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The attack surface for cyber threats targeting the Android platform has grown dramatically due to the
widespread use of Android handsets, the openness of the Android ecosystem, coarse-grained authorization
structures, and the invocation of third-party code. The effectiveness of machine learning methods in
identifying Android malware has been shown by recent studies. In this work, we provide a hybrid analysis
approach that combines static and dynamic analysis to detect Android malware in a dependable and efficient
manner. This hybrid model increases detection precision and accuracy while also improving feature
extraction procedures. Additionally, we compare the results of static and dynamic analysis with the hybrid
approach and look at how each affects classification performance separately. According to experimental
results, our hybrid model performs better than other models, achieving 98.9% accuracy, 99.1% precision,
98.3% recall, and 98.7% F1-score. These results indicate a 12% and 22% increase in detection accuracy,
respectively, over static and dynamic analytic techniques. Additionally, our findings highlight the limitations
of using static or dynamic analysis alone, in terms of detection accuracy, resource efficiency, and behaviour
profiling of Android malware. Overall, the study highlights the effectiveness of hybrid analysis in enhancing
malware detection systems and achieving more reliable and accurate security classifications.

1 INTRODUCTION

Android has emerged as the most popular smartphone
operating system due to the quick development of
mobile intelligent terminals [1]. In the mobile sector,
Android OS held a global market share of over 71.9%
as of July 2023. Google Play is the official app store
running on Android smartphones. There were over
2.9 million applications on it as of May 2021.
Approximately 2.5 million of them are categorized by
AppBrain as standard apps, while 0.4 million are
classified as low-quality apps. Android is more
attractive to thieves due to its widespread use, but it
is also more susceptible to viruses and malware [2].
However, because Android apps are widely
distributed, open-source, and have coarse-grained
permission management, they can be obtained from
potentially dangerous third parties outside of the
official Android Market, leaving the platform open to
malware attacks [3]. To address these security
concerns, various methods for detecting Android
malware have been proposed [4]. One of the best
methods for detection is machine learning [5]. There
are a couple of primary sources of features in the

machine learning-based Android malware detection
implementation:  both  dynamic and static
extraction [6].

The Dalvik bytecode, native code, manifest,
sound, image, and inverted APK files are the sources
of the static features. By executing APK files in the
environment, the dynamic characteristics are
retrieved from code execution, paths, variable value
tracking, sensitive function calls, log records, and
other behaviors that take place during the
application's  operation [4]. By employing
sophisticated preprocessing to choose the best
samples, providing rich data, and enabling machine
learning for effective malware detection using the
CIC-AndMal2017 dataset, this study suggests a
reliable way for identifying malicious Android
applications. The strategy makes use of machine
learning methods, including Random Forest, Support
Vector Machines, K-Nearest Neighbors, and
Stacking Ensemble Model to classify applications
using dynamic analysis, which deals with dynamic
features, and static analysis, which concentrates on
static features. Following the implementation of these
strategies, the same model was then assessed through
hybrid analysis, which combines static and dynamic
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data to maximize feature extraction and improve
malware detection efficacy and precision. When
compared to the hybrid strategy, both individual
approaches showed a considerable decrease in
performance.

Therefore, it is essential to compare how static,
dynamic, and hybrid analysis affect an attack
detection system's performance. Every analysis type
has its own advantages and disadvantages. For
example, static analysis looks at the application's
code without running it, which makes scanning
quicker and more comprehensive but may miss
runtime behaviors. Although it frequently takes more
time and processing resources, dynamic analysis, on
the other hand, watches how the program behaves
while it is running and can reveal dangerous activity
that static approaches could miss. By utilizing the
advantages of both methods, hybrid analysis may be
able to maximize detection accuracy. Assessing each
of the three approaches yields a thorough
comprehension of how each one affects system
performance separately and in combination. The main
contribution of this paper is:

= Assess a number of machine learning
classifiers using three different analysis types:
static, dynamic, and hybrid.

= Contrast the outcomes of malware
identification utilizing features based on static
and dynamic analysis.

= Compare the cost of using various feature types
in terms of the amount of time needed for
training.

= A large dataset and a hybrid technique can
achieve high classification accuracy.

The rest of this paper is displayed as follows:
Section 2 provides an overview of the related work.
The suggested methodology is introduced in Section
3 that includes a sub-subsection: 3.1 Dataset
Description, 3.2 The Specifics of the Suggested
Approach. The result and discussion are provided in
section 4. Whereas section 5 summarizes the
conclusions.

2 RELATED WORK

There are three methods to examine the malicious
mobile application: (Hybrid analysis, dynamic
analysis, and static analysis) based on various
retrieved features, either dynamic, static, or both. This
section presents pertinent studies on the application
of machine learning algorithms and various analysis
methodologies for Android malware detection using
the CICAndMal2017 dataset.

2.1 Static Analysis-Based Features

The program's resources and source code are used for
static analysis without executing the code [7]. In static
malware analysis, we have extracted different types
of static features i.e. API calls, intents, permissions
and command strings. Omar N. Elayan and Ahmad
M. Mustafa [8] they offer a method for identifying
malware in Android applications. Additionally, they
compare deep learning approaches with conventional
machine learning techniques A portion of the
CICAndMal2017 dataset, which includes 365
malware samples and 347 benign samples of Android
apps, was used in this investigation. They extract two
static features from Android applications:
permissions and Application Programming Interface
(API) calls. Hence, Experiments show that the deep
learning algorithm performs better, with a precision
rate of 98.2%. Recep Sinan ARSLAN [9] a suggested
ensemble machine learning model is presented in this
work to efficiently detect and categorize several kinds
of malware, such as ransomware, scareware, adware
and SMS malware. The CICAndMal-2017 dataset,
was used to train and assess the model in issue. The
classification of malware and benign software is not
the main focus of this work; rather, it is the
identification of malware types. 90.4% accuracy was
attained in identifying the malware category in the
studies that were carried out using 486 instances of
malicious samples. Additionally, the F1-score,
precision, and recall were 90.4%.

2.2 Dynamic Analysis-Based Features

Analyzing a running program's attributes is known as
a dynamic analysis, it is performed while executing
the code [10]. In dynamic malware analysis, we have
extracted different types of dynamic features i.e.
cryptographic operations, dynamic permissions,
actions, IP address, information leaks and system
calls. M.Gracea and Dr. M. Sughasiny [11] The study
uses a hybrid Long Short-Term Memory (LSTM-
SVM) model and an Aquila optimizer. The Aquila
optimizer is used in the cross-validation feature
extraction process to determine which dynamic
features are most appropriate. The Android malware
dataset CICAndMal2017 is used. For the suggested
model, the performance metrics Accuracy, Precision,
Recall, Error, Specificity, F1 score, Negative
Predictive Value (NPV), False Positive Rate (FPR),
and False Negative Rate (FNR) are 0.97, 0.94, 0.90,
0.03,0.95, 0.93, 0.96, 0.10, and 0.02 per sec. Zhixing
Xue, et al. [12] developed an ensemble-learning
strategy based on stacking to detect and categorize
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malware on Android devices Through the process of
clustering, the model first eliminated any third-party
data from the stream in order to obtain clean
beginning information. (73) Statistical features, as the
most appropriate for classification, and (86) flow-
level attributes, which were later obtained by feature
engineering. They construct the classification model
using CICAndMal2017 dataset. The experiment's
findings demonstrate that by excluding third-party
traffic and utilizing relevant traffic features,
classification accuracy improved to as much as
96.7%.

2.3 Hybrid Analysis-Based Features

Hybrid analysis is a blend of dynamic and static
analysis, which can improve the accuracy and
efficiency of Android malware detection [1]. Jiayin
Feng, et al. [13] suggested HGDetector, a multi-
featured hybrid malware detection and category
categorization technique. This method employs the
dynamic network traffic features to generate the node
interactivity graph and edge-node graph after
extracting the static function call graph and creating
the network behavior function call graph. Finally, the
accuracy of detecting malware was then tested using
a variety of classifiers in conjunction with the
suggested HGDetector. The experimental findings
show that the suggested HGDetector model's
accuracy with MLP, LR, RF, and SVM classifiers in
the CICAndMal2017 dataset is 97% with SVM.

3 METHODOLOGY

There are three primary phases in the proposed model
for the Android malware detection system they are:
(Data pre-processing phase, Feature selection phase,
Classification phase). Each of these stages is essential
to guaranteeing the detecting system's precision and
effectiveness. Some of these phases require a number
of steps to accomplish their objectives. Several
machine learning methods are wused in the
classification step to effectively identify and
categorize Android malware.

Figure 1, which illustrates the system's total
workflow, provides a clear illustration of these
phases.

3.1 Dataset Description

This study has utilized a portion of the
CICANndMal2017 dataset, generated and released by

Lashkari et al. [14] and available on the Canadian
Institute of Cyber Security's website [15]. In this
paper, 70,000 samples were chosen from the original
dataset due to constraints on computing power and
storage; this dataset consists of 18,000 malicious and
52,000 benign samples. There are 84 unique features
in the dataset before applying any process. This
dataset's malware samples are divided into four
groups: (Adware, Ransomware, Scareware, SMS
Malware). According to their names, each type
carries out particular attacks. The samples include 42
distinct malware families from the four previously
listed categories. Data is gathered on actual devices in
three distinct states: To capture realistic behavior, this
was done during installation, before to the restart, and
following the restart [9].

3.2 The Details of the Suggested
Methodology

The three phases of the suggested methodology are:
data preprocessing phase, feature selection phase, and
classification phase.

3.2.1 Data Preprocessing Phase

Our proposed work focus on employing sophisticated
preprocessing to select the best samples, delivering
rich data and enabling machine learning for efficient
malware detection.

Dataset Preprocessing follows the procedure as
below:

Step 1. Type conversion. Non-numeric columns
(e.g., strings or categorical values) are transformed to
numeric representations.

Step 2. Missing Value Handling (NaN). The usual
procedure for dealing with missing data is to either
fill NaN values or drop them.

Step 3. Drop high cardinality columns. This
function removes columns when the ratio of unique
values to total rows exceeds a predefined threshold
(0.9).

Step 4. Duplication Removal. Duplicate rows are
deleted from the dataset so that the final dataset only
contains unique data points.

Step 5. Normalization (Standardization). Standard
Scaler is used to standardize the numeric columns.

Step 6. Memory optimization. Changing "float64"
columns to "float32" and "int64" columns to "int32".
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Figure 1: The suggested model.

After applying these steps, class imbalance frequently
arises from unequal class distribution. This phase
creates a balanced malware detection dataset derived
from CIC-AndMalS2017. The ADASYN algorithm
resolves dataset imbalance by generating synthetic
samples for the minority class (malware) through data
distribution analysis, achieving a 60% benign to 40%
malware balance.

3.2.2 Feature Selection Phase

Feature selection enhances malware detection
effectiveness by eliminating redundant and irrelevant
features [1]. Selecting optimal features improves
accuracy, efficiency, and model interpretability. A
filter-based technique (CFS) was applied, beginning
with the mathematical foundation of the Pearson
correlation coefficient [16]. The Pearson correlation

between two random variables, X and Y, can be
calculated mathematically as illustrated in (1) and (2):

Cov(X,Y)

Ox Oy

Pxy = (1)
where Cov (X, Y) is the covariance between x and v,
and oy and oy are the standard deviations of x and y.
In a sample of size n, it can be calculated as follows:

. iz (6 = X)(yi — y)
\/Z?=1(xi—f)2 \/Z?=1(yi—3_’)2
where the sample means of x; and y; are denoted by x
and y respectively.
Each feature's correlation with the target class was

computed. A threshold of 0.2 was then applied to
identify features with strong linear associations to the

2
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target. This threshold was chosen to detect weak
relationships while avoiding information loss.

3.2.3 The Classification Phase

Once the feature selection process is complete, 30%
of the dataset is used for testing, while 70% is used
for training. In this phase, we decided to implement
machine learning methods in the classification of the
malware detection system. Since labels are present in
the sample data set, supervised machine learning has
been used in the study with four machine learning
methods: Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Random Forest (RF), and Stacking
Ensemble Model. They are used for the purpose of
comparing performance and enhancing the validity of
the models. We go over each algorithm's features in
turn, as follows:

3.2.3.1 Support Vector Machine (SVM)

SVM generates one or more hyperplanes, and the
most effective one separates data into classes, with
the most important class division occurring [17]. Our
implementation of SVM on the CIC-AndMal2017
dataset utilize the RBF kernel to manage non-linear
relationships and perform hyperparameter Tuning
uses the parameter grid as follows:

param_grid ={ 'C": [0.1, 1, 10, 100, 1000],
‘gamma’: [1, 0.1, 0.01, 0.001, 0.0001],
‘kernel': ['rbf']}.

The use of cross-validation is intended to alternate
between different values of C and gamma in order to
find the optimal parameters, which will then be used
in the subsequent classification. after applying 5-fold
cross-validation for each candidate, choose
parameters that optimize cross-validation accuracy as
follows:

('svm_rbf', SVC(gamma=0.1, C=100)).

Classify the test data using the learned SVM
model. The two classes are clearly distinguished by
this hyper-plane. Hence, this algorithm determines if
an application is malicious or benign.

3.2.3.2 Random Forest (RF)

RF is an ensemble method that at each split point
selects a random sample of features to determine

feature importance [18]. This study trains 100

decision trees; using 100 trees is a practical choice as
it provides accurate and stable results, reduces
variance, and balances performance and speed. It
computes entropy before and after each split and
selects the split with the highest information gain. The
majority vote across all trees determines the final
prediction. RF was implemented as the best estimator
in the stacking model with:

('rf', Random Forest Classifier(n_estimators =100,))

The highest accuracy was achieved using these
estimators across the dataset, where the predicted
target with the highest number of votes is the final
prediction.

3.2.3.3 K-Nearest Neighbor (KNN)

K-Nearest Neighbor measures distances between data
points to classify new instances based on proximity to
training points [19]. This work implemented KNN
starting with 40 neighbors and computed error rates
for k-values from 1 to 39. As shown in Figure 2, k=4
was selected for the final stacking model as it
achieved the optimal balance between low error and
reduced overfitting risk.

3.2.3.4 Stacking Ensemble Model

Figure 2 illustrates the proposed ensemble model
incorporating SVM, KNN, and RF classifiers as base
learners. Each model was trained independently on
training and test sets. These base models were then
integrated into the stacking ensemble framework. The
stacking model uses the three base models as
individual learners with a Random Forest classifier as
the meta-learner. In the stacking framework,
predictions from all models are combined using
malware-category accuracy weights. GridSearch
from scikit-learn was employed to optimize each
model's parameters.

3.2.4 Performance Metrics

Accuracy, precision, recall, and F1-score metrics
were employed to evaluate classifiers and identify the
top-performing model [20].
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Figure 2: KNN error rate.

Accuracy measures the overall percentage of
correct predictions among all instances. Precision
indicates the proportion of true positive predictions
relative to all positive predictions, reflecting
prediction reliability. Recall, also called sensitivity or
the true positive rate, measures the percentage of
actual positive instances successfully detected by the
model. The F1-score combines precision and recall
into a balanced metric, particularly useful for
imbalanced datasets where both false positives and
false negatives have equal importance.

4 RESULT AND DISCUSSION

In addition to testing the suggested ensemble model,
machine learning methods were also used in this
study. Initially, to train the classifiers, the CIC-
AndMal-2017 dataset was used, with a size of 37 GB
containing 70,000 samples selected from the original
dataset. After performing the preprocessing stage in
the malware detection system on the selected dataset,
the samples were reduced to 30,000 samples
(consisting of 12,000 malicious and 18,000 benign
samples), and the 84 features in the dataset were
minimized to 80 features. Following this, the feature
selection stage was applied to the balanced dataset,
which contained 60% benign samples and 40%
malicious samples. A filter-based feature selection
technique (CFS) was applied, selecting 57 features
that had a high correlation to the target based on the
determined threshold (0.2). The top 15 features are
represented in Figure 3.

The supervised learning structure utilized the
Support  Vector Machine (SVM), K-Nearest
Neighbor (KNN), Random Forest (RF), and a
Stacking classifier. Table 1 presents the performance
outcomes of the three methods and ensemble model
under static analysis using static features for malware
classification.

Table 2 shows the results from dynamic analysis
using dynamic features.

Table 3 displays the outcomes of the three
algorithms and ensemble model under hybrid
analysis, which combines static and dynamic
features, for malware classification.

Depending on the kind of feature analysis used
with the same dataset, Android malware detection
systems' efficacy can vary greatly. In this study, four
machine learning algorithms — SVM, KNN, RF, and
an ensemble stacking model — were used to examine
the classification results from static, dynamic, and
hybrid analyses. All models performed rather well in
static analysis, which collects information without
running the application. With an accuracy of 88.2%
and an F1-score of 88.3%, the ensemble stacking
classifier was the best in the group. Random Forest
came in second with an accuracy of 87.1%. Static
features (such as permissions and API calls) are
useful in detecting established malware patterns, as
evidenced by the reliable prediction findings and low
computing cost. However, advanced obfuscation
techniques that avoid static detection can make this
method ineffective.
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Figure 3: The top 15 features.
Table 1: Classification results based on static analysis.
Algorithm Accuracy Precision Recall F1-score Time (sec)
SVM 86.2% 86.6% 84.9% 85.7% 1.10
KNN 85.5% 85.9% 84.6% 85.2% 0.70
RF 87.1% 86.5% 87.8% 87.1% 3.10
Stacking 88.2% 87.6% 89.1% 88.3% 9.20
Table 2: Classification results based on dynamic analysis.
Algorithm Accuracy Precision Recall F1-score Time (sec)
SVM 79.0% 79.3% 77.8% 78.5% 1.00
KNN 78.1% 78.6% 77.2% 77.9% 0.80
RF 80.2% 79.6% 80.8% 80.2% 4.50
Stacking 81.0% 80.3% 81.7% 81.0% 12.30
Table 3: Classification results based on hybrid analysis.
Algorithm Accuracy Precision Recall F1-score Time (sec)
SVM 97.9% 98.2% 96.6% 97.4% 7.80
KNN 96.2% 96.0% 94.5% 95.2% 5.44
RF 97.9% 97.5% 97.2% 97.3% 0.03
Stacking 98.9% 99.1% 98.3% 98.7% 36.46
Table 4: The comparison between the previous studies and proposed work.
Study Dataset Methods Results
[8] CICAndMal2017 (GRU) 98.2%
[11] CICAndMal2017 LSTM-SVM 97%
[9] CICAndMal2017 (Stacking) 90.4%
[12] CICAndMal2017 (Stacking) 96.7%
[13] CICAndMal2017 HGDetector model 97%
The proposed study CICAndMal2017 (SVM), (KNN), (RF) and Stacking Ensemble Model 98.9%
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KNN exhibited the quickest runtime (0.70
seconds) with just a slight performance degradation,
indicating a trade-off between predictive power and
efficiency. All measures showed a decline in model
performance when relying only on dynamic aspects,
such as runtime actions or system call behaviors. The
F1-scores for each classifier decreased by roughly 7—
8% compared to static analysis, and the ensemble
model achieved the highest accuracy of 81.0%. This
implies that dynamic analysis by itself might not
provide enough context or consistency to enable
extremely precise classification.

The reduced recall and precision point to possible
challenges in extrapolating from sparse behavioral
data or noise in execution environments. Performance
was clearly best achieved by hybrid analysis that
combined static and dynamic features. The ensemble
stacking classifier outperformed both individual
analysis approaches by achieving an accuracy of
98.9% and an F1-score of 98.7%. This illustrates how
combining behavioral and structural information
yields a more complete view of the application,
improving classifiers' ability to distinguish between
benign and malicious activity. The classification
process took 36.46 seconds to complete, which would
limit its applicability in real-time or resource-
constrained  contexts.  With  nearly similar
performance and a remarkably short computation
time (0.03 seconds), Random Forest likewise
performed quite well in this environment,
demonstrating its suitability for real-time detection
applications. Thus, the best approach for high-stakes
situations like mobile malware detection is hybrid
analysis combined with ensemble models and a
sizable dataset. This approach offers high accuracy
and resistance to evasion strategies, but at a greater
computational cost. Depending on the particular
operational requirements, the best model selection
should balance these trade-offs. The comparison
between our proposed work and previous studies is
shown in Table 4.

5 CONCLUSIONS

This study proposed a strategy for identifying
Android malware and comparing the impact of using
static, dynamic, and hybrid analysis with a stacking-
based ensemble learning approach. The proposed
model was trained with the CIC-AndMal-2017
dataset. The model first applied advanced
preprocessing steps (converting data types to
numeric, addressing missing values, etc.). It then

performed a filter-based feature selection technique
(CFS) and selected the top 15 features most correlated
to the target and suitable for malware classification.
Next, a 70% training set and 30% testing set were
created from the dataset. Finally, the model classified
malware using machine learning algorithms: Support
Vector Machine (SVM), K-Nearest Neighbor (KNN),
Random Forest (RF), and a Stacking Ensemble
Model. According to experimental results, using both
static and dynamic data types improved Android
malware detection performance compared to using
either data type alone. This approach achieved 98.9%
classification accuracy with the stacking classifier. In
conclusion, combining both feature types with
ensemble learning improved detection performance
by 12% and 22% compared to static and dynamic
approaches respectively.
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