
A Hybrid Static-Dynamic Analysis Model for Android Malware

Detection: Design, Implementation and Comparative Assessment

Shatha Hamead Othman and Huda Abdulaali Abdulbaqi
Department of Computer Science, College of Science, Mustansiriyah University, 10052 Baghdad, Iraq

shathaalqaisy20@uomustansiriyah.edu.iq, huda.it@uomustansiriyah.edu.iq

Keywords: Android, Malware Detection, Hybrid Approach, Static Analysis, Dynamic Analysis.

Abstract: The attack surface for cyber threats targeting the Android platform has grown dramatically due to the

widespread use of Android handsets, the openness of the Android ecosystem, coarse-grained authorization

structures, and the invocation of third-party code. The effectiveness of machine learning methods in

identifying Android malware has been shown by recent studies. In this work, we provide a hybrid analysis

approach that combines static and dynamic analysis to detect Android malware in a dependable and efficient

manner. This hybrid model increases detection precision and accuracy while also improving feature

extraction procedures. Additionally, we compare the results of static and dynamic analysis with the hybrid

approach and look at how each affects classification performance separately. According to experimental

results, our hybrid model performs better than other models, achieving 98.9% accuracy, 99.1% precision,

98.3% recall, and 98.7% F1-score. These results indicate a 12% and 22% increase in detection accuracy,

respectively, over static and dynamic analytic techniques. Additionally, our findings highlight the limitations

of using static or dynamic analysis alone, in terms of detection accuracy, resource efficiency, and behaviour

profiling of Android malware. Overall, the study highlights the effectiveness of hybrid analysis in enhancing

malware detection systems and achieving more reliable and accurate security classifications.

1 INTRODUCTION

Android has emerged as the most popular smartphone
operating system due to the quick development of
mobile intelligent terminals [1]. In the mobile sector,
Android OS held a global market share of over 71.9%
as of July 2023. Google Play is the official app store
running on Android smartphones. There were over
2.9 million applications on it as of May 2021.
Approximately 2.5 million of them are categorized by
AppBrain as standard apps, while 0.4 million are
classified as low-quality apps. Android is more
attractive to thieves due to its widespread use, but it
is also more susceptible to viruses and malware [2].
However, because Android apps are widely
distributed, open-source, and have coarse-grained
permission management, they can be obtained from
potentially dangerous third parties outside of the
official Android Market, leaving the platform open to
malware attacks [3]. To address these security
concerns, various methods for detecting Android
malware have been proposed [4]. One of the best
methods for detection is machine learning [5]. There
are a couple of primary sources of features in the

machine learning-based Android malware detection
implementation: both dynamic and static
extraction [6].

The Dalvik bytecode, native code, manifest,
sound, image, and inverted APK files are the sources
of the static features. By executing APK files in the
environment, the dynamic characteristics are
retrieved from code execution, paths, variable value
tracking, sensitive function calls, log records, and
other behaviors that take place during the
application's operation [4]. By employing
sophisticated preprocessing to choose the best
samples, providing rich data, and enabling machine
learning for effective malware detection using the
CIC-AndMal2017 dataset, this study suggests a
reliable way for identifying malicious Android
applications. The strategy makes use of machine
learning methods, including Random Forest, Support
Vector Machines, K-Nearest Neighbors, and
Stacking Ensemble Model to classify applications
using dynamic analysis, which deals with dynamic
features, and static analysis, which concentrates on
static features. Following the implementation of these
strategies, the same model was then assessed through
hybrid analysis, which combines static and dynamic

173

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

data to maximize feature extraction and improve
malware detection efficacy and precision. When
compared to the hybrid strategy, both individual
approaches showed a considerable decrease in
performance.

Therefore, it is essential to compare how static,
dynamic, and hybrid analysis affect an attack
detection system's performance. Every analysis type
has its own advantages and disadvantages. For
example, static analysis looks at the application's
code without running it, which makes scanning
quicker and more comprehensive but may miss
runtime behaviors. Although it frequently takes more
time and processing resources, dynamic analysis, on
the other hand, watches how the program behaves
while it is running and can reveal dangerous activity
that static approaches could miss. By utilizing the
advantages of both methods, hybrid analysis may be
able to maximize detection accuracy. Assessing each
of the three approaches yields a thorough
comprehension of how each one affects system
performance separately and in combination. The main
contribution of this paper is:
▪ Assess a number of machine learning

classifiers using three different analysis types:
static, dynamic, and hybrid.

▪ Contrast the outcomes of malware
identification utilizing features based on static
and dynamic analysis.

▪ Compare the cost of using various feature types
in terms of the amount of time needed for
training.

▪ A large dataset and a hybrid technique can
achieve high classification accuracy.

The rest of this paper is displayed as follows:
Section 2 provides an overview of the related work.
The suggested methodology is introduced in Section
3 that includes a sub-subsection: 3.1 Dataset
Description, 3.2 The Specifics of the Suggested
Approach. The result and discussion are provided in
section 4. Whereas section 5 summarizes the
conclusions.

2 RELATED WORK

There are three methods to examine the malicious

mobile application: (Hybrid analysis, dynamic

analysis, and static analysis) based on various

retrieved features, either dynamic, static, or both. This

section presents pertinent studies on the application

of machine learning algorithms and various analysis

methodologies for Android malware detection using

the CICAndMal2017 dataset.

2.1 Static Analysis-Based Features

The program's resources and source code are used for

static analysis without executing the code [7]. In static

malware analysis, we have extracted different types

of static features i.e. API calls, intents, permissions

and command strings. Omar N. Elayan and Ahmad

M. Mustafa [8] they offer a method for identifying

malware in Android applications. Additionally, they

compare deep learning approaches with conventional

machine learning techniques A portion of the

CICAndMal2017 dataset, which includes 365

malware samples and 347 benign samples of Android

apps, was used in this investigation. They extract two

static features from Android applications:

permissions and Application Programming Interface

(API) calls. Hence, Experiments show that the deep

learning algorithm performs better, with a precision

rate of 98.2%. Recep Sinan ARSLAN [9] a suggested

ensemble machine learning model is presented in this

work to efficiently detect and categorize several kinds

of malware, such as ransomware, scareware, adware

and SMS malware. The CICAndMal-2017 dataset,

was used to train and assess the model in issue. The

classification of malware and benign software is not

the main focus of this work; rather, it is the

identification of malware types. 90.4% accuracy was

attained in identifying the malware category in the

studies that were carried out using 486 instances of

malicious samples. Additionally, the F1-score,

precision, and recall were 90.4%.

2.2 Dynamic Analysis-Based Features

Analyzing a running program's attributes is known as

a dynamic analysis, it is performed while executing

the code [10]. In dynamic malware analysis, we have

extracted different types of dynamic features i.e.
cryptographic operations, dynamic permissions,
actions, IP address, information leaks and system

calls. M.Gracea and Dr. M. Sughasiny [11] The study

uses a hybrid Long Short-Term Memory (LSTM-

SVM) model and an Aquila optimizer. The Aquila

optimizer is used in the cross-validation feature

extraction process to determine which dynamic

features are most appropriate. The Android malware

dataset CICAndMal2017 is used. For the suggested

model, the performance metrics Accuracy, Precision,

Recall, Error, Specificity, F1_score, Negative

Predictive Value (NPV), False Positive Rate (FPR),

and False Negative Rate (FNR) are 0.97, 0.94, 0.90,

0.03, 0.95, 0.93, 0.96, 0.10, and 0.02 per sec. Zhixing

Xue, et al. [12] developed an ensemble-learning

strategy based on stacking to detect and categorize

174

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

malware on Android devices Through the process of

clustering, the model first eliminated any third-party

data from the stream in order to obtain clean

beginning information. (73) Statistical features, as the

most appropriate for classification, and (86) flow-

level attributes, which were later obtained by feature

engineering. They construct the classification model

using CICAndMal2017 dataset. The experiment's

findings demonstrate that by excluding third-party

traffic and utilizing relevant traffic features,

classification accuracy improved to as much as

96.7%.

2.3 Hybrid Analysis-Based Features

Hybrid analysis is a blend of dynamic and static

analysis, which can improve the accuracy and

efficiency of Android malware detection [1]. Jiayin

Feng, et al. [13] suggested HGDetector, a multi-

featured hybrid malware detection and category

categorization technique. This method employs the

dynamic network traffic features to generate the node

interactivity graph and edge-node graph after

extracting the static function call graph and creating

the network behavior function call graph. Finally, the

accuracy of detecting malware was then tested using

a variety of classifiers in conjunction with the

suggested HGDetector. The experimental findings

show that the suggested HGDetector model's

accuracy with MLP, LR, RF, and SVM classifiers in

the CICAndMal2017 dataset is 97% with SVM.

3 METHODOLOGY

There are three primary phases in the proposed model

for the Android malware detection system they are:

(Data pre-processing phase, Feature selection phase,

Classification phase). Each of these stages is essential

to guaranteeing the detecting system's precision and

effectiveness. Some of these phases require a number

of steps to accomplish their objectives. Several

machine learning methods are used in the

classification step to effectively identify and

categorize Android malware.

Figure 1, which illustrates the system's total

workflow, provides a clear illustration of these

phases.

3.1 Dataset Description

This study has utilized a portion of the

CICAndMal2017 dataset, generated and released by

Lashkari et al. [14] and available on the Canadian

Institute of Cyber Security's website [15]. In this

paper, 70,000 samples were chosen from the original

dataset due to constraints on computing power and

storage; this dataset consists of 18,000 malicious and

52,000 benign samples. There are 84 unique features

in the dataset before applying any process. This

dataset's malware samples are divided into four

groups: (Adware, Ransomware, Scareware, SMS

Malware). According to their names, each type

carries out particular attacks. The samples include 42

distinct malware families from the four previously

listed categories. Data is gathered on actual devices in

three distinct states: To capture realistic behavior, this

was done during installation, before to the restart, and

following the restart [9].

3.2 The Details of the Suggested

Methodology

The three phases of the suggested methodology are:

data preprocessing phase, feature selection phase, and

classification phase.

3.2.1 Data Preprocessing Phase

Our proposed work focus on employing sophisticated

preprocessing to select the best samples, delivering

rich data and enabling machine learning for efficient

malware detection.

Dataset Preprocessing follows the procedure as

below:

Step 1. Type conversion. Non-numeric columns

(e.g., strings or categorical values) are transformed to

numeric representations.

Step 2. Missing Value Handling (NaN). The usual

procedure for dealing with missing data is to either

fill NaN values or drop them.

Step 3. Drop high cardinality columns. This

function removes columns when the ratio of unique

values to total rows exceeds a predefined threshold

(0.9).

Step 4. Duplication Removal. Duplicate rows are

deleted from the dataset so that the final dataset only

contains unique data points.

Step 5. Normalization (Standardization). Standard

Scaler is used to standardize the numeric columns.

Step 6. Memory optimization. Changing "float64"

columns to "float32" and "int64" columns to "int32".

175

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

Figure 1: The suggested model.

After applying these steps, class imbalance frequently

arises from unequal class distribution. This phase

creates a balanced malware detection dataset derived

from CIC-AndMalS2017. The ADASYN algorithm

resolves dataset imbalance by generating synthetic

samples for the minority class (malware) through data

distribution analysis, achieving a 60% benign to 40%

malware balance.

3.2.2 Feature Selection Phase

Feature selection enhances malware detection

effectiveness by eliminating redundant and irrelevant

features [1]. Selecting optimal features improves

accuracy, efficiency, and model interpretability. A

filter-based technique (CFS) was applied, beginning

with the mathematical foundation of the Pearson

correlation coefficient [16]. The Pearson correlation

between two random variables, X and Y, can be

calculated mathematically as illustrated in (1) and (2):

𝜌𝑋,𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
. (1)

where Cov (X, Y) is the covariance between x and y,

and σx and σy are the standard deviations of x and y.

In a sample of size n, it can be calculated as follows:

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅𝑛

𝑖=1)

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

. (2)

where the sample means of 𝑥𝑖 and 𝑦𝑖 are denoted by 𝑥̅
and 𝑦̅ respectively.

Each feature's correlation with the target class was

computed. A threshold of 0.2 was then applied to

identify features with strong linear associations to the

176

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

target. This threshold was chosen to detect weak

relationships while avoiding information loss.

3.2.3 The Classification Phase

Once the feature selection process is complete, 30%

of the dataset is used for testing, while 70% is used

for training. In this phase, we decided to implement

machine learning methods in the classification of the

malware detection system. Since labels are present in

the sample data set, supervised machine learning has

been used in the study with four machine learning

methods: Support Vector Machine (SVM), K-Nearest

Neighbor (KNN), Random Forest (RF), and Stacking

Ensemble Model. They are used for the purpose of

comparing performance and enhancing the validity of

the models. We go over each algorithm's features in

turn, as follows:

3.2.3.1 Support Vector Machine (SVM)

SVM generates one or more hyperplanes, and the

most effective one separates data into classes, with

the most important class division occurring [17]. Our

implementation of SVM on the CIC-AndMal2017

dataset utilize the RBF kernel to manage non-linear

relationships and perform hyperparameter Tuning

uses the parameter grid as follows:

param_grid = { 'C': [0.1, 1, 10, 100, 1000],

 'gamma': [1, 0.1, 0.01, 0.001, 0.0001],

 'kernel': ['rbf']}.

The use of cross-validation is intended to alternate

between different values of C and gamma in order to

find the optimal parameters, which will then be used

in the subsequent classification. after applying 5-fold

cross-validation for each candidate, choose

parameters that optimize cross-validation accuracy as

follows:

('svm_rbf', SVC(gamma=0.1, C=100)).

Classify the test data using the learned SVM

model. The two classes are clearly distinguished by

this hyper-plane. Hence, this algorithm determines if

an application is malicious or benign.

3.2.3.2 Random Forest (RF)

RF is an ensemble method that at each split point

selects a random sample of features to determine

feature importance [18]. This study trains 100

decision trees; using 100 trees is a practical choice as

it provides accurate and stable results, reduces

variance, and balances performance and speed. It

computes entropy before and after each split and

selects the split with the highest information gain. The

majority vote across all trees determines the final

prediction. RF was implemented as the best estimator

in the stacking model with:

('rf', Random Forest Classifier(n_estimators =100,))

The highest accuracy was achieved using these

estimators across the dataset, where the predicted

target with the highest number of votes is the final

prediction.

3.2.3.3 K-Nearest Neighbor (KNN)

K-Nearest Neighbor measures distances between data

points to classify new instances based on proximity to

training points [19]. This work implemented KNN

starting with 40 neighbors and computed error rates

for k-values from 1 to 39. As shown in Figure 2, k=4

was selected for the final stacking model as it

achieved the optimal balance between low error and

reduced overfitting risk.

3.2.3.4 Stacking Ensemble Model

Figure 2 illustrates the proposed ensemble model

incorporating SVM, KNN, and RF classifiers as base

learners. Each model was trained independently on

training and test sets. These base models were then

integrated into the stacking ensemble framework. The

stacking model uses the three base models as

individual learners with a Random Forest classifier as

the meta-learner. In the stacking framework,

predictions from all models are combined using

malware-category accuracy weights. GridSearch

from scikit-learn was employed to optimize each

model's parameters.

3.2.4 Performance Metrics

Accuracy, precision, recall, and F1-score metrics

were employed to evaluate classifiers and identify the

top-performing model [20].

177

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

Figure 2: KNN error rate.

Accuracy measures the overall percentage of

correct predictions among all instances. Precision

indicates the proportion of true positive predictions

relative to all positive predictions, reflecting

prediction reliability. Recall, also called sensitivity or

the true positive rate, measures the percentage of

actual positive instances successfully detected by the

model. The F1-score combines precision and recall

into a balanced metric, particularly useful for

imbalanced datasets where both false positives and

false negatives have equal importance.

4 RESULT AND DISCUSSION

In addition to testing the suggested ensemble model,

machine learning methods were also used in this

study. Initially, to train the classifiers, the CIC-

AndMal-2017 dataset was used, with a size of 37 GB

containing 70,000 samples selected from the original

dataset. After performing the preprocessing stage in

the malware detection system on the selected dataset,

the samples were reduced to 30,000 samples

(consisting of 12,000 malicious and 18,000 benign

samples), and the 84 features in the dataset were

minimized to 80 features. Following this, the feature

selection stage was applied to the balanced dataset,

which contained 60% benign samples and 40%

malicious samples. A filter-based feature selection

technique (CFS) was applied, selecting 57 features

that had a high correlation to the target based on the

determined threshold (0.2). The top 15 features are

represented in Figure 3.

The supervised learning structure utilized the

Support Vector Machine (SVM), K-Nearest

Neighbor (KNN), Random Forest (RF), and a

Stacking classifier. Table 1 presents the performance

outcomes of the three methods and ensemble model

under static analysis using static features for malware

classification.

Table 2 shows the results from dynamic analysis

using dynamic features.

Table 3 displays the outcomes of the three

algorithms and ensemble model under hybrid

analysis, which combines static and dynamic

features, for malware classification.

Depending on the kind of feature analysis used

with the same dataset, Android malware detection

systems' efficacy can vary greatly. In this study, four

machine learning algorithms – SVM, KNN, RF, and

an ensemble stacking model – were used to examine

the classification results from static, dynamic, and

hybrid analyses. All models performed rather well in

static analysis, which collects information without

running the application. With an accuracy of 88.2%

and an F1-score of 88.3%, the ensemble stacking

classifier was the best in the group. Random Forest

came in second with an accuracy of 87.1%. Static

features (such as permissions and API calls) are

useful in detecting established malware patterns, as

evidenced by the reliable prediction findings and low

computing cost. However, advanced obfuscation

techniques that avoid static detection can make this

method ineffective.

178

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

Figure 3: The top 15 features.

Table 1: Classification results based on static analysis.

Algorithm Accuracy Precision Recall F1-score Time (sec)

 SVM 86.2% 86.6% 84.9% 85.7% 1.10

 KNN 85.5% 85.9% 84.6% 85.2% 0.70

 RF 87.1% 86.5% 87.8% 87.1% 3.10

Stacking 88.2% 87.6% 89.1% 88.3% 9.20

Table 2: Classification results based on dynamic analysis.

Algorithm Accuracy Precision Recall F1-score Time (sec)

 SVM 79.0% 79.3% 77.8% 78.5% 1.00

 KNN 78.1% 78.6% 77.2% 77.9% 0.80

 RF 80.2% 79.6% 80.8% 80.2% 4.50

Stacking 81.0% 80.3% 81.7% 81.0% 12.30

Table 3: Classification results based on hybrid analysis.

Algorithm Accuracy Precision Recall F1-score Time (sec)

 SVM 97.9% 98.2% 96.6% 97.4% 7.80

 KNN 96.2% 96.0% 94.5% 95.2% 5.44

 RF 97.9% 97.5% 97.2% 97.3% 0.03

Stacking 98.9% 99.1% 98.3% 98.7% 36.46

Table 4: The comparison between the previous studies and proposed work.

Study Dataset Methods Results

[8] CICAndMal2017 (GRU) 98.2%

[11] CICAndMal2017 LSTM-SVM 97%

[9] CICAndMal2017 (Stacking) 90.4%

[12] CICAndMal2017 (Stacking) 96.7%

[13] CICAndMal2017 HGDetector model 97%

The proposed study CICAndMal2017 (SVM), (KNN), (RF) and Stacking Ensemble Model 98.9%

179

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

KNN exhibited the quickest runtime (0.70

seconds) with just a slight performance degradation,

indicating a trade-off between predictive power and

efficiency. All measures showed a decline in model

performance when relying only on dynamic aspects,

such as runtime actions or system call behaviors. The

F1-scores for each classifier decreased by roughly 7–

8% compared to static analysis, and the ensemble

model achieved the highest accuracy of 81.0%. This

implies that dynamic analysis by itself might not

provide enough context or consistency to enable

extremely precise classification.

The reduced recall and precision point to possible

challenges in extrapolating from sparse behavioral

data or noise in execution environments. Performance

was clearly best achieved by hybrid analysis that

combined static and dynamic features. The ensemble

stacking classifier outperformed both individual

analysis approaches by achieving an accuracy of

98.9% and an F1-score of 98.7%. This illustrates how

combining behavioral and structural information

yields a more complete view of the application,

improving classifiers' ability to distinguish between

benign and malicious activity. The classification

process took 36.46 seconds to complete, which would

limit its applicability in real-time or resource-

constrained contexts. With nearly similar

performance and a remarkably short computation

time (0.03 seconds), Random Forest likewise

performed quite well in this environment,

demonstrating its suitability for real-time detection

applications. Thus, the best approach for high-stakes

situations like mobile malware detection is hybrid

analysis combined with ensemble models and a

sizable dataset. This approach offers high accuracy

and resistance to evasion strategies, but at a greater

computational cost. Depending on the particular

operational requirements, the best model selection

should balance these trade-offs. The comparison

between our proposed work and previous studies is

shown in Table 4.

5 CONCLUSIONS

This study proposed a strategy for identifying

Android malware and comparing the impact of using

static, dynamic, and hybrid analysis with a stacking-

based ensemble learning approach. The proposed

model was trained with the CIC-AndMal-2017

dataset. The model first applied advanced

preprocessing steps (converting data types to

numeric, addressing missing values, etc.). It then

performed a filter-based feature selection technique

(CFS) and selected the top 15 features most correlated

to the target and suitable for malware classification.

Next, a 70% training set and 30% testing set were

created from the dataset. Finally, the model classified

malware using machine learning algorithms: Support

Vector Machine (SVM), K-Nearest Neighbor (KNN),

Random Forest (RF), and a Stacking Ensemble

Model. According to experimental results, using both

static and dynamic data types improved Android

malware detection performance compared to using

either data type alone. This approach achieved 98.9%

classification accuracy with the stacking classifier. In

conclusion, combining both feature types with

ensemble learning improved detection performance

by 12% and 22% compared to static and dynamic

approaches respectively.

ACKNOWLEDGMENTS

The authors thank the Department of Computer

Science, College of Science, Al-Mustansiriyah

University, for supporting this work.

REFERENCES

[1] M. Li, Z. Fang, J. Wang, L. Cheng, Q. Zeng, T. Yang,
Y. Wu, and J. Geng, "A systematic overview of
Android malware detection," Appl. Artif. Intell.,
vol. 36, no. 1, p. e2007327, 2022, [Online]. Available:
https://doi.org/10.1080/08839514.2021.2007327.

[2] R. Srinivasan, S. Karpagam, M. Kavitha, and
R. Kavitha, "An analysis of machine learning-based
Android malware detection approaches," in Proc. Int.
Conf. Electron. Circuits Signal. Technol., 2022.

[3] N. Jafaar and B. M. Nema, "Geolocation Android
mobile phones using GSM/UMTS," Baghdad Sci. J.,
vol. 16, no. 1, Art. no. 34, 2019, doi:
10.21123/bsj.2019.16.1(Suppl.).0254.

[4] N. A. Sadkhan, Z. O. Ahmed, and R. N. Ajmi,
"Assessing the potential of wild mushrooms as
bioindicators for environmental pollution prediction
using machine learning," Int. J. Des. Nat. Ecodyn.,
vol. 20, no. 2, pp. 439-446, Feb. 2025.

[5] B. AlKindy, O. B. Jamil, H. Al-Nayyef, and
W. Alkendi, "A machine learning approach for
identifying five types of horizontal ocular disorders
using Haar features," Al-Mustansiriyah J. Sci., vol. 36,
no. 1, pp. 69-83, Mar. 2025, doi:
10.23851/mjs.v36i1.1597.

[6] A. Feizollah, N. B. Anuar, R. Salleh, and
A. W. A. Wahab, "A review on feature selection in
mobile malware detection," Digit. Investig., vol. 13,
pp. 22-37, 2015.

180

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

[7] B. Amro, "Malware detection techniques for mobile
devices," Int. J. Mob. Netw. Commun. Telemat.,
vol. 7, pp. 1-10, 2017.

[8] O. N. Elayan and A. M. Mustafa, "Android malware
detection using deep learning," Procedia Comput. Sci.,
vol. 184, pp. 847-852, 2021.

[9] R. S. Arslan, "Identify type of Android malware with
machine learning based ensemble model," in Proc. 5th
Int. Symp. Multidiscip. Stud. Innov. Technol.
(ISMSIT), Oct. 2021, pp. 628-632.

[10] T. Ball, "The concept of dynamic analysis," in
Software Engineering—ESEC/FSE’99, Berlin,
Germany: Springer, 1999, pp. 216-234.

[11] M. Gracea and M. Sughasiny, "Malware detection for
Android application using Aquila optimizer and
hybrid LSTM-SVM classifier," EAI Endorsed Trans.
Scalable Inf. Syst., vol. 10, no. 1, 2022.

[12] Z. Xue, W. Niu, X. Ren, J. Li, X. Zhang, and R. Chen,
"A stacking-based classification approach to Android
malware using host-level encrypted traffic," J. Phys.:
Conf. Ser., vol. 2024, no. 1, p. 012049, Sep. 2021.

[13] J. Feng, L. Shen, Z. Chen, Y. Lei, and H. Li,
"HGDetector: A hybrid Android malware detection
method using network traffic and function call graph,"
Alexandria Eng. J., vol. 114, pp. 30-45, 2025.

[14] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and
A. A. Ghorbani, "Toward developing a systematic
approach to generate benchmark Android malware
datasets and classification," in Proc. Int. Carnahan
Conf. Secur. Technol. (ICCST), 2018, pp. 1-7.

[15] "Number of smartphone and mobile phone users
worldwide in 2020/2021: Demographics, statistics,
predictions," [Online]. Available:
https://www.unb.ca/cic/datasets/andmal2017.html,
[Accessed: Jan. 11, 2020].

[16] E. S. Alomari, R. R. Nuiaa, Z. A. A. Alyasseri,
H. J. Mohammed, N. S. Sani, M. I. Esa, and
B. A. Musawi, "Malware detection using deep
learning and correlation-based feature selection,"
Symmetry, vol. 15, p. 123, 2023, doi:
10.3390/sym15010123.

[17] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim,
"Performance comparison of support vector machine,
random forest, and extreme learning machine for
intrusion detection," IEEE Access, vol. 6, pp. 33789-
33795, 2018.

[18] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 4th ed. Pearson Education, 2020.

[19] R. RamaDevi and M. Abualkibash, "Intrusion
detection system classification using different
machine learning algorithms on KDD-99 and NSL-
KDD datasets - a review paper," Int. J. Comput. Sci.
Inf. Technol., vol. 11, no. 3, pp. 65-80, 2019, doi:
10.5121/ijcsit.2019.11306.

[20] S. A. Salihu, S. O. Quadri, and O. C. Abikoye,
"Performance evaluation of selected machine learning
techniques for malware detection in Android devices,"
ILJCSIT, vol. 3, no. 1, 2020.

181

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), July 2020225

