
Efficient Simulation and Optimization of
Simulated Moving Bed Chromatography

Processes

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieurin

(Dr.-Ing.)

von M.Sc. Rojiar Pishkari
geb. am 27. May 1987 in Tehran

genehmigt durch die Fakultät für Elektrotechnik und
Informationstechnik der Otto-von-Guericke-Universität Magdeburg.

Gutachter:
Prof. Dr.-Ing. Achim Kienle
Prof. Dr.-Ing. Andreas Seidel-Morgenstern

Promotionskolloquium am 04.07.2025





Abstract

Abstract

Chromatography is a powerful separation technique that has been used
on the preparative scale in a wide range of industries, including the
chemical, pharmaceutical, and food industries. It allows the separation
of molecules that are temperature sensitive and/or have similar physical
properties such as stereoisomers or enantiomers and are therefore diffi-
cult to separate with other types of processes. For continuous process
operation, simulated moving bed (SMB) technology was introduced by
Broughton et al. in 1961 [11]. The main advantages of SMB processes
compared to the classical batch processes are increased productivity and
reduced solvent consumption. Since SMB processes are relatively ex-
pensive, model-based design and optimization play an important role.
For this purpose, triangle theory has been developed [81]. It is based on
an idealized model, which assumes isothermal operation, and constant
flow rates, axial dispersion is neglected, and thermodynamic equilibrium
is assumed between the liquid and the solid phase. Further, simulated
moving bed operation is approximated by the assumption of a true mov-
ing bed operated under steady-state conditions, which is valid if the
number of columns is high. Under these assumptions, an analytical so-
lution to the design problem is possible for certain classes of equilibrium
relations and binary separation problems with total separation. For a
moderate number of columns, incomplete separation, and/or separation
problems with more than two fractions usually a numerical approach is
applied. Due to the presence of sharp concentration fronts, the numeri-
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cal solution is often challenging and can be computationally expensive.
In this thesis, the analytical approach is extended to the dynamic simu-
lated moving bed model. Like the corresponding steady-state solution,
It is based on the method of characteristics and first applied to pro-
cesses with linear adsorption isotherms in chapter 3 of this thesis. The
method is based on a discretization of the concentration coordinate in-
stead of a discretization of the spatial coordinate, which is applied in the
classical method of line approaches. Inside the columns, concentration
values are propagated with characteristic velocity and new positions in
space are calculated cyclically at selected time points. This method is
exact for linear isotherms, the discretization of concentrations is only
used for the representation of the solution and for evaluating the cou-
pling conditions between the columns. Application is demonstrated for
a binary separation in a 4-zone process and a center-cut separation in
an 8-zone Simulated Moving Bed chromatography (SMB) process. In
the center-cut separation, an intermediate component is isolated from a
multi-component mixture. It is shown, that the computational effort can
be reduced by more than a factor of 100 compared to the classical cell
model which represents a first-order finite volume discretization scheme
in space. In the fourth chapter, an extension to nonlinear isotherms
is discussed. In the first step, a non-linear non-competitive Langmuir
isotherm is considered. It is shown that the solution effort increases
due to possible shock formation for non-linear isotherms. As a result
of the shock formation, the method is no longer exact anymore but de-
pends on the discretization of the concentration coordinate. Different
strategies for capturing the shock formation are proposed and compared
with each other in terms of accuracy and efficiency. Due to the lim-
ited applicability of the analytical approach to nonlinear isotherms, a
different approach is then proposed in Chapter 5 for the optimization
of SMB processes with competitive isotherms based on surrogate mod-
els. The approach is demonstrated for a binary separation process with
competitive Langmuir isotherms. The method is iterative. In each iter-
ation, artificial neural networks are fitted to the reference model based
on randomly distributed sampling points around the optimal solution of
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the previous iteration based on the previous iteration’s results. Maxi-
mum productivity under a certain purity requirement is obtained at the
end of the process. The method is particularly attractive for processes
with a high number of stages but reduced product purities, where clas-
sical triangle theory cannot be applied. Such situations may arise for a
given plant with highly efficient columns for applications with moderate
purity requirements, where product purities can be relaxed to increase
productivity. In these cases, the proposed approach is also much faster
than the numerical optimization of the full model. In this thesis, the
focus is on local optimization. Even higher potential for improvement
by surrogate-based optimization can be expected for deterministic global
optimization, which is therefore becoming more and more attractive for
the optimization of complex chemical processes like SMB processes.
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Zusammenfassung

Die Chromatographie ist ein leistungsfähiges Trennverfahren, das im
präparativen Maßstab in einer Vielzahl von Industriezweigen eingesetzt
wird, unter anderem in der Chemie-, Pharma- und Lebensmittelindus-
trie. Sie ermöglicht die Trennung von Molekülen, die temperaturempfind-
lich sind und/oder ähnliche physikalische Eigenschaften haben, wie z. B.
Stereoisomere oder Enantiomere, und die daher mit anderen Verfahren
nur schwer zu trennen sind. Für den kontinuierlichen Prozessbetrieb
wurde 1961 von Broughton et al. die Simulated-Moving-Bed-Technologie
(SMB) eingeführt [11]. Die Hauptvorteile von SMB-Prozessen im Ver-
gleich zu den klassischen Batch-Prozessen sind die höhere Produktiv-
ität und der geringere Lösungsmittelverbrauch. Da SMB-Prozesse rel-
ativ teuer sind, spielen die modellbasierte Prozessgestaltung und Op-
timierung eine wichtige Rolle. Zu diesem Zweck wurde die Dreiecks-
Theorie entwickelt [81]. Sie basiert auf einem idealisierten Modell, das
von einem isothermen Betrieb und konstanten Durchflussraten ausgeht,
die axiale Dispersion vernachlässigt und thermodynamisches Gleichgew-
icht zwischen der festen und der flüssigen Phase annimmt. Außerdem
wird an Stelle eines simulierten Gegenstromes ein echter Gegenstrom
der festen Phase angenommen, was aber nur bei einer relativ hohen
Anzahl von Trennsäulen eine gute Näherung darstellt. Unter diesen
Annahmen ist eine analytische Lösung des Auslegungsproblems für bes-
timmte Klassen von Gleichgewichtsbeziehungen und binären Trennprob-
lemen mit vollständiger Trennung möglich. Bei einer mäßigen Anzahl
von Trennsäulen, unvollständiger Trennung und/oder Trennproblemen
mit mehr als zwei Fraktionen wird in der Regel ein numerischer Ansatz
verwendet. Aufgrund des Auftretens steiler Konzentrationsfronten ist
die numerische Lösung oft eine Herausforderung und kann rechenin-
tensiv sein. In dieser Arbeit wird der analytische Ansatz auf das dy-
namische Prozessmodell mit simuliertem Gegenstrom erweitert. Wie die
entsprechende stationäre Lösung des idealisierten Modells mit echtem
Gegenstrom basiert er auf der Methode der Charakteristiken und wird
zuerst in Kapitel 3 dieser Arbeit auf Prozesse mit linearen Adsorption-
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sisothermen angewandt. Die Methode basiert auf einer Diskretisierung
der Konzentrationskoordinate anstelle einer Diskretisierung der Raumko-
ordinate, wie sie bei den klassischen Linienmethoden angewendet wird.
Innerhalb der Säulen wandern die Konzentrationswerte mit charakter-
istischer Geschwindigkeit. Zu ausgewählten Zeitpunkten werden zyk-
lisch neue Positionen in den Säulen berechnet. Diese Methode ist exakt
für lineare Isothermen. Die Diskretisierung der Konzentrationen wird
nur für die graphische Darstellung der Lösung und für die Auswertung
der Kopplungsbedingungen zwischen den Säulen verwendet. Die An-
wendung wird für eine binäre Trennung in einem 4-Zonen-Prozess und
eine so genannte Center-Cut-Trennung in einem 8-Zonen SMB-Prozess
demonstriert. Bei der Center-Cut-Trennung wird eine Zwischenkompo-
nente aus einem Mehrkomponentengemisch isoliert. Es wird gezeigt,
dass der Rechenaufwand im Vergleich zum klassischen Zellenmodell, das
ein Diskretisierungsschema erster Ordnung im Ort darstellt, um mehr
als einen Faktor 100 reduziert werden kann. Im vierten Kapitel wird
eine Erweiterung auf nichtlineare Isothermen diskutiert. In einem ersten
Schritt werden nicht-lineare, nicht-kompetitive Langmuir-Isothermen be-
trachtet. Es wird gezeigt, dass der Lösungsaufwand aufgrund einer
möglichen Schockbildung bei nichtlinearen Isothermen zunimmt. Als
Folge der Schockbildung ist die Methode nicht mehr exakt, sondern
hängt von der Diskretisierung der Konzentrationskoordinate ab. Es wer-
den verschiedene Strategien zur Erfassung der Schockbildung vorgeschla-
gen und in Bezug auf Genauigkeit und Effizienz miteinander verglichen.
Aufgrund der begrenzten Anwendbarkeit des analytischen Ansatzes auf
nichtlineare Isothermen wird dann in Kapitel 5 ein alternativer Ansatz
für die Optimierung von SMB-Prozessen mit konkurrierenden Isother-
men auf der Grundlage von Ersatzmodellen vorgeschlagen. Der Ansatz
wird für einen binären Trennungsprozess mit konkurrierenden Langmuir-
Isothermen demonstriert. Die Methode ist iterativ. In jeder Itera-
tion werden künstliche neuronale Netze an das Referenzmodell auf der
Grundlage zufällig verteilter Stichprobenpunkte um die optimale Lösung
der vorherigen Iteration herum angepasst. Am Ende des Verfahrens
wird so die maximale Produktivität unter vorgegebenen Reinheitsan-
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forderungen erreicht. Die Methode ist besonders attraktiv für Prozesse
mit einer hohen Anzahl von Stufen, aber geringeren Produktreinheiten,
bei denen die klassische Dreieckstheorie nicht angewendet werden kann.
Solche Situationen können bei einer vorhandenen Anlage mit hochef-
fizienten Kolonnen für Anwendungen auftreten, bei denen die Produk-
treinheiten gelockert werden können, um die Produktivität zu erhöhen.
In diesen Fällen ist der vorgeschlagene Ansatz auch viel schneller als
die numerische Optimierung des vollständigen Modells. In dieser Arbeit
liegt der Schwerpunkt auf der lokalen Optimierung. Ein noch höheres
Verbesserungspotenzial durch surrogatbasierte Optimierung ist für die
deterministische globale Optimierung zu erwarten, die daher für die Op-
timierung komplexer chemischer Prozesse wie SMB-Prozesse immer at-
traktiver wird.
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CHAPTER 1

Introduction

1.1 Chromatographic separation

Liquid chromatography (LC) is a crucial separation technique widely
used for the purification of various substances. Its versatility allows it
to be applied at different scales depending on the intended purpose. On
a smaller scale, it is often used for analytical purposes. However, it
can also be adapted for larger-scale operations for preparative purposes.
This dual functionality makes it an important tool in both research and
industrial applications [73].

The chromatography process is conducted by passing the mixture through
a column containing a mobile phase and a stationary phase. liquid chro-
matography (LC) is based on the principle of selective interaction be-
tween the stationary phase and the components of the mixture being
separated. As the mixture travels through the column, the stationary
phase interacts differently with each component. This difference in in-
teraction causes the components to separate, allowing them to be indi-
vidually analyzed or collected.

Most stationary phases consist of a solid material, such as silica gel or a
resin, coated onto the surface of small particles or packed into a column.
The mobile phase consists of a liquid solvent that is used to transport
the mixture through the column. As the mixture moves through the
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column, the components with stronger interactions with the stationary
phase move more slowly and remain in the column longer than those
with weaker interactions. This difference in retention causes the compo-
nents to separate and exit the column at different times, resulting in the
separation of the mixture into individual components. There are several
mechanisms used in the chromatographic separation process, but these
can all be broken down into three basic elements:

Solutes - In the process, solutes are chemical components that are sep-
arated from one another. A suitable solvent is used to inject a mixture
of at least two desired components into a chromatographic column.

Adsorbent – The stationary phase provides selective affinity for the dif-
ferent solutes, it makes it possible to separate them. Hence, it must at
least meet two requirements: first, it must be stationary, at least for the
duration of the relevant process. In addition, it must be capable of sep-
arating solutes with different affinities. As long as they are mechanically
attached to a support material, liquid adsorbents can also be used as
long as they are not flowing out of the chromatographic system during
the separation process.

Solvent(desorbent) – It is the mobile phase that drives the separation
of the solutes by providing the convective flow of solutes. There are
several forms of it ( gas, liquid, or even as a supercritical fluid [17,
18, 15]) provided it can flow through a packed bed. As with gradient
chromatography and displacement chromatography, its composition does
not have to remain constant during the separation process.

As mentioned, chromatographic separation involves solutes, solvents,
and adsorbents. Despite this, they do not represent the entire exper-
imental setup. There is still much more to say about the valves, de-
tectors, pumps, and control systems that make modern chromatography
possible, but these will be left out in this work.

As of today, examples of chromatography application are found in the
fields of enantiomer separation [74, 9, 53], sugar separation [12, 21],
petroleum derivative separation [44, 30, 8], protein separation [16, 84,



3

10] and even isotope separation [3, 43]. There are different types of liq-
uid chromatography, including reversed-phase chromatography, normal-
phase chromatography, ion-exchange chromatography, and size-exclusion
chromatography. [73]. Each type of chromatography uses a different sta-
tionary phase and mobile phase to achieve separation based on different
chemical and physical properties of the components of the mixture and
the type of solid phase applied.

The development of innovative processes relies heavily on theoretical
modeling and process simulation. These tools are crucial for gaining a
deep understanding of transport phenomena and optimizing processes.
By creating models that simulate real-world processes, researchers can
predict potential outcomes and identify areas for improvement. Fur-
thermore, these simulations allow for the optimization of various process
parameters, leading to more efficient, cost-effective, and sustainable op-
erations [73].

1.2 Simulated moving bed chromatography

The simplest application of the chromatographic principle is single-column
chromatography. A column is usually packed with an adsorbent bed, and
equipped with a pump, and detectors. A mixture of solutes is first intro-
duced into the column, followed by the pumping of solvent free solution.
As the solutes exit the column, they are collected sequentially, ideally
well separated. The entire procedure can be repeated after regeneration
of the column with solute-free solvent. Continuous operation and com-
plex process layouts are not used with batch chromatography. Scaling-up
is usually achieved by using larger columns and/or parallel processing
units. It has been possible to improve batch chromatographic separation
by improving hydraulic systems (such as pumps, valves, and detectors),
using new solvents, and adsorbents, and in particular, reducing the size
of adsorbent particles [22]. Several continuous and counter-current vari-
ations of the classical batch chromatographic process have been proposed
to reduce solvent and adsorbent consumption [22, 76, 73, 61].
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However, simulated moving bed (SMB) chromatography offers several
benefits over batch chromatography. Here are some of the benefits of
SMB chromatography:

Higher productivity: SMB chromatography is a process that enables
continuous separation of substances, resulting in higher productivity due
to reduced downtime between batches. This leads to faster and more
efficient separations. Since this process operates continuously, there is
minimal need for cleaning and setup in between, which in turn reduces
the amount of waste generated by these processes.

Higher purity: The continuous nature of SMB chromatography also al-
lows for tighter control over separation conditions, resulting in higher
purity products.

Reduced solvent consumption: SMB chromatography typically uses less
solvent than batch chromatography, which can reduce costs and make
the process more environmentally friendly.

Reduced waste: SMB chromatography produces less waste than batch
chromatography, which again makes the process more environmentally
friendly. Some continuous chromatography systems are designed to allow
for the continuous recycling of solvents and other consumables. This
closed-loop system reduces the need for fresh solvents, further minimizing
waste generation. Continuous chromatography systems typically operate
with a steady-state flow, which allows for better control of solvent usage.
In batch chromatography, the solvent is often used in excess to ensure
complete elution. Continuous systems optimize solvent consumption,
leading to less solvent waste.

Scalability: SMB chromatography is more easily scalable, making it suit-
able for both laboratory and industrial-scale separations.

Overall, SMB chromatography provides a more efficient, cost-effective,
and environmentally friendly alternative to batch chromatography for
the separation of complex mixtures. Since this continuous process is not
cheap as well, modeling and simulating has a significant role in optimiz-
ing the process.
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In simulated moving bed chromatography a Counter-current movement
of the solid and liquid phase is approximated by cyclic switching of the
inlets and outlets shown in Figure 1.1.

In counter-current operation, the mobile phase moves in the opposite
direction to the stationary phase, meaning the two phases flow against
each other. This setup maximizes separation efficiency, making it pos-
sible to separate complex mixtures with high levels of purity. The
counter-current movement maintains a significant concentration gradient
between the mobile and stationary phases, leading to improved resolu-
tion. Figure 1.1 illustrates a somewhat theoretical concept of an ideal
counter-current system, known as a true moving bed (TMB). In this
model, the solid phase circulates continuously at a constant flow rate,
which is a key aspect of the concept. [73]

This configuration provides faster separations and allows for higher through-
put, as the mobile phase can be processed more quickly. [73]

In the SMB chromatographic separation process, there are four external
streams: the feed inlet, which introduces the mixture of components
to be separated, the solvent inlet, which provides the mobile phase, the
extract outlet, containing the more retained component, and the raffinate
outlet, which becomes enriched with the less retained component. Based
on the flow rates of the liquid phase, the process is divided into four
distinct sections or zones within the system, each serving a specific and
vital role in the overall separation process.

The actual separation of the two solute fractions primarily takes place
in sections II and III. In these zones, the more retained component is
adsorbed by the solid phase, which moves counter-currently to the liquid
phase and is eventually transported to the extract port. At the same
time, the less retained component is desorbed and carried by the moving
liquid phase toward the raffinate port. This selective movement between
the phases ensures that the desired components are separated with high
precision and purity.

Additionally, section I of the system plays a crucial role in regenerating
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the solid phase. An eluent stream is introduced in this section to desorb
the strongly adsorbed components from the solid phase, allowing the
solid to be reused in subsequent separation cycles. This regeneration step
is essential to maintaining the efficiency and continuity of the separation
process, ensuring that the solid phase remains active and capable of
further adsorption in the next cycle.[73]

The feed mixture can be entirely separated into two pure products with
the right choice of internal fluid flow rates in sections I–IV and the
stationary phase velocity. SMB process operating conditions and flow
rates are determined using triangle theory developed by Migliorini et al.
[56] based on the TMB. This method allows the choice of proper flow
rates for the TMB. A detailed explanation of the theory can be found in
Chapter 2.

Due to the design of the traditional 4-zone SMB configuration, a single
target solute can be isolated from a complex mixture if it is the first
or last component to elute. To achieve this, it is necessary to feed the
mixture into an SMB system as presented in Figure 1.1, between zones
II and III. When the switching time and the solvent flow rates are chosen
correctly, the net flow of most adsorbing solutes likely continues to flow in
the direction of adsorbent flow and the net flow of the weakest adsorbing
solutes moves in the direction of solvent flow. In zone I, the solvent
flow rate must be chosen high enough to elute all strongly adsorbing
solutes from the adsorbent and recover them in the extract port. It
is critical to set the solvent flow in zone IV small enough that weakly
adsorbing solutes are entirely removed from the solvent and recovered in
the raffinate port between zones III and IV [5, 81].
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Figure 1.1: a. Schematic of a True Moving Bed, b. Schematic of a Simulated
Moving Bed

1.3 Center-cut separation

It is essential to highlight a major drawback of the classical SMB system:
the target solute must be either the one with the strongest affinity or
the weakest affinity for successful isolation [1, 2].

However, in most cases, the target solute is part of an intermediate elut-
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ing fraction, which is why it is necessary for the mixture to be separated
into three fractions, as depicted in Figure 1.2, to be able to isolate the
target.

Figure 1.2: The chromatogram shows a hypothetical mixture containing three
fractions. Fraction A is the first eluting fraction, fraction B is the
intermediate fraction, and fraction C is the target.

Various SMB variants have been developed to separate ternary mixtures.
Nikolaos et al. [60] compared different configurations of 4-zone and 5-
zone SMB units using the equilibrium model, while other researchers
have explored different SMB cascade arrangements for multi-component
separation [32, 59, 58, 25, 83, 39]. Figure 1.3 shows a cascade of two
4-zone SMB units, separating a ternary mixture.

In addition to the three columns intermittent SMB [29, 28] proposed for
ternary and pseudo ternary separations, other interesting configurations
have been proposed as well, such as the five zone SMB [60, 57, 31]. There
have been dynamic models and optimization algorithms employed to
make realistic comparisons between the different arrangements of SMB
columns [1, 2, 63, 10, 32, 39]. Additionally, several promising semi-
continuous configurations have been proposed and extensively analyzed
for executing center-cut separations[63, 4, 26, 47].

The continuous SMB processes mentioned above belong to the class of
Center cut SMB processes. They provide powerful and versatile ap-
proaches that can be used for a wide range of conditions, including the
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Figure 1.3: Cascades of independently operated 4-zone Simulated Moving Bed
units for the separation of the ternary mixture.

purification of biopharmaceuticals, the separation of natural products,
and the purification of industrial chemicals. It is particularly useful for
the purification of high-value compounds, where a high degree of purity
is required.

One of the advantages of center cut SMB chromatography is that it can
handle large volumes of feed, and can be easily scaled up to an indus-
trial scale. It is also very efficient in terms of solvent usage and waste
generation, making it a more environmentally friendly option compared
to traditional batch chromatography.

Overall, center cut SMB chromatography is an advanced and sophis-
ticated technique that offers many advantages over traditional batch
chromatography methods. It is an ideal solution for the purification of
high-value compounds, where high purity and high yield are required.
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1.4 State of the art and motivation

As explained previously, the chromatographic process involves the sepa-
ration of two or more chemical compounds present in liquid form within
a solid adsorbent [23]. Depending on the two phases in the system,
isotherms can be linear or nonlinear [23]. With the development of
highly efficient columns and sophisticated detection systems over the last
decades, liquid chromatography has become an increasingly important
industrial separation technology.

Although it can be applied at a large scale, its production costs are often
high, because of the high costs of packing materials and solvents [22]. A
significant improvement in the economic performance of the process has
been achieved with the use of SMB chromatography.

This dissertation began with a brief overview of chromatographic pro-
cesses. Batch chromatography and the development of continuous chro-
matography have been explained.

Mathematical modeling of SMB chromatography and model-based de-
sign is important to understand the process deeply and determine com-
plex interactions within the SMB system, including mass transfer, ad-
sorption, and elution behavior [73]. Simulation of the process beforehand
can identify the most efficient configurations, operating conditions, and
process parameters for improved performance. An efficient mathemat-
ical model can lead to reduced experimental time and cost. Moreover,
modeling encourages innovation by providing a platform for exploring
novel configurations, materials, and operating strategies in SMB chro-
matography, leading to advancements in separation science and technol-
ogy. The next chapter will be followed by a mathematical description of
adsorption isotherms, design, and simulation of SMB processes.

The optimization and simulation of SMB processes can be computa-
tionally intensive, making it challenging to predict the performance of
different process configurations and identify optimal operating condi-
tions. A difficult task is determining the operating conditions, which is
possible by the triangle theory under idealized condition [81, 55] that
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will be explained in the next chapter as well.

The mathematical modeling of these processes usually results in partial
differential equations (PDEs) [73]. Various models are used, depending
on the assumptions made during modeling, such as equilibrium mod-
els, which assume thermodynamic equilibrium between the liquid and
solid phases, or mass transfer models, which consider finite mass trans-
fer resistance between both phases. In both scenarios, numerical solu-
tions of the associated PDE systems are commonly used for simulating
the process. Typically, simulating chromatographic columns numerically
presents challenges, particularly because of the presence of steep concen-
tration fronts. This has been a focal point in numerous research papers
such as´[52, 51].

Fast and reliable methods are essential for real-time control and opti-
mization of chromatographic processes. In practical applications, the
method of lines (MOL) [85] is commonly employed to solve the system
of partial differential equations (PDEs) using finite differences (FDs), fi-
nite elements (FEM), or finite volumes (FVM) for spatial discretization.
A straightforward approach involves utilizing first-order finite volume
discretization, resulting in widely used cell models, which can then be
tackled using standard integrators. Accuracy and efficiency can be im-
proved through the adoption of advanced high-resolution schemes and
adaptive grids [48].

For instance, the CADET toolkit developed by Leweke ae al. [49] has
a high accuracy and speed. In addition, Javeed et al. [27] present
a high-resolution semi-discrete flux-limiting finite volume method de-
signed to solve nonlinear equilibrium dispersive chromatography mod-
els. This method successfully mitigates numerical oscillations, main-
tains solution positivity, and precisely captures sharp discontinuities in
chromatographic fronts, even on coarse grids. Lee et al. [46] have used
an active counteraction scheme to improve the accuracy of the mixing
cell model, making it applicable to various chromatographic configura-
tions. The space-time conservation element/solution element (CE/SE)
method, which is an explicit approach for solving systems of first order
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hyperbolic partial differential equations, was introduced in Chernev et
al. [13].

In the case of minimal axial dispersion, the equilibrium model allows for
an analytical solution under specific conditions: piecewise constant ini-
tial and boundary conditions, and certain linear and nonlinear adsorp-
tion isotherms, such as the commonly used Langmuir isotherm. This
analytical method forms the basis of the equilibrium theory [68, 54],
which has emerged as a vital tool for conceptualizing chromatographic
process design. An analytical solution for linear ideal SMB chromatog-
raphy was introduced by Zhong et al., which is valid for binary mixture
SMB chromatography and can describe the start-up of the process with
empty columns [87].

A simplified algorithm for dynamic modeling chromatographic separa-
tion processes was introduced by Dünnebier et al., based on the nonlin-
ear wave theory for an ideal chromatographic column and the Langmuir
isotherm [19].

In this work, I present an innovative analytical approach to streamline
and accelerate the simulation of linear adsorption isotherms in SMB chro-
matography systems. Extending from the approach proposed by Zhong
et al., our efficient algorithm boasts notably enhanced speed while en-
suring sharp and accurate propagation fronts. It is successfully applied
to both 4- and 8-zone SMB chromatography systems featuring a center-
cut recycle design. Furthermore, its application is extended to a five-
component mixture separation using an 8-zone SMB setup, yielding no-
tably satisfactory results when compared to the conventional cell model.
The method is versatile and capable of not only addressing startup sce-
narios but also accurately computing concentration profiles during other
transient scenarios.

The preceding methodology is expanded to nonlinear non-competitive
adsorption isotherm. Although this extension is not precise, it provides
a commendable approximation of the solution within a reasonable time-
frame. The approach is applied to a 4-zone SMB system and is validated
by the cell model result. Once more, a substantial difference in computa-
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tional time is observed. Despite their simplicity and speed, both methods
have limitations, which eventually lead to surrogate-based optimization
being implemented for optimizing the SMB chromatography process.

An integral aspect of the present work lies in leveraging cutting-edge de-
sign optimization techniques and computational capabilities. Through
these means, one can markedly enhance the efficiency of separation pro-
cesses in SMB chromatography by simply changing or modifying the
process condition. Various valuable studies have been conducted in this
field, employing a range of methodologies including Genetic Algorithms
and diverse discretization techniques for their calculations [82, 36].

In this study, we aimed to circumvent numerical solutions of the rigorous
model once more, choosing instead a data-driven approach to optimize
the SMB system. Subsequently, we compared the outcomes with those
derived from the numerical model.

To maximize economic potential, optimal operational parameters bal-
ancing productivity and solvent usage must be identified while meeting
purity standards. Initially, the well-established triangle theory by Storti
et al. serves as a preliminary tool for identifying these conditions, as-
suming a true moving bed process without axial dispersion and with
thermodynamic equilibrium between solid and liquid phases [81]. De-
pending on application specifics, relaxing purity criteria can increase
productivity. Kaspereit et al. proposed an extension of the triangle
theory for this purpose, however with limitations and reliance on the
same simplifications and assumptions [34]. Zhang et al. utilized genetic
algorithms to optimize productivity and purity dynamically in SMB pro-
cesses, comparing results with the Varicol process, although with high
computational time [86]. Li et al. employed surrogate models, including
proper orthogonal decomposition (POD) for cost-efficient reduced-order
models and a coarse model. However, due to the complexity of SMB
models, rigorous numerical optimization proves time-intensive [50].

In this work, we suggest a surrogate optimization approach similar to
Kessler et al. [38], employing a simplified feed-forward artificial neural
network for surrogate-based iterative optimization, requiring minimal
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data and enhancing numerical efficiency. The adoption of this novel ap-
proach significantly accelerated the optimization process, yielding results
that exhibited good agreement with the numerical model. Such promis-
ing outcomes suggest that this method may represent a superior option
for optimizing SMB systems.

1.5 Objectives and outline

The primary aim of this thesis centers on new efficient methodologies
tailored for the model-based analysis of chromatographic processes with
both linear and non-linear (non-competitive) adsorption isotherms. A
novel simulation algorithm for SMB processes with linear and non-linear
adsorption isotherm is presented, which significantly reduces computa-
tional time and resources while maintaining high accuracy.

The algorithm employed for linear isotherms is grounded in an analyt-
ical solution derived from the underlying partial differential equations,
employing the method of characteristics. This method illuminates the
propagation dynamics of specific component concentrations within the
chromatographic system.

To exemplify its efficacy, we showcase its application across various sce-
narios. Initially, we demonstrate its utility in binary mixture separation
using 4-zone and ternary mixture separation using 8-zone SMB chro-
matography processes with center-cut separation configurations. Subse-
quently, we extend its application to a more complex setting, addressing
a five-component mixture within an 8-zone SMB system. Once more, we
compare the algorithm’s outcomes against those generated by the cell
model, thereby offering a comprehensive evaluation of its performance
across diverse chromatographic scenarios.

Further, this work introduces an approximate solution designed for the
complexity of non-linear and non-competitive adsorption isotherms, mak-
ing use of the inherent dynamics governing the propagation of select
component concentration values within the chromatographic column. To
effectively represent this solution and evaluate the coupling conditions
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across columns, a discretization of concentration values is necessitated.
While the method does not furnish an exact solution, its precision is
tightly associated with the intensity of discretization employed. No-
tably, the variations in velocities inherent to different concentration val-
ues lead to the formation of shocks, wherein higher concentration values
propagate faster than smaller counterparts during loading an empty bed,
prompting the significance of exploration of their spatiotemporal occur-
rences. Addressing this challenge entailed not only tracking the emer-
gence and transit times of these shocks and concentration values within
the current column but also their seamless integration into subsequent
columns.

To underscore the practical utility of this approach, we showcase its
application across both single columns and 4-zone SMB configurations.
Compared to the prevalent discrete cell model, our proposed method
markedly reduces the computational burden while retaining a commend-
able level of accuracy, thus declaring a promising method for chromato-
graphic analysis.

In the end, the binary mixture separation process flow rates are opti-
mized. The isotherm is Langmuir and competitive.

The ultimate aim of this endeavor terminates in the optimization of the
SMB process, with a specific focus on maximizing productivity while
adhering to predetermined purity constraints. Central to achieving this
objective is the optimization of flow rates within the system. The lim-
itation that the two previous methods for simulating the process with
Langmuir adsorption isotherms have, underscore the necessity for an
alternative approach.

Recognizing these constraints, we choose the adoption of a surrogate
model, strategically chosen to accelerate and enhance the optimization
process. By leveraging the versatility and efficiency afforded by this
surrogate model, we aim to streamline the optimization efforts, thereby
bringing us closer toward the ultimate goal of enhancing SMB process
productivity while maintaining requisite purity levels.



A systematic iterative method is implemented to optimize SMB Chro-
matography with Langmuir adsorption isotherms, using a surrogate-
based optimization strategy. Throughout each iteration, artificial neu-
ral networks are fitted utilizing randomly distributed sampling points
around the optimal point attained in the previous iteration. This surrogate-
based optimization technique offers a notable advantage in terms of
efficiency over the full-blown model’s numerical optimization process
employed, particularly in scenarios involving highly efficient chromato-
graphic columns.

This thesis is based on the following three articles:

1. Fast and accurate simulation of simulated moving bed chromato-
graphic processes with linear adsorption isotherms
Pishkari, R. and Kienle, A.
In Computer Aided Chemical Engineering (Vol. 48, pp. 487-492).
Elsevier 2020

2. Fast and Accurate Solution for Simulation of Linear and non-Linear
Adsorption Isotherm Simulated Moving Bed Chromatography Pro-
cess using Dispersion Free column
Pishkari, R. and Kienle, A.
In preparation

3. Optimization of Simulated Moving Bed Chromatographic Processes
using Surrogate Models
Pishkari, R. Fechtner, M. Kessler, T. and Kienle, A.
In Computer Aided Chemical Engineering (Vol. 52, pp. 343-348).
Elsevier 2023



CHAPTER 2

Theoretical background

Mathematical modeling of simulated moving bed chromatography SMB
is a crucial aspect of process design and optimization for this separation
technique.

Mathematical modeling of SMB involves the development of mathemat-
ical equations that describe the dynamic behavior of the process. This
includes the mass balance equations for the components in the feed and
the two phases. In addition, the equations that describe the movement
of the phases within the chromatography column are provided. These
equations are solved numerically to predict the performance of the SMB
system, including breakthrough curves, product purity and yield, and
residence time distribution.

The thermodynamics of the system plays an important role in the view
of process dynamics. This involves the determination of the distribution
coefficients, which describe the affinity of each component for the two
phases. These coefficients can be estimated experimentally or calculated
using adsorption isotherm models.

Finally, the mathematical model must take into account the design pa-
rameters of the SMB system. These include the flow rate of the feed,
the flow rate of the solvent, and the geometry of the column. These pa-
rameters can be optimized to maximize the efficiency and performance
of the SMB system.
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In conclusion, mathematical modeling is an essential tool for the design,
optimization, and control of SMB processes. The models developed allow
for a deeper understanding of the underlying physics and chemistry of
the system and provide valuable information for the improvement of
SMB performance.

To solve these equations, various numerical methods can be used, in-
cluding finite difference methods, finite element methods, and differen-
tial equation solvers. The choice of method depends on the complexity
of the equations and the desired accuracy of the solution.

Once the equations are solved, the performance of the SMB system can
be predicted, including breakthrough curves, product purity and yield,
and residence time distribution. The numerical approach also allows for
the optimization of design parameters, such as the flow rate of the feed,
solvent, and the geometry of the column. The main design parameters of
the SMB process are the flow rates in different sections and the switching
time. This will improve the efficiency and performance of the SMB
process.

In summary, the numerical approach is a powerful tool for the analysis
and optimization of SMB processes. It provides a detailed understand-
ing of the behavior of the system and allows the identification of the
key parameters that impact performance. This information can be used
to design more efficient and effective SMB systems and to improve the
separation performance of existing systems. Nevertheless, numerical ap-
proaches are computationally expensive, so this thesis aims to simplify
and speed up this simulation.

In special cases also an analytical solution of the underlying model equa-
tion is possible. The analytical solution uses the method of character-
istics (MOC) to solve partial differential equations, which describe the
propagation of selected concentration values [68].

The analytical method offers both speed and accuracy in simulating
chromatographic columns with linear adsorption isotherms under the
ideal equilibrium model. It is particularly well-suited for highly efficient
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chromatographic columns characterized by minimal axial dispersion and
sharp concentration gradients. The method is precise, with discretiza-
tion of concentrations utilized solely for graphical representation and
evaluation of coupling conditions between columns, without compromis-
ing accuracy.

In the case of multiple components, concentration profiles are trans-
formed into a multi-dimensional tensor and component positions are de-
termined based on individual propagation velocities. To calculate con-
centration profiles in subsequent time steps, new positions for concen-
tration values are first computed. Node balances at column entrances
are assessed, and resultant values are propagated into the column to fill
gaps in the concentration vector from the left.

2.1 Adsorption

In chromatography, the retention of solutes is differentiated by the ad-
sorption process, which ultimately allows them to be separated. Model-
ing chromatographic separations requires an understanding of the ther-
modynamic equilibrium between the solvent and the adsorbent. It is
called an adsorption isotherm if adsorption occurs at a constant temper-
ature.

Typically, the adsorption isotherm qi(c) represents the equilibrium com-
position of component i in the solid phase, and it generally depends on
the composition of the fluid phase.

A schematic of a chromatographic column can be seen in Figure 2.1.
Inside the column, the variable ε represents the porosity.

To accumulate molecules on solid surfaces, most chromatographic pro-
cesses utilize the principle of adsorption. The adsorption isotherm de-
pends on many variables, including temperature, solution ionic strength,
solute interaction, pressure, PH, etc [78]. Porous and lumped adsorption
isotherm models can broadly be classified [61]. Based on the pore size
distribution of the adsorbent particles, three or possibly more phases may
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Figure 2.1: Chromatographic column structure

be taken into account: the solvent, the solid phase, and an intragran-
ular stagnant fluid phase. The second category of adsorption isotherm
models simplifies the mathematical description of the adsorbent to a
homogeneous state.

Due to the principle of adsorption, most chromatographic processes op-
erate by the deposition and accumulation of molecules on solid surfaces.
A relevant industrial example of this is the adsorption of pollutants from
waste air or water onto activated carbon, which illustrates the first two
phase combinations. Adsorption occurs at a molecular level when the
adsorbent surface forms binding forces with the molecules of the fluid
phase. There are different types and strengths of binding forces. Bind-
ings can be divided into two basic types.

1) Physical adsorption, or physisorption, involves physical binding due to
the van der Waals or electrostatic forces. These forces are usually weaker
than the chemical binding forces described below and allow physisorbed
molecules to retain their chemical identity.

2) Chemical adsorption or chemisorption is the strongest type of binding.
It is caused by valence forces, which are equivalent to chemical bonds,
mainly covalent bonds [73].

There are also favorable and unfavorable adsorption isotherms. Dur-
ing favorable adsorption isotherms, i.e., when their curves are convex,
the derivative of the adsorption isotherm function decreases as the con-
centration increases. This is typically caused by over-saturation of the
adsorbent surface. In contrast to this, when adsorption isotherms are
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unfavorable, the derivative of the adsorption isotherm function over in-
creasing concentrations increases. This leads to a concave adsorption
isotherm curve, typically observed when the adsorbed solutes interact
synergistically. Adsorption isotherms can also have inflection points,
causing them to have concave and convex regions. It is possible for the
resulting curve to be defined by a series of multi-layer adsorption steps,
depending on the mechanisms involved [61, 72].

Special cases of the adsorption isotherms considered in this thesis are:

1)Linear adsorption isotherm: for this isotherm, once the concentration
of the solute in the mobile phase surpasses certain limits, further incre-
ments no longer lead to an increase in the amount adsorbed onto the
stationary phase. Only within the initial low-concentration range of the
mobile phase is there a linear correlation observed.

Within the initially linear segment of the adsorption isotherm, the con-
nection between concentrations in the mobile and stationary phases, de-
noted as c and q respectively, is delineated by Henry’s law:

qi(ci) = Hici (2.1)

Hi is known as the Henry constant in the linear adsorption isotherm.

2) Langmuir isotherm (competitive): Based on a homogeneous surface
saturation model, the Langmuir isotherm equation (2.2) is the archetypal
favorable adsorption model. It has proven highly effective in describing
experimental data because it is thermodynamically consistent and tends
to form a straight line at low concentrations, a characteristic frequently
observed in various adsorption systems [72].

qi(c) = Hici

1 + ∑n
j=1 kjcj

(2.2)

As a special scenario, we also consider the non-competitive Langmuir
isotherm, it is calculated by the following formula:

qi(ci) = Hici

1 + kici
(2.3)
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In this instance, individual components within the liquid solution do not
influence each other’s adsorption onto the solid phase.

3) Bi-Langmuir isotherm (competitive): A second term can be added
to the Langmuir approach to generate the bi-Langmuir model for adsor-
bents with energetically heterogeneous adsorbents, which is often used to
describe the adsorption equilibrium of enantiomers on chiral adsorbents.

qi(c) = H1,ici

1 + ∑n
j=1 k1,jci

+ H2,ici

1 + ∑n
j=1 k2,jcj

(2.4)

A more accurate fit to experimental data can be obtained using alter-
native variations of the Langmuir isotherm, such as the Toth and Hill
isotherms. These modifications incorporate additional terms into the
original function, enabling a more effective representation of deviations
from ideality.[73].

2.2 Model equation

Physio-chemical complexity and the number of significant process prop-
erties determine the mathematical complexity of a chromatographic model.
There are many different types of modeling approaches, including many
analytical solutions comprehensively summarized in monographs by [70],
[75], [23], and [22], as well as in various review articles. The following
assumptions are applied in the remainder.

1. Thermodynamic equilibrium between the solid and liquid phases.

2. The adsorbent bed is homogeneous and packed with spherical par-
ticles of constant diameter.

3. The density and viscosity of fluids are constant.

4. The radial distribution is negligible.

5. It is an isothermal process.

6. Transport resistance inside the particles is neglected.
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7. The flow rate of the fluid phase is constant [73].

In consequence, one-dimensional material balances are used to describe
chromatographic columns [73]. Detailed descriptions of models can be
found in [22]. In this thesis, a single tubular packed-bed column of length
L and with a cross-sectional area Ac is described at first.

The assumptions underlying this single-column process model are as
follows. By injecting fluid into the column with a feed concentration
cfeed of target components that may vary with time t and a constant
volumetric flow rate v̇, the fluid will act as the mobile phase for the
separation process. In the column, the direction of fluid flow determines
the spatial coordinate z as shown in Figure 2.2. There is a concentration
c of target components in the fluid in the column.

Figure 2.2: Single column chromatographic process schematic for mathematical
description

In addition, no chemical reactions occur in the fluid phase. There is a
mass transfer from the fluid phase to the solid phase based on the ad-
sorption mechanism between the target components and the solid phase.
This mass transfer is assumed to be small when compared to the con-
vective transport in the fluid phase, so it is assumed that the interstitial
velocity v = V̇

εA is constant in the fluid phase.

Inter- and intraparticle volumes are determined by the total porosity ε

of the solid phase. There is no transport resistance inside the adsorbent.
Generally speaking, porous particles are rigid, uniformly sized, and uni-
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formly packed. Consequently, the total bed porosity ε is constant. Fur-
thermore, no chemical instability or degradation is assumed for the solid
phase. As a result, there are no chemical reactions in the solid phase. In
the final assumption, the process is assumed to be isothermal. Therefore,
it is possible to omit energy balances.

The local mass balance when ∂z and ∂t are arbitrarily small can be
expressed as follows. Under these assumptions, the model equation can
be obtained in differential form as [73]:

∂ci

∂t
+ (1 − ε)

ε

∂qi(ci)
∂t

+ V̇

εA

∂ci

∂z
= Dax

∂2ci

∂z2 (2.5)

The term V̇
εA is equivalent to the average linear velocity of the solvent in

the packed bed (interstitial velocity). Thus, this equation can be written
as follows [73]:

∂ci

∂t
+ (1 − ε)

ε

∂qi(ci)
∂t

+ v
∂ci

∂z
= Dax

∂2ci

∂z2 (2.6)

One of the most commonly used mathematical representations of a chro-
matographic column is this equation, often referred to as the equilibrium-
dispersive model. Its reliability in explaining concentration profiles in
finely packed beds stems from the simplification of solute diffusivity into
a one-dimensional process. A further reduction of Equation 2.6 to the
ideal model can be obtained by neglecting the dispersion in addition to
the previous assumptions:

∂ci

∂t
+ (1 − ε)

ε

∂qi(ci)
∂t

+ v
∂ci

∂z
= 0 (2.7)

In the general case (e.g., competitive Langmuir isotherm) when equi-
librium has been established, the time derivative of the loading can be
expressed by the slope of the isotherm and the time derivative of all
components in the liquid phase:

qi(c1, c2, ..., cn) (2.8)
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∂qi

∂t
=

∑
j

dqi

dcj
.
∂cj

∂t
j = 1, ..., n (2.9)

For the decoupled Langmuir isotherm, when equilibrium is reached, the
rate of change of loading of one component can be defined by the rate
of change of the relevant component in the liquid phase.

qi(ci) (2.10)

∂qi

∂t
= dqi

dci
.
∂ci

∂t
(2.11)

According to Equation 2.1, if qi and ci have a linear relationship, Equa-
tion 2.7 for the linear isotherm case can be simplified to [73]:

qi = Hi(ci) (2.12)

∂qi

∂t
= Hi

∂ci

∂t
(2.13)

∂ci

∂t
(1 + 1 − ε

ε
Hi) + v

∂ci

∂z
= 0 (2.14)

For the non-competitive Langmuir isotherm, the relationship between
the component’s loading and its concentration is described as follows:

qi = Hici

1 + kici
(2.15)

∂qi

∂t
= Hi

(1 + kici)2 .
∂ci

∂t
(2.16)

Initial and boundary conditions for the chromatographic column are nec-
essary to solve systems of partial differential and algebraic equations. A
set of initial conditions defines the values for concentration and loading
at time t = 0, which corresponds to the startup phase. It is typically
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assumed that the columns are not preloaded, meaning their initial values
are zero. [73]:

ci = ci(t = 0) = 0
qi = qi(t = 0) = 0

(2.17)

The integration of Equations 2.7 is normally carried out by using the fol-
lowing boundary conditions, in which cin,i(t) describes the concentration
profile at the inlet.

ci(z = 0, t) = cin,i(t)
∂ci(z=L,t)

∂z = 0
(2.18)

For all models that do not include dispersion, the boundary condition
is ci(z = 0, t) = cin,i(t). In the case of highly efficient columns, the
differences between the solutions for various boundary conditions are
generally negligible [22]. Different boundary conditions can be readily
assessed within numerical simulations [73].

2.3 Triangle theory based on true moving bed chro-
matography

In this section, we describe the conditions under which SMB units op-
erating parameters are designed under ideal conditions, i.e., disregard-
ing axial dispersion and mass transfer resistance, therefore assuming
infinitely efficient columns. Triangle theory was developed as an elegant
technique to simplify the choice of proper operating parameters like flow
rates of the ideal TMB [14]. Besides the fluid phase, the solid phase
is also moving at a steady state, allowing continuous separation in the
TMB system. In the binary separation case, two inlets - feed and ad-
sorbent - and two outlets - extract and raffinate - are used to provide
a complete separation of mixtures composed of two target components.
Due to this, the process can be divided into four sections, each called
a "zone". Further developing their work on SMBs, Storti et al. [79, 81]
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showed that SMBs and TMBs are equivalent under the above assump-
tions and if the net flow ratio between the solvent and the adsorbent
in each zone k (described by mk) is the same. This is according to the
following relation:

mk = V̇k,smbtsw − Vcε

Vc(1 − ε) = V̇k,T MB

V̇s

(2.19)

In this formula, tsw is the switching time and the solid phase flow rate
can be described as follows:

V̇s = Vc(1 − ε)
tsw

(2.20)

For the linear adsorption isotherm, as long as mk is greater than the ad-
sorption Henry coefficient of a solute, the net direction of its mass flow is
the same as that of the solvent flow, since the solute mass flow caused by
solvent convection is greater than the mass flow caused by adsorbed so-
lutes. In contrast, when the adsorption Henry coefficient is greater than
mk, the solute mass flow follows in the same direction as the adsorbent
flow. The solute concentration shock can be effectively squeezed between
two zones when mk is greater than the Henry coefficient of adsorption in
one zone and lower in the neighboring one [25]. There are a number of
ways in which these solvent-adsorbent flow ratios can be selected in all
zones. By choosing the right combination of solvent-adsorbent flow ra-
tios in every zone, it is possible to separate solutes with different Henry
coefficients by compressing their concentration fronts at the interfaces
between the zones and collecting them purely at the outlet [72].

Based on Equation 2.19, which defines a dimensionless flow rate mk, and
using the equilibrium model (Equation 2.14) and an adsorption Henry
coefficient Hi in zone k(vi,k), we can determine the velocity of a solute
i front or rear concentration shock when it exhibits a linear adsorption
isotherm [72].

vi,k = (Fmk + 1)L
(FHi + 1)tsw

(2.21)
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L is the column length, F is the phase ratio of the column (determined
by 1−ε

ε , and tsw is the switching interval of the SMB process.

Additionally, in a real SMB system, there are dead volumes between
the zones, as opposed to a TMB system. In SMB the pumps, frits,
connections, tubing, and valves between the columns cause dead volumes
[73]. It is still inevitable that dead volumes will exist even in an optimized
system, even if the dead volumes are reduced. In the case where the
dead volumes between the zones are constant and there is no severe
back-mixing within them (which is a reasonable assumption for capillary
tubes), then it is possible to use the method proposed by Katsuo et al
[35]. to account for the delay in the break-through curves that resulted
from the extra volume that had to percolate. Nowak et al. [62] modified
the original formula to incorporate the extra retention time resulting
from the dead volumes into the adsorption Henry coefficient.

In Equation 2.19, V̇k,smbtsw shows the volume of liquid phase passing
through the column in one cycle, Consequently, the flow ratios involved
in separation and regeneration inside the system are dependent on these
two. The flow ratios in zones II and III determine the separation per-
formance of the feed mixture, while those in zones I and IV determine
the regeneration performance. Around the flow ratios m2, m3, and m4,
m1, two parametric domains are defined. In the triangle theory, the
flow ratios are described without taking the dead volumes and the non-
linearities of the system into consideration, such as the sensitivity of
the column efficiencies on the zone flow rates and the column kinetics.
Thus, these regions serve only as a guide to orientation. In the literature,
dead-volume effects have been reported over separation regions [35]. In a
four-zone SMB unit with a linear adsorption isotherm, Figure 2.3 shows
the operating ranges of dimensionless flow rates. The vertical axis rep-
resents dimensionless mI and mIII , while the horizontal axis represents
dimensionless mII and mV I for systems operating with linear adsorption
isotherms.

Figure 2.3 depicts the parameter ranges for qualitative separation of
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Figure 2.3: Areas of separation obtained for linear isotherms.

extract and raffinate fractions using a four-zone SMB. The triangular
shape of the operating region, as shown in the diagram, is a result of
linear adsorption isotherms and was first presented by Storti et al. in
1993 as the "triangle theory" [81]. This diagram is used to predict dimen-
sionless flow rates for SMB measurement, and since its invention, SMB
units have been successfully operated using this methodology. It has
been expanded to other variants, adsorption isotherms, and operating
conditions, as cited in sources [22, 60, 37, 62, 63, 77, 34].

The triangular region labeled as "4" in blue shows all the possible combi-
nations of dimensionless flow rates mII and mIII that, when used with
the dimensionless flow rates mI and mIV in the yellow region (called the
regeneration region), can effectively separate the two different fractions.
The feed stream, which consists of solutes a and b, is continuously sepa-
rated into two streams: the extract stream, which contains solute b, and
the raffinate stream, which contains solute a.

The operation in the different regions in Figure 2.3 can be described
below:

1. Region 1: No pure outlets.
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2. Region 2: Pure raffinate only.

3. Region 3: Pure extract only.

4. Region 4: Total separation.

5. Region 5: Fresh Solvent in the raffinate.

6. Region 6: Fresh feed in the extract.

7. Region 7: Incomplete regeneration of both phases.

8. Region 8: Incomplete regeneration of the solid phase.

9. Region 9: Incomplete regeneration of the liquid phase.

10. Region 10: Total regeneration.

For every colored region, there exists an operating point that, when
located within or on the tip of it, results in complete separation and
regeneration. The optimal operating points, located at the edges of
the colored regions, offer the highest productivity, the lowest solvent
consumption, and therefore, the most favorable operational costs for the
SMB. These optimal operating points must satisfy certain conditions for
successful total separation and complete regeneration:

HB ≤ m1 < ∞ (2.22)

HA ≤ m2 ≤ m3 ≤ HB (2.23)
−ε

1 − ε
≤ m4 ≤ HA (2.24)

Outside the triangle, purity can be lower than that inside the triangle.
In the m2, m3 diagram, the diagonal line indicates the region with the
highest solvent consumption and lowest productivity, where the feed flow
rate is zero. It is not feasible to operate in the region below the diagonal
unless the plant configuration allows the reversal of flow in the zones of
the m2, m3 diagram.
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The minimum flow ratios, which can be negative, can be calculated using
Equation 2.19 when cyclic volumetric flow rates are zero.

As a means of ensuring a safe separation, it must meet the conditions
outlined in Equations 2.25 and 2.26. Solvents or feed injected into the
system may flood the extract if the following criteria are not met.

m2 ≤ HB (2.25)

m3 ≥ HA (2.26)

If regeneration conditions based on Equations 2.22 and 2.24 are not met,
then incomplete regeneration of the liquid and/or solid phase may take
place (regions 7, 8, 9). Thus, the concentration profiles could break
through from zone IV to zone I, resulting in a negative impact on the
whole separation process.

In the linear case, the triangle shape remains constant but in the Lang-
muir case, it varies according to the concentrations of the components
in the feed mixture. Figure 2.4 illustrates the separation regions for a
Langmuir isotherm separation process.

Below are the explicit boundaries of the triangle-shaped separation re-
gion in the (m2, m3) diagram illustrated in Figure 2.4. Below is the
formula for calculating the triangle’s tip [56]:

w = (ωBHA

HB
,
ωB[HB(HA − ωB) + (HA − HB)]

HA(HB − ωA) ) (2.27)

In the above quadratic equation, ωA and ωB are the roots:

(1 + kACA + kBCB)ω2 − [HA(1 + kBCB) + HB(1 + kACA)]ω + HAHB = 0
(2.28)

Although the above equations are derived through a complex mathemat-
ical procedure, the final result is simply a set of algebraic expressions that
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Figure 2.4: Areas of separation obtained for non-linear isotherms.

can be easily applied. Furthermore, the topological structure of the sep-
aration regions in the (m2, m3) plane illustrated in Figure 2.4 is close to
that achieved in the linear case [56].

Moreover, the complete separation region is surrounded by three different
separation regions in the nonlinear case as well. The region of pure
raffinate can be found in the lower-left corner of the (m2, m3) diagram,
as shown in Figure 2.4 which is followed by the regions of no pure outlet
and pure extract that can be found proceeding clockwise from the lower
left corner of the (m2, m3) diagram. There are, however, some significant
differences between the two models; for example, the boundaries of the
complete separation region in the Langmuir model depend on the feed
composition and the constraints on the flow-rate ratios as opposed to
the linear isotherm [55].

Often, sub-optimal operating points are determined using the safety mar-
gin method, directly affecting the separation productivity and solvent
consumption. The following expressions give the dimensionless flow rate
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ratios between zones 1 and 4 before the safety margin [56]:

m1 = HB (2.29)

m4 = 1
2(m3+HA+kACA(m3−m2))−((m3+HA+kACA(m3−m2))2−4m3HA) 1

2

(2.30)

The Langmuir isotherm approaches the linear isotherm when the feed
concentration tends to zero, and the flow-rate calculation is the same
as the linear case. In both situations, triangle theory can be a valuable
guide. It is possible to determine optimal operating points for the plant
based on information about the dead volume and the plant itself to
increase the probability of an initial satisfactory separation. As soon
as the operating points have been determined, the switching time is
calculated in such a way that the feed and maximum productivity of
the plant is reached while the effects of dead volumes are minimized as
much as possible. The internal and external flow rates can be obtained
by knowing the column switching time.

2.4 Cell model

The basic idea behind the cell model is to divide the chromatographic
system into discrete elements or cells, each representing a small volume or
section of the chromatographic column. These cells are used to simulate
the movement of solutes as they interact with the stationary phase and
the mobile phase.

Cell models are often used in conjunction with numerical methods and
computer simulations to predict chromatographic performance under dif-
ferent conditions, such as varying mobile phase composition, flow rates,
and column geometries. By adjusting model parameters and inputs,
one can optimize separation conditions to achieve desired separation ef-
ficiency and resolution.

This method involves conceptualizing the column as a series of inter-
connected equilibrium continuous-stirred tanks (CSTs), in which solvent
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and adsorbent are in equilibrium [22] giving rise to the equilibrium stage
or plate models. Rather than devising dynamic microscopic balances,
the column is depicted as a sequence of a finite number n of identical
cells. Each cell contains a mixture of liquid and solid phases, with both
phases thoroughly mixed, and a continuous stream of mobile phase flows
steadily through a series of N ideally stirred tanks (CSTs). Each tank
has a total volume of Vc

n . Within each tank, a fraction (1 − ε) is filled
with the solid phase, while the concentration within the liquid remains
consistent between the solid phase and the pore phase [73].

Figure 2.5: Cascade of continuous stirred tanks (CSTs) in which adsorbent and
solvent are in equilibrium.

The cell model represents a first order finite volume discretization of the
Partial Differential Equations (PDEs) model (2.7) with negligible axial
dispersion. It can be directly obtained by balancing finite cells and is
used as the reference model in this work.

By neglecting the diffusion term and spatial discretizing in the z direc-
tion, the mass balance of solute i in the jth cell of the zone k and the
general Langmuir adsorption isotherm can be described by:

∂ci,j

∂t
+ F

∂qi(ci,j)
∂t

+ vk(ci,j − ci,j−1) = 0 (2.31)

Where (1−ε)
ε is replaced by F and vk = V̇kn

Vc
. vk has the dimension of 1

s

which is different from the interstitial velocity used in partial differential
equation. When considering linear isotherms, the formulation can be
expressed as follows:



35

∂ci,j

∂t
+ FHi

∂ci,j

∂t
+ vk(ci,j − ci,j−1) = 0 (2.32)

where Hi corresponds to the adsorption Henry coefficient of the solute
i. Rearranging the Equation 2.32 results in:

dci,j

dt
= vk

(1 + FHi)
(ci,j−1 − ci,j); j = 1....n (2.33)

For the nonlinear, noncompetitive Langmuir adsorption isotherm, where
the adsorption of one component does not influence the adsorption of
others, the formula can be modified to:

dci,j

dt
= vk

(1 + F Hi

(1+bici)2 )
(ci,j−1 − ci,j); j = 1....n (2.34)

Taking the feed port as the starting point and continuing in the direction
of the solvent flow, the subscript j indicates the position of the considered
cell. In the zone k, the volumetric solvent flow rate is given in l.min−1

by vk, ci,j is the concentration of the solute i in any particular cell, in
mg.l−1, and, the chromatographic column volume is shown by Vc. n is
the total number of cells in each zone.

SMB internal concentration profiles can be calculated by integrating
Equations (2.31) for each of the n cells and changing the boundary con-
dition of the columns periodically after each cycle [63]. This was accom-
plished using MATLAB in this dissertation. The differential equations
of the cells where solvent flows into the system (often called nodes) must
be adjusted to take into account either the dilution or concentration
caused by the injection of solvent or the feed stream to properly model
the SMB process.

This system reaches a cyclic steady state after a certain number of cycles
[41]. The repetition pattern of the concentration profiles in the outlet
ports during each cycle determines the cyclic steady state of the system
[71, 80].
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2.5 Cell model for 8-zone SMB with raffinate and ex-
tract recycle

Figure 2.6 illustrates an 8-zone SMB with raffinate recycle. In the first
sub-unite, the ternary mixture separates into two fractions, one extract
which contains solute C, and the raffinate which contains solutes A and
B. The raffinate fraction would be recycled to the second sub-unit to be
separated into two different fractions of A in the second raffinate and B

in the second extract.

Figure 2.6: 8-zone SMB with raffinate recycle

Every column is divided into cells in the SMB simulation, with n repre-
senting the number of cells per zone or column, which can range from
hundreds to thousands. The result is large and sparse equation systems.
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In this work, they are solved using ODE solvers in MATLAB. Equation
2.31 can be implemented to any cell in the 8-zone SMB which does not
have any neighboring cells that need extra equations and different mass
balances nor inlet and outlet ports.

In each cell, the adsorbent and solvent are in equilibrium, and the solutes
are partially adsorbed onto the adsorbent surface and partially dissolved
in the solvent. The mass balance of one solute in the jth cell and j =
1, ..., n which is located in the kth zone or column, can be expressed as
the following [7]:

At the feed inlet port:

dci,2n+1

dt
= vIII,1

(1 + F ∂qi

∂ci
)
( 1
vIII,1

(vII,1ci,2n + vF ci,F ) − ci,2n+1) (2.35)

These equations are only valid for decoupled isotherms like linear and
non-competitive Langmuir. For competitive Langmuir ∂q

∂c is a matrix
and division has to be replaced by multiplication with the inverse.

In the first zone or column, the cell numbers are from 1 to n. In the
second zone, they are from n+1 to 2n. In the third zone, they are from
2n+1 to 3n. This continues until the eighth zone, in which the cell
numbers are from 7n+1 to 8n.

At the second solvent inlet port:

dci,4n+1

dt
= vI,2

(1 + F ∂qi

∂ci
)
(vIV,1

vI,2
ci,4n − ci,4n+1) (2.36)

At the raffinate recycle port:

dci,6n+1

dt
= vIII,2

(1 + F ∂qi

∂ci
)
( 1
vIII,2

(vII,2ci,6n + vrecci,3n) − ci,6n+1) (2.37)

At first, the solvent inlet port:

dci,1

dt
= vI,1

(1 + F ∂qi

∂ci
)
(vIV,2

vI,1
ci,8n − ci,1) (2.38)

Mathematically, setting up an SMB model involves connecting the bound-
ary conditions of each column model, incorporating nodes that represent
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material balances of cell models. Inlet concentrations cin represent the
initial boundary conditions of the columns at the start of each section,
while outlet concentrations cout are the concentrations calculated at the
end of each section. Intermediate node balances involve equating volume
flows and assigning the outlet concentration to the inlet concentration
of the subsequent column. Since SMB is a cyclic process, boundary con-
ditions for individual columns are altered after a switching period tsw

[73].

Due to the strong resemblance between simulated and true countercur-
rent flows, TMB models are commonly used for designing SMB processes,
particularly for determining optimal operating parameters such as inlet
and outlet flow rates and shifting times. Operating conditions are de-
termined in terms of m-values which are obtained from Equation (2.19),
and are linked to the fluid flow rate and switching time.

When specifying the operating parameters, it is crucial to define inde-
pendent variables. A typical approach involves specifying internal flow
rates and the switching time (for SMB models) or solid flow (for TMB
models). It’s important to note that external flow rates must satisfy the
overall mass balance.

SMB with 8 zones can be configured to perform ternary separation under
extract recycle. Figure 2.7 demonstrates an 8-zone SMB with extract
recycle. Most of the equations for the mass balances are the same as the
raffinate-recycle configuration, except for the recycle part and the nodes
at which it leaves and enters the system.

At the feed inlet port:

dci,2n+1

dt
= vIII,1

(1 + F ∂qi

∂ci
)
( 1
vIII,1

(vII,1ci,2n + vF ci,F ) − ci,2n+1) (2.39)

At the second solvent inlet port:

dci,4n+1

dt
= vI,2

(1 + F ∂qi

∂ci
)
(vIV,1

vI,2
ci,4n − ci,4n+1) (2.40)



At the extract recycle port:

dci,6n+1

dt
= vIII,2

(1 + F ∂qi

∂ci
)
( 1
vIII,2

(vII,2ci,6n + vrecci,n) − ci,6n+1) (2.41)

At first solvent inlet port:

dci,1

dt
= vI,1

(1 + F ∂qi

∂ci
)
(vIV,2

vI,1
ci,8n − ci,1) (2.42)

Figure 2.7: 8-zone SMB with extract recycle





CHAPTER 3

Analytical solution for linear
adsorption isotherms

3.1 Adsorption isotherm

This chapter is based on the publication [66] published in Computer
Aided Chemical Engineering, where the objective was to develop a rapid
and precise solution for linear isotherm adsorption for SMB systems. An
adsorption isotherm is a mathematical model that describes the relation-
ship between the concentration of a solute in the mobile phase and the
amount of solute adsorbed onto the stationary phase in a chromatogra-
phy system.

Graphing the solid load qi against the concentration of the solute in the
fluid phase ci under constant temperature showcases the progression of
the adsorption isotherm.

The concentration of the solute in the mobile phase and the amount of
solute adsorbed onto the stationary phase, c, and q, are directly propor-
tional in the initial range of the adsorption isotherm. The adsorption
coefficient H (Henry constant) is a measure of the interaction strength
between the solute and the stationary phase. As the solute’s concentra-
tion in the mobile phase increases so does the amount of solute adsorbed
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Figure 3.1: Linear and nonlinear isotherm for one component [73]

until the adsorption sites on the stationary phase are saturated. The
linear adsorption isotherm assumes that the value of H is constant over
the entire range of solute concentrations.

The linear adsorption isotherm can be represented mathematically by
Equation 2.1 in chapter 2, where q is the amount of solute adsorbed per
unit mass of the stationary phase, c is the concentration of the solute in
the mobile phase at equilibrium, and H is the adsorption coefficient or
the equilibrium constant [73]. The linear adsorption isotherm provides a
useful starting point for understanding and optimizing chromatography
systems, and it is often used as a basis for more complex adsorption
models. Here it is assumed that the adsorption is decoupled and far
from the saturation capacity.

3.2 Method of characteristics

A powerful approach to obtaining analytical solutions for first-order par-
tial differential equations is the method of characteristics. Due to the
original model’s second order in space, one is only able to apply this
method when diffusion is ignored. The following partial differential equa-
tion is used as a starting point for single-component chromatography.

dci

dt
+ 1 − ε

ε

dqi

dt
+ v

dci

dz
= 0 (3.1)

Based on the following assumptions:
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
qi = qi(ci(t, z))
ci,in(t) = ci(t, 0)
ci(0, z) = ci,0(z)

(3.2)

The initial concentration at t = 0 is ci,0, and ci,in is the boundary condi-
tion. With a slight adjustment to the terms of Equation 3.1, a solute’s
convectional velocity vi, as a function of the solvent interstitial velocity
v, the column’s porosity ε and the adsorption coefficient Hi in the z

direction is introduced according to Rhee et al. [69]:

vi = dz

dt
= ∂z

∂ci

∂ci

∂t
= v

(1 + 1−ε
ε Hi)

(3.3)

As proposed by Rhee et al. [69], the method of characteristics can be
applied to solve the equilibrium model. According to the solvent veloc-
ity, the adsorption isotherms, and the concentration of the solutes, it
is possible to calculate the migration velocity and shape of the solute
concentration shocks analytically. The front migration velocity of the
process is independent of the concentration if the adsorption isotherms
are in the linear domain. It can be expressed by Equation 3.1 as a func-
tion of the adsorption Henry coefficient. It is also possible to integrate
the right-hand side of the second differential Equation 3.3.

c(t) = cin, z − z0 = v

(1 + 1−ε
ε Hi)

(t − t0) (3.4)

This is accomplished by selecting values for the integration constants c0,
z0, and t0 so that these constants satisfy either the initial condition or
the boundary condition.

3.3 Implementation of analytical solution

For simulating the SMB processes, the analytical solution which is ob-
tained from Equation 3.4 is implemented in discrete form, i.e., the initial
profile of each component in each column is discretized and put into a
matrix form according to:
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concentration value 1 concentration value 2 . . . concentration value n

position value 1 position value 2 . . . position value n


(3.5)

In the multicomponent case, the corresponding concentration profiles are
put together in a multi-dimensional tensor form, and the positions for
each component are calculated using its specific propagation velocity.

In the remainder, 100 spatial grid points are used for this purpose. Fur-
ther, time is also discretized. In particular, 100 time steps per switching
interval are used in this study. For the calculation of the concentration
profiles in the next time step, first, new positions are calculated for the
concentration values in Equation 3.5 using Equation 3.4 according to:

new position = old position + vi.dt (3.6)

Afterward, the concentration vector is rearranged. Concentration values
with positions beyond the actual column length are removed, and the
other values are shifted to the right. Then, node balances at the entrance
of the columns are evaluated, and resulting values are propagated into
the column to fill the gaps in the concentration vector from the left. For
this purpose, it is important to calculate at which exact intermediate
time point the concentration values have left the previous column, which
is again simply done by application of Equation 3.4 according to:

intermediate time point = old time point+(column length−old position)/vi

(3.7)

Corresponding node balances are evaluated at this time point, and the
propagation into the subsequent column for the remaining time of this
interval is determined. In this way, the solution is exact. Discretization
is done only for the graphical representation of the solution. Accuracy
is not affected.
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3.4 One column simulation

Initially, the analytical method was applied to a single column with a
single solute in order to investigate its feasibility. Simulating a single
column does not require connections and node balances; therefore it is
less complex than a multi-column system simulation. For a batch sys-
tem with a single column, the simulation is rather straightforward, but
for a continuous system also a recycling of the fluid phase needs to be
considered. Even though the configuration does not make sense in real-
ity, it was a useful starting point for implementing an easy node balance
and an analytical solution. Adsorption-desorption does not change as
concentration increases, since the isotherm is linear. The solvent is se-
lectively removed at the outlet to keep the interstitial velocity constant.
This configuration provides information on how the profile behaves with
non-zero initial concentrations. Afterward, the configuration is extended
to two columns with a recycle from the end of the second column to the
beginning of the first column. An outlet is also considered at the end of
the second column to balance flow rates.

Figure 3.2: Schematic illustration of (a) one-column and (b) two-column chro-
matography with recycle configuration
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The first configuration which contains one column and a recycle at the
end of the column has a feed concentration of 3 [g/l], the internal flow
rate has been considered 0.4 [ml/s] due to the pressure drop limitations.
The model parameter, the constants for the adsorption, and the flow
rates are given in Table 3.1.

Table 3.1: Model parameters and column properties
Parameters Value
Number of the column 1
Column dimensions 10[mm]
Column porosity 0.75
Henry constant 2
Feed flow rate 0.1[ml/s]
Recycle flow rate 0.3[ml/s]
Internal flow rate 0.4[ml/s]
Feed concentration 3[gr/l]

The node balance at the entry of the column is as follows:

cin = ((cf ∗ Qf ) + (cr ∗ Qr)
Q

(3.8)

Where cf is the feed concentration, Qf is the feed flow rate, Qr and cr

are the respective recycle flow rate and the recycle concentration.

The solution for the one-column chromatography with a recycle connec-
tion using ode15s solver and cell model is presented in Figure 3.3 (b) and
(c) as the reference solution and the analytical model solution is given
in Figure 3.3 (a). As it is shown in the Analytical model the solution is
highly precise and causes no dispersion. Regarding the simulation time
and CPU time, the analytical model is a bit faster but the difference is
not considerable. The absolute CPU time depends on the actual hard-
ware which is used. However, the main focus here is on the relative
CPU time of different solution approaches, mainly independent of the
hardware.
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It should be pointed out that in the cell model to get to the high efficiency
in the simulation and decrease the dispersion, the number of grid points
needs to be increased noticeably to be able to have a solution close to
the Analytical model like 3.3 (c). This means that the computational
time will increase as well. In the case of having 10000 grid points, which
is still not so close to the analytical solution the computational time is
about one hour.

Figure 3.3: Internal concentration profile of one component inside one column
solved by (a) Analytical solution (b) Cell model with 100 grid points,
(c) Cell model with 10000 grid points

In Figure 3.4, computational time are given for varying numbers of grid
points used in the cell model. The figure also includes a comparison of
computational time with the analytical model.
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Figure 3.4: Comparison of the computational time in case of the cell model for
one column

The bar chart illustrates the considerable difference in calculation time
between the analytical and numerical models. Despite the fact that the
numerical model with 10,000 grid points is still not as precise as the
analytical model, the high calculation time indicates that the analytical
solution is much more computationally efficient, especially for highly
efficient columns with steep concentration fronts.

The same approach is applied to the two-column configuration, and its
schematic is presented in Figure 3.2. The second configuration contains
two columns connected in series and there is a recycle of the outlet of
the second column to the inlet of the first column. Similar to the last
configuration the inlet flow rate of the first column is 0.4 ml/s and 0.6
ml/s for the second column. The feed concentration and the model
parameters are given in Table 3.2.
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Table 3.2: Model parameters and column properties
Parameters Value
Number of columns 2
Column dimensions 10 [mm]
Column porosity 0.75
Henry constant 2
Feed flow rate 0.1 [ml/s]
Recycle flow rate 0.3 [ml/s]
Solvent flow rate 0.2 [ml/s]
flow rate 1 0.4 [ml/s]
flow rate 2 0.6 [ml/s]
feed concentration[gr/l] 3 [gr/l]

Where flow rate 1 is the internal flow rate of the first column and flow
rate 2 is the internal flow rate of the second column. Assuming that two
columns are connected in series and the solvent is injected in between
two columns and the feed to the first column which is mixed with the
recycle coming from the outlet of the second column, then the inlet
concentration for both columns can be obtained from the following mass
balances:

cin,1 = (cf ∗ Qf ) + (cout,2 ∗ Qr)
Q1

(3.9)

cin,2 = Q1 ∗ cout,1

Q2
(3.10)

Where cin,1 is the inlet concentration of the first and cin,2 is the inlet
concentration of the second column. The first internal flow rate is the
summation of the feed flow rate and the recycle and the second internal
flow rate is the solvent flow rate plus the outlet of the first column.

Figure 3.5(a) shows the results with 100 grid points per column using
the cell model. A 10,000 grid point model has been presented in Figure
3.5(b) in order to increase the efficiency of the columns. As the number
of grid points increases to infinity, the solution becomes more similar to
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the analytical solution, despite a significant increase in Central Process-
ing Unit (CPU) time. Figure 3.5(c) illustrates the second method, the
analytical model solution.

Figure 3.5: Internal concentration profile of one component inside two-column
configuration solved by (a) Analytical model (b) Cell model with
100 grid points, (c) Cell model with 10000 grid points

The difference in computation time is not noticeable again with the 100
grid points, although the number of grid points needs to be increased to
10,000 in order to decrease dispersion, resulting in a very long computa-
tion time.
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Figure 3.6: Comparison of the computational time in case of the cell model for
two columns in series

3.5 4-zone SMB simulation

For binary mixture separation, both methods, a cell model and analytical
solution are shown using a four-zone SMB. A schematic for a 4-zone
SMB is shown in Figure 3.7. The feed enters the first column and the
components that are less retained move faster with the fluid flow. These
components can be collected at the raffinate port located at the end of
the first column. It is necessary to switch the ports at the beginning of
the fourth column in order to collect the most retained component, which
moves slowly through the column and is captured at the very beginning
of the fourth column at the extract outlet. In between column II and
column III, the solvent enters the system.
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Figure 3.7: Schematic illustration of 4 zone simulated moving bed chromatogh-
raphy

When no solvent or feed is entering between columns, the concentration
at the inlet is the same as that at the outlet of the previous column.

The mass balances at the inlet and outlet nodes are as follows:

Feed node:

Q1 = Qf + Q4 (3.11)

Q1ci,1 = Qfcf,i + Q4ci,4n (3.12)

Raffinate node:

Q2 = Q1 − QR (3.13)

ci,n+1 = ci,n = cR (3.14)
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Solvent node:

Q3 = Qs + Q2 (3.15)

Q3ci,2n+1 = Qscs + Q2ci,2n (3.16)

Extract node:

Q4 = Q3 − QE (3.17)

ci,3n+1 = ci,3n = cE (3.18)

In the cell model columns are discretized into 100 or 1,000 cells in the
cell model. The Equation 2.33 is applied to each cell, and the result-
ing Ordinary Differential Equations (ODEs) equations are solved by the
ode45 solver in MATLAB. Table 3.3 presents the operating conditions
applied to both methods.

Table 3.3: Model parameters and column properties
Parameter Value

Number of the column 4
Column dimensions 100 [mm]
Column porosity 0.75
Henry constant A 5
Henry constant B 7.5
Switching time 100 [s]
Porosity 0.75 [s]
feed concentration A 2 [gr/l]
feed concentration B 3 [gr/l]

There is a dimensionless value used to specify the ratio of the fluid flow
rate to the solid flow rate. This value is indicated by the variable Mk

and is defined using equation 2.19. The triangle theory is used to pre-
dict dimensionless flow rate ranges. The dimensionless flow rates used
in this work are presented in Table 3.4. In the linear isotherm case,
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these m-values are related to the Henry coefficients of the two compo-
nents. Some safety margins were introduced to prevent breakthrough
and regeneration in zones II and III [33].

Table 3.4: Dimensionless flow rates (m-values)

mI mII mIII mIV

7.5 4.5 7.7 5.0

Figure 3.8 (a) shows the profile of the concentrations with the cell model
application and 100 grid points for each column at the end of each cy-
cle. To make the column more efficient, the number of grid points was
increased to 1000 in the cell model, as shown in Figure 3.8 (b). Even
though the CPU time increases extremely when the number of grid points
increases, the solution becomes more similar to the analytical solution
after increasing the number of grid points. The second method, the
analytical model solution, is shown in Figure 3.8 (c).

In this method, the solution would be a multi-dimensional matrix with
two sheets (each contains one of the component’s information), and two
rows, the first one contains the concentration values, and the second one
for the position values related to the concentration value.

Dispersion is assumed to be zero and the fronts are quite steep. There is
no red component in the fourth column, and the Extract is completely
pure.

Figure 3.9 shows the CPU time for the cell model with different numbers
of grid points and the Analytical solution as well.
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Figure 3.8: Internal concentration profile of binary mixture at the end of the
cycle inside 4-zone SMB. The feed enters the system at point 0,
the raffinate is removed at point 100 or 1000, and the extract is
removed at point 300 or 3000. The solvent enters at point 200 or
2000. (a) Cell model with 100 grid points. (b) Cell model with 1000
grid points (c) Analytical model

The difference in the computational time in Figure 3.9 is great enough
to conclude how the analytical solution can accelerate the computation.
In comparison to the cell model with 100 grid points, it is about 8 times
faster, and with 1000 grid points it is about 500 times faster. As the
number of cells increases the plateau concentration value inside the col-
umn progressively increases and comes closer to the feed concentration.
In the case of having a super efficient column which means having an
infinite number of cells, the concentration value will become equal to the
feed value as it is shown in Figure 3.8 (c).

Over each cycle, every outlet stream can be collected separately at each
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Figure 3.9: Comparison of the computational time in case of cell model and
analytical model for 4-zone SMB

outlet port. The outlet stream of each port is shown in Figure 3.10
and Figure 3.11 during 20 times of switching or about four cycles, sub-
sequently the concentration profile at the last switching is saved in the
system and the feed concentration is increased and the process is running
for another 20 switching time. The feed concentrations are increased by
0.5[gr/l] each. The same operating conditions are applied to test the
algorithm for a transient condition where the initial concentration inside
the column is not zero. This test showed that the transient condition
can also be calculated. There are some differences in the outlets that are
explained later. The following figures exhibit the outlet concentration
at different ports and different methods.
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Figure 3.10: Outlet concentrations from analytical solution (a1) First compo-
nent in extract port and first run. (a2) First component in extract
port and second run. (b1) Second component in extract port and
first run. (b2) Second component in extract port and second run.
(c1) First component in raffinate port and first run. (c2) First
component in raffinate port and second run. (d1) Second com-
ponent in raffinate port and first run. (d1) Second component in
raffinate port and second run.

Each blue or red line in the graphs represents the outlet concentration
of each component during a single switching period. Once switching
occurs, the outlet is drawn and then removed from memory to have
faster calculations. The new line, which begins immediately after the
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previous one, is then drawn from the next time point. This process
causes the lines to be discontinuous, but they precisely start and end at
the beginning and end of each switching interval.
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Figure 3.11: Outlet concentrations from cell model solution with 1000 cells (a1)
First component in extract port and first run. (a2) First compo-
nent in the extract port and second run. (b1) The second com-
ponent is in the extract port and the first run. (b2) The Second
component in the extract port and the second run. (c1) First com-
ponent in the raffinate port and the first run. (c2) First component
in the raffinate port and second run. (d1) The second component
is in the raffinate port and the first run. (d1) The second compo-
nent is in the raffinate port and the second run.
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The outlet concentration of the first component in the extract port differs
in the cell and analytical models. The difference is due to the dispersion
in the numerical model. The red component is visible at the end of the
fourth zone which means that at the beginning of the cycle, it passes
from the extract point and therefore, it is seen in the extract outlet. As
there is no dispersion in the analytical model there is no red component
at the extract port in the analytical model.

In the raffinate outlet in the cell model and second run, although the red
component is expected to start from the previous value, it starts again
from zero value like the first run, the reason is the steep front and ends
in the analytical model. therefore, at the start of the cycle, its value is
zero.

The blue component in the raffinate port and first run in the analytical
model is bigger than in the cell model. The reason is the steep front
in the analytical model and when the blue component is passing the
raffinate port it has a bigger concentration.

3.6 8-zone SMB with raffinate recycle simulation

It was proposed to introduce 8 zones SMB to overcome the limitations of
4 zones SMB, such as the separation of mixtures containing more than
two components [60], which is especially important when the most or
least retained component is not of interest, but the middle component
is of major interest. As inspired by some work done before [2, 62], the
configuration used in this work has eight columns connected by capillar-
ies in series with an inlet or outlet in between. there are several different
configurations for 8-zone SMB. 8-zone center-cut SMB can have raffinate
or extract recycle [77]. In this work, we have used a center-cut config-
uration with raffinate recycle for a 3 component mixture. As shown in
Figure 3.12 there are four inlets and four outlets. There is an inlet and
outlet connected to the system that serves as a recycle. Due to the recy-
cling inside the system, there is a feed entering the second sub-system.
The system can be divided into two subsystems. The upper part is the
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first subsystem, and the other one is the second subsystem. The ternary
mixture is entered into the middle of the first subsystem. The most
retained component can be separated and exit from the extract outlet.
The other two components which are less retained are recycled in the
middle of the second sub-unit as feed. In the second sub-unit the other
two components can be separated and exit from the extract two and
raffinate two outlets.

Figure 3.12: Schematic illustration of 8-zone simulated moving bed chromatog-
raphy

The concentrations at the last node of each column are equal to those
at the first node of the next column. In this case, dead volumes are not
taken into account. Considering the outlets and inlets, the differential
equations should be modified to take into account the increase in con-
centration caused by the injection of feed and the dilution caused by the
injection of fresh solvent, in the case of the outlets and inlets.
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dci,1

dt
=

nV̇I(I))

Vc(1 + (1−ϵ)
ϵ Hi)

(
V̇IV (II)

V̇I(I)
ci,8n − ci,1) (3.19)

dci,2n+1

dt
=

nV̇II(I))

Vc(1 + 1−ϵ
ϵ Hi)

( 1
V̇III(I)

(V̇II(I)ci,2n + V̇f1ci,2n+1) − ci,2n+1)

(3.20)

dci,4n+1

dt
=

nV̇I(II))

Vc(1 + (1−ϵ)
ϵ Hi)

(
V̇IV (I)

V̇I(II)
ci,4n − ci,4n+1) (3.21)

dci,6n+1

dt
=

nV̇III(I))

Vc(1 + 1−ϵ
ϵ Hi)

( 1
V̇III(II)

(V̇II(II)ci,6n + V̇Rci,3n)−ci,6n+1) (3.22)

The model parameters and column characteristics are presented in Ta-
ble 3.5.

Table 3.5: Model parameters and column properties
Model parameters Values
Number of the columns 8
Column dimensions 100[mm]
Column porosity 0.75
feed concentration A 2[gr/l]
feed concentration B 3[gr/l]
feed concentration C 4[gr/l]

The operating conditions were determined based on calculations follow-
ing the approach outlined by Kessler et al. [37]. Operating conditions
are presented in Table 3.6 and Table 3.7:
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Table 3.6: Arbitrary adsorption Henry coefficient of the components of the
ternary mixture

component Henry constant(Hi)

A 1.1
B 1.7
C 2.5

Table 3.7: Dimensionless flow rates

M-value value

mI(1) 2.55
mII(1) 1.57
mIII(1) 2.19
mIV (1) 0.86
mI(2) 1.82
mII(2) 1.22
mIII(3) 2.55
mIV (4) 1.01

A concentration profile inside an 8-zone SMB is shown in Figure 3.13.
Figure 3.13 (a) shows a cell model with 100 grid points, Figure 3.13 (b)
shows a cell model with 1000 grid points, and Figure 3.13 (c) shows
the analytical model’s result. It can be seen from the picture that the
solution of the analytical model produces a concentration profile that ap-
pears to be more precise without any dispersion. Increasing the number
of grid points to 1000 in the numerical solution resulted in the profiles
becoming sharper and the level of dispersion decreased as the number of
grid points increased.
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Figure 3.13: Internal concentration profile of ternary mixture inside a 8-zone
SMB (a) Cell model with 100 grid points. (b) Cell model with
1000 grid points (c) Analytical model

Despite the fact that the columns would become efficient by increasing
the number of grid points, the computational time is still too high to
be reasonable. The time that is needed to compute the actual output
for different methods with different numbers of grid points is shown in
Figure 3.14.
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Figure 3.14: Comparison of the computational time in case of numerical dis-
cretization method and analytical solution for 8 zone SMB and
ternary separation

As shown in Figure 3.14, applying 1000 grid points to the cell model
increases computational time significantly. Despite the fact that it takes
more than 3 days, the results are closer to the analytical solution, but
the dispersion phenomenon is drastically reduced. There is a relationship
between the number of grid points and the efficiency of the column when
it comes to internal concentration values. Dispersion is responsible for
this effect. Due to this fact, the outlet concentrations at different ports
can differ if more grid points are applied. It was shown in both the 4-
zone SMB and the 8-zone SMB that when grid points are around 1000,
the outlet concentration of the cell model and analytical model becomes
more similar. From Figure 3.14 it is obvious that applying such a huge
number of grid points makes the model slow and time-consuming, thus
in this case the outlet concentrations are calculated and presented using
100 grid points.
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Figure 3.15: Outlet concentration profiles using an analytical solution. (a1)
Extract1 first run, (a2) Extract1 second run with 0.5 gr/l increase
in the feed concentration, (b1) Extract2 first run, (b2) Extract2
second run with 0.5 gr/l increase in the feed concentration, (c1)
Raffinate2 first run, (c2) Raffinate2 second run with 0.5 gr/l in-
crease in the feed concentration

After the first run, the feed concentration is increased and the model
continues to run with the new feed concentration and columns which are
not empty. At the first run, the concentration of red, blue, and green
components are respectively 2, 3, and 4 gr/l and the initial condition is
zero. In the second run the initial condition is the concentration profile
in the last cycle of the first run and then all the feed component con-
centrations are increased by 0.5 gr/l and the test is running for another
50 cycles until it reaches a steady state condition. This test was done to
assure the model’s accuracy with non-zero initial conditions. The test
was applied to both methods, the analytical and cell model. The re-
sults almost agree and the slight difference is because of the not efficient
column assumption in the cell model.
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Figure 3.16: Outlet concentration profiles using cell model. (a1) Extract1 first
run, (a2) Extract1 second run with 0.5 gr/l increase in the feed
concentration, (b1) Extract2 first run, (b2) Extract2 second run
with 0.5 gr/l increase in the feed concentration, (c1) Raffinate2
first run, (c2) Raffinate2 second run with 0.5 gr/l increase in the
feed concentration

Finally, the analytical solution has been applied to the 8-zone SMB with
a 5-component mixture and raffinate recycle. At the second extract
port, the target component is selected; the other four components are
separated at the other outlets. Each pair with the closest retention
time will exit the system at the same point. Figure 3.17 shows the
concentration profile inside the 8-zone SMB.
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Figure 3.17: Internal concentration profile of 5 component mixture inside 8-zone
SMB (a) Cell model with 100 grid points. (b) Cell model with 1000
grid points (c) Analytical model

The first two plots on the top show the concentration profiles calculated
by the cell model. Sharper profiles and less dispersion are considerable
in Figure 3.17 (b) compared to Figure 3.17 (a) and it is the outcome of
a high number of grid points. Profiles are even sharper and more precise
in Figure 3.17 (c) with applying just 100 spatial grid points which is
the advantage of this solution. The products of the second raffinate
and first extract port are mixtures of two components. The yellow and
green components are separated in the first extract, while the target
component is recycled from the first raffinate to the second sub-unit,
along with the red and black components. In the second sub-unit, the
blue target component leaves the system at the second extract port, and
the other two are selected at the second raffinate port.
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The model parameters and column characteristics are presented in Table
3.8.

Table 3.8: Model parameters and column properties
Parameter 8-zoe SMB

Number of the column 8
Column dimensions[mm] 7.854[mm]
Column porosity 0.6
Henry constant A 1
Henry constant B 1.05
Henry constant C 1.575
Henry constant D 2.362
Henry constant E 2.481
cycle number 50
feed concentration A 1.5 [gr/l]
feed concentration B 2.5 [gr/l]
feed concentration C 3.5 [gr/l]
feed concentration D 4.5 [gr/l]
feed concentration E 5.5 [gr/l]

The operating conditions regarding the fluid flow rate and the switching
time are given in Table 3.9 for this process.

The computational time for both methods with different numbers of grid
points is presented in Figure 3.18. In the cell model, despite the fact that
the column performance is more efficient by increasing the grid points,
the computational time is noticeably increased. It is 1781.69 seconds,
which is nearly one hour, and in comparison to the analytical model,
which calculated the solution in 1.80 seconds, is quite slow.
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Table 3.9: Dimensionless flow rates

M-value value

mI(1) 2.55
mII(1) 1.57
mIII(1) 2.19
mIV (1) 0.86
mI(2) 1.82
mII(2) 1.22
mIII(3) 2.55
mIV (4) 1.01

Figure 3.18: Comparison of cell and analytical model computational time for 5
component separation using 8 zones SMB

The outlet streams of the cell model and analytical solution are shown
respectively in Figure 3.19 and Figure 3.20. As expected the outlet
streams have higher purity than the previous section, especially on the
first run. No contamination was seen in the outlet ports. The two
approaches are in good agreement.
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Figure 3.19: Outlet concentration profiles using cell model. (a1) Extract1 first
run, (a2) Extract1 second run with 0.5 gr/l increase in the feed
concentration, (b1) Extract2 first run, (b2) Extract2 second run
with 0.5 gr/l increase in the feed concentration, (c1) Raffinate2
first run, (c2) Raffinate2 second run with 0.5 gr/l increase in the
feed concentration
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Figure 3.20: Outlet concentration profiles using analytical solution (a1) Ex-
tract1 first run, (a2) Extract1 second run with 0.5 gr/l increase
in the feed concentration, (b1) Extract2 first run, (b2) extract2
second run with 0.5 gr/l increase in the feed concentration, (c1)
Raffinate2 first run, (c2) Raffinate2 second run with 0.5 gr/l in-
crease in the feed concentration

3.7 Summary

In this chapter, a fast and accurate method is presented for simulat-
ing chromatographic columns with linear adsorption isotherms. This
method uses the ideal equilibrium model to simulate chromatographic
columns. As a result, it will be most suitable for highly efficient chro-
matographic columns with negligible axial dispersion and steep concen-
tration fronts. In comparison with standard approaches based on the
popular cell model, it outperforms those approaches.

In the first instance, the solution was applied to a column with a recycle
from its outlet. Then, it was applied to two, four, and eight SMB zones
using a raffinate recycle. As mentioned earlier, the node balances and
finding when the concentration values leave the columns were critical
parts of the calculation of the analytical solution in all configurations.
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For highly efficient columns with negligible axial dispersion, the analyt-
ical method is fast in comparison to the cell model, using the ODE 45
solver and if an implicit integration scheme like ODE 15s is used, the
analytical method is extremely fast.

In the end, this method is clearly superior to the numerical method,
as shown by the results. In addition, the method can be easily applied
to other configurations of the ternary center-cut separation process, as
well as to rigorous optimization and evaluation of alternative conversion
schemes for ternary center-cut separations using alternative optimization
and evaluation techniques.



CHAPTER 4

Approximate solution for
nonlinear non-competitive

adsorption isotherms

4.1 Non-linear adsorption isotherm and wave theory

In the previous chapter, a powerful method for the simulation of chro-
matographic processes with linear adsorption isotherms was introduced.
It was based on analytical insight obtained from the method of charac-
teristics. This method can also be applied to nonlinear isotherms. In
the first step, the focus in this chapter is on nonlinear noncompetitive
isotherms.

For non-competitive isotherms, each solute species is independent of the
others, like in linear chromatography. The main difference between lin-
ear and nonlinear chromatography is, that in linear chromatography,
each concentration value of a given solute travels with the same velocity,
and concentration profiles are just shifted by the characteristic propa-
gation velocities. In contrast to this, in nonlinear chromatography, each
concentration value of a given solute travels with a different velocity. De-
pending on the characteristic curvature of the adsorption isotherm and
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the considered scenario, this may lead to self-sharpening or spreading
behavior of concentration fronts. This is illustrated in Fig.4.1 according
to [24].

Figure 4.1: Characteristic patterns of behavior for linear compared to a nonlin-
ear single solute or noncompetitive adsorption isotherms. The first
column illustrates the type of isotherm, the second column shows
the behavior during the loading of an empty bed, the third column
shows the behavior during regeneration of a fully loaded bed with
pure solvent. [24]

The first row in Figure 4.1 illustrates the behavior for linear isotherms.
As mentioned above, concentration profiles are just shifted with charac-
teristic velocity and do not change their shape, because of concentration
independent characteristic velocity, which was derived in the previous
chapter 3.3. The second row shows the characteristic behavior of concave
adsorption isotherms. Noncompetitive Langmuir isotherms to be con-
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sidered in this chapter belong to this class. The corresponding isotherm
equations reads:

qi = (a ∗ ci)
1 + b ∗ ci

(4.1)

The slope is:

dqi

dci
= a

(1 + b ∗ ci)2 (4.2)

It decreases with increasing fluid phase concentration ci as shown in the
second row in Fig. 4.1

The characteristic velocity follows from the model Equation (4.3) by
differentiation and yields:

vi = uf

(ε + (1 − ε)dqi

dci
)

(4.3)

Since dqi

dci
is decreasing with increasing fluid phase concentration, the

characteristic velocity is increasing with increasing fluid phase concen-
tration. This results in self-sharpening behavior of the concentration
front during loading of an empty bed shown in Figure 4.1c and spread-
ing behavior of the concentration front during regeneration of a fully
loaded bed, shown in Figure 4.1d.

In the characteristic z, t-plane the characteristic velocity represents a
straight line for a given concentration value emanating from the given
initial values along the line t = 0, z > 0 and the given boundary condi-
tions for z = 0, t > 0 [69]. In the linear case, the slope (velocity) does
not depend on concentration, therefore, the characteristics are parallel.
In the nonlinear case, the slope (velocity) is different for each differ-
ent concentration. The characteristics are focusing for self-sharpening
wavefronts and defocusing for spreading waves. Characteristics in the
z,t-plane for the linear case are illustrated in Fig 4.2a, for the nonlinear
case with self-sharpening waves in Fig 4.2b and the nonlinear case with
spreading waves in Fig 4.2c.
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Figure 4.2: Characteristic curves in the z-t plane for linear adsorption isotherms
(a) compared to nonlinear adsorption isotherms (b) with spreading
waves (c) self-sharpening waves.

Self-sharpening behavior finally leads to the formation of discontinuous
wave fronts, also termed shock waves. Shock waves are also obtained if
the inlet concentration undergoes a discontinuous step change. In both
cases, the shock velocity follows from a global material balance across
the shock in an analogous form to Equation 4.4:

vshock = vi

ϵ + (1 − ϵ)∆qi

∆ci

(4.4)

Any concentration value within the discontinuous shock front has the
same velocity. It can be shown that the shock velocity lies in between
the characteristic velocities of the highest concentration value and the
lowest concentration value of the shock [69].

In the z,t-plane shock formation is represented by the intersection of
characteristic curves resulting in a shock curve with the slope given by
the shock velocity above as illustrated in Figure 4.3 [69].

For convex isotherms, shown in the third row of Figure 4.1, character-
istic patterns of behavior are opposite to the second row for concave
isotherms, i.e., spreading waves during loading of an empty bed and
self-sharpening waves during regeneration of a fully loaded bed.
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Figure 4.3: Characteristic curves in the z-t plane with shock formation. Solid
lines are characteristic velocities, and dashed lines are shock veloc-
ities between neighboring concentration values.

4.2 One column simulation

To simulate a chromatography column, the solution is in the form of
a matrix in which the first row refers to the concentration values, the
second row to the velocity of that corresponding concentration value,
and the third row to the position of that concentration value within the
column.


concentration 1 concentration 2 ... concentration n

velocity 1 velocity 2 ... velocity n

position 1 position 2 ... position n

 (4.5)

Each time step, a new concentration value is introduced to the column,
which can differ from the previous concentration value. As soon as it
enters the system, its velocity is calculated, and its position inside the
column is determined based on the velocity and the time step. This
concentration value is inside the column and also inside the matrix if its
position is smaller or equal to the column length. Matrix dimensions for
this solution are not fixed and change during calculation. It is necessary
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to allow for dimension changes due to shock formation, which causes
some concentration values to merge. In every time step, two conditions
are checked: first, if any newly calculated position exceeds the column
length, then that concentration value should be removed from the col-
umn, and second, if two different concentration values have the same
position or have overtaken each other.

For favorable isotherm like the noncompetitive Langmuir isotherm con-
sidered in the remainder, whenever a concentration value is bigger than
the one ahead, it tends to move faster than the lower concentration value,
therefore the two concentration values will catch up, and form a shock
and will have the higher concentration value and the new velocity is the
shock velocity of these two concentration values. The shock velocity is
calculated by Equation 4.4. This means the matrix column associated
with the lower concentration value would be removed.

One scenario is when the catch-up happens exactly at one of the time
points known to the time vector, or in the other scenario it happens
between two time points. Both cases can be seen in figure 4.4. The left
column shows the catch up point that is exactly on one of the specified
time points, and the right column shows the catch up point between two
time points.

Assuming two different concentration value positions intersect at a known
time point, the concentration values that have been at the same position
at the same time point will merge and the bigger concentration value
remains in the matrix. The new velocity is the shock velocity and the
position is their catch up position.

The next traveling distance of the new concentration value (the bigger
one) is calculated from that position using the shock velocity of the first
and second concentration values. As a result, the next position for these
two concentration values after their position intersect is found and exact.
This corresponds to the first scenario but the other is that their position
intersects between the time points specified in the time vector.

After checking the positions of the concentration values and finding the
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Figure 4.4: The characteristics plot for two concentration values with different
catch up points. a) Catch up point coincides with given time point
t3. b) Catch up point in the interval t3 − t4

time point right after the catch up, the approximate position is put into
the matrix as a new position by calculating the mean distance between
the previous and the current position, which is defined in Equation 4.6.

zj+1 = zj + zj+1 − zj

2 (j = 1, .., Nt) (4.6)

Nt is a representation of the number of time points.

The shock velocity is used as velocity, and for concentration, the bigger
concentration value is used and the matrix column which has the smaller
concentration information will be deleted. During the calculation, the
time points are fixed and remain unchanged. After this calculation, the
calculated positions are checked and if they are larger than the column
length, then that column of the matrix is eliminated, and the concen-
tration value from that column of the matrix is used as a feed for the
subsequent chromatography column.
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To sum it up, at each time step, the velocity and position of the corre-
sponding concentration are calculated. In the event that some concen-
tration values overlap, they will be removed and replaced by the larger
concentration value and its velocity will be the shock velocity instead.
During each time step calculation, the positions are checked as well, and
those larger than the column length are removed from the matrix. Their
corresponding concentration value is used as feed for the next column or
product for an outlet.

It is important to note that this solution is an approximate solution
and its preciseness is determined by the degree of discretization of the
concentration values and the time vector. A low number of discrete
points indicates that the behavior of some concentration values hasn’t
been considered. The calculation is then excluded from some intersection
points and shock formations.

Figure 4.5 illustrates the difference in the number of concentration vector
discretizations. The left plot in Figure 4.5 illustrates the comparison
between the cell model with 100,000 grid points and the approximate
solution with a concentration vector discretized by three points. The
shocks move unchanged through both solutions after they form, but there
are differences in how they position themselves. This figure on the right
shows a comparison between the cell model with 100,000 grid points and
the approximate solution with 17 discrete points in the concentration
value. Both solutions cell and the approximation method are in good
agreement. Both solutions use a one-second time step.

There is a greater shock velocity between concentration values 1 and 2
when their differences are greater. As a result, when the discretization
number is low, the shock velocity calculated between two concentration
values is increased. Therefore, it is possible for the approximate solution
to deviate from the cell model when the time step is constant.
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Figure 4.5: Comparison of the cell model (solid red line) with the approximate
solution (blue dashed line) with 3 and 17 discretization points in
the concentration vector

4.3 4-zone SMB simulation

Both methods, cell model and approximate solution were applied to a
4-zone binary mixture separation. The schematic of a 4-zone SMB was
presented in the previous chapter in Figure 3.7. Here the configuration
has a little difference in the in- and outlets from the one used in chapter
3, and it is shown in Figure 4.6. There is a feed entering between zones II
and III. The less retained component is leaving the system in the raffinate
port between zones III and IV. The component with the higher affinity
is collected at the extract port between zones I and II. The solvent inlet
is in between zones I and IV.

In the absence of feed or solvent, the concentration at the inlet of each
column is the same as the concentration at the outlet of the previous
column.

ci,n+1(t) = ci,n(t) (4.7)

The feed will be injected into the third column as soon as it has been
diluted by mixing it with the outlet fraction of the second column. The
following equations show the mass balances at the feed, solvent, and
other connections.
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Figure 4.6: Schematic illustration of 4 zones simulated moving bed chromatog-
raphy

Solvent node:

Q1 = QS + Q4 (4.8)

Q1ci,1 = Q4ci,4n + QSciS (4.9)

Raffinate node:

Q3 = Q4 + QR (4.10)

ci,3n = ci,3n+1 = cR (4.11)

Feed node:

Q3 = QF + Q2 (4.12)
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Q3ci,2n+1 = Q2ci,2n + QF cF (4.13)

Extract node:

Q2 = Q1 − QE (4.14)

ci,n+1 = ci,n = cE (4.15)

QS and ciS are the solvent flowrate and component I concentration in
the solvent (which is usually zero) respectively, QR and cR are related to
raffinate, QE and cE are from the extract, and QF and cF are the feed
flowrate and concentration.

Based on the approximate solution, the solution for a multiple column
configuration is two cell matrices each with four matrices in a row. Each
matrix has three rows and a variable number of columns. At every time
point, the entry concentration of each matrix is calculated. Based on
the entry concentration, the isotherm q and its derivative are calculated
using Equations 4.1 and 4.2. The derivative of the isotherm is used to
calculate the velocity of the relevant concentration value. Each concen-
tration value’s position inside the column is calculated using its velocity.
In each time step, positions are checked and if concentration values are
outside the columns, they are removed. Their new position in the next
column is calculated based on their leaving time. Cell matrix elements
that are four matrixes are replaced in the switching direction at the end
of each cycle. The simulation runs for 40 cycles to reach a cyclic steady
state condition. Figures 4.7 (a) and (b) show the concentration profiles
obtained by the approximate and numerical solutions, respectively. Due
to a proper discretization of the concentration vector in the approximate
solution, the profiles obtained by both solutions appear to be in good
agreement.

The operating conditions and the dimensionless flow rates which are from
Futterer’s dissertation [20], are given in Table 4.1 and 4.2 respectively.
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Figure 4.7: Concentration profile of a binary mixture separation using the ap-
proximate model (a) and cell model (b)

Profiles of approximate solution concentrations show no dispersion, and
fronts are steep. Figure 4.8 shows CPU times. In contrast to a cell model
with 1000 stages, the approximate solution takes significantly less time
to calculate. In addition, the profiles are in good agreement with the
cell model with 1000 stages per column.

Figure 4.8: Computational time for reaching cyclic steady state
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Table 4.1: Model parameters and column properties
Parameter 4-zone SMB

Number of columns 4
Column diameter[mm] 20 [mm]
Column porosity 0.7404
Henry constant A 7.5
Henry constant B 5
Retention factor A 0.3
Retention factor B 0.15
number of cycles 40
feed concentration A 0.4 [gr/l]
feed concentration B 0.5 [gr/l]

Table 4.2: Dimensionless flow rates
m_I m_II m_III m_IV

7.62 4.97 6.66 4.46

4.4 Summary

This chapter presents a novel method for simulating the non-linear, non-
competitive chromatographic process.

For the purpose of assessing its accuracy, the method was applied to
single-column chromatography and 4-zone SMB, however, it can be ap-
plied to other chromatographic configurations as well.

In terms of concentration profiles and calculation time, the results were
compared with the popular cell model. The approximate method’s preci-
sion increases with increasing number of discrete time and concentration
values.

The results indicate that both methods have a reasonable agreement in
terms of both single-column configurations as well as 4-zone SMB con-
figurations. In spite of that, the computational time for the approximate
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method is much smaller compared to that of the cell model, while the
approximate method is capable of detecting all the details of the con-
centration profile. Chromatographic columns with high efficiency and
negligible axial dispersion are suitable for this method. The cell model
in this work is solved using the ODE45 solver built-in function in MAT-
LAB, which is much faster than other implicit integral solvers such as
ODE15s.

An extension to full-blown nonlinear competitive adsorption isotherms is
much more challenging due to the interactions of different solute species.
Therefore, we follow a different approach here for competitive nonlinear
isotherms using machine learning of surrogate models from the reference
model. The approach will be presented in the next chapter.



CHAPTER 5

Optimization of SMB processes
using surrogate models

This chapter is based on the publication [65] on optimizing SMB pro-
cesses using surrogate models.

The economic potential of the SMB process is maximized by finding op-
timal operating conditions regarding productivity and solvent consump-
tion. Additionally, the process needs to fulfill certain purity require-
ments. For total separation, the well-known triangle theory developed
by Storti et al. [81] can be used in a first approximation to identify the
optimal operating conditions. It is based on the assumptions of a true
moving bed process, neglects axial dispersion, and assumes thermody-
namic equilibrium between the solid and the liquid phase. Productiv-
ity can be increased substantially if purity requirements can be relaxed,
which depends on the specific type of application. For reduced purity re-
quirements, [34] presented an extension of the triangle theory. However,
the extension is involved, has limitations and is based on the same sim-
plifying assumptions as mentioned above. By using genetic algorithms,
[86] has optimized the productivity and purity of the SMB process based
on a dynamic model, and compared it to the Varicol process, however
computational time is rather high. In [50], a surrogate model was used
to optimize SMB processes. They used two different types of surro-
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gate models. The proper orthogonal decomposition (POD) method is
employed to derive cost-efficient reduced-order models (ROMs) for the
SMB process and the other one is a coarse model. To create a low-fidelity
DAE model, they applied the Finite Element Method to the SMB model
with coarser spatial discretization. In this thesis, a numerical optimiza-
tion of a more detailed model is proposed instead. Due to the complexity
of the used SMB model, rigorous numerical optimization is highly time-
consuming. This paper adapts the methodology from [38] to develop a
surrogate-based iterative approach by using a simple feed forward artifi-
cial neural network, requiring only minimal data, thereby increasing its
numerical efficiency.

An overview of the theoretical background for optimization and the neu-
ral network used as a surrogate model is provided in this chapter. It is
important to mention that the model is dynamic and the optimization
is done for a cyclic steady state SMB process.

5.1 Optimization description

This study used the 2021 version of MATLAB’s optimizer toolbox (Math-
Works, 2023), which has linear and nonlinear solvers. In this case, we
are using the Matlab built-in function fmincon. Optimization problems
considered in this work can be formulated as follows:

min J(x),
h(x) = 0,

g(x) ≤ 0 xiϵR

lbi ≤ xi ≤ ubi, for i = 1, 2,

The optimizer starts at x0 which is the initial guess of the optimization
variables and tries to find the minimum x of the function subject to the
inequalities g(x) ≤ 0.

In addition, lower and upper bounds should be defined for the design
variables in x, so that the solution is always in the range of lb ≤ xi ≤ ub.
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Assume J(x) is the objective function, h(x) is the equality constraint,
such as material balances, and g(x) is the inequality constraint, such as
purity requirements, and x are the decision variables.

Productivity for a given minimum purity is the objective function to be
maximized. We use m-values, the dimensionless ratios between liquid
and solid phase flow rates as our decision variables. It is possible to
maximize productivity by maximizing the difference between m3 and
m2, which is equivalent to finding the operating point farthest from the
diagonal m2 = m3. The separation diagram and its different areas were
explained before in Chapter 2 and Figure 2.4.

5.1.1 Purity

In SMB chromatography, purity signifies how effectively the target molecule
is isolated from unwanted substances or other molecules in the feed mix-
ture. The level of purity is relatively important in different industries
or fields. For example, the quality and safety of the final product in the
pharmaceutical industry is highly dependent on purity.

The purity of the SMB chromatography process is influenced by sev-
eral factors. One factor is the selectivity of the adsorbent used in the
chromatographic system. The ability of the adsorbent to differentiate be-
tween the target component and contaminants is called selectivity. An
adsorbent with high selectivity is ideal for favorable adsorption of the
desired molecule while effectively minimizing the presence of impurities.
[73].

Another crucial factor is the operating conditions, which include param-
eters like flow rates, temperature, and pressure gradients all of which
play a significant role in the separation process and final purity in SMB
chromatography. To enhance selectivity and separation efficiency, it is
essential to determine optimal conditions. Adjusting flow rates is par-
ticularly important when dealing with mass transfer resistance, as it can
help improve overall purity. [6].

The third is the column efficiency. The efficiency of the chromatographic
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columns used in SMB plays a crucial role in achieving high purity. High
efficiency columns have a high number of theoretical plates, which con-
tributes to better separation and improved purity [73].

The form of the input mixture is essential to take into account. The
content of the feed, including the proportion of the desired substance
and contaminants, along with the duration and timing of injection, can
influence the overall level of purity [45].

Finally, Elements such as the number of zones, column configuration,
and switching strategy directly affect the separation efficiency and purity.
Proper optimization and the design of the system play a crucial role in
effective separation and maximum purity[40].

Various analytical techniques, such as high-performance liquid chro-
matography (HPLC) or mass spectrometry (MS), are employed to evalu-
ate the purity achieved in SMB chromatography. These techniques help
quantify the amount of the target component and impurities present in
the separated fractions, allowing for an assessment of the purity level.

It’s important to note that achieving high purity in SMB chromatogra-
phy is a complex task that requires careful consideration of all the factors
mentioned above. Process development, optimization, and continuous
monitoring are essential to ensuring consistent and reliable separation
with high purity throughout the chromatographic operation.

During cyclic steady-state, the purity of raffinate and extract streams is
defined as follows:

PuR =
∫ t+t∗

t cR
B dt∫ t+t∗

t cR
A dt + ∫ t+t∗

t cR
B dt

(5.1)

PuE =
∫ t+t∗

t cE
B dt∫ t+t∗

t cE
A dt + ∫ t+t∗

t cE
B dt

(5.2)

These equations use the numerator to represent the amount of the target
component collected in the product stream within a switching cycle,
and the denominator as a measure of the total of the two components
collected together [67].



91

5.1.2 Productivity

In SMB, productivity represents the effectiveness and yield of the sep-
aration process. The goal is to maximize the recovery of the target
compound during operation. Enhancing productivity is beneficial, as
it boosts throughput, shortens processing duration, and optimizes eco-
nomic efficiency.

Productivity (PR) is unquestionably the key economic indicator. For
complete separations, it is generally defined as the quantity of feed pro-
cessed per unit mass of the stationary phase within a given time frame.

PR = QF ct
F

(1 − ε)ρs Vt
(5.3)

Assume that ct
F is the total concentration of the feed, ρs represents the

density of the stationary phase, and Vt represents the total volume of
the columns in the unit. Combining this equation with the definition of
mj from Equation 5.3 can be written as:

PR = ct
F (m3 − m2)
ρsts ∑4

j=1 Sj
(5.4)

The number of columns in section j of the unit is Sj. According to the
above definition, the maximum productivity is achieved by maximizing
the difference between m3 and m2, i.e., by choosing an operating point
that is farthest from the diagonal [67].

It is essential to recognize that although productivity is a crucial factor
in SMB, it must be carefully balanced with purity and yield to achieve
an efficient separation process. In most cases, lowering purity standards
can significantly enhance performance metrics, including higher produc-
tivity[34].
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5.2 Full-model equations and optimization

Chromatographic columns are described using the equilibrium dispersion
model.

ε
∂ci

∂t
+ (1 − ε)∂qi

∂t
+ εv

∂ci

∂z
= Daxε

∂2ci

∂z2 (5.5)

v is the interstitial velocity, and Dax refers to the dispersion coefficient,
which includes all band-broadening effects and is neglected in this cal-
culation. Furthermore, ci is the fluid phase concentration of component
i, while qi is the solid phase concentration and ε is the volume frac-
tion of the liquid phase. The following formula describes the Langmuir
adsorption isotherm which is used in the remainder.

qi = Hici

1 + ∑nc
i=1 bici

(5.6)

Hi and bi represent the adsorption constants of each component, and nc

indicates the number of components. Since the model assumes thermo-
dynamic equilibrium between the two phases, qi depends on the fluid
phase composition. Assuming a binary 4-zone SMB chromatography
separation, the aim is to optimize productivity under reduced purity
requirements in a cyclic steady-state SMB.
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Figure 5.1: Schematic illustration of binary mixture separation using 4-zone
SMB

In this 4-zone SMB chromatography, there are four distinct zones or sec-
tions in the system. Each zone comprises one column, and each column
performs a specific function in the separation process. The movement
of the solid and liquid phases is precisely controlled to maximize separa-
tion efficiency. The feed containing two different components is entering
between zones II and III. The less retained component is exiting the sys-
tem at the raffinate outlet, and the more retained one is at the extract
outlet. The solvent enters between zones I and IV. The node balances
related to this configuration are:
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Q1 = Q4 + QS

Q2 = Q1 − QE

Q3 = Q2 + QF

Q4 = Q3 − QR

(5.7)

In the same way, component node balances can be expressed as follows:

cin
i,1 = (Q4cout

i,4 +Q4cout
i,4 )

Q1

cin
i,2 = cout

i,1

cin
i,3 = (Q2cout

i,2 +QF ci,F )
Q3

cin
i,4 = cout

i,3

(5.8)

Streams entering and leaving the system are denoted by the superscripts
"in" and "out", respectively. The inlet and outlet ports are switched in
the direction of fluid flow to mimic counter-current movements. More-
over, the process of switching is specifically executed by assuming that
the internal concentration profiles are maintained within each physical
column with every switch. Using the m-values obtained by Equation 5.9,
which are dimensionless ratios between the liquid and solid phase flow
rates in each column, we are able to maximize productivity for a given
minimum purity of the product.

mj =
QSMB

j t∗ − Vcε

Vc(1 − ε) = net fluid flowrate

net solid flowrate
(5.9)

Where mj is the dimension flow rate ratio in column j, Qj is the fluid
flow rate in column j, and Vc and ε are the column volume and the
porosity respectively.
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The dynamic behavior of the SMB unit can be calculated numerically
with suitable initial and boundary conditions. There are linear and
nonlinear solvers in the optimizer toolbox in MATLAB. In this case,
we are using fmincon. It is worth noting that the optimization problem
is nonlinear and therefore nonconvex, which may lead to multiple local
minima. To avoid getting stuck in a suboptimal local minimum the
optimization is conducted from multiple starting points. Therefore here
a multi-start optimization with 100 starting points and a Sequential
Quadratic Programming (SQP) algorithm is implemented.

The objective function to be maximized is the productivity for a given
minimum product purity. Our decision variables, x, are the m-values,
which are the dimensionless ratios between the liquid and the solid phase
flowrates in each column. Maximum productivity is obtained by max-
imizing the difference between m3 and m2, which is equivalent to find
a feasible operating point farthest from the diagonal m2 = m3. At the
beginning, the Henry constants are used as the starting point, i.e., the
first m3 and m2. Since they are the optimal point of the linear adsorp-
tion isotherm for total regeneration, they can be used as the initial guess
for the Langmuir adsorption isotherm. The domain for the optimization
area is given by m2 ε [3, 7] and m3 ε [5.5, 9.5]. In order to maintain total
regeneration, m1 and m4 have a safety margin of 10% from Henry con-
stants. A nonlinear inequality constraint of a minimum purity of 0.85
for both products is used for this maximization.

1e−8 is the step tolerance setting. The step tolerance is a threshold used
to determine when an optimization algorithm should stop iterating based
on the size of the steps taken during each iteration. The initial guess is
the components Henry constant (Ha, Hb) = (m2, m3). These points can
be used as initial guesses for the Langmuir adsorption isotherm since they
are the optimal points of the linear adsorption isotherm for total sepa-
ration. The maximization is based on a nonlinear inequality constraint
of a minimum purity of 0.85 for both products raffinate and extract.
Due to reduced purity, the optimal point was expected to be outside the
triangle. The solution using the full model is shown in Figure 5.2.
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Figure 5.2: Optimal operating point (red star) predicted by the full model (nu-
merical solution) for a minimum purity of 0.85 of both products.
Red, blue and green lines define the total separation region accord-
ing to triangle theory.

The black line or the diagonal is the (m2 = m3) line. The black square
also indicates the optimization area. A red star indicates the farthest
point from the diagonal that can meet purity requirements. The optimal
point is precise dimensions are (3.8578, 6.8826).

5.3 Surrogate model

Surrogate modeling is a technique used in engineering, computer sci-
ence, and other fields to approximate the behavior of complex systems
or functions. It involves creating a simplified mathematical model, called
a surrogate model, that mimics the behavior of the original system or
function. The primary motivation behind surrogate modeling is to re-
duce the computational cost associated with evaluating the original sys-
tem or function, which can be time-consuming or resource-intensive. In
many fields of engineering and beyond, input-output or response surface
models are used as an alternative to computationally expensive rigorous
process models. To avoid the computational burden, surrogate models
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are used as fast approximations to more accurate simulations [50]. The
methods used vary in complexity. As each approach has unique char-
acteristics, the correct choice of a surrogate modeling approach is not
trivial. One of the methods is Artificial neural networks, which is used
in this work.

5.3.1 Artificial neural network

Solving hyperbolic PDEs repeatedly, sometimes, is necessary to quanti-
tatively model solute movement inside columns. PDE solutions are often
approximated numerically by using finite difference, finite element, or fi-
nite volume methods due to the limitations of analytical solutions. It
can take significant computation time and resources for the numerical
solvers to obtain the solutions with desired accuracy, especially if many
simulations need to be repeated. In the field of chromatography, surro-
gate models, such as artificial neural networks (ANN), have been widely
used for the rapid optimization of simple processes with simple mod-
els[64]. The aim of Artificial Neural Networks (ANN) is to mimic the
brain’s functions. These structures consist of several so-called neurons,
or nodes, which are arranged into groups or layers according to their
function. Figure 5.3 shows a visualization of an ANN.

As shown above, an ANN is comprised of three sections: input, hidden,
and output layers. The information flow in a feed-forward ANN is limited
to one direction, from the left or input to the right or output. The
feedback or recurrent ANN, on the other hand, may use an information
flow in the opposite direction.

5.4 Algorithm development and dynamics

The objective of this study is to develop a surrogate model that can
replace the detailed but expensive full-order SMB model for optimization
purposes. A surrogate model is being used in this work, which is based
on an artificial neural network. Using Kessler’s methodology [38], in this
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Figure 5.3: Schematic illustration of an artificial neural network

work, a surrogate model based, with an iterative approach is employed.
Since this method requires minimal data, it is more efficient numerically.

The goal is to find the most optimal flow rates for the second and third
zones in the SMB system. Henry constants define the initial guess, and
the area around the initial guess is defined in the same way as the area
in full model optimization. The Henry constants are [5, 7.5] and the area
domain is m2ϵ[3, 7] and m3ϵ[5.5, 9.5]. This big area is the first area to
be explored to find the best possible optimal point as the initial guess
for the next calculation. Points within the area are generated using the
Halton set algorithm developed by Kocis et al. (1997) [42]. The Halton
set generates points using the Halton sequence in a quasi-random form.
In order to ensure uniform space-filling, the Halton sequence employs
distinct prime bases for each dimension. When it comes to sampling,
using space-filling approaches can prevent clustering, as opposed to the
random distribution of sampling points.

The locations of these points generated by the Halton set inside the sam-
pling area are taken as m-values (m2, m3). For every point within the
area, the dynamic simulation is used till a cyclic steady state is reached
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to evaluate the purity and productivity of the SMB process. This simu-
lation generates output data, including purity and productivity. These
values are saved individually for each point, represented by a pair of m-
values. To determine the purity of the products and their productivity
at every point, the reference model is utilized.

For every iteration, the Halton set is generating 150 points. In order
to be considered for further calculation, each point must have a purity
greater than 0.85 as determined by the reference model. For surrogate
model optimization, only points that meet purity criteria are considered.

In every iteration, the sample points are saved and can be reused if they
fall within the sampling area of the subsequent iteration. The number of
samples in each iteration may vary, potentially exceeding or falling below
the 150 points. A neural network is trained using the data obtained from
this calculation. The feed-forward neural network consists of a single
layer comprising 15 neurons.

During every iteration, the surrogate model employs the exact same
optimization algorithm as the full model, which involves applying the
SQP algorithm and multi-starting with 100 random points. The model
also employs a step tolerance option set at 1e-8 to determine an optimal
point. The calculation process involves comparing the deviation of each
iteration’s optimal point to the previously calculated optimum. If this
deviation exceeds the termination condition of 0.019, the next calculation
will commence. However, if the deviation is within the threshold, the
final optimal point will be determined. To establish a new sampling
region, the formula below uses the current optimal point as the reference
point.

lb/ub = xopt,k−1 ± 1
2k

(5.10)

The integer "k" represents the number of times the iteration is repeated.
The center of the current calculation area is determined by the optimal
point found in the previous iteration. As a result of Equation 5.10, the
area of the sample box is shrinking and the density of samples inside is
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increasing at the same time. The algorithm concluded after 4 iterations
in the current calculation process. Figure 5.4 depicts the progress.

In the first figure, the red star represents the optimal point in the initial
iteration, and the red circle represents the initial guess for starting the
calculation. In this visualization, the black dots represent the entire sam-
ple data generated by the Halton set. On the other hand, the blue dots
indicate the samples that meet the purity requirement as determined by
the reference model.

To find the optimal solution, a new area is created using a convex hull
that encompasses all the blue dots. The optimizer then searches within
this area. The convex hull is a fundamental concept in computational
geometry that refers to the smallest convex polygon or polyhedron that
encloses a set of points in a given space.

The significance of the shrinking effect is evident only in the initial iter-
ation, highlighting the crucial role of the first sampling region. The sig-
nificant contrast between the initial and subsequent regions is attributed
to the application of Equation 5.10.

According to the second figure, one can see that the area of the field
is decreasing at a constant rate. As a result of the reduction in purity
requirement that defines the convex hull, the optimal point can be found
along its boundary within the greatest distance to the diagonal m2 = m3.

The last figure shows a deviation from the previous optimum that is less
than the termination condition and therefore, the calculation stops. The
optimal point found using the surrogate model is compared to the one
found by the full model.

Surrogate models use the same initial guess point as full-model opti-
mizations. The final optimal point discovered through the surrogate
model closely aligns with the optimal point attained through full-model
optimization. The reference model calculates the concentration of the
extract, as well as the raffinate, and productivity based on the optimal
points identified by both models. The results and computational time
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Figure 5.4: Optimal point reached in each iteration and the process of converg-
ing towards the final optimum. The green dot in the up left diagram
is the starting point.

Figure 5.5: Optimal points (x) found by surrogate model and full model.

for both methods are shown in Table 5.1.

The reference model has verified that the purity requirements have been
met. Although the optimal point of the full model results in slightly
higher productivity compared to the surrogate model, the difference be-



Table 5.1: Comparison of the computational time

method xopt CPU-time puex puraf pr
sur-model 3.8582, 6.8806 5423.75 s 0.8501 0.8504 3.0224
full-model 3.8578, 6.8826 152453 s 0.8500 0.8500 3.0249

tween the two is minimal. Although the outcomes are nearly the same,
the surrogate model proves to be a more favorable option for the opti-
mization set-up due to its significantly quicker computational time com-
pared to the full model.

5.5 Summary

This chapter introduced a surrogate-based optimization approach for the
SMB process. Instead of relying on a time consuming rigorous model,
optimization can be achieved through the use of a surrogate model. By
applying this approach, the productivity of SMB is optimized with rea-
sonable computational effort. Due to reduced purity, it was anticipated
that the optimal point would be located outside the triangle. Based on
the optimization set-up presented, the surrogate model is a better option
as it has a significantly faster computational time compared to the full
model. The methodology suggested could be highly beneficial, especially
when deterministic global optimization is employed, as demonstrated in
Kessler et al.’s research [38]. However, due to the extensive number of
model evaluations required, it was not within the scope of this paper.
In future work, the goal is to reduce the amount of solvent used. This
can be achieved by minimizing the difference between m1 and m4. In
addition, optimization of the SMB with Bi-Langmuir isotherm is also of
interest.



CHAPTER 6

Conclusions and perspectives

In this thesis, new efficient methods for the simulation and optimiza-
tion of SMB processes are presented. These new techniques speed up
the simulation and reduce its computational effort. Avoiding standard
numerical solution procedures of the PDEs and ODEs leads to the ab-
sence of numerical dispersion. Despite their speed and accuracy, these
methods have some limitations. To overcome these limitations, surrogate
models are used instead of numerical models for optimization of SMB,
which results in a faster optimization with less computational effort. The
following summarizes the main results.

6.1 Analytical solution

Based on an ideal equilibrium model, an accurate and fast method for
simulating chromatographic columns with linear adsorption isotherms
was presented. This method is best suited for chromatographic columns
that are highly efficient, with negligible axial dispersion and sharp con-
centration fronts.

In this method, there are no fixed grid points in the z coordinate rep-
resenting the column’s length. As an alternative, a moving coordinate
is assumed, where the component travels through the column at its cor-
responding velocity. Each component’s propagation velocity determines
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the distance traveled at each time step.

The proposed approach outperforms the popular cell model-based ap-
proaches. It was proven that the method can be applied to binary and
ternary SMB processes with center-cut separations and even more chal-
lenging, a five-component SMB process. The approach mentioned above
can be conveniently extended to other process setups and can be em-
ployed in the future for rigorous optimizations and assessment of various
process schemes for ternary center-cut separations.

6.2 Approximate solution

The analytical method is extended to simulate nonlinear, noncompeti-
tive chromatography. According to the Langmuir adsorption isotherm,
higher concentrations travel faster than lower concentrations. In order
to determine the concentration profile, it is necessary to calculate the
velocity of each concentration value. If higher concentrations attempt to
pass lower ones, the shock velocity is calculated, and both concentration
values travel together at the same velocity within the column. The accu-
racy of this solution relies on how the concentration value is discretized.
Therefore, the solution being proposed is an approximate solution. The
precision of the approximate method improves as the time and concentra-
tion vector discretization increase. Initially, the solution is implemented
in single-column chromatography and later in 4-zone SMB to evaluate
its precision. However, it can also be employed in other chromatographic
setups. The concentration profiles and calculation time obtained by the
approximate solution are compared to those of the popular cell model.

Despite the approximate method’s smaller computational time compared
to the cell model, it is able to detect all the concentration profile details
in both cases single column and 4-zone SMB. Similar to the analytical
solution, this method is also suitable for chromatographic columns with
high efficiency and negligible axial dispersion. An extension to competi-
tive isotherms seems possible but more challenging due to the interaction
between different components.
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6.3 Surrogate-model optimization

Finally, an optimization approach employing a surrogate model for the
SMB process was presented. Instead of using a time-consuming rigorous
model, optimization is achieved through the use of a surrogate model.
The final optimal points calculated by both models demonstrate this
approach’s effectiveness. By employing the surrogate model, we were
able to optimize SMB productivity with a reasonable amount of com-
putational effort. Because of reduced purity, it was anticipated that the
optimal point would be outside the triangle.

The productivity, as well as the purity of the extract and raffinate, are
calculated by the reference model for the optimal points obtained by
both models. As a result, the purity requirements are met. The dif-
ference in productivity between the full model’s optimal point and the
surrogate model is negligible. Although the results are nearly identical,
the surrogate model proves to be a superior option due to its significantly
faster computational time compared to the full model for the given op-
timization scenario. In the future, we aim to reduce solvent usage by
minimizing the difference between m1 and m4. Moreover, there is also
considerable interest in the optimization of the SMB using Bi-Langmuir
isotherms.
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