRNA level (P < 0.001), while the methanogen 
community was more affected by the preincubation time than the salt stress treatments 
(P < 0.001) (Fig. S4, Table S3 and S4). The exposure to high salinity, but not to moderate 
salinity, significantly lowered the bacterial alpha diversity on the 16S rRNA level, as 
indicated by the Shannon index (P < 0.001) (Fig. S5). By contrast, the alpha diversity of 
methanogens varied significantly with preincubation time on both the 16S rRNA level 
(time: P < 0.001; salinity: P = 0.10, adonis test) and the mRNA level (time: P < 0.001; 
salinity: P = 0.11, adonis test) (Fig. S5).

The alpha diversity of methanogens showed a significant positive correlation 
between the 16S rRNA and mRNA levels (R = 0.94, P < 0.001), while such a correlation 
was not evident within the bacterial community (Fig. 1C). The relative abundance of 
carbohydrate-active enzyme (CAZyme) transcripts was positively correlated with the 

FIG 1 Community-wide activity response to salt stress. (A) Line plots display the concentrations of CH4 production and CO2 evolution in response to salt stress 

after the four different preincubation time points. Absolute concentrations of CH4 and CO2 are shown for three salinity levels (0.00%, 1.75%, 3.50%) (mean ± 

SE, n = 3). Please note that the dashed lines connecting the preincubation times are only shown for improved visualization of the overall results. (B) Bar plots 

display the effects of salt stress on CH4 production and CO2 evolution, shown as log2 fold change relative to the control treatment. Negative values at the 

different salinity levels indicate an inhibition effect relative to the control. The paired t-test was used to assess the statistical significance of differences between 

treatments. Significance is denoted by asterisks (*P < 0.05, **P < 0.01, ***P < 0.001). (C) Correlations between the alpha diversity (Shannon index) of 16S rRNA and 

mRNA were analyzed for bacteria and methanogens across all the treatments. The colors indicate the different salinity treatments. (D) Correlations between the 

bacterial diversity (Shannon index) and the relative abundance of carbohydrate-active enzyme (CAZyme) transcripts. (E) Correlations between the methanogen 

diversity (Shannon index) and CH4 emission. The green and orange colors in (D) and (E) represent the correlation analysis on the 16S rRNA and mRNA levels, 

respectively. The “R” (C–E) denotes the Pearson correlation coefficient, and the P-value is used to test the null hypothesis that there is no linear relationship 

between the two variables, n = 36.
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bacterial alpha diversity on the 16S rRNA level (R = 0.62, P < 0.001), but not on the mRNA 
level (Fig. 1D). Furthermore, a significant positive correlation was observed between 
the alpha diversity of methanogens and CH4 production on both the 16S rRNA and 
the mRNA levels (P < 0.01) (Fig. 1E). The alpha diversity of mRNA encoding polymer 
breakdown (CAZymes) and methane metabolism also showed a significant positive 
correlation with CH4 production (P < 0.001) (Fig. S3 and S5).

Distinct microbial community responses to increasing salt stress

Taxonomic assignments of both 16S rRNA reads and mRNA transcripts were performed 
to identify the composition and functional activity of microbial communities. The 
microbial community composition varied in response to preincubation time and salinity 
(Fig. 2; Tables S5 and S6). Among bacteria, Firmicutes emerged as the most active 
phylum, with relative transcript abundances ranging from 45.9% to 55.5% on the 16S 
rRNA level and 25.4% to 80.4% on the mRNA level (Fig. S6). In particular, the relative 
mRNA abundance of the Clostridiaceae increased at high salinity by 87.5% relative to 
the control, being the transcriptionally most active family-level group (Fig. 2). Among 
methanogens, Methanosarcinaceae and Methanocellaceae were the most abundant 
methanogen families on both the 16S rRNA level and the mRNA level (Fig. 2). The total 
transcript abundance of Methanosarcinaceae decreased after day (9 + 2) on the mRNA 
level, while that of Methanocellaceae increased after day (9 + 2) on both the 16S rRNA 
level and the mRNA level (Fig. 2).

Salt inhibited bacterial gene expression involved in carbohydrate utilization

We examined the mRNA transcripts of key microbial populations involved in polymer 
breakdown, fermentation, and methanogenesis and assessed the effect sizes along the 
different trophic food web levels under increasing salinity (Fig. 3; Table S7).

A total of 76,298 mRNA reads were identified to encode CAZymes, of which 49,328 
reads were associated with transcripts involved in the hydrolysis of pectin, cellulose, 
xylan, and chitin (Table S8). The relative abundance of the CAZyme transcripts decreased 
under salt stress, particularly at high salinity (P < 0.001) (Fig. 3). In the control, the 
CAZyme transcript abundance peaked on day (21 + 2), but declined with increasing 
preincubation time and salinity (see significance values in Fig. 3). Among the 

FIG 2 Relative abundance of particular bacterial and methanogen families based on total metatranscriptomic reads, shown across all preincubation times and 

salinity levels. The ten most abundant bacterial families and the eight most abundant archaeal families detectable in all samples are shown on the 16S rRNA level 

and mRNA levels, respectively.
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FIG 3 Impact of salinity on the anaerobic food web-linked functional profiles created based on triplicate metatranscriptomes for each preincubation time 

and salinity treatment (control [zero], 1.75%, and 3.50% salinity). Box plot headers indicate the metabolic pathways. The size of the smaller, differently colored 

circles beneath the box plots indicates the relative pathway­specific abundance of the transcriptionally most active families in response to increasing salinity. 

Taxonomic assignment of transcripts expressed by specific genes or related to particular metabolic pathways is shown in Table S7. The box plot y-axes indicate 

the cumulative relative transcript abundances of the metabolic pathway of interest relative to total (bacterial and archaeal) mRNA, and the x-axes indicate 

the different salinity levels. The four different preincubation times are color-coded. Colored stars above the box plots represent significant variations (analysis 

of variance [ANOVA], P < 0.05) in transcript abundance between the different preincubation times within the same salt treatment. Assessed by paired t-tests, 

significant differences in transcript abundance between the different salinity treatments are indicated by asterisks (*P < 0.05, **P < 0.01, ***P < 0.001). The 

comparison between control and moderate salinity is indicated by blue asterisks, while the comparison between control and high salinity is denoted by red 

asterisks. A line connecting two different metabolic pathways indicates a significant correlation between these two pathways under different salinities, i.e., the 

effect size of the former pathway on the latter pathway. Solid lines indicate positive correlations (effect size >0) and dashed lines indicate negative correlations 

(Continued on next page)
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carbohydrate utilization modules, the relative abundance of CAZyme transcripts for 
cellulose breakdown decreased under increasing salinity (P < 0.001), whereas the relative 
abundance of CAZyme transcripts other than those involved in cellulose, xylan, and 
chitin hydrolysis was significantly increased at both moderate salinity (P < 0.001) and 
high salinity (P < 0.01) (Fig. S7 and S8). The relative abundance of pectin degradation-
related transcripts also significantly increased at high salinity (P < 0.001). Notably, 
Clostridiaceae showed significant enrichment in CAZyme expression under salt stress (P < 
0.01) (Fig. 3; Fig. S7).

Varied responses of fermentative populations to salt stress

Transcripts involved in polymer breakdown and pyruvate metabolism showed significant 
correlations under increasing salt stress (P < 0.01) (Fig. 3; Fig. S9). At moderate salin­
ity, transcripts involved in central carbon (pyruvate) metabolism and decarboxylation 
of pyruvate to acetate were positively correlated (P < 0.001) (Fig. 3). The abundance 
of transcripts involved in pyruvate metabolism and propionate fermentation was not 
affected by salt stress (P > 0.05), but varied significantly with preincubation time (P 
< 0.05) (Fig. 3). Clostridiaceae became the most transcriptionally active fermentative 
group at the family level under salt stress, exhibiting the highest transcript levels across 
various metabolic pathways, including central carbon metabolism (glycolysis, pyruvate 
metabolism), ethanol fermentation, decarboxylation conversion of pyruvate to acetate 
and, to a lesser extent, propionate metabolism when exposed to high salinity (Fig. 3). 
Concurrently, the abundance of transcripts encoding glycolysis and ethanol fermenta­
tion increased relative to the control with high significance (P < 0.001).

Salinity inhibited transcription of hydrogenotrophic methanogenesis but not 
methylotrophic methanogenesis

Salinity inhibited transcription of hydrogenotrophic methanogenesis but enhanced 
methylotrophic methanogenesis. While acetoclastic methanogenesis was not inhibited, 
the level of its related gene expression varied significantly with preincubation time. By 
contrast, the expression of hydrogenotrophic methanogenesis was significantly inhibited 
by salinity (P < 0.05), particularly at moderate salinity (P < 0.001) (Fig. 3 and 4). 
The expression of the hydrogenotrophic methanogenesis pathway by Methanocellales 
peaked on day (14 + 2) in the control but was strongly suppressed by salinity at 
this preincubation time (P < 0.001) (Fig. 4B); the latter corresponding to the greatest 
overaccumulation of propionate relative to the control (Fig. S2). Compared to the control, 
a stress relief effect on the suppressed expression of the hydrogenotrophic methano­
genesis pathway was evident at days (21 + 2) and (28 + 2) (Fig. 4B). Methylotrophic 
methanogenesis, especially via the activity of Methanosarcinales and Methanomassiliicoc­
cales, significantly increased with preincubation time (P < 0.05). Specifically, the transcript 
abundance of the Methanomassiliicoccales was significantly increased relative to the 
control at both moderate salinity and high salinity (P < 0.05), defined by a significantly 
increased expression of the mtaAB gene cluster, whose transcripts are highly indicative of 
methanol-dependent methanogenesis. The significant increase in mtaAB transcripts was 
observed for day (28 + 2) at moderate salinity (P < 0.05) and across all four preincubation 
times at high salinity (P < 0.05) (Fig. S10).

Adaptive salinity response mechanisms of key populations

The abundance of transcripts involved in osmoprotection increased under salt stress (P 
< 0.001), with higher expression at moderate salinity than high salinity (P < 0.001) (Fig. 
S11). These transcripts were primarily related to choline uptake and its conversion into 

Fig 3 (Continued)

(effect size <0). The color of the line indicates whether the effect is significant or non­significant, with darker lines being significant. Additionally, colored stars 

near the line indicate statistical significance that is associated with hypothesis tests for the regression coefficients (n = 12); ***P <  0.001, **P <  0.01, *P <  0.05.
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betaine (Table S9). In addition, flagellin biosynthesis transcripts were significantly more 
abundant at high salinity than moderate salinity at days (21 + 2) and (28 + 2) (P < 0.001) 
(Fig. S12). Both osmotic stress response and flagellin synthesis were predominantly 
expressed by Clostridiaceae at high salinity (Fig. S12 and S13). The relative abundance of 
transcripts encoding V/A-type H+/Na+-transporting ATPase was not affected by salinity (P 
> 0.05), but shifted taxonomically from Syntrophorhabdaceae toward Clostridiaceae with 
preincubation time and increasing salinity (Fig. S14).

While transcripts of the methanosarcinal gene ablB were not detectable in the control 
treatments, their abundance was slightly but significantly (P < 0.05) increased on day (14 
+ 2) at moderate salinity and across all four preincubation times at high salinity (P < 0.05) 
(Fig. S15). ablB encodes the conversion of β-lysine into the compatible solute Nε-acetyl-β-
lysine. Finally, Clostridiaceae abundance was positively correlated with the relative gene 
expression level of methylotrophic methanogenesis operated by Methanosarcinales and 
Methanomassiliicoccales (P < 0.01) (Fig. S16).

DISCUSSION

To determine how salt stress affects the methanogenic food web activity and to unravel 
the underlying effect mechanisms, straw-amended rice field soil was taken as a model 
system to apply “double-RNA” metatranscriptomics after exposure of the methanogenic 
community to zero, moderate (1.75%), and high (3.50%) salinity for 48 hours (12, 21–23). 
This exposure followed a preincubation period and was designed to simulate short-term 

FIG 4 Relative gene expression of major methanogenesis pathways in response to preincubation time and salinity. (A) Methanogen orders that operate 

acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis. The sum of total reads encoding enzymes of these three major methanogenesis 

pathways was set to 100% to calculate the contribution of each of these methanogen orders to a specific methanogenesis pathway across all preincubation 

times and salinities. (B) Impact of preincubation time and salinity on the order­specific abundance of transcripts involved in the acetoclastic pathway, the 

hydrogenotrophic pathway, and the methylotrophic pathway. Members of the Methanosarcinales are mixotrophic methanogens with the potential to operate all 

three methanogenic pathways. By contrast, Methanocellales spp. are specialized hydrogenotrophic methanogens, while members of the Methanomassiliicoccales 

are specialized in methylotrophic methanogenesis. Data are presented as mean  ±  s.e.m. of the estimated relative transcript abundance, n = 3.
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salinity shocks, such as those caused by rapid seawater intrusion events (e.g., storm 
surges or tidal flooding). In metatranscriptomic studies, a 48-hour exposure is consid­
ered long-term, as microorganisms typically exhibit adaptive transcriptome responses, 
referred to here as resilience, within this timeframe under moderate to high salt stress 
(25, 26). In this study, microbial resilience is defined as the capacity of microbial taxa 
to sustain both prevalence and functional activity under salt stress, relative to the 
unstressed control at each successional stage.

While the “double-RNA” approach provided comprehensive insights into the salinity 
effects on the methanogenic food web, the microbial communities responded more 
strongly on the mRNA level than on the 16S rRNA level, correlating with a faster mRNA 
turnover due to their shorter half-lives (12, 21–23, 27). Given the limitations of using 
rRNA abundance as a direct proxy for microbial activity in environmental samples (28), 
16S rRNA sequencing was used solely to characterize viable community composition, 
while mRNA transcripts were exclusively analyzed to infer functional activity. Notably, the 
abundance of CAZyme transcripts was positively correlated with 16S rRNA abundance, 
but not with total mRNA abundance (Fig. 1D). This pattern likely reflects fundamental 
differences between the two molecular pools: 16S rRNA abundance is more indicative 
of microbial biomass and basal metabolic potential, while total mRNA encompasses 
a wide array of transcripts related to multiple cellular processes beyond carbohydrate 
metabolism (28). The observed correlation suggests that the capacity for organic matter 
degradation is closely linked to the abundance and activity of specific bacterial taxa 
capable of expressing carbohydrate-active functions under saline conditions (29). Here, 
we paid particular attention to sub-transcriptomes involved in polymer hydrolysis, 
fermentation, and methanogenesis, aiming to understand how these processes influence 
methane emissions under increasing salinity at different stages of community succes­
sion.

Polymer hydrolysis and fermentation

While serving as molecular indicators of carbon acquisition strategy (30), the expression 
of CAZymes was significantly inhibited at high salinity (Fig. 3), accompanied by a shift 
toward the predominance of clostridial CAZyme transcripts across all four preincubation 
times (Fig. 3; Fig. S7C). The alpha diversity of CAZyme transcripts showed a significant 
positive correlation with CH4 production (P < 0.001) (Fig. S3 and S5), in good correspond­
ence with the greatly varying relative expression levels of transcripts encoding specific 
CAZymes (Fig. S7A and S8). While the Shannon index provides a useful measure of 
functional diversity, it may underestimate certain aspects of functional novelty at the 
gene level (31). The significant increase in the relative abundance of transcripts encoding 
mannosidase and beta-galactosidase (P < 0.05) may imply a shift in the enzymatic 
activity from complex carbohydrate degradation toward the decomposition of simpler 
carbohydrates, with the latter potentially contributing to the osmotic balance or the 
utilization of alternative energy sources more suited to salt-stressed environments (32).

The breakdown of complex carbohydrates into monomers, followed by glycolysis 
to produce pyruvate, is a critical metabolic pathway for stress tolerance and signaling 
(33). Notably, members of the Clostridiaceae displayed remarkable resilience to salinity 
increases in native paddy soil, with Clostridium spp. outcompeting other fermentative 
bacteria across all four preincubation times under salt stress due to their metabolic 
capacity to gain sufficient energy for effective osmoadaptation (Tables S7 and S9). 
Clostridiaceae possess the ability to synthesize cellulosomes, multienzyme complexes for 
degrading plant cell wall polysaccharides, such as cellulose and hemicellulose (34, 35). In 
addition, Clostridiaceae are capable of forming endospores, a trait that facilitates survival 
under adverse environmental conditions, including salinity stress (36). This sporulation 
capacity likely contributes to their persistence in salt­affected soils (26). The reallocation 
of metabolic resources, reflected in the increased relative expression of genes involved in 
glycolysis, pyruvate metabolism, decarboxylation conversion of pyruvate to acetate, and 
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ethanol fermentation (Fig. 2 and 3; Table S7), supports the view that Clostridiaceae are 
particularly able to adapt to salt-stressed environments.

Relative to the control, the transcription of both clostridial glycolysis and clostridial 
ethanol fermentation significantly increased under salt stress, with a significant link 
between the expression of both pathways across the four preincubation times at high 
salinity (Fig. 3). In glycolysis, the generation of ATP via substrate-level phosphorylation 
is coupled with the reduction of NAD+ to NADH per glucose converted into pyruvate. 
Ethanol fermentation regenerates NAD+ for glycolysis, while acetate production via 
acetyl-CoA from pyruvate generates additional ATP (37). The increased flow of carbon 
through clostridial glycolysis was most evident for day (14 + 2). Interestingly, acetate
concentration was 5.6- to 5.7-fold higher under moderate and high salinity than in the 
control (Fig. S2C), while no inhibitory effect of increased salinity on CH4 production was 
evident (Fig. 1B). The shift toward increased acetate release by Clostridiaceae presumably 
contributed to the resilience of CH4 production through acetoclastic Methanosarcinales 
at day (14 + 2), in addition to the methanosarcinal ability to actively tolerate salt stress.

Methanogenesis

The relative gene expression of the three major methanogenic pathways strongly 
varied across the different successional stages, depending on substrate availability and 
the methanogens’ ability to tolerate salt stress. Acetoclastic methanogenesis by the 
mixotrophic Methanosarcinaceae was highly active during the early stage of polymer 
breakdown, depending on the acetate production (15). As expected, Methanosarcinaceae 
outcompeted the obligate acetoclastic Methanotrichaceae during the early successional 
stage (Fig. 2). Interestingly, salinity did not inhibit the transcription of acetoclastic 
pathways in Methanosarcinales (Fig. 4), except during later stages (days 21 + 2 and 28 
+ 2), when acetate concentrations limited their acetoclastic activity (Fig. S2B). However, 
at day (14 + 2), the increased transcription of acetoclastic pathways under salt stress 
correlated with the heightened acetate concentrations (Fig. S2) and the absence of 
inhibitory effects on CH4 production (Fig. 1B). This suggests that members of Methano­
sarcinales have evolved salt tolerance mechanisms, including Na+ extrusion from the 
cytoplasm (38) and synthesis of compatible solutes such as glutamate and Nε-acetyl-β-
lysine at moderate and high salinity, respectively (39). Indeed, the increased abundance 
of ablB transcripts at day (14 + 2) supports the notion of Nε-acetyl-β-lysine synthesis 
as a stress resilience mechanism (Fig. S15). This is also in good correspondence to the 
high stress resilience of Methanosarcinales at that preincubation time (Fig. 1A and 4). 
Methanosarcina spp. are able to uptake the widely distributed osmoprotectant “glycine 
betaine” (40), which rapidly conveys strong osmoprotection to their acetoclastic activity 
(41).

Hydrogenotrophic methanogens, particularly Methanocella spp., are intrinsically 
adaptive to low H2 concentrations (42) and are frequently involved in the syntrophic 
oxidation of propionate in rice paddies (12, 14). Under salt stress, the transcription of 
mRNA encoding hydrogenotrophic methanogenesis was strongly repressed. However, 
relative to the other methanogenesis pathways, the inhibitory effect on the expression 
of hydrogenotrophic methanogenesis decreased with preincubation time; most evident 
particularly at high salinity (Fig. 4). The greatest inhibitory effect occurred at day (14 
+ 2), at which the net consumption of propionate by Methanocellaceae-driven syntro­
phic methanogenesis starts to occur under no-salt conditions (12, 14). Correspondingly, 
propionate accumulated to significantly higher concentrations under salt stress than in 
the control treatment (Fig. S2B). Thus, the fact of no salinity-induced inhibition of CH4 
production on day (14 + 2) must be due to highly active acetoclastic methanogenesis 
(Fig. 1B), a view well supported by the significantly increased relative expression of the 
acetoclastic methanogenesis pathway at that preincubation time (Fig. 4B). Specifically, 
the salt tolerance of cultured Methanocella spp. has been shown not to exceed 20 g/L 
NaCl in the medium (43, 44). Correspondingly, Methanocellaceae was shown to withstand 
2% salinity in environmental settings, but not 3% salinity (45, 46). Given these previous 
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findings, it may be surprising that, relative to the control, the salinity­affected transcrip­
tion of mRNA encoding Methanocellaceae-driven methanogenesis was less suppressed 
at days (21 + 2) and (28 + 2) than day (14 + 2) (Fig. 4), with CH4 production during the 
2-day salinity exposure of no less than 50% of the control treatment (Fig. 1B). In addition 
to the negative impact of salinity on the transcriptional activity of the Methanocellaceae, 
salt stress may have affected the actual production of propionate and the activity of the 
limited number of bacterial species capable of syntrophic propionate oxidation, such as 
Syntrophobacterium spp. and Pelotomaculum spp. (11).

In contrast, the expression of methylotrophic methanogenesis steadily increased 
with preincubation time. Intriguingly, this increase in transcript abundance was related 
to both H2-independent methylotrophy by Methanosarcinaceae and H2-dependent 
methylotrophy by Methanomassiliicoccales (47, 48). The increased transcription of mRNA 
encoding methanosarcinal methylotrophy may be explained by the above-discussed 
ability of Methanosarcina spp. to effectively cope with salt stress. In contrast to Meth­
anosarcinaceae, the transcription of mRNA encoding methylotrophy by Methanomassi­
liicoccales was significantly increased relative to the control. Comparative analysis of 
metagenome-assembled genomes has shown that members of the Methanomassiliicoc­
cales possess the potential to synthesize trehalose and therefore are able to cope with 
increased salinity (49). As evidenced by the significant abundance increase in mtaAB 
transcripts, particularly at high salinity (Fig. S10), methanol plays a major role in the 
methanogenic community response to increased salinity. Under anaerobic conditions, 
certain amounts of methanol will become available through the dimethoxylation of 
pectin, while another potential methanol source may be lignin decomposition (50, 51).

A global view on the salinity-impacted methanogenic food web in paddy soil

Various studies have reported an inhibitory effect of increased salinity on CH4 production 
(6, 52–54), but none have shown that the salinity effect on the food web-related gene 
expression depends on the successional stage. Moreover, many studies investigating 
salinity effects on methanogenesis are confounded by the presence of sulfate, which is 
prevalent in SWISLR events (55, 56). In this study, we focused specifically on the impact 
of NaCl by maintaining sulfate-free conditions, allowing for a clearer understanding of 
how salinity alone affects microbial metabolism within the methanogenic food web. 
Methanogenic communities strategically allocate resources to pathways that prioritize 
energy generation, redox balance, and osmotic stress response, potentially by regulating 
carbon flux to specific fermentative pathways (57). In our study, this metabolic reprog­
ramming was associated with a highly significant increase in the transcriptional activity 
of the Clostridiaceae, which directly contributes to the resilience of acetoclastic CH4 
production by Methanosarcina spp. under salt stress. Intriguingly, methanol-dependent 
methanogenesis through both Methanosarcinaceae and Methanomassiliicoccales seemed 
to be favored under salt stress, as evidenced by the significantly increased transcript 
abundance of the mtaAB genes. The salinity-induced metatranscriptomic increase in the 
transcriptional activity of Clostridiaceae and Methanomassiliicoccales may be function­
ally linked at high salinity (Fig. S16). Members of the Methanomassiliicoccales have 
the genetic potential to assimilate acetate and ethanol as carbon sources for growth 
(49), which corresponds well to the salinity-induced relative increase in the clostridial 
transcription of mRNA related to glycolysis, decarboxylation of pyruvate to acetate, and 
ethanol fermentation. Moreover, recent research has shown that extracellular electron 
transfer can facilitate CH4 production in a co-culture of Clostridium and Methanomassi­
liicoccus strains (58), underscoring the complex interplay between fermentation and 
methanogenesis in salinity­affected environments. Nonetheless, we acknowledge that 
food web structures inferred from these data remain putative, and future studies 
incorporating stable isotope probing or single-cell approaches are needed to trace 
carbon fluxes and confirm interspecies metabolite transfers.
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Conclusion

Our study presents novel knowledge of the impact of salt stress on the viable commun­
ity and their activity within the methanogenic food web, leading to the inhibition of 
CH4 and CO2 production; specifically, that key microbial populations exhibit dynamic 
metabolic responses depending on community successional stage and salinity level. By 
employing a “double-RNA” metatranscriptomic approach, we captured real-time shifts 
in carbon flux within this food web, showing how functional guilds change in response 
to salt stress during community succession (12, 21–23). We identified critical linkages 
between salt-sensitive populations and metabolic pathways that directly influence CH4 
production, with a particular emphasis on how Clostridiaceae and Methanosarcina spp. 
mediate stress resilience of their metabolic activities. The identified functional links 
between predominant populations, which effectively cope with salt stress, offer valuable 
insights for future studies on methanogenesis under environmental changes, particularly 
in understanding whether effects occur solely under salt stress or in response to other 
stressors.

MATERIALS AND METHODS

Soil microcosms

Soils were collected from drained rice fields at the Italian Rice Research Institute (IRRI) 
as described previously (14). The IRRI is located in the valley of the river Po near Vercelli 
(Italy). To ensure standardized sampling without seasonal crop effects, sampling was 
conducted after the rice growing season. The surface soils (top 10 cm) were collected 
using a random sampling approach at multiple field locations to ensure representative 
sampling. The physicochemical characteristics of the Italian paddy soils have been 
previously described (59). After collection, soils were air-dried, mechanically crushed, 
and sieved to <2 mm to remove debris and stones and stored in sealed plastic bags 
at room temperature until the experiment was set up. The drying process was done 
carefully to prevent any changes in microbial communities while allowing for long-term 
storage prior to the experiment.

Slurry microcosms were set up by filling 40 g of homogenized dry soil with 35 mL 
of autoclaved water (maintaining an 8:7 soil:water ratio) and 0.5 g rice straw (1–2 cm) in 
125 mL autoclaved bottles (14). The rice straw was added as the main carbon source with 
a carbon content of 30%–40% and a nitrogen content of 0.6%–0.7%. The thoroughly 
mixed slurries were sealed with butyl rubber stoppers and repeatedly flushed with N2 to 
establish anoxic conditions. Prior to the salinity treatments, slurries were preincubated 
for 9, 14, 21, and 28 days in the dark at 30°C, respectively (Fig. S1). Sodium chloride was 
dissolved in 5 mL autoclaved water to adjust slurries to a concentration of 1.75% and 
3.50%, corresponding to half and full seawater salinity, and falling within the reported 
range of global average seawater intrusion (60–62). A total of 12 treatments were 
established, with three replicates per treatment, resulting in 36 bottles in total. A gas 
sample (0.1 mL) was taken immediately after salt addition and vigorous shaking of the 
slurries. Then the salty slurries were incubated for 2 days in the dark without shaking. To 
isolate the effects of salinity on the methanogenic food web, salinity was adjusted solely 
with NaCl, while MgSO4 was excluded to prevent activation of sulfate-reducing bacteria, 
following a recent study on the osmoregulation of freshwater anaerobic methane-oxi­
dizing archaea under salt stress (63). After the 48-hour salt treatment, slurry material 
beneath the topsoil layer was collected from all microcosms, with the residual rice straw 
being withdrawn. The slurry samples (day [9 + 2], day [14 + 2], day [21 + 2], day [28 + 
2]) were immediately shock-frozen using liquid N2 and then stored for molecular analysis 
at –80°C. In addition, gas samples (0.1 mL) and liquid samples (0.5 mL) were taken from 
the same set of slurries for metabolite measurements. All 36 microcosms (3 replicate 
microcosms × 4 time points × 3 salt treatments) were destructively sampled after the salt 
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stress treatments. Independent analysis of each set of triplicate slurries included process 
measurements and metatranscriptomic analysis using the double-RNA approach.

Metabolite measurements

A GC-8A gas chromatograph (Shimadzu, Duisburg, Germany) containing a Haysep Q 
column was used to measure CH4 and CO2. Data were analyzed with PeakSimple 
software (SRI Instruments, Bad Honnef, Germany) and calculated by linear regression 
as described previously (14). Concentrations of acetate and propionate in the liquid 
sample of the soil slurries were measured by high-performance liquid chromatography 
equipped with an ion-exclusion column (Aminex HPX-87-H, BioRad, München, Germany) 
and coupled to a UV–Vis detector (Sykam, Fuerstenfeldbruck, Germany) (64).

“Double-RNA” metatranscriptomics

Total RNA was manually extracted from slurries using a previously established method 
(12, 14). cDNA libraries were generated from the RNA extracts without prior removal 
of rRNA, and subsequently sequenced using the Illumina HiSeq platform. Detailed 
protocols for RNA extraction and library preparation are provided in the Supplemental 
methods.

The total RNA reads were analyzed using a customized metatranscriptomic pipeline 
(see Supplemental material) (12, 14). Following raw data cleaning, 16S rRNA reads were 
extracted using SortMeRNA 2.0 (65) with SILVA (release 138). Taxonomic analysis was 
performed using two approaches: 16S rRNA reads were processed with QIIME 2 (66), 
while mRNA reads were taxonomically assigned using the NCBI non-redundant protein 
database by MEGAN6 (67). Functional annotation and further sub-annotation were 
exclusively based on mRNA reads using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and SEED databases (67–69).

The annotation of CAZyme encoding transcripts was achieved against dbCAN2 
(70) using DIAMOND (71) following previous protocols (14). Briefly, functional CAZyme 
modules (e.g., cellulose, chitin, xylan, pectin, and other hemicellulose degradation) 
were defined by grouping enzymatic functions based on their enzyme commission 
numbers. To facilitate annotation, a comprehensive mapping file was generated from all 
available dbCAN entries, formatted as an indexed SQLite database, and queried using 
custom Python scripts. mRNA reads were first aligned to dbCAN to identify top hits, 
which were then matched against the curated mapping file to assign them to specific 
CAZyme modules. In-depth sub-transcriptome analysis and taxonomic reassignment 
were conducted using in-house scripts as previously described (17).

Statistical analyses

Non-metric multidimensional scaling (NMDS) plots were generated in the R (version 
4.3.1) software (R Development Core Team, 2021) using the vegan package (version 
2.6.2) (70) with the metaMDS function and Bray–Curtis dissimilarity matrices based on 
relative transcript abundance. We conducted a permutational analysis of variance using 
the adonis2 function from the vegan package to test whether community differences 
on both 16S rRNA and mRNA levels between (i) the four incubation time points, (ii) the 
three different salinity treatments, and (iii) their interaction, in the NMDS ordinations 
are statistically significant (70). The linear discriminant analysis effect size was used 
to estimate microbial indicators separately for each time point and each salt treat­
ment, defined as significantly enriched (72). To assess temporal variation in transcript 
abundance within each salinity treatment (Fig. 3), one-way analysis of variance (ANOVA) 
was performed independently for each salinity level across the four preincubation 
time points. Prior to conducting ANOVA, assumptions of normality and homogeneity 
of variances were tested using the Shapiro-Wilk and Levene’s tests, respectively. In 
cases where these assumptions were violated, the non-parametric Kruskal-Wallis test 
was employed. To investigate functional responses to salinity (Fig. S11), differential 
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expression analysis was performed using the DESeq2 package (v1.40.2) based on raw 
read counts annotated with KEGG and SEED level 3 functional categories (73). Wald tests 
were used to determine statistical significance, and resulting P-values were adjusted 
using the Benjamini-Hochberg false discovery rate method (74). This analysis was 
specifically applied to generate the functional profiles as shown in Fig. S11.

Treatment effects analyzed by linear model

We employed linear models to separately evaluate the impact of each salinity treatment, 
considering the complete independence of the variables (preincubation time and salt 
treatment). Each coefficient reflects the effect size of the associated predictor variable, 
and the P value associated with each coefficient tests the null hypothesis that the 
corresponding coefficient is equal to zero (no effect). A P value <0.05 suggests that the 
coefficient is statistically significant and has an impact.
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