www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Runners with lower dynamic
stability exhibit better running
economy

Carlo von Diecken®%2*9, Marlene Riedl®%3, Steffen Willwacher(2 & Olaf Ueberschar®%*

Maintaining dynamic stability during running incurs an energetic cost that does not contribute to
forward propulsion. Despite this, dynamic stability has received little attention as a potential factor
influencing running economy. To understand the relationship between dynamic stability and running
economy, nineteen trained runners were tested on a treadmill across three individualized speeds.
Whole-body dynamic stability was quantified via a single maximum Lyapunov exponent (MLE)
computed from a 21D state-space embedding, which incorporated 3D angular velocities from seven
body segments (bilateral: shank, upper torso, forearm; unilateral: lower torso) and running economy
was measured as cost of transport (COT) using metabolic gas-exchange data. Linear mixed-effects
models were used to assess the relationship between MLE and COT as well as the effects of running
speed on MLE. MLE was negatively associated with COT (p=0.049), while running speed had no
significant effect on MLE (p>0.579). This study is the first to demonstrate that the MLE calculated
from a multivariate state-space is negatively associated with COT, indicating that runners with lower
dynamic stability exhibit better running economy. Further, MLE was not affected by running speed,
indicating that this measure of whole-body dynamic stability can be robustly assessed at a range of
running speeds. These results may hint at a previously unexplored avenue to improve running economy
through alteration of dynamic stability characteristics.
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Maintaining frontal plane stability is responsible for ~ 2% of overall energy cost of running?, with maintenance
of sagittal and transverse plane stability likely incurring additional energy costs. Thus, running economy-the
amount of oxygen or energy consumed per kilogram of bodyweight while running-cannot be comprehensively
understood without considering dynamic stability. Despite this, dynamic stability has received little attention in
running economy research?.

Recently, non-linear analysis methods have gained popularity as a means of quantifying dynamic stability
during running’, capturing aspects of running biomechanics that may remain overlooked when quantifying
stability through traditional linear measures derived from spatiotemporal or kinematic parameters?. For instance,
the maximum short-time Lyapunov exponent (MLE) quantifies the average rate of divergence of initially
neighboring trajectories in reconstructed state-space, reflecting the deterministic chaos inherent in complex,
multi-degree-of-freedom systems. This measure, commonly interpreted as local dynamic stability (LDS)®, can
be assessed with as little equipment as a single inertial measurement unit (IMU)®’, making it well-suited to
elucidate the relationship between stability and running economy in both laboratory and in-field conditions. To
date, however, the connection between LDS and running economy has not been explicitly tested.

Nevertheless, previous work on LDS in running provides indirect evidence that the two may be related.
Hoenig et al.* and Frank et al.? found that competitive and trained runners exhibit greater LDS than recreational
runners, a finding that aligns with the superior running economy of the former populations®. This finding
suggests that there might be an association between greater LDS and improved running economy. However,
Hoenig et al.* also reported that LDS increases during an exhaustive 5000 m run, which coincides with a
worsening of running economy as evident by the VO, slow component’ and indicates that greater LDS may not
necessarily be beneficial. Additionally, there are two studies that directly addressed the link between dynamic
stability and running economy using linear and non-linear stability metrics other than LDS. While Schiitte et
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al.!® found evidence that greater instability was associated with higher energy cost of running in recreational
runners, Panday et al.!! reported that reduced stability may actually enable professional runners to run more
efficiently than novice runners. These contradictory results highlight the need for more high-quality research to
elucidate the seemingly complex relationship between dynamic stability and running economy.

Further complicating this issue is the fact that non-linear dynamic stability measures are often only assessed
at a single joint or body segment, or include only a singular plane of motion®*!12, which may not fully capture
the stability of the multi-segment, three-dimensional system that is human running. It is, therefore, conceivable
that clearer trends might emerge if dynamic stability was computed from three dimensional signals assessed at
multiple segments of the whole body. In addition, MLE of specific joints and segments has been previously shown
to be running speed-dependent, with both increases'® and decreases!*!” in stability reported with increasing
running speed. It is currently unclear whether an MLE value that is derived from a multivariate state-space
embedding that incorporates multiple body segments would also display running speed-dependent changes.

With the present study, we aim to investigate the relationship between dynamic stability and running
economy in a sample of trained male and female runners during treadmill running at three individualized
speeds. We further aim to determine whether an MLE value that is derived from a multivariate state-space which
incorporates multiple body segments displays running speed—dependent changes. Specifically, we hypothesize
that (1) whole-body dynamic stability is associated with running economy during treadmill running and (2)
a singular MLE value incorporating angular velocities from multiple body segments displays running speed-
dependent changes. Due to contradictory results presented in previous studies, we have no a priori assumptions
about the direction of these relationships.

Results

8 trained female and 11 trained male runners were tested across three individualized running speeds
(s, =slowest, s,=medium, s, =fastest) between ventilatory thresholds 1 and 2 on a treadmill. Participants had
seven IMUs attached bilaterally at the shanks, shoulder blades, forearms and at the pelvis (Fig. 1), from which
3D angular velocities were combined to a 21D state-space embedding. This multivariate state-space was then
used to calculate a singular MLE, which is interpreted as whole-body dynamic stability. Participants were further
equipped with a face mask attached to a metabolic cart, which was used to collect metabolic gas-exchange
data, from which energy COT was calculated as a running speed-normalized measure of running economy.
Results were analyzed using linear mixed models (LMMs) with Tukey-corrected post-hoc comparisons based
on estimated marginal means (EMMs).

Stability effects on cost of transport

Complete results from the LMM on dynamic stability and COT are displayed in Table 1. Average MLE across
running speeds was negatively associated with COT (p =0.049), indicating that participants with lower dynamic
stability tended to have better running economy (Fig. 2). In contrast, within-participant variance in MLE was
not associated with COT (p=0.751). The marginal and conditional R?values were 0.163 and 0.755, respectively,
indicating that the fixed effects accounted for 16.3% of the variance in MLE, with the inclusion of participant-
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Fig. 1. Schematic visualization of the utilized experimental setup, including 7 inertial measurement units
attached bilaterally at the shanks, shoulder blades, forearms and at the pelvis as well as a face mask worn by the
participants, attached to a metabolic cart for collection of metabolic gas-exchange data.
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Estimate | 95% CI SE DF | t-value | p-value
(Intercept) | 4.749 [4.202,5.296] | 0.280 | 17 | 16.946 | <0.001***
MLER -0.427 [-0.820, -0.034] | 0.201 17 | -2.121 0.049*
MLEw 0.019 [-0.096,0.133] | 0.059 |263 | 0.318 0.751
D —0.064 [-0.101, -0.026] | 0.019 | 263 | -3.330 | <0.001***
s3 0.020 [-0.018,0.058] |0.019 |263 | 1.041 0.299

Table 1. Fixed-effects of the LMM to estimate effects of individualized running speed (categorical) and
between- and within-participant variance in mean MLE on COT. CI = confidence interval, DF = degrees of
freedom, MLE = maximum Lyapunov exponent, M LE p=between-participant variance in MLE, M LEw =
within-participant variance in MLE, SE = standard error, * = p < 0.05, ** = p<0.01, *** = p<0.001.
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Fig. 2. Association between MLE (dynamic stability) and COT (running economy) across participants.
Each point represents a single participant, with COT and MLE values averaged over running speeds. Note:
COT =cost of transport, MLE = maximum Lyapunov exponent.

level random effects increasing the explained variance to 75.5%. Of the 16.3% explained variance in COT through
fixed effects, 14.4% were explained through the inclusion of between- and within-participant variance in MLE.

Running speed effects on cost of transport

COT increased significantly from s to s2 (p<0.001) but not to s3 (p=0.299; Table 1). Pairwise comparisons
indicated that COT was significantly lower at s3 relative to s1 (p=0.002) and s3 (p <0.001), whereas there was
no difference between s; and s3 (p=0.484; Fig. 3a). Mean COT values of all trials can be found in Table S1
(supplementary materials) and detailed results of pairwise comparisons of COT between speed categories can
be found in Table S2 (supplementary materials).

Running speed effects on stability

Complete LMM results for the effects of running speed on dynamic stability are presented in Table 2. There were
no differences between MLE at speeds sz (p=0.618) or s3 (p=0.579) compared to MLE at reference speed
s1 (Fig. 3b). The marginal and conditional R* values were 0.001 and 0.778, respectively, indicating that the fixed
effects of categorical running speed accounted for 0.1% of the variance in MLE, with the inclusion of participant-
level random effects increasing the explained variance to 77.8%. Mean MLE values of all trials are displayed in
Table S3 (supplementary materials).

Discussion

The primary aim of this study was to investigate the association between whole-body dynamic stability derived
from seven different body segments (bilaterally at the shanks, shoulder blades, forearms and at the pelvis) and
COT during treadmill running. In support of our primary hypothesis, we found a negative association between
dynamic stability and COT (f = —0.427, p=0.049), indicating that lower dynamic stability-assessed in terms of
MLE based on a multivariate state-space embedding-is associated with lower COT and thus improved running
economy. Contextually, this means that a difference in mean MLE of 1.0 between two runners is associated with
a COT difference of ~0.43 k] kg~! km~1. This difference is meaningful, as a runner with baseline COT of 4.15 k]
kg~! km~! (the mean COT in the current dataset) could theoretically lower their COT by ~3.0% when moving
from the first stability quartile (MLE=1.192) to the third (MLE = 1.482). Importantly, however, intra-individual
variance in COT across trials was not significantly associated with MLE (p=0.751). This suggests that whole-
body dynamic stability is a trait-level predictor-rather than state-level predictor-of COT during running and
implies that small changes to an individual’s dynamic stability-caused by naturally occurring trial-to-trial or
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Fig. 3. COT (a) and MLE (b) across running-speed categories. Dots are participant means within each speed
and thin grey lines link the same participant across speeds (s; = slow, s, = medium, s; = fast). Boxes show the
median (central line) and interquartile range (25th-75th percentiles) and whiskers extend to the most extreme
values within 1.5xXIQR. Asterisks indicate significant pairwise differences between speed categories (Tukey-
adjusted) from a linear mixed-effects model with speed as a fixed effect and participant as a random intercept.
COT =cost of transport; MLE = maximum Lyapunov exponent, IQR = interquartile range.

Estimate | 95% CI SE DF t-value | p-value
(Intercept) | 1.379 [1.270, 1.488] | 0.055 | 27.166 | 25.023 | <0.001**
So -0.018 [-0.090, 0.054] | 0.037 | 40.000 | —0.502 0.618
s3 -0.021 [-0.093, 0.051] | 0.037 | 40.000 | -0.559 0.579

Table 2. Fixed-effects results of the LMM to estimate effects of individualized running speed categories on
MLE. CI = confidence interval, DF = degrees of freedom, SE = standard error, * = p<0.05, ** = p<0.01, *** =
p<0.001.

day-to-day variability—are unlikely to affect COT. Therefore, long-term training interventions may be necessary
to meaningfully impact COT through changes in trait-level dynamic stability characteristics.

The present study found that the non-linear stability measure of MLE explains 14.4% of inter-individual
COT variance in trained runners. While it is the first study to investigate the relationship between MLE and
running economy directly, these results are consistent with previous work. For example, Schiitte et al.!° found
that a combination of linear and non-linear stability metrics explained 10.4% in COT variance, with greater
mediolateral sample entropy (a measure for signal complexity) being associated with improved running
economy. Together, these findings indicate that while other factors explain the majority of COT variance (e.g.,
metabolic, cardiorespiratory, biomechanical and neuromuscular efficiency; training history)?, a small yet
functionally relevant portion of running economy is determined by a runner’s dynamic stability characteristics.
Counterintuitively, however, more chaotic (i.e., higher MLE; current study), more complex (i.e., higher sample
entropy)'?, less orbitally stable (i.e., higher Floquet multipliers)!'! and more variable (i.e., higher anteroposterior
acceleration root mean square)'® movement dynamics are associated with a more efficient running gait. Thus,
current evidence suggests that lower dynamic stability is associated with better running economy and indicates
that there exists a trade-off between dynamic stability and movement efficiency.

Maintaining dynamic stability during running is associated with distinct energy costs'. It is, therefore, likely
that a more dynamically stable running technique would be achieved through allocation of additional metabolic
energy to the task of stabilization, which would increase metabolic energy expenditure necessary to travel a
given distance. Mechanistically, greater dynamic stability may in part be achieved through increased muscular
co-activation, which serves to increase joint stability during locomotion!® and results in increased muscular
activation necessary to produce a given net joint moment. As such, longer stance-phase coactivation of several
quadriceps-hamstrings muscle pairs (rectus femoris-biceps femoris, vastus lateralis-biceps femoris, rectus
femoris-biceps femoris and rectus femoris-gastrocnemius medialis) is associated with increased COT!718,
demonstrating that there exists a tradeoff between joint stability and COT. This tradeoff may mediate the
relationship between whole-body dynamic stability and COT found in the present study. For optimal running
performance, it may, therefore, be beneficial to reduce dynamic stability control to the lowest level at which
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stable and safe locomotion can still be ensured, while excessive stability would exert a metabolic penalty and lead
to a worsening in running economy. However, further research including electromyographic measurements of
agonist-antagonist muscle pairs in addition to measures of dynamic stability and running economy is necessary
to elucidate the relationship between muscular coactivation, joint (e.g., ankle, knee, hip), segment (e.g., shank,
thigh, lower trunk, upper trunk) and whole-body dynamic stability and running economy.

The secondary aim of the present study was to investigate whether running speed affects the MLE derived
from a multivariate state-space embedding which incorporates multiple body segments. Contrary to our second
hypothesis, running speed had no effect on MLE (p > 0.579), indicating that this singular, whole-body measure
of dynamic stability is robust against changes in running speed. These findings contrast previously published
results that demonstrate clear running speed effects on local dynamic stability of knee and hip joint as well as
center-of-mass dynamics'*~1>. However, these studies are contradictory with regards to the directionality of this
effect. Mehdizadeh et al.'* and Look et al.!® found that dynamic stability of an optical trunk marker as well as
knee, hip joint and center-of-mass, respectively, decreased with increasing running speed, while Cerrito et al.!?
showed an increase in dynamic stability of the hip joint with increasing running speed. Preliminary analyses of
our own data add to this contradiction, indicating that when MLE is calculated for individual body segments,
running speed-dependent changes are present in both directions. While increasing speed led to increases
in stability of the pelvis, upper trunk and forearms, it led to a reduction in stability at the shank (for further
details see Tables S4 and S5, supplementary materials). These differences in directionality between previously
published works and our data may stem from variations in participant populations (novice vs. experienced
runners) as well as in signal types used for dynamic stability calculation (marker positions or joint angles vs.
angular velocity). Notably, when calculating MLE based on a multivariate state-space embedding across multiple
body segments, these speed-dependent changes disappear with neither individualized running speed categories
(i.e., slow, medium, fast; presented in the results section) nor absolute running speed (i.e., in km/h; Table S6,
supplementary materials) affecting MLE. This indicates that certain signal characteristics that are present at
specific body segments may be masked by combination of segmental angular velocities to a single state-space.
Still, the resulting measure appears to be robust to changes in running speed, making it feasible to assess and
compare between individuals running at different speeds. This provides a key benefit of the multivariate MLE
when compared to values derived from individual body segments, which should only be assessed and compared
at a single speed due to their speed dependencies.

A more general issue of dynamic stability studies in running is the fact that many studies have shown that
dynamic stability as measured by the MLE is affected by demographic, training and environmental characteristics
(e.g., sex'?, running experience®?, fatigue?, etc.) but what is typically not evident from these studies is the specific
way in which the found results are practically relevant for runners or other stakeholders of the sport. To show
practical relevance, a direct link between the MLE and parameters relevant to injury risk or performance first
needs to be demonstrated, which-to the knowledge of the authors-has not yet happened. Here, for the first
time we demonstrate that dynamic stability can be directly linked to running economy, a measure that is highly
relevant for running performance?®?!. Future studies should focus on establishing practical relevance of non-
linear measures of dynamic stability rather than simply comparing measures across different conditions and
populations.

Finally, there are several limitations to the present study that need to be acknowledged. For one, while we
preserved the coupled dynamics of the locomotor system through combining 3D angular velocities of different
body segments into one multivariate state-space, the resulting estimate of whole-body dynamic stability may still
fall short of fully capturing the stability of the complex, multi-degree-of-freedom system that is human running.
Future work should focus on elucidating the systematic effects of incorporating multiple body segments into
dynamic stability calculations and determine the optimal placements of IMUs to determine whole-body
dynamic stability. Further, measures of whole-body dynamic stability might be validated using artificially
imposed balance deficits, which has recently been successfully applied to walking?? and may offer a method of
objectively determining effectiveness of running stability measures.

Additionally, while treadmill running in a laboratory environment greatly simplifies data collection and
allows for highly controlled measurements, there are kinematic and kinetic differences between treadmill and
overground running and results from one cannot simply be generalized to the other?. Lastly, the present study
as well as most previous research on dynamic stability in running focused on controlled environments and
smooth surfaces (e.g., laboratory treadmills, road and track surfaces)?, but stability may be more relevant during
uneven running conditions (e.g., trail running), where the presence of frequent perturbations demands greater
neuromuscular control to maintain stable locomotion**?*. This may help to explain why traditional predictors
of endurance performance-such as VOs,,,., %V Oa,,,, at ventilatory threshold and running economy-fail to
fully account for trail running performance®. Thus, future research should explore whether dynamic stability
during uneven running conditions may explain a larger portion of inter-individual variance in running economy.

Conclusions

This study is the first to directly link whole-body dynamic stability, assessed via a multivariate maximum
Lyapunov exponent, to running economy in trained runners. By embedding angular velocity signals from seven
body segments into a unified state-space, we demonstrated that runners with lower dynamic stability exhibited
lower cost of transport, indicating superior running economy. Importantly, this relationship emerged at the inter-
individual level only, suggesting that whole-body dynamic stability behaves more as a stable trait than a transient
state. Small, trial-to-trial fluctuations in stability within individuals were not associated with energetic cost,
implying that meaningful changes in running economy may require long-term adaptations in stability-related
control strategies rather than acute adjustments. Contrary to expectations, multivariate MLE was unaffected by
running speed across three individualized intensities. This robustness distinguishes whole-body stability from
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segment-level measures, which have been shown to vary with speed. Collectively, our findings support that
dynamic stability may be a subtle but functionally relevant determinant of running economy, explaining ~14% of
inter-individual COT variance through dynamic stability. Rather than more stable movement being universally
advantageous, our results support a trade-off in which energetic efficiency may be optimized by a degree of
dynamic instability. This challenges traditional interpretations of stability as inherently beneficial and suggests
that economical runners may exploit controlled variability to minimize the metabolic costs of over-stabilization.

Methods

Subjects )

Twelve male (34.9+8.3 years, 71.1+8.5 kg, BMI 224+1.9 kgm™?, VO, 62.0+51 mL kg~ " min~")
and nine female (29.1+10.2 years, 62.3+5.9 kg, BMI 21.8+1.5 kgm™?, VOy,,,522+32 mLkg™ ' min~")
trained runners participated in this study. All participants had a minimum weekly training volume of 20 km
(average 32.4+12.0 km) and a recorded seasonal 10 km race time under 45 min for males (36:50 +2:50 min)
and 50 min for females (45:06 + 3:50 min). On the day of testing, all runners reported being in good health and
free from musculoskeletal injuries for at least three months. Written informed consent was obtained from all
participants prior to their involvement. The study adhered to the principles of the Declaration of Helsinki and
received ethical approval from the Ethics Committee of the Department of Engineering and Industrial Design at
Magdeburg-Stendal University of Applied Sciences (certificate number EKIWID-2023-09-001RM).

Experimental protocol

A randomized cross-over design was used to evaluate the effects of dynamic stability on COT as well as the
running speed effects on dynamic stability. For this, runners were tested on a treadmill across a comprehensive
range of individualized running speeds between first and second ventilatory thresholds. Participants attended
two separate lab sessions. In the first session, participants completed an incremental test on a motorized
treadmill (Star Trac FreeRunner 10TRx, Core Health 6 Fitness, Vancouver, BC, Canada), starting at 6.0 km h™ 1
with 3 min stages increasing by 2.0 km h™" until voluntary exhaustion was reached, while breath-by-breath
pulmonary gas exchange data were collected using a metabolic cart (MetaMax 3B, CORTEX Biophysik GmbH,
Leipzig, Germany) and used to determine running speeds at ventilatory thresholds 1 and 2 (sVT1 and vVT2).
VOa,.,, was defined as the maximum oxygen consumption recorded during this session.

The aim of the second visit was to assess dynamic stability and COT over a range of running speeds from
easy running to race pace. During this session, each participant performed five trials of 3 x 3 min of treadmill
running at the three individual running speeds s1 = 90% sVT1, s2= % (sVT1+sVT2), and s3= 100% sVT2.
The present dataset was collected as part of a larger project which incorporated testing of four different advanced
footwear technology running shoe models against each runner’s own habitual training shoes, which is why
participants wore a different pair of shoes for each bout in randomized order (for details see Riedl et al.?’. For
the purpose of the present study, dynamic stability and COT were averaged across footwear conditions. The
associated intensities of “easy” (s ), “threshold” (s,), and “competition” (s,) were chosen as they represent speeds
that are typically used by runners in training and racing. Average running speeds at s1, s2 and s3 were 10.31
+0.96,13.43 + 1.38 and 15.39 + 1.75 km h ™', respectively. Each trial consisted of 3 consecutive 3 min intervals
of increasing speed at s, s, and s, in fixed order, while breath-by-breath pulmonary gas exchange data were
collected. The 3 min interval duration was chosen to ensure metabolic steady-state while minimizing fatigue
accumulation?. Additionally, metabolic steady state was confirmed visually (continuous COT data from all
subjects across all trials as well as individual running speeds are displayed in Fig. S1, supplemental materials),
and limited anaerobic contribution was assured by a respiratory exchange ratio (RER) of < 1.0 during all trials.
3D angular velocities were recorded using seven inertial measurement units (IMUs; 100 Hz; Xsens Awinda,
Xsens Technologies, Enschede, the Netherlands), which were attached directly to the participants’ skin using a
combination of proprietary straps and sports tape at the following locations: left and right tibiae, sacrum, left
and right shoulder blades and left and right radii. The full experimental setup is displayed in Fig. 1. Treadmill
velocity was automatically controlled by the spirometry software through a participant-specific protocol and
written into the metabolic cart data file, synching metabolic data to treadmill velocity. IMU data collection was
then manually synched to metabolic data by beginning and ending recording at 30 s and 180 s, respectively, of
running at a given speed. Each trial was separated by five minutes of rest to allow for shoe change and sufficient
recovery, which was verified by heartrate and cardiopulmonary values prior to starting the subsequent trial.
Runners were instructed to abstain from strenuous exercise for at least 48 h prior to both laboratory visits and
were encouraged to match diet and sleep patterns as closely as possible between visits 1 and 2.

Data processing and analysis

Cost of transport

Ventilatory thresholds 1 and 2 were determined by two independent experts using the Cortex MetaSoft software
suite 5.5.1 before exporting the dataset for further analysis. Further data processing steps and analyses of
cardiopulmonary data were conducted using a custom script written in MATLAB R2023a (The MathWorks Inc.,
Natick, MA, USA). All cardiopulmonary data were first cleaned by removing outliers that exceeded the mean
of a 7-breath window by more than 2 standard deviations and then smoothed by applying a 7-breath moving
average?. Cardiopulmonary datasets from visit 2, which consist of 5 trials (one per footwear condition) and 3
intervals per trial (one per speed), were split into individual intervals, so that for each participant 5 x 3 = 15
intervals of gas exchange data were used for further analysis. From these 15 blocks of 3 min intervals, the final
60 s of VO2and VCO2 data were averaged and used to calculate energy consumption by use of Pérronet and
Massicotte’s non-protein respiratory quotient equations®’. Mean COT (k] kg~ ! km~!) was then calculated to
normalize energy consumption with respect to body mass and running speed. Two runners (subjects 15 & 19; 1
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male, 1 female) exceeded RER of 1.0 during their s3 intervals and thus were excluded from all COT analyses of
the present study, reducing the sample to 19 runners (11 male, 8 female).

Whole-body dynamic stability

All data processing and analysis for dynamic stability were conducted in Python (3.11.9). To quantify dynamic
stability, short-term maximum Lyapunov exponents (MLE) were computed from a high-dimensional state space
constructed from all seven IMUs, attached bilaterally on the shanks, forearms, shoulder blades, and at the pelvis.
From each device, the three axes of angular velocity were used, resulting in a 21-dimensional signal at each
time sample. Initial contacts of the right foot were identified using angular velocity of the right shank about the
mediolateral axis®!2. The final 100 strides of each 3-min interval were extracted and time-normalized to 10,000
points (100 strides x 100 samples per stride)®. To analyze the signals, a 21-dimensional state-space vector s (¢)
was reconstructed using time-delayed embedding as follows:

sW)=x@),zt+7),z(t+2t)... ,2(t+ (dg —1)7)] (1)

where z () is the concatenated 21-dimensional vector of time-normalized gyroscope signals, T is the time delay,
and d, is the embedding dimension. Time delay (7) was selected from the first minimum of the average mutual
information, and embedding dimension (d,;) was determined using the global false nearest neighbors method”.
Integer mean values of T and d;; across participants and conditions were used for final embedding (7 =8, d, = 2).

Divergence curves were calculated using the Rosenstein algorithm?®*. For each state vector, the nearest non-
temporal neighbor was identified using a Theiler window of one stride to avoid autocorrelation. Logarithmic
divergence was tracked over time, and the short-term slope (visually identified as 25% of one stride** of the
divergence curve defined MLE (for exemplary plots see Fig. S2, supplemental materials)). Higher MLE indicates
faster divergence of trajectories and therefore lower dynamic stability. Unlike prior approaches that calculated
separate MLE values for individual body segments, this method quantifies whole-body stability from a unified,
high-dimensional representation of running dynamics, preserving the coupled dynamics of the locomotor
system. Due to minimum time-series length requirements of the MLE for state-space reconstruction, it was
not possible to synch MLE values directly to COT values, as COT could only be validly determined during the
final 60 s of running at a given speed?®, which was shorter than the time period it took runners to complete the
requisite number of strides. However, based on average stride frequencies of 1.34, 1.40 and 1.45 strides min~!
during s, s, and s,, respectively, MLE was assessed during the final 74.53, 71.43 and 68.97 s, resulting in only a
short time period during which data was collected for MLE calculation but not for COT calculation.

Statistical analysis

Stability and cost of transport

All statistical analyses were performed in R Studio (version 2024.04.2; RStudio PBC, Boston, MA, USA). To
investigate whether dynamic stability quantified via MLE is associated with COT, we utilized a linear mixed-
effects model with a decomposition of within- and between-participant effects. This approach allowed for
separate investigation of whether within- or between-participant variance in MLE was associated with a
systematic change in COT. In essence, we could evaluate whether participants’ average MLE values (averaged
across all running trials; between-participant differences) or participants’ trial-to-trial deviations from their
own average MLE (within-participant variability) were associated with corresponding systematic changes in
COT. To achieve this, we first calculated the participant-specific average MLE across all running trials to capture
between-participant variation, and then calculated the deviation from this mean on each trial to isolate within-
participant variation. This group-mean centering ensures that within- and between-participant effects are
evaluated separately and that these effects are not conflated. The model was estimated using restricted maximum
likelihood (REML) and had the following form:

COTs; =Bo+Bp- X;+Bw- (Xij*)_(j>+ﬁz‘ Zij +uj + € )

where C'OT; is the dependent variable for trial i of participant j, Xj; is the trial-level predictor (i.e., MLE
during trial i of participant j), X is the participant-specific mean MLE across all trials (between-participant

component), X;; — X ; is the deviation from a participant’s own mean MLE (within-participant component)

and Z;; are additional fixed-effects covariates (i.e., speed). 3, is the fixed intercept (expected COT when all
predictors are at reference levels), 3 g is the between-participant slope (indicating whether participants with
higher average MLE values tend to have higher average COT), 3 y;, is the within-participant slope (indicating
whether a participant’s COT increases on trials where their MLE is higher than usual) and f3 , are fixed effect
coefficients for the additional covariates. Finally, u; ~ N (0,0 2) is the random intercept for participant j and
€ij ~ N(0,0 ?) is the residual error term for trial i. Marginal and conditional R? were determined to evaluate
model fit and assumptions of linearity, homoscedasticity and normality of residuals as well as for potential
participant-specific deviations were tested.

Marginal R? of this model (incl. MLE predictors) was compared to a simpler model which only included fixed-
effects for speed to determine the amount of additional variance explained through inclusion of MLE predictors.
EMMs for running speed were obtained by averaging over footwear conditions and pairwise comparisons were
performed using Tukey adjusted tests.
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Stability and running speed

To test whether running speed influences dynamic stability, we first aggregated MLE within participant and
speed category, averaging across all footwear conditions to isolate speed effects. We fit an LMM with speed
as a categorical predictor (levels: s,, s,, s;; reference: s;) and a random intercept for participant to account for
repeated measures. The model was estimated via REML:

MLEij = Bo+ Bs Sij+uj+ei ®)

where MLE;; is the multivariate MLE for trial j of participant ¢ (i = 1,... ,N)is the fixed intercept
(expected MLE at the reference speed category s,), 3 g is a vector of fixed effects associated with the non-
reference speed categories (s, and s,) and S; is the corresponding design vector encoding the trial’s speed.
uj ~ N(0,02) is the random intercept for participant j and u; ~ N (07 o 2) is the residual error term.

Explanatory power of the linear mixed-effects model was assessed using marginal R* (variance explained by
the fixed effects alone) and conditional R? (variance explained by both fixed and random effects) values. These
indices provide a measure of overall model fit and an assessment of the relative contribution of predictors and the
random intercept for participant. The final LMM was evaluated for assumptions of linearity, homoscedasticity
and normality of residuals as well as for potential participant-specific deviations that could influence the overall
fit. Results are presented as means + standard deviation and a priori alpha level was set at p = 0.05 for all tests.

Data availability
All experimental data, alongside scripts for data processing and statistical analyses, are available from the corre-
sponding author on request.

Received: 20 August 2025; Accepted: 27 October 2025
Published online: 31 October 2025

References

1. Arellano, C. J. & Kram, R. The energetic cost of maintaining lateral balance during human running. J. Appl. Physiol. 112, 427-434.
https://doi.org/10.1152/japplphysiol.00554.2011 (2012).

2. Barnes, K. R. & Kilding, A. E. Running economy: measurement, norms, and determining factors. Sports Med. Open. 1 https://doi.
0rg/10.1186/s40798-015-0007-y (2015).

3. Winter, L., Taylor, P, Bellenger, C., Grimshaw, P. & Crowther, R. G. The application of the Lyapunov exponent to analyse human
performance: A systematic review. J. Sports Sci. 41, 1994-2013. https://doi.org/10.1080/02640414.2024.2308441 (2023).

4. Hoenig, T,, Hamacher, D., Braumann, K., Zech, A. & Hollander, K. Analysis of running stability during 5000 m running’. Eur. J.
Sport Sci. 19, 413-421. https://doi.org/10.1080/17461391.2018.1519040 (2019).

5. Bruijn, S. M., Meijer, O. G., Beek, P.J. & Van Dieén, J. H. Assessing the stability of human locomotion: a review of current measures.
J. R Soc. Interface. 10, 20120999. https://doi.org/10.1098/rsif.2012.0999 (2013).

6. Mahaki, M., Mimar, R., Sadeghi, H., Khaleghi Tazji, M. & Vieira, M. E The effects of general fatigue induced by incremental
exercise test and active recovery modes on energy cost, gait variability and stability in male soccer players. J. Biomech. 106, 109823.
https://doi.org/10.1016/j.jbiomech.2020.109823 (2020).

7. Hollander, K., Hamacher, D. & Zech, A. Running barefoot leads to lower running stability compared to shod running - results from
a randomized controlled study. Sci. Rep. 11, 4376. https://doi.org/10.1038/s41598-021-83056-9 (2021).

8. Frank, N. S., Prentice, S. D. & Callaghan, J. P. Local dynamic stability of the lower extremity in novice and trained runners while
running intraditional and minimal footwear. Gait Posture. 68, 50-54. https://doi.org/10.1016/j.gaitpost.2018.10.034 (2019).

9. Thomas, D. Q,, Fernhall, B. & Granat, H. Changes in running economy during a 5-km run in trained men and women runners. J.
Strength. Cond Res. 13, 162-167 (1999).

10. Schiitte, K. H., Sackey, S., Venter, R. & Vanwanseele, B. Energy cost of running instability evaluated with wearable trunk
accelerometry. J. Appl. Physiol. 124, 462-472. https://doi.org/10.1016/j.gaitpost.2017.10.021 (2018).

11. Panday, S. B., Pathak, P. & Ahn, J. Professional long distance runners achieve high efficiency at the cost of weak orbital stability.
Heliyon 10, e34707. https://doi.org/10.1016/j.heliyon.2024.e34707 (2024).

12. Kettner, C., Stetter, B. & Stein, T. The effects of running shoe stack height on running style and stability during level running at
different running speeds. Front. Bioeng. Biotechnol. https://doi.org/10.1101/2024.11.19.624278 (2024).

13. Cerrito, A., Wittwer, L. & Schmitt, K. U. The effect of running experience and speed on local dynamic stability in running. Front.
Sports Act. Living. 7, 1387934. https://doi.org/10.3389/fspor.2025.1387934 (2025).

14. Mehdizadeh, S., Arshi, A. R. & Davids, K. Effect of speed on local dynamic stability of locomotion under different task constraints
in running. Eur. J. Sport Sci. 14, 791-798. https://doi.org/10.1080/17461391.2014.905986 (2014).

15. Look, N. et al. Dynamic stability of running: the effects of speed and leg amputations on the maximal Lyapunov exponent. Chaos
23, 043131. https://doi.org/10.1063/1.4837095 (2013).

16. Lewek, M. D., Rudolph, K. S. & Snyder-Mackler, L. Control of frontal plane knee laxity during gait in patients with medial
compartment knee osteoarthritis. Osteoarthr. Cartil. 12, 745-751. https://doi.org/10.1016/j.joca.2004.05.005 (2004).

17. Moore, L. S., Jones, A. M. & Dixon, S. J. Relationship between metabolic cost and muscular coactivation across running speeds. J.
Sci. Med. Sport. 17, 671-676. https://doi.org/10.1016/j.jsams.2013.09.014 (2014).

18. Tam, N., Santos-Concejero, J., Coetzee, D. R., Noakes, T. D. & Tucker, R. Muscle co-activation and its influence on running
performance and risk of injury in elite Kenyan runners. J. Sports Sci. 35, 175-181. https://doi.org/10.1080/02640414.2016.115971
7 (2017).

19. Promsri, A. Sex difference in running stability analyzed based on a Whole-Body movement: A pilot study. Sports 10, 138 (2022).

20. Conley, D. L. & Krahenbuhl, G. S. Running economy and distance running performance of highly trained athletes. Med. Sci. Sports
Exerc. 12, 357-360 (1980).

21. Kipp, S., Kram, R. & Hoogkamer, W. Extrapolating metabolic savings in running: implications for performance predictions.
Frontiers Physiology 10, 79 (2019).

22. Wu, J. et al. Detecting artificially impaired balance in human locomotion: metrics, perturbation effects and detection thresholds.
Journal Experimental Biology 228(10) (2025).

23. Van Hooren, B. et al. Is motorized treadmill running biomechanically comparable to overground running? A systematic review
and meta-analysis of cross-over studies. Sports Med. 50, 785-813. https://doi.org/10.1007/s40279-019-01237-z (2020).

24. Santuz, A. et al. Lower complexity of motor primitives ensures robust control of high-speed human locomotion. Heliyon 6, €05377.
https://doi.org/10.1016/j.heliyon.2020.e05377 (2020).

Scientific Reports |

(2025) 15:38117 | https://doi.org/10.1038/s41598-025-26008-x nature portfolio


https://doi.org/10.1152/japplphysiol.00554.2011
https://doi.org/10.1186/s40798-015-0007-y
https://doi.org/10.1186/s40798-015-0007-y
https://doi.org/10.1080/02640414.2024.2308441
https://doi.org/10.1080/17461391.2018.1519040
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.1016/j.jbiomech.2020.109823
https://doi.org/10.1038/s41598-021-83056-9
https://doi.org/10.1016/j.gaitpost.2018.10.034
https://doi.org/10.1016/j.gaitpost.2017.10.021
https://doi.org/10.1016/j.heliyon.2024.e34707
https://doi.org/10.1101/2024.11.19.624278
https://doi.org/10.3389/fspor.2025.1387934
https://doi.org/10.1080/17461391.2014.905986
https://doi.org/10.1063/1.4837095
https://doi.org/10.1016/j.joca.2004.05.005
https://doi.org/10.1016/j.jsams.2013.09.014
https://doi.org/10.1080/02640414.2016.1159717
https://doi.org/10.1080/02640414.2016.1159717
https://doi.org/10.1007/s40279-019-01237-z
https://doi.org/10.1016/j.heliyon.2020.e05377
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

25. Scheer, V. et al. Defining off-road running: A position statement from the ultra sports science foundation. Int. . Sports Med. 41,
275-284. https://doi.org/10.1055/a-1096-0980 (2020).

26. De Waal, S.J., Gomez-Ezeiza, ]., Venter, R. E. & Lamberts, R. P. Physiological indicators of trail running performance: A systematic
review. Int. ]. Sports Physiol. Perform. 16, 325-332. https://doi.org/10.1123/ijspp.2020-0812 (2021).

27. Riedl, M., Von Diecken, C. & Ueberschir, O. One shoe to fit them all? Effect of various carbon plate running shoes on running
economy in male and female amateur triathletes and runners at individual training and race Paces. Appl. Sci. 14, 11535 (2024).

28. Saunders, P. U, Pyne, D. B,, Telford, R. D. & Hawley, J. A. Reliability and variability of running economy in elite distance runners.
Med. Sci. Sports Exerc. 36, 1972-1976. https://doi.org/10.1249/01.mss.0000145468.17329.9f (2004).

29. Knopp, M. et al. Variability in running economy of Kenyan world-class and European amateur male runners with advanced
footwear running technology: experimental and meta-analysis results. Sports Med. 53, 1255-1271. https://doi.org/10.1007/s4027
9-023-01816-1 (2023).

30. Péronnet, FE & Massicotte, D. Table of non-protein respiratory quotient: an update. Can. J. Sport Sci. 16, 23-29 (1991).

31. Greene, B. R. et al. An adaptive gyroscope-based algorithm for Temporal gait analysis. Med. Biol. Eng. Comput. 48, 1251-1260.
https://doi.org/10.1007/s11517-010-0692-0 (2010).

32. McGrath, D., Greene, B. R., O’'Donovan, K. J. & Caulfield, B. Gyroscope-based assessment of Temporal gait parameters during
treadmill walking and running. Sports Eng. 15, 207-213. https://doi.org/10.1007/s12283-012-0093-8 (2012).

33. Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets.
Phys. D. 65, 117-134. https://doi.org/10.1016/0167-2789(93)90009-P (1993).

34. Fohrmann, D. et al. Reliability of running stability during treadmill and overground running. Sensors 23, 347 (2022).

Acknowledgements
We would like to thank all the participants in this study for their time and effort. We would also like to thank Eric
Quellmalz for providing us with test shoes from four manufacturers free of charge for the duration of this study.

Author contributions

All authors have read and approved the final submitted manuscript and agree to be accountable for the work.
CVD wrote the original draft, created software for data processing and conducted data analysis, statistics and
visualization. MR contributed to conceptualization of the project and conducted all data collection. SW contrib-
uted to review and editing of the manuscript and provided critical revisions to improve impact and readability.
OU was responsible for project conceptualization and supervision and contributed to the review and editing of
the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/541598-025-26008-x.

Correspondence and requests for materials should be addressed to C.D.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:38117 | https://doi.org/10.1038/541598-025-26008-x nature portfolio


https://doi.org/10.1055/a-1096-0980
https://doi.org/10.1123/ijspp.2020-0812
https://doi.org/10.1249/01.mss.0000145468.17329.9f
https://doi.org/10.1007/s40279-023-01816-1
https://doi.org/10.1007/s40279-023-01816-1
https://doi.org/10.1007/s11517-010-0692-0
https://doi.org/10.1007/s12283-012-0093-8
https://doi.org/10.1016/0167-2789(93)90009-P
https://doi.org/10.1038/s41598-025-26008-x
https://doi.org/10.1038/s41598-025-26008-x
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Runners with lower dynamic stability exhibit better running economy
	﻿Results
	﻿Stability effects on cost of transport
	﻿Running speed effects on cost of transport
	﻿Running speed effects on stability

	﻿Discussion
	﻿Conclusions
	﻿Methods
	﻿Subjects
	﻿Experimental protocol
	﻿Data processing and analysis
	﻿Cost of transport
	﻿Whole-body dynamic stability


	﻿Statistical analysis
	﻿Stability and cost of transport
	﻿Stability and running speed

	﻿References


