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Abstract: The attack surface for cyber threats targeting the Android platform has grown dramatically due to the 

widespread use of Android handsets, the openness of the Android ecosystem, coarse-grained authorization 

structures, and the invocation of third-party code. The effectiveness of machine learning methods in 

identifying Android malware has been shown by recent studies. In this work, we provide a hybrid analysis 

approach that combines static and dynamic analysis to detect Android malware in a dependable and efficient 

manner.  This hybrid model increases detection precision and accuracy while also improving feature 

extraction procedures. Additionally, we compare the results of static and dynamic analysis with the hybrid 

approach and look at how each affects classification performance separately. According to experimental 

results, our hybrid model performs better than other models, achieving 98.9% accuracy, 99.1% precision, 

98.3% recall, and 98.7% F1-score. These results indicate a 12% and 22% increase in detection accuracy, 

respectively, over static and dynamic analytic techniques. Additionally, our findings highlight the limitations 

of using static or dynamic analysis alone, in terms of detection accuracy, resource efficiency, and behaviour 

profiling of Android malware. Overall, the study highlights the effectiveness of hybrid analysis in enhancing 

malware detection systems and achieving more reliable and accurate security classifications. 

1 INTRODUCTION 

Android has emerged as the most popular smartphone 
operating system due to the quick development of 
mobile intelligent terminals [1]. In the mobile sector, 
Android OS held a global market share of over 71.9% 
as of July 2023. Google Play is the official app store 
running on Android smartphones. There were over 
2.9 million applications on it as of May 2021. 
Approximately 2.5 million of them are categorized by 
AppBrain as standard apps, while 0.4 million are 
classified as low-quality apps. Android is more 
attractive to thieves due to its widespread use, but it 
is also more susceptible to viruses and malware [2]. 
However, because Android apps are widely 
distributed, open-source, and have coarse-grained 
permission management, they can be obtained from 
potentially dangerous third parties outside of the 
official Android Market, leaving the platform open to 
malware attacks [3]. To address these security 
concerns, various methods for detecting Android 
malware have been proposed [4]. One of the best 
methods for detection is machine learning [5]. There 
are a couple of primary sources of features in the 

machine learning-based Android malware detection 
implementation: both dynamic and static 
extraction [6]. 

The Dalvik bytecode, native code, manifest, 
sound, image, and inverted APK files are the sources 
of the static features. By executing APK files in the 
environment, the dynamic characteristics are 
retrieved from code execution, paths, variable value 
tracking, sensitive function calls, log records, and 
other behaviors that take place during the 
application's operation [4]. By employing 
sophisticated preprocessing to choose the best 
samples, providing rich data, and enabling machine 
learning for effective malware detection using the 
CIC-AndMal2017 dataset, this study suggests a 
reliable way for identifying malicious Android 
applications. The strategy makes use of machine 
learning methods, including Random Forest, Support 
Vector Machines, K-Nearest Neighbors, and 
Stacking Ensemble Model to classify applications 
using dynamic analysis, which deals with dynamic 
features, and static analysis, which concentrates on 
static features. Following the implementation of these 
strategies, the same model was then assessed through 
hybrid analysis, which combines static and dynamic 
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data to maximize feature extraction and improve 
malware detection efficacy and precision. When 
compared to the hybrid strategy, both individual 
approaches showed a considerable decrease in 
performance. 

Therefore, it is essential to compare how static, 
dynamic, and hybrid analysis affect an attack 
detection system's performance. Every analysis type 
has its own advantages and disadvantages. For 
example, static analysis looks at the application's 
code without running it, which makes scanning 
quicker and more comprehensive but may miss 
runtime behaviors. Although it frequently takes more 
time and processing resources, dynamic analysis, on 
the other hand, watches how the program behaves 
while it is running and can reveal dangerous activity 
that static approaches could miss. By utilizing the 
advantages of both methods, hybrid analysis may be 
able to maximize detection accuracy. Assessing each 
of the three approaches yields a thorough 
comprehension of how each one affects system 
performance separately and in combination. The main 
contribution of this paper is: 
▪ Assess a number of machine learning

classifiers using three different analysis types:
static, dynamic, and hybrid.

▪ Contrast the outcomes of malware
identification utilizing features based on static
and dynamic analysis.

▪ Compare the cost of using various feature types
in terms of the amount of time needed for
training.

▪ A large dataset and a hybrid technique can
achieve high classification accuracy.

The rest of this paper is displayed as follows: 
Section 2 provides an overview of the related work. 
The suggested methodology is introduced in Section 
3 that includes a sub-subsection: 3.1 Dataset 
Description, 3.2 The Specifics of the Suggested 
Approach. The result and discussion are provided in 
section 4. Whereas section 5 summarizes the 
conclusions. 

2 RELATED WORK 

There are three methods to examine the malicious 

mobile application: (Hybrid analysis, dynamic 

analysis, and static analysis) based on various 

retrieved features, either dynamic, static, or both. This 

section presents pertinent studies on the application 

of machine learning algorithms and various analysis 

methodologies for Android malware detection using 

the CICAndMal2017 dataset. 

2.1 Static Analysis-Based Features 

The program's resources and source code are used for 

static analysis without executing the code [7]. In static 

malware analysis, we have extracted different types 

of static features i.e. API calls, intents, permissions 

and command strings. Omar N. Elayan and Ahmad 

M. Mustafa [8] they offer a method for identifying

malware in Android applications. Additionally, they

compare deep learning approaches with conventional

machine learning techniques A portion of the

CICAndMal2017 dataset, which includes 365

malware samples and 347 benign samples of Android

apps, was used in this investigation. They extract two

static features from Android applications:

permissions and Application Programming Interface

(API) calls. Hence, Experiments show that the deep

learning algorithm performs better, with a precision

rate of 98.2%. Recep Sinan ARSLAN [9] a suggested

ensemble machine learning model is presented in this

work to efficiently detect and categorize several kinds

of malware, such as ransomware, scareware, adware

and SMS malware. The CICAndMal-2017 dataset,

was used to train and assess the model in issue. The

classification of malware and benign software is not

the main focus of this work; rather, it is the

identification of malware types. 90.4% accuracy was

attained in identifying the malware category in the

studies that were carried out using 486 instances of

malicious samples. Additionally, the F1-score,

precision, and recall were 90.4%.

2.2 Dynamic Analysis-Based Features 

Analyzing a running program's attributes is known as 

a dynamic analysis, it is performed while executing 

the code [10]. In dynamic malware analysis, we have 

extracted different types of dynamic features i.e. 
cryptographic operations, dynamic permissions, 
actions, IP address, information leaks and system 

calls. M.Gracea and Dr. M. Sughasiny [11] The study 

uses a hybrid Long Short-Term Memory (LSTM-

SVM) model and an Aquila optimizer. The Aquila 

optimizer is used in the cross-validation feature 

extraction process to determine which dynamic 

features are most appropriate. The Android malware 

dataset CICAndMal2017 is used. For the suggested 

model, the performance metrics Accuracy, Precision, 

Recall, Error, Specificity, F1_score, Negative 

Predictive Value (NPV), False Positive Rate (FPR), 

and False Negative Rate (FNR) are 0.97, 0.94, 0.90, 

0.03, 0.95, 0.93, 0.96, 0.10, and 0.02 per sec. Zhixing 

Xue, et al. [12] developed an ensemble-learning 

strategy based on stacking to detect and categorize 
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malware on Android devices Through the process of 

clustering, the model first eliminated any third-party 

data from the stream in order to obtain clean 

beginning information. (73) Statistical features, as the 

most appropriate for classification, and (86) flow-

level attributes, which were later obtained by feature 

engineering.  They construct the classification model 

using CICAndMal2017 dataset. The experiment's 

findings demonstrate that by excluding third-party 

traffic and utilizing relevant traffic features, 

classification accuracy improved to as much as 

96.7%. 

2.3 Hybrid Analysis-Based Features 

Hybrid analysis is a blend of dynamic and static 

analysis, which can improve the accuracy and 

efficiency of Android malware detection [1]. Jiayin 

Feng, et al. [13] suggested HGDetector, a multi-

featured hybrid malware detection and category 

categorization technique. This method employs the 

dynamic network traffic features to generate the node 

interactivity graph and edge-node graph after

extracting the static function call graph and creating 

the network behavior function call graph. Finally, the 

accuracy of detecting malware was then tested using 

a variety of classifiers in conjunction with the 

suggested HGDetector. The experimental findings 

show that the suggested HGDetector model's 

accuracy with MLP, LR, RF, and SVM classifiers in 

the CICAndMal2017 dataset is 97% with SVM. 

3 METHODOLOGY 

There are three primary phases in the proposed model 

for the Android malware detection system they are: 

(Data pre-processing phase, Feature selection phase, 

Classification phase). Each of these stages is essential 

to guaranteeing the detecting system's precision and 

effectiveness. Some of these phases require a number 

of steps to accomplish their objectives. Several 

machine learning methods are used in the 

classification step to effectively identify and 

categorize Android malware. 

Figure 1, which illustrates the system's total 

workflow, provides a clear illustration of these 

phases. 

3.1 Dataset Description 

This study has utilized a portion of the 

CICAndMal2017 dataset, generated and released by 

Lashkari et al. [14] and available on the Canadian 

Institute of Cyber Security's website [15]. In this 

paper, 70,000 samples were chosen from the original 

dataset due to constraints on computing power and 

storage; this dataset consists of 18,000 malicious and 

52,000 benign samples. There are 84 unique features 

in the dataset before applying any process. This 

dataset's malware samples are divided into four 

groups: (Adware, Ransomware, Scareware, SMS 

Malware). According to their names, each type 

carries out particular attacks. The samples include 42 

distinct malware families from the four previously 

listed categories. Data is gathered on actual devices in 

three distinct states: To capture realistic behavior, this 

was done during installation, before to the restart, and 

following the restart [9]. 

3.2 The Details of the Suggested 

Methodology 

The three phases of the suggested methodology are: 

data preprocessing phase, feature selection phase, and 

classification phase. 

3.2.1 Data Preprocessing Phase 

Our proposed work focus on employing sophisticated 

preprocessing to select the best samples, delivering 

rich data and enabling machine learning for efficient 

malware detection.  

Dataset Preprocessing follows the procedure as 

below: 

Step 1. Type conversion. Non-numeric columns 

(e.g., strings or categorical values) are transformed to 

numeric representations. 

Step 2. Missing Value Handling (NaN). The usual 

procedure for dealing with missing data is to either 

fill NaN values or drop them. 

Step 3. Drop high cardinality columns. This 

function removes columns when the ratio of unique 

values to total rows exceeds a predefined threshold 

(0.9). 

Step 4. Duplication Removal. Duplicate rows are 

deleted from the dataset so that the final dataset only 

contains unique data points. 

Step 5. Normalization (Standardization). Standard 

Scaler is used to standardize the numeric columns. 

Step 6. Memory optimization. Changing "float64" 

columns to "float32" and "int64" columns to "int32". 
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Figure 1: The suggested model. 

After applying these steps, class imbalance frequently 

arises from unequal class distribution. This phase 

creates a balanced malware detection dataset derived 

from CIC-AndMalS2017. The ADASYN algorithm 

resolves dataset imbalance by generating synthetic 

samples for the minority class (malware) through data 

distribution analysis, achieving a 60% benign to 40% 

malware balance. 

3.2.2 Feature Selection Phase 

Feature selection enhances malware detection 

effectiveness by eliminating redundant and irrelevant 

features [1]. Selecting optimal features improves 

accuracy, efficiency, and model interpretability. A 

filter-based technique (CFS) was applied, beginning 

with the mathematical foundation of the Pearson 

correlation coefficient [16]. The Pearson correlation 

between two random variables, X and Y, can be 

calculated mathematically as illustrated in (1) and (2): 

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
.  (1) 

where Cov (X, Y) is the covariance between x and y, 

and σx and σy are the standard deviations of x and y. 

In a sample of size n, it can be calculated as follows: 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅𝑛

𝑖=1 )

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

.  (2) 

where the sample means of 𝑥𝑖 and 𝑦𝑖 are denoted by 𝑥̅
and 𝑦̅ respectively. 

Each feature's correlation with the target class was 

computed. A threshold of 0.2 was then applied to 

identify features with strong linear associations to the 
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target. This threshold was chosen to detect weak 

relationships while avoiding information loss. 

3.2.3 The Classification Phase 

Once the feature selection process is complete, 30% 

of the dataset is used for testing, while 70% is used 

for training.  In this phase, we decided to implement 

machine learning methods in the classification of the 

malware detection system. Since labels are present in 

the sample data set, supervised machine learning has 

been used in the study with four machine learning 

methods: Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Random Forest (RF), and Stacking 

Ensemble Model. They are used for the purpose of 

comparing performance and enhancing the validity of 

the models. We go over each algorithm's features in 

turn, as follows: 

3.2.3.1 Support Vector Machine (SVM) 

SVM generates one or more hyperplanes, and the 

most effective one separates data into classes, with 

the most important class division occurring [17]. Our 

implementation of SVM on the CIC-AndMal2017 

dataset utilize the RBF kernel to manage non-linear 

relationships and perform hyperparameter Tuning 

uses the parameter grid as follows: 

param_grid = {  'C': [0.1, 1, 10, 100, 1000], 

 'gamma': [1, 0.1, 0.01, 0.001, 0.0001], 

      'kernel': ['rbf']}. 

The use of cross-validation is intended to alternate 

between different values of C and gamma in order to 

find the optimal parameters, which will then be used 

in the subsequent classification. after applying 5-fold 

cross-validation for each candidate, choose 

parameters that optimize cross-validation accuracy as 

follows: 

('svm_rbf', SVC(gamma=0.1, C=100)). 

Classify the test data using the learned SVM 

model. The two classes are clearly distinguished by 

this hyper-plane. Hence, this algorithm determines if 

an application is malicious or benign. 

3.2.3.2 Random Forest (RF) 

RF is an ensemble method that at each split point 

selects a random sample of features to determine 

feature importance [18]. This study trains 100 

decision trees; using 100 trees is a practical choice as 

it provides accurate and stable results, reduces 

variance, and balances performance and speed. It 

computes entropy before and after each split and 

selects the split with the highest information gain. The 

majority vote across all trees determines the final 

prediction. RF was implemented as the best estimator 

in the stacking model with: 

('rf', Random Forest Classifier(n_estimators =100,)) 

The highest accuracy was achieved using these 

estimators across the dataset, where the predicted 

target with the highest number of votes is the final 

prediction. 

3.2.3.3 K-Nearest Neighbor (KNN) 

K-Nearest Neighbor measures distances between data

points to classify new instances based on proximity to

training points [19]. This work implemented KNN

starting with 40 neighbors and computed error rates

for k-values from 1 to 39. As shown in Figure 2, k=4

was selected for the final stacking model as it

achieved the optimal balance between low error and

reduced overfitting risk.

3.2.3.4 Stacking Ensemble Model 

Figure 2 illustrates the proposed ensemble model 

incorporating SVM, KNN, and RF classifiers as base 

learners. Each model was trained independently on 

training and test sets. These base models were then 

integrated into the stacking ensemble framework. The 

stacking model uses the three base models as 

individual learners with a Random Forest classifier as 

the meta-learner. In the stacking framework, 

predictions from all models are combined using 

malware-category accuracy weights. GridSearch 

from scikit-learn was employed to optimize each 

model's parameters. 

3.2.4 Performance Metrics 

Accuracy, precision, recall, and F1-score metrics 

were employed to evaluate classifiers and identify the 

top-performing model [20]. 
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Figure 2: KNN error rate. 

Accuracy measures the overall percentage of 

correct predictions among all instances. Precision 

indicates the proportion of true positive predictions 

relative to all positive predictions, reflecting 

prediction reliability. Recall, also called sensitivity or 

the true positive rate, measures the percentage of 

actual positive instances successfully detected by the 

model. The F1-score combines precision and recall 

into a balanced metric, particularly useful for 

imbalanced datasets where both false positives and 

false negatives have equal importance. 

4 RESULT AND DISCUSSION 

In addition to testing the suggested ensemble model, 

machine learning methods were also used in this 

study. Initially, to train the classifiers, the CIC-

AndMal-2017 dataset was used, with a size of 37 GB 

containing 70,000 samples selected from the original 

dataset. After performing the preprocessing stage in 

the malware detection system on the selected dataset, 

the samples were reduced to 30,000 samples 

(consisting of 12,000 malicious and 18,000 benign 

samples), and the 84 features in the dataset were 

minimized to 80 features. Following this, the feature 

selection stage was applied to the balanced dataset, 

which contained 60% benign samples and 40% 

malicious samples. A filter-based feature selection 

technique (CFS) was applied, selecting 57 features 

that had a high correlation to the target based on the 

determined threshold (0.2). The top 15 features are 

represented in Figure 3. 

The supervised learning structure utilized the 

Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Random Forest (RF), and a 

Stacking classifier. Table 1 presents the performance 

outcomes of the three methods and ensemble model 

under static analysis using static features for malware 

classification. 

Table 2 shows the results from dynamic analysis 

using dynamic features. 

Table 3 displays the outcomes of the three 

algorithms and ensemble model under hybrid 

analysis, which combines static and dynamic 

features, for malware classification. 

Depending on the kind of feature analysis used 

with the same dataset, Android malware detection 

systems' efficacy can vary greatly. In this study, four 

machine learning algorithms – SVM, KNN, RF, and 

an ensemble stacking model – were used to examine 

the classification results from static, dynamic, and 

hybrid analyses. All models performed rather well in 

static analysis, which collects information without 

running the application. With an accuracy of 88.2% 

and an F1-score of 88.3%, the ensemble stacking 

classifier was the best in the group. Random Forest 

came in second with an accuracy of 87.1%. Static 

features (such as permissions and API calls) are 

useful in detecting established malware patterns, as 

evidenced by the reliable prediction findings and low 

computing cost. However, advanced obfuscation 

techniques that avoid static detection can make this 

method ineffective.  
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Figure 3: The top 15 features. 

Table 1: Classification results based on static analysis. 

Algorithm Accuracy Precision Recall F1-score Time (sec) 

 SVM 86.2% 86.6% 84.9% 85.7% 1.10 

 KNN 85.5% 85.9% 84.6% 85.2% 0.70 

 RF 87.1% 86.5% 87.8% 87.1% 3.10 

Stacking 88.2% 87.6% 89.1% 88.3% 9.20 

Table 2: Classification results based on dynamic analysis. 

Algorithm Accuracy Precision Recall F1-score Time (sec) 

 SVM 79.0% 79.3% 77.8% 78.5% 1.00 

 KNN 78.1% 78.6% 77.2% 77.9% 0.80 

 RF 80.2% 79.6% 80.8% 80.2% 4.50 

Stacking 81.0% 80.3% 81.7% 81.0% 12.30 

Table 3: Classification results based on hybrid analysis. 

Algorithm Accuracy Precision Recall F1-score Time (sec) 

 SVM 97.9% 98.2% 96.6% 97.4% 7.80 

 KNN 96.2% 96.0% 94.5% 95.2% 5.44 

 RF 97.9% 97.5% 97.2% 97.3% 0.03 

Stacking 98.9% 99.1% 98.3% 98.7% 36.46 

Table 4: The comparison between the previous studies and proposed work. 

Study Dataset Methods Results 

[8] CICAndMal2017 (GRU) 98.2% 

[11] CICAndMal2017 LSTM-SVM 97% 

[9] CICAndMal2017 (Stacking) 90.4% 

[12] CICAndMal2017 (Stacking) 96.7% 

[13] CICAndMal2017 HGDetector model 97% 

The proposed study CICAndMal2017 (SVM), (KNN),  (RF) and Stacking Ensemble Model 98.9% 
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KNN exhibited the quickest runtime (0.70 

seconds) with just a slight performance degradation, 

indicating a trade-off between predictive power and 

efficiency. All measures showed a decline in model 

performance when relying only on dynamic aspects, 

such as runtime actions or system call behaviors. The 

F1-scores for each classifier decreased by roughly 7–

8% compared to static analysis, and the ensemble 

model achieved the highest accuracy of 81.0%. This 

implies that dynamic analysis by itself might not 

provide enough context or consistency to enable 

extremely precise classification.  

The reduced recall and precision point to possible 

challenges in extrapolating from sparse behavioral 

data or noise in execution environments. Performance 

was clearly best achieved by hybrid analysis that 

combined static and dynamic features. The ensemble 

stacking classifier outperformed both individual 

analysis approaches by achieving an accuracy of 

98.9% and an F1-score of 98.7%. This illustrates how 

combining behavioral and structural information 

yields a more complete view of the application, 

improving classifiers' ability to distinguish between 

benign and malicious activity. The classification 

process took 36.46 seconds to complete, which would 

limit its applicability in real-time or resource-

constrained contexts. With nearly similar 

performance and a remarkably short computation 

time (0.03 seconds), Random Forest likewise 

performed quite well in this environment, 

demonstrating its suitability for real-time detection 

applications. Thus, the best approach for high-stakes 

situations like mobile malware detection is hybrid 

analysis combined with ensemble models and a 

sizable dataset. This approach offers high accuracy 

and resistance to evasion strategies, but at a greater 

computational cost. Depending on the particular 

operational requirements, the best model selection 

should balance these trade-offs. The comparison 

between our proposed work and previous studies is 

shown in Table 4. 

5 CONCLUSIONS 

This study proposed a strategy for identifying 

Android malware and comparing the impact of using 

static, dynamic, and hybrid analysis with a stacking-

based ensemble learning approach. The proposed 

model was trained with the CIC-AndMal-2017 

dataset. The model first applied advanced 

preprocessing steps (converting data types to 

numeric, addressing missing values, etc.). It then 

performed a filter-based feature selection technique 

(CFS) and selected the top 15 features most correlated 

to the target and suitable for malware classification. 

Next, a 70% training set and 30% testing set were 

created from the dataset. Finally, the model classified 

malware using machine learning algorithms: Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), 

Random Forest (RF), and a Stacking Ensemble 

Model. According to experimental results, using both 

static and dynamic data types improved Android 

malware detection performance compared to using 

either data type alone. This approach achieved 98.9% 

classification accuracy with the stacking classifier. In 

conclusion, combining both feature types with 

ensemble learning improved detection performance 

by 12% and 22% compared to static and dynamic 

approaches respectively. 

ACKNOWLEDGMENTS

The authors thank the Department of Computer 

Science, College of Science, Al-Mustansiriyah 

University, for supporting this work. 

REFERENCES 

[1] M. Li, Z. Fang, J. Wang, L. Cheng, Q. Zeng, T. Yang,
Y. Wu, and J. Geng, "A systematic overview of
Android malware detection," Appl. Artif. Intell.,
vol. 36, no. 1, p. e2007327, 2022, [Online]. Available:
https://doi.org/10.1080/08839514.2021.2007327.

[2] R. Srinivasan, S. Karpagam, M. Kavitha, and
R. Kavitha, "An analysis of machine learning-based
Android malware detection approaches," in Proc. Int.
Conf. Electron. Circuits Signal. Technol., 2022.

[3] N. Jafaar and B. M. Nema, "Geolocation Android
mobile phones using GSM/UMTS," Baghdad Sci. J.,
vol. 16, no. 1, Art. no. 34, 2019, doi: 
10.21123/bsj.2019.16.1(Suppl.).0254. 

[4] N. A. Sadkhan, Z. O. Ahmed, and R. N. Ajmi,
"Assessing the potential of wild mushrooms as
bioindicators for environmental pollution prediction
using machine learning," Int. J. Des. Nat. Ecodyn.,
vol. 20, no. 2, pp. 439-446, Feb. 2025.

[5] B. AlKindy, O. B. Jamil, H. Al-Nayyef, and
W. Alkendi, "A machine learning approach for
identifying five types of horizontal ocular disorders
using Haar features," Al-Mustansiriyah J. Sci., vol. 36,
no. 1, pp. 69-83, Mar. 2025, doi:
10.23851/mjs.v36i1.1597.

[6] A. Feizollah, N. B. Anuar, R. Salleh, and
A. W. A. Wahab, "A review on feature selection in
mobile malware detection," Digit. Investig., vol. 13,
pp. 22-37, 2015.

180 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), July 2020225  



[7] B. Amro, "Malware detection techniques for mobile
devices," Int. J. Mob. Netw. Commun. Telemat.,
vol. 7, pp. 1-10, 2017.

[8] O. N. Elayan and A. M. Mustafa, "Android malware
detection using deep learning," Procedia Comput. Sci.,
vol. 184, pp. 847-852, 2021.

[9] R. S. Arslan, "Identify type of Android malware with
machine learning based ensemble model," in Proc. 5th
Int. Symp. Multidiscip. Stud. Innov. Technol.
(ISMSIT), Oct. 2021, pp. 628-632.

[10] T. Ball, "The concept of dynamic analysis," in
*Software Engineering—ESEC/FSE’99*, Berlin,
Germany: Springer, 1999, pp. 216-234.

[11] M. Gracea and M. Sughasiny, "Malware detection for
Android application using Aquila optimizer and
hybrid LSTM-SVM classifier," EAI Endorsed Trans.
Scalable Inf. Syst., vol. 10, no. 1, 2022.

[12] Z. Xue, W. Niu, X. Ren, J. Li, X. Zhang, and R. Chen,
"A stacking-based classification approach to Android
malware using host-level encrypted traffic," J. Phys.:
Conf. Ser., vol. 2024, no. 1, p. 012049, Sep. 2021.

[13] J. Feng, L. Shen, Z. Chen, Y. Lei, and H. Li,
"HGDetector: A hybrid Android malware detection
method using network traffic and function call graph,"
Alexandria Eng. J., vol. 114, pp. 30-45, 2025.

[14] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and
A. A. Ghorbani, "Toward developing a systematic
approach to generate benchmark Android malware
datasets and classification," in Proc. Int. Carnahan
Conf. Secur. Technol. (ICCST), 2018, pp. 1-7.

[15] "Number of smartphone and mobile phone users
worldwide in 2020/2021: Demographics, statistics,
predictions," [Online]. Available:
https://www.unb.ca/cic/datasets/andmal2017.html,
[Accessed: Jan. 11, 2020].

[16] E. S. Alomari, R. R. Nuiaa, Z. A. A. Alyasseri,
H. J. Mohammed, N. S. Sani, M. I. Esa, and
B. A. Musawi, "Malware detection using deep
learning and correlation-based feature selection,"
Symmetry, vol. 15, p. 123, 2023, doi:
10.3390/sym15010123.

[17] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim,
"Performance comparison of support vector machine,
random forest, and extreme learning machine for
intrusion detection," IEEE Access, vol. 6, pp. 33789-
33795, 2018.

[18] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 4th ed. Pearson Education, 2020.

[19] R. RamaDevi and M. Abualkibash, "Intrusion
detection system classification using different
machine learning algorithms on KDD-99 and NSL-
KDD datasets - a review paper," Int. J. Comput. Sci.
Inf. Technol., vol. 11, no. 3, pp. 65-80, 2019, doi:
10.5121/ijcsit.2019.11306.

[20] S. A. Salihu, S. O. Quadri, and O. C. Abikoye,
"Performance evaluation of selected machine learning
techniques for malware detection in Android devices,"
ILJCSIT, vol. 3, no. 1, 2020.

181 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), July 2020225  


