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Zusammenfassung 
 

Traditionelle tiefe neuronale Netzwerke haben in rechenintensiven Aufgaben wie der 

Musterklassifikation und Spracherkennung große Erfolge erzielt. Der rapide Anstieg des 

Energieverbrauchs, der für die Durchführung dieser Aufgaben erforderlich ist, macht jedoch 

die Suche nach recheneffizienteren Netzwerkarchitekturen dringend notwendig. Netzwerke, die 

auf gekoppelten Oszillatoren basieren, sind von großem Interesse für energieeffizientes 

Computing. Ein entscheidender Aspekt bei der Entwicklung solcher Technologien ist die 

steuerbare Kontrolle der Wechselwirkungen zwischen Oszillatoren, die heute durch zusätzliche 

elektronische Komponenten realisiert wird. In dieser Arbeit wird eine neuartige Methode zur 

Steuerung der Synchronisation von eng benachbarter Vanadiumdioxid (VO2) Oszillatoren 

vorgestellt, die über ein einfaches thermisches Auslöseelement aus VO2 erfolgt. Der gesamte 

Energieverbrauch der Oszillatoren ist bei thermischer Kopplung geringer im Vergleich zu der 

Situation, in der sie unabhängig voneinander oszillieren. Basierend auf solchen Oszillatoren mit 

aktiver Abstimmung werden experimentell AND, NAND und NOR Logikgatter sowie 

verschiedene Feuermuster demonstriert, die das Verhalten Spiking Neuron nachahmen. 

Großskalige Spiking-Neuron Netzwerke, die auf diesen experimentellen VO2-Oszillatoren 

basieren, erreichen eine Genauigkeit von 90% bei der Erkennung handgeschriebener Ziffern 

aus dem MNIST-Datensatz. Die Ergebnisse dieser Arbeit zeigen einen innovativen Ansatz für 

Rechenmethoden, die auf Netzwerken von thermisch gekoppelten Oszillatoren basieren. 

 

 

 

 

 

 

  



Abstract 
 

Traditional deep neural networks have gained success in computational heavy tasks such as 

pattern classification and voice recognition. However, the rapid increase in power consumption 

to carry out these tasks due to significant amount of data have made it imperative to search for 

more efficient and novel computational network architectures. Computational network based 

on coupled oscillators are of great interest for energy efficient computing. A key to develop 

such technologies is the tunable interaction among the coupled oscillators which today can be 

realized by additional electronic components. In this thesis, a novel way to control the 

synchronization of closely spaced vanadium dioxide (VO2) oscillators via a simple thermal 

triggering element formed from VO2 is introduced. The net energy consumed by the oscillators 

is lower during thermal coupling compared with the situation where they are oscillating 

independently. Based on such oscillators with active tuning, AND, NAND, and NOR logic 

gates and various firing patterns that mimic the behavior of spiking neurons are experimentally 

demonstrated. Large-scale spiking neural networks based on such experimental VO2 spiking 

neurons show a 90% accuracy in the recognition of MNIST hand-written digits. The findings 

in this thesis demonstrate an innovative approach towards computational techniques based on 

networks of thermally coupled oscillators. 
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Chapter 1 Introduction 

 

Nowadays, more and more artificial intelligent (AI) technologies are applied in our daily life: 

Target recognition, natural language processing, auto-pilot and etc. However, traditional 

computing technique based on von-Neumann architecture falls short of competing with human 

brain in term of energy efficiency. For a very simple pattern recognition task such as 

handwritten digits or animals, it takes computer to run at a power of 800 W in order to train the 

neural network, while human brain needs much lower power for similar tasks [~20 W, empirical 

value]. Such significant difference in power consumption for executing the same task has raised 

interests and demands to develop next-generation computing architecture that approaches the 

human brain. Traditional von-Neumann architecture has separated process units and memory 

units- data needs to be constantly transferred back and forth in sequence between them during 

every operation, which leads to the additional latency and considerable power consumption. 

Network of oscillators with inherent dynamical coupling strength, mimics periodic activities of 

biological neurons in the brain (Chapter 2.1). This oscillatory network can offer faster and more 

efficient means of computation by their integrated process and memory units, and the ability to 

process data in parallel [1, 2]. Two critical aspects for the further development of such systems 

are mutual interactions and the control of the interactions between neighboring oscillators for 

their synchronization.  

Spiking neural networks (SNNs, Chapter 2.2), as a special type of oscillatory computational 

network, have garnered ever increasing interest in recent years due to their similarity with our 

own biological system in terms of sparse connections, and better capability to deal with 

temporal data by its inherent recurrent feature [3 - 5]. As distinct from second-generation ANNs 

(artificial neural networks) that generate continuous analog outputs, third-generation neurons 

in SNNs communicate with each other by discrete spikes [6]. 

Highly interesting oscillators can be formed from strongly correlated oxide materials that 

display an insulator to metal transition. The controlled oscillation between the low and high 

resistance states in such materials is possible under an external stimulus such as current, 

magnetic field, or electric field [7, 8]. Oscillators based on vanadium dioxide (VO2, Chapter 

2.1.3) are of particular interest since the material undergoes an insulating to metallic phase 

transition near room temperature [9 - 12]. Coupling between the VO2 oscillators is essential to 

the operation of the oscillatory computational network and can be realized either via external 
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electronic components [13 - 17] or by thermal links [18, 19]. So far, computational schemes 

based on the phase relationship between oscillators has been the most common technique used 

in coupled VO2 networks [14 - 16]. These schemes rely on binary logic where the two states 

correspond to the phase of the oscillator (0° or 180°) relative to a reference oscillator. However, 

additional electronic elements are required for generating the oscillation and for tuning the 

coupling among the VO2 devices [13 - 19]. This not only increases the complexity of the design 

of any computational circuit, but also limits the degree of freedom to tune the dynamics of the 

network during operation.  

This thesis offers a simple but effective mean to actively tune the thermal coupling between 

VO2 oscillators, without any extra electronic components needed. The effective tuning 

mechanism introduced in this thesis can generate a multiplicity of synchronous oscillatory states 

with distinct frequencies and amplitudes for both Boolean-type (logic gates operations) and 

non-Boolean-type (spiking neural network) computation.  

The thesis is organized as follows: Firstly, the basic concepts, working principle of oscillator-

based computational network (OCN), and comparison between different implementations of 

oscillators will be introduced in Chapter 2. Then, spiking neural network (SNN), as one of the 

OCNs, will be discussed and compared with the previous generations of artificial neural 

network (ANN). Two types of basic computational nodes from SNN: Leaky integrate-and-fire 

(LIF) neuron and Hodgkin–Huxley (H-H) neuron, together with the network architecture and 

training algorithm utilized in this thesis, will also be introduced in this chapter. In Chapter 3, 

physical deposition of VO2 thin films, and fabrication process of VO2 devices will be introduced 

in details. Afterwards, implementations of VO2 oscillators for both traditional Boolean logic 

gates computation (Chapter 4), and unconventional neuromorphic computing based on spiking 

neural network (Chapter 5) will be introduced. Finally, in Chapter 6, the findings of this thesis 

will be concluded and further applications with other type of memristor (i.e. magnetic Racetrack 

memory) will be briefly discussed for outlook.  
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Chapter 2 Oscillatory Computational Networks 

 

In this chapter the general concepts for oscillator-based computational network (OCN), and 

different types of oscillators are the basic building block for the network will be introduced and 

discussed. Spiking neural network (SNN), as a special type of OCN, together with the network 

architecture and training algorithm that are utilized in this thesis will be studied. Two types of 

building blocks for SNN: Leaky integrate-and-fire (LIF) neuron and Hodgkin–Huxley (H-H) 

neuron will also be introduced in this chapter. 

 

2.1 Oscillator-based computational network (OCN) 

2.1.1 Fundamentals of OCN 

Human Brain as Network of Oscillators 

Imagine our brain is a large-scale network formed from oscillators, while each neuron behaves 

like an oscillator with its own frequency. Neurons don’t act in isolation. In the cell assembly 

theory, Hebb described the formation of neuron groups through the principle “Neurons that fire 

together, wire together”, and suggested that these assemblies work as units for learning and 

forming memories [20]. Individual neurons, each with their own activity rhythm, are locally 

synchronized. These locally assembled neurons act as a unified group, generating a collective 

rhythm to carry out specific functions, or represent a specific memory pattern.  

Oscillations across various frequency bands are strongly evident in different regions of the brain.  

Extensive research has been conducted on Theta-frequency oscillations (4-8 Hz) in the rodent 

hippocampus region. It was found that theta band oscillation has a critical impact, particularly 

on spatial navigation, memory encoding, and retrieval [21]. Gamma oscillations (40 - 80 Hz), 

which are commonly observed in various regions of the brain, contribute to the encoding and 

integration of information through precise temporal coordination [22]. The brain performs a 

complex function through communication among different neuron assemblies. Local gamma 

oscillations modulated in amplitude by theta oscillations can synchronize and communicate 

with other regions by phase-phase frequency coupling, cross-frequency phase-amplitude 

coupling, gamma phase-phase coupling, or cross-frequency phase-phase coupling methods [22], 

as shown in Fig 2.1. Such oscillation-based synchrony is energy-efficient and helps neurons 

work cooperatively [23].  



4 | P a g e  

 

 

Fig 2.1. Theta and gamma oscillations coupling mechanisms. a, Scheme of the brain region 

that are nested with gamma oscillations and theta oscillations. b, Phase-phase frequency 

coupling between gamma oscillations. Though the two gamma oscillations are not exactly the 

same, their phases are matched. c, Cross-frequency phase-amplitude coupling between gamma 

oscillation and theta oscillation. Though the phases of gamma-frequencies are not matched, the 

amplitude of gamma oscillation is regulated by same phase of theta oscillation. d, Gamma 

phase-phase coupling. (e) Cross-frequency phase-phase coupling between gamma and theta 

oscillation. Both the phase of gamma oscillation and theta oscillation are in coherence. 

Modified from [22]. 

 

General Concept of OCN  

Inspired by the effectiveness of the human brain, von Neumann in 1957 first proposed the idea 

of constructing an oscillatory computational network that utilized phase information of the 

oscillators for computing [24, 25]. It was truly surprising that he already realized the inherent 

limitations (processing speed, “memory bottleneck” problem, and huge power consumption) of 

the existing von Neumann computing architecture (proposed by him earlier and named after 

him) back at that time, which has become the main computing architecture nowadays.  

In contrast to the traditional von Neumann architecture, which is based on binary Boolean logic, 

the information in OCN can be represented by continuous frequencies and/or amplitudes and/or 

phases of the oscillators [26]. In traditional Boolean machine computational elements 

(transistor) are working independently, and binary digits flow through each element in sequence. 

Quite differently, oscillators in the OCN are coupled, and the interaction between them will 
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converge the whole system simultaneously into energy-favorable collective state (stationary) 

[27, 28], or certain collective behavior pattern in time sequence (dynamic) [29]. Network 

models for these two different collective states (stationary/dynamic) will be introduced in 

details in the following section 2.1.2. The collective patterns from the oscillator network will 

provide the final computation results. Thus, mutual interaction (coupling) between oscillators 

and tunable coupling strength are two critical aspects for constructing such network. The former 

allows every computational element in the OCN to process incoming information in parallel, 

while the latter severs as the memory of the system. These two aspects combined can efficiently 

overcome the problem of large power consumption caused by constantly transferring data 

between process unit and memory unit in the traditional von Neumann architecture based on 

Boolean machine, as shown in Fig 2.2. 

 

Fig 2.2. Comparison between traditional von-Neumann architecture and oscillator 

computational network. a, Typical von-Neumann architecture with separated process unit 

(CPU) and memory unit. b, Schematic illustration of oscillator computational network. 

Different sizes/colors of circles stand for computing nodes operating in different 

frequency/amplitude/phase. Lines between computing nodes represent the interactions 

(coupling strength). 

 

2.1.2 Different types of OCN 

Oscillatory Hopfield Network 

The Hopfield network [27] is one of the most well-known oscillatory networks. In such system, 

information is encoded as frequency or phase signals and fed into the network as the initial 

states of the oscillators.  Due to the mutual interaction (pre-trained weight) between oscillators, 
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synchronization in frequency/phase will evolve the system into the stationary energy minimum 

state [27, 28, 30]. 

One of the most studied models for describing the phase relation during synchronization process 

is the Kuramoto model [31, 32]. The phase dynamics 𝜃̇𝑖(𝑡) of the ith oscillator in a system 

consisting of N coupled phase oscillators can be modeled as 

θ̇i = ωi + ∑ Kij sin(θj − θi)
N
j=1 , i = 1, 2… N  (2.1.2.1) 

With ωi is the natural frequency of the oscillator, and Kij the coupling matrix describing the 

interactions strength between the ith and jth oscillator. In the case where all oscillators have the 

same frequency 𝜔0, they will try to correlate their phases (in-phase or out-of-phase) depending 

on the particular coupling strength (pre-train weight, described by the Kij coupling matrix). Each 

oscillator attracts/repels phases of other oscillators proportionally to their phase difference, and 

finally the whole system reaches the energy minimum ground state. The collective phase state 

of the oscillator network serves as the output [26, 31, 32]. Such oscillatory network with 

computing notes that can self-correlate has been successfully applied for auto-associative 

memory, like image recognition and reconstruction [14, 16, 33], as shown in Fig 2.3a. 

 

Oscillatory Reservoir network 

Different from the above-mentioned oscillatory network that outputs stationary energy 

minimum state of the system, reservoir network operates with computing nodes with highly 

non-linearity and short-term memory, and outputs collective states that vary with time [34]. 

Typical reservoir computational network has 3 layers: The input weight matrix layer, reservoir 

computing nodes layer, and output weight matrix layer, as shown in Fig 2.3b. At time t comes 

the input signal X(t), after weighted by the input matrix then fed into the reservoir layer. The 

computing nodes in the reservoir layer are connected in a random manner. Depending on the 

input signal, all of the computing nodes will form a collective state r(t) at time t. The outputs 

in time sequence from the reservoir layer are then mapped with a fixed readout matrix layer to 

form the desired results. Such system with complex temporal dynamics can be applied for 

solving tasks that are in time-domain like voice recognition [1] and time-series prediction [35]. 
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Fig 2.3. Oscillatory Hopfield network and reservoir network. a, Hopfield network 

configuration with an all-to-all connection between computing nodes. Depending on different 

input initial states of the oscillators, the system will converge to the energy minimum point 

determined by the connection strength (memory). Taken from [33]. b, Schematic illustration of 

reservoir network with input weight matrix layer (orange), reservoir computing layer (green, 

purple circles as computing nodes), and output weight matrix layer (yellow). 

 

2.1.3 Physical Implementations of Oscillators 

Oscillator is the basic building block for computational oscillatory network. It is generally 

defined as device/system that converts DC input signals into AC output signals with a certain 

period, amplitude and frequency [26]. A large variety of oscillators that can be realized by 

different electronic elements, ranging from traditional LC circuit, transistor, to unconventional 

solid-state devices, will be introduced in the following parts. Their working principles, CMOS 

compatibility and power consumption issue will also be discussed. 
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LC Oscillator 

When an inductor is connected with a charged capacitor (as shown in Fig 2.4), oscillation of 

both the current from the circuit can be observed. And the oscillation of current can be described 

by the following equation:  

𝑑2

𝑑𝑡2 𝑖(𝑡) +
1

𝐿𝐶
𝑖(𝑡) = 0  (2.1.3.1) 

With L the inductance and C the capacitance. The oscillating voltage from the inductor can be 

derived as: 

𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
= −𝜔0𝐿𝐼0 sin(𝜔0𝑡 + 𝜙)  (2.1.3.2) 

With 𝜔0 =
1

√𝐿𝐶
 the resonant frequency of the circuit, I0 the initial current, and ϕ the initial phase 

angle. 

 

Fig 2.4. Schematic illustration of the LC oscillator. The circuit includes a capacitor C, and 

an inductor L without serial resistance (R), ideally. 

The LC oscillator was first utilized for building the oscillator-based computer in 1959 [36]. 

Such oscillator (typical LC circuit) is characterized by quality factor Q, which quantifies the 

goodness of the LC circuit and determines how efficiently the energy is transferred in a given 

LC circuit. It is expressed as 

𝑄 =
1

𝑅
√

𝐿

𝐶
  (2.1.3.3) 

For such oscillator it is a high Q factor indicates less energy loss and high efficiency. However, 

when it comes to on-chip (CMOS -based) LC oscillator, the Q factor becomes relatively low. 

It is because micro size inductor already has very large serial resistance (R), resulting in 

considerable resistive loss during the operation of the oscillator [37]. Besides, the inductor 

needs very large chip area (~ 200 µm2) to improve the Q-factor [37, 38]. 
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Ring Oscillator 

The ring oscillator consists of an odd number of inverters connected in series with positive 

feedback, and each inverter is formed from the combination of PMOS and NMOS to realize the 

NOT gate function, as shown in Fig 2.5. The output oscillates between two voltage levels either 

high (1) or low (0).  

 

Fig 2.5. Schematic illustration of the LC oscillator. a, Circuit diagram of ring oscillator 

consists of three inverters and feedback connection. b, A typical inverter, also known as NOT 

gate, formed from PMOS and NMOS. 

The oscillation frequency of the ring oscillator can be calculated as 

𝑓 =
1

2𝑁𝜏
  (2.1.3.4) 

With N the number of inverters in the oscillator, and 𝜏 the time delay of a single inverter. In 

order to achieve more gain than a single inverting amplifier, more inverter can be added to the 

oscillator. However, a large number of inverters will significantly reduce the oscillation 

frequency f. Thus, a good compromise between total gain of the circuit and oscillation 

frequency has to be reached. Since ring oscillator is built up by transistor, it has very good 

CMOS compatibility and very low power consumption (~ 10-15 J per oscillation cycle) [39 - 

41], which can serve as the baseline when comparing the emerging oscillator formed from new 

solid-state devices. 

 

Spin-based Oscillator 

Unlike the above mentioned two oscillator that operate with charge current, spin-based 

oscillator generates AC output by the precession of the magnetic momentum caused by spin 

current injection. The electrons flowing in the current not only carry charges, but also spin, 
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whose projection along the spin axis can point up or down. In spin-polarized current, it has a 

majority of spin-up/down carriers, while in unpolarized charge current there is no such property. 

Such spin-based devices have faster switching times and lower power consumption than normal 

charge-based devices due to the fact that spins can be transferred faster and consumes lower 

energy than charges.  

When spin-polarized electrons flow through a domain wall, or a ferromagnet, where the 

direction of the spins in the spin current is different from the local magnetization, the motion 

for the magnetization can be described by the LLG equation [42 - 44]:  

𝜕𝑴

𝜕𝑡
= 𝛾[𝑯𝑒𝑓𝑓 × 𝑴] + 𝑻𝛼 + 𝑻𝑠  (2.1.3.5) 

With the M the magnetization, Heff the effective field, Tα the damping term, and Ts the 

Slonczewski spin-transfer torque. The effective field can be written as the sum of externally 

applied field Hext, the magneto-dipolar field Hdip, the anisotropy field Hk, the exchange field Hex, 

and the Oersted field Hoe when a drive current is present. Typical memory cell based on the 

spin transfer torque is shown in Fig 2.6. It has three layers: A free layer, in which its 

magnetization can be switched by spin current; A fix layer where the magnetization is fixed; A 

spacer that is in the between the fix layer and free layer, and servers as the magnetic tunneling 

junction. When the free layer and the fix layer have anti-parallel magnetization (AP, shown in 

Fig 2.6a), the resistance of the memory cell is larger than the case when the free layer and the 

fix layer have parallel magnetization (P, shown in Fig 2.6b). Write current with certain 

amplitude can switch the memory cell between high resistance state (AP) and low resistance 

state (P). Normally, the energy barrier between AP and P states is designed to be high enough, 

so that once the memory cell is configured to one state (AP/P state) it can be stable against 

possible external noise, i.e. thermal fluctuation. When the energy barrier between AP and P 

states is engineered to be sufficiently low, sustained magnetization precession at high frequency 

(MHz to GHz) be observed through the conversion of magnetization oscillation to voltage 

oscillation [45] upon supply current, as shown in shown in Fig 2.6c. 

Previous studies have shown that two spin transfer torque (STT) oscillator can be coupled 

without external electronic components needed [46, 47]. Such mutual interaction between 

oscillators is considered to be caused by spinwave excitations emitted from both oscillators, or 

by AC dipole magnetic-field interactions [46, 48]. Besides, such spin-based oscillator has good 

CMOS compatibility [49] with low energy consumption (~ 4.7×10-15 J) [50] that is comparable 

with the ring oscillator (transistor-based) introduced in the previous section. These outstanding 
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properties make spintronic devices become one of the promising candidates for unconventional 

energy-efficient computational element. 

 

Fig 2.6. Spin transfer torque oscillator. a, Free layer and the fix layer have anti-parallel 

magnetization (AP). b, Free layer and the fix layer have parallel magnetization (P). c, The 

magnetization in free layer is in precession. d, Typical spin transfer torque (STT) oscillator with 

bottom electrode, fix layer, spacer, free layer, cap layer and top electrode. 

 

Phase transition-based Oscillator 

Strongly correlated oxide materials that display an insulator-to-metal transition (MIT) under an 

external stimulus such as temperature, magnetic field, or electric field etc. [7 - 9]. A large 

variety of phase transition materials include binary oxides (TiOx, NbOx, and VOx) [8, 9, 51], 

perovskite oxide formed from rare-earth nickelate (LaNiO3) [52], and the Ruddlesden-Popper 

ruthenate Ca2RuO4 [53] and etc. [54]. Among the phase transition-based oscillator materials, 

vanadium dioxide (VO2) is of interest since the phase transition temperature Tc of this material 

is near room temperature (300 – 400 K) [9 - 12, 54], as shown in Fig 2.7a, which is highly 

desirable for room temperature computational devices (atmosphere pressure, room temperature, 

limited power supply). High temperature (~ 1080 K) MIT materials like NbO2 require much 

more energy to reach phase transition temperature, while low temperature (100 – 200 K) MIT 

materials like NdNiO3 need external equipment to maintain its working condition (T < Tc), 

which will also cause extra energy consumption.  
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VO2 shows a large change in resistivity at around 340 K that is due to the well-known transition 

from a monoclinic (M1) insulating phase to a rutile (R) metallic phase (Fig 2.7b). The 

oscillation in VO2 occurs as follows: When the system is in the high resistance state, applying 

a DC current source results in Joule heating (I2R), thereby raising the device temperature and, 

finally, triggering a phase transition into a low resistance state [56 - 61]. This lowers the Joule 

heating and is accompanied by the dissipation of the accumulated heat into the surroundings 

[62, 63]. This leads to cooling and eventually a phase transition back to the high resistance state. 

The process repeats itself autonomously leading to an oscillatory output voltage, as shown in 

Fig 2.7c. Such a behavior without any external capacitor or resistor required only occurs in the 

current-driven mode and not in the voltage-driven - mode [64]. VO2 oscillator that operates at 

room temperature is estimated to consume very low energy (~ 10-16 J per cycle), which is very 

competitive to other technologies (ring oscillator and spin-based oscillator as introduced above), 

and shows good CMOS compatibility [65 - 67]. Besides, Vanadium is a rather abundant element 

in the earth’s crust with relatively low supply risk [68], when considering mass product for 

commercialization. 
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Fig 2.7. Phase transition-based oscillator. a, Different metal-insulator transition temperature 

Tc and the order of resistivity (ρ) change from a large variety of oxide materials. Taken from 

[54]. b, Typical resistivity (ρ) vs temperature (T) curve of VO2 thin film shows more than 4 

orders of change at about 340 K. The left down insert shows phase transition of VO2 between 

the insulating monoclinic phase (M1) and the metallic rutile phase (R). Upper right several 

modulation methods for tuning the resistance state of VO2 including doping, electric field gating, 

strain, and light are demonstrated. Taken from [110]. c, Typical circuit diagram of a VO2 

oscillator connected with external resistor (RL) and capacitor (C) to generate oscillating voltage, 

modified from [15].  

Another attractive aspect for efficient oscillator is the energy-recycling mechanism, which can 

be understood as the energy being reversibly converted, or reused, instead of being totally 

dissipated [26]. The former can be realized by converting energy between two forms (electrical 

and magnetic energy) in an LC oscillator. The latter can be realized in this thesis between 

thermally coupled VO2 oscillators: The released heat during one part of the oscillation cycle 

from one device can thermally trigger the nearby device to oscillate. The exchange of thermal 

energy between oscillators during coupling substantially reduced total energy consumption, and 

further increases the total energy efficiency.  

Due to the reasons mentioned above, heat-driven VO2 device that works at room temperature 

is a promising candidate. It is chosen to construct thermally coupled oscillators for energy-

efficient computational element in this thesis. Tunable thermally coupled VO2 oscillators will 

be introduced in details in Chapter 4.  

 

2.2 Spiking Neural Network (SNN) 

Traditional artificial neural networks (ANN) have gained success in our daily complex tasks 

such as image recognition, automatic drive and etc. However, with increasing network size and 

connection complexity between each layer, the rapid increase in computational cost (tuning 

every single connection strength) during network training have made it imperative to search for 

more efficient network architectures with powerful computing units. Spiking neural network 

(SNN), which utilizes oscillators to generate temporal signals (spiking/bursting), is a special 

type of oscillatory computational network with sparse connection between computing nodes. 

By taking advantage of the oscillation states formed from neurons interacting with each other 

dynamically, computationally hard tasks with spatiotemporal data that requires complex 

feedback connection in traditional ANN can be efficiently processed in the SNN architecture. 
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2.2.1 Neural Network Generations 

The first-generation artificial neural network (ANN) was based on the McCulloch-Pitts neurons 

[69] that output value 1 or 0 depending whether the weighted input value has exceeded a certain 

threshold, as shown in Fig 2.8. The neuron model can be described as: 

𝑦 = 𝑓(∑ 𝑊𝑖𝑥𝑖 − 𝜃𝑁
𝑖=1 ) = {

0    𝑖𝑓 ∑ 𝑊𝑖𝑥𝑖 − 𝜃𝑁
𝑖=1 < 0,

1    𝑖𝑓 ∑ 𝑊𝑖𝑥𝑖 − 𝜃𝑁
𝑖=1 ≥ 0

  (2.2.1.1) 

With N is the number of input neurons, xi ∈ R is the input of neuron i, Wi is the synaptic weight 

between the input neuron i and the output neuron, and θ is the activation threshold. It was the 

first type of neural network applied in perceptual recognition tasks [70, 71]. 

 

Fig 2.8. The first generation of neural network. Each neuron computing node in one layer 

either outputs “0” or “1” to the next layer. The brown lines represent the synaptic connection 

weight between each layer. 

The second-generation ANN are based on computational neuron units that apply a continuous 

nonlinear activation function to process the input data [72, 73], as shown in Fig 2.9a. The 

neuron model can be described as: 

𝑦(𝑊𝑖, 𝑥𝑖) = 𝑓(∑ 𝑊𝑖𝑥𝑖 + 𝑏𝑁
𝑖=1 )   (2.2.1.2) 

With N is the number of input neurons, xi is the input of neuron i, Wi is the synaptic weight 

between the input neuron i and the output neuron, and b is the bias. Most commonly seen 

nonlinear activation functions f(x) applied in the second-generation neural network are like: 

Sigmoid function: 𝑓(𝑥) =
1

1+𝑒−𝑥  (2.2.1.3) 
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Hyperbolic tangent function: 𝑓(𝑥) = tanh(x) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥  (2.2.1.4) 

Rectified linear unit (ReLU) function: 𝑓(𝑥) = {
0    𝑖𝑓 𝑥 ≤ 0
𝑥    𝑖𝑓 𝑥 > 0

  (2.2.1.5) 

 

Fig 2.9. The second generation of neural network. a, Forward pass when processing 

incoming data. Each neuron computing node in the previous layer outputs an analog value 

described by the nonlinear activation function to the next layer. The brown lines represent the 

synaptic connection weight between each layer. b, Backward pass (red lines) during training 

stage. Here the updates for synaptic weight Wij backpropogate through the network is 

demonstrated.  

The AI technologies widely applied in technologies are based on the second-generation neural 

network. Such network model has gained great success thanks to the famous learning procedure 

called backpropagation (BP) algorithm. The network is first designed as different numbers of 

neuron layers and how they are connected. After that, an error function is defined to quantify 

the performance of the network in achieving its desired goal. The error function computes how 

much the network’s lth actual outputs (yout) deviate from their target outputs (tout), and is 

commonly expressed as the square error [74]: 
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𝐸(𝑊) =
1

2
∑ [𝑦𝑜𝑢𝑡,𝑙(𝑊) − 𝑡𝑜𝑢𝑡,𝑙]

2
𝑙   (2.2.1.6) 

In order to let the network “learn” how to approach the desired output, the synaptic weights W 

that determines the network output y as introduced in equation (2.2.1.2) have to be changed 

during training. Backpropagation learning algorithm computes the gradient of the error at the 

current setting of all the weights, and use this gradient to change each weight proportional to 

the negative of its gradient. The update for weight in a non-output layer can be expressed by 

the chain rule of calculus: 

∆𝑊𝑖𝑗 = −𝜂
𝜕𝐸

𝜕𝑊𝑖𝑗
= −𝜂

𝜕𝐸

𝜕𝑦𝑜𝑢𝑡

𝜕𝑦𝑜𝑢𝑡

𝜕𝑊𝑖𝑗
  (2.2.1.7) 

With Wij is the synaptic weight that connects neuron i to neuron j. The updates of synaptic 

weights start in the final layer and flow backwards to previous layers, which illustrates the 

meaning “backpropagation” through network, as shown in Fig 2.9b. 

Different from the above-mentioned traditional ANN (second generation) where data is 

represented and process as analog-valued vector (in multi-bit precision), information is encoded 

as sparse and binary spikes in SNN, which saves a lot of memory and efforts in computing exact 

value for the matrix. Neurons in SNN can communicate with other to process the data 

depending on the frequency and/or phase relation, which is similar to the work principle of 

biological brain [22], as introduced in 2.1.1. 

Besides, unlike the artificial neuron in traditional ANN that only serves as a non-linear 

activation filter with no memory, spiking neurons in SNN process a certain short-term memory 

that can memorize the incoming information from a close past while applying integration and 

non-linear activation function. Such unique inherent recurrent characteristic enables SNN to 

become a more efficient network architecture to handle more complex tasks that need to deal 

with spatiotemporal information, like natural language processing, voice recognition, time 

series data prediction and etc. Two basic types of spiking neuron: Hodgkin-Huxley (H-H) 

neuron and leaky integrate-and-fire (LIF) neuron as the building block for the third-generation 

neural network will be introduced in details in the following section. 
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2.2.2 Different Types of Spiking Neurons 

The Hodgkin-Huxley (H-H) Neuron Model 

Based on the experimental observation of the voltage-dependent conductance in the squid giant 

axon, Alan Hodgkin and Andrew Huxley established a model (Hodgkin-Huxley neuron model) 

that provided the first quantitative description of the action potential generation in the biological 

system [75 - 78]. The Hodgkin-Huxley neuron model described the structural and functional 

properties of ion channels (Sodium channel, Potassium channel etc.), and the mechanisms of 

ion permeation, selectivity, and gating at a molecular level. The model also considered the 

conditions that control the timing of action potential onset, including threshold and refractory 

periods at a cellular level. Most importantly, their theory provided a mathematical foundation 

for modeling complex neuron behavior for the computational neuroscience. The Hodgkin-

Huxley model can be described by the neuron’s membrane potential in three channels dynamics: 

𝐼𝑖𝑛(𝑡) =
𝑈𝑚𝑒𝑚(𝑡)−𝑉𝐾(𝑡)

𝑅𝐾
+

𝑈𝑚𝑒𝑚(𝑡)−𝑉𝑁𝑎(𝑡)

𝑅𝑁𝑎
+

𝑈𝑚𝑒𝑚(𝑡)−𝑉𝑙(𝑡)

𝑅𝑙
+ 𝐶 ∙

𝑑𝑈𝑚𝑒𝑚(𝑡)

𝑑𝑡
  (2.2.2.1) 

Where Iin is a current injected into the neuron (by an extracellular medium), Umem is the neuron’s 

membrane potential, VK is the potential of the Potassium channel, RK is the resistance of the 

Potassium channel, VNa is the potential of the Sodium channel, RNa is the resistance of the 

Sodium channel, Vl is the potential of the leakage channel, Rl is the resistance of the leakage 

channel, C is the capacitance of the neuron’s membrane. Equivalent circuit diagram for the 

Hodgkin-Huxley model and the spiking potential generated by this type of neuron are shown in 

Fig 2.10. 

 

Fig 2.10. The Hodgkin-Huxley neuron model. a, Schematic illustration of the equivalent 

electric circuit for the Hodgkin-Huxley Neuron Model, with Sodium channel, Potassium 

channel and a leakage channel. b, Output spiking membrane potential the Hodgkin-Huxley 

Neuron Model. 
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The spike-generating dynamics described by the Hodgkin-Huxley model also offers an insight 

into the mechanism of the synchronization between neurons [79]. The spike timing between 

two neurons can be adjusted by the flow of current through the gap junctions and chemical 

synapses, until they are perfectly coincident, or at a stable relative delay. In order to study the 

correlation among neuron spiking, Schultheiss et al. [80] has developed the theory for phase 

resetting or phase response curves of the neuronal dynamics, which further reduced the 

Hodgkin-Huxley model down to one single dimension described by the phase of the neuron 

within the period of its spiking oscillation. Gouwens et al. [81] provided an example of a fast-

spiking cortical cell driven with a conductance stimulus. Such stimulus mimics the current 

flowing through gap-junctional and synapses generated by spikes in a neighboring fast-spiking 

cell. It was found that the phase of neuronal oscillation can be advanced or retarded by 

presynaptic spikes. The degree of synchrony between presynaptic and postsynaptic spikes can 

thus be determined by the synaptic phase resetting function as the frequency of presynaptic 

spikes is varied. Besides, due to the difference in phase sensitivity of the effect of input, spiking 

dynamics of different cell types (neurons) are directly related to how they synchronize [82]. 

Such a phase-resetting relationship with prominent phase-delay and phase-advance regions 

(referred to as a type II phase-resetting curve) enhances the ability for stochastic synchrony in 

a network of coupled oscillators [83]. 

 

The Leaky Integrate-and-fire (LIF) Neuron Model 

Although the Hodgkin-Huxley model is able to describe complex membrane potential dynamics 

of the various ion channels, several factors have hindered it to be widely used for constructing 

the next generation neural network [84]: 1. The expression of multi-channel dynamics with too 

many tunable parameters makes it very difficult to obtain a model with underlying essential 

nature that is critical for information processing; 2. When it comes to analytical quantification 

for such model to evaluate the influence of a certain parameter for model optimization, it is 

very hard to have meaningful the result only by using numerical simulations; 3. Complex 

neuron model is very challenging for designing and constructing large-scale network with high 

efficiency and good robustness at the same time. In order to tackle above mentioned difficulties, 

the Hodgkin-Huxley model can be approximated by one single response kernel describing the 

membrane voltage, which has been shown to be equivalent to the form of the leaky integrate-

and-fire neuron model [85]. 



19 | P a g e  

 

The leaky integrate-and-fire neuron model, modified from the integrate-and-fire neuron model 

first proposed by Lapicque [86], has become one of the most widely used models for analyzing 

the behavior of spiking neuron. This model has gained a lot of interest due to its capability of 

being mathematically simple (one channel dynamics, fewer parameters to tune), and at the same 

time being sufficiently complex to capture the critical fundamental features for information 

processing in the neural system. Fig 2.11a shows the typical structure of a biological neuron 

that consists of dendrites, a soma, axon and an axon terminal. As shown in Fig 2.11b and c, a 

leaky integrate-and-fire (LIF) neuron receives spikes through dendrites from all pre-synaptic 

neurons. The soma integrates the incoming spikes, gradually builds up the membrane potential 

until it reaches the threshold voltage and fires an action potential along the axon. The neuron 

then undergoes a refractory period. Between successive input spikes, the membrane potential 

of the LIF neuron slowly “leaks” away. Thus, the membrane potential of the LIF neuron 

contains a certain short-term memory that depends on the sequence and strength of the incoming 

stimuli.  

 

Fig 2.11. The leaky integrate-and-fire neuron model. a, Typical structure of a biological 

neuron. b, The potential of a LIF neuron with incoming spikes. c, Schematic illustration of a 

LIF neuron with integration (of input spikes) and triggering (of output spikes) functions. 

Lapicque established an equivalent electric circuit with a resistor and capacitor connected in 

parallel for the leaky integrate-and-fire neuron model, as shown in Fig 2.12. The leaky integrate 

dynamics of the neuron’s membrane potential Umem can be described as: 
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𝐼𝑖𝑛(𝑡) =
𝑈𝑚𝑒𝑚(𝑡)

𝑅
+ 𝐶 ∙

𝑑𝑈𝑚𝑒𝑚(𝑡)

𝑑𝑡
   (2.2.2.2) 

Where Iin is the current injected into the neuron, R is the equivalent channel resistance, and C 

is the equivalent channel capacitance. Later Meffin et al. [87] has modified the model with the 

spiking output mechanism when the neuron’s membrane potential is reached: 

𝐼𝑠𝑝𝑖𝑘𝑒(𝑡) = 𝐶 [
𝑑𝑈𝑚𝑒𝑚(𝑡)

𝑑𝑡
]

𝑈𝑚𝑒𝑚=𝑉𝑡ℎ

−1
(𝑉𝑟𝑒𝑠𝑒𝑡 − 𝑉𝑡ℎ)𝛿[𝑈𝑚𝑒𝑚(𝑡) − 𝑉𝑡ℎ]   (2.2.2.3) 

It describes an output spike is generated when the neuron’s membrane potential Umem reaches 

the threshold voltage Vth. After firing, the neuron’s membrane potential is reset to Vreset level. 

The Dirac delta function 𝛿[𝑉𝑚𝑒𝑚(𝑡) − 𝑉𝑡ℎ] is utilized to check if the threshold level is reached. 

  

Fig 2.12. Equivalent electric circuit for the leaky integrate-and-fire neuron model. The 

circuit consists of an equivalent channel resistor R, an equivalent channel capacitor C. 

 

2.2.3 SNN Architectures and Algorithms 

Previously, the working principles and functionalities of the leaky-integrate-and-fire (LIF) 

neuron have been introduced. In this section, two types of spiking neural network (SNN) based 

on LIF neuron that utilize different learning methods (i.e. unsupervised/supervised learning rule) 

will be discussed. 

 

Unsupervised learning with STDP rule 

In 2015 Diehl and Cook [88] constructed a spiking neural network that was based on a 

combination of biologically plausible mechanisms, and was trained in an unsupervised way, 

i.e., the network learns to categorize the input samples without being provided samples with 

labels during learning. The network was designed to have improved biological plausibility 
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including conductance-based instead of current-based synapses, spike-timing-dependent 

plasticity (STDP) with time-dependent weight change, lateral inhibition, and an adaptive 

membrane threshold for spiking. The network based on 6400 LIF neurons reached an accuracy 

of 95% for the recognition of MNIST handwritten digits dataset [89]. 

Different from the current-based synapse implemented in traditional neural network that is 

independent of the neuron membrane potential, conductance-based synapse takes the effect 

from the membrane potential of both pre- and post-synaptic neurons into account. When a 

presynaptic spike arrives at the synapse, its conductance increases. When there is no presynaptic 

spike, its conductance decays exponentially. The conductance of the excitatory synapse ge 

(connection that strengthens the activity of the post-synaptic neuron) can be expressed as: 

𝜏𝑔𝑒

𝑑𝑔𝑒

𝑑𝑡
= −𝑔𝑒  (2.2.3.1) 

Where τge is the time constant of an excitatory postsynaptic potential. In case of an inhibitory 

synapse (connection that weakens/inhibits the activity of the post-synaptic neuron), its 

conductance gi can be described by the same equation but with the time constant of the 

inhibitory postsynaptic potential τgi. In order to realize the unsupervised learning, spike-timing-

dependent plasticity (STDP) learning rule [90] is utilized in the network for updating the 

conductance of synapse from input neurons to excitatory neurons. Besides, each synapse keeps 

track of another value during the learning process [91]. The presynaptic trace xpre is increased 

by 1 when a presynaptic spike arrives at the synapse. When there is no incoming spike, xpre 

decreases following the equation (2.2.3.1) mentioned above. When a postsynaptic spike arrives 

at the synapse, based on the presynaptic trace the change of the synaptic weight is calculated 

as: 

∆𝑊 = 𝜂(𝑥𝑝𝑟𝑒 − 𝑥𝑡𝑎𝑟)(𝑊𝑚𝑎𝑥 − 𝑊)𝜇  (2.2.3.2) 

Where η is the learning-rate, Wmax is the maximum allowed synaptic weight, and μ determines 

how strong the update dependent on the previous weight W, xtar is the target value of the 

presynaptic trace at the moment when a postsynaptic spike arrives [88]. 

Lateral inhibition is applied in the network to promote the competition among excitatory 

neurons, so as to prevent multiple neurons learning the same feature. The excitatory neurons 

are connected in a one-to-one fashion to inhibitory neurons. Each of the inhibitory neurons is 

connected to all excitatory ones, except for the one from which it receives a connection. 

Whenever an excitatory neuron is firing, it will trigger a spike into the inhibitory neuron that 
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prevents other excitatory neuron from firing spikes. The membrane voltage U of the leaky 

integrate-and-fire model is described as: 

𝜏
𝑑𝑉(𝑡)

𝑑𝑡
= (𝐸𝑟𝑒𝑠𝑡(𝑡) − 𝑈(𝑡)) + 𝑔𝑒(𝐸𝑒𝑥𝑐(𝑡) − 𝑈(𝑡)) + 𝑔𝑖(𝐸𝑖𝑛ℎ(𝑡) − 𝑈(𝑡))  (2.2.3.3) 

Where Erest is the resting membrane potential, Eexc and Einh the equilibrium potentials of 

excitatory and inhibitory synapses, and ge and gi is the conductance of excitatory and inhibitory 

synapses, respectively. 

Excitatory neurons with significant different firing rates caused by the inhomogeneity of the 

input are modulated by lateral inhibition: In order to prevent single neuron from dominating the 

response pattern (maintains the highest firing rate all the time), and to ensure that the receptive 

fields of the neurons differentiate [88], excitatory neurons are also equipped with certain 

intrinsic plasticity as adaptive membrane threshold [92]. The excitatory neuron’s membrane 

threshold is increased by a fixed value 𝜃  every time when the neuron fires, and decays 

exponentially back to the initial level 𝑉𝑡ℎ when the neuron becomes quiet [93]. This mechanism 

ensures that during learning, the firing rate of a single excitatory neurons is limited and no 

neuron will become dominant. 

 

Fig 2.13. The architecture of spiking neural network with unsupervised learning 

mechanism. The network consists of an input layer that converts static pixel into dynamic spike 

train, an excitatory layer that learns to classify different handwritten digits, and an inhibitory 

layer that applies the lateral inhibition function. Taken from [88]. 
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The network architecture is shown in Fig 2.13. The first layer is the input layer that contains 28 

× 28 neurons (one neuron per image pixel). Each pixel is encoded into a series of spike-train, 

such that firing rate of the neuron corresponds to the Poisson-distribution determined by the 

pixel value. The output spikes of the first layer are then injected through the synaptic layer into 

the excitatory neurons in the second layer. The excitatory neurons of the second layer are 

connected to lateral inhibitory neurons in the way introduced above. During training, every 

neuron in the second layer will learn to extract features from the 10 handwritten digits (0 - 9). 

After training, based on each neuron’s highest response to the ten classes of digits, it will be 

assigned a class that it has learned to identify. After training is done, we set the learning rate to 

zero, fix each neuron’s spiking threshold, and assign a class to each neuron, based on its highest 

response to the ten classes of digits over one presentation of the training set. The response of 

the class-assigned neurons is then used to measure the classification accuracy of the network 

when the test dataset is presented. 

 

Supervised learning with Surrogate Gradients  

In the previous section spiking neural network (SNN) based on unsupervised learning 

mechanism has been introduced. In order to prevent any neuron from dominating the whole 

network (one single neuron firing rapidly all the time during training), several necessary 

mechanisms that balance the activities of all neurons have to be added to the system. This not 

only requires an additional layer for inhibitory neurons, but also inevitably increases the 

network complexity. From the hardware implementation perspective, sacrificing a little 

precision to trade for network simplicity with better efficiency is worthy. In this section, SNN 

based on supervised learning with less network complexity will be introduced. 

The basic computing unit for this SNN is also the leaky-integrate-and-fire (LIF) neuron, whose 

dynamics can be described similar as equation (2.2.2.2): 

𝜏
𝑑𝑈(𝑡)

𝑑𝑡
= −𝑈(𝑡) + 𝐼𝑖𝑛(𝑡)𝑅  (2.2.3.4) 

Where 𝜏 = 𝑅𝐶 is the time constant of the equivalent RC-circuit, 𝐶 is the equivalent capacitance, 

and Iin is the injection current. In the case of constant injection current, the neuron’s membrane 

potential can be solved as: 

𝑈(𝑡) = 𝐼𝑖𝑛𝑅 + [𝑈0 − 𝐼𝑖𝑛𝑅]𝑒−
𝑡

𝜏  (2.2.3.5) 
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Where U0 is the initial membrane potential at 𝑡 =  0. When there is no input current, the 

neuron’s membrane potential will decay exponentially as: 

𝑈(𝑡 + ∆𝑡) = 𝑈0𝑒−
𝑡+∆𝑡

𝜏 = 𝑈(𝑡)𝑒−
∆𝑡

𝜏 = 𝛽𝑈(𝑡)  (2.2.3.6) 

Where β is a decay factor described by the time interval ∆t between the inputs. These two 

equations model the leaky integrate function of the neuron. An output spiking function Sout is 

used to describe the firing event when the neuron’s membrane potential exceeds the threshold 

value θ:  

𝑆𝑜𝑢𝑡[𝑡] = {
0,      𝑖𝑓 𝑈(𝑡) ≤ 𝜃

1,      𝑖𝑓 𝑈(𝑡) > 𝜃
   (2.2.3.7) 

The neuron’s membrane potential at (t + 1) time step can be expressed as the following equation 

by combining the above expressions: 

𝑈(𝑡 + 1) = 𝛽𝑈(𝑡) + 𝑊𝑖𝑛𝑋(𝑡 + 1) − 𝑆𝑜𝑢𝑡[𝑡]𝑈𝑟𝑒𝑠𝑒𝑡  (2.2.3.8) 

Where Win is the input weight matrix, X is input at each time step, and Ureset is reset term 

subtracted from the membrane potential every time after firing a spike (and then undergoes the 

refractory period). 

As introduced in section 2.2.1, backpropagation (BP) learning algorithm is footstone for the 

success of traditional neural network (2nd generation). The learning error of the network is 

defined as the loss function, and it is minimized by applying the chain rule (gradient decent) 

from the final layer back to each learnable parameter (synaptic weight). As a result, the network 

requires a “teacher signal” (target output with labels or required value for loss calculation) and 

hence, the training process is called supervised learning. Different from traditional neural 

network where all data flows as continuous analog value that is differentiable, information in 

spiking neural network is represented as discrete binary spikes, which are not differentiable. 

There are several proposed algorithms to train the SNN with backpropagation (BP) learning 

algorithm [94]: 

Shadow training 

In shadow training, a conventional artificial neural network (ANN), that acts as the shadow 

behind the spiking neural network (SNN), is first trained and then converted into an SNN. The 

nonlinear activation function of the neuron in ANN is converted into spiking output in the SNN 

[95, 96]. However, there are some shortcomings when applying such algorithm. Firstly, the 
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temporal dynamics of spiking neuron is often omitted when using traditional ANN for 

processing data. Secondly, converting high-precision nonlinear activation function into spikes 

typically requires extra computation time and power. Thirdly, when the conversion process is 

not precise, which is the common case, the SNN trained from shadow ANN usually performs 

worse than the original ANN. 

Backpropagation using spike times 

Although the spikes are discrete, the spiking time is continuous and thus is differentiable. The 

loss function is then converted to the spiking time of the neuron. And weights are updated by 

taking the derivative of spike timing similar as the traditional ANN to minimize the learning 

error. This learning algorithm was the first proposed method for training multilayer SNNs using 

backpropagation [97]. However, it requires each neuron must emit a calculable spike for 

gradient decent during training. When the neuron is silent, it’s not solvable [98]. This enforced 

firing for neurons will distort its temporal processing ability when dealing with input data that 

is dynamically varying. 

Backpropagation using Surrogate Gradients 

The loss function in the spiking neural network is defined as 

𝐿 = |𝑊𝑜𝑢𝑡𝑆𝑜𝑢𝑡 − 𝑦𝑡𝑎𝑟|  (2.2.3.9) 

Where Wout is the output weight matrix, and ytar is the target output value. According to equation 

(2.2.3.8), the updates for input weight matrix can be written by the chain rule: 

𝜕𝐿

𝜕𝑊𝑖𝑛
=

𝜕𝐿

𝜕𝑆𝑜𝑢𝑡

𝜕𝑆𝑜𝑢𝑡

𝜕𝑈

𝜕𝑈

𝜕𝑊𝑖𝑛
   (2.2.3.10) 

Where Sout is the output spiking function described by equation (2.2.3.7), U is the neuron’s 

membrane potential described by equation (2.2.3.8), and Win is the input weight matrix. 

However, the output spiking function Sout is a step-like function (
𝜕𝑆𝑜𝑢𝑡

𝜕𝑈
∈ {0,   ∞}), which is non-

differentiable (also known as the “dead neuron problem”), as shown in Fig 2.14a.  
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Fig 2.11. “The dead neuron” problem and surrogate gradients. a, The non-differentiable 

spiking function Sout makes it not possible to carry out chain rule to update weight parameter. 

b, A sigmoid function 𝑆𝑜𝑢𝑡
̃  is used to substitute the non-differentiable spiking function Sout as 

surrogate gradients during training phase (backward pass). Taken from [94].  

In order to overcome this problem, a continuous function, the step like function Sout is 

substituted by a continuous sigmoid function 𝑆𝑜𝑢𝑡
̃  during the training phase (backward pass), 

as shown in Fig 2.14b: 

𝑆𝑜𝑢𝑡
̃ =

1

1+𝑒𝜃−𝑈  (2.2.3.11) 

 Where θ is the threshold value described in equation (2.2.3.7), and U is the neuron’s membrane 

potential described by equation (2.2.3.8). As a result, 
𝜕𝑆𝑜𝑢𝑡̃

𝜕𝑈
 can now be calculated as: 

𝜕𝑆𝑜𝑢𝑡̃

𝜕𝑈
=

𝑒𝜃−𝑈

(1+𝑒𝜃−𝑈)
2  (2.2.3.12) 

And the weights Win will be able to be updated. Such approach is called the Surrogate Gradients. 

Surrogate Gradients is the most commonly applied training algorithm for the spiking neural 

network with time-dependent outputs, also known as the backpropagation through time (BPTT) 

learning rule [99, 100]. As shown in Fig 2.15a, the input weight will only have influence on the 

present and future losses. In order to calculate the global gradient, all weight parameters applied 

on present and future losses are summed together as: 

𝜕𝐿

𝜕𝑊𝑖𝑛
= ∑

𝜕𝐿(𝑡)

𝜕𝑊𝑖𝑛
𝑡   (2.2.3.13) 

For the immediate influence at time step t, there is no decay term contributes to the neuron 

potential function U(t) according to equation (2.2.3.8). However, as propagating back to several 

time steps before (prior influence at 𝑡 − 1, 𝑡 − 2, …), the influence of the weight becomes more 
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and more trivial (∆𝑊 ∝ 𝛽𝑛, 𝑛 denotes the number of time steps backward), as shown in Fig 

2.15b. Such exponential decay of the influence from previous spiking history on present is 

similar to the spike-timing-dependent plasticity (STDP) learning rule [90] introduce in last 

section. Supervised learning with Surrogate Gradients is utilized in this thesis when training the 

spiking neural network. Details of constructing the architecture of the SNN will be introduced 

in Chapter 5. 

 

Fig 2.11. The backpropagation through time (BPTT) learning rule. a, At time step 𝑡 = 2 

the input from 𝑊[2]𝑋[2]  is counted as the immediate influence, while the influence 

𝛽2𝑊[0]𝑋[0] , 𝛽1𝑊[1]𝑋[1]  from the history ( 𝑡 = 1  and 𝑡 = 0 ) are also combined in the 

neuronal state 𝑈[2]. b, Exponential decay of the influence from previous spiking history. Taken 

from [94]. 

  



28 | P a g e  

 

Chapter 3 VO2 Thin Film Preparation and Device 

Fabrication 

 

In this chapter the growth method and parameters for VO2 thin films by pulsed laser deposition 

(PLD) will be first introduced. Then several common thin film characterization techniques like 

X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM) will 

be carried out to check the quality of the VO2 sample. In the last part, the lithography process 

and parameters used for fabricating VO2 oscillator device and 2.5D crossbar array will be 

introduced. 

 

3.1 Pulsed Laser Deposition (PLD) 

3.1.1 Fundamentals of PLD 

Different techniques can be utilized to deposit thin film materials. Two major deposition 

techniques are physical vapor deposition (PVD) and chemical vapor deposition (CVD). The 

difference between them is that in PVD the vapor consists of atoms and molecules that are 

vaporized from the target and then deposited on the substrate, while in CVD the vapor 

(precursor materials) undergoes a chemical reaction at the substrate and finally the thin film 

material is formed. Typical CVD techniques include Metal-Organic Chemical Vapor 

Deposition (MOCVD) and atomic layer deposition (ALD). Most commonly used PVD 

techniques are sputter deposition, pulsed laser deposition (PLD) and thermal evaporation 

deposition. 

Pulsed Laser Deposition (PLD), which has shown to be suitable for growing VO2 thin films 

[101, 102], is the PVD technique utilized in this thesis. The PLD system used for VO2 thin film 

deposition contains a laser, a deposition chamber, a mechanical pump and a turbo molecular 

pump, as shown in Fig 3.1a. The laser (generated from Coherent LPX pro) is directed by an 

optical path (a series of optical elements) into the deposition chamber through a window. The 

turbo molecular pump can provide a base vacuum level of ~10-7 mBar. Inside the deposition 

chamber there are two main components: a VO2 target with a rotator beneath it, and a substrate 

holder equipped with an integrated heater from the backside, as shown in Fig 3.1b. These two 
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components are separated by a tunable distance, and the surface of the target faces directly to 

that of the substrate holder.  

 

Fig 3.1. Pulsed laser deposition (PLD) system. a, The main components for the PLD system. 

b, Inside view of the deposition chamber (colloquially termed the “Aladin” system). c, 

Schematic illustration of the pulsed laser deposition process. 

During the deposition process, a series of laser pulses are focused on the target surface to 

vaporize the target material, as shown in Fig 3.1c. The particles ejected by the laser become a 

dense cloud of material, with strong inter-particle interactions and with the ambient gas, and, 

thereby, forming a highly excited plasma. The plasma formed at the surface of the target 

material expands towards the substrate, and finally particles are deposited on the substrate and 

form the film. The most important parameters of the laser are its wavelength, pulse energy, and 

pulse spot size. Common laser wavelengths used in PLD systems are ArF (193 nm - 6.42 eV), 

KrF (248 nm - 4.99 eV), XeCl (308 nm - 4.03 eV), and Nd:YAG (1064 nm - 1.16 eV) [103]. 

Due to the absorption photon energy in the UV range for oxide materials, the 248 nm (KrF 

excimer) is the most commonly used wavelength for oxide deposition. The pulse energy 

determines how many particles are ejected from the target in a single pulse. The higher the 

energy, the more particles will be ablated from the target. The laser must be focused to a small 

spot on the target, so that an energy density which is sufficiently high to ensure plasma 

formation can be achieved. The distance between target and substrate holder also determines 

how many particles will arrive at the substrate. The further these two components are separated, 

the fewer particles will be able to land on the substrate to form the thin film and, most 

importantly, the energy of these particles can be modified. 
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3.1.2 Substrate selection 

There are several aspects that need to be considered when choosing the proper substrate for 

growing VO2 samples: 1. Phase transition temperature. As discussed in Chapter 2 section 2.1.3, 

a phase transition that lies close to room temperature, in a range from 300 to 400 K, is desired 

to achieve a low-power oscillator application. If the phase transition temperature is lower or 

higher than this range, extra power will be needed to maintain its working condition (when it’s 

lower) or to reach the critical temperature (when it’s higher). 2. Substrate should be a good 

electrical insulator. Since the focus of this thesis is thermally coupled VO2 oscillators, a good 

insulator as a substrate will eliminate any leakage current between closely located VO2 

oscillators. As a result, the thermal coupling will be the dominant effect for such a system. 3. 

The substrate should have high thermal conductivity. As mentioned before, a good thermally 

conducting substrate can enhance the thermal coupling effect between VO2 oscillators, making 

it easier to be observed and manipulated. 

Previous work has reported on the epitaxial growth of VO2 (002) on the rutile crystal TiO2 (001) 

with a very small lattice mismatch (~ 0.86%) [104, 105]. However, when the VO2 film is not 

thick enough, the in-plane tensile strain at the interface between the VO2 thin film and the TiO2 

substrate will cause the phase transition temperature of VO2 to decrease [106] below 290 K. In 

addition, etching a VO2 device on a TiO2 substrate is problematic. Because during the etching 

process, the TiO2 substrate will become conductive due to oxygen defects caused by the Ar+ 

ion bombardment. Sapphire (0001), on the other hand, has a larger lattice mismatch (~ 12.6%) 

with VO2 [107] as compared with a TiO2 substrate. However, VO2 (020) grown on sapphire 

(0001) exhibits a phase transition temperature around 320 - 340 K depending on the thickness 

and, thereby, the strain [108], which satisfies the requirement for oscillators operated near room 

temperature. Furthermore, in terms of thermal conductivity, sapphire (40 W·m-1·K-1) is better 

than TiO2 (8.7 W·m-1·K-1) [109], and sapphire remains insulating after the etching process. As 

a result, sapphire (0001) is chosen to be a suitable substrate. 

 

3.1.3 VO2 Deposition parameters 

A KrF excimer laser (Coherent LPX pro) beam with a pulse repetition rate of 3 Hz was focused 

onto the VO2 target (99.9 % purity, Plasmaterials) in the Aladdin chamber under an ambient O2 

pressure of 0.020 mbar with the substrate temperature set to be 450 ℃. The energy and fluence 
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of the laser beam on the target surface were 44 mJ and 587 mJ/cm2, respectively. After 

deposition the sample was cooled down in an ambient O2 pressure of 0.045 mbar. Different 

combinations of deposition parameters including: Temperature (ºC), O2 pressure (mbar), laser 

energy (mJ), attenuator, pulse number, and pulse frequency (Hz) were tested for growing 

various VO2 samples, as shown in Table T1. In order to have a rough estimate of the change 

in resistance at the IMT, the resistance of each VO2 sample was probed by a multimeter at room 

temperature (295 K), and at high temperature (383 K, higher than its MIT temperature) using a 

hot plate. 

Sample 

No. 

Temperature 

(ºC) 

O2 

pressure 

(mbar) 

Laser 

energy 

(mJ) 

Attenuator Pulse 

number 

Pulse 

frequency 

(Hz) 

High 

resistance 

at 295 K 

(Ω) 

Low 

resistance 

at 383 K 

(Ω) 

1 400 0.019 550 25% 3000 3 6M 100k 

2 450 0.019 550 25% 9000 3 700k 0.3k 

3 450 0.020 550 25% 9000 3 1.6M 0.6k 

4 450 0.020 400 50% 9000 4 0.4M 0.3k 

5 460 0.020 400 50% 4500 3 1.0M 0.8k 

6 480 0.020 550 25% 9000 3 2.8M 0.4k 

7 480 0.022 550 25% 12000 4 1M 0.5k 

8 480 0.025 550 25% 9000 3 100 M 8k 

9 480 0.025 550 25% 15000 4 1.5 M 0.3k 

10 520 0.020 550 25% 9000 3 28M 3k 

Table T1. Deposition parameters for different VO2 samples. Different combination of 

deposition parameters: Temperature (ºC), O2 pressure (mbar), laser energy (mJ), attenuator, 

pulse number, and pulse frequency (Hz). 

 

3.2 VO2 Thin Film Characterization 

Vanadium dioxide (VO2), is one of the compounds from the strongly correlated V-O system 

family (VO, V2O3, V3O5, V4O7, V5O9, V6O11, V4O7, V8O15, VO2) that exhibits a typical metal-

to-insulator transition (MIT) with sharp resistivity changes upon external optical, electrical, 

thermal, and magnetic stimulus [111 - 117]. VO2 is of particular interest since the material 

undergoes a transition from a high resistance state to a low resistance state near room 

temperature. Typically, the well-known transition from a monoclinic (M1) insulating phase to 

a rutile (R) metallic phase takes place at around 340 K. The crystal structure of the VO2 

monoclinic phase has a space group P21/c, and unit cell parameters: a = 0.575 nm, b = 0.452 

nm, c = 0.538 nm, β = 122.6°, while the crystal structure of the VO2 rutile phase has a space 
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group of P42/ mnm, and unit cell parameters: a = b = 0.455 nm, c = 0.286 nm [118]. In the VO2 

rutile phase, V4+ ions occupy the body center and the vertex of the tetragonal structure, and 

each V4+ ion and six surrounding O2- ions constitute an octahedral VO6 unit. In the z-axis 

direction, the distance between the nearest V-V atoms is equal to 0.287 nm [110]. During the 

phase transition (from high to low temperature), the highly symmetrical quadrilateral structure 

of rutile phase (R) changes to the structure of the monoclinic phase which has low symmetry, 

with two V-V bonds with different lengths (0.312 nm and 0.265 nm). The localization of the d-

electrons bound to these V-V bonds leads to its insulating property. It was presumed that such 

a V-V dimer formation directly results in the change from the high temperature delocalized 

state to the low temperature localized state [110]. Recently, new ultrafast techniques have 

demonstrated that such a phase transition takes place in only approximately 5 picoseconds [119], 

which has raised new interest in utilizing VO2 very high frequency oscillator applications. 

 

3.2.1 XRD measurement 

X-Ray diffraction, also known as XRD, is a common method used to determine structural 

parameters of bulk materials and thin films. The X-ray diffractometer used for the 

characterization of the VO2 samples in this thesis is the Bruker D8 Discover with Cu-Kα 

radiation with a wavelength of λ = 1.5418 Å, as shown in Fig 3.2a.  
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Fig 3.2. Modular architecture of the Bruker D8 diffractometer. a, The main components 

for the XRD system. b, Schematic illustration of the main components and the four-rotation 

axis, taken from [120]. 

The instrument consists of X-ray source, sample stage, detector and a motorized goniometer 

used to orient and move the crystal. The goniometer typically has four axes of movement to 

orient the crystal with the incident X-ray beam. As shown in Fig 3.2b, the detector is rotated 

around the 2𝜃-axis within the instrument’s horizontal plane. Movement around the 𝜔-axis takes 

place in the horizontal plane of the instrument, the χ-axis refers to elevation in the vertical plane, 

and movement around φ rotates the crystal around its local mount axis. The condition for 

constructive interference of X-ray diffraction condition is described by von Laue’s law in 

reciprocal space as: 

𝑘′ − 𝑘 = 𝑆  (3.2.1.1) 

And is described by the Bragg’s law in real space as: 

2 𝑑ℎ𝑘𝑙 · 𝑠𝑖𝑛(𝜃) = 𝑛 · 𝜆  (3.2.1.2) 
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With dhkl the spacing between lattice planes (hkl), θ the incidence angle, and λ the wavelength 

of the incident beam, as shown in Fig 3.3. The Bragg’s law is satisfied when the scattering 

vector S equals to the reciprocal lattice vector Qhkl, which can be converted from the diffraction 

angle 2θ by the equation: 

|𝑄ℎ𝑘𝑙| = 4𝜋 𝑠𝑖𝑛(𝜃)/𝜆   (3.2.1.3) 

 

Fig 3.3. Schematic of X-ray diffraction. Illustration of the conditions required for Bragg 

diffraction to occur. 

The constructive interference of a family of lattice planes (hkl) will occur as a Bragg peak at a 

specific angle θ (with a fixed wavelength of X-Ray) in the XRD pattern. The out-of-plane θ - 

2θ scan, is firstly applied to obtain the information from the lattice planes parallel to the sample 

surface. In a θ - 2θ scan when changing the angel 𝜃 of the incident beam, the angel of the 

detector is always kept at 2θ to be aligned with the direction of the diffracted beam. As a result, 

the reciprocal lattice vector Qhkl, which is equal to the scattering vector, will be always normal 

to the sample surface. 
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Fig 3.4. X-ray diffraction (XRD) measurement of a typical VO2 film grown on sapphire 

[0001] substrate.  a, Theta (𝜃) -2Theta (2𝜃) scan shows (020) peak at 2θ = 39.99° and (040) 

peak at 2θ = 86.30°. b, Zoom-in view of the (020) peak at 2θ = 39.99°. c, Zoom-in view of the 

(040) peak at 2θ = 86.30°. Data from [121]. 

The XRD θ - 2θ of the VO2 sample is shown in Fig 3.4. It can be observed that the VO2 thin 

film is well textured on the sapphire [0001] substrate. Two dominant peaks from (020) and (040) 

appear at the position 2θ = 39.99°  and 2θ = 86.30° , respectively. Such result is similar as the 

previously reported work [107]. 

 

3.2.2 XRR measurement 

The geometry of the X-ray reflectivity (XRR) measurement setup is similar to the one used in 

the XRD measurement shown in Fig 3.2. The only difference is the angle of the incident beam 

2θ is kept within a very small range (< 5º). When the incident angle is below the critical angle, 

the X-Ray will only be reflected by the sample surface and the intensity of the reflected beam 

doesn’t change too much, as shown in Fig 3.5a. As soon as the incident angle is larger than the 

critical angle, the reflectivity of the X-Ray decreases rapidly as the incident beam penetrates 

the material, as shown in Fig 3.5b. 

 

Fig 3.5. Schematic of X-ray diffraction (XRR).  a, The incident angle is below the critical 

angle. b, The incident angle is above the critical angle. c, Parameters of thin film determined 

by X-ray reflectivity (XRR) measurement, taken from [122]. 

The Interference effect starts to occur when the incident angle is larger than the critical angle, 

due to the interaction between the reflected beams from the sample surface and beams from the 

interface between different layers. For X-ray, the refractive index only depends on the electron 

density, for known composition the electron density can be translated to the mass density of the 
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probed material. For samples with monolayer, the oscillation frequency is dependent on the 

film thickness, while for samples with multiple layers the different reflections are superposed. 

The X-Ray reflectivity profile shows an oscillation pattern based on the parameters of the 

sample films and the substrate. The XRR measurement can be used to determine: 1. The density 

𝜌 of the material from the critical angle θc; 2. The film thickness d from the fringes of oscillation 

of the X-Ray reflectivity curve; 3. Surface or interface roughness σ from the oscillation decay 

rate at higher angles, as shown in Fig 3.5c. The XRR measurement of the VO2 sample is shown 

in Fig 3.6. The VO2 thin film thickness is determined to be 28.78 ± 2.54 nm. 

 

Fig 3.6. X-ray diffraction (XRD) measurement of a typical VO2 film grown on sapphire 

[0001] substrate. The film thickness determined from the XRR measurement is 28.78 ± 2.54 

nm. Data from [121]. 

 

3.2.3 AFM measurement 

Surface morphology is also important for the property analysis of the sample and device 

fabrication. AFM is mainly used to check the surface morphology of the device after each 

fabrication step, so that the quality of the interface can be checked. The surface morphology is 

examined by the Bruker AFM in this work. The setups of the AFM are schematically illustrated 

in Fig 3.7. The components of AFM include a probe that has a sharp tip ending with an apex of 

several nanometers of diameter mounted on a soft cantilever. A laser beam that hits the edge of 

the cantilever is reflected on a photodetector, acting as an optical lever. A photodetector is used 

to monitor the angstrom movements of the cantilever, due to the changing of the interacting 

forces between the tip and sample. An external electronic controller acts as an important role 
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for controlling the probe by the feedback loop of the system. During the measurement, the 

cantilever is operated in tapping mode. As the tip comes into contact with the surface for each 

oscillation, it is deflected due to the distance related to Coulomb-repulsion between the tip and 

sample. The initial height of the cantilever is chosen so that the tip will never break contact with 

the sample. The amplitude will thus directly reflect changes on the surface, the feedback loop 

is used to shift 𝑧 to restore the target amplitude, and the positions (𝑥𝑦𝑧) of the piezoelectric 

scanner are captured. The VO2 thin film was probed by the AFM and its surface RMS roughness 

was determined to be 0.78 nm. 

 

Fig 3.7. Atomic force microscopy (AFM).  a, Inside view of the Bruker AFM. b, Schematic 

illustration of the AFM setup, including an external electronic controller, laser, photodetector, 

piezoelectric scanner and sample stage. c, AFM scan of a typical VO2 thin film, data from [121]. 

d, AFM scan of a typical VO2 device set. 
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3.3 Single VO2 Device Set Lithography 

The prepared thin films were patterned into microscopic devices by conventional optical 

lithography techniques - maskless aligner (Heidelberg MLA 150), and ion beam etching (scia 

coat 200) were used. As shown in Fig 3.8 the lithography steps: a: VO2 thin film (shown as 

blue) was deposited on the sapphire substrate (shown as light gray); b: Negative tone photoresist 

(shown as brown, ARN-4340, Allresist) was patterned on the VO2 thin film to define the device 

area (dose: 230, defocus: -8); c: Ion beam etching carried out by Ar+ bombardment was used to 

etch away the non-device area down to the sapphire substrate; d: After ion beaming etching, 

only pre-defined VO2 device area was left under the photoresist; e: The photoresist was remove 

by remover solvent (Remover AR 300-70, Allresist); f: Positive tone photoresist (shown as dark 

gray, ARP-3540T, Allresist) was patterned on the VO2 thin film to define the contact pad area 

(dose: 110, defocus: -6); g: Ti and Au (~ 77 nm) was deposited by sputtering deposition in scia 

coat 200 sequentially (shown as gold); h: Lift-off process - The photoresist was remove by 

remover solvent (Remover AR 300-70, Allresist). Fig 3.8i shows the top view of the two VO2 

devices after lithography, they have two independent signal lines and share one common ground 

line. 

For fabricating nanoscopic device, the electron beam lithography was used, a JEOL EBL 

machine (JBX-8100FS; 100 kV) with an ARN-7520-18 resist was utilized for the lithography. 

 

Fig 3.8. VO2 device lithography steps.  a, VO2 thin film on sapphire substrate. b, Negative 

tone photoresist patterning. c, Ion beam etching by Ar+ bombardment. d, VO2 device after 

etching. e, Removal of negative photoresist. f, Positive tone photoresist patterning. g, 

Deposition of Ti and Au for contact pad. h, Lift-off process, removal of positive photoresist. i, 

Top view of two VO2 device. 
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Deposition of ~200 nm AlOx capping layer on VO2 device is optional. When there is no capping 

layer, the device test kit was operated in the probe-station in vacuum (~ 10-4 mBar) at 295 K to 

prevent oxidation of the device due to the exposure to water vapor and air. In order to carry out 

the tests of the VO2 device more conveniently anytime at normal atmosphere, AlOx capping 

layer was added to the new test kit by adding an extra lithography step after Fig 3.8h. The 

device with AlOx capping layer is shown in Fig 3.9a and b. The calibration bar (5×10 μm2) 

used for checking alignment shows good alignment precision in Fig 3.9c, only about < 0.5 µm 

alignment error is observed, which is acceptable for two 3×3 μm2 VO2 devices separated with 

1.5 µm gap. 

 

Fig 3.9. Typical VO2 device after fabrication process.  a, Device set that is capped with AlOx 

layer to prevent oxidation. b, Two 3×3 μm2 VO2 devices separated with 1.5 µm gap. c, The 

calibration bars (5×10 μm2) used for alignment precision check. 

 

3.4 VO2 2.5D Crossbar Array Lithography 

As introduced in the previous section 2.2.3, large-scale spiking neural network with supervised 

learning mechanism based on VO2 leaky integrate-and-fire (LIF) neuron is studied in this thesis. 

In order to fabricate the large-scale VO2 LIF neuron array, the layout for the 2.5D integrated 
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crossbar array has been specially designed, as shown in Fig 3.10a: Two VO2 oscillator devices 

closely located to each other are place at the bottom layer. They are connected with two 

independent signal lines (left and right), respectively. They share the same ground line. Then a 

230 – 260 nm AlOx insulating spacer is deposited to cover the bottom layer, but leaving the 

ground line contact pad part vacant. In the end, the ground line is deposited on the top of the 

AlOx insulating spacer to form the crossbar array structure. The layout design for a 10×10 

crossbar array is demonstrated in Fig 3.10b. And the schematic illustration of electrical 

connection for the 10×10 VO2 LIF neuron crossbar array is shown in Fig 3.10c. In each VO2 

LIF neuron computing node: The spike current input is injected through left signal line (L+ pad 

in Fig 3.10b), and will be leaky integrated by the left VO2 device. The triggered spiking function 

can be realized by the right VO2 device supplied with sub-threshold current/voltage through 

right signal line (R+ pad in Fig 3.10b). The spiking voltage can be readout from right signal 

line. The two VO2 devices share the same ground line (GND pad in Fig 3.10b). 

 

Fig 3.10. VO2 2.5D array design. a, A detailed view of a single VO2 LIF neuron computing 

node, which contains two VO2 devices and 2 signal line at the bottom, an AlOx insulating spacer 

in the middle, and a shared ground line on the top. b, The layout design for a 10×10 crossbar 

array. L+ pads correspond to the left signal lines, R+ pads correspond to the right signal lines 

c, Schematic illustration of electrical connection for the 10×10 VO2 LIF neuron crossbar array. 

The details of the lithography utilized to fabricate the VO2 2.5D array will be introduced and 

demonstrated in the following part. Firstly, same as introduced in section 3.3, negative tone 

photoresist (ARN-4340, Allresist) was patterned on the VO2 thin film to define the device area 

(dose: 230, defocus: -8). Ion beam etching carried out by Ar+ bombardment was used to etch 

away the non-device area down to the sapphire substrate. After ion beaming etching and 
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removal of the resist, the VO2 devices in first layer were examined by the AFM technique 

introduced in section 3.2.3. Two plateaus of VO2 with a width of about 3 µm separated with 1.5 

µm can be observed from the AFM (Atomic force microscopy) scan, indicated a satisfying 

device morphology, as shown in Fig 3.11. However, it can also be observed, due to the harsh 

ion beaming etching, there is about ~ 3 nm roughness at the edge of the device. But luckily, 

such fabrication defect of edge roughness wasn’t critical to the device performance, and hardly 

had any influence on the overall crossbar array (will be shown in the Chapter 5). 

 

Fig 3.11. VO2 2.5D array first layer morphology. a, Surface structure of the VO2 devices 

after ion beaming etching, scanned by AFM. b, The height profile acquired from the AFM scan. 
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Fig 3.12. VO2 2.5D array second layer morphology. a, Optical microscope image of VO2 

devices, left and right signal lines, and ground line contact pad. b, The Surface structure and 

height profile acquired from the AFM scan. 

Next, also same as introduced in section 3.3, positive tone photoresist (ARP-3540T, Allresist) 

was patterned on the VO2 thin film to define the contact pad area (dose: 110, defocus: -6). And 

then the electrode (Ti-Au) was deposited by sputtering deposition in scia coat 200 sequentially 

to from the right signal line, left signal line, and ground line contact pad at the same time (shown 

in Fig 3.12a). It can be determined from the AFM height profile that the thickness of the 

deposited Ti and Au layer was about 70 nm. Besides, significant side-wall defect after the lift-

off process cannot be omitted. From the AFM scan it can be observed that the side-wall of the 

Ti and Au layer can be as high as ~ 190 nm. Such defect will cause current shunting 

path/dielectric breakdown through the AlOx insulating spacer layer if not properly addressed. 

As a result, post-processing like mechanical polishing that will remove the side-wall defects is 

required.  
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Fig 3.13. VO2 2.5D array third layer morphology. a, Optical microscope image of VO2 

devices, left and right signal lines, ground line contact pad with AlOx insulating spacer layer. 

b, The Surface structure and height profile acquired from the AFM scan. 

Next, the AlOx insulating spacer layer will be deposited. In order to avoid the same side-wall 

defect caused by the positive tone photoresist, double layer resist with undercut structure was 

utilized. Negative tone photoresist (ARN-4340, Allresist) on the top of the Bottom Resist AR-

BR 5480 was patterned cover the ground line contact pad area (dose: 230, defocus: -8). After 

that, the AlOx insulating spacer layer was deposited by the AJA e-beam evaporator. After lift-

off process, it can be determined from the AFM height profile that the thickness of the deposited 

AlOx insulating spacer layer was about 220 nm. A smooth transition from the [sapphire 

substrate/AlOx] region to [sapphire substrate] region without side-wall defect can be seen. 

However, residual side-wall defect can still be observed at the transition area between the 

[sapphire substrate/AlOx] region and the [sapphire substrate/AlOx/Ti/Au] region, and between 

the [sapphire substrate] region and the [sapphire substrate/Ti/Au] region, as shown in Fig 3.13b. 

Necessary polishing can be used to further remove the side-wall defect. 

Finally, same as introduced in section 3.3, positive tone photoresist (ARP-3540T, Allresist) was 

patterned on the VO2 thin film to define the ground line area (dose: 110, defocus: -6). And then 

Ti and Au (~ 100 nm) was deposited by sputtering deposition in scia coat 200 sequentially to 

from the ground line on the top (shown in Fig 3.14). (Test of multiple devices on the array see 

Appendix) 
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Fig 3.14. VO2 2.5D array. Left: 4 identical 10×10 VO2 LIF neuron crossbar array on the test 

board. Right top and down: Optical microscope images of VO2 crossbar array and devices. Left 

and right signal lines, ground lines can be clearly seen. 

 

  



45 | P a g e  

 

Chapter 4 Thermally Coupled VO2 Oscillators for 

Boolean Computation 

 

In this chapter, it will be demonstrated that without any extra electronic components needed, 

self-sustained VO2 oscillators ranging by more than an order of magnitude in size from 6 μm 

to 200 nm can be thermally coupled together. A simple but effective mean to actively tune the 

thermal coupling between VO2 oscillators will be introduced. And a multiplicity of synchronous 

oscillatory states with distinct frequencies and amplitudes generated by this effective tuning 

mechanism can be used for computation. Various oscillation states generated by pairs of 

coupled oscillators are utilized to realize 12 basic Boolean logic operations from AND, NAND 

and NOR gates. 

 

4.1 Scalability of VO2 Oscillators 

Firstly, in order to investigate the scalability of VO2 oscillator,  - T (resistivity versus 

temperature) measurements are carried out to check the change of the typical hysteresis loop 

with VO2 device dimension. For temperature dependent resistance measurements, a physical 

property measurement system (PPMS) was used with a conventional 4-point resistance 

measurement scheme, and a cooling and warming rate of 5 K/min (from 270 K to 395 K). For 

the 4-point measurements (Keithley 6221 ac/dc current source and 2182a nanovoltmeter), 1 𝜇𝐴 

DC current was applied to the sample to minimize the effect of Joule heating.  − 𝑇 Curves 

from devices with dimensions of 70×40 μm2, 7×6 μm2, 1×1 μm2, and 600×700 nm2 are shown 

in Fig 4.1. It shows that the  - T hysteresis loop becomes smaller with decreasing dimension 

due to a spatial confinement effect. Such scaling effect in the  - T loop originates from the 

coexistence of different numbers of metallic and insulating phase domains near the transition 

temperature. When there is a single domain (~ 20 nm), either in metallic or insulating phase, an 

ideal one-step change in resistivity around the metal-to-insulator transition (MIT) temperature 

can be observed [123]. However, direct observation of metallic and insulating phase domains 

mixture around the MIT temperature suggested that the MIT temperature of different domains 

also varies. When the phase transition region becomes larger (several hundred nm or µm), 

numerous metallic and insulating phase domains form the gradual resistivity change loop. The 
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distribution of the metallic phase domains around the MIT temperature can be statistically 

modeled as Gaussian function [123]: 

𝑓(𝑇) =
1

√2𝜋𝜎2
exp [−

(𝑇−𝑇𝑐𝑒𝑛𝑡𝑒𝑟)2

2𝜎2
]  (4.1.1) 

Where σ is the half width of the Gaussian distribution, and Tcenter is the temperature where the 

population of metallic phase domains is equal to that of insulating phase domains. When the 

dimension is increased, the distribution of metallic phase and insulating phase domains will 

become broader, which leads to a larger hysteresis loop. 

When the VO2 devices are scaled down, the resistivity is lower in the insulating state (smaller 

 - T hysteresis loop) reflects the smaller oscillation amplitude and higher oscillation frequency 

demonstrated in the following parts of the thesis. 

 

Fig 4.1.  - T curves of VO2 devices with different sizes. Green: 70×40 μm2, purple: 7×6 μm2, 

orange: 1×1 μm2 and yellow: 600×700 nm2. Data from [121]. 

The working principle of the self-sustained VO2 oscillator driven by constant current source 

has been introduced in section 2.1.3: Joule heating (I2·R) plays a critical role in raising the 

device temperature, and hence drives the oscillation process (between high resistance state and 

low resistance state). VO2 device shows a negative differential resistance (NDR) region, where 

the voltage drops with increasing current, as shown in Fig 4.2. In this region the voltage across 

the device oscillates with a frequency that increases with the magnitude of the applied current. 

As introduced in Fig 4.1 where the  - T hysteresis loop becomes smaller with decreasing device 

size, the current (and critical voltage Vc = IcR, where the device enters NDR region) needed to 
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lift the device temperature up to the vicinity of the MIT temperature also becomes significantly 

lower when the devices are scaled down form micro-size to nano-size, as shown in Fig 4.2. 

 

Fig 4.2. I-V curves of VO2 devices with different sizes. I-V measurement (current is varied 

while measuring voltage) of a single VO2 device from micron (6×7 μm2) to nanometer scale 

(200×200 nm2). Inset up right shows the zoom-in view of the I-V characteristic from nanoscopic 

devices. Data from [121]. 

 

Fig 4.3. I-f curves of VO2 devices with different sizes. I-f measurement (current is varied 

while measuring oscillation frequency) of a single VO2 device from micron (6×7 μm2) to 

nanometer scale (200×200 nm2). Inset up right shows the zoom-in view of the I-f characteristic 

from nanoscopic devices. Data from [121]. 
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As this self-sustained VO2 oscillator (driven by constant current) is scaled down to 200 nm, a 

substantial increase in the oscillation frequency (Fig. 4.3) from kHz range to MHz range can 

be observed. The effect can be understood as due to the decreasing number of insulating phase 

domains when scaling down, the incubation time needed to switch them has become shorter, 

and hence the device oscillation period (total time of switching to low resistance state, and 

recovering back to high resistance state) becomes shorter. For the oscillation state 

measurements with various types of devices, the measurements were carried out in a multi-

probe cryogenic probe station (Lakeshore) with 25 μm diameter W-tips. A current source 

(Keithely 6221 AC/DC current source) and a source meter (Keithely 2636B) were used to drive 

the oscillators and the thermal cell. The oscillating voltage was detected by an oscilloscope 

(DSO5052A, InfiniiVision) with home-built LV codes. 

In Fig. 4.4, the minimum power for driving VO2 cells into stable oscillation state vs. device 

size is plotted. It clearly shows a linear relationship between power and device size (fitted in 

orange dash line). The linear relationship is also confirmed in simulation (green dash line, see 

finite element simulation for detail in Appendix section). It is remarkable that the oscillation 

frequency increases above 1 MHz while power decreases down to micro watts with scale-down 

of the device’s size - this clearly indicates faster speed and lower energy consumption with the 

reduced dimension of the VO2 oscillator. 

 

Fig 4.4. Driving power of VO2 devices with different sizes. a, Single nanoscopic device from 

micron (6×7 μm2) to nanometer scale (300×300 nm2). Power versus supply current density. 

Inset up right shows the zoom-in view of the driving power from nanoscopic devices. b, The 

minimum power Pmin to drive the VO2 nano oscillator into stable oscillation with various sizes 

(Purple spheres: experimental data; Orange dashed line: Linear fit of experimental data; Green 

dashed line: Simulation results from Zhong Wang). Data from [121]. 
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When two VO2 oscillators are placed close enough, the heat that is released during one part of 

the oscillation cycle from one device can trigger the nearby device to oscillate, as shown in Fig 

4.5a. Interestingly, this mechanism should lead to a time delay (or a phase difference) in the 

oscillations of the two devices. To explore this phenomenon, pairs of VO2 oscillators of 

different sizes from 5×5 μm2 to 200×200 nm2 were fabricated. For a pair of VO2 devices with 

the size of 5×5 μm2 with a 2 μm spacing, device 1 was set in a stable oscillatory state using a 

driving current I1 = 2.8 mA (400 μs pulse) above threshold, while device 2 was biased with a 

sub-threshold current I2 = 2.3 mA. As shown in Fig. 4.5c, device 1 oscillates only within the 

current pulse window. It is intriguing that device 2 also oscillates at a sub-threshold current, 

triggered by the thermal energy exchange from the oscillating device 1 (consistent with 

COMSOL finite element simulation, see Appendix section). Note that the thermal energy 

exchange can be directly observed as follows: In the first half of the periodic driving cycle, 𝐼1 

is large enough to drive device 1 at a stable oscillation (green curve), and device 2 is triggered 

to oscillate (orange curve) at the same frequency as device 1. Then 𝐼1 drops to 0 mA in the 

second half of the cycle and its voltage, V1, decreases to 0 V, while device 2 recovers to the 

sub-threshold transition state (high resistance state) and its voltage, V2, increases back to a high 

level. In the next cycle when I1 is turned on, both devices will again start to oscillate at the same 

frequency, as shown in Fig. 4.5d. The trigger delay time between the drop of V1 and that of V2 

can be seen from the bottom inset.  
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Fig 4.5. Direct observation of thermal coupling effect with trigger delay time between two 

coupled VO2 oscillators. a, Schematic illustration of two thermally coupled VO2 oscillators. 

b, Optical images of device 1 (5×5 μm2) and device 2 (5×5 μm2) separated by 2 μm. c, Stable 

oscillation when 400 μs long 2.8 mA current pulses (separated by 400 μs of zero current) are 

sent to device 1. d, Coupled oscillation behavior between device 1 and device 2 (both 5×5 μm2) 

with 2 μm spacing. Device 2 is excited by I2 = 2.3 mA that is lower than the oscillation threshold 

current (2.5 mA). When device 1 is activated to oscillation state by a current pulse, device 2 

starts to oscillate with the same frequency. Inset (bottom): 0.53 μs to trigger device 2 into 

oscillation. Data from [121]. 

Such a thermal triggering effect can be observed for pairs of devices ranging from 5 µm down 

to 200 nm in size. The trigger delay time increases with increased spacing, as shown in Fig. 4.6. 

For the smallest size (200 nm) the trigger delay time is about 98 ns.  

 

Fig 4.6. Driving power of VO2 devices with different sizes. a, Single nanoscopic device from 

micron (6×7 μm2) to nanometer scale (300×300 nm2). Data from [121]. 

Fig 4.7 shows the details of measuring trigger delay time for two VO2 devices with various 

device spacing. Same as introduced in Fig 4.5, device 1 was set in a stable oscillatory state 

using a driving current 𝐼1 above threshold, while device 2 was biased with a sub-threshold 

current 𝐼2 to be thermally triggered to oscillate by device 1. In the first column, optical images 

show device 1 (5×5 μm2) and device 2 (5×5 μm2) separated by a, 10 μm, b, 6 μm. SEM images 

of fabricated nanoscopic devices show two VO2 device with different dimension and spacing c, 

1×1 μm2 (spacing = 1 μm), d, 500×500 nm2 (spacing = 500 nm) and e, 200×200 nm2 (spacing 

= 200 nm). Yellow shading indicates the VO2 cells (Au contacts are in white). In the second 

and third columns show: Fig 4.7a - measurements (I1 = 2.8 mA, I2 = 2.3 mA) of the trigger 

delay time at 10 μm spacing, Fig 4.7b - measurement (I1 = 2.8 mA, I2 = 2.3 mA) of the trigger 

delay time at 6 μm spacing, Fig 4.7c - measurements (I1 = 600 μA, I2 = 420 μA) of the trigger 

delay time at 1 μm spacing, Fig 4.7d - measurements (I1 = 600 μA, I2 = 460 μA) of the trigger 
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delay time at 500 nm spacing, Fig 4.7e - measurements (I1 = 600 μA, I2 = 460 μA) of the trigger 

delay time at 200 nm spacing. The error bar of the trigger time delay is calculated from two 

measurements of the triggered oscillation. 
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Fig 4.7. Measurement of trigger delay time for two VO2 devices with various device 

spacing. Two VO2 devices a, 5×5 μm2 (spacing = 10 μm); b, 5×5 μm2 (spacing = 6 μm); c, 

1×1 μm2 (spacing = 1 μm); d, 500×500 nm2 (spacing = 500 nm), and e, 200×200 nm2 (spacing 

= 200 nm). Data from [121]. 

 

4.2 Tunable Thermal Triggering 

For a single set of VO2 oscillators (two devices driven by two independent current sources), the 

further the devices are apart, the weaker is the thermal link. As shown in Fig 4.8, when the 

spacing between two VO2 oscillators increases, the frequency locking range becomes smaller 

significantly. When two devices are far apart, the heat released from one device will dissipate 

entirely into the substrate before reaching the other device. The thermal coupling strength 

between the two devices is limited and can only maintain their synchronization within a certain 

frequency range. 

 

Fig 4.8. Thermal coupling strength versus device spacing. Frequency vs. applied current for 

device 1 (5×5 μm2) and device 2 (5×5 μm2) when they are oscillating independently with a 

spacing of a, 2 μm, c, 6 μm, and e, 10 μm. b, Frequency locking between device 1 and device 

2 at a 2 μm spacing (I1 fixed at 2.7 mA). d, Frequency locking between device 1 and device 2 

at a 6 μm spacing (I1 fixed at 2.6 mA). f, Frequency locking between device 1 and device 2 at 

a 10 μm spacing (I1 fixed at 2.9 mA). As the spacing between the two VO2 devices becomes 

larger (from 2 𝜇𝑚  to 10 𝜇𝑚 ), the coupling strength becomes weaker, shown as a smaller 

frequency locking range (from 22 kHz to 42 kHz at 2 μm; from 21 kHz to 27 kHz at 6 μm; from 

25 kHz to 28 kHz at 10 μm). 
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Next, in order to realize tunable thermal coupling, a VO2 thermal cell was added between the 

two VO2 devices. The device set morphology is shown in Fig 4.9.  

 

Fig 4.9. Tunable thermal coupling device set geometry. a, Optical microscopy images of 

device set for experiments, with overview (left) and zoomed-in view (right). A 1.5 μm wide (21 

μm long) VO2 stripe is placed as a thermal cell for enhancing the thermal coupling between two 

VO2 devices with the dimensions of 7×6 μm2. The distance between device 1 and device 2 is 5 

μm. b, 3D geometry of device 1, device 2 and thermal cell scanned by AFM. Data from [121]. 

A microscopic picture with a corresponding circuit diagram is shown in Fig 4.10a. This thermal 

cell is designed to change the ambient thermal environment between device 1 and device 2. By 

applying different cell voltages Vcell that induce Joule heating, the ambient temperature between 

device 1 and device 2 can be changed. The higher the cell voltage Vcell, the higher is the ambient 

temperature, and, therefore, the lower is the threshold switching voltage (as shown in Fig 4.10b 

inset left) and the higher is the oscillation frequency (for the same current, as demonstrated in 

Fig 4.10a inset right) for a single device. This is because the starting point of the oscillation in 

the ρ - T hysteresis loop has been biased to a higher temperature closer to Tc. 
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Fig 4.10. VO2 oscillators with tunable thermal coupling strength. a, Optical microscopy 

image of a device set with schematic illustrations of the electrical connections. The device set 

includes a 1.5 μm wide (21 μm long) VO2 stripe as a thermal cell between two VO2 oscillators, 

each with dimensions of 7×6 μm2. The distance between device 1 and device 2 is 5 μm. Device 

1 and device 2 are driven by two independent current sources I1 and I2, respectively. A voltage 

source Vcell is used to control the thermal cell. b, I-V measurements (sweep current and measure 

voltage) of device 1 for different thermal cell voltages (Vcell). Inset bottom left: The threshold 

voltage (Vth) where the device enters the NDR region reduces with increasing Vcell. Inset top 

right: I-f measurements (sweep current and measure frequency) from device 1 for different Vcell. 

With higher Vcell, f increases. Data from [121]. 

In the following, how the devices’ ambient temperature plays a critical role for the oscillation 

coupling among neighboring devices including the thermal cell will be further discussed. When 

the ambient temperature is set at 295 K, 330 K, and at 360 K (above its MIT temperature ~ 340 

K), it can be observed that the I-V characteristic changes significantly (Fig 4.11a). Below its 

MIT temperature, VO2 device still shows a typical NDR region, where the critical 

current/voltage to enter the region decreases with increasing temperature. However, above its 

MIT temperature the I-V characteristic of the VO2 device behaves like normal metal with linear 

and low resistance, indicating it has fully phase transited to metallic state. The other common 

behavior of VO2 cell is that the oscillation frequency increases by increasing the ambient 

temperature while reducing the amplitude, as shown in Fig 4.11b and c. At the same 

temperature with different supply currents the oscillation amplitude hardly changes. At higher 

temperatures the amplitude becomes smaller (at 295 K: peak-to-peak value is about 4.1 V, while 

at 330 K: peak-to-peak value is about 3.2 V). 
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Fig 4.11. Temperature-dependent VO2 oscillator characteristics. a, I-V measurements 

(sweep current and measure voltage, voltage compliance at 20 V) at 295 K, 330 K and 360 K. 

b, Oscillation frequency as a function of applied d.c. current (I-f) for VO2 device (7×6 μm2) at 

295 K and 330 K. At higher ambient temperature, with the same supply current the VO2 device 

oscillates at a higher frequency but the tunable frequency range becomes narrower. Additionally, 

the threshold current value where VO2 device starts to oscillate decreases at higher temperatures. 

c, Single device (7×6 μm2) oscillation waveform at 3 mA, 4 mA, 5 mA, 6 mA at 295 K. d, 

Single device (7×6 μm2) oscillation waveform at 3 mA, 4 mA, 5 mA, 6 mA at 330 K. Data from 

[121]. 

 

Fig 4.12. Single device oscillation waveform at different supply currents and thermal cell 
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voltages. a, Single device (7×6 μm2) oscillation waveform at 3 mA at 295 K for different 

thermal cell voltages Vcell. b, Single device (7×6 μm2) oscillation waveform at 6 mA at 295 K 

for different thermal cell voltage Vcell. Data from [121]. 

 

Applying a constant voltage to the thermal cell has the equivalent effects of raising the ambient 

temperature that increases the oscillation frequency while lowering the amplitude, as shown in 

Fig 4.10a and Fig 4.12. For higher thermal cell voltages, the device oscillates at a higher 

frequency with a smaller amplitude. 

As a result, activating the thermal cell during synchronization helps device 1 (with a constant 

current I1 that is lower than the oscillation threshold current) to oscillate at a higher frequency 

following device 2’s frequency as I2 is gradually increased. As shown in Fig 4.13a and b, 

activating the thermal cell will lead to an increase of the mutual synchronized frequency when 

device 1 and device 2 are already in a synchronized state. When device 1 and device 2 are 

desynchronized, activating the thermal cell will lead to an increase of the oscillation frequency 

while lowering the oscillation amplitude of device 1, which enables device 1 to be synchronized 

to device 2, as shown in Fig 4.13c and d. 

 

Fig 4.13. Double device oscillation waveforms under synchronization and 

desynchronization situations. a, Device 1 (7×6 μm2) and device 2 (7×6 μm2) synchronized 
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oscillation waveforms at I1 = I2 = 2.5 mA, Vcell = 0 V. b, Device 1 and device 2 synchronized 

oscillation waveforms at I1 = I2 = 2.5 mA, Vcell = 7 V. c, Device 1 and device 2 desynchronized 

oscillation waveforms at I1 = 2.5 mA, I2 = 5 mA, Vcell = 0 V. d, Device 1 and device 2 

synchronized oscillation waveforms at I1 = 2.5 mA, I2 = 5 mA, Vcell = 7 V. Data from [121]. 

The tunable thermal triggering is presented as follows (shown in Fig 4.14): For the case where 

the thermal cell is not activated (Vcell = 0 V), device 1 was supplied with a constant low current 

I1 (2.4 mA) and oscillates at a low frequency (11 kHz). By gradually increasing the supply 

current I2 for device 2, the frequency of device 1 (f1) and the frequency of device 2 (f2) are 

synchronized until a critical frequency (here 23.5 kHz). When f2 is further increased, due to the 

limited thermal coupling strength, f1 first drops to a value that is about one half of f2 and then 

increases slowly while maintaining a ratio of f1 : f2 of roughly 1 : 2, as shown in Fig 4.14a. For 

the case where the thermal cell is activated with a very strong thermal coupling strength (Vcell 

= 8 V), f1 can now be fully locked to f2 (until both devices are heated to their respective metallic 

states and don’t oscillate anymore. The significant difference between the synchronization 

behavior of device 1 under weak/moderate (Vcell < 8 V) and strong (Vcell = 8 V) coupling effects 

can be observed, as shown in Fig 4.14c.  

 

Fig 4.14. Tunable thermal triggering between two VO2 oscillators. a, Frequency locking at 

Vcell = 0 V. I1 is fixed at 2.4 mA while increasing I2. In this case, the frequency locking between 

device 1 and 2 holds until 23.5 kHz. Inset left: Synchronized waveforms of device 1 (I1 = 2.4 

mA) and device 2 (I2 = 2.5 mA). Inset right: Desynchronized waveforms of device 1 (I1 = 2.4 
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mA) and device 2 (I2 = 5 mA). b, Frequency locking at Vcell = 8 V. The frequency locking 

breaks above 25.3 kHz. Inset left: Synchronized waveforms of device 1 (I1 = 2.4 mA) and 

device 2 (I2 = 2.5 mA). Inset right: Synchronized waveforms of device 1 (𝐼1 = 2.4 𝑚𝐴) and 

device 2 (I2 = 5 mA). c, Comparison of synchronization frequency of device 1 (fixed at 2.4 mA) 

as Vcell is varied (from 0 to 8 V). d, Comparison of power consumption from device 1 and device 

2 under different circumstances at Vcell = 0 V. Gray line shows the power summation when they 

are oscillating independently. Yellow line shows the power summation when they are 

oscillating with the coupling effect. Data from [121]. 

As mentioned in section 2.1.3, the energy-recycling mechanism - energy being reversibly 

converted, or reused, instead of being totally dissipated, is also a very attractive point for 

developing energy-efficient oscillatory computational network. Because in traditional CMOS 

circuit there is no such energy-recycling mechanism - power increases (proportionally) with the 

number of transistors. The power consumption from device 1 and device 2 when they are 

oscillating indecently, and when they are oscillating with a thermal coupling effect (as shown 

in Fig 4.14d) are plotted, respectively. The thermal energy exchange between device 1 and 

device 2 helps to reduce the power consumption both in the synchronization region (by 13.1 %) 

and the non-synchronization region (by 10.6 %), indicating higher energy efficiency. The power 

of a single oscillator is calculated as follows: The oscillating voltage waveform under a certain 

current value is collected. Then the voltage value is averaged over time (500 μs) then multiplied 

by the current value to obtain the average power consumption. The power of the thermal cell is 

calculated approximately from the measurements in Fig 4.15. 

 

Fig 4.15. Voltage-mode (V-I) and current-mode (I-V) measurements for a thermal cell. a, 

Thermal cell V-I (sweep voltage and measure current, current compliance at 10 mA) and b, I-

V (sweep current and measure voltage, voltage compliance at 20 V) curves. Data from [121]. 

Such oscillators with tunable synchronization behavior can be further scaled down to nano-

scale as shown in Fig 4.16. The device set includes a 120 nm wide (2 μm long) VO2 nano wire 

as a thermal cell, and two VO2 oscillators with dimensions of 700×600 nm2. The distance 
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between device 1 and device 2 is 600 nm. The distance between thermal cell and device 1 (or 

device 2) is 240 nm. Yellow shading indicates VO2 cells (Au contacts in white). 

 

Fig 4.16. VO2 nano oscillators with tunable thermal triggering. a, SEM image of a 

fabricated nanoscopic device. b, Frequency locking behavior at Icell = 0 μA. For this 

measurement, the current to device 1 is fixed at 0.8 mA while the current to device 2 is increased. 

In this case, the frequency locking between device 1 and 2 holds from 700 kHz to 1.05 MHz 

and then breaks down. c, Frequency locking behavior at Icell = 390 μA. In this case, the 

frequency locking breaks down above 1.5 MHz. d, Comparison of synchronization frequency 

of device 1 (fixed at 0.8 mA) as Icell is varied (from 0 to 390 μA). Data from [121]. 

 

4.3 VO2 Oscillator-based Boolean Logic Gates 

Based on the above tunable thermal coupling mechanism, three different Boolean logic gates 

(AND, NAND and NOR) are realized by the set of VO2 devices shown in Fig 4.10a. The 

oscillation state of a VO2 device, which is represented by the oscillation frequency (f) and 

amplitude (A), is taken as state “0” or “1”. Here we define the threshold frequency fth as the 

frequency where device 1 and device 2 desynchronize at Vcell = 0 V when I1 is fixed at 2.5 mA 

while I2 is gradually increasing (fth = 23.5 kHz is taken for the following computation). A 
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frequency lower (higher) than fth is defined as “low (high) frequency”. A peak-to-peak value 

Vpk-pk = 1 V is chosen as the threshold amplitude. An amplitude smaller (larger) than Vpk-pk is 

defined as “small (large) amplitude”. There are 4 kinds of oscillation states; high frequency 

with large amplitude, high frequency with small amplitude, low frequency with large amplitude 

and low frequency with low amplitude. Here, only the oscillation state with high frequency and 

large magnitude is taken as logic “1”, while the other states are taken as logic “0”, as shown in 

Fig 4.17. 

 

Fig 4.17. Oscillation states used for Boolean computation. a, Oscillation states defined as 

logic “1”. b, Oscillation states defined as logic “0”. Data from [121]. 

The key to generating different oscillation states is to use the supply current and thermal cell to 

bias the starting point of the oscillation cycle in the  - T hysteresis loop. The oscillation state 

in Fig 4.18a: Device 1 is supplied with constant current of 2.5 mA while the thermal cell is 

deactivated. The ambient temperature isn’t significantly raised so device 1 oscillates at a low 

frequency with large amplitude; The oscillation state in Fig 4.18b: Device 1 is supplied with 

constant large current of 6.2 mA with the activated thermal cell. Meanwhile, device 2 is 

supplied with large current (I2 = 5 mA) and oscillates at a high frequency. Due to the significant 

rise of ambient temperature by both synchronization and the thermal cell, the high resistance 

state of device 1 has been biased closely to the metallic point (in the  - T hysteresis loop) and 

this results in a smaller peak-to-peak amplitude (< 1 V) and high frequency; The same also 

applies to the oscillation state in Fig 4.18c when device 1 is supplied with a constant current of 

6.4 mA while the thermal cell is activated, and device 2 oscillates at a low frequency (I2 = 2.4 

mA); The oscillation state in Fig 4.18d: Device 1 is supplied with a constant current of 6.4 mA 

while device 2 is supplied with a large current (I2 = 5.2 mA) and oscillates at high frequency. 
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The activation of the thermal cell will lead to overheating of both devices so they reach the 

metallic state. As a result, there will be no more oscillations, as shown in Fig 4.18d. 

 

Fig 4.18. Logic “0” represented by different oscillation states of VO2 device 2. a, Oscillation 

state with low frequency and large amplitude. b, Oscillation state with high frequency and small 

amplitude. c, Oscillation state with low frequency and small amplitude. d, No oscillation (fully 

metallic state). Data from [121]. 

The oscillation state of device 2 for various I2 is taken as input A, while the thermal cell voltage 

Vcell represents the input B (Vcell = 0 (7) V stands for B = 0 (1)). The current through device 1 

(I1) is kept constant during each operation, while the oscillation state of device 1 under input A 

and input B is taken as the output. 12 Boolean operations from AND gate, NAND gate, and 

NOR gate are demonstrated in Fig 4.19. (Detailed output waveforms from devices 1 and 2 for 

different logic gates are shown in Appendix section. Boolean-logic calculation tables for AND, 

NAND, and NOR gate are given in Table. T2). 
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Fig 4.19. Boolean logic gates based on coupled VO2 oscillators with tunable thermal 

coupling strength. Operations of AND, NAND, and NOR logic gates. Data from [121]. 
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(a) AND operation: 

Input A (Device 2) Input B (Vcell) Output AB (Device 1 fixed 

at 2.5 mA) 

0 (f = 11.9 kHz, Vpk-pk = 4.4 

V at 2.5 mA) 

0 (Vcell = 0 V) 0 (f = 11.9 kHz, Vpk-pk = 4.4 

V) 

0 (f = 11.9 kHz, Vpk-pk = 4.4 

V at 2.5 mA) 

1 (Vcell = 7 V) 0 (f = 14.3 kHz, Vpk-pk = 4.4 

V) 

1 (f = 30.8 kHz, Vpk-pk = 4.5 

V at 5 mA) 

0 (Vcell = 0 V) 0 (f = 12.7 kHz, Vpk-pk = 4.4 

V) 

1 (f = 30.8 kHz, Vpk-pk = 4.5 

V at 5 mA) 

1 (Vcell = 7 V) 1 (f = 24.4 kHz, Vpk-pk = 2.7 

V) 

 

(b) NAND operation: 

Input A (Device 2) Input B (Vcell) Output AB̅̅ ̅̅  (Device 1 fixed 

at 6.2 mA) 

0 (f = 11 kHz, Vpk-pk = 4.4 V 

at 2.4 mA) 

0 (Vcell = 0 V) 1 (f = 30.3 kHz, Vpk-pk = 4.4 

V) 

0 (f = 11 kHz, Vpk-pk = 4.4 V 

at 2.4 mA) 

1 (Vcell = 7 V) 1 (f = 29.4 kHz, Vpk-pk = 4.1 

V) 

1 (f = 30.8 kHz, Vpk-pk = 4.5 

V at 5 mA) 

0 (Vcell = 0 V) 1 (f = 30.3 kHz, Vpk-pk = 4.3 

V) 

1 (f = 30.8 kHz, Vpk-pk = 4.5 

V at 5 mA) 

1 (Vcell = 7 V) 0 (f = 24.4 kHz, Vpk-pk = 0.6 

V) 

 

(c) NOR operation: 

Input A (Device 2) Input B (Vcell) Output A + B̅̅ ̅̅ ̅̅ ̅ (Device 1 

fixed at 6.4 mA) 

0 (f = 11.9 kHz, Vpk-pk = 4.4 

V at 2.5 mA) 

0 (Vcell = 0 V) 1 (f = 31.3 kHz, Vpk-pk = 4.2 

V) 

0 (f = 11.9 kHz, Vpk-pk = 4.4 

V at 2.5 mA) 

1 (Vcell = 7 V) 0 (f = 10.1 kHz, Vpk-pk = 0.6 

V) 

1 (f = 32.3 kHz, Vpk-pk = 4.4 

V at 5.2 mA) 

0 (Vcell = 0 V) 0 (f = 27 kHz, Vpk-pk = 0.4 V) 

1 (f = 32.3 kHz, Vpk-pk = 4.4 

V at 5.2 mA) 

1 (Vcell = 7 V) 0 (no oscillation) 

Table T2. Calculation table of Boolean logic gates. Output logic “0” and “1” are represented 

by different oscillation states of VO2 device 1. a, AND gate. b, NAND gate. c, NOR gate. Data 

from [121]. 
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Chapter 5 Spiking Neural Network based on VO2 

Neurons 

 

In this chapter, it will focus on the applications of thermally coupled VO2 oscillators in non-

Boolean type computation, i.e. neuromorphic computing. Hardware implementations of the 

Hodgkin-Huxley (H-H) neuron and leaky integrate-and-fire (LIF) neuron, which have been 

introduced in chapter 2, directly by VO2 oscillators without any additional electronic circuit 

elements will be demonstrated. Furthermore, complex spatiotemporal functions including 

temporal integration and modulation will be experientially demonstrated by multiple interacting 

VO2 LIF neurons. In the last section, the performance of large-scale spiking neural networks 

based on such experimental VO2 LIF neurons for recognition of MNIST hand-written digits 

will be presented. 

 

5.1 VO2 Oscillators-based H-H Neuron 

As introduced in section 2.2.2, the Hodgkin-Huxley (H-H) neuron is one of the most 

sophisticated models that describes the structural, functional and dynamic properties of ion 

channels, ion permeation and selectivity etc. However, in order to realize the H-H neuron model 

with basic functions like regular spiking, spike-frequency adaptation, and bursting, a large 

number of electronic components are required to construct the circuit by traditional CMOS 

technology [124]. This not only increases the complexity to design a large-scale network 

architecture based on such neuron, but also limits the degree of freedom to tune the dynamics 

of the network during operation.  

In the following, direct hardware implementation of the Hodgkin-Huxley (H-H) neuron by 

thermally linking three VO2 oscillators will be presented. The device set is the same as in Fig 

4.10a. The difference is that the thermal cell was operated in the I-mode, in which a constant 

current (Icell) is applied to the thermal cell. This operation mode allows for cascade 

synchronization among the VO2 oscillators and the thermal cell. This phenomenon occurs 

because the VO2 thermal cell will also oscillate for Icell within the NDR region, and the heat 

periodically released from it strongly links cell 1 and cell 2 to its own oscillation period. As 

shown in Fig 5.1a, cell 1, cell 2, and the thermal cell are excited with three independent current 
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sources. When supplied with I1 = 3.9 mA, I2 = 4 mA, and Icell = 2.3 mA, frequency locking 

among the three devices can be observed in Fig 5.1b. 

 

Fig 5.1. Thermal spike driven VO2 oscillation with different firing modes. a, Optical image 

of the VO2 device set used for the generation of a spiking potential. Cell 1, cell 2, and thermal 

cell are excited by three independent current sources. b, The oscillation waveform when cell 1 

is excited at 3.9 mA, cell 2 is excited at 4.0 mA, and thermal cell is activated at 2.3 mA. c, The 

output waveform from cell 2 that is generated by the cascade synchronization among three cells. 

This behavior mimics the generation of the spiking potential in a neuron when it is stimulated; 

Region-1: Resting state; Region-2: Stimulation arrives; Region-3: Depolarization state; Region-

4: Repolarization and hyperpolarization state (also known as refractory period). d, Different 

firing modes of the VO2 neuron by simply changing the current of cell 1 (I1 from 1 mA to 5.2 

mA), while keeping the current to cell 2 (I2 = 4 mA) and thermal cell (Icell = 2.3 mA) fixed. Data 

from [121]. 

The output waveform of cell 2 is similar to the spiking potential of a neuron when it is 

stimulated. In biological systems, neurons possess abundant and complex responses to external 

stimuli so that various spiking neuron models have been established, including tonic spiking 

and bursting, phase spiking and bursting [125]. As demonstrated in Fig. 4c, the output 

waveform of cell 2 incorporates four typical regions equivalent to when a neuron transforms 

from a resting state to an excited state [13]. Region-1 corresponds to the resting state when the 
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neuron is not excited and its potential remains at the resting voltage level. Region-2 is when the 

stimulation arrives and triggers the neuron potential to rise. Region-3 corresponds to the 

depolarization state where the potential exceeds the threshold and releases a spike. Region-4 is 

the repolarization and hyperpolarization state (also known as refractory period) where the 

potential recovers back to the resting state. By simply adjusting the current through cell 1 

(between 1 mA and 5.2 mA) while keeping the currents through cell 2 and the thermal cell fixed 

(I2 = 4 mA, Icell = 2.3 mA), different numbers of spikes (5 different neuron firing modes) can be 

generated within one firing period from cell 2, as shown in Fig. 4d. Among these 5 firing modes, 

mode 1 and 2 can be considered as tonic spiking neurons that fire one spike within one period, 

while mode 3, 4 and 5 can be compared to tonic bursting neurons that fire multiple spikes 

periodically [126 - 128]. Details of synchronous waveforms from cell 1, cell 2 and thermal cell 

are shown in Appendix. 

Neural network based on the H-H neuron model with bursting properties like high frequency, 

high reliability, and strong stimulation to postsynaptic neurons, has the advantages of triggering 

responses very quickly by incoming signals compared with traditional computing platform, and 

has been applied in the robot system for avoidance control very recently [129]. 

 

5.2 VO2 Oscillators-based LIF Neuron 

Leaky integrate-and-fire (LIF) neuron, as introduced in section 2.2.2, is the simplified version 

the Hodgkin-Huxley (H-H) neuron with one channel dynamics. The advantages of using LIF 

neuron to construct large-scale spiking neural network (SNN) at current stage are that: 1. The 

neuron model has lower complexity, and hence will be easier to manipulate and tune its 

properties; 2. Abundant algorithms studied by previous works have made it straight forward to 

choose the most optimal computing architecture depending on different learning rules 

(supervised or unsupervised), as introduced in section 2.2.3. Thus, in the following sections, 

hardware implementation of LIF neuron by thermally coupled VO2 oscillators, and large-scale 

SNN based on VO2 LIF neurons will be studied and discussed. 

A cross-section transmission electron microscopy (TEM) image of the VO2 thin film sample 

on sapphire substrate is shown in Fig 5.2a. A schematic illustration of the LIF neuron realized 

by thermally coupled VO2 oscillators is provided in Fig 5.2b. When the current is gradually 

increased across a VO2 oscillator (3×3 μm2) the voltage starts to drop at ~ 1.2 mA, thereby 

showing negative differential resistance, as shown in Fig 5.2c inset down right. In the current 
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range between 2.5 mA and 4.9 mA, the voltage across the device oscillates with a frequency 

which increases with the magnitude of the current, as shown in Fig 5.2c middle. At higher 

current values (>5 mA) the device becomes fully metallic and no longer oscillates. When two 

VO2 oscillators (each 3×3 μm2) are closely spaced (1.5 μm), a very strong thermally coupled 

behavior can be observed. In Fig 5.2d, device 2 was set with a constant current I2 = 1.0 mA, 

which is below the threshold current to oscillate (2.5 mA). By gradually increasing the current 

for device 1 (I1 from 2.4 mA to 4.8 mA), device 2 can be thermally triggered to oscillate at the 

same frequency as device 1. Fig 5.2d shows synchronous waveforms at I1 = 2.4 mA, I2 = 1.0 

mA (inset left), and I1 = 4.5 mA, I2 = 1.0 mA (inset right), respectively. The frequency of device 

2 (f2) and device 1 (f1) can be synchronized from 7.5 kHz to 37.7 kHz, indicating a very strong 

thermal coupling between them. The current-driven self-sustained oscillation and thermal 

triggering effect between two oscillators has been discussed in the previous section 4.1. 

 

Fig 5.2. VO2 leaky integrate-and-fire (LIF) neuron. a, TEM cross section image of a VO2 

device, provided by Zihan Yin. b, I-f curve of a single VO2 device. The onset shows the I-V 

curve of the same device. c, Frequency locking of two VO2 oscillators. Inset shows waveforms 

of two VO2 devices which are thermally coupled. 

Next, the LIF neuron functionalities from two thermally coupled VO2 oscillators will be 

demonstrated. Device 2 (orange) is set at a constant current (I2 = -1.0 mA) and acts as a trigger 

for output spikes. Device 1 (green) receives input spike currents and serves as the leaky 
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integrate-and-fire component. The input spike current to device 1 is defined by a ramp 

waveform: Offset at 1.93 mA, amplitude at 1.3 mA, frequency at 30 kHz, and duty cycle at 

90%. A specific number of current spikes can be sent to device 1 by changing the duration cycle. 

Fig 5.2a to Fig 5.2e show the output response of the devices with increasing number of current 

spikes to device 1. When only one spike is sent (Fig 5.2a), the voltage of device 1 (V1, green 

curve) relaxes back to the offset level (3.3 V). Meanwhile, the voltage of device 2 (V2, orange 

curve) remains at its rest state. With increasing magnitude of the input spike V1 gradually builds 

up and then the voltage relaxes back to the offset level when the incoming spikes are lifted, as 

shown in Fig 5.2b – which corresponds to “leaky integration” behavior. In Fig 5.2c, when V1 

reaches the threshold voltage (Vth) at 4.2 V after 6 input spikes, device 1 undergoes a phase 

transition to a low resistance state, thermally triggers device 2 to “fire” a spike (phase transition), 

and then device 1 slowly recovers back to its high resistance state. This long recovery time of 

device 1 can be taken as the “refractory period” of the LIF neuron. Interestingly, during the 

refractory period, it takes more input spikes (7 spikes) to integrate and trigger the second firing 

event, as shown in Fig 5.2d and e. By changing the amplitude or the offset level (or both) of 

the input spike current to device 1, the number of input spikes integrated by the VO2 LIF neuron 

can be tuned, as summarized in Fig 5.2f. With larger amplitude (stronger stimuli), or higher 

offset level (more sensitive neuron), a smaller number of input spikes are needed for the VO2 

LIF neuron to integrate and fire. 
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Fig 5.3. Operation and tunability of VO2 leaky integrate-and-fire (LIF) neuron. VO2 LIF 

neuron integrates (a) 1, (b) 3, (c) 6, (d) 9, and (e) 13 input spikes. f, Tunability (number of 

integrated spikes) of the VO2 LIF neuron by different input spike amplitude and offset level. 

Next, a temporal integration function realized by two VO2 LIF neurons is demonstrated in Fig 

5.4. An 8×10 μm2 VO2 spike generator (supplied with constant current at -0.74 mA) is used to 

integrate the spikes generated from two 4×6 μm2 VO2 LIF neuron at its left (2 μm spacing) and 

right (2 μm spacing) side, as shown in Fig 5.4a and b.  

 

Fig 5.4. Temporal integration function realized by two VO2 LIF neurons. a, Optical 

microscopy image of VO2 LIF neurons. b, Schematic illustration of electrical connection. c, 

Post-LIF neuron output voltage (orange curve) integrates two pre-LIF neuron voltages (green 

and purple curves). Inset down left is sector 1, inset down middle is sector 2, inset down right 

is sector 3. 
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Both LIF neurons (green and purple curves) receive input spikes with the same frequency and 

amplitude (Ramp type, offset: 1.05 mA, amplitude: 4.0 mA, frequency: 12 kHz). Only when 

both LIF neurons are firing simultaneously (sector 2 in Fig 5.4c), the spike generator (orange 

curve) will be triggered to fire spikes. When only one LIF neuron is firing while the other one 

is at its rest state (sector 1 and 3 in Fig 5.4c), the spike generator will not be triggered to fire 

spikes. 

 

Fig 5.5. Temporal modulation function realized by two VO2 LIF neurons. a, Optical 

microscopy image of VO2 LIF neurons. b, Schematic illustration of electrical connection. c, 

Post-LIF neuron output voltage (orange line) modulates two pre-LIF neuron voltages (green 

and blue curves). Inset down left is sector 1, inset down middle is sector 2, inset down right is 

sector 3. 
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Next, a temporal modulation function is demonstrated in Fig 5.5. An 8×10 μm2 VO2 spike 

generator (set with a constant current at -0.5 mA) is used to integrate the spikes generated from 

two 4×10 μm2 VO2 LIF neuron at its left (2 μm spacing) and right (2 μm spacing) sides, as 

shown in Fig 5.5a and b. Two LIF neurons receive input spikes with different frequencies and 

amplitudes (Input to LIF neuron 1 (blue curve): Offset: 1.1 mA, amplitude: 6.7 mA, frequency: 

20 kHz; Input to LIF neuron 2 (green curve): Offset: 1.2 mA, amplitude: 2.8 mA, frequency: 

12 kHz. Both ramp type). Each LIF neuron can trigger the spike generator (orange curve) to 

spike at different frequencies and amplitudes, when the other one is at its rest state (sector 1 and 

3 in Fig 5.5c). When both LIF neurons are firing at the same time (sector 2 in Fig 5.5c), the 

integrator will be triggered to fire spikes at a modulated frequency and amplitude. 

 

5.3 Large-scale SNN based on VO2 LIF Neurons 

As introduced in section 2.2.3, spiking neural network (SNN) consists of leaky integrate-and-

fire (LIF) neuron can use surrogate gradient-based supervised learning rule for training. In this 

section, the fitting for experimental data to extract two critical parameters for the LIF neuron: 

Leakage time constant and refractory period time constant, will be first carried out. Then, 

larger-scale SNN based on the extracted experimental data will be constructed by software 

program. Different network architectures, training parameters will be tested to evaluate the 

network performance on MNIST handwritten digits dataset.  

The equivalent electric circuit of LIF neuron can be described in equation (2.2.2.2) for a resistor 

and capacitor connected in parallel. The neuron potential U(t) (after the input is removed) 

during the relaxation process is fitted by the following equation: 

𝑈(𝑡) = 𝑈0 ∙ exp (−
𝑡

𝜏𝑙𝑒𝑎𝑘
) + 𝑈𝑟𝑒𝑠𝑡  (5.3.1) 

Where τleak is the leakage time constant, Urest is the rest potential level, and U0 is the neuron 

potential after input. Fig 5.6 shows the fitting of experimentally measured potential of a VO2 

based LIF neuron after 3 input spikes. From the fitting, τleak is found to be 95 μs.  
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Fig 5.6. Experimental neuron potential and fitting of the relaxation process. Fitting of 

experimentally measured potential of a VO2 based LIF neuron after 3 input spikes. 

Fig 5.7 shows the measured potential of the LIF neuron after 6 input spikes. The neuron 

potential 𝑈(𝑡) during the refractory period is fitted by the following equation: 

𝑈(𝑡) = 𝑈𝑟𝑒𝑠𝑡 − 𝑈𝑟𝑒𝑠𝑒𝑡 ∙ exp (−
𝑡

𝜏𝑟𝑒𝑓
)  (5.3.1) 

Where τref is the refractory period time constant, Urest is the rest potential level, and Ureset is the 

reset constant after the neuron has fired. From the fitting, τref is found to be 70 μs.  

 

Fig 5.7. Experimental neuron potential and fitting of the refractory period. Fitting of 

experimentally measured potential of a VO2 based LIF neuron after 7 input spikes. 



73 | P a g e  

 

The experimental data of the VO2 LIF neuron are then used for constructing the one-layer large-

scale SNN shown in Fig 5.8a. During the training process, every pixel (28×28 pixels) in the 

MNIST handwritten digit image was encoded into spike trains. The number of spikes in each 

spike train is proportional to the gray scale of the pixel (described by the Poisson distribution). 

After that, the spikes were injected into the LIF neuron layer through first synapse connection 

layer (simulated by the program). The output spikes from the LIF neuron layer then severed as 

input and were injected into the output layer through the second synapse connection layer. The 

output layer consists of 10 output neurons, each of them was taught to recognized digit 0 to 9, 

respectively. Since the training process was governed by the supervised learning rule, each 

input digit already had a label indicating the desired output. As a result, during forward pass, 

where the data stream flowed from the input to output, the neurons in the output layer will give 

out different number of spikes depending on the input digit. Their output will then be compared 

with the target output, and the errors were then corrected during the backpropagation with 

surrogate gradient (introduced in section 2.2.3) through backward pass from the output layer to 

the first synapse connection layer, as shown in Fig 5.8b. After several training epoch, the 

system will reach the most optimal output that provide the minimum MSE (mean squared error). 

 

Fig 5.8. Large-scale spiking neural network based on VO2 LIF neurons. a, Network 

architecture. b, Data flow in forward pass and backward pass during training.  

As introduced in section 2.2.3, in order to reach global optimal solution, errors are described as 

loss function to be differentiated by every weight parameter. In this sense, one of the most 

critical training parameters is the learning rate 𝛼, which determines how large the update step 

(for a single parameter) is during training. It is defined as: 

𝑤𝑖 ∶= 𝑤𝑖 − 𝛼
𝜕

𝜕𝑤𝑖
𝐿(𝑤𝑖)  (5.3.2) 



74 | P a g e  

 

Where wi is the ith weight parameter to be updated, L(wi) is the loss function that incorporates 

the parameter wi defined in equation (2.2.3.9).  

 

Fig 5.9. Tuning the learning parameter. a, Different conversion route in the minimizing the 

loss function set by different learning rates. b, Confusion matrix with a precision of 10%. c, 

Confusion matrix with a precision of 80%. d, Confusion matrix with a precision of 87%. 

Imagine the loss function describes the system energy landscape, and the most optimal output 

is the global energy minimum point, shown as the village with green flag in Fig 5.9a. When the 

learning rate is set to be too large, the gradient decent might overshoot the minimum and fail to 

converge, or even diverge and end up at other high energy point, as shown in Fig 5.9a the 

yellow arrows. However, when the learning rate is set to be too small, the gradient decent could 

be too slow, or even be trapped in the local minimum surrounded by high gradients, causing it 

difficult to escape from them, as in Fig 5.9a the orange arrows. Only when the learning rate is 

set properly, the system can converge to the global energy minimum point, and provide the 

most optimal solution, as shown in Fig 5.9a the green arrows. Fig 5.9b to Fig 5.9d provide the 

results with different precision trained from different learning parameters. It is called the 

confusion matrix. “Neuron index” represents digit each neuron in the output layer is trained to 

learn, while the “Digit number” corresponds to the input digit needs to be recognize. In the most 
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optimal case, every neuron should fire with the highest firing rate when the input digit is the 

one it is supposed to recognize. Fig 5.9b shows the case when the learning rate was set to be 

too large, and the network only reached a precision of 10%. Fig 5.9c shows the case when the 

learning rate was set to be too small, and the network only reached a precision of 80%. Fig 5.9b 

shows the case when the learning rate was correctly set, and the network reached a precision of 

87%. When the SNN is well trained, a clear diagonal line in the confusion matrix with small 

noise points should present. 

 

Fig 5.10. Training accuracy based on different percentage of defects. a, 2-layer spiking 

neural network architecture. b, 2-layer spiking neural network with 5% defect in the first layer 

and 10% defect in the second layer. c, 2-layer spiking neural network with 15% defect in the 

first layer and 15% defect in the second layer. d, Comparison of recognition precision of 

network with different numbers of defect points. 

In order to improve the accuracy, one more layer of VO2 LIF neurons was added to the network 

architecture, as shown in Fig 5.10a. Besides, in order to take device variability into account, 

i.e., defect devices that do not properly function: Different numbers of defect points (neuron is 

kept silent/removed) were introduced into both LIF neuron layers, as shown in Fig 5.10b and 

c. From the comparison of precision plotted in Fig 5.10d, it can be observed that, the system 

with up to 15% of defects in each LIF neuron layer can still maintain the performance of 90% 
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recognition accuracy, which has demonstrated good robustness against device variability. In 

order to have the least number of neurons with the least connection complexity, but with the 

same performance, the 2-layer architecture of SNN with 150 VO2 LIF neuron was chosen, as 

shown in Fig 5.11. 

 

Fig 5.11. 2-layer SNN with 150 VO2 LIF neuron. a, Schematic illustration of the spiking 

neural network with 150 VO2 LIF neurons. b, Test accuracy (90%) and confusion matrix for 

MNIST digit recognition after 300 epochs of training.  
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Chapter 6 Conclusion and Outlook 

 

This thesis provides an innovative approach for building energy-efficient oscillatory 

computational network. In the first part, the scalability of self-sustained VO2 oscillators driven 

by a single constant current source have been experimentally demonstrated. VO2 oscillators 

scaled with size down to 200 nm show substantially reduced energy consumption and higher 

operating frequency. A pair of thermally coupled VO2 oscillators are used as computational 

elements – in which the exchange of thermal energy between oscillators increases the total 

energy efficiency. A tunable thermal coupling mechanism between two closely spaced VO2 

oscillators has been introduced in which any external electronic components are not required. 

By altering the excitation source (voltage or current) to the thermal cell placed between two 

VO2 oscillators, the thermal coupling strength can be tuned and the range of synchronization 

frequency of the oscillators can be enlarged. Such synchronized oscillators with tunable thermal 

coupling were demonstrated for traditional Boolean-type computations as AND, NAND and 

NOR gates. 

Conceptually, this thermally assisted frequency synchronization process can also be considered 

as the signal propagation in the neural system. The action potential that contains data is 

modulated in frequency (or amplitude, or both) and propagates from a pre-synaptic neuron to a 

post-synaptic neuron through a synapse [130, 131]. During this process, the action potential is 

transmitted through the synapse via releasing a neurotransmitter from the axon of the previous 

neuron to the dendrite of the next neuron [132]. One VO2 oscillator (device 1) acts as a post-

synaptic neuron while the other VO2 oscillator (device 2) acts as pre-synaptic neuron, 

respectively. These two VO2 neurons communicate via an oscillating potential, similar to the 

above-mentioned neurons in the biological system. Structurally, the thermal cell is equivalent 

to the synapse. The post-synaptic neuron is supplied with a constant low current and, thus, will 

only output a low frequency signal when it is not synchronized to the pre-synaptic neuron. 

Information is encoded in the domain above the threshold frequency where device 1 and device 

2 desynchronize when synapse (thermal cell) is deactivated, and is fed into the presynaptic 

neuron as a continuously varying current (frequency-modulated). There is no synchronization 

between neurons in the frequency range where information is encoded. As a result, all 

information from the pre-synaptic neuron (device 2) is lost while propagating to the post-

synaptic neuron, as shown in Fig 6.1a. When synapse (thermal cell) is activated, meaning that 

a neural link has been established and two VO2 neurons are synchronized, the information can 
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be transmitted to the post-synaptic neuron, as shown in Fig 6.1b. Such a mechanism can also 

be applied for frequency modulated data transmission in an analog network for non-Boolean 

operations. 

 

Fig 6.1. Frequency modulated information transmission in an oscillatory neural system. 

a, Schematic illustration of the case when pre-synaptic neuron and post-synaptic neuron are 

desynchronized (synapse deactivated) at the frequency domain where information is encoded. 

b, Schematic illustration of the case when pre-synaptic neuron and post-synaptic neuron are 

synchronized (synapse activated) at the frequency domain where information is encoded. 

In the second part, cascade synchronization among three VO2 cells have been demonstrated to 

realize the Hodgkin-Huxley (H-H) neuron model. By simply changing the current to one of the 

coupled VO2 cells, which gives rise to the release of an oscillating thermal energy, five different 

firing modes including spiking and bursting can be generated from the coupled oscillators. 

Critical functionalities needed for a leaky integrate-and-fire (LIF) neuron including leaky 

integration, triggered spiking, and a refractory period is experimentally demonstrated by using 

thermally coupled VO2 oscillators without any external electronic circuit components. In 

addition, the VO2 LIF neuron shows good tunability for integrating different numbers of spikes. 

Simulation of a large-scale spiking neural network based on 150 VO2 LIF neurons results in an 

accuracy of 90% for the recognition of hand-written digits. Furthermore, two complex functions: 

temporal integration and modulation can be directly realized by interacting VO2 LIF neurons. 
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We believe that such a current-driven firing behavior and a tunable thermal triggering technique 

can be readily utilized for coding an artificial spiking neural network, in which the output spikes 

(numbers and firing time) depend on the intensity and spatiotemporal distribution of the input 

signal [133, 134]. Such a network of thermally coupled VO2 oscillators with tunable 

interactions can also be highly useful for solving different types of computationally hard 

problems such as pattern classification and combinatorial problems [1, 135, 136]. 

The VO2 oscillatory computational network developed in this thesis can be readily connected 

to non-volatile memories for storage of the output for further analysis. Magnetic memory with 

high storage density such as multi-bit racetracks [137] is a very promising candidate. Spikes 

generated from the VO2 oscillatory computational network that incorporates with temporal 

information, can be directed injected into the racetrack memory, and later be traced and 

analyzed in the phase plane. Such computational system equipped with both short-term memory 

(VO2 neuron) and long-term memory (memory; e.g., racetrack memory, memristor, etc.) can 

be further studied and developed to handle complex tasks that deal with temporally correlated 

data like natural language processing, time-series prediction and etc. 
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Appendix 

Electrical transport measurements of VO2 2.5D array 

 

Fig A1. I-V measurement from 20 VO2 devices. I-V measurement (current is varied while 

measuring voltage) of 20 VO2 devices (3 × 3 μm2). 

 

Fig A2. I-f measurement from 10 VO2 devices. I-f measurement (current is varied while 

measuring oscillation frequency) of 10 VO2 devices (3 × 3 μm2). 
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Finite element simulations of the thermal coupling between VO2 devices 

 

Fig A3. Simulation of one VO2 device in its sub-threshold transition state that is triggered 

to oscillate by a neighboring oscillating VO2 device at a 2 μm spacing. Temperature 

distribution of two VO2 devices. a, Device 1 (5 μm × 5 μm × 30 nm) is supplied with 0 mA 

current (no oscillation), while device 2 (5 μm × 5 μm × 30 nm) is supplied with 2.3 mA current 

(sub-threshold transition state) at 295 K. Black squares correspond to the VO2 devices. b, 

Temperature distribution versus x-axis (dashed line) in case a. When device 1 is turned off, the 

temperature of device 2 is ~327 K that is lower than the phase oscillation temperature range 

(330 - 360 K). c, Device 1 is supplied with 2.8 mA current (stable oscillation state), while device 

2 is supplied with 2.3 mA current (sub-threshold transition state) at 295 K. d, Temperature 

distribution versus x-axis (dash line) in case c. Simulation shows that, due to the heat dissipated 

from device 1, the temperature of device 2 (334 K) has been raised to the phase oscillation 

temperature range (330 - 360 K). Data from [121]. 
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Fig A4. Simulation of two VO2 devices in a stable oscillation state. a, Temperature 

distribution of two VO2 devices (both 5 μm × 5 μm × 30 nm, with 2 μm spacing) when they are 

each supplied with 2.8 mA current (I1 = I2) at 295 K. Black squares correspond to the VO2 

devices. b, Temperature distribution versus x-axis (dash line). When both devices are in a stable 

oscillation state, their temperature (340.5 K) stays within the phase oscillation temperature 

range (330 - 360 K). Data from [121]. 

To study the steady effect of Joule heating, we numerically simulated the temperature 

distribution of a set of VO2 devices each with dimensions of w × w × t. Here only t = 30 nm is 

considered.  The VO2 devices were placed on a sapphire (Al2O3) substrate that had the 

dimensions of 50 μm (length) × 50 μm (width) × 30 μm (thickness). The bottom and edges of 

the substrate were fixed at a constant temperature of 295 K. Only heat transfer between the 

sapphire and the VO2 devices is considered. The steady-state heat transfer was modelled with: 

−∇ ⋅ (κ∇𝑇) = Q 

Where κ, T, Q are the thermal conductivity, temperature, and heat density, respectively. The 

liner relationship between the power consumption of the entire device P and device width w 

can be solved from the above equation as: 

𝑃 ∝ 4𝜋 ∙ Δ𝑇 ∙ κ ∙ w 
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Fig A5. Simulation of VO2 neuron firing mode 3. Temperature distribution of two VO2 

devices (with 5 μm spacing) and thermal cell. a, Device 1 (7 μm × 6 μm × 30 nm) is supplied 

with 1.7 mA current (no oscillation), while device 2 (7 μm × 6 μm × 30 nm) is supplied with 4 

mA current (stable oscillation state) at 295 K. The thermal cell (21 μm × 1.5 μm × 30 nm) is 

off (Icell = 0). Black squares correspond to the VO2 devices and thermal cell. b, Temperature 

distribution versus x-axis (dash line) in case a. When the thermal cell is off, the temperature of 

device 1 (around 314 K) is lower than the phase oscillation range (330 - 360 K).  c, Device 1 is 

supplied with 1.7 mA current, while device 2 is supplied with 2.3 mA current at 295 K. The 

thermal cell is on (Icell = 2.3 mA). d, Temperature distribution versus x-axis (dash line) in case 

c. Simulation shows due to the heat dissipated from thermal cell, the temperature of device 2 

(336 K) has been raised to the phase oscillation temperature range (330 - 360 K). Data from 

[121]. 
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Fig A6. Output waveforms of Boolean logic gates. a, AND gate operation. b, NAND gate 

operation. c, NOR gate operation. Data from [121]. 

 

Cascade synchronization among VO2 oscillators and the thermal cell 

 

Fig A7. Oscillation frequency as a function of applied d.c. current (I-f). Device 1 (VO2 cell 

2, 7 × 6 μm2) shown as green line, device 2 (VO2 cell 1, 7 × 6 μm2) shown as orange line and 

thermal cell (1.5 × 21 μm2) shown as blue line. Data from [121]. 
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Fig A8. VO2 neuron firing mode 1. a, Spiking neuron firing mode 1 at I1 = 4 mA (supply 

current of VO2 cell 1), I2 = 4 mA (supply current of VO2 cell 2) and Icell = 2.3 mA (supply 

current of thermal cell). b, I1 = 4 mA, I2 = 4 mA and Icell = 0 mA. Data from [121]. 

 

Fig A9. VO2 neuron firing mode 2. a, Spiking neuron firing mode 2 at I1 = 3.9 mA (supply 

current of VO2 cell 1), I2 = 4 mA (supply current of VO2 cell 2) and Icell = 2.3 mA (supply 

current of thermal cell). b, I1 = 3.9 mA, I2 = 4 mA and Icell = 0 mA. Data from [121]. 

 

Fig A10. VO2 neuron firing mode 3. a, Spiking neuron firing mode 3 at I1 = 1.7 mA (supply 

current of VO2 cell 1), I2 = 4 mA (supply current of VO2 cell 2) and Icell = 2.3 mA (supply 

current of thermal cell). b, I1 = 1.7 mA, I2 = 4 mA and Icell = 0 mA. Data from [121]. 
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Fig A11. VO2 neuron firing mode 4. a, Spiking neuron firing mode 4 at I1 = 5.2 mA (supply 

current of VO2 cell 1), I2 = 4 mA (supply current of VO2 cell 2) and Icell = 2.3 mA (supply 

current of thermal cell). b, I1 = 5.2 mA, I2 = 4 mA and Icell = 0 mA. Data from [121]. 

 

Fig A12. VO2 neuron firing mode 5. a, Spiking neuron firing mode 5 at I1 = 1 mA (supply 

current of VO2 cell 1), I2 = 4 mA (supply current of VO2 cell 2) and Icell = 2.3 mA (supply 

current of thermal cell). b, I1 = 1 mA, I2 = 4 mA and Icell = 0 mA. Data from [121]. 
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