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Renewable energy investments are crucial to address climate change effectively, reduce environmental
impacts, and promote sustainable economic growth globally. Investing in renewable energy markets,
however, presents many challenges due to their inherent complexity, market volatility, regulatory
uncertainties, and unpredictability in technological advancements. This study was conducted to examine how
machine learning-based predictive analytics can assist in making sustainable investments in renewable energy
sources. This work evaluates the performance of multiple classifiers, including Logistic Regression, SVM,
C4.5, KNN, LSTM, and Bayesian Networks, using metrics like prediction accuracy and class distribution
analysis. According to this study, advanced investment strategies in the renewable energy sector can be
significantly optimized by employing sophisticated predictive models, such as Long Short-Term Memory
(LSTM) networks and Bayesian networks. The authors emphasize the critical importance of developing
intelligent data-driven decision-making frameworks capable of effectively addressing class imbalance
challenges, enhancing data quality, and delivering precise, actionable insights to facilitate strategic

investments that accelerate global renewable energy adoption.

1 INTRODUCTION

Investing and innovating in sustainable energy
sources are among the most dynamic sectors for
mitigating climate change. Due to fluctuating
resource availability, evolving regulatory landscapes,
and rapid technological advancements, the renewable
energy market is characterized by significant
uncertainty. Traditional investment analysis methods
do not provide accurate forecasts of returns and risks
in this complex environment. Predictive analytics
based on machine learning offer enhanced
capabilities to model intricate patterns, assess
investment viability, and optimize decision-making.
By using vast datasets and sophisticated algorithms,
machine learning makes it possible to predict market
trends, energy outputs, and financial performance
more accurately, supporting more informed and
sustainable investments. Adding advanced analytics
to renewable energy finance not only promises
improved economic outcomes but also accelerates the
global shift toward more sustainable and resilient
energy sources [1].

Renewable energy has been thrust to the forefront
of global policy and investment agendas due to the
growing urgency of climate change and the depletion
of fossil fuel resources. Renewable energy sources
like solar, wind, hydro, and bioenergy are essential to
achieving environmental goals, reducing greenhouse
gas emissions, and spurring economic growth.
Investments in renewable energy projects, however,
are inherently complex due to factors such as resource
intermittency, regulatory uncertainty, technological
development, and market volatility. Traditionally,
financial and risk assessment models don't take into
account the dynamic and nonlinear influences on
renewable energy investments.

Many industries have benefited from the rapid
progress of Al and machine learning, including the
energy sector [2], [3]. Renewable and sustainable
energy solutions have become increasingly important
as climate change and environmental degradation
pose urgent challenges to the global
community [4], [5]. Fossil fuel-dependent energy
systems cannot be sustained due to their damaging
impact on the environment and limited availability.
This scenario demonstrates how Al and ML can
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revolutionize the renewable energy industry by
enhancing  resource  management, increasing
efficiency, and promoting sustainable energy
strategies [6], [7], [8]. Al and machine learning are
primarily used in renewable energy plans because of
their ability to analyze large datasets, forecast results,
and improve processes immediately. To be able to
cope with the unpredictable and rapidly changing
characteristics of solar and wind energy, these
technologies must be put in place for renewable
energy sources. Artificial intelligence algorithms are
capable of predicting weather patterns and solar
radiation with high accuracy, which allows solar
energy systems to be seamlessly integrated into the
grid. In the same way, ML models are capable of
forecasting wind speeds and power generation, which
improves grid management and energy allocation.
With more and more renewable energy sources
becoming more prevalent, these functions are crucial
to maintaining stability and reliability.

The renewable energy industry heavily relies on
Al and machine learning, especially when it comes to
energy storage and grid management [9]. Energy
storage devices such as batteries are essential to
managing the fluctuations of renewable energy
sources. As storage systems age, artificial intelligence
can improve their charging and discharging
processes, resulting in longer lifespans and greater
efficiency. Furthermore, artificial intelligence can be
used to improve grid control by predicting energy
supply and demand, thereby improving both
efficiency and reliability. Additionally, this reduces
operational expenses, improves the durability of
energy systems, and decreases energy loss [10]. As
Al and machine learning optimize energy usage in
different industries, they have a significant impact on
improving energy efficiency [11]. Smart grids
powered by artificial intelligence can adapt energy
distribution based on current data, reducing energy
losses and optimizing energy use in critical locations.

Furthermore, Al-powered energy management
systems can analyze patterns of energy consumption
in buildings and industrial facilities. Based on the
results of this analysis, automated adjustments can be
made to reduce consumption and identify
opportunities for energy savings. The implementation
of these systems results in substantial cost savings
and contributes to the achievement of wider
sustainability objectives [12].

In addition to reducing environmental damage
and improving residents' well-being, artificial
intelligence and machine learning are also used to
develop smart cities [13]. The implementation of Al-
based solutions in smart cities benefits sustainable

urban development by improving waste management,
optimizing energy usage, and boosting transportation
systems [14]. Artificial Intelligence algorithms, for
example, can improve traffic flow, ultimately
reducing emissions and congestion. In contrast,
machine learning can forecast patterns of waste
generation, resulting in more efficient recycling and
waste disposal. Smart buildings and infrastructure
utilize energy management systems powered by Al to
optimize energy consumption, improving urban
sustainability in the process [15]. There are many
advantages to incorporating Al and machine learning
into renewable energy plans, but there are also
challenges that must be overcome. The requirement
for top-notch, instantaneous data to train Al and ML
models poses a significant challenge. In the energy
industry, gathering and managing data can take
significant resources and be complex, so substantial
investments are needed to build a strong
infrastructure [16]. It is also necessary to have a
competent team able to design, develop, implement,
and support these sophisticated technologies in order
to implement Al-based solutions. Achieving
sustainable energy solutions requires tackling these
challenges in order to utilize Al and ML fully.

Furthermore, Al in the energy industry should be
viewed in light of its ethical and regulatory
implications. Al algorithms require addressing
biases, data privacy, and security [17]. Developing
guidelines for utilizing Al responsibly and fairly will
ensure widespread benefits while reducing risks,
which is why the energy industry and policymakers
should work together to develop them.

2 LITERATURE REVIEW

As solar farms become increasingly reliable and
efficient, predictive maintenance (PdM) is becoming
an important strategy for optimizing performance and
reliability. Advanced data analytics and machine
learning techniques are used to forecast equipment
failures and proactively address maintenance costs.
The purpose of this section is to provide a
comprehensive overview of the literature on
predictive maintenance in solar farms, including
seminal works, recent works, and comparative
analyses across diverse technological contexts and
geographical locations [18].

The rapid expansion of solar energy installations
across the globe has highlighted the importance of
predictive maintenance in improving solar farm
reliability and performance. As part of his study [19],
the Author evaluated the effectiveness of predictive,
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preventative, and corrective maintenance strategies in
solar farms to maximize equipment uptime and
minimize operational disruptions. As a result of their
research, predictive maintenance proved to be more
cost-effective  and  efficient than  reactive
maintenance.

Comparative studies have also shown that
machine learning-based predictive maintenance
algorithms  outperform conventional rule-based
maintenance algorithms. In a study by the Author
[20], supervised learning algorithms were compared
to unsupervised learning algorithms to predict solar
panel failure, with machine learning models proving
to be more accurate and predictive than supervised
learning algorithms. Using historical performance
data and sensor measurements, machine learning
algorithms can identify subtle proactive intervention
strategies to avoid downtime and optimize
maintenance schedules in order to prevent equipment
failures.

Solar farms have also been investigated for their
economic and environmental impacts in addition to
their technical considerations. According to
Author [21], life cycle cost analyses (LCCAS) were
conducted on solar energy systems to evaluate the
viability of predictive maintenance investments in the
long run. According to their findings, predictive
maintenance is initially more expensive than reactive
maintenance, but the cost savings and performance
improvements over the lifetime of the asset outweigh
the upfront costs. Furthermore, predictive
maintenance can reduce the environmental footprint
of solar energy operations by reducing waste
generation, resource consumption, and greenhouse
gas emissions associated with unscheduled
downtime.

Using reinforcement learning control
strategies [11], research has developed a method of
reducing energy consumption and losses in the
distribution sector. Solar energy for heating, biomass
boilers, and photovoltaic solar cells are among the
most efficient sources of renewable energy. A
building's energy consumption determines control
systems, what is saved for later use or released into
the environment, and what has the least impact on the
environment.  Building  management  system
optimization is achieved using a unique technology
called BEEL. A combination of vector-wavelet-based
training algorithms is compared with the described
reinforcement learning method to maximize
mathematical rewards. Compared to the prior ML
methods, the novel method shows better compliance
and reward-based actions. Compared to artificial

intelligence, reinforcement learning is 99.98%
accurate and can be used in conjunction with trial and
error and delayed rewards.

According to [22], 100% renewable energy is
suitable for desalination, transportation, heat, and
electricity. For 145 local energy systems split into
nine key global sectors, a technologically
sophisticated, cross-sectoral, cross-regional, and
financially advantageous global energy
transformation pathway is presented. There are
several benefits to a 1.5 °C target-compatible
situation, including widespread access to fresh water,
50% energy savings, and low energy costs. The plan
also involves the rapid indirect and direct
electrification of DE through Power-to-X processes
and the massive fossilization of DE. Moreover, it
offers a pathway to an efficient, reliable, and
sustainable energy system that replaces fossil fuels
with renewable energy sources. Even though
renewable energy facilities, such as solar power
plants, wind turbines, and energy storage facilities,
have potential long-term benefits, they can be
extremely costly to build. Developing nations or areas
heavily reliant on fossil fuels may face obstacles due
to a lack of financial resources [23].

Using modified trihybrid nanoparticles, the
Author [24] proposed a model to describe blood flow
in stenotic/dilating arteries. Using homology
perturbation, we solve the equations using a fractional
fluid model that accounts for blood's non-Newtonian
behaviour. Even though the fractional parameter
limits the model's clinical applicability, it still
provides valuable information. According to the
Author, weakly conducting fluids flow through
porous structures when an electromagnetic plate
oscillates [25]. In the Darcy model, larger Darcy
numbers reduced velocity, while higher modified
Hartmann numbers increased velocity. Key flow
quantities are accurately predicted by their ANN
model with a 99.95% accuracy rate.

3 METHODOLOGY

3.1 Exclusion Criteria

Any area outside of Greece's EEZ is legally excluded
from the study area. As of the early 2000s, national
territorial waters have been considered as a siting
criterion, as well as the EEZ of a country [26] - [28].
We discuss the exclusion criteria used in this paper in
the following section.
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3.1.1 Wind Velocity

Site selection for an OWF is heavily influenced by
wind velocity, as it directly impacts economic
feasibility. Wind data analysis is therefore vital for
assessing potential wind energy sites based on their
wind data accuracy and detail. An hourly wind
velocity measurement at 80 m height has been made
for the last 10 years (2009-2018) and is used to
calculate the wind velocity in this study. The present
site suitability analysis concludes that OWFs should
not be located in marine areas with average wind
speeds less than 6 m/s at an elevation of 80 m above
mean water level [29].

3.1.2 Water Depth

When OWFs are sited, their investment costs are
significantly influenced by the depth of the water
[30]. A wind turbine's support structure and its
CAPEX and OPEX are significantly affected by the
water depth, which increases significantly in deeper
waters. Based on [31], it can be assumed that deeper
waters incur higher costs due to mooring, anchoring,
and cabling expenses. There is a 500 m maximum
limit on the depth of the water in this
investigation [29].

3.1.3 Military Zones

Neither the National Army nor the Marines use these
marine areas for any other purpose than for training
purposes. Taking into account the current
criterion [28].

3.1.4 Seismic Hazard Zones

When selecting a construction site, seismic hazards
should be taken into consideration. Globally, Greece
has one of the highest seismic activity rates.
Therefore, all infrastructure should be earthquake-
resistant. Wind turbine supporting structures may
have to be specially designed for OWFs, resulting in
higher construction costs. Consequently, seismic
hazards (0.36g) in Greece are excluded. OWF site
selection has not been included in any other study of
OWF sites that are internationally seated. Still, it was
proposed by [32] as a criterion for selecting suitable
sites for OWF developments in South Korea, but it
wasn't included in their study.

3.1.5 Underwater Cables

Cables that are already on the seafloor and are either
telecommunications or electrical transmission cables

are excluded from this criterion [28]. The underwater
cable routes must be taken into account when
installing OWF developments.

3.2 Intelligent Predictive Analytics
Inference Model

Intelligent predictive inference models are based on
machine  learning  classification  algorithms.
According to the nature of the predicted output, these
algorithms can be divided into two major categories.

There are two categories of scenarios: numerical
and qualitative. Regression is the machine learning
method used in such cases.

Classification, on the other hand, applies when a
categorical value is predicted, in which case the
process is referred to as classification. In addition to
classification, there are two subcategories based on
the number of possible classes:

When a categorical variable only has two possible
classes, it is called binary classification.

3.3 Multiclass Classification of
Categorical Variables and Fold
Cross-Validation Techniques

During this study, 10-fold cross-validation was used
to enhance the effectiveness of the training of the
models. The tenfold algorithm divides data input into
ten subgroups. The training data is based on nine
subgroups, and the test data is based on the remaining
subgroup. To reduce bias, the models are trained for
10 iterations using data. Additionally, the model
weights for convolutional layers are continuously
updated in every iteration, increasing the
effectiveness of training. A common design for a k-
fold can be seen in Figure 1. To train the model for
this study, k = 10 subgroups of input data are divided
and trained for 10 iterations.
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Figure 1: 10-fold-cross-validation process.
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3.4 Evaluation Metrics in Classification

A description of performance evaluation metrics used
in  most machine learning applications for
classification, including how and why they are used.

3.4.1 Prediction Accuracy

Prediction accuracy of a machine learning model
reflects its ability to correctly predict unseen data.
According to [33], accuracy is calculated as the
proportion of correct predictions (both positive and
negative) relative to all predictions made by the
model. The calculation incorporates four fundamental
classification outcomes: true positives (TP) represent
instances correctly predicted as positive, true
negatives (TN) represent instances correctly
predicted as negative, false positives (FP) represent
negative instances incorrectly predicted as positive,
and false negatives (FN) represent positive instances
incorrectly predicted as negative. This metric
provides an overall measure of model correctness
across all classification decisions.

3.4.2 Confusion Matrix

A confusion matrix was first created by Karl Pearson
in 1904 when it was known as a contingency table. In
data science, it has been called a confusion matrix
before a classification matrix. We should have kept
the name "classification matrix" since it is more
accurate and eliminates a lot of confusion. During the
process of improving the model, there may be
confusion over a specific metric to prioritize, even
though the confusion matrix provides several metrics
to consider. There are N output classes in the
confusion matrix, and N is its size, where N denotes
the number of input classes. There are rows
representing predictions and columns representing
actual classes in the matrix. An analysis of the
accuracy and accuracy of a classifier's predictions for
classification tasks is given in this table. There are
binary and multiclass categorizations. Classifier
performance can be assessed from the confusion
matrix, which reveals what the classifier gets right
and what it can do wrong. Through the confusion
matrix, the best course of action can be determined to
improve the model. Confidence matrices are used in
supervised learning methods since they can be
constructed for datasets with known outcomes.

3.4.3 Normalization

The normalization of traffic feature values is also
necessary to convert independent features into a
specific range of values. Data mining and data
analysis use this technique to normalize features. A
normalization step can suppress the very large values
resulting from feature extraction from network traffic.
By using the min-max method, these values can be
linearly normalized between 0 and 1, which can be
calculated as follows:

Y max(d;;) — min (d;;)’

2

Row i and column j of dataset d represent the value
of d;;.

3.5 Training Machine Learning
Classifiers

Our study aims to achieve its objectives by training a
baseline classifier with a variety of kernel functions.
In addition, there are several other classifiers,
including Logistic Regression (LR), SVM (SVM),
C4.5(C4.5), LSTM (LSTM Deep Learning Recurrent
Neural Networks) and Bayesian Networks (Bayesian
Networks). As part of the training process, we use
training datasets to build trained models, which we
will then use as part of the next step.

3.6 Testing Machine Learning
Classifiers

The purpose of this step is to train models on an
unknown dataset. In the study, it was a
straightforward process to determine whether the
machine learning classifiers were successful. Input
network traffic features have actual class labels. A
training dataset is used to train the classifier models,
and then the results are compared to the actual labels
in the dataset. It is classified correctly if the two are
the same, and we move on to the next test example if
they are. A classification that does not match is
deemed incorrect. This step involves setting up
network intrusion detection performance metrics.
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4 RESULTS AND DISCUSSION

Figure 2 presents a comparison of the predicted
accuracy of six different machine learning classifiers,
including Logistic Regression (LR), Support Vector
Machine (SVM), decision trees based on C4.5, K-
Nearest Neighbors (KNN), Long Short-Term
Memory (LSTM), and Bayesian Networks (BN).
Using a percentage (%) as a measure of prediction
accuracy, classifiers are measured according to their
performance. There is a significant variation in
accuracy among the five models, with BN achieving
the highest accuracy at 79.42%, followed closely by
LSTM (77.36%) and KNN (76.54), and LR recording
the lowest accuracy at 70.36%. Even though all
classifiers perform reasonably well, advanced models
like LSTM and BN provide superior predictive
capabilities compared to traditional methods like LR
and SVM. This highlights their potential
effectiveness in complex predictive analytics.
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Figure 2: Accuracy of classifier predictions.

Figure 3 depicts the distribution of predictions
across two classes, 0 and Class 1-for six different
classifiers (LR, SVM, C4.5, KNN, LSTM, and BN)
in relation to investments in renewable energy (RES).
There is a significant dominance of class 0,
represented in brown, across all classifiers, indicating
that the majority of predictions fall into this category.
All models predict Class 1 relatively few times, with
SVM showing slightly higher numbers than other
models. It may be an underlying class imbalance in
the dataset or that the models are not able to identify
investment opportunities (Class 1) in renewable
energy as a result of the imbalance between Class 0
and Class 1.

According to Figure 4, six machine learning
classifiers were used to classify the "Not Invest in
Renewable Energy Sources (RES)" category: LR,
SVM, C4.5, KNN, LSTM, and BN. For most model
classifications, Class 0 (brown) consistently predicts
non-investment decisions more accurately than Class
1 (green). As one of the most prominent features of
the C4.5 classifier, almost no predictions are made for
Class 1 as a result of the extreme skew towards Class
0. SVMs and LSTMs demonstrate somewhat better
balance, though Class 0 continues to dominate. As a
result, classifiers predict non-investment outcomes
more accurately, even when class imbalances and
subtle factors influencing investment decisions are
present.
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Figure 3: Class-wise prediction results for renewable
energy investments.
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Figure 4: Prediction distribution for non-investment in
renewable energy.
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5 CONCLUSIONS

Using machine learning to predict renewable energy
investment decisions can significantly improve
investment decisions. Bayesian networks and LSTM
models performed the best among the six classifiers
evaluated, demonstrating their superior abilities to
model complex relationships in renewable energy
data. Using the class distribution analysis, it was
revealed that non-investment predictions were
dominant, suggesting that dataset imbalance and the
complexity of identifying promising investment
opportunities are challenges. Machine learning,
however, can significantly enhance the accuracy of
forecasts, optimize resource management strategies,
and improve financial planning associated with
sustainable energy projects by effectively capturing
complex patterns and trends. Achieving a greener,
more sustainable energy future will necessitate
machine learning techniques capable of integrating
broader, diverse datasets, addressing class
imbalances, reducing predictive uncertainty, and
enhancing decision-making reliability.
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