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Abstract: Renewable energy investments are crucial to address climate change effectively, reduce environmental 

impacts, and promote sustainable economic growth globally. Investing in renewable energy markets, 

however, presents many challenges due to their inherent complexity, market volatility, regulatory 

uncertainties, and unpredictability in technological advancements. This study was conducted to examine how 

machine learning-based predictive analytics can assist in making sustainable investments in renewable energy 

sources. This work evaluates the performance of multiple classifiers, including Logistic Regression, SVM, 

C4.5, KNN, LSTM, and Bayesian Networks, using metrics like prediction accuracy and class distribution 

analysis. According to this study, advanced investment strategies in the renewable energy sector can be 

significantly optimized by employing sophisticated predictive models, such as Long Short-Term Memory 

(LSTM) networks and Bayesian networks. The authors emphasize the critical importance of developing 

intelligent data-driven decision-making frameworks capable of effectively addressing class imbalance 

challenges, enhancing data quality, and delivering precise, actionable insights to facilitate strategic 

investments that accelerate global renewable energy adoption. 

1 INTRODUCTION 

Investing and innovating in sustainable energy 

sources are among the most dynamic sectors for 

mitigating climate change. Due to fluctuating 

resource availability, evolving regulatory landscapes, 

and rapid technological advancements, the renewable 

energy market is characterized by significant 

uncertainty. Traditional investment analysis methods 

do not provide accurate forecasts of returns and risks 

in this complex environment. Predictive analytics 

based on machine learning offer enhanced 

capabilities to model intricate patterns, assess 

investment viability, and optimize decision-making. 

By using vast datasets and sophisticated algorithms, 

machine learning makes it possible to predict market 

trends, energy outputs, and financial performance 

more accurately, supporting more informed and 

sustainable investments. Adding advanced analytics 

to renewable energy finance not only promises 

improved economic outcomes but also accelerates the 

global shift toward more sustainable and resilient 

energy sources [1]. 

Renewable energy has been thrust to the forefront 

of global policy and investment agendas due to the 

growing urgency of climate change and the depletion 

of fossil fuel resources. Renewable energy sources 

like solar, wind, hydro, and bioenergy are essential to 

achieving environmental goals, reducing greenhouse 

gas emissions, and spurring economic growth. 

Investments in renewable energy projects, however, 

are inherently complex due to factors such as resource 

intermittency, regulatory uncertainty, technological 

development, and market volatility. Traditionally, 

financial and risk assessment models don't take into 

account the dynamic and nonlinear influences on 

renewable energy investments. 

Many industries have benefited from the rapid 

progress of AI and machine learning, including the 

energy sector [2], [3]. Renewable and sustainable 

energy solutions have become increasingly important 

as climate change and environmental degradation 

pose urgent challenges to the global 

community [4], [5]. Fossil fuel-dependent energy 

systems cannot be sustained due to their damaging 

impact on the environment and limited availability. 

This scenario demonstrates how AI and ML can 
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revolutionize the renewable energy industry by 

enhancing resource management, increasing 

efficiency, and promoting sustainable energy 

strategies [6], [7], [8]. AI and machine learning are 

primarily used in renewable energy plans because of 

their ability to analyze large datasets, forecast results, 

and improve processes immediately. To be able to 

cope with the unpredictable and rapidly changing 

characteristics of solar and wind energy, these 

technologies must be put in place for renewable 

energy sources. Artificial intelligence algorithms are 

capable of predicting weather patterns and solar 

radiation with high accuracy, which allows solar 

energy systems to be seamlessly integrated into the 

grid. In the same way, ML models are capable of 

forecasting wind speeds and power generation, which 

improves grid management and energy allocation. 

With more and more renewable energy sources 

becoming more prevalent, these functions are crucial 

to maintaining stability and reliability. 

The renewable energy industry heavily relies on 

AI and machine learning, especially when it comes to 

energy storage and grid management [9]. Energy 

storage devices such as batteries are essential to 

managing the fluctuations of renewable energy 

sources. As storage systems age, artificial intelligence 

can improve their charging and discharging 

processes, resulting in longer lifespans and greater 

efficiency. Furthermore, artificial intelligence can be 

used to improve grid control by predicting energy 

supply and demand, thereby improving both 

efficiency and reliability. Additionally, this reduces 

operational expenses, improves the durability of 

energy systems, and decreases energy loss [10]. As 

AI and machine learning optimize energy usage in 

different industries, they have a significant impact on 

improving energy efficiency [11]. Smart grids 

powered by artificial intelligence can adapt energy 

distribution based on current data, reducing energy 

losses and optimizing energy use in critical locations. 

Furthermore, AI-powered energy management 

systems can analyze patterns of energy consumption 

in buildings and industrial facilities. Based on the 

results of this analysis, automated adjustments can be 

made to reduce consumption and identify 

opportunities for energy savings. The implementation 

of these systems results in substantial cost savings 

and contributes to the achievement of wider 

sustainability objectives [12]. 

In addition to reducing environmental damage 

and improving residents' well-being, artificial 

intelligence and machine learning are also used to 

develop smart cities [13]. The implementation of AI-

based solutions in smart cities benefits sustainable 

urban development by improving waste management, 

optimizing energy usage, and boosting transportation 

systems [14]. Artificial Intelligence algorithms, for 

example, can improve traffic flow, ultimately 

reducing emissions and congestion. In contrast, 

machine learning can forecast patterns of waste 

generation, resulting in more efficient recycling and 

waste disposal. Smart buildings and infrastructure 

utilize energy management systems powered by AI to 

optimize energy consumption, improving urban 

sustainability in the process [15]. There are many 

advantages to incorporating AI and machine learning 

into renewable energy plans, but there are also 

challenges that must be overcome. The requirement 

for top-notch, instantaneous data to train AI and ML 

models poses a significant challenge. In the energy 

industry, gathering and managing data can take 

significant resources and be complex, so substantial 

investments are needed to build a strong 

infrastructure [16]. It is also necessary to have a 

competent team able to design, develop, implement, 

and support these sophisticated technologies in order 

to implement AI-based solutions. Achieving 

sustainable energy solutions requires tackling these 

challenges in order to utilize AI and ML fully. 

Furthermore, AI in the energy industry should be 

viewed in light of its ethical and regulatory 

implications. AI algorithms require addressing 

biases, data privacy, and security [17]. Developing 

guidelines for utilizing AI responsibly and fairly will 

ensure widespread benefits while reducing risks, 

which is why the energy industry and policymakers 

should work together to develop them. 

2 LITERATURE REVIEW 

As solar farms become increasingly reliable and 

efficient, predictive maintenance (PdM) is becoming 

an important strategy for optimizing performance and 

reliability. Advanced data analytics and machine 

learning techniques are used to forecast equipment 

failures and proactively address maintenance costs. 

The purpose of this section is to provide a 

comprehensive overview of the literature on 

predictive maintenance in solar farms, including 

seminal works, recent works, and comparative 

analyses across diverse technological contexts and 

geographical locations [18]. 

The rapid expansion of solar energy installations 

across the globe has highlighted the importance of 

predictive maintenance in improving solar farm 

reliability and performance. As part of his study [19], 

the Author evaluated the effectiveness of predictive, 
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preventative, and corrective maintenance strategies in 

solar farms to maximize equipment uptime and 

minimize operational disruptions. As a result of their 

research, predictive maintenance proved to be more 

cost-effective and efficient than reactive 

maintenance.  

Comparative studies have also shown that 

machine learning-based predictive maintenance 

algorithms outperform conventional rule-based 

maintenance algorithms. In a study by the Author 

[20], supervised learning algorithms were compared 

to unsupervised learning algorithms to predict solar 

panel failure, with machine learning models proving 

to be more accurate and predictive than supervised 

learning algorithms. Using historical performance 

data and sensor measurements, machine learning 

algorithms can identify subtle proactive intervention 

strategies to avoid downtime and optimize 

maintenance schedules in order to prevent equipment 

failures. 

Solar farms have also been investigated for their 

economic and environmental impacts in addition to 

their technical considerations. According to 

Author [21], life cycle cost analyses (LCCAs) were 

conducted on solar energy systems to evaluate the 

viability of predictive maintenance investments in the 

long run. According to their findings, predictive 

maintenance is initially more expensive than reactive 

maintenance, but the cost savings and performance 

improvements over the lifetime of the asset outweigh 

the upfront costs. Furthermore, predictive 

maintenance can reduce the environmental footprint 

of solar energy operations by reducing waste 

generation, resource consumption, and greenhouse 

gas emissions associated with unscheduled 

downtime. 

Using reinforcement learning control 

strategies [11], research has developed a method of 

reducing energy consumption and losses in the 

distribution sector. Solar energy for heating, biomass 

boilers, and photovoltaic solar cells are among the 

most efficient sources of renewable energy. A 

building's energy consumption determines control 

systems, what is saved for later use or released into 

the environment, and what has the least impact on the 

environment. Building management system 

optimization is achieved using a unique technology 

called BEEL. A combination of vector-wavelet-based 

training algorithms is compared with the described 

reinforcement learning method to maximize 

mathematical rewards. Compared to the prior ML 

methods, the novel method shows better compliance 

and reward-based actions. Compared to artificial 

intelligence, reinforcement learning is 99.98% 

accurate and can be used in conjunction with trial and 

error and delayed rewards. 

According to [22], 100% renewable energy is 

suitable for desalination, transportation, heat, and 

electricity. For 145 local energy systems split into 

nine key global sectors, a technologically 

sophisticated, cross-sectoral, cross-regional, and 

financially advantageous global energy 

transformation pathway is presented. There are 

several benefits to a 1.5 °C target-compatible 

situation, including widespread access to fresh water, 

50% energy savings, and low energy costs. The plan 

also involves the rapid indirect and direct 

electrification of DE through Power-to-X processes 

and the massive fossilization of DE. Moreover, it 

offers a pathway to an efficient, reliable, and 

sustainable energy system that replaces fossil fuels 

with renewable energy sources. Even though 

renewable energy facilities, such as solar power 

plants, wind turbines, and energy storage facilities, 

have potential long-term benefits, they can be 

extremely costly to build. Developing nations or areas 

heavily reliant on fossil fuels may face obstacles due 

to a lack of financial resources [23]. 

Using modified trihybrid nanoparticles, the 

Author [24] proposed a model to describe blood flow 

in stenotic/dilating arteries. Using homology 

perturbation, we solve the equations using a fractional 

fluid model that accounts for blood's non-Newtonian 

behaviour. Even though the fractional parameter 

limits the model's clinical applicability, it still 

provides valuable information. According to the 

Author, weakly conducting fluids flow through 

porous structures when an electromagnetic plate 

oscillates [25]. In the Darcy model, larger Darcy 

numbers reduced velocity, while higher modified 

Hartmann numbers increased velocity. Key flow 

quantities are accurately predicted by their ANN 

model with a 99.95% accuracy rate. 

3 METHODOLOGY 

3.1 Exclusion Criteria 

Any area outside of Greece's EEZ is legally excluded 

from the study area. As of the early 2000s, national 

territorial waters have been considered as a siting 

criterion, as well as the EEZ of a country [26] - [28]. 

We discuss the exclusion criteria used in this paper in 

the following section. 
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3.1.1 Wind Velocity 

Site selection for an OWF is heavily influenced by 

wind velocity, as it directly impacts economic 

feasibility. Wind data analysis is therefore vital for 

assessing potential wind energy sites based on their 

wind data accuracy and detail. An hourly wind 

velocity measurement at 80 m height has been made 

for the last 10 years (2009-2018) and is used to 

calculate the wind velocity in this study. The present 

site suitability analysis concludes that OWFs should 

not be located in marine areas with average wind 

speeds less than 6 m/s at an elevation of 80 m above 

mean water level [29]. 

3.1.2 Water Depth 

When OWFs are sited, their investment costs are 

significantly influenced by the depth of the water 

[30]. A wind turbine's support structure and its 

CAPEX and OPEX are significantly affected by the 

water depth, which increases significantly in deeper 

waters. Based on [31], it can be assumed that deeper 

waters incur higher costs due to mooring, anchoring, 

and cabling expenses. There is a 500 m maximum 

limit on the depth of the water in this 

investigation [29]. 

3.1.3 Military Zones 

Neither the National Army nor the Marines use these 

marine areas for any other purpose than for training 

purposes. Taking into account the current 

criterion [28]. 

3.1.4 Seismic Hazard Zones 

When selecting a construction site, seismic hazards 

should be taken into consideration. Globally, Greece 

has one of the highest seismic activity rates. 

Therefore, all infrastructure should be earthquake-

resistant. Wind turbine supporting structures may 

have to be specially designed for OWFs, resulting in 

higher construction costs. Consequently, seismic 

hazards (0.36g) in Greece are excluded. OWF site 

selection has not been included in any other study of 

OWF sites that are internationally seated. Still, it was 

proposed by [32] as a criterion for selecting suitable 

sites for OWF developments in South Korea, but it 

wasn't included in their study. 

3.1.5 Underwater Cables 

Cables that are already on the seafloor and are either 

telecommunications or electrical transmission cables 

are excluded from this criterion [28]. The underwater 

cable routes must be taken into account when 

installing OWF developments. 

3.2 Intelligent Predictive Analytics 

Inference Model 

Intelligent predictive inference models are based on 

machine learning classification algorithms. 

According to the nature of the predicted output, these 

algorithms can be divided into two major categories. 

There are two categories of scenarios: numerical 

and qualitative. Regression is the machine learning 

method used in such cases. 

Classification, on the other hand, applies when a 

categorical value is predicted, in which case the 

process is referred to as classification. In addition to 

classification, there are two subcategories based on 

the number of possible classes: 

When a categorical variable only has two possible 

classes, it is called binary classification. 

3.3 Multiclass Classification of 

Categorical Variables and Fold 

Cross-Validation Techniques 

During this study, 10-fold cross-validation was used 

to enhance the effectiveness of the training of the 

models. The tenfold algorithm divides data input into 

ten subgroups. The training data is based on nine 

subgroups, and the test data is based on the remaining 

subgroup. To reduce bias, the models are trained for 

10 iterations using data. Additionally, the model 

weights for convolutional layers are continuously 

updated in every iteration, increasing the 

effectiveness of training. A common design for a k-

fold can be seen in Figure 1. To train the model for 

this study, k = 10 subgroups of input data are divided 

and trained for 10 iterations. 

Figure 1: 10-fold-cross-validation process. 

326 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), July 2020225  



3.4 Evaluation Metrics in Classification 

A description of performance evaluation metrics used 

in most machine learning applications for 

classification, including how and why they are used. 

3.4.1 Prediction Accuracy 

Prediction accuracy of a machine learning model 

reflects its ability to correctly predict unseen data. 

According to [33], accuracy is calculated as the 

proportion of correct predictions (both positive and 

negative) relative to all predictions made by the 

model. The calculation incorporates four fundamental 

classification outcomes: true positives (TP) represent 

instances correctly predicted as positive, true 

negatives (TN) represent instances correctly 

predicted as negative, false positives (FP) represent 

negative instances incorrectly predicted as positive, 

and false negatives (FN) represent positive instances 

incorrectly predicted as negative. This metric 

provides an overall measure of model correctness 

across all classification decisions. 

3.4.2 Confusion Matrix 

A confusion matrix was first created by Karl Pearson 

in 1904 when it was known as a contingency table. In 

data science, it has been called a confusion matrix 

before a classification matrix. We should have kept 

the name "classification matrix" since it is more 

accurate and eliminates a lot of confusion. During the 

process of improving the model, there may be 

confusion over a specific metric to prioritize, even 

though the confusion matrix provides several metrics 

to consider. There are N output classes in the 

confusion matrix, and N is its size, where N denotes 

the number of input classes. There are rows 

representing predictions and columns representing 

actual classes in the matrix. An analysis of the 

accuracy and accuracy of a classifier's predictions for 

classification tasks is given in this table. There are 

binary and multiclass categorizations. Classifier 

performance can be assessed from the confusion 

matrix, which reveals what the classifier gets right 

and what it can do wrong. Through the confusion 

matrix, the best course of action can be determined to 

improve the model. Confidence matrices are used in 

supervised learning methods since they can be 

constructed for datasets with known outcomes. 

3.4.3 Normalization 

The normalization of traffic feature values is also 

necessary to convert independent features into a 

specific range of values. Data mining and data 

analysis use this technique to normalize features. A 

normalization step can suppress the very large values 

resulting from feature extraction from network traffic. 

By using the min-max method, these values can be 

linearly normalized between 0 and 1, which can be 

calculated as follows: 

𝑑𝑖𝑗 =
𝑑𝑖𝑗 −min(𝑑𝑖𝑗)

𝑚𝑎𝑥(𝑑𝑖𝑗) − min⁡(𝑑𝑖𝑗)
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

Row i and column j of dataset d represent the value 

of 𝑑𝑖𝑗.

3.5 Training Machine Learning 

Classifiers 

Our study aims to achieve its objectives by training a 

baseline classifier with a variety of kernel functions. 

In addition, there are several other classifiers, 

including Logistic Regression (LR), SVM (SVM), 

C4.5 (C4.5), LSTM (LSTM Deep Learning Recurrent 

Neural Networks) and Bayesian Networks (Bayesian 

Networks). As part of the training process, we use 

training datasets to build trained models, which we 

will then use as part of the next step. 

3.6 Testing Machine Learning 

Classifiers 

The purpose of this step is to train models on an 

unknown dataset. In the study, it was a 

straightforward process to determine whether the 

machine learning classifiers were successful. Input 

network traffic features have actual class labels. A 

training dataset is used to train the classifier models, 

and then the results are compared to the actual labels 

in the dataset. It is classified correctly if the two are 

the same, and we move on to the next test example if 

they are. A classification that does not match is 

deemed incorrect. This step involves setting up 

network intrusion detection performance metrics. 
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4 RESULTS AND DISCUSSION 

Figure 2 presents a comparison of the predicted 

accuracy of six different machine learning classifiers, 

including Logistic Regression (LR), Support Vector 

Machine (SVM), decision trees based on C4.5, K-

Nearest Neighbors (KNN), Long Short-Term 

Memory (LSTM), and Bayesian Networks (BN). 

Using a percentage (%) as a measure of prediction 

accuracy, classifiers are measured according to their 

performance. There is a significant variation in 

accuracy among the five models, with BN achieving 

the highest accuracy at 79.42%, followed closely by 

LSTM (77.36%) and KNN (76.54), and LR recording 

the lowest accuracy at 70.36%. Even though all 

classifiers perform reasonably well, advanced models 

like LSTM and BN provide superior predictive 

capabilities compared to traditional methods like LR 

and SVM. This highlights their potential 

effectiveness in complex predictive analytics. 

Figure 2: Accuracy of classifier predictions. 

Figure 3 depicts the distribution of predictions 

across two classes, 0 and Class 1-for six different 

classifiers (LR, SVM, C4.5, KNN, LSTM, and BN) 

in relation to investments in renewable energy (RES). 

There is a significant dominance of class 0, 

represented in brown, across all classifiers, indicating 

that the majority of predictions fall into this category. 

All models predict Class 1 relatively few times, with 

SVM showing slightly higher numbers than other 

models. It may be an underlying class imbalance in 

the dataset or that the models are not able to identify 

investment opportunities (Class 1) in renewable 

energy as a result of the imbalance between Class 0 

and Class 1. 

According to Figure 4, six machine learning 

classifiers were used to classify the "Not Invest in 

Renewable Energy Sources (RES)" category: LR, 

SVM, C4.5, KNN, LSTM, and BN. For most model 

classifications, Class 0 (brown) consistently predicts 

non-investment decisions more accurately than Class 

1 (green). As one of the most prominent features of 

the C4.5 classifier, almost no predictions are made for 

Class 1 as a result of the extreme skew towards Class 

0. SVMs and LSTMs demonstrate somewhat better

balance, though Class 0 continues to dominate. As a

result, classifiers predict non-investment outcomes

more accurately, even when class imbalances and

subtle factors influencing investment decisions are

present.

Figure 3: Class-wise prediction results for renewable 

energy investments. 

Figure 4: Prediction distribution for non-investment in 

renewable energy. 
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5 CONCLUSIONS 

Using machine learning to predict renewable energy 

investment decisions can significantly improve 

investment decisions. Bayesian networks and LSTM 

models performed the best among the six classifiers 

evaluated, demonstrating their superior abilities to 

model complex relationships in renewable energy 

data. Using the class distribution analysis, it was 

revealed that non-investment predictions were 

dominant, suggesting that dataset imbalance and the 

complexity of identifying promising investment 

opportunities are challenges. Machine learning, 

however, can significantly enhance the accuracy of 

forecasts, optimize resource management strategies, 

and improve financial planning associated with 

sustainable energy projects by effectively capturing 

complex patterns and trends. Achieving a greener, 

more sustainable energy future will necessitate 

machine learning techniques capable of integrating 

broader, diverse datasets, addressing class 

imbalances, reducing predictive uncertainty, and 

enhancing decision-making reliability. 
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