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The rapid rise of cryptocurrencies has indeed created both investment opportunities and forecasting
challenges. Accurate predictions of cryptocurrency prices are crucial for traders and financial planners to
make informed decisions. Recent studies have employed deep learning techniques, specifically Long Short-
Term Memory (LSTM), Gated Recurrent Units (GRU), and Bidirectional LSTMs (Bi-LSTM), to analyze the
price movements of popular cryptocurrencies. In a comparative analysis, the GRU model consistently
outperformed both LSTM and Bi-LSTM models across various cryptocurrencies, demonstrating its
effectiveness in modeling financial data. The performance of these models was evaluated using the Mean
Absolute Percentage Error (MAPE) after preprocessing, normalizing, training, and evaluating the data. The
results indicated that GRU provided the most accurate predictions, with lower MAPE values compared to its
counterparts. For instance, a study focusing on Bitcoin, Ethereum, and Litecoin found that the GRU model
achieved superior performance metrics, confirming its suitability for cryptocurrency price forecasting. This
suggests that traders and investors can rely on GRU-based models for more accurate predictions, ultimately

aiding in better investment strategies in the volatile cryptocurrency market.

1 INTRODUCTION

A fiat currency is a currency that is divisible,
transferable, durable, and scarce [1]. This system has
some drawbacks, including no tangible backing for
currencies and no ability to control the money supply,
which may contribute to hyperinflation and income
inequality [2]. Financial institutions and credit card
companies facilitate many transactions, which
increase costs, lengthen transfer times, and expose
ledgers to manipulation. As a result, individuals
cannot control or own data. As a result of government
regulations and legal agreements, the current
financial system still enjoys public trust regardless of
these limitations. A breach of trust has resulted in
significant financial losses in the past, such as during
the dot-com bubble and the housing bubble of
2008 [3]. It has been proven that trust breaches can
result in significant financial losses in the past, such
as during the dot-com bubble and the 2008 real estate
bubble. In October 2008, a group operating under the
pseudonym [4] created the first digital currency,
Bitcoin, using blockchain technology. International
financial institutions are becoming increasingly
interested in P2P transactions, which can be carried

out over the internet without intermediaries [5]. There
is currently research being conducted by academia,
government agencies, and media outlets as well as
citizens.

Since its inception, the cryptocurrency market has
been the subject of controversy and debate, but it has
gradually expanded into one of the largest alternative
investment venues [6]. Bitcoin [5] pioneered the use
of cryptocurrencies as a means of investing,
according to CoinMarketCap.com [7], [8]. In
response to this remarkable growth, big data and
virtual assets are enabling us to move into a new era
of financial. Investors have faced new risks as a result
of the new markets, but they have also been provided
with more tools to manage them.

During the crypto boom of 2017, governments
worldwide began standardizing and regulating digital
currencies. More people now use Bitcoin more
comfortably thanks to blockchain technology's
safety [9]. In addition to using blockchain technology
for security, it is also important to consider
cryptocurrencies' legality when considering illegal
users [10]. Consequently, there are ongoing
discussions and examinations about cryptocurrency
law. In addition to technological innovation and legal
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frameworks, digital currencies also incorporate moral
considerations. The authors examine cryptocurrency
viewpoints, characteristics, and legal and economic
issues in regard to monetary elements [11]. As a
currency, Bitcoin does not meet the economic
requirements in accordance with traditional views
and features. Among the many cryptocurrencies
available on the digital market, BTC is well known.
Considering cryptocurrencies' interconnectedness,
small cryptocurrencies can have a negative impact on
larger cryptocurrencies. According to research [12],
gold acts as a stand-alone currency, making it an
appropriate asset to hedge cryptocurrency price
fluctuations. With virtual currencies evolving and
becoming more volatile, conventional assets, such as
gold, may serve as stabilizing elements, reducing risk
and diversifying portfolios [13].

Cryptocurrencies are inherently volatile and
dynamic, making price forecasting difficult.
Researchers in this field explore and study the
complexities of cryptocurrencies to provide a better
understanding of what drives price fluctuations in this
market. We will use machine learning and deep
learning algorithms to identify latent patterns in data
to improve prediction accuracy. An analysis of deep
learning models is presented in this article for
predicting Bitcoin, Ethereum, and Litecoin prices. In
order to forecast cryptocurrency prices, LSTMs and
gated recurrent units (GRUs) are both types of
recurrent neural networks. It is demonstrated that DL
algorithms are capable of increasing prediction
accuracy and handling the inherent nonlinearities of
time series data in this study.

2 LITERATURE REVIEW

In artificial intelligence, machine learning predicts
the future based on past data. The use of historical
cryptocurrency price data to train machine-learning
models may allow us to predict the price movement
of cryptocurrencies in the future. In contrast with
traditional forecasting models, machine learning-
based forecasting is able to provide results that are
close to or identical to the actual outcome while also
improving accuracy [14]. There has been an increase
in the use of neural networks (NNs), decision trees
(DTs), and support vector machines (SVMs) for this
purpose. Cryptocurrencies improve multiasset
portfolio performance in various ways [15]. The
portfolio's minimal variance is enhanced, and the
efficient frontier is moved forward. Cryptocurrencies
also reduce standard deviations and boost Sharpe
ratios when added to portfolios.

BTC price forecasts can be made using machine
learning algorithms, according to the literature. A
machine learning algorithm predicted the price of
Bitcoin, Ethereum, LTC, XRP, and Stellar [14]. As
compared to Artificial Neural Networks (ANNSs) and
Deep Learning, SVMs produced the highest
accuracy. Using correlation analysis, [16] selected the
most reliable predictors of BTC and ETH prices
based on several factors. Based on the selected
features, linear regression performed better than
SVM, linear regression, and random forest (RF).
LSTM, which is a type of deep learning, was also
tested for predicting Bitcoin and Ethereum prices, and
LSTM achieved the best result for Bitcoin. An
ensemble model based on machine learning has been
used to forecast nine different cryptocurrency prices
using ANNs, KNNs, gradient-boosted trees, and
ensemble models [17], [18].

The ensemble learning model produced the lowest
prediction errors, according to the findings.
Prediction errors were the lowest for the ensemble
learning model. RF and Gradient Boosting Machines
(GBM) were incorporated into an ensemble model to
predict three cryptocurrencies - BTC, ETH, and XRP
-in[19]. These predictions were then calculated using
MAPE, and the results indicated a range of MAPE
values between 0.92% and 2.61%. A lot of DL
models have been developed recently that focus on
predicting financial time series. During deep learning,
artificial neural networks are trained on large
datasets. This type of network can learn and make
intelligent decisions, unlike traditional neural
networks. RNNs, including LSTMs and GRUSs, are
frequently used to predict time series. As described
in [20], an LSTM model using selected features is
used in conjunction with an ANN and RF to predict
BTC prices. Based on the results, an LSTM model
outperformed both ARIMA and SVM. A hybrid
model combining LSTMs and GRUs was used to
predict Monero's (XMR) and LTC's prices [21].

The gold price has been predicted using various
models developed by researchers. A new algorithm
for artificial bee colonies was developed by the
Author [22] in combination with a wavelet neural
network method. Blockchain technology and
cryptographic functions are used in cryptocurrency to
achieve  transparency,  decentralization, and
immutability [23], [24]. An anonymous person or
group invented Bitcoin (BTC) in 2009, making it the
first and most popular cryptocurrency. ETH and
Ripple (XRP) are among the alternative
cryptocurrencies created since then, proving that
cryptocurrency has emerged as a financial asset. Most
cryptocurrencies are dominated by BTC, ETH, and
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XRP, which account for almost 79.5% of all
cryptocurrency market capitalization. In addition to
helping cryptocurrency investors make prudent
investment  decisions,  cryptocurrency  price
predictions can help financial researchers study
cryptocurrency market behaviour. The same methods
can be used to predict cryptocurrency prices as for
stock price predictions. AutoRegression Integrated
Moving Averages (ARIMAS) have been used to
predict cryptocurrency prices and movements [25].
Although these models are more accurate at
predicting time series than Deep Learning algorithms,
they cannot recognize non-linear patterns in very
complex prediction problems [26], [27].

3 PROPOSED METHODOLOGY

In this section, we describe how the study was
processed and modelled. After that, a selection of
cryptocurrency prediction plots is demonstrated.
Lastly, we evaluate the performance and analysis of
the study. Through the use of LSTMs, GRUs, and Bi-
LSTMs, we use deep learning techniques to make
predictions about Bitcoin, Ethereum, and Litecoin
prices. As part of the evaluation process for Bitcoin,
Ethereum, and LTC, historical data is collected,
exploratory data visualization is performed, each
dataset is divided into training and testing datasets,
and three different types of machines are trained,
tested, and compared.

3.1 Dataset

Each deep learning model is composed of three layers
(LSTM, Bi-LSTM, and GRU), each with 100 neural
connections. Figure 1 shows how the dataset was
preprocessed. As part of the deep learning process,
we conducted a variety of preprocessing techniques
on the cryptocurrency data. Following data
imputation, we reshaped the data so that it can be
applied to LSTMs, Bi-LSTMs, and GRUs. Upon
examining the dataset, we found that there were
missing values, which were then replaced using the
previously  recorded observations using a
straightforward imputation technique. A normalized
model ensures accuracy, avoids bias and is
fundamental to model fitting. For the purpose of
reducing the potential issue of unequal treatment, we
used MinMax Scaling to normalize variables with
different scales prior to fitting the model. Studies
have shown that these methods can enhance the
performance of models [28]. As a result, we scaled
the data using MinMax Scalar in this study. As a way

of maintaining continuity between cryptocurrencies,
we divided training into 80:20 tests. Testing datasets
have been collected since 1 January 2022; training
datasets have been collected since 1 January 2018,
and training datasets have been collected since 1
January 2018. These studies utilized a number of
Python 3 libraries, including NumPy, Pandas,
Matplotlib, Keras, and scikit-learn.

3.2 Machine Learning Algorithms

3.2.1 Long Short-Term Memory — LSTM

LSTMs are an update to RNNs. Thus, long-term
dependence problems can be avoided, while
vanishing gradient problems are solved through an
additional mechanism that regulates information and
allows it to persist over time [29]. There is a recurrent
network of interconnected memory blocks in the
LSTM architecture. Memory blocks are also
responsible for maintaining the network’s state
throughout its existence as well as regulating data
flow between individual cells. According to Figure 1,
an LSTM has input. x;, output h,, and an activation
function h;. Input gate calculations determine what
information should remain in a cell's state, while
output gate calculations compute what information
should be sent out.

These (1) — (5) describe how LSTM networks
forward train:

ir = c(Wilhe—q, x] + by), (1
fe = U(Wf[ht—1 x| + bt)' 2
¢ = fy * ¢eq + iy xtanh(W [he—y, x. ] + bo), (3)
or = oc(W,[he—y, x¢] + by), “4)
h: = o, * tanh(c,). ©)
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Figure 1: An LSTM algorithm's structure.
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In the case of x;, h;, and ¢, it is the input gate,
forget gate, and output gate, respectively, at time
step t.

This matrix is represented by and is composed of
two weight matrices and one bias vector. Sigmoid
functions (tanh) are also used to limit the output along
with hyperbolic tangent functions (sig).

3.2.2 Gated Recurrent Unit (GRU)

A new extension of RNN, GRU, was developed using
the architecture of LSTM networks [30]. In addition
to handling arbitrary input sequences, GRUs store
information about past inputs in a state that is
continually updated. GRUs perform different
operations inside than LSTMs, so they are also
different in their inner workings. As opposed to
LSTMs, GRUs have simpler control of information
flow, and they need fewer gates. Reset gates and
update gates determine what should be forgotten by
GRUs. Their training may be easier than LSTMs.
Although GRUs have a simple architecture, they are
capable of performing as well as LSTMs in a broad
range of applications [31].

GRUs have been proven to be more efficient at
modelling language than LSTMs in the Penn
Treebank dataset. GRUs are superior to non-GRUs
for noisy language models, as shown by this result.
According to a comparison of natural language
processing models, GRUs are as good as LSTMs and
CNNs when used across benchmarks [30]. GRUs are
well suited to a variety of NLP tasks, demonstrating
their adaptability and strength. One of the advantages
of GRUs is that they can catch long-range
connections more effectively than standard RNNSs.
Due to the current information and the organization's
express, GRUs can recall or dispose of verified
information based on their current plan's update and
reset entryways. For activities requiring memory
retention and application of long sequences of
information, selective retention is imperative. It is
because GRUs are capable of managing long-term
dependencies that they excel at translating lengthy
text sequences. Therefore, GRUs excel at handling
multiple consecutive information tasks and can even
outperform  RNNs and LSTMs under certain
circumstances [31].

One hundred neurons make up the GRU network,
allowing it to capture complex sequences and
temporal patterns in data. This training process will
use 32 batches to span twenty epochs while balancing
resource use and effectiveness. For overfitting to be
avoided, 20% of neurons should be turned off during

training according to the Dropout of 0.2. With Adam,
sparse gradients can be easily handled, and the
learning rate is adaptive. Since it incorporates linear
activation as part of its other methods, the GRU
design is particularly suitable for tasks such as
forecasting time series or predicting continuous
values. Reset and update gates are present in the
GRU. A gate that updates the hidden state with a new
input determines the amount of hidden state to be
forgotten by a gate that resets the state with a new
input. GRUs contain reset gates (r;), update gates
(z;), hidden states (h;), and candidate hidden states
(h¢) following (6) — (9):

1 = o(Wy[he—, x¢]), (6)

ze = o(Wy[he_q,x¢] + by), @)

he = (1 —z) * (he_1] + 2, * hyy), (¥
Anywhere

hee — tanh(Wy [r + he_q, x,]) Q)

weight matrices W,.. W,, W,

As shown in the figure, o represents the sigmoid
activation function. Function for activating tangents
tanh. Weight matrices W.

3.2.3 Bi-Directional Long Short-Term
Memory

In RNNs, long-term gradients explode and disappear
over time due to LSTMs. Due to back-propagation
through time (BPTT), it is hard for standard RNNs to
prepare long successions, which can result in
exploding or disappearing gradients. Bi-LSTM cells
are used in place of RNN cells to resolve this issue.

In a cell case, data is entered through three
entryways. In the first entryway, sigmoid layers
choose which data to discard, as illustrated by the
following (10).

Ct = ft'Ct—l + it' Cf' (10)

Equations (1) - (3) are then used to update the state
of the cells.

Our paper uses a Bi-LSTM that we developed.
Essentially, it is a deep learning algorithm that feeds
the input sequence into two different networks, one of
which follows normal time and the other follows
reverse time. There is a sequential output from each
network at each time step. The stacked layer Bi-
LSTM architecture allows for both forward and
backward information to be obtained at each time
step, leading to high classification accuracy.
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Hidden State

Figure 2: Block diagram of a GRU cell.

According to (11)-(13), bi-LSTM classifiers can
handle data both forward and backwards.

he = f(wixe + wyhe_y), (1D
he = f(Wsxe + wshei), (12)
0, = g(wshy + wehy), (13)

Input Layer Output Layer

babababa

bB®d

Figure 3: A block model of bidirectional LSTM algorithm
(Bi-LSTM).

3.3 Performance Metrics

Our evaluation of the proposed DL algorithms used
both RMSE and MAPE. A prediction model that has
a smaller RMSE and MAPE value will perform
better:

Y (A — P2

RMSE = [&2=r2e =07 gy
t (14)
n
mapg = 290 2—|At_Pt| 5
= — % .

N 2, . (15)

A forecast is represented by P,, an actual value by
A, and a time step by n is represented by n.

4 RESULT ANALYSIS AND
DISCUSSION

A comparison of RMSE values for three deep
learning models is presented in Figure 4 based on
prices predicted for Bitcoin (BTC), Ethereum (ETH),
and Litecoin (LTC). Performance metrics such as
RMSE are used as a measure of predictive accuracy,
with lower values indicating a better prediction.
According to the results, LSTM produces the lowest
accurate predictions for BTC compared to other
models. While Bi-LSTM is an improvement over
LSTM, it still exhibits relatively high error rates for
BTC and ETH. A GRU model, however,
demonstrates superior prediction accuracy across all
three cryptocurrencies with the lowest RMSE. The
GRU model, as well as all other models, predicts
Litecoin prices accurately with very low errors.
Among all three models evaluated, the GRU model
proves to be the most accurate for predicting
cryptocurrency prices.
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Figure 4: RMSE comparison of LSTM, Bi-LSTM, and
GRU models for cryptocurrency price prediction.

Figure 5 illustrates the MAPE model using
LSTM, Bi-LSTM, and GRU to predict Bitcoin
(BTC), Ethereum (ETH), and Litecoin (LTC). MAPE
measures predictive accuracy, with lower values
indicating better accuracy. All three cryptocurrencies
maintain moderate error levels, with Ethereum
showing slightly higher error levels than Bitcoin and
Ethereum Classic. A comparison of the MAPE values
between the Bi-LSTM model and the Bi-LSTM
shows that the Bi-LSTM model is less efficient,
especially for Bitcoin and Ethereum. Among all
cryptocurrencies, GRU exhibits the lowest MAPE,
demonstrating superior predictive abilities. In this
study, it is confirmed that GRU consistently
outperforms both LSTMs and Bi-LSTMs in
forecasting cryptocurrency prices.
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Figure 5: MAPE comparison of LSTM, Bi-LSTM, and
GRU models for cryptocurrency price prediction.

From early 2018 to mid-2021, Bitcoin (BTC),
Ethereum (ETH), and Litecoin (LTC) closed at their
respective closing prices in Figure 6. The x-axis
represents timelines, and closing prices are
represented by the y-axis. During the period between
late 2020 and early 2021, Bitcoin's price spiked to
almost $60,000 before rapidly dropping. As opposed
to Ethereum, Litecoin's price ranges remain relatively
stable throughout the same period. Compared to
Bitcoin, Ethereum and Litecoin show more consistent
price movements, but their volatility is lower.
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Figure 6: Closing price trends of BTC, ETH, and LTC from
2018 to 2021.

5 CONCLUSIONS

For the purpose of predicting cryptocurrency prices,
the researchers employed three prominent deep
learning algorithms: Gated Recurrent Unit (GRU),
Long Short-Term  Memory (LSTM), and
Bidirectional LSTM (Bi-LSTM). Historical data from
Bitcoin (BTC), Ethereum (ETH), and Litecoin (LTC)
were systematically used to train and validate the
models, enabling a thorough evaluation of their
respective predictive capabilities. Among these
algorithms, GRU consistently demonstrated superior
performance, achieving notably lower Root Mean
Square Errors (RMSEs) and Mean Absolute
Percentage Errors (MAPEs) across all three
cryptocurrencies. In contrast, LSTM and Bi-LSTM
models yielded consistently higher prediction errors
compared to GRU, particularly noticeable for BTC
and ETH, indicating a relative disadvantage in
accurately modeling complex market fluctuations.
The study highlights GRU's simpler architectural
design, fewer training parameters, and enhanced
ability to efficiently capture temporal dependencies,
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positioning it as an optimal choice for modeling
highly volatile and dynamically evolving financial
time series data like cryptocurrency prices. These
findings provide valuable insights for investors,
traders, financial analysts, and researchers, assisting
them in developing informed strategies, managing

risks

effectively, and enhancing research

methodologies within the rapidly evolving landscape
of digital finance.
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