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Zusammenfassung

Traditionelle tiefe neuronale Netzwerke haben in rechenintensiven Aufgaben wie der
Musterklassifikation und Spracherkennung groRe Erfolge erzielt. Der rapide Anstieg des
Energieverbrauchs, der fir die Durchfihrung dieser Aufgaben erforderlich ist, macht jedoch
die Suche nach recheneffizienteren Netzwerkarchitekturen dringend notwendig. Netzwerke, die
auf gekoppelten Oszillatoren basieren, sind von grofem Interesse fur energieeffizientes
Computing. Ein entscheidender Aspekt bei der Entwicklung solcher Technologien ist die
steuerbare Kontrolle der Wechselwirkungen zwischen Oszillatoren, die heute durch zusétzliche
elektronische Komponenten realisiert wird. In dieser Arbeit wird eine neuartige Methode zur
Steuerung der Synchronisation von eng benachbarter Vanadiumdioxid (VO.) Oszillatoren
vorgestellt, die Gber ein einfaches thermisches Ausléseelement aus VO erfolgt. Der gesamte
Energieverbrauch der Oszillatoren ist bei thermischer Kopplung geringer im Vergleich zu der
Situation, in der sie unabhangig voneinander oszillieren. Basierend auf solchen Oszillatoren mit
aktiver Abstimmung werden experimentell AND, NAND und NOR Logikgatter sowie
verschiedene Feuermuster demonstriert, die das Verhalten Spiking Neuron nachahmen.
GroRskalige Spiking-Neuron Netzwerke, die auf diesen experimentellen VO,-Oszillatoren
basieren, erreichen eine Genauigkeit von 90% bei der Erkennung handgeschriebener Ziffern
aus dem MNIST-Datensatz. Die Ergebnisse dieser Arbeit zeigen einen innovativen Ansatz fur
Rechenmethoden, die auf Netzwerken von thermisch gekoppelten Oszillatoren basieren.



Abstract

Traditional deep neural networks have gained success in computational heavy tasks such as
pattern classification and voice recognition. However, the rapid increase in power consumption
to carry out these tasks due to significant amount of data have made it imperative to search for
more efficient and novel computational network architectures. Computational network based
on coupled oscillators are of great interest for energy efficient computing. A key to develop
such technologies is the tunable interaction among the coupled oscillators which today can be
realized by additional electronic components. In this thesis, a novel way to control the
synchronization of closely spaced vanadium dioxide (VO2) oscillators via a simple thermal
triggering element formed from VO3 is introduced. The net energy consumed by the oscillators
is lower during thermal coupling compared with the situation where they are oscillating
independently. Based on such oscillators with active tuning, AND, NAND, and NOR logic
gates and various firing patterns that mimic the behavior of spiking neurons are experimentally
demonstrated. Large-scale spiking neural networks based on such experimental VO spiking
neurons show a 90% accuracy in the recognition of MNIST hand-written digits. The findings
in this thesis demonstrate an innovative approach towards computational techniques based on

networks of thermally coupled oscillators.
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Chapter 1 Introduction

Nowadays, more and more artificial intelligent (Al) technologies are applied in our daily life:
Target recognition, natural language processing, auto-pilot and etc. However, traditional
computing technique based on von-Neumann architecture falls short of competing with human
brain in term of energy efficiency. For a very simple pattern recognition task such as
handwritten digits or animals, it takes computer to run at a power of 800 W in order to train the
neural network, while human brain needs much lower power for similar tasks [~20 W, empirical
value]. Such significant difference in power consumption for executing the same task has raised
interests and demands to develop next-generation computing architecture that approaches the
human brain. Traditional von-Neumann architecture has separated process units and memory
units- data needs to be constantly transferred back and forth in sequence between them during
every operation, which leads to the additional latency and considerable power consumption.
Network of oscillators with inherent dynamical coupling strength, mimics periodic activities of
biological neurons in the brain (Chapter 2.1). This oscillatory network can offer faster and more
efficient means of computation by their integrated process and memory units, and the ability to
process data in parallel [1, 2]. Two critical aspects for the further development of such systems
are mutual interactions and the control of the interactions between neighboring oscillators for

their synchronization.

Spiking neural networks (SNNs, Chapter 2.2), as a special type of oscillatory computational
network, have garnered ever increasing interest in recent years due to their similarity with our
own biological system in terms of sparse connections, and better capability to deal with
temporal data by its inherent recurrent feature [3 - 5]. As distinct from second-generation ANNSs
(artificial neural networks) that generate continuous analog outputs, third-generation neurons

in SNNs communicate with each other by discrete spikes [6].

Highly interesting oscillators can be formed from strongly correlated oxide materials that
display an insulator to metal transition. The controlled oscillation between the low and high
resistance states in such materials is possible under an external stimulus such as current,
magnetic field, or electric field [7, 8]. Oscillators based on vanadium dioxide (VO., Chapter
2.1.3) are of particular interest since the material undergoes an insulating to metallic phase
transition near room temperature [9 - 12]. Coupling between the VO oscillators is essential to

the operation of the oscillatory computational network and can be realized either via external
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electronic components [13 - 17] or by thermal links [18, 19]. So far, computational schemes
based on the phase relationship between oscillators has been the most common technique used
in coupled VO networks [14 - 16]. These schemes rely on binary logic where the two states
correspond to the phase of the oscillator (0° or 180°) relative to a reference oscillator. However,
additional electronic elements are required for generating the oscillation and for tuning the
coupling among the VO, devices [13 - 19]. This not only increases the complexity of the design
of any computational circuit, but also limits the degree of freedom to tune the dynamics of the

network during operation.

This thesis offers a simple but effective mean to actively tune the thermal coupling between
VO, oscillators, without any extra electronic components needed. The effective tuning
mechanism introduced in this thesis can generate a multiplicity of synchronous oscillatory states
with distinct frequencies and amplitudes for both Boolean-type (logic gates operations) and

non-Boolean-type (spiking neural network) computation.

The thesis is organized as follows: Firstly, the basic concepts, working principle of oscillator-
based computational network (OCN), and comparison between different implementations of
oscillators will be introduced in Chapter 2. Then, spiking neural network (SNN), as one of the
OCNs, will be discussed and compared with the previous generations of artificial neural
network (ANN). Two types of basic computational nodes from SNN: Leaky integrate-and-fire
(LIF) neuron and Hodgkin—Huxley (H-H) neuron, together with the network architecture and
training algorithm utilized in this thesis, will also be introduced in this chapter. In Chapter 3,
physical deposition of VO thin films, and fabrication process of VO devices will be introduced
in details. Afterwards, implementations of VO oscillators for both traditional Boolean logic
gates computation (Chapter 4), and unconventional neuromorphic computing based on spiking
neural network (Chapter 5) will be introduced. Finally, in Chapter 6, the findings of this thesis
will be concluded and further applications with other type of memristor (i.e. magnetic Racetrack

memory) will be briefly discussed for outlook.
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Chapter 2 Oscillatory Computational Networks

In this chapter the general concepts for oscillator-based computational network (OCN), and
different types of oscillators are the basic building block for the network will be introduced and
discussed. Spiking neural network (SNN), as a special type of OCN, together with the network
architecture and training algorithm that are utilized in this thesis will be studied. Two types of
building blocks for SNN: Leaky integrate-and-fire (LIF) neuron and Hodgkin—Huxley (H-H)
neuron will also be introduced in this chapter.

2.1 Oscillator-based computational network (OCN)
2.1.1 Fundamentals of OCN

Human Brain as Network of Oscillators

Imagine our brain is a large-scale network formed from oscillators, while each neuron behaves
like an oscillator with its own frequency. Neurons don’t act in isolation. In the cell assembly
theory, Hebb described the formation of neuron groups through the principle “Neurons that fire
together, wire together”, and suggested that these assemblies work as units for learning and
forming memories [20]. Individual neurons, each with their own activity rhythm, are locally
synchronized. These locally assembled neurons act as a unified group, generating a collective

rhythm to carry out specific functions, or represent a specific memory pattern.

Oscillations across various frequency bands are strongly evident in different regions of the brain.
Extensive research has been conducted on Theta-frequency oscillations (4-8 Hz) in the rodent
hippocampus region. It was found that theta band oscillation has a critical impact, particularly
on spatial navigation, memory encoding, and retrieval [21]. Gamma oscillations (40 - 80 Hz),
which are commonly observed in various regions of the brain, contribute to the encoding and
integration of information through precise temporal coordination [22]. The brain performs a
complex function through communication among different neuron assemblies. Local gamma
oscillations modulated in amplitude by theta oscillations can synchronize and communicate
with other regions by phase-phase frequency coupling, cross-frequency phase-amplitude
coupling, gamma phase-phase coupling, or cross-frequency phase-phase coupling methods [22],
as shown in Fig 2.1. Such oscillation-based synchrony is energy-efficient and helps neurons

work cooperatively [23].
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Hippocampus (reader)

~fIAi =

Fig 2.1. Theta and gamma oscillations coupling mechanisms. a, Scheme of the brain region
that are nested with gamma oscillations and theta oscillations. b, Phase-phase frequency
coupling between gamma oscillations. Though the two gamma oscillations are not exactly the
same, their phases are matched. c, Cross-frequency phase-amplitude coupling between gamma
oscillation and theta oscillation. Though the phases of gamma-frequencies are not matched, the
amplitude of gamma oscillation is regulated by same phase of theta oscillation. d, Gamma
phase-phase coupling. (e) Cross-frequency phase-phase coupling between gamma and theta
oscillation. Both the phase of gamma oscillation and theta oscillation are in coherence.
Modified from [22].

General Concept of OCN

Inspired by the effectiveness of the human brain, von Neumann in 1957 first proposed the idea
of constructing an oscillatory computational network that utilized phase information of the
oscillators for computing [24, 25]. It was truly surprising that he already realized the inherent
limitations (processing speed, “memory bottleneck™ problem, and huge power consumption) of
the existing von Neumann computing architecture (proposed by him earlier and named after
him) back at that time, which has become the main computing architecture nowadays.

In contrast to the traditional von Neumann architecture, which is based on binary Boolean logic,
the information in OCN can be represented by continuous frequencies and/or amplitudes and/or
phases of the oscillators [26]. In traditional Boolean machine computational elements
(transistor) are working independently, and binary digits flow through each element in sequence.

Quite differently, oscillators in the OCN are coupled, and the interaction between them will
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converge the whole system simultaneously into energy-favorable collective state (stationary)
[27, 28], or certain collective behavior pattern in time sequence (dynamic) [29]. Network
models for these two different collective states (stationary/dynamic) will be introduced in
details in the following section 2.1.2. The collective patterns from the oscillator network will
provide the final computation results. Thus, mutual interaction (coupling) between oscillators
and tunable coupling strength are two critical aspects for constructing such network. The former
allows every computational element in the OCN to process incoming information in parallel,
while the latter severs as the memory of the system. These two aspects combined can efficiently
overcome the problem of large power consumption caused by constantly transferring data
between process unit and memory unit in the traditional von Neumann architecture based on

Boolean machine, as shown in Fig 2.2.

Control Unit

Logic Unit

Fig 2.2. Comparison between traditional von-Neumann architecture and oscillator
computational network. a, Typical von-Neumann architecture with separated process unit
(CPU) and memory unit. b, Schematic illustration of oscillator computational network.
Different sizes/colors of circles stand for computing nodes operating in different
frequency/amplitude/phase. Lines between computing nodes represent the interactions
(coupling strength).

2.1.2 Different types of OCN
Oscillatory Hopfield Network

The Hopfield network [27] is one of the most well-known oscillatory networks. In such system,
information is encoded as frequency or phase signals and fed into the network as the initial

states of the oscillators. Due to the mutual interaction (pre-trained weight) between oscillators,
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synchronization in frequency/phase will evolve the system into the stationary energy minimum
state [27, 28, 30].

One of the most studied models for describing the phase relation during synchronization process
is the Kuramoto model [31, 32]. The phase dynamics 6;(t) of the i'" oscillator in a system

consisting of N coupled phase oscillators can be modeled as
éi =wi+ Z]N=1 Kl] Sln(6] - 91), 1= 1, 2...N (2121)

With wi is the natural frequency of the oscillator, and Kj; the coupling matrix describing the
interactions strength between the i and j oscillator. In the case where all oscillators have the
same frequency w, they will try to correlate their phases (in-phase or out-of-phase) depending
on the particular coupling strength (pre-train weight, described by the Kij coupling matrix). Each
oscillator attracts/repels phases of other oscillators proportionally to their phase difference, and
finally the whole system reaches the energy minimum ground state. The collective phase state
of the oscillator network serves as the output [26, 31, 32]. Such oscillatory network with
computing notes that can self-correlate has been successfully applied for auto-associative

memory, like image recognition and reconstruction [14, 16, 33], as shown in Fig 2.3a.

Oscillatory Reservoir network

Different from the above-mentioned oscillatory network that outputs stationary energy
minimum state of the system, reservoir network operates with computing nodes with highly
non-linearity and short-term memory, and outputs collective states that vary with time [34].
Typical reservoir computational network has 3 layers: The input weight matrix layer, reservoir
computing nodes layer, and output weight matrix layer, as shown in Fig 2.3b. At time t comes
the input signal X(t), after weighted by the input matrix then fed into the reservoir layer. The
computing nodes in the reservoir layer are connected in a random manner. Depending on the
input signal, all of the computing nodes will form a collective state r(t) at time t. The outputs
in time sequence from the reservoir layer are then mapped with a fixed readout matrix layer to
form the desired results. Such system with complex temporal dynamics can be applied for

solving tasks that are in time-domain like voice recognition [1] and time-series prediction [35].
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Neural Network Structure

ﬁ
3.Updating
Original Pattern no. 1 Input Updated Input
Basin of Attraction E E E
Wout

X(t)mp »H  mYQ
O
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Fig 2.3. Oscillatory Hopfield network and reservoir network. a, Hopfield network
configuration with an all-to-all connection between computing nodes. Depending on different
input initial states of the oscillators, the system will converge to the energy minimum point
determined by the connection strength (memory). Taken from [33]. b, Schematic illustration of
reservoir network with input weight matrix layer (orange), reservoir computing layer (green,
purple circles as computing nodes), and output weight matrix layer (yellow).

2.1.3 Physical Implementations of Oscillators

Oscillator is the basic building block for computational oscillatory network. It is generally
defined as device/system that converts DC input signals into AC output signals with a certain
period, amplitude and frequency [26]. A large variety of oscillators that can be realized by
different electronic elements, ranging from traditional LC circuit, transistor, to unconventional
solid-state devices, will be introduced in the following parts. Their working principles, CMOS

compatibility and power consumption issue will also be discussed.
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LC Oscillator

When an inductor is connected with a charged capacitor (as shown in Fig 2.4), oscillation of
both the current from the circuit can be observed. And the oscillation of current can be described
by the following equation:

dZ
at?

i(t) +—i() = 0 (2.1.3.1)

With L the inductance and C the capacitance. The oscillating voltage from the inductor can be

derived as:

V, = L5 = —woLly sin(wot + ¢) (2.1.3.2)
With wy = ¢%_C the resonant frequency of the circuit, lo the initial current, and ¢ the initial phase
angle.

— ”C

Ve
< » V)

L

Fig 2.4. Schematic illustration of the LC oscillator. The circuit includes a capacitor C, and
an inductor L without serial resistance (R), ideally.

The LC oscillator was first utilized for building the oscillator-based computer in 1959 [36].
Such oscillator (typical LC circuit) is characterized by quality factor Q, which quantifies the
goodness of the LC circuit and determines how efficiently the energy is transferred in a given

LC circuit. It is expressed as

0=1 |t (2.1.3.3)

RN C

For such oscillator it is a high Q factor indicates less energy loss and high efficiency. However,
when it comes to on-chip (CMOS -based) LC oscillator, the Q factor becomes relatively low.
It is because micro size inductor already has very large serial resistance (R), resulting in
considerable resistive loss during the operation of the oscillator [37]. Besides, the inductor

needs very large chip area (~ 200 um?) to improve the Q-factor [37, 38].
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Ring Oscillator

The ring oscillator consists of an odd number of inverters connected in series with positive
feedback, and each inverter is formed from the combination of PMOS and NMOS to realize the
NOT gate function, as shown in Fig 2.5. The output oscillates between two voltage levels either
high (1) or low (0).

—V
a b dd
—o||== Pmos
| ter 1 | ter 2 | ter 3 Vi" VOUt
nverter nverter nverter
—I = NMOS
Feedback connection
v GND

Fig 2.5. Schematic illustration of the LC oscillator. a, Circuit diagram of ring oscillator
consists of three inverters and feedback connection. b, A typical inverter, also known as NOT
gate, formed from PMOS and NMOS.

The oscillation frequency of the ring oscillator can be calculated as
f=— (2.1.3.4)

With N the number of inverters in the oscillator, and 7 the time delay of a single inverter. In
order to achieve more gain than a single inverting amplifier, more inverter can be added to the
oscillator. However, a large number of inverters will significantly reduce the oscillation
frequency f. Thus, a good compromise between total gain of the circuit and oscillation
frequency has to be reached. Since ring oscillator is built up by transistor, it has very good
CMOS compatibility and very low power consumption (~ 10 J per oscillation cycle) [39 -
41], which can serve as the baseline when comparing the emerging oscillator formed from new

solid-state devices.

Spin-based Oscillator
Unlike the above mentioned two oscillator that operate with charge current, spin-based
oscillator generates AC output by the precession of the magnetic momentum caused by spin

current injection. The electrons flowing in the current not only carry charges, but also spin,
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whose projection along the spin axis can point up or down. In spin-polarized current, it has a
majority of spin-up/down carriers, while in unpolarized charge current there is no such property.
Such spin-based devices have faster switching times and lower power consumption than normal
charge-based devices due to the fact that spins can be transferred faster and consumes lower

energy than charges.

When spin-polarized electrons flow through a domain wall, or a ferromagnet, where the
direction of the spins in the spin current is different from the local magnetization, the motion

for the magnetization can be described by the LLG equation [42 - 44]:

oM
= = Y[Hepr X M| + Ty + T (2.1.3.5)

With the M the magnetization, Hes the effective field, T, the damping term, and Ts the
Slonczewski spin-transfer torque. The effective field can be written as the sum of externally
applied field Hext, the magneto-dipolar field Haip, the anisotropy field Hy, the exchange field Hex,
and the Oersted field Hoe when a drive current is present. Typical memory cell based on the
spin transfer torque is shown in Fig 2.6. It has three layers: A free layer, in which its
magnetization can be switched by spin current; A fix layer where the magnetization is fixed; A
spacer that is in the between the fix layer and free layer, and servers as the magnetic tunneling
junction. When the free layer and the fix layer have anti-parallel magnetization (AP, shown in
Fig 2.6a), the resistance of the memory cell is larger than the case when the free layer and the
fix layer have parallel magnetization (P, shown in Fig 2.6b). Write current with certain
amplitude can switch the memory cell between high resistance state (AP) and low resistance
state (P). Normally, the energy barrier between AP and P states is designed to be high enough,
so that once the memory cell is configured to one state (AP/P state) it can be stable against
possible external noise, i.e. thermal fluctuation. When the energy barrier between AP and P
states is engineered to be sufficiently low, sustained magnetization precession at high frequency
(MHz to GHz) be observed through the conversion of magnetization oscillation to voltage

oscillation [45] upon supply current, as shown in shown in Fig 2.6c.

Previous studies have shown that two spin transfer torque (STT) oscillator can be coupled
without external electronic components needed [46, 47]. Such mutual interaction between
oscillators is considered to be caused by spinwave excitations emitted from both oscillators, or
by AC dipole magnetic-field interactions [46, 48]. Besides, such spin-based oscillator has good
CMOS compatibility [49] with low energy consumption (~ 4.7x10%° J) [50] that is comparable
with the ring oscillator (transistor-based) introduced in the previous section. These outstanding
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properties make spintronic devices become one of the promising candidates for unconventional

energy-efficient computational element.

‘-
d

Free layer

Fix layer

Top electrode

Cap layer

Free layer

Insulating
spacer

Fix layer
Bottom electrode

Fig 2.6. Spin transfer torque oscillator. a, Free layer and the fix layer have anti-parallel
magnetization (AP). b, Free layer and the fix layer have parallel magnetization (P). c, The
magnetization in free layer is in precession. d, Typical spin transfer torque (STT) oscillator with
bottom electrode, fix layer, spacer, free layer, cap layer and top electrode.

Phase transition-based Oscillator

Strongly correlated oxide materials that display an insulator-to-metal transition (MIT) under an
external stimulus such as temperature, magnetic field, or electric field etc. [7 - 9]. A large
variety of phase transition materials include binary oxides (TiOx, NbOx, and VOy) [8, 9, 51],
perovskite oxide formed from rare-earth nickelate (LaNiOz3) [52], and the Ruddlesden-Popper
ruthenate Ca,RuO4 [53] and etc. [54]. Among the phase transition-based oscillator materials,
vanadium dioxide (VO>) is of interest since the phase transition temperature T of this material
is near room temperature (300 — 400 K) [9 - 12, 54], as shown in Fig 2.7a, which is highly
desirable for room temperature computational devices (atmosphere pressure, room temperature,
limited power supply). High temperature (~ 1080 K) MIT materials like NbO- require much
more energy to reach phase transition temperature, while low temperature (100 — 200 K) MIT
materials like NdNiO3z need external equipment to maintain its working condition (T < T),

which will also cause extra energy consumption.
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VO2 shows a large change in resistivity at around 340 K that is due to the well-known transition
from a monoclinic (M1) insulating phase to a rutile (R) metallic phase (Fig 2.7b). The
oscillation in VO occurs as follows: When the system is in the high resistance state, applying
a DC current source results in Joule heating (I°R), thereby raising the device temperature and,
finally, triggering a phase transition into a low resistance state [56 - 61]. This lowers the Joule
heating and is accompanied by the dissipation of the accumulated heat into the surroundings
[62, 63]. This leads to cooling and eventually a phase transition back to the high resistance state.
The process repeats itself autonomously leading to an oscillatory output voltage, as shown in
Fig 2.7c. Such a behavior without any external capacitor or resistor required only occurs in the
current-driven mode and not in the voltage-driven - mode [64]. VO- oscillator that operates at
room temperature is estimated to consume very low energy (~ 10® J per cycle), which is very
competitive to other technologies (ring oscillator and spin-based oscillator as introduced above),
and shows good CMOS compatibility [65 - 67]. Besides, Vanadium is a rather abundant element
in the earth’s crust with relatively low supply risk [68], when considering mass product for

commercialization.
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Fig 2.7. Phase transition-based oscillator. a, Different metal-insulator transition temperature
T¢ and the order of resistivity (p) change from a large variety of oxide materials. Taken from
[54]. b, Typical resistivity (p) vs temperature (T) curve of VO3 thin film shows more than 4
orders of change at about 340 K. The left down insert shows phase transition of VO between
the insulating monoclinic phase (M1) and the metallic rutile phase (R). Upper right several
modulation methods for tuning the resistance state of VO including doping, electric field gating,
strain, and light are demonstrated. Taken from [110]. ¢, Typical circuit diagram of a VO
oscillator connected with external resistor (RL) and capacitor (C) to generate oscillating voltage,
modified from [15].

Another attractive aspect for efficient oscillator is the energy-recycling mechanism, which can
be understood as the energy being reversibly converted, or reused, instead of being totally
dissipated [26]. The former can be realized by converting energy between two forms (electrical
and magnetic energy) in an LC oscillator. The latter can be realized in this thesis between
thermally coupled VO oscillators: The released heat during one part of the oscillation cycle
from one device can thermally trigger the nearby device to oscillate. The exchange of thermal
energy between oscillators during coupling substantially reduced total energy consumption, and
further increases the total energy efficiency.

Due to the reasons mentioned above, heat-driven VO device that works at room temperature
is a promising candidate. It is chosen to construct thermally coupled oscillators for energy-
efficient computational element in this thesis. Tunable thermally coupled VO oscillators will

be introduced in details in Chapter 4.

2.2 Spiking Neural Network (SNN)

Traditional artificial neural networks (ANN) have gained success in our daily complex tasks
such as image recognition, automatic drive and etc. However, with increasing network size and
connection complexity between each layer, the rapid increase in computational cost (tuning
every single connection strength) during network training have made it imperative to search for
more efficient network architectures with powerful computing units. Spiking neural network
(SNN), which utilizes oscillators to generate temporal signals (spiking/bursting), is a special
type of oscillatory computational network with sparse connection between computing nodes.
By taking advantage of the oscillation states formed from neurons interacting with each other
dynamically, computationally hard tasks with spatiotemporal data that requires complex

feedback connection in traditional ANN can be efficiently processed in the SNN architecture.
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2.2.1 Neural Network Generations
The first-generation artificial neural network (ANN) was based on the McCulloch-Pitts neurons
[69] that output value 1 or 0 depending whether the weighted input value has exceeded a certain

threshold, as shown in Fig 2.8. The neuron model can be described as:

0 if YV, Wix;—6<0,

22.1.1
1 if YN Wix;—6=0 ( )

y=fQiL, Wix; — 0) = {
With N is the number of input neurons, x; € R is the input of neuron i, Wi is the synaptic weight
between the input neuron i and the output neuron, and 4 is the activation threshold. It was the
first type of neural network applied in perceptual recognition tasks [70, 71].

Fig 2.8. The first generation of neural network. Each neuron computing node in one layer
either outputs “0” or “1” to the next layer. The brown lines represent the synaptic connection
weight between each layer.

The second-generation ANN are based on computational neuron units that apply a continuous
nonlinear activation function to process the input data [72, 73], as shown in Fig 2.9a. The

neuron model can be described as:
y(W,x) = fFOX, Wix; + b) (2.2.1.2)

With N is the number of input neurons, xi is the input of neuron i, Wi is the synaptic weight
between the input neuron i and the output neuron, and b is the bias. Most commonly seen

nonlinear activation functions f(x) applied in the second-generation neural network are like:

1
1+e—X

Sigmoid function: f(x) = (2.2.1.3)
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Hyperbolic tangent function: f(x) = tanh(x) =

Rectified linear unit (ReLU) function: f(x) = {
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commonly expressed as the square error [74]:

eX — X

- (2.2.1.4)
0 ifx<0
x ifeo0 (2.2.1.5)
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Fig 2.9. The second generation of neural network. a, Forward pass when processing
incoming data. Each neuron computing node in the previous layer outputs an analog value
described by the nonlinear activation function to the next layer. The brown lines represent the
synaptic connection weight between each layer. b, Backward pass (red lines) during training
stage. Here the updates for synaptic weight Wi backpropogate through the network is
demonstrated.

The Al technologies widely applied in technologies are based on the second-generation neural
network. Such network model has gained great success thanks to the famous learning procedure
called backpropagation (BP) algorithm. The network is first designed as different numbers of
neuron layers and how they are connected. After that, an error function is defined to quantify
the performance of the network in achieving its desired goal. The error function computes how

much the network’s 1" actual outputs (Your) deviate from their target outputs (touw), and is
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EW) =2 ZilYouts(W) = tour,]? (2.2.1.6)

In order to let the network “learn” how to approach the desired output, the synaptic weights W
that determines the network output y as introduced in equation (2.2.1.2) have to be changed
during training. Backpropagation learning algorithm computes the gradient of the error at the
current setting of all the weights, and use this gradient to change each weight proportional to
the negative of its gradient. The update for weight in a non-output layer can be expressed by

the chain rule of calculus:

oE E 0Vour

AW;; = — =
Y 1 oWy 0Yout OWij

(2.2.1.7)

With Wj; is the synaptic weight that connects neuron i to neuron j. The updates of synaptic
weights start in the final layer and flow backwards to previous layers, which illustrates the

meaning “backpropagation” through network, as shown in Fig 2.9b.

Different from the above-mentioned traditional ANN (second generation) where data is
represented and process as analog-valued vector (in multi-bit precision), information is encoded
as sparse and binary spikes in SNN, which saves a lot of memory and efforts in computing exact
value for the matrix. Neurons in SNN can communicate with other to process the data
depending on the frequency and/or phase relation, which is similar to the work principle of
biological brain [22], as introduced in 2.1.1.

Besides, unlike the artificial neuron in traditional ANN that only serves as a non-linear
activation filter with no memory, spiking neurons in SNN process a certain short-term memory
that can memorize the incoming information from a close past while applying integration and
non-linear activation function. Such unique inherent recurrent characteristic enables SNN to
become a more efficient network architecture to handle more complex tasks that need to deal
with spatiotemporal information, like natural language processing, voice recognition, time
series data prediction and etc. Two basic types of spiking neuron: Hodgkin-Huxley (H-H)
neuron and leaky integrate-and-fire (LIF) neuron as the building block for the third-generation

neural network will be introduced in details in the following section.
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2.2.2 Different Types of Spiking Neurons

The Hodgkin-Huxley (H-H) Neuron Model

Based on the experimental observation of the voltage-dependent conductance in the squid giant
axon, Alan Hodgkin and Andrew Huxley established a model (Hodgkin-Huxley neuron model)
that provided the first quantitative description of the action potential generation in the biological
system [75 - 78]. The Hodgkin-Huxley neuron model described the structural and functional
properties of ion channels (Sodium channel, Potassium channel etc.), and the mechanisms of
ion permeation, selectivity, and gating at a molecular level. The model also considered the
conditions that control the timing of action potential onset, including threshold and refractory
periods at a cellular level. Most importantly, their theory provided a mathematical foundation
for modeling complex neuron behavior for the computational neuroscience. The Hodgkin-

Huxley model can be described by the neuron’s membrane potential in three channels dynamics:

I,(t) = Umem (8)=Vk () + Umem ()=VNa(8) + Umem @)=V (©) 1 C- AUmem (t) 2.2.2.1)
Rk Rna R} dt

Where lin is a current injected into the neuron (by an extracellular medium), Umen is the neuron’s
membrane potential, Vk is the potential of the Potassium channel, Rk is the resistance of the
Potassium channel, Vna is the potential of the Sodium channel, Rna is the resistance of the
Sodium channel, V; is the potential of the leakage channel, Ry is the resistance of the leakage
channel, C is the capacitance of the neuron’s membrane. Equivalent circuit diagram for the
Hodgkin-Huxley model and the spiking potential generated by this type of neuron are shown in
Fig 2.10.
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Fig 2.10. The Hodgkin-Huxley neuron model. a, Schematic illustration of the equivalent
electric circuit for the Hodgkin-Huxley Neuron Model, with Sodium channel, Potassium
channel and a leakage channel. b, Output spiking membrane potential the Hodgkin-Huxley
Neuron Model.
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The spike-generating dynamics described by the Hodgkin-Huxley model also offers an insight
into the mechanism of the synchronization between neurons [79]. The spike timing between
two neurons can be adjusted by the flow of current through the gap junctions and chemical
synapses, until they are perfectly coincident, or at a stable relative delay. In order to study the
correlation among neuron spiking, Schultheiss et al. [80] has developed the theory for phase
resetting or phase response curves of the neuronal dynamics, which further reduced the
Hodgkin-Huxley model down to one single dimension described by the phase of the neuron
within the period of its spiking oscillation. Gouwens et al. [81] provided an example of a fast-
spiking cortical cell driven with a conductance stimulus. Such stimulus mimics the current
flowing through gap-junctional and synapses generated by spikes in a neighboring fast-spiking
cell. It was found that the phase of neuronal oscillation can be advanced or retarded by
presynaptic spikes. The degree of synchrony between presynaptic and postsynaptic spikes can
thus be determined by the synaptic phase resetting function as the frequency of presynaptic
spikes is varied. Besides, due to the difference in phase sensitivity of the effect of input, spiking
dynamics of different cell types (neurons) are directly related to how they synchronize [82].
Such a phase-resetting relationship with prominent phase-delay and phase-advance regions
(referred to as a type Il phase-resetting curve) enhances the ability for stochastic synchrony in

a network of coupled oscillators [83].

The Leaky Integrate-and-fire (LIF) Neuron Model

Although the Hodgkin-Huxley model is able to describe complex membrane potential dynamics
of the various ion channels, several factors have hindered it to be widely used for constructing
the next generation neural network [84]: 1. The expression of multi-channel dynamics with too
many tunable parameters makes it very difficult to obtain a model with underlying essential
nature that is critical for information processing; 2. When it comes to analytical quantification
for such model to evaluate the influence of a certain parameter for model optimization, it is
very hard to have meaningful the result only by using numerical simulations; 3. Complex
neuron model is very challenging for designing and constructing large-scale network with high
efficiency and good robustness at the same time. In order to tackle above mentioned difficulties,
the Hodgkin-Huxley model can be approximated by one single response kernel describing the
membrane voltage, which has been shown to be equivalent to the form of the leaky integrate-

and-fire neuron model [85].
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The leaky integrate-and-fire neuron model, modified from the integrate-and-fire neuron model
first proposed by Lapicque [86], has become one of the most widely used models for analyzing
the behavior of spiking neuron. This model has gained a lot of interest due to its capability of
being mathematically simple (one channel dynamics, fewer parameters to tune), and at the same
time being sufficiently complex to capture the critical fundamental features for information
processing in the neural system. Fig 2.11a shows the typical structure of a biological neuron
that consists of dendrites, a soma, axon and an axon terminal. As shown in Fig 2.11b and c, a
leaky integrate-and-fire (LIF) neuron receives spikes through dendrites from all pre-synaptic
neurons. The soma integrates the incoming spikes, gradually builds up the membrane potential
until it reaches the threshold voltage and fires an action potential along the axon. The neuron
then undergoes a refractory period. Between successive input spikes, the membrane potential
of the LIF neuron slowly “leaks” away. Thus, the membrane potential of the LIF neuron

contains a certain short-term memory that depends on the sequence and strength of the incoming

stimuli.
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Fig 2.11. The leaky integrate-and-fire neuron model. a, Typical structure of a biological
neuron. b, The potential of a LIF neuron with incoming spikes. ¢, Schematic illustration of a
LIF neuron with integration (of input spikes) and triggering (of output spikes) functions.

Lapicque established an equivalent electric circuit with a resistor and capacitor connected in
parallel for the leaky integrate-and-fire neuron model, as shown in Fig 2.12. The leaky integrate

dynamics of the neuron’s membrane potential Umem Can be described as:
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Umem dUmem
lin(£) = Zmen@ y ¢ Limen® (2.2.2.2)

Where lin is the current injected into the neuron, R is the equivalent channel resistance, and C
is the equivalent channel capacitance. Later Meffin et al. [87] has modified the model with the
spiking output mechanism when the neuron’s membrane potential is reached:

d mem -1
Ispike(t) =C [U—(t) (Vreset - Vth)S[Umem(t) - Vth] (2-2-2-3)

dat Umem=Vtn

It describes an output spike is generated when the neuron’s membrane potential Umem reaches
the threshold voltage V. After firing, the neuron’s membrane potential is reset to Vreset level.

The Dirac delta function §[V,,..,, (t) — Vi, ] is utilized to check if the threshold level is reached.

Fig 2.12. Equivalent electric circuit for the leaky integrate-and-fire neuron model. The
circuit consists of an equivalent channel resistor R, an equivalent channel capacitor C.

2.2.3 SNN Architectures and Algorithms

Previously, the working principles and functionalities of the leaky-integrate-and-fire (LIF)
neuron have been introduced. In this section, two types of spiking neural network (SNN) based
on LIF neuron that utilize different learning methods (i.e. unsupervised/supervised learning rule)

will be discussed.

Unsupervised learning with STDP rule

In 2015 Diehl and Cook [88] constructed a spiking neural network that was based on a
combination of biologically plausible mechanisms, and was trained in an unsupervised way,
i.e., the network learns to categorize the input samples without being provided samples with

labels during learning. The network was designed to have improved biological plausibility
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including conductance-based instead of current-based synapses, spike-timing-dependent
plasticity (STDP) with time-dependent weight change, lateral inhibition, and an adaptive
membrane threshold for spiking. The network based on 6400 LIF neurons reached an accuracy
of 95% for the recognition of MNIST handwritten digits dataset [89].

Different from the current-based synapse implemented in traditional neural network that is
independent of the neuron membrane potential, conductance-based synapse takes the effect
from the membrane potential of both pre- and post-synaptic neurons into account. When a
presynaptic spike arrives at the synapse, its conductance increases. When there is no presynaptic
spike, its conductance decays exponentially. The conductance of the excitatory synapse ge
(connection that strengthens the activity of the post-synaptic neuron) can be expressed as:

dge
Tge 5 = —Je (2.2.3.1)

Where z4¢ is the time constant of an excitatory postsynaptic potential. In case of an inhibitory
synapse (connection that weakens/inhibits the activity of the post-synaptic neuron), its
conductance gi can be described by the same equation but with the time constant of the
inhibitory postsynaptic potential z4i. In order to realize the unsupervised learning, spike-timing-
dependent plasticity (STDP) learning rule [90] is utilized in the network for updating the
conductance of synapse from input neurons to excitatory neurons. Besides, each synapse keeps
track of another value during the learning process [91]. The presynaptic trace Xpre is increased
by 1 when a presynaptic spike arrives at the synapse. When there is no incoming spike, Xpre
decreases following the equation (2.2.3.1) mentioned above. When a postsynaptic spike arrives
at the synapse, based on the presynaptic trace the change of the synaptic weight is calculated

as:
AW = T](xpre - xtar)(Wmax - W)# (2-2-3-2)

Where 7 is the learning-rate, Wmax is the maximum allowed synaptic weight, and x determines
how strong the update dependent on the previous weight W, Xar is the target value of the

presynaptic trace at the moment when a postsynaptic spike arrives [88].

Lateral inhibition is applied in the network to promote the competition among excitatory
neurons, so as to prevent multiple neurons learning the same feature. The excitatory neurons
are connected in a one-to-one fashion to inhibitory neurons. Each of the inhibitory neurons is
connected to all excitatory ones, except for the one from which it receives a connection.

Whenever an excitatory neuron is firing, it will trigger a spike into the inhibitory neuron that
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prevents other excitatory neuron from firing spikes. The membrane voltage U of the leaky

integrate-and-fire model is described as:

d‘(/i(tt) = (Erest(t) —=U(8) + ge(Eexc(t) = U(1)) + 9:(Einn(t) — U(D)) (2.2.3.3)

Where Erest IS the resting membrane potential, Eexc and Einn the equilibrium potentials of

excitatory and inhibitory synapses, and ge and gi is the conductance of excitatory and inhibitory

synapses, respectively.

Excitatory neurons with significant different firing rates caused by the inhomogeneity of the
input are modulated by lateral inhibition: In order to prevent single neuron from dominating the
response pattern (maintains the highest firing rate all the time), and to ensure that the receptive
fields of the neurons differentiate [88], excitatory neurons are also equipped with certain
intrinsic plasticity as adaptive membrane threshold [92]. The excitatory neuron’s membrane
threshold is increased by a fixed value 6 every time when the neuron fires, and decays
exponentially back to the initial level V;;, when the neuron becomes quiet [93]. This mechanism
ensures that during learning, the firing rate of a single excitatory neurons is limited and no

neuron will become dominant.

Same number of neurons
as in excitatory layer

Weights learned using STDP

255

Excitatory Layer

(Pixel value determines
spike frequency)

Fig 2.13. The architecture of spiking neural network with unsupervised learning
mechanism. The network consists of an input layer that converts static pixel into dynamic spike
train, an excitatory layer that learns to classify different handwritten digits, and an inhibitory
layer that applies the lateral inhibition function. Taken from [88].
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The network architecture is shown in Fig 2.13. The first layer is the input layer that contains 28
x 28 neurons (one neuron per image pixel). Each pixel is encoded into a series of spike-train,
such that firing rate of the neuron corresponds to the Poisson-distribution determined by the
pixel value. The output spikes of the first layer are then injected through the synaptic layer into
the excitatory neurons in the second layer. The excitatory neurons of the second layer are
connected to lateral inhibitory neurons in the way introduced above. During training, every
neuron in the second layer will learn to extract features from the 10 handwritten digits (0 - 9).
After training, based on each neuron’s highest response to the ten classes of digits, it will be
assigned a class that it has learned to identify. After training is done, we set the learning rate to
zero, fix each neuron’s spiking threshold, and assign a class to each neuron, based on its highest
response to the ten classes of digits over one presentation of the training set. The response of
the class-assigned neurons is then used to measure the classification accuracy of the network

when the test dataset is presented.

Supervised learning with Surrogate Gradients

In the previous section spiking neural network (SNN) based on unsupervised learning
mechanism has been introduced. In order to prevent any neuron from dominating the whole
network (one single neuron firing rapidly all the time during training), several necessary
mechanisms that balance the activities of all neurons have to be added to the system. This not
only requires an additional layer for inhibitory neurons, but also inevitably increases the
network complexity. From the hardware implementation perspective, sacrificing a little
precision to trade for network simplicity with better efficiency is worthy. In this section, SNN

based on supervised learning with less network complexity will be introduced.

The basic computing unit for this SNN is also the leaky-integrate-and-fire (LIF) neuron, whose

dynamics can be described similar as equation (2.2.2.2):

t 28 = () + I (DR (2.2.3.4)

Where T = RC is the time constant of the equivalent RC-circuit, C is the equivalent capacitance,
and lin is the injection current. In the case of constant injection current, the neuron’s membrane

potential can be solved as:

t

U(t) = I;yR + [Uy — I;yR]e (2.2.3.5)
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Where Up is the initial membrane potential at ¢ = 0. When there is no input current, the

neuron’s membrane potential will decay exponentially as:

_tHat ot
Ut +At) =Uje = =U(t)e = = BU(t) (2.2.3.6)
Where f is a decay factor described by the time interval At between the inputs. These two
equations model the leaky integrate function of the neuron. An output spiking function Seut IS
used to describe the firing event when the neuron’s membrane potential exceeds the threshold
value &

(0, ifuU@)=<#o

Sout[t] = {1, if U > 0 (2.2.3.7)

The neuron’s membrane potential at (t + 1) time step can be expressed as the following equation

by combining the above expressions:
Ult+1) =BU(t) + Wi, X(t+ 1) — Syt [t]Ureser (2.2.3.8)

Where Wi is the input weight matrix, X is input at each time step, and Ureset IS reset term
subtracted from the membrane potential every time after firing a spike (and then undergoes the
refractory period).

As introduced in section 2.2.1, backpropagation (BP) learning algorithm is footstone for the
success of traditional neural network (2" generation). The learning error of the network is
defined as the loss function, and it is minimized by applying the chain rule (gradient decent)
from the final layer back to each learnable parameter (synaptic weight). As a result, the network
requires a “teacher signal” (target output with labels or required value for loss calculation) and
hence, the training process is called supervised learning. Different from traditional neural
network where all data flows as continuous analog value that is differentiable, information in
spiking neural network is represented as discrete binary spikes, which are not differentiable.
There are several proposed algorithms to train the SNN with backpropagation (BP) learning
algorithm [94]:

Shadow training

In shadow training, a conventional artificial neural network (ANN), that acts as the shadow
behind the spiking neural network (SNN), is first trained and then converted into an SNN. The
nonlinear activation function of the neuron in ANN is converted into spiking output in the SNN

[95, 96]. However, there are some shortcomings when applying such algorithm. Firstly, the
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temporal dynamics of spiking neuron is often omitted when using traditional ANN for
processing data. Secondly, converting high-precision nonlinear activation function into spikes
typically requires extra computation time and power. Thirdly, when the conversion process is
not precise, which is the common case, the SNN trained from shadow ANN usually performs

worse than the original ANN.
Backpropagation using spike times

Although the spikes are discrete, the spiking time is continuous and thus is differentiable. The
loss function is then converted to the spiking time of the neuron. And weights are updated by
taking the derivative of spike timing similar as the traditional ANN to minimize the learning
error. This learning algorithm was the first proposed method for training multilayer SNNs using
backpropagation [97]. However, it requires each neuron must emit a calculable spike for
gradient decent during training. When the neuron is silent, it’s not solvable [98]. This enforced
firing for neurons will distort its temporal processing ability when dealing with input data that

is dynamically varying.
Backpropagation using Surrogate Gradients
The loss function in the spiking neural network is defined as
L = [WoutSout — Ytar| (2.2.3.9)

Where Wout is the output weight matrix, and yiar is the target output value. According to equation

(2.2.3.8), the updates for input weight matrix can be written by the chain rule:

L AL dSoyr AU
Wiy  0Sour U Wiy

(2.2.3.10)

Where Sout is the output spiking function described by equation (2.2.3.7), U is the neuron’s

membrane potential described by equation (2.2.3.8), and Wi, is the input weight matrix.

aSout

However, the output spiking function Sou is a step-like function ( 50

€ {0, oo}), which s non-

differentiable (also known as the “dead neuron problem”), as shown in Fig 2.14a.

25|Page



a forward backward b
pass pass

C |
dead neuron problem A surrogate gradients forward backward
pass pass
SA ' | |
- (I 3 Iz
s all EIE
: U TR {() f} @_‘
—— D > l ou I
. ’ iy s | | s
0 y | ou _ Y 0S 05
QUA al | dUu =~ aL
I G, U] |
U A
i WX T
g | X | v : :

Fig 2.11. “The dead neuron” problem and surrogate gradients. a, The non-differentiable
spiking function Sout makes it not possible to carry out chain rule to update weight parameter.
b, A sigmoid function S, is used to substitute the non-differentiable spiking function Sout as
surrogate gradients during training phase (backward pass). Taken from [94].

In order to overcome this problem, a continuous function, the step like function Sout is
substituted by a continuous sigmoid function S, during the training phase (backward pass),

as shown in Fig 2.14b:

—~ 1

Sout = (2.2.3.11)

1+ef-U

Where 0 is the threshold value described in equation (2.2.3.7), and U is the neuron’s membrane

out

potential described by equation (2.2.3.8). As a result can now be calculated as:

ag-;_:i _ eQ—U
auU - (1+39—U)2

(2.2.3.12)

And the weights Win will be able to be updated. Such approach is called the Surrogate Gradients.
Surrogate Gradients is the most commonly applied training algorithm for the spiking neural
network with time-dependent outputs, also known as the backpropagation through time (BPTT)
learning rule [99, 100]. As shown in Fig 2.15a, the input weight will only have influence on the
present and future losses. In order to calculate the global gradient, all weight parameters applied

on present and future losses are summed together as:

aL _ JL(t)
Win At Win

(2.2.3.13)

For the immediate influence at time step t, there is no decay term contributes to the neuron
potential function U(t) according to equation (2.2.3.8). However, as propagating back to several

time steps before (prior influenceat t — 1, t — 2, ...), the influence of the weight becomes more
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and more trivial (AW o 8™, n denotes the number of time steps backward), as shown in Fig
2.15b. Such exponential decay of the influence from previous spiking history on present is
similar to the spike-timing-dependent plasticity (STDP) learning rule [90] introduce in last
section. Supervised learning with Surrogate Gradients is utilized in this thesis when training the
spiking neural network. Details of constructing the architecture of the SNN will be introduced
in Chapter 5.

a t : : b
(2o £l L12]

A t=-5 t=-4 t=-3 t=-2 t=-1 t=.0

L

= _(J =y el U UUE [T e
[ (s.00) (sl sz )
| A B A Elk I L:Y:"I]_.'-:-E,-‘..:-E*-t’. D Spiking
| Cug ——=(uu ) : - : : :
N 1 A I A :T y; ' ' ' ALW
G Ga) o (e S
L™ i w . a
i X[0] ( V X[1] J ( ix[z] ] con AWx B AWxB AWf -
v 242 v 3£02) v oLl
\ W[o] oW1} J \ O."‘[ZJJ \ J

~ ~ S

priorinfluence immediate influence priorinfluence

Fig 2.11. The backpropagation through time (BPTT) learning rule. a, At time stept = 2
the input from W[2]X[2] is counted as the immediate influence, while the influence
B2W[0]X[0], B*W[1]X[1] from the history (t =1 and t = 0) are also combined in the
neuronal state U[2]. b, Exponential decay of the influence from previous spiking history. Taken
from [94].
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Chapter 3 VO Thin Film Preparation and Device

Fabrication

In this chapter the growth method and parameters for VO_ thin films by pulsed laser deposition
(PLD) will be first introduced. Then several common thin film characterization techniques like
X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM) will
be carried out to check the quality of the VO sample. In the last part, the lithography process
and parameters used for fabricating VO oscillator device and 2.5D crossbar array will be

introduced.

3.1 Pulsed Laser Deposition (PLD)
3.1.1 Fundamentals of PLD

Different techniques can be utilized to deposit thin film materials. Two major deposition
techniques are physical vapor deposition (PVD) and chemical vapor deposition (CVD). The
difference between them is that in PVD the vapor consists of atoms and molecules that are
vaporized from the target and then deposited on the substrate, while in CVD the vapor
(precursor materials) undergoes a chemical reaction at the substrate and finally the thin film
material is formed. Typical CVD techniques include Metal-Organic Chemical Vapor
Deposition (MOCVD) and atomic layer deposition (ALD). Most commonly used PVD
techniques are sputter deposition, pulsed laser deposition (PLD) and thermal evaporation
deposition.

Pulsed Laser Deposition (PLD), which has shown to be suitable for growing VO thin films
[101, 102], is the PVD technique utilized in this thesis. The PLD system used for VO thin film
deposition contains a laser, a deposition chamber, a mechanical pump and a turbo molecular
pump, as shown in Fig 3.1a. The laser (generated from Coherent LPX pro) is directed by an
optical path (a series of optical elements) into the deposition chamber through a window. The
turbo molecular pump can provide a base vacuum level of ~107 mBar. Inside the deposition
chamber there are two main components: a VO target with a rotator beneath it, and a substrate

holder equipped with an integrated heater from the backside, as shown in Fig 3.1b. These two
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components are separated by a tunable distance, and the surface of the target faces directly to
that of the substrate holder.

o molecular |

Fig 3.1. Pulsed laser deposition (PLD) system. a, The main components for the PLD system.
b, Inside view of the deposition chamber (colloquially termed the “Aladin” system). c,
Schematic illustration of the pulsed laser deposition process.

During the deposition process, a series of laser pulses are focused on the target surface to
vaporize the target material, as shown in Fig 3.1c. The particles ejected by the laser become a
dense cloud of material, with strong inter-particle interactions and with the ambient gas, and,
thereby, forming a highly excited plasma. The plasma formed at the surface of the target
material expands towards the substrate, and finally particles are deposited on the substrate and
form the film. The most important parameters of the laser are its wavelength, pulse energy, and
pulse spot size. Common laser wavelengths used in PLD systems are ArF (193 nm - 6.42 eV),
KrF (248 nm - 4.99 eV), XeCl (308 nm - 4.03 eV), and Nd:YAG (1064 nm - 1.16 eV) [103].
Due to the absorption photon energy in the UV range for oxide materials, the 248 nm (KrF
excimer) is the most commonly used wavelength for oxide deposition. The pulse energy
determines how many particles are ejected from the target in a single pulse. The higher the
energy, the more particles will be ablated from the target. The laser must be focused to a small
spot on the target, so that an energy density which is sufficiently high to ensure plasma
formation can be achieved. The distance between target and substrate holder also determines
how many particles will arrive at the substrate. The further these two components are separated,
the fewer particles will be able to land on the substrate to form the thin film and, most

importantly, the energy of these particles can be modified.
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3.1.2 Substrate selection

There are several aspects that need to be considered when choosing the proper substrate for
growing VO2 samples: 1. Phase transition temperature. As discussed in Chapter 2 section 2.1.3,
a phase transition that lies close to room temperature, in a range from 300 to 400 K, is desired
to achieve a low-power oscillator application. If the phase transition temperature is lower or
higher than this range, extra power will be needed to maintain its working condition (when it’s
lower) or to reach the critical temperature (when it’s higher). 2. Substrate should be a good
electrical insulator. Since the focus of this thesis is thermally coupled VVO: oscillators, a good
insulator as a substrate will eliminate any leakage current between closely located VO2
oscillators. As a result, the thermal coupling will be the dominant effect for such a system. 3.
The substrate should have high thermal conductivity. As mentioned before, a good thermally
conducting substrate can enhance the thermal coupling effect between VO oscillators, making

it easier to be observed and manipulated.

Previous work has reported on the epitaxial growth of VO2 (002) on the rutile crystal TiO, (001)
with a very small lattice mismatch (~ 0.86%) [104, 105]. However, when the VO; film is not
thick enough, the in-plane tensile strain at the interface between the VO thin film and the TiO:
substrate will cause the phase transition temperature of VO to decrease [106] below 290 K. In
addition, etching a VO, device on a TiO2 substrate is problematic. Because during the etching
process, the TiO; substrate will become conductive due to oxygen defects caused by the Ar*
ion bombardment. Sapphire (0001), on the other hand, has a larger lattice mismatch (~ 12.6%)
with VO2 [107] as compared with a TiO2 substrate. However, VO (020) grown on sapphire
(0001) exhibits a phase transition temperature around 320 - 340 K depending on the thickness
and, thereby, the strain [108], which satisfies the requirement for oscillators operated near room
temperature. Furthermore, in terms of thermal conductivity, sapphire (40 W-m™*-K1) is better
than TiO2 (8.7 W-m*-K™) [109], and sapphire remains insulating after the etching process. As
a result, sapphire (0001) is chosen to be a suitable substrate.

3.1.3 VO Deposition parameters

A KrF excimer laser (Coherent LPX pro) beam with a pulse repetition rate of 3 Hz was focused
onto the VO, target (99.9 % purity, Plasmaterials) in the Aladdin chamber under an ambient O>

pressure of 0.020 mbar with the substrate temperature set to be 450 °C. The energy and fluence
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of the laser beam on the target surface were 44 mJ and 587 md/cm?, respectively. After
deposition the sample was cooled down in an ambient O, pressure of 0.045 mbar. Different
combinations of deposition parameters including: Temperature (°C), O pressure (mbar), laser
energy (mJ), attenuator, pulse number, and pulse frequency (Hz) were tested for growing
various VO samples, as shown in Table T1. In order to have a rough estimate of the change
in resistance at the IMT, the resistance of each VO, sample was probed by a multimeter at room
temperature (295 K), and at high temperature (383 K, higher than its MIT temperature) using a

hot plate.
Sample | Temperature | O Laser | Attenuator | Pulse Pulse High Low
No. (°C) pressure | energy number | frequency | resistance | resistance
(mbar) (mJ) (Hz) at 295 K at 383 K
() Q)
1 400 0.019 550 25% 3000 3 6M 100k
2 450 0.019 | 550 25% 9000 3 700k 0.3k
3 450 0.020 | 550 25% 9000 3 1.6M 0.6k
4 450 0.020 | 400 50% 9000 4 0.4M 0.3k
5 460 0.020 400 50% 4500 3 1.0M 0.8k
6 480 0.020 550 25% 9000 3 2.8M 0.4k
7 480 0.022 | 550 25% 12000 4 1M 0.5k
8 480 0.025 | 550 25% 9000 3 100 M 8k
9 480 0.025 | 550 25% 15000 4 15M 0.3k
10 520 0.020 550 25% 9000 3 28M 3k

Table T1. Deposition parameters for different VO2 samples. Different combination of
deposition parameters: Temperature (°C), O2 pressure (mbar), laser energy (mJ), attenuator,
pulse number, and pulse frequency (Hz).

3.2 VO3 Thin Film Characterization

Vanadium dioxide (VO>), is one of the compounds from the strongly correlated V-O system
family (VO, V203, V30s, V407, V509, V6011, V407, V015, VO2) that exhibits a typical metal-
to-insulator transition (MIT) with sharp resistivity changes upon external optical, electrical,
thermal, and magnetic stimulus [111 - 117]. VO2 is of particular interest since the material
undergoes a transition from a high resistance state to a low resistance state near room
temperature. Typically, the well-known transition from a monoclinic (M1) insulating phase to
a rutile (R) metallic phase takes place at around 340 K. The crystal structure of the VO
monoclinic phase has a space group P21/c, and unit cell parameters: a = 0.575 nm, b = 0.452

nm, ¢ = 0.538 nm, = 122.6°, while the crystal structure of the VO rutile phase has a space
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group of P42/ mnm, and unit cell parameters: a=b = 0.455 nm, ¢ = 0.286 nm [118]. In the VO
rutile phase, V** ions occupy the body center and the vertex of the tetragonal structure, and
each V* ion and six surrounding O? ions constitute an octahedral VOg unit. In the z-axis
direction, the distance between the nearest V-V atoms is equal to 0.287 nm [110]. During the
phase transition (from high to low temperature), the highly symmetrical quadrilateral structure
of rutile phase (R) changes to the structure of the monoclinic phase which has low symmetry,
with two V-V bonds with different lengths (0.312 nm and 0.265 nm). The localization of the d-
electrons bound to these V-V bonds leads to its insulating property. It was presumed that such
a V-V dimer formation directly results in the change from the high temperature delocalized
state to the low temperature localized state [110]. Recently, new ultrafast techniques have
demonstrated that such a phase transition takes place in only approximately 5 picoseconds [119],

which has raised new interest in utilizing VO2 very high frequency oscillator applications.

3.2.1 XRD measurement

X-Ray diffraction, also known as XRD, is a common method used to determine structural
parameters of bulk materials and thin films. The X-ray diffractometer used for the
characterization of the VO samples in this thesis is the Bruker D8 Discover with Cu-Ka

radiation with a wavelength of L = 1.5418 A, as shown in Fig 3.2a.
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X-ray source

— | Goniometer

Fig 3.2. Modular architecture of the Bruker D8 diffractometer. a, The main components
for the XRD system. b, Schematic illustration of the main components and the four-rotation
axis, taken from [120].

The instrument consists of X-ray source, sample stage, detector and a motorized goniometer
used to orient and move the crystal. The goniometer typically has four axes of movement to
orient the crystal with the incident X-ray beam. As shown in Fig 3.2b, the detector is rotated
around the 26-axis within the instrument’s horizontal plane. Movement around the w-axis takes
place in the horizontal plane of the instrument, the y-axis refers to elevation in the vertical plane,
and movement around ¢ rotates the crystal around its local mount axis. The condition for
constructive interference of X-ray diffraction condition is described by von Laue’s law in

reciprocal space as:
k'—k=S (3.21.1)
And is described by the Bragg’s law in real space as:
2dpg - sin(@) =n- A (3.2.1.2)
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With dhw the spacing between lattice planes (hkl), 6 the incidence angle, and /4 the wavelength
of the incident beam, as shown in Fig 3.3. The Bragg’s law is satisfied when the scattering
vector S equals to the reciprocal lattice vector Qn, which can be converted from the diffraction

angle 26 by the equation:

|Qnii| = 4m sin(6)/2 (3.2.1.3)

Diffracted
beam

Fig 3.3. Schematic of X-ray diffraction. Illustration of the conditions required for Bragg
diffraction to occur.

The constructive interference of a family of lattice planes (hkl) will occur as a Bragg peak at a
specific angle 8 (with a fixed wavelength of X-Ray) in the XRD pattern. The out-of-plane 6 -
260 scan, is firstly applied to obtain the information from the lattice planes parallel to the sample
surface. In a 8 - 26 scan when changing the angel 8 of the incident beam, the angel of the
detector is always kept at 26 to be aligned with the direction of the diffracted beam. As a result,

the reciprocal lattice vector Qnu, Which is equal to the scattering vector, will be always normal

to the sample surface.
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Fig 3.4. X-ray diffraction (XRD) measurement of a typical VO: film grown on sapphire
[0001] substrate. a, Theta (8) -2Theta (20) scan shows (020) peak at 26 = 39.99° and (040)
peak at 20 = 86.30°. b, Zoom-in view of the (020) peak at 26 = 39.99°. ¢, Zoom-in view of the
(040) peak at 26 = 86.30°. Data from [121].

The XRD 6 - 26 of the VO sample is shown in Fig 3.4. It can be observed that the VO thin
film is well textured on the sapphire [0001] substrate. Two dominant peaks from (020) and (040)
appear at the position 26 = 39.99° and 26 = 86.30°, respectively. Such result is similar as the
previously reported work [107].

3.2.2 XRR measurement

The geometry of the X-ray reflectivity (XRR) measurement setup is similar to the one used in
the XRD measurement shown in Fig 3.2. The only difference is the angle of the incident beam
20 is kept within a very small range (< 5°). When the incident angle is below the critical angle,
the X-Ray will only be reflected by the sample surface and the intensity of the reflected beam
doesn’t change too much, as shown in Fig 3.5a. As soon as the incident angle is larger than the
critical angle, the reflectivity of the X-Ray decreases rapidly as the incident beam penetrates
the material, as shown in Fig 3.5b.
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Fig 3.5. Schematic of X-ray diffraction (XRR). a, The incident angle is below the critical
angle. b, The incident angle is above the critical angle. ¢, Parameters of thin film determined
by X-ray reflectivity (XRR) measurement, taken from [122].

The Interference effect starts to occur when the incident angle is larger than the critical angle,
due to the interaction between the reflected beams from the sample surface and beams from the
interface between different layers. For X-ray, the refractive index only depends on the electron

density, for known composition the electron density can be translated to the mass density of the
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probed material. For samples with monolayer, the oscillation frequency is dependent on the
film thickness, while for samples with multiple layers the different reflections are superposed.
The X-Ray reflectivity profile shows an oscillation pattern based on the parameters of the
sample films and the substrate. The XRR measurement can be used to determine: 1. The density
p of the material from the critical angle &.; 2. The film thickness d from the fringes of oscillation
of the X-Ray reflectivity curve; 3. Surface or interface roughness o from the oscillation decay
rate at higher angles, as shown in Fig 3.5¢. The XRR measurement of the VO sample is shown
in Fig 3.6. The VO thin film thickness is determined to be 28.78 + 2.54 nm.
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Fig 3.6. X-ray diffraction (XRD) measurement of a typical VO: film grown on sapphire
[0001] substrate. The film thickness determined from the XRR measurement is 28.78 + 2.54
nm. Data from [121].

3.2.3 AFM measurement

Surface morphology is also important for the property analysis of the sample and device
fabrication. AFM is mainly used to check the surface morphology of the device after each
fabrication step, so that the quality of the interface can be checked. The surface morphology is
examined by the Bruker AFM in this work. The setups of the AFM are schematically illustrated
in Fig 3.7. The components of AFM include a probe that has a sharp tip ending with an apex of
several nanometers of diameter mounted on a soft cantilever. A laser beam that hits the edge of
the cantilever is reflected on a photodetector, acting as an optical lever. A photodetector is used
to monitor the angstrom movements of the cantilever, due to the changing of the interacting

forces between the tip and sample. An external electronic controller acts as an important role
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for controlling the probe by the feedback loop of the system. During the measurement, the
cantilever is operated in tapping mode. As the tip comes into contact with the surface for each
oscillation, it is deflected due to the distance related to Coulomb-repulsion between the tip and
sample. The initial height of the cantilever is chosen so that the tip will never break contact with
the sample. The amplitude will thus directly reflect changes on the surface, the feedback loop
is used to shift z to restore the target amplitude, and the positions (xyz) of the piezoelectric
scanner are captured. The VO3 thin film was probed by the AFM and its surface RMS roughness
was determined to be 0.78 nm.

Laser beam

Sample stage

Piezoelectric z control

scanner X, y control
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Fig 3.7. Atomic force microscopy (AFM). a, Inside view of the Bruker AFM. b, Schematic
illustration of the AFM setup, including an external electronic controller, laser, photodetector,
piezoelectric scanner and sample stage. ¢, AFM scan of a typical VO thin film, data from [121].
d, AFM scan of a typical VO device set.
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3.3 Single VO2 Device Set Lithography

The prepared thin films were patterned into microscopic devices by conventional optical
lithography techniques - maskless aligner (Heidelberg MLA 150), and ion beam etching (scia
coat 200) were used. As shown in Fig 3.8 the lithography steps: a: VO thin film (shown as
blue) was deposited on the sapphire substrate (shown as light gray); b: Negative tone photoresist
(shown as brown, ARN-4340, Allresist) was patterned on the VO thin film to define the device
area (dose: 230, defocus: -8); c: lon beam etching carried out by Ar* bombardment was used to
etch away the non-device area down to the sapphire substrate; d: After ion beaming etching,
only pre-defined VO2 device area was left under the photoresist; e: The photoresist was remove
by remover solvent (Remover AR 300-70, Allresist); f: Positive tone photoresist (shown as dark
gray, ARP-3540T, Allresist) was patterned on the VO thin film to define the contact pad area
(dose: 110, defocus: -6); g: Ti and Au (~ 77 nm) was deposited by sputtering deposition in scia
coat 200 sequentially (shown as gold); h: Lift-off process - The photoresist was remove by
remover solvent (Remover AR 300-70, Allresist). Fig 3.8i shows the top view of the two VO
devices after lithography, they have two independent signal lines and share one common ground

line.

For fabricating nanoscopic device, the electron beam lithography was used, a JEOL EBL
machine (JBX-8100FS; 100 kV) with an ARN-7520-18 resist was utilized for the lithography.
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Fig 3.8. VO2 device lithography steps. a, VOz2 thin film on sapphire substrate. b, Negative
tone photoresist patterning. ¢, lon beam etching by Ar* bombardment. d, VO device after
etching. e, Removal of negative photoresist. f, Positive tone photoresist patterning. g,
Deposition of Ti and Au for contact pad. h, Lift-off process, removal of positive photoresist. i,
Top view of two VO- device.
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Deposition of ~200 nm AlOx capping layer on VO- device is optional. When there is no capping
layer, the device test kit was operated in the probe-station in vacuum (~ 10 mBar) at 295 K to
prevent oxidation of the device due to the exposure to water vapor and air. In order to carry out
the tests of the VO_ device more conveniently anytime at normal atmosphere, AlOx capping
layer was added to the new test kit by adding an extra lithography step after Fig 3.8h. The
device with AlOx capping layer is shown in Fig 3.9a and b. The calibration bar (5x10 pm?)
used for checking alignment shows good alignment precision in Fig 3.9¢c, only about < 0.5 um
alignment error is observed, which is acceptable for two 3x3 um? VO, devices separated with

1.5 pm gap.

VO2 3x3u -1.5u

Sapphire

Fig 3.9. Typical VO device after fabrication process. a, Device set that is capped with AlOx
layer to prevent oxidation. b, Two 3x3 um? VO devices separated with 1.5 um gap. c, The
calibration bars (5x10 pm?) used for alignment precision check.

3.4 VO 2.5D Crossbar Array Lithography

As introduced in the previous section 2.2.3, large-scale spiking neural network with supervised
learning mechanism based on VO: leaky integrate-and-fire (LIF) neuron is studied in this thesis.
In order to fabricate the large-scale VO2 LIF neuron array, the layout for the 2.5D integrated
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crossbar array has been specially designed, as shown in Fig 3.10a: Two VO; oscillator devices
closely located to each other are place at the bottom layer. They are connected with two
independent signal lines (left and right), respectively. They share the same ground line. Then a
230 — 260 nm AlOx insulating spacer is deposited to cover the bottom layer, but leaving the
ground line contact pad part vacant. In the end, the ground line is deposited on the top of the
AIOXx insulating spacer to form the crossbar array structure. The layout design for a 10x10
crossbar array is demonstrated in Fig 3.10b. And the schematic illustration of electrical
connection for the 10x10 VO, LIF neuron crossbar array is shown in Fig 3.10c. In each VO>
LIF neuron computing node: The spike current input is injected through left signal line (L+ pad
in Fig 3.10b), and will be leaky integrated by the left VO, device. The triggered spiking function
can be realized by the right VO2 device supplied with sub-threshold current/voltage through
right signal line (R+ pad in Fig 3.10b). The spiking voltage can be readout from right signal
line. The two VO devices share the same ground line (GND pad in Fig 3.10Db).

GND1

GND 2

GND 3

ouT1 ouT 2 ouT 3

Fig 3.10. VO2 2.5D array design. a, A detailed view of a single VO LIF neuron computing
node, which contains two VO> devices and 2 signal line at the bottom, an AIOx insulating spacer
in the middle, and a shared ground line on the top. b, The layout design for a 10x10 crossbar
array. L+ pads correspond to the left signal lines, R+ pads correspond to the right signal lines
¢, Schematic illustration of electrical connection for the 10x10 VO LIF neuron crossbar array.

The details of the lithography utilized to fabricate the VO, 2.5D array will be introduced and
demonstrated in the following part. Firstly, same as introduced in section 3.3, negative tone
photoresist (ARN-4340, Allresist) was patterned on the VO thin film to define the device area
(dose: 230, defocus: -8). lon beam etching carried out by Ar" bombardment was used to etch
away the non-device area down to the sapphire substrate. After ion beaming etching and
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removal of the resist, the VO devices in first layer were examined by the AFM technique
introduced in section 3.2.3. Two plateaus of VO with a width of about 3 pum separated with 1.5
pm can be observed from the AFM (Atomic force microscopy) scan, indicated a satisfying
device morphology, as shown in Fig 3.11. However, it can also be observed, due to the harsh
ion beaming etching, there is about ~ 3 nm roughness at the edge of the device. But luckily,
such fabrication defect of edge roughness wasn’t critical to the device performance, and hardly

had any influence on the overall crossbar array (will be shown in the Chapter 5).
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Fig 3.11. VO2 2.5D array first layer morphology. a, Surface structure of the VO devices
after ion beaming etching, scanned by AFM. b, The height profile acquired from the AFM scan.
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Fig 3.12. VO2 2.5D array second layer morphology. a, Optical microscope image of VO.
devices, left and right signal lines, and ground line contact pad. b, The Surface structure and
height profile acquired from the AFM scan.

Next, also same as introduced in section 3.3, positive tone photoresist (ARP-3540T, Allresist)
was patterned on the VOz thin film to define the contact pad area (dose: 110, defocus: -6). And
then the electrode (Ti-Au) was deposited by sputtering deposition in scia coat 200 sequentially
to from the right signal line, left signal line, and ground line contact pad at the same time (shown
in Fig 3.12a). It can be determined from the AFM height profile that the thickness of the
deposited Ti and Au layer was about 70 nm. Besides, significant side-wall defect after the lift-
off process cannot be omitted. From the AFM scan it can be observed that the side-wall of the
Ti and Au layer can be as high as ~ 190 nm. Such defect will cause current shunting
path/dielectric breakdown through the AlOx insulating spacer layer if not properly addressed.
As a result, post-processing like mechanical polishing that will remove the side-wall defects is

required.
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Fig 3.13. VO2 2.5D array third layer morphology. a, Optical microscope image of VO
devices, left and right signal lines, ground line contact pad with AlOx insulating spacer layer.
b, The Surface structure and height profile acquired from the AFM scan.

Next, the AlOy insulating spacer layer will be deposited. In order to avoid the same side-wall
defect caused by the positive tone photoresist, double layer resist with undercut structure was
utilized. Negative tone photoresist (ARN-4340, Allresist) on the top of the Bottom Resist AR-
BR 5480 was patterned cover the ground line contact pad area (dose: 230, defocus: -8). After
that, the AlOx insulating spacer layer was deposited by the AJA e-beam evaporator. After lift-
off process, it can be determined from the AFM height profile that the thickness of the deposited
AlOy insulating spacer layer was about 220 nm. A smooth transition from the [sapphire
substrate/AlOy] region to [sapphire substrate] region without side-wall defect can be seen.
However, residual side-wall defect can still be observed at the transition area between the
[sapphire substrate/AlOy] region and the [sapphire substrate/AlOx/Ti/Au] region, and between
the [sapphire substrate] region and the [sapphire substrate/Ti/Au] region, as shown in Fig 3.13b.
Necessary polishing can be used to further remove the side-wall defect.

Finally, same as introduced in section 3.3, positive tone photoresist (ARP-3540T, Allresist) was
patterned on the VO; thin film to define the ground line area (dose: 110, defocus: -6). And then
Ti and Au (~ 100 nm) was deposited by sputtering deposition in scia coat 200 sequentially to
from the ground line on the top (shown in Fig 3.14). (Test of multiple devices on the array see

Appendix)
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Fig 3.14. VO2 2.5D array. Left: 4 identical 10x10 VO2 LIF neuron crossbar array on the test
board. Right top and down: Optical microscope images of VO crossbar array and devices. Left
and right signal lines, ground lines can be clearly seen.

44|Page



Chapter 4 Thermally Coupled VO Oscillators for

Boolean Computation

In this chapter, it will be demonstrated that without any extra electronic components needed,
self-sustained VO oscillators ranging by more than an order of magnitude in size from 6 um
to 200 nm can be thermally coupled together. A simple but effective mean to actively tune the
thermal coupling between VO oscillators will be introduced. And a multiplicity of synchronous
oscillatory states with distinct frequencies and amplitudes generated by this effective tuning
mechanism can be used for computation. Various oscillation states generated by pairs of
coupled oscillators are utilized to realize 12 basic Boolean logic operations from AND, NAND
and NOR gates.

4.1 Scalability of VO, Oscillators

Firstly, in order to investigate the scalability of VO oscillator, p - T (resistivity versus
temperature) measurements are carried out to check the change of the typical hysteresis loop
with VO2 device dimension. For temperature dependent resistance measurements, a physical
property measurement system (PPMS) was used with a conventional 4-point resistance
measurement scheme, and a cooling and warming rate of 5 K/min (from 270 K to 395 K). For
the 4-point measurements (Keithley 6221 ac/dc current source and 2182a nanovoltmeter), 1 uA
DC current was applied to the sample to minimize the effect of Joule heating. p — T Curves
from devices with dimensions of 70x40 um?, 7x6 pm?, 1x1 um?, and 600x700 nm? are shown
in Fig 4.1. It shows that the p - T hysteresis loop becomes smaller with decreasing dimension
due to a spatial confinement effect. Such scaling effect in the p - T loop originates from the
coexistence of different numbers of metallic and insulating phase domains near the transition
temperature. When there is a single domain (~ 20 nm), either in metallic or insulating phase, an
ideal one-step change in resistivity around the metal-to-insulator transition (MIT) temperature
can be observed [123]. However, direct observation of metallic and insulating phase domains
mixture around the MIT temperature suggested that the MIT temperature of different domains
also varies. When the phase transition region becomes larger (several hundred nm or pum),

numerous metallic and insulating phase domains form the gradual resistivity change loop. The
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distribution of the metallic phase domains around the MIT temperature can be statistically

modeled as Gaussian function [123]:

1

T—Tcenter)”
f(T) = == exp[— Temer) (4.1.1)

Where ¢ is the half width of the Gaussian distribution, and Tcenter iS the temperature where the
population of metallic phase domains is equal to that of insulating phase domains. When the
dimension is increased, the distribution of metallic phase and insulating phase domains will

become broader, which leads to a larger hysteresis loop.

When the VO devices are scaled down, the resistivity is lower in the insulating state (smaller
p - T hysteresis loop) reflects the smaller oscillation amplitude and higher oscillation frequency

demonstrated in the following parts of the thesis.
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Fig 4.1. p - T curves of VO2 devices with different sizes. Green: 70x40 um?, purple: 7x6 pm?,
orange: 1x1 pm? and yellow: 600x700 nm?. Data from [121].

The working principle of the self-sustained VO oscillator driven by constant current source
has been introduced in section 2.1.3: Joule heating (1>-R) plays a critical role in raising the
device temperature, and hence drives the oscillation process (between high resistance state and
low resistance state). VO device shows a negative differential resistance (NDR) region, where
the voltage drops with increasing current, as shown in Fig 4.2. In this region the voltage across
the device oscillates with a frequency that increases with the magnitude of the applied current.
As introduced in Fig 4.1 where the p- T hysteresis loop becomes smaller with decreasing device

size, the current (and critical voltage V¢ = IcR, where the device enters NDR region) needed to
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lift the device temperature up to the vicinity of the MIT temperature also becomes significantly

lower when the devices are scaled down form micro-size to nano-size, as shown in Fig 4.2.
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Fig 4.2. 1-V curves of VO2 devices with different sizes. /-I”measurement (current is varied
while measuring voltage) of a single VO- device from micron (6x7 um?) to nanometer scale
(200x200 nm?). Inset up right shows the zoom-in view of the /-Vcharacteristic from nanoscopic

devices. Data from [121].
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Fig 4.3. I-f curves of VOz2 devices with different sizes. I-f measurement (current is varied
while measuring oscillation frequency) of a single VO, device from micron (6x7 um?) to
nanometer scale (200x200 nm?). Inset up right shows the zoom-in view of the I-f characteristic
from nanoscopic devices. Data from [121].
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As this self-sustained VO, oscillator (driven by constant current) is scaled down to 200 nm, a
substantial increase in the oscillation frequency (Fig. 4.3) from kHz range to MHz range can
be observed. The effect can be understood as due to the decreasing number of insulating phase
domains when scaling down, the incubation time needed to switch them has become shorter,
and hence the device oscillation period (total time of switching to low resistance state, and
recovering back to high resistance state) becomes shorter. For the oscillation state
measurements with various types of devices, the measurements were carried out in a multi-
probe cryogenic probe station (Lakeshore) with 25 um diameter W-tips. A current source
(Keithely 6221 AC/DC current source) and a source meter (Keithely 2636B) were used to drive
the oscillators and the thermal cell. The oscillating voltage was detected by an oscilloscope
(DSO5052A, InfiniiVision) with home-built LV codes.

In Fig. 4.4, the minimum power for driving VO cells into stable oscillation state vs. device
size is plotted. It clearly shows a linear relationship between power and device size (fitted in
orange dash line). The linear relationship is also confirmed in simulation (green dash line, see
finite element simulation for detail in Appendix section). It is remarkable that the oscillation
frequency increases above 1 MHz while power decreases down to micro watts with scale-down
of the device’s size - this clearly indicates faster speed and lower energy consumption with the
reduced dimension of the VO, oscillator.

a 25 T T T T |I T |I T |I T b T T T T
1.4 —@—600 =700 nm? i
_ iz el TOp @ Bxpertent ’
?E, 207 135,1-0 0.8 L — —Simulation Q
= 508 ’ 7
Q o — Va
= 15| o 0.6
08)_ 0.4 % 0.6 P 7
%) 025—"% & 10 1z 14 \:’5 e
3 10} 6 * 7 pm? , Current desity (10°A/cm?) o 04 ’
o —a—600 * 700 nm /D
%C;, 5 500 * 500 nm? | 02l , " |
s 300 * 300 nm? ,
ol >o—a—792 | 00+ 7 4
0 2 4 6 8 10 12 14 0 200 400 600
Current desity (108A/cm?) Width (nm)

Fig 4.4. Driving power of VO2 devices with different sizes. a, Single nanoscopic device from
micron (6x7 um?) to nanometer scale (300x300 nm?). Power versus supply current density.
Inset up right shows the zoom-in view of the driving power from nanoscopic devices. b, The
minimum power Pnin to drive the VO nano oscillator into stable oscillation with various sizes
(Purple spheres: experimental data; Orange dashed line: Linear fit of experimental data; Green
dashed line: Simulation results from Zhong Wang). Data from [121].
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When two VO, oscillators are placed close enough, the heat that is released during one part of
the oscillation cycle from one device can trigger the nearby device to oscillate, as shown in Fig
4.5a. Interestingly, this mechanism should lead to a time delay (or a phase difference) in the
oscillations of the two devices. To explore this phenomenon, pairs of VO oscillators of
different sizes from 5x5 um? to 200x200 nm? were fabricated. For a pair of VO, devices with
the size of 5x5 um? with a 2 um spacing, device 1 was set in a stable oscillatory state using a
driving current I1 = 2.8 mA (400 ps pulse) above threshold, while device 2 was biased with a
sub-threshold current I, = 2.3 mA. As shown in Fig. 4.5¢c, device 1 oscillates only within the
current pulse window. It is intriguing that device 2 also oscillates at a sub-threshold current,
triggered by the thermal energy exchange from the oscillating device 1 (consistent with
COMSOL finite element simulation, see Appendix section). Note that the thermal energy
exchange can be directly observed as follows: In the first half of the periodic driving cycle, I,
is large enough to drive device 1 at a stable oscillation (green curve), and device 2 is triggered
to oscillate (orange curve) at the same frequency as device 1. Then I; drops to 0 mA in the
second half of the cycle and its voltage, V1, decreases to 0 V, while device 2 recovers to the
sub-threshold transition state (high resistance state) and its voltage, V2, increases back to a high
level. In the next cycle when I1 is turned on, both devices will again start to oscillate at the same
frequency, as shown in Fig. 4.5d. The trigger delay time between the drop of V1 and that of V-

can be seen from the bottom inset.
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Fig 4.5. Direct observation of thermal coupling effect with trigger delay time between two
coupled VO: oscillators. a, Schematic illustration of two thermally coupled VO oscillators.
b, Optical images of device 1 (5x5 pm?) and device 2 (5x5 um?) separated by 2 um. ¢, Stable
oscillation when 400 us long 2.8 mA current pulses (separated by 400 us of zero current) are
sent to device 1. d, Coupled oscillation behavior between device 1 and device 2 (both 5x5 pm?)
with 2 um spacing. Device 2 is excited by |2 = 2.3 mA that is lower than the oscillation threshold
current (2.5 mA). When device 1 is activated to oscillation state by a current pulse, device 2
starts to oscillate with the same frequency. Inset (bottom): 0.53 ps to trigger device 2 into
oscillation. Data from [121].

Such a thermal triggering effect can be observed for pairs of devices ranging from 5 um down
to 200 nm in size. The trigger delay time increases with increased spacing, as shown in Fig. 4.6.

For the smallest size (200 nm) the trigger delay time is about 98 ns.
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Fig 4.6. Driving power of VO2 devices with different sizes. a, Single nanoscopic device from
micron (6x7 um?) to nanometer scale (300x300 nm?). Data from [121].

Fig 4.7 shows the details of measuring trigger delay time for two VO, devices with various
device spacing. Same as introduced in Fig 4.5, device 1 was set in a stable oscillatory state
using a driving current I; above threshold, while device 2 was biased with a sub-threshold
current I, to be thermally triggered to oscillate by device 1. In the first column, optical images
show device 1 (5%5 um?) and device 2 (5x5 pm?) separated by a, 10 pm, b, 6 um. SEM images
of fabricated nanoscopic devices show two VO device with different dimension and spacing c,
1x1 pm? (spacing = 1 um), d, 500x500 nm? (spacing = 500 nm) and e, 200x200 nm? (spacing
= 200 nm). Yellow shading indicates the VO: cells (Au contacts are in white). In the second
and third columns show: Fig 4.7a - measurements (I1 = 2.8 mA, > = 2.3 mA) of the trigger
delay time at 10 um spacing, Fig 4.7b - measurement (I: = 2.8 mA, I. = 2.3 mA) of the trigger
delay time at 6 um spacing, Fig 4.7¢ - measurements (I1 = 600 pA, I> =420 pA) of the trigger
delay time at 1 pm spacing, Fig 4.7d - measurements (11 = 600 pA, l2 =460 pA) of the trigger
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delay time at 500 nm spacing, Fig 4.7e - measurements (I = 600 pA, I> =460 pA) of the trigger
delay time at 200 nm spacing. The error bar of the trigger time delay is calculated from two
measurements of the triggered oscillation.
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Fig 4.7. Measurement of trigger delay time for two VO2 devices with various device
spacing. Two VO, devices a, 5x5 pm? (spacing = 10 pm); b, 5x5 um? (spacing = 6 pum); c,
1x1 pm? (spacing = 1 um); d, 500x500 nm? (spacing = 500 nm), and e, 200x200 nm? (spacing
=200 nm). Data from [121].

4.2 Tunable Thermal Triggering

For a single set of VO oscillators (two devices driven by two independent current sources), the
further the devices are apart, the weaker is the thermal link. As shown in Fig 4.8, when the
spacing between two VO oscillators increases, the frequency locking range becomes smaller
significantly. When two devices are far apart, the heat released from one device will dissipate
entirely into the substrate before reaching the other device. The thermal coupling strength
between the two devices is limited and can only maintain their synchronization within a certain

frequency range.

a 55— . b ss— ‘ C 55— :
—=— Device 1 —a— Device 1 —=— Device 1
50+ Device 2 - i 50 ¢ Device 2 4 50+ Device 2 e |
2 um distance .r'/.‘ 2 um distance 6 um distance .rrr'”
. 45} P P L . 45} A
g -~ g g -
= 40t ¥ = 40} e 2 40 /
Fr A a o a /
c 35 s 2 35 2 35 o
] s g g /‘
g 30+ ), dg 30+ ‘_,: dg 30 /
& 25 Iy & 25t & 25 /
20 / 20 o év;\ C_hI_DI:iZ_ﬁITD; r_a':g_a o 20¢
o
15 L 1 1 ! 1 15 1 1 I 1 1 ]5 1 L 1 1 1
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
Current (mA) Current - device 2, I, (mA) Current (mA)
d 55— . e 55— . . . ; f 55— . . ;
—n— Device 1 —=— Device 1 —n— Device 1
50+ Device 2 E 50} Device 2 e W 4 50} Device 2
6 um distance 10 um distance - ol 10 um distance
. 450 { ~ 45} & 1 — 45}
g g e g
x 40 x> 40 va x 401
= > ;/' >
2 35 2 35t » 2 35+
g g y g
o 30 - T 30 o o 30 r-a
2 R g 4 2 s P Rt
o5l \ e / {5 25 WAL e
L I
o [
20} oo -___.-"" 1 20} j 20t
15 i 1 i I Il 15 1 i 1 1 i 15 i L 1
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6
Current - device 2, |, (mA) Current (mA) Current - device 2, |, (mA)

Fig 4.8. Thermal coupling strength versus device spacing. Frequency vs. applied current for
device 1 (5x5 pm?) and device 2 (5x5 pm?) when they are oscillating independently with a
spacing of a, 2 um, ¢, 6 um, and e, 10 um. b, Frequency locking between device 1 and device
2 at a 2 um spacing (I: fixed at 2.7 mA). d, Frequency locking between device 1 and device 2
at a 6 um spacing (I1 fixed at 2.6 mA). f, Frequency locking between device 1 and device 2 at
a 10 um spacing (l1 fixed at 2.9 mA). As the spacing between the two VO devices becomes
larger (from 2 um to 10 um), the coupling strength becomes weaker, shown as a smaller
frequency locking range (from 22 kHz to 42 kHz at 2 um; from 21 kHz to 27 kHz at 6 um; from
25 kHz to 28 kHz at 10 pum).

52|Page



Next, in order to realize tunable thermal coupling, a VO> thermal cell was added between the

two VO2 devices. The device set morphology is shown in Fig 4.9.
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Fig 4.9. Tunable thermal coupling device set geometry. a, Optical microscopy images of
device set for experiments, with overview (left) and zoomed-in view (right). A 1.5 pm wide (21
um long) VO stripe is placed as a thermal cell for enhancing the thermal coupling between two
VO devices with the dimensions of 7x6 um?. The distance between device 1 and device 2 is 5
um. b, 3D geometry of device 1, device 2 and thermal cell scanned by AFM. Data from [121].

A microscopic picture with a corresponding circuit diagram is shown in Fig 4.10a. This thermal
cell is designed to change the ambient thermal environment between device 1 and device 2. By
applying different cell voltages Ve that induce Joule heating, the ambient temperature between
device 1 and device 2 can be changed. The higher the cell voltage Ve, the higher is the ambient
temperature, and, therefore, the lower is the threshold switching voltage (as shown in Fig 4.10b
inset left) and the higher is the oscillation frequency (for the same current, as demonstrated in
Fig 4.10a inset right) for a single device. This is because the starting point of the oscillation in

the p - T hysteresis loop has been biased to a higher temperature closer to Te.
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Fig 4.10. VO:2 oscillators with tunable thermal coupling strength. a, Optical microscopy
image of a device set with schematic illustrations of the electrical connections. The device set
includes a 1.5 um wide (21 um long) VO stripe as a thermal cell between two VO oscillators,
each with dimensions of 7x6 pm?. The distance between device 1 and device 2 is 5 um. Device
1 and device 2 are driven by two independent current sources Iy and I, respectively. A voltage
source Veen is used to control the thermal cell. b, 1-V measurements (sweep current and measure
voltage) of device 1 for different thermal cell voltages (Vcen). Inset bottom left: The threshold
voltage (Vi) where the device enters the NDR region reduces with increasing Vcen. Inset top

right: I-f measurements (sweep current and measure frequency) from device 1 for different Veel.
With higher Veen, f increases. Data from [121].

In the following, how the devices’ ambient temperature plays a critical role for the oscillation
coupling among neighboring devices including the thermal cell will be further discussed. When
the ambient temperature is set at 295 K, 330 K, and at 360 K (above its MIT temperature ~ 340
K), it can be observed that the I-V characteristic changes significantly (Fig 4.11a). Below its
MIT temperature, VO device still shows a typical NDR region, where the critical
current/voltage to enter the region decreases with increasing temperature. However, above its
MIT temperature the 1-V characteristic of the VO device behaves like normal metal with linear
and low resistance, indicating it has fully phase transited to metallic state. The other common
behavior of VO> cell is that the oscillation frequency increases by increasing the ambient
temperature while reducing the amplitude, as shown in Fig 4.11b and c. At the same
temperature with different supply currents the oscillation amplitude hardly changes. At higher

temperatures the amplitude becomes smaller (at 295 K: peak-to-peak value is about 4.1 V, while
at 330 K: peak-to-peak value is about 3.2 V).
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Fig 4.11. Temperature-dependent VO: oscillator characteristics. a, 1-V measurements
(sweep current and measure voltage, voltage compliance at 20 V) at 295 K, 330 K and 360 K.
b, Oscillation frequency as a function of applied d.c. current (I-f) for VO device (7x6 um?) at
295 K and 330 K. At higher ambient temperature, with the same supply current the VO_ device
oscillates at a higher frequency but the tunable frequency range becomes narrower. Additionally,
the threshold current value where VO device starts to oscillate decreases at higher temperatures.
¢, Single device (7x6 pm?) oscillation waveform at 3 mA, 4 mA, 5 mA, 6 mA at 295 K. d,
Single device (7x6 pm?) oscillation waveform at 3 mA, 4 mA, 5 mA, 6 mA at 330 K. Data from
[121].
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Fig 4.12. Single device oscillation waveform at different supply currents and thermal cell
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voltages. a, Single device (7x6 um?) oscillation waveform at 3 mA at 295 K for different
thermal cell voltages Vcenr. b, Single device (7x6 um?) oscillation waveform at 6 mA at 295 K
for different thermal cell voltage Vcen. Data from [121].

Applying a constant voltage to the thermal cell has the equivalent effects of raising the ambient
temperature that increases the oscillation frequency while lowering the amplitude, as shown in
Fig 4.10a and Fig 4.12. For higher thermal cell voltages, the device oscillates at a higher
frequency with a smaller amplitude.

As a result, activating the thermal cell during synchronization helps device 1 (with a constant
current Iy that is lower than the oscillation threshold current) to oscillate at a higher frequency
following device 2’s frequency as Iz is gradually increased. As shown in Fig 4.13a and b,
activating the thermal cell will lead to an increase of the mutual synchronized frequency when
device 1 and device 2 are already in a synchronized state. When device 1 and device 2 are
desynchronized, activating the thermal cell will lead to an increase of the oscillation frequency
while lowering the oscillation amplitude of device 1, which enables device 1 to be synchronized

to device 2, as shown in Fig 4.13c and d.
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Fig 4.13. Double device oscillation waveforms under synchronization and

desynchronization situations. a, Device 1 (7x6 pm?) and device 2 (7x6 pm?) synchronized
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oscillation waveforms at 11 = I = 2.5 mA, Vet = 0 V. b, Device 1 and device 2 synchronized
oscillation waveforms at 11 = 12 = 2.5 mA, Veen = 7 V. ¢, Device 1 and device 2 desynchronized
oscillation waveforms at 11 = 2.5 mA, I = 5 mA, Ve = 0 V. d, Device 1 and device 2
synchronized oscillation waveforms at 11 = 2.5 mA, I2 =5 mA, Vcen = 7 V. Data from [121].

The tunable thermal triggering is presented as follows (shown in Fig 4.14): For the case where
the thermal cell is not activated (Vcen = 0 V), device 1 was supplied with a constant low current
I1 (2.4 mA) and oscillates at a low frequency (11 kHz). By gradually increasing the supply
current 1> for device 2, the frequency of device 1 (f1) and the frequency of device 2 (f2) are
synchronized until a critical frequency (here 23.5 kHz). When f; is further increased, due to the
limited thermal coupling strength, fy first drops to a value that is about one half of f, and then
increases slowly while maintaining a ratio of fy : f2 of roughly 1 : 2, as shown in Fig 4.14a. For
the case where the thermal cell is activated with a very strong thermal coupling strength (Vcen
=8V), fr can now be fully locked to f» (until both devices are heated to their respective metallic
states and don’t oscillate anymore. The significant difference between the synchronization
behavior of device 1 under weak/moderate (Vcen < 8 V) and strong (Veen = 8 V) coupling effects

can be observed, as shown in Fig 4.14c.
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Fig 4.14. Tunable thermal triggering between two VO: oscillators. a, Frequency locking at
Veen =0 V. I1 is fixed at 2.4 mA while increasing 2. In this case, the frequency locking between
device 1 and 2 holds until 23.5 kHz. Inset left: Synchronized waveforms of device 1 (1. = 2.4
mA) and device 2 (I> = 2.5 mA). Inset right: Desynchronized waveforms of device 1 (1. =2.4
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mA) and device 2 (I = 5 mA). b, Frequency locking at Vcen = 8 V. The frequency locking
breaks above 25.3 kHz. Inset left: Synchronized waveforms of device 1 (I: = 2.4 mA) and
device 2 (I2 = 2.5 mA). Inset right: Synchronized waveforms of device 1 (I; = 2.4 mA) and
device 2 (I2=5mA). ¢, Comparison of synchronization frequency of device 1 (fixed at 2.4 mA)
as Veen is varied (from 0 to 8 V). d, Comparison of power consumption from device 1 and device
2 under different circumstances at Vcen = 0 V. Gray line shows the power summation when they
are oscillating independently. Yellow line shows the power summation when they are
oscillating with the coupling effect. Data from [121].

As mentioned in section 2.1.3, the energy-recycling mechanism - energy being reversibly
converted, or reused, instead of being totally dissipated, is also a very attractive point for
developing energy-efficient oscillatory computational network. Because in traditional CMOS
circuit there is no such energy-recycling mechanism - power increases (proportionally) with the
number of transistors. The power consumption from device 1 and device 2 when they are
oscillating indecently, and when they are oscillating with a thermal coupling effect (as shown
in Fig 4.14d) are plotted, respectively. The thermal energy exchange between device 1 and
device 2 helps to reduce the power consumption both in the synchronization region (by 13.1 %)
and the non-synchronization region (by 10.6 %), indicating higher energy efficiency. The power
of a single oscillator is calculated as follows: The oscillating voltage waveform under a certain
current value is collected. Then the voltage value is averaged over time (500 us) then multiplied
by the current value to obtain the average power consumption. The power of the thermal cell is
calculated approximately from the measurements in Fig 4.15.
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Fig 4.15. Voltage-mode (V-1) and current-mode (1-V) measurements for a thermal cell. a,
Thermal cell V-I (sweep voltage and measure current, current compliance at 10 mA) and b, I-
V (sweep current and measure voltage, voltage compliance at 20 V) curves. Data from [121].

Such oscillators with tunable synchronization behavior can be further scaled down to nano-
scale as shown in Fig 4.16. The device set includes a 120 nm wide (2 pm long) VO2 nano wire
as a thermal cell, and two VO, oscillators with dimensions of 700x600 nm?. The distance
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between device 1 and device 2 is 600 nm. The distance between thermal cell and device 1 (or

device 2) is 240 nm. Yellow shading indicates VO: cells (Au contacts in white).
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Fig 4.16. VO2 nano oscillators with tunable thermal triggering. a, SEM image of a
fabricated nanoscopic device. b, Frequency locking behavior at lcen = 0 pA. For this
measurement, the current to device 1 is fixed at 0.8 mA while the current to device 2 is increased.
In this case, the frequency locking between device 1 and 2 holds from 700 kHz to 1.05 MHz
and then breaks down. c, Frequency locking behavior at lcen = 390 pA. In this case, the
frequency locking breaks down above 1.5 MHz. d, Comparison of synchronization frequency

of device 1 (fixed at 0.8 mA) as lcen is varied (from 0 to 390 pA). Data from [121].

4.3 VO Oscillator-based Boolean Logic Gates

Based on the above tunable thermal coupling mechanism, three different Boolean logic gates
(AND, NAND and NOR) are realized by the set of VO devices shown in Fig 4.10a. The
oscillation state of a VO device, which is represented by the oscillation frequency (f) and
amplitude (A), is taken as state “0” or “1”. Here we define the threshold frequency fw as the
frequency where device 1 and device 2 desynchronize at Vcen = 0 V when Iy is fixed at 2.5 mA

while 1> is gradually increasing (fin = 23.5 kHz is taken for the following computation). A
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frequency lower (higher) than fi is defined as “low (high) frequency”. A peak-to-peak value
Vpk-pk = 1 V is chosen as the threshold amplitude. An amplitude smaller (larger) than Vpk-pk is
defined as “small (large) amplitude”. There are 4 kinds of oscillation states; high frequency
with large amplitude, high frequency with small amplitude, low frequency with large amplitude
and low frequency with low amplitude. Here, only the oscillation state with high frequency and
large magnitude is taken as logic “1”, while the other states are taken as logic “0”, as shown in

Fig 4.17.
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Fig 4.17. Oscillation states used for Boolean computation. a, Oscillation states defined as
logic “1”. b, Oscillation states defined as logic “0”. Data from [121].

The key to generating different oscillation states is to use the supply current and thermal cell to
bias the starting point of the oscillation cycle in the p - T hysteresis loop. The oscillation state
in Fig 4.18a: Device 1 is supplied with constant current of 2.5 mA while the thermal cell is
deactivated. The ambient temperature isn’t significantly raised so device 1 oscillates at a low
frequency with large amplitude; The oscillation state in Fig 4.18b: Device 1 is supplied with
constant large current of 6.2 mA with the activated thermal cell. Meanwhile, device 2 is
supplied with large current (I = 5 mA) and oscillates at a high frequency. Due to the significant
rise of ambient temperature by both synchronization and the thermal cell, the high resistance
state of device 1 has been biased closely to the metallic point (in the p - T hysteresis loop) and
this results in a smaller peak-to-peak amplitude (< 1 V) and high frequency; The same also
applies to the oscillation state in Fig 4.18c when device 1 is supplied with a constant current of
6.4 mA while the thermal cell is activated, and device 2 oscillates at a low frequency (I. = 2.4
mA); The oscillation state in Fig 4.18d: Device 1 is supplied with a constant current of 6.4 mA

while device 2 is supplied with a large current (I = 5.2 mA) and oscillates at high frequency.
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The activation of the thermal cell will lead to overheating of both devices so they reach the

metallic state. As a result, there will be no more oscillations, as shown in Fig 4.18d.
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Fig 4.18. Logic “0” represented by different oscillation states of VO2 device 2. a, Oscillation
state with low frequency and large amplitude. b, Oscillation state with high frequency and small
amplitude. c, Oscillation state with low frequency and small amplitude. d, No oscillation (fully
metallic state). Data from [121].

The oscillation state of device 2 for various I is taken as input A, while the thermal cell voltage
Veen represents the input B (Veen = 0 (7) V stands for B = 0 (1)). The current through device 1
(11) is kept constant during each operation, while the oscillation state of device 1 under input A
and input B is taken as the output. 12 Boolean operations from AND gate, NAND gate, and
NOR gate are demonstrated in Fig 4.19. (Detailed output waveforms from devices 1 and 2 for
different logic gates are shown in Appendix section. Boolean-logic calculation tables for AND,
NAND, and NOR gate are given in Table. T2).
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Fig 4.19. Boolean logic gates based on coupled VO:2 oscillators with tunable thermal
coupling strength. Operations of AND, NAND, and NOR logic gates. Data from [121].
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(a) AND operation:

Input A (Device 2)

Input B (Vcell)

Output AB (Device 1 fixed

at 2.5 mA)

0 (f =119 kHZ, Vpk-pk =44 0 (Vcell =0 V) 0 (f =11.9 kHZ, Vpk-pk =44
V at 2.5 mA) V)

0 (F= 11.9 KHZ, Vppk = 4.4 1 (Ve =7 V) 0 (= 14.3 KHz, Vpepk = 4.4
V at 2.5 mA) V)

1 (f=30.8 KHz, Vpp = 4.5 0 (Voo = 0 V) 0 (F= 12.7 KHZ, Vpepk = 4.4
V at 5 mA) V)

1 (f = 308 kHZ, Vpk-pk =45 1 (Vcell =7 V) 1 (f =24.4 kHZ, Vpk-pk =27
V at 5 mA) V)

(b) NAND operation:

Input A (Device 2)

Input B (Vcell)

Output AB (Device 1 fixed

at 6.2 mA)

0 (f =11 kHZ, Vpk-pk =44V 0 (Vcell = 0 V) 1 (f = 303 kHZ, Vpk-pk =44
at 2.4 mA) V)

0 (F= 11 kHZ, Vg = 4.4 V 1 (Ve =7 V) 1 (F=29.4 KHz, Vopk = 4.1
at 2.4 mA) V)

1 (f = 308 kHZ, Vpk-pk =45 0 (Vcell = 0 V) 1 (f = 303 kHZ, Vpk-pk = 43
V at 5 mA) V)

1 (f = 308 kHZ, Vpk-pk =45 1 (Vcell =7 V) 0 (f =24.4 kHZ, Vpk-pk = 06
V at 5 mA) V)

(c) NOR operation:

Input A (Device 2)

Input B (Vcell)

Output A + B (Device 1
fixed at 6.4 mA)

0 (f =119 kHZ, Vpk-pk =44 0 (Vcell =0 V) 1 (f =31.3 kHZ, Vpk-pk =472
V at 2.5 mA) V)

0 (f =119 kHZ, Vpk-pk =44 1 (Vcell =7 V) 0 (f =101 kHZ, Vpk-pk =0.6
V at 2.5 mA) V)

1 (f = 323 kHZ, Vpk-pk =44 O (Vcell = 0 V) 0 (f =27 kHZ, Vpk-pk = 04 V)
V at 5.2 mA)

1 (f=32.3 kHz, Vpk-pk = 4.4 1 (Veen =7V) 0 (no oscillation)
V at5.2 mA)

Table T2. Calculation table of Boolean logic gates. Output logic “0” and “1” are represented
by different oscillation states of VO> device 1. a, AND gate. b, NAND gate. ¢, NOR gate. Data

from [121].
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Chapter 5 Spiking Neural Network based on VO

Neurons

In this chapter, it will focus on the applications of thermally coupled VO oscillators in non-
Boolean type computation, i.e. neuromorphic computing. Hardware implementations of the
Hodgkin-Huxley (H-H) neuron and leaky integrate-and-fire (LIF) neuron, which have been
introduced in chapter 2, directly by VO oscillators without any additional electronic circuit
elements will be demonstrated. Furthermore, complex spatiotemporal functions including
temporal integration and modulation will be experientially demonstrated by multiple interacting
VO- LIF neurons. In the last section, the performance of large-scale spiking neural networks
based on such experimental VO LIF neurons for recognition of MNIST hand-written digits

will be presented.

5.1 VO3 Oscillators-based H-H Neuron

As introduced in section 2.2.2, the Hodgkin-Huxley (H-H) neuron is one of the most
sophisticated models that describes the structural, functional and dynamic properties of ion
channels, ion permeation and selectivity etc. However, in order to realize the H-H neuron model
with basic functions like regular spiking, spike-frequency adaptation, and bursting, a large
number of electronic components are required to construct the circuit by traditional CMOS
technology [124]. This not only increases the complexity to design a large-scale network
architecture based on such neuron, but also limits the degree of freedom to tune the dynamics

of the network during operation.

In the following, direct hardware implementation of the Hodgkin-Huxley (H-H) neuron by
thermally linking three VVO> oscillators will be presented. The device set is the same as in Fig
4.10a. The difference is that the thermal cell was operated in the I-mode, in which a constant
current (lcen) is applied to the thermal cell. This operation mode allows for cascade
synchronization among the VO oscillators and the thermal cell. This phenomenon occurs
because the VO_ thermal cell will also oscillate for Icen within the NDR region, and the heat
periodically released from it strongly links cell 1 and cell 2 to its own oscillation period. As

shown in Fig 5.1a, cell 1, cell 2, and the thermal cell are excited with three independent current

64|Page



sources. When supplied with 11 = 3.9 mA, 1= 4 mA, and len = 2.3 mA, frequency locking

among the three devices can be observed in Fig 5.1b.
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Fig 5.1. Thermal spike driven VO:2 oscillation with different firing modes. a, Optical image
of the VO- device set used for the generation of a spiking potential. Cell 1, cell 2, and thermal
cell are excited by three independent current sources. b, The oscillation waveform when cell 1
is excited at 3.9 mA, cell 2 is excited at 4.0 mA, and thermal cell is activated at 2.3 mA. c, The
output waveform from cell 2 that is generated by the cascade synchronization among three cells.
This behavior mimics the generation of the spiking potential in a neuron when it is stimulated;
Region-1: Resting state; Region-2: Stimulation arrives; Region-3: Depolarization state; Region-
4: Repolarization and hyperpolarization state (also known as refractory period). d, Different
firing modes of the VO, neuron by simply changing the current of cell 1 (I1 from 1 mA to 5.2
mA), while keeping the current to cell 2 (I=4 mA) and thermal cell (Icen = 2.3 mA) fixed. Data
from [121].

The output waveform of cell 2 is similar to the spiking potential of a neuron when it is
stimulated. In biological systems, neurons possess abundant and complex responses to external
stimuli so that various spiking neuron models have been established, including tonic spiking
and bursting, phase spiking and bursting [125]. As demonstrated in Fig. 4c, the output
waveform of cell 2 incorporates four typical regions equivalent to when a neuron transforms

from a resting state to an excited state [13]. Region-1 corresponds to the resting state when the
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neuron is not excited and its potential remains at the resting voltage level. Region-2 is when the
stimulation arrives and triggers the neuron potential to rise. Region-3 corresponds to the
depolarization state where the potential exceeds the threshold and releases a spike. Region-4 is
the repolarization and hyperpolarization state (also known as refractory period) where the
potential recovers back to the resting state. By simply adjusting the current through cell 1
(between 1 mA and 5.2 mA) while keeping the currents through cell 2 and the thermal cell fixed
(l2=4 mA, lcen= 2.3 mA), different numbers of spikes (5 different neuron firing modes) can be
generated within one firing period from cell 2, as shown in Fig. 4d. Among these 5 firing modes,
mode 1 and 2 can be considered as tonic spiking neurons that fire one spike within one period,
while mode 3, 4 and 5 can be compared to tonic bursting neurons that fire multiple spikes
periodically [126 - 128]. Details of synchronous waveforms from cell 1, cell 2 and thermal cell

are shown in Appendix.

Neural network based on the H-H neuron model with bursting properties like high frequency,
high reliability, and strong stimulation to postsynaptic neurons, has the advantages of triggering
responses very quickly by incoming signals compared with traditional computing platform, and

has been applied in the robot system for avoidance control very recently [129].

5.2 VO3 Oscillators-based LIF Neuron

Leaky integrate-and-fire (LIF) neuron, as introduced in section 2.2.2, is the simplified version
the Hodgkin-Huxley (H-H) neuron with one channel dynamics. The advantages of using LIF
neuron to construct large-scale spiking neural network (SNN) at current stage are that: 1. The
neuron model has lower complexity, and hence will be easier to manipulate and tune its
properties; 2. Abundant algorithms studied by previous works have made it straight forward to
choose the most optimal computing architecture depending on different learning rules
(supervised or unsupervised), as introduced in section 2.2.3. Thus, in the following sections,
hardware implementation of LIF neuron by thermally coupled VVO: oscillators, and large-scale

SNN based on VO LIF neurons will be studied and discussed.

A cross-section transmission electron microscopy (TEM) image of the VO3 thin film sample
on sapphire substrate is shown in Fig 5.2a. A schematic illustration of the LIF neuron realized
by thermally coupled VO oscillators is provided in Fig 5.2b. When the current is gradually
increased across a VO, oscillator (3x3 pum?) the voltage starts to drop at ~ 1.2 mA, thereby

showing negative differential resistance, as shown in Fig 5.2c inset down right. In the current
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range between 2.5 mA and 4.9 mA, the voltage across the device oscillates with a frequency
which increases with the magnitude of the current, as shown in Fig 5.2c middle. At higher
current values (>5 mA) the device becomes fully metallic and no longer oscillates. When two
VO; oscillators (each 3x3 um?) are closely spaced (1.5 pm), a very strong thermally coupled
behavior can be observed. In Fig 5.2d, device 2 was set with a constant current I, = 1.0 mA,
which is below the threshold current to oscillate (2.5 mA). By gradually increasing the current
for device 1 (11 from 2.4 mA to 4.8 mA), device 2 can be thermally triggered to oscillate at the
same frequency as device 1. Fig 5.2d shows synchronous waveforms at 11 = 2.4 mA, 1= 1.0
mA (inset left), and 1. = 4.5 mA, 1= 1.0 mA (inset right), respectively. The frequency of device
2 (f2) and device 1 (f1) can be synchronized from 7.5 kHz to 37.7 kHz, indicating a very strong
thermal coupling between them. The current-driven self-sustained oscillation and thermal

triggering effect between two oscillators has been discussed in the previous section 4.1.
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Fig 5.2. VO2 leaky integrate-and-fire (LIF) neuron. a, TEM cross section image of a VO
device, provided by Zihan Yin. b, I-f curve of a single VO2 device. The onset shows the I-V
curve of the same device. ¢, Frequency locking of two VO oscillators. Inset shows waveforms
of two VO devices which are thermally coupled.

Next, the LIF neuron functionalities from two thermally coupled VO, oscillators will be
demonstrated. Device 2 (orange) is set at a constant current (I>=-1.0 mA) and acts as a trigger
for output spikes. Device 1 (green) receives input spike currents and serves as the leaky
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integrate-and-fire component. The input spike current to device 1 is defined by a ramp
waveform: Offset at 1.93 mA, amplitude at 1.3 mA, frequency at 30 kHz, and duty cycle at
90%. A specific number of current spikes can be sent to device 1 by changing the duration cycle.
Fig 5.2a to Fig 5.2e show the output response of the devices with increasing number of current
spikes to device 1. When only one spike is sent (Fig 5.2a), the voltage of device 1 (V1, green
curve) relaxes back to the offset level (3.3 V). Meanwhile, the voltage of device 2 (V2, orange
curve) remains at its rest state. With increasing magnitude of the input spike V1 gradually builds
up and then the voltage relaxes back to the offset level when the incoming spikes are lifted, as
shown in Fig 5.2b — which corresponds to “leaky integration” behavior. In Fig 5.2c, when V1
reaches the threshold voltage (Vi) at 4.2 V after 6 input spikes, device 1 undergoes a phase
transition to a low resistance state, thermally triggers device 2 to “fire” a spike (phase transition),
and then device 1 slowly recovers back to its high resistance state. This long recovery time of
device 1 can be taken as the “refractory period” of the LIF neuron. Interestingly, during the
refractory period, it takes more input spikes (7 spikes) to integrate and trigger the second firing
event, as shown in Fig 5.2d and e. By changing the amplitude or the offset level (or both) of
the input spike current to device 1, the number of input spikes integrated by the VO, LIF neuron
can be tuned, as summarized in Fig 5.2f. With larger amplitude (stronger stimuli), or higher
offset level (more sensitive neuron), a smaller number of input spikes are needed for the VO>
LIF neuron to integrate and fire.
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Fig 5.3. Operation and tunability of VO2 leaky integrate-and-fire (LIF) neuron. VO: LIF
neuron integrates (a) 1, (b) 3, (c) 6, (d) 9, and (e) 13 input spikes. f, Tunability (number of
integrated spikes) of the VO LIF neuron by different input spike amplitude and offset level.

Next, a temporal integration function realized by two VO. LIF neurons is demonstrated in Fig
5.4. An 8x10 pm? VO, spike generator (supplied with constant current at -0.74 mA) is used to
integrate the spikes generated from two 4x6 um? VO, LIF neuron at its left (2 um spacing) and

right (2 um spacing) side, as shown in Fig 5.4a and b.

d
Current source
Input Input
2 spike spike
=)
3 3 5
i A
Neuron 1 ﬁ Neuron 2
C 8F l IN(—::uroln inlputl1 o Néurc;n inputI2 S l -
—— Output spiking voltage
6L
S
4t
2 NW llw | l’\ |
Sot ittt
O
> O | _
-2} hoA Y \ A\ A
1 NNV

0'123456789'10
Time (ms)

00

Voltage (V)
S

o

0.4 0.6 0.8 1.0 4.4 4.8 5.2 10.0 10.2 104 10.6
Time (ms) Time (ms) Time (ms)

Fig 5.4. Temporal integration function realized by two VO2 LIF neurons. a, Optical
microscopy image of VO2 LIF neurons. b, Schematic illustration of electrical connection. c,
Post-LIF neuron output voltage (orange curve) integrates two pre-LIF neuron voltages (green
and purple curves). Inset down left is sector 1, inset down middle is sector 2, inset down right
is sector 3.

69|Page



Both LIF neurons (green and purple curves) receive input spikes with the same frequency and
amplitude (Ramp type, offset: 1.05 mA, amplitude: 4.0 mA, frequency: 12 kHz). Only when
both LIF neurons are firing simultaneously (sector 2 in Fig 5.4c), the spike generator (orange
curve) will be triggered to fire spikes. When only one LIF neuron is firing while the other one
is at its rest state (sector 1 and 3 in Fig 5.4c), the spike generator will not be triggered to fire

spikes.
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Fig 5.5. Temporal modulation function realized by two VO2 LIF neurons. a, Optical
microscopy image of VO2 LIF neurons. b, Schematic illustration of electrical connection. c,
Post-LIF neuron output voltage (orange line) modulates two pre-LIF neuron voltages (green
and blue curves). Inset down left is sector 1, inset down middle is sector 2, inset down right is
sector 3.
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Next, a temporal modulation function is demonstrated in Fig 5.5. An 8x10 pm? VO spike
generator (set with a constant current at -0.5 mA) is used to integrate the spikes generated from
two 4x10 um? VO3 LIF neuron at its left (2 um spacing) and right (2 um spacing) sides, as
shown in Fig 5.5a and b. Two LIF neurons receive input spikes with different frequencies and
amplitudes (Input to LIF neuron 1 (blue curve): Offset: 1.1 mA, amplitude: 6.7 mA, frequency:
20 kHz; Input to LIF neuron 2 (green curve): Offset: 1.2 mA, amplitude: 2.8 mA, frequency:
12 kHz. Both ramp type). Each LIF neuron can trigger the spike generator (orange curve) to
spike at different frequencies and amplitudes, when the other one is at its rest state (sector 1 and
3 in Fig 5.5c). When both LIF neurons are firing at the same time (sector 2 in Fig 5.5c), the

integrator will be triggered to fire spikes at a modulated frequency and amplitude.

5.3 Large-scale SNN based on VO LIF Neurons

As introduced in section 2.2.3, spiking neural network (SNN) consists of leaky integrate-and-
fire (LIF) neuron can use surrogate gradient-based supervised learning rule for training. In this
section, the fitting for experimental data to extract two critical parameters for the LIF neuron:
Leakage time constant and refractory period time constant, will be first carried out. Then,
larger-scale SNN based on the extracted experimental data will be constructed by software
program. Different network architectures, training parameters will be tested to evaluate the

network performance on MNIST handwritten digits dataset.

The equivalent electric circuit of LIF neuron can be described in equation (2.2.2.2) for a resistor
and capacitor connected in parallel. The neuron potential U(t) (after the input is removed)

during the relaxation process is fitted by the following equation:

t

U(t) = Ug - exp (_ ) + Urest (5.3.1)

Tleak

Where 7ieak IS the leakage time constant, Urest is the rest potential level, and Uo is the neuron
potential after input. Fig 5.6 shows the fitting of experimentally measured potential of a VO

based LIF neuron after 3 input spikes. From the fitting, zieax is found to be 95 ps.
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Fig 5.6. Experimental neuron potential and fitting of the relaxation process. Fitting of
experimentally measured potential of a VO based LIF neuron after 3 input spikes.

Fig 5.7 shows the measured potential of the LIF neuron after 6 input spikes. The neuron
potential U(t) during the refractory period is fitted by the following equation:

U(E) = Uyogr — Unggor * €XP (— T:ef) (5.3.1)

Where tvef IS the refractory period time constant, Urest is the rest potential level, and Ureset is the
reset constant after the neuron has fired. From the fitting, zrer is found to be 70 ps.
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Fig 5.7. Experimental neuron potential and fitting of the refractory period. Fitting of
experimentally measured potential of a VO2 based LIF neuron after 7 input spikes.
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The experimental data of the VO LIF neuron are then used for constructing the one-layer large-
scale SNN shown in Fig 5.8a. During the training process, every pixel (28x28 pixels) in the
MNIST handwritten digit image was encoded into spike trains. The number of spikes in each
spike train is proportional to the gray scale of the pixel (described by the Poisson distribution).
After that, the spikes were injected into the LIF neuron layer through first synapse connection
layer (simulated by the program). The output spikes from the LIF neuron layer then severed as
input and were injected into the output layer through the second synapse connection layer. The
output layer consists of 10 output neurons, each of them was taught to recognized digit 0 to 9,
respectively. Since the training process was governed by the supervised learning rule, each
input digit already had a label indicating the desired output. As a result, during forward pass,
where the data stream flowed from the input to output, the neurons in the output layer will give
out different number of spikes depending on the input digit. Their output will then be compared
with the target output, and the errors were then corrected during the backpropagation with
surrogate gradient (introduced in section 2.2.3) through backward pass from the output layer to
the first synapse connection layer, as shown in Fig 5.8b. After several training epoch, the

system will reach the most optimal output that provide the minimum MSE (mean squared error).
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Fig 5.8. Large-scale spiking neural network based on VO2 LIF neurons. a, Network
architecture. b, Data flow in forward pass and backward pass during training.

As introduced in section 2.2.3, in order to reach global optimal solution, errors are described as
loss function to be differentiated by every weight parameter. In this sense, one of the most
critical training parameters is the learning rate a, which determines how large the update step

(for a single parameter) is during training. It is defined as:
w; = w; — a%L(wi) (5.3.2)
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Where w; is the i" weight parameter to be updated, L(wi) is the loss function that incorporates

the parameter wi defined in equation (2.2.3.9).
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Fig 5.9. Tuning the learning parameter. a, Different conversion route in the minimizing the
loss function set by different learning rates. b, Confusion matrix with a precision of 10%. c,
Confusion matrix with a precision of 80%. d, Confusion matrix with a precision of 87%.

Imagine the loss function describes the system energy landscape, and the most optimal output
is the global energy minimum point, shown as the village with green flag in Fig 5.9a. When the
learning rate is set to be too large, the gradient decent might overshoot the minimum and fail to
converge, or even diverge and end up at other high energy point, as shown in Fig 5.9a the
yellow arrows. However, when the learning rate is set to be too small, the gradient decent could
be too slow, or even be trapped in the local minimum surrounded by high gradients, causing it
difficult to escape from them, as in Fig 5.9a the orange arrows. Only when the learning rate is
set properly, the system can converge to the global energy minimum point, and provide the
most optimal solution, as shown in Fig 5.9a the green arrows. Fig 5.9b to Fig 5.9d provide the
results with different precision trained from different learning parameters. It is called the
confusion matrix. “Neuron index” represents digit each neuron in the output layer is trained to

learn, while the “Digit number” corresponds to the input digit needs to be recognize. In the most
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optimal case, every neuron should fire with the highest firing rate when the input digit is the
one it is supposed to recognize. Fig 5.9b shows the case when the learning rate was set to be
too large, and the network only reached a precision of 10%. Fig 5.9¢c shows the case when the
learning rate was set to be too small, and the network only reached a precision of 80%. Fig 5.9b
shows the case when the learning rate was correctly set, and the network reached a precision of
87%. When the SNN is well trained, a clear diagonal line in the confusion matrix with small

noise points should present.
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Fig 5.10. Training accuracy based on different percentage of defects. a, 2-layer spiking
neural network architecture. b, 2-layer spiking neural network with 5% defect in the first layer
and 10% defect in the second layer. c, 2-layer spiking neural network with 15% defect in the
first layer and 15% defect in the second layer. d, Comparison of recognition precision of
network with different numbers of defect points.

In order to improve the accuracy, one more layer of VO2 LIF neurons was added to the network
architecture, as shown in Fig 5.10a. Besides, in order to take device variability into account,
i.e., defect devices that do not properly function: Different numbers of defect points (neuron is
kept silent/removed) were introduced into both LIF neuron layers, as shown in Fig 5.10b and
c. From the comparison of precision plotted in Fig 5.10d, it can be observed that, the system

with up to 15% of defects in each LIF neuron layer can still maintain the performance of 90%
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recognition accuracy, which has demonstrated good robustness against device variability. In
order to have the least number of neurons with the least connection complexity, but with the
same performance, the 2-layer architecture of SNN with 150 VO2 LIF neuron was chosen, as

shown in Fig 5.11.
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Fig 5.11. 2-layer SNN with 150 VO2 LIF neuron. a, Schematic illustration of the spiking
neural network with 150 VO2 LIF neurons. b, Test accuracy (90%) and confusion matrix for
MNIST digit recognition after 300 epochs of training.
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Chapter 6 Conclusion and Outlook

This thesis provides an innovative approach for building energy-efficient oscillatory
computational network. In the first part, the scalability of self-sustained VO_ oscillators driven
by a single constant current source have been experimentally demonstrated. VO, oscillators
scaled with size down to 200 nm show substantially reduced energy consumption and higher
operating frequency. A pair of thermally coupled VO oscillators are used as computational
elements — in which the exchange of thermal energy between oscillators increases the total
energy efficiency. A tunable thermal coupling mechanism between two closely spaced VO
oscillators has been introduced in which any external electronic components are not required.
By altering the excitation source (voltage or current) to the thermal cell placed between two
VO, oscillators, the thermal coupling strength can be tuned and the range of synchronization
frequency of the oscillators can be enlarged. Such synchronized oscillators with tunable thermal
coupling were demonstrated for traditional Boolean-type computations as AND, NAND and
NOR gates.

Conceptually, this thermally assisted frequency synchronization process can also be considered
as the signal propagation in the neural system. The action potential that contains data is
modulated in frequency (or amplitude, or both) and propagates from a pre-synaptic neuron to a
post-synaptic neuron through a synapse [130, 131]. During this process, the action potential is
transmitted through the synapse via releasing a neurotransmitter from the axon of the previous
neuron to the dendrite of the next neuron [132]. One VO oscillator (device 1) acts as a post-
synaptic neuron while the other VO oscillator (device 2) acts as pre-synaptic neuron,
respectively. These two VO2 neurons communicate via an oscillating potential, similar to the
above-mentioned neurons in the biological system. Structurally, the thermal cell is equivalent
to the synapse. The post-synaptic neuron is supplied with a constant low current and, thus, will
only output a low frequency signal when it is not synchronized to the pre-synaptic neuron.
Information is encoded in the domain above the threshold frequency where device 1 and device
2 desynchronize when synapse (thermal cell) is deactivated, and is fed into the presynaptic
neuron as a continuously varying current (frequency-modulated). There is no synchronization
between neurons in the frequency range where information is encoded. As a result, all
information from the pre-synaptic neuron (device 2) is lost while propagating to the post-
synaptic neuron, as shown in Fig 6.1a. When synapse (thermal cell) is activated, meaning that

a neural link has been established and two VO neurons are synchronized, the information can
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be transmitted to the post-synaptic neuron, as shown in Fig 6.1b. Such a mechanism can also
be applied for frequency modulated data transmission in an analog network for non-Boolean
operations.
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Fig 6.1. Frequency modulated information transmission in an oscillatory neural system.
a, Schematic illustration of the case when pre-synaptic neuron and post-synaptic neuron are
desynchronized (synapse deactivated) at the frequency domain where information is encoded.
b, Schematic illustration of the case when pre-synaptic neuron and post-synaptic neuron are
synchronized (synapse activated) at the frequency domain where information is encoded.

In the second part, cascade synchronization among three VO: cells have been demonstrated to
realize the Hodgkin-Huxley (H-H) neuron model. By simply changing the current to one of the
coupled VO3 cells, which gives rise to the release of an oscillating thermal energy, five different
firing modes including spiking and bursting can be generated from the coupled oscillators.
Critical functionalities needed for a leaky integrate-and-fire (LIF) neuron including leaky
integration, triggered spiking, and a refractory period is experimentally demonstrated by using
thermally coupled VO oscillators without any external electronic circuit components. In
addition, the VO LIF neuron shows good tunability for integrating different numbers of spikes.
Simulation of a large-scale spiking neural network based on 150 VO LIF neurons results in an
accuracy of 90% for the recognition of hand-written digits. Furthermore, two complex functions:

temporal integration and modulation can be directly realized by interacting VO LIF neurons.
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We believe that such a current-driven firing behavior and a tunable thermal triggering technique
can be readily utilized for coding an artificial spiking neural network, in which the output spikes
(numbers and firing time) depend on the intensity and spatiotemporal distribution of the input
signal [133, 134]. Such a network of thermally coupled VO: oscillators with tunable
interactions can also be highly useful for solving different types of computationally hard

problems such as pattern classification and combinatorial problems [1, 135, 136].

The VO; oscillatory computational network developed in this thesis can be readily connected
to non-volatile memories for storage of the output for further analysis. Magnetic memory with
high storage density such as multi-bit racetracks [137] is a very promising candidate. Spikes
generated from the VO oscillatory computational network that incorporates with temporal
information, can be directed injected into the racetrack memory, and later be traced and
analyzed in the phase plane. Such computational system equipped with both short-term memory
(VOz2 neuron) and long-term memory (memory; e.g., racetrack memory, memristor, etc.) can
be further studied and developed to handle complex tasks that deal with temporally correlated

data like natural language processing, time-series prediction and etc.
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Appendix

Electrical transport measurements of VO2 2.5D array
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Fig Al. I-V measurement from 20 VO: devices. I-V measurement (current is varied while
measuring voltage) of 20 VO, devices (3 x 3 pm?).
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Fig A2. I-f measurement from 10 VO devices. I-f measurement (current is varied while
measuring oscillation frequency) of 10 VO3 devices (3 x 3 pm?).
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Finite element simulations of the thermal coupling between VO2 devices
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Fig A3. Simulation of one VO: device in its sub-threshold transition state that is triggered
to oscillate by a neighboring oscillating VO2 device at a 2 pm spacing. Temperature
distribution of two VO- devices. a, Device 1 (5 um x 5 pm x 30 nm) is supplied with 0 mA
current (no oscillation), while device 2 (5 um x 5 um x 30 nm) is supplied with 2.3 mA current
(sub-threshold transition state) at 295 K. Black squares correspond to the VO2 devices. b,
Temperature distribution versus x-axis (dashed line) in case a. When device 1 is turned off, the
temperature of device 2 is ~327 K that is lower than the phase oscillation temperature range
(330- 360 K). c, Device 1 is supplied with 2.8 mA current (stable oscillation state), while device
2 is supplied with 2.3 mA current (sub-threshold transition state) at 295 K. d, Temperature
distribution versus x-axis (dash line) in case c. Simulation shows that, due to the heat dissipated
from device 1, the temperature of device 2 (334 K) has been raised to the phase oscillation
temperature range (330 - 360 K). Data from [121].
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Fig A4. Simulation of two VO:2 devices in a stable oscillation state. a, Temperature
distribution of two VO3> devices (both 5 um x 5 um x 30 nm, with 2 pm spacing) when they are
each supplied with 2.8 mA current (11 = I2) at 295 K. Black squares correspond to the VO>
devices. b, Temperature distribution versus x-axis (dash line). When both devices are in a stable
oscillation state, their temperature (340.5 K) stays within the phase oscillation temperature
range (330 - 360 K). Data from [121].

To study the steady effect of Joule heating, we numerically simulated the temperature
distribution of a set of VO devices each with dimensions of w x w x t. Here only t = 30 nm is
considered. The VO_ devices were placed on a sapphire (Al2O3) substrate that had the
dimensions of 50 um (length) x 50 pm (width) x 30 pum (thickness). The bottom and edges of
the substrate were fixed at a constant temperature of 295 K. Only heat transfer between the

sapphire and the VO2 devices is considered. The steady-state heat transfer was modelled with:
—V-(kVT) =Q

Where «, T, Q are the thermal conductivity, temperature, and heat density, respectively. The
liner relationship between the power consumption of the entire device P and device width w

can be solved from the above equation as:

Px4mw-AT -x-w

0|Page



350 T T T T T T T T T T T

345

340 |-

Thermal cell
340 g 335 .
Cell 1 Cell 2 ‘ g
p— 2 330
o
330 )
o } 3 o 325}
§
e 320+
Thermal
315 Cell 1 cell Cell 2
— ~
o 310 | (P NOs N ¥O:
Sapphire
305 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300 9-8-76-5-4-32-10122345€67289
360 X(”m)
(d 35 —————1T"—"T"—"T"T"—T—T T T T

345 -
350

340 |-

Thermal cell
R R
Cell 1 ell 2 o
2 330 F
1330 E
L o
Q 3251
£
(0]
20 320}
Thermal
315 | Cell 1 cell Cell 2
310 a0 L Vo, Vo, Vo,
Sapphire
305 1 1 L Il 1 1 1 1 1 1 1 1 1 1 1 1
20 98-76-5-43-2-10122345@672829
X (um)

Fig A5. Simulation of VO2 neuron firing mode 3. Temperature distribution of two VO>
devices (with 5 um spacing) and thermal cell. a, Device 1 (7 pm % 6 um x 30 nm) is supplied
with 1.7 mA current (no oscillation), while device 2 (7 um x 6 um x 30 nm) is supplied with 4
mA current (stable oscillation state) at 295 K. The thermal cell (21 um x 1.5 um x 30 nm) is
off (lcen = 0). Black squares correspond to the VO2 devices and thermal cell. b, Temperature
distribution versus x-axis (dash line) in case a. When the thermal cell is off, the temperature of
device 1 (around 314 K) is lower than the phase oscillation range (330 - 360 K). c, Device 1 is
supplied with 1.7 mA current, while device 2 is supplied with 2.3 mA current at 295 K. The
thermal cell is on (lcen = 2.3 MA). d, Temperature distribution versus x-axis (dash line) in case
c. Simulation shows due to the heat dissipated from thermal cell, the temperature of device 2
(336 K) has been raised to the phase oscillation temperature range (330 - 360 K). Data from
[121].

91|Page



(a)’

AND Operat ANDOp ratio
tA=0): V-cell =7 V (input B = 1) utA = 1) V-cell = 0 V (input B = 0) Devi 2(\p|A L Nel=TV inputB =1)
7 TH— put AB = 0) 4 7 «pma 0 7 -—— Device 1 (output AB=1) 4

— — = f —
s s | s ‘ ‘ | 1se
o [ [ (]
85 &8s ‘ 185 85t ‘1 ‘ ,‘ ]
° ° | ) o
>, >, f f 1= > L0 \ ]
‘ / / | ! i i | | [ 1Al \ I ‘ 1!
3 3 Il Lo ] S T [t T O AR 3"”‘\‘\‘ ‘\‘\‘\‘l“"
! | W
VA K BEERRRERRRER ARERRRRRRERE
. . ! . . 2 \ . 2 L . h P S 2
-300 200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
Time (us) Time (us) Time (us) Time (us)
8 8 8
( b) NAND Op ratio NAND Operation NAND Oper NAND Operation
HmA 0): Vcell =0 V (input B=0) Device 2 (Input A = 0); V-cell =7 V (input B=1) Device put A = 1); V-cell =0V (input B=0) Device 2 (Input A= 1); V-cell =7V (input B = 1)
1 (output AB=1) 7 |- —— Device 1 (output AB =1) Bl 7 - ——Device 1 (oul tptAE! 1) Bl T - —— Device 1 (out tptAE 0)

o

T'AMMMA S

Voltage (V)

& o

Voltage (V)

Voltage (V)
o

Voltage (V)
o o
——

w

4 4t
TARTar
| |i1
3 | 3 [RIRIRIRIRIRY 1 3l
ANt . B AP
{ | y Y by ! I i /
2 . . . , , 9 . . . . . 2 . . 2 . f . . /
-300 200 -100 0 100 200 300 -300 200 -100 0 100 200 300 -300 —200 100 0 100 200 300 -300 -200 -100 0 100 200 300
Time (us) Time (us) Time (us) Time (us)
8 8 8 8
(C) NOROp NOROp NOROp MOR Operation
Dev 2(\u‘A n)v{en 0V (input B=0) [ptA m\/ el =7 V (inputB = 1) [ptA wv ell= 0 V (input B = 0) Dev zu;nA w)v ell=7 V (input B =1)

7 -——Device 1 {output A 7——Dev 1 (output A¥B =0) 4 7 —Dev 1 (output A 4 7 F——Device 1 (output AFB =0)
s ‘ ﬁ ﬂ 1 A s or s6 S 6t
) ‘ -3 <3 )
g5 L g5 g s
o o o o
> g4l & > 4l > 4 > 4l

Yy
Y I ¥ i

r MJWJW/%JWJM 1 3 v’“\f’\f\ﬂ”\.’\-%ﬂﬂm”'W 1 Hi

2 2 2 2
300 200 100 O 100 200 300 ‘300 200 -100 O 100 200 300 300 -200 -100 O 100 200 300 300 -200 -100 O 100 200 300
Time (us) Time (us) Time (us) Time (us)

Fig A6. Output waveforms of Boolean logic gates. a, AND gate operation. b, NAND gate
operation. ¢, NOR gate operation. Data from [121].

Cascade synchronization among VO: oscillators and the thermal cell
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Fig A7. Oscillation frequency as a function of applied d.c. current (I-f). Device 1 (VO- cell
2, 7 x 6 um?) shown as green line, device 2 (VO cell 1, 7 x 6 um?) shown as orange line and
thermal cell (1.5 x 21 um?) shown as blue line. Data from [121].
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Fig A8. VO: neuron firing mode 1. a, Spiking neuron firing mode 1 at I1 = 4 mA (supply
current of VO3 cell 1), 12 = 4 mA (supply current of VO cell 2) and lcen = 2.3 mA (supply
current of thermal cell). b, 11 =4 mA, 12 =4 mA and Icn = 0 mA. Data from [121].
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Fig A9. VO2 neuron firing mode 2. a, Spiking neuron firing mode 2 at I = 3.9 mA (supply
current of VO3 cell 1), 12 = 4 mA (supply current of VO cell 2) and lcen = 2.3 mA (supply

current of thermal cell). b, 11 = 3.9 mA, 12 =4 mA and Icn = 0 mA. Data from [121].
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Fig A10. VOz2 neuron firing mode 3. a, Spiking neuron firing mode 3 at I, = 1.7 mA (supply
current of VO3 cell 1), 12 = 4 mA (supply current of VO- cell 2) and lcen = 2.3 mA (supply
current of thermal cell). b, 1. = 1.7 mA, 12 =4 mA and lcen = 0 mA. Data from [121].
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Fig All. VO2 neuron firing mode 4. a, Spiking neuron firing mode 4 at 1, = 5.2 mA (supply
current of VO3 cell 1), 12 = 4 mA (supply current of VO cell 2) and lcen = 2.3 mA (supply
current of thermal cell). b, 11 =5.2 mA, 12 =4 mA and lcen = 0 mA. Data from [121].
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Fig A12. VOz2 neuron firing mode 5. a, Spiking neuron firing mode 5 at 11 = 1 mA (supply
current of VO3 cell 1), 12 = 4 mA (supply current of VO cell 2) and lcen = 2.3 mA (supply
current of thermal cell). b, 11 =1 mA, I2 =4 mA and Icen = 0 mA. Data from [121].
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