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Abstract

In this paper, we study relationships between symmetric and non-symmetric separation
of (not necessarily convex) cones by using separating cones of Bishop-Phelps type
in real normed spaces. Besides extending some known results for the non-symmetric
cone separation approach, we propose a new symmetric cone separation approach and
establish cone separation results for it by using some cone separation results obtained
for the non-symmetric cone separation approach twice (by swapping the roles of the
cones). In addition to specifically emphasizing the results for the convex case, we also
present some existence results for (bounded) convex bases of convex cones. Finally,
we highlight some applications of symmetric and non-symmetric cone separation in
optimization.
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1 Introduction

It is well-known that separation plays an important role in variational analysis and
optimization. In particular, cone separation theorems (i.e., theorems related to the
separation of two cones by a hyperplane or a certain conical surface) have been studied
by several authors in the literature (see, e.g., [6], [13, Sec. 2.4.3], [15, 16], [20], [23, Th.
3.22],[24, Sec. 3.7], [25, Th. 4.3], [27, Sec. 2.3], [29], [30, Cor. 2.3], [33, Sec. 11], and
[34, Sec. 4]). Such cone separation theorems are known to be useful in optimization
(e.g., for deriving scalarization results for nonconvex vector optimization problems;
see, e.g., [1, 6, 10, 11, 14, 24-26, 35]). In the literature, there are different concepts
for the nonlinear separation of two (not necessarily convex) cones by a cone/conical
surface (see, e.g., [15, 16, 20, 25, 28, 29]). Let us formalize our underlying cone
separation concepts below.

Consider two non-trivial cones C, K € X (that is, cones different from {Ox} and
X itself) and a closed, solid, convex cone € C X (in what follows int €, bd €, cl €
stand for the interior, boundary, and closure of €, respectively) in a real normed space

X1 1D
Definition 1.1 We say that the cones C and K are

e strictly separated by (the boundary of the cone) ¢ in a non-symmetric way
(for short, € € N(C, K)) if

C\{0x} Cint € and K \{Ox} < X\ ¢, €))
or equivalently,
C\{0x} Cint € and KN ={0x}.
e strictly separated by ¢ (in a symmetric way) if
€eS(C,K):=N(C,K)UN(K,O),

where the set V' (C, K) (respectively, S(C, K)) consists of all closed, solid, convex
cones in X which are non-symmetric (respectively, symmetric) strictly separating
cones for C and K.

Remark 1.1 The non-symmetric strict cone separation approach from Definition 1.1
is already used in [6, 15, 16, 20, 25], while the symmetric strict cone separation
approach appears to be new in the literature to our knowledge. Note that we have

-N(C,K)=N(-C, —K).

In our upcoming cone separation theorems, we like to consider a closed, solid and
convex separating cone ¢ that can be represented by the sublevel set (w.r.t. the level 0)
of a (lower semicontinuous, convex, positively homogeneous) function ¢ : X — R.
More precisely, ¢ should satisfy the cone representation properties

C={xeX|gkx) <0} and int€ ={x e X |p() <O}
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In this case, the condition (1) (given in an order theory way) can be written in terms
of functional analysis

p(x") <0 < p(x?) forallx' € C\ {0x}and x* € K \ {Ox}.

In this paper, we study relationships between symmetric cone separation and non-
symmetric cone separation of (not necessarily convex) cones by using separating
cones of Bishop-Phelps type in real normed spaces. While the non-symmetric strict
separation approach for cones is well studied in the literature (see [6, 15, 16, 25]),
the symmetric strict separation approach based on Bishop-Phelps separating cones is
new.

For any (x*, @) € X* x R (where X* is the dual normed space of X), let us define
two closed cones

Cx* a):={xeX|x"(x) > alx|},
Sx*, o) :=—-C(x*, o),

two sets

C(x* ) ={xeX|x"(x)>alx|} (SCE* ),
S<(x*,a):=—-C (x*,a) (CSKx* a)),

and a so-called norm-linear function ¢+, : X — R by
Orrq(x) 1= x*(x) + af|x|| forall x € X.
Note that

—C(x*,a) =S@", a) = {x € X | gyx o(x) <0},
—C7(x" a)=S"(x", @) ={x € X | grra(x) <O}

Throughout, we denote the set of non-negative real numbers by R, and the set of
positive real numbers by P.

Remark 1.2 In the case that (x*, @) € (X*\ {Ox+}) x P, the set C(x™*, «) is known as
Bishop-Phelps cone and the function ¢, o, as Bishop-Phelps function (named after
the work by Bishop and Phelps [2]). It is known that Bishop-Phelps cones / functions
have a lot of useful properties and there are interesting applications in variational
analysis and optimization (see, e.g., [6, 15-19, 22, 24-26]). Any Bishop-Phelps cone
C(x*, a) is a closed, pointed, convex cone. If ||x*||, > o (where || - |5 : X* — R
denotes the dual norm of || - ||), then C(x*, ) is non-trivial and

C”(x*,a)=int C(x*,a) #@ and (bd C(x*, a))\ {Ox} # ¥.

Note that for (x*, @) € X* x P with ||x*||, < « we have C(x*, ®) = {Ox}, while
for ||x*||+ < « we have C~ (x*, o) = @. If we consider & € R in the Bishop-Phelps
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function ¢, o instead of « € IP, we call ¢, o a norm-linear function (as proposed by
Zaffaroni [36]).

In the separation of two (not necessarily convex) cones in a real normed space X,
we are interested in a Bishop-Phelps cone € = C(x*, «) that strictly separates (respec-
tively, in a non-symmetric way) two cones C and K, i.e., € € S(C, K) (respectively,
¢ e N(C, K)).

From now on, we will use calligraphic uppercase letters to denote families of subsets
of X. Consider a family C of cones in X with

C C{€ C X | €isaclosed, solid, convex cone} =: Cconvex-

Definition 1.2 We say that the cones C and K in X are

e strictly separated w.r.t. C in a non-symmetric way if
N(C,K|C):=CNN(C,K) #0.
o strictly separated w.r.t. C if
S(C,K|C):=CNS(C,K) #0.
Remark 1.3 1t is easy to check that

~N(C,K|C)=N(-C,—K | C);
N(C,K|C)CS(C,K |C);
S(K,C|C)=S8S(C,K|C)=N(C,K|C)UNK,C|C).

Note that the case N'(C, K | C) # ¥ = N (K, C | C) might happen (see e.g. [16, Sec.
4)).

In this paper, we will focus on the separation of the given cones C and K by
separating cones that belong to the following families of cones:

Cep :={C(x™, ) | (x", &) € X* x P, [|x¥||x >},
CLin :=={C(x™,0) | x* € X\ {Ox+}},

and other subfamilies Cgp+ < Cpp that will be introduced in Section 4. Note that
CLin U CBP - Cconvex‘

Remark 1.4 1t is easy to check that
N(K, C | CLin) = =N(C, K | CLin)

and
S(C, K | CLin) = W(C, K | CLin)) U (=N(C, K | CLin)).
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The non-symmetric cone separation concept is known to be useful in vector opti-
mization, e.g. in the proper efficiency solution concept in the sense of Henig, one
needs to have dilating / enlargement convex cones of the given ordering cone (note
that the convex cone € is said to be a dilating cone for the cone C if C \ {Ox} C int ).
It may also be interesting that such dilating / enlargement cones belong to a special
family C of convex cones (e.g. € € Cgp).

From the viewpoint of classical separation in convex analysis and optimization (not
considering a specific application), a symmetric separation concept for cones seems
to be preferable.

On the one hand, the aim of the paper is to give characterizations for the conditions

N(C,K | Cgp) # 0;
N(C,K | Cpp) # 0 # N(K, C | Cpp+);
S(C, K | Cgp+) # 0.

for certain families Cgp+ C Cgp and under certain assumptions on the cones C and K.
On the other hand, we are interested in the same conditions with ¢l C or bd C in the
role of C, as well as cl K or bd K in the role of K. Furthermore, the corresponding
relationships between such conditions are of interest. Note that bd K = bd((X \
K)U{0x}),and, if C € K,then C N ((X \ K) U{0x}) = {Ox}. In this case, we are
interested in separating cones € that belong to the sets N'(C, (X\ K)U{0x} | Cgp*) and
S(C, (X\K)U{Ox} | Cgp+),respectively, N'(C, bd K | Cgp+) and S(C,bd K | Cgp+).
This allows us to derive novel sufficient conditions (see Theorems 4.5 and 4.8) that
ensure
e CNK ={0x}
— €N K = {0x} for some € € Cgp+ with C C € (as studied in [25, Theorem
5.2], [21, Theorem 2.4] for € € Ceonvex);
e CNK ={0x}
— CNC ={0x}or KNC={0x} for some € € Cgp» with C C Cor K C C;
e CCK
= int C Cint € Cint K and C C ¢ C K for some € € Cgp+.
Our results extend known results derived in [6, 15] and [25].

The paper is structured as follows. In Section 2 we present some basics in real
normed spaces and study cones and their properties, separation results for convex
sets / cones (in particular, Proposition 2.1 is a key result for our work), and aug-
mented dual cones of cones. We also recall known nonlinear separation results for
cones based on the non-symmetric approach. In Section 3 we present our main sep-
aration conditions for symmetric and non-symmetric separation of two given cones
and study their basic relations. In particular, Propositions 3.3 and 3.4 are key results to
connect the symmetric cone separation approach with the non-symmetric cone separa-
tion approach. Section 4 is devoted to symmetric and non-symmetric cone separation
based on Bishop-Phelps separating cones. The main aims of the paper, which we have
described above, are achieved in this section. Moreover, in Section 5 we derive some
new existence results for bases of convex cones. Finally, in Section 6 we present a
conclusion with some applications in optimization and an outlook for further research.
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2 Preliminaries in Real Normed Spaces
2.1 Topological Basics

Throughout the paper, assume that X is a real normed space endowed with the norm
[I-1]: X — R, X* is its topological dual space endowed with the dual norm || - ||,
Sx is the unit sphere of X, By is the closed unit ball of X, Oy is the origin of X, and
Ox= is the origin of X*. Note that the dual space X* of the real normed space X is
known to be a real Banach space.

For any set 2 € X we denote by cl £2,cl,, £2,int §2,cor £2,bd §2 and conv §2 the
closure, weak closure, interior, algebraic interior, boundary, and convex hull, respec-
tively. For any a, b € X we define

[a,b] :={(1 —t)a+1tb |t €0, 1]},
(a,b) ={(1 =t)a+1tb |t e (0,1},
(a,b]:={(0—=ta+1tb|te,1]}.

The following auxiliary lemma will be used to prove Lemma 2.5.

Lemma 2.1 Consider two sets A, B C X and assume that int A # (). Suppose that
there exists a € int A such that for every b € B we have

(a,b]Nbd A = 0. )

Then, B C int A.

Proof Suppose, contrary to our claim, that B ¢ A, and pick some b € B\ A. Consider
the continuous function ¢t +— f(¢) := (1 — t)a + tb and define the non-empty and
bounded set [ := {t € [0, 1] | f(¢) € A}. Denote @ := sup/ € [0, 1]. It is clear that
f(a) € cl A. Note that the case @« = 0 can not appear, since f(0) € int A and f is
continuous (thus f(¢) € A for some ¢ > 0). Consider two cases:

Case I:Leta = 1. Then, b = f(a) € (clA) \ A, hence b € (a,b]Nbd A.

Case 2: Let « € (0,1). We can pick two sequences (t,), S I and (s,), <
[0, 17\ I that converge to «, i.e., lim, 0 t, = o = lim,_  §,. On the one hand,
lim, .~ f(t;) = f(a) € (a, b)Ncl A, and on the other hand, since f(s,) € X \ A for
alln € N, we getlim,, f(s,) = f(@) € X \int A. Thus, f(«) € (a,b) Nbd A.

In both cases, we get a contradiction to (2). O

2.2 Cones and Their Properties

Acone C C X (ie.,aset C C X withOxy € C = R, - C) is said to be non-trivial if
{Ox} # C # X; pointed if £(C) = {0x}, where £(C) := C N (—C) is the lineality
of C; acute if cl C is pointed; solid if int C # (J; convex if C is a convex set (or
equivalently, if C + C = C).
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Definition 2.1 Consider a cone C € X. A set B C C is called a base for C, if B is a
non-empty set, and C = R4 - B with Ox ¢ cl B. Moreover, C is said to be well-based
if there exists a bounded, convex base of C.

Remark 2.1 Assume that B is a base in the sense of Definition 2.1 for the cone C C X.
Then, ¥ # C \ {Ox} =P - B, and if B is convex, then C is non-trivial and convex.

Remark 2.2 Thanks to the Hahn-Banach theorem, a well-based cone C can be defined
as one for which there exists a bounded convex subset B such that Oy ¢ cl B and, for
every x € C with x # Oy, there exist unique A > 0 and b € B such that x = Ab (this
definition is used, for instance, in [5]).

Definition 2.2 Consider a cone C C X. The set
Be ={xeC||lx||]=1}=CnNSyx

is called the norm-base of C.

Remark 2.3 Assume that C # {Ox}. Then, B¢ is a base (in the sense of the Definition
2.1) for C, which is, as a subset of By, bounded. Note, however, that B¢ is not
necessarily a convex base.

In what follows, given the norm-base B¢ of acone C C X, we will use the following
two convex enlarged sets of B¢,

Sc :=conv(Bc) and Sg :=conv({Ox} U B¢).

Some important relationships between the cones conv C and cl(conv C) and the
sets Sc, S?:, cl S¢ and cl Sg are discussed in the next lemma.

Lemma 2.2 Assume that C C X is a cone with C # {0x}. Then, the following
assertions are valid:

1° conv C = Ry - S¢c = Ry - Sg and if further Ox ¢ cl Sc or C is convex, then
cl(conv C) =Ry -cl Sc =R, -cl S2.

2° If Ox ¢ cl Sc, then cl Sc (respectively, Sc) is a bounded convex base for
cl(conv C) (respectively, for conv C), and cl(conv C) \ {Ox} =P -cl Sc.

Proof The result for the case C = X is obvious. From [16, Rem. 2.5] we get conv C =
R+ - Sc, and if further Ox ¢ cl S¢, then cl(conv C) = Ry - cl S¢. Moreover, the first
part of assertion 2° is discussed in [16, Rem. 2.5], while the second part cl(conv C) \
{0x} = P - cl Sc follows from Ox ¢ cl S¢ and cl(conv C) = R - cl S¢ (provided
by 1°).

Let us prove the remaining statements in 1°. Of course, conv C = R, - S¢ C
Ry - Sg C conv C. Consider two cases:

Case 1: Let Ox ¢ cl Sc. Then, cl(conv C) = Ry -cl S¢ € Ry -cl SO <
cl(conv C), which means that cl(conv C) = R4 -cl S¢ =Ry - cl Sg.

Case 2: Let Oy € cl Sc and C be convex. By [16, Th. 3.1 (2)] we have cl Sglc =
(cl1C) N By, while Lemma 2.3 (2°) ensures cl SBIC =cl Sg. Consequently, we get
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clC =Ry Biyc SRy ((c1C)NBx) =Ry -cl Y- =Ry -cl S2 Ccl C, which
means that cl C = Ry - cl Sg. The remaining equality cl C = R4 - ¢l S¢ follows
from the fact that Ox € ¢l S¢ =cl Sg (by [16, Th. 3.1 (2)]). m]

Given a cone C C X, its dual cone is defined by
Ct:={x*eX*|VxeC: x*(x) >0
Furthermore, the subset
Cti={x* e X*|Vx € C\ {0x}: x*(x) >0}

is of interest. Obviously, both sets C* and C* are convex for any (not necessarily
convex) cone C C X, and if C # # (), then C is pointed. Moreover, one has

CT = (conv C)T = (cl(conv C))T,

(cl(conv C))* < C* = (conv CO)¥, (3)

but the inclusion (cl(conv C))* € C* can be strict (see Gopfert et al. [13, p. 55]).

Remark 2.4 Consider a non-trivial cone C € X in a real normed space X. Taking into
account (3), it is well-known (see [3, Th. 3.6], [13, Prop. 2.2.23 and 2.2.32], [16, Sec.
2.2, Th. 3.1]) that

conv C has a convex base < C* #* 0, 4)

and

conv C is well-based <= cl(conv C) is well-based
— int CT £ <= cor CT # (5)
< Ox ¢ cl Sciconv ) <= Ox ¢ cl Sc.

In particular, for every x* € C* the set B := {x € conv C | x*(x) = 1} is a convex
base for conv C. According to [5, Th. 1.1] (see also [7]), we have further

conv C is well-based <= 0Oy ¢ cl(conv((conv C) \ int By))

(i.e., Ox is a denting point for conv C) (6)
e Ix* e X*: 0< inf x*(x).
X€ESconv €

As an easy consequence of (4) and (5) we also get

conv C is well-based = cl(conv C) has a convex base

<= (cl(conv C))* # ¢
=— cl(conv C) is pointed (i.e., conv C is acute).
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In addition, if X has finite dimension and C is closed, then C* = int C* (see [16, Th.
2.1(4), Rem. 2.6]), hence all the conditions involved in (4), (5) and (6) are equivalent.

2.3 Separation of Convex Sets / Cones

Let us present some results related to separation of convex sets / cones. The first
proposition will be a key result for proving some main characterizations of symmetric
and non-symmetric separation conditions in the upcoming Sections 3 and 4.

Proposition 2.1 Consider two non-empty convex sets 2. 2% C X. Consider the
following assertions:

1° Oy ¢ cl(2? — ).

2° There is x* € X* \ {Ox+} such that sup,co1 x*(x) <inf,co2 x*(y).

3 2Ine? =90

Then, 1° <= 2° = 3°, and if further 2" and 2% are closed and one of these sets
is weakly compact, then 3° — 2°.

Proof 1° = 2°: Assume that 1° is valid. By classical linear separation of Ox from
the non-empty, closed, convex set cl(.Q2 — 21, there is x* € X* \ {Ox} such that

0=x"0x) <y:= inf  x"(2) =x™(y) —x"(x)
zecl(22-021)

for all y € £22 and x € £2'. In particular, noting that the latter formula yields
Sup,co1 X*(x) < oo, we derive

0 <y <x"(y)— sup x*(x),
xe!

hence
sup x*(x) <y + sup x*(x) <x*(y) forally e 22,
xe! xen!
Thus, sup,co1 x*(x) < ¥ + sup,epr x*(x) < infy o2 x*(y), which shows 2° is
true.
2° = 1°: Assume that 2° is valid. Then, for all y € 2%and x € ', we have

0 <y = inf x*(y) = sup x*(x) < *(y) — ¥"(x) = x*(y — 2),
yef2? ren!

hence, for all z € cl(£22 — 21),
0 <y <x").

Of course, this shows that Ox ¢ cl(£22 — £21).

Of course, 2° = 3° is valid. If £2! and §22 are closed (hence weakly closed) and
one of these sets is weakly compact, then the classical strict linear separation result
for convex sets yields 3° =—> 2°. O
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Remark 2.5 Note, for any non-empty sets 2L 2% C X, we have
Ox ¢ clicl 22 —cl R & 0y ¢ (2% - ) = dR2', 2% >0,
where d(£2', £22) is the classical distance between the sets £2' and £22, which is
defined by
A", 2% :=inf{|lx — y|| | x € 2",y € 2%}.

The following proposition recalls a known linear separation result for closed, convex
cones (see [16, Prop. 2.2] and also [23, Th. 3.22]).

Proposition 2.2 ([16, Prop. 2.2]) Suppose that C, K < X are non-trivial, closed,

convex cones and cl Sc is weakly compact with Ox ¢ cl Sc. If C N K = {Ox}, then
there is x* € X* \ {Ox+} such that

x*(k) > 0> x"(c) forallk € K andc € C\ {0x]}. @)

The classical weak linear separation for convex cones (in the sense of Eidelheit) is
formulated in the next proposition.

Proposition 2.3 Suppose that C, K C X are convex cones, andint C # (. If (int C)N
K =, then there is x™ € X* \ {Ox+} such that

x*(k) > 0> x*(c) forallk € K andc € int C.

2.4 Augmented Dual Cones and Bishop-Phelps Cones

Given acone C € X with C # {Ox} and the norm-base B¢, the so-called augmented
dual cone of C, introduced by Kasimbeyli (Gasimov) in [9, 25], is defined by

C" = {(x*,a) e CT xRy | Vx € C: x*(x) — allx| = 0}.
Moreover, we consider the following subsets of cet,

C¥ = {(x*,a) € C* xRy | Vx € C\ {Ox}: x*(x) —allx] > 0},

C = {(x*, @) € C* xRy | Vx €cly Be @ x*(x) > al.
Clearly, we have C**# C C** C C%* and

Ct = {(x*,a) e Ct xR, | C C C(x*, @)}
={(x*, @) e CT xRy |Vx € Bc: x*(x) > a},
C* ={(x*.a) € C* xRy | C\ {0x} € C™ (x*, )}

={(x*, @) e C* xRy | Vx € Bc : x*(x) > a}.
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In addition, we have

= (1 C)** = (conv C)** = (cl(conv C))“T,
(cl(conv C))”# c ¢ = (conv C)*. )

If (x*, o) € C¥* N (X* x P) and ||x*||« > a > 0, then C(x*, &) € Cpp.
In the following proposition, we will examine some properties of the augmented
dual cone C“* involving its subsets C¢**, C* and cor C¢*.

Proposition 2.4 (cf. [4, 5, 16]) For any cone C € X with C # {Ox} the following
assertions hold:

1°C"NX*xP)£P «— CH*NX*xP)#£0 < C"NX*xP)#
# <— Ox ¢ cl Sc.

2° cor C = {(x*, &) € CT x P | infyep. x*(x) > a} € C%* N (X* x P).

3° Ifcly, Bc is weakly compact, then cor C¢F = C*¥# N (X* x P), and
CW# £ = cor CT £ <= 0y ¢cl Sc.

4° If B¢ is weakly compact, then cor C*t = C%* N (X* x P).

Proof 1f {0y} # cl(conv C) = X,then Ct = {0x+}, C* = @,cor CT =int CT = ¢,
C4 = {(0x+, 0)}, cor C4t = C** = C** = Pand Ox € cl S¢, hence 1° — 4° are
valid.

Now, assume that C is non-trivial. Then, the assertion 1° follows from [16, Th. 3.1]
(see also [5, Th. 1.1], [4, Lem.3.7]), while the assertion 2° follows from [16, Th. 3.2].
Note that in assertion 2° of Proposition 2.4 we write an upper bound C“** N (X* x IP)
for cor C*7 instead of C** N (X* x P) (which was stated in [16, Th. 3.2]). This is
possible because the second condition in 2° follows directly from the first condition
(equality) in 2° and the fact that inf e g x*(x) = infrcq, B X™ (). O

Lemma 2.3 For any cone C C X the following assertions hold:

1° ClSClc—CISC
2° cl 8% o =cl S2.

Proof The case that C is closed (e.g. C = {Ox} or C = X) is obvious. Now, assume
that C is non-trivial.

1°. Let us first prove that Bg ¢ € cl Bc. Indeed, since B¢ ¢ = Bc U By ¢,
and B¢ C cl B¢, we just need to prove that Byq ¢ < cl Bce. Take xg € Bygc =
Sx Nbd C. Then, xg = lim,,_, o, Xx,, for some sequence (x,), € C \ {Ox}. Note that

limy, oo x| = ||x0|| = 1. Define u,, = ” € Sx NC = B¢ forall n € N. Then,
lim,, oo u, = IIXOII = X, and consequently xo € cl Bc¢. Therefore, B ¢ C ¢l B¢ C
cl(conv B¢) = cl Sc. By the convexity of cl S¢ we get S¢j ¢ = conv B ¢ € cl Sc.
Moreover, from S¢j ¢ € cl S¢ we also get cl Sg ¢ € cl Sc. Noting that cl S ¢ 2
cl S¢ is obvious, we conclude cl S;; ¢ =cl Sc.

2°.Taking into account that B¢) ¢ C cl B¢, we get B cU{0x} C (cl Bc)U{Ox} =
cl(Bc U {0x}) € cl(conv(Bc U {0x})) = cl SO Then, by the convexity of cl SC,
we infer SY, ¢ = conv(Be c U {0x}) C cl S0 Finally, cl S° ac = cl S follows
immediately. O
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In the next lemma we state some more properties of the closed cones C(x*, )
(with (x*, @) € X* x R) that we introduced in Section 1.

Lemma 2.4 Consider any (x*, a) € (X* \ {Ox+}) x R. Then, we have:

1° The following equalities are valid:

C(x* o) ==S(x", a) = S(=x", 0) = {x € X | p_y+o(x) <0},
Co(x* a)==8S~(x" a) =S (—x" @) ={x € X | p_y+q(x) <0},
X\Cux™ a)=C7(—x", —a) = S~(x", —a) = {x € X | p_y 4(x) > 0},
X\C7(x* @) =C(—x", —a) = S(x*, —a) = {x € X | p_y*o(x) > 0}.

2° C(x*, ) # X ifand only if & > —||x*||4.
3° Ifa € (—||x*|ls, ||x*||), then C(x*, &) is non-trivial, the sets
int C(x™, ) =C7(x", ) = {x € X | p_y»o(x) <0},
bd C(x",a) = C(x", ) \C™(x", @) = {x € X | g+ o(x) =0},
(bd C(x*, @) \ {0x} = {x € X \ {Ox} | ¢+ (x) = 0}

are non-empty, and

sup  Eq - x"(x) = sup & xT(x) =l ©)

XESbd C(x*,a) xesﬁ’d C(x*.a)

where &y = 1ifa > 0,and &, := —1ifa < 0.

Proof Suppose that x* # Ox+ (hence X # {Ox}). The proof of the equalities given
in 1° is obvious, while the equivalence given in 2° follows immediately from the
equivalence of the following statements:

e X =C(x* ).
o X =L(CHx* a)={xeX|—|x*(x)] = allx][}.

o [[x*lx = sup, oy

x [ _x
X T < —«.
(HXH)‘ -

It remains to prove 3°. The conclusion is well-known for the case « € [0, ||x*|]4)
(see also Remark 1.2). Now, assume that @ € (—||x*||4, 0). By Remark 1.2 we get
that C(—x™*, —«) is a non-trivial, closed, solid, convex cone with C~ (—x*, —a) =
int C(—x*, —a) # @ and (bd C(—x*, —«)) \ {Ox} # ¥. Hence,

bd C(x*, ) =bd{x € X | p_y* o (x) <0}
=bd{x € X | p_xx o(x) > 0}
=bd C”(—x*, —a)
= bd(int C(—x*, —a))
=bd C(—x*, —a)
={x € X | p_x*a(x) =0}
=Cx* a)\C”(x*, a),
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and so
int C(x*,a) ={x € X | p_yxo(x) <0} =C~(x*, o).

Since x* # Oy« there is x € X such that x*(x) > 0. If « < 0, then x*(x) >
0 > «af|x||, hence x € C~ (x*, @) = int C(x*, @), i.e., C(x™, a) is solid. The latter
fact, together with the assertion 2°, gives the non-triviality of C(x*, «). Of course,
(bd C(x*, @)) \ {Ox} = (bd C(—x*, —a)) \ {Ox} # 0. 1 ,

It remains to prove (9). Take any x € Sgd C*.a) ie., X =) ;_;Ax" for some
xl o xl e (Bbd c(x*,0)) U{0x} and Ay, ..., Ay > 0 with 25:1 Xi = 1. Consider
two cases:

Case 1: If a € [0, [|x*|]5), then x*() = Y/, aix*(x') < Y, hia = a,
taking into account that x*(0x) = 0 and x*(x') = « if x' € (Bpq ci*.a)) \ {Ox}.
Consequently, for X € Bpg c(x*,a) (# ) we have

a=x"@x) < sup x*(x)< sup xF(x) <a.

XESpd C(x*,a) xeSSd Cot.a)

Case 2: If a € (—||x*||s,0), then x*(¥) = I, Aix*(x) > Y0 Lo = a.
Consequently, for X € Bpg c(x*,a) (7# ) we have

o =x*(X) > inf  x*(x) > inf  x*(x) > oa.
XESpd C(x*.a) XESpy cixt oy
We conclude the validity of (9). O

We now establish a technical result, which will be needed to prove Proposition 3.2.

Lemma 2.5 Consider a cone C < X and take some x* € X* and a €
(=1 x*l%, 1x*Nl+). Then, the following assertions are valid.:

1° Ifa < infyegs,, - X*(x), then exactly one of the following inclusions holds: int C C
C(x*,a)or X \intC C C(x*, a).

2° If supyegy, o X (x) < «, then exactly one of the following inclusions holds:
Cx*,a) CX\intC or C(x*,a) \ {Ox} CintC.

Proof 1°. In view of Lemma 2.4 (2°), under our assumption @ € (—||x*||4, [|x*|l+),
we have C(x*, o) # X, so that both inclusions cannot be valid at the same time.
It is clear that exactly one of the following conditions holds: int C € C(x*, @) or
int C Q C(x*, ). The case int C = ¢ is clear. Suppose intC # . Of course,
int C € C(x*, @) can happen and we are done. Assume that int C Q C(x*,a), and
denote £2 := X \ C(x*, @). Note that 2 = C~ (—x*, —a) = int C(—x*, —a) by
Lemma 2.4 (3°). Fix some xo € (int C) N £2. We will prove that £2 C int C, which is
equivalent to X \ int C € C(x*, ). Let us pick an arbitrary y € £2. By the definition
of £2 and the inequality o < infyeg, .~ x*(x) we get alx|| < x*(x) forx € bd C,
and x*(x) < al|x|| for x € £2, which shows that £2 N'bd C = @J. Consider two cases:

Case 1: Assume that @ € (—|x*||4, 0]. In this case, 2 = C™(—x*, —a) is convex
assuring that [xg, y] € £2, hence [xp, y] Nbd C € £2 Nbd C = @. Then, Lemma 2.1
appliedto A = C and B = [xp, y] ensures that y € int C.
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Case 2: Assume that @ € (0, ||x*||4). Since in this case, ¥ # —C~(x*, @) =
int S(x*, o), we can consider z € (xo +int S(x*, «)) N (y +int S(x*, @)) (otherwise,
assuming that the latter set is empty, one gets a contradiction by using a classical
linear separation argument for convex sets, taking into account that S(x*, «) is a solid,
convex cone). Now, we claim that [xg, z] C £2. Indeed, take any x € [x¢, z] and write
x = x0 + A(z — x9) with A € [0, 1]. Then,

x*(x) — allx|l = x*(xo + A(z — x0)) — a|lxo + A(z — x0) |
< x*(x0) + x*(AM(z — x0)) — a(llxoll — Allz — x0l))
= x"(x0) — allxoll + A(x*(z — x0) + @llz — xol)
<0,

where the latter strict inequality is ensured by xo € §2 and z — xp € int S(x*, @).
This shows that x € C~ (—x*, —a) = £2. As a consequence, we get [xg, z] Nbd C C
£2NbdC = 0, and by Lemma 2.1 applied to A = C and B = [xg, z] we conclude
z € int C. We also have [z, y] C £2. Indeed, for x = y + A(z — y) with & € [0, 1],
z € (intC) N 2, y € £2, one can analogously prove that x*(x) — «||x|| < 0, hence
x € §2. Finally, Lemma 2.1 applied to A = C and B = [z, y] gives y € int C.

2°. Since sup, g, - X (x) < o is equivalent t0 —a < infyeg, - (—x™)(x), by
1° we get intC € C(—x*, —a) (or equivalently, int C C intC(—x*, —a) =
C”(—x*, —a) = X\C(x*, o)) or X\int C C C(—x™*, —«). Equivalently, we also get
C(x*, o) C X\intCorintC(x*, ) = C~(x*, ) = X\ C(—x*, —) C int C. From
the assumptions in 2° we infer (bd C (x*, «)) N (bd C) = {Ox}, hence int C (x*, o) C
int C if and only if C(x*, @) \ {Ox} € int C. O

Remark 2.6 In the previous Lemma 2.5, under the assumptions in 1° we have (bd C) \
{0x} € C~ (x*, @) € C(x*, ), while under the assumptions in 2° we have (bd C) \
{0x} € C7(—x*, —a) = X \ C(x*, @). Thus, the assertions in Lemma 2.5 can be
stated as:

1° Ifa < infyegs,, o x™(x), then exactly one of the following inclusions holds: cl C <
C(x*,a)or X\ C(x*, a) CintC.

2° Ifsup, . S ¢ x*(x) < a,then exactly one of the following inclusions holds: (cl C)\
{Ox} S X\ C(x*, a)or C(x*, ) \ {Ox} CintC.

2.5 Basics in Non-Symmetrical Cone Separation Based on Bishop-Phelps
Separating Cones

Consider a non-trivial cone C € X with the norm-base B¢, and a non-trivial cone
K C X with the norm-base Bg.

Remark 2.7 For any (x*,a) € C* N (X* x P), it is easy to check that the non-
symmetric strict separation condition

C(x*, ) e N(C, K)
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is equivalent to any of the following conditions:

K\{0x} S X\C(x" a) and C\{0x} Cint C(x*, a); (10)
KNCGx* a)={0x} and C\{0x} Cint C(x*, a); (11)
(=x") (k) +allk]] > 0 > (—=x™)(c) +allc|| fork € K \ {Ox},c € C\{0x}; (12)
X*K) + allk]] > 0> x*(c) + alle|| fork € —K \ {Ox},c € —=C \ {0x}.  (13)

Note that conditions (12) and (13) correspond to analytical formulations, while (10)
and (11) can be viewed as geometrical formulations.

In the next propositions, we recall known nonlinear cone separation results for
(not necessarily convex) cones involving Bishop-Phelps separating cones / separating
(norm-linear) functions.

Proposition 2.5 ([16, Th. 5.2]) Assume that cl Sc is weakly compact (e.g. if X is also
reflexive). Then, the following conditions are equivalent:

1° (el $%) N (el S¢) = 0.
2° There exists (x*, a) € C* N (X* x P) such that (13) is valid.
3° There exists (x*, &) € C“%* such that (13) is valid.

Proposition 2.6 ([16, Lem. 5.2]) The following assertions are equivalent:

1° There exists (x*, o) € cor C*% such that (13) is valid.

2° There exists (x*, a) € cor C4T such that (13) with cl(conv C) in the role of C and
cl K in the role of K is valid.

3° There exist § > §1 > 0 and x* € X* such that, for any o € (81, 82), we have
(x*, @) € cor C*", and (13) with cl(conv C) in the role of C and cl K in the role
of K is valid.

4° There exist 8 > 8; > 0 and x* € X™* such that, for any a € (81, 82), we have
(x*, @) € C¥, and (13) with cl(conv C) in the role of C and cl K in the role of
K is valid.

Proposition 2.7 ([16, Cor. 5.1]) Assume that cl Sciconv C) s weakly compact. Then,
the following assertions are equivalent:

1° (cl S%) N (cl Sc) = 0.

2° (cl 85 ) N (el Seieonve)) = 9.

3° There exists (x*, ) € C%* N (X* x P) such that (13) is valid.

4° There exists (x*, a) € C%* N (X* x IP) such that (13) with cl(conv C) in the role

of C and cl K in the role of K is valid.

Proposition 2.8 ([16, Th. 5.3]) Assume that K is closed and convex, and that cl S¢
is weakly compact. Then, the following conditions are equivalent:

1° (el S9N (el S¢) = 0.

2° K Ncl(convC) = {0x} and Ox ¢ cl Sc.

If the set cl Sciconv )y is weakly compact, then any of the assertions 1° and 2° is
equivalent to
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3° 0x ¢ cl Sc and there exists x* € X™ \ {Ox+} such that (7) with cl(conv C) in the
role of C is valid.

Proposition 2.9 ([6, Th. 3.1]) The following assertions are equivalent:

1° Ox ¢ cl(Sc — SPy x)-

2° There exist 3 > 81 > 0 and x* € X* such that, for any a € (81, 82), we have
(x*, @) € C** and (13) with cl(conv C) in the role of C and bd K in the role of
K isvalid.

3 On Symmetric and Non-Symmetric Separation Conditions Involving
Cones

Given two non-trivial cones C € X and K C X (with the norm-bases B¢ and Bg)
in the real normed space (X, || - [|), we are going to study relationships between
symmetrical and non-symmetrical separation conditions that involve the sets cl Sg,
cl S%, cl Sc and cl Sk, respectively.

3.1 Non-Symmetric Separation

First, we present our general result involving our main non-symmetric separation
conditions.

Proposition 3.1 Consider the following assertions:

1° Ox ¢ cl(Sc — S%).

2° There exists x* € X* \ {Ox+} such that sup, 50 x*(k) < infeeqr s x*(0).
3° (el S%) N (cl S¢) = 0.

4° (cl K)N(cl S¢) = 4.

5° (cl K)Ncl(conv C) = {0x} and Ox ¢ cl Sc.

Then, 1° = 2° = 3° = 4° <= 5°. [fcl S(,)( or cl Sc is weakly compact (e.g.
if X is also reflexive), then 3° = 1°. Moreover, if K is convex, then 5° —> 3°.

Proof The equivalence 1° <= 2°, the implication 1° = 3°, and, under the weak
compactness assumption, the implication 3° = 1° follow from Proposition 2.1. Note
that Lemma 2.3 shows that the assertion 3° is nothing else than (cl Sgl Nl S c) =
. Then, the implications 3° = 4° <= 5° and, under the convexity of K, the
implication 5° = 3° follow from [16, Sec. 4]. O

The next result shows how the non-symmetric separation condition given in Propo-
sition 3.1 (1°) involving the non-trivial cones C and K is related to corresponding
separation conditions involving the boundaries / closures of C and K.

Proposition 3.2 The following assertions are equivalent:

1° 0x ¢ cl(Sc — SY).
2° Ox ¢ cl(Sei ¢ — S x)-
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3° Ox ¢ cl(Sba ¢ — SOy ) and K N C = {Ox]}.
4° 0y ¢ cl(Sha c — S x) and K N C = {Ox}.
5° Ox ¢ cl(Sa ¢ — SO ) and K N C = {0x).

Proof Let us first prove 1° <= 2°. The implication 2° = 1° is obvious. By Remark
2.5, 0x ¢ cl(Sc — S%) <= 0x ¢ cl(cl Sc — cl 5%), and from Lemma 2.3 we
have S¢ ¢ C cl S¢ and Sg x Scl S?(, hence Ox ¢ cl(cl S¢ — cl S,0<) = Ox ¢
cl(Ser ¢ — SY &) This shows that 1° = 2°.

We are going to prove 2° = 3°. Suppose that 2° is valid. Since Spq ¢ € Sc1 ¢
and Sy ¢ S SY k. we have cl(Soa ¢ — Spy x) S cl(Seic — S g). hence Ox ¢
cl(Se ¢ — Sgl k) = Ox ¢ cl(Svac — Sgd x)- By Proposition 2.1 (1° = 3°), we
infer that (cl S¢; ¢) N (cl S?l k) = ¥, which implies (cl K) N (cl(conv C)) = {Ox}
(see [16, Sec. 4]). In particular, this shows that K N C = {Ox}. We conclude that 3°
is valid.

Let us prove that 3° = 1°. Suppose that 3° is valid, i.e., Ox ¢ cl(Spac — SgdK)
and K N C = {0Ox}. By Proposition 2.1 combined with Ox € Sl())dK’ there
exists x* € X* such that 0 < supxeSSde*(x) < infyeg40 X*(y). Furthermore,

* k —— *
we have SUPyes x X (X)) =< SUP, g0 X (x). Denote Lx = supycg, , * (%),
L(}( = supxesgdkx*(x), Ic = infyes4 x*(y), and fix aj, p € R such that
Lg < L(}{ < o] < ap < Ic. Note that

0<ap <oy <lIc=< sup x*(y) < sup [x*(¥)| = [|]x¥|]«.
Y€Shdc yeBx

On the one hand, by Lemma 2.5 (1°) and Remark 2.6, we have either C € C(x*, )
or X\ C(x*, ap) C int C. However, the latter inclusion is false; otherwise (taking into
account that Lx < o and Lemma 2.4 (1°)) we get

(bd K)\ {0x} € C7(—x™*, —ap) = X \ C(x*, ap) C int C.

Thus, for every x € bd K with x # Oy, there exists y € K Nint C, which contradicts
the assumption that K N C = {Ox}.

On the other hand, by Lemma 2.5 (2°) and Remark 2.6, we have either K \ {Ox} <
X\ C(x* ay) or C(x*, 1) \ {Ox} C int K. Also here the latter inclusion is false;
otherwise (taking into account that &y < I¢) we have

(bdC)\ {0x} € C7(x", 1) € C(x™, 1) \ {Ox} S int K.

Thus, for every x € bd C with x # Oy, there exists y € (int K) N C, which contradicts
the assumption that K N C = {Ox}.

Therefore, we conclude that C € C(x*,ap) and K \ {Ox} € X \ C(x*, a1).
Consequently, Bc € {x € X | x*(x) > ap}and Bx C {x € X | x*(x) < a1}, hence
Sc—Sg C{xeX|x*(x) >ax}—{x € X | x*(x) < ay}.Now,sinceOx € {x € X |
x*(x) < ay}, it follows that S¢ — SIO( ChxeX|x* ) >wm}—{xeX|x*x) <
a1}. As o1 and o were chosen freely under the condition L(I)< <o) <ap < Ic,we
can strengthen this to S¢ — % € {x € X | x*(x) > Ic} — {x € X | x*(x) < LY}
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Finally, since Oy ¢ cl({x € X | x*(x) > Ic} —{x € X | x*(x) < L(}(}) taking into
account that /o > L(I){, we conclude that Oy ¢ cl(S¢c — S?(), i.e., 1° is valid.

It remains to prove the equivalence of the assertions 3°, 4° and 5°. Under the
assumption K N C = {Ox}, we have

Ox ¢ cl(Sec — S k) = Ox & cl(Shac — S k)
— Ox ¢ cl(Sba ¢ — SO )
= Ox ¢ cl(Sea ¢ — S9 &)

which shows that 3° <= 4°, and

Ox ¢ cl(Sac — Sq x) = Ox & cl(Sac — Sty &)
— Ox ¢ cl(Sha ¢ — Sty &)
— Ox ¢ cl(Sa ¢ — S %)

which shows that 3° <= 5°. O

Remark 3.1 The condition “K N C = {0x}” in Proposition 3.2 can be replaced by
the condition “(cl K) N (cl(conv C)) = {Ox}” or by the condition “(cl K) N (clC) =
{Ox}”. The proofs are analogous. Note that Propositions 3.1 and 3.2 provide interesting
insights into the separation conditions discussed in the non-symmetric separation
approach in the works [4, 6, 15, 16] and [25].

3.2 Symmetric Strict Separation

The results in the following proposition can be used to connect the symmetric cone
separation approach with the non-symmetric cone separation approach.

Proposition 3.3 The following assertions are equivalent:

1° OX ¢ CI(SC — SK).
2° There exists x* € X* \ {Ox=} such that sup; . Sk x*(k) < infeecr s x™(0).
3° There exists x* € X* \ {Ox+} such that

SUPgecl 50 x*(k) < infeecl 5o X*(€) OF SUpgcq 5, X ¥ (k) <inf g 0. x*(c).
4° 0y ¢ cl(Sc — S%) or Ox ¢ cl(S2 — Sk).

Proof The equivalence of 1° and 2°, respectively, of 3° and 4° follows from
Proposition 2.1. Taking into account that sup;c. s, X*(k) < sup; 50 x*(k) and
inf 50 x*(c) < infeeq s x*(c), the implication 3° = 2° is clear. Let us prove
the reverse implication. Assume that 2° is valid, i.e., there is x* € X™ \ {Ox+} such
that sup; | Sk x*(k) < inf.eq1 s x*(c). Consider cases:

Case 1: Assume that 0 € (Supye s, X*(k), infeect s- X*(c)). Then, we have
SUPgcct 5 x*(k) = 0 < infeecl 5o x*(c) and supy ¢ 5, X" (k) < 0 =inf 0. x*(c).
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Case 2: Assume that sup;c g, X*(k) > 0 = x*(0x) and pick some y €
(Supgecr s, X (k), infeect sc x*(c)). Then, x*(k) <y forall k € Bk U {Ox}, hence

sup x*(k) <y < irllfS x*(c).
0 CcecC
kecl Y ¢

Case 3: Assume that inf.co 5. x*(c) < 0 = x*(0x) and pick some y €
(SUPgecl sy x*(k), infcec1 5o x*(c)). Then, x*(c) > y forall ¢ € B¢ U {Ox}, hence

inf x*(c)) >y > sup x*(k).
cecl S¢ kecl Sk

Thus, 3° is true. O

The next proposition relates (under further assumptions, e.g., the weak compactness
of cl Sk orcl Sc) the separation conditions mentioned in Proposition 3.3 to some other
classical separation conditions involving cones.

Proposition 3.4 Consider the following assertions:

1° Ox ¢ cl(Sc — Sk).

2° (cl S%) N (cl S¢) = Por (cl Sk) N (cl S2) = .

3° (cl Sg) N(cl S¢) =4.

4° (clK)N(clSc) =B or(clSg)N(clC) = 0.

5° ((c1 K) Ncl(conv C) = {Ox} and Ox ¢ cl Sc) or (cl(conv K) N (c1C) = {0x}
andOX ¢ cl SK).

6° (c1K)N(clC) ={0x} and [0Ox ¢ cl Sk orOx & cl Sc].

Then, 1° = 2° = 3° = 6°, and moreover, 2° =—> 4° <= 5° — 6°.

Ifcl Sk orcl Sc is weakly compact, then 3° = 1° (i.e., 1° — 3° are equivalent).
If C is convex or K is convex, then 3° =— 4°.

If C and K are convex, then 6° =—> 5° = 2° (i.e., 2° — 6° are equivalent).

Proof 1° —> 2° follows from Propositions 3.1 and 3.3, while the implication 2° —>
3° and the implication 5° = 6° are obvious. Moreover, 2° = 4° <= 5° is an
immediate consequence of Proposition 3.1 (3° = 4° <= 5°).

3° = 6°: Assume that 3° is valid. It is clear that Ox ¢ cl Sk or Ox ¢ cl Sc. On
the other hand, by contradiction, suppose that x € (cl K)N(cl C),x # Ox. Then, there
exists (x,), € K such that lim,_ Hi—:” = ﬁ € cl(KNSx) =cl By Ccl Sg.
Analogously, we can show that %‘ € cl(CNSx) = cl Bc C cl S¢, which is
impossible by 3°. We conclude the validity of 6°.

By Proposition 2.1, if ¢l Sk or cl S¢ is weakly compact, then 3° =— 1°.

W.l.o.g. assume that C is convex.

3° = 4°: Suppose that 3° is valid. If Ox € cl Sk, then cl S(I)< = cl Sk by
[16, Th. 3.1 (2)], hence (cl K) N (cl S¢) = @ by Proposition 3.1 (3° = 4°). In
the previous result one can also change the roles of C and K. Now, assume that
Ox ¢ (cl Sk)U(cl S¢). As3° = 6° is valid, we have (cl K) N (cl C) = {Ox}. Now,
by convexity of C we have cl S¢ C clC, hence (cl S¢) N (cl K) = @ (taking into
account that Oy ¢ cl S¢). This shows that 4° is valid.
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Finally, if C and K are convex, then 5° = 2° follows from Proposition 3.1
(5° = 3°), while the implication 6° = 5° is obvious. O

Also for the symmetric case, we relate the separation condition given in Proposition
3.3 (1°)involving the non-trivial cones C and K to corresponding separation conditions
involving the boundaries / closures of C and K.

Proposition 3.5 The following assertions are equivalent:

1° Ox ¢ cl(Sc — Sk).

2° Ox ¢ cl(Se1 ¢ — Sel k).

3° 0x ¢ cl(Spac — Svba k) and K N C = {0x}.
4° Ox ¢ cl(Spa c — Se1 k) and K N C = {0x}.
5° Ox ¢ cl(Scic — Svd k) and K N C = {Ox}.

Proof Let us first prove 1° <= 2°. The implication 2° — 1° is obvious. By Remark
2.5,0x ¢ cl(S¢c — Skx) < 0x ¢ cl(cl S¢ — cl Sk), and from Lemma 2.3 we
have S¢i ¢ C cl Sc and S¢; ¢ € cl Sk, hence Ox ¢ cl(cl S¢ —cl Sg) = Ox ¢
cl(Sci ¢ — Sei k). Thus, 1° = 2° is valid.

We also get the equivalence of 2° — 5°, since Propositions 3.2 and 3.3 ensure on
the one hand that

Ox & cl(Sei ¢ — Sa k) <= [ox ¢ cl(Sac — SY x) orOx & cl(SY ¢ — Sa K>]
= KN C = {0x},

and on the other hand, under the condition K N C = {0y},

[0x ¢ clSa ¢ = 55 ) or Ox ISy ¢ = Sur &)
= [0x ¢ cllSha ¢ = S ) 0r Ox # cl(Shy ¢ — Soa )| = Ox # cl(Soa ¢ — Soa &)
= [0x # cliSha ¢ = 55 ) or Ox ¢ el(Sfy ¢ = St k)] = Ox ¢ cl(Soa ¢ — et &)
= [0x ¢ cl(Sa ¢ = Spy x) orOx ¢ cl(S ¢ = Sba &)] = Ox # el(Set ¢ = Sba K-
O

Remark 3.2 The condition “K N C = {0x}” in Proposition 3.5 can be replaced either
by the condition “(cl K) N (cl C) = {0x}” or, alternatively, by the condition “(cl K) N
(cl(conv C)) = {Ox} or (cl(conv K)) N (cl1 C) = {0x}”. The proofs are analogous.

4 On Symmetric and Non-Symmetric Cone Separation Based on
Bishop-Phelps Separating Cones

The aim of this section is to present new (non-)symmetrical strict cone separation

theorems in the real normed space (X, || - ||). Consider the cones C and K from
Section 3.
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4.1 Non-Symmetric Strict Cone Separation

Let us first discuss the non-symmetrical case. We like to find characterizations for
N(C,K | Cgp+) # ¥ for some family of cones Cgp+ < Cgp, which then also
ensure that C and K can be strictly separated by a Bishop-Phelps cone C(x*, )
(with ||x*||+ > « > 0) in a non-symmetric way, i.e., N'(C, K | Cgp) # . More
precisely, for any non-trivial cone D C X, we consider a family Cgp+ given by one of
the following families

Cpp: (D) :={C(x", &) | (x*, &) € cor DTy,
Ceps (D) := {C(x*, @) | (x*, @) € D™ N (X* x P)}.

In view of Proposition 2.4 (2°) we have CBP’{ (D) C CBP; (D) C Cgp, andifcly, Bp
is weakly compact, then CBP‘{ (D) = CBpﬂzﬂ (D). In addition, we are interested in a family
of cones given by

Cep (D) := {C(x*, @) | (x*, @) € D™}

Note that CBP; (D) - CBP;‘ (D) - CLin U CBP and CBP; (D) \ CBP; (D) - CLin-
Let us first present our general result (without involving a weak compactness
assumption), which in particular gives characterizations for N'(C, K | CBPT (©)) #0.

Theorem 4.1 The following conditions are equivalent:

1° Ox ¢ cl(Sc — S%).
2° There exists x* € X* \ {Ox+} such that, for any

a € ( sup x*(k), inf x*(c)) (S (0,+00)),
kecl 89 cecl Se

we have (x*,a) € cor C" and (13) is valid, where SUPjcer 0 x*k) <
infeecr 50 x*(c).

3° There exist 8 > 8; > 0 and x* € X* \ {Ox+} such that, for any a € (81, 8), we
have (x*, o) € cor C%V and (13) is valid.

4° There exists (x*, a) € cor C*T such that (13) is valid (i.e., N(C, K | Cep; (C)) #
9).

Moreover, the above assertions are also equivalent to the corresponding assertions

1°-4° where the cone C is replaced by cl(conv C) (respectively, cl C) while K is
replaced by cl K.

Proof By Proposition 2.1 assertion 1° is valid if and only if there is x* € X* \
{Ox+} such that sup, 50 x*(k) < infeeq 5o x*(c). Since Ox € cl SIO( we have 0 <

a < infeee) 5o x*(c) for any @ € (supycy 50 x*(k), inf el s- x*(c)), which shows
that (x*, @) € cor C*" by Proposition 2.4 (2°). Moreover, it is easy to check that
SUPg el 0 x*(k) < a < infeeq - x*(c) implies (13). This shows that 1° <= 2°.
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The implication 2° = 3° is obvious. The equivalence 3° <= 4° is provided by
Proposition 2.6. Let us show that the implication 4° = 1° is obvious. Assume that 4°
is valid, that is, there exists (x*, &) € cor C** such that (13) is valid. Consequently,
in view of Proposition 2.4 (2°), we have 0 < « < infeep- x*(c) = infeeql 5. x*(c).
The left inequality in (13) yields x*(k) < « for all k € Bx U {Ox}, hence x*(k) < «
for all k € cl SIO(, and so sup, 50 x*(k) < a. We conclude that sup, 50 x*(k) <
a < infeeq 5. x*(c), which means that 1° is valid (by Proposition 2.1).

Let us prove the remaining part of the theorem. Proposition 2.6 (1° <= 2°) yields
the equivalence of assertion 4° and assertion 4° with cl(conv C) in the role of C and
cl K in the role of K. Moreover, Proposition 3.2 (1° <= 2°) yields the equivalence
of assertion 1° and assertion 1° with ¢l C in the role of C and cl K in the role of K. It
is easy to check that the assertions 1° —4°, the assertions 1° —4° with cl(conv C) in the
role of C and cl K in the role of K, and the assertions 1° — 4° with cl C in the role of
C and cl K in the role of K all imply the conditions {Ox} € cl C C cl(conv C) # X
and {Ox} € cl K # X. Then the proven results applied for the non-trivial cones C
and K, for the non-trivial cones cl(conv C) and cl K, and for the non-trivial cones
cl C and cl K yield the result. O

A similar result (involving the separation property (13)) we also get in the case
that we change the roles of C and K. In particular, we derive a characterization for

N(K, C | Cpp: (K)) # 0.
Theorem 4.2 The following conditions are equivalent:

1° 0x ¢ cl(S2 — Sk).
2° There exists x* € X* \ {Oxx} such that, for any

a e (sup x*(c), inf x*(k)) (S (0,00)),
ceel Sg kecl Sk

we have (x*, a) € cor K" and

x*(c) + allc|]| > 0 > x*(k) + allk|| fork € —K \ {0x},c € —C \ {0x},
(14)

is valid, or equivalently,

(=x) () —allcll < 0 < (=x")(k) —allk|| fork € =K \ {0x},c € —C \ {Ox},
15)

is valid, where sup .., S0 x*(c) < infreq s x* (k).
3° There exists x* € X* \ {Ox+} such that, for any

a € ( sup x*(k), inf x¥(c)) (S (—00,0)),
kecl Sk cecl S2

we have (x*,a) € —cor K" and (13) is valid, where sup.y s Xk <
inf__ 50 x*(c).
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4° There exist 81 < 8y < 0 and x* € X* \ {Ox*} such that, for any o € (81, 83), we
have (x*,a) € —cor K" and (13) is valid.

5° There exists (x*,a) € —cor K" such that (13) is valid (i.e., N(K,C |
Cpp: (K)) # 0).

Moreover, the above assertions 1°-5° are also equivalent to the corresponding asser-
tions where the cone K is replaced by cl(conv K) (respectively, cl K) while C is
replaced by cl C.

Proof First, observe that 1° <= Oy ¢ cl(Sx — Sg). Hence, the equivalences 1° <—
2° <= 4° <= 5° follow from Theorem 4.1 (applied for K and C in the role of C
and K). Note that the following statements are equivalent:

o There exists (x*, o) € cor K%t such that (13) (with K and C in the role of C and
K) is valid.

e There exists (x*, «) € cor Kt such that (14) is valid.

e There exists (x*, @) € cor K%T such that (15) is valid.

o There exists (x*, @) € —cor K such that (13) is valid.

Let us prove the equivalence 2° <= 3°. Consider x* € X* \ {Ox+} and a € P.
Put y* := —x* (€ X*\ {0x+}) and B := —« (€ —IP). Noting that

o (x*, a) satisfies (15) <= (y*, B) satisfies (13) (with (y*, B) in the role of
(x*, o))

o (x*,a) € cor K" & (y*, ) € —cor KT,

® o € (SUp,y s2 x*(c), infrec s¢ x* (k)
& B & (=infrea 5 (=y)k), —sup g 50 (=) ()
= B € (SUPkeal 54 y*(k),inf . 2 y*(c))

we conclude that 2° <= 3°.

The remaining part of the theorem with the equivalence of the assertions 1°-5° with
the corresponding assertions where the cone K is replaced by cl(conv K) (respectively,
cl K) while C is replaced by cl C follows directly from Theorem 4.1 (applied to K
and C in the role of C and K). O

Under the weak compactness of the set cl S¢ or/and cl SIO( we can state some
further characterizations, in particular, we can characterize the condition N'(C, K |
Cpp:(C)) # W fori € {2,3}.

Theorem 4.3 Consider the following assertions:

1° Ox ¢ cl(Sc — S%).

2° (cl S%) N (cl S¢) = 0.

3° There exists (x*, ) € C* N (X* x P) such that (13) is valid (i.e., N(C, K |
Cps (C)) # 1)

4° There exists (x*, ) € C¥* such that (13) is valid (i.e., N (C, K | CBP: (©)) #0).

Then, 1° = 2° and 1° = 3° = 4°. If one of the sets cl Sc and cl S(,)< is weakly
compact, then 2° = 1°. If cl Sc is weakly compact, then 4° =—> 1°.

@ Springer



69 Page240f38 Journal of Optimization Theory and Applications (2025) 207:69

Proof 1° = 2° follows by Proposition 3.1; 1° = 3° follows by Theorem 4.1 taking
into account cor C¢* € C*"# N (X* x IP) by Proposition 2.4 (2°); 3° = 4° follows
by the fact that C**# N (X* x P) € C*®* If one of the sets cl Sc and cl S(I)< is weakly
compact, then 2° = 1° follows by Proposition 3.1. If cl S¢ is weakly compact, then
4° = 2° by Proposition 2.5, hence 4° = 1° (by the previous proven implication).

]

Theorem 4.4 Consider the following assertions:

1° 0x ¢ cl(S2 — Sk).

2° (cl $2) N (el Sk) = .

3° There exists (x*, &) € (—K™™)N(X* x —P) such that (13) is valid (i.e., N (K, C |
Cops(K)) # 9).

4° There exists (x*, o) € —K““* such that (13) is valid (i.e., N(K, C | CBP_?(K)) #
@).

Then, 1° = 2° and 1° = 3° = 4°. If one of the sets cl Sk and cl Sg is weakly
compact, then 2° = 1°. If cl Sk is weakly compact, then 4° =—> 1°.

Proof Taking into account that 1° <= 0Oy ¢ cl(Sg — Sg), the result follows imme-
diately from Theorem 4.3 (applied for K and C in the role of C and K). Note that the
following statements are equivalent:

e There exists (x*, ) € K“%¥ N (X* x P) (respectively, (x*, &) € K**#) such that
(13) (with K and C in the role of C and K) is valid.

e There exists (x*, ) € K% N (X* x P) (respectively, (x*, &) € K**#) such that
(14) is valid.

e There exists (x*, @) € (—K*#) N (X* x —P) (respectively, (x*, a) € —K*#)
such that (13) is valid.

O

Remark 4.1 Note that Theorems 4.1 and 4.3 (respectively, Theorems 4.2 and 4.4)
extend the separation results based on the non-symmetric approach derived in [6, 16]
and [25]. In particular, Theorems 4.1 and 4.2 provide refinements to the separation
results appearing in [6] by explicitly fixing the bounds on « via the supremum and
infimum, and by proving that the pair (x*, @) lies in the core of the augmented dual
cone. Combining these theorems with Proposition 3.2, we observe that, when the
cones meet only at the origin, the separation property introduced in [6] can be obtained
by considering only the boundaries of the cones (using an argument similar to that
presented in Remark 4.2 below). On the other hand, our current separation results
improve those of [25, Th. 4.3], since we obtain separation characterizations in general
normed spaces, whereas [25, Th. 4.3] restricted the analysis to reflexive spaces and, in
some cases, required finite-dimensional spaces to establish equivalences. Moreover,
[25, Th. 4.3] requires closedness assumptions, which is not the case here in our results
(similar to [6] and [16], as can be seen in the restated results in Section 2.5). In
[16], characterizations based on (cl S?() N (cl S¢) = ¥ are established (under weak
compactness assumptions on cl Sc), noton Oy ¢ cl(S?( —So).
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The following result shows that two given cones, one of which contains the other,
can be interpolated by a Bishop-Phelps cone under suitable assumptions.

Theorem 4.5 The following assertions are valid:

1° IfOx ¢ Cl(Sc—S%) (inparticular, KNC = {Ox}), then there exists Cgp € CBP’{ )
such that

KNCpp={0x} and C\{Ox}Cint Cpp and C C Cgp. (16

2° Define K := (X\K)U{0x}. IfC € K and Ox ¢ cl(S¢c — S%) (both conditions
imply KNncC= {Ox}), then there exists Cp € CBP’{ (C) such that

C\{0Ox} Cint Cgp € Cpp C K, (17)
which implies
int C Cint Cgp Cint K and C C Cgp C K. (18)

Proof 1°. By Theorem 4.1, if Ox ¢ cl(S¢c — SIO(), there exists (x*, @) € cor C%* such
that (13), or equivalently (11), is valid, i.e.,

KNCx* a)={0x} and C\ {0x} Cint C(x*, a).

Thus, for Cgp := C(x*, a) € CBP’;(C) the statement in (16) is valid.

2°. Under the given assumptions, the cone K is non-trivial. Again by Theorem 4.1,
if Ox ¢ cl(S¢c — S%), then there exists (x*, o) € cor C¢* such that (13) (with K in
the role of K), or equivalently (10), is valid, i.e.,

K\{0x} S X\ C(x* @) and C\{0x} Cint C(x*, a).
Thus, for Cgp := C(x*, @) € CBP’{(C) we have
X\K CX\Cgp and C\{0Ox} Cint Cgp,
or equivalently, (17) is valid. Noting that int C € C \ {Ox} (since C # X), the

remaining inclusions given in (18) are obvious. O

Remark 4.2 We note that, taking into account Proposition 3.2, the conclusions of
the previous theorem for the cones C and K also hold under the assumption of
the separation property of their boundaries. More specifically, in 1°, the condition
Ox ¢ cl(S¢c — S?{) can be replaced by the conditions Ox ¢ cl(Spac — Sl())d x) and
K N C = {0x}. Likewise, in 2°, the condition Ox ¢ cl(S¢c — S%) can be replaced by
Ox ¢ cl(Svac — Sl())d x)» while maintaining the inclusion C C K.

Under a convexity assumption concerning K, we get, in addition to the result in
Proposition 3.1, the following non-symmetric cone separation result (involving linear
separation).
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Proposition 4.1 Assume that K is convex. Consider the following assertions:

1° Ox ¢ cl(Sc — S%).
2° Ox ¢ cl Sc and there exists x* € X* \ {Ox+} such that

x*(k) > 0> x"(c) forallk € cl K and c € cl(conv C) \ {Ox}.
3° 0x ¢ cl Sc and there exists x* € X* \ {Ox+} such that
x*(k) > 0> x*(c) forallk € cl S,0< andc € cl Sc.

4° There exists x* € X* \ {Ox+} such that sup, _, 50 x*(k) =0 < infeeq s x*(c).
Then, 4° — 1° = 2° <= 3°, and if cl Sc is weakly compact, then 3° —> 4°.

Proof Note that 1° means exactly (in view of Proposition 3.1) that there is x* € X™ \
{Ox+} such that sup, 50 x*(k) < infeec s- x*(c). Thus, the implication 4° = 1°
is obvious.

1° = 2°: Assume that 1° is valid. Of course, Ox ¢ cl Sc. In view of Theorem
4.1 and Remark 2.7, there exists (y*, &) € cor C4T such that (c] K) N Cgp = {Ox}
and cl(conv C)\{0x} € int Cpp for Cgp := C(y*, o). By the linear weak separation
result in Proposition 2.3 (noting that (cl K) N (int Cgp) = ¥ since Ox ¢ int Cgp)
there is x* € X* \ {Ox+} such that

x*(k) >0 > x*(c) forallk € cl K and ¢ € int Cgp (2 cl(conv C) \ {0x}),

hence 2° is valid.

2° <= 3°: This equivalence follows immediately from the fact that P - cl S¢ =
cl(conv C) \ {Ox}and Ry - cl S(I)( = cl(conv K) = cl K (by Lemma 2.2).

3° = 4°: Assume that 3° holds true. Then, we easily infer sup; ., 50 yik) =0 <
y*(c) forall ¢ € cl S¢, where y* := —x* € X™*\ {Ox+}. Under the weak compactness
of cl Sc¢, we conclude 4°. O

Remark 4.3 The result in Proposition 4.1 combined with Proposition 3.1 extends the
cone separation result (for non-trivial closed convex cones) mentioned in Proposition
2.2 derived under a weak compactness assumption on cl Sc.

4.2 Symmetric Strict Cone Separation

Let us now discuss the symmetric case. Our aim is to find characterizations for
S(C,K | Cgpx) # @ for some family of cones Cgpx C Cpp, which then also
ensure that C and K can be strictly separated by a Bishop-Phelps cone C(x*, )
(with ||x*||x > a > 0) in a symmetric way, i.e, S(C, K | Cgp) # @. More precisely,
for any non-trivial cones D!, D?> C X, we consider a family Cgp+ given by one of the
following two families

Cpp: (D', D?) := Cpr(D") U Cpp: (D7)
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= [C(x*, @) | (x*, @) € (cor (D')*) U (cor (D*)*M)};
Cep;(D', D?) := Cps(D") U Cpp3(D?)
= {C(x*,a) | (x*, @) € (DH™) U (DH™) N (X* x P));

In view of Proposition 2.4 (2°) we have CBPT(DI, D?) C Csz(Dl, D?) C Cgp, and
if cl, Bp1 and cl, Bp2 are weakly compact, then Cgp: (D', D) = Cpp; (D', D?). In
addition, we need the following family of cones

CBP; (Dl’ D2) = CBP}* (Dl) U CBpgk (Dz)
= {C(_x*’ Cl) | (x*’ Ol) e ((Dl)aw#) U ((Dz)aw#)}.

Note that Cpps(D', D*) < Cgps(D', D?) < Crin U Cpp and Cpps(D', D?) \
Cepy(D', D?) € CLin.

Consider i € {1, 2, 3}. In this section, we are able to give characterizations for the
condition

S(C, K | Cppr(C. K)) = N(C, K | Cpps(C, K)) UN(K, C | Cpp: (C, K)) # 0.
Since CBP?‘ (C, K) = CBp;f (C) U CBP? (K) = CBP?‘ (K, C) we have

N(C, K | Cpp: (C, K)) = N(C, K | Cgp:(C)) UN(C, K | Cpp: (K)),
N(K, C | Cpp:(C, K)) = N(K, C | Cpp: (C) UN (K, C | Cgp: (K)).

It is easy to check that N'(C, K | Cpp: (K)) =N(,C| Cpp: (C)) = ¥, hence
N(C, K | Cpp: (C, K)) = N(C, K | Cp:(0)),

N(K, C | Cpp:(C, K)) = N(K, C | Cp:(K)),
S(C, K | Cpp:(C, K)) = N(C, K | Cpp: (C)) UN(K, C | Cpps (K)).

Let us first present our general result (without involving a weak compactness
assumption) that gives characterizations for S(C, K | CBP’;(C, K)) #40.

Theorem 4.6 The following assertions are equivalent:

1° Ox ¢ cl(Sc — Sk).
2° There exists x* € X* \ {Ox=} such that, for any

a € ( sup x*(k), inf x*(c)),
kecl Sk cecl S¢

we have (13) is valid, where supy ¢ s, X* (k) < infeeci 5o X*(c).
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3° There exists x* € X* such that (x*, o) € cor C¢" and (13) are valid for all

a € ( sup x*(k), irllfS x*(c)) (€ (0, +00)),
ecl S¢

kecl S ¢

where sup; . 59 x*(k) < infeeq 5o Xx*(c), or (x*,a) € —cor K" and (13) are
valid for all
a € ( sup x*(k), infox*(C)) (S (=00,0)),

kecl Sk cecl S¢

where supc s, X*(k) <inf 50 x*(c).

4° There exists (x*,a) € (cor C4T) U (—cor K) such that (13) is valid (i.e.,
S(C, K | Cpp:(C, K)) # D).

Moreover, the assertions 1°-4° are also equivalent to the corresponding assertions
where the cone C is replaced by cl C while K is replaced by cl K.

Proof By Proposition 2.1 assertion 1° is valid if and only if there is x* € X* \
{Ox+} such that sup; ¢ j 5, X*(k) < infcecl 5o X*(c). Moreover, it is easy to check that
SUPgeql s X (k) < @ < infeecl 5o x*(c) implies (13). This shows that 1° <= 2°. By
Proposition 3.3 (1° <= 4°) the assertion 1° is equivalent to Ox ¢ cl(S¢c — S%) or
Ox ¢ cl(Sg — Sk). Using Theorem 4.1 (1° <= 2°) and Theorem 4.2 (1° <= 3°)
the latter statement is equivalent to 3°. By Theorem 4.1 (2° <= 4°) and Theorem
4.2 (3° <= 5°) we obtain 3° <= 4°.

It remains to show that 1°—4° are also equivalent to the corresponding assertions
where the cone C is replaced by cl C while K is replaced by cl K. It is easy to check
that each of these 8 assertions implies the conditions {Ox} C cl C # X and {Ox} C
cl K # X.Now, taking into account the equivalence of 1° with Ox ¢ cl(S¢i ¢ — Sc1 k)
in view of Proposition 3.5 (1° <= 2°), we get the desired equivalences (using the
proven results for the non-trivial cones C and K, as well as for the non-trivial cones
cl C and cl K). O

Under the weak compactness of cl Sc orcl Sk, we can state some further character-
izations; in particular, we can characterize the condition S(C, K | CBP?(C ,K)) #0
fori € {2, 3}.

Theorem 4.7 Consider the following assertions:

1° Ox ¢ cl(Sc — Sk).

2° (cl Sk) N (cl S¢) = ¥

3° There exists (x*, a) € (CO¥* U —K¥) N (X* x (R\ {0})) such that (13) is valid
(ie. S(C.K | Cpps(C. K)) # ).

4° There exists (x*, &) € (C* U —K“*) such that (13) is valid (i.e., S(C, K |
Cp: (C, K)) # 0).

Then, 1° = 2° and 1° = 3° = 4°. If one of the sets cl Sc and cl Sk is weakly
compact, then2° = 1°. Ifbothcl Sc andcl Sk are weakly compact, then 4° =— 1°.
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Proof By Proposition 3.4, we have 1° = 2°, while by Proposition 3.3 we have
1° &= [0x ¢ cl(Sc — S%) or Ox ¢ cI(S2 — Sk)1. Applying Theorems 4.3 and 4.4
we obtain 1° = 3° = 4°. The remaining implications (under weak compactness
assumptions) follow from Proposition 3.4 and Theorems 4.3 and 4.4. O

A symmetric counterpart to the interpolation result in Theorem 4.5 (for the non-
symmetric approach) is given in the next theorem.

Theorem 4.8 If Ox ¢ cl(Sc — Sk) (in particular, K N C = {0x}), then there exists
Cgp € CBP’; (C) such that

KNCgp ={0x} and C\{0x}Cint Cgp and C < Cgp, (19)
or there exists Cgp € CBPT (K) such that
CNCpp ={0x} and K\ {Ox} Cint Cgp and K C Cgp. (20)

Proof By Proposition 3.3 the condition Oy ¢ cl(S¢c — Sk) is equivalent to Oy ¢
cl(S¢c — S?() or Oy ¢ cl(Sg — Sk) (where the latter condition is equivalent to Ox ¢
cl(Sx — Sg)). Applying Theorem 4.5 twice there exists Cgp € CBP’{ (C) with (19) or
there exists Cp € CBPT(K ) with (20). O

Remark 4.4 We note that, taking into account Proposition 3.5, the conclusions of the
previous theorem for the cones C and K also hold under the assumption of the separa-
tion property of their boundaries. More specifically, the condition Ox ¢ cl(S¢c — Sk)
can be replaced by the conditions Ox ¢ cl(Spac — Svax) and K N C = {Ox}.

Under convexity assumptions concerning C and K, we get the following symmetric
cone separation result.

Proposition 4.2 Assume that C and K are convex. Consider the following assertions:

1° Ox ¢ cl(S¢c — Sk) U (cl Sk) U (cl S¢).

2° Ox ¢ cl(Sc — S%) Ucl(SE — Sk).

3° There exists x* € X* \ {Ox+} such that sup, 50 x*(k) = 0 < infeeq 5. x*(c)
and supycq s, X*(k) <0 =inf__ 50 x*(c).

4° There exists x* € X* \ {Ox+} such that supyc) 5, X* (k) <0 < infeecl 50 X*(0).

5° 0x ¢ (cl Sg) U (cl S¢) and there exists x* € X* \ {Ox+} such that

x*(k) > 0> x*(c) forallk € (cl K)\{Ox}andc € (cl C)\ {0x}.

6° (cl $%) N (cl S¢) =¥ and (cl Sk) N (cl S2) = 9.
7° (cl Sg) N (cl S¢) =P and Ox ¢ (cl Sk) U (cl Se).
82 (cl K) N (cl S¢) = (cl C) N (cl Sk) = 7.

9° (cl K) N (cl C) = {Ox} and Ox ¢ (cl Sk) U (cl Sc).

Then, 4° <= 3° = 2° = 1° = 7° <= 6° <= 8° <= 9°, as well as
4° = 5° = 9°. Moreover, if both of the sets cl Sc and cl Sk are weakly compact,
then 6° = 2° = 4° (i.e., assertions 1° — 9° are equivalent).
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Proof The implication 2° = 1° is obvious. Moreover, Proposition 3.4 shows 1° =—
7° while Proposition 4.1 provides 3° = 2°. Taking into account that P - cl S¢ =
cl(conv C)\{Ox} = (cl C)\{Ox}andP-cl Sk = cl(conv K)\{0x} = (cl K)\{0x}
(by Lemma 2.2), we easily infer 4° = 5° (where the strict inequalities in 4° ensure
Ox ¢ (cl Sg) U (cl S¢)). The implication 5° = 9° is obvious. The equivalence
of 3° and 4° is easy to check (note that supy.j g, X*(k) < sup; .y 50 x*(k) and
inf__ 50 x*(c) < infeeq s x*(c)). From Proposition 3.1 we get 6° <= 8° <= 9°.

Let us show the equivalence 7° <= 8°. Of course, since C and K are convex cones,
we have (cl Sx) U {0x} C cl K and (cl S¢) U {0Ox} € cl C, hence 8° = 7°. The
proof of the implication 7° = 8° uses the same arguments (especially the convexity
of the cones) as the proof of Proposition 3.4 (3° = 4°).

For the last part of the proof, assume weak compactness of the sets cl S¢ and
cl Sk. The implication 6° = 2° is a consequence of Proposition 3.1. It remains to
prove the implication 2° = 4°. Suppose that 2° is valid. By Proposition 4.1 there
exist x*, y* € X* \ {Ox«} such that sup, 50 x*(k) = 0 < infeeq 50 x*(c) and
SUPgect 5 ¥ (k) <0 =inf 0. ¥*(c). Of course, then we have

sup (x* 4+ y")(k) = sup x*(k)+ sup y (k) <0

kecl Sk kecl 59{ kecl Sk
and
0 < inf x*(c)+ inf y*(c) < inf (x* 4+ y*)(c).
cecl Sc cecl Sg cecl S¢
Thus, 4° is true. O

Remark 4.5 The result in Proposition 4.2 extends the cone separation result (for non-
trivial closed convex cones) mentioned in Proposition 2.2.

Moreover, in the convex case, we are able to give characterizations for
N(C, K | Cpp:(C))) # ¥ # N(K, C | Cpp:(K))) (i €({1,2,3}),
which also ensure
S(C, K | Cpp:(C, K))) = N(C, K | Cp: (C))) UN(K, C | Cpp:(K))) # 9.

Corollary 4.1 Assume that C and K are closed and convex. Consider the following
assertions:

1° Ox ¢ cl(S¢c — Sk) U (cl Sg) U (cl S¢).

2° There exists (x*, o) € cor C9 such that (13) is valid (i.e., N'(C, K | CBPT @) #
@), and there exists (x*, a) € —cor KT such that (13) is valid (i.e., N(K, C |
Cp: (K)) # 0).

3° There exists (x*, ) € C* N (X* x P) such that (13) is valid (i.e., N(C, K |
CBP; (C)) # 0), and there exists (x*, o) € —K*W* N (X* x —P) such that (13) is
valid (i.e., N (K, C | CBP;(K)) # ).
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A

_

. 7
,0)€N(C,K | Cap)
s

0

{z eR?||lz]l2 =1} {zeR?||lzll2 =1}

{z €R?|z*(z) = a}

Fig.1 Non-symmetric cone separation of two non-trivial, closed, pointed, solid cones C and K that satisfy
CNK ={0x},cl S(I)< = S(I)< and Oy ¢ clSc = Sc in the real normed space (IRZ, [ - 112): (left image)
C is convex, K is nonconvex, (cl S%) N(cl S¢) = ¥ (<= (cl Sl(a)d N (l Spa ) = ), N(C,K |
Cgp) # ¥ = N(K,C | Cgp); (right image) C is nonconvex, K is convex, (cl S%) Nl Sc) #0
(= (el 80y )N (el Soa ) # D). N(C. K | Cgp) =¥ # N(K. C | Cgp)

4° There exists (x*, ) € C* such that (13) is valid (i.e., N(C, K | CBP; €)) #
@), and there exists (x*, o) € —K** such that (13) is valid (i.e., N(K,C |
Crp: (K)) # 9).

Then, 1° <= 2° = 3° = 4°, and if the sets cl Sc and cl Sk are weakly compact,
then 4° — 1°.

Proof By Proposition4.2, assertion 1° is equivalentto Oy ¢ cl(S¢ —S%)Ucl(Sg —Sk).
Then, the result follows from Theorem 4.1 (1° <= 4°), Theorem 4.2 (1° <= 5°)
and Theorems 4.3 and 4.4. O

Let us conclude this section with an example to show the similarities / differences
of the non-symmetric and symmetric cone separation approaches.

Example 4.1 Figure 1 (respectively, Figure 2) visualizes the non-symmetric (respec-
tively, symmetric) cone separation approach for an example in the real normed space
(R?, || - ||2), where || - ||> denotes the Euclidean norm.

5 Existence of (Bounded) Convex Bases for Convex Cones

In this section, we present some existence results for (bounded) bases of convex cones
in the real normed space (X, || - ||). Assertions concerning the existence of a bounded
base of convex cones play an important role in order-theoretical investigations, in
functional analysis and optimization. Consider two non-trivial cones C, D € X such
that cl(conv C) = cl(conv D).
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Fig. 2 Symmetric cone separation of two non-trivial, closed, pointed, solid cones C and K that satisfy
CNK ={0x},0x ¢ clSc = ScandOx ¢ cl Sk = Sk inthereal normed space (RZ, [1-]]2): (leftimage) C
is convex, K isnonconvex, (cl Sc)N(cl Sx) = B (< (cl Spq c)N(cl Spg k) = ¥),S(C, K | Cp) # ¥;
(right image) C is nonconvex, K is convex, (cl S¢) N (cl Sx) = ¥ (<= (cl Spa c) N (cl Spa k) = 9),
S(C,K | Cgp) #9

Remark 5.1 For any D € {C,cl C,conv C,cl(conv C)}, we have cl(conv C) =
cl(conv D), andif C is convex and acute, then the latter equality is valid for D = bd C
(by Kasimbeyli [25, Lem. 3.10]).

In the following theorem, we characterize the well-basedness of a non-trivial convex
cone C in terms of existence results of a non-trivial cone K € X satisfying separation
conditions involving the convex sets Sp and Spq g (respectively, Sgd g or S%).

Theorem 5.1 Let C and D be two non-trivial cones in X such that cl(conv C) =
cl(conv D). Then the following assertions are equivalent:

1° conv C (equivalently, cl(conv C)) is well-based.
2° There exists a functional x* € X* such that

0 < inf x™(x). 21

xeSp

3° There exists a non-trivial cone K C X such that C C K and a functional x* € X*
satisfying

0< sup x*(k) < inf x*(x).
k€Spa k xeSp

4° There exists a non-trivial cone K C X suchthat C C K and a functional x* € X*
satisfying

0< sup x*"(k) < x1€nsf x*(x). (22)
D

k€Shd k
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5° There exists a non-trivial cone K € X with C C K such that

Ox ¢ cl(Sp — S x)- (23)
6° There exists a non-trivial cone K' C X such that

Ox ¢ cl(Sp — S%). (24)

Moreover, the value supycg, , . ** (k) given in assertions 3° and 4° can be replaced by
the value sup,, S0, « x*(k), while the non-trivial cone K given in assertions 3° — 5°

can be assumed to be solid, pointed, closed and convex. If conv C = conv D, then the
condition C C K in assertions 4° and 5° can be replaced by the condition C\ {Ox} C
int K (i.e., K is a dilating cone for C (and for conv C) if K is convex).

Proof First, let us show the equivalence of the assertions 1° — 4°.
1° <= 2°: Inview of (5) and C™ = (c1C)* = (conv C)* = (cl(conv C))™, for
any non-trivial cone D € X with cl(conv C) = cl(conv D), we have

Ix* € X*: (21)isvalid < Oy ¢ cl Sp (by Proposition 2.1)
int DT £ ¢

int (cl(conv D))" # ¢

int (cl(conv C))T # ¢

int Ct # ¢

conv C is well-based

[

cl(conv C) is well-based.

This shows that 1° < 2°.

2° = 4°: Assume that (21) is valid for some x* € X*. Define B := infcg5, x*(x)
and K := C(x*, ) for some o € (0, 8). In view of Lemma 2.4 (3°) we have
® = SUPycs, X (X) (= SUP, g0 x*(x)). Note that the Bishop-Phelps cone
K is a non-trivial (solid, pointed, closed, convex) cone taking into account that
[Ix*|l« = B > a > 0. We conclude that (22) is valid. It remains to prove that
C C K.Since B > a > 0 we have x*(x) > a > 0 for all x € Bp, hence
(x*, o) € D € D*t By ourassumptioncl(conv C) = cl(conv D) we get (x*, o) €
D%t = (cl(conv D))t = (cl(conv C))*T = C*", which means that C € K. Note
that, if conv C = conv D, then (x*, @) € D% = (conv D)* = (conv C)¥ = C#*,
hence C \ {Ox} € C~ (x*, @) = int K. This shows that 4° is true.

4° = 3° = 2°: Both implications are obvious.

From the above proof of the equivalence of 1° — 4° it can be seen that in
the statements 3° and 4° the value sup;cg, X" (k) can be replaced by the value
SUPkes?, o x*(k) (having in mind Lemma 2.4 (3°)), while the non-trivial cone K can
be assumed to be solid, pointed, closed and convex.

Now, let us show the equivalence of the assertions 2° (equivalently, 4°), 5° and 6°.
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4° = (5° A 6°): Assume that 4° with Spq x replaced by Sgd x in (22) is valid.
As observed above, we can suppose that the non-trivial cone K is (solid, pointed)
closed and convex. By Proposition 3.1 (applied for D and bd K in the role C and
K) we immediately get (23), hence 5° is valid. Define the non-trivial cone K’ :=
(X\K)U{Ox}.Then,bd K = bd K’,andsince K 2 cl(conv C) = cl(conv D) D D,
we have DN K’ = {0x}. The latter condition combined with (23) is equivalent to (24)
in view of Proposition 3.2 (applied for D and K’ in the role C and K). This proves
that 6° is valid.

(5° v 6°) = 2°: Since Ox € 5%, N S, &, we have that Ox ¢ cl(Sp — S x)
(respectively, Ox ¢ cl(Sp — SIO{,)) implies Ox ¢ cl(Sp — {Ox}) = cl Sp, which is
equivalent to 2°. O

Remark 5.2 Note that the results in Sections 3 and 4 provide some more equivalent
statements for 6° in Theorem 5.1. Indeed, by Theorem 4.1 we have

(24) is valid <= N(D, K’ | Cpp: (D)) # Y,
and by Theorem 4.3, if cl Sp is weakly compact, then

(24)is valid <= N(D., K’ | Cgps(D)) # ¥
& N(D.K'|Cppy(D)) #

& (cl $%) N (el Sp) = 0.

The following result in Corollary 5.1 highlights the differences and similarities
between a convex cone conv C having a (bounded) convex base and a convex closed
cone cl(conv C) having a (bounded) convex base. This is achieved by giving equivalent
conditions based on inclusions between the (not necessarily convex) norm-bases B¢
and B ¢ of the (not necessarily convex) cones C and cl C, and certain supporting

half-spaces.

Corollary 5.1 The following assertions hold:

1° conv C has a convex base if and only if there exists x* € X* such that
Bc C{xe X |x*(x) >0l

2° If conv(cl C) = cl(conv C) (e.g., if C is convex), thencl(conv C) has a convex
base if and only if there exists x* € X* such that

Bic C{xeX|x"(x) >0}
3° conv C is well-based if and only if there exist x* € X* and a > 0 such that

Bc C{xeX|x*(x) > a}.
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4° cl(conv C) is well-based if and only if there exist x* € X* and « > 0 such that
Bac ClxeX|x"(x)>a}
Proof In view of (3) and (4), we have

conv C has a convex base <= (conv C)* #0
— C* £y
& Ix* e X*: x*(x) > O0forall x € B¢

and

cl(conv C) has a convex base <= (cl(conv C))# £
< (conv(cl C))* £
= ) £p
& Ix* e X*: x*(x) >0forallx € By c.

Moreover, in view of (5), (8) and Proposition 2.4 (1°), it follows that

conv C is well-based <= CT N (X* xP) # ¢
= (", a) e X* xP: x*(x) >aforall x € B¢

and

cl(conv C) is well-based <= C*T N (X* x P) #0
= A OTNX*xP)#£0
= I(x",a) e X* xP: x*(x) >aforallx € By c.

O

Remark 5.3 The existence results for a (bounded) convex base of convex cones in real
normed spaces which we have derived in this section employing our (symmetric and
non-symmetric) cone separation results are useful for various applications. We will
briefly mention some important applications of our results in the field of optimization.
Especially, the existence of a bounded base is important for showing existence and
density results in optimization and functional analysis. In the following, we list some
results from the literature where cones with a bounded base play a role.

e In the minimal point theorem by Phelps, the involved cone has a bounded base
(compare [13, Proposition 3.11.2] and the corresponding discussion there).

e In the discussion of sufficient conditions for the existence of minimal points of
subsets of product spaces, the boundedness of the base of a convex cone is important
(see [13, Section 3.11.1]).
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e Postolica has shown in [32, Corollary 3.2.1] that a bounded and closed subset of a
Hausdorff locally convex space has the domination property under the assumption
that the involved cone has a complete bounded base. The domination property
plays an important role in optimization theory.

e Petschke in [31] obtains a density result for the set of positive proper minimals
within the set of minimal points, extending the well-known Arrow-Barankin-
Blackwell theorem to infinite dimension spaces under the assumption that the
ordering cone is well-based. This result was later attempted to be generalized by
Gong in [12] using the notion of a point of continuity (a slight weakening of the
notion of a denting point). Whether the result established by Gong was indeed a
generalization of Petschke’s result was stated as an open problem in [12], which
was later analyzed in [8, Section 4].

6 Conclusions

From a classical separation perspective in convex analysis and optimization (without
considering a specific application), a symmetric separation concept for cones seems
to be preferable. However, it is important to note that many significant new results for
the symmetric cone separation approach were derived from the non-symmetric cone
separation approach (thanks to Propositions 3.3 and 3.4). As discussed in Remark 5.3,
our results on the existence of a (bounded) base of convex cones have important
applications in optimization, where they can be used to derive existence statements,
for example, in the proof of general minimal point theorems.

Future research directions include extending the symmetric cone separation results
to separation theorems for (not necessarily convex) sets without cone properties in
real normed spaces. Additionally, we aim to develop new scalarization methods based
on Bishop-Phelps cone-representing scalarizing functions, such as norm-linear func-
tions, for vector optimization. These scalarizing functions are expected to be useful
for establishing existence and density results for properly minimal points in vector
optimization problems.
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