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Abstract
In this paper,we study relationships between symmetric and non-symmetric separation
of (not necessarily convex) cones by using separating cones of Bishop-Phelps type
in real normed spaces. Besides extending some known results for the non-symmetric
cone separation approach, we propose a new symmetric cone separation approach and
establish cone separation results for it by using some cone separation results obtained
for the non-symmetric cone separation approach twice (by swapping the roles of the
cones). In addition to specifically emphasizing the results for the convex case, we also
present some existence results for (bounded) convex bases of convex cones. Finally,
we highlight some applications of symmetric and non-symmetric cone separation in
optimization.
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1 Introduction

It is well-known that separation plays an important role in variational analysis and
optimization. In particular, cone separation theorems (i.e., theorems related to the
separation of two cones by a hyperplane or a certain conical surface) have been studied
by several authors in the literature (see, e.g., [6], [13, Sec. 2.4.3], [15, 16], [20], [23, Th.
3.22], [24, Sec. 3.7], [25, Th. 4.3], [27, Sec. 2.3], [29], [30, Cor. 2.3], [33, Sec. 11], and
[34, Sec. 4]). Such cone separation theorems are known to be useful in optimization
(e.g., for deriving scalarization results for nonconvex vector optimization problems;
see, e.g., [1, 6, 10, 11, 14, 24–26, 35]). In the literature, there are different concepts
for the nonlinear separation of two (not necessarily convex) cones by a cone/conical
surface (see, e.g., [15, 16, 20, 25, 28, 29]). Let us formalize our underlying cone
separation concepts below.

Consider two non-trivial cones C, K ⊆ X (that is, cones different from {0X } and
X itself) and a closed, solid, convex cone C ⊆ X (in what follows int C, bd C, cl C
stand for the interior, boundary, and closure of C, respectively) in a real normed space
(X , || · ||).
Definition 1.1 We say that the cones C and K are

• strictly separated by (the boundary of the cone) C in a non-symmetric way
(for short, C ∈ N (C, K )) if

C \ {0X } ⊆ int C and K \ {0X } ⊆ X \ C, (1)

or equivalently,

C \ {0X } ⊆ int C and K ∩ C = {0X }.

• strictly separated by C (in a symmetric way) if

C ∈ S(C, K ) := N (C, K ) ∪ N (K ,C),

where the setN (C, K ) (respectively,S(C, K )) consists of all closed, solid, convex
cones in X which are non-symmetric (respectively, symmetric) strictly separating
cones for C and K .

Remark 1.1 The non-symmetric strict cone separation approach from Definition 1.1
is already used in [6, 15, 16, 20, 25], while the symmetric strict cone separation
approach appears to be new in the literature to our knowledge. Note that we have
−N (C, K ) = N (−C,−K ).

In our upcoming cone separation theorems, we like to consider a closed, solid and
convex separating cone C that can be represented by the sublevel set (w.r.t. the level 0)
of a (lower semicontinuous, convex, positively homogeneous) function ϕ : X → R.
More precisely, ϕ should satisfy the cone representation properties

C = {x ∈ X | ϕ(x) ≤ 0} and int C = {x ∈ X | ϕ(x) < 0}.
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In this case, the condition (1) (given in an order theory way) can be written in terms
of functional analysis

ϕ(x1) < 0 < ϕ(x2) for all x1 ∈ C \ {0X } and x2 ∈ K \ {0X }.

In this paper, we study relationships between symmetric cone separation and non-
symmetric cone separation of (not necessarily convex) cones by using separating
cones of Bishop-Phelps type in real normed spaces. While the non-symmetric strict
separation approach for cones is well studied in the literature (see [6, 15, 16, 25]),
the symmetric strict separation approach based on Bishop-Phelps separating cones is
new.

For any (x∗, α) ∈ X∗ × R (where X∗ is the dual normed space of X ), let us define
two closed cones

C(x∗, α) := {x ∈ X | x∗(x) ≥ α‖x‖},
S(x∗, α) := −C(x∗, α),

two sets

C>(x∗, α) := {x ∈ X | x∗(x) > α‖x‖} (⊆ C(x∗, α)),

S<(x∗, α) := −C>(x∗, α) (⊆ S(x∗, α)),

and a so-called norm-linear function ϕx∗,α : X → R by

ϕx∗,α(x) := x∗(x) + α||x || for all x ∈ X .

Note that

−C(x∗, α) = S(x∗, α) = {x ∈ X | ϕx∗,α(x) ≤ 0},
−C>(x∗, α) = S<(x∗, α) = {x ∈ X | ϕx∗,α(x) < 0}.

Throughout, we denote the set of non-negative real numbers by R+ and the set of
positive real numbers by P.

Remark 1.2 In the case that (x∗, α) ∈ (X∗ \ {0X∗}) × P, the set C(x∗, α) is known as
Bishop-Phelps cone and the function ϕx∗,α as Bishop-Phelps function (named after
the work by Bishop and Phelps [2]). It is known that Bishop-Phelps cones / functions
have a lot of useful properties and there are interesting applications in variational
analysis and optimization (see, e.g., [6, 15–19, 22, 24–26]). Any Bishop-Phelps cone
C(x∗, α) is a closed, pointed, convex cone. If ||x∗||∗ > α (where || · ||∗ : X∗ → R

denotes the dual norm of || · ||), then C(x∗, α) is non-trivial and

C>(x∗, α) = int C(x∗, α) �= ∅ and (bd C(x∗, α)) \ {0X } �= ∅.

Note that for (x∗, α) ∈ X∗ × P with ||x∗||∗ < α we have C(x∗, α) = {0X }, while
for ||x∗||∗ ≤ α we have C>(x∗, α) = ∅. If we consider α ∈ R in the Bishop-Phelps
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function ϕx∗,α instead of α ∈ P, we call ϕx∗,α a norm-linear function (as proposed by
Zaffaroni [36]).

In the separation of two (not necessarily convex) cones in a real normed space X ,
we are interested in a Bishop-Phelps coneC = C(x∗, α) that strictly separates (respec-
tively, in a non-symmetric way) two cones C and K , i.e., C ∈ S(C, K ) (respectively,
C ∈ N (C, K )).

Fromnowon,wewill use calligraphic uppercase letters to denote families of subsets
of X . Consider a family C of cones in X with

C ⊆ {C ⊆ X | C is a closed, solid, convex cone} =: Cconvex.

Definition 1.2 We say that the cones C and K in X are

• strictly separated w.r.t. C in a non-symmetric way if

N (C, K | C) := C ∩ N (C, K ) �= ∅.

• strictly separated w.r.t. C if

S(C, K | C) := C ∩ S(C, K ) �= ∅.

Remark 1.3 It is easy to check that

−N (C, K | C) = N (−C,−K | C);
N (C, K | C) ⊆ S(C, K | C);
S(K ,C | C) = S(C, K | C) = N (C, K | C) ∪ N (K ,C | C).

Note that the caseN (C, K | C) �= ∅ = N (K ,C | C) might happen (see e.g. [16, Sec.
4]).

In this paper, we will focus on the separation of the given cones C and K by
separating cones that belong to the following families of cones:

CBP := {C(x∗, α) | (x∗, α) ∈ X∗ × P, ||x∗||∗ > α},
CLin := {C(x∗, 0) | x∗ ∈ X∗ \ {0X∗}},

and other subfamilies CBP∗ ⊆ CBP that will be introduced in Section 4. Note that
CLin ∪ CBP ⊆ Cconvex.
Remark 1.4 It is easy to check that

N (K ,C | CLin) = −N (C, K | CLin)

and
S(C, K | CLin) = (N (C, K | CLin)) ∪ (−N (C, K | CLin)).
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The non-symmetric cone separation concept is known to be useful in vector opti-
mization, e.g. in the proper efficiency solution concept in the sense of Henig, one
needs to have dilating / enlargement convex cones of the given ordering cone (note
that the convex cone C is said to be a dilating cone for the cone C ifC \ {0X } ⊆ int C).
It may also be interesting that such dilating / enlargement cones belong to a special
family C of convex cones (e.g. C ∈ CBP).

From the viewpoint of classical separation in convex analysis and optimization (not
considering a specific application), a symmetric separation concept for cones seems
to be preferable.

On the one hand, the aim of the paper is to give characterizations for the conditions

N (C, K | CBP∗) �= ∅;
N (C, K | CBP∗) �= ∅ �= N (K ,C | CBP∗);
S(C, K | CBP∗) �= ∅.

for certain families CBP∗ ⊆ CBP and under certain assumptions on the cones C and K .
On the other hand, we are interested in the same conditions with cl C or bd C in the
role of C , as well as cl K or bd K in the role of K . Furthermore, the corresponding
relationships between such conditions are of interest. Note that bd K = bd((X \
K ) ∪ {0X }), and, if C ⊆ K , then C ∩ ((X \ K ) ∪ {0X }) = {0X }. In this case, we are
interested in separating conesC that belong to the setsN (C, (X\K )∪{0X } | CBP∗) and
S(C, (X\K )∪{0X } | CBP∗), respectively,N (C, bd K | CBP∗) andS(C, bd K | CBP∗).
This allows us to derive novel sufficient conditions (see Theorems 4.5 and 4.8) that
ensure

• C ∩ K = {0X }

⇒ C ∩ K = {0X } for some C ∈ CBP∗ with C ⊆ C (as studied in [25, Theorem
5.2], [21, Theorem 2.4] for C ∈ Cconvex);

• C ∩ K = {0X }

⇒ C ∩ C = {0X } or K ∩ C = {0X } for some C ∈ CBP∗ with C ⊆ C or K ⊆ C;

• C ⊆ K

⇒ int C ⊆ int C ⊆ int K and C ⊆ C ⊆ K for some C ∈ CBP∗ .

Our results extend known results derived in [6, 15] and [25].
The paper is structured as follows. In Section 2 we present some basics in real

normed spaces and study cones and their properties, separation results for convex
sets / cones (in particular, Proposition 2.1 is a key result for our work), and aug-
mented dual cones of cones. We also recall known nonlinear separation results for
cones based on the non-symmetric approach. In Section 3 we present our main sep-
aration conditions for symmetric and non-symmetric separation of two given cones
and study their basic relations. In particular, Propositions 3.3 and 3.4 are key results to
connect the symmetric cone separation approach with the non-symmetric cone separa-
tion approach. Section 4 is devoted to symmetric and non-symmetric cone separation
based on Bishop-Phelps separating cones. The main aims of the paper, which we have
described above, are achieved in this section. Moreover, in Section 5 we derive some
new existence results for bases of convex cones. Finally, in Section 6 we present a
conclusion with some applications in optimization and an outlook for further research.
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2 Preliminaries in Real Normed Spaces

2.1 Topological Basics

Throughout the paper, assume that X is a real normed space endowed with the norm
|| · || : X → R, X∗ is its topological dual space endowed with the dual norm || · ||∗,
SX is the unit sphere of X , BX is the closed unit ball of X , 0X is the origin of X , and
0X∗ is the origin of X∗. Note that the dual space X∗ of the real normed space X is
known to be a real Banach space.

For any setΩ ⊆ X we denote by cl Ω , clw Ω , int Ω , cor Ω , bd Ω and convΩ the
closure, weak closure, interior, algebraic interior, boundary, and convex hull, respec-
tively. For any a, b ∈ X we define

[a, b] := {(1 − t)a + tb | t ∈ [0, 1]},
(a, b) := {(1 − t)a + tb | t ∈ (0, 1)},
(a, b] := {(1 − t)a + tb | t ∈ (0, 1]}.

The following auxiliary lemma will be used to prove Lemma 2.5.

Lemma 2.1 Consider two sets A, B ⊆ X and assume that int A �= ∅. Suppose that
there exists a ∈ int A such that for every b ∈ B we have

(a, b] ∩ bd A = ∅. (2)

Then, B ⊆ int A.

Proof Suppose, contrary to our claim, that B � A, and pick some b ∈ B \ A. Consider
the continuous function t �→ f (t) := (1 − t)a + tb and define the non-empty and
bounded set I := {t ∈ [0, 1] | f (t) ∈ A}. Denote α := sup I ∈ [0, 1]. It is clear that
f (α) ∈ cl A. Note that the case α = 0 can not appear, since f (0) ∈ int A and f is
continuous (thus f (ε) ∈ A for some ε > 0). Consider two cases:

Case 1: Let α = 1. Then, b = f (α) ∈ (cl A) \ A, hence b ∈ (a, b] ∩ bd A.
Case 2: Let α ∈ (0, 1). We can pick two sequences (tn)n ⊆ I and (sn)n ⊆

[0, 1] \ I that converge to α, i.e., limn→∞ tn = α = limn→∞ sn . On the one hand,
limn→∞ f (tn) = f (α) ∈ (a, b)∩cl A, and on the other hand, since f (sn) ∈ X \ A for
all n ∈ N, we get limn→∞ f (sn) = f (α) ∈ X \ int A. Thus, f (α) ∈ (a, b) ∩ bd A.

In both cases, we get a contradiction to (2). ��

2.2 Cones and Their Properties

A cone C ⊆ X (i.e., a set C ⊆ X with 0X ∈ C = R+ · C) is said to be non-trivial if
{0X } �= C �= X ; pointed if �(C) = {0X }, where �(C) := C ∩ (−C) is the lineality
of C ; acute if cl C is pointed; solid if intC �= ∅; convex if C is a convex set (or
equivalently, if C + C = C).
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Definition 2.1 Consider a cone C ⊆ X . A set B ⊆ C is called a base for C , if B is a
non-empty set, and C = R+ · B with 0X /∈ cl B. Moreover, C is said to be well-based
if there exists a bounded, convex base of C .

Remark 2.1 Assume that B is a base in the sense of Definition 2.1 for the coneC ⊆ X .
Then, ∅ �= C \ {0X } = P · B, and if B is convex, then C is non-trivial and convex.

Remark 2.2 Thanks to the Hahn-Banach theorem, a well-based cone C can be defined
as one for which there exists a bounded convex subset B such that 0X /∈ cl B and, for
every x ∈ C with x �= 0X , there exist unique λ > 0 and b ∈ B such that x = λb (this
definition is used, for instance, in [5]).

Definition 2.2 Consider a cone C ⊆ X . The set

BC := {x ∈ C | ||x || = 1} = C ∩ SX

is called the norm-base of C .

Remark 2.3 Assume that C �= {0X }. Then, BC is a base (in the sense of the Definition
2.1) for C , which is, as a subset of BX , bounded. Note, however, that BC is not
necessarily a convex base.

Inwhat follows, given the norm-base BC of a coneC ⊆ X , wewill use the following
two convex enlarged sets of BC ,

SC := conv(BC ) and S0C := conv({0X } ∪ BC ).

Some important relationships between the cones conv C and cl(conv C) and the
sets SC , S0C , cl SC and cl S0C are discussed in the next lemma.

Lemma 2.2 Assume that C ⊆ X is a cone with C �= {0X }. Then, the following
assertions are valid:

1◦ conv C = R+ · SC = R+ · S0C and if further 0X /∈ cl SC or C is convex, then
cl(conv C) = R+ · cl SC = R+ · cl S0C .

2◦ If 0X /∈ cl SC , then cl SC (respectively, SC) is a bounded convex base for
cl(conv C) (respectively, for conv C), and cl(conv C) \ {0X } = P · cl SC .

Proof The result for the caseC = X is obvious. From [16, Rem. 2.5] we get conv C =
R+ · SC , and if further 0X /∈ cl SC , then cl(conv C) = R+ · cl SC . Moreover, the first
part of assertion 2◦ is discussed in [16, Rem. 2.5], while the second part cl(conv C) \
{0X } = P · cl SC follows from 0X /∈ cl SC and cl(conv C) = R+ · cl SC (provided
by 1◦).

Let us prove the remaining statements in 1◦. Of course, conv C = R+ · SC ⊆
R+ · S0C ⊆ conv C . Consider two cases:

Case 1: Let 0X /∈ cl SC . Then, cl(conv C) = R+ · cl SC ⊆ R+ · cl S0C ⊆
cl(conv C), which means that cl(conv C) = R+ · cl SC = R+ · cl S0C .

Case 2: Let 0X ∈ cl SC and C be convex. By [16, Th. 3.1 (2)] we have cl S0clC =
(clC) ∩ BX , while Lemma 2.3 (2◦) ensures cl S0clC = cl S0C . Consequently, we get
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clC = R+ · BclC ⊆ R+ · ((clC) ∩ BX ) = R+ · cl S0clC = R+ · cl S0C ⊆ cl C, which
means that cl C = R+ · cl S0C . The remaining equality cl C = R+ · cl SC follows
from the fact that 0X ∈ cl SC = cl S0C (by [16, Th. 3.1 (2)]). ��

Given a cone C ⊆ X , its dual cone is defined by

C+ := {x∗ ∈ X∗ | ∀x ∈ C : x∗(x) ≥ 0}.

Furthermore, the subset

C# := {x∗ ∈ X∗ | ∀x ∈ C \ {0X } : x∗(x) > 0}

is of interest. Obviously, both sets C+ and C# are convex for any (not necessarily
convex) cone C ⊆ X , and if C# �= ∅, then C is pointed. Moreover, one has

C+ = (conv C)+ = (cl(conv C))+,

(cl(conv C))# ⊆ C# = (conv C)#, (3)

but the inclusion (cl(conv C))# ⊆ C# can be strict (see Göpfert et al. [13, p. 55]).

Remark 2.4 Consider a non-trivial cone C ⊆ X in a real normed space X . Taking into
account (3), it is well-known (see [3, Th. 3.6], [13, Prop. 2.2.23 and 2.2.32], [16, Sec.
2.2, Th. 3.1]) that

conv C has a convex base ⇐⇒ C# �= ∅, (4)

and

conv C is well-based ⇐⇒ cl(conv C) is well-based

⇐⇒ int C+ �= ∅ ⇐⇒ cor C+ �= ∅ (5)

⇐⇒ 0X /∈ cl Scl(conv C) ⇐⇒ 0X /∈ cl SC .

In particular, for every x∗ ∈ C# the set B := {x ∈ conv C | x∗(x) = 1} is a convex
base for conv C . According to [5, Th. 1.1] (see also [7]), we have further

conv C is well-based ⇐⇒ 0X /∈ cl(conv((conv C) \ int BX ))

(i.e., 0X is a denting point for conv C) (6)

⇐⇒ ∃ x∗ ∈ X∗ : 0 < inf
x∈Sconv C

x∗(x).

As an easy consequence of (4) and (5) we also get

conv C is well-based 
⇒ cl(conv C) has a convex base

⇐⇒ (cl(conv C))# �= ∅

⇒ cl(conv C) is pointed (i.e., conv C is acute).
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In addition, if X has finite dimension and C is closed, then C# = int C+ (see [16, Th.
2.1(4), Rem. 2.6]), hence all the conditions involved in (4), (5) and (6) are equivalent.

2.3 Separation of Convex Sets / Cones

Let us present some results related to separation of convex sets / cones. The first
proposition will be a key result for proving some main characterizations of symmetric
and non-symmetric separation conditions in the upcoming Sections 3 and 4.

Proposition 2.1 Consider two non-empty convex sets Ω1,Ω2 ⊆ X. Consider the
following assertions:

1◦ 0X /∈ cl(Ω2 − Ω1).
2◦ There is x∗ ∈ X∗ \ {0X∗} such that supx∈Ω1 x∗(x) < inf y∈Ω2 x∗(y).
3◦ Ω1 ∩ Ω2 = ∅.
Then, 1◦ ⇐⇒ 2◦ 
⇒ 3◦, and if further Ω1 and Ω2 are closed and one of these sets
is weakly compact, then 3◦ 
⇒ 2◦.

Proof 1◦ 
⇒ 2◦: Assume that 1◦ is valid. By classical linear separation of 0X from
the non-empty, closed, convex set cl(Ω2 − Ω1), there is x∗ ∈ X∗ \ {0X } such that

0 = x∗(0X ) < γ := inf
z∈cl(Ω2−Ω1)

x∗(z) ≤ x∗(y) − x∗(x)

for all y ∈ Ω2 and x ∈ Ω1. In particular, noting that the latter formula yields
supx∈Ω1 x∗(x) < ∞, we derive

0 < γ ≤ x∗(y) − sup
x∈Ω1

x∗(x),

hence
sup
x∈Ω1

x∗(x) < γ + sup
x∈Ω1

x∗(x) ≤ x∗(y) for all y ∈ Ω2.

Thus, supx∈Ω1 x∗(x) < γ + supx∈Ω1 x∗(x) ≤ inf y∈Ω2 x∗(y), which shows 2◦ is
true.

2◦ 
⇒ 1◦: Assume that 2◦ is valid. Then, for all y ∈ Ω2 and x ∈ Ω1, we have

0 < γ := inf
y∈Ω2

x∗(y) − sup
x∈Ω1

x∗(x) ≤ x∗(y) − x∗(x) = x∗(y − x),

hence, for all z ∈ cl(Ω2 − Ω1),

0 < γ ≤ x∗(z).

Of course, this shows that 0X /∈ cl(Ω2 − Ω1).
Of course, 2◦ 
⇒ 3◦ is valid. If Ω1 and Ω2 are closed (hence weakly closed) and

one of these sets is weakly compact, then the classical strict linear separation result
for convex sets yields 3◦ 
⇒ 2◦. ��
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Remark 2.5 Note, for any non-empty sets Ω1,Ω2 ⊆ X , we have

0X /∈ cl(cl Ω2 − cl Ω1) ⇐⇒ 0X /∈ cl(Ω2 − Ω1) ⇐⇒ d(Ω1,Ω2) > 0,

where d(Ω1,Ω2) is the classical distance between the sets Ω1 and Ω2, which is
defined by

d(Ω1,Ω2) := inf{||x − y|| | x ∈ Ω1, y ∈ Ω2}.
The followingproposition recalls a known linear separation result for closed, convex

cones (see [16, Prop. 2.2] and also [23, Th. 3.22]).

Proposition 2.2 ([16, Prop. 2.2]) Suppose that C, K ⊆ X are non-trivial, closed,
convex cones and cl SC is weakly compact with 0X /∈ cl SC . If C ∩ K = {0X }, then
there is x∗ ∈ X∗ \ {0X∗} such that

x∗(k) ≥ 0 > x∗(c) for all k ∈ K and c ∈ C \ {0X }. (7)

The classical weak linear separation for convex cones (in the sense of Eidelheit) is
formulated in the next proposition.

Proposition 2.3 Suppose that C, K ⊆ X are convex cones, and int C �= ∅. If (int C)∩
K = ∅, then there is x∗ ∈ X∗ \ {0X∗} such that

x∗(k) ≥ 0 > x∗(c) for all k ∈ K and c ∈ int C .

2.4 Augmented Dual Cones and Bishop-Phelps Cones

Given a cone C ⊆ X with C �= {0X } and the norm-base BC , the so-called augmented
dual cone of C , introduced by Kasimbeyli (Gasimov) in [9, 25], is defined by

Ca+ := {(x∗, α) ∈ C+ × R+ | ∀x ∈ C : x∗(x) − α‖x‖ ≥ 0}.

Moreover, we consider the following subsets of Ca+,

Ca# := {(x∗, α) ∈ C# × R+ | ∀x ∈ C \ {0X } : x∗(x) − α‖x‖ > 0},
Caw# := {(x∗, α) ∈ C# × R+ | ∀x ∈ clw BC : x∗(x) > α}.

Clearly, we have Caw# ⊆ Ca# ⊆ Ca+ and

Ca+ = {(x∗, α) ∈ C+ × R+ | C ⊆ C(x∗, α)}
= {(x∗, α) ∈ C+ × R+ | ∀x ∈ BC : x∗(x) ≥ α},

Ca# = {(x∗, α) ∈ C# × R+ | C \ {0X } ⊆ C>(x∗, α)}
= {(x∗, α) ∈ C# × R+ | ∀x ∈ BC : x∗(x) > α}.
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In addition, we have

Ca+ = (clC)a+ = (conv C)a+ = (cl(conv C))a+,

(cl(conv C))a# ⊆ Ca# = (conv C)a#. (8)

If (x∗, α) ∈ Ca# ∩ (X∗ × P) and ||x∗||∗ > α > 0, then C(x∗, α) ∈ CBP.
In the following proposition, we will examine some properties of the augmented

dual cone Ca+ involving its subsets Caw#, Ca#, and corCa+.

Proposition 2.4 (cf. [4, 5, 16]) For any cone C ⊆ X with C �= {0X } the following
assertions hold:

1◦ Caw# ∩ (X∗ × P) �= ∅ ⇐⇒ Ca# ∩ (X∗ × P) �= ∅ ⇐⇒ Ca+ ∩ (X∗ × P) �=
∅ ⇐⇒ 0X /∈ cl SC .

2◦ cor Ca+ = {(x∗, α) ∈ C+ × P | infx∈BC x∗(x) > α} ⊆ Caw# ∩ (X∗ × P).
3◦ If clw BC is weakly compact, then cor Ca+ = Caw# ∩ (X∗ × P), and

Caw# �= ∅ ⇐⇒ cor Ca+ �= ∅ ⇐⇒ 0X /∈ cl SC .
4◦ If BC is weakly compact, then cor Ca+ = Ca# ∩ (X∗ × P).

Proof If {0X } �= cl(conv C) = X , thenC+ = {0X∗},C# = ∅, cor C+ = int C+ = ∅,
Ca+ = {(0X∗ , 0)}, cor Ca+ = Ca# = Caw# = ∅ and 0X ∈ cl SC , hence 1◦ − 4◦ are
valid.

Now, assume that C is non-trivial. Then, the assertion 1◦ follows from [16, Th. 3.1]
(see also [5, Th. 1.1], [4, Lem.3.7]), while the assertion 2◦ follows from [16, Th. 3.2].
Note that in assertion 2◦ of Proposition 2.4 we write an upper bound Caw# ∩ (X∗ ×P)

for cor Ca+ instead of Ca# ∩ (X∗ × P) (which was stated in [16, Th. 3.2]). This is
possible because the second condition in 2◦ follows directly from the first condition
(equality) in 2◦ and the fact that infx∈BC x∗(x) = infx∈clw BC x∗(x). ��
Lemma 2.3 For any cone C ⊆ X the following assertions hold:

1◦ cl Scl C = cl SC .
2◦ cl S0cl C = cl S0C .

Proof The case that C is closed (e.g. C = {0X } or C = X ) is obvious. Now, assume
that C is non-trivial.

1◦. Let us first prove that Bcl C ⊆ cl BC . Indeed, since Bcl C = BC ∪ Bbd C ,
and BC ⊆ cl BC , we just need to prove that Bbd C ⊆ cl BC . Take x0 ∈ Bbd C =
SX ∩ bd C . Then, x0 = limn→∞ xn for some sequence (xn)n ⊆ C \ {0X }. Note that
limn→∞ ‖xn‖ = ‖x0‖ = 1. Define un = xn‖xn‖ ∈ SX ∩ C = BC for all n ∈ N. Then,
limn→∞ un = x0‖x0‖ = x0, and consequently x0 ∈ cl BC . Therefore, Bcl C ⊆ cl BC ⊆
cl(conv BC ) = cl SC . By the convexity of cl SC we get Scl C = conv Bcl C ⊆ cl SC .
Moreover, from Scl C ⊆ cl SC we also get cl Scl C ⊆ cl SC . Noting that cl Scl C ⊇
cl SC is obvious, we conclude cl Scl C = cl SC .

2◦. Taking into account that Bcl C ⊆ cl BC , we get Bcl C∪{0X } ⊆ (cl BC )∪{0X } =
cl(BC ∪ {0X }) ⊆ cl(conv(BC ∪ {0X })) = cl S0C . Then, by the convexity of cl S0C ,
we infer S0cl C = conv(Bcl C ∪ {0X }) ⊆ cl S0C . Finally, cl S

0
cl C = cl S0C follows

immediately. ��
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In the next lemma we state some more properties of the closed cones C(x∗, α)

(with (x∗, α) ∈ X∗ × R) that we introduced in Section 1.

Lemma 2.4 Consider any (x∗, α) ∈ (X∗ \ {0X∗}) × R. Then, we have:

1◦ The following equalities are valid:

C(x∗, α) = −S(x∗, α) = S(−x∗, α) = {x ∈ X | ϕ−x∗,α(x) ≤ 0},
C>(x∗, α) = −S<(x∗, α) = S<(−x∗, α) = {x ∈ X | ϕ−x∗,α(x) < 0},

X \ C(x∗, α) = C>(−x∗,−α) = S<(x∗,−α) = {x ∈ X | ϕ−x∗,α(x) > 0},
X \ C>(x∗, α) = C(−x∗,−α) = S(x∗,−α) = {x ∈ X | ϕ−x∗,α(x) ≥ 0}.

2◦ C(x∗, α) �= X if and only if α > −||x∗||∗.
3◦ If α ∈ (−||x∗||∗, ||x∗||∗), then C(x∗, α) is non-trivial, the sets

int C(x∗, α) = C>(x∗, α) = {x ∈ X | ϕ−x∗,α(x) < 0},
bd C(x∗, α) = C(x∗, α) \ C>(x∗, α) = {x ∈ X | ϕ−x∗,α(x) = 0},

(bd C(x∗, α)) \ {0X } = {x ∈ X \ {0X } | ϕ−x∗,α(x) = 0}

are non-empty, and

sup
x∈Sbd C(x∗,α)

ξα · x∗(x) = sup
x∈S0bd C(x∗,α)

ξα · x∗(x) = |α|, (9)

where ξα := 1 if α ≥ 0, and ξα := −1 if α < 0.

Proof Suppose that x∗ �= 0X∗ (hence X �= {0X }). The proof of the equalities given
in 1◦ is obvious, while the equivalence given in 2◦ follows immediately from the
equivalence of the following statements:

• X = C(x∗, α).
• X = �(C(x∗, α)) = {x ∈ X | −|x∗(x)| ≥ α||x ||}.
• ||x∗||∗ = supx �=0X

∣
∣
∣x∗

(
x

||x ||
)∣
∣
∣ ≤ −α.

It remains to prove 3◦. The conclusion is well-known for the case α ∈ [0, ||x∗||∗)
(see also Remark 1.2). Now, assume that α ∈ (−||x∗||∗, 0). By Remark 1.2 we get
that C(−x∗,−α) is a non-trivial, closed, solid, convex cone with C>(−x∗,−α) =
int C(−x∗,−α) �= ∅ and (bd C(−x∗,−α)) \ {0X } �= ∅. Hence,

bd C(x∗, α) = bd {x ∈ X | ϕ−x∗,α(x) ≤ 0}
= bd {x ∈ X | ϕ−x∗,α(x) > 0}
= bd C>(−x∗,−α)

= bd(int C(−x∗,−α))

= bd C(−x∗,−α)

= {x ∈ X | ϕ−x∗,α(x) = 0}
= C(x∗, α) \ C>(x∗, α),
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and so
int C(x∗, α) = {x ∈ X | ϕ−x∗,α(x) < 0} = C>(x∗, α).

Since x∗ �= 0X∗ there is x̄ ∈ X such that x∗(x̄) > 0. If α < 0, then x∗(x̄) >

0 > α||x̄ ||, hence x̄ ∈ C>(x∗, α) = int C(x∗, α), i.e., C(x∗, α) is solid. The latter
fact, together with the assertion 2◦, gives the non-triviality of C(x∗, α). Of course,
(bd C(x∗, α)) \ {0X } = (bd C(−x∗,−α)) \ {0X } �= ∅.

It remains to prove (9). Take any x̄ ∈ S0bd C(x∗,α), i.e., x̄ = ∑l
i=1 λi x i for some

x1, . . . , xl ∈ (Bbd C(x∗,α)) ∪ {0X } and λ1, . . . , λl ≥ 0 with
∑l

i=1 λi = 1. Consider
two cases:

Case 1: If α ∈ [0, ||x∗||∗), then x∗(x̄) = ∑l
i=1 λi x∗(xi ) ≤ ∑l

i=1 λiα = α,

taking into account that x∗(0X ) = 0 and x∗(xi ) = α if xi ∈ (Bbd C(x∗,α)) \ {0X }.
Consequently, for x̃ ∈ Bbd C(x∗,α) ( �= ∅) we have

α = x∗(x̃) ≤ sup
x∈Sbd C(x∗,α)

x∗(x) ≤ sup
x∈S0bd C(x∗,α)

x∗(x) ≤ α.

Case 2: If α ∈ (−||x∗||∗, 0), then x∗(x̄) = ∑l
i=1 λi x∗(xi ) ≥ ∑l

i=1 λiα = α.

Consequently, for x̃ ∈ Bbd C(x∗,α) ( �= ∅) we have

α = x∗(x̃) ≥ inf
x∈Sbd C(x∗,α)

x∗(x) ≥ inf
x∈S0bd C(x∗,α)

x∗(x) ≥ α.

We conclude the validity of (9). ��
We now establish a technical result, which will be needed to prove Proposition 3.2.

Lemma 2.5 Consider a cone C ⊆ X and take some x∗ ∈ X∗ and α ∈
(−‖x∗‖∗, ‖x∗‖∗). Then, the following assertions are valid:

1◦ If α < inf x∈Sbd C x∗(x), then exactly one of the following inclusions holds: intC ⊆
C(x∗, α) or X \ intC ⊆ C(x∗, α).

2◦ If supx∈Sbd C
x∗(x) < α, then exactly one of the following inclusions holds:

C(x∗, α) ⊆ X \ intC or C(x∗, α) \ {0X } ⊆ intC.

Proof 1◦. In view of Lemma 2.4 (2◦), under our assumption α ∈ (−‖x∗‖∗, ‖x∗‖∗),
we have C(x∗, α) �= X , so that both inclusions cannot be valid at the same time.
It is clear that exactly one of the following conditions holds: intC ⊆ C(x∗, α) or
intC � C(x∗, α). The case intC = ∅ is clear. Suppose intC �= ∅. Of course,
intC ⊆ C(x∗, α) can happen and we are done. Assume that intC � C(x∗, α), and
denote Ω := X \ C(x∗, α). Note that Ω = C>(−x∗,−α) = int C(−x∗,−α) by
Lemma 2.4 (3◦). Fix some x0 ∈ (intC) ∩ Ω . We will prove that Ω ⊆ intC , which is
equivalent to X \ intC ⊆ C(x∗, α). Let us pick an arbitrary y ∈ Ω . By the definition
of Ω and the inequality α < infx∈Sbd C x∗(x) we get α‖x‖ ≤ x∗(x) for x ∈ bd C ,
and x∗(x) < α‖x‖ for x ∈ Ω , which shows that Ω ∩ bdC = ∅. Consider two cases:

Case 1: Assume that α ∈ (−‖x∗‖∗, 0]. In this case, Ω = C>(−x∗,−α) is convex
assuring that [x0, y] ⊆ Ω , hence [x0, y] ∩ bdC ⊆ Ω ∩ bdC = ∅. Then, Lemma 2.1
applied to A = C and B = [x0, y] ensures that y ∈ intC .
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Case 2: Assume that α ∈ (0, ‖x∗‖∗). Since in this case, ∅ �= −C>(x∗, α) =
int S(x∗, α), we can consider z ∈ (x0 + int S(x∗, α)) ∩ (y + int S(x∗, α)) (otherwise,
assuming that the latter set is empty, one gets a contradiction by using a classical
linear separation argument for convex sets, taking into account that S(x∗, α) is a solid,
convex cone). Now, we claim that [x0, z] ⊆ Ω . Indeed, take any x ∈ [x0, z] and write
x = x0 + λ(z − x0) with λ ∈ [0, 1]. Then,

x∗(x) − α‖x‖ = x∗(x0 + λ(z − x0)) − α‖x0 + λ(z − x0)‖
≤ x∗(x0) + x∗(λ(z − x0)) − α(‖x0‖ − λ‖z − x0‖)
= x∗(x0) − α‖x0‖ + λ(x∗(z − x0) + α‖z − x0‖)
< 0,

where the latter strict inequality is ensured by x0 ∈ Ω and z − x0 ∈ int S(x∗, α).
This shows that x ∈ C>(−x∗,−α) = Ω . As a consequence, we get [x0, z] ∩ bdC ⊆
Ω ∩ bdC = ∅, and by Lemma 2.1 applied to A = C and B = [x0, z] we conclude
z ∈ intC . We also have [z, y] ⊆ Ω . Indeed, for x = y + λ(z − y) with λ ∈ [0, 1],
z ∈ (intC) ∩ Ω , y ∈ Ω , one can analogously prove that x∗(x) − α‖x‖ < 0, hence
x ∈ Ω . Finally, Lemma 2.1 applied to A = C and B = [z, y] gives y ∈ intC .

2◦. Since supx∈Sbd C
x∗(x) < α is equivalent to −α < infx∈Sbd C (−x∗)(x), by

1◦ we get intC ⊆ C(−x∗,−α) (or equivalently, intC ⊆ intC(−x∗,−α) =
C>(−x∗,−α) = X \C(x∗, α)) or X \intC ⊆ C(−x∗,−α). Equivalently, we also get
C(x∗, α) ⊆ X \intC or intC(x∗, α) = C>(x∗, α) = X \C(−x∗,−α) ⊆ intC . From
the assumptions in 2◦ we infer (bdC(x∗, α)) ∩ (bdC) = {0X }, hence intC(x∗, α) ⊆
intC if and only if C(x∗, α) \ {0X } ⊆ intC . ��
Remark 2.6 In the previous Lemma 2.5, under the assumptions in 1◦ we have (bdC)\
{0X } ⊆ C>(x∗, α) ⊆ C(x∗, α), while under the assumptions in 2◦ we have (bdC) \
{0X } ⊆ C>(−x∗,−α) = X \ C(x∗, α). Thus, the assertions in Lemma 2.5 can be
stated as:

1◦ If α < infx∈Sbd C x∗(x), then exactly one of the following inclusions holds: cl C ⊆
C(x∗, α) or X \ C(x∗, α) ⊆ intC .

2◦ If supx∈Sbd C
x∗(x) < α, then exactly oneof the following inclusions holds: (cl C)\

{0X } ⊆ X \ C(x∗, α) or C(x∗, α) \ {0X } ⊆ intC .

2.5 Basics in Non-Symmetrical Cone Separation Based on Bishop-Phelps
Separating Cones

Consider a non-trivial cone C ⊆ X with the norm-base BC , and a non-trivial cone
K ⊆ X with the norm-base BK .

Remark 2.7 For any (x∗, α) ∈ Ca# ∩ (X∗ × P), it is easy to check that the non-
symmetric strict separation condition

C(x∗, α) ∈ N (C, K )
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is equivalent to any of the following conditions:

K \ {0X } ⊆ X \ C(x∗, α) and C \ {0X } ⊆ int C(x∗, α); (10)

K ∩ C(x∗, α) = {0X } and C \ {0X } ⊆ int C(x∗, α); (11)

(−x∗)(k) + α||k|| > 0 > (−x∗)(c) + α||c|| for k ∈ K \ {0X }, c ∈ C \ {0X }; (12)

x∗(k) + α||k|| > 0 > x∗(c) + α||c|| for k ∈ −K \ {0X }, c ∈ −C \ {0X }. (13)

Note that conditions (12) and (13) correspond to analytical formulations, while (10)
and (11) can be viewed as geometrical formulations.

In the next propositions, we recall known nonlinear cone separation results for
(not necessarily convex) cones involving Bishop-Phelps separating cones / separating
(norm-linear) functions.

Proposition 2.5 ([16, Th. 5.2]) Assume that cl SC is weakly compact (e.g. if X is also
reflexive). Then, the following conditions are equivalent:

1◦ (cl S0K ) ∩ (cl SC ) = ∅.

2◦ There exists (x∗, α) ∈ Caw# ∩ (X∗ × P) such that (13) is valid.
3◦ There exists (x∗, α) ∈ Caw# such that (13) is valid.

Proposition 2.6 ([16, Lem. 5.2]) The following assertions are equivalent:

1◦ There exists (x∗, α) ∈ cor Ca+ such that (13) is valid.
2◦ There exists (x∗, α) ∈ cor Ca+ such that (13) with cl(convC) in the role of C and

cl K in the role of K is valid.
3◦ There exist δ2 > δ1 > 0 and x∗ ∈ X∗ such that, for any α ∈ (δ1, δ2), we have

(x∗, α) ∈ cor Ca+, and (13) with cl(convC) in the role of C and cl K in the role
of K is valid.

4◦ There exist δ2 > δ1 > 0 and x∗ ∈ X∗ such that, for any α ∈ (δ1, δ2), we have
(x∗, α) ∈ Ca#, and (13) with cl(convC) in the role of C and cl K in the role of
K is valid.

Proposition 2.7 ([16, Cor. 5.1]) Assume that cl Scl(convC) is weakly compact. Then,
the following assertions are equivalent:

1◦ (cl S0K ) ∩ (cl SC ) = ∅.
2◦ (cl S0cl K ) ∩ (cl Scl(convC)) = ∅.
3◦ There exists (x∗, α) ∈ Caw# ∩ (X∗ × P) such that (13) is valid.
4◦ There exists (x∗, α) ∈ Caw# ∩ (X∗ × P) such that (13) with cl(convC) in the role

of C and cl K in the role of K is valid.

Proposition 2.8 ([16, Th. 5.3]) Assume that K is closed and convex, and that cl SC
is weakly compact. Then, the following conditions are equivalent:

1◦ (cl S0K ) ∩ (cl SC ) = ∅.
2◦ K ∩ cl(convC) = {0X } and 0X /∈ cl SC .

If the set cl Scl(convC) is weakly compact, then any of the assertions 1◦ and 2◦ is
equivalent to
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3◦ 0X /∈ cl SC and there exists x∗ ∈ X∗ \ {0X∗} such that (7) with cl(convC) in the
role of C is valid.

Proposition 2.9 ([6, Th. 3.1]) The following assertions are equivalent:

1◦ 0X /∈ cl(SC − S0bd K ).
2◦ There exist δ2 > δ1 > 0 and x∗ ∈ X∗ such that, for any α ∈ (δ1, δ2), we have

(x∗, α) ∈ Ca#, and (13) with cl(convC) in the role of C and bd K in the role of
K is valid.

3 On Symmetric and Non-Symmetric Separation Conditions Involving
Cones

Given two non-trivial cones C ⊆ X and K ⊆ X (with the norm-bases BC and BK )
in the real normed space (X , || · ||), we are going to study relationships between
symmetrical and non-symmetrical separation conditions that involve the sets cl S0C ,
cl S0K , cl SC and cl SK , respectively.

3.1 Non-Symmetric Separation

First, we present our general result involving our main non-symmetric separation
conditions.

Proposition 3.1 Consider the following assertions:

1◦ 0X /∈ cl(SC − S0K ).
2◦ There exists x∗ ∈ X∗ \ {0X∗} such that supk∈cl S0K x∗(k) < infc∈cl SC x∗(c).
3◦ (cl S0K ) ∩ (cl SC ) = ∅.
4◦ (cl K ) ∩ (cl SC ) = ∅.
5◦ (cl K ) ∩ cl(convC) = {0X } and 0X /∈ cl SC .

Then, 1◦ ⇐⇒ 2◦ 
⇒ 3◦ 
⇒ 4◦ ⇐⇒ 5◦. If cl S0K or cl SC is weakly compact (e.g.
if X is also reflexive), then 3◦ 
⇒ 1◦. Moreover, if K is convex, then 5◦ 
⇒ 3◦.

Proof The equivalence 1◦ ⇐⇒ 2◦, the implication 1◦ 
⇒ 3◦, and, under the weak
compactness assumption, the implication 3◦ 
⇒ 1◦ follow fromProposition 2.1. Note
that Lemma2.3 shows that the assertion 3◦ is nothing else than (cl S0cl K )∩(cl Scl C ) =
∅. Then, the implications 3◦ 
⇒ 4◦ ⇐⇒ 5◦ and, under the convexity of K , the
implication 5◦ 
⇒ 3◦ follow from [16, Sec. 4]. ��

The next result shows how the non-symmetric separation condition given in Propo-
sition 3.1 (1◦) involving the non-trivial cones C and K is related to corresponding
separation conditions involving the boundaries / closures of C and K .

Proposition 3.2 The following assertions are equivalent:

1◦ 0X /∈ cl(SC − S0K ).
2◦ 0X /∈ cl(Scl C − S0cl K ).
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3◦ 0X /∈ cl(Sbd C − S0bd K ) and K ∩ C = {0X }.
4◦ 0X /∈ cl(Sbd C − S0cl K ) and K ∩ C = {0X }.
5◦ 0X /∈ cl(Scl C − S0bd K ) and K ∩ C = {0X }.
Proof Let us first prove 1◦ ⇐⇒ 2◦. The implication 2◦ 
⇒ 1◦ is obvious. By Remark
2.5, 0X /∈ cl(SC − S0K ) ⇐⇒ 0X /∈ cl(cl SC − cl S0K ), and from Lemma 2.3 we
have Scl C ⊆ cl SC and S0cl K ⊆ cl S0K , hence 0X /∈ cl(cl SC − cl S0K ) 
⇒ 0X /∈
cl(Scl C − S0cl K ). This shows that 1◦ 
⇒ 2◦.

We are going to prove 2◦ 
⇒ 3◦. Suppose that 2◦ is valid. Since Sbd C ⊆ Scl C
and S0bd K ⊆ S0cl K , we have cl(Sbd C − S0bd K ) ⊆ cl(Scl C − S0cl K ), hence 0X /∈
cl(Scl C − S0cl K ) 
⇒ 0X /∈ cl(Sbd C − S0bd K ). By Proposition 2.1 (1◦ 
⇒ 3◦), we
infer that (cl Scl C ) ∩ (cl S0cl K ) = ∅, which implies (cl K ) ∩ (cl(convC)) = {0X }
(see [16, Sec. 4]). In particular, this shows that K ∩ C = {0X }. We conclude that 3◦
is valid.

Let us prove that 3◦ 
⇒ 1◦. Suppose that 3◦ is valid, i.e., 0X /∈ cl(SbdC − S0bd K )

and K ∩ C = {0X }. By Proposition 2.1 combined with 0X ∈ S0bd K , there
exists x∗ ∈ X∗ such that 0 ≤ supx∈S0bd K x∗(x) < inf y∈SbdC x∗(y). Furthermore,
we have supx∈Sbd K x∗(x) ≤ supx∈S0bd K x∗(x). Denote LK := supx∈Sbd K x∗(x),
L0
K := supx∈S0bd K x∗(x), IC := inf y∈SbdC x∗(y), and fix α1, α2 ∈ R such that

LK ≤ L0
K < α1 < α2 < IC . Note that

0 < α1 < α2 < IC ≤ sup
y∈SbdC

x∗(y) ≤ sup
y∈BX

|x∗(y)| = ||x∗||∗.

On the one hand, byLemma2.5 (1◦) andRemark 2.6, we have eitherC ⊆ C(x∗, α2)

or X \C(x∗, α2) ⊆ intC . However, the latter inclusion is false; otherwise (taking into
account that LK < α2 and Lemma 2.4 (1◦)) we get

(bd K ) \ {0X } ⊆ C>(−x∗,−α2) = X \ C(x∗, α2) ⊆ intC .

Thus, for every x ∈ bd K with x �= 0X , there exists y ∈ K ∩ intC , which contradicts
the assumption that K ∩ C = {0X }.

On the other hand, by Lemma 2.5 (2◦) and Remark 2.6, we have either K \ {0X } ⊆
X \ C(x∗, α1) or C(x∗, α1) \ {0X } ⊆ int K . Also here the latter inclusion is false;
otherwise (taking into account that α1 < IC ) we have

(bdC) \ {0X } ⊆ C>(x∗, α1) ⊆ C(x∗, α1) \ {0X } ⊆ int K .

Thus, for every x ∈ bdC with x �= 0X , there exists y ∈ (int K )∩C , which contradicts
the assumption that K ∩ C = {0X }.

Therefore, we conclude that C ⊆ C(x∗, α2) and K \ {0X } ⊆ X \ C(x∗, α1).
Consequently, BC ⊆ {x ∈ X | x∗(x) ≥ α2} and BK ⊆ {x ∈ X | x∗(x) < α1}, hence
SC −SK ⊆ {x ∈ X | x∗(x) ≥ α2}−{x ∈ X | x∗(x) < α1}. Now, since 0X ∈ {x ∈ X |
x∗(x) < α1}, it follows that SC − S0K ⊆ {x ∈ X | x∗(x) ≥ α2} − {x ∈ X | x∗(x) <

α1}. As α1 and α2 were chosen freely under the condition L0
K < α1 < α2 < IC , we

can strengthen this to SC − S0K ⊆ {x ∈ X | x∗(x) ≥ IC } − {x ∈ X | x∗(x) ≤ L0
K }.
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Finally, since 0X /∈ cl({x ∈ X | x∗(x) ≥ IC } − {x ∈ X | x∗(x) ≤ L0
K }) taking into

account that IC > L0
K , we conclude that 0X /∈ cl(SC − S0K ), i.e., 1◦ is valid.

It remains to prove the equivalence of the assertions 3◦, 4◦ and 5◦. Under the
assumption K ∩ C = {0X }, we have

0X /∈ cl(Scl C − S0cl K ) 
⇒ 0X /∈ cl(Sbd C − S0cl K )


⇒ 0X /∈ cl(Sbd C − S0bd K )


⇒ 0X /∈ cl(Scl C − S0cl K ),

which shows that 3◦ ⇐⇒ 4◦, and

0X /∈ cl(Scl C − S0cl K ) 
⇒ 0X /∈ cl(Scl C − S0bd K )


⇒ 0X /∈ cl(Sbd C − S0bd K )


⇒ 0X /∈ cl(Scl C − S0cl K ),

which shows that 3◦ ⇐⇒ 5◦. ��

Remark 3.1 The condition “K ∩ C = {0X }” in Proposition 3.2 can be replaced by
the condition “(cl K ) ∩ (cl(convC)) = {0X }” or by the condition “(cl K ) ∩ (clC) =
{0X }”. The proofs are analogous. Note that Propositions 3.1 and 3.2 provide interesting
insights into the separation conditions discussed in the non-symmetric separation
approach in the works [4, 6, 15, 16] and [25].

3.2 Symmetric Strict Separation

The results in the following proposition can be used to connect the symmetric cone
separation approach with the non-symmetric cone separation approach.

Proposition 3.3 The following assertions are equivalent:

1◦ 0X /∈ cl(SC − SK ).
2◦ There exists x∗ ∈ X∗ \ {0X∗} such that supk∈cl SK x∗(k) < infc∈cl SC x∗(c).
3◦ There exists x∗ ∈ X∗ \ {0X∗} such that

supk∈cl S0K x∗(k) < infc∈cl SC x∗(c) or supk∈cl SK x∗(k) < infc∈cl S0C x∗(c).
4◦ 0X /∈ cl(SC − S0K ) or 0X /∈ cl(S0C − SK ).

Proof The equivalence of 1◦ and 2◦, respectively, of 3◦ and 4◦ follows from
Proposition 2.1. Taking into account that supk∈cl SK x∗(k) ≤ supk∈cl S0K x∗(k) and
infc∈cl S0C x∗(c) ≤ infc∈cl SC x∗(c), the implication 3◦ 
⇒ 2◦ is clear. Let us prove

the reverse implication. Assume that 2◦ is valid, i.e., there is x∗ ∈ X∗ \ {0X∗} such
that supk∈cl SK x∗(k) < infc∈cl SC x∗(c). Consider cases:

Case 1: Assume that 0 ∈ (supk∈cl SK x∗(k), infc∈cl SC x∗(c)). Then, we have
supk∈cl S0K x∗(k) = 0 < infc∈cl SC x∗(c) and supk∈cl SK x∗(k) < 0 = infc∈cl S0C x∗(c).
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Case 2: Assume that supk∈cl SK x∗(k) ≥ 0 = x∗(0X ) and pick some γ ∈
(supk∈cl SK x∗(k), infc∈cl SC x∗(c)). Then, x∗(k) ≤ γ for all k ∈ BK ∪ {0X }, hence

sup
k∈cl S0K

x∗(k) ≤ γ < inf
c∈cl SC

x∗(c).

Case 3: Assume that infc∈cl SC x∗(c) ≤ 0 = x∗(0X ) and pick some γ ∈
(supk∈cl SK x∗(k), infc∈cl SC x∗(c)). Then, x∗(c) ≥ γ for all c ∈ BC ∪ {0X }, hence

inf
c∈cl S0C

x∗(c)) ≥ γ > sup
k∈cl SK

x∗(k).

Thus, 3◦ is true. ��
The next proposition relates (under further assumptions, e.g., theweak compactness

of cl SK or cl SC ) the separation conditionsmentioned in Proposition 3.3 to some other
classical separation conditions involving cones.

Proposition 3.4 Consider the following assertions:

1◦ 0X /∈ cl(SC − SK ).
2◦ (cl S0K ) ∩ (cl SC ) = ∅ or (cl SK ) ∩ (cl S0C ) = ∅.
3◦ (cl SK ) ∩ (cl SC ) = ∅.
4◦ (cl K ) ∩ (cl SC ) = ∅ or (cl SK ) ∩ (clC) = ∅.
5◦ ((cl K ) ∩ cl(convC) = {0X } and 0X /∈ cl SC) or (cl(conv K ) ∩ (clC) = {0X }

and 0X /∈ cl SK ).
6◦ (cl K ) ∩ (clC) = {0X } and [0X /∈ cl SK or 0X /∈ cl SC].

Then, 1◦ 
⇒ 2◦ 
⇒ 3◦ 
⇒ 6◦, and moreover, 2◦ 
⇒ 4◦ ⇐⇒ 5◦ 
⇒ 6◦.
If cl SK or cl SC is weakly compact, then 3◦ 
⇒ 1◦ (i.e., 1◦ − 3◦ are equivalent).
If C is convex or K is convex, then 3◦ 
⇒ 4◦.
If C and K are convex, then 6◦ 
⇒ 5◦ 
⇒ 2◦ (i.e., 2◦ − 6◦ are equivalent).

Proof 1◦ 
⇒ 2◦ follows from Propositions 3.1 and 3.3, while the implication 2◦ 
⇒
3◦ and the implication 5◦ 
⇒ 6◦ are obvious. Moreover, 2◦ 
⇒ 4◦ ⇐⇒ 5◦ is an
immediate consequence of Proposition 3.1 (3◦ 
⇒ 4◦ ⇐⇒ 5◦).

3◦ 
⇒ 6◦: Assume that 3◦ is valid. It is clear that 0X /∈ cl SK or 0X /∈ cl SC . On
the other hand, by contradiction, suppose that x ∈ (cl K )∩(clC), x �= 0X . Then, there
exists (xn)n ⊆ K such that limn→∞ xn‖xn‖ = x

‖x‖ ∈ cl(K ∩ SX ) = cl BK ⊆ cl SK .
Analogously, we can show that x

‖x‖ ∈ cl(C ∩ SX ) = cl BC ⊆ cl SC , which is
impossible by 3◦. We conclude the validity of 6◦.

By Proposition 2.1, if cl SK or cl SC is weakly compact, then 3◦ 
⇒ 1◦.
W.l.o.g. assume that C is convex.
3◦ 
⇒ 4◦: Suppose that 3◦ is valid. If 0X ∈ cl SK , then cl S0K = cl SK by

[16, Th. 3.1 (2)], hence (cl K ) ∩ (cl SC ) = ∅ by Proposition 3.1 (3◦ 
⇒ 4◦). In
the previous result one can also change the roles of C and K . Now, assume that
0X /∈ (cl SK )∪ (cl SC ). As 3◦ 
⇒ 6◦ is valid, we have (cl K )∩ (clC) = {0X }. Now,
by convexity of C we have cl SC ⊆ clC , hence (cl SC ) ∩ (cl K ) = ∅ (taking into
account that 0X /∈ cl SC ). This shows that 4◦ is valid.
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Finally, if C and K are convex, then 5◦ 
⇒ 2◦ follows from Proposition 3.1
(5◦ 
⇒ 3◦), while the implication 6◦ 
⇒ 5◦ is obvious. ��

Also for the symmetric case, we relate the separation condition given in Proposition
3.3 (1◦) involving the non-trivial conesC and K to corresponding separation conditions
involving the boundaries / closures of C and K .

Proposition 3.5 The following assertions are equivalent:

1◦ 0X /∈ cl(SC − SK ).
2◦ 0X /∈ cl(Scl C − Scl K ).
3◦ 0X /∈ cl(Sbd C − Sbd K ) and K ∩ C = {0X }.
4◦ 0X /∈ cl(Sbd C − Scl K ) and K ∩ C = {0X }.
5◦ 0X /∈ cl(Scl C − Sbd K ) and K ∩ C = {0X }.
Proof Let us first prove 1◦ ⇐⇒ 2◦. The implication 2◦ 
⇒ 1◦ is obvious. By Remark
2.5, 0X /∈ cl(SC − SK ) ⇐⇒ 0X /∈ cl(cl SC − cl SK ), and from Lemma 2.3 we
have Scl C ⊆ cl SC and Scl K ⊆ cl SK , hence 0X /∈ cl(cl SC − cl SK ) 
⇒ 0X /∈
cl(Scl C − Scl K ). Thus, 1◦ 
⇒ 2◦ is valid.

We also get the equivalence of 2◦ − 5◦, since Propositions 3.2 and 3.3 ensure on
the one hand that

0X /∈ cl(Scl C − Scl K ) ⇐⇒
[

0X /∈ cl(Scl C − S0cl K ) or 0X /∈ cl(S0cl C − Scl K )
]


⇒ K ∩ C = {0X },
and on the other hand, under the condition K ∩ C = {0X },

[

0X /∈ cl(Scl C − S0cl K ) or 0X /∈ cl(S0cl C − Scl K )
]

⇐⇒
[

0X /∈ cl(Sbd C − S0bd K ) or 0X /∈ cl(S0bd C − Sbd K )
]

⇐⇒ 0X /∈ cl(Sbd C − Sbd K )

⇐⇒
[

0X /∈ cl(Sbd C − S0cl K ) or 0X /∈ cl(S0bd C − Scl K )
]

⇐⇒ 0X /∈ cl(Sbd C − Scl K )

⇐⇒
[

0X /∈ cl(Scl C − S0bd K ) or 0X /∈ cl(S0cl C − Sbd K )
]

⇐⇒ 0X /∈ cl(Scl C − Sbd K ).

��
Remark 3.2 The condition “K ∩ C = {0X }” in Proposition 3.5 can be replaced either
by the condition “(cl K )∩ (clC) = {0X }” or, alternatively, by the condition “(cl K )∩
(cl(convC)) = {0X } or (cl(conv K )) ∩ (clC) = {0X }”. The proofs are analogous.

4 On Symmetric and Non-Symmetric Cone Separation Based on
Bishop-Phelps Separating Cones

The aim of this section is to present new (non-)symmetrical strict cone separation
theorems in the real normed space (X , || · ||). Consider the cones C and K from
Section 3.
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4.1 Non-Symmetric Strict Cone Separation

Let us first discuss the non-symmetrical case. We like to find characterizations for
N (C, K | CBP∗) �= ∅ for some family of cones CBP∗ ⊆ CBP, which then also
ensure that C and K can be strictly separated by a Bishop-Phelps cone C(x∗, α)

(with ||x∗||∗ > α > 0) in a non-symmetric way, i.e., N (C, K | CBP) �= ∅. More
precisely, for any non-trivial cone D ⊆ X , we consider a family CBP∗ given by one of
the following families

CBP∗
1
(D) := {C(x∗, α) | (x∗, α) ∈ cor Da+},

CBP∗
2
(D) := {C(x∗, α) | (x∗, α) ∈ Daw# ∩ (X∗ × P)}.

In view of Proposition 2.4 (2◦) we have CBP∗
1
(D) ⊆ CBP∗

2
(D) ⊆ CBP, and if clw BD

is weakly compact, then CBP∗
1
(D) = CBP∗

2
(D). In addition, we are interested in a family

of cones given by

CBP∗
3
(D) := {C(x∗, α) | (x∗, α) ∈ Daw#}.

Note that CBP∗
2
(D) ⊆ CBP∗

3
(D) ⊆ CLin ∪ CBP and CBP∗

3
(D) \ CBP∗

2
(D) ⊆ CLin.

Let us first present our general result (without involving a weak compactness
assumption), which in particular gives characterizations forN (C, K | CBP∗

1
(C)) �= ∅.

Theorem 4.1 The following conditions are equivalent:

1◦ 0X /∈ cl(SC − S0K ).
2◦ There exists x∗ ∈ X∗ \ {0X∗} such that, for any

α ∈ ( sup
k∈cl S0K

x∗(k), inf
c∈cl SC

x∗(c)) (⊆ (0,+∞)),

we have (x∗, α) ∈ cor Ca+ and (13) is valid, where supk∈cl S0K x∗(k) <

infc∈cl SC x∗(c).
3◦ There exist δ2 > δ1 > 0 and x∗ ∈ X∗ \ {0X∗} such that, for any α ∈ (δ1, δ2), we

have (x∗, α) ∈ cor Ca+ and (13) is valid.
4◦ There exists (x∗, α) ∈ cor Ca+ such that (13) is valid (i.e.,N (C, K | CBP∗

1
(C)) �=

∅).
Moreover, the above assertions are also equivalent to the corresponding assertions
1◦–4◦ where the cone C is replaced by cl(convC) (respectively, cl C) while K is
replaced by cl K.

Proof By Proposition 2.1 assertion 1◦ is valid if and only if there is x∗ ∈ X∗ \
{0X∗} such that supk∈cl S0K x∗(k) < infc∈cl SC x∗(c). Since 0X ∈ cl S0K we have 0 <

α < infc∈cl SC x∗(c) for any α ∈ (supk∈cl S0K x∗(k), infc∈cl SC x∗(c)), which shows

that (x∗, α) ∈ cor Ca+ by Proposition 2.4 (2◦). Moreover, it is easy to check that
supk∈cl S0K x∗(k) < α < infc∈cl SC x∗(c) implies (13). This shows that 1◦ ⇐⇒ 2◦.
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The implication 2◦ 
⇒ 3◦ is obvious. The equivalence 3◦ ⇐⇒ 4◦ is provided by
Proposition 2.6. Let us show that the implication 4◦ 
⇒ 1◦ is obvious. Assume that 4◦
is valid, that is, there exists (x∗, α) ∈ cor Ca+ such that (13) is valid. Consequently,
in view of Proposition 2.4 (2◦), we have 0 < α < infc∈BC x∗(c) = infc∈cl SC x∗(c).
The left inequality in (13) yields x∗(k) ≤ α for all k ∈ BK ∪ {0X }, hence x∗(k) ≤ α

for all k ∈ cl S0K , and so supk∈cl S0K x∗(k) ≤ α. We conclude that supk∈cl S0K x∗(k) ≤
α < infc∈cl SC x∗(c), which means that 1◦ is valid (by Proposition 2.1).

Let us prove the remaining part of the theorem. Proposition 2.6 (1◦ ⇐⇒ 2◦) yields
the equivalence of assertion 4◦ and assertion 4◦ with cl(convC) in the role of C and
cl K in the role of K . Moreover, Proposition 3.2 (1◦ ⇐⇒ 2◦) yields the equivalence
of assertion 1◦ and assertion 1◦ with cl C in the role of C and cl K in the role of K . It
is easy to check that the assertions 1◦−4◦, the assertions 1◦−4◦ with cl(convC) in the
role of C and cl K in the role of K , and the assertions 1◦ − 4◦ with cl C in the role of
C and cl K in the role of K all imply the conditions {0X } � cl C ⊆ cl(convC) �= X
and {0X } � cl K �= X . Then the proven results applied for the non-trivial cones C
and K , for the non-trivial cones cl(convC) and cl K , and for the non-trivial cones
cl C and cl K yield the result. ��

A similar result (involving the separation property (13)) we also get in the case
that we change the roles of C and K . In particular, we derive a characterization for
N (K ,C | CBP∗

1
(K )) �= ∅.

Theorem 4.2 The following conditions are equivalent:

1◦ 0X /∈ cl(S0C − SK ).
2◦ There exists x∗ ∈ X∗ \ {0X∗} such that, for any

α ∈ ( sup
c∈cl S0C

x∗(c), inf
k∈cl SK

x∗(k)) (⊆ (0,∞)),

we have (x∗, α) ∈ cor Ka+ and

x∗(c) + α||c|| > 0 > x∗(k) + α||k|| for k ∈ −K \ {0X }, c ∈ −C \ {0X },
(14)

is valid, or equivalently,

(−x∗)(c) − α||c|| < 0 < (−x∗)(k) − α||k|| for k ∈ −K \ {0X }, c ∈ −C \ {0X },
(15)

is valid, where supc∈cl S0C x∗(c) < infk∈cl SK x∗(k).
3◦ There exists x∗ ∈ X∗ \ {0X∗} such that, for any

α ∈ ( sup
k∈cl SK

x∗(k), inf
c∈cl S0C

x∗(c)) (⊆ (−∞, 0)),

we have (x∗, α) ∈ − cor Ka+ and (13) is valid, where supk∈cl SK x∗(k) <

infc∈cl S0C x∗(c).
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4◦ There exist δ1 < δ2 < 0 and x∗ ∈ X∗ \ {0X∗} such that, for any α ∈ (δ1, δ2), we
have (x∗, α) ∈ − cor Ka+ and (13) is valid.

5◦ There exists (x∗, α) ∈ − cor Ka+ such that (13) is valid (i.e., N (K ,C |
CBP∗

1
(K )) �= ∅).

Moreover, the above assertions 1◦–5◦ are also equivalent to the corresponding asser-
tions where the cone K is replaced by cl(conv K ) (respectively, cl K) while C is
replaced by cl C.

Proof First, observe that 1◦ ⇐⇒ 0X /∈ cl(SK − S0C ). Hence, the equivalences 1◦ ⇐⇒
2◦ ⇐⇒ 4◦ ⇐⇒ 5◦ follow from Theorem 4.1 (applied for K and C in the role of C
and K ). Note that the following statements are equivalent:

• There exists (x∗, α) ∈ cor Ka+ such that (13) (with K and C in the role of C and
K ) is valid.

• There exists (x∗, α) ∈ cor Ka+ such that (14) is valid.
• There exists (x∗, α) ∈ cor Ka+ such that (15) is valid.
• There exists (x∗, α) ∈ − cor Ka+ such that (13) is valid.

Let us prove the equivalence 2◦ ⇐⇒ 3◦. Consider x∗ ∈ X∗ \ {0X∗} and α ∈ P.
Put y∗ := −x∗ (∈ X∗ \ {0X∗}) and β := −α (∈ −P). Noting that

• (x∗, α) satisfies (15) ⇐⇒ (y∗, β) satisfies (13) (with (y∗, β) in the role of
(x∗, α));

• (x∗, α) ∈ cor Ka+ ⇐⇒ (y∗, β) ∈ − cor Ka+;
• α ∈ (supc∈cl S0C x∗(c), infk∈cl SK x∗(k))

⇐⇒ β ∈ (− infk∈cl SK (−y∗)(k),− supc∈cl S0C (−y∗)(c))
⇐⇒ β ∈ (supk∈cl SK y∗(k), infc∈cl S0C y∗(c))

we conclude that 2◦ ⇐⇒ 3◦.
The remaining part of the theoremwith the equivalence of the assertions 1◦–5◦ with

the corresponding assertionswhere the cone K is replaced by cl(conv K ) (respectively,
cl K ) while C is replaced by cl C follows directly from Theorem 4.1 (applied to K
and C in the role of C and K ). ��

Under the weak compactness of the set cl SC or/and cl S0K we can state some
further characterizations, in particular, we can characterize the condition N (C, K |
CBP∗

i
(C)) �= ∅ for i ∈ {2, 3}.

Theorem 4.3 Consider the following assertions:

1◦ 0X /∈ cl(SC − S0K ).
2◦ (cl S0K ) ∩ (cl SC ) = ∅.
3◦ There exists (x∗, α) ∈ Caw# ∩ (X∗ × P) such that (13) is valid (i.e., N (C, K |

CBP∗
2
(C)) �= ∅).

4◦ There exists (x∗, α) ∈ Caw# such that (13) is valid (i.e.,N (C, K | CBP∗
3
(C)) �= ∅).

Then, 1◦ 
⇒ 2◦ and 1◦ 
⇒ 3◦ 
⇒ 4◦. If one of the sets cl SC and cl S0K is weakly
compact, then 2◦ 
⇒ 1◦. If cl SC is weakly compact, then 4◦ 
⇒ 1◦.
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Proof 1◦ 
⇒ 2◦ follows by Proposition 3.1; 1◦ 
⇒ 3◦ follows byTheorem 4.1 taking
into account cor Ca+ ⊆ Caw# ∩ (X∗ × P) by Proposition 2.4 (2◦); 3◦ 
⇒ 4◦ follows
by the fact that Caw# ∩ (X∗ ×P) ⊆ Caw#. If one of the sets cl SC and cl S0K is weakly
compact, then 2◦ 
⇒ 1◦ follows by Proposition 3.1. If cl SC is weakly compact, then
4◦ 
⇒ 2◦ by Proposition 2.5, hence 4◦ 
⇒ 1◦ (by the previous proven implication).

��
Theorem 4.4 Consider the following assertions:

1◦ 0X /∈ cl(S0C − SK ).
2◦ (cl S0C ) ∩ (cl SK ) = ∅.
3◦ There exists (x∗, α) ∈ (−Kaw#)∩(X∗×−P) such that (13) is valid (i.e.,N (K ,C |

CBP∗
2
(K )) �= ∅).

4◦ There exists (x∗, α) ∈ −Kaw# such that (13) is valid (i.e.,N (K ,C | CBP∗
3
(K )) �=

∅).
Then, 1◦ 
⇒ 2◦ and 1◦ 
⇒ 3◦ 
⇒ 4◦. If one of the sets cl SK and cl S0C is weakly
compact, then 2◦ 
⇒ 1◦. If cl SK is weakly compact, then 4◦ 
⇒ 1◦.

Proof Taking into account that 1◦ ⇐⇒ 0X /∈ cl(SK − S0C ), the result follows imme-
diately from Theorem 4.3 (applied for K and C in the role of C and K ). Note that the
following statements are equivalent:

• There exists (x∗, α) ∈ Kaw# ∩ (X∗ × P) (respectively, (x∗, α) ∈ Kaw#) such that
(13) (with K and C in the role of C and K ) is valid.

• There exists (x∗, α) ∈ Kaw# ∩ (X∗ × P) (respectively, (x∗, α) ∈ Kaw#) such that
(14) is valid.

• There exists (x∗, α) ∈ (−Kaw#) ∩ (X∗ × −P) (respectively, (x∗, α) ∈ −Kaw#)
such that (13) is valid.

��
Remark 4.1 Note that Theorems 4.1 and 4.3 (respectively, Theorems 4.2 and 4.4)
extend the separation results based on the non-symmetric approach derived in [6, 16]
and [25]. In particular, Theorems 4.1 and 4.2 provide refinements to the separation
results appearing in [6] by explicitly fixing the bounds on α via the supremum and
infimum, and by proving that the pair (x∗, α) lies in the core of the augmented dual
cone. Combining these theorems with Proposition 3.2, we observe that, when the
cones meet only at the origin, the separation property introduced in [6] can be obtained
by considering only the boundaries of the cones (using an argument similar to that
presented in Remark 4.2 below). On the other hand, our current separation results
improve those of [25, Th. 4.3], since we obtain separation characterizations in general
normed spaces, whereas [25, Th. 4.3] restricted the analysis to reflexive spaces and, in
some cases, required finite-dimensional spaces to establish equivalences. Moreover,
[25, Th. 4.3] requires closedness assumptions, which is not the case here in our results
(similar to [6] and [16], as can be seen in the restated results in Section 2.5). In
[16], characterizations based on (cl S0K ) ∩ (cl SC ) = ∅ are established (under weak
compactness assumptions on cl SC ), not on 0X /∈ cl(S0K − SC ).
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The following result shows that two given cones, one of which contains the other,
can be interpolated by a Bishop-Phelps cone under suitable assumptions.

Theorem 4.5 The following assertions are valid:

1◦ If0X /∈ cl(SC−S0K ) (in particular, K∩C = {0X }), then there existsCBP ∈ CBP∗
1
(C)

such that

K ∩ CBP = {0X } and C \ {0X } ⊆ int CBP and C ⊆ CBP. (16)

2◦ Define K̂ := (X \ K ) ∪ {0X }. If C ⊆ K and 0X /∈ cl(SC − S0
K̂
) (both conditions

imply K̂ ∩ C = {0X }), then there exists CBP ∈ CBP∗
1
(C) such that

C \ {0X } ⊆ int CBP ⊆ CBP ⊆ K , (17)

which implies

int C ⊆ int CBP ⊆ int K and C ⊆ CBP ⊆ K . (18)

Proof 1◦. By Theorem 4.1, if 0X /∈ cl(SC − S0K ), there exists (x∗, α) ∈ cor Ca+ such
that (13), or equivalently (11), is valid, i.e.,

K ∩ C(x∗, α) = {0X } and C \ {0X } ⊆ int C(x∗, α).

Thus, for CBP := C(x∗, α) ∈ CBP∗
1
(C) the statement in (16) is valid.

2◦. Under the given assumptions, the cone K̂ is non-trivial. Again by Theorem 4.1,
if 0X /∈ cl(SC − S0

K̂
), then there exists (x∗, α) ∈ cor Ca+ such that (13) (with K̂ in

the role of K ), or equivalently (10), is valid, i.e.,

K̂ \ {0X } ⊆ X \ C(x∗, α) and C \ {0X } ⊆ int C(x∗, α).

Thus, for CBP := C(x∗, α) ∈ CBP∗
1
(C) we have

X \ K ⊆ X \ CBP and C \ {0X } ⊆ int CBP,

or equivalently, (17) is valid. Noting that int C ⊆ C \ {0X } (since C �= X ), the
remaining inclusions given in (18) are obvious. ��
Remark 4.2 We note that, taking into account Proposition 3.2, the conclusions of
the previous theorem for the cones C and K also hold under the assumption of
the separation property of their boundaries. More specifically, in 1◦, the condition
0X /∈ cl(SC − S0K ) can be replaced by the conditions 0X /∈ cl(SbdC − S0bd K ) and
K ∩ C = {0X }. Likewise, in 2◦, the condition 0X /∈ cl(SC − S0

K̂
) can be replaced by

0X /∈ cl(SbdC − S0bd K ), while maintaining the inclusion C ⊆ K .

Under a convexity assumption concerning K , we get, in addition to the result in
Proposition 3.1, the following non-symmetric cone separation result (involving linear
separation).
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Proposition 4.1 Assume that K is convex. Consider the following assertions:

1◦ 0X /∈ cl(SC − S0K ).
2◦ 0X /∈ cl SC and there exists x∗ ∈ X∗ \ {0X∗} such that

x∗(k) ≥ 0 > x∗(c) for all k ∈ cl K and c ∈ cl(conv C) \ {0X }.

3◦ 0X /∈ cl SC and there exists x∗ ∈ X∗ \ {0X∗} such that

x∗(k) ≥ 0 > x∗(c) for all k ∈ cl S0K and c ∈ cl SC .

4◦ There exists x∗ ∈ X∗ \ {0X∗} such that supk∈cl S0K x∗(k) = 0 < infc∈cl SC x∗(c).

Then, 4◦ 
⇒ 1◦ 
⇒ 2◦ ⇐⇒ 3◦, and if cl SC is weakly compact, then 3◦ 
⇒ 4◦.

Proof Note that 1◦ means exactly (in view of Proposition 3.1) that there is x∗ ∈ X∗ \
{0X∗} such that supk∈cl S0K x∗(k) < infc∈cl SC x∗(c). Thus, the implication 4◦ 
⇒ 1◦
is obvious.

1◦ 
⇒ 2◦: Assume that 1◦ is valid. Of course, 0X /∈ cl SC . In view of Theorem
4.1 and Remark 2.7, there exists (y∗, α) ∈ cor Ca+ such that (cl K ) ∩ CBP = {0X }
and cl(conv C)\ {0X } ⊆ int CBP for CBP := C(y∗, α). By the linear weak separation
result in Proposition 2.3 (noting that (cl K ) ∩ (int CBP) = ∅ since 0X /∈ int CBP)
there is x∗ ∈ X∗ \ {0X∗} such that

x∗(k) ≥ 0 > x∗(c) for all k ∈ cl K and c ∈ int CBP (⊇ cl(conv C) \ {0X }),

hence 2◦ is valid.
2◦ ⇐⇒ 3◦: This equivalence follows immediately from the fact that P · cl SC =

cl(conv C) \ {0X } and R+ · cl S0K = cl(conv K ) = cl K (by Lemma 2.2).
3◦ 
⇒ 4◦: Assume that 3◦ holds true. Then, we easily infer supk∈cl S0K y∗(k) = 0 <

y∗(c) for all c ∈ cl SC , where y∗ := −x∗ ∈ X∗ \ {0X∗}. Under the weak compactness
of cl SC , we conclude 4◦. ��
Remark 4.3 The result in Proposition 4.1 combined with Proposition 3.1 extends the
cone separation result (for non-trivial closed convex cones) mentioned in Proposition
2.2 derived under a weak compactness assumption on cl SC .

4.2 Symmetric Strict Cone Separation

Let us now discuss the symmetric case. Our aim is to find characterizations for
S(C, K | CBP∗) �= ∅ for some family of cones CBP∗ ⊆ CBP, which then also
ensure that C and K can be strictly separated by a Bishop-Phelps cone C(x∗, α)

(with ||x∗||∗ > α > 0) in a symmetric way, i.e, S(C, K | CBP) �= ∅. More precisely,
for any non-trivial cones D1, D2 ⊆ X , we consider a family CBP∗ given by one of the
following two families

CBP∗
1
(D1, D2) := CBP∗

1
(D1) ∪ CBP∗

1
(D2)
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= {C(x∗, α) | (x∗, α) ∈ (cor (D1)a+) ∪ (cor (D2)a+)};
CBP∗

2
(D1, D2) := CBP∗

2
(D1) ∪ CBP∗

2
(D2)

= {C(x∗, α) | (x∗, α) ∈ ((D1)aw#) ∪ ((D2)aw#) ∩ (X∗ × P)};

In view of Proposition 2.4 (2◦) we have CBP∗
1
(D1, D2) ⊆ CBP∗

2
(D1, D2) ⊆ CBP, and

if clw BD1 and clw BD2 are weakly compact, then CBP∗
1
(D1, D2) = CBP∗

2
(D1, D2). In

addition, we need the following family of cones

CBP∗
3
(D1, D2) := CBP∗

3
(D1) ∪ CBP∗

3
(D2)

= {C(x∗, α) | (x∗, α) ∈ ((D1)aw#) ∪ ((D2)aw#)}.

Note that CBP∗
2
(D1, D2) ⊆ CBP∗

3
(D1, D2) ⊆ CLin ∪ CBP and CBP∗

3
(D1, D2) \

CBP∗
2
(D1, D2) ⊆ CLin.

Consider i ∈ {1, 2, 3}. In this section, we are able to give characterizations for the
condition

S(C, K | CBP∗
i
(C, K )) = N (C, K | CBP∗

i
(C, K )) ∪ N (K ,C | CBP∗

i
(C, K )) �= ∅.

Since CBP∗
i
(C, K ) = CBP∗

i
(C) ∪ CBP∗

i
(K ) = CBP∗

i
(K ,C) we have

N (C, K | CBP∗
i
(C, K )) = N (C, K | CBP∗

i
(C)) ∪ N (C, K | CBP∗

i
(K )),

N (K ,C | CBP∗
i
(C, K )) = N (K ,C | CBP∗

i
(C)) ∪ N (K ,C | CBP∗

i
(K )).

It is easy to check that N (C, K | CBP∗
i
(K )) = N (K ,C | CBP∗

i
(C)) = ∅, hence

N (C, K | CBP∗
i
(C, K )) = N (C, K | CBP∗

i
(C)),

N (K ,C | CBP∗
i
(C, K )) = N (K ,C | CBP∗

i
(K )),

S(C, K | CBP∗
i
(C, K )) = N (C, K | CBP∗

i
(C)) ∪ N (K ,C | CBP∗

i
(K )).

Let us first present our general result (without involving a weak compactness
assumption) that gives characterizations for S(C, K | CBP∗

1
(C, K )) �= ∅.

Theorem 4.6 The following assertions are equivalent:

1◦ 0X /∈ cl(SC − SK ).
2◦ There exists x∗ ∈ X∗ \ {0X∗} such that, for any

α ∈ ( sup
k∈cl SK

x∗(k), inf
c∈cl SC

x∗(c)),

we have (13) is valid, where supk∈cl SK x∗(k) < infc∈cl SC x∗(c).
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3◦ There exists x∗ ∈ X∗ such that (x∗, α) ∈ cor Ca+ and (13) are valid for all

α ∈ ( sup
k∈cl S0K

x∗(k), inf
c∈cl SC

x∗(c)) (⊆ (0,+∞)),

where supk∈cl S0K x∗(k) < infc∈cl SC x∗(c), or (x∗, α) ∈ − cor Ka+ and (13) are
valid for all

α ∈ ( sup
k∈cl SK

x∗(k), inf
c∈cl S0C

x∗(c)) (⊆ (−∞, 0)),

where supk∈cl SK x∗(k) < infc∈cl S0C x∗(c).
4◦ There exists (x∗, α) ∈ (cor Ca+) ∪ (− cor Ka+) such that (13) is valid (i.e.,

S(C, K | CBP∗
1
(C, K )) �= ∅).

Moreover, the assertions 1◦–4◦ are also equivalent to the corresponding assertions
where the cone C is replaced by cl C while K is replaced by cl K.

Proof By Proposition 2.1 assertion 1◦ is valid if and only if there is x∗ ∈ X∗ \
{0X∗} such that supk∈cl SK x∗(k) < infc∈cl SC x∗(c). Moreover, it is easy to check that
supk∈cl SK x∗(k) < α < infc∈cl SC x∗(c) implies (13). This shows that 1◦ ⇐⇒ 2◦. By
Proposition 3.3 (1◦ ⇐⇒ 4◦) the assertion 1◦ is equivalent to 0X /∈ cl(SC − S0K ) or
0X /∈ cl(S0C − SK ). Using Theorem 4.1 (1◦ ⇐⇒ 2◦) and Theorem 4.2 (1◦ ⇐⇒ 3◦)
the latter statement is equivalent to 3◦. By Theorem 4.1 (2◦ ⇐⇒ 4◦) and Theorem
4.2 (3◦ ⇐⇒ 5◦) we obtain 3◦ ⇐⇒ 4◦.

It remains to show that 1◦–4◦ are also equivalent to the corresponding assertions
where the cone C is replaced by cl C while K is replaced by cl K . It is easy to check
that each of these 8 assertions implies the conditions {0X } � cl C �= X and {0X } �

cl K �= X . Now, taking into account the equivalence of 1◦ with 0X /∈ cl(Scl C − Scl K )

in view of Proposition 3.5 (1◦ ⇐⇒ 2◦), we get the desired equivalences (using the
proven results for the non-trivial cones C and K , as well as for the non-trivial cones
cl C and cl K ). ��

Under theweak compactness of cl SC or cl SK , we can state some further character-
izations; in particular, we can characterize the condition S(C, K | CBP∗

i
(C, K )) �= ∅

for i ∈ {2, 3}.
Theorem 4.7 Consider the following assertions:

1◦ 0X /∈ cl(SC − SK ).
2◦ (cl SK ) ∩ (cl SC ) = ∅.
3◦ There exists (x∗, α) ∈ (Caw# ∪−Kaw#)∩ (X∗ × (R \ {0})) such that (13) is valid

(i.e., S(C, K | CBP∗
2
(C, K )) �= ∅).

4◦ There exists (x∗, α) ∈ (Caw# ∪ −Kaw#) such that (13) is valid (i.e., S(C, K |
CBP∗

3
(C, K )) �= ∅).

Then, 1◦ 
⇒ 2◦ and 1◦ 
⇒ 3◦ 
⇒ 4◦. If one of the sets cl SC and cl SK is weakly
compact, then 2◦ 
⇒ 1◦. If both cl SC and cl SK areweakly compact, then 4◦ 
⇒ 1◦.
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Proof By Proposition 3.4, we have 1◦ 
⇒ 2◦, while by Proposition 3.3 we have
1◦ ⇐⇒ [0X /∈ cl(SC − S0K ) or 0X /∈ cl(S0C − SK )]. Applying Theorems 4.3 and 4.4
we obtain 1◦ 
⇒ 3◦ 
⇒ 4◦. The remaining implications (under weak compactness
assumptions) follow from Proposition 3.4 and Theorems 4.3 and 4.4. ��

A symmetric counterpart to the interpolation result in Theorem 4.5 (for the non-
symmetric approach) is given in the next theorem.

Theorem 4.8 If 0X /∈ cl(SC − SK ) (in particular, K ∩ C = {0X }), then there exists
CBP ∈ CBP∗

1
(C) such that

K ∩ CBP = {0X } and C \ {0X } ⊆ int CBP and C ⊆ CBP, (19)

or there exists CBP ∈ CBP∗
1
(K ) such that

C ∩ CBP = {0X } and K \ {0X } ⊆ int CBP and K ⊆ CBP. (20)

Proof By Proposition 3.3 the condition 0X /∈ cl(SC − SK ) is equivalent to 0X /∈
cl(SC − S0K ) or 0X /∈ cl(S0C − SK ) (where the latter condition is equivalent to 0X /∈
cl(SK − S0C )). Applying Theorem 4.5 twice there exists CBP ∈ CBP∗

1
(C) with (19) or

there exists CBP ∈ CBP∗
1
(K ) with (20). ��

Remark 4.4 We note that, taking into account Proposition 3.5, the conclusions of the
previous theorem for the cones C and K also hold under the assumption of the separa-
tion property of their boundaries. More specifically, the condition 0X /∈ cl(SC − SK )

can be replaced by the conditions 0X /∈ cl(SbdC − Sbd K ) and K ∩ C = {0X }.
Under convexity assumptions concerningC and K , we get the following symmetric

cone separation result.

Proposition 4.2 Assume that C and K are convex. Consider the following assertions:

1◦ 0X /∈ cl(SC − SK ) ∪ (cl SK ) ∪ (cl SC ).
2◦ 0X /∈ cl(SC − S0K ) ∪ cl(S0C − SK ).
3◦ There exists x∗ ∈ X∗ \ {0X∗} such that supk∈cl S0K x∗(k) = 0 < infc∈cl SC x∗(c)

and supk∈cl SK x∗(k) < 0 = infc∈cl S0C x∗(c).
4◦ There exists x∗ ∈ X∗ \ {0X∗} such that supk∈cl SK x∗(k) < 0 < infc∈cl SC x∗(c).
5◦ 0X /∈ (cl SK ) ∪ (cl SC ) and there exists x∗ ∈ X∗ \ {0X∗} such that

x∗(k) > 0 > x∗(c) for all k ∈ (cl K ) \ {0X } and c ∈ (cl C) \ {0X }.

6◦ (cl S0K ) ∩ (cl SC ) = ∅ and (cl SK ) ∩ (cl S0C ) = ∅.
7◦ (cl SK ) ∩ (cl SC ) = ∅ and 0X /∈ (cl SK ) ∪ (cl SC ).
8◦ (cl K ) ∩ (cl SC ) = (cl C) ∩ (cl SK ) = ∅.
9◦ (cl K ) ∩ (cl C) = {0X } and 0X /∈ (cl SK ) ∪ (cl SC ).

Then, 4◦ ⇐⇒ 3◦ 
⇒ 2◦ 
⇒ 1◦ 
⇒ 7◦ ⇐⇒ 6◦ ⇐⇒ 8◦ ⇐⇒ 9◦, as well as
4◦ 
⇒ 5◦ 
⇒ 9◦. Moreover, if both of the sets cl SC and cl SK are weakly compact,
then 6◦ 
⇒ 2◦ 
⇒ 4◦ (i.e., assertions 1◦ − 9◦ are equivalent).
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Proof The implication 2◦ 
⇒ 1◦ is obvious. Moreover, Proposition 3.4 shows 1◦ 
⇒
7◦ while Proposition 4.1 provides 3◦ 
⇒ 2◦. Taking into account that P · cl SC =
cl(conv C)\{0X } = (cl C)\{0X } and P ·cl SK = cl(conv K )\{0X } = (cl K )\{0X }
(by Lemma 2.2), we easily infer 4◦ 
⇒ 5◦ (where the strict inequalities in 4◦ ensure
0X /∈ (cl SK ) ∪ (cl SC )). The implication 5◦ 
⇒ 9◦ is obvious. The equivalence
of 3◦ and 4◦ is easy to check (note that supk∈cl SK x∗(k) ≤ supk∈cl S0K x∗(k) and
infc∈cl S0C x∗(c) ≤ infc∈cl SC x∗(c)). From Proposition 3.1 we get 6◦ ⇐⇒ 8◦ ⇐⇒ 9◦.

Let us show the equivalence 7◦ ⇐⇒ 8◦. Of course, sinceC and K are convex cones,
we have (cl SK ) ∪ {0X } ⊆ cl K and (cl SC ) ∪ {0X } ⊆ cl C , hence 8◦ 
⇒ 7◦. The
proof of the implication 7◦ 
⇒ 8◦ uses the same arguments (especially the convexity
of the cones) as the proof of Proposition 3.4 (3◦ 
⇒ 4◦).

For the last part of the proof, assume weak compactness of the sets cl SC and
cl SK . The implication 6◦ 
⇒ 2◦ is a consequence of Proposition 3.1. It remains to
prove the implication 2◦ 
⇒ 4◦. Suppose that 2◦ is valid. By Proposition 4.1 there
exist x∗, y∗ ∈ X∗ \ {0X∗} such that supk∈cl S0K x∗(k) = 0 < infc∈cl SC x∗(c) and
supk∈cl SK y∗(k) < 0 = infc∈cl S0C y∗(c). Of course, then we have

sup
k∈cl SK

(x∗ + y∗)(k) ≤ sup
k∈cl S0K

x∗(k) + sup
k∈cl SK

y∗(k) < 0

and
0 < inf

c∈cl SC
x∗(c) + inf

c∈cl S0C
y∗(c) ≤ inf

c∈cl SC
(x∗ + y∗)(c).

Thus, 4◦ is true. ��
Remark 4.5 The result in Proposition 4.2 extends the cone separation result (for non-
trivial closed convex cones) mentioned in Proposition 2.2.

Moreover, in the convex case, we are able to give characterizations for

N (C, K | CBP∗
i
(C))) �= ∅ �= N (K ,C | CBP∗

i
(K ))) (i ∈ {1, 2, 3}),

which also ensure

S(C, K | CBP∗
i
(C, K ))) = N (C, K | CBP∗

i
(C))) ∪ N (K ,C | CBP∗

i
(K ))) �= ∅.

Corollary 4.1 Assume that C and K are closed and convex. Consider the following
assertions:

1◦ 0X /∈ cl(SC − SK ) ∪ (cl SK ) ∪ (cl SC ).
2◦ There exists (x∗, α) ∈ cor Ca+ such that (13) is valid (i.e.,N (C, K | CBP∗

1
(C)) �=

∅), and there exists (x∗, α) ∈ − cor Ka+ such that (13) is valid (i.e., N (K ,C |
CBP∗

1
(K )) �= ∅).

3◦ There exists (x∗, α) ∈ Caw# ∩ (X∗ × P) such that (13) is valid (i.e., N (C, K |
CBP∗

2
(C)) �= ∅), and there exists (x∗, α) ∈ −Kaw# ∩ (X∗ × −P) such that (13) is

valid (i.e., N (K ,C | CBP∗
2
(K )) �= ∅).
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Fig. 1 Non-symmetric cone separation of two non-trivial, closed, pointed, solid cones C and K that satisfy
C ∩ K = {0X }, cl S0K = S0K and 0X /∈ cl SC = SC in the real normed space (R2, || · ||2): (left image)

C is convex, K is nonconvex, (cl S0K ) ∩ (cl SC ) = ∅ (⇐⇒ (cl S0bd K ) ∩ (cl Sbd C ) = ∅), N (C, K |
CBP) �= ∅ = N (K ,C | CBP); (right image) C is nonconvex, K is convex, (cl S0K ) ∩ (cl SC ) �= ∅
(⇐⇒ (cl S0bd K ) ∩ (cl Sbd C ) �= ∅), N (C, K | CBP) = ∅ �= N (K ,C | CBP)

4◦ There exists (x∗, α) ∈ Caw# such that (13) is valid (i.e., N (C, K | CBP∗
3
(C)) �=

∅), and there exists (x∗, α) ∈ −Kaw# such that (13) is valid (i.e., N (K ,C |
CBP∗

3
(K )) �= ∅).

Then, 1◦ ⇐⇒ 2◦ 
⇒ 3◦ 
⇒ 4◦, and if the sets cl SC and cl SK are weakly compact,
then 4◦ 
⇒ 1◦.

Proof ByProposition 4.2, assertion 1◦ is equivalent to 0X /∈ cl(SC−S0K )∪cl(S0C−SK ).
Then, the result follows from Theorem 4.1 (1◦ ⇐⇒ 4◦), Theorem 4.2 (1◦ ⇐⇒ 5◦)
and Theorems 4.3 and 4.4. ��

Let us conclude this section with an example to show the similarities / differences
of the non-symmetric and symmetric cone separation approaches.

Example 4.1 Figure 1 (respectively, Figure 2) visualizes the non-symmetric (respec-
tively, symmetric) cone separation approach for an example in the real normed space
(R2, || · ||2), where || · ||2 denotes the Euclidean norm.

5 Existence of (Bounded) Convex Bases for Convex Cones

In this section, we present some existence results for (bounded) bases of convex cones
in the real normed space (X , || · ||). Assertions concerning the existence of a bounded
base of convex cones play an important role in order-theoretical investigations, in
functional analysis and optimization. Consider two non-trivial cones C, D ⊆ X such
that cl(conv C) = cl(conv D).
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Fig. 2 Symmetric cone separation of two non-trivial, closed, pointed, solid cones C and K that satisfy
C∩K = {0X }, 0X /∈ cl SC = SC and 0X /∈ cl SK = SK in the real normed space (R2, ||·||2): (left image)C
is convex, K is nonconvex, (cl SC )∩(cl SK ) = ∅ (⇐⇒ (cl Sbd C )∩(cl Sbd K ) = ∅),S(C, K | CBP) �= ∅;
(right image) C is nonconvex, K is convex, (cl SC ) ∩ (cl SK ) = ∅ (⇐⇒ (cl Sbd C ) ∩ (cl Sbd K ) = ∅),
S(C, K | CBP) �= ∅

Remark 5.1 For any D ∈ {C, cl C, conv C, cl(conv C)}, we have cl(conv C) =
cl(conv D), and ifC is convex and acute, then the latter equality is valid for D = bd C
(by Kasimbeyli [25, Lem. 3.10]).

In the following theorem,we characterize thewell-basedness of a non-trivial convex
cone C in terms of existence results of a non-trivial cone K ⊆ X satisfying separation
conditions involving the convex sets SD and Sbd K (respectively, S0bd K or S0K ).

Theorem 5.1 Let C and D be two non-trivial cones in X such that cl(convC) =
cl(conv D). Then the following assertions are equivalent:

1◦ conv C (equivalently, cl(conv C)) is well-based.
2◦ There exists a functional x∗ ∈ X∗ such that

0 < inf
x∈SD

x∗(x). (21)

3◦ There exists a non-trivial cone K ⊆ X such that C ⊆ K and a functional x∗ ∈ X∗
satisfying

0 < sup
k∈Sbd K

x∗(k) ≤ inf
x∈SD

x∗(x).

4◦ There exists a non-trivial cone K ⊆ X such that C ⊆ K and a functional x∗ ∈ X∗
satisfying

0 < sup
k∈Sbd K

x∗(k) < inf
x∈SD

x∗(x). (22)
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5◦ There exists a non-trivial cone K ⊆ X with C ⊆ K such that

0X /∈ cl(SD − S0bd K ). (23)

6◦ There exists a non-trivial cone K ′ ⊆ X such that

0X /∈ cl(SD − S0K ′). (24)

Moreover, the value supk∈Sbd K
x∗(k) given in assertions 3◦ and 4◦ can be replaced by

the value supk∈S0bd K
x∗(k), while the non-trivial cone K given in assertions 3◦ − 5◦

can be assumed to be solid, pointed, closed and convex. If conv C = conv D, then the
condition C ⊆ K in assertions 4◦ and 5◦ can be replaced by the condition C \ {0X } ⊆
int K (i.e., K is a dilating cone for C (and for conv C) if K is convex).

Proof First, let us show the equivalence of the assertions 1◦ − 4◦.
1◦ ⇐⇒ 2◦: In view of (5) and C+ = (clC)+ = (conv C)+ = (cl(conv C))+, for

any non-trivial cone D ⊆ X with cl(conv C) = cl(conv D), we have

∃ x∗ ∈ X∗ : (21) is valid ⇐⇒ 0X /∈ cl SD (by Proposition 2.1)

⇐⇒ int D+ �= ∅
⇐⇒ int (cl(conv D))+ �= ∅
⇐⇒ int (cl(conv C))+ �= ∅
⇐⇒ int C+ �= ∅
⇐⇒ conv C is well-based

⇐⇒ cl(conv C) is well-based.

This shows that 1◦ ⇐⇒ 2◦.
2◦ 
⇒ 4◦: Assume that (21) is valid for some x∗ ∈ X∗. Define β := infx∈SD x∗(x)

and K := C(x∗, α) for some α ∈ (0, β). In view of Lemma 2.4 (3◦) we have
α = supx∈Sbd K

x∗(x) (= supx∈S0bd K
x∗(x)). Note that the Bishop-Phelps cone

K is a non-trivial (solid, pointed, closed, convex) cone taking into account that
||x∗||∗ ≥ β > α > 0. We conclude that (22) is valid. It remains to prove that
C ⊆ K . Since β > α > 0 we have x∗(x) > α > 0 for all x ∈ BD , hence
(x∗, α) ∈ Da# ⊆ Da+. By our assumption cl(conv C) = cl(conv D)weget (x∗, α) ∈
Da+ = (cl(conv D))a+ = (cl(conv C))a+ = Ca+, which means that C ⊆ K . Note
that, if conv C = conv D, then (x∗, α) ∈ Da# = (conv D)a# = (conv C)a# = Ca#,

hence C \ {0X } ⊆ C>(x∗, α) = int K . This shows that 4◦ is true.
4◦ 
⇒ 3◦ 
⇒ 2◦: Both implications are obvious.
From the above proof of the equivalence of 1◦ − 4◦ it can be seen that in

the statements 3◦ and 4◦ the value supk∈Sbd K
x∗(k) can be replaced by the value

supk∈S0bd K
x∗(k) (having in mind Lemma 2.4 (3◦)), while the non-trivial cone K can

be assumed to be solid, pointed, closed and convex.
Now, let us show the equivalence of the assertions 2◦ (equivalently, 4◦), 5◦ and 6◦.
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4◦ 
⇒ (5◦ ∧ 6◦): Assume that 4◦ with Sbd K replaced by S0bd K in (22) is valid.
As observed above, we can suppose that the non-trivial cone K is (solid, pointed)
closed and convex. By Proposition 3.1 (applied for D and bd K in the role C and
K ) we immediately get (23), hence 5◦ is valid. Define the non-trivial cone K ′ :=
(X \K )∪{0X }. Then, bd K = bd K ′, and since K ⊇ cl(conv C) = cl(conv D) ⊇ D,
we have D∩K ′ = {0X }. The latter condition combined with (23) is equivalent to (24)
in view of Proposition 3.2 (applied for D and K ′ in the role C and K ). This proves
that 6◦ is valid.

(5◦ ∨ 6◦) 
⇒ 2◦: Since 0X ∈ S0K ′ ∩ S0bd K , we have that 0X /∈ cl(SD − S0bd K )

(respectively, 0X /∈ cl(SD − S0K ′)) implies 0X /∈ cl(SD − {0X }) = cl SD , which is
equivalent to 2◦. ��
Remark 5.2 Note that the results in Sections 3 and 4 provide some more equivalent
statements for 6◦ in Theorem 5.1. Indeed, by Theorem 4.1 we have

(24) is valid ⇐⇒ N (D, K ′ | CBP∗
1
(D)) �= ∅,

and by Theorem 4.3, if cl SD is weakly compact, then

(24) is valid ⇐⇒ N (D, K ′ | CBP∗
2
(D)) �= ∅

⇐⇒ N (D, K ′ | CBP∗
3
(D)) �= ∅

⇐⇒ (cl S0K ′) ∩ (cl SD) = ∅.

The following result in Corollary 5.1 highlights the differences and similarities
between a convex cone conv C having a (bounded) convex base and a convex closed
cone cl(conv C)having a (bounded) convex base. This is achieved bygiving equivalent
conditions based on inclusions between the (not necessarily convex) norm-bases BC

and Bcl C of the (not necessarily convex) cones C and cl C , and certain supporting
half-spaces.

Corollary 5.1 The following assertions hold:

1◦ conv C has a convex base if and only if there exists x∗ ∈ X∗ such that

BC ⊆ {x ∈ X | x∗(x) > 0}.

2◦ If conv(cl C) = cl(conv C) (e.g., if C is convex), thencl(conv C) has a convex
base if and only if there exists x∗ ∈ X∗ such that

Bcl C ⊆ {x ∈ X | x∗(x) > 0}.

3◦ conv C is well-based if and only if there exist x∗ ∈ X∗ and α > 0 such that

BC ⊆ {x ∈ X | x∗(x) ≥ α}.
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4◦ cl(conv C) is well-based if and only if there exist x∗ ∈ X∗ and α > 0 such that

Bcl C ⊆ {x ∈ X | x∗(x) ≥ α}.

Proof In view of (3) and (4), we have

conv C has a convex base ⇐⇒ (conv C)# �= ∅
⇐⇒ C# �= ∅
⇐⇒ ∃ x∗ ∈ X∗ : x∗(x) > 0 for all x ∈ BC

and

cl(conv C) has a convex base ⇐⇒ (cl(conv C))# �= ∅
⇐⇒ (conv(cl C))# �= ∅
⇐⇒ (cl C)# �= ∅
⇐⇒ ∃ x∗ ∈ X∗ : x∗(x) > 0 for all x ∈ Bcl C .

Moreover, in view of (5), (8) and Proposition 2.4 (1◦), it follows that

conv C is well-based ⇐⇒ Ca+ ∩ (X∗ × P) �= ∅
⇐⇒ ∃ (x∗, α) ∈ X∗ × P : x∗(x) ≥ α for all x ∈ BC

and

cl(conv C) is well-based ⇐⇒ Ca+ ∩ (X∗ × P) �= ∅
⇐⇒ (cl C)a+ ∩ (X∗ × P) �= ∅
⇐⇒ ∃ (x∗, α) ∈ X∗ × P : x∗(x) ≥ α for all x ∈ Bcl C .

��
Remark 5.3 The existence results for a (bounded) convex base of convex cones in real
normed spaces which we have derived in this section employing our (symmetric and
non-symmetric) cone separation results are useful for various applications. We will
briefly mention some important applications of our results in the field of optimization.
Especially, the existence of a bounded base is important for showing existence and
density results in optimization and functional analysis. In the following, we list some
results from the literature where cones with a bounded base play a role.

• In the minimal point theorem by Phelps, the involved cone has a bounded base
(compare [13, Proposition 3.11.2] and the corresponding discussion there).

• In the discussion of sufficient conditions for the existence of minimal points of
subsets of product spaces, the boundedness of thebaseof a convex cone is important
(see [13, Section 3.11.1]).
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• Postolică has shown in [32, Corollary 3.2.1] that a bounded and closed subset of a
Hausdorff locally convex space has the domination property under the assumption
that the involved cone has a complete bounded base. The domination property
plays an important role in optimization theory.

• Petschke in [31] obtains a density result for the set of positive proper minimals
within the set of minimal points, extending the well-known Arrow-Barankin-
Blackwell theorem to infinite dimension spaces under the assumption that the
ordering cone is well-based. This result was later attempted to be generalized by
Gong in [12] using the notion of a point of continuity (a slight weakening of the
notion of a denting point). Whether the result established by Gong was indeed a
generalization of Petschke’s result was stated as an open problem in [12], which
was later analyzed in [8, Section 4].

6 Conclusions

From a classical separation perspective in convex analysis and optimization (without
considering a specific application), a symmetric separation concept for cones seems
to be preferable. However, it is important to note that many significant new results for
the symmetric cone separation approach were derived from the non-symmetric cone
separation approach (thanks to Propositions 3.3 and 3.4). As discussed in Remark 5.3,
our results on the existence of a (bounded) base of convex cones have important
applications in optimization, where they can be used to derive existence statements,
for example, in the proof of general minimal point theorems.

Future research directions include extending the symmetric cone separation results
to separation theorems for (not necessarily convex) sets without cone properties in
real normed spaces. Additionally, we aim to develop new scalarization methods based
on Bishop-Phelps cone-representing scalarizing functions, such as norm-linear func-
tions, for vector optimization. These scalarizing functions are expected to be useful
for establishing existence and density results for properly minimal points in vector
optimization problems.
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