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List of symbols and abbreviations

This list serves as a reference for symbols and abbreviations that are not explained at
each individual occurrence in the text.

Genes and proteins
GFP Green fluorescent protein
IκB Inhibitor of κB
IKK Inhibitor of nuclear factor κB
Hes1 Hairy and enhancer of split-1 protein
HOG High osmolarity glycerol
Hog1 High osmolarity glycerol response protein 1
Hog1-PP Phosphorylated high osmolarity glycerol response protein 1
NF-κB Nuclear factor “κ-light-chain-enhancer” of activated B-cells
Mdm2 Mouse double minute 2 homolog
p53 Protein 53
TNF-α Tumor necrosis factor-α

Further abbreviations
DDE Delay differential equation
DNF Delayed negative feedback
IPTG Isopropyl β-D-1-thio-galactopyranoside
NaCl Sodium Chloride
M Molar mass
ODE Ordinary differential equation
SSR Sum of squared residuals
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Abstract

Intracellular networks have a complex structure. Despite their complexity they are
formed from a small set of recurring regulation patterns called network motifs. This
manuscript is dedicated to studying one of these network motifs called negative feed-
back.
Negative feedback in combination with time delay can cause several characteristic

response patterns of the cellular system including an overdamped response, damped
or sustained oscillations. In order to understand this complex behaviour I construct
generic two-dimensional models of delayed negative feedback by means of delay differ-
ential equations and subject them to mathematical analysis.
As a result, I derive explicit thresholds and boundaries showing how time delay

determines characteristic response patterns of delayed negative feedback systems. In
addition, I investigate the influence of several design features on the stability of the
model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the
kind and/or strength of the delayed negative feedback. I show that auto-inhibition
and mass conservation have a stabilizing effect on the model equilibrium. In contrast,
increasing abruptness and decreasing feedback threshold have a de-stabilizing effect.
Further, I apply my theoretical analyses to concrete data. I show that adaptation to

osmotic stress in yeast is optimal in the sense of minimizing adaptation time without
causing oscillatory behaviour, i.e., a critically damped response. I also claim that a
slight increase of time delay in NF-κB system might induce a switch from damped to
sustained oscillatory behaviour. For the mammalian p53 system I show that an auto-
inhibitory feedback can decouple period and amplitude of an oscillatory response,
whereas the delayed feedback cannot.
Using my theoretical analysis, I suggest a design of a synthetic intracellular network,

which contains delayed negative feedbacks and can switch between adaptive behaviour
and sustained oscillations in a controlled manner.
Finally, I present a technique showing how to approximate delay differential equa-

tions using ordinary differential equations. The approximated system can be further
analysed by means of common mathematical theory and computational software de-
veloped for analysis of ordinary differential equations.
Taken together, my thesis provides insights into how time delay and design fea-

tures of biochemical networks containing delayed negative feedback act together to
elicit specific characteristic response patterns of network components. My theoretical
framework is useful for engineering synthetic networks and controlling their behaviour
in response to external stimulation.
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Deutsche Kurzfassung

Die Stabilität und Regelung der verzögerten negativen
Rückkopplung in biochemischen Netzwerken

Intrazelluläre Netzwerke haben eine komplexe Struktur. Trotz ihrer Komplexität sind
sie aus sich wiederholenden regulären Mustern, die Netzwerkmotive genannt werden,
aufgebaut. Dieses Manuskript wird der Untersuchung einer dieser Netzwerkmotiven,
der negativen Rückkopplung, gewidmet.
Die negative Rückkopplung in Kombination mit einer Zeitverzögerung kann unter-

schiedliche charakteristische Antwortmuster des zellulären Systems verursachen, zum
Beispiel eine übergedämpften Antwort, gedämpfte Schwingungen oder Dauerschwin-
gungen. Um dieses komplexe Verhalten zu verstehen, konstruiere ich generische zwei-
dimensionale Modelle einer verzögerten negativen Rückkopplung durch verzögerte Dif-
ferentialgleichungen und unterziehe diese einer mathematischen Analyse.
Als Ergebnis erhalte ich explizite Schwellenwerte und Grenzen, die definieren, wie die

Zeitverzögerung das charakteristische Antwortmuster von Negativrückkopplungssyste-
men definieren. Zusätzlich untersuche ich die Wirkung von bestimmten Systemdesigns
auf die Stabilität des Modellgleichgewichts. Das sind die Präsenz von Autoinhibition
und/oder Massenerhaltung und die Art und Stärke der verzögerten negativen Rück-
kopplung. Ich zeige, dass Autoinhibition und Massenerhaltung einen stabilisierenden
Effekt auf das Modellgleichgewicht haben. Im Gegensatz dazu haben die wachsende
Steilheit und der fallende Rückkopplungsschwellenwert einen destabilisierenden Effekt.
Ich wende meine theoretischen Analysen auf spezifische experimentelle Daten an.

Ich zeige, dass die Adaptation auf den osmotischen Stress in der Hefe optimal ist.
Das Adaptationsoptimum wird in dem Sinne von Minimierung der Adaptionszeit ohne
Oszillationen zu verursachen, d.h. eine kritische gedämpfte Antwort, betrachtet. Ich
behaupte, dass eine schwache Erhöhung der Zeitverzögerung in dem NF-κB-System
einen Wechsel von einem gedämpften zu einem Dauerschwingungsverhalten verursa-
chen kann. Für das p53 Säugersystem zeige ich, dass die Autoinhibitionsrückkopplung
die Periode und Amplitude der oszillatorischen Antwort entkoppeln kann. Im Gegen-
satz dazu kann die verzögerte negative Rückkopplung dies nicht.
Durch Nutzung meiner theoretischen Analyse schlage ich einen Aufbau von einem

synthetischen intrazellulärem Netzwerk vor, das verzögerte negative Rückkopplungen
enthält und zwischen dem adaptiven Verhalten und Dauerschwingungen in kontrollier-
ter Form wechseln kann.
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Deutsche Kurzfassung

Schließlich präsentiere ich eine Technik, wie man verzögerte Differentialgleichungen
durch gewöhnliche Differentialgleichungen annähern kann. Das angenäherte System
kann weiter durch die gewöhnliche mathematische Theorie und Berechnungssoftware,
die für die Analyse von gewöhnlichen Differentialgleichungen entwickelt wurde, analy-
siert werden.
Zusammengenommen gibt meine Dissertation Einblick, wie die Zeitverzögerung

und das Design von biochemischen Netzwerken, die verzögerte negative Rückkopp-
lungen enthalten, zusammen agieren um spezifische charakteristische Antwortmuster
von Netzwerkkomponenten hervorzurufen. Meine Theorien sind nützlich für die Ent-
wicklung von synthetischen Netzwerken und Steuerung ihres Verhaltens in Reaktion
auf externe Stimulation.
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1 Introduction

1.1 Modelling biological systems

Biological systems including organisms, cells and molecules have complex structure
and fulfil various functions. Often biological processes happening in these systems
are also complex and intuitively unclear. Biologists perform experiments and build
hypotheses to understand individual processes. However, it is hard to combine results
obtained for distinct processes into a big picture. In this case, mathematical modelling
is a useful tool, which can assist in understanding the nature and dynamics of these
processes, derive predictions about their behaviour and reveal interactions between
their components [53]. The mathematical and computational modelling of complex
biological systems is often called “systems biology”. Here, I would like to cite the
statement of the British biologist Denis Noble concerning systems biology [82]:
“Systems biology...is about putting together rather than taking apart, integration

rather than reduction. It requires that we develop ways of thinking about integration
that are as rigorous as our reductionist programmes, but different....It means changing
our philosophy, in the full sense of the term.”

1.1.1 What is a model?

The definition of a model varies depending on the community and research field. In this
study, I refer to the model definition provided by the German scientist Edda Klipp [53]:
“In a broad sense, a model is an abstract representation of objects or processes that

explains features of these objects or processes...”
The way of abstract representation depends on the purpose of the model. In Fig. 1.1,

I depicted several types of models constructed for an example process. In the example
process, which may occur in a eukaryotic cell, an activator protein X increases the
expression of protein Y after an external cell stimulation S.
Thus, in order to understand molecular details of the process one may construct a

biological model. This model has a graphical form and contains detailed information
about molecular processes preceding the formation of the protein Y . One may ac-
quire this information by performing preliminary experiments and using established
biochemical knowledge.
Additionally, a model of a biochemical network may have the form of a wiring

scheme. The wiring scheme also has a graphical representation. However, in com-
parison to the biological model, the wiring scheme has a higher level of abstraction

1



1 Introduction

Figure 1.1: Chain of models of a biological process. The process describes
how the activator protein X increases the expression of the protein Y after the
external cell stimulation S. In order to represent this process, one may construct
a biological model, a wiring scheme, a process model or a mathematical model.
The biological system, where the example process takes place, is represented by
eukaryotic cells.

and represents only the relevant information. At this stage it is up to the modeller
to decide on the relevance of the information depending on the objective of the study.
In my example, I am interested in the dynamics of proteins X and Y as well as the
biochemical reactions and modifying influences between them. To this end, I omit
the information, how the active protein X binds the promoter of the gene Y , how
transcription and translation processes occur, etc.
Based on the wiring scheme one may construct a process model. The process model

describes individual processes, which occur in the system, in the form of chemical reac-
tions. Reaction rates are designated by variables vi, i = 1, . . . , 4. The parameter k2 > 0
designates the degradation rate of protein X. Parameters k3 > 0 and k4 > 0 designate
activation and degradation rates of protein Y . Activation and degradation rates can
be either experimentally measured or fitted based on the available experimental data.

2



1.1 Modelling biological systems

The process model can be formulated into a mathematical model. For this purpose
one may apply a variety of methods including Markov chains [1], Petri nets [16],
boolean networks [103], ordinary [88, 92] and delay [76] differential equations, etc. The
choice of the method depends on the objective of the study and available experimental
data. In Fig. 1.1 I depicted one of several possible dynamic models of the example
process by means of ordinary differential equations. Here, variables x and y designate
the amount of proteins X and Y , respectively, changing over time in the cell. I assume
that the initial amount of proteins before stimulation have values x0 ≥ 0 and y0 ≥ 0.
The mathematical model can be further analysed and simulated with certain parameter
values.
As a result, I presented a chain of models for the same biological process starting

with the biological model and ending with the mathematical model. The kind of model
used depends on the purpose of the modeller and objective of the study.

1.1.2 Why mathematical models?

Modelling is a subjective procedure, since the modeller decides what and how to put in
the model. However, a proper model is able to represent specific parts of a real system
and gain new insights into its functioning. In this context, I would like to mention the
statement of the British statistician George Box concerning modelling [18]:
“Essentially, all models are wrong, but some are useful.”
Thus, combining experiments and mathematical modelling leads to many advantages

for investigating complex biological systems in comparison with purely experimental
studies [53]:

• Mathematical modelling requires rigorous formulation of the verbal hypothesis.
This clarifies the concept of the study and specifies the research problem.

• Mathematical modelling reveals gaps in the knowledge of a specific system. Dur-
ing the modelling process the modeller defines components and interactions to
be specified experimentally.

• Mathematical modelling provides quantitative as well as qualitative predictions
of the system behaviour. Model simulations may indicate, which components at
which conditions and time points should be measured to support or reject the
hypothesis.

• Theoretical and numerical analyses of mathematical models may reveal mech-
anisms underlying complex behaviour of the biological system, e.g., bistability,
oscillations, etc.

• Mathematical modelling is cheap and fast in comparison with experiments.

3



1 Introduction

• Well designed mathematical models are re-usable and can be completely or partly
embedded in other models.

Thus, I may conclude that mathematical modelling in combination with experiments
is a powerful tool for approaching research problems of complex biological systems.

1.1.3 Differential equations

Using differential equations is an effective way to mathematically model the evolu-
tion of biochemical systems in continuous time [2, 54, 100]. There exist several types
of differential equations such as ordinary differential equations [20], delay differential
equations [25, 95], partial differential equations [29] and differential algebraic equa-
tions [57]. Depending on the purpose of the model the investigator decides which kind
of equations should be applied. In this thesis, I construct mathematical models using
ordinary and delay differential equations.

Ordinary differential equations (ODEs)
ODEs contain only one independent variable, the time t, and describe the dynamic
behaviour of a deterministic system on the same time scale in vector notation:

dx

dt
= f(t, p, x(t)),

x(0) = φ,

where x(t) = (x1(t), x2(t), . . . , xn(t))T is a vector of system components, f =
(f1, f2, . . . , fn)T is a vector of functions representing interactions between compo-
nents xi(t), the vector p = (p1, p2, . . . , pm)T represents parameters and the vector
φ = (φ1, φ2, . . . , φn)T is a non-negative constant vector describing initial values.

Delay differential equations (DDEs)
Similarly to ODEs, DDEs contain only one independent variable, the time t. However,
DDEs also include an explicit time delay τ . As a result, time derivatives at the current
time depend not only on the solution at the current time, but also on the solution at
the previous time:

dx

dt
= f(t, p, x(t), x(t− τ)),

x(t) = φ(t), −τ ≤ t ≤ 0,

where τ ∈ R>0 designates a time delay and φ(t) = (φ1(t), φ2(t), . . . , φn(t))T is the
vector of continuous functions satisfying φi : [−τ, 0] 7→ R≥0, i = 1, . . . , n.

4



1.1 Modelling biological systems

1.1.4 Parameter estimation

Mathematical model can demonstrate different behaviour depending on parameter
values. However, it is necessary that a mathematical model is able to approximate and
predict the behaviour of the concrete biological system. Therefore the error between
model simulations and available experimental data obtained for the concrete biological
system should be minimized. This can be achieved by estimating parameter values of
the mathematical model.
There are many approaches to estimate model parameters [65, 93]. In this thesis, I

consider parameter values to be optimal if they minimize the sum of squared residuals
SSR, i.e.:

SSR(p) =
k∑
i=1

(x(ti, p)− xi)2
,

where p = (p1, p2, . . . , pm)T denotes a vector of parameters to be estimated, x(t, p) is
a numerical solution that depends on parameters p, xi is a measured data value at the
time point ti, k is the number of data points.
For minimizing SSR(p) with respect to parameter values I utilize the numerical

function NMinimize in Mathematica 9, which, by default, uses the “Nelder-Mead”
method [78]. In case “Nelder-Mead” performs poorly, it automatically switches to the
“Differential evolution” method [98]. The parameter optimization process is assumed
to have converged to a local minimum, if the difference between the new best and the
old best function value SSR(p), as well as the distance between the new best and the
old best parameter values, are less than a tolerance of 10−8.

1.1.5 Mathematical analysis

The constructed model can be subjected to further mathematical analyses in order to
explain the complex behaviour of the biological system of interest.
The kind and complexity of analysis depend on model properties. The model is

said to be linear if all the xi on the right-hand side of model equations appear to the
first power only. Otherwise, the model is non-linear [100]. In comparison to linear,
most non-linear systems of differential equations are impossible to solve analytically
and are difficult to analyse. However, the majority of biological interactions, including
processes presented in this thesis, occur in a non-linear fashion [2, 105]. This requires
non-linear equations for modelling and, consequently, special analysis techniques.

Stability of steady states
In the absence of stress the biological system is considered to be in steady state (or
equilibrium). This means that values of model components remain constant in time:

dx

dt
= 0.

5



1 Introduction

Depending on the biological system and on the model there can exist multiple steady
states. Determining the stability of steady states is the key to the analysis of non-linear
systems [95, 100].
In this thesis, I perform theoretical stability analysis of mathematical models de-

scribed by two autonomous non-linear delay differential equations (DDEs) of the form:

dx

dt
=f(p, x(t), x(t− τ)),

x(t) =φ(t), −τ ≤ t ≤ 0,
(1.1)

where x(t) = (x1(t), x2(t))T is a vector of system components; x(t − τ) = (x1(t −
τ), x2(t− τ))T is a vector of system components delayed by the time τ ; f = (f1, f2)T
is a vector of continuously differentiable functions representing interactions between
components x1(t), x2(t), x1(t − τ) and x2(t − τ); the vector p = (p1, p2, . . . , pm)T
represents parameters; the vector φ(t) = (φ1(t), φ2(t))T is a vector of functions having
constant non-negative values for t ∈ [−τ, 0].
Thus, the steady state xs of the model (1.1) satisfies

f(p, xs, xs) = 0.

For the model (1.1), the steady state xs is stable, if for any ε > 0, there exists δ > 0
such that ||φ|| < δ implies that ||x(t− τ)|| < ε for t ≥ 0 and x(t ≤ 0) = φ. The steady
state xs is asymptotically stable, if it is stable and if there exists γ > 0 such that any
||φ|| < γ implies that x(t) → xs for t → ∞ and x(t ≤ 0) = φ(t). Finally, the steady
state xs is unstable, if it is not stable [95].
In other words, the steady state xs is defined to be stable, if sufficiently small

disturbances away from it damp out in time. If disturbances grow in time, then the
steady state is unstable [100].
Let ζ = x−xs be a small perturbation away from xs. In order to check whether the

perturbation ζ grows or decays, I describe its dynamics by means of DDEs:

dζ

dt
= dx

dt
= f(p, x, xτ ) = f(p, xs + ζ, xs + ζτ ), (1.2)

where delayed variables x(t − τ) and ζ(t − τ) are denoted as xτ and ζτ , respectively.
Using Taylor’s expansion about the steady state xs leads to the following expression:

f(p, xs + ζ, xs + ζτ ) ≈ f(p, xs, xs)︸ ︷︷ ︸
=0

+ ∂f

∂ζ
(xs, xs)︸ ︷︷ ︸
A

ζ + ∂f

∂ζτ
(xs, xs)︸ ︷︷ ︸
B

ζτ ,

where A and B are two-dimensional matrices.
Thus, the equation (1.2) can be approximated by the following equation:

6



1.1 Modelling biological systems

dζ

dt
= Aζ(t) +B ζ(t− τ). (1.3)

The equation (1.3) is called the linearised equation about the equilibrium xs. To
seek exponentially growing solutions of (1.3), I represent them in the form:

ζ(t) = ψ eλ t,

where λ is a complex number, v is a vector of complex numbers.
Substituting this vector in (1.3) results in the following equation:

λ I2 = A+B e−λ τ ,

where I2 is the identity matrix of the size two.
Thus, ζ(t) = ψ eλ t is a non-zero solution of (1.3), if λ is a solution of the character-

istic equation:

P (λ, τ) = det(λ I2 − A−B e−λ τ ). (1.4)

Solutions of the characteristic equation are called characteristic roots. If there are
no characteristic roots λ on the imaginary axis, then dynamics of the system (1.3)
near the equilibrium ζs = (0, 0)T is locally topologically equivalent to the dynamics of
the model (1.1) near the equilibrium xs [58]. Namely, there exists a homeomorphism
h : R2 7→ R2 that is defined in a small neigbourhood U ⊂ R2 of ζs, satisfies xs = h(ζs)
and maps orbits of the system (1.3) in U onto orbits of the model (1.1) inW = f(U) ⊂
R2 preserving the direction of time. For example, if ζ produces sustained oscillations
about the equilibrium ζs, then x also demonstrates sustained oscillations about the
equilibrium xs.
Thus, if any characteristic root has a positive real part, then the perturbation ζ

exponentially grows in time and the steady state is unstable. If all characteristic roots
have negative real parts, then the perturbation ζ exponentially decays in time and the
steady state is stable. If leading characteristic roots are zero, then the stability can
not be determined using the first order of the linearisation.
In biological terms, the stability of the steady state can be interpreted as the ability

of the biological system to return to its initial state after small changes in component
values.

Bifurcation analysis
Changing parameter values can change the number of steady states and their stability.
This may result in a qualitative change in the model dynamics called bifurcation [58,
100, 105]. To detect bifurcations one may perform a bifurcation analysis of the model.
The model parameter, which is varied for the bifurcation analysis, is called a control
parameter. The value of the control parameter at which bifurcation occurs is called

7



1 Introduction

the bifurcation point [100].
There are several types of bifurcations, which may arise under variation of the

control parameter [58, 100]. The saddle-node bifurcation is the basic mechanism by
which steady states are created and destroyed. For presenting this kind of bifurcation
I introduce the following ordinary differential equation (ODE):

dx

dt
= r + x2, (1.5)

where x(t) is a time-dependent variable and r is a parameter. The bifurcation diagram
for (1.5) is presented in Fig. 1.2A. In this figure, the steady state of the system is
designated by xs, branches of stable and unstable steady states are designated by solid
and dashed blue curves, respectively.
In several models, the steady state always exists independent of parameter values.

However, under parameter variation the stability of the steady state can be changed
constituting the transcritical bifurcation. An example of the ODE with the transcritical
bifurcation has the following form:

dx

dt
= rx− x2. (1.6)

The bifurcation diagram corresponding to the transcritical bifurcation is depicted in
Fig. 1.2B.
When the pitchfork bifurcation occurs, steady states appear and disappear in sym-

metrical pairs. The pitchfork bifurcation can be subcritical or supercritical. For pre-
senting the supercritical pitchfork bifurcation I use the following ODE:

dx

dt
= rx− x3. (1.7)

Figure 1.2: Bifurcation diagrams. (A) Saddle-node bifurcation. (B) Transcritical
bifurcation. (C) Supercritical pitchfork bifurcation. Values of steady states xs
of corresponding ODEs (1.5)-(1.7) depend on the parameter value r. Bifurcation
points (r = 0) are designated by red dots. Branches of stable steady states are
designated by solid blue curves, branches of unstable steady states are designated
by dashed blue curves.
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1.1 Modelling biological systems

Figure 1.3: Phase portraits of the system (1.8) undergoing the supercritical
Hopf bifurcation with respect to r. (A) For r < 0 the steady state is stable.
(B) For the parameter r = 0 the Hopf bifurcation occurs. (C) The parameter
r < 0 causes the instability of the steady state and the system (1.8) has a periodic
orbit. The steady state xs = (0, 0)T is designated by red dots. The figure was
taken from [58].

The bifurcation diagram presenting the supercritical pitchfork bifurcation is shown in
Fig. 1.2C.
There also exists a separate type of bifurcation called Hopf bifurcation. The Hopf

bifurcation turns on or off sustained oscillations in model components under variation
of a parameter. Like pitchfork bifurcations, Hopf bifurcations exist in both sub- and
supercritical variations. An example of the two-dimensional ODE system with the
supercritical Hopf bifurcation has the following form:

dx1

dt
= r x1 − x2 − x1(x2

1 + x2
2),

dx2

dt
= x1 + r x2 − x2(x2

1 + x2
2),

(1.8)

where (x1(t), x2(t))T is a vector of time-dependent variables and r is the parameter.
Several phase portraits of the system (1.8) depending on the parameter r are presented
in Fig. 1.3. The location of the steady state xs = (0, 0)T is designated by red dots. In
case r < 0, the steady state xs is stable (see Fig. 1.3A). In case r > 0, the steady state
xs is unstable and the system (1.8) has a periodic orbit (see Fig. 1.3C). In case r = 0,
the supercritical Hopf bifurcation occurs (see Fig. 1.3B).
For detecting the Hopf bifurcation in both ODE and DDE models one should de-

rive the characteristic polynomial of the model and calculate characteristic roots with
respect to the control parameter r [21, 58, 95, 100]. If there exists a pair of complex
characteristic roots λ(r)1,2 = α(r) ± iω(r) that crosses the imaginary axis for some
value of r = rm:

λ(rm)1,2 = ±iω, ω > 0

9



1 Introduction

and the Hopf transversality condition at r = rm holds:

dα

dr
(rm) > 0,

then one may conclude that the Hopf bifurcation occurs at the marginal value r = rm.
Simulations of models presented in this thesis indicate that these models exhibit su-

percritical Hopf bifurcations presented in Fig. 1.3. Therefore, in the following chapters
when I refer to Hopf bifurcations, I mean supercritical Hopf bifurcations.
In fact, the introduced differential equations (1.5)-(1.8) constitute normal forms of

bifurcation types, which they presented above [58, 100]. Namely, these equations are
locally topologically equivalent near the origin to systems exhibiting the respective type
of bifurcations. In other words, each system with a bifurcation can be approximated
by the corresponding normal form near the bifurcation point.
The bifurcation analysis is widely used to reveal mechanisms, e.g., bistability, and

key parameters and components underlying complex behaviour of the biological sys-
tem.

Sensitivity analysis
In comparison to bifurcation analysis, sensitivity analysis is performed to detect the
quantitative change in the model dynamics under a specific parameter variation [22].
Thus, the investigator perturbs one certain parameter of the model and observes how
this perturbation affects model characteristics, e.g., the dynamics of some model com-
ponent or the value of a bifurcation point [40, 96].
In mathematical terms the sensitivity of a model characteristic to a specific pertur-

bation can be presented in the following way [31]:

S = ∆O
O
· p∆p,

where O is the output and p is the perturbed parameter. The output O can be any
model element or characteristic, e.g., bifurcation point, adaptation time, etc. With
∆O and ∆p I designate differences between the perturbed and unperturbed values of
O and p, respectively. If |S| ≈ 1 holds, then the perturbation ratio in the parameter
p equals its effect in the output O. The relation |S| >> 1 means the sensitivity of the
output O to the perturbation in the parameter p. Moreover, if S > 0 holds, then an
inhibition of p will induce the inhibition of O. Otherwise, an inhibition of p results in
the amplification of O, and vice versa.
In this thesis, I present sensitivity analysis graphically. Namely, I vary parameter

values of the model within a defined range. For each varied parameter value I calculate
a model characteristic of interest. Obtained results are further depicted on the same
graph. Using this graph one may conclude how parameter values influence the model
characteristic of interest. Additionally, this may reveal a parameter, which demon-
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1.1 Modelling biological systems

strates the highest impact on the model characteristic of interest. This information
can be further used for performing experiments and predicting the behaviour of the
biological system under certain conditions encoded in parameter values.

Robustness analysis
The robustness analysis clarifies if the biological system is able to keep its performance
under a wide range of conditions [51, 52, 96]. In contrast to sensitivity, robustness is
the insensitivity of a particular property of the biological system to intrinsic or extrinsic
noise [22, 67].
For performing a robustness analysis of a concrete system the type of perturbations

should be determined [22]. A simple method for examining the robustness of biological
systems is a Monte-Carlo simulation [26, 50]. This method is based on the random
sampling of model parameters according to a particular probability distribution and
repeated simulation of the system for sampled parameters.
In this thesis, I perform Monte-Carlo analysis of mathematical models described by

DDE systems having the general form (1.1). To this end, all fitted components of the
parameter vector p and time delay τ of considered models are simultaneously varied
N times:

p̆ = U [p · r1, p · r2],
τ̆ = U [τ · r1, τ · r2],

where p̆ is a perturbed parameter vector p, τ̆ is a perturbed time delay τ and U [a, b]
designates the limitation of the uniform distribution for random sampling of p and τ
within r1 · 100% and r2 · 100% of their respective fitted values.
Then, for each perturbed parameter set I calculate model characteristics of interest.

For example, for each perturbed parameter set of one of considered models I calculate
Hopf bifurcation points of time delay τ̆ im for i = 1, . . . , N and obtain their mean value:

< τ̆m >= 1
N

N∑
i=1

τ̆ im.

Finally, I compare model characteristics for fitted and perturbed parameter values.
For the presented example, I compare the value of the Hopf bifurcation point τm cal-
culated for fitted parameter values with the value < τ̆m > calculated for perturbed
parameter values. The low change in the model characteristic under parameter varia-
tion indicates the robustness of a corresponding property of the biological system when
subjected to a defined noise. In contrast, the high variation of the model characteristic
shows that this particular property of the biological system is not robust to the noise.
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1.2 Design principles of intracellular networks

Living cell can be considered as a system that governs its behaviour and its interaction
with the environment. According to the definition of Uri Alon [2]:
“The cell is an integrated device made of several thousand types of interacting pro-

teins.”
Every protein is a small molecule, which fulfils a certain function in the cell. Proteins

interact with each other, with external signals and with DNA constituting different
kinds of intracellular networks. These networks regulate processes happening inside
the cell and allow the cell to adapt to environmental changes.
There exist several types of intracellular networks such as sensory [3] and develop-

mental [24] transcription networks, protein-protein interaction networks [97], signal
transduction networks [89] and metabolic networks [72]. They differ from each other
by modes of interaction between biomolecules as well as by velocities of functioning [2].
For example, transcription networks tend to have slow dynamics with processes hap-
pening on the scale of hours. In contrast, signal transduction networks usually function
on the time scale of seconds to minutes.
Despite the aforementioned differences, networks function together. For example,

the output of a signal transduction pathway, which belongs to a signal transduction
network, is often a transcription factor belonging to a transcription network. In this
way, signal transduction and transcription networks create a joint network [2].
Intracellular networks have a complex structure [2, 3, 94, 105]. In Fig. 1.4 a tran-

scription network in the bacterium E. coli is depicted. The network consists of red
nodes representing genes and black edges representing transcriptional regulation of one
gene by the protein product of another gene [32].
Many studies showed that in spite of their complexity intracellular networks are

composed from a small set of recurring regulation patterns called network motifs [2,
3, 73, 94, 105]. Some examples of network motifs are depicted in Fig. 1.5. Here, X, Y
and Z mimic some network components, e.g., genes, proteins, metabolites, etc. Arrows
mimic interactions between network components: sharp arrows mimic activation or
production, blunt arrows mimic inhibition or degradation. As an example, one may
interpret the motif from Fig. 1.5E as follows: the activator X activates Z and Y , the
inhibitor Y inhibits Z.
Several network motifs, e.g., simple regulation (see Fig. 1.5A), are present in all

network types [2, 3]. Some network motifs have been detected in several network
types. For example, positive and negative auto-regulation (see Fig. 1.5B and C) and
feedforward loops (see Fig. 1.5D and E) were detected in sensory and developmental
networks [2, 3]. Some network motifs are found to be present only in a specific net-
work type. For example, the diamond network motif seems to be restricted to signal
transduction networks (see Fig. 1.5F) [2, 3].
It was shown that similar to separate networks, joint networks also have charac-
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1.2 Design principles of intracellular networks

Figure 1.4: Example of a transcription network in E. coli. Red nodes represent
genes and black edges represent transcriptional regulation of one gene by the
protein product of another gene. The figure was taken from [32].

Figure 1.5: Examples of network motifs. (A) Simple regulation. (B) Positive
auto-regulation. (C) Negative auto-regulation. (D) Coherent feedforward loop
type 1. (E) Incoherent feedforward loop type 1. (F) Diamond network motif. (G)
Composite network motif: negative feedback loop. The activation occurs with
time delay τ . Designation: sharp arrows mimic activation, blunt arrows mimic
repression.

teristic network patterns called composite network motifs [110]. The example of a
very common composite network motif is a negative feedback loop [2] presented in
Fig. 1.5G. In the joint network, the negative feedback loop is a hybrid of two types of
interactions. The network component X activates Y on transcriptional level on a slow
time scale. Then Y feeds back inhibiting X on the protein level on a rapid time scale.
One may conclude that in comparison with the rapid inhibition, the activation of Y
occurs with time delay. In Fig. 1.5G time delay is designated with the Greek letter τ .
Note that negative feedbacks are also present in separate networks, e.g., sensory and
developmental networks and signal transduction networks, however, not as often as in
joint networks [2].
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1.3 Mathematical modelling of biochemical reactions

It is believed that each network motif fulfils specific information-processing func-
tions [3, 41, 105]. Once embedded in networks, these simple pathways are able to
generate complex behaviour of network components, e.g., bistable switches or oscilla-
tions [105]. To approximate this behaviour, one may construct mathematical models
of network motifs [2, 105]. Obtained models can be further subjected to mathematical
analysis to explain the dynamics of components of the intracellular network. In this
section, I introduce basic principles for constructing mathematical models of biochem-
ical reactions underlying network motifs.

Law of mass action
The simplest way to describe kinetics of biochemical reactions is the law of mass action.
It states that the reaction rate, i.e., the velocity by which the execution of the reaction
changes the concentrations of its substrates, is proportional to the concentration of
reactants to the power of the molecularity [53].
As an example, I consider a chemical equation of a reversible reaction, where

molecules X and Y bind to form two molecules of Z:

X + Y 
 2Z.

If the reaction obeys the law of mass reaction, then its reaction rate can be described
in the following way:

v = v1 − v2 = k1X Y − k2 Z
2,

where v1 and v2 represent rates of forward and backward reactions, respectively.
Correspondingly, the dynamics of concentrations of X, Y and Z can be formulated

using the following ODEs:

dX

dt
= −v,

dY

dt
= −v,

dZ

dt
= 2v.

These equations can be further solved analytically or numerically providing the time
course of X, Y and Z.

Michaelis-Menten kinetics
Chemical reactions can be catalysed by enzymes. In this case, the reaction rate may
saturate at a certain concentration of the substrate. The saturation effect can be
described by Michaelis-Menten kinetics [53].
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1.3 Mathematical modelling of biochemical reactions

The following chemical equation describes a transformation of a substrate X into
the product Y in the presence of an enzyme E:

X + E → Y + E.

The Michaelis-Menten reaction rate of this reaction has the following form:

v = Vmax
X

Km +X
,

where Vmax designates the maximal velocity and Km designates the substrate concen-
tration, which yields the half-maximal reaction rate.

Hill kinetics
Molecules may act together to increase reaction rates in a non-linear way. This process
is often called cooperativity. In order to model biochemical reactions of this kind one
may use Hill kinetics [2], which can be deduced using a simple reaction scheme:

nX + E 
 nX E −→
v
nX E + Y.

The Hill reaction rate is of the form:

v = Vmax
Xn

Km
n +Xn

,

where Vmax designates the maximal velocity and Km designates the substrate concen-
tration, which yields the half-maximal reaction rate, n is the Hill coefficient mimicking
the cooperativity in a binding process.
Thus, for modelling the reaction rate mimicking inhibition one may use a decreasing

step function called a reverse Hill function (see Fig. 1.6):

S1(X) = Km
n

Km
n +Xn

. (1.9)

For modelling the reaction rate mimicking activation one may use an increasing step
function called a Hill function (see Fig. 1.6):

S2(X) = Xn

Km
n +Xn

. (1.10)

For both functions S1 and S2, parameter Km > 0 designates the substrate concen-
tration, which yields the half-maximal reaction rate, and parameter n ≥ 1 designates
the Hill coefficient, which describes the cooperativity rate of molecules.
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Figure 1.6: Plots of functions S1 (1.9) and S2 (1.10). Parameters (Km, n) =
(0.1, 2) and (Km, n) = (0.5, 5) were used for performing simulations.

1.4 General notions on feedback

In control theory, the term feedback refers to a situation in which two or more dy-
namical systems are connected together such that each system influences the other
and their dynamics are strongly coupled. As a result, the first system influences the
second and the second system influences the first leading to a circular argument [23].
The use of feedback is widespread in the design of electronic amplifiers, oscillators,

and stateful logic circuit elements. Also biological systems make an extensive use of
feedbacks on scales ranging from molecules to cells to organisms to ecosystems. As a
trivial example of a feedback mechanism in the human organism one may consider the
regulation of the glucose level in the bloodstream. In this system the interplay between
insulin and glucagon, i.e., a hormone having an effect opposite to insulin, keeps the
blood-glucose concentration constant [23].
The complicated interaction between feedback components often induces counter-

intuitive behaviour and requires formal methods to explain the observed dynam-
ics [23, 104]. This complicated behaviour often becomes the aim of research for many
scientists. In this context, it is important to mention the studies of David Angeli
and Eduardo Sontag [5, 6], who investigated numerous properties of biochemical feed-
back systems. Namely, they provided concrete methods for detecting multistability,
bifurcations and hysteresis in biochemical positive feedback systems. In addition, they
studied oscillations in monotone systems under negative feedback.
Feedbacks have diverse properties. For example, they provide robustness to uncer-

tainty, change a dynamics of the system and may give rise to instability if designed
not properly [23]. Because of these properties feedbacks are extensively used for en-
gineering electrical, mechanical as well as biological systems. For further detailed
information about feedback systems refer to [9].

16



1.5 Delayed negative feedback

1.5 Delayed negative feedback

In intracellular networks, feedback mechanisms are present in the form of positive and
negative feedback loops [2, 3, 49, 63, 90, 104, 105]. This thesis is dedicated to studying
the dynamics of biochemical networks containing a negative feedback loop. The im-
portance of this study is raised by the fact that negative feedbacks have been observed
in a wealth of biochemical networks ranging from the mammalian cell cycle [30, 83] to
bacterial adaptation [55, 111] and stress response in mammals [17] and yeast [54, 91].
Negative feedback control principles are even used to engineer artificial biological sys-
tems in bacteria and mammalian cells [27, 99, 109]. Investigating negative feedback
loops allows to explain, how these systems function, and develop methods to modify
and control their behaviour.
In biochemical networks, negative feedback occurs when the output of the process

negatively influences its input (see Fig. 1.7). The negative feedback system subtracts
the measurement of the output from the required value and uses the obtained result to
regulate the input of the process. In this way negative feedback reduces the difference
between actual and required values of the output.
Note that despite the simplicity of this definition the mechanism of the negative feed-

back can differ from system to system. For example, negative feedback can act through
sequestering molecules from particular cellular compartments, e.g., nucleus, cytoplasm
or cell membrane, where they can react with other molecules [44]. In addition, neg-
ative feedback may act through activating or deactivating molecules, e.g., through
post-translational modifications [91]. Negative feedback may also act through block-
ing and activating the transcription of molecules [99] or through subjecting molecules
to degradation, e.g., through ubiquitination [75].
In biochemical networks, negative feedback can serve several objectives such as

stabilizing the abundance of biochemical species [2, 42, 101, 105], inducing oscil-
lations [27, 48, 84, 104], modifying response times [3, 69] and mediating adapta-
tion [68, 81, 111].
In many intracellular networks negative feedback operates together with time de-

lay [76]. Time delay may have a different origin. For example, time delay may arise in
joint networks due to the different velocities of interactions between feedback compo-
nents as shown in Fig. 1.5G. Indeed, the transcriptional interaction, where X activates
Y , occurs on a slow time scale, whereas the protein-protein interaction, where Y in-
hibits X, occurs on a rapid time scale. As a result, the activation of Y is delayed in

Figure 1.7: General definition of the negative feedback.
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comparison to the inhibition of X. Time delay may also appear due to the cascade of
reactions happening between sensing the input and producing the output.
It is widely accepted that negative feedback in conjunction with a time delay may

lead to oscillatory behaviour [37, 39, 70]. Oscillations brought about by delayed nega-
tive feedback (DNF) have been observed and analysed in a range of biological systems,
e.g., the mammalian p53 system [36, 59, 86], the NF-κB system [7, 44, 79] or the Hes1
transcription factor [15, 76]. However, the role of oscillations in the aforementioned
biochemical DNF systems remains unclear. It is also conceivable that in biological
systems mediating adaptive responses oscillatory behaviour might be inappropriate.
For example, in the hyperthermia treatment of cancer, large-amplitude temperature
oscillations could result in tissue damage or patient discomfort [102].
Mathematical modelling is a common method used for investigating often non-trivial

dynamics of negative feedbacks. First fundamental study of stability of DNF intracel-
lular systems by means of mathematical modelling was performed by Brittish scientist
Brian Goodwin in 1965 [38]. The purpose of this study was to illustrate the type
of periodic behaviour, which may arise in biological systems. In 1968 J.S. Griffith
continued Goodwin’s study and developed a necessary condition for negative feedback
systems to give rise to sustained oscillations [39]. In these studies the time delay was
induced by including several intermediate components inside of the feedback loop. In
1982 discrete time delays were explicitly included in mathematical models of negative
feedbacks [21]. In these models time delay was considered as a bifurcation parameter.
Unfortunately, none of presented models was parametrized with respect to real biolog-
ical data. In 2000 it was shown that not only time delay but also ultrasensitivity of the
negative feedback may induce oscillatory dynamics of intracellular components [48]. In
2008 a computational study was published, where it was investigated how the interac-
tion between positive and negative feedbacks influences the dynamics of intracellular
systems [104]. Despite impressive numerical simulations, no theoretical analysis of
considered models was provided. Recently, two studies [80, 92] investigated stability
and resistance of DNF systems modelled with three ordinary differential equations
(ODEs). They showed that nested negative feedbacks inside of DNF may suppress
oscillations of biochemical species. However, this studies provided no insight into how
time delay influences the behaviour of these systems.
In this thesis, I derive explicit thresholds and boundaries showing how time delay

determines characteristic response patterns of biochemical networks containing DNF.
In addition, I investigate how the combination of time delay and certain design features
influences the dynamics of intracellular DNF systems. Thus, I consider not only the
presence of a nested negative feedback but also the presence of mass conservation and
the type of DNFmechanism. To this end, several mathematical models of DNF systems
are developed and analysed. I demonstrate that my theoretical results can be used
to study concrete cellular systems both adaptive as well as oscillatory. This is based
on the fact that my models are capable to recapitulate measured dynamics of these

18



1.6 Outline

systems in a quantitative manner. Thus, my theoretical result can be parametrized to
study real systems. Despite its simplicity my theoretical framework facilitates novel
insights into the functioning of the high osmolarity glycerol pathway mediating osmo-
adaptation in yeast [69], as well as NF-κB and p53 oscillations in mammalian cells [44,
64]. Specifically, I show that adaptation to osmotic stress in yeast is optimal in the
sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a
critically damped response. Additionally, a slight increase of time delay in NF-κB
system might induce a switch from damped to sustained oscillatory behaviour. Further,
I apply my theoretical analysis to explore under what conditions sustained oscillations
of p53 model can be suppressed by the activation of a nested auto-inhibitory feedback.
Finally, I propose a design of a synthetic intracellular network, which contains DNFs

and is able to switch between adaptive behaviour and sustained oscillations in a con-
trolled manner.

1.6 Outline
This thesis has the following structure:
Chapter 2 introduces generic models of six alternative delayed negative feedback
(DNF) systems, which differ in the type of inhibition and presence of signalling com-
ponents. Models are described by two-dimensional delay differential systems, which
are further subjected to mathematical analysis with respect to time delay. Obtained
theoretical results are applied to study concrete biological systems containing DNF.
These are the high osmolarity glycerol (HOG) pathway in yeast and the NF-κB system
in mammalian cells. The main results described in this chapter are partly presented
in [62].
Chapter 3 focuses on investigating the ability of design features of DNF systems
to suppress unwanted oscillations. As alternative designs, the mechanism of DNF,
strength of DNF and presence of mass conservation of biochemical components were
considered. Based on the obtained results, a design of synthetic auto-inhibitory feed-
back was suggested to suppress oscillations in the mammalian p53 system. The main
results described in this chapter are partly presented in [19, 92].
Chapter 4 presents a design of a synthetic intracellular network, which contains DNFs
and can switch between adaptive and oscillatory responses in a controlled manner.
Chapter 5 describes a technique to show how to approximate delay differential equa-
tions by means of ordinary differential equations. This technique is applied to approx-
imate parametrized HOG and p53 models, which demonstrate adaptive behaviour and
sustained oscillations, respectively.
Chapter 6 draws conclusions about the work and presents an outlook for future
research.
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2 Role of time delay in systems containing
delayed negative feedback

2.1 Introduction

The first fundamental study on stability of intracellular DNF systems states that the
occurrence of negative feedback in combination with time delay make it highly prob-
able that molecular species in cells will undergo sustained oscillations [38]. Later on,
numerous mathematical models of biochemical delayed negative feedback (DNF) sys-
tems were created and subjected to rigorous mathematical analysis to explain their
behaviour [30, 39, 48, 80, 92, 111]. These models were described by ordinary differen-
tial equations (ODEs), where the time delay was mimicked by intermediate processes
preceding the inhibition of the input.
In several DNF systems time delay arises due to the different velocities of interactions

between components of the biochemical network [2, 3]. Indeed, interactions, which
occur on a slow time scale, are delayed in comparison to interactions, which occur on
a rapid time scale.
To study the role of time delay in DNF systems, I model a range of DNF sys-

tems using two-dimensional differential equations with time delay τ as a parameter.
Architectures of considered models mimic biochemical networks differing in the kind
of negative feedback and presence of mass conservation for model components (see
Fig. 2.1). By both theoretical and numerical analyses I describe the role of time de-
lay in shaping cellular response patterns of biochemical systems. Specifically, I derive
explicit delay thresholds and boundaries beyond which the system’s response patterns
change leading to overdamped, damped oscillatory or sustained oscillatory behaviour.
I demonstrate that my theoretical results can be used to study concrete cellular

systems both adaptive as well as oscillatory. This is based on the fact that my models
are capable of recapitulating the measured dynamics of these systems in a quantitative
manner. Thus, my theoretical result can be parametrized to study real systems. I show
that despite its simplicity my theoretical framework facilitates novel insights into the
functioning of the HOG pathway mediating osmo-adaptation in yeast [69] as well as
NF-κB oscillations in mammalian cells [44].
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2.2 Mathematical modelling of delayed negative feedbacks
with DDEs

I consider a range of two-dimensional DNF models that represent generic cellular
signal-response networks (see Fig. 2.1). The model choice is motivated by biological
DNF systems able to produce adaptive and/or oscillatory response to stimulation [15,
44, 48, 64, 76, 91, 111]. Using mathematical modelling I represent core DNF structures
underlying these biochemical networks. Resulting models differ in the architecture of
the delayed feedback, i.e., input-inhibition or output-activation, and presence of mass
conservation for model components.
Models presented in Fig. 2.1 have the following mathematical formulations by means

of delay differential equations:

Model 1: DNF with input-inhibition and without mass conservation (see Fig. 2.1A):

dC

dt
=I S1(R)F (C)− αC,

dR

dt
= η C(· − τ)− β R.

(2.1)

Model 2: DNF with input-inhibition and with mass conservation for the model com-
ponent C (see Fig. 2.1B):

dC

dt
=I S1(R)F (C) (1− C)− αC,

dR

dt
= η C(· − τ)− β R.

(2.2)

Model 3: DNF with input-inhibition and with mass conservation for model compo-
nents C and R (see Fig. 2.1C):

dC

dt
=I S1(R)F (C) (1− C)− αC,

dR

dt
= η C(· − τ) (1−R)− β R.

(2.3)

Model 4: DNF with output-activation and without mass conservation (see Fig. 2.1D):

dC

dt
=I F (C)− αC − δ C S2(R),

dR

dt
= η C(· − τ)− β R.

(2.4)
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Figure 2.1: Generic signal-response models with DNF. Squares indicate model
variables, circles indicate model functions. Arrows between and to components
indicate biochemical reactions, arrows on arrows indicate modifying influences
and arrows to functions indicate the respective influence on the function. The
models differ in the architecture of the DNF as well as in the presence of mass
conservation for components C and R. (A) Model with input-inhibition as DNF
and without mass conservation. (B) Model with input-inhibition as DNF and with
mass conservation for the model component C. (C) Model with input-inhibition as
DNF and with mass conservation for both model components C and R. (D) Model
with output-activation as DNF and without mass conservation. (E) Model with
output-activation as DNF and with mass conservation for the model component
C. (F) Model with output-activation as DNF and with mass conservation for both
model components C and R. In all models the time delay τ is before activation
of the response variable R. Dashed lines indicate an alternative auto-inhibitory
feedback.

Model 5: DNF with output-activation and with mass conservation for the model com-
ponent C (see Fig. 2.1E):

dC

dt
=I F (C) (1− C)− αC − δ C S2(R),

dR

dt
= η C(· − τ)− β R.

(2.5)
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Model 6: DNF with output-activation and with mass conservation for model compo-
nents C and R (see Fig. 2.1F):

dC

dt
=I F (C) (1− C)− αC − δ C S2(R),

dR

dt
= η C(· − τ) (1−R)− β R.

(2.6)

The function S1 : [0,∞)→ R+ is twice continuously differentiable and monotonically
decreasing with R. The function S2 : [0,∞)→ R+ is twice continuously differentiable
and monotonically increasing with R. The twice continuously differentiable mono-
tonically decreasing function F : [0,∞) → (0, 1] mimics an optional auto-inhibitory
feedback.
Parameters of Models 1-6 have real positive constant values. For convenience, I

combine them in the vector p:

p = (I, α, β, η, δ)T . (2.7)

Note that all model parameters represent lumped biological processes and therefore
have only limited physical or biological meaning. For Models 1-3 the parameter δ
equals 0.
In all models the input I defines some constant stimulus (e.g., radiation, osmotic

stress, tumor necrosis factor-α (TNF-α), see below) that activates a gene transcription
network (see Fig. 2.1A and D), represented by the model variable C, or a signalling
cascade (see Fig. 2.1B,C, E and F). The component C in turn activates the response
variable R with a certain time delay τ . Time delay can be motivated by processes
like transport, transcription, translation or by the cascade of reactions happening
between sensing the input and producing the response R. Subsequently, the response
R negatively feeds back into its own activation through S1 or S2, respectively, thereby
mediating DNF.
Note that the response R mediates DNF through different mechanisms depending

on the considered model. In models from Fig. 2.1A-C the response variable R has
inhibiting influence on C by means of the function S1(R). Therefore, I refer to this
situation as input-inhibition. In models from Fig. 2.1D-F the DNF mediated by the
response R acts through activating the degradation of C by means of the function
S2(R). I refer to this model structure as output-activation.
I refer to models from Fig. 2.1A and D as a transcription network, because C is not

reversibly converted into different states, but rather produced and degraded. Both
input-inhibition and output-activation architectures are also considered together with
so-called signalling components (see Fig. 2.1B,C, E and F). In Models 2, 3, 5 and 6
the component C, which in turn activates the response R, originates from another
component C̆ to which it is constitutively converted back. This construction mimics a
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2 Role of time delay in systems containing delayed negative feedback

fast and reversible post-translational protein modification, e.g., phosphorylation. As
a result, the total protein content stays unchanged over time, as it is often the case in
signalling cascades:

dC

dt
+dC̆
dt

= 0,

C+C̆ ≡ const = 1.
(2.8)

Here, the constant is assumed to be unity. I refer to this feature as mass conservation.
Using the mass conservation allows to exclude the variable C̆ from Models 2, 3, 5 and
6 reducing their dimension to two. For example, the following system of equations for
Model 2 is reduced to get the system (2.2):

dC

dt
=I S1(R)F (C) C̆ − αC,

dC̆

dt
=− I S1(R)F (C) C̆ + αC,

dR

dt
= η C(· − τ)− β R.

In Models 3 and 6 two pairs of components C, C̆ and R and R̆ undergo mass
conservation. As a result, two variables C̆ and R̆ are excluded from these models to
get systems (2.3) and (2.6) using the following transformation:

C̆ =1− C,
R̆ =1−R.

In the following section, I present theoretical analysis of Models 1-6 showing how
time delay determines characteristic response patterns of delayed negative feedback
systems.

2.3 How time delay determines characteristic response
patterns

Models 1-6 are non-linear and can not be solved analytically. In order to understand
their dynamics I investigate the stability of their steady states applying the analysis
introduced in Section 1.1.5. In this section, most derived formulas apply to all Mod-
els 1-6, respectively. For readability, I do not make an explicit distinction between
models, unless necessary.

2.3.1 Existence and uniqueness of steady states

Using Proposition 1 I demonstrate the existence and uniqueness of steady states E =
(Cs, Rs)T of Models 1-6.
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2.3 How time delay determines characteristic response patterns

Proposition 1. Steady states E = (Cs, Rs)T of Models 1-6 exist and are unique.

Proof. I define the relation between equilibrium components Rs and Cs for Models 1-6.
For this I equate the right hand side of the differential equation dR

dt
to 0 and solve it

with respect to Rs:
Rs = η

β
Cs for Models 1, 2, 4 and 5,

Rs = η Cs
η Cs + β

for Models 3 and 6.
(2.9)

Note that in both cases Rs increases with Cs. Further, for each Model 1-6 I equate
the right hand side of the differential equation dC

dt
to 0 and substitute Rs (2.9):

I S1

(
η

β
Cs

)
︸ ︷︷ ︸

θ1(Cs)

·F (Cs) = αCs︸ ︷︷ ︸
θ2(Cs)

for Model 1, (2.10)

I S1

(
η

β
Cs

)
(1− Cs)︸ ︷︷ ︸

θ1(Cs)

·F (Cs) = αCs︸ ︷︷ ︸
θ2(Cs)

for Model 2, (2.11)

I S1

(
η Cs

η Cs + β

)
(1− Cs)︸ ︷︷ ︸

θ1(Cs)

·F (Cs) = αCs︸ ︷︷ ︸
θ2(Cs)

for Model 3, (2.12)

I︸︷︷︸
θ1(Cs)

·F (Cs) = αCs + δ Cs S2

(
η

β
Cs

)
︸ ︷︷ ︸

θ2(Cs)

for Model 4, (2.13)

I (1− Cs)︸ ︷︷ ︸
θ1(Cs)

·F (Cs) = αCs + δ Cs S2

(
η

β
Cs

)
︸ ︷︷ ︸

θ2(Cs)

for Model 5, (2.14)

I (1− Cs)︸ ︷︷ ︸
θ1(Cs)

·F (Cs) = αCs + δ Cs S2

(
η Cs

η Cs + β

)
︸ ︷︷ ︸

θ2(Cs)

for Model 6. (2.15)

Thus, for each model I derive the equation defining the equilibrium component Cs in
the form:

θ1(Cs) · F (Cs) = θ2(Cs). (2.16)

According to (2.16), the equilibrium component Cs can be found as the intersection of
functions θ1 · F and θ2. For considered models the function θ1 is either constant or a
decreasing function with respect to Cs and θ2 is an increasing non-bounded function
with respect to Cs. As a result, the equilibrium component Cs always exists and is
unique. According to (2.9), the same conclusion holds for the equilibrium component
Rs.
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2 Role of time delay in systems containing delayed negative feedback

Note that steady states E = (Cs, Rs)T implicitly depend on the parameter vector
p (2.7) including the input I. Therefore, Models 1-6 are not able to show a perfect
adaptation.

2.3.2 Characteristic response patterns of models

The linearisation of Models 1-6 about the respective steady states E results in the
system (2.17), which describes the dynamics of a steady state perturbation ζ(t) =
(C(t)− Cs, R(t)−Rs)T . Linearisation matrices A and B are obtained by linearising
Models 1-6 about non-delayed and delayed model components, respectively.

dζ

dt
=

−x −y/γ
0 −z


︸ ︷︷ ︸

A

ζ(t) +

0 0

γ 0


︸ ︷︷ ︸

B

ζ(t− τ), (2.17)

where for Model 1, I have

x = I S1(Rs)|F ′(Cs)|+ α > 0,
y = η I |S′1(Rs)|F (Cs) > 0,
z = β > 0,
γ = η.

(2.18)

for Model 2, I have

x = I S1 (Rs) [F (Cs) + (1− Cs) |F ′(Cs)| ] + α > 0,
y = η I |S′1 (Rs) | (1− Cs) F (Cs) > 0,
z = β > 0,
γ = η.

(2.19)

for Model 3, I have

x = I S1 (Rs) [F (Cs) + (1− Cs) |F ′(Cs)| ] + α > 0,
y = η I |S′1 (Rs) | (1− Cs) (1−Rs) F (Cs) > 0,
z = η Cs + β > 0,
γ = η (1−Rs).

(2.20)

for Model 4, I have
x = I |F ′ (Cs)|+ α + δ S2 (Rs) > 0,
y = η δ Cs S

′
2 (Rs) > 0,

z = β > 0,
γ = η.

(2.21)
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2.3 How time delay determines characteristic response patterns

for Model 5, I have

x = I [F (Cs) + (1− Cs) |F ′(Cs)| ] + α + δS2 (Rs) > 0,
y = η δ Cs S

′
2 (Rs) > 0,

z = β > 0,
γ = η.

(2.22)

for Model 6, I have

x = I [F (Cs) + (1− Cs) |F ′(Cs)| ] + α + δS2 (Rs) > 0,
y = η δ Cs S

′
2 (Rs) (1−Rs) > 0,

z = η Cs + β > 0,
γ = η (1−Rs).

(2.23)

The transcendental characteristic equation of the system (2.17) has the form:

P (λ, τ) = det(λ I2 − A−B e−λ τ ) = (λ+ x)(λ+ z) + y e−λ τ = 0, (2.24)

where I2 is the two-dimensional identity matrix.
Roots λ of the equation (2.24) decide on the stability of steady states E (see

Section 1.1.5). The characteristic equation (2.24) has the infinite number of root
branches [8, 61]. However, there are two root branches that are associated with the
two dominant roots λ1 and λ2, which determine the dynamics of the system (2.17).
Therefore, in order to analyse how the time delay τ influences the dynamics of the per-
turbation ζ(t) and, as a result, the dynamics of Models 1-6, I consider the dependence
between the time delay τ and dominant roots λ1, λ2.

For obtaining λ1, λ2 I intersect the following functions (see Fig. 2.2):

p1(λ) = (λ+ x)(λ+ z),
p2(λ, τ) = −y e−λτ .

These functions constitute the transcendental characteristic equation (2.24):

P (λ, τ) = p1(λ)− p2(λ, τ) = 0.

The function p1(λ) does not depend on τ and represents a parabola that faces
upward, has negative roots −x, −z and a vertex with coordinates (λv, p1(λv)) =(
−(x+ z)/2,−(x− z)2/4

)
(see Fig. 2.2).

The function p2(λ, τ) is a negative function that equals −y for τ = 0 or λ = 0,
increases with λ for τ > 0, decreases with τ for λ ∈ (−∞, 0) and increases with τ for
λ ∈ (0,+∞) (see Fig. 2.2).
Thus, if real roots λ1, λ2 exist, then they are both negative. Moreover, the necessary

and sufficient condition for existence of real roots λ1, λ2 is that for τ = 0 the vertex of
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2 Role of time delay in systems containing delayed negative feedback

Figure 2.2: The plot of functions p1(λ) and p2(λ, τ ). The plot of functions
p1(λ) = (λ + x)(λ + z) (black dashed) and p2(λ, τ) = −y e−λτ (red solid), which
constitute the characteristic equation P (λ, τ) = p1(λ) − p2(λ, τ) = 0 (2.24). The
plot of p2(λ, τ) is represented for several values of τ : τ = 0, τ1 ∈ (0, τc), τ = τc,
τ2 ∈ (τc, τm), τ = τm, τ3 > τm. Black dots designate intersections of p1(λ) and
p2(λ, τ) that correspond to real dominant roots λ1, λ2 of P (λ, τ). Dotted lines
with open circles designate coordinates of the vertex of the parabola p1(λ).

the parabola p1 is lower than p2(λ, 0) = −y, i.e., −(x−z)2/4 < −y, which is equivalent
to (x− z)2 > 4 y (see Fig. 2.2).
According to properties of p1(λ) and p2(λ, τ), roots λ1, λ2 may have either real

negative or complex conjugate values and induce the following response patterns of
the system (2.17) depending on the value of time delay τ (see Fig. 2.3 and Table 2.1):

1. If (x− z)2 > 4 y holds, then there exists a critical time delay τc such that:

a) For 0 ≤ τ < τc, roots λ1 and λ2 have distinct real negative values and the
system (2.17) produces an overdamped response (see white and red regions
in Fig. 2.3).

b) For τ = τc, λ1 = λ2 = λc with a negative real value. At this threshold the
system (2.17) produces a so-called critical damping response, beyond which
damped oscillations occur.

c) For τ > τc roots λ1 and λ2 have complex conjugate values. Here, two
alternative response patterns are possible:

i. If x z ≥ y holds, then λ1 and λ2 have a negative real part that converges
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2.3 How time delay determines characteristic response patterns

to 0 for τ → ∞. In this case the system (2.17) produces a damped
oscillatory response for any τ > τc (see red region in Fig. 2.3).

ii. If x z < y holds, then there exists a marginal time delay τm (the Hopf
bifurcation point) such that the negative real part of λ1, λ2 increases
with τ < τm, reaches 0 for τ = τm and turns to positive for τ > τm. In
this case the system (2.17) produces a damped oscillatory response for
any τc < τ < τm and a sustained oscillatory response for any τ ≥ τm
(see white region in Fig. 2.3).

2. If (x − z)2 < 4 y holds, λ1 and λ2 have complex conjugate values for any τ ≥ 0
and the dynamics of the model depends on the relation between x z and y:
a) If x z ≥ y holds, then λ1 and λ2 have a negative real part that converges to

0 for τ →∞. In this case the system (2.17) produces a damped oscillatory
response for any τ (see grey region in Fig. 2.3).

b) If x z < y holds, then there exists a marginal time delay τm such that the
negative real part of λ1, λ2 increases with τ < τm, reaches 0 for τ = τm
and turns to positive for τ > τm. In this case the system (2.17) produces
a damped oscillatory response for any τ < τm and a sustained oscillatory
response for any τ ≥ τm (see blue region in Fig. 2.3).

3. If (x − z)2 = 4 y holds, then for τ = 0 roots λ1 = λ2 have a negative real value
and the system (2.17) produces a critical damping response. For τ > 0 roots
λ1 and λ2 have complex conjugate values and the dynamics of the system (2.17)
depends on the relation between x z and y as described in 2.a and 2.b.

For derivation of the value of τc refer to Section 2.3.3. For derivation of the relation
between x z and y and the value of τm refer to the Section 2.3.4.

Table 2.1: Characteristic response patterns of the system (2.17) depending on the
value of time delay τ and values of x, y, z.

(x− z)2 > 4y (x− z)2 < 4y (x− z)2 = 4y
∃ τc such that For τ = 0
• for 0 ≤ τ < τc: critical damping.
overdamped response,
• for τ = τc:
critical damping.

x z ≥ y For τ > τc: For any τ ≥ 0: For any τ > 0:
damped oscillations. damped oscillations. damped oscillations.

x z < y ∃ τm such that ∃ τm such that ∃ τm such that
• for τc < τ < τm: • for 0 ≤ τ < τm: • for 0 < τ < τm:
damped oscillations, damped oscillations, damped oscillations,
• for τ ≥ τm: • for τ ≥ τm: • for τ ≥ τm:
sustained oscillations. sustained oscillations. sustained oscillations.

Designations: cells are color-coded with respect to regions of Fig. 2.3.
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2 Role of time delay in systems containing delayed negative feedback

Figure 2.3: Schematic visualization of regions, where τc and τm exist, and
possible dynamics of the steady state perturbation. Existence of τc and
τm depends on relations between (x− z)2/4 and y and x z and y, respectively: if
(x− z)2/4 > y and x z > y hold (red region), then only τc exists; if (x− z)2/4 > y
and x z < y hold (white region), then both τc and τm exist; if (x− z)2/4 < y and
x z < y hold (blue region), then only τm exists; if (x− z)2/4 < y and x z > y hold
(grey region), then neither τc nor τm exists. For each region I depict schematically
the possible dynamics of the system (2.17) with respect to τ .

In Fig. 2.3 I visualize schematically regions of values of x and y, where τc and τm
exist. Additionally, for each region I depict schematically the possible dynamics of the
system (2.17) and, as a result, the possible dynamics of Models 1-6 with respect to τ .
I also summarize these results in Table 2.1 with colours corresponding to Fig. 2.3.
Thus, the value of time delay τ and values of x, y and z determine the type of

response (overdamped, critical damping, damped oscillatory or sustained oscillatory)
of Models 1-6. In the following sections, I provide quantification of the critical value
of time delay τc and marginal value of time delay τm.

2.3.3 Quantification of τc

If the condition (x − z)2 > 4 y for the existence of τc is satisfied, τc corresponds to
the twice-repeated root λc of P (λ, τ) and can be calculated by solving the system of
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2.3 How time delay determines characteristic response patterns

equations with respect to τ :

P (λ, τ) = (λ+ x)(λ+ z) + y e−λτ = 0,
∂ P (λ, τ)
∂ λ

= 2λ+ x+ z − y τ e−λ τ = 0.
(2.25)

The above system consists of transcendental equations and can not be solved explicitly.
However, I was able to derive an estimation for τc. According to properties of functions
p1(λ), p2(λ, τ) presented in the section above, they might be tangent to each other
at the point (λc, τc) if and only if the condition λc ≥ λv is satisfied (see Fig. 2.2).
Therefore, the following inequality holds:

p1(λv) = −(x− z)2

4 ≥ −y e
τc(x+ z)

2 = p2(λv, τc).

Thus, I estimate τc using the following inequality (2.26):

τc ≥ τ̃c(x, y, z) =
2
(
ln(x− z)2 − ln 4 y

)
x+ z

. (2.26)

2.3.4 Quantification of τm

In this section, I provide a detailed Hopf bifurcation analysis of the linearised sys-
tem (2.17) with quantification of τm.
First, I designate the number of roots of the characteristic polynomial (2.24) in the

right half-plane for some time delay τ by M(τ):

M(τ) = #{λ : Re(λ) ≥ 0 and P (λ, τ) = 0}.

The lemma (without number) from [21] says that as τ varies, M(τ) can change only
if a characteristic root λ with Re(λ) = 0 appears on or crosses the imaginary axis.
Thus, the only way that M(τ) 6= M(τ ′) for τ < τ ′ is, if there exists a marginal value
τm between τ and τ ′, such that P (λm, τm) = 0 and Re(λm) = 0 [21, 95].

To this end, I consider a root of the characteristic polynomial in the form λm = i ωm,
where ωm > 0, and substitute the latter into (2.24):

P (i ωm, τm) = x z − ω2
m + i (x+ z)ωm + y e−i ωmτm = 0.

Using Euler’s formula I get an expression e−i ωmτm = cos(ωmτm) − i sin(ωmτm) that
I substitute in the formula above:

x z − ω2
m + i (x+ z)ωm + y (cos(ωmτm)− i sin(ωmτm)) = 0. (2.27)
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2 Role of time delay in systems containing delayed negative feedback

Satisfying (2.27) the real and imaginary parts should both be equal to zero:

x z − ω2
m + y cos(ωmτm) = 0, (2.28)

(x+ z)ωm − y sin(ωmτm) = 0. (2.29)

I bring y cos(ωmτm) and y sin(ωmτm) to the right hand side of the respective equa-
tions and square both sides:(

x z − ω2
m

)2 = (−y cos(ωmτm))2
,

(x+ z)2 ωm
2 = (y sin(ωmτm))2

.

Then, I sum both equations and use the fact that (−y cos(ωmτm))2 +
(y sin(ωmτm))2 = y2:

ω4
m + (x2 + z2)ω2

m + x2 z2 − y2 = 0. (2.30)

The equation (2.30) has real non-zero roots if and only if x z < y. Otherwise, τm
does not exist and the equilibrium (Cs, Rs) is absolutely stable. I assume that x z < y

holds and define the discriminant D by

D = (x2 + z2)2 − 4(x2 z2 − y2). (2.31)

Then, I find
ω2
m± = 1

2
(
−x2 − z2 ±

√
D
)
.

Hence, I obtain the expression for ω2
m and ωm, respectively:

ω2
m = 1

2
(
−x2 − z2 +

√
D
)
, ωm =

√
1
2
(
−x2 − z2 +

√
D
)
.

Further, I define τm. For this I substitute ωm into (2.28) and (2.29):

cos(ωmτm) = 1
2 y

(
−(x+ z)2 +

√
D
)
, (2.32)

sin(ωmτm) = x+ z

y
ωm > 0. (2.33)

Thus, I express the value of τm:

τm(n) = 1
ωm

[
arccos

( 1
2 y

(
−(x+ z)2 +

√
D
))

+ 2πn
]
, n = 0, 1, 2, ...

Since sin(ωmτm) > 0 holds, I conclude that if
(
−(x+ z)2 +

√
D
)
> 0, then

arccos
( 1

2 y
(
−(x+ z)2 +

√
D
))
∈
(
0, π2

)
, otherwise arccos

( 1
2 y (−(x+ z)2 +

√
D)

)
∈

(π2 , π). In both cases, the smallest time delay, which causes a purely imaginary pair of
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roots λ1,2 = ±iωm, is

τm = 1
ωm

arccos
( 1

2 y
(
−(x+ z)2 +

√
D
))
. (2.34)

As a result, I proved the stability of the equilibrium (Cs, Rs) for any τ ∈ [0, τm).
Indeed, roots of P (λ, 0) are either real negative or have a negative real part (see above).
Then, according to Lemma from [21], M(τ) = 0 for any τ ∈ [0, τm). Hence, for any

τ ∈ [0, τm) the equilibrium (Cs, Rs) is asymptotically stable.
Finally, I check if a Hopf bifurcation occurs at τ = τm. For this I differentiate the

characteristic polynomial (2.24) with respect to τ and equate it to zero:

2λ dλ
dτ

+ (x+ z) dλ
dτ

= y e−λτ
(
τ
dλ

dτ
+ λ

)
.

Then, I express dλ
dτ

:
dλ

dτ
= y λ

eλτ (x+ z + 2λ)− y τ .

I substitute λ = iωm into the expression for dλ
dτ

and use Euler’s formula again:

dλ

dτ
(τ) = i ωm y cos(ωmτ) + ωm y sin(ωmτ)

x+ z − y τ cos(ωmτ) + i (2ωm + τy sin(ωmτ)) .

I substitute the expression for τm (2.34), used (2.32) and (2.33), multiply the top
and the bottom by the conjugate of the denominator, take the real part and get:

dRe(λ)
dτ

(τm) =
√
Dω2

m

(x+ z − y τm cos(ωmτm))2 + (2ωm + τm y sin(ωmτm))2 > 0. (2.35)

The positivity of (2.35) guarantees that the hypotheses of the implicit function the-
orem hold. Hence, I conclude that for τ ≈ τm the root of the characteristic polynomial
(2.24) λm = iωm crosses the imaginary axis from left to right.

According to Proposition 6.5 from [95], for τ ≥ τm the equilibrium (Cs, Rs) is un-
stable.

2.4 Application

In the following sections I apply Models 2 and 4 to concrete experimental data demon-
strating the ability of my theoretical framework to gain novel insights into the func-
tioning of concrete biochemical systems. Specifically, I apply Model 2 to the high
osmolarity glycerol pathway in yeast and Model 4 to the NF-κB system in mammalian
cells.
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2.4.1 High osmolarity glycerol system

The high osmolarity glycerol (HOG) pathway in yeast is a stress-activated protein ki-
nase (SAPK) pathway that serves as a prototype signalling system for eukaryotes. This
pathway is necessary and sufficient to adapt yeast cells to high external osmolarity.
A key component of the pathway is the SAPK Hog1, which is rapidly phosphory-
lated upon hyper-osmotic shock. Phosphorylated Hog1 translocates to the nucleus
activating transcription factors that lead to the synthesis of enzymes facilitating the
accumulation of the osmolyte glycerol. Internal glycerol balances and re-establishes
pre-stress internal and external water potential differences [45, 69, 91].
Several models of the HOG pathway with different complexity have been already

published [69, 91, 92]. Here, I transform the three-dimensional generic HOG model
from [92] into a 2-dimensional model, where I replace transcription and translation
processes that are needed for the glycerol production by their duration τ . Since I
study the role of time delay in the HOG pathway, I omit nested negative feedbacks
leaving only delayed glycerol-mediated negative feedback. Thus, I obtain Model 2 from
Fig. 2.1B.
In Model 2, phosphorylated Hog1 (Hog1-PP), glycerol and external osmotic shock

[M NaCl] correspond to C, R and I, respectively.
In order to define a signal function S1 mediating a DNF I consider an auxiliary

component A used in [92] for the three-dimensional HOG model. The component A
mimics a cellular sensor, which reacts to an external stimulus I and transduces a signal
to the component C. I adapt the dynamics of A from [92]:

dA

dt
= I + T0 − ρA(t)− ξ R(t) A(t)

Km + A(t) , (2.36)

where T0 is a base signal, ρ, ξ and Km are positive parameters.
Then I define S1(I, R) as the equilibrium of (2.36), which is scaled by the parame-

ter µ > 0:

S1(I, R) = µ

√
(−Km ρ+ I − ξ R + T0) 2 + 4ρ (Km I +Km T0)−Kmρ+ I − ξR + T0

2ρ .

(2.37)
Note that for small values of Km (Km → 0) the system (2.2) senses the positive

difference between the scaled external stimulus I + T0 and the scaled response R (see
Fig. 2.4):

lim
Km→0

S1(I, R) = µ
|I + T0 − ξR|+ I + T0 − ξR

2ρ = µ max
(
I + T0 − ξR

ρ
, 0
)
.

Thus, I may conclude that the signal function S1 is a linear function of the scaled
external stimulus I + T0 and the scaled response R, which is basically the function
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Figure 2.4: Plot of the signal function S1(I,R) (2.37). Parameters from Ta-
ble B.1 and I = 0.07, 0.1, 0.2, 0.4 M are used.

Figure 2.5: Simulation and response analysis of the HOG model. (A) Simula-
tion of the HOG model (2.2) with parameters from Table B.1, dots – experimental
data from [69]. (B) Calculation of τc, τm and τad for several values of stimulus
I = 0.07, 0.1, 0.2, 0.4, 0.6, 0.8, 1 M designated by dots.

used for the generic 4-dimensional model in [91] in a differentiable positive form.
After the definition of the DNF function S1(I, R) the parameter vector p (2.7) of

Model 2 has the following extended form:

pext = (I, α, β, η,Km, µ, ρ, ξ, T0)T .

I fit the parameter vector pext of the HOG model (2.2) to experimental data from [69]
for salt shocks I = 0.07, 0.1, 0.2, 0.4 M (see Table B.1). Corresponding simulations of
the fitted HOG model (2.2) are represented in Fig. 2.5A. The model is not only able to
recapitulate measured Hog1 dynamics for different conditions, but the fitted optimal
solution is also robust with respect to noise in the fitted parameters (see Fig. A.1).
The integrated response varies only around 8% assuming a parameter noise of ±10%
(see Appendix A). Further, I analyse the influence of τ on the response patterns of
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2 Role of time delay in systems containing delayed negative feedback

the HOG model (2.2) for stimulus values I = 0.07, 0.1, 0.2, 0.4, 0.6, 0.8, 1 M. As a
result, for considered values of I both critical and marginal time delays, τc and τm,
exist (see Fig. 2.5B). The fitted time delay τ = 4.2 min is less than both τc and τm for
all values of I (see Fig. 2.5B). According to the derived theory, the relation 0 < τ < τc
corresponds to an overdamped response, which is also supported by experimental data
(see Fig. 2.5A).
The fitted time delay τ has a large distance to τm for all considered I (see Fig. 2.5B).

Therefore, the HOG system robustly produces a strongly overdamped response and
crosses the steady state only once at early time points (t < 5 min), even if perturbations
in time delay arise. Thus, it is unlikely that damped oscillations occur. Indeed, τc is
about 2-7 times higher than the fitted τ .
In addition, I conduct a Monte-Carlo analysis of the HOG model (2.2) to check

the robustness of the overdamped response to perturbations in all parameter values.
For this, I simultaneously vary all parameters including time delay τ within 80% and
120% of their fitted values for N = 8000 times. The value of external stimulus I is
randomly sampled in the range [0.07, 1] M using the uniform distribution for N = 8000
times. As a result, for HOG model (2.2) I create N = 8000 sampled parameters sets.
For each sampled parameter set I calculate the critical time delay τc. For all sampled
parameter sets, the critical time delay τc varies between 6.3 min and 45.6 min and
is always greater than the respective sampled τ . Thus, HOG model (2.2) produces
an overdamped response for all generated parameter sets. This analysis leads to the
conclusion that HOG system in yeast produces a robust overdamped response with
respect to osmotic stress and it is unlikely that it produces damped or sustained
oscillations for the considered external stimulus I in the range [0.07, 1] M.

Calculation of time delay minimizing the adaptation time

Further, I numerically calculate values of the time delay τad minimizing the adaptation
time of the HOG model (2.2) for stimulus I ∈ [0.07, 1] M (see Fig. 2.5B):

τad = arg min
τ∈[0,τc]

t

s.t. |C(t)− Cs| < 5× 10−7,

|C(t− 1)− Cs| > 5× 10−7,

t ∈ {1, 2, 3, ..., 1000}.

(2.38)

For calculating τad I perform the following steps:

1. For fixed values of I ∈ [0.07, 1] M and τ ∈ [0, τc] I simulate the HOG model (2.2)
with parameters from Table B.1 on the time interval t ∈ [0, 1000] min. Search-
ing for τad at the interval [0, τc] allows the exclusion of damped and sustained
oscillatory responses of the HOG model.
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2. I assign ti = 1000 min to be the starting time point for searching the adaptation
time of the component C(t) of the HOG model (2.2). At this time point condi-
tions |C(ti)− Cs| < 5× 10−7 and |C(ti − 1)− Cs| < 5× 10−7 are fulfilled for all
considered values of I and τ .

3. I decrease ti and check conditions (2.38). If conditions (2.38) are satisfied for the
time point ti, I designate ti as the adaptation time of the HOG model (2.2). The
corresponding value of time delay is designated as the optimal time delay τad,
which induces the shortest adaptation time of the HOG model (2.2) for the fixed
stimulus I. Otherwise, I decrease ti until conditions (2.38) are satisfied.

As an example, in Fig. 2.6A I plot the adaptation time of the HOG model (2.2)
for τ ∈ [2, 14] min and I = 0.4 M. The value of τad corresponds to the minimum of
the adaptation time on the graph. In Fig. 2.6B I display simulations of the HOG
model (2.2) for I = 0.4 M using the optimal time delay τad = 8.95 min as well as two
representative time delay values τ = 3 min and τ = 13 min, which are less and greater
than τad, respectively.
Fig. 2.6B shows that simulation of the HOGmodel (2.2) demonstrates no equilibrium

undershooting for both τ = 3 min and τ = τad = 8.95 min. However, the model with
τ = 3 min needs more time to approach the equilibrium with the accuracy 5 × 10−7

than the model with τ = τad = 8.95 min. For τ = 13 min the simulation of the HOG
model (2.2) crosses the equilibrium twice before reaching it.
Thus, the obtained values of τad for I ∈ [0.07, 1] M are depicted in Fig. 2.5B. Namely,

τad is equal to 12.4 min for I ∈ [0.07, 1] M and is about 9 min for other I. Hence,
values of τad are relatively close to the fitted τ for all considered I (see Fig. 2.5B).
Therefore, I may conclude that the HOG system employs an optimal intrinsic time

Figure 2.6: Calculating τad. (A) The adaptation time of Hog1-PP for τ ∈ [2, 14]
min for I = 0.4 M. (B) Simulations of the HOG model (2.2) for I = 0.4 M with
τ = 3, 8.95, 13 min. The colour-coded dashed lines correspond to time values
needed for the model simulation to approach the equilibrium Cs with the accuracy
5× 10−7.
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2 Role of time delay in systems containing delayed negative feedback

delay τ for producing glycerol. Indeed, the time delay minimizes the time the system
needs to adapt to new osmotic conditions. I call this property “optimal adaptation”.

Dependence between adaptation time and model parameters

Next, I investigate how the adaptation time of the HOG model (2.2) depends on
activation and degradation parameters α, β, µ, η within the range of 0.1 and 10 times
their respective fitted value. As the representative stimulus level I consider I = 0.4
M (see Fig. 2.7A). Among the analysed parameters the only parameter, whose change
may lead to a substantial decrease in adaptation time, is the degradation rate β of
the response R. However, increasing β leads to increasing the steady state Cs that
corresponds to the level of phosphorylated Hog1 (see Fig. 2.7B). Yeast cells tend to
keep the level of phosphorylated Hog1 low because it is a sign of stress and, in fact,
incomplete adaptation. Thus, the value of β is a trade-off between fast adaptation and
complete adaptation indicated by elevated steady state Hog1 activation.
Taken together, my study showed that the HOG system produces a robust over-

damped response and demonstrates optimal adaptation after osmotic shock. Addi-
tionally, the model predicted that increasing the glycerol degradation rate may lead
to decreasing adaptation time of the HOG system at the expense of incomplete adap-
tation, which is indicated by increased steady states of phosphorylated Hog1.

Figure 2.7: Dependence between the adaptation time of the HOG
model (2.2) and model parameters for I = 0.4 M. (A) Dependence be-
tween the adaptation time of the HOG model and parameter values α, β, µ, η.
Dashed line – adaptation time of the model with fitted parameters from Table B.1;
parvar and parfit designate varied and fitted parameter values, respectively. (B)
Simulation of the HOG model (2.2) with parameters from Table B.1 and several
values of degradation parameter β∗ = β, 1.5 β, 2 β, 2.5 β, 3 β.
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2.4.2 NF-κB system

The transcription factor NF-κB regulates a variety of genes that are responsible for
inter- and intracellular signalling, cell growth, survival, apoptosis and cellular stress
responses [35, 85]. Briefly, NF-κB is held inactive in the cytoplasm by three IκB
isoforms. Cell stimulation by, e.g., tumour necrosis factor-α (TNF-α) activates the
IκB kinase complex, leading to phosphorylation and degradation of IκB proteins. Free
NF-κB translocates to the nucleus, activating genes, including IκBα and IκBε, which
in turn relocates to the cytoplasm inactivating NF-κB.
In order to describe the NF-κB regulation in mammalian cells, an ODE model

with negative feedbacks was presented in [44]. Recently, this model was reduced by
employing two explicit time delays needed for activating genes of IκBα and IκBε [66].
Using theoretical analysis the authors showed that the oscillatory frequency in NF-κB
dynamics is not a function of the stimulus but the time delay.
I wondered how the time delay affects the response of the NF-κB system with respect

to a stimulus in general. Since my theoretical framework is applicable to systems with
a single DNF, I consider the mutant NF-κB system containing only the IκBα feedback
loop [44]. In the mutant system, the external stimulation activates NF-κB, which
induces the synthesis of IκBα, which in its turn binds NF-κB and deactivates it.
According to studies [44, 66], the IκB-α–NF-κB signalling pathway can be described
by Model 4 from Fig. 2.1D.
I designate concentrations of NF-κB and IκB-α by C and R, respectively. In order

to get the NF-κB model (2.4) without external stimulus in a non-zero steady state I
present the input I in the form (2.39). Here, the input I is a scaled sum of external
signal I∗, e.g. TNF-α, and base signal T0 with the scaling factor µ > 0:

I = µ (I∗ + T0). (2.39)

The negative feedback by output-activation is modelled by a Hill function (1.10).
After the definition of the DNF function S2(R) the parameter vector p (2.7) of Model 4
has the following extended form:

pext = (I∗, α, β, η,Km, n, µ, δ, T0)T .

I estimate parameters pext of the NF-κB model (2.4) using experimental data
from [44] (see Fig. S1 therein). The resulting parameter values are represented in
Table B.1. The corresponding data and simulations are displayed in Fig. 2.8A. The
model recapitulates measured NF-κB dynamics for a TNF-α stimulus of I∗ = 10
ng/ml. Moreover, the fitted optimal solution is also robust with respect to noise in the
fitted parameters (see Fig. A.1). The integrated first transient response varies only by
6.4% assuming a parameter noise of ±10% (see Appendix A).
Further, I investigate how time delay influences the response of the NF-κB
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2 Role of time delay in systems containing delayed negative feedback

Figure 2.8: Simulation and response analysis of the NF-κB model. (A)
Simulation of the NF-κB model (2.4) with parameters from Table B.1, dots -
– experimental data from [44], Fig. S1 therein. (B) Dependence between the
stimulus value I and τc, τ̃c, τm. The dot corresponds to fitted parameter values
I∗ = 10 ng/ml and τ = 34.5 min. The black dashed line corresponds to the
value I∗s = 5.4 ng/ml such that for any I∗ ∈ [0, I∗s ] the NF-κB model (2.4) is
asymptotically stable for any τ ≥ 0.

model (2.4) with parameters from Table B.1 for stimulus values I∗ ∈ [0, 20] (see
Fig. 2.8B). The numerical analysis shows that there exists a stimulus value I∗s ≈ 5.4
ng/ml such that for I∗ ∈ [0, I∗s ] only τc exists. For I∗ > I∗s there exist both τc and τm.
Note that both τc and τm decrease with I∗.
The value of the stimulus TNF-α I∗ = 10 ng/ml, which was used in [44] for obtaining

data in Fig. 2.8A, is greater than I∗s = 5.4 ng/ml. Therefore, for I∗ = 10 ng/ml there
exist both τc = 1.56 min and τm = 45.2 min. Since the relation τc < τ = 34.5min < τm
holds (see Fig. 2.8B), the NF-κB model (2.4) produces a damped oscillatory response,
which corresponds well to experimental data (see Fig. 2.8A).
In comparison to τc, the fitted τ is close to τm (see Fig. 2.8B). This might facilitate

both damped and sustained oscillatory dynamics upon small changes in parameter
values. To this end, I check the robustness of the NF-κB characteristic response to
parameter perturbations by performing Monte-Carlo analysis. I sample all parameter
values including time delay τ and external stimulus I within 80% and 120% of their
fitted values for N = 8000 times. Then for each sampled parameter set I calculate
the marginal time delay τm if it exists. Thus, Monte-Carlo analysis shows that for
about 78% of sampled parameter sets τm is greater than the corresponding sampled
τ and the model demonstrates damped oscillatory behaviour. Nevertheless, for about
16 % of parameter sets τm is less than τ and the model demonstrates sustained oscil-
latory behaviour. For about 6 % of parameter sets τm does not exist and the model
demonstrates damped oscillatory behaviour. Thus, given the intrinsic noise in protein
expression, mimicked by Monte-Carlo analysis, both damped and sustained oscilla-
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tory response patterns might co-exist. The probability of the two response patterns
with respect to random parameter perturbations is determined by the strength of the
stimulus. For I∗ = 10 ng/ml damped oscillations dominate the response. For higher
stimuli the Hopf bifurcation threshold decreases making sustained oscillations more
likely to arise (see Fig. 2.8B).
Thus, the NF-κB system upon TNF-α is prone to damped oscillatory behaviour.

However, the NF-κB system may also switch to sustained oscillations upon small
changes in parameter values or increasing stimulus.

2.5 Discussion

In biological systems adaptive behaviour is often mediated and controlled by negative
feedbacks, which inevitably come with time delays due to the time needed to transcribe
biochemical information into concentrations of relevant compounds. Such delayed
negative feedbacks (DNFs) are able to demonstrate adaptive as well as oscillatory
dynamics [12, 15, 21, 36, 38, 44, 76].
In this chapter, I addressed the question of how time delay influences the response

pattern of DNF systems. For generalization, I investigated several alternatives of DNF
systems:

• systems with two types of DNF represented by signal input-inhibition and output-
activation, respectively,

• systems without mass conservation and with mass conservation for one or two
components.

Then I implemented the described systems using delay differential equations and per-
form mathematical analyses with respect to time delay. As a result, for all considered
model structures the model response depends on the value of parameters, including
time delay, and exhibits one of the following response characteristics: overdamped,
critical damping, damped oscillatory or sustained oscillatory response.
I applied my general framework to concrete data of adaptive and oscillatory bio-

logical systems to study the role of time delay within DNFs. I studied two different
systems with overdamped and damped oscillatory behaviour, respectively, i.e., the
HOG system in yeast and the NF-κB and in mammals.
The application of my theoretical framework to the HOG pathway reveals an aspect

of the adaptation process that I called optimal adaptation. The HOG system employs
a time delay that is close to the value, which minimizes both the adaptation time and
the number of over- and undershoots of the final steady state after stimulation. It
would be interesting to see whether this feature of optimal adaptation also applies to
other adaptive biochemical networks. My framework is suitable for such an analysis.
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2 Role of time delay in systems containing delayed negative feedback

In addition, my analyses suggested that time delay in the NF-κB system is close to
the bifurcation threshold. This property might facilitate both damped and sustained
oscillatory dynamics upon small changes in the value of time delay. This way cell fate
decisions might be tuned depending on network dynamics.
Based on design specification, several synthetic gene-regulatory networks have been

proposed in order to generate artificial oscillations in bacteria [27, 99]. Mathematical
modelling has been instrumental in this design process and time delay is recognized as
a key design principle for constructing robust oscillators [99]. My framework allows to
better address the role of delay, because it can be studied as a separate parameter. For
example, in a specific network design a first estimate of the delay needed to provoke
a certain response pattern can be obtained and, accordingly, the length of a gene-
regulatory cascade can be projected.
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3 Repressing oscillations in delayed negative
feedback systems

3.1 Introduction
In the previous chapter, I demonstrated that oscillatory dynamics of biochemical com-
pounds can be induced in intracellular delayed negative feedback (DNF) systems.
However, in biological networks mediating adaptive responses oscillatory behaviour
might be inappropriate. For example, in the hyperthermia treatment of cancer, large-
amplitude temperature oscillations could result in tissue damage or patient discom-
fort [102]. Therefore, I wondered if there exist any cellular mechanisms or network
design features that may suppress oscillatory dynamics of intracellular components.
The recent study [80] demonstrated that nested negative feedbacks may suppress

oscillations of biochemical species involved in a delayed negative feedback. However,
this study provided no insight into how time delay influences the dynamics of DNF
systems and interacts with nested negative feedbacks. In one of studies with my
contribution [92] it was proved that nested negative feedbacks can modify the resistance
of a DNF system, i.e, the distance between model parameters and certain thresholds
beyond which sustained oscillations occur. In this chapter, I continue this research
and investigate how the combination of time delay and certain network design features
influences the dynamics of biochemical DNF systems after external stimulation. Using
Models 1-6 presented in Fig. 2.1 I study if the following network design features may
repress oscillations of components of biochemical networks:
• presence of a nested negative (auto-inhibitory) feedback as it was described in [80,
92],

• presence of mass conservation for biochemical compounds,

• mechanism of DNF, i.e., input-inhibition or output-activation.
I subject these models to computational and theoretical stability analyses. My

computational analyses demonstrate that the presence of auto-inhibition and mass
conservation have a stabilizing influence on the model equilibrium independent of
the strength of DNF. In contrast, increasing steepness and decreasing threshold of
the DNF have a de-stabilizing effect on the model equilibrium. For modelling DNF
Hill functions (1.9) and (1.10) were used. In terms of Hill functions, steepness and
threshold correspond to the Hill coefficient n and half-saturation constant Km, re-
spectively. Along with computational studies theoretical analyses show that nested

43



3 Repressing oscillations in delayed negative feedback systems

auto-inhibitory feedbacks may increase the range of time delay, where the equilibrium
is stable, through the steepness of the feedback function.
The developed theoretical framework is applied to study the oscillating p53 system

in mammalian cells [64].

3.2 Design features stabilizing biochemical delayed negative
feedback systems

According to recent studies [80, 91], nested auto-inhibitory feedbacks can repress os-
cillatory dynamics of simple biochemical networks containing a non-linear DNF. I
investigate how other design features influence the dynamics of two-dimensional DNF
systems. For this analysis I consider generic DNF Models 1-6 formulated in Sec-
tion 2.2. Thus, in addition to auto-inhibition I consider the presence of the following
model designs:

• Mechanism of DNF: input-inhibition (Models 1-3) or output-activation (Mod-
els 4-6),

• Presence of mass conservation for biochemical compounds (Models 1, 4 without
mass conservation, Models 2, 5 with mass conservation for one component, Mod-
els 3, 6 with mass conservation for both components),

• Strength of DNF: strong or weak.

I also consider how the following combinations of delayed and auto-inhibitory neg-
ative feedbacks influence the dynamics of DNF networks:

• Weak DNF with and without auto-inhibition,

• Strong DNF with and without auto-inhibition.

For analysing the influence of these design features on the dynamics of Models 1-6
I perform Monte-Carlo analysis of these models. In this study, Monte-Carlo analysis
implies random sampling of model parameters in the certain range with the subsequent
calculation of model characteristics of interest for every sampled parameter set (see
section 1.1.5). In order to perform this analysis, I define concrete DNF functions, i.e.,
S1 and S2, and auto-inhibition function F .
I define a reverse Hill function as the input-inhibition DNF function S1(R) (1.9).

As the output-activation function S2(R) I define a Hill function (1.10). For both func-
tions S1 and S2, Km > 0 is the half-saturation constant, characterizing the activation
threshold beyond which the feedback takes effect, and n ≥ 1 is the Hill coefficient,
characterizing how abruptly the feedback takes effect after having passed the activa-
tion threshold. Thus, parameters Km and n specify the strength of the DNF: the
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Figure 3.1: Reverse Hill function. (A) Plot of the reverse Hill function F (C) (3.1).
(B) Absolute value of the derivative of the reverse Hill function with the fixed κ
and different values of ν.

lower the activation threshold Km and the higher the steepness n are, the stronger the
DNF is. Note that applying the same parameters make functions S1 and S2 symmetric
allowing a fair comparison of the influence of input-inhibition and output-activation
on the model stability (see Fig. 1.6).
As the auto-inhibitory feedback I employ a reverse Hill function F (C) having the

following form (see Fig. 3.1):

F (C) = 1
1 + (κC)ν , ν ≥ 1, κ ≥ 0. (3.1)

After the definition of functions S1, S2 and F the parameter vector p (2.7) of Mod-
els 1-6 has the following extended form:

pext = (I, α, β, η, δ,Km, n, κ, ν)T .

Next, I randomly generate values of the parameter vector pext in the way that all
Models 1-6 without auto-inhibition, i.e., κ = 0, have similar values of the marginal
time delay τm (2.34). These are I = 1.74, α = 0.66, β = 1.32, δ = 282, η = 1,
n = 2.72, Km = 0.015. These parameter values lead to τm = 1.21, τm = 1.27,
τm = 1.37, τm = 1.22, τm = 1.25, τm = 1.25 for Models 1-6, respectively. This
parameter set guarantees that any value of time delay τ has the similar distance to
the Hopf bifurcation point τm for all considered Models 1-6. Simulations of Models 1-6
with these parameters and τ = 3.5 are depicted in Fig. 3.2.
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Figure 3.2: Simulation of Models 1-6 without auto-inhibition. Parameter
values I = 1.74, α = 0.66, β = 1.32, δ = 282, η = 1, n = 2.72, Km = 0.015,
τ = 3.5, κ = 0 were used.

Further, for every defined parameter value, except the input I, I assign a sampling
range for the Monte-Carlo analysis. The value of the input I = 1.74 stays fixed
assuming that the external stimulus is constant for all simulations. Then I randomly
sample parameter values α, β, δ, η in the range from 0.1 to 10 times their respective
values N = 10000 times. Parameter values n, Km, ν, κ are sampled in the following
way:
(i) in the case of weak DNF without auto-inhibition (κ = 0) I sample parameters n

in the range from n = 1 to its chosen value n = 2.72 and Km in the range from
10 to 20 times its value N = 10000 times.

(ii) in the case of strong DNF without auto-inhibition (κ = 0) I sample n in the
range from 1 to 2 times its value and Km in the range from 0.1 to 10 times its
value N = 10000 times.

(iii) in the case of weak DNF with auto-inhibition I sample n and Km as in (i), κ in
the interval [0.1, 10], ν in the interval [1, 20] N = 10000 times.

(iv) in the case of strong DNF with auto-inhibition I sample n and Km as in (ii), κ
in the interval [0.1, 10], ν in the interval [1, 20] N = 10000 times.

Thus, for each Model 1-6 and each combination of DNF and auto-inhibition I sample
10000 parameter sets pext. Further, for each parameter set I calculate x, y and z

according to (2.18)-(2.23) for Models 1-6, respectively. Then I define the percentage
of parameter sets for which x z ≥ y holds meaning the absolute stability of the model
equilibrium (see Fig. 3.3A). For the rest of the parameter sets, which do not induce
absolute stability, I calculate the mean value of the marginal time delay τm (3.2) (see
Fig. 3.3B).
Fig. 3.3A and B shows that considered models with auto-inhibition have higher
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Figure 3.3: Stability analysis of Monte-Carlo simulations of Models 1-6.
(A) The percentage of parameter sets, which induces absolute stability. (B) The
mean value of marginal time delay τm. Model parameters are randomly sampled
10000 times in the certain range. The range is defined according to assumptions
about model characteristics: strength of DNF (strong or weak) and presence of
auto-inhibition.

percentage of parameter sets leading to absolute stability and higher mean value of τm
than the same models without auto-inhibition. This observation supports conclusions
of previous studies [80, 91], which claim that auto-inhibitory feedbacks may repress
oscillatory dynamics in networks containing DNF.
Additionally, for models with weak DNF there is a higher percentage of parameter

sets, which induce absolute stability of the model equilibrium, than for models with
the strong one. The same holds for the mean value of τm: models with weak DNF
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have a higher mean value of τm than models with the strong DNF.
Interestingly, mass conservation demonstrates a stabilizing influence on model equi-

libria. Indeed, models with mass conservation for one component have a higher per-
centage of parameter sets leading to absolute stability of the model equilibrium and
higher mean value of τm than respective models without mass conservation. In addi-
tion, models with mass conservation for both components have higher percentage of
parameter sets leading to absolute stability of the model equilibrium than correspond-
ing models with mass conservation for one component. In order to detect the influence
of mass conservation on τm, for all models I quantify the dependence between τm and
every parameter value. First I vary a parameter value in the range from 0.1 to 10
times its respective chosen value leaving the rest of the parameter values fixed. Then
I quantify τm using resulting parameter sets with one varied parameter (see Fig. 3.4).
This analysis shows that for the considered range of parameter values mass conser-
vation influences τm only through changing the sensitivity of the half-saturation rate
Km leaving the sensitivity of other parameters almost unchanged. Thus, the sensitiv-
ity analysis indicates that mass conservation stabilizes the model equilibrium through
changing the sensitivity of the half-saturation rate Km of DNF (Fig. 3.4A).
Concerning the mechanism of DNF, Monte-Carlo analysis shows that Models 1-3

with input-inhibition have higher percentage of parameter sets leading to absolute
stability and higher mean value of τm than Models 4-6 with output-activation (see
Fig. 3.3A and B). However, I was not able to support these results applying Monte-
Carlo analysis to the parameter set I = 0.48, α = 0.14, β = 0.44, δ = 83.71, η = 1,
n = 10, Km = 0.9, which I call the alternative parameter set. Refer to Fig. 3.5A for
simulations of Models 1 and 4 using the alternative parameter set and τ = 10. In
contrast, for the alternative parameter set Model 1 with input-inhibition has a higher
value of τm, i.e., τm = 1.27, than Model 4 with output-activation, i.e., τm = 0.36.
According to values of τm one could expect that models with input-inhibition might
have a higher percentage of parameter sets, which induce absolute stability, than mod-
els with output-activation. Nevertheless, for this parameter set Monte-Carlo analysis
showed that models with input-inhibition have approximately the same percentage
of parameter sets leading to absolute stability as corresponding models with output-
activation (see Fig. 3.5). Note that for the alternative parameter set the rest of the
conclusions presented above remained unchanged.
Taken together, I may conclude that auto-inhibition and mass conservation have a

stabilizing influence on the model equilibrium independent of the strength of DNF and
allow systems with DNF to adapt to an external stimulus without producing sustained
oscillations.
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Figure 3.4: The dependence between τm and parameter values of Models 1-
6. (A) Km. (B) β. (C) α. (D) I. (E) δ. (F) n. With parvar and par I designate
varied and initial chosen parameter values. These are I = 1.74, α = 0.66, β = 1.32,
δ = 282, η = 1, n = 2.72, Km = 0.015. For (A) I vary the parameter Km in the
range from 0.1 to 100 times its respective chosen value. For (B-F) I vary the value
of each parameter in the range from 0.1 to 10 times its respective chosen value.
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Figure 3.5: Results of Monte-Carlo analysis of Models 1 and 4 with the
alternative parameter set. As the alternative parameter set I apply I = 0.48,
α = 0.14, β = 0.44, δ = 83.71, η = 1, n = 10, Km = 0.9, τ = 10 without
auto-inhibition (κ = 0). (A) Simulation of Models 1 and 4. (B) Stability analysis
of Monte-Carlo simulations of Models 1 and 4. Model parameters are randomly
sampled 10000 times in the certain range. The range is defined according to
assumptions about model characteristics: strength of DNF (strong or weak) and
presence of auto-inhibition. The percentage of parameter sets, which induces
absolute stability, is quantified.

3.3 Auto-inhibition increases the value of the marginal time
delay

In the previous section, the computational analysis showed that auto-inhibition may
suppress oscillatory behaviour of DNF components. In this section, I present a theo-
retical evidence of this phenomenon.
First, I consider the marginal time delay τm (2.34) as the function of x, y and z:

τm(x, y, z) = f(x, y, z) · g(x, y, z), (3.2)

where

f(x, y, z) =
√

2√
−x2 − z2 +

√
(x2 + z2)2 + 4(y2 − x2z2)

> 0,

g(x, y, z) = arccos
−(x+ z)2 +

√
(x2 + z2)2 + 4(y2 − x2z2)

2y > 0.

(3.3)

Assuming x z < y and using D from (2.31), I obtain derivatives of functions f and g
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with respect to x, y and z:

∂f

∂x
(x, y, z) =

√
2x
(√

D −
(
x2 − z2

))
√
D
(√

D − x2 − z2
)3/2 > 0,

∂g

∂x
(x, y, z) =

2(x+ z)
(√

D − x2 + xz
)

√
D

√
4y2 −

(
(x+ z)2 −

√
D
)2
> 0,

∂f

∂z
(x, y, z) =

√
2z
(√

D +
(
x2 − z2

))
√
D
(√

D − x2 − z2
)3/2 > 0,

∂g

∂z
(x, y, z) =

2(x+ z)
(√

D − z2 + xz
)

√
D

√
4y2 −

(
(x+ z)2 −

√
D
)2
> 0,

∂f

∂y
(x, y, z) = − 2

√
2y

√
D
(√

D − x2 − z2
)3/2 < 0,

∂g

∂y
(x, y, z) = −

(x+ z)2
(
−x2 − z2 + 2xz +

√
D
)

√
Dy

√
4y2 −

(
(x+ z)2 −

√
D
)2

< 0.

(3.4)

Using the definition of functions f and g (3.3) and relations (3.4) I conclude that
f(x, y, z) and g(x, y, z) are both positive functions, which increase with x and z and
decrease with y. Consequently, τm(x, y, z) follows the same pattern. Using the relation
between the equilibria of models (2.1)-(2.6) with and without auto-inhibitory feedback
and properties of feedback functions F , S1, S2 described in Section 2.2, I calculate lower
and upper bounds of x, y and z. Further, I show how these bounds can be increased
or decreased changing the value of τm.
First, for each Model 1-6 I calculate lower and upper bounds of x, y and z. Ac-

cording to the proof of Proposition 1 (see Section 2.3.1) the equilibria E = (Cs, Rs)T
of models (2.1)-(2.6) with auto-inhibitory feedback can be found as the intersection
of functions θ1 · F and θ2 (see Fig. 3.6). In case the auto-inhibitory feedback is not
present in the system (F (C) ≡ 1), the equilibrium component Ĉs of the model with-
out auto-inhibition is always greater than the equilibrium component Cs of the model
with auto-inhibition (see Fig. 3.6). According to (2.9), the same conclusion holds
for equilibrium components Rs and R̂s of models with and without auto-inhibition,
respectively.
Taking into account relations Cs ≤ Ĉs and Rs ≤ R̂s and properties of feedback

functions F , S1, S2 described in Section 2.2 I obtain the following estimations of x, y,
z:

0 < εlb(|F ′ (Cs) |) < x < εub(|F ′ (Cs) |),
0 < y < σ,

0 < ζlb ≤ z ≤ ζub.

(3.5)
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3 Repressing oscillations in delayed negative feedback systems

Figure 3.6: Schematic intersection of functions θ1, θ1 · F and θ2. Functions
θ1 and θ2 are introduced to find equilibrium components of Models 1-6. (A) To
find equilibrium components Cs and Ĉs for Model 4. (B) To find equilibrium
components Cs and Ĉs for Models 1, 2, 3, 5 and 6.

Refer to Table 3.1 for values of εlb, εub, σ, ζlb, ζub for each Model 1-6. Note that
both the lower and upper bound of x, i.e., εlb and εub, are increasing with |F ′(Cs)| for
Models 1-6. Therefore, one can always increase a given x by choosing an appropriate
value for |F ′(Cs)|. The value of y is positive and less than σ independent of the auto-
inhibitory function F . Consequently, according to (3.4), one can always increase τm
by increasing |F ′(Cs)|.
Taken together, I showed that increasing the steepness of the auto-inhibitory feed-

back may increase the Hopf bifurcation threshold of the time delay τm and decrease
the range of values of time delay τ ∈ [τm,∞), where sustained oscillations occur.
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3.3 Auto-inhibition increases the value of the marginal time delay

Table 3.1: Lower and upper bounds of x, y, z
for Models 1-6.

Model 1

εlb = I S1(R̂s)|F ′(Cs)|+ α,

εub = I S1(0)|F ′(Cs)|+ α,

σ = η I max
R∈[0,R̂s] |S

′
1(R)|,

ζlb = ζub = β.
Model 2

εlb = I S1(R̂s) (1− Ĉs)|F ′(Cs)|+ α,

εub = I S1(0) [1 + |F ′(Cs)|] + α,

σ = η I max
R∈[0,R̂s] |S

′
1(R)|,

ζlb = ζub = β.

Model 3

εlb = I S1(R̂s) (1− Ĉs)|F ′(Cs)|+ α,

εub = I S1(0) [1 + |F ′(Cs)|] + α,

σ = η I max
R∈[0,R̂s] |S

′
1(R)|,

ζlb = β,

ζub = β + η Ĉs.
Model 4

εlb = I |F ′(Cs)|+ α + δ S2(0),
εub = I |F ′(Cs)|+ α + δ S2(R̂s),
σ = η δ Ĉs max

R∈[0,R̂s] |S
′
2(R)|,

ζlb = ζub = β.

Model 5

εlb = I (1− Ĉs)|F ′(Cs)|+ α + δ S2(0),
εub = I [1 + |F ′(Cs)|] + α + δ S2(R̂s),
σ = η δ Ĉs max

R∈[0,R̂s] |S
′
2(R)|,

ζlb = ζub = β.

Model 6

εlb = I (1− Ĉs)|F ′(Cs)|+ α + δ S2(0),
εub = I [1 + |F ′(Cs)|] + α + δ S2(R̂s),
σ = η δ Ĉs max

R∈[0,R̂s] |S
′
2(R)|,

ζlb = β,

ζub = β + η Ĉs.
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3 Repressing oscillations in delayed negative feedback systems

3.4 Application to p53 system

In this section Model 4 is used to mimic the oscillatory dynamics of the mammalian
p53 system. Obtained theoretical results will be applied to design a nested negative
feedback for suppressing oscillations in this system. In addition, the simulation of
the p53 model will be used to explain how time delay and nested negative feedback
influence period and amplitude of oscillations in this system.

3.4.1 Modelling oscillating p53 system

The tumor suppressor protein p53 is activated in response to many stress signals and
activates various stress-response programs including cell-cycle arrest, senescence and
apoptosis [12]. It is also well established that p53 acts within a negative feedback
loop, including Mdm2 as the negative regulator of p53: p53 transcriptionally activates
Mdm2, which in turn targets p53 for degradation [56, 59].
Several mathematical models of the p53-Mdm2 feedback loop have been pub-

lished [36, 64, 76, 92]. One of these models (model III from Table 1 in [36]) is a
particular case of Model 4 from Fig. 2.1D with F (C) ≡ 1. Therefore, I wondered,
whether my theoretical framework would be able to explain measured p53 dynamics
upon DNA damage. In my designations C and R correspond to p53 and Mdm2, re-
spectively. The input I is defined here as a scaled DNA damage signal measured in
arbitrary units. The negative feedback by output-activation is modelled by a non-
linear Hill function S2(R) (1.10). After the definition of the DNF function S2(R) the
parameter vector p (2.7) of Model 4 has the following extended form:

pext = (I, α, β, η,Km, n, δ)T .

I fit parameters of the p53 model (2.4) to the experimental data of an averaged
oscillation pattern of the p53-Mdm2 system after DNA damage from [36] (see Fig. S6
therein). The results of the fit are presented in Table B.1. Fig. 3.7A shows the simula-
tion of the p53 model (2.4) with fitted parameters. The model is able to recapitulate
measured p53 dynamics after DNA damage. Moreover, the fitted optimal solution is
robust with respect to noise in the fitted parameters. The integrated first transient
response varies only by 8.7% assuming a parameter noise of ±10% (see Appendix A).
The model analysis shows that the fitted time delay τ = 1.37 h is almost two times

larger than the corresponding τm = 0.76 h that is calculated for the fitted DNA damage
signal I = 0.23 (see Fig. 3.7B). Therefore, the p53 model (2.4) with fitted parameters
from Table B.1 produces a sustained oscillatory response.
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Figure 3.7: Simulation and response analysis of the p53 model. (A) Simu-
lation of the p53 model (2.4) with fitted parameters from Table B.1, dots – ex-
perimental data from [36], Fig. S6 therein. (B) Dependence between the stimulus
value I and τm for the p53 model (2.4) with fitted parameters from Table B.1 with-
out and with synthetically activated auto-inhibitory feedback F (C) (with ν = 2,
κ = 1.23 and ν = 3, κ = 1.73). Dots designate values of τm calculated for the
fitted value of I = 0.23 for the p53 model (2.4) with and without auto-inhibitory
feedback.

3.4.2 Repressing oscillations in the p53 system

It was earlier reported that distinct p53 dynamics such as oscillations or sustained
activation may lead to different cell fate decisions [12, 86]. Applying my theoretical
analysis, I explore under what conditions sustained oscillations of p53 model (2.4) can
be suppressed leading to a possible change of the cell fate. As a suppressing mechanism
nested auto-inhibitory feedback F to the model component C is included preserving
all values of fitted parameters.
My theoretical analysis suggests that the marginal time delay τm, beyond which any

time delay leads to sustained oscillations, can be increased by increasing the slope of
the auto-inhibitory feedback function at the equilibrium |F ′(Cs)|. Here, I present a
numerical study that will allow an increase in |F ′(Cs)| and, consequently, τm for the
p53 model (2.4).
For the auto-inhibitory feedback function I utilize a reverse Hill function F (C) (3.1).

For the reverse Hill function, an obvious choice to increase the slope is increasing the
Hill coefficient ν. Therefore, I make ν a free positive parameter, which value I choose.
For simplicity I consider only integer values of ν. Then I adjust κ and equilibrium
(Cs, Rs) to maximize |F ′(Cs)|, which is equivalent to solving the equation F ′′(Cs) = 0.
Thus, for the fixed value of ν I solve the following system of equations with respect to
(Cs, Rs, κ) using fitted parameter values (α, β, δ, η,Km, n) from Table B.1:
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3 Repressing oscillations in delayed negative feedback systems

F ′′(Cs) = ν(κCs)ν ((ν + 1)(κCs)ν − ν + 1)
C2
s ((κCs)ν + 1)3 = 0,

0 = I F (Cs)− αCs − δ Cs S2(Rs), (3.6)
0 = η Cs − β Rs.

Then, I quantify τm using (3.2). If τm is less than τ , I increase ν, solve the sys-
tem (3.6) with respect to (Cs, Rs, κ) and quantify τm again.
Fig. 3.8 demonstrates results of the application of the algorithm to the p53 model. In

Fig. 3.8A I illustrate the graph of the slope |F ′(C)| for several values of ν and adjusted
values of κ. One can see that |F ′(Cs)| is increasing with increasing ν, whereas the value
of Cs is only slightly decreasing (indicated by black dots in Fig. 3.8A). Consequently,
τm is also increasing with respect to the Hill coefficient ν (see Fig. 3.8B). For ν ≥ 3 the
equilibrium is asymptotically stable. For ν > 8 the equilibrium is absolutely stable.
Thus, the relation between ν, |F ′(C)| and τm demonstrated in Fig. 3.8 matches well
with the theoretical analysis presented above.
In Fig. 3.9 I depict simulations of the p53 model with fitted parameters from Ta-

ble B.1 and synthetically activated auto-inhibitory feedback F (C) (3.1) with ν = 3,
κ = 1.73. One can see that the model with auto-inhibitory feedback produces damped
instead of sustained oscillations.
Further, I investigate the stability of the equilibrium of the p53 model with and with-

out synthetically activated feedback with respect to several parameters. In Fig. 3.10A
and B I show that increasing the Hill coefficient ν and adjusting κ leads to decreas-

Figure 3.8: Influence of the synthetically activated auto-inhibitory feedback
F (C) on the stability of the p53 model. (A) Absolute value of the derivative
of F (C) for ν = 2, 3, 4, 5 and adjusted values of κ. Dots – absolute values of
the derivative at the equilibrium point Cs. (B) Dependency between τm and Hill
coefficient ν. The dashed line designates the value of the fitted time delay τ .
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Figure 3.9: Simulation of the p53 model with synthetically activated auto-
inhibitory feedback. Simulation of the p53 model with fitted parameters from
Table B.1 and synthetically activated auto-inhibitory feedback F (C) (3.1) with
ν = 3, κ = 1.73.

ing the parameter region, where oscillations occur. Fig. 3.10C demonstrates that τm
increases with respect to κ for both ν = 2 (blue) and ν = 3 (red). These results corre-
spond well to the recent study [92], which stated that nested negative feedbacks lead
to increasing resistance of the DNF system. In addition, Fig. 3.10A illustrates that τm
increases with respect to α thus indicating the stabilizing property of α and possibly
explaining such a small fitted parameter value. On the other hand, τm decreases with
respect to I (see Fig. 3.7B).
In a similar DNF system it was shown that the period of oscillations increases with

the Hill coefficient n of the DNF function for a given time delay [15]. This inspired
me to conduct a similar analysis for the p53 system. Fig. 3.11 demonstrates that the
auto-inhibitory feedback with parameters ν = 3, κ = 1.73 decreases and stabilizes the
amplitude of oscillations, whereas the amplitude of oscillations increases with respect
to the Hill coefficient n of the DNF function S2(R) (1.10). Moreover, increasing the
steepness of the DNF has no substantial influence on the increase of the period with
τ . The period of oscillations is a linear function of time delay τ , irrespective of values
of ν, κ and n. Thus, opposed to the delayed feedback, the auto-inhibitory feedback
has the potential to de-couple the increase of amplitude and period of oscillations with
respect to τ . Moreover, auto-inhibitory and delayed negative feedbacks have opposing
influence on the amplitude of oscillations.
Taken together, this analysis showed that for the p53 model (2.4) an auto-inhibitory

feedback can be a potential mechanism increasing the marginal time delay τm, de-
creasing the amplitude of oscillations and turning sustained oscillations into damped
oscillations.
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3 Repressing oscillations in delayed negative feedback systems

Figure 3.10: Dependencies between parameters of the p53 model. The p53
model is considered without (black) and with synthetically activated (ν = 2, κ =
1.23 blue, ν = 3, κ = 1.73 red) auto-inhibitory feedback. (A) τm and α. (B) τm
and β. (C) τm and κ. Designations: dots – the fitted value of the parameter used
in the p53 model, dashed line – the fitted value of τ (see Table B.1).
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Figure 3.11: Amplitude/period curves of the p53 model under variation of
τ . (A) Dependence between the time delay τ and amplitude of oscillations. (B)
Dependence between the time delay τ and period of oscillations. The analysis
is performed for the p53 model (2.4) without and with synthetically activated
(ν = 3, κ = 1.73) auto-inhibitory feedback using values of the Hill coefficient
n = 3 and n = 5 (fitted value) of the DNF function S2(R) (1.10).
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3.5 Discussion
In this chapter, I systematically studied design features of systems with delayed nega-
tive feedback (DNF), which tune the response patterns of biochemical components. To
this end, I analysed models (2.1)-(2.6) containing a DNF differing in several aspects:
presence of a nested negative feedback, presence of mass conservation for compounds
and mechanism of DNF, i.e., input-inhibition or output-activation (see Fig. 2.1). These
models were further subjected to computational and theoretical stability analyses.
I showed that

• nested auto-inhibitory feedback and overall DNF have opposing roles with respect
to the characteristic response pattern. Nested auto-inhibitory feedbacks have
the potential to suppress oscillatory behaviour, whereas increasing strength of
the DNF promotes oscillations. Moreover, in oscillatory systems auto-inhibitory
feedbacks de-couple amplitude and period of oscillations.

• mass conservation has a stabilizing effect on the system’s equilibrium.

• depending on the parameter set, the type of DNF can also influence the re-
sponse pattern. I found that input-inhibition can be more stabilizing compared
to output-activation.

Thus, biochemical networks have a range of design possibilities shaping both their
dynamic as well as their equilibrium properties. My systematic analysis of different
design features allows predicting what kind of biochemical network underlies a cer-
tain characteristic response. For example, in designing oscillatory systems with a long
time delay, it is reasonable to assume a limited number of post-translational modifica-
tions (mass conservation), no nested feedbacks and a strong overall negative feedback.
Whereas adaptive systems with long time delay are likely to harbour nested negative
feedbacks and post-translational modifications. Systems with a low number of com-
ponents and short time delay that are meant to oscillate, will need an abrupt negative
feedback with low activation threshold, whereas short time delay and a weak negative
feedback are good design principles for adaptive systems.
My framework of delayed and non-delayed feedbacks can serve to support a design

process for novel synthetic gene-regulatory networks. Indeed, my study allows to
approximate the value of time delay and the structure of the DNF system for obtaining
a certain type of the system dynamics. For example, in the p53 system I specified how
a synthetic nested feedback should be designed to dampen p53 oscillations. It has
been proposed that p53 oscillations have a physiological role. Thus, controlling such
oscillations with a synthetic network may help to better understand their physiological
role.
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gene oscillator

4.1 Introduction

Synthetic biology is an engineering discipline, which combines biochemical and bio-
physical principles present in living organisms to engineer new systems [99, 106, 107].
The basic technique for constructing synthetic gene circuits is assembling DNA se-
quences with defined combinations of promoters and genes. As a result, the designed
network contains prescribed activation and repression interactions [106]. Using special
engineering techniques, the circuit can be placed in the living cell, where it is able to
acquire the necessary resources to function [106, 107]. For controlling circuit activity
one may apply external inputs called inducers. Inducers are small signalling molecules
that are able to enter the cell wall after being added to the cell culture. Thus, inducers
either activate or inhibit specific transcription factors. This leads to either mediating
or blocking the transcription of certain genes [106, 107].
Nowadays, there are two main research directions that motivate scientists to con-

struct and study synthetic networks. First, novel networks are able to perform new
tasks and produce new substances [43, 106]. One of successful products of synthetic
biology was the large scale production of insulin by utilizing E. coli bacteria as a cell
factory [107, 108]. Second, synthetic biology enables understanding fundamental de-
sign principles of living systems through decoupling a simple network from its native
and often complex setting [43, 106]. Applying this approach resulted in constructing
fundamental two and three gene circuits including mono-stable [13] and bistable [33]
systems. Interestingly, for a long period of time one of the major foci of research groups
working in synthetic biology was to construct a circuit whose protein concentrations
oscillate periodically in time [106]. As a result, several synthetic gene oscillators were
designed and experimentally implemented [10, 27, 99].
Previous study presented an experimental design of a synthetic gene oscillator based

on the combination of a positive feedback and a delayed negative feedback (DNF) [99].
This study showed that the time delay in the negative feedback loop is the key principle
for inducing robust oscillations in gene networks. In the previous chapter, I showed
analytically that the presence of nested negative feedbacks is able to repress oscillations
in DNF systems. I wondered if including a nested negative feedback in this system
will also result in repressing oscillations of gene products. In this chapter I construct
a mathematical model of the synthetic gene oscillator presented in [99]. I parametrize
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the model and show that it is able to recapitulate oscillatory dynamics of circuit
components. Then, I modify the model by including a nested negative feedback acting
through an additional component of the circuit. Using simulations of the resulting
model I predict that suggested modifications may control the response pattern of the
circuit. Namely, the circuit might be able to switch between sustained and damped
oscillations and overdamped response in a controlled manner. Thus, the suggested
model together with an experimental implementation of the circuit might become a
novel approach for the regulation of the response of biochemical networks containing
DNF.

4.2 Mathematical model of synthetic gene oscillator

One of studies [99] described an experimental design of a synthetic gene oscillator.
In this section, I present a mathematical model of this synthetic gene oscillator using
delay differential equations. The resulting model is fitted to experimental data. This
model is further modified by including a nested negative feedback to control the model
response.
Firstly, I introduce the original oscillator design. The synthetic gene oscillator was

constructed using the bacteria E. coli. The network diagram of the circuit is depicted
in Fig. 4.1. Briefly, the hybrid promoter consists of the activation operator site from
the araBAD promoter and repression operator sites from the lacZYA promoter. Thus,
the hybrid promoter is activated by the AraC protein in the presence of arabinose and
repressed by the LacI protein in the absence of isopropyl β-D-1-thio-galactopyranoside
(IPTG). Therefore, the addition of arabinose and IPTG to the medium leads to tran-
scription of both genes. Increased production of AraC leads to a positive feedback loop,
which increases promoter activity. Increased production of LacI releases the negative
feedback inhibited by IPTG. As a result, the negative feedback through LacI decreases
promoter activity. Oscillatory behaviour arises as a result of concurrent behaviour of
two feedback loops, i.e., positive feedback loop through AraC and delayed negative
feedback loop through LacI. For further details about the circuit design refer to [99].

Figure 4.1: Network diagram of the synthetic gene oscillator including for-
mation steps of functional forms of LacI and AraC proteins [99].
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Next, I simplify the network diagram of the synthetic gene oscillator presented in
Fig. 4.1. Namely, I replace transcription, translation and folding processes preceding
formation of the functional form of proteins with time delay needed for their formation.
The simplified diagram is presented in Fig. 4.2A. According to [99], transcription and
translation of monomeric forms of both proteins AraC and LacI occur at similar rates.
However, the functional AraC has a dimeric form, i.e., consists of two monomers,
whereas the functional LacI has a tetrameric form, i.e., consists of four monomers
(see Fig. 4.1). Hence, the formation of the functional LacI requires two times more
monomers than the formation of the functional AraC. Since monomers are produced
one by one, more time is required to produce the functional LacI than the functional
AraC. This leads to the conclusion that the time delay τa needed for the formation
of the functional AraC is less than the time delay τr needed for the formation of the
functional LacI. In this way, negative feedback includes a greater time delay than
positive feedback.
I convert the network diagram from Fig. 4.2A into the wiring scheme depicted in

Fig. 4.2B. The wiring scheme has the following mathematical formulation by means
of deterministic delay differential equations:

dA

dt
=k0 + k1

A(· − τa)n1

Kn1
m1 + A(· − τa)n1

· Kn2
m2

Kn2
m2 + L(· − τr)n2

− k2A,

dL

dt
=k1

A(· − τa)n1

Kn1
m1 + A(· − τa)n1

· Kn2
m2

Kn2
m2 + L(· − τr)n2

− k2 L.

(4.1)

Here, variables A and L represent abundances of functional proteins AraC and
LacI, respectively. The parameter k0 > 0 defines a constant stimulus that activates
the gene transcription network. In this case, it corresponds to the sum of arabinose
and IPTG concentrations. Parameters k1 > 0 and k2 > 0 mimic protein activation
and degradation rates, respectively. Positive and negative feedbacks are modelled by
Hill function (1.10) and reverse Hill function (1.9), respectively. Parameters Km1 > 0

Figure 4.2: Simplified scheme of the synthetic gene oscillator. (A) Network
diagram of the synthetic gene oscillator. Processes preceding formation of the
functional form of proteins presented in Fig. 4.1 are replaced with the time delay,
which is needed for their formation. (B) The wiring scheme of the synthetic gene
oscillator.
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Figure 4.3: Simulation of the synthetic gene oscillator model (4.1). Dots
designate experimental data obtained in the lab of Dr. Katja Bettenbrock from
Max-Planck Institute (Magdeburg). Oscillations were induced with 0.7% arabi-
nose and 2 mM IPTG. The experiment was performed one time according to the
protocol described in [99]. Fitted parameters from Table B.2 are used.

and Km2 > 0 define half-saturation constants beyond which positive and negative
feedbacks take effect, respectively. Parameters n1 ≥ 1 and n2 ≥ 1 represent Hill
coefficients defining the steepness of positive and negative feedbacks, respectively.
I fit parameters of the model (4.1) to experimental data obtained in the lab of

Dr. Katja Bettenbrock from Max-Planck Institute (Magdeburg). The experiment was
performed according to the protocol described in [99] with 0.7% arabinose and 2 mM
IPTG. The fitted parameter values are presented in Table B.2. The simulation of the
model (4.1) with fitted parameters is presented in Fig. 4.3. Thus, the parametrized
model (4.1) is able to recapitulate measured dynamics of the synthetic gene oscillator.
In the next section, I will demonstrate how a nested negative feedback may regulate

the characteristic response of this system.

4.3 Regulation of synthetic gene oscillator

In the previous chapter, I developed a theoretical framework showing that nested
negative feedbacks may repress oscillations in biochemical networks containing DNF.
I wondered if activating a nested negative feedback can also repress oscillations in the
synthetic gene oscillator described above. To this end I develop a modification of this
circuit by including a nested negative feedback. Namely, I suggest to add to hybrid
promoters one more repression operator site from the PLtetO1 promoter [27], which is
getting active in the presence of tetracycline. In addition, I suggest to create one more
promoter, which contains only the activation operator site from the araBAD promoter
and whose activation leads to the transcription of the tetR gene. The modification of
the synthetic gene oscillator from Fig. 4.2 is presented by dashed lines in Fig. 4.4.
Thus, the addition of arabinose and IPTG and the absence of tetracycline bring
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Figure 4.4: The wiring scheme of the modified synthetic gene oscillator.
With solid lines I designate proteins AraC and LacI and interactions, which con-
struct the synthetic gene oscillator described in [99]. With dashed lines I designate
an additional protein TetR and protein interactions, which I suggest to include in
the system for regulation of oscillations in the synthetic gene oscillator.

the synthetic gene oscillator to the original form, i.e., network produces sustained
oscillations of protein concentrations AraC and LacI as it was shown in Fig. 4.3. In
the presence of tetracycline the negative feedback from TetR to AraC and LacI is
getting active. Similar to the protein AraC, the protein TetR has a dimer functional
form, which requires the presence of two monomers [87]. Note that monomers of
considered proteins AraC, LacI and TetR are produced at similar rates. Since the
formation of the functional TetR requires twice less monomers than the formation of
the functional LacI, I may conclude that the production of the functional form for
TetR needs less time than for LacI. This means that the negative feedback through
TetR occurs faster than the negative feedback through LacI. Therefore, the feedback
through TetR can be considered as a nested negative feedback whereas the feedback
mediated by LacI can be considered as DNF.
According to the theoretical analysis presented in the previous chapter a nested

negative feedback is able to suppress oscillations, which occur in biochemical DNF
systems. To test this hypothesis I create a mathematical model of the modified syn-
thetic gene oscillator presented in Fig. 4.4:
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dA

dt
=k0 + k1

A(· − τa)n1

Kn1
m1 + A(· − τa)n1

· Kn2
m2

Kn2
m2 + L(· − τr)n2

· 1
1 + (κT (· − τs))ν

− k2A,

dL

dt
=k1

A(· − τa)n1

Kn1
m1 + A(· − τa)n1

· Kn2
m2

Kn2
m2 + L(· − τr)n2

· 1
1 + (κT (· − τs))ν

− k2 L,

dT

dt
=k1

A(· − τa)n1

Kn1
m1 + A(· − τa)n1

− k3 T.

(4.2)
The model (4.2) differs from the model (4.1) by the inclusion of the variable T

mimicking the concentration of the protein TetR and by the presence of the nested
negative feedback through the protein TetR. I assume that the protein TetR has the
same activation rate k1 > 0 as AraC and LacI and the degradation rate k3 > 0.
The nested negative feedback through TetR is modelled by the reverse Hill function
F (T ) (3.1) with parameters κ ≥ 0, ν ≥ 1. I assume that the nested negative feedback
through TetR occurs with time delay τs > 0, where the relation τs < τr holds.
I assume that the inclusion of the additional model component TetR does not affect

the parameter values k0, k1, k2, Km1, Km2, n1, n2, τa and τr common for the original
and modified systems. In the model (4.2), the tetracycline activation of hybrid promot-
ers, which regulate transcription of genes araC and lacI, acts through the parameter
κ. In case tetracycline is absent, κ equals to 0 meaning F (T ) = 1. As a result, in the
absence of tetracycline AraC and LacI have the same dynamics for both models (4.1)
and (4.2). Therefore, parameter values k0, k1, k2, Km1, Km2, n1, n2, τa and τr fitted
for the original model (4.1) are also valid for the modified model (4.2) (see Table B.2).
Further, I check how the nested negative feedback F (T ) with parameters κ, ν and

τs and the degradation rate of the protein TetR, i.e., k3, influence the dynamics of
the model (4.2). For this I select some random parameter values κ = 2, ν = 2 and
k3 = 1.5. As the value of time delay I select a random value τs = 1 with the condition
τs < τr. Then I vary each of these parameters in a certain range leaving the rest of the
parameter values fixed. For obtained parameter sets I simulate the model (4.2) and
depict the dynamics of AraC in Fig. 4.5. The colour of the simulation is turning from
red to blue with the increasing parameter value.
Fig. 4.5 shows that increasing κ as well as decreasing ν and k3 suppresses oscilla-

tions of the protein AraC. Fig. 4.5C demonstrates that the model (4.2) shows a low
sensitivity with respect to the change in the time delay τs. Additionally, the variation
of parameter values κ, ν and k3 changes only the amplitude of oscillations leaving the
period of oscillations unchanged.
Then, I show how the response of the model (4.2) can be regulated through the

nested negative feedback using the parameter κ as a control. Recall that the positivity
of κ indicates the presence of tetracycline in the system. Increasing κ suppresses
oscillations of the model (4.2) (see Fig. 4.5A). Thus, my model (4.2) predicts the
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4.3 Regulation of synthetic gene oscillator

Figure 4.5: Simulations of the model (4.2) with varied parameters. Parameter
values k0, k1, k2, k3, n1, n2, Km1, Km2, τa, τr are adopted from Table B.2. Pa-
rameter values κ = 2, ν = 2, τs = 1 and k3 = 1.5 are chosen randomly. Then each
of the parameters κ, ν, τs, k3 is varied in the range [0, 5], [1, 5], [0, τa], [0.01, 5],
respectively, leaving the rest of the parameter values fixed. The model (4.2) is
simulated for each obtained parameter set under variation of κ (A), ν (B), τs (C),
k3 (D). The colour of the simulation is turning from red to blue with increasing
parameter value.

following response of the modified synthetic gene oscillator presented in Fig. 4.4 under
the variation of κ (see Fig. 4.6):

• sustained oscillations for κ = 0 for t ∈ [0, 200],

• damped oscillations for κ = 2 for t ∈ [200, 400],

• sustained oscillations for κ = 0 for t ∈ [400, 600],

• constant response for κ = 4 for t ∈ [600, 800],

• sustained oscillations for κ = 0 for t ∈ [800, 1000].

For simulations shown in Fig. 4.6 I use parameter values k0, k1, k2, k3, n1, n2, Km1,
Km2, τa, τr adopted from Table B.2. Parameter values ν = 2, τs = 1 and k3 = 1.5 are
chosen randomly.
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4 Experimental design for regulating a synthetic gene oscillator

Figure 4.6: Simulations of the model (4.2) with varied parameter κ during
the simulation time. For t ∈ [0, 200] κ = 0 is used, for t ∈ [200, 400] κ = 2
is used, for t ∈ [400, 600] κ = 0 is used, for t ∈ [600, 800] κ = 4 is used, for
t ∈ [800, 1000] κ = 0 is used. Parameter values k0, k1, k2, k3, n1, n2, Km1, Km2,
τa, τr are adopted from Table B.2. Parameter values ν = 2, τs = 1 and k3 = 1.5
are chosen randomly.

To summarize, I showed that including the nested negative feedback through the
protein TetR in the presence of tetracycline may suppress oscillations of proteins AraC
and LacI in the synthetic oscillating AraC-LacI system. In absence of tetracycline
the modified AraC-LacI system is supposed to demonstrate the same response as the
original one presented in [99].

4.4 Discussion

Synthetic genetic systems facilitate our understanding of cellular processes and assist
us in studying system design principles [10]. For example, the analysis of the synthetic
gene oscillator presented in [99] showed that a negative feedback loop in combination
with time delay is the key design principle for constructing a robust oscillator. My the-
oretical study of delayed negative feedback (DNF) systems indicated that the presence
of nested negative feedbacks in the system is able to suppress oscillatory behaviour of
biochemical compounds. In order to confirm the derived theory experimentally, I sug-
gested a modification of the mentioned synthetic gene oscillator by including a nested
negative feedback acting through the additional component TetR (see Fig. 4.2).
In the modified circuit, I suggested to add to the hybrid promoter, which regulates

the transcription of genes lacI and araC, one more, third, operator site from the
PLtetO1 promoter. Up to now the technique of combining three operator sites for
one promoter was not well established and caused a high level of noise in the gene
expression [4, 46, 77]. However, a recent study [4] presented a construction of syn-
thetic regulatory elements for the simultaneous recognition of three transcriptional
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factors with the successful application in E. coli. This construction can be used for
the experimental implementation of the modified circuit.
Further, I created a mathematical model of the modified synthetic gene oscillator.

As a nested negative feedback function I used a reverse Hill function (3.1) with the
Hill coefficient ν and with the transformed half-saturation constant κ. Then I anal-
ysed the dependence between the model dynamics and parameter values of the nested
negative feedback. The analysis showed that damped oscillations of one of the model
components turn into sustained oscillations with increasing ν (see Fig. 4.5B). This ob-
servation does not correspond well to my theoretical analysis presented in Section 3.3.
There I proved that one may stabilize the equilibrium of a DNF model through in-
creasing the slope of the nested negative feedback. For the reverse Hill function, an
obvious choice to increase the slope is increasing the Hill coefficient ν. However, for
this model the nested negative feedback suppresses oscillations rather through increas-
ing κ than through increasing ν (see Fig. 4.5). This inconsistency can be explained
by differences between the structure of generic models, which were subjected to the
theoretical stability analysis, and the structure of the model, which was created for
the modified synthetic gene oscillator.
Finally, simulations of the model with the nested negative feedback showed that

the oscillatory dynamics of model components can firstly be damped and then turned
into a constant by increasing κ (see Fig. 4.5A and Fig. 4.6). In order to verify this
prediction the experimental implementation of the control for the half-saturation rate
of the nested negative feedback is needed. Using this control one may induce various
response patterns of the modified synthetic gene oscillator including sustained and
damped oscillations and an overdamped response.
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5 Approximation of DDEs by ODEs

5.1 Introduction

A system of delay differential equations (DDEs) is an obvious mathematical tool to
model biochemical systems containing delayed negative feedback (DNF). Numerous
theoretical approaches were developed for analysing systems of this kind [14, 21, 25, 28,
95]. However, the theoretical analysis of delay differential equations rapidly becomes
complicated when including more and more details into the model [74]. In this case,
DDE software packages might be helpful for numerical analysis of DDE systems [28].
However, the availability of the software for the computational analysis of DDEs is
limited in comparison with the availability of the software for the analysis of ordinary
differential equations (ODEs) [74]. In this context, the approximation of DDEs with
a system of ODEs can be useful.
Various DDE approximation techniques were developed. One of them is the Padé

approximation, which is based on Padé approximants represented by rational func-
tions [11, 60]. The alternative approximation technique is based on Taylor series
approximation of the delay term [47, 74]. Although both techniques work well for sys-
tems with small time delays, they do not preserve stability properties of delay differ-
ential equations [47, 74]. One more approximation technique is applicable for systems
possessing Morse decomposition [34]. One of studies on approximation of delays in
biochemical systems found this approximation method to be the most useful [74].
In this chapter, I describe the approximation method presented in [34, 74, 95] for

DDE systems possessing Morse decomposition. Then I apply this technique to approx-
imate adaptive HOG (2.2) and oscillating p53 (2.4) systems with DNFs introduced in
previous chapters. I compare the error of approximation of these systems and investi-
gate factors influencing the approximation quality. In this chapter, I designate DDE
models as models with “discrete” time delay and approximated ODE models as models
with “continious” time delay.

5.2 Approximation technique

Using special techniques allows approximation of a DDE system by the system of
ODEs [34, 74]. Here, I describe an algorithm adopted from [34, 95] showing how to
approximate a system of DDEs, which possesses a Morse decomposition, with a system
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5.2 Approximation technique

Figure 5.1: Wiring schemes of systems with delay. (A) The wiring scheme of the
system (5.1) with discrete time delay. (B) The wiring scheme of the system (5.2)
with continuous time delay.

of ODEs.
First, I introduce the following delay problem with the wiring scheme presented in

Fig. 5.1A:
dx

dt
=f(x(t), x(t− 1)),

x(t) =φ(t), t ∈ [−1, 0],
(5.1)

where f : R2 → R is C∞ and represents a negative feedback function. The set of all
bounded solutions of (5.1) is denoted as Â∞ ∈ C((−∞,∞),R). Thus, if x̂ ∈ Â∞, then
φ := x̂|[−1,0] ∈ Â∞ and x̂ is the solution through initial condition φ.

I assume that the problem (5.1) admits a Morse decomposition. Morse decom-
position is constituted by Morse sets. For the definition of Morse sets for the
system (5.1) the study [71] introduced a discrete Lyapunov function on Â∞, i.e.,
V : C((−∞,∞),R) → N, in the following way. Define σ := inf{t ≥ 0 : x̂(t) = 0} if
it exists. Then, if σ exists, the function V (x̂) is defined to be the number of zeroes,
which counts the multiplicity of x̂ in the interval (σ− 1, σ]. Otherwise, the function is
defined as V (x̂) = 1. The Morse sets for the system (5.1) will be sets in Â∞ on which
the Lyapunov function is constant [34].
Now, I introduce a time discretization of the problem (5.1) presented in [34]. First,

a positive integer N is fixed and used for the following annotation:

xi(t) = x

(
t− i

N

)
, where i = 0, 1, 2, . . . , N.

Here, I designate x0(t) = x(t) and xN(t) = x(t− 1).
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5 Approximation of DDEs by ODEs

Further, dxi
dt

is represented using the definition of the derivative at the time point t:

dxi
dt
≈
xi

(
t+ 1

N

)
− xi(t)

1
N

= N(xi−1(t)− xi(t)) for t > i

N
.

Thus, according to [34] the delay differential equation (5.1) can be approximated by
the following system of N + 1 ODEs, which is depicted in Fig. 5.1B:

dx0

dt
=f(x0(t), xN(t)),

dxi
dt

=N(xi−1(t)− xi(t)), i = 1, 2, . . . , N,

xi(0) =φ
(
− i

N

)
, i = 0, 1, . . . , N.

(5.2)

This conclusion is based on the fact that if {Skn}N∞
k=1 are Morse sets for (5.1) and

{Skn}Nn
k=1 are Morse sets for (5.2), then, under certain assumptions, for any ε > 0,

there exists N so that for all n > N , Skn is in an ε-neighbourhood of Sk∞ for all
1 ≤ k ≤ N∞ [34]. In other words, there exists N such that for all n > N the
solution of the continuous model (5.2) will converge to the solution of the discrete
model for (5.1). For more details about this approximation technique refer to [34, 71].

5.3 Approximation of HOG and p53 models

In this section, I approximate HOG model (2.2) and p53 model (2.4) with discrete time
delay by ordinary differential equations using the approximation approach presented
in the section above.
First, I scale the time of the HOG model (2.2)

dC

dt
= τ (µS1(I, R)(1− C)F (C)− αC),

dR

dt
= τ (η C(· − 1)− β R),

(5.3)

and p53 model (2.4)
dC

dt
= τ (I − αC − δ C S2(R)),

dR

dt
= τ (C(· − 1)− β R).

(5.4)

to get time delay of both systems equal to 1.
Further, using the approach (5.2) I approximate the HOG model (5.3) by the system
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of ODEs:
dC0

dt
= τ (µS1(I, R)(1− C0)F (C0)− αC0),

dCi
dt

=N (Ci−1 − Ci), i = 1, 2, . . . , N,
dR

dt
= τ (η CN − β R),

(5.5)

and the p53 model (5.4) by the system of ODEs:

dC0

dt
= τ(I − αC0 − δ C0 S2(R)),

dCi
dt

=N (Ci−1 − Ci), i = 1, 2, . . . , N,
dR

dt
= τ(CN − β R),

(5.6)

where N is some fixed positive integer number.
In Fig. 5.2A and B I demonstrate simulations of the component C of the HOG

model (5.3) and p53 model (5.4), respectively, using black dashed lines. Here, for the
HOG model I use I = 0.4 M as the representative stimulus level. Fig. 5.2A and B
also present simulations of the component C0 of approximated HOG model (5.5) and
p53 model (5.6), respectively, for N = 1, . . . , 25. With increasing N the colour of the
simulation is turning from red to blue. For all models I use parameters from Table B.1.
One may see that for the HOG model (see Fig. 5.2A) there is no significant difference
between simulations of the model with discrete delay and the approximated model
for all considered values of N . In comparison, for the p53 model (see Fig. 5.2B) the
simulation of the component C0 is approaching the simulation of the model component
C of the p53 model (5.4) with increasing N .
Further, I calculate the error of approximation of DDE models by ODE models. For

this I simulate the component C of HOG and p53 models with discrete time delay
and the component C0 of approximated HOG and p53 models for N = 1, . . . , 50 for
the time frame [0, 25]. Then I discretize the time frame [0, 25] with the step equal to
0.33. At each obtained time point I calculate the absolute difference between values
of the component C of the model with discrete time delay and the component C0 of
the approximated model. The obtained differences are summarized for all time points
and depicted in Fig. 5.3. Analysing the error of approximation presented in Fig. 5.3 I
may conclude that the approximation quality mainly depends on two factors:

• the number of auxiliary components. One may see that the higher the value of N ,
the lower the approximation error. Interestingly, for both HOG and p53 models
the approximation error is rapidly decreasing for N ∈ [1, 25] and stays constantly
low for N > 25.

• the stability of the equilibrium of the model to be approximated with respect
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Figure 5.2: Approximation of the HOG model (5.3) and p53 model (5.4) by
ODEs. (A) Simulation of the component C of the HOG model (5.3) and com-
ponent C0 of the approximated HOG model (5.5) for I = 0.4 M. (B) Simulation
of the component C of the p53 model (5.4) and component C0 of the approxi-
mated p53 model (5.6). I designate the simulation of the component C of models
with discrete delay by black dashed lines. Approximated models are simulated for
N = 1, . . . , 25. With increasing N the colour of the simulated component C0 is
turning from red to blue. For simulations I use parameters from Table B.1.

to time delay. Indeed, the equilibrium of the HOG model (5.3) with parameters
from Table B.1 and I = 0.4 M is asymptotically stable since τ = 3.58 min �
τm = 113.5 min holds. In comparison, the equilibrium of the p53 model (5.4)
is unstable since τ = 1.37 > τm = 0.76 holds. For calculation of τm refer to
Section 2.3.4. As a result, the approximation error for the HOG model is about
100 times less than the approximation error for the p53 model for N = 1 and
stays less for all considered N .

Figure 5.3: Errors of approximation of HOG and p53 models with dis-
crete time delay. The error of approximation of the HOG model (5.3) and p53
model (5.4) with discrete time delay by the HOG model (5.5) and p53 model (5.6),
respectively, for N = 1, . . . , 50.
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Finally, I compare the influence of parameter values of models with discrete and
continuous time delay on the stability of the model equilibrium. I consider the p53
model with parameters from Table B.1 as the representative model for this analysis.
In Fig. 5.4A-C I demonstrate the dependence between parameter values τ , I, Km

and the maximum real part of eigenvalues max(Re(λi)) of the p53 model (5.4) with
the discrete time delay and of the p53 model (5.6) with the continuous time delay,
respectively.
Fig. 5.4A shows that for both models with discrete and continuous time delay

max(Re(λi)) increases with τ . For the model with discrete time delay max(Re(λi))
equals to 0 at τ = τm (see black dot). For the model with continuous time delay
max(Re(λi)) equals to 0 at values of τ , which are greater than τm and which decrease
and approach τm from the right with increasing N .
In Fig. 5.4B and C I demonstrate the dependence between parameter values I and

max(Re(λi)) and Km and max(Re(λi)), respectively, for the p53 model with discrete
time delay and p53 model with continuous time delay for N = 25. One may see that for
both models with discrete and continuous time delay max(Re(λi)) is increasing with
I and decreasing with Km. Moreover, for N = 25 there is no significant difference
between values of max(Re(λi)) calculated for models with discrete and continuous
time delay, respectively.
Thus, I may conclude that the presented technique fits well for approximating a

system of DDEs by a system of ODEs. The approximation quality depends on the
number of used intermediate steps and the stability of the equilibrium of the model to
be approximated.
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Figure 5.4: Influence of parameter values of p53 models with discrete (5.4)
and continuous (5.6) time delay on the stability of the model equilibrium.
(A) Dependence between time delay τ and max(Re(λi)). For approximation the
number of steps N = 20, 40, 60, 80, 100 are used. With the dashed line and black
dot I designate the position of the marginal time delay τm of the p53 model (5.4).
(B) Dependence between the stimulus level I and max(Re(λi)). (C) Dependence
between the parameter value Km and max(Re(λi)). For approximation in (B)
and (C) the number of steps N = 25 are used. With max(Re(λi)) I designate
the maximum real part of eigenvalues max(Re(λi)) of the p53 model with discrete
and continuous time delay.
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5.4 Discussion
Separation of time scales when modelling biochemical systems with delayed negative
feedbacks (DNFs) is important for distinguishing between fast signal transduction
processes and slow transcription, translation and translocation processes [74]. The
time delay between sensing the stimulus and feeding back into the system can be
explicitly included in the mathematical model by means of delay differential equations
(DDEs) [21]. However, both theoretical and computational analyses of DDEs differ
from the common widely used analysis of ordinary differential equations (ODEs). This
makes modelling by DDEs complicated and unattractive.
In this chapter, I considered a technique for the approximation of DDE systems by

ODEs through introducing auxiliary variables [95]. One of the advantages of this tech-
nique is its feasible biological interpretation. Thus, the auxiliary model components
can be viewed as a signalling cascade presenting intermediate products of transcription,
translation and formation processes preceding the formation of the system’s response
(see Fig. 5.1).
I applied this technique to approximate adaptive HOG model (2.2) and oscillating

p53 model (2.4) both containing DNF. Using numerical analysis of HOG and p53
models with discrete and continuous time delays I concluded that the quality of ap-
proximation depends on two features:

• the number of auxiliary variables,

• the stability of the equilibrium of the DDE model to be approximated.

Further, I performed the stability analysis of p53 models with discrete and con-
tinuous time delays with respect to several parameters including time delay τ . The
analysis showed that the threshold value of τ for the approximated model approaches
the marginal value of time delay τm for the DDE model from the right with increasing
number of auxiliary variables. I called these values of τ “approximated τm”. Thus,
as it was mentioned in [74] the absolute difference between τm and approximated τm
can be an alternative measurement for the quality of approximation of the model with
discrete time delay by the model with continuous time delay with a certain number of
auxiliary steps.
Thus, I may conclude that applying the considered approximation technique allows

the approximation of DNF systems modelled by DDEs by means of ODEs. This allows
the application of the mathematical theory and computational software, originally de-
veloped for analysis of ODE systems, to the approximated system. The approximation
quality can be regulated by the number of auxiliary steps.
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6 Summary

6.1 Conclusions
Complex intracellular networks are formed from a small set of building blocks called
network motifs. It is believed that understanding the dynamics of network motifs can
provide insight into the dynamics of the entire network.
A very common network motif is a negative feedback loop. Negative feedback occurs

when the output of the network, i.e., response, negatively influences the input. Often
negative feedback operates in conjunction with time delay. Time delay happens due
to the time needed to transduce a signal or to transcribe biochemical information into
concentrations of relevant compounds. Delayed negative feedback (DNF) may cause
adaptive as well as oscillatory behaviour of network components.
In this thesis, I considered time delay as a mechanism deciding on the response type

of DNF systems, i.e., adaptive or oscillatory. Additionally, I investigated the ability of
a range of network design features to suppress unwanted oscillations arising in DNFs.
To approach time delay explicitly I applied mathematical modelling of DNF systems
by means of delay differential equations (DDEs).
To generalise my research, I constructed mathematical models of several alterna-

tive DNF systems (Models 1-6 in Section 2.2). These alternatives differed in the
type of DNF, i.e., input-inhibition and output-activation, and in the presence of sig-
nalling components, i.e., without mass conservation or with mass conservation for one
or two network components. These models were further subjected to mathematical
analysis. For all considered model structures I derived explicit formulas and crite-
ria how model parameters determine characteristic response patterns like overdamped
behaviour, critical damping, damped or sustained oscillations.
Performed theoretical research was further applied to study the role of time delay in

concrete intracellular stress-response systems. Namely, I modelled the adaptive HOG
system in yeast and the oscillating NF-κB system in mammals. For the HOG model
I numerically calculated a value of time delay, which minimizes the adaptation time
to osmotic stress. The obtained value appeared to be close to the actual time delay
in the HOG system. Therefore, I concluded that the time delay in the HOG system
serves to minimize the adaptation time to osmotic stress. This feature of the HOG
system was called optimal adaptation. The analysis of the NF-κB model showed that
the time delay in the NF-κB system is close to the bifurcation threshold. It means
that the NF-κB system is able to demonstrate both damped and sustained oscillatory
responses upon small changes in the value of time delay. Thus, by controlling the time
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delay the cell may tune fate decisions.
The systematic study of design features of DNF systems showed that nested auto-

inhibitory and delayed negative feedbacks act in an opposite way with respect to the
response pattern of the system. Namely, nested auto-inhibitory feedbacks have the
potential to suppress oscillations, whereas increasing the strength of the DNF promotes
oscillations. In contrast to ODEs [80, 92], it is the steepness of the nested negative
feedback that shapes response patterns rather than its strength. This discovery was
further applied to design a synthetic nested negative feedback, which may dampen
oscillations in the mammalian p53 system. It was proposed that oscillations in the p53
system have a physiological role. Implementing synthetic auto-inhibitory feedback may
control oscillations in the p53 system and help to better understand their physiological
role. By the example of the p53 system I also showed numerically that both period and
amplitude of oscillations increase with increasing time delay. However, in comparison
with the DNF, the auto-inhibitory feedback may decouple the increase of amplitude
and period with respect to time delay.
Using Monte-Carlo analysis I demonstrated that mass conservation has a stabiliz-

ing effect on the system’s equilibrium. In addition, depending on the parameter set
input-inhibition has a higher potential to suppress oscillations than output-activation.
Thus, the analysis of considered design features allows the prediction of a character-
istic response of a concrete DNF system. In particular, this information is useful for
designing novel synthetic gene-regulatory networks.
As a result, I suggested a design of a synthetic network, which may switch between

sustained and damped oscillations and overdamped response in a controlled manner.
For this I considered the existing synthetic gene-regulatory network containing DNF
and producing artificial sustained oscillations in bacteria [99]. Then, I constructed
a mathematical model of this system and fitted to experimental data. I modified
the model by including a nested negative feedback through the additional network
component. The numerical analysis of the modified system indicated that the nested
negative feedback may suppress sustained oscillations of network compounds resulting
in a damped oscillatory or an overdamped response.
Finally, I analysed an approach on how to approximate DDEs by introducing aux-

iliary variables described by ordinary differential equations (ODEs) [34]. The approx-
imation of DDEs by ODEs has several advantages. Namely, for analysing ODEs the
investigator can apply common well-developed theory. In addition, there exist vari-
ous available computational packages for simulating ODEs and performing numerical
analysis. Additionally, this technique has a feasible biological interpretation. Indeed,
auxiliary variables can be considered as a signalling cascade presenting processes, which
precede the formation of the system’s response, e.g., transport, transcription, trans-
lation, etc. I applied this method to approximate DDE models of the HOG and the
p53 system. As a result, I concluded that the quality of approximation depends on
the number of intermediate variables and the stability of the equilibrium of the model
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to be approximated.
Taken together, mathematical modelling is a powerful tool for revealing and

analysing new mechanisms in functioning biological systems. Indeed, constructing
generic models of DNFs allowed a deeper understanding of how the system’s response
depends on time delay and on network design features. Additionally, mathematical
modelling assisted in designing a novel synthetic network, which may switch the re-
sponse type in a controlled manner.

6.2 Outlook

In this thesis, I investigated the role of time delay in biochemical systems containing
delayed negative feedbacks (DNFs). Using my theoretical framework I showed that
time delay in the high osmolarity glycerol pathway in yeast minimizes the adaptation
time to osmotic stress. It would be interesting to see whether this feature of optimal
adaptation also applies to other adaptive biochemical networks.
In addition, I checked if a range of network design features are able to suppress

oscillations arising in DNF systems. Performed computational analysis of these sys-
tems indicated that input-inhibition as a feedback mechanism can be more stabilizing
than output-activation. The rigorous theoretical stability analysis of DNF models with
respect to the kind of feedback mechanism could verify this hypothesis.
In comparison, I theoretically proved that nested auto-inhibitory feedbacks are able

to suppress oscillatory behaviour of DNF sytems. Using this inference I designed
a nested negative feedback to suppress oscillations in the mammalian p53 system.
Simulations of the modified p53 model showed that nested auto-inhibitory feedback
can decouple the amplitude and period of oscillations. Experimental validation is
needed to prove this ability of the nested auto-inhibitory feedback.
Based on derived theoretical results, I suggested a modification of the synthetic

oscillatory network presented in [99] by including a nested negative feedback. Accord-
ing to performed simulations the modified system may switch between sustained and
damped oscillations and overdamped response in a controlled manner. The experi-
mental implementation of the modified synthetic circuit could confirm this behaviour.
For creating the modified synthetic circuit I suggest to use the experimetal technique
of combining three operator sites for one promoter presented in [4]. Also it could be
an interesting problem for the future research to derive a criterion for DNF models
with a different architecture showing in which case half-saturation rate or steepness of
the nested feedback control the stability of the model equilibrium.
Finally, I presented an approximation approach of delay differential equations

(DDEs) by means of ordinary differential equations (ODEs). It would be useful to
derive a mathematical relation for the stability of equilibria of initial DDE and ap-
proximating ODE models. In [21] it was shown that both DDE and approximating
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ODE Goodwin’s models have the same necessary condition for producing sustained
oscillations of model components. Deriving the common sufficient condition could be
helpful to understand the connection between stability properties of DDEs and ODEs.
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A Materials and methods

Used experimental data

I used the following data to parametrize and analyse concrete cellular systems:

• for the HOG pathway I took data from [69] as described in [92]. The dataset
consists of time series of phosphorylated Hog1 under several hyper-osmotic shock
conditions for wild-type yeast and different mutants for up to 2 h after hyper-
osmotic shock.

• the dataset that I used to parametrize NF-κB model was digitized from the
supplementary material of [44] from Fig. S1. It shows the oscillatory profile of
nuclear NF-κB over time up to 6 hours in IκBβ-/- IκBε-/- mice fibroblasts in
response to TNF-α stimulation.

• the dataset used for the parametrization of the p53 model was digitized from
the supplementary material of [36] from Fig. S6 as described in [92]. It repre-
sents an averaged oscillation pattern that was meant to resemble an idealized
undamped oscillation with peak characteristics that correspond to the average
peak characteristics of oscillating cells.

• experimental data of the synthetic gene oscillator were obtained in the lab of
Dr. Katja Bettenbrock (Max-Planck Institute, Magdeburg). JS011 cells were
cultured in LB0 with Kanamycin and Ampicillin. A single colony was taken and
inoculated into LB0 with Ampicillin and Kanamycin and cultured overnight. This
overnight culture was diluted to an OD600 of about 0.05 into fresh medium again
with antibiotics. Cells were incubated at 37◦C for about 3 hours and then 2mM
IPTG and 0.7% arabinose were added. At the indicated time points samples were
taken and green fluorescent protein (GFP) production was stopped by addition
of chloramphenicol. Samples were analysed immediately by flow cytometry on a
Partec CyFlow Space. The experiment was performed one time.

Model simulation and analysis

All simulations of the delay differential equations were carried out in Mathematica 9
using the function NDSolve based on the method of steps. I used DDE-BIFTOOL
v. 2.00 [28] and MATLAB R2008b to calculate dependencies between the value of
time delay τ and amplitude and period of oscillations of the p53 model. Monte-Carlo
analysis was performed in Mathematica 9.
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Robustness of optimal solutions of the HOG model, NF-κB model and
p53 model.

I analyzed the robustness of the optimal solutions for the HOG model, the NF-κB and
p53 model with respect to noise. To this end, I randomly sampled parameter values
within ±10% of their respective fitted values using a uniform distribution for 100 times.
Then I simulated considered models with perturbed parameters and calculated 0.05
and 0.95 quantiles of obtained simulations (see gray regions in Fig. A.1). Fig. A.1
shows that the model solutions with fitted parameters are located between 0.05 and
0.95 quantiles for all considered time points.
Further, for each model and each perturbed parameter set I calculated the relative

variation of the integral of the first transient response after the stimulation:

vari =
∣∣∣∫ tInt

0 C(t)dt− ∫ tInt
0 Ci

p(t)dt
∣∣∣∫ tInt

0 C(t)dt
· 100%,

where C(t) corresponds to the model solution with fitted parameters, Ci
p(t) corresponds

to the model solution with ith perturbed parameter set (i = 1, 2, 3, ..., 100). For the
HOG model tInt corresponds to the time point, where the Hog1 activation decreases
to 50% of its maximum (see Fig. A.1A). For the NF-κB and the p53 system, tInt
corresponds to the time of the first minimum after initial stimulation (see Fig. A.1B
and C).
This way, the robustness of both initial activation amplitude and timing of the first

transient response, two characteristic measures of system dynamics, can be estimated
concomitantly.
As the measure of robustness I calculated the mean value < var > and standard

deviation sd of obtained relative variations vari:

• for HOG model (I considered I = 0.4 M as the representative stimulus value)
< var > ±sd = 11.3± 8.3%,

• for NF-κB model < var > ±sd = 6.4± 4.8%,

• for p53 model < var > ±sd = 8.7± 6.4%.

One may see that for the considered models values of < var > and sd do not exceed
12%. Thus, the fitted solutions turned out to be very robust with respect to noise
in the parameters, also indicating that the fitted solutions are in a well-defined local
minimum.
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A Materials and methods

Figure A.1: Robustness of optimal solutions of the HOG model, NF-κB
model and p53 model. (A) HOG model with I = 0.4 M. (B) NF-κB model.
(C) p53 model. Fitted parameter values of models were perturbed 100 times and
used for model simulations. Gray region: 0.05-0.95 quantiles of simulations of
the parametrized model with perturbed parameters. Black solid line: simulations
of models with fitted parameters from Table B.1. Dashed areas correspond to
integral values ∫ tInt

0 C(t)dt used for calculating relative variations vari.
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B Estimated parameter values

Table B.1: Best-fit parameters used for the HOG model (2.2), NF-κB model (2.4)
and p53 model (2.4).

Parameters HOG model NF-κB model p53 model
I - I∗ = 10 ng/ml 0.23 [a.u.]
T0 0.07 M 1.43µM -
τ 4.22 min 34.5 min 1.37 h
ξ 0.57min−1 - -
µ 733.52 [a.u.] 0.002 [a.u.] -
α 2668.34min−1 0.26min−1 5.9× 10−13 h−1

η 0.034 min−1 0.045min−1 1.16 h−1

β 0.004 min−1 0.052min−1 0.94 h−1

δ - 141.7min−1 176 h−1

ρ 0.03min−1 - -
Km 0.064µM 0.4µM 2µM
n - 2.6 4.97
C(t ≤ 0) 0.025 [a.u.] 0.012 [a.u.] 0 [a.u.]
R(t ≤ 0) 0.2 [a.u.] 0.01 [a.u.] 0 [a.u.]
SSR 0.11 1.7× 10−3 2.16
Designations: SSR - the sum of squared residuals

Table B.2: Best-fit parameters used for the synthetic gene oscillator model (4.1).
Parameters Values
k0 0.66 [a.u.]
k1 0.73min−1

k2 1.37min−1

n1 2.39
n2 3.34
Km1 0.48µM
Km2 0.28µM
τa 4.25min
τr 17.67min
AraC(t ≤ 0) 0 [a.u.]
LacI(t ≤ 0) 0 [a.u.]
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