OTTO VON GUERICKE

UNIVERSITAT
MAGDEBURG

API Misuses - A Journey Along Their Causes and Prevention to
Automated Techniques for Detection and Repair

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultat fir Informatik

der Otto-von-Guericke-Universitat Magdeburg

von M.Sc. Sebastian Nielebock

geb. am 13.09.1989 in Wolmirstedt

Gutachterinnen/Gutachter

Prof. Dr. rer. nat. Frank Ortmeier
Prof. Dr. Alexander Serebrenik

Prof. Dr.-Ing. Thomas Thim

Magdeburg, den 06.10.2025

Nielebock, Sebastian:

API Misuses - A Journey Along Their Causes and Prevention to
Automated Techniques for Detection and Repair

Dissertation, Otto-von-Guericke University Magdeburg, 2025.

Abstract

Context A prevalent amount of modern software development relies on reuse of existing
software components and functionalities from software libraries or frameworks. Such li-
braries or frameworks encapsulate expert and domain knowledge (e.g., secure cryptographic
algorithms) behind a so-called Application Programming Interface (API). So-called API
developers design and develop these APIs. This way, other developers — so-called client de-
velopers — who do not necessarily have detailed expert knowledge can reuse these software
components and functionalities via the API. We denote this as AP/ usage. When using
the API, client developers can apply the API differently than it was expected by the API
developers, which can cause a deviant, negative behavior of the software. We denote this
as API misuse. API misuses are known to be prevalent and have severe functional (e.g.,
software crashes) as well as non-functional (e.g., security issues) implications.

Objective In this thesis, we explore API misuses from three essential perspectives.

First, we aim to contribute an overview of the root causes of API misuses, which not only
focuses on the root causes but also emphasizes the methodologies and, thus, the scientific
validity of these causes. We also relate the root causes to known prevention mechanisms
(i.e., techniques and processes), determine the sufficiency of research efforts on prevention,
and identify research gaps.

Second, we target improvements on API misuse detectors, which currently suffer from
high false positive rates (i.e., falsely denoting correct API usages as misuses). We aim to
leverage changes of API usages in two ways: (1) using them as a basis to detect misuse
in the change itself, and (2) reusing previous fix changes of API misuses as template for
finding similar misuses.

Third, we aim to explore the ability to use the artifacts from API misuse detection as
repair templates for an Automated Program Repair (APR) technique.

Method We obtain the overview of root causes and prevention mechanisms by applying
two subsequent Systematic Literature Reviews (SLRs) on relevant empirical studies. After-
ward, we map the causes, prevention mechanisms, and their applied research methodologies
by applying open coding from qualitative research. To summarize the state-of-the-art de-
tection and repair techniques, we also apply SLRs. We target the improvement in detection
and the exploration of repair by engineering research, namely, implementing and validating
software artifacts. The experiments of these artefacts reuse existing real-world API misuse
datasets from research as well as a dataset we collected and preprocessed from open-source
projects.

Results Based on the three perspectives, namely causes & prevention, detection, and
repair, we summarize four essential contributions.

First, based on our summary of several root causes, we identified research gaps for certain
root causes as well as the previously unexplored dependencies among several causes. We
also provided a mechanism to describe these dependencies.

Second, using our obtained summary of the prevention mechanisms, we identified research
gaps to effectively target the aforementioned root causes.

Third, we found that our both techniques for API misuse detection, namely, using the
change to identify misuses as well as applying previous fixes as a detection basis, improve
the precision compared to state-of-the-art misuse detectors. This way, the second approach
(i.e., using previous fixes) outperforms the first one (i.e., leveraging change information
itself).

Fourth, we found that the artifacts from misuse detection also provide promising results
toward an API-specific APR, with our approach having conceptual benefits compared to
conventional APR techniques.

Conclusion In summary, we provide an overview of the causes & prevention of API misuses
and contribute techniques for their automated detection and repair. This way, researchers
can better steer their research efforts on API misuses for different steps discussed in this
thesis and build on our software artifacts and results. For practitioners, we provide valuable
insights on applicable techniques and processes for API usages, which can be included in
the software development as well as the education.

Keywords Application Programming Interface, Misuses, Software Reuse, Root Causes,
Prevention Mechanisms, Automated Misuse Detection, Automated Misuse Repair

ii

Zusammenfassung

Kontext Ein umfassender Anteil der modernen Softwareentwicklung basiert auf der Wie-
derverwendung von Softwarekomponenten und -funktionalitdten aus Softwarebibliotheken
oder -frameworks. Solche Bibliotheken oder Frameworks kapseln Experten- und Doménen-
wissen (bspw. sichere Kryptografiealgorithmen) in sogenannten Application Programming
Interface (API), dt. Programmierschnittstellen. Sogenannte API Entwickelnde entwerfen
und entwickeln diese APIs. Somit kénnen durch die API andere Entwickelnde — sogenannte
Client Entwickelnde —, die nicht notwendigerweise detailliertes Expertenwissen besitzen, die
Softwarekomponenten und -funktionalitaten wiederverwenden. Wir bezeichnen dies als A P/
Verwendung. Beim Verwenden der API kénnen Client Entwicklende die API anderes be-
nutzen, als dies durch die API Entwickelnden erwartet wurde, was zu einem abweichenden,
negativen Verhalten der Software filhren kann. Wir bezeichnen dies als API Fehlverwen-
dung. API Fehlverwendungen sind ein pravalentes Problem und verursachen schwere funk-
tionale (bspw. Softwareabstiirze) als auch nicht-funktionale (bspw. IT-Sicherheitsliicken)
Probleme.

Zielstellung In dieser Dissertation, erforschen wir API Fehlverwendungen aus drei essen-
tiellen Perspektiven.

Erstens, zielen wir darauf ab einen Uberblick iiber die Kernursachen von API Fehlver-
wendungen beizutragen, welcher nicht nur auf die Kernursachen an sich fokussiert, sondern
auch die Methodiken und somit die wissenschaftliche Validitat dieser Kernursachen mit ein-
bezieht. Zudem verkniipfen wir die Kernursachen mit bekannten Prdventionsmechanismen
(d.h. Techniken und Prozessen), bestimmen die Hinlénglichkeit des Forschungsaufwands
fiir Praventionen und identifizieren Forschungsliicken.

Zweitens, streben wir Verbesserungen von API Fehlverwendungsdetektoren an, da jene
aktuell hohe Falsch-Positiv-Raten aufweisen (d.h., falsche Erkennung von korrekten API
Verwendungen als Fehlverwendungen). Wir beabsichtigen dabei Anderungen von API Ver-
wendungen zweierlei einzusetzen: (1) Nutzen der Anderungen selbst um darin Fehlverwen-
dungen zu erkennen und (2) Wiederverwenden von vorherigen korrigierenden Anderungen
von API Fehlverwendungen als Vorlage, um &hnliche Fehlverwendungen zu finden.

Drittens, evaluieren wir die Moglichkeit die Artefakte aus der API Fehlverwendungsde-
tektion als Reparaturvorlage fiir eine automatisierte Programmreparaturtechnik zu nutzen.

Methodik Wir ermitteln den Uberblick von Kernproblemen und Priventionsmechanis-
men durch die Nutzung zweier aufeinanderfolgender systematischer Literaturrecherchen
von relevanten empirischen Studien. Danach verbinden wir die Kernursachen, die Pra-
ventionsmechanismen sowie deren zugehorige wissenschaftliche Methoden durch Anwen-
dung von Open Coding Methodiken aus der qualitativen Forschung. Zur Zusammen-
fassung des Stands der Forschung von Detektions- und Reparaturtechniken nutzen wir
ebenfalls systematische Literaturrecherchen. Die angestrebte Verbesserung der Detektion
sowie die Exploration von Reparaturtechniken beabsichtigen wir mit Methoden der Inge-
nieurwissenschaften, konkret der Implementierung und Validierung von Softwareartefak-
ten durchzufithren. Im Rahmen der experimentellen Analyse dieser Artefakte nutzen wir
bestehende Forschungsdatensitze von realen API Fehlverwendungen sowie einem von uns
gesammelten und aufbereiten Datensatz von Open Source Projekten.

iii

Ergebnisse Basierend auf den drei Perspektiven Ursachen & Praventionen, Detektion und
Reparatur, konnen wir vier essentielle Beitrége zusammenfassen.

Erstens, basierend auf unserer Ubersicht zahlreicher Kernursachen, identifizierten wir
Forschungsliicken fiir bestimmte Ursachen als auch fiir bisher nicht erforschte Abhéngigkei-
ten zwischen zahlreichen Kernursachen. Zudem stellen wir einen Mechanismus bereit um
diese Abhéngigkeiten zu beschreiben.

Zweitens, mittels unserer Ubersicht iiber Priventionsmechanismen identifizierten For-
schungsliicken jener, um die zuvor genannten Kernursachen effektiv besser zu adressieren.

Drittens, ermittelten wir das unsere beiden Techniken zur API Fehlverwendungsdetek-
tion, konkret, Anderungen zur Identifikation von Fehlverwendungen nutzen, als auch die
Verwendung vorheriger Korrekturen als Detektionsgrundlage, die Préazision gegentiber ak-
tuellen Fehlverwendungsdetektoren verbessern. Dabei iibertrifft der zweite Ansatz (d.h.
Verwenden fritherer Korrekturen) den ersten (d.h. Nutzen der Anderung selbst).

Viertens, fanden wir heraus, dass Artefakte der Fehlverwendungsdetektion auch vielver-
sprechende Ergebnisse fiir eine API-spezifische, automatische Programmreparatur ermog-
lichen, wobei unser Ansatz konzeptionelle Vorteile gegeniiber konventionellen automatis-
chen Programmreparaturtechniken besitzt.

Fazit Zusammenfassend bieten wir eine Ubersicht der Kernursachen & Préventionen von
API Fehlverwendungen und leisten Beitrdge in Form von automatisierten Techniken zur
Detektion und Reparatur jener Fehlverwendungen. Dadurch kénnen Forschende ihren
Forschungsaufwand bzgl. API Fehlverwendungen anhand der in dieser Dissertation disku-
tierten Schritte besser steuern und unsere Softwareartefakte und Ergebnisse als Grundlage
weiterer Forschung nutzen. Fiir Anwendende bieten wir wertvolle Erkenntnisse bzgl. an-
wendbarer Techniken und Prozesse fiir API Verwendungen, die in die Softwareentwicklung
und Ausbildung einflielen konnen.

Schliisselworter Programmierschnittstellen, Fehlverwendungen, Softwarewiederverwen-
dung, Kernursachen, Praventionsmechanismen, Automatisierte Fehlverwendungsdetektion,
Automatisierte Fehlverwendungsreparatur

v

Contents

Abstract i
List of Figures ix
List of Tables xi
Code Listing xiii
List of Acronyms XV
1. Introduction 1
1.1. API Usage and Its Problems 1
1.2. Research Questions on APT Misuses 3
1.2.1. Research Question C&P - API Misuse Causes & Prevention 3

1.2.2. Research Question D - Automated API Misuse Detection 4

1.2.3. Research Question R - Automated API Misuse Repair 6

1.3. Contributions of the Thesis 7
1.3.1. Contributions for RQ C&P - Causes & Prevention 7

1.3.2. Contributions for RQ D - Detection 8

1.3.3. Contributions for RQ R - Repair 9

1.4. Structure of the Thesis o 9

2. Problem Analysis of APl Misuses 11
2.1. RQ C&P API Misuse Causes & Prevention, 11
2.2. RQ D Automated API Misuse Detection 14
2.3. RQ R Automated API Misuse Repair 18
2.4. Detailed Structure of the Research Questions in Thesis 20

3. Fundamentals and Background 23
3.1. Software Defects and API Misuses 23
3.1.1. Studies of Software Defects, 23

3.1.2. Software Defect Detection 25

3.1.3. Taxonomy and Prevalence of API Misuses 26

3.2. Code Representation for Code Analysis 27
3.2.1. General Code Representations 27

3.2.2. API-Specific Code Representations 28

3.3. Finding Relevant Source Code Samples 31
3.3.1. General Code Search 32

3.3.2. APICode Search 32

3.4. Source Code Changes i 33
3.4.1. Version Control Systems 33

3.4.2. Software Repository Mining, 33

3.4.3. API Evolution 34

3.5. Frequent Pattern Mining L o oL 36
3.5.1. Problem Statement of Frequent Pattern Mining 36

3.5.2. Mining Algorithms L 37

Contents

4,

vi

3.5.3. Imteresting Patterns L.
3.5.4. Databases for Mining
3.5.5. API-Specific Usage Pattern Mining

APl Misuse Root Causes & Prevention

4.1. Methodology and Structure L.

4.2, API Misuse Causes v v v i i e e
4.2.1. State-of-the-Art Meta-Analyses on API Misuses Causes
4.2.2. Meta-Analysis of API Misuse Causes
4.2.3. Threats to Validity oo

4.3. API Misuse Cause Prevention
4.3.1. State-of-the-Art of Meta-Analysis of API Misuse Prevention
4.3.2. Meta-Analysis API Misuse Prevention for Misuse Causes
4.3.3. Recommendations for Research of API Misuse Prevention
4.3.4. Threats to Validityo o

4.4, SUMMATY .« . o v v v o e e e e e e e e e e e e

. Improving Pattern-Based APl Misuse Detection

5.1. Methodology and Structure oL
5.2. Limitations of State-of-the-Art API Misuse Detection
5.2.1. General Terms on API Misuse Detection
5.2.2. State-of-the-Art API Misuse Detectors
5.2.3. Limitations of Collecting Client Code for API Misuse Detectors . . .
5.2.4. Selection of Comparable API Misuse Detectors
5.2.5. Threats to Validity o
5.3. Improving Data Collection for API Pattern Inference
5.3.1. Insufficient Data Selection for API Specification Mining
5.3.2. Concept of Change-Based Information to Collect API Usages
5.4. Experimental Data and Processing
5.4.1. API Misuse Datasets
5.4.2. API Misuse-Introducing Commits
5.4.3. Similar Source Files o o
5.4.4. API Usage Graphs as Intermediate Representation
5.5. Validation oL e
5.5.1. Validation of Commit Sizes
5.5.2. Impact of Search and Filter Strategies on Mining Input
5.5.3. Impact of Change-Based Inference on API Misuse Detection
5.5.4. Threats to Validity o oL
5.6. Summary L e e e e

Change Rule-Based APl Misuse Detection

6.1. Methodology and Structure L.

6.2. Imprecise API Misuse Detection

6.3. RuDetect
6.3.1. Overall Process e
6.3.2. ChaRLI: Change Rule Inference
6.3.3. Applicability Check L
6.3.4. Graph Similarity-Based API Misuse Detection

45
45
46
46
48
68
69
70
71
81
85
88

91

91

92

92

93
102
103
107
108
108
109
115
115
115
116
117
117
117
124
131
138
140

Contents

6.3.5. Measuring Graph Similarity 152

6.4. Experimental Data and Processing 157
6.4.1. API Misuse Datasets 158
6.4.2. Experimental Settings 0oL 160

6.5. Validation 162
6.5.1. Validation of the Applicability of ChaRLI 162
6.5.2. API Misuse Detection Using Similarity Variants 163
6.5.3. Impact of the Context of the Change Rules on Misuse Detection . . 173
6.5.4. Impact of the Applicability Check on Misuse Detection 179
6.5.5. Comparison to the State-of-the-Art 184
6.5.6. Threats to Validity 196

6.6. Conceptual Differences to Related Work 197
6.6.1. Conceptual Differences to Other API Misuse Detectors. 198
6.6.2. Conceptual Differences to API Evolution Techniques 198
6.6.3. Conceptual Differences to Code Change Datastructures 199

6.7. SUMMATY it e e e e 202
. Towards APl Misuse Repair 205
7.1. Methodology and Structure, 205
7.2. Limitations of State-of-the-Art API Misuse Repair 206
7.2.1. State-of-the-Art on Automated Program Repair 206
7.2.2. Limitations of API-Specific Automated Program Repair 209

7.3. ASAP-Repair: API-Specific Automated Program Repair 214
7.3.1. General Steps of ASAP-Repair 214
7.3.2. Misuse Detection in ASAP-Repair 215
7.3.3. Pattern-Based Steps of ASAP-Repair 215
7.3.4. Change Rule-Based Steps of ASAP-Repair 218
7.3.5. AUG Transformation of ASAP-Repair 219

7.4. Experimental Data and Processing 220
7.4.1. API Misuse Datasets 220
7.4.2. Comparing Patched AUGs with Ground TruthAUGs 220
7.4.3. Experimental Settings oo L. 221

7.5, Validation Lo 222
7.5.1. Comparison Pattern- and Rule-Based ASAP-Repair 222
7.5.2. Conceptual Comparison 230
7.5.3. Towards Code Patches from ASAP-Repair. 232
7.5.4. Threats to Validity o oo 233

T.6. Summary e e e 236
. Conclusion 239
8.1. Summary of the Thesis. 239
8.2. Main Results and Contributions 240
8.2.1. RQ C&P API Misuse Causes & Prevention 241
8.2.2. RQ D Automated API Misuse Detection 242
8.2.3. RQ R Automated API Misuse Repair 243
8.2.4. Additional Results o L 244
8.2.5. Conclusive Results o oL 245

8.3. Further Research, 246

vii

Contents

A. Appendix 249
A.1. Appendix API Misuse Causes & Prevention 249
A.1.1. Discussion Detailed API Misuse Root Causes 249

A.1.2. API Misuse Root Causes Examples from Literature 249

A.1.3. API Misuse Root Causes Study Methodologies 252

A.1.4. API Misuse Root Causes Mapping 255

A.1.5. API Misuse Prevention Mapping 255

A.1.6. Detailed Comparison API Misuse Research Effort 262

A.2. Appendix Improving Pattern-Based API Misuse Detection 266
A.2.1. URLs to API Misuse Detectors 266

A.2.2. Additional Results Filtering Commits 266

A.3. Appendix Change Rule-Based API Misuse Detection 270
A.3.1. Change Rule Inference 270

A.3.2. Detailed Results Applicability Checks 270

A.4. Detailed Results of RuDetect 277
A.4.1. Further Comparison RuDetect and MUDetect 286
Bibliography 291

viii

1.1.
1.2.

2.1.
2.2.
2.3.
2.4.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.

5.1.
5.2.
5.3.
5.4.
9.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.

6.1.
6.2.

List of Figures

Structure of the Main Research Questions 3
Structure of the Thesis 10
Structure of the Sub-Research Questions of RQ C&P 13
Structure of the Sub-Research Questionsof RQ D 18
Structure of the Sub-Research Questionsof RQ R. 20
Detailed Structure of the Research Questions. 21
Graphical Representation AUG 30
CRISP-DM e 41
Overview of SLR Process Root Causes 48
Detailed Codes e 52
Result of the Categorization 52
Frequency of Selected Papers per Publication Year 55
Generally Applied Methodologies 55
Frequency of API Misuse Root Causes 58
Developer-perspective View L oL 60
Process-perspective View L o 61
Technical-perspective View 61
Overview Methodology Codes for Root Causes 64
Coarse Correlation Root Causes and Methods 65
Finer Correlation Root Causes and Methods 66
Overview of SLR Process Prevention 72
Frequency Papers Prevention 74
Correlation of General Root Causes and Prevention Mechanisms 75
Number Prevention Mechanisms 7
Comparison Research Effort Causes and General Prevention 82
Comparison Research Effort Causes and Detailed Prevention 83
API Misuse Detection using Commits 110
Detailed View API Misuse Detection using Commits 111
Example Keyword Extraction 0 0. 113
Distribution of Misuse-introducing Commits 120
Distribution of Misuse-introducing Commits with API 121
Effect Commit Size Reduction 121
Distribution of the Number of Import Statements 122
Distribution of the Number of Extracted Keywords 123
Distribution of the Relative Pattern Frequency File Search 126
Distribution of the Relative Pattern Frequency API Search 127
Mean Values of the Relative Pattern Frequency 128
Distribution of the Relative Pattern Frequency Method Filtering 130
Process of RuDetect with ChaRLI 146
API Change Rules Versions 147

X

LIST OF FIGURES

6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.
6.10.
6.11.
6.12.
6.13.

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.

ALl
A2
A3.
A4
A5,
A.6.
AT
A8.
A8.
A.9.
AL9.

A.10.
A1l
A12.
A13.

Assessment with MUBench-on-MUBench
Assessment with MUBench-on-AU500
Difference Context Assessment with MUBench-on-MUBench
Difference Context Assessment with MUBench-on-AU500
Difference Number of Applicable Rules
Comparison Applicability Checks MUBench-on-MUBench
Comparison Applicability Checks MUBench-on-AU500
RuDetect vs. MUDetect on MUBench-on-MUBench
RuDetect vs. MUDetect on MUBench-on-AU500
Precision RuDetect vs. MUDetect on AndroidCompass+.
Recall RuDetect vs. MUDetect on AndroidCompass+

Updated Classification APR
Concept ASAP-Repair o
Results ASAP-Repair Idealized Check
Venn Diagram Overlap Patches 0oL
Node Similarity Patches Pattern- vs. Rule-based ASAP-Repair
Edge Similarity Patches Pattern- vs. Rule-based ASAP-Repair
Number of Patches Pattern- vs. Rule-based ASAP-Repair
Sample Match of Rule-based ASAP-Repair

Correlation Detailed Root Causes and Detailed Methods
Correlation Detailed Root Causes and Methods
Detailed Comparison Research Effort Causes and Prevention Mechanisms .
Detailed Comparison Research Effort Root Causes and Recommendations .
Detailed Comparison Research Effort Causes and Automated Support

Distribution Relative Pattern Frequency Internal File Filtering
Distribution Relative Pattern Frequency External File Filtering
Detailed Comparison Applicability Check MUBench-on-MUBench
Detailed Comparison Applicability Check MUBench-on-MUBench (cont.) .
Detailed Comparison Applicability Check MUBench-on-AU500
Detailed Comparison Applicability Check MUBench-on-AU500 (cont.) . . .
Detailed Assessment RuDetect with MUBench-on-MUBench
Assessment with MUBench-on-AU500
Detailed Context Assessment with MUBench-on-MUBench
Detailed Context Assessment with MUBench-on-AU500

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.
5.14.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.
6.14.
6.15.

7.1

Al
A2
A.3.
A4

List of Tables

Overview Related SLR Studies Root Causes 47
Result Independent Assessment Root Cause Publications 51
List All Relevant and Partially Relevant Publications Root Causes 54
Codes API Misuse Root Causes 57
Justification Views of Interdependent Root Causes 62
Overview Related SLR Studies Prevention Mechanisms. 70
Venues of Publications of Prevention Mechanisms 74
Meta Information and Characteristics of Misuse Detectors 94
Single Usage, Explicit Specifications (SES) Misuse Detectors 95
Multiple Usage, Explicit Specifications (MES) Misuse Detectors 96
Implicit Specifications (IS) Misuse Detectors. 96
Precision and Recall Results of Misuse Detectors 101
List of API Misuses with Misuse-introducing Commit 119
Results Reduction Number of Methods 120
Different Configuration Search and Filter 124
Configurations for Statistical Comparison 125
Number of Misuses per Satisfaction Ratio 128
Agreement Assessors Pattern Candidate Validation 133
Top@k Fixing Patterns without Filtering 134
Top@k Fixing Patterns with Filtering 135
Results Comparison Misuse Detection on AUS00 137
Manual Assessment Change Rules 149
Similarity Measurements L 157
Results Conservative Precision RuDetect with MUBench-on-MUBench . . . 166
Results Recall RuDetect with MUBench-on-MUBench 167
Results Conservative Precision RuDetect with MUBench-on-AU500 170
Results Recall RuDetect with MUBench-on-AU500 171
Comparision Different Context MUBench-on-MUBench 175
Comparision Different Context MUBench-on-AU500 177
Comparison Different Applicability Check MUBench-on-MUBench 182
Comparison Different Applicability Check MUBench-on-AU500 183
RuDetect vs. MUDetect with MUBench-on-MUBench 189
RuDetect vs. MUDetect with MUBench-on-AU500 191
Precision RuDetect vs. MUDetect with AndroidCompass+ 193
Recall RuDetect vs. MUDetect with AndroidCompass+ 194
Conceptual Comparison of RuDetect 200
Conceptual Comparison of ASAP-Repair. 230
Detailed Codes API Misuse Root Causes 249
Detailed Codes API Misuse Root Cause Methods 253
Summary of Samples Prevention Mechanisms 258
Availability of Replication Packages API Misuse Detectors 267

xi

LIST OF TABLES

xii

A.5. Detailed Values Assessment RuDetect with MUBench-on-MUBench
A.6. Detailed Values Assessment RuDetect with MUBench-on-AU500
A.7. Detailed Values Context Assessment with MUBench-on-MUBench
A.8. Detailed Values Context Assessment with MUBench-on-AU500
A.9. Detailed Results of MUDetect
A.10.Results Change Rules threshold = 0.6 with MUBench-on-MUBench

A.11.Results Change Rules threshold = 0.7 with MUBench-on-MUBench
A.12.Results Change Rules threshold = 0.6 with MUBench-on-AU500
A.13.Results Change Rules threshold = 0.7 with MUBench-on-AU500
A.14.Results Change Rules without context with MUBench-on-MUBench
A.15.Results Change Rules without context with MUBench-on-AU500

1.1.

3.1.

6.1.
6.2.

Code Listing

Example of an API Usage 1
Code Sample AUG e 30
APT Usage Change ittt 147
Android Compatibility Check 158

xiii

List of Acronyms

AL Active Learning

API Application Programming Interface
APR Automated Program Repair
ASAP-Repair API-Specific Automated Program Repair
AST Abstract Syntax Tree

AUG API Usage Graph

ChaRLI Change Rule Inference

CFG Control Flow Graph

Cl Continuous Integration

DCA Dynamic Code Analysis

DL Deep Learning

FGM Frequent Graph Mining

FPM Frequent Pattern Mining

FSM Frequent Sequence Mining

GED Graph Edit Distance

Groum Graph-based Object Usage Model
HMM Hidden Markov Model

LLM Large Language Model

MCS Maximum Common Subgraph

MSR Mining Software Repositories

NLP Natural Language Processing

PDG Program Dependence Graph

RAIX Relevant API Information Extractor
RuDetect Change Rule-based API Misuse Detection
SBFL Spectrum-based fault localization
SCA Static Code Analysis

SLR Systematic Literature Review

VCS Version Control System

XV

Introduction

This chapter introduces the topic of Application Programming Interface (API) usages and
misuses (cf. Section 1.1), our three main research questions (cf. Section 1.2), our contribu-
tions to these research questions (cf. Section 1.3), and the general structure of the thesis
(cf. Section 1.4).

1.1. API Usage and Its Problems

Modern software development heavily relies on the reuse of already available functionalities.
Such reuse ranges from simple code copying from previous projects or online discussion
forums such as StackOverflow! [ZURT18] up to using specialized libraries or frameworks
for specific tasks, for instance, to create a graphical user interface (GUI) using a framework
such as JavaFX?. Past research analyzed the prevalence of reuse from (third-party) libraries.
For instance, Wang et al. [WGMC15] found that more than 60% of 105,299 Android apps
had more than 1,024 calls to libraries. In another study on 806 Java projects, the authors
found that only 74 projects (9.2%) used no libraries in their methods [WCH20].
Developers enable library reuse

by providing A PIs. APIs describe ; ;I;IEONJ android.widget. Butron;

how methods, data fields, and 3 |public class AndroidTest {

exception handlers [Zl\llg] ~ in g ;(ﬂgiié]void handleButton (Button button){
general, API elements — imple- 6 /700

mented within a library or frame- g ‘/"/J’:[t‘?n]' callOnClick ();

work are externally accessible to ¢ }

other developers. When reusing }(1’) ZATEER

an API element, we denote this as

an API usage. APl usage, aform Code Listing 1.1: Example of an API Usage for
of code reuse, aims to save pro- the android.widget.Button-
gramming time and costs, reduces class of the Android framework.
the burden of testing the underly-
ing implementation, and abstracts away most of the subtle details of the underlying im-
plementation. Using this abstraction and the concluding separation of concerns, the code
becomes more maintainable [Som18, p. 491pp] [WTH" 24, p. 4-7p].

We provide an example of an API usage in Code Listing 1.1 for the Java programming
language and the Android framework, a prominent mobile operating system?®. In detail, the

"https://stackoverflow.com/ last accessed: 2024/10/09
2https://openjfx.io/ last accessed: 2024,/10/09
Snttps://developer.android.com/ last accessed: 2024/10/10

https://stackoverflow.com/
https://openjfx.io/
https://developer.android.com/

Chapter 1. Introduction

android.widget .Button-API is reused through the import statement in the class
and the call of the API method call0OnClick, which triggers listeners attached to the
click event of the button object.

Users of APIs assume that these are implemented by experts in the library’s domain
(e.g., GUI or mobile experts) or involve domain experts in the API design, and thus, APIs
enable the reusability of this expert knowledge for other developers [MKA " 18]. However,
in some domains, such as for cryptographic APIs, it was observed that their developers are
not always experts [RRS23]. We refer to these developers, who produce the API as API
developers and to developers who use APIs in their code as client developers.

Client developers do not always apply an API as it is intended by the API developers.
For instance, the API usage in Code Listing 1.1 will crash if the cal10nC1lick-method
is called using the Android framework with API level 15 or lower’. Another example
is the usage of a cryptographic API that causes privacy issues, for example, by using
an outdated and easily decodable MD5 hash function instead of a more secure SHA-256
function [KSA21]. Both examples describe a deviant A PI usage from what is expected
by API developers that causes a negative software behavior. We define this as an A PI
misuse [NK11]. This definition is similar to the one by Schlichtig et al. [SSNB22] based on
a literature review, namely, that an API misuse is a violation of a documented or implicit
API usage constraint, emphasizing that such violation causes errors, misbehavior, or similar
issues.

As demonstrated before, the negative behavior can imply software crashes and perfor-
mance issues but also probably not easily observable security or usability issues. Thus, API
misuses have implications for both functional and non-functional requirements. Thus, we
state that API misuses can have severe implications for the end users of the software.

In the past, many studies observed the prevalence of API misuses in practice. For in-
stance, Zhong and Su [ZS15] found that half of the source files edited in fixes within five
open-source projects required at least one API-specific change. In another study, Amann
et al. [ANNT16] found a proportion between 3.9%-62.5% (overall proportion is 10.4%°)
of API misuses. Zhang et al. [ZUR" 18] measured that 31% of code samples provided as
solutions from StackOverflow denote possible API misuses. Due to this prevalence, namely,
the amount of reuse of code via APIs and the number of API misuses, a lot of research (i.e.,
in terms of different research groups and techniques) on automated API misuse detection
has been conducted [WNO05, WZL07, NNPT09b, LW09, PG09, MBM10, Linl5, MCJ17,
ANNT19a, KSAT21, LMC*21, YRW22, WZ23].

APIs and their misuses involve different stakeholders (i.e., API and client developers)
with different domain knowledge (e.g., cryptography or mobile experts). APIs abstract
detailed expert knowledge as reusable interfaces and leverage artifacts beyond source code,
such as documentation or Q& A discussion forums. This way, the knowledge, processes, and
techniques on APIs differ from those of typical code reuse and bugs. Therefore, research
focuses on APIs to obtain better-suited support in software development. Despite the
tremendous effort in this area, current research on API misuses struggles with different
challenges, with three of them motivating this thesis:

“https://developer.android.com/reference/android/view/View#callOnClick() last accessed:
2024/10/10

®These numbers diverge from the reported percentage by Amann et al. [ANNT16], since we could not
replicate their values and re-computed them based on Table 1 in this paper.

https://developer.android.com/reference/android/view/View#callOnClick()

C&P:

1.2. Research Questions on API Misuses

Lack of Knowledge on API Misuse Root Causes and their Prevention:
While much research was conducted on API misuse detection, these works rarely
analyzed the root causes of misuses and how to prevent them. Currently, there only
exist restricted summaries on root causes. A systematic overview of the most preva-
lent root causes would greatly improve the work on misuse prevention. It also remains
uncertain to which degree state-of-the-art prevention mechanisms target those root
causes effectively.

: Imprecise API Misuse Detection: Current misuse detectors struggle due to im-

precise detection, namely, they report correct usages as API misuses (i.e., so-called
false positive detection), lowering their acceptance in practice due to many ‘false
alarms’ [LW09, ANNT19a].

: Limited usage of API-specific knowledge for Automated API Misuses Re-

pair: Assuming a precise misuse detection, and considering the tremendous research
progress in Automated Program Repair (APR) [Monl18a, LGPR19, KMSH21], a log-
ical next step is an API-specific APR technique targeting API misuses.

1.2. Research Questions on APl Misuses

In this thesis, we summarize the three challenges as
the three following research topics from which we

RQ C&P AP| Misuse Causes & Prevention derive the research questions:

C&P API Misuse Causes & Prevention

L D Automated API Misuse Detection

R Towards Automated API Misuse Repair

RQ D Automated APl Misuse Detection
By addressing these topics, we target API misuses in

different stages during development, namely, at the

¥ time of introducing misuses (i.e., C&P), at the time

b

misuses are present in the code (i.e., D), and at the
time misuses should be fixed (i.e., R).

RQ R Automated APl Misuse Repair In the following sections, we describe and justify
the questions in detail concerning the state-of-the-
art. Figure 1.1 depicts an abstract view of how these

Figure 1.1.: Structure of the Main

research questions intertwine and which will be sub-

sequently and refined and used as guidance among
Research Questions this thesis.

1.2.1. Research Question C&P - APl Misuse Causes & Prevention

We consider an APT misuse as a type of a code defect. We refer to Zeller [Zel06], who
defined that “/a code] defect is a piece of code that can cause an infection” (cf. [Zel06,

Sec.

1.2, p. 3]). Further, Zeller denoted an infection as a deviant behavior of the software,

which eventually causes a failure. A failure itself is the negative behavior observed from
the software [ZelO6] [WTH 24, p. 12-3].

Thus, we conjecture that API misuse prevention is closely related to the more general
term of defect prevention, which is considered useful in practice [MJHS90], for instance, by

Chapter 1. Introduction

conducting code reviews [BB13, SSCT18] or applying DevOps concepts [LRK 19, EH23]
to ensure software quality [WTH" 24, p. 12-15].

Usually, prevention encompasses an analysis of the root causes of previous defects.
As known from quality management [KCT12] and particularly software quality manage-
ment [WTH"24, p. 12-1pp], these root causes include, for instance, the quality of the input
and output of a process, the tools used, methods applied, and the people involved. Root
causes are determined by techniques such as defect causal analysis [Car98, KCT12] or tech-
niques from root cause analysis [WTH 24, p. 18-16p], including Fault Tree Analysis [OS07]
or cause-effect-diagrams like the Ishikawa diagram [Ish90].

Typical defect prevention applies actions to mitigate or eradicate root causes. In prac-
tice, these actions decrease the defect rate by more than 50% [KCT12]. The actions involve
various aspects and steps of the software development cycle, such as requirements engineer-
ing [JBR99, Som18], requirements traceability [FGO17], test-driven development [Bec02],
agile software development [Mar03, Som18|, software documentation [WTH24, p. 14-
8p|, modern code review [BB13, SSC' 18], programming education [PSM"07, MRF19], or
applying best practices for software development [GHJV94, Marl3, FBB"14].

Nevertheless, the previously discussed specialties of APIs are not covered by these general
processes and techniques. Thus, we focus on API misuse causes & prevention, which we
denote as the steps before API misuses occur and thus target the root causes of mis-
uses [Rob09, HL11, MKAT18] as well as techniques and processes [BFHM12, NAP18,
RTP19, TCK21, PDHR23] to avoid them. Knowledge of root causes and mechanisms
targeting these causes and thus preventing API misuses in the first place reduces later
efforts for detection and repair.

No Overview on API Misuse Root Causes: In contrast to typical defect pre-
vention, research on root causes of API misuses lacks — to the best of our knowledge
— a systematic overview despite many individual studies [SMO08, Rob09, HL.11, ZERI11,
NKMB16, QLL16, ABFT17, SMAR17, ANBL18, MSS18, MKA™18, PHR19, GALIF20,
L.S20, ZHKG20, WHH " 24]. We formulate this as a challenge to derive a systematic overview
of the applied methodologies and most prevalent root causes of API misuses.

No Overview and Unclear Effect of API Misuse Prevention: For API misuse
prevention, it remains unclear whether and to what degree state-of-the-art defect prevention
mechanisms target the root causes. This is due to two reasons: First, because - to the best
of our knowledge - no systematic overview of prevention mechanisms exists, and second
because we do not know the most prevalent root causes to be mitigated or eradicated.

Thus, we summarize these challenges as the following research question:

Research Question C&P - Causes & Prevention

RQ CE&P (Causes € Prevention): Are root causes of API misuses sufficiently
targeted by API misuses prevention mechanisms?

1.2.2. Research Question D - Automated APl Misuse Detection

Reusing the definition by Zeller [ZelO6] on code defects, Zeller also denoted that a caused
infection can spread among the software, and thus, the location of the observable failure is
not directly the location of the code defect. Code defect detection encompasses recogniz-
ing that a defect exists (e.g., observing a negative behavior) and locating the defect (i.e.,
identifying the source code lines triggering the negative behavior) [Zel06, WGL T 16].

1.2. Research Questions on API Misuses

General code defect detection includes several techniques and processes, such as Static
Code Analysis (SCA) and Dynamic Code Analysis (DCA), code inspection, verification,
or testing [WTH™24]. Thus, research suggested and evaluated various techniques and pro-
cesses to support these steps [RAT06]. While we detail the range of code defect detectors
in Section 3.1.2, it is known from past research that an effective and efficient application of
them depends on several factors, such as the persons applying these techniques, the code
at hand to be tested, as well as the type of code defect [RATT06].

This last factor explains why many researchers developed automated techniques to specif-
ically detect API misuses [WNO05, LZ05, WZL07, NNP*T09b, MCJ17, ANNT19b, KL21,
7ZCS721, LCP 21, NVN20, KSAT21]. API misuse detection describes the situation in
which a misuse is likely present in the code and which should therefore be recognized and
located by a technique or a process [RBK ™13, ANNT19a, EHJ"21]. Without detection of
API misuses, one cannot conduct steps for repairing them.

A common notion of these API misuse detectors is to infer a specification describing
a wvalid API usage and check whether an API usage at hand satisfies this specification.
Specifications are hand-made [KSAT21] or inferred automatically, for instance, mining
frequent API usage as patterns [WNO05, LZ05, NNPT09b, WZ11, ANN"19a, KL.21] applying
Frequent Pattern Mining (FPM). We refer to these techniques as pattern-based API misuse
detection. Manual or automated inference assumes the ability to describe correct API usage.
For the manual case, the concrete assumption is that an expert can sufficiently define a valid
API usage. In the automated case using FPM, the latent assumption is that frequently
re-occurring API usage is likely to be correct.

High False Positive Rate of API Misuse Detection: However, research had shown
that both techniques lack sufficient precision (i.e., the proportion of correctly reported
misuses from all reported misuses) when detecting A PI misuses [LHX 16, ANNT19a]. From
SCA, we know that a low precision causes many ‘false alarms’ and, thus, reduces the
applicability of defect detection [CMO04, JSMHB13, SAET18].

Accordingly, research on API misuse detection aims to increase the precision while keep-
ing a significantly large recall (i.e., the proportion of detected misuses among all misuses).
Much effort has been put into improving the mining [L.Z05, NNPT09b, TX09a, ZXZ"09,
NKI11, PG12, CM18, KL21, WZ23, WX(Q23] and post-pattern mining process (e.g., fil-
tering or ranking of patterns) [ECCO1, WNO05, LZ05, PG09, DLMK10, (M18, ANNT19b,
WXQ23]. Still, these approaches do not achieve a sufficient precision value for practical
usage (cf. Section 5.2.2).

Unrealistic Use Cases for API Misuse Detection: State-of-the-art API misuse
detectors often lack realistic use cases for practical application. Particularly, manually
writing correct specifications is tedious, error-prone, and thus less applicable in prac-
tice [HSSA16, LHX"16]. For pattern-based approaches, research usually collects donor
code, namely, code samples from which patterns are mined by explicitly searching exam-
ples of the misused API. However, in a practical use case, the misused API is not known.
Thus, both processes limit the scalability of API misuse detectors in practice.

We target both problems, namely, high false positive rate and unrealistic use cases, by
enhancing the donor code for pattern-based API misuse detection as well as introducing
change-based API misuse detection.

Thus, we summarize the research question as follows:

Chapter 1. Introduction

Research Question D - Detection

RQ D (Detection): How can we improve the precision of state-of-the-art API misuse
detectors within a realistic software development process?

1.2.3. Research Question R - Automated AP| Misuse Repair
According to Le Goues et al. [LGPR19], APR involves three steps:

(1) detecting a code defect based on a specification (e.g., a test suite),
(2) synthesizing a patched version of the code, and

(3) validate the patched code (e.g., by applying the aforementioned specification).

Since steps (1) and (3) are undecidable, the general problem of APR is undecidable as
well [LGPR19, NL22]. Nevertheless, developers are able to fix defects manually in par-
ticular cases and for specific defect types. When restricting the automated approach to
certain cases, APR has been proven applicable. This observation motivates a large research
community to actively work on techniques for APR [Monl18a, LGPR19], having an ongoing
workshop® as well as a community website informing on their research.’

Since no general solution for APR exists, concrete techniques will always adapt to cer-
tain use cases and defect types [NL22]. Thus, we focus on automated techniques to fix
a successfully detected API misuse by permanently mitigating its negative behavior or
completely removing it [Niel7, KMSH21]. We denote this as an API misuse repair. In
this thesis, we focus on automated techniques for repair. While Kechagia et al. [KMSH21]
have demonstrated that state-of-the-art APR techniques can, to some degree, target API
misuses, these techniques miss the potential to leverage the special characteristics of API
misuses.

Changing Specifications for API Misuse Repair: We focus on one of many chal-
lenges discussed by Le Goues et al. [LGFW13, LGPR19] of APR research. This challenge
describes that some patch synthesis techniques require donor code. These techniques need
to find ways to deal with changing code samples [LGFW13]. This is particularly true for
APIs since API developers maintain and update code libraries, and so the API, as well as
their latent usage specifications. Particularly, data-driven-based approaches to infer API
usage patterns provide the potential to fill this gap as they mine patterns from related code
samples.

Not Using Historical API Misuse Fixes: Moreover, some APR approaches had suc-
cess by leveraging information from past fizes in their repair strategies [LLLG16, JXZ"18].
Since this notion aligns with the idea of leveraging change information of API usage, we
hypothesize a similar effect when using change information of past fixes of API misuses.

We summarize this by the following research question:

Research Question R - Repair

RQ R (Repair): Does API-specific information support automated API misuse re-
pair?

®https://program-repair.org/workshop/ last accessed: 2025/02/28
"https://program-repair.org/ last accessed: 2025/02/28

https://program-repair.org/workshop/
https://program-repair.org/

1.3. Contributions of the Thesis

1.3. Contributions of the Thesis

We describe the contributions of the aforementioned research questions on causes & pre-
vention (C&P), detection (D), and repair (R) in the following.

1.3.1. Contributions for RQ C&P - Causes & Prevention

Using a Systematic Literature Review (SLR) methodology [KC07, Woh14], we collected 65
studies on root causes of API misuses and 411 publications on prevention mechanisms that
target these causes. We summarized and interrelated the studies using qualitative methods
such as open coding [Flil4]. This summary provides a new comprehensive and interrelated
overview of the root causes of API misuses as well as the scientific methodologies to collect
them as well as an overview of state-of-the-art prevention mechanisms targeting these root
causes. Based on these results, we analyzed the sufficiency of prevention mechanisms for
API misuse root causes. We summarize our main contributions as follows:

(1) We present a diverse set of API misuse root causes with eleven different categories
with 44 sub-root causes. Moreover, we suggest hypotheses on their interdependencies,
namely, whether root causes trigger others using so-called views, and provide three
examples using the developer, process, and technical perspectives.

(2) We present the typical structure of the studies on API misuse root cause analysis and
show that a majority of root causes were evaluated using qualitative methods.

(3) We provide an overview of prevention mechanisms targeting AP misuse root causes,
which we classify as recommendations and automated support.

(4) We discuss that research on prevention mechanisms has a focus on single root causes
and typically validates automated support mechanisms, while a majority of recom-
mendations remain non-validated.

We conclude that due to the small number of quantitative studies on different kinds of
root causes as well as the variety of different root causes, current research can hardly judge
their prevalence. Therefore, further research needs to conduct more quantitative studies on
API misuse root causes to provide these insights. While there is a focus on the client side
of root causes, more research has to be conducted on the API developer side. Such research
results would allow judging on possible support for API developers, which would boost
API quality and, thus, its usability. Based on the quantification of root causes, current
and future prevention mechanisms have to validate whether they target the most prevalent
root causes or whether they target the root causes triggering the most severe API misuses.
While many prevention mechanisms are present, they typically focus on single root causes
and on automated support rather than recommendations. However, recommendations can
be more adaptable in practical scenarios (e.g., adapting a software development process).
Thus, future work should consider these research gaps.

These results are valuable for practitioners and software engineering researchers alike.
Developers in practice can use this body of knowledge on root causes to identify and
mitigate them in their daily practice by using well-validated prevention mechanisms. Re-
searchers benefit from these contributions by directing their future work according to stud-
ies quantifying the influence of different root causes and observing the perspective of API
developers. For replication, we provide our data and scripts.®

8http://doi.org/10.5281/zenodo. 16594600

http://doi.org/10.5281/zenodo.15594600

Chapter 1. Introduction

1.3.2. Contributions for RQ D - Detection

We target the issues of low precision and missing applicability to realistic software engi-
neering processes of state-of-the-art misuse detectors with two main ideas:

(1) We provide concepts and software artifacts to improve pattern-based API misuse de-
tection. First, we present our artifact named Relevant API Information Eztractor
(RAIX), which extracts API-specific information leveraging API changes using the
Version Control System (VCS) of a potentially misuse-containing client project. Sec-
ond, we apply search and filter strategies to find code samples serving as donor code
for the inference of API usage patterns as specifications. This way, we expect it to
seamlessly fit into a realistic development process. Since we hypothesize the code
samples to refer to the APIs currently changed in the client project, we expect the
pattern-based detectors to use these inferred patterns to more precisely detect API
misuses. We evaluated both techniques on real-world API misuse datasets.

Our main findings were that API changes from VCSs are a valuable source even
though for efficient, practical usage, we require further selection strategies. When
using search and filter strategies, we found that previous knowledge of a potentially
misused API is not necessary to find sufficient code examples for pattern mining, and
we observed a positive impact on the pattern quality, especially when using method-
level filtering of API usages. Moreover, we obtained a slight improvement in the
precision and recall for pattern-based API misuse detection.

(2) We introduce the concept of change rules, representing previous API misuse fixes
by which similar API misuses can be detected. These change rules are automati-
cally obtained from previous API misuse fizes by a technique named Change Rule
Inference (ChaRLI). We present the concept of using these change rules to detect
API misuses with a technique named Change Rule-based API Misuse Detection
(RuDetect). We provide an evaluation of different settings of this change rule-based
misuse detection and in comparison to a pattern-based misuse detector.

In detail, we obtained the best fitting settings to apply change rules for API misuse
detection based on different inference techniques and graph similarity metrics, and we
observed a higher precision when using change rule-based misuse detection compared
to pattern-based misuse detection. Regarding the recall, we observed a dependency on
the training dataset from which change rules were inferred.

Thus, we conclude that both variants are valuable technique, even though further steps
for practical application are necessary. For instance, we can improve pattern-based mis-
use detection by more advanced search and filter strategies to further improve precision.
Change rule-based detection require steps to control the training data, and thus, recall of
the detection. Both techniques represent a step towards practical API misuse detection,
and thus an improvement to the state-of-the-art.

These results provide software engineering researchers insights on different filter and
search strategies for pattern-based misuse detection as well as a further technique leveraging
previous fixes, based on which further improvements can be validated. Moreover, we provide
a replication package of our results®. For practitioners, the results provide a first step
towards transferring misuse detection from research into practice.

1.4. Structure of the Thesis

1.3.3. Contributions for RQ R - Repair

Current APR techniques do not necessarily target API misuses. Therefore, we provide evi-
dence of how A Pl-specific information known from API misuse detectors can benefit APR.
In detail, we present a concept for repairing API misuses named API-Specific Automated
Program Repair (ASAP-Repair). It leverages an intermediate code representation of API
usages named API Usage Graph (AUG) using API usage patterns as well as change rules
already used during the previously discussed API misuse detection. ASAP-Repair serves
as an intermediate step towards full-fledged API misuse repair by providing insights on a
conceptual application of API-specific information and stressing out further research chal-
lenges to be targeted to accomplish an effective API misuse repair technique. We validated
different variants using patterns and change rules-based repair concepts using real-world
API misuse datasets and quantitatively and qualitatively assessed their produced patches.
Our main contributions are as follows:

(1) ASAP-Repair is conceptually superior to state-of-the-art APR techniques without re-
quiring test suites for fault localization.

(2) We demonstrated that it can repair API misuses on the basis of the intermediate data
structure of AUG's, while change rules from previous fixes tended to be more promising
than API usage patterns. However, for both techniques, it is essential to carefully
collect sufficient donor code by which ASAP-Repair generates repair templates for
patch generation.

We conclude that ASAP-Repair is a promising technique for APR of API misuses because
(1) it is built on top of existing misuse detection data structures, easing the interplay with
state-of-the-art misuse detectors, (2) in comparison to existing APR techniques, it does
not require the existence of test cases to produce patches, and (3) has been proven to be,
in principle, applicable to real-world misuse while still requiring research for a full-fledged
APR.

For researchers, ASAP-Repair denotes a first step toward the field of API-specific APR
and further research directions. Again, we provide ASAP-Repair and the evaluation as
a replication package®. While currently, we assess the applicability for practitioners as
limited, the intermediate data structure of AUGs can provide support for developers to
plan bug fixes and refactoring steps of API misuses.

1.4. Structure of the Thesis

The subsequent section explains the content of the following chapters as well as their overall
structure and relations depicted in Figure 1.2.

Chapter 1, Introduction, introduces the problem domain of API usages and misuses
as well as derives the main research questions and contributions on causes & prevention,
automated detection, and steps towards automated repair of API misuses.

Chapter 2, Problem Analysis, reports a further detailed discussion on the problem
domain and refines the main research questions into sub-questions, thus motivating the
required background and the applied methodologies to answer the main questions.

Chapter 3, Fundamentals and Background, discusses the general background of
software defects with a specific view on the taxonomy and the prevalence of API misuses,
code representation, code search, code changes, and Frequent Pattern Mining (FPM).

Chapter 1. Introduction

[1. Introduction

[2. Problem Analysis of API Misuses

[3. Background and State-of-the-Art

e

/\. AN N N—

4. API Misuse
Root Causes & RQ, C&P API Misuse Causes & Prevention
Prevention
5. Improving
Pattern-based 6- Change Rule-
. RQ D Automated APl Misuse Detection based API Misuse
AP| Misuse .
X Detection
Detection

\ J
4 N

7. Towards
API Misuse RQ R Automated API Misuse Repair
Repair
[8. Conclusion }

Figure 1.2.: Structure of the Thesis

Chapter 4, Causes € Prevention, targets RQ C&P on API misuse root causes &
prevention mechanisms with the related sub-research questions discussed in Chapter 2. It
requires background on software defects and API misuses from Chapter 3.

Chapter 5, Pattern-based Detection, targets RQ D, particularly on limitations and
improvements of pattern-based API misuse detectors with the related sub-research ques-
tions discussed in Chapter 2. The additional sub-research question on change rule-based
API misuse detection is presented in Chapter 6, Change Rule-based Detection. Both
require background on software defects, API misuses, code representation, code search,
code changes, and FPM from Chapter 3.

Chapter 7, Repair, targets RQ R analyzing techniques towards automated API mis-
use repair with the related sub-research questions discussed in Chapter 2. It requires
background on software defects, API misuses, code representation, and code changes from
Chapter 3, as well as the API misuse detection presented in Chapters 5 and 6.

Chapter 8, Conclusion, summarizes and concludes the results and contributions of
this work. It gives an overview of possible implications, namely, further research directions
as well as steps towards practical applicability on API misuse prevention, detection, and
repair.

10

Problem Analysis of API Misuses

This chapter refines the three main research questions from the Introduction (cf. Chap-
ter 1), namely, RQ C&P (cf. Section 2.1), RQ D (cf. Section 2.2), and RQ R (cf.
Section 2.3) by a detailed problem analysis. This way, we explain our applied research
methodologies and discuss the expected implications of answering the sub-questions as well
as their contribution to the main research question. Finally, we give a detailed structure

in Section 2.4

2.1. RQ C&P API Misuse Causes & Prevention

== RQ C&P API Misuse Causes & Prevention

L J

RQ D Automated API Misuse Detection

L]

D RQ R Automated API Misuse Repair

targeted root causes.

For RQ C&P targeting missing knowl-
edge on root causes & their prevention
mechanisms of Application Programming
Interface (API) misuses, we ask whether
state-of-the-art prevention mechanisms tar-
get root causes sufficiently. We hypothe-
size that, first, we do not have a system-
atic overview of API misuse root causes.
Second, we lack a systematic overview
of prevention mechanisms targeting these
root causes. Third, due to both previ-
ous issues, currently, we can hardly judge
whether the research on prevention mech-
anisms targets misuse causes sufficiently.
Sufficiency means that prevention mecha-
nisms should have research attention re-
lated to the prevalence and severity of their

We answer the main RQ C&P by investigating these three separate sub-problems,

namely:

1. Missing Systematic Overview on State-of-the-art Research of API Misuse Root Causes;

2. Missing Systematic Overview on State-of-the-art Research of Prevention Mechanisms

for API Misuse Root Causes;

3. Missing Assessment of whether there exists Sufficient Research on Prevention Mech-
anisms to target all found API Misuse Root Causes.

11

Chapter 2. Problem Analysis of API Misuses

Missing Systematic Overview on State-of-the-art Research of API Misuse Root Causes.
We target the first sub-problem by a summary of API misuse causes. This summary
represents a collection and the interrelations of different root causes and can be updated
in future work to encompass further insights or new causes. Moreover, it allows us to
compare root causes of API misuses to root causes of other kinds of defects, and thus,
judging whether related prevention mechanisms are applicable.

We inferred our summary based on the body of knowledge of API misuse causes. For
this purpose, we systematically collected, summarized, and interrelated research on API
misuse causes. To collect relevant literature, we applied a Systematic Literature Review
(SLR) [KCO07] and qualitative methods to summarize and interrelate the relevant knowledge
on root causes [Flil4]. By using established methodologies from qualitative research, such
as open coding [Flil4], we systematically structured information on the methods, results,
and knowledge gaps of several studies. That means we did not replicate research results but
related them to each other, showing common trends, contradictions, as well as limitations
of the studies. We provide the documentation of our research steps as well as all results in
a replication package'. This way, we ensure the falsifiability of the provided summary by
allowing independent replication.

We summarize this sub-problem as RQ C&P-C (C&P-Root-Causes) and our contribu-
tion as follows:

/RQ C&P-C (C&P-Root-Causes): What are the common root causes of API)
misuses?

We provide an overview of the body of knowledge of API misuse causes using SLR.
We collected relevant studies and established qualitative methods to summarize and
interrelate the methods, results, and knowledge gaps on API misuse causes. We found
a diverse set of root causes in terms of numbers (i.e., 11 different main root causes)
and variants (e.g., developer- vs. technical- vs. process-related causes). In addition, we
elicited trends in the cause analysis (e.g., more qualitative than quantitative studies). D

_

Missing Systematic Overview on State-of-the-art Research of Prevention Mechanisms
for API Misuse Root Causes. Next, we target the sub-problem of the missing overview on
prevention mechanisms towards the root causes, similar to the method from RQ C&P-C.
In detail, we applied SLR [KCO07] to collect the relevant research on prevention. Preven-
tion encompasses general-purpose techniques like automated tool support (e.g., automated
tests), software engineering processes (e.g., code reviews, refactoring) as well as API-specific
techniques (e.g., enhancement of API documentation). Based on this collection of liter-
ature, we extracted an overview of the relevant research on API misuse prevention using
open coding [Flil4]. Having this overview, we showcased which kind of prevention is avail-
able and which of it is applicable for which root causes. Moreover, the overview guides
future research on improving and comparing to the state-of-the-art.

http://doi.org/10.5281/zenodo . 15594600

12

http://doi.org/10.5281/zenodo.15594600

2.1. RQ C&P API Misuse Causes & Prevention

We summarize this as RQ C&P-P (C&P-Prevention) formulated as follows:

/RQ C&P-P (C&P-Prevention): What are the state-of-the-art pre'vention\
mechanisms targeting API misuses?

We give an overview of mechanisms for API misuse prevention, which is based on the
overview of the body of knowledge of API misuse root causes using methods from SLR.
We applied methods from qualitative research to summarize, relate, and extrapolate
methods and results of primary studies on prevention mechanisms. We determined that
research on prevention mechanisms is not equally distributed and that recommendations
kcw"e frequently not validated while automated support typically are. D

Missing Assessment of whether there exists Sufficient Research on Prevention Mech-
anisms to target all found APl Misuse Root Causes. We aim to assess the sufficiency
of state-of-the-art research on API misuse prevention targeting API misuse root causes in
RQ C&P-S. Thus, RQ C&P-S combines the results of RQ C&P-C and RQ C&P-P.
This combination is necessary since root causes and prevention mechanisms are strongly
coupled, meaning that without targeting root causes, prevention mechanisms would be
without effect or even harmful. Thus, our results provide evidence (1) which prevention
mechanisms are most researched, (2) for which root causes research still lacks effective
prevention mechanisms, or for which root causes prevention mechanisms are not effectively
applicable. We combined causes and prevention using the concepts and results of preven-
tions’ description in their publication. In detail, we applied qualitative methods to match
the preventions’ description with the previously obtained root causes of API misuses. Based
on this matching on API misuse root causes and prevention mechanisms, we extracted and
prioritized relevant research directions.
We summarize this sub-research question as follows:

/RQ C&P-S (C&P-Sufficiency): Does state-of-the-art research on prevention\
mechanisms sufficiently target root causes of API misuses?

By combining the results of the bodies of knowledge on API misuse root causes and its
prevention mechanisms, we obtained a prioritized research agenda for future directions
in root cause analysis and effective prevention mechanisms. Our results indicate that
research on prevention mechanisms should focus on evaluating recommendations and
konly concentrate on specific automated support techniques to target certain root causes.)

StrUCture Of RQ C&P AS de' RQ C&P API Misuse Causes & Prevention
picted in Figure 2.1, the research

question RQ C&P is based on RQ C&P-C AP! RQ C&P-P API
. ; Misuse Preventi

the analysis of the state-of-the- Misuse Causes | ! L 'S,\‘/‘lfch::“i’:r:s'°“

art research on misuse causes RQ C&P-S

. Prevention

(i.e., RQ C&P-C) and preven- Sufficienc

tion mechanisms (i.e., RQ C&P-
P) which both provide insights to

assess the sufficiency of prevention
mechanisms (i.e., RQ C&P-S). Figure 2.1.: Structure of the Sub-Research Questions

of RQ C&P

13

Chapter 2. Problem Analysis of API Misuses

2.2. RQ D Automated API Misuse Detection

While prevention tends to be an effec-
tive strategy as it gets down to the root
of the negative implications of API mis-
uses, in a realistic software development
scenario, perfect prevention is almost im-
possible, for instance, due to the costs of
v investments [MJHS90] [WTH" 24, p. 12-4].
Particularly, software development heavily
relies on human developers who, per se, are
RQ D Automated API Misuse Detection not error-free, for instance, influenced by
personal mood [Zel06, p. xix]. While au-
tomated approaches try to mitigate human
L 2 errors, the increasing software size and com-
plexity in the last decades [Som18, p. 24],
paired with faster development times, re-
strict the applicability of prevention mech-

i RQ, C&P API Misuse Causes & Prevention

D RQ R Automated APl Misuse Repair

anisms.
This is also true for API misuses as
a prevalent software defect (cf. Sec-

tion 3.1) [WGMC15, WCH"20]. Therefore,
research cannot restrict itself to misuse prevention but has to find solutions for already
present API misuses. A necessary step to overcome the negative effect is to understand the
root causes of API misuses and design effective techniques for their detection.

API misuse research came up with a variety of automated detection techniques, sig-
nificantly improving API usage. Promising approaches are pattern-based API misuse de-
tectors. These detectors infer API usage patterns using Frequent Pattern Mining (FPM)
(cf. Section 3.5) based on correct API usage samples. Then, they apply these patterns as
specifications to determine violations as misuses. However, currently, these detectors are
not applied in practice, particularly due to low precision [ANNT19a, ANNT19b] as well as
less practical use cases (i.e., having assumptions that do not fit into a realistic software
development process).

For both issues, namely low precision and less realistic use cases, we suggest two hy-
potheses for improved and new API misuse detection:

a) Less work has been conducted in improving the input of the FPM of the pattern-based
detection. Initial results indicated that filtering the donor code (i.e., code examples
as input for mining) of API usages by quality criteria results in patterns achieving
larger precision during detection [LW12]. We hypothesize that using information from
a currently changed APIT usage (e.g., obtained via a Version Control System (VCS))
helps to find more related donor code for mining and thus improves the precision of
pattern-based misuse detection at this changed code location. [NHO18, NHSO21]

b) Patterns as specifications tend to miss the context in which APIs are applied and thus
produce false alarms due to confounding but correct code elements (e.g., an alternative
APT usage or a workaround). Here, we consider context as code context, meaning
the surrounding code of the API usage as well as the context of the change, namely,
whether a similar kind of code was updated in the past to fiz a misuse. We hypothesize

14

2.2. RQ D Automated API Misuse Detection

that these two kinds of context, which we represent as so-called change rules, improve
the precision of API misuse detectors. [NHKO20a, NBKO21a, NBK0O22]

Thus, we target the research question RQ D of more precise API misuse detection in a
realistic software development scenario (i.e., it is, in principle, deployable into a Continuous
Integration (CI) process) by analyzing these two hypotheses, which relate to the four fol-
lowing sub-problems:

1. Limitations of State-of-the-art Pattern-based API Misuse Detectors;
2. Applicability of Change-based Information using VCSs for Misuse Detection;

3. Influence of Search and Filter Strategies for Change-based Information on the Preci-
sion of Pattern-based API Misuse Detectors;

4. Applicability of Change Rules from previous API Misuse Fixes as a Change Rule-
based API Misuse Detection.

Limitations of State-of-the-art Pattern-based APl Misuse Detectors. First, we strength-
en our hypotheses by analyzing the current limitations of state-of-the-art API misuse de-
tectors based on our previous work [NBKO22]. We focused on the two presented hurdles
for practical application, namely, the missing integration in a practical scenario and the
high false-positive rate (i.e., falsely reported misuses). We answer this question by review-
ing existing literature on API misuse detectors using an SLR-like approach [KC07] based
on existing surveys and comparison studies. We concentrated the review on pattern-based
detectors since they are the most widely applied group of approaches in API misuse de-
tection research [RBK'13]. Moreover, pattern-based techniques have the advantage of
‘learning’ from previous usages, and thus allow adaptations of patterns, for instance, if the
API evolves due to updates in their library [RBK " 13]. Using the results together with the
underlying concept of the detector, we present an overview of flaws in their concept that
potentially harm the precision as well as practical applicability. Based on this overview,
we inferred the restrictions and limitations of these detectors as well as techniques for
comparison. Moreover, we obtained a detector to which we compared our techniques.
We summarize this as RQ D-L (D-Limitations) as follows:

RQ D-L (D-Limitations): What are the limitations of state-of-the-art pattern-
based API misuse detectors in practical scenarios?

We obtained an overview of the state-of-the-art of API misuse detection by reviewing
the literature on API misuse detection and identified the limitations with respect to low
precision and less practical applicability.

Applicability of Change-based Information using VCSs for Misuse Detection. In the
second sub-problem, we target the missing practical integration of pattern-based API mis-
use detection, particularly their related specification miners. We observed that many
pattern-based detectors lack a description of how to obtain the donor code, namely the code
from which patterns are mined. Moreover, many detectors describe collection processes that
are not applicable in practice (i.e., hardly deployable into a software development process).
Thus, we used change information of API usages (cf. source code changes in Section 3.4)
to further improve the data collection. Change information (i.e., changed lines of code)

15

Chapter 2. Problem Analysis of API Misuses

is available through VCSs, which are de facto standard in modern software development
serving as an essential part of CI processes (cf. Section 3.4.1). Thus, we hypothesize that
API misuse detection can also be a part of this CI workflow. Based on that, we suggest a
concept on how to leverage code changes to obtain information on the API usage in order
to find relevant donor code (cf. code search in Section 3.3) for API usage pattern mining.
We evaluated this concept by an engineering research approach [RAB™20], particularly
by implementing a software artifact named Relevant API Information Extractor (RAIX)
with subsequent search and filter strategies. We assessed the potential of code changes for
finding relevant donor code [NHSO21] and validated whether change-based information ob-
tained by RAIX reduces the search space for potential misuses and whether filter obtained
relevant donor code [NHO18, NHSO21].
We summarize this research question as RQ D-C (D-Change-Information) as follows:

/RQ D-C (D-Change-Information): Is change information a meaningful\
source for finding related API usage samples for API misuse detection
in practical use cases?

We evaluated whether a concept of leveraging change information from VCS can be

applied in realistic software development by using the engineering research approach

with an own software artifact. We found that change information significantly reduces
kthe number of code locations for API misuse detection analysis.

J

Influence of Search and Filter Strategies for Change-based Information on the Precision
of Pattern-based APl Misuse Detectors. In the third sub-problem, we analyze whether
filtering change-based information that we collect before eventually improves the precision
of API misuse detection. In detail, we assume a client developer (cf. Chapter 1) who
changes their code and introduces an API misuse. Due to the change information, we know
how and which API elements are changed. By using this change information for searching
and filtering donor code for API usage pattern mining, we expect to find more related
patterns regarding the changed API usage in the client code. This way, we hypothesize an
improvement in the precision of the subsequent pattern-based API misuse detection since
the patterns inferred and applied for detection exhibit higher relevance to the changed API
usage. We suggest different filtering scenarios. Once again, we evaluated these concepts
using engineering research [RAB20] by a software artifact. Consequently, we give evidence
for research in pattern-based API misuse detection on whether and to what degree change-
based information improves the relevance of patterns for detection and, subsequently, the
detectors’ precision [NHSO21]. The results also provide a practical scenario as well as
insights into the applicability of state-of-the-art API misuse detectors leveraging the VCS.

16

2.2. RQ D Automated API Misuse Detection

This is summarized as RQ D-F (D-Filtering) as follows:

/RQ D-F (D-Filtering): What is the tmpact of the previous filtering of the\
donor code from which API patterns are mined on the subsequent pattern-
based API misuse detection?

We evaluated the effect of different variants of change-information-based filtering strate-
gies for the donor code of FPM of API specifications on the resulting relevance of
patterns for detection and their impact on the precision of pattern-based API misuse
detectors by conducting engineering research with a software artifact. We identified a
set of search and filter mechanisms (e.g., internal filtering, filtering with knowing the
misused API), based on whichAPI misuse detection improved.

N J

Applicability of Change Rules from previous AP| Misuse Fixes as a Change rule-based
API Misuse Detection. Finally, we target the second hypothesized limitation of missing
relevant code and change context. If missing context, a detector would apply non-relevant
patterns as specifications, causing potential false positives. Our hypothesis is that using
this contextual knowledge improves the precision of the misuse detection. Particularly,
we suggest a concept in which previous fixes of API misuses are used to extract their
essential edits as change rules (i.e., using change context). We refer to this concept as
Change Rule Inference (ChaRLI) [NHKO20a, NBKO21la, NBKO22]. This notion aligns
with research using historical knowledge of automated API migration [MWZM12, LS18] or
general Automated Program Repair (APR) [LLLG16, HW18]. However, these have — to
the best of our knowledge — not been used for API misuses in particular and thus did not
tackle their specific characteristics. We leveraged these characteristics by requiring a code
representation (cf. Section 3.2), particularly, we applied a graph representation of an API
usage introduced by Amann et al. [ANNT19b] presented in Section 3.2.2. Moreover, we
tested different variants of change rules containing more surrounding code elements (i.e.,
using code context). Our concept applies the characteristics of API misuses (e.g., referred
data type), and thus, we expect a beneficial effect precision on API misuse detection.
We refer to it as change rule-based API misuse detection based on a technique named
Change Rule-based API Misuse Detection (RuDetect) [NHKO20a, NBKO21la, NBKO22].
Once again, we used engineering research [RABT20] with a software artifact to evaluate
our concept.
The research question is summarized as RQ D-R (D-Rules) as follows:

/RQ D-R (D-Rules): What is the impact of applying change rules inferred\
from previous fixes of API misuses on API misuse detection?

We evaluated whether leveraging previous change rules from prior API misuse fizes

improves the precision of API misuse detection. We analyzed this improvement by a

software artifact of a rule-based API misuse detector. We identified a positive signifi-
kcant impact on the precision compared to a state-of-the-art API misuse detector. D

17

Chapter 2. Problem Analysis of API Misuses

Structure of RQ D In Fig-

ure 2.2, we depict the structure of

sub-research questions of RQ D. Rqsz:ei"f“_'tts:_i”; of

In detail, the limitations (i.e., API Misuse Detectors
. v 4

RQ D'L) are the basis for the RQ D-C Change- RQ D-F Filtering of RQ D-R Change-

three sub-questions on the ap- driven API Usage API Usages for Rule-based AP

. .- . . Collection for Pattern-based Mi b

phcablhty Of Change'lnformatlon Pattern-based Misuse Detection isuse Detector

(i.e., RQ D-C), filtering strate- Misuse Detection

gies (i.e., RQ D-F), and change

rule-based misuse detection (i.e., Figure 2.2.: Structure of the Sub-Research Questions

RQ D-R). Moreover, the appli- of RQ D

cability of RQ D-C is a mandatory step for RQ D-F, since otherwise, the improved

pattern-based misuse detection would lack its practical use case.

RQ D Automated API Misuse Detection

2.3. RQ R Automated API Misuse Repair

Research on API misuses has a focus on
their automated detection. While this is
generally beneficial, fixing misuses is still a
manual process. Nevertheless, the domain
of APR has made tremendous advances
in the last decade of research [Monl8a,
v LGPR19] as well as in practical applica-
tions [NHL18, BSPC19, KWM™'21]. Nev-
ertheless, current APR techniques do not

ml RQ, C&P API Misuse Causes & Prevention

RQ D Automated APl Misuse Detection consider API misuses in particular. As dis-
cussed previously, no general solution for
APR exists, and thus, specializing in single
¥ APR techniques for specific defects, such as
API misuses, is reasonable [N1.22].

Particularly, we target the research ques-
tion RQ R by considering whether an API-
specific APR technique leveraging data
structures from the previous misuse detec-
tion (i.e., either pattern- or change rule-
based) produces useful code patches. We
do this by analyzing three sub-problems, namely,

L 4 RQ R Automated APl Misuse Repair

1. Limitations of the state-of-the-art APR techniques regarding fixing API misuses;
2. Applicability of API usage patterns from pattern-based misuse detection for APR;
3. Applicability of change rules from change rule-based misuse detection for APR.

Limitations of the State-of-the-art APR Techniques Regarding Fixing APl Misuses.
According to the first sub-problem, we reviewed the literature on APR research. Partic-
ularly, we used the existing survey by Monperrus [Monl8a] and assessed the ability of
state-of-the-art APR techniques to target API misuses. We also analyzed the publication
by Kechagia et al. [KMSH21], who had evaluated APR techniques in particular for API

18

2.3. RQ R Automated API Misuse Repair

misuses. This way, we pointed out essential limitations of APR techniques with regard to
API misuses and thus extend our previous work [Niel7].
We summarize this as RQ R-L (R-Limitations) denoted as follows:

/RQ R-L (R-Limitations): What are the limitations of state-of-the-art APR\
techniques to repair API misuses?

We assessed the limitations of state-of-the-art APR techniques for API misuses based
on previous literature reviews on APR and its limitations, as well as contrasted their
abilities regarding the special characteristics of API misuse as opposed to generic de-
fects. We found that APR techniques are limited regarding test dependencies, bench-
kmarks, and insufficient patches specific to APImisuses. D

Applicability of API Usage Patterns from Pattern-based Misuse Detection for APR. In
RQ R-P, we leveraged patterns used for misuse detectors as possible repair templates. The
hypothesis is that patterns representing a specification of correct behavior can be used to
transform the actual misuse into the correct usage represented by the pattern. By applying
an engineering research methodology [RABT20], we developed a software artifact named
API-Specific Automated Program Repair (ASAP-Repair), which can repair misuses in the
form of an intermediate code representation of API Usage Graphs (AUGs) introduced
in Section 3.2.2. ASAP-Repair provides - to the best of our knowledge - the first step
towards API-specific APR, which we refer to as pattern-based repair variant. We evaluate
the patches produced by the pattern-based repair of ASAP-Repair using real-world API
misuse datasets.

/RQ R-P (R-Patterns): Do API usage patterns provide benefits for API-\
specific APR?

We suggested a concept of applying patterns from pattern-based API misuse detection
as part of a pattern-based APR technique within our software artifact ASAP-Repair and
assess its repair ability (i.e., by generating patches in the intermediate representation
AUGs) for real-world API misuses. We found that pattern-basedASAP-Repair can
k7“epaz'7“ in an idealized but not necessarily in a realistic scenario. D

Applicability of Change Rules from Change Rule-based Misuse Detection for APR.
In the last sub-research question, RQQ R-R, we analyzed whether change rules from our
improved change-based misuse detector (i.e., RQ D-R) also improve the repair ability
compared to standard APR. Conceptually, we hypothesized that change information from
previous API misuse fixes can be leveraged to produce patches for API misuses. This
notion is reasonable as, for instance, general APR techniques also apply historical infor-
mation to fix bugs [LLLG16, HW18]. Again, we applied the methodology of engineering
research [RAB™20], developed a concept, and implemented it in the same software artifact
ASAP-Repair, which uses change rules to produce a patch in the form of the intermediate
representation of an AUG. We referred to this technique as change rule-based API misuse
repair variant. We evaluated its repair ability and thus compared it to the pattern-based
repair variant from RQ R-P.

19

Chapter 2. Problem Analysis of API Misuses

We summarize this research question as follows:

/RQ R-R (R-Rules): Do change rules of previous API misuse firzes provide\
benefits for API-specific APR?

We developed a concept using change rules from previous change rule-based API misuse
detection as part of the change rule-based repair in our software artifact ASAP-Repair.
We assessed its repair ability (i.e., by generating patches in the intermediate represen-
tation AUGS) for real-world API misuses and in comparison to pattern-based repair.
We found that ASAP-Repair can repair API misuses in an idealized and in a realistic

KSC@TLCLTlO. j

Structure of RQ R In Fig' RQ R Automated API Misuse Repair
ure 2.3, we depict the structure of
sub-research questions of RQ R.
In detail, the limitations of cur-
rent APR techniques (i.e., RQ R-
L) form the basis for analyzing based API Misuse
the ability of pattern-based (i.e., Repair
RQ R-P) and change rule-based
repair (i.e., RQ R-R)

RQ R-L Limitations
of Automated
Program Repair for
AP| Misuses

RQ R-P Pattern- RQ R-R Change-

Rule-based API
Misuse Repair

Figure 2.3.: Structure of the Sub-Research Questions
of RQ R

2.4. Detailed Structure of the Research Questions in Thesis

In Figure 2.4, we present the detailed structure of the thesisin the chapters 4, 5, 6, and
7, which have a special focus on answering the three main research questions RQ C&P,
RQ D, and RQ R. This overview serves as a shortcut to find the chapters concerned with
the respective research question.

Moreover, it depicts the relations of the research questions. In detail, RQ C&P serves
as the necessary background on why client developers misuse APIs, which helps to assess
the applicability of detection (i.e., discussed in RQ D) and APR techniques (i.e., discussed
in RQ R).

As mentioned before, a necessary step of APR is the detection of a code defect, and
thus, API misuse detection is a mandatory component of API-specific APR. On the one
hand, limitations of pattern-based misuse detectors (i.e., RQ D-L) influence pattern-based
repair (i.e., RQ R-P). On the other hand, having an improved technique incorporating
change information into APT specification mining (i.e., RQ D-C) and subsequent filtering
resulting in improved pattern-based detection (i.e., RQ D-F), has a beneficial impact on
pattern-based repair.

Finally, the change rule-based repair technique (i.e., RQ R-R) requires change rules and
the inference technique ChaRLI (i.e., discussed in RQ D-R).

20

2.4. Detailed Structure of the Research Questions in Thesis

/

4. APl Misuse
Root Causes &
Prevention

\

RQ C&P API Misuse Causes & Prevention

RQ C&P-C API
Misuse Causes J

L

RQ C&P-P API
Misuse Prevention
Mechanisms

RQ C&P-S
Prevention
Sufficienc

%

/

5. Improving
Pattern-based
API Misuse
Detection

\

¥

RQ D Automated API Misuse Detection

| RQ D-L Limitations of I

\ 4

State-of-the-Art

API Misuse Detectors

\ 4

RQ D-C Change-
driven APl Usage
Collection for
Pattern-based
Misuse Detection

RQ D-F Filtering of
API Usages for
Pattern-based

Misuse Detection

RQ D-R Change-
Rule-based API
Misuse Detector

\

6. Change Rule-
based APl Misuse
Detection

%

s

7. Towards
APl Misuse
Repair

o

V—

RQ R-P Pattern-

based API Misuse
Repair

RQ R Automated API Misuse Repair

RQ R-L Limitations
of Automated

Program Repair for
AP| Misuses

RQ R-R Change-

Rule-based API
Misuse Repair

\

Figure 2.4.: Detailed Structure of the Research Questions.

21

Fundamentals and Background

This chapter describes basic concepts and body of knowledge on related topics to under-
stand the techniques and design decisions within this thesis, especially in the main chapters
4,5, 6, and 7. Section 3.1, we provide an overview of studies of software defects with a focus
on their prevalence, severity as well as generic software defect detection techniques, and
particularly, a specific consideration of Application Programming Interface (API) misuses.
Then, we introduce basic code representation concepts as well as specific code representa-
tions of API usage in Section 3.2. In Section 3.3 introduces concepts of finding related
sources, namely the topic code search. Subsequently, we present basics of source code
changes and related problems and possibilities regarding API misuses (cf. Section 3.4).
Finally, we present the concept of Frequent Pattern Mining (FPM) (cf. Section 3.5), a
technique applied within prior API misuse detection.

3.1. Software Defects and API| Misuses

In this section, we discuss the background of software defects, also frequently denoted as
bugs, and thus, we apply both terms interchangeably. In detail, we consider related studies
on bugs (cf. Section 3.1.1) and applied techniques for bug detection (cf. Section 3.1.2).
Afterward, we consider related work on the taxonomy and prevalence of API misuses, the
kind of bug that we investigate in this thesis.

3.1.1. Studies of Software Defects

We discuss related studies on bugs regarding their considered software defect types, the
data used for analysis, as well as which aspects of bugs are analyzed.

Software Defect Types Widder and Le Goues [WG24] approached the topic of what
denotes a bug from a philosophic perspective. In detail, they emphasized that while initially,
the answer to this question seems straightforward, on a second view, things can become
much more blurred. For instance, they ask for specific conditions to decide whether a
certain behavior denotes a bug. Do we say something is a bug if it is reported by a user
in an issue tracker, if a sufficiently large user base complains about this behavior, or if the
developer finally accepts it in an issue tracker? Especially bugs concerning the look and
feel or which harm a small user base (e.g., blind persons) might fail the last condition due
to a Won’t fix resolution.

Based on this consideration, it is not surprising that a generally accepted and complete
overview of software defects does not exist and maybe never will. Therefore, empirical

23

Chapter 3. Fundamentals and Background

studies on software defects can only take specific perspectives and focuses limited regarding
their interpretation of the term ‘bug’ as well as their bug selection criteria.

Zhong and Su [ZS15] focused on bugs obtained via patch fixes and, thus, bugs that
were found to be worth fixing in the past. Other studies had a focus on specific developers,
for instance, beginners [BCHH10]. Another set of studies explored bugs with a specific
temporal or inter-bug characteristic, such as long-remaining bugs [CNSH14, SKP14] or
critical blocking bugs [RLC20] (i.e., bugs blocking the fix of other bugs). Bug studies also
analyzed certain specific bug types based on their occurrences in the code, such as regular
expression bugs [WBJS20], exception handling bugs [NVN19], or test code bugs [VFM15,
TSM18], as well as their specific bug behavior, for instance, concurrency bugs [BFSK20] or
performance bugs [HY16]. Finally, several studies focused on certain application domains,
such as Deep Learning (DL) [ZCCT18, INPR19, JZW 20, YHXF22], quantum machine
learning [ZWL 23], mobile applications [XXS*23], platform management systems (e.g.,
Kubernetes) [XGW24], or the evolution of bugs in open-source software [LTW06].

Analyzed Data Empirical studies obtained bugs from various sources. Most frequently,
researchers used issue tracking systems of projects, in which users and developers report
and manage bugs of a software [LTW 06, HY16, XXS"23, ZWL"23, XGW24] as well as
Version Control Systems (VCSs) [LP17, TSM18, ZCCT18, BFSK20, WBJS20] (e.g., based
on commit messages or pull requests) as well as a combination of both sources [CNSH14,
VEM15, ZS15, INPR19, NVN19, JZW 20, RLC20, YHXF22]. Other classical sources are
QEA pages (e.g., StackOverflow!) [ZCCT18, BFSK20], existing bug databases [SKP14,
LP17], or developer experiments [BCHH10].

Analyzed Aspects Studies derived taxonomies of bugs [BCHH10, CNSH14, INPR19], par-
tially enhanced with a consideration of their prevalence [VEM15, HY16, INPR19, NVN19,
YHXFE22] as well as the evolution of the prevalence [LTWT06]. This way, researchers can
focus on the most frequently occurring bugs. Based on the assessed severity of bugs, as
studied by Saha et al. [SKP14], the aspect of importance is considered as well.

Another frequently analyzed aspect is the root causes of different bug types [LTW 06,
CNSH14, VFM15, HY 16, TSM18, ZCC™18, INPR19, NVN19, BFSK20, JZW*20, RLC20,
WBJS20, YHXF22, XXS*23, ZWL 23, XGW24]. These considerations help to develop
effective prevention mechanisms.

Moreover, the concrete symptoms or manifestations, as well as implications of bugs,
are part of many studies [LTWT06, SKP14, HY16, ZCCT18, NVN19, BFSK20, JZW 20,
WBJS20, YHXF22, XXS123, ZWL123, XGW24]. Based on this knowledge, researchers
and practitioners can assess the consequences of certain bug types and plan mitigation
strategies.

A further aspect is the fiz types and fix characteristics of bugs [CNSH14, SKP14, VEM15,
ZS15, HY16, LP17, TSM18, NVN19, RLC20, WBJS20, YHXF22, XGW24]. Both enable
developers to derive fix patterns or researchers to develop Automated Program Repair
(APR) techniques [LGPR19].

Further, researchers investigated bug locations [ZS15, JZW'20], related process steps
[INPR19], and detection and location techniques [ZCCT 18, XXST23].

"https://stackoverflow.com/ last accessed: 2025/04/15

24

https://stackoverflow.com/

3.1. Software Defects and API Misuses

3.1.2. Software Defect Detection

We denote software defect detection as the recognition that a software defect or bug is
present (e.g., an accepted issue in an issue tracker) using techniques and processes for
their reproduction [Zel06, p. 85pp] and location [WGLT16]. Note that this is different
from techniques assessing software defect-proneness, which determine the probability of a
software component containing a bug without providing a real manifestation of an instance
of it [SJST11].

Defect detection should preferably occur at the development stage of the software since
end-users of the software would not be bothered by crashes or unexpected behavior of the
software in production [Som18, p. 256pp]. Nevertheless, in case end-users or developers
recognize a potential software defect, it is standard to report these in an issue tracking
system [Zel06, p. 27pp].

Manual Defect Detection Regarding bug detection in the development phase, there exist
several manual processes such as code walk-throughs (i.e., developers present their imple-
mented solution to other developers), code reviews (i.e., assessing the implemented solu-
tion by other developers), or formalized code inspections (i.e., formal individual and group
checks of the implemented code) [RATT06] [Wagl3, p. 121pp]. While formal processes
have been shown effective [Wag13, p. 124p], they are typically very costly and thus merely
worth it for severe bugs and critical systems. Therefore, the lightweight process of modern
code reviews is more applicable in practice, integrating code review in a Continuous Inte-
gration (CI) process, for instance, via the pull request mechanism by GitHub? [BBZ.J14].
Note that reviews or third-party audits of software (e.g., applied in a certification process)
not only encompass software product quality by the code itself but also consider its require-
ments, its software architecture, and its design, as well as an assessment of the software
development process [WTH ™24, p. 1-15p, p. 2-10p, p.3-13p, p. 12-1pp].

Automated Defect Detection Additionally, research effort was put into automated bug
detection. A typical distinction is between static and dynamic techniques where static
techniques consider the source code and binaries without executing them [APH08], while
dynamic techniques run the program, for instance, with test data [WTH" 24, p. 5-2].

Prominently applied static approaches are static code analysis [JSMHB13, ML23] [Wag13,
p. 128pp]. These comprise simple style checkers such as Checkstyle®, bug pattern detectors
such as PMD* and FindBugs® [APH"08] up to data and control analyzers such as Soot®
or its successor SootUp’ [KSK'24] as well as formal verification [Som18, p. 337pp] and
analysis techniques [WTH"24, p. 12-13] with tools like Java Pathfinder®.

The most prominently applied dynamic technique is automated testing [RAT06], [Zel06,
p. 53pp| [Wagl3, p. 134pp] [WTH'24, p. 5-1pp], which comprises steps to design test
cases, to create test input data, to execute test cases as well as to track and compare test

2https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/
proposing-changes-to-your-work-with-pull-requests/requesting-a-pull-request-review
last accessed: 2025/04/23

Shttps://checkstyle.sourceforge.io/ last accessed: 2025/04/23

“https://pmd.github.io/ last accessed: 2025/04/23

Shttps://findbugs.sourceforge.net/ last accessed: 2025/04/23

https://soot-oss.github.io/soot/ last accessed: 2025/04/23

"https://soot-oss.github.io/SootUp last accessed: 2025/04/23

Shttps://github.com/javapathfinder last accessed: 2025/04/23

25

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/requesting-a-pull-request-review
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/requesting-a-pull-request-review
https://checkstyle.sourceforge.io/
https://pmd.github.io/
https://findbugs.sourceforge.net/
https://soot-oss.github.io/soot/
https://soot-oss.github.io/SootUp
https://github.com/javapathfinder

Chapter 3. Fundamentals and Background

results [Som18, p. 260]. Automated testing is also accompanied by debugging, program
slicing, and logging techniques to essentially locate the bug origin [Zel06, p. 145pp, p.
167pp, p. 199pp|. Moreover, to reduce the manual effort of writing test cases, techniques
for automated test case generation [FA11, SJRT15] up to fuzzing, which aim to generate
a large set of test cases and input data to trigger hidden and sparse bugs (e.g., security
issues) [ZWCX22], were developed.

3.1.3. Taxonomy and Prevalence of AP| Misuses

We further consider the special software defect of API misuse, which we already defined as
a software defect characterized by a deviant API usage apart from the intended usage by the
API developer, which causes a negative software behavior. In detail, we present different
taxonomies and the prevalence of API misuses in light of ordinary software defects, as these
further emphasize the characteristics and relevance of API misuses.

APl Misuse Taxonomies There exist a few classifications of API misuses. Amann et
al. [ANNT19a] introduced the “API-Misuse Classification (MuC)” based on their previ-
ously collected APT misuse dataset MUBench [ANNT16]. They defined four APT elements
than can be misused, namely,

e method calls;

e conditions, which they further detailed into checks for null values, certain values or
states, synchronization mechanisms, or a certain context;

e iterations;
e and exception handling.

For all elements, they found examples of missing and redundant API elements in MUBench.

Li et al. [LJB"21] extended this classification based on an analysis of 528,546 bug-fix
commits from GitHub and added a further violation type of replaced API elements. These
denote false elements, which have to be exchanged for the correct ones. In detail, they
discussed replaced parameters, names, and receiver objects of method calls.

Based on a literature review, Schlichtig et al. [SSNB22] harmonized the “Framework
for API Usage constraint and Misuse classification (FUM).” First, they defined API
misuses as violating APl usage constraints. They denoted API usage constraints as a sub-
class of API directives that restrict a certain API usage (e.g., enforcing certain values for
parameters), and thus, a violation causes a misbehavior, such as crashes or vulnerabilities.
They referred to the more general term of API directives as a description of the correct
and optimal usage of an API (e.g., as statement in the documentation). Since they bind
API misuses to violated API usage constraints, they classify misuses based on the usage
constraints. In detail, they extended a taxonomy by Monperrus et al. [METMI12] on API
directives and declared constraints related to three parts of an API method, namely, its
return value, its method call, and its parameters. Then, they distinguish different API
misuses based on constraints for:

e the return value, namely, their constrained post-calls and post-null-checks;

e the method call, namely, their constrained call sequence, control of the method call
(e.g., using conditions), and forbidden method calls (e.g., outdated methods);

26

3.2. Code Representation for Code Analysis

e the parameters, namely, their constrained state, string format, number range, pre-
null-check, method parameter type, and method parameter correlations;

e multiple parts, namely, constrained exception handling, context (i.e., threading and
synchronization contexts), and other high-level constraints going beyond the API
method scope (e.g., interactions with the operating system).

Prevalence of APl Misuse In general, a few studies analyzed the amount of API misuses
among ordinary software defects. In detail, those studies considered historic bug fixes and
decided whether these fixes denote an API misuse. Zhong and Su [ZS15] found that half of
the changed source files within bug fixes in five open-source projects required at least one
APT-related change. A similar amount of 51.7% of edit operations related to API misuses
was observed by Li et al. [LJB"21] by analyzing 528,546 bug-fix commits from 220,053
projects from GitHub. Gu et al. [GWL"19] determined that =~ 17% of bug fix-related
commits from six open-source projects are related to API misuses. Thus, we denote that
API misuse represents a prevalent software defect type.

Using their introduced taxonomy MuC, Amann et al. [ANN"19a] found in the same
study using their previously collected dataset MUBench [ANN16] that more missing than
redundant API elements exist (i.e., 89 vs. 21 misuses) as well as most misuses were classified
as conditions (i.e., 52) and method calls (i.e., 43). Similar results were obtained by Kang
and Lo [KL21] on their AU500 dataset consisting of 115 APT misuses, which only consists
of missing API elements and most frequently conditions (i.e., 62) and method calls (i.e.,
51). Using the extension of MuC, Li et al. [LJB"21] classified APT edit operations based on
528,546 commits and also found more missing than redundant APT elements (219, 338 vs.
64,913). Most frequently, they found replaced APT elements (i.e., 220, 969) followed by API
calls (i.e., 196,307)°. Gu et al. [GWL"19] did not refer to a known classification, however,
found based on a sample of 830 API misuses that the most frequent one denotes violations
of the order of method calls (i.e., 27.2 — 42.5%), followed by improper error handling (i.e.,
19.5 — 34.1%), and improper parameter usage (i.e., 14.3 — 19.5%).

3.2. Code Representation for Code Analysis

In this section, we briefly discuss general-purpose code representations (cf. Section 3.2.1)
and a more detailed discussion on API-specific code representation (cf. Section 3.2.2),
most importantly on API Usage Graphs (AUGS), a data structure subsequently applied in
Chapters 5, 6, and 7.

3.2.1. General Code Representations

While source code representation for human developers is typically in textual form, com-
pilers, auxiliary tools in a development environment, and code analysis tools usually rely
on dedicated code representation. Most prominently known are token streams [ALSU14,
p. 43pp], Abstract Syntax Trees (ASTs) [Soml8, p. 217pp|, or just syntax or parse

9Li et al. [LJB"21] reported percentages for the related API misuse classes in Table 1 in their publication.
However, we were not able verify these numbers since the absolute reported number of API operations
(i.e., 576,515) differs from the sum of all distinct API operations from that table (i.e., 505, 220).

27

Chapter 3. Fundamentals and Background

trees [ALSU14, p. 45pp]. Moreover, Control Flow Graphs (CFGs) [All70], Program De-
pendence Graphs (PDGs) [O084] were invented to support intraprocedural code represen-
tation (i.e., within a method declaration), while system dependence graphs [HRB90] allow
interprocedural code representation (i.e., among method declarations).

3.2.2. API-Specific Code Representations

Even though general-purpose code representations are applicable to represent an API us-
age, such as demonstrated with ASTs [LZ05] or CFGs [JWL™24], research elicited code
representation particularly tailored for API misuses, namely, Graph-based Object Usage
Models (Groums), API Usage Graphs (AUGs), and extended AUGs.

Graph-Based Object Usage Model Nguyen et al. [NNP"09b] introduced the data struc-
ture of the Groum. It denotes a directed acyclic graph consisting of action nodes, rep-
resenting invocations (e.g., method calls, field accesses), and control nodes, representing
branching points in the code structure (e.g., if-conditions or loops). A Groum represents
the usage of multiple objects within a method declaration scope. The nodes are connected
by non-labeled edges representing the order and data dependencies. This way, the authors
emphasize that Groums denote a more compact representation than CFGs and PDGs.
Groums are automatically built using the ASTs within their GrouMiner tool.

APl Usage Graph Amann et al. identified that current API misuse detectors suffer from
an imprecise API usage representation, causing a significant amount of false negatives (i.e.,
not detecting misuses on average 45.8% in their analysis of related API misuse detec-
tors) [Amal8, ANNT19a]. Thus, they suggested a new graph-based data structure, API
Usage Graph (AUG), based on the previously described Groums. Similar to a Groum, an
AUG contains control as well as data flow information statically obtained from the AST.
The AUG concentrates on the representation of intraprocedural APT usages (i.e., API us-
ages within an individual method declaration). Amann et al. achieved promising results
by applying AUGs for API misuse detection [Amal8, ANNT19b], and thus, we used and
extended this data structure based on their publicly available replication package'’. Note
that there exists no formal specification on how to transform an AST to an AUG, and thus,
the implementation mainly forms a loose definition. Moreover, the definition of an AUG
mainly relies on the Java programming language.

Due to the prevalent usage of AUGs in this work, we present the main characteristics
of an AUG based on a small example presented in Figure 3.1, together with a graphical
representation also suggested by Amann et al. [ANNT19b]. Nevertheless, we also present
a formal definition of an AUG because first, this denotes a more precise and unambiguous
presentation of our interpretation of an AUG, and second, we use this definition to define
further concepts, such as similarity metrics introduced in Section 6.3.5.

Yavailable within their GitHub repository of their MUDetect tool https://github.com/stg-tud/MUDetect
last accessed: 2023/06/30

28

https://github.com/stg-tud/MUDetect

3.2. Code Representation for Code Analysis

Formally, we define an AUG aug as a directed, labeled, acyclic multigraph

aug ‘= (‘/7 E7 EVv 2E7 Sata lVa ZE)

where

e I/ denotes a set of nodes,
e F:V xV is a multiset of edges,
e Yy and X g denote finite alphabets of labels for nodes (i.e., V') and edges (i.e., E),

o s: = Vandt: F — V define functions mapping an edge either to its source node
(i.e., s) or its target node (i.e., t),

e [y :V — XYy and lg : E — Y denote the labeling functions.

From our sample code (cf. Code Listing 3.1), we extracted the AUG representing the
doSomething method and represented it in its graphical form (cf. Figure 3.1). In
general, the AUG consists of two main kinds of nodes, named action nodes (i.e., rectangles
in Figure 3.1) and data nodes (i.e., ellipses in Figure 3.1). An action node can represent an
APT method call (e.g., node QClass.requiresMore()) or certain control blocks (e.g., node
<return> denoting the return statement). Depending on the specific sub-type, action
nodes are labeled with their particular method name or control block (i.e., denoted by the
angle brackets <...>). Data nodes instead represent object instances and variables labeled
by their type (e.g., node BClass) or constants that are labeled by their raw value (e.g.,
node 42). The type resolution is made statically based on the currently parsed AST as
well as the enclosed source files and libraries'!. In case certain source code is missing, or
the type resolution fails to infer any type, a data node is labeled as UNKNOWN. In its current
implementation'?, an AUG can consist of 19 different action node types and six different
data node types. Formally, we determine the specific type of a node by defining the function
type : V. — String, which returns the type name as String-value. As an extension to the
AUG, we also define the function api : V' — String, which returns for each node in the
AUG its corresponding fully qualified type name (e.g., java.lang.0bject for node
Object.<init>) if it is resolvable.

Furthermore, the nodes in an AUG are connected via data flow (i.e., solid edges in
Figure 3.1) and control flow edges (i.e., dashed edges in Figure 3.1). In general, control
flow edges connect pairs of action nodes, while data edges connect pairs of data and action
nodes. In our example, we can observe that data flow edges can represent

e the usage of a value as a parameter in a method (i.e., para, such as data node 42 for
action node Object.<init>),

e the usage as a result of a method call (i.e., definition edge labeled as def, such as
action node Object.<init> that produces the object of type QClass),

e the usage as receiver object, on which an action is performed (i.e., recv, such as data
node QClass on which the action QClass.requiresMore is performed).

Hinternally, MUDetect uses the JDT type resolution from Eclipse https://eclipse.dev/jdt/ last accessed
on 2023/07/05
12date on the time of writing on 2023/06,/30

29

https://eclipse.dev/jdt/

Chapter 3. Fundamentals and Background

1 |package my.own.pkg.subpkg;

2

3 | import a.b.AClass;

4 | import a.b.BClass;

5 | import a.b.CClass;

6 |import x.y.ZClass;

7 | import my.own.pkg.QClass;

8

9 | public class Foo extends AClass {

10

11 BClass myB = new BClass(1337,"Bar");
12 CClass myC = new CClass();

13

14 protected ZClass doSomething(BClass b0bj) {
15 System.out.println("do Something")
16 QClass myQObj = new QClass(myB, 42);
17 if (myQObj.requiresMore ()){

18 myQ0bj.addData (myC) ;

19 }

20 return myQObj.merge (b0bj);

21 }

22 |}

Code Listing 3.1: Fictive code sample of an API usage depicted as AUG
in Figure 3.1.

do Something

1
1
1
\

\

yorder v\
\

\

—————

Figure 3.1.: Graphical representation of the corresponding AUG in Code Listing 3.1.

30

3.3. Finding Relevant Source Code Samples

In our AUG sample, the control flow edges describe

e the usage to denote the order between action nodes (i.e., order-edges, such as the
Object.<init> action is performed before the QClass.requiresMore() action)

e the usage to denote a branching of action as indicated by if-conditions (i.e., selection
edge labeled as sel, such as the action QClass.requiresMore() condition and the
action QClass.addData())

Note that due to static inference of the control and data flow information from an AST, its
precision is limited. Therefore, for instance, order-edges are generated conservatively by
forming a transitive closure between all pairs of subsequent action nodes. This transitive
closure drastically increases the number of order edges when having a larger number
of action nodes. Moreover, as indicated by the example, an AUG — in opposite to its
predecessor, the Groum — represents control structures as edges instead of nodes, such
as if conditions (i.e., selection edges labeled as sel) or loops, namely, for, while, or
do ... while constructs, (i.e., repetition edges labeled as rep). While Amann et al.
gave no clear justification for why they applied edges instead of nodes, it can be assumed
that they intended to reduce the overall number of nodes to keep an AUG as compact
as possible. The current implementation has four different sub-types of data flow edges
and eight different control flow edge types, which label the respective edges. Even though
an AUG is a multigraph, it allows at most one edge per type between a pair of nodes.
Therefore, the type of the edge can be formally obtained by the labeling function /g, and
thus, |Xg| denotes the number of different edge types.

Extended API Usage Graph Kang and Lo [KL.21] suggested an extension to AUGs named
EAUG to better depict certain characteristics of API usage. Similar to the original AUG,
these descriptions are based on the Java programming language and thus may be restricted
to these language specifics. The extensions mainly refer to more inserted edges as well as
additional node and edge types. Particularly, they

e handle different variables originating either from fields (i.e., from the class declaration)
and parameters (i.e., from the method declaration);

e take the different execution order of initialization (e.g., constructors, field initializers)
into account;

e explicitly mark subtyping and inheritance, which provides the information on usages
of own APIs or implementation of interfaces.

Based on their extension, they observed an improvement when applying their misuse de-
tection approach ALP (i.e., Actively Learned Patterns) presented in Section 5.2.4.

3.3. Finding Relevant Source Code Samples

A central idea of API misuse detection is to infer frequent patterns from previous code
examples. Therefore, a crucial element is to find relevant code examples from which patterns
can be inferred. This related software engineering task is known as code search. Thus, we
consider general aspects of code search (cf. Section 3.3.1) as well as specific code search
related to APIs (cf. Section 3.3.2) in this section.

31

Chapter 3. Fundamentals and Background

3.3.1. General Code Search

From previous surveys [LXL 21, DGP23], we know that code search is a software engineer-
ing task focused on finding relevant code examples from a code base. Relevance is related
to the developer’s intent expressed by search queries (e.g., as textual description or already
written source code).

The most frequently applied use case is code reuse (i.e., it represents 90% of the search
effort according to Liu et al. [LXT.721]). Nevertheless, retrieved code examples also serve
various other tasks such as code comprehension, learning APIs, bug and vulnerability
detection, code repair, and code synthesis [GVES09, SSE15, XBL"17, LXL 21, DGP23,
CPS24].

The research effort targets different aspects of code search. One aspect denotes the
applied query types, representing the search intent of the developer, which ranges from in-
formal text queries, code snippets (e.g., single methods and types, input-output examples,
or test cases), and queries written in domain-specific languages up to formal specifica-
tions [PP94, HM05, SC06, MGP'11, SED14, LXL*21, DGP23].

Other researchers concentrate on the indexing mechanisms, which — similar to informa-
tion retrieval techniques — structure the code base (e.g., targeting the source code, bina-
ries, or runtime trace indexing) to obtain faster and more effective code search [GVES09,
LXL*21, DGP23].

Other aspects refer to the granularity (e.g., single code elements, methods, classes, ap-
plications, or libraries) and the ranking mechanisms of search results (e.g., distance and
similarity metrics as well as clustering and filtering techniques) [LXL 21, DGP23].

The research area of code search assesses the recent advances in machine learning as
very impactful, particularly on Large Language Model (LLM). In detail, such models can
improve the comprehension of complex queries, the comparison mechanisms for code and
queries, the ranking mechanisms, the code clone search, the personalized search results, or
the answers to questions beyond code search (e.g., generating test code) [GZK18, LXL"21,
DGP23, CPS24]. Therefore, applying machine learning is an active domain. Another open
challenge in code search is the detection and representation of the user’s intent [CPS24].

3.3.2. API Code Search

There exist different flavors within API-specific code search. Omne branch considers the
recommendation of entire libraries for certain use cases [TLL13, WHW 22, L.ZP"23]. An-
other approach suggests potential features within a library [TWLL13]

Most frequently, we observe API code search targeting client developers by suggesting
API elements (e.g., single methods) up to API code examples or API usage patterns. Typ-
ically, these techniques use a known API type together with other code contexts or queries
to retrieve relevant API usages. For instance, Prospector [MXBKO05] suggests an object
creation process by finding code snippets taking existing parameter types together with a
targeted output type. Saul et al. [SFDB07] proposed a technique to find similar API meth-
ods given an API type and a certain function. There exist techniques applying textual
queries [CCL12], partially extending the code base to search in with the API documenta-
tion [LZL"15], and Q&A pages [RRL16] to improve search results. MUSE [MBDP " 15] and
AUSearch [ATLJ20] suggest real-world code examples for single API methods and types.
With the trend of machine learning techniques, specific API embeddings were developed,
which allow cross-language API code search [NNPN17, HXX ™18, CXLX21a].

32

3.4. Source Code Changes

3.4. Source Code Changes

In our work, we leverage change information of source code to detect and repair API mis-
use. These techniques are grounded on automated tools support of VCS presented in Sec-
tion 3.4.1, as well as the technique of repository mining, which we present in Section 3.4.2.
Moreover, we also discuss the general background of the research on API evolution, which
shares similarities to our discussed techniques as well as representing a potential cause for
API misuses (cf. Section 3.4.3).

3.4.1. Version Control Systems

According to Sommerville [Som18, p. 864], version control refers to a process that enables
developers to trace and manage changes in a software product, particularly to restore pre-
vious versions of software. Thus, Sommerville [Som18, p. 865] defines a Version Control
System (VCS) as an automated support of the version control process, which typically
provides centralized (e.g., SVN'?) or distributed code repositories (e.g., Mercurial'*, Git!®).
This way, developers can track single code differences (i.e., a set of added and deleted lines
of code), which we refer to as code hunks (cf. [CS25, p. 24]).

A VCS handles changes to a code base by summarizing them as a commit, which creates
a new version of source code and which is typically mapped with a commit message, a
textual description by the developer summarizing the change [CS25, p. 36pp]. Commit
messages can also link to identifiers from issue tracking systems, for instance, to denote
that a certain commit fixed a previously reported software defect [SZZ05].

Moreover, it provides the ability to manage multiple code versions in parallel so that
developers can work independently of each other. For this purpose, it applies a branching
mechanism, which copies a certain version into a separate development branch without
interfering with the original line of development (e.g., main branch) [CS25, p. 63pp].
Branches are typically labeled after a certain purpose (e.g., fix issue #42). After serving
the purpose of the branch (e.g., fixing an issue), the changes are merged, for instance, back to
the main branch. In case of conflicts (e.g., simultaneously changed source files), the VCS
provides conflict management to resolve them. This mechanism enhances collaboration
among multiple developers.

Finally, software developers use VCS to integrate continuous integration and deployment
processes, such as automated building and testing of committed changes and deployment
into production systems [Som18, p. 825pp].

3.4.2. Software Repository Mining

Term and Importance VCSs, together with the trend of open-source development and
advances in data mining, support the research field of Mining Software Repositories (MSR)
[KCMO7, Vid22]. MSR denotes the analysis of software repositories for various software
engineering tasks to unveil characteristics and relationships of the software development
process as well as to provide predictors for future software development [KCMO7, Vid22,
Sch24]. One indicator of this trend is the increasing International Conference of Mining
Software Repositories (MSR)'°, the major venue of MSR research present since 2004.

Bhttps://subversion.apache.org/ last accessed: 2025/04/30
Yhttps://wuw.mercurial-scm.org/ last accessed: 2025/04/23
Yhttps://git-scm.com/ last accessed: 2025/04/30
https://www.msrconf .org/ last accessed: 2025/05/02

33

https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/
https://www.msrconf.org/

Chapter 3. Fundamentals and Background

Process and Analyzed Topics In general, MSR is not limited to VCS as a data source
but also integrates data from issue trackers, archived e-mail communications, and Q&A
webpages. [KCMO07, Vid22]. In detail, Vidoni [Vid22] found that based on 146 MSR studies
from 2005 to 2020, a majority of them analyze VCS (i.e., 67% based on GitHub and 8%
on SourceForge) followed by multiple sources (e.g., VCS with Q&A pages) with 10%, and
7.5% on issue trackers (i.e., BugZilla). She complained that only 63% of the studies discuss
their repository selection and data extraction processes, and even worse, 69% of the studies
do not discuss data biases. Moreover, ethical and legal concerns arise in MSR, research
when creating and analyzing data from VCS systems [GK22].

Schwartz [Sch24, p. 28pp| derived a list of 18 different software engineering research
topics for which researcher apply MSR. Particularly, he discussed the topics of writing and
refactoring code, code comprehension, code smell and quality analysis, general development
aspects for entire projects, and human and team dynamics within software projects. More-
over, he identified six cross-cutting topics, one of them being the importance of machine
learning techniques.

MSR research is also supported by tools [CSS13], with two prominently known tech-
niques, named BOA [DNRN13]'7, providing a domain-specific language to analyze snap-
shots of repository data, and PyDriller [SAB18]'®, a Python library to interact program-
matically with source code repositories.

3.4.3. API Evolution

API evolution refers to the changes of an API and, thus, in the respective library [BR22].
Since APIs are a part of a software product, these evolve similarly to ordinary software
products [LLGS21]. Having an intended change by API developers, [BR22] defines the
following steps typically conducted when API changes:

1. Denote the API deprecation, meaning to mark API elements that should be no longer
used, most presumed since they will be removed in subsequent API versions.

2. Create or update the API documentation, marking the changes as well as the depre-
cation.

3. Informing the client developer of the change and the deprecation of API
4. Client developers react to change, typically by A Pl migration steps on the client side.

API Deprecation When API developers deprecate an API element, they flag this element
to communicate to client developers that they shall not use it anymore. Such a flag can be
the @Deprecated-annotation in Java'?. The intention can be that this API element will
be removed in subsequent versions or its maintenance will be ceased. Not properly depre-
cating APIs can cause breaking changes, for instance, directly removing an API element,
which instantly causes errors in the client code [BVXH20].

Research supports API developers by providing guidelines and processes for proper API
deprecation handling [EZG14, SAvDBI18, MBS*19]. Moreover, Brito et al. [BHVRI16]
analyzed positive factors correlated with better deprecation messages by API developers,

Yhttps://boa.cs.iastate.edu/ last accessed on 2025/05/02
Bhttps://pydriller.readthedocs.io/ last accessed on 2025/05/02

19¢f. https://docs.oracle.com/en/java/javase/22/core/how-deprecate-apis.html last accessed on
2025/02/14

34

https://boa.cs.iastate.edu/
https://pydriller.readthedocs.io/
https://docs.oracle.com/en/java/javase/22/core/how-deprecate-apis.html

3.4. Source Code Changes

for instance, small project size, large community, and more activities in the project. Kao
et al. [KCJ22] introduced a technique to assess the potential impact of breaking changes,
for instance, assessing the number of affected client applications. This impact data can
help API developers to take special care for large breaking changes. Avoiding breaking
changes, such as incompatibilities of the client code to a certain API version, can be achieved
with principles like backward compatibility, which is successfully applied in the Android
framework [HLW*18].

Create or Update APl Documentation After updating the client code, API developers
have to take care that the documentation evolves similarly so that client developers can
review the changes between versions. For this purpose, Moreno et al. [MBP17] suggested
a technique to automatically generate release notes, which summarize the essential changes
made between the two versions. Similarly, Dagenais and Robillard [DR14] presented a
technique to identify the most relevant code changes, which an API developer can include
in their documentation.

Informing the Client Developers A typical technique to inform client developers on dep-
recated APIs or breaking changes is the version number, namely, by applying so-called
semantic versioning [RvV17]. However, since versioning is a manual process, API de-
velopers do not use the versioning consistently [RvV17]. For this purpose, automated
techniques to detect possibly non-documented breaking changes in the client code were
suggested [ZW16, VKC21].

API Migration Having a deprecated API, client developers should change the code so that
no deprecated API elements are used, thus avoiding future breaking changes. However,
research observed that still many deprecated APIs are used [SRB19, WLLC20]. Thus,
different automated support for API migration was suggested. Three typically observed
migrations are:

a) migration of client code from one API version to another (typically a subsequent)
one;

b) migration of client code from one programming language to another;

c¢) migration of client code from one library, and thus API, to another one.

Much research was conducted in supporting the migration of code among different API ver-
sions (i.e., a)). A certain insight is that many migration issues could be handled by refac-
toring tools [DJ05, XS06]. Other techniques record and replay previous migrations [HDO05],
suggest API replacements or migration mappings [RBK 13, HCP'21], mine migration
rules [STM08, NNW+10, WGAK10, MWZM12, LS18, XDM19, LSC22, WY22, ZDAT22,
RML 23], or directly update the source code [HTL"21a, HTL"21b]. Early techniques to
migrate client code among programming languages (i.e., b)) used API mappings [ZTX"10],
while more modern machine learning-based techniques leverage an embedding to relate API
elements [NNPN17, CXLX21bh, ZWX"23]. For cross-library migration (i.e., c¢)) similar
techniques were used for finding API mappings [TFB13, DND'25]. There exist other spe-
cialized migration techniques, such as migrating tests of graphical user interfaces [QZW19]
or techniques fixing deprecated client software during runtime [DPZ™22].

Moreover, Arvedahl [Arv18] described a technique applied in the industry that avoids
the usage of deprecated API elements by client developers.

35

Chapter 3. Fundamentals and Background

3.5. Frequent Pattern Mining

A number of static API misuse detection techniques build on the data mining technique
of Frequent Pattern Mining (FPM). Particularly, these techniques conduct FPM on API
usages (e.g., code examples represented as token streams or ASTs) to obtain patterns as
specifications of the APT usage. This technique is also known as (API) specification mining.
In this section, we dive into the state of the art of FPM first, to understand the terminol-
ogy used in FPM and advances made so far, and second, to assess the FPM techniques
applied for API specification mining. This section is mainly based on the textbook on
Frequent Pattern Mining edited by Aggarwal and Han [AH14] and particularly, the chap-
ters on the introduction to FPM [Aggl4] (i.e., Chapter 1), FPM algorithms [ABH14] (i.e.,
Chapter 2), pattern-growth techniques [HP14] (i.e., Chapter 3) interesting patterns [VT14]
(i.e., Chapter 5), sequential pattern mining [SWH14] (i.e., Chapter 11), and graph pattern
mining [CYH14] (i.e., Chapter 13).

3.5.1. Problem Statement of Frequent Pattern Mining

FPM targets the inference of interesting relationships in the form of patterns between items
in a given database. This rather generic description can be further specified by zooming
into the emphasized characteristics of FPM.

Interesting Patterns First, FPM focuses on interesting patterns. Interestingness is a
highly subjective term according to the use case at hand for which FPM is conducted. For
instance, for the well-known example of market basket analysis (i.e., determining groceries
frequently bought together) [Aggl4, VL16a], the interestingness can be measured by the
frequency (i.e., how often certain groups of groceries are bought together) as well as by other
metrics, such as which groups of groceries obtain the highest profit. This frequency may
be interesting for owners of grocery stores to optimize their supply and, thus, their profit.
According to the topic of API specification mining, interesting patterns represent correct
APT usages that accurately discriminate correct from false applications of an APT [WNO5,
AX09]. Even though many FPM techniques measure interestingness via the frequency of
items within a given dataset, frequency yields not always the aspired patterns as seen in
generic pattern mining use cases [VT14] as well as in API specification mining [LW09,
LL15, ANN*19a]. We discuss different interestingness measurements in Section 3.5.3.

Items Second, FPM considers different abstractions of items for which patterns should be
inferred. These items, as well as their patterns, represent different kinds of features, such
as groceries bought in a store [Aggl4] or API method calls in the source code [RBK"13].
But items and patterns are also represented in different kinds of data structures, such
as itemsets, sequences, or graphs [RBK 13, SWH14, CYH14]. Different data structures
are applied to entangle certain mandatory or aspired relationships into the mining pro-
cess [Aggl4]. For instance, source code has a strict structure defined by the grammar of
the respective programming language, which can be represented by an AST or a CFG.
This structure enforces the inference of syntactically correct patterns (i.e., sub-ASTs or
sub-CFGs). This benefit, however, is at the expense of transforming the items into the
respective data structure as well as processing the mining with more sophisticated algo-
rithms.

36

3.5. Frequent Pattern Mining

Database Finally, FPM is conducted on a database that contains so-called transactions
of items [Aggl4]. Depending on the applied data structure, this database consists of differ-
ently structured transactions (e.g., a set of itemsets, sequences, or graphs). The database
has two important properties. First, if a pattern is not present in a database, standard F'PM
techniques cannot infer it [Agg15]?Y. Second, if the interestingness measurement depends
on some characteristics of the database, such as its size [V'I'1/], the inference of patterns is
influenced by the database. This influence means that having a meaningful database from
which to mine patterns is crucial obtaining interesting patterns.

We summarize the problem statement of FPM in the following formal description: The
goal of FPM is to extract the pattern set P from a database D consisting of transactions
T1,---,T, such that for an interestingness measurement function w.r.t. D denoted fp and
a user-defined minimal interestingness threshold Fj,;, it holds Vp € P : fp(p) > Fin’'.

3.5.2. Mining Algorithms

A simple instantiation of the problem described above is the frequent itemset mining, whose
description we base on Aggarwal et al. [ABH14]. Here, the database transactions represent
single sets of items, and the interestingness measurement (i.e., function fp) is based on
frequency, namely, the support of a pattern p. The support denotes the proportion of
transactions 71, --- , T}, in the database D that contains the pattern p. Thus:

TilpeT;, NT; € D
supportp(p) = [Tl |})| Z i

The output of the mining algorithm is the set of all p; € P, which support achieves a
minimal threshold, namely,

supportp(p;) > MiNsupport-

We refer to mingupport as the minimal relative support while | D] - minsupport = MiNsupport .
denotes the minimal absolute support (i.e., the minimal absolute number of transactions in
D containing pattern p).

Naive Algorithm A naive algorithm is to enumerate all possible candidate patterns (i.e.,
all possible non-empty sub-itemsets among the transactions in D) and check whether each
candidate satisfies the minimal support condition. This algorithm, however, is not feasi-
ble since, for the itemset mining, there exist at least 2™ — 1 possible candidates [VT14,
VL16b]??, where m denotes the number of distinct items in the database D. Then, for each
candidate at most |D| —minsypport,,, + 1 entries need to be checked (i.e., to denote whether
a candidate is infrequent). Having a large number of transactions (i.e., |D|) together with
a typically low mingypport and/or a large number of distinct items (i.e., m) hinders efficient
pattern inference.

20assuming patterns are not altered afterward independently of the database

21This definition is similar to the formalization of theory mining [MT97]. However, in theory mining, the
condition denoting interestingness is generalized to be a boolean formula. In our definition, we assume
that interestingness is an ordinal value, which is sufficient for our use case.

2Zpower set of all item sets minus the empty item set

37

Chapter 3. Fundamentals and Background

Apriori Algorithm A breakthrough was achieved by Agrawal and Srikant [AS94] as well as
Mannila, Toivonen, and Verkamo [MTV94], who, independently of each other, developed
the Apriori algorithm to efficiently mine association rules. Association rules are based
on a database of itemsets D and have the form A — B with AN B = () where A and
B denote sub-itemsets from D. A sub-problem of mining association rules is the above-
stated itemset mining problem. After computing the support of each itemset (e.g., A
and B), one can easily obtain the association rules by computing the confidence of a
rule A — B denoted as the ratio of supportp(A U B) and supportp(A) and selecting
those rules exceeding a minimum confidence. For support computation, they effectively
pruned the candidates’ space by leveraging the anti-monotonic [Leu09] or Apriori property
of the support function, namely, if pattern p is a subpattern of p’ (i.e., in case of itemsets
p C ') and supportp(p) < minsupport then supportp(p’) < mingypport holds. The Apriori
algorithm enumerates the candidates beginning with itemsets of size k = 1 (i.e., single
items) and selects those that satisfy the minimal support condition. These candidates form
the set of frequent 1-patterns, while the others are removed for further analysis since their
extensions (i.e., supersets) would not produce any frequent patterns. To produce the next
k + 1 candidates, we join all pairs of frequent k-patterns (i.e., in itemset mining using the
union operation). This procedure is iteratively repeated until no further frequent patterns
are found [ABH14].

Closed and Maximal Patterns Even though efficient, this standard algorithm has some
drawbacks [ABHI14]. First, often the same patterns are generated and tested. Second,
many patterns represent subparts of even larger patterns and thus tend to be redundant.
Third, for each support condition check, one needs to process almost the complete database.
These drawbacks impact the practical applicability since the mining produces a too-large
set of possible uninteresting redundant patterns, as well as frequent re-processing of the
database, increasing the mining time.

To reduce the number of redundant patterns, the notion of closed [PBTL99a] and mazi-
mal [Bay98] patterns was introduced. Closed patterns denote those patterns for which no
frequent superpattern exists having the same support. For itemset mining, a closed pat-
tern is denoted as a pattern p € P (note that all p € P satisfy supportp(p) > mingsupport)
is closed if #p’ € P : p C p' A supportp(p) = supportp(p'). Instead, maximal patterns
denote closed patterns for which all superpatterns are not frequent at all. Formally, this
means p € P is maximal if #ip’ € P : p C p/. This way, mining only closed or maximal
patterns reduces the number of results significantly since they encapsulate many or all of
their subpatterns [ABH14]. Moreover, several algorithms leverage these properties by ig-
noring non-closed and non-maximal patterns in the mining process (e.g., Close [PBTL99b],
CLOSET [PHMO00], MaxMiner [Bay98]). Details on such algorithms are described by Ag-
garwal et al. [ABH14]. Note that while for closed patterns, we can derive the support values
for each subpattern, maximal patterns lose this information [ABH14].

Further Optimizations There exist several optimizations of the Apriori algorithm mainly
to scale and speed up the mining process, for instance, by simplifying the transactions in
each iteration step (e.g., AprioriTiD [AS94]) or by reusing the counting work for the support
(e.g., with direct hashing and pruning, DHP-algorithm [PCY95]). Another group of efficient
mining algorithms is formed by pattern growth algorithms [HP14]. These algorithms get
rid of the tedious candidate generation by applying sophisticated data structures to track

38

3.5. Frequent Pattern Mining

and reuse the counting work and infer patterns recursively by building database projections
of the original database (e.g., frequent pattern growth or FP-growth algorithm using FP-
trees [HPY00]).

Sequence and Graph Mining Finally, significant effort was put into the development of
algorithms handling more complex data structures than itemsets. We consider algorithms
for sequence [SWHI14] and graph mining [CYHI14] since these were mainly used in the
domain of APT specification mining [RBK™13].

According to Shen et al. [SWH14], Frequent Sequence Mining (FSM) is defined as follows:

A sequence denotes an ordered list of itemsets s;, namely, (si,---,s;). A sequence o =
(a1,--- ,an) is denoted a subsequence of 5 = (by,- -+ ,by,) if
Jj1, g1 <51 < -o- < g <my, such that aq C by, -+ ,a, C by,

(i.e., denoted as o C 3).

This definition allows some intermediate itemsets in a sequence to be skipped in subse-
quences (e.g., removing noise in long sequences). The transactions in the database of FSM
represents sequences together with their identifier. The absolute support of a sequence «
denotes the number of sequences s in D that satisfy « = s. The relative support (i.e.,
supportp(«a)) is defined similarly as stated above by dividing the absolute support by the
number of all entries in D. The goal of FSM is to find all pattern sequences « that satisfy

supportp(a) > minsypport-

Previous work performed FSM by applying the Apriori-like algorithms on sequences (e.g.,
AprioriAll [AS95], GSP [SA96], PSP [MCP98]). These algorithms create new candidate se-
quences by joining frequent sequences overlapping in all but the first and last element.
Moreover, there exist also pattern-growth-based algorithms (e.g., FreeSpan [HPM™00],
PrefixSpan [PHM01]) with some extensions to mine closed sequence patterns (e.g., Clo-
Span [YHAO3], BIDE [WHO04]).

According to Cheng et al. [CYH14], Frequent Graph Mining (FGM) aims to find frequent
subgraphs in a set of graphs?®. In detail, assume a graph g, its vertex set V(g), and its
edge set FE(g), as well as its label function [. Then, g is a subgraph of ¢’ (i.e., g C ¢')
with ¢’ having the label function [’ if there exists a subgraph isomorphism. A subgraph
isomorphism denotes a function

f:V(g) = V(¢), such that Vv e V(g): l(v) =U(f(v))
and
V(u,v) € E(g) = (f(u), f(v)) € E(g)A
H(u,v) =1 (f(u), f(v)).

FGM is based on a database D of graphs gi,--- , g, to retrieve graph patterns g,, which
form a supporting set Dy, = {gi|9p C gi,9: € D} and which satisfy

|Dgp|
DI

= supportp(gp) > MiNsupport-

23Graph mining can also be considered as finding frequent subgraphs in a single, large graph (cf. [CYHI14)).
Since this problem definition is usually not used in API specification mining, we do not detail it in this
work.

39

Chapter 3. Fundamentals and Background

This definition means that finding frequent graphs requires frequently solving the general
subgraph isomorphism problem, which is known to be NP-complete [Epp99]. Moreover,
when performing Apriori-like algorithms, we need to generate candidate graphs by joining
frequent subgraphs by extending them via nodes or edges. This generation, however, de-
notes an exponential increase in the candidate space and, thus, the mining effort [CYH14].
Known algorithms to solve the FGM problem are Apriori-based (e.g., AGM [ITWMO00] and
FSG [KKO01]), pattern-growth-based (e.g., gSpan [YHO02]), as well as different specializa-
tions to mine closed graph pattern (e.g., CloseGraph [YHO03]).

3.5.3. Interesting Patterns

We discussed that one main goal of FPM is to infer a set of interesting patterns, namely,
patterns suitable for a certain use case. As discussed in the previous section, many mining
techniques apply the support (i.e., frequency) measurement for this purpose. This approach
is reasonable since it exhibits the anti-monotonic or Apriori property, which allows effective
pruning of the candidate search space. However, support does not always yield interesting
patterns or produces many similar and, hence, redundant patterns.

This behavior has also been demonstrated in the domain of API specification mining
and API misuse detection. Le and Lo [LL15] discussed in rule-based API specification
mining (i.e., finding association rules for API elements) that support and confidence do
not represent optimal measurements when comparing 38 different measurements. Amann
et al. [Amal8, ANNT19a] observed problems when ranking violations of patterns (i.e.,
APT misuses) based on the respective pattern’s support, namely, these violations are not
necessarily correct.

To target this issue in FPM, many different interestingness measurements have been
suggested [VT14]. However, most of these do not exhibit the Apriori property. Thus,
it is common practice, first, to mine frequent patterns using support and then to rank
and filter those patterns using one or multiple interestingness measurements. Vreeken and
Tatti [VT14] distinguish interestingness between absolute and advanced measurements.

Absolute measurements use mainly the pattern itself to assess interestingness without a
broader context. These measurements target the previously introduced closed and mazimal
patterns but also pattern types such as free (i.e., no frequent sub-patterns with equal
support) [BBRO3] or robust patterns (i.e., patterns inferred from multiple, random subsets
of the database) [TMCI14]. More complex techniques apply Markov-Chain Monto-Carlo
sampling [BMG12] as well as tile mining (i.e., in itemset mining tiles represent frequent
areas among the rows of transactions and columns of items) [GGMO04].

Due to their limited context knowledge about other patterns, these algorithms do not
necessarily find statistically different patterns (i.e., they do not exhibit a notion of surprise).
This issue is targeted by advanced measurements. Particularly, these measurements rep-
resent to which degree a pattern deviates from the expected statistical model. A simple
function is the [lift, which is denoted according to an association rule A — B as:

supportp(AU B)
supportp(A) x supportp(B)

lift(p) =

The li ft compares the frequency of a rule to the frequency suggested by the independence
model and thus describes how surprising the rule is according to a uniform distribution.
This same notion has been further extended by starting with a simple statistical model
and refining it with each newly inferred pattern. This way, the statistical model learns to

40

3.5. Frequent Pattern Mining

assess whether new patterns are significantly different from previously inferred ones. Such
models use a Bayesian model [JS04] or the principle of maximum entropy [TM10].

3.5.4. Databases for Mining

General

As stated before, a database is a crucial element to successfully infer meaningful

patterns. Thus, the creation of such a database requires special care. Aggarwal [Aggl5]
discusses three essential data preparation steps for data mining:

1. extracting features as applicable data structures, namely, extraction from raw data
and its abstraction as known data structures (e.g., sequences or graphs)

2. cleaning the data, namely, filtering erroneous data or estimating missing data

3. reducing data size, selecting data features, and/or transforming data, for instance,
data reduction by sampling, feature selection by summarizing correlated data via re-
defining features (e.g., using principle component analysis - PCA), and transforma-
tion by changing data structures (e.g., transforming complex data into less complex,

multidimensional data)

Especially the third step strives for the two goals of (1) a smaller dataset that is more
likely efficiently processed by more precise mining algorithms and (2) a purpose-related
data selection and transformation, which can increase the quality of data mining results.

More generally, the whole data min-
ing process, including the preparation of
a meaningful database, has been summa-
rized in the industrial process CRISP-DM
(i.e., CRoss-Industry Standard Process for
Data Mining) [CJCaK*00, MPCOF*21].

This process consists of several phases, as
depicted in Figure 3.2. We focus on the fol-
lowing four specific components of that pro-
cess (emphasized in gray) that we find im-
portant for creating a meaningful database
based on the discussions by Chapman et
al., Schroder et al. and Martinez-Plumed
et al. [CJCaK*00, SKG21, MPCOF+21]:

° @ business understanding
° data understanding

° @ data preparation

° @ data

~ — 3
Data
Understanding

A
Business
Understanding
| S
Q Data G
- Preparation
| Deployment I
Modeling

Evaluation

Figure 3.2.: CRISP-DM according
to Martinez-Plumed et
al. [MPCOF*21] with focus
on the steps for producing the
database (i.e., in gray)

Business understanding (cf. @) considers the specific domain in which a data mining
project is planned and thus defines its goals and provides justification for certain data
mining processes and techniques targeting this domain [CJCaK ™00, SKG21].

Within the data understanding (cf.) step, a first data collection is conducted, which is
accompanied by a discussion of potential data sources as well as the provision of descriptive

41

Chapter 3. Fundamentals and Background

information on the data, for instance, to detect data issues (e.g., data biases) [CJCaK 00,
SKG21]. According to CRISP-DM, business and data understanding are conducted in an
iterative manner.

The data preparation (cf. @) step denotes processes and techniques to obtain the final
dataset. In detail, it encompasses the cleaning of data as well as several mechanisms for
selecting and transforming the data. It is usually processed in an iterative manner together
with the modeling step (e.g., including training a machine learning model or conducting
FPM) [CJCaK ™00, SKG21].

Martinez-Plumed et al. [MPCOF"21] also discussed that modern applied data science
can differ from these strict steps denoted by CRISP-DM towards more loosely combined
components. In detail, they suggest the inference of several different data science trajecto-
ries consisting of these steps together with further activities depending on the specific data
science task. Nevertheless, business and data understanding, as well as data preparation,
are still important steps in their view.

Moreover, they detailed the Data block (cf. @) with four important activities:

e acquisition, namely, collecting or producing relevant data
e simulation, namely, creating data via simulation, particularly for complex systems

e architecting, namely, exploring different layouts of the data (i.e., logically and physi-
cally) and using different data sources

e release, namely, publishing and making the data accessible

API-Specific Implications As a consequence, it is important for a successful generation of
datasets representing API usages for API specification mining to adhere to these previously
discussed steps. In detail, we require a business understanding, namely the domain of APIs
and libraries, as discussed in Sections 3.1.1 and 3.1.3.

Moreover, a data understanding is required, particularly with specific data structures
representing API usage, as discussed in Section 3.2.2.

Regarding the data preparation, we discussed potential data sources with code repos-
itories as well as techniques such as code search and repository mining (cf. Sections 3.3
and 3.4.2). This way, we have to critically review existing data sources of API usages
and misuses, together with their preparation steps, and discuss potential implications on
subsequent applications (e.g., API misuse detectors).

Regarding the dataset itself, we focus on publically available datasets and provide our
datasets of API usage in respective replication packages.

3.5.5. API-Specific Usage Pattern Mining

Amann et al. [Amal8, ANNT19b] presented a mining algorithm to infer frequent AUGs
(cf. Section 3.2.2) as API usage patterns.

Mining Algorithm In essence, this algorithm applies the Apriori algorithm with closed
graph mining [Amal8, ANNT19b]. The miner iteratively grows patterns from single AUG
nodes to frequent subgraphs using the neighbor edges from single transaction AUGs from
a database (i.e., AUGs of API usage examples). The extension of pattern candidates is
obtained by clustered isomorphic subgraphs, which makes closed pattern mining much

42

3.5. Frequent Pattern Mining

more efficient. Since the general problem of subgraph isomorphism is known to be NP-
complete [Epp99], they apply a graph vectorization named Ezas vectors [NNP09a]. The
assumption is that if the hash values of two graph vectorizations are equal, both graphs
are considered isomorph. While this heuristic over-approximates the number of isomorphic
extension graphs, they found promising results for their miner, particularly for API misuse
detection [ANNT19b]. They determine the support of each pattern candidate and report
those patterns exceeding the minimal support value (i.e., minsupponabs).

Configurations Amann et al. [Amal8, ANNT19b] applied different support definitions®*,
which can be configured, namely

e within-method support - counting all pattern occurrences
e cross-method support - counting all methods containing a certain pattern candidate

e cross-project support - counting all projects containing a certain pattern candidate

Moreover, one can configure the minimal and mazimal pattern size (i.e., number of
nodes) to further restrict the number of pattern candidates during mining. Finally, they
provided and tested wvarious ranking mechanisms for the reported patterns, going beyond
pure support.

**based on the code base from MUDetect https://github.com/stg-tud/MUDetect last accessed:
2023/07/11

43

https://github.com/stg-tud/MUDetect

AP| Misuse Root Causes & Prevention

In this chapter, we analyze the root causes and prevention mechanisms of Application
Programming Interface (API) misuses. Preventing known root causes of API misuses would
avoid the detection and the repair, which we separately discuss in the chapters 5, 6, and 7.

4.1. Methodology and Structure

RQ C&P API Misuse Causes & Prevention We tackle the Cha‘uenge of miss-
ing an overview of root causes

RO.CEP-CAR) RQ C&P-P API and their prevention mechanisms
Misuse Causes | L M'sh‘/’lz:;:‘i’:m"zw" of API misuses, and thus, we
RQ C&P-S target RQ C&P. Particularly,

:L%i?:,‘,on we determine the state-of-the-art

on API misuse root causes (i.e.,
RQ C&P-C) and their preven-
tion mechanisms (i.e., RQ C&P-
P). Subsequently, we combine those results to assess whether state-of-the-art research on
prevention sufficiently targets all found API misuse root causes (i.e., RQ C&P-S).

We answer these questions by applying Systematic Literature Review (SLR) and qualita-
tive research methodologies from the field of software engineering research according to the
ACM SIGSOFT Empirical Standards [RAB"20]. In particular, we use the methodologies
from guidelines on SLR [KC07, Woh14] as well as on qualitative research [F1i14] when col-
lecting and summarizing the state-of-the-art (i.e., for research questions RQ C&P-C and
RQ C&P-P). Finally, we determine research opportunities by summarizing the results in
a structured way.

Subsequently, we target RQ C&P-C in Section 4.2 by first stressing the limitations of
related surveys (cf. Section 4.2.1), presenting our concrete methodology and our results
on the overview of API misuse root causes (cf. Section 4.2.2), as well as their limitations
in the threats to validity (cf. Section 4.2.3). Section 4.3 targets the research questions
RQ C&P-P and RQ C&P-S. In a similar structure as in Section 4.2, we provide the
overview of and the difference to previous surveys on prevention (cf. Section 4.3.1), describe
our methodology and the results of the SLR (cf. Section 4.3.2), and thus the answer
to RQ C&P-P. Based on this, we discuss limitations and further research abilities by
combining the results on API misuse causes and their prevention (cf. Section 4.3.3). We
discuss the limitations of these results in Section 4.3.4. We summarize the main results
and answers to sub-research questions in Section 4.4.

45

Chapter 4. API Misuse Root Causes & Prevention

4.2. API Misuse Causes

RQLCEP AP Minrse Cooes & Provertion In this section, we discuss the question of the
S root causes of API misuse, namely RQ C&P-

— [W]_l vt C. For that purpose, we conducted an SLR pro-
El::&t” cess to collect related research, applied open

coding to analyze the causes of API misuses and

v mapped them to their applied scientific method-

ologies to assess their scientific evidence.

4.2.1. State-of-the-Art
Meta-Analyses on APl Misuses Causes

There exist many surveys (i.e., SLR and map-

ping studies) based on primary studies con-

cerned with the root causes of API misuses.

> However, those SL.Rs and mapping studies lack
a complete overview of the state of the research.
Table 4.1 illustrates this lack by the summary
of those literature analyses.

We found that those surveys typically concentrate on a single API misuse causes like:

e issues caused by API evolution, such as API deprecation [LGS21, BR22]
e API documentation [NAP18, CV(G19)
e API usability [Zib08, BFHMI12, RTP19, PDHR23]

Exceptions were works by Ochoa et al. [OHG"25] and McGregor [McG23], in which both
considered multiple root causes.

Except for the literature review by Zibran [Zib08], all studies documented their process
to retrieve related publications. We observed that our analysis (cf. gray row in Table 4.1)
obtained comparable results with respect to the analyzed time frame and number of ana-
lyzed papers. An exception regarding the number of analyzed publications was the study
by Lamothe et al. [LGS21], which broadly investigated the general topic of API evolution
having softer rules for inclusion, for instance, no restriction on the type of study.

In more detail, next to the considered root causes, the studies differed in the methodology
and, thus, their results. Lamothe et al. [LGS21] provided a quantitative overview of research
topics related to API evolution (i.e., maintenance, usability, and others), contribution types
of APT evolution studies (i.e., mostly tools and techniques as well as empirical studies), and
the applied evaluation methodologies and metrics. Similarly, Bonorden and Riebsch [BR22]
analyzed the topic of API deprecation and provided a quantitative overview of profiteers
of these studies (i.e., mostly human stakeholders), contribution types of the studies (i.e.,
mostly descriptive knowledge and technical solutions), research strategies (i.e., mostly data-
driven), types of analyzed APIs, and analyzed aspects of deprecation (i.e., mostly client
developer-side than API developer-side).

The root cause of API documentation was the focus of the literature review by Nybom
et al. [NAP18]. They provided a quantitative overview of techniques and approaches to
generate and support API documentation, as well as evaluation metrics and techniques
used in the analyzed studies. Moreover, Cummaudo et al. [CVG19] inferred a taxonomy

46

4.2. API Misuse Causes

Table 4.1.: Overview of related systematic literature analyses on API misuse causes com-
pared to ours

Misuse Causes Reference #Publications Time Frame
. [LGS21] 369 1994-2020
APLevolution [BR22] 36 2005-2021
. [NAP1S] 36 2000-2016

API documentation [CVG19] 51 NA2019
[Zib08] NA NA

API usability [BFHM12] 28 2004-2011
[RTP19] 47 1998-2018

[PDHR23] 65 1974-2021

client developer, API usabil- [McG23, p. 13pp] 73 NA-2023

ity, API documentation

APIT installation, API code, [OHG™25] 35 1996-2023
API evolution, API documen-

tation paired with licensing

and domain-related issues

General Ours 65 2007-2023

and provided a quantitative overview of research directions on API documentation support
depending on research subjects and evaluation methodologies.

The aspect of API usability was investigated in the literature review by Zibran [Zib08],
particularly factors influencing them, which were summarized in a qualitative way. How-
ever, their review has only limited information on the review process and their selected
publications. This missing information hardens the traceability of their results. Burns et
al. [BFHM12] also considered API usability with a focus on recommendations on design as
well as the applied evaluation metrics and techniques of the analyzed studies. Their results
were provided as a qualitative summary. Instead, Rauf et al. [RTP19] gave a quantitative
view of APT usability with a focus on applied methodologies for API usability analysis (i.e.,
more empirical than analytical methodologies), the kind of contribution of the studies (i.e.,
mostly new evaluation approach), and a qualitative overview of usability factors among
the studies together with their evaluation metrics. Patnaik et al. [PDHR23]| also provided
a quantitative overview of recommendations implying API usability but with a focus on
security APIs. Particularly, their results emphasized the differences between software engi-
neering and security research regarding recommendations for API usability and the limited
evaluation of security-related studies.

The literature review by McGregor (cf. [McG23, p. 13ff]) found misuse causes regarding
the client developer (i.e., API and domain learning issues), the API usability, and the API
documentation. In detail, he also focused on security APIs and, particularly, mapped the
root causes onto potential security threats. A detailed enumeration of single sub-causes for
usability and documentation related to the surveyed publications was given in Table 2.2
(cf. [McG23, p. 16]) and Table 2.3 (cf. [McG23, p. 22]) of his dissertation.

In their recent survey, Ochoa et al. [OHG " 25] analyzed primary studies on APT usages,
misuses, and repair techniques. Within their survey, they also considered root causes, how-
ever, they focused on technical issues, particularly on the installation (e.g., configuration),
the code (e.g., software defects in libraries), the API documentation, the API evolution

47

Chapter 4. API Misuse Root Causes & Prevention

o I
®
8 § € 8
Y] S S
v o 7] 5
) Ol © ¢ ® (8-
6 relevant
nitial | 16 PaPETS [initial set ——— -
Search | (Single Extended 19 relevant .
.] Coding and
(Search Reviewer) 5 partiall Search .
String ? t v (Forward Extended Set Writing Categorizing
relevan X
Google and 121erS (Two - Textual Sﬁfnpr:::ers ozAPI MISUZE
Scholar) Backward | PP Reviewers) |47 partially Summary auses an
Snow- relevant | Meth'o-
balling) dologies

|

Figure 4.1.: Overview of SLR process for meta analysis of API misuse causes and the re-
search methodologies

(e.g., due to changing requirements in client code) as well as related issues due to the
license and the specific domain. However, their discussion does not encompass human
factors, such as our survey.

In general, these studies give overviews of certain aspects of API misuse causes, critically
review the applied methodologies, and pave the way for further research directions. While
our conducted analysis has a more general view on the topic of API misuse causes, the
present results are valuable and will be included in our final discussion of root causes.
Moreover, the analyses served as the basis for the prevention mechanisms literature review
in Section 4.3, except for the work by Ochoa et al. [OHG'25], which was retrieved after
the analysis.

4.2.2. Meta-Analysis of APl Misuse Causes

Methodology By the meta-analysis, we determined the current state of research on the
root causes of API misuses. For this purpose, we analyzed current publications on this
topic by applying an SLR methodology [KC07]. Note that our goal was not to retrieve an
overview of all existing literature regarding API misuse causes but to summarize the general
body of knowledge on API misuse causes. This way, we did not conduct an exhaustive but
a sufficient search identifying the most relevant research on root causes of API misuses.
Moreover, we also incorporated an analysis of the empirical methodologies applied to find
the root causes. This analysis allowed a better assessment of whether certain root causes
were found by different methods, which strengthened their validity. This way, we also
identified potential research directions, for instance, root causes, which could be analyzed
using a different methodology. We did this by applying qualitative analysis methods,
namely, open coding (cf. [Flil4] p. 373ff) and situational analysis (cf. [CEFW24] p. 3691f).

An SLR is characterized by a systematic process defining the search, the selection cri-
teria, the information extraction, and the analysis process [KC07, Woh14]. Additionally,
Kriiger et al. [KLvNT20] stressed that many SLR studies suffered from a lack of information
for replication, for instance, the applied guidelines and deviations from these guidelines.
Thus, it is mandatory to precisely describe the SLR process, which we orientate towards
the guideline by Kitchenham and Charters [KC07]. An overview of our process, together
with a number of identified relevant papers, is depicted in Figure 4.1.

48

4.2. API Misuse Causes

In essence, Kitchenham and Charters [KC07] suggest three main steps to conduct an
SLR

1. Planning
2. Conducting
3. Reporting

The first Planning step targets whether an SLR is necessary, and to define the research
question. We already discussed the necessity in Section 4.2.1 and clarified our research
question (i.e., RQ C&P-C). Further sub-steps target the conductor of the SLR, which is
the author of this thesis (i.e., subsequently referred to as the main author), together with
another software engineering researcher, as well as determining and validating the review
protocol. We define the process in the subsequent paragraphs. However, we did not conduct
an intensive evaluation of this process since we aligned our steps to the aforementioned
guideline. Moreover, we planned different steps to find relevant literature to target internal
validity threats and discussed the results with software engineering experts from science
and industry to target external validity threats. We detail this in Section 4.2.3.

In the Conducting step, according to Kitchenham and Charters [KC07], an SLR re-
quires the definition of a search strategy, which we present in steps (1) and (3) of our SLR
process. Then, we define the selection criteria in steps (2) and (4), which also encompass a
required quality check of the studies. Step (5) describes how information is extracted, and
steps (6) and (7) denote the analysis and, thus, the synthesis from the relevant literature.

Finally, the Reporting step denotes the format of presenting the results as well as its
dissemination. We present the results of our SLR analysis in the Result paragraphs.

(@ Initial Search. We applied the scholar search engine Google Scholar! to conduct the
initial search. We chose Google Scholar since it was assumed to be less dependent on
publisher bias [Woh14]. However, search results may differ in the number of search results
depending on the search day, as has been observed with other search engines [KLvN™"20)].
After a process of trial and error to find relevant publications, we derived the following
final search string:

"cause" OR "reason" AND "API Misuse" AND "Empirical Study"

In the initial search, we filtered the results in the time frame from 2000 up to 2020 and
conducted our search on September 20th, 2020. We obtained a set of 176 publications,
from which the main author selected 16 potentially relevant papers based on their title.

(2) Initial Set. Based on these 16 publications, we applied the following additional selec-
tion criteria, by which we also ensure the quality of the publications:

1. The publication has gone through an elaborated review process (i.e., full paper? from
a conference or a journal or a reviewed dissertation thesis);

2. The publication is written in English;
3. It is published between 2000 and 2020 (in a later search, namely step (), up to 2023);

4. In the publication, the authors analyzed API misuses and their potential root causes;

"https://scholar.google.de/ last accessed: 2024/10/08
Znote that this excludes short papers and idea papers

49

https://scholar.google.de/

Chapter 4. API Misuse Root Causes & Prevention

5. In the publication, the authors analyzed real-world API misuses;

6. In the publication, the authors used a valid empirical study methodology (i.e., qual-
itative or quantitative method).

We checked these criteria in a manual process by reading the potentially relevant papers:

e If the reviewer ascertained that the publication satisfies all criteria, it is denoted as
relevant.

e In case one of the criteria could not be clearly answered with a ‘yes’ by the reviewer,
it is denoted as partially relevant. This situation mostly denoted whether the issues
discussed in the paper represent API misuses or the study considers only a very
restricted aspect of API misuses.

e Otherwise, it is denoted as not relevant.

For this initial set, the main author operated as a single reviewer and assessed the
publications as follows:

e 6 as relevant
e 5 as partially relevant

e 5 as not relevant from which one is a related literature review

(3) Extended Search. We conducted an extended search, based on the initial set of relevant
papers determined in the previous step, to cope with inconsistent search results of search
engines (i.e., different results depending on the time of search). In detail, we applied an
iterative approach named snowballing [Woh14]. Particularly, we used backward snowballing
to find publications that were cited by papers denoted as relevant or partially relevant in
the previous step. Backward snowballing was done by consulting the reference list of the
respective publication. In contrast, we also applied forward snowballing, which aimed to
determine papers that cited those publications, found to be relevant in the previous step.
We achieved this by applying the ‘cited by’ functionality of Google Scholar®. We restricted
forward snowballing to relevant papers to keep the number of search results manageable.

For all retrieved papers, we selected a set of potentially relevant papers based on their
title to reduce initial manual effort. Then, we applied the same criteria as discussed in step
(2) with the difference of collecting publications up to publication year 2023 (i.e., criteria
3.). This collection was done by the main author in an iterative manner, meaning applying
the above-mentioned snowballing procedure for all newly obtained partially relevant (i.e.,
only backward) and relevant (i.e., both forward and backward) papers until no further
partially relevant or relevant papers were found. This way, we found 157 publications.

(4) Extended Set. To avoid reviewer bias, a second software engineering PhD student,
independently (i.e., without knowing the assessment of the first reviewer but with the same
criteria), read and assessed those 157 publications. Since one paper was not accessible
during the first review but in the second review and was found to be relevant, an additional
snowballing iteration was conducted. This iteration found four additional papers, summing

3cf. https://scholar.google.com/intl/de/scholar/citations.html#citations last accessed:
2024/10/08

50

https://scholar.google.com/intl/de/scholar/citations.html#citations

4.2. API Misuse Causes

Table 4.2.: Result of the independent assessment of reviewers on publications before in-
person discussion. The cells highlighted represent the publications which were
discussed in-person.

reviewer 2

reviewer 1 relevant partially relevant not relevant
relevant 11 15 13
partially relevant 3 10 14
not relevant 6 14 75

up to 161 publications. In Table 4.2, we depict the number of decisions in comparison to
the decision of the respective other reviewer. For instance, reviewer 1 found in sum 39
relevant papers, of which 15 were assessed as partially relevant by reviewer 2. We observed
that in 96 cases, both reviewers had a perfect match. In 18 cases, reviewers did not
agree on whether the papers were relevant or partially relevant, which was not critical
since both kinds were considered in the final qualitative analysis. In the final decision, we
assessed them as partially relevant. However, in 47 cases (i.e., highlighted in Table 4.2), one
reviewer decided that the paper was not relevant while the other reviewer did so. Thus,
we discussed and resolved these conflicts in a single in-person meeting and agreed on the
following assessment:

e 19 relevant papers
o 47 partially relevant papers
e 95 not relevant papers

(B5) Writing Textual Summary. The main author read all 66 papers (i.e., 19 relevant
and 47 partially relevant). While reading, we noticed a single publication, which was a
journal extension of a conference paper already included in the extended set. Since it did
not provide any additional information on the root causes of API misuses, we excluded
it from further analysis (i.e., one partially relevant paper), leaving 19 relevant and 46
partially relevant papers. Then, we summarized the papers by having a special focus on
the methodology as well as on the root causes identified by the respective paper.

6) Coding of API Misuse Causes and Methodologies. Based on the summary text, we
first decided whether the authors of the respective applied qualitative, quantitative, or
both methodologies. Then, we conducted open coding [Flil4, p. 373pp] to extract codes
describing the API misuse causes and the applied research methodologies independently.
Each single code was labeled with a unique identifier to retrieve the publication related
to this code. Particularly, code n:m, which denotes the nth code of the mth paper. An
example is depicted in Figure 4.2.

(D) Categorizing of API Misuse Causes and Methodologies. Based on codes derived in
the previous step, the main author conducted a situation analysis [CEFW24, p. 369pp]
to summarize, categorize, and interrelate categories. In situation analysis [CFW24], this
is achieved by grouping similar codes using so-called situational maps and interrelating
groups with so-called relational maps. We adapted this idea by printing out all codes for
API misuse causes and methodologies and clustering them into groups with potential sub-
groups, which were labeled accordingly. Afterward, the main author determined potential
relations between the main groups and represented them by positioning the group cards as

o1

Chapter 4. API Misuse Root Causes & Prevention

[[code1:a " Texperience not helping

]

corporate development
code3:99 _|increases error proneness

not open-minded developer

i AP develop?{%pm |
o il themselves fntb Herspecti
ing education in APl 0de3:47 _[of clent developer
code3:104 n T
= mﬁh developer process
- = _issues/distraction:
domains with higher ratio of C R
R
L00e2:44_ [naming iss

false answers/misuses, “ process contraints (e
[namely databases, working time)
cryptographic, 10, and

network

contradicting results to th
I naming issue [| e

Figure 4.2.: Picture detail of codes derived from the textual summary of API misuse causes.

(a) API misuse causes (b) Methodologies

Figure 4.3.: Result of the categorization of API misuse causes (left, green cards) and
methodologies (right, red cards).

52

4.2. API Misuse Causes

depicted in Figure 4.3. After relating the methodologies, we noticed that some codes have
been missing in the summary text due to logical reasons (e.g., if data was processed, it is
mandatory that it is collected previously). Thus, we re-consulted those papers for which we
lacked certain codes and extended the textual summary and the codes accordingly. This re-
consultation was done for 61 out of the 65 publications. In a single case, we also corrected
a false description and its respective code (i.e., a methodology that was not applied).

Note that coding and categorizing were conducted solely by the main author. While
this introduced a subjective bias, the results were discussed with experts from research and
industry (i.e., two PhD students, one of them partially employed in a software company, one
full professor, and one assistant professor). We detail this discussion on potential threats
of this process in Section 4.2.3.

Based on the categorization and the unique identifiers of the codes, we could

(1) trace for each code, in which paper it was mentioned,
(2) relate which categories were discussed in a paper, and

(3) relate API misuse causes with the applied research methodologies (i.e., correlation of
methodology and root cause).

Results Meta-Analysis In Table 4.3, we present the list of all selected relevant and par-
tially relevant papers together with their final decision agreed among the two reviewers
and the methodology (i.e., qualitative, quantitative, or both) decided by the main author.
Note that the unique identifier id refers to all papers considered in the extended set (i.e.,
in step @) Thus, ids of non-relevant papers are excluded from this table. We keep the
original ids as a reference to our dataset.

We also list the related venues and the publication year to demonstrate the variety of
publications among different application domains and analysis time. In detail, our selection
contains publications from:

e major software engineering conferences (e.g., ICSE, ASE, ESEC/FSE) and journals
(e.g., EMSE, JSS, IST, IEEE Softw.),

e software engineering conferences and journals with a focus on maintenance and evolu-
tion (e.g., ICSM/E, SANER), software and empirical analysis (e.g., ISSTA, ESEM),
programming language- and software-related (e.g., OOPSLA, COLA), program com-
prehension (i.e., ICPC), software architecture (i.e., ECSA), computing education (i.e.,
TOCE),

e conferences with a focus on human-related topics (e.g., CHI, VL/HCC, HCSE, South-
CHI),

e conferences related to a certain application domain, such as security (e.g., CCS, SP,
SOUPS, Comp. & Secur.) or quantum computing (i.e., QSW),

e a set of smaller conferences and journals in the software engineering domain.

Considering Figure 4.4, we observed that the selected papers range from 2007 to 2023,
while we selected no papers between 2000 and 2006, as well as no papers for the year 2010.
For most years, the number of selected papers ranged between one and four, with peaks
for 2015 and the years 2018 to 2020 (i.e., between six to eleven publications).

53

Chapter 4. API Misuse Root Causes & Prevention

Table 4.3.: List of all relevant and partially relevant publications selected for qualitative
analysis with their unique identifiers related to our replication package.

id Reference Venue Year Decision Methodology
1 [GWLT19] COMPSAC 2019 partially relevant quantitative
2 [ZURT1§] ICSE 2018 partially relevant quantitative
3 [GIWT'1g] SOUPS 2018 partially relevant both
4 [OLR'18] SOUPS 2018 relevant both
5 [MNY™1§] ICSE 2018 partially relevant qualitative
6 [NKMBI16] ICSE 2016 relevant both
7 [LS20] ICSE 2020 partially relevant qualitative
9 [ZHKG20] CHI 2020 relevant qualitative
11 [PHR19] SOUPS 2019 partially relevant both
13 [GALIF20] CHI 2020 partially relevant qualitative
14 [Afol5] Doctoral Thesis 2015 partially relevant qualitative
15 [NHM™19] ASE 2019 partially relevant qualitative
17 [ABF*17) SpP 2017 relevant quantitative
18 [ABFT10] SP 2016 partially relevant quantitative
20 [NDT™17] CCS 2017 partially relevant qualitative
24 [Rob09] IEEE Softw. 2009 partially relevant both
25 [RD11] EMSE 2011 partially relevant both
26 [SCOT7] ICSE 2007 partially relevant qualitative
30 [HL11] ICPC 2011 relevant qualitative
32 [ZER11] WCRE 2011 relevant quantitative
34 [SMOg] FSE 2008 partially relevant qualitative
35 [EZG15) JSS 2015 partially relevant qualitative
36 [SSD15] SANER 2015 partially relevant —quantitative
37 [WKAT16] EMSE 2016 partially relevant quantitative
38 [SMARL7] VL/HCC 2017 partially relevant both
40 [ANBLI1S] ICSME 2018 relevant both
41 [GVIK20] VL/HCC 2020 partially relevant qualitative
42 [KMS14] EMSE 2014 partially relevant quantitative
43 [DER12] ICSE 2012 relevant qualitative
44 [PFM13] ESEM 2013 partially relevant —qualitative
47 [MKAT18] VL/HCC 2018 partially relevant qualitative
48 [DHO9b] ICPC 2009 partially relevant both
52 [GPT12] HCSE 2012 partially relevant qualitative
56 [FHP713] CCS 2013 partially relevant qualitative
69 [MSS18] JTWC 2018 partially relevant both
70 [SK12] ECBS 2012 partially relevant qualitative
74 [QLL16] IST 2016 partially relevant quantitative
75 [SK13] SouthCHI 2013 partially relevant qualitative
77 [KFLS1§] JSS 2018 partially relevant quantitative
78 [MRK13] ICSM 2013 partially relevant —quantitative
84 [KB23] COLA 2023 partially relevant qualitative
88 [TCK21] TOCE 2021 relevant qualitative
90 [FWYT'19) JCSU 2019 partially relevant both
94 [MRARMBT18] IST 2018 partially relevant qualitative
95 [WA19] Comp. & Secur. 2019 relevant qualitative
99 [CS14] ICGSE 2014 relevant quantitative
102 [SK15] IST 2015 partially relevant —quantitative
104 [RKST21] ECSA 2021 partially relevant qualitative
108 [ARB20] CLEI 2020 partially relevant both
110 [UR15] IEEE Softw. 2015 relevant both
120 [WLLC20] ESEC/FSE 2020 relevant quantitative
121 [CZLF19) ISSTA 2019 partially relevant — quantitative
123 [HLXX23] SANER 2023 relevant quantitative
125 [BCM22] ICEIS 2022 partially relevant both
126 [LVBDPT14] ICPC 2014 partially relevant quantitative
129 [BVXH20] EMSE 2020 relevant both
145 [2CCT18] ISSTA 2018 relevant quantitative
149 [BXHVI1S] SANER 2018 relevant both
151 [BSvdBI15] Softw.Qual. J. 2015 partially relevant both
153 [JZW20] DASFAA 2020 partially relevant quantitative
154 [BFSK20] OOPSLA 2020 relevant both
155 [YHXTF22] IST 2022 relevant quantitative
157 [LYY*23] ACSW 2023 partially relevant qualitative
158 [INPR19] ESEC/FSE 2019 partially relevant qualitative
161 [ZWL"23] QSW 2023 partially relevant quantitative

o4

4.2. API Misuse Causes

number selected publications

~ o o o
o o o ~
o o o o
o~ o~ o o

2016
2020
2021
2022
2023

2011
2012
2013
2014

3 2015
2017
2018
2019

year

Figure 4.4.: Frequency of Selected Papers per Publication Year

both: 18 (27.7%)

qualitative: 26 (40.0%)

quantitative: 21 (32.3%)

Figure 4.5.: Generally Applied Methodologies

55

Chapter 4. API Misuse Root Causes & Prevention

From Figure 4.5, we observed that the proportion of applied methodologies among the
selected publications was almost equal, with a slight trend towards more qualitative studies
than quantitative ones, namely 40% vs. 32.3%, while 27.7% applied both methodologies.

Therefore, we conclude that our SLR-like selection obtained a sufficiently balanced set
of papers regarding applied methodologies, venues, and publication time, while there could
be a little bias towards more modern publications (e.g., publication time between 2018 and
2020 vs. 2007 and before) and some domain-specific views (e.g., security-related APIs).

Results API Misuse Causes In Table 4.4, we depict our result on the categorization of
step (7) for API misuse root causes. We split these into general root causes denoted by a
single letter and detailed root causes as sub-groups of the aforementioned ones represented
by a letter-number combination. Note that the order is determined ad-hoc during the
coding process and does not represent any severity or prevalence of certain API misuse
causes. We shortly describe the codes of the general root causes:

(A) Complexity and abstraction issues describe the state of an API in which, due to its
design, its API elements are too interrelated to be applicable for client developers or
too abstracted to sufficiently understand its interrelations.

(B) Human API developer issues describe issues caused by API developers, for instance,
due to their education, experience, and/or work processes.

(C) Human client developer issues describe issues caused by client developers, for in-
stance, due to their education, experience, and/or work processes.

(D) API code issues describe problems according to the implemented API, such as code
defects in a library.

(E) API usability issues refer to all issues regarding the API implementation, which
hardens client developers’ usage without representing API code issues.

(F) False API usage resources denote issues regarding re-using wrong code from unreliable
sources, for instance, suspicious examples from Q&A forums.

(G) Finding features issues denote issues regarding the retrieval of functionalities in an
API by the client developer.

(H) API installation issues describe problems while setting up libraries and APIs, for
instance, configuration problems.

(I) Documentation issues refer to all kinds of issues related to the API documentation.

(J) API evolution issues and breaking changes describe problems related to updates of
an API and its library.

(K) Other context-related issues refer to all other issues which could not be mapped to
any other cause.

For all detailed root causes, we provide an example from the analyzed literature in the
appendix (cf. Section A.1.2).

56

Table 4.4.:

4.2. API Misuse Causes

Determined codes of API misuse root causes

general root
causes

detailed root causes

complexity and

|
—

too complex

technical environment issues

documentation
issues

missing/insufficient documentation issues
too verbose documentation

effort to create documentation

not using documentation

issues with examples in the documentation

—
1

Pl—l

’T‘ T
U W DN =
=222

API evolution
issues and
breaking changes

inconsistencies due to API changes
effort supporting old APIs
non-documented APT changes

LlILlL(
W N =
== —

other context-
related issues

domain
licensing issues
API corporate development

(A1)
(A) abstraction issues (A-2) too abstract
(A-3) compromise design issues
(B-1) communication issues between API and client developer
(B) human APT (B-2) unclear usage scenarios
developer issues (B-3) missing education on API design
(B-4) heterogene API client users
(C-1) developer process-related issues
() human client (C-2) missing domain knowledge
developer issues (C-3) non-helping developer experience
(C-4) mindset issues
(D-1) naming issues
(D-2) errors in API
(D) API code (D-3) unclear API error/warning messages
Issues (D-4) insufficient defaults
(D-5) insufficient initialization of objects
(D-6) insufficient error handling
(E-1) too many features
(E-2) unknown entry points
APT usability (E-3) API.customlzatlon issues
(E) iscues (E-4) ambiguous/unclear usage
(E-5) API incompatibilities
(E-6) inconsistent usage compared to similar APIs
(E-7) unknown constraints
(F-1) outdated APIs
(F) false API (F-2) using internal APIs
usage resource (F-3) auto-generation issues
(F-4) using insufficient APT samples
(@) finding features (G-1) findability issues of present API features
issues (G-2) missing API features
H API installation (H-1) API configuration issues
(H) issues (H-2)
(I-
(
(
(
(
(
(
(
(
(
(
(

AARR
N

issues due to programming language

o7

Chapter 4. API Misuse Root Causes & Prevention

40
35
0 30 R
w
>
©
o -
o
825 ©5)-(3)
2 (A2)- (13)
£ T |
D-4) - (5
%20 (©3)- () 3) - (1)
@ 02)- @
4
2
& 15 (D-3) - (6)
#
(©2)-(14)
(8-4)-(2) (0-2)-(2)
10
(83)- (2)
(1) - (16)
5 (e (0-1)- (10)
(©1)-(5)
(8-1)-(3)
0
e° e e
.\91,\) .\91,\) .\91,\) ‘\6“'\) .
WO Qe‘ Qe,‘ ¢ &
@ 2° ° AC 2°
o ot ot . i
2 & oS o R\ N
< oo e @ i
S| o Ro
o %\._x\ o &
N o < \(,\3
o

API Misuse Causes

Figure 4.6.: Frequency of discussed API misuse root causes in the selected publications. We
depict the detailed root causes since multiple detailed root causes belonging to
a general root cause can be present in one paper.

o8

4.2. API Misuse Causes

We analyzed how often each detailed root cause was discussed in each paper. This way,
we assessed the focus of the research on different API misuse root causes. We depict the
absolute frequency in Figure 4.6. Note that in this figure, each detailed root cause was
counted once for each paper, but it was possible that multiple detailed root causes belong
to the same general root cause in one paper (e.g., discussion of (E-1) and (E-2) in one
paper, while both referred to the general cause (E)).

We observed that most papers found (E): API usability issues, followed by (I): docu-
mentation issues, (A): complezity and abstraction issues, and (D): API code issues as root
causes. In contrast, the least retrieved root causes were (K): other context-related issues,
(F): false API usage resources, and (G): finding features issues. It was also interesting to
see that fewer papers found the (B): human API developer issues compared to the (C):
human client developer issues. We assume that one reason for this is that a majority of 17
papers considered the client developer perspective, while only eight papers also analyzed the
APT developer side. Only three publications [Afol5, NDT 17, MKA 18] discussed both
sides. In the set of publications, we also found contradictions for two detailed codes on API
misuse causes. Namely, Piccioni et al. [PEM13] argued that insufficient initialization of
objects (i.e., code (D-5)), for instance, a constructor not completely setting up an object,
could not be confirmed. In another study, Aghajani et al. [ANBL18] found contradicting
results regarding the negative impact of naming variables and functions (i.e., code (D-1)).

A detailed discussion of the detailed root causes can be found in the appendix (cf. Sec-
tion A.1.1).

/Insight C&P-1 (RQ C&P-C): Diverse Root Causes R

Based on the scientific literature, API misuses have multiple and very diverse root
causes, with eleven general root causes and a further 44 detailed root causes as well as
causes from different perspectives, namely, developer-, process-, and technical-related
causes. The most discussed general root causes refer to issues regarding A PI usability,
kdocmnentation, API complexity and abstraction, and code issues. D

Results Interdependent APl Misuse Causes Despite this list, the general and detailed
root causes cannot always be viewed as independent of each other. For instance, insufficient
APT documentation (i.e., code (I-1)) can cause configuration issues (i.e., code (H-1)). In
another case, communication issues between API and client developer (i.e., code (B-1))
can be caused by a missing communication means, namely, the documentation (i.e., code
(I-1)). These examples illustrate the complexity of the interrelations of the root causes of
API misuses.

Since this was — to the best of our knowledge — the first attempt to summarize this va-
riety of root causes of API misuses, their interrelations were also not discussed previously.
However, these interrelations are important to understand the causes and to effectively de-
rive prevention mechanisms since intervention on one root cause can interfere with another
one. Therefore, we developed a process to derive hypotheses of interrelations — so-called
views — as a basis for further empirical research on API misuse root causes.

In detail, we summarized multiple general root causes to logically coherent and labeled
groups, while these groups were not forced to be disjoint. These group labels represent
a perspective. Then, the main author argued based on his own experience from reading
related studies and logical relationships of the detailed root causes, possible interrelations.
This discussion is presented in Table 4.5 Note that at the current point-in-time, we are not

59

Chapter 4. API Misuse Root Causes & Prevention

(H): API installation issues
(F): false API usage resources

(K): other context-related issues

(C): human client developer issues (J): API evolution issues and
breaking changes

(I): documentation issues
4\% (G): finding features issues

(B): human API developer issues (E): API usability issues

[] (D): API code issues
|] (A): complexity and abstraction issues

Figure 4.7.: Developer-perspective view on API misuse root causes as Sankey diagram with
the cause-effect chain flow from left to right.

aware of any empirical work nor did we collected empirical evidence regarding interrelations.
This way our views are limited in their expressiveness. However, this procedure only serves
to formulate hypotheses, which can be falsified or improved in subsequent research.

A view represents a simplified cause-effect chain, by which main root causes are selected
as origin based on a specific perspective, and we assess their influence on all other root
causes. Based on our list of general root causes (i.e., (A)-(K)), we suggest the following
three perspectives:

e developer-perspective view with the main root causes (B) human API developer
issues and (C) human client developer issues

e process-perspective view with the main root causes (F) false API usage resource,
(I) documentation issues, (J) API evolution issues and breaking changes, and (K)
other context-related issues

e technical-perspective view with the main root causes (A) complexity and abstrac-
tion issues, (D) API code issues, (E) API usability issues, (H) API installation issues,
(J) API evolution issues and breaking changes, and (K) other context-related issues

Thus, we distinguished the main root causes between the developers (e.g., API or client
developer), the development process, and the technical aspects during APT usage. Note that
(J) API evolution issues and breaking changes and (K) other context-related issues are the
main root causes for process-perspective and technical-perspective views. (J) is a root cause
because of the detailed causes (J-2) no support for older APIs and (J-3) non-documented
changes, which relate to the process-perspective view, while (J-1) inconsistencies through
API changes relates more to the technical-perspective view. For (K), the detailed cause
(K-4) issues with the programming language maps to the technical view, while the others
(i.e., domain (K-1), licenses (K-2), and corporate development (K-3)) relate to the process-
perspective view.

We present the constructed views as Sankey diagrams in Figure 4.7 (i.e., developer-
perspective), Figure 4.8 (i.e., process-perspective), and Figure 4.9 (i.e., technical-pers-
pective). The main root causes are on the left-hand side and are connected to their influ-
enced cause on the right-hand side by colored bars. Typically, Sankey diagrams represent

60

4.2. API Misuse Causes

(G): finding features issues
(K): other context-related issues I (D): API code issues

(C): human client developer issues

(J): API evolution issues and

breaking changes I (B): human API developer issues

(A): complexity and abstraction issues

(1): documentation issues (H): API installation issues

(E): API usability issues

(F): false API usage resources

Figure 4.8.: Process-perspective view on API misuse root causes as Sankey diagram with
the cause-effect chain flow from left to right.

(K): other context-related issues (I): documentation issues

(J): API evolution issues and

breaking changes (G): finding features issues

(H): API installation issues
(F): false API usage resources

(E): API usability issues

(D): API code issues I (C): human client developer issues

(A): complexity and abstraction issues (B): human API developer issues

Figure 4.9.: Technical-perspective view on API misuse root causes as Sankey diagram with
the cause-effect chain flow from left to right.

61

Chapter 4. API Misuse Root Causes & Prevention

Table 4.5.: Justification of three possible views on the interrelations on API misuses root

causes
View Justification
developer- In this perspective, we assessed issues by API developers (B) as a single cause for (4)

perspective complexity and abstraction issues and (D) API code issues. These issues were mainly

(Figure 4.7) caused by API developers influence the API design and thus complexity and abstraction
as well as the APT implementation, and thus its code. Similarly, we decided that (F) false
API usage resources and (H) API installation issues are solely (i.e., in this perspective)
caused by client developers (C) since installation and configuration, as well as reused code
samples of an API, occur on the client side. Within this perspective, all other causes
are influenced by both kinds of developers (B)+(C), however, with different proportions.
On the one hand, API developers (E) have slightly more influence on the documentation
(1), the findability of API features (G), and the API evolution (J). On the other hand,
client developers’ (C) issues are assessed to have more effect on the API usability (E) and
other related contexts (K). Nevertheless, the issues of APT usability (E) cannot be clearly
assigned to one kind of developer. While API developers definitely influence the number
of features (E-1), potential incompatibilities (E-5), and inconsistent usage compared to
similar APIs (E-6), client developers, due to their lack of knowledge on an API do not
know entry points (E-2), have customization issues (E-3), misunderstand the usage (E-4),
and do not know constraints of that usage (E-7).

process- From a development process perspective, we assessed no mono-causal effects. In contrast,

perspective we denoted the APT usability (E) and API installation (H) issues caused by all four main

(Figure 4.8) root causes that are process-related. The effects, however, are of a different nature. Par-
ticularly, false API samples (F) and breaking changes (J) lead to code issues, causing
problems in the usability (F) or the installation (H). A misleading documentation (I) or a
complex domain (K), on the other hand, may trigger issues on the client side during con-
figuration (H) or during customization (E). For complexity (A), we only assess insufficient
explanations from the documentation (I) and a too-complex domain (K) as an influence.
Insufficient documentation (I), breaking API changes (J), and the domain of the API (K)
influence the communication and the understanding of API- (B) and client-developers (C),
as well as causing issues on the findability of API features (G) due to non-documented
updates, a less communicative domain, or the complexity of the features, which prohibit
efficient search. API code issues (D) can be caused by the documentation (I), for instance,
if it contradicts the code and thus causes naming issues or unclear error messages, as well
as by the API updates, which can cause all kinds of code issues.

technical- Within the technical perspective, we argued that coding issues of the API only influence

perspective false resource API usage (F), for instance, if the code unintentionally allows access to inter-

(Figure 4.9) nal APIs as well as findability issues (G) in case naming issues hardens finding proper API
elements. Installation issues (H) can cause documentation (I) to be too verbose or too ab-
stracted in case too many installation or configuration possibilities exist. It also can cause
problems on the client side(C), for instance, too long setup processes or a negative mindset
due to a complicated installation. Complex APIs (4) can cause an increased number of
client users (i.e., more applicable functionality), which APT developers have to be aware of
(B), a higher chance of missing domain knowledge on the client side (C), more complex
search (F), and a more verbose documentation (I). Usability issues (E) can complicate
the communication of API developers towards their client users (B), increase the effort of
using APIs, and thus have a negative effect on client developers’ processes (C), causing
the usage of insufficient examples due to unknown entry points (F), and negatively impact
findability (G) or result in too verbose documentation (1) due to too many features. API
evolution issues (J) can cause issues when changes are not properly communicated by API
developers (B) and if the client developers are not familiar with the evolution strategy (C).
Having multiple versions increases the chance of using outdated examples (F) or finding
many different variants of possible usages (G). Finally, the documentation may lack suffi-
cient information on the new features (I). Context-related issues such as the programming
language (K) cause issues for APT and client developers alike due to communication issues
through the language (B) as well as the not-helping experience from other programming
paradigms (e.g., object-oriented vs. functional). Non-popular programming languages may
have issues with non-reliable auto-generated code (F). In the case of a more verbose pro-
gramming language, findability can be complicated (G) or the documentation can be too
verbose as well (1).

62

4.2. API Misuse Causes

the influence of causes by the thickness of these bars. However, currently, we cannot provide
any quantitative justification for such influences.

By these views, we can formulate hypotheses of the interrelations among API misuse
root causes, such as client developer issues cause the usage of false API resources. This
way, future experiments can analyze particular this hypothesis in a developer experiment or
ask client developers in an interview regarding certain interrelations to manifest or falsify
the hypothesized interrelations (e.g., client developers cause problematic resource usage).
Especially quantitative studies can refine the proportion of influence (i.e., the thickness of
the Sankey bars).

Moreover, our views depict suggestions for possible interrelations. In case those are found
to be invalid or non-sufficient (e.g., the existence of further views), other researchers can
alter or add additional views.

Insight C&P-2 (RQ C&P-C): Root Cause Relations by Views

Based on the set of API misuse root causes obtained from the literature, we provide
a mechanism to derive hypotheses of the interrelations of the root causes as so-called
views. Moreover, we provide and justify three views, namely from the developer-
perspective, the process-perspective, and the technical-perspective view.

Results Methodologies of APl Misuse Causes Studies Similar to the codes of the root
causes, we summarize in Figure 4.10 the codes obtained for the research methodologies of
those publications using general codes with (A)-(G) and sub-codes with a letter-number
reference. The obtained steps follow a typical empirical research approach [RAB'20] with
an initial (A4) raw resource collection, namely, the process of collecting data on which
the analysis takes place. This collection is sometimes aligned with a (B) preparation of
resources and studies-step, in which data is sampled, selected, filtered, and studies are set
up. Afterward, empirical studies are conducted, which we categorize as (C) code-related
studies (i.e., both API and client code), (D) developer-related studies (i.e., on both API
and client developers), or (E) other studies/analyses (i.e., API-related documents such as
documentation). Depending on the kind of study, different (F) study-related processes are
applied, such as recording steps. Finally, the (G) obtaining results step describes how
the output from the studies is transformed into research findings (i.e., determined API
misuse root causes). For all sub-codes on the methodology, we provide an example from
the analyzed literature in the appendix (cf. Section A.1.3).

Note that the repeated analysis of the methodology discussed in step (7) concentrated
on the codes for data collection (i.e., (A)), for the kind of study (i.e.,(C), (D), (E)), and
for the step of obtaining the study results (i.e., (G)).

/Insight C&P-3 (RQ C&P-C): Typical Empirical Study Structure R

The methodologies used to analyze API misuse root cases follow a typical empirical
approach of resource collection, preparation, conducting studies combined with study-
supporting steps, and a final inference step of the root causes. Regarding the kinds
of studies we found code-related, developer-related, and other studies (e.g., document-
analysis such as documentation or forum discussions).

\

63

Chapter 4. API Misuse Root Causes & Prevention

|

-

(C-1) dynamic code
analysis

/ (A) Raw Resource Collection \

(A-1) library/client code I

search and project

(A-2) API/client
selection

developer recruitment

(A-3) guideline and (A-4) newsgroup/forum
others discussions

(A-5) issue-tracking/pull I(A-G) version control data
requests

/ (B) Preparation of Resources and Studies

. (B-2) keyword-based
(B-1) sampling I search

task creation

(B-3) developer study (B-4) developer study
group splitting

_

(C) Code-related Studies \

(C-2) static code analysis

v

/ (D) Developer-related Studies \

'

(D-1) pre-study

(E) Other Studies/Analyses

(C-3) engineering
research

(C-4) API misuse
detection

(D-2) case study

(D-3) exploratory study

(E-2) theory inference

(E-3) literature review

(C-5) mining error stacks

————

(C-6) manual code
analysis

(D-4) developer study

*code "(E-1) meta
(E-4) document analysis

analysis” was excluded

<

(D-6) interview

(D-5) survey I

due to a false mapping

(D-7) longitudal
observation study

%

cause analysis

/

(F) Study-related Processes

(F-1) recor.dn?g and (F-2) iterative process
transcription

A4
/ (G) Obtaining Results \

(G-1) manual

(G-2) expert assessment

(G-3) measuring . .
cognitive load/dimension (G-4) measuring usability

(G-5 topic/taxonomy (G-6) (open/closed)
extraction coding
(G-7) other (G-8) descriptive
measurements analysis/statistical tests

Figure 4.10.: Overview and relation of determined methodology codes of API misuse root

64

4.2. API Misuse Causes

(A): complexity and abstraction issues 4 9
20.0
(B): human API developer issues - 10 1 1
(C): human client developer issues - 9 2 11 17.5
(D): API code issues 3 5 15.0
(E): API usability issues 10 11
125
(F): false API usage resources - 2 6 1
(G): finding features issues - 4 5 1 [10.0
(H): API installation issues - 3 7 6 ~75
(l): focumentation [Ssues °
-5.0
(J): APl evolution issues and breaking changes - 5 10 5
. -25
(K): other context-related issues - 2 2 1
1 1 1
qualitative quantitative both

Figure 4.11.: Correlations of general root causes and qualitative/quantitative methods as
heat map.

Results Mapping of APl Misuse Causes and Research Methodologies Due to the map-
ping of codes of root causes and methodologies to their respective papers, we were able to
interconnect which methodologies were correlated with which observed root causes®. Note
that mapping a methodology to a root cause does not necessarily mean that this root cause
1s obtained by this method. It only means that this root cause is also found in a paper using
this specific methodology. Thus, this mapping allows an indication and not necessarily an
implication of applied methods. However, we could identify potential research gaps (i.e.,
which methodologies have not been applied in root causes analysis).

Using the manual decision on methodologies for the publications (i.e., qualitative, quan-
titative, or both), we depict in Figure 4.11 a heat map representing which root causes are
correlated with which methodology. We found a larger correlation of qualitative studies
detecting the root causes (A) complexity and abstraction, (B) human API developer, (D)
API code issues, (E) API usability issues, and (I) documentation. Note that except for (B)
human API developer and (D) API code issues, all other root causes were also correlated
with nine or more studies using both methodologies. For (F) false API usage resources,
(G) finding features issues, (H) API installation, and (J) API evolution issues and breaking
changes, more quantitative studies were mapped. We found for the root cause (K) other
context-related issues the least number of studies, which were equally distributed among
the different methodologies. Thus, the most frequently found root causes (i.e., root cause

“A similar mapping technique has been also conducted by Cummaudo et al. [CV(19], however, they
mapped study techniques and research types

65

Chapter 4. API Misuse Root Causes & Prevention

(A): complexity and abstraction issues - 5 18 3 3/0 4 2 1/0 0 2 0 O 2|0 1 1 10 7 7 0|0 1 1049 1 4|2 1 3 7 10 4 4
(B): human API developerissues- 0 ‘9 0 1 2 0/0 1 1 1|0 2 0 0 0 O0|O 3 0 1 0 9 O0fO 1 1(3 1 0|5 1 0 0 3 5 3 1 2
(C): human client developer issues - 1 o 7 1 2f0o 2 1 140 0 0 O O OfO 0 1 7 9 9 0|/O O 59 1 0|3 0 2 3 6 9 2 8
(D): APl codeissues- 4 11 1 7 3 4|1 3 4 0f/O0O 3 2 1 0 2|1 1 O 4 9 0|0 0 8 2 5|5 1 2 8 1 3 5
(E): API usability issues - 6 1 5 5/2 8 3 0|1 4 0 2 0 0|0 1 O 8 9 1|0 1 1 1 2|6 2 4 6 6 6 1
(F): false APl usageresources- 4 4 1 2 1 1|1 0 2 10 3 0 1 0 0|1 0 0 3 2 0 OfO 0 2|1 0 0f2 0 0 1 2 2 1 3
(G): finding featuresissues-2 5 0 3 1 1f0 2 1 141 1 1 o0 0o OfO 0 1 3 2 1 1/0 1 3|1 0 OfJ1 0 1 2 3 3 2 1 -10
(H): APl installation issues- 2 6 0 4 6 0|0 2 1 0|0 0 0 0 1 0|0 0 0 3 7 3 0|0 O 7|4 0 0|2 0 0 1 5 5 3 5
(1): documentation issues - 3 0 7 3 1/f0 1 6 1f0 1 2 0 O 1|3 3 O 10 9 0|1 4 9|10 1 2|6 4 3 5 10 11 7 8 L5
()): APl evolution issues and breakingchanges- 7 3 3 5 3 4|0 3 0 0|1 9 4 0 0 0/fO 1 1 0 0 7 1f0 O 5|1 0 Of5 0 2 0 1 3 1 9
(K): other context-relatedissues- 1 2 1 2 2 1f1 o0 o0 ofO0O 1 0 1 0 OfO 0 0 O 1 1 0fO O 2|1 1 0f1 0 O 0 1 2 1 2
' -0
O S T S Ty 8 et 0 N T M et P8 e e eSS e on® &t ot o o™
R SRR PRSI SO SRR e S
S W \M\’“\wﬁ ?,;\ e A o & ST @™ <®
Sk Te ca &

Figure 4.12.: Correlation of general root causes and applied research methodologies as heat
map.

codes (A), (D), (E), (I)) were mostly mapped to qualitative studies.

By using the codes of methodologies (cf. Figure 4.10), we also correlated the more de-
tailed methods with the general root causes depicted as a heat map in Figure 4.12. Note
that we refer to codes representing root causes as root cause code and those representing
a methodology as method code. We also provide a more detailed mapping of the detailed
root causes in the appendix (cf. Section A.1.4).

Method Code (A): We observed that many root causes are based on recruiting API
and client developers (i.e., method code (A-2)) as well as newsgroup and forum discussions
(i.e., method code (A-4)).

Method Code (B): The preparation of resources and studies had only a few heat points,
namely using keyword-based search (i.e., method code (B-2)) to find documents for analysis
of the root causes (A) complexity and abstraction and (E) API usability.

Method Codes (C), (D), and (E): We found surprisingly few code-related studies
(i.e., method code (C)) with a single ‘hot spot’, where the root cause (J) API evolution is-
sues were found using static code analysis (i.e., method code (C-2)). We found many more
developer studies (i.e., method code (D)) and other studies/analyses (i.e., method code
(E)) investigating various root causes. For the root causes (A) complexity and abstraction,
(C) human client developer, (E) API usability issues, and (I) documentation, we found de-
veloper studies such as coding experiments (i.e., method code (D-4)), surveys (i.e., method
code (D-5)), and interviews (i.e., method code (D-6)) among developers. For those root
causes, we also found many studies analyzing documents (i.e., method code (E-4)) such as
online forum discussions. Regarding the root causes (D) API code issues, the above was
also true except for fewer surveys (i.e., method code (D-5)).

Another interesting result was the root cause of (J) API evolution issues and breaking
changes, which was found by a set of three different study types, namely static code analysis
(i.e., method code (C-2)), interviews (i.e., method code (D-6)), and document analysis (i.e.,
method code (E-4)). In our perspective, finding this root cause with different methods
strengthens its validity.

Method Code (F): For the aspect of study-related processes (i.e., method code (F)),
many recording and transcription techniques (i.e., method code (F-1)) were conducted.
Particularly these technique appeared in developer experiments or in-person interviews.

66

4.2. API Misuse Causes

Method Code (G): Finally, in the obtaining results step (i.e., method code (G)), we
found many techniques related to qualitative methods, namely topic/taxonomy extrac-
tion (i.e., method code (G-5)) and open/closed coding (i.e., method code (G-6)). On the
contrary, we found fewer techniques related to quantitative methods, namely measuring
cognitive load/dimension (i.e., method code (G-3)) or descriptive analysis/statistical tests
(i.e., method code (G-7)).

These results draw the image that, based on our mapping, there exist far fewer quanti-
tative methodologies than quantitative ones. While qualitative methods enable researchers
to explore the domain of API misuse root causes, it does not give evidence on prevalence
and severity. Thus, we suggest that based on the set of known root causes, future research
should concentrate on quantitative methods.

We also observed that a majority of root causes were obtained based on documents or
developers. Particularly, surveys and interviews may have issues of developers’ bias towards
certain root causes. While this is partially compensated with a larger set of developer
studies, we also suggest concentrating on more code-related studies. In this aspect, the
main root causes from the technical-perspective view (cf. Figure 4.9) are interesting. For
instance, we mapped no study using error stack mining (i.e., method code (C-5)) for the
root cause (D) API code issues or no dynamic or static code analysis (i.e., method codes
(C-1) and (C-2)) for the root cause (H) API installation issues.

Note that not all root causes can be analyzed using all kinds of studies, such as code
analysis (i.e., method codes (C-1) and (C-2)) for root causes (B) human API and (C) client
developer®. However, we see the potential of developer studies (D-4) analyzing the effect
of the root cause (B) human API developer issues.

(" Insight C&P-4 (RQ C&P-C): More Qualitative Studies R

We found that the most frequently mentioned API misuse root causes are typically
correlated with more qualitative than quantitative methods. In more detail, we observed
that those root causes were merely found by developer-related studies ranging from
surveys and interviews up to developer studies, such as coding experiments as well as
other studies such as document analysis (e.g., of online forum discussions).

N J

/Insight C&P-5 (RQ C&P-C): More Diverse Studies for API Evolution Is-\
sues

We found that only the root cause of API evolution issues and breaking changes was

frequently correlated with all three kinds of studies, namely, code- and developer-related

studies, as well as other studies, such as on related documents. In detail, we found few

code-related studies for most discussed root causes and even fewer coding experiments
Kfor issues caused by API developers.

J

Implications Our results represent a first overview of known root causes of API misuses
as well as the frequency by which they are present in the scientific literature (i.e., Insight

5Recall that the two mapped studies using static code analysis to the root cause of human API developer
issues are just a result of correlation. Both related papers, namely, did not find this root cause using
static code analysis.

67

Chapter 4. API Misuse Root Causes & Prevention

C&P-1). In this form, our results inform practitioners which root causes exist (i.e., Insight
C&P-1). Currently, we neither know how these root causes interrelate nor can we quantify
their prevalence and severity on API misuses (i.e., Insight C&P-2 and Insight C&P-5).

For the research community, these results allow us to identify potential gaps in the
scientific literature on API misuse root causes (i.e., Insight C&P-4 and Insight C&P-5)
as well as plan and conduct studies to close these knowledge gaps (i.e., Insight C&P-2
and Insight C&P-3).

In detail, we

offer the first overview of API misuse root causes (i.e., Insight C&P-1);

e provide a methodology to hypothesize and plan further research on interrelations of
API misuse root causes, which, due to their lack of knowledge, can impede effective
prevention mechanisms (i.e., Insight C&P-2);

e provide the typical structure of research methodologies in research of API misuse root
causes that helps to plan further studies or to apply new methodologies, which were
not used previously (i.e., Insight C&P-3);

e identify that most root causes originate from qualitative studies, which provide a
good exploration of the topic of API misuse root causes, however, cannot answer
questions on the prevalence and the severity of API misuses in practice (i.e., Insight
C&P-4);

e found potential gaps in the kinds of studies of root causes, which can be the ba-
sis for more in-depth analysis with known or different kind of studies and research
methodologies (i.e., Insight C&P-5)

4.2.3. Threats to Validity

We shortly discuss potential threats to internal and external validity regarding our insights
on RQ C&P-C.

Internal Validity We only applied the single scholar search engine Google Scholar, which
might introduced a bias towards selected papers regarding the used keywords and search
time [KLvNT20]. Even though we applied different techniques (i.e., keyword search as well
as forward and backward snowballing), we might miss relevant papers dealing with API
misuse root causes. A further selection bias could be introduced by the reviewers due to
subjective assessment. For instance, the reviewers efficiently decided on the relevance using
the paper’s title as a first indicator, which could be misleading.

While the selection of papers was agreed upon the two reviewers, the coding step and the
decision was solely conducted by the main author, which introduced a clear bias. While
it would have been too time-consuming for another researcher to re-validate the textual
summaries, codes, and final decisions, we specifically documented all steps and published
all results® to allow transparency and potential independent replication.

The frequency of root causes could be influenced by the construction and separation
of inferred root causes itself. For instance, the root of (K) other context-related issues is
likely to be underrepresented in research since it depicts causes which could not be mapped

Shttp://doi.org/10.5281/zenodo . 156594600

68

http://doi.org/10.5281/zenodo.15594600

4.3. API Misuse Cause Prevention

to other causes. Similarly, the frequency of other root causes could be larger or lower
depending on the categorization.

When mapping codes of research methodologies and root causes, this only gave restricted
insights on whether the related methodologies found these root causes. While we assumed
this for the ‘hotter’ spots within our heat maps (cf. Figures 4.11 and 4.12), these corre-
lations might be a result of randomness. We suggest, for a conclusive decision on which
methodology is applied, to consult the respective publication by using the codes used in
our dataset.

External Validity The presented set of root causes only relies on the relevant scientific
literature and, thus, does not necessarily replicate the complete set of root causes. In detail,
the reported API misuse causes only depict the state of the knowledge in the scientific
literature at the time of analysis. Further empirical studies might identify further root
causes or may falsify present root causes in our obtained list.

As reported in our selected set of papers, we found more modern publications and a flavor
of security-related literature. Thus, the selected API misuse root causes can be influenced
by the selected time frame and the considered domain. We suggest that domains that are
not explicitly or only partially represented by the selected publications re-validate whether
the found API misuse root causes are applicable. Moreover, based on our data, we cannot
derive the effect of whether root causes change over time.

We only provide hypotheses of interrelations of API root causes as views. We state
that these views do not necessarily represent real interrelations but only our subjective
perspective, and thus require further scientific evidence, for instance, by empirical studies.

4.3. APl Misuse Cause Prevention

RQ C&P API Misuse Causes & Prevention

RQ C&P API Misuse Causes & Prevention

rw.p API

RQ C&P-CAPI
Misuse Causes
p—

RQ C&P-S
Prevention
Sufficienc

Misuse P
Mechanisms

RQ C&P-C API]

RQ C&P-P API

[Misuse Causes J

L

Misuse
Mechanisms

RQ C&P-S
Prevention
Sufficien

v v

In this section, we analyze prevention strategies and techniques targeting the API misuse
root causes, and thus, we answer the research question RQ C&P-P. Once again, we
apply an SLR process as suggested by Kitchenham and Charters [KC07], namely, planning,
conducting, and reporting. For planning, we already defined the research questions (i.e.,

69

Chapter 4. API Misuse Root Causes & Prevention

Table 4.6.: Overview of related systematic literature analyses on API misuse prevention
compared to ours

Reference #Publi- Time Frame Discussed Causes Prevention

cations Mechanism
[LGS21] 369 1994-2020 API evolution automated support
[NAP18] 36 2000-2016 . automated support
[CVG1Y9] 21 NA-2019 AP documentation recommendation
[Zib0g] NA NA recommendations
[BFHM12] 28 2004-2011 recommendations
[RBK'13] 67 2000-2010 API usability automated support
[RTP19] 47 1998-2018 both
[PDHR23] 65 1974-2021 both
[McG23, p- 73 NA-2023 client developer, API recommendations
13pp, p- 22pp] usability, API docu-

mentation

[RRS23] 109 2016-2022 client developer recommendation
[AAWX23] 68 2014-2022 finding features automated support
Ours 411 2000-2025 general both

RQ C&P-P) and discussed the necessity of this SLR in the light of related surveys (cf.
Section 4.3.1). For the conducting phase, we discuss the methodology of our review process
in Section 4.3.2. Subsequently, we report the results based on prevention mechanisms based
on quantitative and qualitative analysis and determine their state of scientific evidence.
Moreover, based on these results and the determined research gaps, subsequently, we discuss
future research directions for targeting API misuse root causes and thus target RQ C&P-S
in Section 4.3.3.

4.3.1. State-of-the-Art of Meta-Analysis of APl Misuse Prevention

First, we consulted previous literature reviews related to the topic of prevention of API
misuses in comparison to our review-like study depicted in Table 4.6. For that purpose, we
read the reviews already known from misuses causes (i.e., in Table 4.1) and found all but
one (i.e., Bonorden and Riebsch [BR22]) discussing either recommendations or automated
support as prevention mechanisms. In addition, we found three further reviews due to
our own literature review process (cf. presented in Section 4.3.2), namely the surveys by
Robillard et al. [RBK13], by Ryan et al. [RRS23], and by Alhosaini et al. [AAWX23], all
of them concerned with API misuse prevention but not with API misuse causes.

Based on Table 4.6, our review targeted all API misuse causes as identified in the previous
section. Moreover, we discussed both kinds of prevention mechanisms for API misuse root
causes, which was only true for the surveys by [RTP19] and [PDHR23]. Our study contained
publications from the most recent time frame, including the years 2024 and 2025. Moreover,
we obtained the largest number of publication in this set with 411 publications.

Subsequently, we summarize the the single reviews per discussed root cause.

API evolution: In detail, Lamothe et al.[LGS21] discussed automated support for
targeting API evolution issues, such as techniques supporting the organization of changes,
automated migration tools, or automated updating of the documentation.

70

4.3. API Misuse Cause Prevention

API documentation: Nybom et al. [NAP18] discussed automated support techniques,
such as generation and maintenance support, while Cummaudo et al. [CVG19] summarized
recommendation as a guideline discussing different dimensions of guidelines.

A PI usability: Many related surveys reviewed prevention mechanisms for API usability.
Zibran [Zib08] provided 22 recommendations, and Burns et al. [BEHM12] focused on recom-
mendations for the design, documentation, and methodology. Robillard et al. [RBK ™ 13] fo-
cused on automated support of API specification inference techniques, which, for instance,
can be applied to automated code suggestions. In another survey, Rauf et al. [RTP19]
included automated support, such as API usability assessment tools, but also recommen-
dations, for instance, including usability studies in early development processes of APIs.
Instead, Patnaik et al. [PDHR23] focused on the usability of security APIs and considered
automated support like security assessment tools and recommendations, such as principles
of secure software development of APIs.

Other Causes: Ryan et al. [RRS23] presented potentially false assumptions on secure
development and thus reviewed recommendations targeting the root cause of client devel-
opers. Alhosaini et al. [AAWX23] analyzed automated support for the root cause of finding
API features, namely recommendation systems. McGregor [McG23] discussed several rec-
ommendations for the root cause of client developers (e.g., better teaching environments),
API usability (e.g., providing test modes), and API documentation (e.g., including more
code examples).

Note that some surveys also provided prevention mechanisms, which were applicable to
other root causes as well. However, none of them could consider the large perspective on
prevention mechanisms targeting all 11 root causes as discussed previously, since these
were previously not apparent. This way, our survey provides a benefit to the state of the
research.

4.3.2. Meta-Analysis APl Misuse Prevention for Misuse Causes

Methodology We obtained the publications on API prevention mechanisms using the
process depicted in Figure 4.13. We started based on the 66 publications found for API
misuse causes (i.e., including the one identified as duplicate in Figure 4.1) in step (D).
We conjectured that publications discussing root causes of API misuses also likely discuss
potential prevention mechanisms or refer to them. Then, we conducted a single step forward
and backward snowballing ((2)). In detail, we applied ordinary snowballing [Woh14] but only
considered those publications cited by at least one of the papers within our initial set (i.e.,
backward snowballing) or that cited at least one of the papers of this initial set (i.e., forward
snowballing). We did not consider publications going beyond this (e.g., publications citing
those papers found by backward snowballing) since we found the time frame and number of
retrieved publications sufficient for our analysis. Regarding the forward snowballing (3)),
we leveraged the ‘cited by’-functionality by Google Scholar’. We conducted the forward
snowballing in a time frame from November 11th, 2024, to January 8th, 2025. This time
frame is important since search results can differ over time [KLvNT20]. For backward
snowballing ((4)), we consulted the respective reference list of the paper within our initial
set and consulted the publications in the time frame from January 8th to January 15th,
2025. For both variants of snowballing, we applied the following criteria for initial selection:

"ef. https://scholar.google.com/ last accessed: 2025/03/20

71

https://scholar.google.com/

Chapter 4. API Misuse Root Causes & Prevention

@ Studies API Misuse Causes
66
paper
66
paper @ Single Step Forward and Backward Snowballing
@ @ Backward
Forward Snowballing 299 paper Snowballing
115 paper
@ Reading, Selection, and Classification Process 69 excluded @

‘ 411 paper summaries

@ Mapping Prevention Mechanisms to APl Misuse Root Causes

Figure 4.13.: Overview of SLR-like process for meta analysis of API misuse prevention

e the publication is a peer-reviewed article;
e it is written in English;
e it is published between the years 2000-2025;

e the title and additionally the abstract indicate that a paper considers a prevention
mechanism (i.e., recommendations or automated support) targeting root causes of
API misuses.

This way, the main author found 299 additional publications via forward snowballing (i.e.,
(3)) and 115 publications using backward snowballing (i.e., (4)). Including those 66 pub-
lications, we obtained a set of 480 publications as input of the reading, selection, and
classification process in step (5).

Reading: First, the main author processed each paper using the following procedure:

1) read the title and the abstract

2) read the conclusion and skim through the discussion or implication section, if appli-
cable

3) skimmed through the evaluation and results section, if applicable
4) skimmed through the lessons learned and recommendation section, if applicable

For replicability, the main author summarized the prevention mechanisms of each paper in
short textual form.

Selection: While reading, we excluded those publications (i.e., in addition to the deci-
sion criteria discussed before) that either did not suggest a prevention mechanism or that
essentially represented a duplication (e.g., extensions of a previously found publication
without further insights). This way, we excluded 69 publications (i.e., (6)).

72

4.3. API Misuse Cause Prevention

Classification prevention: After step 2), we decided whether the publication suggests
a recommendation (i.e., subsequently abbreviated with the suffix -R), an automated sup-
port (i.e., subsequently abbreviated with the suffix -AS), or both as a prevention mechanism
(i.e., using both suffixes) all of them targeting API misuse causes. In detail, we denoted a
recommendation as support without software artifacts, such as suggesting an optimization
of the software development process or a guideline. In contrast, we determined the pre-
vention mechanism as automated support, when it represented a software artifact obtained
via engineering research [RAB'20].

Classification validation: Subsequently, after steps 3) and 4), we decided whether the
recommendation of automated support was non-validated (i.e., subsequently abbreviated
with prefix NV-), partially validated (i.e., subsequently abbreviated with prefix PV-), or val-
idated (i.e., subsequently abbreviated with prefix V-). We determined a recommendation or
automated support as non-validated if no evaluation of the effectiveness of preventing API
misuses was conducted. In case we denoted it partially validated, we found that only some
parts of the recommendation or automated support were evaluated regarding the effective-
ness of preventing API misuses using methods from empirical software engineering (e.g.,
developer studies, surveys, engineering research) [RABT20]. In contrast, for a prevention
mechanism denoted as validated, all mechanisms have been completely evaluated.

Mapping: In step (7), the main author mapped for each of the 411 publications the
previously obtained classification to the detailed root causes (cf. Table 4.4). Note that in
case multiple prevention mechanisms were reported, for instance, a VAS and an NVR, both
kinds were counted. Moreover, single prevention mechanisms could map to multiple root
causes. This way, we determined how many differently validated prevention mechanisms
for each root cause exist. This procedure caused that the reported number represented
the number of different reported prevention mechanisms and not necessarily the number of
different publications.

Based on this procedure, we conducted a quantitative analysis of possible research gaps
in API misuse prevention mechanisms. Moreover, we subsequently determined the most
frequently discussed prevention mechanisms of each of the 11 general root causes. Note
that a complete discussion of all 411 publications would be too fine-grained. Thus, for
details, we refer to our replication package®.

Results Meta-Analysis First, we analyzed the characteristics of the 411 publications to
ensure a sufficient quality of the selection. Figure 4.14 depicts the absolute frequency of
publications per year. We observed that the majority of publications stem from the years
2018 to 2023, while we found a significantly large set of publications from 2024 and also
two publications from 2025. Note that the decrease in publications in 2024 and 2025 does
not necessarily represent a decrease in the research interest in API prevention mechanisms
but rather is an artifact of non-indexed publications within Google Scholar.

We also reviewed the venues of the publications and focused on those venues with at
least ten publications within our final set in decreasing order in Table 4.7. We found
that these represent publications from leading conferences® and journals’ from software
engineering. Note that these are conferences with special focuses on human interaction

8A and A* conferences according to the ICORE conference portal cf. https://portal.core.edu.au/
conf-ranks/ last accessed: 2025/03/20

%listed in the top ten venues of Google Scholar category of Software Systems https://scholar.google.
com/citations?view_op=top_venues&vg=eng_softwaresystems last accessed: 2025/03/20

73

https://portal.core.edu.au/conf-ranks/
https://portal.core.edu.au/conf-ranks/
https://scholar.google.com/citations?view_op=top_venues&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&vq=eng_softwaresystems

Chapter 4. API Misuse Root Causes & Prevention

Table 4.7.: Venues sorted by the number of included publications with at least ten publi-
cations in our reviewed set

Venue #Publications
ACM/IEEFE Int. Conf. Soft. Eng. (ICSE) and its Softw. Eng. Pract. 4745
(ICSE-SEIP) track

IEEE Trans. Softw. Eng. (TSE) 22
Springer Empir. Softw. Eng. (EMSE) 22
ACM Eur. Softw. Eng. Conf./Found. Softw. Fng. (ESEC/FSE) 19
IEEE Int. Conf. Softw. Maint./Evol. (ICSM/ICSME) 7+10
IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE) 15
IEEE Int. Conf. Program Compr. (ICPC) 14
ACM Conf. Hum. Factors Comp. Syst. (CHI) 13
IEEE Int. Conf. Softw. Anal., Evol., Reeng. (SANER) 11
ACM Trans. Softw. Eng. Methodology (TOSEM) 11
Elsevier J. Syst. Softw. (JSS) 11
FElsevier J. Inf. Softw. Technol. (IST) 11

40

30 A

20 A

number selected publications

10 1

O 14 N M T 1N O~ VDO H N MST N O™~ 00O H N M T N

O 0O o000 o000 o0 o0 d ddddddd 44 4 N N N N N N

O O O O O O O O O OO0 O0O OO0 O0OO0OO0OO0OO0OOoOOoO o o o

N AN AN AN AN AN AN AN NN NN NN N NN NN NN NN N
year

Figure 4.14.: Frequency of selected papers with API misuse prevention per publication year

74

4.3. API Misuse Cause Prevention

(A): complexity and abstraction issues - 29 4 9 5 3 0
(B): human API developer issues - 15 6 9 7 8 1

(C): human client developer issues - 35 5 9 11 17 20
(D): API code issues - 39 1 13 2 22 6

(E): API usability issues - 22 4 8 26
(F): false APl usage resources - 13 1 0 0 14 12
- 40
(G): finding features issues - 8 1 1 7 18 13
(H): API installation issues - 0 3 0 0 1 4
(1): documentation issues 56 8 16 16 52 74 20
(J): API evolution issues and breaking changes - 22 7 4 17 33 10
(K): other context-related issues - 3 1 4 0 0 1
' ' ' ' ' ' -0
2O \O o0 o o o
e“&‘ o o R o° o° o®
«© \ o x° & &
o) O o) o
<& <& S & 2 & 2 3O 3O
¥ 3 C e e e
2 A e & NS &
o N N NG R R
3 &P N) o N P
o @"Qﬁ Nl Qa& o
N \
N Q

Figure 4.15.: Correlation of General Root Causes and Prevention Mechanisms

(i.e., CHI), program comprehension (i.e., ICPC), maintenance (i.e., ICSM/ICSME), and
software analytics (i.e., SANER).

Due to its time frame encompassing recent research as well as due to high-ranked venues,
we denote this set as representative of software engineering research.

Results Quantitative Mapping Prevention Mechanisms and Root Causes As discussed
before, we mapped each single prevention mechanism (either recommendation or automated
support) to one or multiple detailed root causes. A summary of this mapping of root cause
groups with their prevention mechanisms is shown in Figure 4.15 as a heat map'’.

Based on our previous results, we know that (E) AP usability, (I) documentation, (A)
complexity and abstraction, and (D) code issues are the most reported root causes of API
misuses (i.e., Insight C&P-1). This way, it was not surprising that, most frequently,
AS-prevention was researched for (E) API usability (i.e., 94 PVASs and 70 VASs) and (I)

%the mapping to detailed root causes is shown in the appendix (cf. Figure A.2) as well as in the replication
package in footnote 6 of this Chapter

75

Chapter 4. API Misuse Root Causes & Prevention

API documentation issues (i.e., 52 PVAS and 74 VAS). (I) API documentation also had the
largest number of VRs (i.e., 16) and PVRs (i.e., eight). In comparison, no VAS and only three
PVAS were researched for (A) complexity and abstraction, while four PVRs and nine VRs were
discussed for this issue. For (D) API code issues, we found the second most number of VRs
(i.e., 13) and a single PVR as well as 22 PVAS and six VAS. In addition, we found more than
ten PVAS or VAS for the root causes of issues with (C) human client developer, (F) false API
usage resources, (G) finding feature issues, and (J) API evolution and breaking changes.
Overall, we found the least number of prevention mechanisms for (H) API installation
issues (i.e., overall eight) and (K) other context-related issues (i.e., overall nine).

/Insight C&P-6 (RQ C&P-P): Most prevention mechanisms for API usabil—\
ity issues and API documentation issues

We found that in our investigated literature set, the root causes of (E) API usability
issues (i.e., twelve partially or fully validated recommendations and 164 partially or
fully validated automated support techniques) and (I) API documentation (i.e., 24 par-
tially or fully validated recommendations and 166 partially or fully validated automated
support) were most frequently targeted in API misuse prevention research.

- J

Except for two causes (H) and (K), we noticed among all other causes, more NVRs than
VR and PVR exist. This observation indicates that only a minority of prevention recom-
mendations are actually evaluated, namely, in sum, 114 PVRs and VRs compared to 242
NVRs.

Insight C&P-7 (RQ C&P-P): Many non-validated recommendations

While we found many recommendations from API misuse prevention research, a ma-
jority of them (i.e., 242 of 336) were not validated using empirical methods of software
engineering research.

In contrast, automated support was more frequently evaluated (i.e., in sum 211 VASs
and 262 PVASs compared to 91 NVASs) among all with the exception of (A) complexity and
abstraction, which had only three PVAS compared to five NVAS (e.g., tool ideas suggested
by researchers).

Insight C&P-8 (RQ C&P-P): More validated and partially validated auto-
mated support

We found that a majority of automated support is partially or fully validated (i.e., 473
prevention mechanisms) in comparison to non-validated techniques (i.e., 91).

We also depicted the absolute frequency of PVR/PVAS and VR/VAS prevention mechanisms
in Figure 4.16. Based on this, we observed that the root causes with issues regarding (C)
human client developer, (D) API code, (E) API usability, (F) usage of API resources,
(G) finding features, (H) API installation, (I) API documentation, and (J) API evolution
and breaking changes were most frequently targeted with validated and partially validated
automated support. For issues (A) complexity and abstraction, (B) human API developer,
and (K) other context-related, research suggested more recommendations. Recall that due
to the counting procedure (i.e., counting prevention mechanisms for detailed causes), a
single prevention can be counted multiple times within a cause group.

76

4.3. API Misuse Cause Prevention

Prevention Mechanisms
[validated recommendation (VR) I validated automated support (VAS)
[partially validated recommendation (PVR) 3 partially validated automated support (PVAS)

160

1401

un
N
o

1001

<]
o
L

Number Prevention Mechanisms
(=]
o
L

N
o

N |:|—| [ﬂ |: J J
25 S &5 o - 25
N

=3 S 25
\ » o > '\‘;’\) e o X© \G2 \¢ s> G2 ’o“g \55\)
X\ el =3 o o oy)
< o N A X\ X\O (<Y X2
« (o \O \‘e\o P?\ ! e N saQ &e’é‘ » A G aV;\(\ < 2
0> & . \ N oS (€ &
o L S
S| 9 Re N QO
ot o & & & &
3O o WO s

N
\ Pf"\ e

Figure 4.16.: Number of (partially) validated prevention mechanisms per root cause

/Insight C&P-9 (RQ C&P-P): More automated support than recommenda-\
tions in the set of validated and partially validated prevention mechanisms

We found that for all validated and partially validated prevention mechanisms overall
(i.e., 473 automated support compared to 114 recommendations) as well as on the
level of targeted root causes (i.e., eight out of eleven had more automated support
than recommendations) research on API misuse prevention was focused on providing
Kautonmteal support.

j

Results Qualitative Discussion Prevention Mechanisms on Root Causes We present an
overview of concrete prevention mechanisms of validated results (i.e., VR and VAS) according
to the general root causes. For that purpose, we leveraged the mapping and re-consulted the
summary texts referring to the respective validated prevention mechanism. We present a
detailed summary of prevention mechanisms in our appendix (cf. Table A.3). Subsequently,
we discuss the most important prevention mechanisms for each root cause.

(A) Complexity and abstraction issues: We found relatively few VRs for complezity
and abstraction issues, and most of them stem from the domain of cryptographic APIs.
Their focus was on design principles and guidelines [ZWH19], and the goal was to simplify
the usage for common cases [FMGK24], provide simpler test modes [IKND16], or secure
defaults [[KND16, FMGEK24].

(B) Human API developer issues: Human API developer issues were less researched,
particularly in comparison to client developers issues (i.e., root cause (C)). Most VRs focused

7

Chapter 4. API Misuse Root Causes & Prevention

on improving the communication means between API and client developers, for instance,
by establishing code review processes involving client developers [WBK21], applying cer-
tain API usability evaluation methods [FWZ10], and communicating up-to-dateness using
badges in repositories [TZKV18]. A single VAS was given by a chatbot, supporting the API
developer to adhere to functional requirements during the development of the APT [SY21].

(C) Human client developer issues: Regarding client API developer issues, a typical
VR, especially found for cryptographic APIs, was that priming client developers with task in-
formation (e.g., be aware of security issues) triggers the correct usage [NDT 17, DNRS21].
Another valid result was that pure copy and paste can lead to functional but not necessarily
secure code [ABF17]. More positive results were found using code examples but in combi-
nation with pair programming [SAKW21]. Thus, many VAS techniques focused on selection
of relevant Q&A pages [FXK19, WJZ 23, CPY "24] as well as automated in-code sug-
gestions, which leveraged context information [NMH™24], related code examples [THK17],
usage templates [MWD24], and code generation [KRW23]. Other VASs aimed to improve
the usability of documentation by collecting scattered information [LLST18] and shared
common knowledge via annotations [HLH'22].

(D) API code issues: For API code issues, we found the VR to avoid linguistic anti-
patterns and non-universally accepted terms (e.g., from the application domain), partic-
ularly when naming APT elements [ANBL18, MRARMBT18]. Other VRs focused on in-
creasing the resilience of API code to fail due to internal errors [MRARMB™ 18], reporting
the current build status [TZKV18], and applying Static Code Analysis (SCA) with more
precise messages [TVBW21]. VASs were focused on the security domain in detail, providing
security advice and warnings [NWA ™17, GIW 18, LAH18].

(E) API usability issues: API usability issues were prominently targeted root cause.
However, we only identified a few VRs, namely, not hiding API methods in helper classes
[SMO8] or preferring constructors for initialization over the factory pattern [ESMO07]. More
frequently, VASs were suggested, particularly on finding related or alternative API us-
ages [HWM06, BDWK10, DR11, KAS13, IHK17, NKZ17, ZUR*+18, LHT+22] or their
automated generation [KAB20, SWZ"20, MWD24] together with a related explanation
[YHWH24]. Another large field was the inference of idiomatic code examples or API usage
patterns, which served as templates or sources of code suggestion techniques [MXBKO05,
DHO09a, SHA14, BSZ 20, LPM*21, NDRDS " 22]. Moreover, many techniques improved the
usability of Q& A pages, in which API misuses were discussed [HAHH15, GZHK18, NGB21].

(F) False API usage resources: A large focus for the prevention of false API usage
resources targeted the usage of Q&A pages. In detail, we only found VASs, which vali-
dated [FXK ™19, HWL21] and summarized [WPWZ19, LHT 22, LCCT23, CPY "24] Q&A
posts. Other techniques provided means to customize code examples from those discus-
sion boards [ZYLK19, TS21]. An interesting research area was the automated detection of
frauds. Frauds denote the up-voting of low-quality solutions, particularly when developers
want to promote themselves [MUKS24].

(G) Finding features issues: For the root cause of finding features issues, namely,
relevant API elements, we only found a single VR, namely, not hiding API methods in
helper classes [SMO08]. Instead, a larger set of VASs focused on improving code search tech-
niques [EM21, KRW 23, BFH24] and providing recommender systems for APIs [SPK14,
HXX 18] and libraries [CXL19, LZP"23]. Other techniques improved the findability of

78

4.3. API Misuse Cause Prevention

APT elements in the documentation by providing usage frequencies [SFYMO09] as well as
leveraging information from Q&A posts [UKR20] and API method similarities [NMVH23].
Moreover, Santos and Myers [SM17] contributed annotations for API code to enhance the
API discoverability. When providing tooling for customizing and summarizing code exam-
ples from Q&A posts, an improved API exploration was observed [GZHK18, ZYLK19].

(H) Installation issues: We only found a few VASs as prevention mechanisms for in-
stallation issues. Mostly, these were focused on specific domains, such as optimization
techniques for Deep Learning (DL) APIs [WLY "24] or automated privacy configuration
for mobile apps [SAI20]. Another technique resolved the issue of dependency incompati-
bilities [LWL22].

(I) API documentation issues: As the second most targeted root cause, API doc-
umentation issues had many prevention mechanisms. Most frequently, we found, as VR,
studies that validated the positive effect of code examples to explain API usage to client
developers [WZF 712, SAKW21, BCM22, GMWI22] as well as leveraging so-called crowd-
sourced documentation, such as Q& A pages [DPCAAM16, TRJ"21]. Another VR suggested
constructing documentation that supports different human learner types, namely oppor-
tunistic (i.e., with the goal of fast task solving) versus systematic learners (i.e., with the
goal of obtaining a complete understanding of the APT) [MSS20]. Ukrop et al. [UBv'22]
validated the positive effect of highlighting potential misuses when applying the APIL.
Since code examples had been considered as a positive characteristic of documentation,
it was not surprising that there exist many techniques finding examples, templates, and
patterns of API usage [MXBKO05, HWMO06, DH09b, BW12, KLHK13, THK17, NKZ17,
GZHK18, HGHH18, ZYLK19, BSZ"20, SXP*21, ZJR*21, WBI"23, BFH24]. Moreover,
there exist techniques that leverage crowd-sourced information, such as Q&A webpages, to
enhance the documentation [SFYMO09, BDWK10, GFX 10, TR16, CYYZ19, WPWZ19,
ZJRT21, WJZ 23, BFH24]. Another focus was the improvement of the search abilities
and orientation in the documentation [RC15, LLST18, WJZ"21, HLH"22, NMVH23].
During the creation of the documentation, some VASs supported the process of writing
the documentation [LWCK21, HMM?23], while others strove for automated documenta-
tion generation [MM16b, UKR20, UKR21, GMBG™'23]. More specific techniques aimed at
the creation of tutorials within documentation [KRW 23, NMH"24] and provided inter-
active mechanisms in the documentation [DH09a, NR25]. Finally, to ensure the qual-
ity of the documentation, VASs detected inconsistencies between source code and the
documentation[MLK19, ZWY"20] and provided automated assessment [BCH23].

(J) API evolution issues and breaking changes: Interestingly, while being a promi-
nently found issue, VRs for API evolution in our investigated literature set were rare. We
found a single work that validated the effect of semantic versioning, namely indicating by
the version number the degree of change and possible breaking changes [RvV17]. Most
VASs suggested the application of automated API migration techniques for code [SPK14,
GAQT18, LSC22, DND"25] as well as its documentation [LWCK21, HMM23]. Other tech-
niques aimed to detect incompatibilities when libraries were upgraded [NDBB20, ZZW *23].
Two other VASs suggested alternative libraries [CX1.19] or automatically generated com-
patibility code for the library [DNMJ0S].

(K) Other context-related issues: For the last root cause (K) other context-related
issues, we only found a few VRs and VASs. In detail, most frequently, we found the VR

79

Chapter 4. API Misuse Root Causes & Prevention

of using statically over dynamically typed programming language [EHRS14, PHR14], but
this effect was diminished in case documentation was not available [MHR12]. Other
recommendations focused on software development characteristics for the specific domain
of smart contracts [WXL721]. As VAS, we identified a technique to fix license issues in
forked projects [HXC™24].

/Insight C&P-10 (RQ C&P-P): Different degrees of prevention mechanisms\

for API misuse root causes

We found that (1) for each considered root cause, we found prevention mechanisms,
(2) however, the number and degree of prevention mechanisms varied strongly, (3) and
some techniques (e.g., automated support finding related code examples for improving
API usability and extending API documentation) were more prominently researched,
and (4) some prevention mechanisms targeted multiple root causes (e.g., finding related
code examples and providing summaries of QEA pages).)

_

Influence of security APIs: Since we noticed many prevention mechanisms related to
the domain of security and cryptographic APIs, we checked how many papers are validated
in the security or cryptographic domain. This is important, since certain prevention mech-
anisms could be more suitable in this specific domain and, thus, could bias the generality
among software engineering research. For this purpose, we search in all 411 publications
whether their titles contain the prefix secur- or crypto-. We found 53 publications.
Moreover, we checked the publishing venues and found 41 publications from 19 different
security-related venues. Thus, we obtained a proportion of 10 — 12.9% of publications on
prevention mechanisms stemming from the security domain. For all publications with val-
idated prevention mechanisms (i.e., VR and VAS), which represent 131 publications in our
set, we found 19 of them containing the previously named prefixes in their titles. Fifteen of
these publications stemmed from 10 different security venues. These represented a propor-
tion between 11.4 — 14.5% of all publications with validated prevention mechanisms. From
past research, we observed a rough notion on the proportion of security research in software
engineering, which, depending on the actual measurement (i.e., proportion of publications
vs. proportion of topics within publications), ranges between 1%-2% [GVR02, GDCS22].
Thus, we identified the influence of the security domain as small but not negligible in
comparison to software engineering in general.

Insight C&P-11 (RQ C&P-P): Small but not negligible set of recommen-
dations and automated support from the security domain

We observed a set between 10 — 14.5% of publications with concrete prevention mecha-
nisms stemming from the domain of security and cryptographic APls and were validated
in this specific domain.

Implications In this section, we surveyed the potential prevention mechanisms target-
ing the root causes identified in Section 4.2 to answer RQ C&P-P. We found that our
assumed recommendations and automated support represent a sufficient classification to
represent state-of-the-art prevention mechanisms. Moreover, we analyzed to which degree
these prevention mechanisms were validated and which root causes of API misuses they
target. Based on these results, researchers obtain an overview of which root causes are

80

4.3. API Misuse Cause Prevention

most frequently analyzed with which prevention mechanisms (i.e., Insight C&P-6 and
Insight C&P-10) and which prevention mechanisms require further empirical evaluation
(i.e., Insight C&P-7, Insight C&P-8, and Insight C&P-9). Practitioners could apply
our overview (i.e., in Table A.3) to find a set of validated prevention mechanisms (i.e., In-
sight C&P-6 and Insight C&P-10). Moreover, researchers and practitioners from the
security domain should consider specific prevention mechanisms evaluated in the security
domain (Insight C&P-11).

4.3.3. Recommendations for Research of APl Misuse Prevention

Methodology In this section, we map the results of API misuse root causes (cf. Sec-
tion 4.2.2) and API misuse prevention mechanisms (cf. Section 4.3.2) to obtain indicators
for future research on root causes and their prevention mechanisms. For this purpose, we
obtain a mapping of the number of publications discussing root causes with the number of
prevention mechanisms.

In detail, first, we counted the number of publications for each detailed root cause as
well as for each general cause (cf. Table 4.4). Then, we normalized each count by dividing
it by the largest number (i.e., the most frequently discussed root cause). This way, we ob-
tained a measurement of the relative research effort denoted as rry o4 for each root cause.
This value represents the relative effort on one root cause compared to all others, namely,
TTeffort = 0 denotes no research, while rr.fso,s = 1 denotes the largest relative research
effort. Similarly, we obtained the r7.f .+ on the prevention mechanisms for each detailed
root cause and general cause. However, we only considered those prevention mechanisms,
which we denoted in Section 4.3.2 as partially validated or validated (i.e., PVR, VR, PVAS,
or VAS). Note that by construction, since there will always be a root cause with the largest
number of publications or suggested prevention mechanisms, there will always be one entry
with TTef fort = 1.

We emphasize that rr.f .- only represents the research effort in our analyzed literature
and not necessarily represents the true value for entire research domain of API misuse
causes and prevention mechanisms. Nevertheless, based on the descriptive data of the
literature venues (cf. Sections 4.2.2 and 4.3.2) and the number of relevant literature (i.e.,
65 publications for root causes and 296 from 411 publications for prevention mechanisms),
we identify these sets as representative.

Finally, we discuss the differences to denote potential research directions (e.g., those root
causes frequently reported but with few prevention mechanisms).

Results We present the results of the rr. o for publications on root causes and suggested
prevention mechanisms for each general cause in Figure 4.17. Note that this figure encom-
passes both prevention mechanisms, namely recommendations and automated support (i.e.,
both either validated or partially validated). In Figure 4.18, we separately considered the
research effort on recommendation (cf. Figure 4.18a) and validated automated support (cf.
Figure 4.18b). Moreover, we present in our appendix (cf. Section A.1.6) a fine-grained
comparison of the relative research effort based on the detailed root causes (cf. Figure A.3,
Figure A.4, and Figure A.5). Note that the 7. fo of the root causes is the same for each
depiction (i.e., grey bars in Figure 4.17 and Figure 4.18) and we only varied the prevention
mechanism (i.e., blue bars).

In general, we observed that the most frequently discussed root causes (E) API usability
issues (i.e., rrepfore = 1) and (1) documentation issues (i.e., Trcffore ~ 0.81) also obtained

81

Chapter 4. API Misuse Root Causes & Prevention

1.01 [root causes
I prevention mechanism
0.8
+0.61
=
g
0.4
0.2 1
0.0—
B T (== TP (- SN | SN (- eS . e (= (o e5 . _ued
aon W s eV ode sV iy ‘ec,o\)‘c (s sV o0 sV a0t eV pan® ed ooV
2C Q\oP Q\oP \ C 200 e X \@) WS o\
(N N \'4 S & £ . N\ \ X
U e de B\ W VS . St e! ed X
A\ ort) Py BRVUT et AR st of wer
\eX a® \“\““3“ o2 o (KE\@ e KG\ o W) W K\\d ‘\SS\)QS a:, nes °
o (B o) oot (NS
kp\\ ‘)\ e\|°

O P

Figure 4.17.: Comparison of relative research between relative research effort (rreffor:) on
root causes and prevention mechanisms in general

the largest relative research effort regarding the prevention mechanisms with an equal or
larger 77¢ffort, namely, 17 frore = 1 and rrefpore & 0.85, respectively. For all other general
causes, the rrefrors is smaller for prevention mechanisms. Most prominently visible is
the difference for the root causes (A) complexity and abstraction issues having a more
than seven times smaller r7.tf,+ on prevention mechanisms compared to its root causes
(i.e., Treffort = 0.09 vs. 77Tefpore = 0.7). We also observed this behavior for (H) API
installation issues with a more than eight times smaller r7efrore (i-€., T7effore = 0.05 vs.
TTeffort = 0.37). Moreover, we found that the frequently discussed root causes (D) API
code issues (i.e., rrefrore = 0.67), (C) human client developer issues (i.e., r7effort = 0.51),
and (J) API evolution issues and breaking changes (i.e., 77cffort = 0.47) also had a smaller
TTeffort ON prevention mechanisms.

/Insight C&P-12 (RQ C&P-S): Research potential on prevention mecha—\

nisms for a subset of root causes

We found, based on the conducted research on root causes, future research should con-
centrate the research effort on prevention mechanisms targeting (A) complexity and
abstraction issues, (B) human API developer issues, (C) human client developer is-
sues, (D) API code issues, (H) API installation issues, and (J) API evolution issues
Kcmd breaking changes.)

When considering the groups of validated/partially validated recommendations and au-
tomated support separately (cf. Figure 4.18), we observed that the rreffor¢ on recommen-
dations is different from those of automated support.

The r7¢ff0r¢ on recommendations was larger in comparison to the overall prevention
mechanisms for all but (E) API usability issues, (F) false API usage resources, and (G)
finding features issues. For three causes (i.e., (B) human API developer issues, (C) human

82

4.3. API Misuse Cause Prevention

(a) Only recommendations

L1071 3 root causes]
[recommendations
0.8
0.6
=
£
0.44
0.24
0.0+—
e \1es \es WeS ..cue® S . € e R e5 ves
(\s° (1SS \sS ou¢ VT eV es 20 3 s
o A0p T op®! 00 gy e 1857 @ 0N T 00 g
and 2052 po\ de\'e\ ot deN® ©) Ny pe\ v po us?® A0S te? P\ \‘\5‘3\ docu“‘e“ oS et xere©
p\e* \ e ore® . \E\k\ s ©r o WY : QO gsue® \:\A et ©
g Co k K \ \\)‘:\ .
(- a0
OF
(b) Only automated support
1.07 [root causes
I automated support
0.8
+ 0.6
S
£
0.4
0.2
0.0
ves e5 e e5 e5 (=3 e5 e - ccV€®
sS“ BV en® e N SSVU7 VT sV (an® 15V
el e ey (es (€& (8) on L g O ‘ed
3‘05“36;?\ deqe\\o?“ de“e\g\ s COP\ \ “53‘0;\ o\ xS ot ﬁeaté\ ‘\“Sta\\gﬂc\)ﬁ‘e“‘aﬂd \,‘ea“““% @%"‘e\a
20 e &a \se .o . N W) 0 o AW ox @
(RS \\\ﬂ“ ue® ¢). @ G (WY O s ° o
o™ &6\ (@8 Q ot NE
(- o

Figure 4.18.: Comparison of relative research between relative research effort (rr. ¥ fo,,t) on
root causes with recommendations and automated support

83

Chapter 4. API Misuse Root Causes & Prevention

client developer issues, and (I) documentation issues), the TTef fort ON recommendations ex-
panded that of the root causes. Interestingly, the rrefsor¢ on recommendations for (E) API
usability issues was only half of the rr.f o+ compared to automated support. Nevertheless,
we point out that these only represent relative numbers, as observed in the previous Sec-
tion. Particularly, from Insight C&P-9, we know that the absolute number of partially
validated and validated automated support is much larger than those of recommendations.
Since we also observed a large set of non-validated recommendations (i.e., Insight C&P-
7), future research should concentrate on validating these recommendations, particularly
targeting the root causes of (E) API usability issues, (F) false API usage resources, (G)
finding feature issues, and (H) API installation issues. In detail, future research could val-
idate those NVRs from Figure 4.15 (or Figure A.2 in the appendix) or suggest and validate
own recommendations for causes, for which no NVRs exist in our results (e.g., (H) API
installation issues).

/Insight C&P-13 (RQ C&P-S): In general, more research effort on recom-\
mendations with some particular focuses

We found that (1) the overall number of partially and fully validated recommendations
was low. Thus, research should concentrate on validating the set of given recommenda-
tions. (2) A special focus should be put into recommendations regarding the root causes
of (E) API usability issues, (F) false API usage resources, (G) finding feature issues,
and (H) API installation issues.

- %

In contrast, the rreffor¢ on automated support (cf. Figure 4.18b) was similar compared
to the results of the prevention mechanisms. However, we observed for all root causes but
two (i.e., (E) API usability issues and (F) false API usage resources) a lower 77¢f ot ON
automated support compared to the combined view on mechanisms. Moreover, the research
effort on (1) documentation issues was comparable to the effort on the analysis of its cause.
Thus, future research should aim for more automated support to target (4) complexity
and abstraction issues and (D) API code issues. For both, techniques could target a better
design or navigation through complex APIs or provide SCA techniques to find issues in
the library code. Regarding (B) human API and (C) client developer issues, the potential
benefit from automated support is debatable. Some root causes cannot be easily fixed with
automated techniques, such as missing education on API design (i.e., the detailed root
cause (B-3)) or targeting mindset issues of client developers (i.e., the detailed root cause
(C-4)). In other cases, such as communication issues between API and client developers
(i.e., detailed root cause (B-1)), automated communication means can be valuable features.

/Insight C&P-14 (RQ C&P-S): Research effort on automated support only\
with a special focus

We found that (1) research effort on automated support should be put into (A) com-
plexity and abstraction issues and (D) API code issues, which have more potential
to benefit from automated techniques, while (2) (B) human API and (C) client devel-
oper issues may only benefit from automated support techniques for a few detailed root

K CaUSeES. /

84

4.3. API Misuse Cause Prevention

Insight C&P-15 (RQ C&P-S): Most current research effort was put into
preventing API usability and documentation issues

Overall, we found that the root causes of (E) API usability issues and (I) documen-
tation issues were most prominently researched regarding their causes as well as their
prevention mechanisms.

Finally, research should further regard empirical or observational studies on less fre-
quently researched root causes. A major need is the root cause of (B) human API devel-
oper issues, which has almost half of the research effort on its cause (i.e., rrefrore ~ 0.28)
compared to (C) human client developer issues (i.e., rreffore ~ 0.51). This way, a bet-
ter comprehension of the needs and problems during API development can be achieved.
Moreover, we also motivate research efforts on both causes and prevention mechanisms on
(F) false API usage resources, (G) finding features issues, and (H) API installation issues,
since all have a small rrefrore (i.e., below 0.37).

/Insight C&P-16 (RQ C&P-S): Next to prevention mechanisms, research\
should further investigate root causes with previously a low research focus.

We found that (1) researchers should further analyze the root cause of (B) human API

developer issues and (2) (F) false API usage resources, (G) finding features issues,

and (H) API installation issues as they require more research on both root causes and
kprevention mechanisms.)

Implications In this section, we analyzed the research effort on root causes of API mis-
uses in comparison with their prevention mechanisms to answer RQ C&P-S. This way,
we could assess which root causes, as well as which prevention mechanisms targeting these
root causes, require further research. Thus, we suggest future research directions on preven-
tion mechanisms (i.e., Insight C&P-12), particularly on recommendations (i.e., Insight
C&P-13) and automated support (i.e., Insight C&P-14) as well as suggestions for stud-
ies on their root causes (i.e., Insight C&P-16). Nevertheless, we also found that some
root causes are well-researched (i.e., Insight C&P-15), which provides insights for prac-
titioners on the applicability of these results as well.

4.3.4. Threats to Validity

Regarding the research questions RQ C&P-P and RQ C&P-S, which we evaluated in
this section, we discuss potential threats to validity.

Internal Validity Even though we applied methods from SLR, such as snowballing, our
selected publications could suffered from selection bias. This bias could be caused by the
main author’s subjective view when selecting publications based on their titles or due to the
time at which the snowballing was conducted (i.e., different search results when applying
Google Scholar [KLvN™20]).

Another issue was that the manual mapping of prevention mechanisms to the root causes,
as well as the classification of the prevention mechanisms, was solely done by the main
author. Additionally, the naming of the root causes, as well as their descriptions, could
also influenced whether there existed a mapping or not. This way, even though conducted

85

Chapter 4. API Misuse Root Causes & Prevention

systematically, this mapping and classification could be biased by the main author or could
contain errors. For this purpose, we provide all data together with their analysis scripts in
a replication package’.

Our measurement of relative research effort (rresfor+) depicts only the number of pub-
lications and suggestions relative to the other publications and suggestions and does not
express the effectiveness of the discussed prevention mechanisms or the severity of the root
causes. This way, it depicts all prevention mechanisms as equally effective and the root
causes as equally severe, which could be false in reality.

External Validity Since our results were based on the root causes identified before, we
might also miss prevention mechanisms for potentially unknown or unreported root causes.

Due to the influence of security-related publications (cf. Insight C&P-11), results on
the prevention mechanisms could be partially limited to this domain. While we obtained
relatively new publications, we emphasize that the results are limited to the current time
frame and report the state of the literature for this time frame.

Moreover, the expressiveness of 77,y for¢ is limited to the selected set of publications and
the presented mapping. Thus, a different mapping and potential other publications (e.g.,
found due to another not considered root cause) can deviate the obtained result on the
research effort.

86

Chapter 4. API Misuse Root Causes & Prevention

4.4. Summary API| Misuse Root Causes & Prevention

Summary In this chapter, we targeted the research question of whether current prevention
mechanisms target the root causes of API misuse (i.e., RQ C&P). We answered this general
question by conducting two subsequent SLR-like processes [KC07, Woh14].

First, we searched empirical studies evaluating the root causes of API misuse to answer
RQ C&P-C on common root causes. We found a set of 65 publications, from which we
extracted their analyzed root causes and their applied research methodologies using open
coding from qualitative research [Flil4].

Second, we used this set to retrieve 411 publications, which discussed potential preven-
tion mechanisms to target RQ C&P-P on the state-of-the-art prevention mechanisms and
processes, subsequently referred to as prevention mechanisms. We summarized the preven-
tion mechanisms and classified each based on their type and validation status. Then, we
mapped each prevention mechanism to its targeted root cause, which we determined in the
previous review.

Finally, we analyzed potential research gaps by this mapping of API misuse causes and
their prevention mechanisms to determine whether the state-of-the-art prevention is suffi-
cient (cf. RQ C&P-S).

Contribution RQ C&P-C We provided an overview of a diverse set of root causes of API
misuses structured into eleven categories with further 44 detailed root causes (cf. Insight
C&P-1 ‘Diverse Root Causes’ on page 59). This overview denotes an extension to state-
of-the-art reviews (cf. Section 4.2.1) while encompassing all previously discussed causes.
We also determined that these root causes have interdependencies, a phenomenon — to the
best of our knowledge — not analyzed in the scientific literature. Therefore, we suggested
the concept of views (cf. Insight C&P-2 ‘Root Cause Relations by Views’ on page 63) to
formulate hypotheses, which serve as a basis for further research on API misuse causes.

A further result is that we mapped the studies to their research methodologies. This
way, we obtained an overview of the typical structure of empirical studies on API root
causes (cf. Insight C&P-3 ‘Typical Empirical Study Structure 'on page 63). Moreover,
this enabled the assessment of the scientific evidence of single root causes. For instance,
we found that a majority of root causes were evaluated using qualitative methodologies
(cf. Insight C&P-4 ‘More Qualitative Studies’ on page 67) as well as that only single
root causes were validated based on multiple, different methodologies (cf. Insight C&P-5
‘More Diverse Studies for API Evolution Issues’ on page 67).

Thus, we conclude for RQ C&P-C:

/RQ C&P-C What are the common root causes of API misuses? D)

We identified (1) a variety of root causes grouped into eleven main root causes with 44
sub-root causes and (2) potential interdependencies among them, which we hypothesized
in the form of views. We further determined (3) the typical structure of empirical
studies on root causes and (4) found that many studies on root causes are limited to
Kqualitatz’ve studies. D

Contribution RQ C&P-P Regarding the prevention mechanisms, we found recommenda-
tions and automated support, however, with a different focus on the previously discussed
root causes (cf. Insight C&P-6 ‘Most prevention mechanisms for API usability issues and

88

4.4. Summary

API documentation issues’ on page 76). Based on the analysis of the validation status, we
found that the majority of recommendations have not been validated (cf. Insight C&P-7
‘Many non-validated recommendations’ on page 76). That means even though research
on API misuse prevention has a large variety of ideas to avoid the root causes, it lacks
sufficient empirical studies to validate their effectiveness. In contrast, much more research
effort and evidence is provided by automated support based on software artifacts (cf. In-
sight C&P-8 ‘More validated and partially validated automated support’ on page 76 and
Insight C&P-9 ‘More automated support than recommendations in the set of validated
and partially validated prevention mechanisms’ on page 77).

We also provided a qualitative overview of prevention mechanisms evaluated in the sci-
entific literature. This overview supports researchers and practitioners alike (cf. Insight
C&P-10 ‘Different degrees of prevention mechanisms for API misuse root causes’ on page
80). Additionally, we found that specifically, the domain on security APIs boosted the
research on API misuse prevention (cf. Insight C&P-11 ‘Small but not negligible set of
recommendations and automated support from the security domain’ on page 80).

Therefore, we answer RQ C&P-P as follows:

/RQ C&P-P What are the state-of-the-art prevention mechanisms targeting\

API misuses?

We found that (1) there exist different prevention mechanisms which can be abstracted
as recommendations and automated support, however, (2) research is partially focused
on individual Toot causes and (3) typically concentrated on validated automated support
instead of (4) recommendations, for which a majority is not validated.

\ %

Contribution RQ C&P-S Based on the previous results and our mapping, we provided a
mean to assess the current state of the research and suggested further research directions,
namely, which root causes require prevention mechanisms (cf. Insight C&P-12 ‘Research
potential on prevention mechanisms for a subset of root causes’ on page 82). In more detail,
we suggested research directions for validating recommendations (cf. Insight C&P-13 ‘In
general, more research effort on recommendations with some particular focuses’ on page
84) and automated support (cf. Insight C&P-14 ‘Research effort on automated support
only with a special focus’ on page 84). Moreover, we also analyzed which root causes
were targeted more often by prevention mechanisms. This way, practitioners can identify
potentially applicable mechanisms (cf. Insight C&P-15 ‘Most current research effort was
put into preventing API usability and documentation issues’ on page 85). Finally, we also
suggested the need for further empirical studies on the root causes themselves to identify
effective means to prevent them (cf. Insight C&P-16 ‘Next to prevention mechanisms,
research should further investigate root causes with previously a low research focus.” on
page 85).
This way, we provide the following answer to RQ C&P-S:

RQ C&P-S Does state-of-the-art research on prevention mechanisms suffi-
ciently target root causes of API misuses?

In its current form, state-of-art research prevention only partially targets the API mis-
use root causes due to a lack of (1) validated recommendations, (2) targeted root causes,
and (3) scientific evidence for a subset of root causes.

89

Improving Pattern-Based API| Misuse
Detection

This chapter is based on publications from the author together with other colleagues pub-
lished and presented at the International Workshop on Software Mining (SoftwareMining)
2018 [NHO18], published in the Automated Software Engineering Journal in 2021 [NHSO21]*,
and a non-peer-reviewed pre-print [NBKO22] discussed in the poster session of the Summer
School on Security Testing and Verification 2022

In this chapter, we present our advances in improving pattern-based Application Pro-
gramming Interface (API) misuse detectors through new supporting techniques. Misuse
detection is necessary when the root causes (cf. Chapter 4) cannot be prevented. In this
chapter, we discuss the improvement of existing pattern-based misuse detectors, while in
Chapter 6, we discuss a new technique for API misuse detection. Patterns used for misuse
detection will be subsequently leveraged in the automated repair of misuses (cf. Chapter 7).

5.1. Methodology and Structure

RQ D Automated API Misuse Detection We target the Chaﬂenge Of 1m-
RQD-LLmitations of proving pattern-based misuse de-
State-of-the-Art tection within this chapter and
AP| Misuse Detectors . .
v thus answering research question

RQ D-F Filtering of
API| Usages for
Pattern-based

Misuse Detection

RQ D-C Change-
driven APl Usage
Collection for
Pattern-based
Misuse Detection

RQ D. This encompasses the sub-
research question on limitations
of state-of-the-art misuse detec-
tors (i.e., RQ D-L). We leverage
change information to incorporate
APT misuse detection into realistic use cases (i.e., RQ D-C) and apply search and filter
strategies to improve donor code quality for API specification mining, and thus to increase
precision of the detection (i.e., RQ D-F).

We address RQ D-L in Section 5.2 using a Systematic Literature Review (SLR) method-
ology [KC07, RAB20] to assess the state-of-the-art of API misuse detectors with a focus
on their current limitations for practical application. Based on this overview, we also select
a pattern-based misuse detector, which serves as a comparison to validate the subsequent
improvements in patterns-based detection.

!This publication is partially based on the bachelor thesis “Extraktion relevanter API-spezifischer Infor-
mationen zur automatischen Korrektur von Softwarefehlern” by Kevin Michael Schott in 2018

91

Chapter 5. Improving Pattern-Based API Misuse Detection

Subsequently, we target the questions RQ D-C and RQ D-F by applying engineering
research [RAB720]. In detail, for RQ D-C, we present a concept (cf. Section 5.3) and
a software artifact implementing the change information extraction. Then, we discuss our
evaluation of this artifact with benchmarks of API misuses in an experimental setting (cf.
Section 5.4), and show the applicability of change information for practical scenarios (cf.
Section 5.5). Using the same concept, software artifact, and datasets (cf. Sections 5.3, 5.4,
5.5), we present the results of the qualitative and quantitative evaluation of the detection
ability and the comparison of the impact of search and filter strategies to a state-of-the-art
pattern-based misuse detector (cf. Section 5.5).

For all experimental results, we discuss potential threats to validity as suggested by
Siegmund et al. [SSA15]. We summarize all results and their impact in Section 5.6.

5.2. Limitations of State-of-the-Art APl Misuse Detection

In this section, we present general terms on API
misuse detection, summarize the state-of-the-
art of misuse detectors, emphasize their current
limitations, and justify our selection of misuse
detectors for experimental comparison.

A 4

RQ D Automated API Misuse Detection

RQ D-L Limitations of
State-of-the-Art
API Misuse Detectors

5.2.1. General
Terms on API| Misuse Detection

RQ D-F Filtering of
API Usages for
Pattern-based

Misuse Detection

RQ D-C Change-
driven API Usage

We denote API misuse detectors as techniques Collction or
to recognize and locate API misuses. In partic- Misuse Detection
ular, we are interested in automated techniques v
since these enable software developers to effi-
ciently find misuses in their code. From an ab-
stract perspective, an API misuse detector re-
quires a description of the correct behavior of an
API usage, namely, a specification. Automated
detection techniques apply inference technolo-
gies to obtain these specifications, for instance, from other correct API usages. Then, the
detection validates an actual API usage against this specification. If the validation fails,
we denote this usage as a violation of the specification, and the detection reports the API
usage as a potential misuse, namely, a positive result of the detection. In case this detected
misuse is indeed a real misuse, we refer to it as true positive (tp). If, however, this usage
is actually correct, we denote the detection as false positive (fp). Similarly, we denote a
real misuse, which is not detected as false negative (fn), and a correct usage, which is
not detected as true negative (tn). To compare the effectiveness of API misuse detectors,
we usually compare the precision and recall, which is based on the number (i.e., #) of tp,
fp, and fn according to Equation 5.1 and Equation 5.2. Precision measures how many
of the detected misuses are indeed real misuses and thus indicates the trustworthiness of
positive results. Recall determines how many misuses in comparison to all present misuses
are detected and thus describes the erhaustiveness of the detection.

#tp
#tp + #fp

precision =

(5.1)

92

5.2. Limitations of State-of-the-Art API Misuse Detection

#1p
#tp + #fn
We evaluate misuse detectors by measuring precision and recall, and by validating against
benchmarks as datasets of known correct API usages and known misuses, which we refer
to as ground truth.

recall =

(5.2)

5.2.2. State-of-the-Art APl Misuse Detectors

Collecting the State-of-the-Art There exists much research effort in the domain of API
misuse detection. To obtain an overview, first, we collected surveys summarizing the state-
of-the-art on API misuse detectors. For this purpose, we reviewed the comparative studies
by Amann et al. [ANNT19a, ANNT19Db] in which they evaluated five misuse detectors,
namely DMMC [MBM10], GrouMiner [NNP*09b], Jadet [WZL07], and Tikanga [WZ11]
as well as their own misuse detector MUDetect [ANNT19b]. Moreover, we consulted the
survey by Robillard et al. [RBK ™ 13] on API pattern inference and selected potential misuse
detectors (i.e., we selected publications from Table 1, p. 615, Table 3, p. 619, and Table 4,
p. 627 in the work by Robillard et al., which are assigned to the goal ‘Bug Detection’ or
‘Bug Finding’). We filtered these 24 publications from the work by Robillard et al. to
avoid a possibly huge number of misuse detectors when using these publications for further
forward snowballing. In particular, we only selected publications which

e are peer-reviewed;
e present an API misuse detection technique;

e evaluate (or which are evaluated by another publication) the precision and/or the
recall of API misuse detection with more than one real-world project (i.e., excluding
case studies).

Particularly, the last criterion ensured stronger scientific evidence due to a larger evaluation
while still obtaining a sufficiently large number of detectors to derive a good picture of
the state-of-the-art. Through this procedure, we found nine additional misuse detectors
discussed by Robillard et al. [RBK " 13] compared to the work by Amann et al. [ANN*19a],
as well as a study evaluating different misuse detectors.

Based on this initial set of 14 publications, we applied the scholarly search machine
Google Scholar? to conduct a forward snowballing [KC07] (i.e., by using the ‘cited-by’
functionality) to retrieve papers published in 2020 or later that cited these publications.
Moreover, we found another misuse detector independently from this snowballing proce-
dure, which targeted another programming language (i.e., EMDetect [CM18]) not used so
far and thus worth being included in this set. We selected papers indicating by their titles
that they contributed an API misuse detector and that satisfied the previously mentioned
criteria. We found 16 additional misuse detectors, summing up to 30 different API misuse
detectors. Moreover, we derived 41 single evaluations reporting misuse detection results.
We did this iteratively until no further publications were found. Note that due to the
technical limitations of scholarly search machines [KLvNT20], the search results may differ
when being replicated. However, our goal was to obtain an overview of relevant work on
APIT misuse detection rather than an exhaustive search result.

*https://scholar.google.com/ last accessed: 2024/02/16 and due to a missed publication (i.e.,
Doc2Spec [ZZXMO09]) in the initial set, we re-conducted the forward snowballing for this paper on
2025/01/29

93

https://scholar.google.com/

Chapter 5. Improving Pattern-Based API Misuse Detection

Table 5.1.: Meta Information and Characteristics of Misuse Detectors

Classification of APl Misuse Detectors

Short Description Potential Values

Term

L|F Programming name of programming langauge and/or frame-
Language/Frame- work name which is targeted by the miuse de-
work tector

A Available Replica- indicator whether there is a replication pack-
tion Package age (v'), whether the replication package is not

available anymore (X*), whether there is no
replication package (X)

S Source Data for client code (C¢), API library code (Cjy),
Specification In- changes in client code (Ca), API documenta-
ference tion (D); other external sources (E)

C Collection Tech- not applicable (=), not specified (?), code
nique of Client from intra-project setting (I), code from cross-
code project setting (x) with API-specific informa-

tion (e.g., class, method, or parameter type
names) (X 4) or with other information (x¢)

I Inference Tech- Static Code Analysis (SCA), Dynamic Code
nique(s) Analysis (DCA), Frequent Pattern Mining

(FPM), Active Learning (AL), Deep Learning
(DL), Hidden Markov Model (HMM), Natural
Language Processing (NLP)

P Post-processing conducts filtering or ranking on the reported

violations (v), no dedicated post-processing (X)

For each relevant publication, we collected meta

information on the detector and information to classify the technique (cf. Table 5.1) itself
as well as the reported results (i.e., used datasets and results on precision and recall cf.
Table 5.5).

We present the retrieved API misuse detectors by splitting them into separate classes

based on their specification type. We distinguish between:

94

e Single usage, explicit specification (SES): The detector uses a specification represent-

ing a single correct API usage, and its representation explicitly describes API code
elements (e.g., association rules of method call pairs). For instance, an SES denotes
that for the APl java.util.Iterator in Java, a call of hasNext () is required
before calling next ().

Multiple usage, explicit specification (MES): The detector uses a specification rep-
resenting multiple correct API usages in one representation and explicitly describes
API code elements (e.g., finite state automata describing multiple possible execution
paths). For instance, an MES denotes that for the API java.util.Iterator in
Java, a call of hasNext () is required before calling next (), but it also allows the
iterated object to be checked via the size ()-method.

Implicit specification (IS): The detector uses a specification representing correct APIT
usages, and the code elements are implicitly handled in its model (e.g., a statistical

5.2. Limitations of State-of-the-Art API Misuse Detection

Table 5.2.: Overview of API misuse detectors with single usage, explicit specifications
(SES). Labels according to Table 5.1

Misuse Detector L|F A S C 1 P
APDetect twxq23 Java, X Cco ?7 SCA,FPM
APISan st C, C++ v Cco ?7 SCA,FPM
APP-Miner ppwr+t24 C v Co x SCA, FPM
CAR-Miner [rxoob] Java X* Co xa SCA, FPM
CL-Detector zcsza1] Java v Cco,Cy x4 SCA,FPM
CPAM [Lcptay Java v Cgo,Ca xo SCA, FPM v
DMMC [MBM10] Java X* CC I SCA, FPM v
FuzzyCatch o) Java, Android v Cco xo SCA, FPM
GrouMiner [nnp+o9b] Java X Co I SCA,FPM vV
Jadet wzron Java v Co I SCA, FPM v
MUDetect (ann+ion] Java, v Cec I,xp SCA,FPM vV
PR-Miner (1.0 C X Co I SCA,FPM v
SpecCheck i1 Java X* Cco ? DCAFPM
Tikanga (wzi1) Java X* Co I SCA, FPM vV

model measuring similarity to previously seen correct API usages). For instance,
given the APl java.util.Iterator in Java and its method next (), an IS
computes a large probability that next () is preceded by the method hasNext ().

While this classification had been developed ad-hoc when searching and analyzing the
related work, we found it helpful to understand certain design decisions of misuse detectors.
Note that we do not claim this classification to be complete.

Specifications of SES detectors usually do not generalize well since they are naturally
restricted to a single use case. Therefore, typically, these detectors apply post-processing
strategies on the detected misuses, such as filtering and ranking techniques using measures
that respect, for instance, alternative, applicable specifications. This way, possible false
positives are discarded from the reported results.

MES detectors, on the other hand, merge multiple, possibly alternative, correct API
usages within one representation. This way, these detectors avoid heavy post-processing,
however, increasing the complexity of the representation of the specification and, thus, the
complexity of the inference technique.

Note that we denote SES and MES as explicit since both contain direct information on
API code elements. This way, we expect that the specification itself can help developers to
derive correct API usages from it due to directly mapping to known API code elements.

In contrast, IS detectors apply implicit specifications, which we conjecture as hardly
directly applicable for developers without having a mechanism or additional information to
derive API code. Moreover, one cannot directly judge whether the specification is based on
a single usage or multiple alternative usages. Implicit specifications usually require large
amounts of input data (e.g., when applying machine learning algorithms).

We report all found detectors in Table 5.2 (i.e., SES detectors), Table 5.3 (i.e., MES
detectors), and Table 5.4 (i.e., IS detectors). Note that, in case one detector targets multiple
specification types, we select the most generic type for classification, applying the following
order: SES<MES<IS. Finally, we also report the results of the evaluation of these misuse
detectors in Table 5.5.

95

Chapter 5. Improving Pattern-Based API Misuse Detection

Table 5.3.: Overview of API misuse detectors with multiple usages, explicit specification
(MES). Labels according to Table 5.1

Misuse Detector L|F A S C I P

Acharya/Xie [axo9] C X Cc ? SCA,FPM X

Alattin [rxoos Java X* Co x4 SCA, FPM v

APICAD [wzes C, C++ v Ce, D ?7 SCA, FPM, X

NLP

CrySL [xsat21 Java, JCA, FEF — manual X
Android

Doc2Spec zzxmog Java X D - NLP,HMM X
(JavaDoc)

EMDetect jcnis) C#, Java X* Cc I SCA,FPM v

Li et al. zr+aq Java vV Co,Ca, D x4 SCA FPM

OCD [GS10] Java X CC I DCA, FPM /

Pradel et al. piacig Java X Cc x4 DCA,FPM Vv

Pradel/Gross pci2) Java X Co I DCA,FPM X

Ren et al. [RYXT20] Java X D — NLP X

Table 5.4.: Overview of API misuse detectors with implicit specification (IS). Labels ac-
cording to Table 5.1

Misuse Detector L|F A S C 1 P

ALP [KL21] Java v CC X A SCA, FP]\L X
AL

ARBITRAR puctoi C, C++ v Cc¢ ?7 SCA, FPM, v
AL

F-LSTM/S-LSTM [ocxkvao) Java, JCE X C¢c x4 SCADL v

Salento picsi7] Java, An- v Co x SCA, DL v

droid
Standard Trans/Target-Com- Java, JCE X Cc x4 SCA,DL v

Trans [vrwaz

96

5.2. Limitations of State-of-the-Art API Misuse Detection

Conceptual Comparison of AP| Misuse Detectors Based on the selection procedure, we
found 30 misuse detectors from previous work (cf. Table 5.2, Table 5.3, and Table 5.4),
which were evaluated in 41 single evaluations (cf. Table 5.5).

Program Language: We found a majority of 24 of them targeting the Java and/or Java
frameworks, such as Android or the Java Cryptography Extension (JCE). Six detectors
target C or C++, and a single detector (i.e., EMDetect [CM18]) targets C# and Java.

Benchmarks: When considering the 41 evaluations, we found that a majority of 27
evaluations used existing benchmark datasets, namely:

eleven of them applied MUBench [ANN"16]

e six of them a JCE-based dataset from OuYang et al. [OGKY20]

e three of them used the DeCapo benchmark [BGH™06]

e three of them used APIMU4C [GWL"19]

o two of them used AU500 [KL21]

e one used AndroZoo [ABKLT16]

e one used a sample of 20 projects from a collection by Gruska et al. [GWZ10]

The other 14 evaluations used benchmarks that were not directly named. Note that multiple
evaluations could stem from a single publication. Apart from APIMU4C, all other bench-
marks in this set also targeted the Java. Nevertheless, even though the same benchmarks
were applied for different evaluations, we observed that the number of applied projects (cf.
column #Projects in Table 5.5) and the absolute number of ground truth positives (i.e.,
#TP+#FN) differed. Thus, the results did not ground on the same data.

This variance in the datasets may occur due to the evolution of the dataset itself. For
instance, the DeCapo dataset is still actively maintained, having its current version re-
leased on December 20th, 2024%, or MUBench, which extended the dataset after initial
publications [ANNT19b]. Another reason for variances among used datasets and projects
within the evaluations is that certain detectors require specific input data. For instance,
APDetect [WXQ)23] used only those entries from MUBench, which were compilable. Due
to the variance among the experiments, we suggest that for a valid comparison, a dedicated
experiment controlling the ground truth (i.e., the dataset) is necessary.

Insight D-1 (RQ D-L): Non-uniform Benchmarks and Comparison

Based on the analyzed misuse detectors and their evaluation, we found a variety of
benchmarks with API misuses applied to evaluate misuse detectors. However, different
evaluations not only applied different benchmarks but also varied the benchmark itself.
Thus, evaluation results of API misuse detectors were not directly comparable.

Awvailability: Based on this insight, we require an available replication package for the
misuse detectors (cf. column A in Table 5.2, Table 5.3, and Table 5.4). However, we found
this available replication package only for 13 of the 30 detectors (=~ 43.3%). This is com-
parable to what we observed in the software engineering research community [HNKO20],
but not preferable, since almost all software artifacts should be available for replicabil-
ity. For six publications, we found links to an artifact, however, we failed to retrieve the

3as of 2025/01/21 denoted at https://www.dacapobench.org/

97

https://www.dacapobench.org/

Chapter 5. Improving Pattern-Based API Misuse Detection

artifact from this given URL (i.e., marked as X*). [HNKO20]. In the appendix (cf. Sec-
tion A.2.1, Table A.4), we list the retrieved URLSs of all misuse detectors for replicability
of our results.

Insight D-2 (RQ D-L): Non-available Replication Packages

We found that a magjority of 56.7% (17/30) of API misuse detectors in our analyzed
set were not available through a replication package, or their respective links decayed.
Thus, we conclude that a majority of API misuse detectors cannot be applied to other
benchmarks to form comparable evaluations.

Source of Specification Inference: Regarding the source of specification inference
(i.e., column S in Tables 5.2, 5.3, and 5.4), we found that 27 of 30 misuse detectors (90%)
used APT client code (i.e., C¢). This observation was also in alignment with the work
by Robillard et al. [RBK"13] on general API pattern inference techniques, in which the
authors found 34 of the 49 analyzed miners using API client code as a source for pattern
inference. Other sources used by detectors are the API documentation (D), for instance, by
Ren et al. [RYX " 20], who used solely the documentation to construct a knowledge graph as
specification, as well as APICAD [WZ23], which augmented certain rules, mined from API
client code. CL-Detector [ZCSZ721] additionally incorporated the API code (i.e., C4) next
to the client code (C¢) and enhanced their specifications. Li et al. [LZT"24] combined all
three sources, namely, client code (C¢), API code (C'4), and documentation (D), to extend
APT usage patterns as multiple alternative constraint graphs. Another resource was the
change information of client code (Ca), which was used by CPAM [LCP*21] to identify
change patterns from historical API misuse fixes. Based on these patterns, the authors
derived five specific patterns as specifications, mainly denoting the update of API method
calls. Finally, additional external sources (F) were used, for instance, in CrySL [KSAT21], a
specification language particularly targeted for the Java Cryptography Architecture (JCA),
cryptography experts specified constraints on the JCA API manually.

Collecting Client Code: For all 27 misuse detectors using client code, we investigated
how these detectors collected the client code. As shown in Table 5.1, we distinguished
between code used in an intra-project setting (I) and code used in a cross-project setting
(x). In the intra-project setting, the detectors use the code for specification inference
that also contains the misuse. This way, a potential correct usage is expected in other
parts of the same project. In the cross-project setting, the code for inference stems from
other projects and, thus, leverages potential correct usages found externally. In case the
search process for other projects required some additional APT information (e.g., using the
APT class or method names for code search), we denoted this x 4. If other information
was used (e.g., quality metrics on projects), we denoteed this xo. Among the 27 misuse
detectors, we found eight of them using solely intra-project settings, twelve using a cross-
project setting, and a single one (i.e., MUDetect [ANNT19b]) applying both settings. From
those 13 detectors using the cross-project setting (i.e., including MUDetect), nine of them
used APT information, two of them used other information, and two others (i.e., APP-
Miner [JWL'24] and Salento [MCJ17]) provided no specific selection criteria. For six
detectors, we could not clearly state, based on the description, whether they applied intra-
or cross-project setting (i.e., marked as 7).

Inference Techniques: Regarding the techniques applied during inference (I in Ta-
ble 5.2, Table 5.3, and Table 5.4), we found that a majority of techniques (i.e., 20 of 30)
applied a mixture of SCA and FPM. Particularly, SES detectors (i.e., 13 of 14) applied

98

5.2. Limitations of State-of-the-Art API Misuse Detection

this mixture. Note that we interpreted FPM very inclusively. For instance, if a technique
constructed a specification and conducted a frequency-based selection, we denoted it as an
FPM technique even though it did not directly apply the techniques introduced in Sec-
tion 3.5. Some detectors applied techniques in addition to SCA and FPM. For instance,
APICAD [WZ23] used NLP to infer specifications from the documentation, and ALP [KL21]
and ARBITRAR [LMC"21] used AL. SCA usually encompassed different variants such as
Abstract Syntax Tree (AST) analysis (e.g., EMDetect [(M18]), controlflow and dataflow
analysis (e.g., Jadet [WZL07]) as well as symbolic execution (e.g., APICAD). Four detec-
tors applied DCA instead of SCA. DCA usually included instrumenting the source code
and executing the code either with predefined test cases (e.g., Pradel et al. [PTAG12] as dis-
cussed in their previous work [PG09]), interacting with an application (e.g., OCD [GS10]),
or running the code with test cases generated by tools such as Randoop [PE07] (e.g.,
Pradel/Gross [PG12]). While CrySL [KSA"21] expects the specification to be written by
domain experts (i.e., in their case, cryptography experts), Ren et al. [RYX"20] used NLP
techniques to obtain specifications from the API documentation. Doc2Spec [ZZXMO09] ap-
plied NLP together with an HMM to build so-called ‘action-resource-pairs’ from textual
input of documentation, based on which the specification automaton was constructed. All
investigated IS detectors apply DL or AL next to SCA techniques.

Violation Detection: All detectors required a mechanism to detect a violation. In
general, this means that the specification is violated. SES detectors denoted this as a sin-
gle mismatch between the observed usage and the specification (e.g., APDetect [WX()23]),
a significant non-similarity between the usage the specification (e.g., DMMC [MBM10]),
a failed code check via an SCA (e.g., CPAM [LCP"21]), or a non-satisfied logical for-
mula (e.g., Tikanga [WZ11]). MES detectors typically leveraged a finite state automaton,
which had been used to validate observed execution traces (e.g., Pradel et al. [PJAGI12]).
Other techniques checked whether mined association rules were contradicted (e.g., API-
CAD [WZ23]), failed certain code checks via SCA (e.g., CrySL [KSAT21]), SAT solvers
(e.g., Ren et al. [RYX "20]), or other model checking techniques (e.g., Acharya/Xie [AX09]).
Note that even though Li et al. [LZT"24] also used patterns, their violation detection
strategies applied multiple, possibly alternatives and implied a misuse if all alternatives
mismatched. Thus, we denoted it as an MES detector. IS detectors usually described a
misuse as a significant statistical deviation of the expected usage based on the latent model.

Post-Processing: Finally, we checked whether detectors applied some post-processing
techniques, namely, subsequent filter and ranking techniques. This post-processing is nec-
essary since reporting all violations is not meaningful, as multiple alternative specifications
can be applicable for an analyzed APT usage [TX09a, ANNT19b]. We found that 23 out of
30 detectors (i.e., = 76.7%) applied some sort of post-processing. As expected, all analyzed
SES detectors applied post-processing since their specification only described a single API
usage specification and thus could suffer from high false positive rates due to alternative
patterns. Post-processing considered different metrics, typically support and confidence
obtained during FPM, the size of specifications (e.g., Pradel et al. [PJAGI12]), but also
several advanced metrics as discussed by Amann et al. for MUDetect [ANNT19b].

Comparison of Evaluation Results of APl Misuse Detectors Even though the experi-
mental results were not directly comparable due to the variances in the ground truth, we
analyzed the precision and recall as indicators of which techniques seemed most promising.

Detectors with high Precision: Regarding precision, the largest obtained preci-

99

Chapter 5. Improving Pattern-Based API Misuse Detection

sion values were reported by CPAM [LCP21], Pradel/Gross [PG12], both with 100%,
Acharya/Xie [AX09] with 90.4%, CrySL [KSAT21] with 86.5%, and Salento [MCJ17] with
~ 80% precision. CPAM obtained the large precision by only analyzing four specific APT
misuse types, which were checked via four manually implemented SCA techniques based
on the automatically inferred specifications (i.e., using change information as well as client
code). Afterward, the authors manually validated the detected misuses and reported them
as issues in the original project [LCP21]. Additionally, they did not provide an experiment
regarding its recall, which limits conclusions on its generalizability. The MES detector by
Pradel/Gross [PG12] inferred finite state automata as specification using DCA and fre-
quency information. The automata were further validated by failing test cases from a ran-
dom test generator. Similar to CPAM, its experiments did not report the recall. Moreover,
we were not able to find a replication package. The MES detector by Acharya/Xie [AX09]
also used finite state automata, however, it concentrated on error checking code and did
not report results on recall. CrySL is a specification language designed to manually cre-
ate specifications by domain experts. In detail, this language targeted cryptographic API
misuses, and thus, the language was designed with their specific characteristics in mind.
Based on manually inferred specifications, they obtained a high precision by automatically
validating them using specialized SCA techniques. In addition to the large precision, they
obtained a large recall on a set of known cryptographic misuses. While their approach
is limited to cryptographic APIs, cryptographic misuses are considered severe and preva-
lent [EBFK13, MNY ™18, RXAT19]. Nevertheless, its downside is the manual specification
inference. As the last highly precise technique, we report Salento [MCJ17], which learned a
latent non-observable specification and determined misuses as statistical divergence to this
specification (cf. Section 5.2.4 for details). They evaluated different percentages of the top
divergent results and found that among the Top 6 — 7%, the precision and recall were both
~ 80%. Having 100% recall, Salento obtained a precision of 75% among the Top 8%.
Detectors with high Recall: Among the detectors which reported the largest recall, we
found CrySL [KSA"21] with 97.1% , APP-Miner [JWL"24] with 96.7%, Alattin [TX09a]
with 94.9%, ARBITRAR [LMC"21] with 89.1%), FuzzyCatch [NVN20] with 73.4 — 82.1%,
S-LSTM [YRW22] with ~ 71 — 83%, CAR-Miner [TX09b] with 80%, and Salento [MCJ17]
with ~ 80%. We already discussed CrySL and Salento. APP-Miner [JWL"24] built so-
called ‘API path patterns,”. These path patterns represent Control Flow Graphs (CFGs)
extended with data flow information together with a clever indexing and containment mech-
anism to speed up the FPM. While they achieved a large recall with a precision of 51.8%,
it was not clearly stated in their paper how they determined the absolute number of true
positives (i.e., #TP+#FN). Alattin [TX09a] found alternative patterns (i.e., frequent
patterns among all samples that were not covered by other frequent patterns). ARBI-
TRAR [LMC"21] used AL of boolean feature vectors using 31 hand-made features. Based
on the feature vectors, misuses were detected by using the maximum discrepancy kernel
density estimation as a statistical metric to denote divergence to expected features in a
candidate API usage. FuzzyCatch [NVN20] specifically targeted API misuses concerning
exception handling using fuzzing rules. Thus, its evaluation was restricted to exception han-
dling misuses, and thus, the recall was restricted as well. S-LSTM [OGKY20] used a stacked
long-short-term memory DL model (i.e., using stacked input data). CAR-Miner [TX09b]
inferred sequence association rules while concentrating on exception handling code.

100

101

Table 5.5.: Precision and Recall Results of Misuse Detectors - Highlighted Results with Precision and Recall above 80%.

Short Term Dataset #Projects Precision Recall Reference
#4TP #FP % | #TP #FN % | to Validation

APDetect MUBench 31 42 33 56% 48 117 29.1% | [WXQ23]
APISan APISan + APIMU4C 4 70 508 12.1% 70 22 76.1% | [LMCT21]
APP-Miner - 29 27 51.8% 29 1 96.7% | [JWL"24]
CAR-Miner - 5 169 94 64.3% 128 32 80% | [TX09D]
CL-Detector MUBench 57 - - 40-44.3% 112 111 50.2% | [2CS7Z21]
CPAM - 19 44 0 100% - - - | [LCPT21]
DMMC - 1 11 8 57.9% - - - | [MBM10]

MUBench 29430 12 - 7.5% 24 201 10.7% | [ANNT19D]
FuzzyCatch - 13,463 - 8 - 734 266 73.4% | [NVN20]

- 35 - 821 179 82.1%

7 GrouMiner - 9 24 149 13.9% - - - | [NNP*09b]
@ MUBench 29430 4 - 2.6% 7 218 3.1% | [ANNT19b]
Jadet - 5 37 40 48.1% - - | [WZLO0T]

Rand. from 6,097 proj. 20 11 39 22% - - - | [GWZ10]
MUBench 29430 8 - 8.8% 15 210 6.7% | [ANNT19h
MUDetect MUBench 29430 30 61 33% 95 130 42.2% | [ANNT19b
AU500 16 34 89 27.6% 34 81 29.6% | [KL21]
JCE-based - - - ~31% - - ~38% | [YRW22]
PR-Miner - 3 23 75 23.5% - - - | [LZ05]
SpecCheck DeCapo 14 13 11 54.2% - - - | [NK11]
Tikanga - 6 48 73 39.7% - - - | [WZ11]
MUBench 29430 7 - 8.2% 17 208 7.6% | [ANNT19b]
Acharya/Xie - 3 264 28 90.4% - - - | [AX09]
Alattin - 6 149 245 37.8% 149 8 94.9% | [TX09a]
APICAD APIMU4C 3 66 87 43.1% ‘ 48 117 29.1% | [WZ23]
CrySL AndroZoo 10,000 135 21 86.5% 135 4 97.1% | [KSA™T21]
o Doc2Spec - 5 100 283 26.1% - - - | [Z2ZXMO09]
H EMDetect MUBench 4 15 145 9.4% 13 25 34.2% | [CM18]
~ Tietal MUBench - 117 45 72.2% 117 155 43% | [LZT*24]
OCD - 2 9 6 60% - - ~T[GS10]
Pradel et al. DeCapo 12 41 40 50.6% 35 15 70% | [PJAGI12]
Pradel/Gross DeCapo 10 54 0 100% - - - | [PG12]
Ren et al. MUBench 69 68 45 60.2% 68 171 28.5% | [RYXT20]
ALP MUBench - 72 92 43.9% 117 91 56.3% | [KL21]
AU500 16 63 78 44.7% 63 52 54.8%
ARBITRAR APISan + APIMU4C 4 82 87 48.5% 82 10 89.1% | [LMC'21]
F-LSTM JCE-based - - - ~7-8.4% ‘ - - ®&67-81% | [OGKY20]
L SLSTM JCE-based - - - ~8.8-9.8% - - ~71-83%
JCE-based - - - ~27-28% - - ~34-37% | [YRW22]
Salento - 250 - - ~80% - - ~80% | [MCJ17]
StandardTrans JCE-based - - ~37-39% - - ~AT-48% | [YRW22]
Target-Com-Trans JCE-based - - - ~38-41% - - ~48-49%

u0119999(] OSUSII [V M -0UI-JO-09®)G JO SUOMRIIT g6

Chapter 5. Improving Pattern-Based API Misuse Detection

Best Performing Detectors: Overall, CrySL and Salento obtained the best results
regarding precision and recall. MUDetect had been a stable detector with three similar
results from different research groups (i.e., disjunctive set of authors) and different datasets.
In contrast, Jadet’s precision variance among the three reported experiments was much
larger. IS-based detectors usually obtained the largest recall values, while MES-based
detectors obtained the largest precision results.

5.2.3. Limitations of Collecting Client Code for AP| Misuse Detectors

When considering the state-of-the-art of API misuse detectors, we found that many de-
tectors solely relied on client code as source data (i.e., C¢). However, they provided little
insight into how to obtain this client code in a realistic scenario. While we considered the
intra-project setting (i.e., I) as applicable in practice, it is limited in its ability to obtain
high recall since we cannot expect to find solutions for all API misuses in single software
projects. In detail, we observed that detectors in an intra-project setting obtained recall val-
ues between 3.1%-34.2% (i.e., DMMC [MBM10], GrouMiner [NNP*09b], Jadet [WZL07],
Tikanga [WZ11], and EMDetect [CM18]). In contrast, the cross-project setting (i.e., x)
typically applied code search techniques, which we found hardly applicable for practical
misuse detection. For instance, using API-specific information (i.e., X 4) requires sufficient
knowledge of which APT (e.g., described by class or method name) is misused. This knowl-
edge is typically not known beforehand in practice. For instance, Oliveira et al. [OLR 18]
observed this situation in the security domain, and Zhang et al. [ZUR 18] indicated this
by the prevalence of API misuses in code examples from discussion forums. This way, we
expect that misuse detectors collect a set of specifications for different APIs, which are
then tested among all potential locations in client code that uses this API. We see some
particular issues regarding the scalability of this technique:

1. It requires managing many potential specifications from many different APIs.

2. The testing of all potential API locations causes a huge overhead, particularly when
the code base becomes larger and incorporates many different APIs.

Even though training of statistical models (e.g., neural networks) as used by IS detectors
represents a technique to cope with the first issue, it would require frequent re-training since,
due to APT evolution, different versions of specifications exist and change over time [LGS21,
BR22]. Therefore, we state a limited practical applicability of API client code collection:

/Insight D-3 (RQ D-L): Limited Practical Applicability to Collect Client\

Code

State-of-the-art API misuse detectors are restricted regarding a practical mechanism to
collect API client code based on which specifications are inferred. Since a majority of
90% (27/30) of the analyzed API misuse detectors used client code and 76.7% (25/30)
used client code as a single source, a majority of misuse detectors have restricted prac-
ktical applicability. D

Moreover, we found that detectors make only limited use of additional information in-
dependent of client code. Particularly, we have seen that other additional information
(i.e., xp) was rarely used (i.e., in two out of 30 cases) and, if so, very restrictive. Fuzzy-
Catch [NVN20] only focused on exception handling code, which limited its generalizabil-
ity. CPAM [LCP"21] used past code changes, however, it limited the detection to simple

102

5.2. Limitations of State-of-the-Art API Misuse Detection

method replacements. We assume that using such information can boost the applicability
of misuse detectors and obtain a large precision.

/Insight D-4 (RQ D-L): Restricted Usage of Additional Information for Find-\
ing External Client Code

Only two out of the 80 analyzed state-of-the-art API misuse detectors leveraged addi-

tional information apart from the misused API and those only in a restricted manner.

Thus, there exist potential improvements in using further information sources to collect
kclient code.)

When coping with these two limitations (i.e., Insight D-3 and Insight D-4) in a
new misuse detector, this detector has to deal with the commonly experienced issue of
low precision, particularly a large false positive rate [LW09, RBK 13, Amalg]. Since
we found some detectors with reported large precision (cf. Table 5.5), whose results are
hardly comparable (cf. Insight D-1), we further discuss their applicability for controlled

experiments subsequently.

5.2.4. Selection of Comparable API Misuse Detectors

For controlled experiments, we require a selection of detectors, which we apply to known
benchmarks. Therefore, we select misuse detectors for comparison, namely, to test our
search and filter strategies as well as comparing to own misuse detector (cf. Chapter 6).
To keep replication effort manageable, we formulate the following selection conditions:

a) The misuse detector has a reusable replication package to avoid re-implementing a
technique with unknown optimized internals.

b) Specification inference targets the Java programming language APIs since it is the
most observed target programming language among our analyzed misuse detectors,
and there exist more ground truth datasets for Java API misuses as benchmarks.

c¢) Specification inference effort should be manageable, particularly avoiding necessary
large training datasets or extensive manual effort, allowing efficient evaluation.

d) The misuse detector should have promising results (i.e., stable and reliable precision
and recall values), and the detection mechanism should have the potential to be
applicable in practical scenarios (e.g., avoiding techniques targeting a specific limited
set of API misuses).

Due to condition a), we only analyzed those 13 misuse detectors that provides a repli-
cation package (cf. Table 5.2, Table 5.3, and Table 5.4). From those, we omitted the
four detectors APISan [YMS'16], APP-Miner [JWL"24], APICAD [WZ23], and ARBI-
TRAR [LMC™21], which do not target Java (i.e., condition b)). We briefly introduce the
nine remaining misuse detectors in alphabetic order and analyze the other two conditions.

ALP (Actively Learned Patterns) is a misuse detector developed by Kang and Lo [KL21].
ALP is based on the API Usage Graph (AUG) extension EAUG explained in Section 3.2.2.
Its idea is to find discriminative characteristic subgraphs in the EAUG that indicate whether
the usage is a misuse or correct usage. For this purpose, Kang and Lo collected API usages

103

Chapter 5. Improving Pattern-Based API Misuse Detection

from GitHub repositories using a modified version of the AUSearch [ATLJ20] technique,
whose search queries contain the APT class and method (e.g., java.util.Iterator#-
next ()). Afterward, they mined frequent subgraphs using the gSpan algorithm [YH02]
and manually labeled a subset of these subgraphs as correct or misused in an AL process.
Based on these manual labels, a statistical test of significance, as well as the CORK scoring
mechanism [TCGT09], was used to find discriminative subgraphs between correct usages
and misuses. In detail, the authors used a vector representation to train a classifier. Then,
the classifier was applied as a misuse detector. ALP is provided via GitHub”* together with
a code search tool to obtain API usages’ and the modified gSpan miner® and thus allows
replication and reuse.

In an attempt to reuse ALP, we extended this replication package to remove tight bindings
to their specific test dataset. However, we found, while experimenting with ALP, that it
typically required a large number of API usage examples for each single pair of an API
class and method. Otherwise, too few training samples did not yield statistically significant
discriminative subgraphs. A large number of samples required large training datasets for
single class-method pairs (i.e., Kang and Lo [KL21] collected ~ 2,000 samples per pair)
together with manual labeling sessions for each training set. Thus, we decided to exclude
ALP for comparison due to condition c).

CL-Detector [Z(SZ21] is a misuse detector combining knowledge from APT usage and
APT implementation. First, it mines AUGs from API client code using the same Frequent
Graph Mining (FGM) technique as MUDetect, which they refer to as C-extraction. In their
experiments, the authors obtained the client code via the Boa framework [DNRN13]. Then,
they extended the mined patterns by analyzing their referred API methods and classes
(i.e., used or overridden) in the API code (i.e., the library). Particularly, they applied eight
different strategies to extract constraints describing conditions, exception handling, and
order relations in API code. They analyzed throw- and assert-statements as well as
JavaDoc statements indicating required null-checks. This way, they also obtained AUGs
from the API code. They denoted this step as L-extraction. Finally, they combined both
AUGs by merging overlapping and overriding conditions favoring those from the library.
For misuse detection of a particular API usage, they matched its related AUG to the AUG
patterns and mark potential violations as misuse if no alternative matching pattern exists.
Similar to MUDetect, they applied a ranking of the violations. Their misuse detector is
available on GitHub’.

Even though CL-Detector requires the presence of the API code, most steps are auto-
mated, and thus, we considered it as a possible candidate for comparison. However, when
replicating the results, we found that the software artifact misses the component to com-
bine both results from C- and L-extraction. We contacted the authors® but did not get a
reply regarding this issue. Thus, we could not apply CL-Detector to a new dataset without
implementing this technique on our own and, therefore, excluded it due to condition a).

‘https://github.com/ALP-active-miner/ALP last accessed: 2023/11/17

"https://github.com/kanghj/github-code-search last accessed: 2023/11/17

Shttps://github.com/kanghj/gspan_cork last accessed: 2023/11/17

"https://github.com/subZHS/CL-Detector last accessed: 2024/03/21

8We opened an issue in the respective repository https://github.com/subZHS/CL-Detector/issues/1
(last accessed: 2025/01/21) and contacted all authors via email

104

https://github.com/ALP-active-miner/ALP
https://github.com/kanghj/github-code-search
https://github.com/kanghj/gspan_cork
https://github.com/subZHS/CL-Detector
https://github.com/subZHS/CL-Detector/issues/1

5.2. Limitations of State-of-the-Art API Misuse Detection

CPAM [LCP"21] has the notion of reusing already fixed API misuses based on a Version
Control System (VCS). In detail, Liu et al. analyzed 1,162 open source projects from
GitHub and filtered code changes based on their respective commit messages (i.e., con-
taining fix-indicating keywords) and metadata (e.g., size or whether code was solely added
or deleted). They used an AST diff tool to determine modified arguments in APT method
calls, replaced API method calls (either from the same or a different class), added checks to
API calls, or changed receiver objects. They observed the frequency of certain API changes
by weighting between in-project and cross-project frequency. Based on their observed fre-
quency results, they implemented four SCA checkers to detect misuses. They provided
their results on their project webpage’ and the source code for specification inference on
Github'’. However, they did not provide their four SCA techniques to detect API misuses.
Thus, we excluded CPAM due to condition a).

CrySL [KSAT21] is a specification language for cryptography APIs by which cryptog-
raphy experts can easily formulate specifications. Then, an SCA technique automatically
validates these specifications. In detail, CrySL intends to verbalize only a small set of
correct API usages (i.e., whitelisting) and defines different kinds of characteristics (e.g.,
dataflow or typestates) typically as regular expressions. For misuse detection, a specifica-
tion written in CrySL is translated into an SCA technique targeting control and data flow
properties. The static analysis is conducted on single object traces (i.e., statically obtained
method calls on a single object), for instance, by checking forbidden method calls, as well
as the interaction of object traces, such as required method sequences (e.g., initializations).
The language has been developed together with cryptography experts and has been shown
to be applicable to the Java Cryptography Architecture (JCA) using Android apps from
the AndroZoo benchmark [ABKILT16]. CrySL is available on GitHub'!.

CrySL and its already provided specifications are limited to cryptographic APIs, and
extending the specification to other APIs requires additional manual effort as well as specific
domain knowledge. Moreover, CrySL is designed with cryptographic APIs in mind and,
thus, can not be directly generalized to other APIs, for which whitelisting is not applicable.
Thus, we exclude CrySL due to condition ¢) and partially due to condition d).

FuzzyCatch [NVN20] is based on Android apps and applies fuzzy rule inference by using
Graph-based Object Usage Models (Groums) [NNPT09b]. In detail, Nguyen et al. par-
ticularly analyze exception handling code by fuzzy rules representing which API method
calls are correlated with certain exception types and which exception types are correlated
with certain exception handling code. The fuzzy rules contain a probability representing
how frequently a rule is found applicable in the training data. By defining three different
kinds of risks (i.e., thresholds of probabilities), they used different sets of fuzzy rules and
denoted a violation (i.e., missing calls) as misuses.

FuzzyCatch is restricted to exception handling code, and thus, we excluded it based on
condition d).

Jadet [WZL07] specifies API usages by formulating temporal rules on method call orders
from a statically obtained object usage model (i.e., finite state automata with edges labeled

“https://cpam2019.wixsite.com/mysite last accessed: 2024/03/21

Yhttps://github.com/APIMisuse/ApiChangePattern/ last accessed: 2024/03/21

Yhttps://github.com/CROSSINGTUD/CryptoAnalysis and https://github.com/CROSSINGTUD/
Crypto-API-Rules both last accessed: 2024/03/21

105

https://cpam2019.wixsite.com/mysite
https://github.com/APIMisuse/ApiChangePattern/
https://github.com/CROSSINGTUD/CryptoAnalysis
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules

Chapter 5. Improving Pattern-Based API Misuse Detection

by method calls). Patterns represent sets of ordered method call pairs, which are obtained
using FPM on pairs (i.e., as items). By ranking patterns using the confidence metric and
applying formal concept analysis, Jadet detects violations as missing calls in the expected
orders. Jadet is available on the institutional webpage'?.

When we analyzed the evaluations of Jadet in Table 5.5, we found that Jadet tended to
have a low precision. This result can be reasonable since it only considers simple method
pairs, which easily can mark many false positive results. Thus, we excluded Jadet due to
condition d).

MUDetect is a misuse detector developed by Amann et al. [Amal8, ANNT19b]. Tt infers
frequent subgraphs among a set of API usages represented by a set of AUGs, the data
structure introduced by Amann et al. themselves (cf. Section 3.2.2). MUDetect applies an
FGM approach based on the Apriori algorithm (cf. Section 3.5.2) to infer these patterns. In
detail, the authors targeted the problem of the exponential increase of pattern candidates in
graph mining by extending only by adjacent nodes, which can be found in example AUGs.
Moreover, they clustered equivalent pattern candidate extensions by identifying isomorphic
graphs among them. This identification was done by a heuristic graph vectorization named
Fzas vectors by Nguyen et al. [NNPT09a]. They conducted a ranking of different pattern
candidates using different interestingness measurements (cf. Section 3.5.3). Finally, they
detected violations as partial overlaps to candidate AUGs. They applied further ranking
strategies of violations to handle alternative patterns. They experimented with different
settings. First, they controlled the donor code either in per-project (i.e., I) or cross-project
(x 4) setting. Second, they controlled the count value for support on the considered scope,
namely, how often a pattern occurs in a single scope. They distinguished between within-
method, cross-method, and cross-project. MUDetect is available on GitHub'?, which allows
the reuse of this software artifact.

MUDetect is a stable technique, as indicated in Table 5.5. We found its replication
package reusable with a manageable effort. Moreover, we denote it a plausible technique
in realistic scenario. Thus, we used MUDetect in our experiments.

Li et al. The misuse detector by Li et al. [LZT"24] is a recent technique at the time
of writing this thesis'*. It leverages multiple sources to infer specifications, namely, API
usages from client code, together with information on the library code and documentation
of the API. In detail, the authors converted client code into AUGs (cf. Section 3.2.2) and
constructed so-called ‘A Pl usage constraints.’” These constraints were subsequently filtered
(among others by frequency). Such constraints were also extracted from the library code
and the documentation of the API. All constraints were related to previously selected
APIs. This way, the authors merged different constraints based on the API as so-called
‘API constraint graphs.” In detail, they had different heuristics to resolve conflicts among
contradicting constraints (e.g., between those from documentation and library code) as well
as to construct alternative API constraint graphs. The detection was conducted by parsing
client code as AST and checking whether at least one of the alternative constraint graphs
is satisfied. Otherwise, the API usage was considered as a misuse. The misuse detector is
available on figshare!”.

2https://www.st.cs.uni-saarland.de/models/jadet/JADET.zip last accessed: 2024,/03/21
https://github.com/stg-tud/MUDetect last accessed: 2023/11/17

1 Note that this work was found in the repeated forward snowballing conducted on 2025/01/29
Bhttps://doi.org/10.6084/m9. figshare.24552193 last accessed: 2025/01/31

106

https://www.st.cs.uni-saarland.de/models/jadet/JADET.zip
https://github.com/stg-tud/MUDetect
https://doi.org/10.6084/m9.figshare.24552193

5.2. Limitations of State-of-the-Art API Misuse Detection

Even though it achieved good precision (i.e., Table 5.5), we found some essential work
to apply this technique to our own experimental setting. For instance, finding library code
and documentation to APIs is currently not covered, and code sections in their artifact have
to be customized (i.e., configure necessary file paths within the source code). Therefore, at
the time of writing, the effort for specification inference was considered to be too high (i.e.,
condition c¢)). Nevertheless, we recommend a comparison to this technique in subsequent
research.

Salento [MCJ17] infers a latent non-observable specification using Bayesian learning over
code features and observed behavior (i.e., method call sequences). Particularly, they train
a topic-specific recurrent neural network, which distinguishes between different APIs and
their specific usage contexts. This network produces a stochastic distribution of an expected
behavior based on the code features of a candidate program. This expected behavior is
then compared to a statically obtained behavior (i.e., also as stochastic distribution) using
the Kullback-Leibler divergence. Their replication package is available on GitHub'®.

Since it trains a neural network, it typically requires a large amount of source code
samples for certain APIs. Moreover, their instrumentation to obtain this training data
focuses on the Android framework. Therefore, we assessed the effort to apply this technique
efficiently as too high and, thus, excluded Salento due to condition d).

/Insight D-5 (RQ D-L): Limited Applicability of API Misuse Detectors for\
Comparison

Many API misuse detectors were not directly applicable for comparison, mostly due to
the non-availability of a replication package (i.e., 17 from 30 analyzed detectors). From
the remaining 13 detectors, we excluded four due to their targeted programming lan-
guage, four due to less promising results, two regarding the non-availability of manda-
tory components in their replication package, and two due to their effort to infer speci-
fications. We only selected MUDetect [Amal8, ANNT 19b] as a comparable API misuse
kdetector.)

5.2.5. Threats to Validity

Finally, we discuss potential threats to the internal and external validity of the analyzed
limitations, as discussed in Section 5.1.

Internal Validity When analyzing the state-of-the-art API misuse detection, we applied
an SLR process using forward snowballing [KC07] with the search engine Google Scholar.
This search engine may return different search results depending on the the search time,
and thus, a replication may result in a different set of publications [KLvN™20]. Moreover,
the selection was partially done by the main author using the publications’ title, which
implies a selection bias.

Similarly, the suggested classification according to the specification type is subjective
and only serves as an element to structure the discussion.

Finally, we presented the obtained performance (i.e., precision and recall) of the misuse
detectors as they were presented in the respective papers. Thus, potential threats to validity
regarding these experiments have to be respected as well.

https://github.com/trishullab/salento last accessed: 2024/03/25

107

https://github.com/trishullab/salento

Chapter 5. Improving Pattern-Based API Misuse Detection

External Validity As previously described, the classification is by no means general and
could not apply to other not-considered or future misuse detectors. For instance, other
classifications can further differentiate between the application domain (e.g., cryptographic
APIs) or the targeted misuse type (e.g., exception handling or resource management issues).

Even though related, our results only apply to API misuse detectors but not to the more
general topic of API specification inference. This domain also discusses other techniques
that are intended to support other use cases, such as automated documentation genera-
tion. A detailed view of API specification inference can be obtained from Robillard et
al. [RBK"13] and subsequent works.

5.3. Improving Data Collection for API Pattern Inference by
Change-Based Information

This section mainly refers to our work on change-based misuse detection published in our
previous work [NHO18, NHSO21]. It targets research questions RQ D-C and RQ D-F.

4

4

RQ D Automated API Misuse Detection

RQ D-L Limitations of
State-of-the-Art
API Misuse Detectors

RQ D-F Filtering of
API Usages for
Pattern-based

Misuse Detection

RQ D-C Change-
driven AP| Usage
Collection for
Pattern-based
Misuse Detection

RQ D Automated API Misuse Detection

RQ D-L Limitations of
State-of-the-Art
API Misuse Detectors

RQ D-F Filtering of
API Usages for
Pattern-based

Misuse Detection

RQ D-C Change-
driven API Usage
Collection for
Pattern-based

Misuse Detection

5.3.1. Insufficient Data Selection for AP| Specification Mining

We discussed in Section 5.2 that many state-of-the-art API misuse detectors relied on the
principle of FPM to retrieve common API usage patterns, which served as specifications of
correct API usage (i.e., API specification mining). Most of these pattern-based detectors
produced a large number of false positives, namely, patterns that falsely blamed a correct
API usage as misuse. Having too many of those “false alarms,” developers would likely
ignore warnings from such a system, as seen in approaches of SCA [CMO04, JSMHBI13,
SAET18]. Amann [ANNT19a] identified several root causes for false positives (e.g., infre-
quent but correct usages, missing information in the mined data structures) and reduced
the false positive rate by developing a graph-based data structure (i.e., AUG) as well as
validating several ranking and violation detection techniques. While achieving a significant
improvement over the state-of-the-art, the obtained precision (between 21.9% and 34.1%
for different settings) is still far from practical applicability (i.e., a larger proportion of false

108

5.3. Improving Data Collection for API Pattern Inference

positives) [JSMHB13].

Thus, we analyzed the main steps of typical API specification miners to hypothesize
potential improvements [NHSO21]. According to the previous work discussed in Section 5.2,
we derived the following five common steps for API specification mining with subsequent
misuse detection:

1. Obtain a sufficient API usage example database for FPM

2. Transform APT usages into a dedicated data structure (e.g., execution traces [YEB™00],
syntax trees [AS14], AUGs [Amal8])

3. Retrieve a set of frequent API usage patterns by a form of FPM (e.g., association
rule mining [L.Z05], Frequent Sequence Mining (FSM) [ZXZ"09], FGM [Amal8])

4. Filter and rank patterns based on some kind of interestingness measurements [L115]

5. Compare the interesting patterns to the API usage and mark deviations as API
misuses [Amal§]

In recent work, the last four steps received more attention than the first one, namely,
obtaining an API usage database to mine from. Le Goues et al. [LW12] analyzed the impact
of code quality metrics as a pre-processing step of usage examples in the database. Zhong et
al. [ZXZ709] proposed a clustering technique of APT call sequences and conducted FSM on
single clusters instead of the complete input space. During evaluation of API specification
mining, usage examples for the database are usually obtained from 1) the same project
that contains the misuse [Amal8, ANNT19a, WZ23], 2) a set of projects collected due
to some project characteristics [YMST16, CM18, ZCSZ21, JWLT24], and 3) specific code
examples exactly containing the type and/or the APT element (e.g., method or field) of the
misuse [TX09b, TX09a].

The first variant may result in no usage pattern at all, particularly if the API has been
(mis)used the first time in the project since no correct usage pattern of that API exists.
In the second case, specification mining may result in many unrelated patterns since the
misuse and usage examples do not necessarily relate to each other. Note that this also
occurs in the first case since usage patterns from other internally used APIs are mined
as well. In contrast, the last variant directly refers to the misuse at hand, however, this
does not work in practice. While it is sufficient for validating and comparing different API
specification miners, developers trying to identify latent misuses in their code usually do
not know if and which API elements are misused.

Thus, current specification miners lack sufficient techniques for obtaining an API usage
database. Without such a database, subsequent steps of mining usage patterns and misuse
detection can be harmed. This issue is similar to issues seen with classifiers when insufficient
data is used [AM18]. For API misuse detection, this would mean that a misuse cannot be
detected since no pattern is found or many false positive patterns are found, increasing the
false positive rate.

5.3.2. Concept of Change-Based Information to Collect API Usages

The basic essence of our concept for detecting API misuses is to leverage change information
from a potential misuse-introducing code commit from a Version Control System (VCS),
such as git. This change information contains not only the code difference between two

109

Chapter 5. Improving Pattern-Based API Misuse Detection

¢

Misuse-introducing Commit

— APl Change)
Client Project
API Misuse Detection +

Search and Filter Strategies

Relevant API Usage
Extractor (RAIX)

j

Similar Code Search
AN
= -4

Filter Source Code

o

—Z —

Source Code
Repositories

IIIII‘

~

ﬂﬂern-based \
API Misuse Detection

Violation?

APl Usage Pattern Mining d
Intermediate Code Representation

false

Pattern Mining and Ranking

1.
—— —
— —

B

|
tg w/__ T

n I I
K is misuse isno misuse/

Figure 5.1.: Integration of RAIX and our search and filter strategies into a pattern-based
API misuse detection process using commits (adapted from our previous
work [NHSO21]).

110

5.3. Improving Data Collection for API Pattern Inference

subsequent versions but also further meta-information (e.g., author of the change, commit
message), which we hypothesize to have more valuable insights for precise misuse detection.
Moreover, we assume that code changes are usually much smaller than the whole code base
and thus allow a more concise misuse localization (i.e., only in those code sites that were
actually changed). Our main idea is to distill information on the APT usage from the code
change and apply this knowledge to find similar and potentially correct usages to compare
them with the potential misuse [NHO18].
Particularly, this concept targets the two research questions, RQ D-C and RQ D-F.

Overall Process We extended and vali-
dated this idea [NHSO21] to fit into a re- ‘N ‘I
alistic development scenario, as depicted in @ == Ch.a"ge> =
Figure 5.1. We assume a client project in
which a developer commits a code change @hand Filter Strategies
containing an API misuse to the project’s retevant AP Usage
repository (1). This way, the aspired mis- 0 Extractor (RAIX)

use detection process can serve as a step .m‘;‘;'m Keyword
within the Continuous Integration (CI) sys- = =
tem, which refuses commits in case they B
contain an API misuse. The first step of
this process is the API change analysis us-
ing our artifact Relevant API Information
Eaxtractor (RAIX) (2). Tt conducts a static
analysis of the code change and extracts
keywords and API imports, both charac-
terizing the API usage within the commit.
Both extracted pieces of information serve
as input for the subsequent search (3) and
filter-strategies (4), which yield a set of sim-
ilar source files originating from source code
repositories. Then, we apply a state-of-
the-art API usage pattern (or API speci-
fication) miner by transforming the similar
code samples to an intermediate represen-
tation (5) and apply the miner with rank-
ing strategies of the patterns (6). Finally,
we verify whether the changed code of the

commit complies with the inferred patterns, Figure 5.2.: Detailed view on RAIX and

Search Similar Usages

Source Code
Repositories

namely, they are not violated (7). the search and filter strate-
gies (adapted from our previous
Search and Filter Strategies The main work [NHSO21]).

contribution concentrates on the search and
filter strategies (i.e., @) - (4)) and validates their impact on the pattern miner and the sub-
sequent API misuse detection. Thus, we further zoom into this part in Figure 5.2.

API Change: First, we analyze the code change in @ by applying utilities from the
VCS (i.e., git diff). This way, we obtain the changed code lines based on which we infer
those method declarations that contain at least one changed line using SCA. Note that

111

Chapter 5. Improving Pattern-Based API Misuse Detection

we use whole method declarations instead of single code lines since they provide much
more context of the underlying API usage and, thus, allow a more detailed, subsequent
code search. Moreover, considering a larger context increases the chance of detecting more
misuse types, for instance, if the change adds a second, redundant method call, which can
represent a misuse [ANN'19a]. By applying commit-based analysis on changed method
declarations, we hypothesize that these still significantly reduce the amount of code to be
analyzed by the misuse detector.

API Extraction: For each changed method declaration, we extract those code elements
characterizing the APT usage (cf.) Particularly, this denotes a list of change-related
API import statements from third-party libraries and a list of keywords describing API
elements affected by the change (e.g., API type names or API method calls). The partic-
ular selection of import statements and keywords was motivated by reviewing real-world
misuses from the MUBench benchmark [ANNT16] as well as from insights by Zhong et
al. [ZXZ709] on code features characterizing API usage. Note that we concentrate on third-
party libraries due to two reasons: First, we likely will not find usages of internal APIs in
external repositories, and second, language-specific elements (i.e., from java.lang) are
far too common and would introduce too much noise for subsequent filtering.

We illustrate the API import and keyword extraction by means of an example in Fig-
ure 5.3. In this example, we assume that the method doSomething has been changed
by a developer. We identified change-related APl import statements through the fol-
lowing procedure. First, we check for each import statement in the main class (i.e.,
the only public class in the source file containing the changed method) whether it
depicts a third-party library. Second, we analyze whether the third-party import is used
in the changed method. We applied a heuristic matching the first three qualifiers of the
import statement with those of the package statement of the source file. In case both
match, the import statement is denoted as internal API and thus discarded from the API
imports list. The rationale to use three qualifiers stems from the naming convention for
packages in Java'”, which denotes that packages are usually identified by the companies’
internet domains succeeded by the package name, resulting in at least three qualifiers. If
only one or two qualifiers are used as package identifiers, we only check whether these
are prefixes of the import statements. In case no package statement is given, which
never occurred in our evaluation, no API imports are inferred. Within our example in
Figure 5.3, the import statement from class QClass is not considered since its prefix
(i.e., my . own . pkg) matches the prefix of the respective package statement.

Then, we relate imports to changed methods if the class imported in the import
statement is

e used as parameter type in the method’s signature
e used as a return type in the method’s signature
e used as a throws type in the method’s signature

e explicitly used in an expression in the method’s body

e inherited from the class (i.e., extends) containing the method, and the method is
annotated with an @0verride statement

https://docs.oracle.com/javase/tutorial/java/package/namingpkgs . html last accessed:
2023/06,/06

112

https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

5.3. Improving Data Collection for API Pattern Inference

1 | package my.own.pkg.subpkg;

2

3 |import a.b.AClass;

4 | import a.b.BClass; APl Imports

5 | import a.b.CClass; ,

6 | import x.y.ZClass; import a.b.AClass

7 | import x.v.*; }mport a.b.BClass

8 | import my.own.pkg.QClass; import x.y.ZClass

9 .

10 | public class Foo extends AClass { Keyword List

11 @0verride

12 protected ZClass doSomething(BClass b0Obj) { BClass

13 super .doSomething (b0bj) ; zClass

14 QClass myQObj = rMethodCall
callThisMethod (RClass.rMethodCall()); AClass

15 return myQObj.mergeWithZClass (bObj); doSomething

16 } mergeWithZClass

17 |} callThisMethod

Code Listing (5.1) Code Sample API Extraction

Figure 5.3.: Example of a keyword extraction for the doSomething-method. Left Code
Listing 5.1: Source code, from which keywords are extracted. Right: Lists of
extracted API import statements and keywords (adapted from our previous
work [NHSO21])

Considering our example in Figure 5.3, we extract the classes AClass, BClass, and
ZClass while ignoring class CClass since it is not used in the doSomething-method
according to our definition. Note that we ignore classes imported via wildcard syntax (e.g.,
class RClass through import x.v.*; used in line 14) since this would add too many
internal classes, producing too much noise and perturbing the code search.

Regarding the keyword list, we added all class names referenced in the change-related API
import statements (i.e., AClass, BClass, and ZClass in our example). Moreover, we
add all method calls (i.e., including also internal and java.lang method calls) to the key-
word list (i.e., doSomething, callThisMethod, rMethodCall, and mergeWith-
ZClass in our example). This procedure creates a long keyword list, which we compensate
for by only applying the keyword list in the filter step and using different proportions of
keywords for filtering (cf. subsequent discussion on the satisfaction ratio). Finally, in case
the changed method overrides (i.e., annotated by @0verride) a third-party method, we
add its method name to the keyword list (i.e., doSomething in our example). The ra-
tionale is that many third-party APIs are used via inheritance and do not necessarily call
this method. Note that we avoid adding duplicates in both lists (i.e., API imports and
keywords). This procedure is automated in our software artifact named RAIX.

Search Strategies: After producing both lists, we use them to conduct the code search
by implementing two search strategies, namely, search;,. and searchipyy, in step @ The
first strategy (i.e., searchj,.) determines the location of the code search. We distinguish
between internal (i.e., within the same project containing the potential misuse) and ezternal
(i.e., in other projects). The second strategy (i.e., searchim,) varies, which exact import-
statements are used, namely all imports (i.e., all import-statements from the AP imports
list) or only misused imports (i.e., import-statements importing the misused APT classes).
Note that both strategies only use the API imports list. We analyzed searchi,. since
Amann stated that API usage patterns could be retrieved from the same as well as from

113

Chapter 5. Improving Pattern-Based API Misuse Detection

foreign projects [Amal8]. They found that pattern mining-based misuse detection yields
better results with patterns inferred from foreign code. However, the domain of automated
program repair relies on the plastic surgery hypothesis, namely, that patches can often be
found within the same project as the bug [LGPR19]. Thus, we evaluate the effect of both
variants. The idea behind the strategies in searchim,, is whether it is worth conducting
a pre-search analysis to determine the misused API. On the one hand, we can assume
that searching only with the misused API(s) yields more related API usages since it is
not perturbed by “noisy” import statements. On the other hand, we argue that having
a larger number of import statements more precisely describes the context of the API
usage together with other APIs and thus yields fewer but better-matching usage examples.

Filter Strategies: With the previous step, we obtained a set of source code files, which
now will be further filtered. First, we apply a file filter (filtery;.) in step @ As stated
before, the keyword list is “noisy” in the sense it can contain keywords related to internal
and java.lang elements. Moreover, we do not expect that all external usages also
contain all keywords present in the changed method. Thus, we introduce the notion of
a satisfaction ratio (sr), which denotes the proportion of keywords from the keyword list
found in the respective source file. Particularly, having the keyword list as set kwSet and
a source file srcFile, sr is defined as follows:

sr(srcFile, kwSet) {kw € kwSet if srcFile contains kw}|
|kwSet|

Having an sr of 0 denotes that the source file contains none of the keywords in the
keyword list, while an sr of 1 describes that all keywords are found in the file. We filter the
source files based on a minimal sr. Since we did not expect that any of the extreme cases
(i.e., 0 or 1) achieve optimal results, in our experiments, we varied the minimal sr value.

Finally, we apply a method filter (filter,ethoq) in step @ Its goal is to remove methods
from the filtered source files that do not contain any keywords from the keyword list.
The rationale is that our misuse detector represents API usages in an intraprocedural
manner, and thus, we hypothesize that reducing the number of non-related methods finds
more related patterns for better misuse detection. Particularly, we parse each method
in the source file to token sets, filter out syntax elements and keywords from the Java
programming language, and check whether at least one token from this set represents a
keyword from the keyword list. Note that we do not apply the sr to methods due to
two reasons. First, we test all possible combinations of the search and filter strategies,
and thus, introducing further variables increases the number of configurations to test. As
shown in the next section, we tested for each misuse 40 (i.e.,, 2-2 -5 -2) configurations
on 37 misuses from the MUBench dataset [ANNT16], leading to currently 1,480 different
configuration runs. Second, we assess the effect of a subsequent sr filtering on the method
level as hardly significant since the previous filter ;. step already filtered out non-related
files, and methods are far more fine-grained.

Note that we implemented both filter strategies (i.e., filteryye and filtermeinod) sepa-
rately to the search step to evaluate the impact of the single steps in our experiments. In
a practical setting, it is reasonable to combine search and filtering to gain efficiency.

114

5.4. Experimental Data and Processing

5.4. Experimental Data and Processing

In this section, we shortly describe our dataset and experimental setting.

5.4.1. API Misuse Datasets

In our experiments, we used two datasets of known API misuses, named MUBench'®
[ANNT16] and AU500'” [KL21]. These datasets represent a collection of real API mis-
uses in the Java programming language obtained from different open-source projects.

We found for MUBench some biases (i.e., discussed subsequently) that could influence
the results and the overall validity. Thus, we pre-processed MUBench. Initially, we ob-
tained a set of 245 API misuses based on 63 Java open source projects®’ as well as four
synthetic misuse groups (i.e., clusters of misuses written by the authors themselves) to-
gether with meta-information (e.g., VCS, misused API, fixing commit). Then, we selected
only those misuses from projects applying the VCS git, which is one of the most frequently
applied VCS?!, resulting in 103 misuses. Finally, we discarded further 66 misuses due to
the following reasons:

e they represented duplicates, particularly the entries from the jodatime project, which
contained many similar misuses from test cases, which may bias the results (36);

e they were misuses of the java.lang-API, which were excluded by RAIX (cf. Sec-
tion 5.3.2) (18);

e they were misuse of an internal API, i.e., originating from the project containing the
misuses, which were excluded by RAIX (cf. Section 5.3.2) (8);

e they were non-distinguishable misuses (i.e., misuses were equal and shared the same
commit, method declaration, and class), and thus we only kept one version (2);

e they were caused by a false parameter value, and this misuse type was not handled
by our method (2).

We used the remaining 37 misuses to validate the commit size (cf. Section 5.5.1), the filter
techniques (cf. Section 5.5.2), and the misuse detection (cf. Section 5.5.3).

Moreover, we applied AU500 as a second dataset of 500 manually validated API usages
from 16 open-source projects written in Java and all versioned with git. Each usage is
labeled either as misuse (i.e., 115 in AU500) or as correct usage (i.e., 385 in AU500). For
each usage, there exists meta-information, for instance, a link to the git repository, the
hash of the analyzed commit, and the location of the misuse in the source code. We kept
all misuses from AU500. Note that AU500 has no overlapping misuses with MUBench. We
applied it to validate the misuse detection (cf. Section 5.5.3).

5.4.2. API Misuse-Introducing Commits

As denoted in the overall concept (cf. Figure 5.1), our main idea is based on the analysis
of misuse-introducing commits, namely, commits whose changes made a misuse apparent.

Bhttps://github.com/stg-tud/MUBench last accessed: 2019/02/05

19 AU500 is part of the ALP replication package https://github.com/ALP-active-miner/ALP last accessed:
2023/06/23

20as of 2019/02/05

2laccording to Open Hub managed by Synopsys, Inc. https://openhub.net/repositories/compare last
accessed: 2023/06/23

115

https://github.com/stg-tud/MUBench
https://github.com/ALP-active-miner/ALP
https://openhub.net/repositories/compare

Chapter 5. Improving Pattern-Based API Misuse Detection

In the MUBench dataset, however, we only had the fixing commit (i.e., the change that
fixes the misuse). We inferred the misuse-introducing commit by first checking the fixed
version of the code, then detecting the changed lines via the git diff command, and
manually identifying those code lines that essentially describe the API misuse. Based on
these lines, we checked out the previous, misused version and ran git blame to identify
which commit added those lines. In case multiple commits were responsible for introducing
a misuse, we selected the latest one since this represents the state when all “ingredients”
of the misuse were together. This procedure is essentially the git-adapted version of the
SZZ algorithm [SZZ05], originally introduced for the CVS VCS.

The AU500 dataset consists of many more API usages and not all of them represent
misuses. Thus, not all had a fixing commit, so we applied a simpler approach. Particularly,
we applied keyword and API import extraction on the method in the class of commit
provided by the AU500 dataset. This way, we mimic the situation that exactly this method
has been changed in the previous commit.

5.4.3. Similar Source Files

In step @ in Figure 5.2, we required a database of API usages from source code repositories
to conduct the searchy,. strategy (i.e., internal and external code search). For the internal
search, we downloaded and checked out the misuse-introducing commit and collected all
* . java-source files except the source file containing the misuse. According to the external
search, we applied the REST API of the Searchcode engine®”.

We selected Searchcode since it searched within projects from well-known code reposi-
tory platforms, such as GitHub, BitBucket, Google Code, or GitLab. Compared to other
code search engines like Boa [DNRN13] and GHTorrent [Goul3], it allowed accessing and
downloading individual source files from the current state of the repository. At the time of
our experiments, Searchcode returned, due to an internal restriction, at most 1,000 source
files for each search request sorted by relevance. According to the developer®® of Search-
code, relevance denoted the proximity of the search terms found in the source files. For
instance, a search with the keywords foo and bar ranks a source file containing the String
"foo bar" higher than those having both keywords distributed among the complete file.
This definition of relevance was reasonable for our use case since we conducted the search
by using the import statements extracted before, which should usually appear closely
together at the beginning of each source file.

For each misuse, we obtained similar source files by running two search runs on Searchcode
to test the searchim, strategy (i.e., searching only with the misused imports compared to
searching with all imports). Note that we only searched with the misused imports strategy
in case the change analysis inferred the respective import statement from the commit.
This way, we obtained at most 2,000 source files for each misuse (1,000 for each search
run). For MUBench, we downloaded the code files between February 7" and February
8th 2019, and repeated the search due to an error for logblock-logblock-2_15 misuse on
December 127, 2019. For the AU500 dataset, we downloaded the source files on June 15",
2021. Since Searchcode accessed live code data, we stored all downloaded raw source files
locally and provided them together with our replication package’*. This way, we were able
to conduct all subsequent filter strategies and mining approaches on a consistent dataset,

*2https://searchcode. com/api last accessed: 2023/06/26
#3we contacted him via email
nttp://doi.org/10.5281/zenodo . 15594600

116

https://searchcode.com/api
http://doi.org/10.5281/zenodo.15594600

5.5. Validation

which kept the bias introduced by the quality of the Searchcode results consistent among
our analyzed configurations. We further ignored source files from the same project as the
misuse by comparing the prefix of the package statement of the file to the misuse file
at hand. This way, we also could handle source files originating from forked projects.
Moreover, we excluded source files for which the generation of the intermediate source code
representation (i.e., AUGSs) occupied too much memory and caused our evaluation script
to crash. For MUBench, we, therefore, had to exclude externally found source files for 13
misuses (i.e., for nine misuses, we excluded a single source file, and for four misuses, we
excluded two up to nine source files).

5.4.4. API Usage Graphs as Intermediate Representation

We evaluated the effect of the search and filter strategies on pattern mining and misuse
detection by applying MUDetect [ANNT19a]. As intermediate representation, they used the
AUG, which we already introduced in Section 3.2.2. For the purpose of our experiments,
we implemented a serialization of the AUGs to store them permanently. This way, we
saved some processing time for the mining by avoiding frequent re-generation of AUGs
from source code.

5.5. Validation of the Impact on Change-Based Information for
Pattern-Based API| Misuse Detection

In this section, we present the experimental results when applying RAIX with subsequent
search and filter strategies.

5.5.1. Validation of Commit Sizes

We assessed to which degree commits of API
changes were a valuable source to detect
API misuses, particularly whether API-specific
change analysis could effectively reduce the size
of the commits and, thus, the analysis effort.

\ 4 This way, we targeted RQ D-C.
RQ D Automated API Misuse Detection
RQ D-L Limitations of
State-of-the-Art . .
AP) Misuse Detectors Methodology We analyzed the misuse-intro-
et R ducing commits from the 37 misuses from the
Collection for Pattern-based . - -
Patebased || _Misuse Detecion MUBench dataset [ANNT16] regarding their
Misuse Detection
¥ change size and how effectively API change anal-

=

ysis (i.e., step (2) in Figure 5.1) could reduce
this size. Particularly, we denoted as change
size the number of changed methods per commit,
the number of extracted API imports, and the
number of extracted keywords (both per changed
method). The number of changed methods de-
cides on the number of separate misuse detection threads (i.e., steps 3) to (7) in Fig-
ure 5.1). Thus, decreasing the number of methods for misuse detection also decreases
the overall static analysis time. As can be seen in Table 5.6, some misuses had the same

117

Chapter 5. Improving Pattern-Based API Misuse Detection

misuse-introducing commit. Thus, we analyzed the commit-specific size (i.e., the number
of changed methods) based on the 31 unique commits.

We further analyzed the number of extracted API imports and keywords. Using the
API imports, we identified how many different APIs had to be considered during pattern
mining. A larger number of keywords may reduce the chance of finding similar source
code files in the filtery;. step, particularly if we apply a large satisfaction sr. However,
a larger number of keywords can also decrease the impact of the filteretnoq step (i.e.,
more methods are accepted) since it is more likely to match at least one of the keywords.
Thus, we expect the average number of keywords and imports to be as low as possible
without being 0. Otherwise, a too large number may require subsequent filtering of the
most important (i.e., those that effectively find code samples) keywords and imports. In
contrast, many entries with no keywords and imports might cause no search results at all.

Our replication package’® contains a static analyzer based on the Eclipse JDT parser
analyzing the misuse introducing commit and automatically obtaining the number of all
methods present in the current code revision (i.e., after the misuse-introducing commit)
and all changed methods together with their extracted API imports and keywords. In case
we extracted at least one API import statement, this denoted that the method change
contained a third-party API according to our API extraction mechanism. Note that we
retrieved the number of all methods by hashing all source files (i.e., by an MD5 hash
function) and counted methods only for each single hash. This way, we discarded duplicated
source files from the counting work. Moreover, we avoided issues regarding name clashes
(e.g., caused by overloaded methods) by assigning each method with a unique ID. We
evaluated the obtained numbers based on a Python script within a Juypter Notebook.

Results Table 5.6 depicts all 37 misuses together with misuse-introducing commits. More-
over, this table contains the number of all methods (A) present after the commit changes,
all changed methods through the commit (C), as well as all changed methods containing a
third-party API (E). In columns A2C and C2E, we depict the reduction achieved (in per-
centage) by only considering the changed methods and only considering changed methods
with at least one third-party API, respectively. In the last column, API found, we express
whether the change analysis kept the method containing the misuse and correctly extracted
the import statement of the misused API (i.e., after step C2E). We checked the misused
API based on the description of the misuse from the MUBench dataset. Note that the A2C
reduction did not discard any of the misuse containing methods due to the definition of the
misuse-introducing commit.

Overall, we observed that for 31 of the analyzed 37 misuses (83.8%), we successfully ob-
tained the misused API import statement. For the remaining ones, the extraction obtained
a more specific import, namely, inherited classes, (two misuses), obtained other imports
(two misuses), and obtained no imports (two misuses).

We depict the distribution of the unique misuse introducing commits among the number
of changed methods after A2C reduction in Figure 5.4. We observed that a majority of 24
from 31 unique commits (77.4%) changed less than 100 methods, and 12 commits edited at
most 20 methods. However, some extreme outliers, such as bcel_101 with 2,517 methods,
persisted. After conducting C2E reduction (cf. Figure 5.5), 25 commits changed less than
100 methods and 18 edited at most 20 methods. Still, we observed single misuses with a
large number of methods that need to be analyzed (e.g., android-rcs-rcsjta-1 with 642
methods). A summary of the effect of the reduction steps is depicted in the boxplot in

118

5.5. Validation

Table 5.6.: List of API misuses with their misuse-introducing commits as well as their size
reduction adapted from [NHSO21].

misuse repository (subdomain MIC #methods reduction (%) | API
at https://github.com) A C E | A2C C2E | found
1 alibaba-druid-1 /alibaba/druid.git del3143e0 16095 12 81 99.9 33.3 4
2 alibaba-druid_2 /alibaba/druid.git del3143e0 16095 12 81 99.9 33.3 4
3 android-res-resjta_1 /android-res/resjta.git b3445d9 10817 2275 642 | 79.0 71.8 v
4 androiduil_1 /nostral3/Android- 9d77de9 737 279 131 | 62.1 53.0 v
Universal-Image-Loader.git
5 apache-gora_56_1 /apache/gora.git eddb20a 1565 141 57 | 91.0 59.6 v
6 apache-gora_56_2 /apache/gora.git bbad5d213 1424 39 35| 973 10.3 v
7 beel 101 /apache/commons-bcel.git d532ecl 3475 2517 269 | 27.6 89.3 4
8 calligraphy_1 /chrisjenx/Calligraphy.git 1a2d0f5d 32 10 8| 68.8 20.0 v
9 calligraphy_2 /chrisjenx/Calligraphy.git 1a2d0f5d 32 10 8| 68.8 20.0 v
10 closure_2 /google/closure-compiler.git e5d3ebe012 11135 28 14 | 99.7 50.0 v
11 jodatime_269 /emopers/joda-time.git 08a925a31 4429 54 10 | 98.8 81.5 v
12 jodatime_339 /emopers/joda-time.git 9b01b9e8b 9054 21 11] 99.8 47.6 X
13 jodatime_361 /emopers/joda-time.git 7te68f297 2556 2451 519 4.1 78.8 v
14 jodatime_362 /emopers/joda-time.git 768297 2556 2451 519 4.1 78.8 v
15 jodatime_363 /emopers/joda-time.git 7fe68f297 2556 2451 519 4.1 78.8 v
16 Inreadera_1 /calvinaquino/LNReader- ab14£35 3329 81 72| 976 11.1 v
Android.git
17 Inreadera_2 /calvinaquino/LNReader- ab14£f35d 3329 81 72| 97.6 11.1 4
Android.git
18 logblock-logblock-2_15 | /emopers/LogBlock-2.git 5ealbOb 70 5 4| 92.9 20.0 v
19 mqtt-389 /emopers/paho.mqtt.java.git ~ 77aa39b9 670 608 115 9.3 81.1 v
20 mqtt-390 /emopers/paho.mqtt.java.git f60b3721 990 59 23| 94.0 61.0 v
21 onosendai_1 /haku/Onosendai.git Cf2de97 1618 3 2| 99.8 33.3 v
22 openiab_1 /onepf/OpenIAB.git 00e5612 957 173 100 | 81.9 42.2 v
23 screen-notifications_1 | /lkorth/screen- fa75a61f 48 21 19| 56.2 9.5 4
notifications.git
24 tbuktu-ntru.473 /emopers/ntru.git 4a095¢cc 399 13 5| 96.7 61.5 v
25 tbuktu-ntru 474 /emopers/ntru.git e48688 187 8 41 95.7 50.0 4
26 tbuktu-ntru 475 /emopers/ntru.git 8cb6471 521 41 17| 921 58.5 v
27 testng 16 /cbeust /testng.git 23485874 5557 21 19| 99.6 9.5 v
28 testng 17 /cbeust /testng.git b68cf6de8 5479 18 17| 99.7 5.6 X
29 testng 21 /cbeust /testng.git 24341340b 5432 14 11| 99.7 21.4 X
30 testng 22 /cbeust /testng.git 79cd443f 4395 4 21 99.9 50.0 X
31 thebluealliancea_1 /Adam8234 /the-blue- be7b752 1168 10 10| 99.1 0.0 4
alliance-android.git
32 thomas-s-b-visualee_29 | /emopers/visualee.git 14e3£03 152 76 33| 50.0 56.6 4
33 thomas-s-b-visualee_30 | /emopers/visualee.git 14e303b 152 76 33| 50.0 56.6 v
34 thomas-s-b-visualee_32 | /emopers/visualee.git d4dcOba 250 1 1| 99.6 0.0 v
35 tucanmobile_1 /Tyde/TuCanMobile.git 805{770 62 11 9| 823 18.2 X
36 ushahidia_1 /ushahidi/Ushahidi_Android.git db2b310 4405 63 40 | 98.6 36.5 v
37 wordpressa._l /wordpress-mobile/ 88368deadbe | 5453 70 39| 98.7 44.3 X

WordPress-Android.git

MIC: Misuse introducing commit; A: All methods; C: Changed methods in the MIC
E: All methods from C that contain at least one external (third-party) API

A2C: Reduction from all to changed methods

C2E Reduction from changed to changed methods that contain at least one external (third-party) API

119

Chapter 5. Improving Pattern-Based API Misuse Detection

= b e

O N W OO 100 © O~ DN W Ot

Number of Misuse-introducing Commits

1 | 1]
0 500 1000 1500 2000 2500
Number of changed methods

Figure 5.4.: Distribution of Misuse-introducing commits among the number of changed
methods (bin size of ten) adapted from [NHSO21]

Table 5.7.: Results significant differences in the number of methods after reduction using
Wilcoxon-Mann-Whitney rank sum test with Bonferroni correction (marked in
gray) and its effect size using Cliff’s 4.
All Methods After A2C After C2E

All Methods - > /0.8 > /0.9
After A2C < v/-0.8 - > V0.2
After C2E < v-0.9 < v-0.2 -

Figure 5.6. While we saw a quantitative effect of considering only changed methods, we
denoted a smaller effect of the C2E reduction. We tested the significance of the reduction
using Wilcoxon-Mann-Whitney rank sum test [Kan06, p. 101] with @ = 0.05 and Bonferroni
correction [Abd07] and measured the effect size using Cliff’s ¢ [HK99, KMB™17]. While
we determined a significant difference between all reduction steps (cf. Table 5.7), we found
that based on the interpretation of Cliff’s § by Kitchenham et al. [KMB™17], the effect
from A2C is large, while the effect from C2E is small. However, inspecting the C2E-step
qualitatively in Table 5.6, we observe that especially misuse-introducing commits with a
large number of changed methods (i.e., > 100) have a large reduction between 42.2% (i.e.,
openiab_1) and 89.3% (i.e., bcel_101).

Regarding the number of extracted import statements per method, we depict in Fig-
ure 5.7 the distribution of the number of statements among all misuses. Visually, we
estimated that the majority had extracted at most 5-8 import statements based on the
upper whisker of the boxplots (i.e., 1.5 of the interquartile range). On average, 1.8 (mean
1) methods with at least one extracted import were found, while still, some extreme outliers
with 28 imports exist (e.g., android-rcs-rcsjta-1).

Considering the number of keywords, again, we depict the distribution of the number of
keywords among the misuses as boxplots in Figure 5.8. Once again, based on the upper
whiskers (i.e., 1.5 of the interquartile range), we obtained for most methods mostly 20 to
25 keywords. On average, 6.3 (mean 4) keywords are extracted from methods that used
at least one third-party API (i.e., at least one API import statement is extracted). Again,

120

5.5. Validation

cing Commits
O T T
O =N W e Ot

Number of Misuse-introducin
=N W gtoy =1 00 ©

0 100 200 300 400 500 600
Number of methods with at least one extracted import statement

Figure 5.5.: Distribution of Misuse-introducing commits among the number of changed
methods with at least one extracted external API (bin size of ten) adapted
from [NHSO21]

4 [

gt T
[g0]
= 8
N 103
o ° 8
2 ; .
= 107 1
=
G
o 10"
0
e
=

100-

All Methods After A2C After C2E

Reduction Method

Figure 5.6.: Effect of the size reduction on the number of methods to be analyzed (ordinate
is in log-scale) adapted from [NHSO21]

121

Chapter 5. Improving Pattern-Based API Misuse Detection

30

(%]
2
=
o
1S
820
© o
S
%]
= o
215 , ° 0
.§ (o] Qo o
G [o o
o (o] o o O o o o
5 10 o o o
o o o
E [¢] o O o o o
=1 o o o o O O (o] o o o o o o o
= © o o o o o o o o o
5 © o o o o o o o o o o o
o o oo§§ o o o o io i o o o
LT LA T TTY 1TEE d ER4'T"
HNAHA AN DA NN SN AN DO = o= OFOON AN AN N
'U‘Um:©©2>>°gm88£mm‘_ﬂ?§%53m;§'§ 1NN gNO® g
‘S S ESHWN £ < = R R R T S o I B @ S T T a0 &0 &0 B0 U UV O O = 5 W
2290 000 ZgUPouol8 L 8205555200008y
"-?'?EeB5_82E_O_g_g_g_g_gmmuU'O'%d)f‘,ﬁ:bﬁﬁﬁﬁmgggg-%a
S Es T O PR OB E R R R Lo EES G LTI Y8ER=233c5T
s mSS5Sdbd "Wwe ©WTWTTTEEG S 52232 2> >3285¢
Qo a - < c O O O O 0 0 ©o o 0 X X X S 848469 s
==77 O O R R R) 92 =353 =2 < '3
© @ O @ © ~ e e] '8‘?‘{"{’
- o o [e] c 2 P c v v un
c © © o 3 = © @ @
© a = E E E
o0 3 o o o
[9) £ € <
— [s ey
Misuse

Figure 5.7.: Distribution of the number of import statements among the misuses for meth-
ods with at least one third-party import involved adapted from [NHSO21].

some huge outliers with up to 79 keywords remain.

Even though we did not precisely measure the execution time of the extraction and
reduction, we estimated, based on the timestamps of the log files, that it lasted from a few
seconds up to a few outlier cases with 3 minutes (e.g., android-rcs-rcsjta-1).

Implications Our results demonstrates that API change analysis effectively reduce the
number of methods to be analyzed. Reduction by changed methods has a large effect on
the remaining methods to be analyzed. Nevertheless, a qualitative view revealed that in
cases where many methods were changed, we could further reduce the number by applying
subsequent filtering if the method used a third-party API. Still, some extreme outliers
(e.g., up to 642 methods) persisted and needed to be handled to avoid huge computational
effort in subsequent pattern mining and misuse detection.

Insight D-6 (RQ D-C): Significant Reduction of Methods for API Misuse
Location

We found that API change analysis using change information (i.e., commits and third-
party APIs) effectively reduces the number of methods as potential misuse locations,
most frequently from an order of magnitude of 2 —4 to 1 — 2.

122

5.5. Validation

80’ o

701

601

Number of keywords
W~ ot
o Q

o
o

o
o

o = 8 8
—E—
—E—
t—-—«::m:cm:noocn O OO@ @O 00 O
androiduil 1{ HEB— oo oo
HC °
o
bcel 101{ HEE——oomo0 cow
o
= o
closure 2{ +Hil—
— o
jodatime 361{ Hll—oowmoo o
HEl——oxam o o ®
jodatime 363 HEF—iw@m oo
FOU@O
FOU@O
—i—
HIl— o o
Il
openiab_1{ HE—i oo
[o
(]
fl o
testng 211 JE—— o
]
HE—
—
—
|
ushahidia_ 1| —NE——— o
wordpressa_1{ —EE— o©

RN R PP R N LR EEE
T I ER8 R AN m MmO BB EL I L me S el
ERERY pil W% v W 5} _g_gxljjjj‘-g o6 sss2¢2 £ Qo005
© T 2 55 cg E E E T8y T og =R R i} ﬁmgggg
S T oo e 2RO B L0 EESGLUTITEES S0 c
o o O) = = c c Q0 c “ 3 3 3 @ 'S 'S S
= T T o _ = B > > > ®©
@ @ Y L T @© o0 o e i vl vl vV T 11T 0
o Qa < c [SIS] o O () o O X X X 3 0.0 .0
== O O B e R = c 333 =717 2
@ ®© O [] ~ T O a0 .0 Q2 n n un
_‘5 a o o} [s) _g,_},‘},t},
o T © 8 7} S oo @
<] 19}
© a = E E E
oD 3 o o O
o <& & <
= pre= Jpras Jprar]
Misuse

Figure 5.8.: Distribution of the number of extracted keywords among the misuses for meth-
ods with at least one third-party import involved adapted from [NHSO21]

For a majority of misuses (31 from 37), we correctly extracted at least one of the misused
APIs. We further found that, on average, 1.8 third-party API import statements and 6.3
keywords were extracted per method. We hypothesize that these values, despite extreme
outliers (e.g., android-rcs-rcsjta-1 with 28 import statements and 79 keywords) per se

do not indicate a negative effect on subsequent search and filter strategies, which will be
evaluated in the next section.

/Insight D-7 (RQ D-C): Low Number of API Import Statements and Key-\
word for Client Code Search

Having, on average, 1.8 third-party API import statements and 6.3 keywords denotes a
low number, which we hypothesize to have no negative effect on a realistic code search
scenario. Moreover, in 31 out of the 37 analyzed cases, we could successfully extract

at least one misused API, increasing the chance of finding related API usages with
Ksulxsequemﬁ searches.

123

Chapter 5. Improving Pattern-Based API Misuse Detection

Table 5.8.: Different configurations for searching (i.e., searchj,. and searchip,;) and filtering
(i.e., filtersye and method filterpeinod) adapted from [NHSO21]

Strategy ‘ Configuration Options
searchjoe ‘ internal ‘ external

searchimp ‘ all imports ‘ misused imports
filter e ‘ sr=0.0 57“:().25‘ sr=0.5 ‘ sr=0.75| sr=1.0
filtermethod ‘ applied ‘ not applied

5.5.2. Impact of Search and Filter Strategies on Mining Input

In this section, we present the validation of the
impact of the different search and filter strate-
gies on the input of API usage pattern min-
ing. Our goal is to determine the best strat-
egy, namely, this strategy that effectively dis-

4 cards that API donor code samples from an in-

RAD Automated API Misuse Detection _ put set, which do not describe the correct usage,
RQ D-L Limitations of

pmeobthedrt while keeping the related and correct ones. The

best strategy increases the relative frequency of
correct API usage patterns in the input set, and
thus, support-based pattern mining approaches
v will likely rank correct patterns (i.e., those pos-
sible to detect misuses) higher. This way, we
target the filtering effect on mining for RQ D-
F.

RQ D-F Filtering of
API Usages for
Pattern-based

Misuse Detection

RQ D-C Change-
driven API Usage
Collection for
Pattern-based
Misuse Detection

Methodology We implemented the search and
filter strategies (i.e., searchioe, searchimp, filtergie, and filterpemnoq) in our replication
package®’. This way, we automatically validated different configurations by searching and
filtering source files and methods for the 37 misuses from the MUBench dataset. In Ta-
ble 5.8, we depict all configuration options we applied in our experiments. We varied the
location to search (i.e., search;,.) between internal, namely, within the project containing
the misuse, and external, namely in externally found source code according to the descrip-
tion in Section 5.3.2. As denoted before, for external search, we downloaded a consistent
set of at most 2,000 similar source files from Searchcode and applied all search and filter
strategies locally. We used different sets of API imports when searching similar source
files (i.e., searchimp). The first variant (i.e., all imports) uses all extracted import state-
ments as search query. For the misused imports version, we were interested in whether
a previous detection of the misused API improved the search results. This configuration
emulated this behavior by conducting a separate search with the import statements of the
misused API if this API was successfully extracted by the API change analysis. Note that
we obtained the misused API(s) from the meta-data of the MUBench dataset. In the file
filtering (i.e., filters;.), we varied the satisfaction ratio sr in the interval [0, 1], while the
extreme cases sr = 0 (i.e., no keywords have to be matched) and sr =1 (i.e., all keywords
have to be matched) served as baselines. We split this configuration into four equidistant

124

5.5. Validation

Table 5.9.: Configurations to obtain independent groups for statistical comparison adapted
from our work [NHSO21].

Statistical comparison of Obtaining independent groups

searchoe no filteryie (ie., st = 0); no filterpetnod; each
single searchjm,-strategy

searchimp no filteryie (i-e., st = 0); no filterpyetnod; each
single search,.-strategy

filtergie no filtermethoa; €ach single searchim,, and
searchy,. strategy

filtermethod no filterge (i-e., st = 0); each single searchim,

and searchy,. strategy

sections, namely [0,0.25,0.5,0.75, 1], which allowed sufficient testing of different sr values
while not heavily increasing the configuration space to test. In contrast, method filtering
(i.e., filtermethoqa) was rather simple by either applying it (i.e., method has to contain at
least one keyword) or not. These variants formed a set of 40 configurations per misuse
(1,480 for the 37 misuses from MUBench).

We measured the success of a single configuration by the relative pattern frequency, which
denotes the proportion of how often a correct (i.e., misuse detecting) API usage pattern is
present in the number of entries in the filtered input set. The relative pattern frequency
was obtained as follows:

1. We manually distilled one or multiple correct API usages as ground truth usage based
on the MUBench meta-data of the misuse.

2. We automatically transformed this ground truth usage into their corresponding AUGs.

3. We automatically transformed each method obtained from the search and filter con-
figuration into their corresponding AUGs?.

4. We automatically detected how often the ground truth AUG (or AUGSs if multiple
possible solutions exist) was a subgraph (i.e., subgraph isomorphism) in the set of
the previously created AUGs.

5. We computed the relative pattern frequency as the largest value of the number of
occurrences of a ground truth pattern divided by the number of AUGs present in the
filtered set.

Note that the general subgraph isomorphism problem is known to be NP-complete
[Epp99], and thus, we applied a simplified version by checking whether the nodes and
edges of the ground truth AUG are a subset of respective AUG from the set of AUGs
obtained through the single configuration. This heuristic effectively introduces an overes-
timation of the relative frequency since the ground truth AUG could be falsely detected
as a subgraph. Thus, the real relative pattern frequency may be lower. We tested the
significance of relative pattern frequency using the non-parametric Wilcoxon signed-rank
test (aw = 0.05), which does not require a normal distribution [Kan06, p. 101]. This test,
however, requires that the two paired groups are independent. This requirement did not

%To avoid frequent re-generation, we stored these AUGs permanently after first generation.

125

Chapter 5. Improving Pattern-Based API Misuse Detection

searchiye °
0.141 °
B External (left)
0.121 ° L1 Internal (right) o
0
c
$ 0.101
g
-
c 0.081 o o
2
&
= 0.061
2
s
2 0.041
002’ o o o
e
0.001 :
All Irﬁports Misused Imports
searchiny,,

Figure 5.9.: Distribution of the relative pattern frequency using different file search strate-
gies grouped by API search strategy adapted from [NHSO21].

hold for all configurations. For instance, when comparing the different configurations of the
filtermetnod strategy, of those 740 configurations applying method filtering, 592 of them
used the same source files but with a different filter ;. configuration. Consequently, we
ignored the other search and filter configurations when measuring the single effect of one
strategy. The setting to obtain independent groups for the strategy comparisons is depicted
in Table 5.9.

Results From all tested 1,480 configurations, we found 748, which retrieved at least one
similar source file. From these similar files, 383 contained at least one occurrence of the
ground truth AUG. Considering the 37 misuses tested, for 33 of them, at least one of the
40 configurations per misuse found at least one similar source file. For 22 misuses, at least
one configuration obtained the ground truth API usage.

In the following, we explored the effect of the single strategies searchioe, searchimyp,
filtergie, and filteretnoq first, by reporting the number of misuses for which the similar
source files contained at least one the ground truth AUG, and second, by comparing and
analyzing the relative pattern frequency.

Result searchj,.: First, we compared the internal and external searchj,.. While the
internal search found the ground truth AUG only for seven misuses, the external search
found it for 22 misuses. We depict the distribution of the relative pattern frequency in
Figure 5.9, comparing the two independent variants of the search;m,, strategy. In both
cases, we observed that the mean relative frequency (marked as x) of the internal search
was larger than the one of the external search. However, the higher mean was caused by

126

5.5. Validation

search;
0.141 e o o
I All imports (left)

0.12/ [— Misused Imports (right) o °

0.104
0.081 ° °

0.061

Relative Pattern Frequency

(]
o
=

002’ o o o

i i < \
0.001 3

External Internal
searchjy.

Figure 5.10.: Distribution of the relative pattern frequency using different API search
strategies grouped by each file search strategy adapted from [NHSO21].

the outliers in the internal search. Consequently, we also found no significant difference in
the distribution. Thus, we conclude that even though external search found more misuse,
it is worth conducting an internal search as well, for instance, in a cascaded manner.

Result searchimy: Second, we investigated the difference between using only misused
tmports and all imports searchiy,. By the misused import search, we obtained the ground
truth AUG for 22 misuses, while with all imports, we found the ground truth for 17 mis-
uses. We compared the distribution of the relative pattern frequency among the search;,,
configurations in Figure 5.10 . In both single variants, the boxplots indicated almost iden-
tical distributions. This visual observation was also further supported by a non-significant
Wilcoxon signed-rank test. Therefore, we conclude that conducting an analysis to find
misused APIs has only a marginal effect, assuming one may find a technique to effectively
identify the misused APIs.

Result filtery.: In Table 5.10, we compared the effect of different satisfaction ratios
(i-e., sr) on finding the ground truth patterns (i.e., filteryy.). Unsurprisingly, the number
of misuses, for which we obtained at least one ground truth AUG, is decreasing for increas-
ing sr. Nevertheless, we observed a drastic drop between 0.75 and 1. Due to visibility
reasons, we depict only the mean values of relative pattern frequency (cf. Figure 5.11)%.
We observed that the relative frequency tended to be almost constant up to sr = 0.5, then
slightly increased for sr = 0.75 and then dropped to its minimum for sr = 1. Moreover, the
curves for the internal search;,. also lie constantly above the external searchy,.. However,
we only found significant differences in the means of sr = 1 and all other sr-values (except

26The distributions can be found in the appendix (cf. Figure A.6 and Figure A.7).

127

Chapter 5. Improving Pattern-Based API Misuse Detection

sr Misuses with Ground

Truth AUG found
0.00 22
0.25 21
0.50 21
0.75 18
1.00 4

Table 5.10.: Number of misuses per satisfaction ratio sr for which at least one fixing pattern

Mean of Relative Pattern Frequency

was found adapted from [NHSO21].

0.14

0.124

0.101

0.081

0.061

0.041

0.021

0.00

Search Strategies
Internal searchy,. and All Imports searchiy,,

Internal searchi,. and Misused Imports searchin,
--------- External search,. and All Imports searchiy,,

--+-= External search,. and Misused Imports searchiy,,

—— e . R PO
O mm = — O T mon B o . s . S O - r——
= e

0.00 0.25 0.50 0.75 1.00
filterpie (sr)

Figure 5.11.: Mean values of the relative pattern frequency among different file filter

128

strategies (satisfaction ratio) grouped by certain search strategies adapted
from [NHSO21].

5.5. Validation

for all internal searchj,. and all imports searchin, configurations as well as for the com-
parison to the sr = 0.75 with internal searchjo,. and all imports searchiy,, configuration).
This way, we can only conclude that using sr = 1 (i.e., matching all keywords) usually has
a negative effect.

Result filter,etnoq: Finally, we assessed the effect of the filtery,ctnoq Strategy. We
found that applying method filtering still obtained the ground truth AUG for 21 misuses,
while not applying did so for 22 misuses. Once again, we depict the distribution of the
relative frequency among the different search,. (i.e., Figure 5.12a and Figure 5.12b) as well
as among the different search;,,, strategies. Note that the ordinates of both sub-figures are
different. All boxplots indicated a difference in the mean relative pattern frequency towards
applying method filtering. We also found these differences statistically significant, while for
the internal searchj,., the number of paired elements was too small and might violate
the internal normal approximation of the Wilcoxon signed-rank test. Thus, those results
should be taken with care. Nevertheless, overall, we attested the filter,,cinoqd strategy had
a positive effect on the relative pattern frequency.

Our concept only requires a method to match at least one keyword for filter,,cinoq. While
we did not test different sr values on the method scope, we measured the sr values of all
single methods that contain at least one keyword (i.e., same sr definition as for filter fie
but only using the method declaration). We found that the average sr for internal and
external searchjy. is &~ 0.11 and = 0.19. Assuming an average number of keywords of 6.3
(cf. Insight D-7), the average absolute number of matched keywords (i.e., the products
of method scope sr and average number of keywords) ranges between =~ 0.7 and 1.1. Thus,
we conclude that matching one keyword is sufficient since otherwise, too many methods
are discarded (i.e., more than average).

Overall, we found the best-performing configuration with a mean relative pattern fre-
quency of ~ 0.058 (i.e., among all misuses using internal searchj,., only misused import
searchimp, applying filter ;. with sr = 0.25, and applying filterpethoq). For external
searchy,. the best configuration used misused import searchiny, filter ;. with sr = 0.075,
and applied filtermpethod-

Finally, even though we did not specifically track the execution time, we could recall
from the time stamps in the log files that search and filter strategies (excluding querying
and downloading time from Searchcode) took at most two minutes per misuse.

Implications By validating the different configurations, we obtained insights into which
search and filter strategies can produce the most promising results for usage pattern mining.

Particularly, we found that internal search;,. did not find as many ground truth patterns
as the external one. However, we could not determine a significant difference between both
configurations. Since the internal code base is usually much smaller than the external one,
we found it to be a valuable supplement and thus suggest a cascaded usage of the code
search (i.e., first internal search followed by external search). This is possible since internal
and external searchy,. were applied on independent sets.

Insight D-8 (RQ D-F): Usefulness of Internal Search for Finding Client
Code

We observed that internal code search usually finds fewer code samples to obtain rel-
evant API usage and patterns. Nevertheless, it provides a fast and useful supplement
before conducting more extensive external code search.

129

Chapter 5. Improving Pattern-Based API Misuse Detection

= = e
W <t D

Relative Pattern Frequency
(@)
w

filtermethod
B Not Applied (left)
1 Applied (right)

o

0.21 °
o 8
0.1))
o " o «
0.01 . % °
All iﬁports Misused imports
searchiny,,

(a) Internal File Search with an adapted ordinate for relative pattern frequency

0.141

0.124

0.101

0.081

=
o
>

Relative Pattern Frequency

=
[an)
=

0.021

0.00-

filtermethod
B Not Applied (left)
1 Applied (right)

oo
oo

8 o
° X ° X
All imports Misused imports
searchinm,

(b) External File Search

Figure 5.12.: Distribution of the relative pattern frequency applying the method fil-

130

ter strategy grouped by each File and API search strategy both adapted
from [NHSO21].

5.5. Validation

Next, we discovered that the effect of detecting and applying the misused APT (i.e.,
searchiny,y strategies) for code search was negligible. Thus, we support the usage of all
extracted API imports. A possible reason why this still achieved acceptable results is that
multiple imports can better describe the context of an API usage (e.g., which APIs are
used together) while still having a moderate number of extracted import statements (i.e.,
on average 1.8 cf. Insight D-7).

/Insight D-9 (RQ D-F): No Necessary Knowledge on the Misused API for\
Finding Relevant Client Code

We found that it was not necessary for our technique to know the misused API(s)

to distill relevant client code and patterns for misuse detection. This result is most

probably achieved by describing the context of the API usage by their correlated APls
k(md code keywords. D

Regarding the filter strategies, we found only a moderate effect of the file filtering (i.e.,
filterge). Particularly, sr-values up to 0.5 usually reduced the number of source files
without discarding too many source files containing the ground truth pattern. Thus, we
suggest applying the satisfaction ratio of sr = 0.5.

In contrast, the method filter (i.e., filtery,etnoqd) has been proven far more effective with
a positive impact on the relative pattern frequency. Thus, applying the method filter is
promising for API usage pattern mining.

Insight D-10 (RQ D-F): Method Filtering over File Filtering

We found method filtering of client code using keywords from changed API usage was
far more effective than filtering source files. This way, we increase the relative frequency
of code snippets containing useful patterns.

5.5.3. Impact of Change-Based Inference on APl Misuse Detection

In this section, we analyze the impact of the

complete process chain of API change analysis

with subsequent search and filter strategies and

mining processes on API misuse detection. For

this purpose, we analyze the misuse detection

\ 4 manually as well as with an existing automated

"°”“‘°’"a‘e"”'M‘s”sekie:i‘ﬁ;nmm API misuse detector, both with and without a

filter strategy. We apply that search and filter

strategy, which performed best in previous val-

idation. This way, we investigate the effect of

search and filter strategies on the overall misuse
v detection, and thus, we target RQ D-F'.

State-of-the-Art
API Misuse Detectors

RQ D-F Filtering of
API Usages for
Pattern-based

Misuse Detection

RQ D-C Change-
driven API Usage
Collection for

Pattern-based
Misuse Detection

Methodology As previously discussed (cf.
Section 5.2), many misuse detection methods
apply an FPM technique, namely, inferring in-
teresting patterns as specifications of correct
API usage and use these patterns to determine their violations as misuses. We already

131

Chapter 5. Improving Pattern-Based API Misuse Detection

discussed the numerous methods to mine patterns, both general ones (cf. Section 3.5.2)
as well as for API usage patterns (cf. Section 3.5.5). In the evaluation of the misuse
detection, we applied MUDetect by Amann et al. [Amal8, ANNT19b], who also applied
an FGM technique. We configured this miner to apply the cross-method-based support
(i.e., counting the number of distinct methods containing a pattern candidate), which also
matched our definition of the relative pattern frequency used in the previous section.

In the first evaluation, we only applied the FGM from MUDetect based on the 22 misuses
from MUBench [ANNT16], for which one of our tested configurations found at least one
APT usage representing the ground truth pattern. Particularly, we compared the mining
results based on the non-filtered and the filtered dataset. For the filtered dataset (i.e., our
intervention), we applied the configurations we suggested in the previous section, namely:

e searchy,.: internal (I) and external (E) in a cascaded manner while we analyzed the
effect of both configurations individually

e searchimy: we searched with all extracted API imports
o filtery;.: we set the satisfaction ratio sr to 0.5

o filterethoq: We applied the method filtering

Moreover, the mining algorithm requires a minimum support threshold (i.e., mingypport),
which we also derived from our previous analysis. In detail, we used the lower quartile
of the distribution of the relative pattern frequency that is greater than zero from all
configurations (i.e., filtered as well as non-filtered ones). This way, we obtained single values
for internal (i.e., mingypport = 0.08) and external searchjo. (i.e., Mingypport = 0.004). We
distinguish between these two configurations since the number of internally obtained AUGs
is much lower, and a too-small mins,pport Would eventually select all possible elements
from the dataset as pattern candidate?’. After mining, we sorted all pattern candidates
according to their absolute support up to rank 20. In case multiple candidates had the
same support, they share the same rank. Therefore, we enforced that the next subsequent
candidate with lower support had the next rank increased by the number of candidates
sharing the previous rank. Then, two assessors (i.e., the first two authors of the related
paper [NHSO21]) manually and independently reviewed each pattern candidate and decided
whether this candidate represents the ground truth pattern. Particularly, we distinguished
between

e is pattern - the pattern inferred was equal to the ground truth and thus able to fix
the misuse, and

e is super-pattern or equivalent pattern - the inferred pattern was either a super-pattern
(i.e., ground truth AUG was a sub-graph) or the pattern described an equivalent
pattern, which we did not assess as ground truth in the first place.

Note, in case we denoted the candidate as is pattern, it was automatically assessed as
18 super-pattern or equivalent pattern, and thus, the right-hand side of Table 5.12 and
Table 5.13 depict the accumulated results. We chose the manual evaluation over the auto-
mated one since this also provided some qualitative insights, for instance, the necessity to
analyze super-patterns. We measured the agreement of both assessors using Cohen’s & (cf.

ZTwhen configuring the miner in our implementation, we had to set the absolute minimal support, which
we computed based on the relative value of the minimal support, and in case this value was lower or
equal to one we set it to two

132

5.5. Validation

Table 5.11.: Agreement between the assessors when validating the pattern candidates for
MUBench. The agreement for non-filtered, internal dataset is not available
since we only obtained five negative results for which both assessors agreed.

dataset non-filtered filtered
decision internal external internal external
s pattern NA perfect perfect moderate
(k=1) (k=1) (k =0.43)
is super-pattern or | NA almost perfect substantial
equivalent pattern perfect (k=1) (k =0.69)
(k =0.84)

Table 5.11) and resolved conflicts in a discussion session, particularly for the moderate and
substantial agreement.

In the second evaluation, we compared the filtered and non-filtered cases based on the
AU500 dataset [KL21] by applying the exact same configuration for filtering as used be-
fore. Since this dataset was too large for manual inspection, we applied MUDetect directly.
MUDetect mined patterns with an absolute minimal support threshold and ranked vio-
lations of these patterns by computing the overlap between API usage and pattern. For
our validation, we applied the simple overlap function and its cross — method-variant as
introduced in Section 5.2.4. Note since MUDetect accepted only absolute values for the
minimal support thresholds, we set the thresholds to 2 for internal search;,. and 10 for
external search;,. We had observed these as typical values in the previous validation. We
also defined a timeout for mining of 5 minutes and 10 minutes using internal and external
searchioe, respectively. Based on the ground truth labels in AU500 [KL21], whether the
API usage represented a misuse or not, we defined the detection as true positive if the
usage was labeled as misuse and the MUDetect finds a violation (i.e., the overlap func-
tion computes a value in the interval [0, 1]). Particularly, we checked whether at least one
violation was found by MUDetect for the method declaration from AU500. If the usage
was labeled as misuse and no violation was detected, we denoted this as a false negative.
Similarly, a usage labeled as correct with a violation was denoted as a false positive and
as a true negative if no violation was observed. Accordingly, we computed precision and
recall beyond all results of the 500 APT usages.

Results on MUBench We present the results of the manual pattern candidate analysis
of the 22 misuses from MUBench for the non-filtered (cf. Table 5.12) and the filtered
case (cf. Table 5.13). We distinguished between our decision of is pattern and is super-
pattern or equivalent pattern and determined whether this pattern was ranked in the Top@k
with k € {1,5,10,20}. In the non-filtered case (cf. Table 5.12), we first observed that only
patterns with the external searchi,. were retrieved. In detail, the miner inferred the ground
truth pattern (i.e., is pattern) for four misuses in the Top@10 and for eight misuses in the
Top@20. While we found a super-pattern or equivalent pattern typically higher ranked (e.g.,
six and seven for Top@5 and Top@10, respectively), we also obtained these patterns for at
most eight misuses in the is pattern case. In the filtered case (cf. Table 5.13), the miner
inferred more ground truth or similar patterns than in the non-filtered case. Particularly,
the is pattern case was found for seven (Top@10) and eight (Top@20) misuses. For is
super-pattern or equivalent pattern, true patterns were obtained for ten (Top@10) and 13

133

Chapter 5. Improving Pattern-Based API Misuse Detection

Table 5.12.: Number of fixing patterns found in the Top@k patterns by mining without
any filtering in the MUBench dataset from [NHSO21].
misuse pattern in Top is super-pattern or
equiv. pattern in Top
@l @5 @10 @20 | @l @5 @10 @20
> =22 3 3 4 8 3 6 7 8
alibaba_druid_1 - - - - - - - -
alibaba_druid_2 - - - - - - - ,
android_rcs_rcsjta_1 - - - - - - - -
apache_gora_56_1 - - - - - - - -
apache_gora_56_2 - - - - - - - -
bcel 101 - -
jodatime_269 - -
jodatime_361 E E
jodatime_362 E E
jodatime_363 E E
logblock_2_15 - - - - - - - i
mqtt_389 - - - - - - - -
mqtt_390 - - - - - - - -
tbuktu_ntru_473 - - - - - - - -
tbuktu_ntru_ 474 - - - - - - - -
tbuktu_ntru_475 - - - - - - - -
testng_16 - - - - - - - -
thebluealliancea_1 - - - - - - i,
thomas_s_b_visualee 29 | - - - E E E E
thomas_s_b_visualee_30 - - - E - E E E
E E E E
E

© 00 O T i W N

—_ =
= O

N DD = = R e e e e
— O © 00 O UL Wi

thomas_s_b_visualee_ 32 | - - -
ushahidia_1 - - - E - - -
E: pattern found in external source files;
I: pattern found in internal source files;
I/E: pattern found in internal and external source files

[\
[N

134

5.5. Validation

Table 5.13.: Number of fixing patterns found in the Top@k patterns by mining with our
intervention, namely, filtering of the MUBench dataset with the predefined
configurations from [NHSO21].

misuse pattern in Top is super-pattern or
equiv. pattern in Top

@ @ @10 @20 | @ @5 Q10 @20

Yo =22 4 7 7 8 5 9 10

alibaba_druid_1 - - - - - - -

alibaba_druid_2 - - - - E E E

android_res_rcsjta_1 - - - - - - E

apache_gora_56_1 - - - - - - -

apache_gora_56_2 - - - - - - -
bcel 101 - - -
jodatime_269 - -

jodatime_361 E E

jodatime_362 - E

jodatime_363 E E

logblock_2_15 - - - - -

mqtt_389 - 1 I I/E - I I

mqtt-390 - I I 1 1

tbuktu_ntru 473 - - - - - - -

tbuktu_ntru 474 - - - - - - -
tbuktu_ntru_475 - - - - - - -
testng_16
thebluealliancea_1
thomas_s_b_visualee_29
thomas_s_b_visualee_30
thomas_s_b_visualee 32 | - - - -

ushahidia_1 - - - - - E E E

E: pattern found in external source files;
I: pattern found in internal source files;
I/E: pattern found in internal and external source files

© 00 J O U i W N+~

I e S e G e S s T
N O U W N~ O

—
Illmmr—(ElmmmmlllmmI;

—
oo

I/_E I/_E I/_E I/E
I/E I)E I/E I/E

N DN =

= o ©
o B B |
—
[B e B |
b— 1

[\)
[\)

135

Chapter 5. Improving Pattern-Based API Misuse Detection

(Top@20) misuses. Moreover, for both internal and external searchj,., we obtained results.

In general, we observed a positive effect of the filter strategy on the number of super-
or equivalent patterns, while for the ground truth pattern the number of misuses, stayed
the same. We quantitatively checked whether this difference was statistically significant by
applying a x2-test (o = 0.05) with Yates correction [Yat34] to handle multiple comparisons
on the same data. This test revealed no significant difference.

Filtering seemed to enable the applicability of internally found pattern candidates, as we
found patterns for four misuses when applying filtering compared to none in the non-filtered
case. In three of those cases, both searchy,. strategies found true patterns in the Top@20
results. Thus, a previous internal search could avoid the necessity of a more expensive
external search. In the cases of thomas_s_b_visualee_29 and thomas_s_b_visualee_30,
we observed that even though patterns from external search;,. were not present in the
Top@20 compared to the non-filtered case, with filtering this was compensated by a suc-
cessful internal search,.. This observation further supports the hypothesis to apply both
strategies. Moreover, we conjecture for the non-filtered case that it profits from searching
with API import statements, which to some degree also filters the input data.

On the other hand, we observed that filtering could also discard true positive patterns
when applying the external search,. strategy. This behavior occurred for ushahidua_1
for which we did not observe any is pattern results, for thomas_s_b_visualee_32 where
filtering found no patterns at all, and for jodetime_269, the ranks of true positive patterns
decreased.

Additionally, we analyzed the reason why filtering could not infer the pattern for nine mis-
uses. For three of them (i.e., apache_gora 56_2, testng 16, and thomas_s_b_visualee_32),
the miner inferred no pattern at all (i.e., no pattern achieves achieves the minimum support
threshold). This effect of no inference was stronger for internal searchy,. (for 17 misuses)
than for the external one (only those three mentioned misuses). For the other six misuses,
in at least one of the search;,. variants, the filtering reduced the number of occurrences of
the true positive patterns or removed all of them so that the support value decreased and
the true positive pattern was not present in the Top@20 pattern candidates.

During analysis, we noticed that many pattern candidates almost matched the ground
truth pattern but missed some essential parts. This observation indicated that the miner
tends to over-simplify the candidates. Additionally, we also observed many very similar
pattern candidates among the Top@20 results. By applying a clustering technique, such as
the one by MAPO [ZXZ"09], the patterns and their support values could be summarized,
increasing the chance of finding more distinct and frequent patterns.

The mining without filter tool took around one minute per misuse (estimated via the log
files), while we found some extremes with 18 minutes (e.g., thomas_s_b_visualee_32).

Results on AU500 In the second evaluation, we compared the non-filtered and the fil-
tered dataset by applying MUDetect [Amal8, ANNT19b] on the AU500 dataset [KL21].
The results are summarized in Table 5.14, where we depict the values for internal and
external searchy,. individually as well as together (i.e., both). Note that this row does
not necessarily represent the sum of the upper ones but the union, meaning if with both
strategies (i.e., internal and external), the misuse is correctly detected, it is counted only
once. For technical reasons, we could not apply MUDetect for 20 API usages from AU500,
and consequently, we counted them as negative results (i.e., no violation was detected).
That means depending on their ground truth label (i.e., misuse or correct usage), they

136

5.5. Validation

Table 5.14.: Results of the Misuse Detection on the AU500 dataset using the violation
detection technique from MUDetect with number of true positives (#tp), false
positives (#{p), true negatives (#tn), false negatives (#fn), precision, and
recall adapted from [NHSO21].

Applied filtering searchy,. #tp #Ffp FFtn Ffn precision recall

external 8 16 369 107 33.33% 6.96%

No internal 1 10 375 114 9.09% 0.87%

both 9 26 359 106 25.711% 7.83%

Yos external 8 12 373 107 40.0% 6.96%

(Our intervention) internal 9 27 358 106 25.0% 7.83%
both 13 31 354 102 29.55% 11.3%

were counted as true negative (i.e., #tn) or false negative (i.e., #fn).

Overall, we observed a positive effect of filtering for both precision (+3.84%) and recall
(+3.47%). Particularly, the results for internal search;,. improved over the non-filtered
case. However, using a x2-test, we found the differences not statistically significant.

Additionally, we found that the improvement tended to be an effect of reducing the
number of input AUGs for mining. For instance, for internal search,. in the non-filtered
cases, only for 20 API usages the mining run actually finished, while for the filtered case,
this number increased to 453. Second, when considering the external searchy,. case, we
only observed an improvement in the precision by slightly reducing the number of false
positives while the recall stays the same. An interesting insight was that even though the
number of true patterns was equal for the filtered and non-filtered cases, the actual detected
misuses differ. Particularly, both found misuses for three API usages that the respective
other case did not detect. For the non-filtering case, this was caused by a timeout during
mining, while for the filtering one, too many true positive occurrences were removed, and
the true positive pattern support fell below the minimal support threshold.

Implications In both evaluations, on MUBench [ANNT16] and AU500 [KL21], we could
not determine a significant statistical effect on misuse detection. However, we found that
the filtering strategy tends to have a positive effect on detecting misuses with internally
inferred patterns. We observed that due to the reduction of the input data through filtering,
the chance of finishing mining runs increased while simultaneously the risk of discarding
too many true positive patterns increased as well. Thus, we observed only a minimal overall
effect.

/Insight D-11 (RQ D-F): Small Positive Effect of Searching and Filtering for\
Pattern-based API Misuse Detection

Even though we did not find a statistically significant difference, we observed for both
validated benchmarks (i.e., MUBench and AU500) an increase in precision and recall
of the MUDetect [ANN' 19b] misuse detector when applying search and filter strategies
based on change information. Moreover, from a qualitative analysis of the results for
kthe MUBench dataset, we conjectured a positive effect on the pattern quality. D

We compared these results also in the light of the analysis by Kang et al. [KL21], who
analyzed MUDetect (or, more precisely, a variant named MUDetectXP using external code

137

Chapter 5. Improving Pattern-Based API Misuse Detection

for mining) and their active learning-based approach ALP also on the AU500 dataset. In
their experiments, they applied an external code search, meaning retrieving API usage
examples from external projects. In a first variant, they reused a dataset by Amann et
al. [ANNT19b], which applied the BOA [DNRN13] to find 1,000 API usages from GitHub
by explicitly searching API elements of the misused API. Kang et al. obtained by applying
MUDetect on AU500 a precision of 27.6% and a recall of 29.6%, while ALP achieved a
precision of 28.2% and a recall of 58.3%. Thus, we obtained a slightly larger precision (i.e.,
29.55%) but a lower recall (i.e., 11.3%) using both searchj,. strategies (cf. Table 5.14).
They also obtained their own dataset of API usages by applying AUSearch [ATLJ20], a tool
constructed to find API usage examples by querying concrete API elements (e.g., method
and class name). For each used API in the AU500 dataset, they obtained 2,330 examples
on average. Using ALP, they obtained a precision of 44.7% and a recall of 54.8%.

In contrast to our approach, their external search leveraged the fact of knowing the used
API and specifically searching API usage examples for that purpose. While our results
of the obtained precision, particularly for the external searchy,. (cf. Table 5.14), were
comparable to those achieved by MUDetect and ALP, the recall was drastically smaller.
Thus, in practice where we hardly know the misused API, misuse detection could drastically
lose precision. Our experiments on search and filter strategies revealed that precision
and recall could be slightly (cf. Insight D-11) increased even though not statistically
significant.

5.5.4. Threats to Validity

Due to the empirical nature of our validation, we discuss potential threats to internal and
external validity, as presented in Section 5.1.

Internal Validity The first internal threat denotes the similar code found via external
resources (i.e., external search,.) since it may not be present at the time the misuse has
been committed (i.e., temporal bias). Thus, in practice, no true positive pattern would
have been found. This situation may happen if an already fixed version of the misuse was
cloned by another project, either by copying or forking the project. While we diminished
this effect by removing source files having the same package statement, still source code
that was generated after the misuse introducing commit may be present in our data.

Moreover, the results may be biased by the performance of the underlying search engine
Searchcode. We handled this issue by downloading the externally found source code and
thus applying subsequent search and filter strategies under the same initial conditions for
all configurations using external searchio..

We can neither guarantee that patterns are correct nor that they are complete. Ground
truth patterns may not be correct since we cannot guarantee that these patterns fix the
misuse completely or whether they introduce new errors through confounding effects. In
our qualitative validation of the misuse detection for MUBench (cf. Section 5.5.3), we have
seen that the ground truth patterns were not complete since we found a set of equivalent
patterns. Thus, it may be that we still missed some further true positive patterns, which
would otherwise increase the relative pattern frequency.

Using the relative pattern frequency may be too skewed for the low number of AUGs.
That means with a low number of AUGs, it is more likely to achieve a larger relative pattern
frequency than with a large number of AUGs. We have seen this effect in the difference of

138

5.5. Validation

the internal and external search;,.. Thus, the observed differences may be only present by
chance.

Finally, we conducted a subjective assessment of the pattern candidates for the MUBench
dataset. Even though both assessors independently of each other validated the candidates
and we measured the agreement, both researchers still belong to the same research group
with a similar research focus. Thus, some subjectivity, which naturally occurs in qualitative
studies, may be present. For that purpose, we published all our results and data in our
replication package?”.

External Validity Our API change analysis and subsequent API usage pattern mining
and misuse detection only apply to intraprocedural API misuses and only to those misuses
that can be found by static code analysis. Thus, we cannot directly relate our results to
misuses, which are scattered among multiple method declarations. Our technique does not
directly target dynamic misbehavior such as misuses causing Heisenbugs [RHR " 25] as well
as misuses caused by misconfiguration of external libraries through external files.

We adapted the MUBench dataset due to potential biases (cf. Section 5.4.1). Never-
theless, we can hardly conclude to which degree the results based on MUBench can be
representative of other API misuses. This issue was also noticed by Sven Amann him-
self, denoting that “[t/he benchmark dataset may not be representative for API misuses in
the wild/...]”[Amal8, p. 75]. We coped with this issue by applying the search and filter
strategies on the AU500 dataset by [K1.21], however, without applying the same qualitative
analysis. Thus, these insights may not be directly applicable to other datasets. Moreover,
our results may be reproduced or disproved on other datasets, for instance, with our own
AndroidCompass dataset [NBKO21b] or a dataset of APIARTY, a program repair frame-
work [KMSH21]. Note that the APTARTy dataset also contains misuses from MUBench.

Finally, we restricted our technique to the object-oriented programming language Java.
In detail, the intermediate source code representation, as well as the API change analysis,
leverage certain features of Java. Thus, it requires similar concepts and features in other
programming languages and paradigms to generalize our results for them.

139

Chapter 5. Improving Pattern-Based API Misuse Detection

5.6. Summary Pattern-Based AP| Misuse Detection

Summary First, we analyzed the limitations of state-of-the-art API misuse detectors
based on an SLR process targeting RQ D-L. In detail, we analyzed the literature and
conducted a forward snowballing based on two related studies on automated API misuse
detectors by Robillard et al. [RBK"13] and Amann et al. [ANNT19a]. Based on the set
of publications, we inferred a list of misuse detectors and experiments analyzing their ob-
tained precision and recall. We further qualitatively analyzed the strengths and weaknesses
of these detectors to derive their limitations.

Second, we targeted the limitations of pattern-based API misuse detectors by our tech-
nique, named RAIX, targeting RQ D-C and experiments on different search and filter
strategies with a focus on RQ D-F. In detail, RAIX analyzes API-specific changes and
extracts API-specific information. We confirmed that commits were a valuable source for
RAIX and that RAIX effectively reduced the number of potential misuse locations. We
further validated that the API-specific information supported our search and filter strate-
gies to find similar API usage examples. We determined the best configuration of the
search and filter strategies for finding relevant API usages and obtaining the best results
on subsequent API misuse detection. In detail, our strategies increased the quality of API
usage patterns obtained by the API specification mining from MUDetect [ANNT19b] and
increased precision (i.e., a large proportion of correctly identified misuses in the set of iden-
tified misuses) and recall (i.e., a large proportion of detected misuses from a set of known
misuses) of the pattern-based API misuse detector MUDetect.

Contributions RQ D-L Regarding the limitations of state-of-the-art misuse detectors, we
found that while many misuse detectors exist and reuse existing benchmarks, the bench-
marks differ due to variances in the datasets or the requirements of the misuse detectors
(Insight D-1 ‘Non-uniform Benchmarks and Comparison’ on page 97). Thus, much re-
search on misuse detection cannot be directly compared to the results of other publications.
To compare to state-of-the-art, we stated that our own experiments were necessary, which
require reusable replication packages. However, we only found a replication package for
43.7% of the analyzed detectors (Insight D-2 ‘Non-available Replication Packages’ on
page 98). This result implied that many detectors could not be directly reused, which pro-
hibited fair comparison. Moreover, we observed that many misuse detectors applied API
usage client code (i.e., 90% of the analyzed detectors) as donor code to infer API usage
specifications. However, their processes to collect client code were based on impractical
assumptions (e.g., searching with the misused API, which is not known at the time of
the misuse), as discussed in Insight D-3 ‘Limited Practical Applicability to Collect Client
Code’ on page 102. In addition, we found fewer misuse detectors (=~ 6.6% of the analyzed
detectors) leveraging additional information and, if so, only in a restricted manner (e.g.,
only using exception handling code) as denoted by Insight D-/ ‘Restricted Usage of Ad-
ditional Information for Finding External Client Code’ on page 1053). Finally, we discussed
promising misuse detectors based on their reported results, however, we excluded many
for comparison due to their targeted programming language, less promising results, non-
available replication packages, and their effort to infer API usage specifications (cf. Insight
D-5 ‘Limited Applicability of API Misuse Detectors for Comparison’ on page 107).

140

5.6. Summary

Thus, we answer RQ D-L as follows:

/RQ D-L What are the limitations of state-of-the-art pattern-based API\
misuse detectors in practical scenarios?

We found that many state-of-the-art misuse detectors (1) have been evaluated with non-
uniform benchmarks, and (2) their results are not replicable due to missing replication
packages. They further (3) had limitations in collecting client code as a basis of spec-
ification inference in a realistic manner and (4) seldom leveraged further information
apart from the misused API. Finally, (5) some obtained low precision and recall as
kwell as required a large effort to infer specifications for detection. D

Contributions RQ D-C A possible way to overcome these limitations is change-based
information from commits. By extracting API- and change-specific information using the
VCS with our technique RAIX, we enable the embedding of this process into a realistic
CI development process. We analyzed the typical size of misuse-introducing commits and
found a significant reduction of code locations for misuse detection analysis (cf. Insight D-
6 ‘Significant Reduction of Methods for API Misuse Location’ on page 122) with a reduction
of method declarations from an order of magnitude of 2-4 to 1-2. Additionally, we observed
that extracted search terms (i.e., API-specific keywords and import statements) obtained
a small number of search terms, which strengthens their applicability for subsequent code
search (Insight D-7 ‘Low Number of API Import Statements and Keyword for Client Code
Search’ on page 125).
Thus, we answer RQ D-C:

/RQ D-C Is change information a meaningful source for finding related API\
usage samples for API misuse detection in practical use cases?

API- and change-specific information are valuable and effective means to restrict the

number of potential API misuse locations in a client code. Since this search process

can be embedded into a CI process, it has a high potential to seamlessly integrate into
Ka practical development scenario. D

Contributions RQ D-F Finally, we analyzed whether and which search and filter strategies
obtained the best result to support pattern-based misuse detection. For search strategies,
we found that using the same project containing the misuse (i.e., internal searchy,.) as
well as other projects (i.e., external searchy,.) contributed to finding true positive patterns
with APT specification mining (cf. Insight D-8 ‘Usefulness of Internal Search for Finding
Client Code’ on page 129). This insight partially contradicts the observations by Amann et
al. [Amal8, ANN"19b], who found non-promising results for internal search. We observed
that, particularly, the internal searchy,. benefited from the search and filter strategies.
Thus, we conclude that these strategies make internal code search for API specification
mining applicable.

Additionally, we investigated the effect of knowing the misused API on pattern mining
by emulating a perfect misused API predictor. While we observed better results than using
all changed APIs, we found that the difference is negligible (Insight D-9 ‘No Necessary
Knowledge on the Misused API for Finding Relevant Client Code’ on page 151). We conjec-
tured that using multiple changed APIs better describes the context of API usages and thus

141

Chapter 5. Improving Pattern-Based API Misuse Detection

compensated for the missing knowledge of the exact misused API. Assuming identifying
the misused API is effortful and complex, this step can be left out.

The filtering step using API-related keywords from the API change analysis yielded less
promising results for filtering on file than on method scope. This result may be caused by
the more fine-grained level on which filtering is conducted and that the specification mining
analyzed API usages on an intra-procedural level (cf. Insight D-10 ‘Method Filtering over
File Filtering’ on page 131).

According to the overall misuse detection applying different settings, we observed a slight
improvement using search and filter strategies in the precision and recall, which, however,
was not statistically significant (Insight D-11 ‘Small Positive Effect of Searching and
Filtering for Pattern-based API Misuse Detection’ on page 137).

Thus, we conclude for RQ D-F:

/RQ D-F What is the impact of the previous filtering of the donor code\
from which API patterns are mined on the subsequent pattern-based API
misuse detection?

We found that API usage pattern inference for API misuse detection could be improved
by (1) using internal (i.e., from client code) and external (i.e., from other projects)
donor code, (2) not necessarily requiring the knowledge of the misused API, and (3)
applying filtering on method than on file-level. This yielded (4) a small positive effect
kon pattern-based misuse detection.

142

Change Rule-Based API| Misuse Detection

This chapter is based on publications from the author together with other colleagues pre-
sented at the International Conference on Software Engineering (ICSE) 2020 in the New
Ideas and Emerging Results Track [NHKOZ20a], presented at the International Working
Conference on Source Code Analysis and Manipulation (SCAM) 2021 in the Replication
and Negative Results Track [NBKOZ21a/, and a non-peer-reviewed pre-print [NBKO22] dis-
cussed in the poster session of the Summer School on Security Testing and Verification

2022

In this chapter, we contribute our own Application Programming Interface (APT) misuse
detector based on change rules from previous API misuse fixes as a further improvement
to pattern-based misuse detectors discussed in Chapter 5. Both kinds of misuse detection
become necessary if the root causes discussed in Chapter 4 cannot be prevented. The
change rules introduced in this chapter are applied for the automated repair of API misuses
in Chapter 7.

6.1. Methodology and Structure

RQ D Automated APl Misuse Detection This chapter targets the issue of
low precision of many API misuse

E— detectors [LHXT16, ANNT19a]

. 4 and thus one part of RQ D. Since

RQ D-R Change- we observed limited applicability

Rule-based API d licabilit £ mi detec-

S and replicability of misuse detec

tors, which reported a large pre-

cision (i.e., Insight D-2 and In-

sight D-5), this issue has still a
large relevance. Thus, we suggest a change rule-based API misuse detection and specifi-
cally target the sub-research question RQ D-R.

Again, we apply the scientific methodologies for the field of software engineering by Ralph
et al. [RABT20] and answer RQ D-R by an engineering research, namely conceptualize,
implement, and evaluate a software artifact of inferring the change rules and applying them
for a change rule-based misuse detection.

For this purpose, we first recall issues of the low precision of current API misuse detectors
in Section 6.2. Then, we introduce the concept of change rules, their inference with an
artifact named Change Rule Inference (ChaRLI), and how to conduct a change rule-based

"Mttps://cybersecurity-research.be/summer-school-program last accessed: 2025/02/05

143

https://cybersecurity-research.be/summer-school-program

Chapter 6. Change Rule-Based API Misuse Detection

API misuse detection with a technique named Change Rule-based API Misuse Detection
(RuDetect) in Section 6.3. In Section 6.4, we present the experimental data and setting
for the evaluation of ChaRLI and RuDetect, whose results are presented in the subsequent
Section 6.5. In Section 6.6, we give a conceptual comparison to related misuse detectors,
especially to those to which we could not compare in an experimental manner, as well as
to API migration techniques (cf. Section 3.4.3). We summarize the results and the impact
regarding RQ D-R in Section 6.7.

6.2. Imprecise APl Misuse Detection Due to Alternative Usage
and Missing Context

One recurring problem for state-of-the-art

pattern-based misuse detectors is that too many

possible correct usages exist, and thus, choosing

a pattern that does not match the present con-

text of an actual correct API usage results in a

false positive. Therefore, collecting a set of pat- \ 4
terns and applying the most frequent one is not RQD Avtomated APIMisuse etection
sufficient for precise API misuse detection.

This issue was also observed by Amann et
al. [ANNT19a], who found that uncommon but
correct usages resulted in 34.3% and alternative
pattern usages resulted in 19.2% of false pos- v
itives in their analysis of misuse detectors on
MUBench. Thus, if a certain usage is different
from a pattern this does not necessarily give ev-
idence of whether this usage is worth changing
since this difference may still be correct.

In contrast, we conjecture that an API usage, which was found to be changed, gives far
more evidence that similar usages at hand are also worth changing. These changes to API
usages can represent APl updates or migration steps as well as fixes of misused APIs.

Moreover, Amann et al. [ANN"19a] also found that many misuse detectors miss impor-
tant contexts, for instance, corresponding objects and parameters of method calls. For that
purpose, they applied the API Usage Graphs (AUGs) to more precisely describe the API
usage and improve misuse detection [ANNT19b]. Thus, we will apply AUGs as our base
data structure.

RQ D-R Change-
Rule-based API
Misuse Detector

6.3. RuDetect: Concept of Change Rules for API Misuse
Detection

In this section, we introduce RuDetect with its integrated technique ChaRLI to tackle the
previously discussed limitations of API misuse detectors.

6.3.1. Overall Process

We conceptualize the notion of leveraging past changes to API usages to detect other similar
API misuses as our technique named Change Rule-based API Misuse Detection (RuDetect).

144

6.3. RuDetect

For this purpose, we introduce A PI change rules. These rules stem from past changes made
by human developers, and thus, we conjecture that they denote valid changes that are able
to decrease the number of false positives during misuse detection. We describe the aspired
process of change rule inference and API misuse detection in Figure 6.1.

In practice, we assume a use case in which another developer has already fixed an API
misuse in their code and committed this change through a Version Control System (VCS)
and share their fix with others. This is frequently leveraged by historical-based automated
repair techniques [KPWO06, LLLG16, HW18]. In case they share their fix, we require a
minimal manual effort of marking the method that has been fixed, the repository URI, the
fixing commit hash, as well as the file path to the misuse (i.e., step @)

Afterward, the change rule is automatically obtained using our automated technique
named Change Rule Inference (ChaRLI). First, ChaRLI conducts a commit analysis in
step by extracting the source code of the misused file of the fix and the previous
misuse revision using the VCS and generating a configuration for the subsequent AUG
generation applying the technique by Amann et al. [ANNT19b]. This generation (i.e.,
step @) produces the AUGs for the misused and fixed code version. Finally, in step @,
we use these two AUG versions to create the change rule. The details of this generation
will be described in the next Section 6.3.2. So far, note that this change rule represents
the essential changes made to the API misuse (i.e., AUG aug,,) to transform it into a fixed
version (i.e., AUG augys). Particularly, it removes non-necessary aspects of the change,
namely, it creates a rule aug,, — augy where aug,, and augs denote subgraphs of augy,
and augy, respectively. This way, we make the change rule more likely applicable for misuse
detection for other API usages.

The generated change rules are subsequently used to detect API misuses in other API
usages. For that purpose, we first check whether the respective change rule is applicable
for misuse detection (@) We present and validate two variants of the applicability check
(cf. Section 6.3.3). In case the rule is not applicable, no decision will be made.

In case the rule is applicable, we use a graph similarity-based API misuse detection
(cf. Section 6.3.4), which computes additionally the similarity sim between the usage
graph aug, and the two subgraphs aug,, and augy from the change rule in step @ For

the misuse detection step (i.e., @), we compare those two similarity values to determine
whether the usage w is more similar to the misuse part m’ than to the fix part f’ of the
rule (i.e., the similarity to augy, is larger than to augy). In this case, we denote the usage
u to be a misuse. Otherwise, the usage u seems to be already fixed and, thus, is marked
as correct.

Note that in case of multiple applicable rules, the similarity can be leveraged as a selection
or ranking mechanism by picking that change rule for misuse detection having the largest
similarity between aug, and aug,,.

6.3.2. ChaRLI: Change Rule Inference

Change Rule The change rule is based on AUGs, a data structure introduced by Amann et
al [ANNT19b], which we already presented in Section 3.2.2. Particularly, ChaRLI leverages
the code changes applied to an API usage as depicted in our sample code in Code Listing 6.1
and generates two sub-AUGs, one representing the pre-change version (i.e., the misuse)
and the other the post-change version (i.e., the fix) whose nodes are connected by special
transform-edges. Two variants (i.e., with and without context discussed subsequently) of
generated change rules are represented in Figure 6.2 for the sample code in Code Listing 6.1.

145

Chapter 6. Change Rule-Based API Misuse Detection

/,«"lthange Rule-based APl Misuse

Detection (RuDetect) Input

* Repository URL

* Fixing commit hash

* File path to misuse

* Method declaration
containing the misuse

Change Rule Inference (ChaRLI)
e Commit Analyzer

Misuse AUG Generation Fix AUG Generation

Change Rule Generation

o

m f

Candidate is applicable

AUG Generation APl Usage Change Rule
@ to AUG

*@ No Decision

Yes
@h Similarity-Based Similarity Computation \
API Misuse Detection .
sitm

!

API Misuse Detection

sim(gl.g,)>Sim(%,)

u u

u is misuse @ . U is no misuse

Figure 6.1.: Process of RuDetect by applying ChaRLI with subsequent Graph Similarity-
based API Misuse Detection

146

6.3. RuDetect

import my.own.pkg.QClass;

1 | package my.own.pkg.subpkg;
2

3 | import a.b.AClass;

4 | import a.b.BClass;

5 | import a.b.CClass;

6 | import x.y.ZClass;

7

8

9 |public class Foo extends AClass {

new BClass (1337,"Bar");
new CClass();

11 BClass myB
12 CClass myC

13

14 protected ZClass doSomething(BClass bObj) {
15 System.out.println("do Something")
16 QClass myQObj = new QClass(myB, 42);
17 | - myQObj.addData (myC);

18 |+ if(myQObj.requiresMore ()){

19 |+ myQObj.addData (myC) ;

20 |+ %

21 return myQObj.merge (b0bj);

22 }

23 |}

Code Listing 6.1: Source Code Changes applied to an API Usage.

Misuse

Misuse Fix @ a

tfahsform | thansform gransform

| Object.<init> I VI Object.<init>

para [para

sfc
| Object.<init> I {npysform —I Object.<init>

QClass.addData() | |\

transform|

QClass.merge()

QClass.addData()

QClass.merge()

(a) Without Context. (b) With Context.

Figure 6.2.: Different Versions of API Change Rules for the Code Change in Code List-
ing 6.1.

147

Chapter 6. Change Rule-Based API Misuse Detection

These rules describe how nodes in an AUG have to be changed (i.e., relabeled and
reconnected with the respective edges) to obtain the fixed version. In case a node is added
or removed (e.g., adding or removing an API method call), we denote this by special e-nodes
representing ‘holes’ in the respective sub-AUG. For instance, in Figure 6.2, the action node
QClass.requiresMore () is added in the respective fix AUG, and thus, there exists
an e-node in the respective misuse AUG. Analogously, if a node is deleted, the e-node is
present in the fix AUG.

Problem of Change Rule Inference In Figure 6.2, we depict two variants of change
rules based on the changed code snippet in Code Listing 6.1, whose characteristics will
be described successively. Regardless of their differences, we observe that both variants
remove certain non-changed code, such as the System.out.println-method call in
line 15 of Code Listing 6.1. More generally, we denote the change rule inference as function
charli whose input are two subsequent AUGs aug,, and aug; representing the misuse and
its corresponding fix, respectively:

charli(augm, augs) = aug,y — augs, where augn, C augy, A augy C augs

The problem of inferring change rules is similar to finding a minimal mapping between two
AUGs or computing the minimal edit path of the minimal Graph Edit Distance (GED).
Informally, computing the minimal GED between two graphs, ga and gp, computes the
minimal costs of adding, deleting, or updating (i.e., relabeling) nodes and edges in a graph
ga to transform it into graph gp [SF83]. The sequence of edit operations to obtain this
minimal GED is then denoted as a minimal edit path. The one-to-one mapping of the nodes,
for which minimal edit costs are achieved, is denoted as a minimal mapping between the
two graphs. However, both problems are known to be NP-hard [ZTW'09].

Efficient Change Rule Inference We expect that our envisioned process requires frequent
change rule generation since many different API misuse fixes exist. Therefore, a costly
change rule inference would hinder its applicability. Thus, we use a simplified heuristic
to find the minimal mapping to make change rule inference more efficient. In detail, we
construct a bipartite graph where one partition consists of the nodes from the misuse AUG
(i.e., augn,) and the other one of the nodes from the fix AUG (i.e., augs). Moreover, we
balance the number of nodes in both partitions by adding e-nodes in that partition with
a lower number of nodes. Note that the nodes within a single partition are not connected
to each other, while each single node of one partition is connected to each node of the
respective other partition by a weighted edge. The weights represent the local costs to
transform one node to the respective other, namely, relabeling the node as well as adding,
deleting, and relabeling in- and outgoing edges based on AUGs aug,, and augy.

Customized Costs: During experimentation, we noticed that equal costs for each
change were not effective, namely some updates, such as method relabeling, required a
stronger penalty due to their effect on the code behavior. Therefore, we customized the
cost function as follows:

e costs 1 for adding, deleting, and relabeling edges
e costs 2 for adding or deleting a node

e costs 4 for relabeling a node

148

6.3. RuDetect

Table 6.1.: Results of the Manual Assessment of the Initial Change Rules
Decision #Completeness FArrangement F#Data
yes 18 14 0
no 32 36 50

The rationale is that nodes usually denote API method calls, which may have a stronger
impact on the logic of the program than changing, for instance, the method order. We
denote the costs between two nodes stemming from the vertex set of the respective AUGs
(i.e., nm € V(augm) and ny € V(augy)) as cost(nm,nys). A complete formal definition of the
previous, loosely described cost function can be found in the appendix (cf. Section A.3.1).
Node Matching: Based on this bipartite graph with weighted edges (i.e., by costs), we
computed a one-to-one mapping between the nodes of the two partitions achieving overall
minimal costs. For this purpose, we applied the Kuhn-Munkres algorithm [Mun57].

Integrating Context In an initial version of the change rule, we considered the change
solely without its context (cf. Figure 6.2a) [NBKO21a]. In detail, we only selected those
node pairs from the minimal mapping whose weighted edges in the bipartite graph had costs
larger than zero. These pairs denoted the nodes that required an update. We constructed
the change rules by only keeping these nodes with their respective edges in the AUGs aug,,
and augy, as well as connecting them according to the minimal mapping with transform
edges. These form the subgraphs aug,, C aug, and augsy C augy, which we mark as
misuse and fix part of the change rule in the graphical representation.

Re-evaluation of Change Rules: When evaluating the effectiveness of these change
rules, we found that they miss some essential context to fully describe the fix. For this
purpose, we analyzed change rules inferred from a random sample of 50 API misuse fixes
from the MUBench dataset [ANNT16]. We (i.e., the first three authors of our previous
work [NBKO22]) manually assessed these rules using the following three criteria:

e Completeness: The change rule contained all necessary API methods (i.e., AUG
action nodes) to fix the misuse.

e Arrangement: The change rule had a correctly arranged control flow of the necessary
API methods (i.e., AUG action nodes) to fix the misuse

e Data: The change rule contained all required parameters and return values to fix
the misuse

These criteria represent the minimal conditions for a valid change rule, and we assessed
them individually and independently as yes, no, or do not know. These decisions were also
accompanied by a rationale of the decision as well as notes to document further issues. Using
Cohen’s k [Coh60] with assessing agreement using the strategy by Landis and Koch [LK77],
we obtained k & 0.64 (i.e., substantial agreement) for completeness, k ~ 0.57 (i.e., moderate
agreement) for arrangement, and x ~ 0.26 (i.e., fair agreement) for the data criteria.
Therefore, we conservatively summarized the result by only voting the rule criteria as yes
if all three assessors voted it as yes and no otherwise. The final results are presented in
Table 6.1. We observed that a minority of 18 rules were assessed as complete, and only 14
rules were assessed as correctly arranged, while none of the rules were evaluated as having
the correct data. Based on these results, we identified three main challenges:

149

Chapter 6. Change Rule-Based API Misuse Detection

e Challenge 1: Missing data nodes are caused due to non-changed data edges.
e Challenge 2: Missing action nodes are caused due to non-changed finally edges.

e Challenge 3: A huge amount of redundant order edges restrict effectiveness and
assessment.

Missing Data Nodes: Regarding Challenge 1, consider the changes rules in Figure 6.2a
and Figure 6.2b. In the former version, we do not know which exact constructor method
is called for the Object.<init>, which constructs a QClass object. It may be that there
exist multiple overloaded versions of this constructor. This issue is caused by missing the
parameters (i.e., the BClass object and 42 constant data nodes) in the rule. The root cause
for this problem is that the change only affects the control-flow edges of the constructor
node but not its data-flow edges from the incoming data nodes (i.e., its parameters or its
receiving objects). Since data nodes are only connected to action nodes via data edges, no
change is detected at all, and thus, these nodes were excluded from the rule.

Single-hop-addition: We handled this issue by conducting a post hoc adaption of the
change rule after detecting all changed nodes. Particularly, we add all neighbor data nodes
of changed action nodes connected via a data-flow edge. We denote this step as single-hop-
addition. Moreover, for the context of the API usage, it is also important to know how
these data nodes are further used. Thus, for each node added by the single-hop-addition,
we add all neighbor nodes connected via an outgoing data-flow edge.

Missing Action Nodes: Some change rules missed nodes representing methods called
within a finally block in Java, causing Challenge 2. A finally block denotes an
enforced default behavior for a try-catch-statement even though an exception occurs,
for instance, some necessary clean-up operations. The finally statements are modeled
in AUGs via special finally control-flow edges. Similarly to the issue in Challenge 1,
these edges do not change, and thus, connected nodes are not included in the change rule.
We solved this issue by applying the single-hop addition also to nodes connected with
finally-edges.

Many order Edges: Finally, in Challenge 3, we found too many redundant order
edges. Recall from Section 3.2.2 that AUGs have many order edges due to the conservative
strategy of adding them as a transitive closure. These redundant edges, however, cause
different problems:

First, order edges exist between almost all action nodes, and thus, changing one action
node affects many other actions, which causes many non-relevant nodes to be added to the
change rule.

Second, many order edges are not relevant and blow up the change rule. These large
change rules decrease their applicability since computing similarity values becomes more
complex and does not scale for many similarity computations.

We reduce the number of order-edges by means of Hsu’s algorithm [Hsu75]. This al-
gorithm computes a minimal equivalent graph from an existing graph, namely, a sub-graph
obtained by removing redundant edges so that this graph still keeps the original graph’s
reachability. We adapted this algorithm by just removing redundant order-edges accord-
ing to the reachability.

The complete algorithm as pseudocode of ChaRLI can be found in the appendix (cf.
Section A.3.1).

150

6.3. RuDetect

6.3.3. Applicability Check

Since different APIs can be misused in various ways, not every change rule may be suitable
for each single misuse. Thus, before applying the rule for misuse detection, we checked
whether it is applicable. We propose two variants of applicability, namely, whether

1. the change rule’s misuse part is sufficiently similar to the API usage to be analyzed,
which we denote as threshold-based;

2. the change rule’s misuse part is sufficiently similar to known misuses, and its fix part
is sufficiently similar to known correct usages, which we denote as control-group-based.

Similarity is based on a function sim between two AUGs aug; and aug;, computing a
normalized similarity, namely sim(aug;, aug;) € [0, 1] where 0 denotes maximum inequality
between the AUGs (e.g., completely different code and structure) and 1 indicates that both
AUGs are equal. We describe the concrete manifestations of sim afterward.

Threshold-Based For the threshold-based variant, we assume a change rule aug,, —
augy . Based on this rule, we assess the similarity of the misuse part of a change rule (i.e.,
aug,,) to the actual API usage to compare with (i.e., aug,). We denote the rule to be
applicable if these two AUGs are sufficiently similar based on the similarity function sim.
Formally, we define this as:

sim(augy, , augy,) > threshold (6.1)

where threshold € [0, 1] denotes a user-defined hyperparameter. We set this hyperparame-
ter based on our quantitative analysis in Section 6.5.3. In general, this applicability checks
how suited the change rule is for the particular API usage.

Control-Group-Based According to the control-group-based applicability check, we as-
sume a change rule aug,, — augy as well as a set of AUGs of known correct usages (i.e.,
C = {augc,,auge,, - ,auge, }) and misuses (i.e., M = {augm,,augms,, - ,augm,}). We
denote a rule to be applicable if the mean similarity between the single parts of the rule
(i.e., augp and augy) and AUGs from the sets M and C denotes that for a majority of
AUGs in M augy, is more similar to them than augy and for a majority of AUGs in C
augy is more similar to them than aug,,. Formally, this applicability check is described
by satisfying the following four conditions based on the sets M and C:

ﬁ Y. sim(augy, auge,) > |71| Y. sim(augy, augm,)
auge,; eC augm; eM
ﬁ Y. sim(augm, auge,) < ﬁ > sim(augpy, augm,)
augc, €C augm,; eM (6 2)
ﬁ Y. sim(augy,auge;) > ‘*(1” S sim(augn, auge,) '
auge, eC auge,; eC
ﬁ > sim(augp,augm;) < ﬁ >, sim(augn, augm,)
augm, eM augm; eM

Note that this check requires the availability of valid ground truth of misuses (i.e., M)
and correct usages (i.e., C'). In general, this criterion denotes how robust a change rule is
according to this ground truth.

151

Chapter 6. Change Rule-Based API Misuse Detection

In our experiments, we will mainly apply Equation 6.1 while we compare both variants
(i.e., Equation 6.1 and Equation 6.2) in Section 6.5.4.

6.3.4. Graph Similarity-Based APl Misuse Detection

If a change rule aug,, — augy was applicable to an API usage aug,, we checked whether
the respective API usage is more similar to the misuse part of the change rule than to the
fixed part. We formalized this by denoting aug, as API misuse if the following condition
holds:

sitm(augm, augy,) > sim(augys, augy,) (6.3)

For validation purposes, we check the decision made by multiple inferred change rules
against a ground truth set of API usages and misuses. Thus, we need to define a correct
decision of a single rule. Particularly, we denote a decision of a rule as true positive (i.e.,
tp) if a known misuse is identified as misuse and as false negative (i.e., fn) if not. Similarly,
we denote a decision of a rule as false positive (i.e., fp) if a known correct usage is identified
as misuses and as true negative (i.e., tn) if not.

6.3.5. Measuring Graph Similarity

General Terms A similarity measurement sim measures the feature of how alike two
objects are to each other, usually on a relative scale where 0 indicates maximal inequality
and 1 denotes equality [Ife12]. In our case, we apply sim on two input AUGs, aug; and aug;.
There exist different notions to measure similarity, such as distance-based, feature-based, or
probability-based similarity [Ifel2].

Using only distance-based similarity, however, restricts the number of possible measure-
ments. The rationale is that a distance function dist : X x X — [0, 1] for possible input
AUGs aug;, aug;, and augy represents a metric, which requires the following properties
according to O Searcéid [Sea07]:

positive definiteness: dist(aug;, aug;) >0

equality: dist(aug;,aug;) =0 <= aug; = aug;
e symmetry: dist(aug;,aug;) = dist(aug;, aug;)
e triangle inequality: dist(aug;, aug;) < dist(aug;, augy) + dist(augy, aug;)

While we can apply distance functions as similarity measurements by sim(aug;, aug;) =
1 — dist(aug;, aug;), not all similarity measurements represent valid distances (e.g., cosine
“distance” based on the cosine similarity?). Thus, we used the more abstract similarity
measurements than solely distance functions.

For that purpose, we selected and defined a set of different similarity functions [NBKO21a].
We base the definition of the similarity functions on the formal description of an AUG in-
troduced in Section 3.2.2. Moreover, we introduce the similarity functions based on the
following two AUGs:

aug; = (‘/i?Ei7ZV;;;EEmSi)tiul%;lEi)
aug; = (V}’Ej’E‘/}72Ej78jvtjal\/jalEj)

Recall that V' denotes the node set, ¥ the edge multiset, ¥y and g finite alphabets of
labels for nodes and edges, s and t functions for mapping edges to the source or target

2cosine “distance” violates the equality and triangle inequality condition

152

6.3. RuDetect

node, and [y and g the respective label functions of nodes and edges. Additionally, the
function type : V' — String returns the node type as String-value (e.g., MethodCallNode
or VariableNode) and the function api : V' — String returns the APT related to the node
if present as a fully qualified name (e.g., java.lang.0Object).

Graph Edit Distance We already introduced the Graph Edit Distance (GED) in the para-
graph on the change rule inference. It denotes the minimal costs to perform edit operations
(insert, delete, and update nodes and edges) to transform graph aug; into aug; [SF83]. Since
the GED is widely used to denote inexact matchings [STFR17], we found it applicable for
the similarity computation for misuse detection. The main characteristic of GED is its
cost function, which has to be carefully chosen [Ser19]. We consider the costs for a single
edit operation on a node or an edge. For a formal definition, assume the nodes n;, m; € V;
and nj,m; € V; and the respective edges (n;, m;) € E; and (nj,m;) € Ej. Then we define
the following cost-functions for replacement (i.e., cost,), deletion (i.e., costy), and addition
(i.e., costy):

0 if ly,(ni) = Ly, (ny) A type(n;) = type(n;)

cost,(ni, nj) =< 1 if type(n;) = type(n;)

2 otherwise
costq(n;) =2
costq(nj) =2

0 if ig,((n;,ms)) = lg, ((nj,m;
cost,((ni, m;), (nj, mj)) :{ 0 Other(vgfise) 5 ((ng,myj))
costq((ng, m;)) =2
costq((nj,mj)) =2

Note that in opposite to the node costs, we do not have to consider the difference in the
types of edges since this is already depicted by the respective edge label. The GED is a
function ged minimizing the costs over all possible edit operations Ed; ; (i.e., all node and
edge mappings together with possible additions and deletions) required to transform the
aug; into aug;, particularly

ged(aug;, augj) = min

{ cost,(ni,nj) + costq(ni) + costq(n;)+ }
Ed;

cost,((ni, m;), (nj, mj)) + costq((n;, m;)) + costq((n;, m;))

We obtain the normalized similarity function simg.q by subtracting the fraction of the
ged with the maximal costs for all node and edge editions from 1. Particularly, we define
the maximal node costs mcost,, and maximal edge costs mcost. for single node and edge
operations as follows:

mcost, = Vnierlr}%i-evj {cost,(n;,n;), costq(n;), costya(n;)}
mcoste = max _ {cost.(e;,ej),costq(e;), costy(e;)}

VeiGEi,e]' GEj

In our customized cost function, this formula is simplified to mcost,, = mcost. = 2. Thus,
we finally define simgyeq as follows:

ged(aug;, aug;)
max(|V;|, |V;]) - most,, + max(|E;|, |E;|) - most.

simgeq(aug;, augj) = 1 —

153

Chapter 6. Change Rule-Based API Misuse Detection

An efficient algorithm to compute ged was suggested by Abu-Aisheh et al. [AARRMI15],
applying the A*-algorithm, which applied a depth-first search strategy together with a
pruning technique to effectively reduce edit operations with high costs. We denote this
version as AStarGED’?. However, the exact computation of the GED is known to be NP-
hard [ZTW™09]. Therefore, we also use the heuristic approach of the previously introduced
Kuhn-Munkres algorithm [Mun57], also known as the Hungarian algorithm. As mentioned
before, it computes the minimal edit costs of nodes in a bipartite graph. In detail, we
apply the linear sum assignment implemented in the Python library scipy” based on the
description by Crouse [Crol6]. Since this heuristic only computes the similarity between
the nodes, we set moste = 0. We refer to this version as HungarianGED.

Maximum Common Subgraph Another similarity measure is based on the Mazimum
Common Subgraph (MCS). Its notion is to find the largest common subgraph between
aug; and aug;. In our use case, we are interested in the size of the non-matched nodes and
edges [BS98]. This size can be computed by applying the GED using the following cost
functions:

0 if ly,(ni) = lv;(ny) A type(ni) = type(n;)

cost(n, nj) 1 oo otherwise

costg
cost,

if Ig, ((ni, mi)) = lg; ((nj,m;))
otherwise

8@

cost,((ni, m;), (nj, mj))

costq((ni, m;))
costq((nj,m;))

|
— A = A

This way, we compute the size of the graph parts not belonging to the MCS denoted by
the function mecs defined by the ged:

mes(aug;, aug;) = ged(aug;, aug;)
The normalized similarity function sim,.s is then computed as follows:

mes(aug;, aug;)
max(|Vi], [V;|) + max (| E;|, | Ej|)

8iMimes(aug;, aug;) = 1

Once again, since computing the MCS is NP-hard, we apply the Hungarian algorithm,
which, similarly to the GED, computes the MCS among the nodes. Thus, we remove
the term max(|E;|, |E;|) from the denominator of the simy,.s since this heuristic does not
consider the edge costs. We refer to this version as HungarianMCS.

Node-Node-Similarity As a third similarity measurement, we propose the Node-Node
Similarity. This measure stems from the domain of hyperlinked environments such as the
World Wide Web and describes a link-based similarity [K1e98]. Usually, these similarities
are computed for nodes from a single graph. However, Blondel et al. [BGH " 04] introduced
an iterative approach to compute a node similarity for comparing two graphs. In detail,

3in [NBKO21a] we referred to this algorithm as NetworkXGED
*https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_
assignment.html last accessed: 2023/08/14

154

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

6.3. RuDetect

this variant computes a similarity matrix S as the limit of normalized iterative matrix
multiplication as follows:
Sk+1 = AjSkAZT + A?SkAi
S = lim Sk
k—o0

The initial matrix Sp is a matrix of ones, and A; and A; denote the adjacency matrices of
the AUGs aug; and aug;, respectively. Note that in practice, we stopped the iteration if an
upper bound of k is reached. Then, we sum over the set of those node pairs that maximized
the linear sum assignment denoted as lsa(S). We compute the similarity simpodesim by
normalizing the similarity as follows

> lsa(S)

SimNOdeSim(au.giv a,ugj) - m

Note that this similarity only relies on structural differences in the graph rather than the
label differences. We refer to it as NodeSimilarityOpt.

Exas Vectors As a final similarity measurement, we introduce different variants of Fzas
vector-based similarity. Exas vectors describe a graph vectorization technique by Nguyen
at al. [NNP"09a] applied in the domain of code clone detection. In their work, they proved
that the vector norm of the difference of two Exas vectors is a reasonable approximation
of the GED between their represented graphs and, thus, a valid approximation of a graph
similarity. The graph vectorization technique characterizes a graph by a set of features
present in a graph. In detail, they define (p,q)-nodes and n-paths. (p,q)-nodes describe
individual nodes in a graph denoted by their respective labeling function [y and the num-
ber of incoming (i.e., p) and outgoing edges (i.e., ¢). For instance, in the misuse graph
in Figure 6.2b (cf. page 147), one (p,q)-node feature is Object.<init>-2-1, ignoring

the outgoing transform-edge. The n-paths describe a sequence of nodes of length n For

instance, in the same graph, there exists the 3-path Object.<init> det, QClass —%

QClass.addData(). Then, the Exas vector represents the absolute frequencies of all (p, q)-
node and n-path features present in a single graph. According to the considerations by
Nguyen et al. [NNP*09a], we limit the n-paths to a maximal value of n = 4, which obtained
sufficient accuracy for their related code clone detection experiments. Moreover, we ignore
1-paths since these represent single-node features already included in the (p, ¢)-node fea-
tures. This way, we further reduced the number of different features [NBKO21a, NBKO22].

Vector-Space: We denote the Exas vectors of aug; and aug; as vec; and vec;, respec-
tively. The difference between the graphs is then represented based on the vector difference
between vec; and vec;. In theory, vec; and vec; would have a countably infinite number of
features since both vectors have to be in the same vector space. We handle this by defining
the vectors vec; and vec; containing only those features that have a count of at least one in
both vectors vec; and vec; (i.e., cutset of present features). Further, we define the length
of an Exas vector as a function len, which returns the number of features with a frequency
entry of least one. Our similarity consideres two aspects: first, the similarity of present
features (i.e., similar (p,q)-nodes and n-paths) denoted as featureg,, and second, the
similarity of frequencies of matched features denoted as featureCountg;,,. The featureg;y,
is computed as follows:

len(vec;) len(vecj)>

featuregip (vec;, vecj) = max (len(’uecj), len(vec;)

155

Chapter 6. Change Rule-Based API Misuse Detection

L1-Norm: For the featureCounts;, we applied two different norms, namely the L1-
norm computed as follows

vec; — vec;

featureCountgimri(vec;, vec;) =1 —

) ‘ max(1, mazxVal(vec; — vec;))

7 1

The function mazVal computes the maximum absolute value within a vector.
Cosine: Another variant applies the cosine similarity, namely

(vec;, vec;)

featureCountgimcos(vec;, vec;) =
|lvecillz - [lvec;]]2
(-,+) computes the scalar product of two vectors.
Exas Vector-Similarity: Finally, we obtain the similarity simpg.qs using both aspects
featureg;ss and featureCountg;s; by applying

SIMEgas(aug;, aug;) = X - featuregm(vec;, vecj)+
(1 = X) - featureCountgm (vec;, vec;) (6.4)
A€ [0,1]

The scaling factor A denotes a hyperparameter, which we set to A = 0.5 to obtain equal in-
fluence from both similarity flavors (i.e., feature and frequency similarity). When applying
featureCountgy,r1, we mark the similarity function as stmggaesr1, and as simgzqscos when
using featureCountgimcos. We denoted the variants as ExasVectorLiNorm and Exas-
VectorCosine, respectively.

We further revised these similarity measurements by identifying and handling observed
issues [NBKO21a, NBKO22] as discussed subsequently.

Indicator-: First, we found that highly frequent features tend to diminish other feature
counts when normalizing the vectors. Therefore, we find it more valuable to simply compare
how many features match instead of their frequencies. In detail, we ignore featureCountg;m,
by setting the scaling factor A = 1. We mark these variants with the prefix Indicator-.

API-: Second, we aim to detect misuses of APIs. However, we observed that the sim-
ilarity was mainly influenced by differences in non-API-specific features in the vectors.
Therefore, we suggest only adding features that contain at least one node referring to an
API. For that purpose, we applied the function api : V' — String and denoted a node to
refer to an API if the api function returned a non-empty string. We mark these variants
with the prefix API-.

=-Split-: Third, we observed that complex API usage could intertwine multiple APIs,
which hindered the similarity to the noise of potentially non-related APIs. Therefore,
we suggest a splitting mechanism for an AUG based on the respective API of the single
nodes. In detail, we split the original AUG into several sub-AUGs based on the package of
the respective API. Particularly, we use the api function to extract the class name (e.g.,
java.lang.0Object) and apply up to the first three elements of the package name reduced
by the class name to cluster them as sub-AUGs (e.g., java.lang). The nodes that do not
relate to an API are collected in a special miscellaneous sub-AUG. Then, we computed
an Exas vector for each subgraph indexed by their related package name. Afterward, we
compute the similarity between two AUGs by calculating the similarity of each paired sub-
AUG matched via their index package name. The overall similarity is the average of the
single non-distinct (i.e., sim # 0) similarity values. We mark these variants with the infix
-Split-.

156

6.4. Experimental Data and Processing

Table 6.2.: All different similarity measurements applied for applicability check and
similarity-based Misuse Detection together whether these represent distance-
based similarities and whether it is a heuristic computation of the similarity

function.
Similarity Similarity Distance- Heuristic Com-
function based putation
1 AStarGED 5iMged v X
2 HungarianGED 51Mged v v
3 HungarianMCS STMymes v v
4 NodeSimilarityOpt SIMNodeSim DOt stated v
5 ExasVectorLiNorm SIMErasl1 v X
6 ExasVectorCosine SIMErasCos X X
7 APIExasVectorLiNorm SIMEsasL1 v X
8 APIExasVectorCosine SIMErasCos X X
9 ExasVectorSplitLiNorm SIMErasLl v X
10 ExasVectorSplitCosine SIMErasCos X X
11 APIExasVectorSplitLiNorm SIMErash1 v X
12 APIExasVectorSplitCosine SIMErasCos X X
13 IndicatorExasVector SIM Eras v X
14 IndicatorExasVectorSplit SIMEras v X
15 APIIndicatorExasVector SIM Eras v X
16 APIIndicatorExasVectorSplit siMmpgzqs Ve X

Combinations: Finally, we also apply all different combinations of these variants. In
theory, this sums up to 16 different variants, namely, two different norms (i.e., L1 vs.
cosine), two different count types (i.e., Indicator- or not), two different node types (i.e.,
API- or not), and two different split types (i.e., =Split- or not). However, when applying
the Indicator-variant, using different norms is not necessary. In these cases, we remove the
suffix ~-L1Norm and -Cosine from the variant’s name. Thus, four of the eight combinations
applying the Indicator-variant can be ignored, summing up to 12 different variants.

We summarize all the different similarity measurements in Table 6.2 denoting whether these
are based on a distance function and whether they apply a heuristic.

6.4. Experimental Data and Processing

We evaluated the misuse detection based on the three independent datasets, MUBench
[ANNT16] and AU500 [KL21] and our own dataset AndroidCompass [NBKO21b]. We al-
ready introduced MUBench and AU500 in previous experiments, but we shortly explain the
selection process for this setting. Moreover, we present AndroidCompass and its extension
named AndroidCompass+.

157

Chapter 6. Change Rule-Based API Misuse Detection

1 |import android.os.Build;

2 | import android.widget.Button;

3 |//0...1

4 | public class AndroidTest {

5 //0...]

6 public void handleButton(Button button){
7 //C...]

8 if (Build.VERSION.SDK_INT >= 15){
9 button.callOnClick () ;

10 } else {

11 button.performClick () ;

12 }

13 //C...]

14 }

15 //0...]

16 |}

Code Listing 6.2: Example of an Android Compatibility Check for the
android.widget.Button API

6.4.1. API| Misuse Datasets

MUBench In this setting, the number of misuses in MUBench had increased since we
conducted these experiments later. In detail, it consists of 280 API misuses’. However, in
the evaluation, we only selected 116 of those misuses that were linked to a git repository,
provided a commit hash to a fixing commit, and pinpointed to the source file path and
the method declaration containing the misuse. This information was necessary to create a
valid change rule. Since we were not able to check out three entries (i.e., an entry from the
AspectJ and two of the battleforge project), the overall number of analyzed misuses is
113.

AU500 The AU500 dataset consists of 500 different API usages either labeled as misuse
(i.e., 115 entries) or correct usage (i.e., 385 entries). Next to this label, each entry is linked
to its repository, commit hash, source file path, method declaration name, and line number.

AndroidCompass and AndroidCompass+ AndroidCompass: The AndroidCompass
dataset® consists of Android compatibility checks, which we collected from apps of FOSS
projects from the F-Droid website’ [NBKO21b]. Especially the Android framework yields
many different operating systems and smartphone hardware, as well as a variance of de-
ployed Android versions. Thus, the app’s code is vulnerable to incompatibilities with its
embedded environment. Compatibility checks describe in-code conditions® to determine the
APT versions or hardware environments (e.g., available sensors) and to prevent the code
from calling non-available functionality. Otherwise, functional problems or issues with the
performance, security, and user experience can arise [WLC16, HLW 18, LBWK18, WLC19,
SBLV 20, WLC"20]. Thus, we interpreted incompatibilities as API misuses. We present
an example of an Android compatibility check in Code Listing 6.2. In detail, we observe

Pas of 2022/01/27

Savailable at https://doi.org/10.5281/zenodo.4428339 last accessed: 2025/02/06
"https://f-droid.org/en/ last accessed: 2023/09/01

8note that it is also possible to set the Android levels within the configuration [NBKO21b)

158

https://doi.org/10.5281/zenodo.4428339
https://f-droid.org/en/

6.4. Experimental Data and Processing

a compatibility check in line 8, which verifies whether the Android version’ used is equal
or larger to level 15 (i.e., version code ICE_CREAM_SANDWICH_MR1). In this case, we
can safely call the cal10nClick () method based on the documentation'’. Having an
older version, we may use the performClick () method instead. The AndroidCompass
dataset contains changes to such compatibility checks.

In AndroidCompass, we detected whether these checks were added, deleted, or updated
and automatically collected 80,324 changed checks together with git repository, commit
hash, source file path, changed source line, the comparison type (i.e., <,<=,==,>=>) and
the Android level to compare with (e.g., ICE_CREAM_SANDWICH_MR1). We assumed
that the pre-changed version of the code (i.e., before the commit) denoted a false, missing,
or incomplete compatibility check and, therefore, an API misuse, while the post-fixed
version denoted its respective fix. Since not all changes necessarily target misuses, we
filtered the entries in the subsequent AndroidCompass+ dataset.

AndroidCompass+: In detail, with AndroidCompass+, we only considered added or
altered if-conditions, which protect possibly non-available API method calls. Thus, the
change in the condition was more likely due to a non-compatible method call. More-
over, we avoided situations in which incompatibilities were handled by just removing the
incompatibility check together with the incompatible method call. Thus, we detailed this
original dataset by considering compatibility checks, which handle if-conditions with their
protected methods in the respective branches (e.g., call0nClick () in the then- and
performClick () in the else-branch).

For this purpose, we only used entries from AndroidCompass, which did not represent
complete added or deleted source files and duplicated files, which reduced the set to 27,873
entries (i.e., changed source files containing compatibility checks). Moreover, we were only
able to download 14,225 source file pairs (i.e., the version before and after the changed
compatibility check) due to non-available files in the repositories'’.

From these source file pairs, we selected their changed method declarations, for which
we could generate change rules using ChaRLI (cf. Section 6.3.2), which was possible for
12,264 single method declarations. Based on an extension of the technique Relevant API
Information Extractor (RAIX) (cf. Section 5.3.2), which traditionally extracts the contain-
ing file, class, and method declaration, we parsed and statically analyzed the fixed code
to obtain

e the changed if-condition (e.g., Build.VERSION.SDK_INT >= 15);

e the method calls protected by this condition together with their number of parameters
(e.g., as callOnClick__0 and performClick__0);

e and their related branch (i.e., then or else).

We referred to the method calls in these branches as protected method calls by the compat-
ibility check. For instance, for the compatibility check in line 8 in the method declaration
handleButton (Button) in Code Listing 6.2, we extracted the two protected method
calls callOnClick__O in the then branch and performClick__O0 in the else branch.

also known as SDK level (cf. https://developer.android.com/tools/releases/platforms last ac-
cessed: 2025/02/06)
YOhttps://developer.android.com/reference/android/view/View#callOnClick() last accessed:
2023/08/24
1 AndroidCompass was obtained in January 2021 while the AndroidCompass+ was obtained in August and
September 2024

159

https://developer.android.com/tools/releases/platforms
https://developer.android.com/reference/android/view/View#callOnClick()

Chapter 6. Change Rule-Based API Misuse Detection

By using this procedure, we found 2,037 different method declarations changing compati-
bility checks in if-conditions and 12,273 different entries of protected method calls handled
by these checks.

Since many different protected method calls can exist, we further reduced them by

a) the most frequently protected ones;

b) those that belong to the Android framework and were not available in any Android
version (i.e., SDK level).

By using a), we obtained sufficient examples of conducting API usage pattern mining as
well as applying these patterns and the change rules for misuse detection. Using b), we
guaranteed that the protected methods referred to the Android API (i.e., representing an
APT misuse) and that there is evidence that those method calls require a compatibility
check (i.e., for those versions, in which they were not available). For a), we selected those
methods with at least ten different change entries in the dataset, obtaining 125 different
method calls. Regarding b), we further manually checked these method calls whether
they refer to the Android framework API (i.e., the methods were declared in a class of
the android . *-package) and whether these method calls were added in a later Android
version (i.e., SDK level > 1) and/or were deprecated from a certain version on. For this
purpose, we consulted the official Android API documentation'?. We selected 36 protected
Android method calls, which refer to 1,018 of those 2,037 different method declarations
and 1,317 of those 12,273 different protected method calls.

6.4.2. Experimental Settings

Precision and Recall Similarly to the experiments in Chapter 5 and the discussion in

Section 5.2.1, we measured the performance of different setting using the precision and the
recall. Note that we had specify the measurement of the precision due to the applicability
check (cf. Variants of Applicability Checks).

MUBench Rules on MUBench Usages For the first setting, we interpreted the pre-fix
version of an entry in MUBench as misuse and the post-fix version as correct usage. For
each such code pair, we generated the change rule. Then, we validated whether this change
rule could classify other pre-fix and post-fix versions in MUBench correctly as misuse and
correct usage, respectively. Note that we did not validate the rule on the method where it
stemmed from. However, when inspecting the MUBench dataset, we already noticed that
there existed many similar API usages from the jodatime project. Thus, the results may
be positively biased through this setting, meaning it more likely represents an intra-project
setting. We refer to this setting as MUBench-on-MUBench.

MUBench Rules on AU500 Usages In the second setting, we applied all rules obtained
from the fixes of the MUBench dataset on the API usages in the AU500 dataset. Since the
projects of MUBench and AU500 are disjunctive, this represents an interproject setting.
We refer to it as MUBench-on-AU500.

2https://developer.android.com/reference/packages last accessed: 2025/02/06

160

https://developer.android.com/reference/packages

6.4. Experimental Data and Processing

Patterns and Change Rules in AndroidCompass+ The third setup solely compared the
pattern-based detector MUDetect [ANNT19b] with RuDetect.

Using MUDetect, we first had to mine patterns from API usages. For this purpose,
we built 36 clusters of fixed source files (i.e., those after the changed compatibility check)
according to the previously determined 36 protected method calls. In detail, this means that
each source file in a cluster contains a compatibility check in an if-condition protecting the
related protected method call. During mining, we filtered patterns using relative support
values. To avoid frequent re-mining, we applied the same set of patterns, and thus including
the ground truth fix, for later misuse detection in the related cluster. This way, however,
we had to guarantee that the mingsupport,,, > 1 since otherwise, the ground truth pattern
(i.e., the fixed compatibility check) could be present in the set of patterns.

As discussed previously, the change rules used for RuDetect were already present in the
AndroidCompass+ dataset.

For both detection variants, we set the ground truth misuses (i.e., #tp and # fn) as those
code versions in the respective cluster before the changed compatibility check. Vice versa,
we say the ground truth correct usages (i.e., #tn and #fp) are the code versions in the
cluster after the changed compatibility check. We refer to this setting as AndroidCompass+

Variants of Similarity Measurements We applied the 16 different similarity measure-
ments as demonstrated in the previous section (cf. Table 6.2).

Variants of the Change Rules In our experiments, we analyzed the impact of enhanc-
ing the change rules by using the context of the misuse change. In detail, we compared
the impact on the API misuse detection using change rules with and without context, as
exemplified in Figure 6.2.

Variants of Applicability Checks We experimented with two different variants of the
applicability checks, namely threshold-based (cf. Equation 6.1) and control-group-based
(cf. Equation 6.2). These checks effectively reduced the number of change rules used for a
single API usage. In some cases, this led to the case that no rule was denoted as applicable
for a usage, and thus, the rules produced no positive results (i.e., #tp + #fp = 0) at
all. Then, we could not compute the precision. We resolved this by only measuring and
averaging the precision of rules, producing positive results, which we denoted as relative
precision. However, we could hardly compare these relative precision using statistic tests
since they originate from different numbers of examples. Therefore, we estimated a lower
bound of the precision by setting all rules for which we did not obtain any positive result to
zero, which we denoted conservative precision. We considered this precision as conservative
since these rules producing neither ¢ps nor fps are equalized with those producing only fps.

Variants of Misuse Detectors We compared our technique RuDetect to the previously
introduced misuse detector MUDetect [ANNT19b] (cf. Section 5.2.4) selected due to the
discussion in Section 5.2.4.

We selected this detector because 1) it applied AUGs and thus worked with Java code,
2) it achieved promising results compared to other misuse detectors, and 3) it required a
manageable effort for reuse due to available replication packages.

161

Chapter 6. Change Rule-Based API Misuse Detection

6.5. Validation of RuDetect

Subsequently, we present the validation of RuDetect and ChaRLI.

6.5.1. Validation of the Applicability of ChaRLI

In this section, we present the results on how many change rules could be inferred using the
change rule inference technique. In case change rules could not be inferred, we analyzed
the root causes, which indicated potential improvements in the inference. This way, we
targeted RQ D-C.

Methodology We analyzed the change rule inference using the context information (i.e.,
using the single-hop addition as denoted in Section 6.3.2) based on the MUBench dataset
and our software artifact ChaRLI. This dataset encompasses 113 misuses, as described
previously. Moreover, we manually checked for each non-inferred change rule the root
causes for non-production by analyzing the respective repository as well as observing the
inference step. This way, we determined possible steps for improvements.

Results When analyzing the subset of 113 misuses from MUBench, our artifact ChaRLI
initially produced 87 non-empty change rules. After considering the reasons for non-
inferring rules, we noticed that five misuse configurations did not link to a proper URL of
GitHub, which we fixed accordingly. Based on this, two additional rules could be generated,
and thus, we obtained 89 non-empty change rules in total (18T93 ~ 78.8% of all considered
misuses). Note that using rules without contert information resulted in the same set of
inferred change rules for the same misuse fixes.

We analyzed the root causes of non-inference for the other 24 misuse fixes. 13 of them
failed due to location issues of the misuses caused by falsely or ambiguously configured mis-
use description (e.g., false method declaration/source file, which should contain the misuse
or multiple possible method declarations). For eleven cases, ChaRLI had experienced a
timeout (i.e., after 5 minutes per rule generation). Even though we did not analyze the
reasons for timeouts in detail, we conjecture based on our experience on the rule inference
that the change is too complex, and thus, matching the two versions of AUGs takes too
long. Thus, overall, in only eleven cases (= 9.7% of all misuse cases), we could not infer
change rules due to rule inference itself. Note that we did not and could not always check
how many of the 13 cases with location issues work in case the method location worked

properly.

Implications We observed that for a majority of misuse fixes (i.e., ~ 78.8%), change rules
could be produced. For those 21.2% of fixes for which no change rule could be inferred,
we observed that only for 9.7% of all fixes the change rule inference is directly responsible
(i.e., timeouts). Thus, we assess the change rule inference as a reasonable technique for
real-world cases.

Insight D-12 (RQ D-R): Applicable Automated Change Rule Inference

We observed that ChaRLI produced change rules for a magjority of API misuses (i.e.,
78.8% in MUBench), while the non-inference of only 9.7% of all potential change rules
could be directly traced to the limitations of ChaRLI.

162

6.5. Validation

6.5.2. API| Misuse Detection Using Similarity Variants

This section presents the evaluation of applying RuDetect with two different experimental
settings (i.e., MUBench-on-MUBench and MUBench-on-AU500) to find the best-performing
similarities sim and thresholds for threshold-based applicability check. Particularly, we
used the successfully inferred change rules from Section 6.5.1 and applied them to the
misuse datasets MUBench and AU500. This subsection targets RQ D-C.

Methodology We already presented the variants in the datasets (i.e., MUBench and
AU500), in the applicability checks (i.e., different thresholds in the threshold-based appli-
cability check), and in the similarity measurements (i.e., 16 different similarity measure-
ments in Table 6.2) in Section 6.4, which we applied for this evaluation.

In detail, we applied the 89 change rules from MUBench to detect misuses in the
MUBench dataset (i.e., MUBench-on-MUBench) as well as in the AU500 dataset (i.e.,
MUBench-on-AU500). Note that we could only apply these change rules on those 103 en-
tries from the MUBench dataset, for which we could successfully generate the respective
AUGs for the misuse and fixed version. Similarly, we could only generate 494 AUGs for
the AU500 dataset (cf. Section 6.4.2). As explained before, both datasets contain correct
API usages as well as misuses. In MUBench [ANNT16], this is denoted by the pre- and
post-version of the fixing commit, and in AU500, the authors of the original paper [K1.21]
provided ground truth labels. For each change rule, we checked whether it denoted an
APT usage as misuse (i.e., positive) or correct usage (i.e., negative) w.r.t. Equation 6.3.
Accordingly, denoting a real misuse as misuse was interpreted as true positive (tp), and
correct usage as misuse as false positive (fp). For true negative (tn) and false negative
(fn), the definitions resolved analogously.

According to the misuse criteria in Equation 6.3, we needed to compute the similarity
values between the change rule aug,, — augy and the API usage aug,. In detail, we
computed all similarity values of all 16 different measurements presented before. Then,
we applied the threshold-based applicability check (cf. Equation 6.1) by testing different
values for threshold ranging in the interval [0,1] with 0.1 steps. Based on whether the
rule was considered applicable with varying threshold and similarity measurement, we
computed the number of tp, fp, tn, and fn for each rule. Note that in the case of the
MUBench-on-MUBench setting, we did not count the case in which a rule was applied to
its own usage. Using these values, we could compute the precision and recall. We already
described in Section 6.4.2 (cf. Variants of the Applicability Checks) that we distinguish
between conservative and relative precision.

We analyzed single variants (e.g., ExasVectorCosine with threshold = 0.6) by consid-
ering the distribution and means of all assessment values (e.g., tp or relative precision).
Moreover, we applied the Wilcoxon-Mann-Whitney rank sum test [Kan06, p. 101] to com-
pare whether differences in the conservative precision and recall of certain variants were
significant. We chose this test since it did not require a certain statistical distribution
between populations (i.e., certain variants) [Kan06, p. 101]. Note that the statistical
comparison of the relative precision was not meaningful since the configurations lead to
different numbers of applicable rules and thus to differently sized populations to compare.
Since we compared multiple configurations, we adjusted the significance level (o = 0.05)
using the Bonferroni correction [Abd07]. For each significant difference, we computed the
effect size using Cliff’s § [HK99, KMB™'17]. We assessed the effect size using the guideline
summarized and presented by Kitchenham et al. [KMB™'17], distinguishing between small

163

Chapter 6. Change Rule-Based API Misuse Detection

(i.e., 0 > 0.112), medium (i.e., § > 0.276), and large (i.e., § > 0.428) effect interpretation.
We provide all data and analysis scripts'®.

Results At first glance, we visually present the mean values of the relative and conser-
vative precision as well as the recall for the MUBench dataset (cf. Figure 6.3) and AU500
(cf. Figure 6.4). These figures depict general trends among the different similarity mea-
sures. For better visual perception, we only show the characteristic similarities, while we
provide the graphs of all similarities and tables with all values in the appendix (cf. Sec-
tionA.4). Recall that for the relative precision, we could not compute all values since due
to the applicability check some computations produced no positive at all. This effect was
compensated by the conservative precision, which, however, considered non-positive results
of the misuse detection more pessimistically as false positives.

MUBench-on-MUBench: In Figure 6.3, we observed that apart from AStarGED and
NodeSimilarityOpt, the assessment values (i.e., relative and conservative precision as well
as recall) for all similarity measurements can be considered constant in the interval [0, 0.5].
Note that due to the lack of positive results, AStarGED and NodeSimilarityOpt produced
no positive results for thresholds larger than 0.4 and 0.2, respectively.

For the relative precision (cf. Figure 6.3a), we observe an increase at threshold 0.6 for
all remaining similarities. The largest mean relative precision values at this point were
obtained by APIIndicatorExasVector (=~ 96.6%)'*, while the lowest ones were produced
by HungarianGED (= 45.2%)'°. Subsequently, the values become much more unstable,
which was caused by the decreasing number of true positive results.

This observation could be further validated by the recall graph in Figure 6.3c. We ob-
served that the mean value of the recall drastically dropped close to zero between thresholds
0.2 and 0.3 for AStarGED and NodeSimilarityOpt. In contrast, for HungarianMCS and
HungarianGED (first one not depicted), it was always very low (i.e., at most ~ 1.8 — 2.0%).
For all other Exas vector similarities, the recall behaved almost similarly. Particularly, the
recall dropped at threshold 0.6 from values of ~ 18.0 — 26.4% to ~ 14.9 — 16.9% and even
more drastically at 0.9 (i.e., all similarity measurements to < 1.1%). This observation in-
dicated that the increase in the relative precision was at the expense of a loss in the recall.
We found the Exas vector-based similarities detected ~ 15.3 — 17.4 misuses (i.e., absolute
number of true positives) on average at threshold = 0.6.

This result was also represented by the conservative precision in Figure 6.3b. The con-
servative precision for AStarGED, NodeSimilarityOpt, HungarianGED, and HungarianMCS
(the last one not depicted) behaves similarly to the recall, meaning it was or drastically
dropped to zero along with an increasing threshold value. This effect was also true
for the Exas vector similarities, which slightly decreased at threshold 0.6 and drasti-
cally dropped at 0.9. Having in mind that the high relative precision was obtained at
0.6, we compared the means of the Exas vector similarities at this threshold. We ob-
served two clusters with almost similar conservative precision. The first cluster consisted
of IndicatorExasVector, IndicatorExasVectorSplit, APIIndicatorExasVector, and
APIIndicatorExasVectorSplit (the first two not depicted), the conservative precision
ranged from =~ 57.3 — 63.0%.

3http://doi.org/10.5281/zenodo . 156594600
not depicted but similar IndicatorExasVector (= 96.9%)
5not depicted but similar HungarianMCS (= 47.1%)

164

http://doi.org/10.5281/zenodo.15594600

6.5. Validation

(a) Relative Precision (b) Conservative Precision
1.0 —— 1.0
e
I
%
%
08 & e 0.8
r7>—0————0———+——+——-¢ .5
5 ¢ 2
206 £0.6
2} | HTTTIP [PTPPSP O, o
v plling 'Y Y P -«
5 g
02) | TTIY SPTPe L STRRPR @ L IPPP g
504 £04
2 2
8
0.2 0.2

0.0 0.0 :
0.0 0.1 02 03 04 05 06 0.7 0.8 09 1.0 00 0.1 02 03 04 05 06 07 08 09 1.0
> threshold > threshold

(¢) Recall
1.0

0.8

0.6

recall

0.4

0.2

Peorens @eens P LI T e ..

0.0°
0.0 01 02 03 04 05 06 07 08 09 1.0
> threshold

—— APlIndicatorExasVector —m—- AStarGED ---#-- HungarianGED
--o-— APlIndicatorExasVectorSplit ---a-- ExasVectorCosine ---@-:- NodeSimilarityOpt

Figure 6.3.: Mean assessment values using different similarity measurements and thresholds
for the applicability check in the MUBench-on-MUBench setting.

165

991

Table 6.3.: Comparison of different Similarity Measurements for the Conservative Precision of RuDetect in the MUBench-on-MUBench

setting at threshold = 0.6

el e
g 2 3 3 g =
Z 2 2 % = g £ e = 2 2
2 9 — o o
2 2 2 4 B B g K 2 2 a n 2 2 Q
3 3 3 5] = = g “ 2 2 a &) 7 7 =
B g g g g g g = 2 2 S = g = E
= = = = K5 F a 3 8 3 3 g e 5] = =
7] () 7] [3] < = = = = = < < = = =}
2 E : : < e 3 g E : N S g g 2
[y T >y >y K T & 5 4 & 5 £ El g = 3
< < < < < < < €3} <3| = = = = = = Z.
APIExasVectorCosine - X X X X X > /0.65 X X X X >v/0.62 > /061 X X > /0.65
APIExasVectorL1Norm X - X X <v/-029 X > v0.64 X X X X >v061 >v/06 <v-028 <v-03 >v0.64
APIExasVectorSplitCosine X X - X </-037 <v/-033 > /0.69 X X X X >v/066 >v064 <v-035 <v/-0.38 > v/0.69
APIExasVectorSplitL1Norm X X X - < V/-037T <v/-033 > /0.65 X X X X >v/062 >v06 <v-035 <v/-038 > v/0.65
APIIndicatorExasVector X >v029 >v037 >v0.37 - X >v065 >v029 >v029 >v034 >v033 >v0.63 > v0.63 X X > /0.65
APIIndicatorExasVectorSplit X X >v033 >v0.33 X - >v/069 >v026 >v025 >v029 >v0.28 >/0.66 > v/0.66 X X > /0.69
AStarGED <V-0.65 <vV-064 <V/-0.69 </-065 <-0.65 < v/-0.69 - < V/-064 <V/-064 < V072 < /07 X X <v/-064 <v-0.73 -
ExasVectorCosine X X X X </-029 <v/-026 > v0.64 - X X X >v/061 >v06 <v-028 <v/-03 >v/0.64
ExasVectorL1Norm X X X X <v/-029 <v/-025 >v0.64 X - X X > /061 >v/06 <v/-027 <v/-03 > /064
ExasVectorSplitCosine X X X X </-034 <v/-029 >v0.72 X X - X >v/069 >v067 <v-032 <v/-034 >v/0.72
ExasVectorSplitL1Norm X X X X <V/-033 <v/-028 >V0.7 X X X - >v/067 >v065 <v-031 <v-033 > V0.7
HungarianGED <vV-0.62 < /-061 </-0.66 </-0.62 </-0.63 < /-0.66 X </-061 </-061 <V-069 < /-0.67 - X </-062 <v/-0.71 X
HungarianMCS < v-0.61 <V/-06 <v/-064 <V/-06 <v-0.63 < /-0.66 X </-06 <v/-06 <vV/-067 </-0.65 X - < V/-062 < v/-0.71 X
IndicatorExasVector X >v028 >v035 > Vv0.35 X X >v064 >v028 >v027 >v/032 >v/031 >v/062 >/0.62 - X >v0.64
IndicatorExasVectorSplit X >v03 >v038 > v/0.38 X X >v0.73 > 0.3 >v03 >v034 >v/033 >v0.71 >v/0.71 X - >V0.73
NodeSimilarityOpt <V/-0.65 <v/-064 <V/-069 </-065 <-0.65 < v/-0.69 - < /064 <V/-064 <V-072 < V/-07 X X <v/-064 <v/-0.73 -

0190939(T 9SNSIIN [V Poseg-ony a8uey) 9 1oder)

291

Table 6.4.: Comparison of different Similarity Measurements for the Recall of RuDetect in the MUBench-on-MUBench setting at
threshold = 0.6

o g 2

= 3 7] -

g z Z g 3 o g =

@ 3 &} e © 3 2 3)

=} = o ol B = [
E z = S = = . g 8 g S g £
o = @ & g g E g = 2 g 8 Q
g g E s = o g 4 = = g S 7 7 B
g E g E 8 8 3 2 2 2 3 = B : E
> = = = = = a 3 8 3 3 = El <5} <) =
& A & & & &] g g 5 5 5 E g < 3
< < < < < < < 5 5| = = = = = i z.
APIExasVectorCosine - X X X X X > V/0.65 X X X X >v/059 > /061 X X > /0.65
APIExasVectorL1Norm X - X X X X > /0.64 X X X X >v/058 >V/06 X < /-0.08 > v0.64
APIExasVectorSplitCosine X X - >v/0.03 X X > v0.69 X X X X >v/0.63 > v/0.65 X X > /0.69
APIExasVectorSplitL1Norm X X </-0.03 - X < V/-0.03 > v0.65 X X X X >v/0.59 > v/0.62 X < V/-0.05 > v0.65
APIIndicatorExasVector X X X X - X > V0.65 X X X X >v/0.59 > /061 X < /-0.08 > v0.65
APIIndicatorExasVectorSplit X X X > v0.03 X - >/0.69 X X X X >v/0.63 > v/0.65 X X > /0.69
AStarGED <V/-0.65 </-0.64 <v/-069 <-0.65 < /-0.65 < /-0.69 - < /064 <V/-064 <V-072 < V/-07 X X </-064 <v/-073 -
ExasVectorCosine X X X X X X > v0.64 - X < /-0.08 X >v/058 > /0.6 - < v/-0.09 > v0.64
ExasVectorL1Norm X X X X X X > /0.64 X - < V/-0.08 X >v/058 > V06 X </-0.09 > v0.64
ExasVectorSplitCosine X X X X X X >v072 >v008 > v/0.08 - >v/003 >v066 >v069 > v/0.08 X >v0.72
ExasVectorSplitL1Norm X X X X X X >vor X X < /-0.03 - >v/063 > v0.66 X </-004 >V0.7
HungarianGED <V/-059 < /-058 <v/-063 <v-059 < /-0.59 < /-0.63 X < /-058 </-058 <v-0.66 < /-0.63 - X < /-058 < /-0.67 X
HungarianMCS <V/-061 <v/-06 <v-065 <v-062 </-0.61 </-0.65 X <v/-06 <v-06 <v-069 </-0.66 X - <V/-06 < V07 X
IndicatorExasVector X X X X X X > /0.64 - X < /-0.08 X >v/058 >V06 - < V/-0.09 > v0.64
IndicatorExasVectorSplit X >/0.08 X >v0.05 > v/0.08 X >v073 >v009 > v/0.09 X >v004 >v067 >v07 > v0.09 - >V/0.73
NodeSimilarityOpt <V-0.65 < v/-0.64 <v/-0.69 <vV-0.65 <V-0.65 < /-0.69 - < /064 < V064 < V072 <V/-07 X X < /-064 <v/-0.73 -

uonepIifeA '¢'9

Chapter 6. Change Rule-Based API Misuse Detection

The second cluster (i.e., represented by ExasVectorCosine) consisted of all other Exas
vector similarities, particularly those without the Indicator- similarities ranging from
~ 36.8 — 42.2%.

Based on these visual observations, we hypothesized that

1. Exas vector similarities tended to perform better than non-vector-based similarities
(i.e., AStarGED, NodeSimilarityOpt, HungarianGED, and HungarianMCS) for both
conservative precision and recall in the MUBench-on-MUBench setting;

2. Indicator-similarities tended to perform best for the conservative precision in the
MUBench-on-MUBench setting;

We validated whether these differences are significant by applying the Wilcoxon-Mann-
Whitney rank sum test with Bonferroni correction and computed the effect size using
Cliff's § for the conservative precision (cf. Table 6.3) and the recall (cf. Table 6.4).

Using statistical tests for the conservative precision in Table 6.3, we confirmed the first
hypothesis that AStarGED, NodeSimilarityOpt, HungarianGED, and HungarianMCS had
significantly lower conservative precision than all Exas vector similarities. All non-Exas
vector-based similarities had a large negative effect size compared to the Exas vector ones
and thus confirmed the observation from Figure 6.3b. According to the second hypothesis,
the statistical test determined significant differences between Indicator-based Exas vector
similarities and non-Indicator-based ones with small to medium effect size. Thus, we
could confirm the second hypothesis as well.

Based on the statistical analysis of the recall in Table 6.4, we also confirmed the first
conjecture for the recall comparisons. Particularly, all non-Exas vector-based similarities
had significantly lower recall than the Exas vector-based ones depicted by a large negative
effect size. Note that we also observed some significant differences among the Exas vector
similarities (e.g., ExasVectorSplitCosine and ExasVectorCosine). These results were
more sporadically than regularly, and the computed effect sizes were negligible. Thus, we
concluded that these differences were a fragment of randomness.

MUBench-on-AU500: In Figure 6.4, we depict the results when applying the rules
inferred from MUBench on AU500 with different similarity measures and thresholds. Sim-
ilarly to the MUBench-on-MUBench settting, we observed an almost constant behavior in
the threshold interval of [0,0.5] apart from AStarGED and NodeSimilarityOpt.

Another similarity was the increase in the relative precision (cf. Figure 6.4a) at threshold
0.6, using the Exas vector-based similarities. This increase caused high mean values rep-
resented by ExasVectorCosine (= 92.9%) and APIIndicatorExasVector (~ 92.1%) '°.
The Split-based Exas vector similarities ranged between ~ 64.1 — 71.5% at threshold 0.6,
represented by APIIndicatorExasVectorSplit (& 68.6%). Non-Exas vector similarities
obtained lower (i.e., < 18% at threshold 0.6) or no results at all since no rule had been
found to be applicable represented by AStarGED, HungarianGED, and NodeSimilarityOpt.

Again, the high relative precision was accompanied by a drop in the recall (cf. Fig-
ure 6.4c). The best-performing similarity measures were Split-based Exas vector similar-
ities represented by APIIndicatorExasVectorSplit (= 3.6%)'7. This observation indi-
cated a trend towards the -Split-similarities but with a very low recall.

Ysimilar but not depicted IndicatorExasVector (= 92%), ExasVectorLiNorm (=~ 91.5%), APIExasVector-
Cosine (=~ 90.9%), and APIExasVectorLiNorm (= 87.7%)

similar but not depicted IndicatorExasVectorSplit (= 3.6%), ExasVectorSplitCosine (= 3.4%), and
APIExasVectorSplitCosine (=~ 3.4%)

168

6.5. Validation

(a) Relative Precision (b) Conservative Precision
1.0 1.0
0.8 0.8
c
< 2
2 5
20.6 206
s 2
2 g
&04 £04
S 5
8
0.2 0.2
P S S P PONNE =it v

0.0 0.0/ . i
0.0 0.1 02 03 04 05 06 0.7 0.8 09 1.0 00 0.1 02 03 04 05 06 07 08 09 1.0
> threshold > threshold

(¢) Recall
1.0

0.8

0.6

recall

0.0’ .
0.0 01 02 03 04 05 06 07 08 09 1.0
> threshold

—— APlIndicatorExasVector —m—- AStarGED ---#-- HungarianGED
--o-— APlIndicatorExasVectorSplit ---a-- ExasVectorCosine ---@-:- NodeSimilarityOpt

Figure 6.4.: Mean assessment values using different similarity measurements and thresholds
for applicability check in the MUBench-on-AU500 setting.

169

0LT

Table 6.5.: Comparison of different Similarity Measurements for the Conservative Precision of RuDetect
setting at threshold = 0.6

in the MUBench-on-AU500

= 1] =1 =
Z 2 z % e g g 3 = g £ £
g 2 z 2 5 5 £ S = = a o < < =)
2 g 2 £ A A S =) 2 = 9 2 2 =
8 8 3 3 g 2 g =2 z] <) = g % g
> > > >] 5 Q S) 9 8 = E = <) =
2 2]] 2 = = S i E E £ £ g 8 kel
5 5 5 £ 5 5 : 4 2 g - = &
< < < < < < < € <] <3 3] jami ja=] = = Z
APIExasVectorCosine - X X X X X > /051 X X X X >v/048 > /048 X X > v0.51
APIExasVectorL1Norm X - X X X X > /048 X X X X >v/046 > v/0.46 X X >v/048
APIExasVectorSplitCosine X X - X X X > /0.66 X X X X >v/0.63 > v/0.63 X X > /0.66
APIExasVectorSplitL1Norm X X X - X X > /0.63 X X X X >v06 >Vv06 X X > /0.63
APIIndicatorExasVector X X X X - X >v049 X X X X >v047 > /047 X X >v049
APIIndicatorExasVectorSplit X X X X X - > V067 X X X X >v/0.64 > v/0.64 X X > V0.67
AStarGED <V-051 <v/-048 < V/-0.66 <v/-0.63 <v-049 < /-0.67 - < V/-051 <v/-048 < V/-0.65 < v/-0.62 X X </-055 < /-07 -
ExasVectorCosine X X X X X X >v051 - X X X >v048 > /0.48 X X >v051
ExasVectorL1Norm X X X X X X >v048 X - X X >v046 > /0.46 X X >v048
ExasVectorSplitCosine X X X X X X > V065 X X - X >v/0.62 > v/0.62 X X > V0.65
ExasVectorSplitL1Norm X X X X X X >v/0.62 X X X - >v059 > v0.59 X X >V0.62
HungarianGED <v-048 < /-046 < /-0.63 <V-06 <v/-047 < /-0.64 X </-048 < /-046 < /-0.62 < /-0.59 - X < /-053 < V/-0.67 X
HungarianMCS <V/-048 < /-046 < /-0.63 <V/-06 <v/-047 < /-0.64 X </-048 < /-046 < V/-0.62 < /-0.59 X - < V/-0.53 < /-0.67 X
IndicatorExasVector X X X X X X > /0.55 X X X X >v0.53 >v/053 - X > V055
IndicatorExasVectorSplit X X X X X X >v0r X X X X > V067 >v/0.67 X - >V07
NodeSimilarityOpt <V/-051 <v/-048 < V/-0.66 </-0.63 <v-049 < /-0.67 - < V/-051 <v/-048 < V/-0.65 < /-0.62 X X </-055 < /-07 -

0190939(T 9SNSIIN [V Poseg-ony a8uey) 9 1oder)

TLT

Table 6.6.: Comparison of different Similarity Measurements for the Recall of RuDetect in the MUBench-on-AU500 setting at threshold =

0.6
o g)

= 5 n -

T B s 3 . : z

g 5 O 3 E E g 5 o

= () () o - —
Z z = S = = . g 8 g S g £
3 3 & 5 2 2 E s < Z 8 5 5
- S N - B : 2 &2 2 2z =z 5z %
g g g 3 S S 2 = 2 @ O = 5 5 E
> = = = = = a 3 3 3 3 = E <5} <) =
) [2 2 S 2 &) B3] B3] B3] B3] = & = 5 Ei
5 K % % El El = = =4 = = g g 5 Z B
= = = = = =) 2 2 2 2 % & S S 3
& [y ~ [~ [& g g g g = E g <! 3
< < < < < < < &) <] <] = = = = = Z.
APIExasVectorCosine - < V/-045 < v/-0.38 X <v/-048 > /051 X X </-042 < /-037 >v044 > /044 X <V/-05 >v051
APIExasVectorL1Norm X - < V/-048 < v/-041 X </-051 >v048 < v/-0.23 <v/-02 <v/-045 <v-04 >v042 >v/042 </-028 </-0.53 > /048
APIExasVectorSplitCosine > /045 > /048 - X >v04 X > /0.66 X X X >v0.08 >v0.59 > v0.59 X X > /0.66
APIExasVectorSplitL1Norm >v0.38 > v/041 X - >v/037 <v/-01 >v/0.63 X X X X >V/0.56 > v/0.56 X X > /0.63
APIIndicatorExasVector X X </-044 < /-0.37 - < V/-047 >v/049 < V/-021 <V/-018 <V/-042 <v/-037 >v/043 >v/043 </-026 <v-049 > /049
APIIndicatorExasVectorSplit > v0.48 > v/0.51 X >v0.1 > v/047 - > V/0.67 X X X >v011 >v06 > v/0.6 X X > /0.67
AStarGED <V-051 < /-048 < /-0.66 <v-0.63 <v-049 < /-0.67 - < V/-051 < /-048 < /-0.65 < v/-0.62 X X < /-0.55 < V/-0.7 -
ExasVectorCosine X >v0.23 X X >v0.21 X >v0.51 - X X X >v/044 > /044 X X >v0.51
ExasVectorL1Norm X > /0.2 X X >v0.18 X >v048 X - X X >v042 > v/042 X X >v/048
ExasVectorSplitCosine >v042 > /045 X X >v042 X > /0.65 X X - >v/006 >v058 > v/0.58 X X > /0.65
ExasVectorSplitL1Norm > v/0.37 >v04 < /-0.08 X >v037 </-011 > v/0.62 X X < /-0.06 - >v/055 > V0.55 X </-012 > v/0.62
HungarianGED <v-044 < /-042 < /-059 < /-056 < /-0.43 < v-0.6 X <v/-044 < V/-042 </-058 < /-0.55 - X <v/-048 < v/-0.62 X
HungarianMCS <v-044 < v/-042 < /-059 < /-056 < /-0.43 < v-0.6 X <v/-044 < /-042 </-058 < V/-0.55 X - < V/-048 < v/-0.62 X
IndicatorExasVector X >v0.28 X X >V0.26 X > V0.55 X X X X >v/048 > /048 - X > V/0.55
IndicatorExasVectorSplit >v05 > v/0.53 X X >v049 X >vor X X X >v012 > v/0.62 > v/0.62 X - >V/07
NodeSimilarityOpt <V-051 < /-048 < /-0.66 <v-0.63 <v-049 < /-0.67 - < V/-051 < /-048 < /-0.65 < v/-0.62 X X < /-0.55 < v/-0.7 -

uonepIifeA '¢'9

Chapter 6. Change Rule-Based API Misuse Detection

Moreover, the low recall indicated that the high precision was the result of only a few
correct decisions (i.e., a low number of true positives). We validated the true positives by
its mean number for the most precise (i.e., relative precision) similarities, resulting in mean
values ranging from 0.5 — 1 at threshold 0.6, and thus, single rules caused a high precision.
From Figure 6.4b, we also derived the hypothesis that AStarGED, NodeSimilarityOpt,
HungarianGED, and HungarianMCS (last one not depicted) performed worse than the Exas
vector-based similarities. Among the Exas vector-based similarities, the behavior along
an increasing threshold was very similar. At threshold = 0.6, their conservative precision
ranged between 45.3 and 50.7%. Moreover, we observed a massive drop at threshold = 0.8,
showing similarities to the MUBench-on-MUBench experiment at threshold 0.9 for the
conservative precision (cf. Figure 6.3b).

Based on this observation, we hypothesized that Ezxas vector-based similarity performed
better according to the precision than non-Ezxas vector-based similarities at threshold = 0.6.
In contrast to the MUBench-on-MUBench setting, we could hardly conjecture differences
in the recall among the similarity measures.

We depict the results of statistical tests for the conservative precision in Table 6.5 and
for the recall in Table 6.6. According to the conservative precision, the results strongly
confirmed our conjecture that non-Exas vector-based similarities performed worse than
Exas vector-based ones. All differences in Table 6.5 between these two groups were signif-
icant and had a large negative effect size. Among the Exas vector-based similarities, no
significant differences were found.

Regarding the recall, we observed two results. First, AStar, NodeSimilarityOpt, Hun-
garianGED, and HungarianMCS had a significantly lower recall than all other Exas vector-
based similarity measures with a medium to large negative effect size. Second, the -Split-
similarity measures had a significantly higher recall than the non-Split-variants (ex-
cept ExasVectorCosine, ExasVectorLiNorm, and IndicatorExasVector) with medium
to large effect sizes. This second result was not obvious in Figure 6.4c as the effect size
was not measured between the mean values but rather between the different ranking per-
formances of the similarity measures. Taking this into account, we had to conclude that
the effect on the mean values by the -Split-similarities was negligible.

Implications In summary, we found that
1. there was a sweet spot between the (relative) precision and the recall around the
threshold = 0.6 using the threshold-based applicability check;

2. in all experiments, the Exas vector-based similarities performed better than non-Exas
vector-based ones;

3. in the MUBench-on-MUBench experiment, the best-performing similarities applied
the Indicator-variant, while in the MUBench-on-AU500 experiment, the best-per-
forming ones regarding relative precision used the Indicator-option and regarding
recall use the -Split-option;

4. all similarities currently suffered from a very low recall, indicating that only a few
positive examples provided high relative precision.

We further denoted this with the following two insights regarding RQ D-R:

172

6.5. Validation

Insight D-13 (RQ D-R): Best setup for RuDetect

We found that RuDetect performed best (1) using a threshold-based applicability check
at threshold = 0.6, (2) an Ezas vector-based similarity with adaptations for specific
test setups (i.e., Indicator— or -Split-)

Insight D-14 (RQ D-R): Careful selection of the threshold value when using
the threshold-based applicability check for RuDetect

When selecting the threshold of the threshold-based applicability check, we observed
that a too-low threshold typically negatively influenced precision, while a too-high
threshold negatively influenced recall.

These results imply that using the advanced similarity technique with Exas vectors intro-
duced in Section 6.3.5 was beneficial for RuDetect. Moreover, using an applicability check
has a positive effect on misuse detection, particularly applying a threshold-based applicabil-
ity check at 0.6. Additionally, using the Indicator-option, namely, using the information
that certain graph substructures are present in the AUG regardless of its frequency, is a
profound tool for improved precision during API misuse detection. This result is also in
alignment with the ALP technique suggested by Kang and Lo [KL21], who used charac-
teristic subgraphs to improve misuse detection. Moreover, the -Split-variant, namely,
splitting into API-specific subgraphs, seems to positively influence the generalization of
change rules since we observed positive effects on the recall in the MUBench-on-AU500
experiment. However, these effects were very small.

6.5.3. Impact of the Context of the Change Rules on Misuse Detection

In this section, we present the evaluation on testing the impact of adding context to the
change rules, particularly by using the single-hop-addition as described in Section 6.3.2.
In detail, we compared change rules without context (i.e., without applying single-hop-
addition) to those with context. Thus, we target RQ D-R.

Methodology We conducted a similar procedure as described in Section 6.5.2. In detail,
we generated change rules without context, which was possible for the same 89 change
rules inferred from MUBench as described in Section 6.5.1. Afterward, we computed the
similarity values using the 16 similarity measurements between these rules and the single
usages of MUBench and AU500. Then, we applied the threshold-based applicability check
using the different threshold values from the interval [0, 1] in 0.1 steps. We computed the
relative and conservative precision, as well as recall, as described in the previous experiment.
We applied the same ground truth notion as discussed previously, namely, the pre-commit
version of MUBench was applied as an API misuse while the post-commit version was
applied as a correct usage, and for AU500, the labeled data was used as ground truth.
After computation, we calculated the difference in the mean assessment values with context
by those using rules without context. This way, we analyzed whether there exist differences
among both variants. We validated whether these differences were significant by conducting
once more the Wilcoxon-Mann-Whitney rank sum test [Kan06, p. 101] with Bonferroni
correction [Abd07] and computed the effect size using Cliff’s 6 [HK99, KMB*17].

173

Chapter 6. Change Rule-Based API Misuse Detection

(a) Difference Relative Precision (b) Difference Conservative Precision

0.75
s
5 0.50 :g
N [
8 025 & 025
s 2
£ 0.00k%: T 0.00
© @ i
] @ %,
o025} aaeiaen 5—0.25 (o=
it [EEE ST . ©
e R =
—0.50 & —0.50
—0.75 —0.75
—1.00 —1.00
0.0 0.1 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 0.8 09 1.0
> threshold > threshold
(c) Difference Recall
1.00
0.75
0.50
— 025
[0}
g
= 0.00
o
©-0.25
—0.50
—0.75
—1.00
0.0 0.1 02 03 04 05 06 07 08 09 1.0
> threshold
—— APlIndicatorExasVector —®—- AStarGED ¢+ HungarianGED
--=- APlIndicatorExasVectorSplit e+ ExasVectorCosine --@-- NodeSimilarityOpt

Figure 6.5.: Difference between mean assessment values between rules with context sub-
tracted by rules without context using different similarity measurements and
thresholds for applicability check in the MUBench-on-MUBench setting.

174

6.5. Validation

Table 6.7.: Comparison of the conservative precision and the recall between Change Rule
with and without context at threshold = 0.6 in the MUBench-on-MUBench
setting. For AStarGED no data for testing was available.

N 8 A

£ 2 5 % s P

g 8 g 3) a,

£ g § 3 %3 é 25 L @
g 2 2 270 o E S 5 g 8 3
2 . 2 CO g 2 z E o om 22 Q
2 2 g g B H 8 a = 233 2 3 B
3) 3 g 8 8 2 e & 2 5 = § B z
> > > > T = A 3 9] 3 S g g H H= =
Z Z Z 2 £ 5 @ = § 8 £ 5 %% z
]]] T 855 o0 .3 3 3 g 2 5 2 2 =
. 2 I 5 S L E 7 7 7 2 % £ S z
With vs. ~ ~ ~ A LA B S g g T E E © T g
Without Context <t < < < <« < < (| = = Hq @O £ 8 5 Z
cons. precision X >v/049 <v-03 >v04 X X - X >v/049 <v/-028 >v041 X X X X </-017
recall X >v/0.59 X >v/054 X X X > /058 X >V/057 X X X X </-017

Results We discuss the results separately for the two setting, MUBench-on-MUBench and
MUBench-on-AU500, on which the change rules were applied.

MUBench-on-MUBench: We depict the differences in the mean values for MUBench
in Figure 6.5 for the characteristic similarities. A detailed depiction of all differences and
the actual values can be found in the appendix (cf. Section A.4). These figures represent
the difference of each assessment value by subtracting the value obtained with context from
the value obtained without context if values for both variants exist. Thus, a positive value
(i.e., lying in the upper, blue area of Figure 6.5) indicates a positive effect of the context,
while a negative one (i.e., lying in the lower, bright blue area) indicates a negative effect.

When considering the relative precision (cf. Figure 6.5a), we observed that many sim-
ilarities perform worse with context in the threshold interval [0,0.6] than without. Two
exceptions were AStarGED and NodeSimilarityOpt, which performed better in the inter-
val [0.1,0.3]. Moreover, some similarities were close to zero, meaning there was almost
no difference between the means, such as HungarianGED (i.e., for threshold > 0.3). We
found that almost all Exas vector-based similarities performed equal or worse, ranging in
the interval [0, 0.6] between +0.5% (i.e., APIIndicatorExasVector at threshold = 0.6) to
—34.4% (i.e., ExasVectorCosine at threshold = 0.6). For thresholds > 0.6, more similari-
ties benefited from the context regarding the relative precision. We analyzed this behavior
and found that this was mainly caused by having a small number of applicable rules or
none left in the without context setting.

When observing the conservative precision (cf. Figure 6.5b), the results were more mixed
among the similarity measures. Particularly, in the interval [0.2, 0.6], the results were con-
stant apart from AStarGED and NodeSimilarityOpt. We observed that some Exas vector-
based similarities using L1-norm (i.e., not depicted here) obtain better results through the
context ranging from 22.0 — 33%, while there were mixed results for Indicator-based
similarities and worse results for others (at most —19.5%).

Finally, in Figure 6.5¢, we observed a mainly positive effect on the mean recall values for
almost all similarity measures. The only exceptions were HungarianGED, HungarianMCS
(not depicted), and partially NodeSimilarityOpt, having a maximum loss in recall of
~ 4.6%. The other similarities ranged from 0 — 19.8% recall improvement, depending
on the threshold. At the threshold = 0.6, the Exas vector-based similarities obtained a
recall between 0.2 — 14.8%. All non-Exas vector-based variants were below or were slightly
negative, being close to zero.

Based on these observations, we hypothesized that

175

Chapter 6. Change Rule-Based API Misuse Detection

(a) Difference Relative Precision (b) Difference Conservative Precision

0.75

s
5 0.50 :g
N [
8 025 & 025
s 2
2 0.00p e o g 0.00F°
& e 2 b
[3] 0
- -0 . 502
= \ o
2 \ 3
—0.50) T —0.50
\ S
\
—0.75 m —0.75
—1.00 —1.00
0.0 0.1 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 0.8 09 1.0
> threshold > threshold
(c) Difference Recall
1.00
0.75
0.50
— 025
[0}
g
= 0.00
o
©-0.25
—0.50
—0.75
—1.00
00 01 02 03 04 05 06 0.7 08 09 1.0
> threshold
—— APlIndicatorExasVector —®—- AStarGED ¢+ HungarianGED
--=- APlIndicatorExasVectorSplit e+ ExasVectorCosine --@-- NodeSimilarityOpt

Figure 6.6.: Difference between mean assessment values between rules with subtracted by
rules without context using different similarity measurements and thresholds
for applicability check in the MUBench-on-AU500 setting.

176

6.5. Validation

Table 6.8.: Comparison of the conservative precision and the recall between Change Rule
with and without context at threshold = 0.6 in the MUBench-on-AU500 setting.
For AStarGED and NodeSimilarityOpt no data for testing was available.

o =
£ | & =
E z Zz 8 g o g 5
R Q 2z g £ 5 o %2
Z Z = z 5 5 . g 2 g g gz
S 3) a8 g 2 g Q 2) g g &
5 B 5 g | 2 Z 2, 28 8 A % &
S g] S B 3 &} Q) oo = < T g
o 0 o 5] = = = = =] 1 = "] =
> = = > = = A/ 3 3 3 g = ¢ = g o=
2 'z 2 2 2 S d < g 5 £ = = 5 5
] & PR = S S S S = = 2 &
_ g & g 2 E & 2 = 2 7 2 2 £ £ g
With vs. o ~ & A & & g g B4 g 2 E < < g
Without Context < = < < < < < 5] & = <5 === = = Z
cons. precision X X >V/056 >v053 X >V/056 - X X >v/057 >v054 X X X >v059 -
recall X X >v/045 >v/042 X >/045 - >v023 >v/023 >/046 >v044 X X >/028 > /048

1. rules with context had a mixed effect on the precision compared to rules without
context

2. rules with context had a positive effect on the recall compared to rules without context

We validated these conjectures with the Wilcoxon-Mann-Whitney rank sum test together
with the effect size using Cliff’s ¢ and depict the results in Table 6.7.

Regarding the first hypothesis, we found significantly better conservative precision for
rules with context for all Exas vectors using the L1Norm having a medium to large effect
size. NodeSimilarityOpt performs worse, which, however, has to be taken with a grain of
salt, as the mean value of the absolute number of true positives using rules without context
for this similarity at threshold = 0.6 was very low (i.e., ~ 0.3). Moreover, we observed a
worse performance of the -SplitCosine similarities with medium effect size.

According to the second conjecture, we could confirm this for the Exas vectors using the
LiNorm, obtaining a large effect size. Note that we also found a significantly worse recall
for NodeSimilarityOpt, which, as discussed before, was mainly caused by a very small
number of true positive results.

For all other similarities, no significant difference had been found neither in the difference
of the conservative precision nor in the difference of the recall.

MUBench-on-AU500: In Figure 6.6, we present the differences when comparing rules
with or without context on the AU500 dataset based on the characteristic similarities (cf.
detailed results in the appendix Section A.4). Visually, the results indicated that rules
with context performed strongly better or only with a few losses in the precision for certain
similarities in the interval [0,0.7]. An exception to this observation was AStarGED, with
a huge loss at threshold = 0.4, after which the with context variant did not produce any
positive results. Thus, we could not compute the relative precision difference for AStarGED.
Nevertheless, the high precision for this similarity in the without context case was mainly
caused by very few positive examples, and for threshold > 0.5, there were no positive
examples available.

In more detail, in Figure 6.6a, all -Split-variants represented by APIIndicatorExas-
VectorSplit had an improved relative precision ranging in the interval [0,0.7] between
41.4 and 57.3%. Those similarities performing worse in the with context case did so in
the interval [0,0.7] up to 15.6% loss in relative precision. For threshold > 0.8, only little
differences were apparent. This result was also consistent with the drop in the relative
precision observed in the previous experiment (cf. Figure 6.4a).

For the conservative precision (cf. Figure 6.6b), we only observed negative mean values

177

Chapter 6. Change Rule-Based API Misuse Detection

for the similarities AStarGED, HungarianGED, and NodeSimilarityOpt'®. Apart from this
single exception, all Exas vector-based similarities represented by APIIndicatorExasVec-
tor and APIIndicatorExasVectorSplit benefited from rules with context, obtaining a
gain from 0.4 to 43.9% in the interval [0,0.7]. In general, the -Split-variants represented
by APIIndicatorExasVectorSplit benefited most from context (i.e., between +41.3%
and +43.9% in the interval [0,0.7]). Once again, beyond threshold > 0.8, no apparent
differences were observable.

When considering the recall differences (cf. Figure 6.6¢), we observed mainly a posi-
tive effect using the context. In detail, all Exas vector-based similarities represented by
APIIndicatorExasVector and APIIndicatorExasVectorSplit had a higher recall with
than without context, ranging up to 10.8%. For non-Exas vector-based similarities rep-
resented by AStarGED, HungarianGED, and NodeSimilarityOpt, we observed only small
losses up to —2.3%. However, at the threshold = 0.6, which typically tended to be a sweet
spot between precision and recall, these values dropped (i.e., range between 0.03 — 1.8%)
for the Exas vector-based similarities.

Thus, we conjectured a positive effect for ~-Split-similarities at threshold = 0.6 for the
conservative precision, while we could not visually conjecture relevant differences for the
recall at this threshold.

In Table 6.8, we depict the statistical results that confirmed the large positive effect
of the contert within rules using -Split-similarities on the conservative precision. Ad-
ditionally, the test revealed significant differences in the recall for the -Split-similarities
having a medium to large effect size. For ExasVectorCosine, ExasVectorL1Norm, and
IndicatorExasVector, we found a significant difference with a small to medium effect
size. Recall that the effect size was mainly a result of the ranking and not the actual
difference in the means. Having this in mind, we concluded that the effect on the mean
difference in the recall is small.

Implications In summary, we found that

1. using context had mixed effects on the precision depending on the dataset and the
applied similarity measurement;

2. using context had a mostly positive effect on the recall even though its effect was not
large regarding the mean value.

We summarize this as insight for RQ D-R:

Insight D-15 (RQ D-R): Small but positive effect of change rules with con-
text on the recall of RuDetect

When using change rules with context, we observed a significantly better recall, partic-
ularly for the best-performing Ezxas vector similarities (cf. Insight D-13), however,
with small effect on the mean recall. We found no significant effect on the precision.

These results imply a positive effect of using the context on the recall of the misuse
detection. Note that this can sound counterintuitive since we expect that change rules
with context were larger in terms of nodes and edges and thus more specific. A more
specific rule, however, should hardly cover more cases in opposition to what is observed by

8also negative but not depicted: HungarianMCS and APIExasVectorCosine at 0.8

178

6.5. Validation

a larger recall. A potential explanation for this phenomenon is the similarity measurement,
which can cope with larger rules. Particularly, the Exas vector-based similarities measure
not only the shared features but also incorporate the size of all present features in both
compared graphs (cf. featureg;, in Equation 6.4). That means a larger change rule can
cause an increase of the similarity sim(aug,,,aug,) between an AUG aug, and its related
change rule aug,, — augs. In combination with the threshold-based applicability check
(cf. Equation 6.1), more change rules become applicable and, thus, increase the chance of
finding more misuses.

Having in mind the previously observed low recall, having a tool to improve recall without
severely harming precision is beneficial. However, the context tends to have a small effect
considering the mean recall. Moreover, we also observed that having an applicability check
as well as a powerful similarity measurement was a necessary requirement to achieve a good
performance.

6.5.4. Impact of the Applicability Check on Misuse Detection

This section presents the results of applying the different variants of applicability checks
presented in Section 6.3.3. Particularly, we compared the threshold-based check (cf. Equa-
tion 6.1) with the control-group-based check (cf. Equation 6.2).

Methodology Additionally to the computation of the assessment values (i.e., relative and
conservative precision as well as recall) using the threshold-based applicability check (i.e.,
Equation 6.1), we computed these values also using the control-group-based applicability
check (i.e., Equation 6.2). Particularly, we used the MUBench dataset [ANNT16] as the
control group since we could derive a set of known misuses (i.e., pre-commit source code)
and correct usages (i.e., post-commit source code) from it. Based on this control group, we
obtained a set of change rules denoted as applicable according to Equation 6.2 and which
we applied to the misuse datasets MUBench [ANNT16] and AU500 [KL21] as discussed be-
fore as MUBench-on-MUBench and MUBench-on-AU500 settings. This procedure implied
using the same 16 similarity metrics using the change rules with context only. Since the
control-group-based applicability check did not require a threshold, we only computed the
assessment values once for each similarity (i.e., the means over all applicable change rules
depending on the similarity metrics). Based on the previous results, we compared control-
group-based applicability only to threshold-based applicability at threshold = 0.6. The
comparison encompassed the difference in the number of change rules found to be applicable
as well as the assessment values (i.e., relative and conservative precision as well as recall).
For the number of applicable change rules, we collected all rules that were applied at least
once on the respective misuse dataset (i.e., MUBench and AU500). Similarly to previous
experiments, we validated whether the differences in the assessment were significant (i.e.,
using the Wilcoxon-Mann-Whitney rank sum test with effect size using Cliff’s 9).

Results First, we discuss the number of applicable rules found by each applicability check.
Note that using the control-group-based check, the number of applicable rules was consis-
tent independently on which misuse dataset these rules were applied for. This charac-
teristic was because the applicability was only decided based on the control group. For
the threshold-based check, the number of applicable rules varied depending on the misuse
dataset since each rule was tested individually on each API usage. We present the results

179

Chapter 6. Change Rule-Based API Misuse Detection

in Figure 6.7 for applying rules on MUBench (cf. Figure 6.7a) and AU500 (cf. Figure 6.7b).
These bar plots depict the proportion of all 89 inferred change rules (cf. Section 6.5.1).

Number Applicable Rules: We observed that in most cases, the threshold-based check
found more applicable rules compared to the control-group-based one. The only exceptions
represented the application of the AStarGED and NodeSimilarityOpt similarity, for which
the threshold-based check found no applicable rules at all.

The threshold-based check found the largest number of applicable rules using Hungari-
anGED and HungarianMCS for both analyzed misuse datasets. For MUBench, we found that
the Exas-vector-based similarities were almost consistent among the -Splitvariants (i.e.,
76.4 — 79.8%) and slightly less for all other Exas vector-based entries (i.e., 64 — 66.2%).

The control-group-based check had the largest proportion of applicable rules using the
Indicator-Exas-vector similarities (i.e., between 51.7 and 55.1%). For the other similar-
ities, the proportion ranged between 11.2% and 23.6% or obtained no applicable rules at
all (i.e., HungarianGED, HungarianMCS, and NodeSimilarityOpt).

Second, we compared the assessment values between both applicability checks by con-
sidering the mean values of relative and conservative precision as well as the recall for
MUBench-on-MUBench (cf. Figure 6.8) and MUBench-on-AU500 (cf. Figure 6.9). These
boxplots summarize the assessment values among all similarities. We omitted the detailed
view due to visibility reasons. A detailed distinction between the similarities can be found
in the appendix (cf. Section A.3.2). Note that the mean is represented by x while the
median is given by a horizontal line within the boxplot.

MUBench-on-MUBench: When comparing both checks based on MUBench, we ob-
served that the mean value of the relative precision of the control-group-based check (cf.
Figure 6.8a) was slightly larger than the one using the threshold-based applicability check.
Nevertheless, the distribution of the threshold-based check had a larger variance, making
it hard to conjecture general trends. For conservative precision and recall (cf. Figures 6.8b
and 6.8c), the threshold-based variant had a larger mean value than the control-group-
based check. Even though the threshold-based check was once again accompanied by a
larger variance and the control-group-based check had some good-performing outliers, we
hypothesized a benefit in conservative precision and recall when applying the threshold-
based due to the difference in the mean values.

MUBench-on-AU500: For AU500, we observed almost identical boxplots for both ap-
plicability checks for the relative precision (cf. Figure 6.9a). Similar to the results observed
in the MUBench-on-MUBench setting, the mean values and distribution of the threshold-
based were larger for conservative precision and recall compared to its counterpart (cf.
Figures 6.9b and 6.9¢). Thus, we expected a positive effect of applying the threshold-based
check for AUB00 as well. However, the effect on the recall seemed to be very small, and
thus, we also expected a small effect size.

Statistical Differences in both Settings: We validated whether the difference in
conservative precision and recall were significant (i.e., depicted in Table 6.9 for MUBench-
on-MUBench and Table 6.10 for MUBench-on-AU500). In this case, we distinguished
among the different similarities individually. For both datasets, we observed a significant
difference among the applicability checks except for HungarianGED and HungarianMCS (i.e.,
for both datasets) and some Indicator-variants. Note that we did not obtain a sufficiently
large number of positive results using NodeSimilarityOpt. For the remaining similarity
measures, in all but two cases, the threshold-based had a small to large positive effect
on the conservative precision. The only exceptions were found for AStarGED with a small

180

6.5. Validation

100%
Applicability Check

I threshold-based

[T control-group-based

80%
60%
40%
20%

0%

0 o9 oy et oo €D © " & W«
C O(LX\\\O‘\\ & S\\‘Q\A“é;\as e\%zw S&;‘a G?”&O‘C’OS\(LX‘\\C?‘ \9 C’OS\’Q\A\\\O‘ (\a“ a0 “‘\éﬁa Qe“-‘c’&o‘s\)) (\W
of 9 Ne¢ e c'ﬁ <ot0P, (5‘) W0 % 0‘ a
?\EP\?\?’*\E‘KA 23 :5\1 P\P\\ \ 3‘ &, e o 3?, Ec etk Y \,\ ‘ o2t o 6

- 1@

Percentage of all inferred Rules (i.e., 89)

opt

Similarity Measurement

(a) on MUBench
100%

Applicability Check
B threshold-based
[1 control-group-based

80%
60%
40%
20%

0%

OC‘o(\,X“om\Cos\ \Aﬂom\qec‘o&o&Qg‘a‘GE CO (L \\0‘“\(,0‘—" X“o(?\\a“ (\a“\\j\cas\| &0 (S?\\‘ \50‘)‘

Percentage of all inferred Rules (i.e., 89)

NS \a\\ N %35 PRl KO\“ Cxo ‘5\3 59\ T 0‘ \| "° v
P\\j\E ?\E\E35 1\2\5\| |>\\>\\‘\X Ca& o E"*% o 3\| o % ‘

Similarity Measurement

(b) On AU500

Figure 6.7.: Difference in the number of distinct applicable rules using threshold-based and
control-group-based applicability check

181

Chapter 6. Change Rule-Based API Misuse Detection

1.0 1.0
X .
0.8 0.8 H
o 3
f= ‘0
.8 .g
506 50.6 !
s H i
204 S04
—_ j =
o
0.2 ©0.2
X
0.0 threshold-based control-group-based 0-0 threshold-based control-group-based
Applicability Check Applicability Check
(a) relative precision (b) conservative precision
1.0
0.8
_06 ¢
“®
] .
0.4 H
0.2 i
x

0.0

threshold-based control-group-based
Applicability Check

(c) recall

Figure 6.8.: Comparison the assessment values between Change Rules using threshold-
based applicability check and control-group-based check in MUBench-on-
MUBench setting.

Table 6.9.: Comparison of the conservative precision and the recall between Change Rules
using threshold-based applicability check and control-group-based check in the
MUBench-on-MUBench setting. For NodeSimilarityOpt no data for testing
was available.

APIExasVectorCosine
APIExasVectorL1Norm
APIExasVectorSplitCosine
APIExasVectorSplitL1Norm
APIIndicatorExasVectorSplit
ExasVectorCosine
ExasVectorL1Norm
ExasVectorSplitCosine
ExasVectorSplitL1Norm

AStarGED

threshold vs.
control-group

cons. precision > v0.62
recall > /0.63

% E| IndicatorExasVector

> /0.

>v0.62 > /0. > /0.

> /0.63

>v/0.34 <v/-024 >/063 >v058 >v/07 >v06
X <v/-024 >v063 >v/06 >v071 >/0.63

% &| APIIndicatorExasVector
> B| IndicatorExasVectorSplit
NodeSimilarityOpt

* x| HungarianGED
< | HungarianMCS

vV Vv
Y
SRS
IS
hA)
vV Vv
SS
S o
o o
o @

182

6.5. Validation

1.0 1.0
0.8 X 0.8
o
s @
= O
80.6 £0.6
a8 2
v B
304 S04
5 3 .
e <]
0.2 S0.2 |
X
0.0 threshold-based control-group-based 0.0 threshold-based control-group-based
Applicability Check Applicability Check
(a) relative precision (b) conservative precision
1.0
0.8
3 :
o \ §
0.4 :
: H
0.2 3 ;
0.0 | X
: threshold-based control-group-based

Abpplicability Check

(c) recall

Figure 6.9.: Comparison the assessment values between Change Rules using threshold-
based applicability check and control-group-based check in MUBench-on-
AU5’00 setting.

Table 6.10.: Comparison of the conservative precision and the recall between Change Rules
using threshold-based applicability check and control-group-based check in the
MUBench-on-AU500 setting. For NodeSimilarityOpt no data for testing was

available.
g E i

. g z g g 5 E 2

e 5 9 3 8 8 £ S “ @

Z = = = = z Z 8 g =

Z B 2 2 4 4 Z Z = =N = =

s i3 g 2 = = 8 = 2, 2 @ O Z 2 =

g g 8 8 g g 2 2 @ a2 g = g i 3

= > > > = = a 3 g g S £ & = S

n » n 0 S S = B 5 5 £ =2 = o 5 g

g 2 2 8 L= L= [T} 3] 5] 5] 5 7 2 L =

g 2)) S = E; = = = Z % 5 3 R
threshold vs. E = = = = = & g] g g ERE! B k<] 3
control-group < - - < < < < 5] = = H = = = =z
cons. precision >v05 >v042 > /0.67 > /0.62 X >v015 < V/-0.15 >v05 >v045 >v0.65 >v059 X X >v011 > /0.15 -
recall > v/0.48 X >v/067 >v058 <v/-0.13 X <v/-015 >v/048 >v037 >v/064 >v/054 X X X X

183

Chapter 6. Change Rule-Based API Misuse Detection

negative effect and APIIndicatorExasVector with no effect in MUBench-on-AU500. The
recall of the threshold-based variant had mostly a positive effect ranging from small to
large effect size depending on the dataset and similarity. Note that in the MUBench-
on-MUBench setting, among the Exas-vector-based similarities, we found no significant
difference between using Indicator-characteristic. For MUBench-on-AU500 setting, this
was similar, with the exception of APIIndicatorExasVector had a small negative effect
using the threshold-based variant and APIExasVectorLiNorm, for which we also could not
determine a significant effect.

Implications All in all, we found that

1. using the threshold-based applicability check usually found more applicable rules than
using the control-group-based check;

2. using the threshold-based applicability check usually had a positive effect on the
misuse detection with Exas-vector-based similarities in terms of conservative pre-
cision and recall than the control-group-based check with exceptions when using
Indicator-based similarities.

We summarize this as the following insight regarding RQ D-R:

Insight D-16 (RQ D-R): Positive effect of the threshold-based over the
control-group-based applicability check for RuDetect

When testing the influence of applicability checks, we found that threshold-based de-
rived more applicable rules, by which it had a typically larger conservative precision
and recall compared to the control-group based applicability check.

Our results show that the threshold-based applicability check, which assesses each rule
individually based on the respective API usage, is more beneficial than the control-group-
based approach. Having in mind that the second check requires a sufficiently large set of
misuses and correct usages, we can strengthen the argument towards the threshold-based
check, which does not require this prerequisite. Nevertheless, we observe that solely using
the applicability is not sufficient and requires a good-performing similarity measurement
for change rule-based misuse detection, particularly the Exas-vector-based similarity.

6.5.5. Comparison to the State-of-the-Art

Finally, we compared RuDetect to the misuse detector MUDetect [ANNT19b] with the
implementation available on GitHub'? as previously presented (cf. Sections 5.2.4). This
comparison targets RQ D-R.

Methodology In order to have a valid comparison with RuDetect, we applied MUDe-
tect on the same datasets using the same donor code to infer patterns. For that pur-
pose, we discussed the particular configuration when applying MUDetect in the M UBench-
on-MUBench-, the MUBench-on-AU500-, and in the AndroidCompass+-setting (cf. Sec-
tion 6.4.2). In all three settings, we measured and compared the performance (i.e., precision
and recall) of RuDetect and MUDetect.

¥https://github.com/stg-tud/MUDetect last accessed: 2024/07/16

184

https://github.com/stg-tud/MUDetect

6.5. Validation

Moreover, MUDetect, like many pattern-based misuse detectors, selects single patterns
via a ranking mechanism. Therefore, we also applied a selection scheme for change rules pro-
duced by ChaRLI for the MUBench-on-MUBench- and the MUBench-on-AU500-settings.
This procedure allowed a direct comparison of the obtained precision and recall, while
in AndroidCompass+, we conducted statistical tests among multiple patterns and change
rules used for detection.

Pattern Mining Procedure: MUDetect uses an Apriori-based Frequent Pattern Min-
ing (FPM) technique to mine frequent sub-AUGs as patterns whose violations are denoted
as API misuses. Since we inferred change rules from the MUBench dataset, we mined
patterns from MUBench (i.e., and thus in the MUBench-on-MUBench and MUBench-on-
AU500 setting) as well, namely, from the fixed version of the misuse, which we considered
as correct usages. The patterns from MUBench were selected using the minimal absolute
SUPPOIt Mingyupport,,, (cf. Section 3.5.2). We collected patterns from all method declara-
tions, and thus AUGs that were present in the respective source file containing the misuse
fix (i.e., in MUDetect, this is denoted as cross-method [ANNT19Db]). Then, we varied the
MiNsupport,,, Value from the set {5, 10, 20,40}, which we obtained by doubling the minimal
support as long as the precision of the misuse detection decreases. To avoid multiple FPM
runs among single API usage instances, we inferred the patterns once and applied the vi-
olation detection on each API usage afterward. Note that in the MUBench-on-MUBench
setting, this meant that the actual fix is part of the FPM, and thus, the patterns were
positively biased. We compensated this bias by increasing mingypport,,, by one (i.e., using
the set {6,11,21,41}).

Setting of Pattern-based Misuse Detection: For violation detection, we applied
the default violation strategy by MUDetect together with the accompanied filtering of
alternative patterns and ranking strategy [ANNT19b]. We determined the number of tp,
fp, tn, and fn and computed the precision and recall (cf. Equation 5.1 and Equation 5.2).
Note that since MUDetect had no mechanism to decide whether a pattern is applicable for
violation detection, we considered all non-violated patterns as negative results (i.e., either
tn or fn), which might negatively bias the recall compared to RuDetect.

Change Rule Selection: For the MUBench-on-MUBench and the MUBench-on-AU500
settings, we applied a selection mechanism for change rules. Recall that we observed in Sec-
tion 6.5.2 that an increasing threshold of the similarity (i.e., sim(aug,,, aug,)) between the
misuse part of the rule (i.e., aug,,) and the currently analyzed APT usage (i.e., aug,) in the
threshold-based applicability check (cf. Equation 6.1) had a positive impact on the relative
precision. Thus, we conjectured that a change rule selection based on the sim(aug,,, augy,)
was reasonable. Therefore, we selected a change rule for misuse detection by the following
two-step approach:

abs

1. Select that change rule (if available) that satisfied the applicability check (cf. Equa-
tion 6.1) with threshold € {0.6,0.7} and which obtained the largest sim(aug,, aug,),
namely, that rule whose misuse part was most similar to the actual usage.

2. In case multiple rules had the same largest sim(aug,,, aug,), we decided based on
the majority, while ties were decided towards a negative result (i.e., no misuse).

Note that in the MUBench-on-MUBench-setting, we excluded similarities sim(aug,,, aug,)
obtained by changes rules applied to their ‘own’ misuse.

MUDetect vs. RuDetect: We compared MUDetect against our technique RuDetect
using this selection scheme of rules by using the MUBench-on-MUBench as well as the

185

Chapter 6. Change Rule-Based API Misuse Detection

MUBench-on-AU500 setting. The second one represented a cross-project variant since
MUBench and AU500 did not share any common software projects. In both settings, we
applied all similarity metrics for RuDetect (cf. Table 6.2).

In the third setting, we compared both detectors using the AndroidCompass+ dataset. In
detail, we conducted the pattern mining on the clusters of fixed source files with protected
method calls, namely, those methods protected by a compatibility check (cf. Section 6.4.2).
In this experiment, the FPM of MUDetect applied the minimal relative support (cf. Sec-
tion 3.5.2) with mingsypport € {0.1,0.2} but ensuring that the absolute support minsupport,,.
was larger than 1 to avoid bias of the ground truth (cf. Section 6.4.1). For RuDetect, we
also used for the applicability check threshold € {0.6,0.7} but only applied two similarity
metrics, namely, ExasVectorCosine and APIIndicatorExasVector, both selected due to
their performance in the previous MUBench-on-MuBench and MUBench-on-AU500-setting.

Again, we denoted the API usage before the changed compatibility check as misuse
and the version after the change as correct usage. For MUDetect, we applied both sets of
patterns (i.e., obtained with mingyppors 0.1 and 0.2) for misuse detection once again with the
default violation strategy and filter and ranking mechanisms [ANN"19b]. For RuDetect,
we inferred all change rules and applied them to the misuse (i.e., before change) and correct
usage (i.e., after change) of all AUGs in the related cluster of protected methods except for
its own ground truth (i.e., we did not apply the change rule on its own misuse or correct
usage). In both variants, we tested if at least one pattern or one change rule detected a
misuse (i.e., either a tp or fp depending on the tested AUG), and if none detected a misuse,
we denoted this as a negative result (i.e., either a tn or fn depending on the tested AUG).

Once again, we assessed in the AndroidCompass+-setting the significance of different
precision and recall by applying the Wilcoxon-Mann-Whitney rank sum test [Kan06] with
Bonferroni correction [Abd07] and computed the effect size using Cliff’s § [HK99, KMB™*17].

Results We depict the best results (i.e., precision and recall) from all variants of RuDetect
and MUDetect of the MUBench-on-MUBench- and MUBench-on-AU500-settings as bar
plots in Figures 6.10 and 6.11 as well as all detailed results in Tables 6.11 and 6.12°°.
MUBench-on-MUBench: For the MUBench-on-MUBench-setting, we observed in
the lower part of Table 6.11 that the most precise result of MUDetect is at a support value
of 21 with 73.7% with a recall of 49.6%. Based on our selection scheme, RuDetect obtained
with two similarities, namely, APIIndicatorExasVector and IndicatorExasVector, large
precision. APIIndicatorExasVector obtained 93.9% (threshold = 0.6) and 98.2% (thresh-
old = 0.7), while IndicatorExasVector had a precision of 93.8% (threshold = 0.6) and
98.2% (threshold = 0.7). This high precision was accompanied by a recall of 54.9%
(threshold = 0.6) and 49.6% (threshold = 0.7) for APIIndicatorExasVector as well
as 53.1% (threshold = 0.6) and 49.6% (threshold = 0.7) for IndicatorExasVector. Thus,
both variants outperformed the best MUDetect result at support value 21, having a com-
parable recall. Note that MUDetect obtained better recall at support value 6 (i.e., 64.6%)
but with a much worse precision (i.e., 63.5%). In contrast, the ExasVectorCosine-variant
performed worse than MUDetect, having a precision of 59.4 — 59.6% but with a compara-
ble recall. All other Exas vector-based similarities obtained precision values ranging from
48.1—62.1%, while all non-Exas vector-based similarities obtained no positive results at all.

20 A more detailed view, for instance including the absolute number of #tp,#fp,#tn,#fn of RuDetect (cf.
Table A.10, Table A.11, Table A.12, and Table A.13) and MUDetect (cf. Table A.9) as well as further
tested variants are included in the appendix (cf. Section A.4.1)

186

6.5. Validation

These results align with the results observed in Table 6.3, in which we found significantly
better results when using Indicator-based similarities.

MUBench-on-AU500: Second, we compared both detectors on the MUBench-on-
AU500 setting with the results depicted in the lower part of Table 6.12 for MUDetect and
the upper part for RuDetect. We found the most precise results of MUDetect at support-
value 20 with 37.8%, accompanied by a recall of 14.8%. For RuDetect, we observed the most
precise result for threshold = 0.6 using the ExasVectorLiNorm with 45.5%, followed by
the ExasVectorCosine with 38.5%, both obtaining the same recall of 4.3% at threshold =
0.6. With threshold = 0.7, both variants had further increased precision, namely, 75%
for ExasVectorCosine and 66.7% for ExasVectorLiNorm. However, both at the expense
of losing recall (i.e., 2.6% and 1.7, respectively). Using the APIIndicatorExasVector
similarity, we obtained a precision between 15.8 — 50% with a low recall of 2.6% as well.
Thus, these variants obtained a larger precision than MUDetect but with the downside of
a lower recall. All other Exas-vector-based similarities resulted in precision values ranging
from 17.6 — 36.4% for threshold = 0.6 and 18.9 — 60% for threshold = 0.7. Similarly to the
MUBench-on-MUBench setting, we did not obtain any positive results for the non-Exas-
vector-based similarities.

Having these results, we obtained the following insight:

/Insight D-17 (RQ D-R): Dependency on Similarities and threshold for im-\
proved Precision of RuDetect compared to MUDetect

RuDetect obtained partially (i.e., dependent on certain similarities and thresholds)
better results in terms of precision compared to MUDetect. In a within-project setting
(i.e., MUBench-on-MUBench), we found the best results using the APIIndicator-
EzasVector-similarity, while in a cross-project setting (i.e., MUBench-on-AU500),
_we found the ExasVectorCosine-similarity perform best. D

187

Chapter 6. Change Rule-Based API Misuse Detection

1.0
0.8
0.6
c
.o
8
a
0.4
0.2
0.0 - .
RuDetect (Ours) MUDetect
ExasVectorCosine APlIndicatorExasVector
threshold = 0.6 threshold = 0.7 threshold = 0.6 threshold = 0.7 minspport,,, = 21
(a) Precision
1.0
1
0.8 i
1
i
1
0.6
=
3
o4
0.4
0.2
0.0
RuDetect (Ours) MUDetect
ExasVectorCosine APlIndicatorExasVector

threshold = 0.6 threshold = 0.7 threshold = 0.6 threshold = 0.7 mingport,,, = 21

(b) Recall

Figure 6.10.: Best results as barplots from different settings of RuDetect and MUDetect
int the MUBench-on-MUBench setting

188

6.5. Validation

Table 6.11.: Precision and recall of all variants of RuDetect and MUDetect in the MUBench-
on-MUBench-setting. Highlighted entries depicted in Figure 6.10

Precision (%)

Recall (%)

threshold threshold
=0.6 =07 =06 =0.7
APIExasVectorCosine 60.2 59.6 54.9 49.6
APIExasVectorL1Norm 60.6 57.3 53.1 45.1
APIExasVectorSplitCosine 53.5 481 204 115
APIExasVectorSplitL1Norm 57.1 53.3 177 7.1
o~ APIIndicatorExasVector 93.9 98.2 549 49.6
5 APlIndicatorExasVectorSplit ~ 52.3 46.4 204 115
© AStarGED - - 0.0 0.0
2 ExasVectorCosine 59.4 59.6 53.1 49.6
¢ ExasVectorL1Norm 59.6 56.3 52.2 434
A ExasVectorSplitCosine 61.0 61.3 221 16.8
é’ ExasVectorSplitL1Norm 59.0 60.9 204 124
HungarianGED - - 0.0 0.0
HungarianMCS - - 0.0 0.0
IndicatorExasVector 93.8 98.2 53.1 49.6
IndicatorExasVectorSplit 61.5 62.1 21.2 15.9
NodeSimilarityOpt - - 0.0 0.0
§ MAN support,,, = 0 63.5 64.6
T MiNsupport,,, = 11 68.2 51.3
B minsuport,,, = 21 73.7 19.6
2 MiNsupport,y, = 41 0.0 0.0

189

Chapter 6. Change Rule-Based API Misuse Detection

1.0
0.8
0.6
c
.o
8
a
0.4
0.2
0.0 T T T .
RuDetect (Ours) MUDetect
ExasVectorCosine APIlIndicatorExasVector
threshold = 0.6 threshold = 0.7 threshold = 0.6 threshold = 0.7 minspport,,, = 20
(a) Precision
1.0
0.8
0.6
=
3
@
0.4
0.2
0.0 [1 T]
RuDetect (Ours) MUDetect
ExasVectorCosine APlIndicatorExasVector

threshold = 0.6 threshold = 0.7 threshold = 0.6 threshold = 0.7 mingport,,, = 20

(b) Recall

Figure 6.11.: Best results as barplots from different settings of RuDetect and MUDetect on
MUBench-on-AU500

190

6.5. Validation

Table 6.12.: Precision and recall of all variants of RuDetect and MUDetect in the MUBench-
on-AUb500-setting. Highlighted entries depicted in Figure 6.11

Precision (%)

Recall (%)

threshold threshold
=0.6 =07 =06 =0.7
APIExasVectorCosine 30.8 60.0 3.5 2.6
APIExasVectorL1Norm 36.4 50.0 3.5 1.7
APIExasVectorSplitCosine 17.6 20.0 16.5 13.0
APIExasVectorSplitL1Norm 18.7 18.9 148 8.7
o~ APIIndicatorExasVector 15.8 50.0 2.6 2.6
5 APIlIndicatorExasVectorSplit ~ 19.0 221 174 148
© AStarGED - - 0.0 0.0
2 ExasVectorCosine 38.5 75.0 4.3 2.6
¢ ExasVectorL1Norm 45.5 66.7 4.3 1.7
A ExasVectorSplitCosine 17.8 22.1 183 165
é’ ExasVectorSplitL1Norm 18.9 22.6 174 122
HungarianGED - - 0.0 0.0
HungarianMCS - - 0.0 0.0
IndicatorExasVector 18.5 42.9 4.3 2.6
IndicatorExasVectorSplit 19.8 23.9 20.0 18.3
NodeSimilarityOpt - - 0.0 0.0
§ MAN support s = O 194 33.0
T MiNsupport,,, = 10 36.0 15.7
B minsuport,,, = 20 37.8 14.8
S MiNsupporty,, = 40 37.0 8.7

191

Chapter 6. Change Rule-Based API Misuse Detection

Low Recall of RuDetect: We found in the MUBench-on-AU500-setting that RuDetect
obtained large precision at the expense of low recall. We conjecture that since change
rules require an actual edit of a misuse, RuDetect can only detect those misuses that
were previously fixed in the training set. In contrast, MUDetect, which inferred patterns
from all API usages in the training set, does not require them to be changed. Based on
the two settings, we hypothesize that the dissimilarity of the changed APIs in MUBench
and in AU500 could cause issues regarding matching change rules to find misuses. We
manually assessed this by comparing the change rules inferred from MUBench regarding
their possible misuse detection ability on the misuses in AU500. We found that only
a minority of rules were, in principle, able to detect the misuse (i.e., only two out of 37
misuses from MUBench used the API class and method present in AU500, and both already
used this API correctly). Therefore, we hypothesize that in the AndroidCompass+ dataset,
the chance of finding more matching change rules within the pre-defined clusters is higher.

/Insight D-18 (RQ D-R): Dependency on the training set for a larger recall\
of RuDetect compared to MUDetect

RuDetect resulted in a cross-project setting (i.e., MUBench-on-AU500) into a lower

recall than MUDetect. Based on a manual analysis, we determined that only a few

change rules from MUBench were able to detect misuses in AU500. This strengthens
kthe conjecture that RuDetects’ recall is dependent on the training data.

/Insight D-19 (RQ D-R): No strong dependency on the training set for larger\
precision of RuDetect compared to MUDetect

While RuDetect suffered from low recall, it still outperformed MUDetect regarding pre-
cision, as seen in both tested experimental settings (i.e., MUBench-on-MUBench and
MUBench-on-AU500).)

-

AndroidCompass+: In the third setting, we evaluated the hypothesis of better perfor-
mance, especially regarding the recall. We applied pattern mining and change rule inference
using ChaRLI on the 36 clusters (i.e., based on the method calls protected by an Android
compatibility check as discussed in Section 6.4.1) in AndroidCompass+ using the previ-
ously discussed variants (i.e., varying similarity, threshold, and mingypport). Afterward, we
applied the misuse detectors RuDetect and MUDetect in the above-mentioned setting.

We depict the obtained precision and recall for each cluster in its respective boxplot in
Figure 6.12 (i.e., precision) and Figure 6.13 (i.e., recall). In Figure 6.12, we observed that
the distribution of the precision values was larger for all variants of RuDetect compared
to MUDetect. Nevertheless, the interquartile range of the four variants of RuDetect lay
above two variants of MUDetect. This observation was further supported by larger mean
values for RuDetect (i.e., 63.3 — 68.6%) compared to MUDetect (i.e., 47.3 — 49.1%) as
well as median values (i.e., 64 — 72% for RuDetect and 50% for MUDetect). Regarding
recall (cf. Figure 6.13), a larger difference between the RuDetect and the MUDetect with
MiNgupport = 0.2 was observable (i.e., mean is 22% and median 18.3%). In contrast, the
difference between the MUDetect variant using minsypport = 0.1 and the variants from
RuDetect was smaller. In detail, this MUDetect variant had a mean recall of 38% and a
median recall of 38.7%, while the RuDetect variants’ mean ranged from 38.4 — 43.3% and
their median from 37.8 — 43%.

192

6.5. Validation

1.0
0.8
(e}
(e}
0.64 8 ;
i o
8 g

|
[

0.24

Precision

0.0 7 T

" RuDetect (Ours) MUDetect

ExasVectorCosine APlIndicatorExasVector
threshold = 0.6 threshold = 0.7 threshold = 0.6 threshold = 0.7 mingpport = 0.1 Minguppors = 0.2

Figure 6.12.: Precision results as boxplot of different settings of RuDetect and MUDetect
in the AndroidCompass+ setting

Table 6.13.: Precision statistical test results (Wilcoxon signed-rank test with significant

results with effect size using Cliff’s §) between different variants of RuDetect
and MUDetect in the AndroidCompass+ setting
RuDetect (Ours) MUDetect
ExasVectorCosine APIIndicatorExasVector
threshold = 0.6 threshold = 0.7 | threshold = 0.6 threshold = 0.7 | mingsupport = 0.1 Mingupport = 0.2

- threshold = 0.6 - X X X > v/0.65 > v/0.61
5 ExasVector-
O Cosine threshold = 0.7 X - X X > V0.7 > /0.64
3 threshold = 0.6 X x - x > V0.62 > /0.5
A APIIndicator-
é ExasVector threshold = 0.7 X X X - > v/0.56 > /0.51
B Misupport = 0.1 < /-0.65 < V07 < /062 < /056 - X
®
g MiNsypport = 0.2 < /-0.61 < /-0.64 < v/-0.55 < v/-0.51 X -
=

193

Chapter 6. Change Rule-Based API Misuse Detection

Table 6.14.: Recall statistical test results (Wilcoxon signed-rank test with significant results
with effect size using Cliff’s 0) between different variants of RuDetect and
MUDetect in the AndroidCompass+ setting

RuDetect (Ours) MUDetect
ExasVectorCosine APIIndicatorExasVector

threshold = 0.6 threshold = 0.7 | threshold = 0.6 threshold = 0.7 | mingupport = 0.1 Mingypport = 0.2
— threshold = 0.6 - X X X X > v0.54
5 ExasVector-
© Cosine threshold = 0.7 X - X X X > /048
-
Q
% threshold = 0.6 X X - X X > v/0.56
A APIIndicator-
é ExasVector threshold = 0.7 X X X - X > /0.55
< Minsupport = 0.1 X X X x - > /0.49
B3]
g Mitsupport = 0.2 < /-0.54 < /048 < /-0.56 < V/-0.55 < /-0.49
=

We further checked whether the observed differences were significant using the Wilcoxon-
Mann-Whitney rank sum test [Kan06] with o« = 0.05 while applying Bonferroni correc-
tion [Abd07] and determined the effect size using Cliff’s § [HK99, KMB*17]. We applied a
rank test since we could not directly assume a normal distribution of the precision and recall.
The results are presented in Table 6.13 for precision and Table 6.14 for recall. We could ap-
prove the visually observed results regarding precision, particularly all variants of RuDetect
had a significantly larger precision (cf. Table 6.13) than those from MUDetect with a large
effect size (i.e., according to the assessment of Cliff’s § based on [KMB™17]). All interdiffer-
ences of the variants of RuDetect were not significant. Regarding the recall, we determined
that all variants of RuDetect and the variant of MUDetect using minsupport = 0.1 were
significantly larger than that variant of MUDetect using mingypport = 0.2 (cf. Table 6.14).
Similarly to the precision, all other interdifferences were not significant.

/Insight D-20 (RQ D-R): RuDetect significantly performs better than MUDe-\

tect

Having AndroidCompass+ as an improved training setup compared to the MUBench-
on-AU500, we determined that RuDetect significantly performed better (independent of
the considered similarity and threshold) than MUDetect regarding the precision while
Kobtaz'nmg a comparable to better recall.)

Low Precision of MUDetect: In AndroidCompass+, the number of misuses and
correct API usage was equal. Thus, a random classifier would obtain a precision and recall
of 50%. With respect to that, MUDetect tended to perform worse than random, considering
their mean precision. We qualitatively checked the patterns used for misuse detection and
found no pattern representing the compatibility check, which represents the ground truth
API misuse in this dataset. Thus, we assumed that due to non-related patterns, MUDetect
was actually like a random classifier, explaining its worse performance in this setting.

Implications We found that
1. RuDetect outperformed MUDetect regarding precision, which, however, required dif-

ferent settings for different training and validation setups (e.g., within vs. cross-
project).

194

6.5. Validation

1.0 ;
1
—_ 1
_ : o

1

1 o
1
1
0.8+ H
1
1

1 o
1

1)
!
1
1
0.6 1
1
1
= i
3 1
o 1
x i
1
1
0.4 H
i
1
1
1
1
i
1
0.24 1
1
!
1
1
1
!
1

0.0 . . ! : -
RuDetect (Ours) MUDetect
ExasVectorCosine APlIndicatorExasVector

threshold = 0.6 threshold = 0.7 threshold = 0.6 threshold = 0.7 mingpport = 0.1 Mingppors = 0.2

Figure 6.13.: Recall results as boxplot of different settings of RuDetect and MUDetect in
the AndroidCompass+ setting

195

Chapter 6. Change Rule-Based API Misuse Detection

2. RuDetect required a carefully prepared training dataset to obtain large recall, how-
ever, the precision was less dependent on the training dataset.

This way, we denote that RuDetect serves as a precise counterpart to the pattern-based
detection while requiring expert knowledge for configuration towards the aspired use case
(e.g., within vs. cross-project). Moreover, effective application, namely, finding a sufficient
number of misuses, requires a good training set containing fixed API misuses that match
to the APIs of the tested code. In other words, RuDetect finds more API misuses (i.e.,
larger recall) of APIs present in the training set (i.e., fized certain misuses).

A major benefit of RuDetect to MUDetect is that it does not require a sufficient frequency
(i.e., support) of the change rules. Thus, in its current form, RuDetect needs a single
misuse fix to detect similar misuses, which simplifies data collection. Moreover, it avoids
the computing effort of FPM compared to pattern-based misuse detection.

In contrast, pattern-based misuse detection, such as MUDetect, does not require that a
misuse is present in the first place, meaning it may also work if an API has been correctly
used before. Moreover, it also supports the case where a fixing change is not present in the
VCS, for instance, since a developer fixed the misuse before adding the false version to the
repository.

Thus, we conclude that RuDetect can serve together with pattern-based techniques as a
precise complement for API misuse detection.

6.5.6. Threats to Validity

Once again, our experiments and results are based on empirical methods, which are ac-
companied by possible threats to validity.

Internal Validity Regarding the internal validity, we validated our misuse detector based
on a prototypical implementation based on the AUG implementation of MUDetect?!, as
well as the computation of the similarity values as a Python implementation. These imple-
mentations might contain errors and thus might influence the results we obtained. Even
though we thoroughly tested our implementation, we could not guarantee an error-free im-
plementation, neither ours nor from others. For replicability, we provide all experimental
data, scripts, and implementation as a replication package'®.

Our validation was based on a ground truth, which could be wrong. Particularly, pre-
and post-commit code variants in MUBench [ANNT16] and AndroidCompass+, obtained
from its previous version (cf. [NBKO21b]), did not necessarily reflect misuses and correct
usages. Similarly, the manual labeling conducted for AU500 [KL.21] could contain errors.
These issues with the dataset could influence the measurement of precision and recall.
Additionally, we corrected the MUBench dataset regarding some entries to link to the
correct commit. In case this is done wrongly, our ground truth entries could be wrong as
well.

Even though we avoided data leakage, namely, finding misuses by the fix itself, the data
still might contain the fix due to forked projects or equal changes in another code location.
Moreover, our evaluation did not considered temporal bias. Temporal bias means, in our
case, that patterns and change rules were inferred from code, which was not available at
the time the misuse was introduced. This way, in practice, the real number of true positive
might be lower than reported.

2 available at https://github.com/stg-tud/MUDetect last accessed: 2024/07/16

196

https://github.com/stg-tud/MUDetect

6.6. Conceptual Differences to Related Work

When mining patterns, MUDetect used all methods from the complete source file of the
fixed misuse, while RuDetect only analyzed the method containing the misuse. This way,
MUDetect had more training data than our detector. We could not definitely judge whether
this had a positive or negative impact. On the one hand, more patterns were mined from
other methods, which increased the chance of detecting otherwise non-detected misuses
from which the recall and probably the precision could benefit. On the other hand, more
patterns might also increase the chance of more false positives and negatively impact preci-
sion. Note that in the AndroidCompass+ experiment, we applied MUDetect with relative
precision (i.e., using mingypport). Since a larger amount of API usages existed, MUDetect
could not find patterns obtaining larger precision and recall due to too-low support. This
setting, however, did not apply to the MUBench-on-MUBench and MUBench-on-AU500
settings, in which we used fixed absolute support (i.e., minsupport,,.). We found that using
the whole source file was a more natural way of applying MUDetect since, usually, during
mining, one did not know the correct usage. However, we observed a positive impact on
FPM-based misuse detectors using search and filter strategies, as discussed in Chapter 5.
This influence on precision and recall was not evaluated, and thus, future research should
do so.

Finally, for statistical tests, we applied the Wilcoxon-Mann-Whitney rank sum test.
This test only detects significant differences in the distribution, not necessarily in the mean
values. While we kept this in our minds when judging our results, we strongly emphasize
to also consider the results with respect to actual mean differences.

External Validity Regarding external validity, we were limited regarding our applied
datasets MUBench [ANNT16], AU500 [KL21], and AndroidCompass+ (obtained from its
previous version in our previous work [NBKO21b]). These only represented a subset of
APIs and misuses and did not necessarily represent API misuses in the wild. Moreover,
we limited our results to the Java programming language and, thus, the object-oriented
paradigm.

In our comparison, we only validated against one misuse detector, namely MUDetect
[ANN19b], which limits our discussion regarding improving the state-of-the-art. This ex-
perimental restriction was caused by several issues (cf. Section 5.2.2, particularly, Insight
D-2 Insight D-5). As stated before (cf. Insight D-1), we found that simply comparing
to the presented results in the paper was not sufficient even though the same dataset was
used since the datasets evolved over time or were filtered.

Even though we obtained improvements in the precision, we did compare the usefulness
and usability of our approach in a real-world setting. This setting would require additional
user studies with developers. Thus, currently, our applicability for practical use cases is
only grounded on the concept that change-based misuse detection is constructed to be
seamlessly integrated into a VCS.

6.6. Conceptual Differences to Related Work

In this section, we present the conceptual differences between RuDetect and other API
misuse detectors (cf. Section 6.6.1), techniques supporting API evolution (cf. Section 6.6.2),
and other code change datastructures (cf. Section 6.6.3).

197

Chapter 6. Change Rule-Based API Misuse Detection

6.6.1. Conceptual Differences to Other AP| Misuse Detectors

According to the classification of API misuse detectors in Section 5.2.2, we classify RuDetect
as single usage, explicit specification (SES). Moreover, we also provide a conceptual com-
parison of RuDetect to all misuse detectors targeting the Java programming language and
applying a replication package (cf. Section 5.2.4) using the characteristics from Table 5.1 in
Table 6.15. We observed that RuDetect, compared to ALP [KL21], FuzzyCatch [NVN20],
Jadet [WZL07], MUDetect [ANNT19Db], and Salento [MCJ17], uses code changes of client
code (i.e., C'a) as an additional source. CrySL [KSA*21] leverages the knowledge of experts
to infer specifications. CL-Detector [ZCSZ21] additionally uses the API code (i.e., Cy),
and the technique by Li et al. [LZT"24] uses the API code as well as its documentation
(i.e., C4 and D). In contrast, RuDetect does not require knowledge of API code. Similar
to RuDetect, CPAM [LCP*21] also uses additional code changes (i.e., Ca).

A benefit of RuDetect is that it does not require the knowledge of the misuse API to
find related client code (i.e., code collection in a cross-project setting using API-specific
information x 4) as of ALP, CL-Detector, Li et al., and Salento. Moreover, RuDetect also
infers change rules of internal code (i.e., I) in comparison to Jadet, which solely relies on
this setting, and similarly to MUDetect, which we compared in Section 6.5.5. Note that
only FuzzyCatch by using error-handling code and CPAM by using change-related code
from VCS also uses other information to find cross-project client code (i.e., xp).

RuDetect only uses Static Code Analysis (SCA), namely, ChaRLI, to infer specifications
from the VCS. All other techniques require additional FPM (i.e., ALP, CL-Detector,
CPAM, FuzzyCatch, Jadet, MUDetect, Li et al.), a technique from machine learning (i.e.,
ALP, Salento), or rely on a completely manual process (i.e., CrySL). While CPAM by Liu
et al. [LCPT21] also obtains so-called ‘change patterns,” their technique does not directly
apply these patterns for misuse detection, but rather, the authors manually implement
static code analyzers to check these patterns. In contrast, RuDetect can directly apply
change rules for misuse detection and, thus, can be easily extended with further change
rules.

6.6.2. Conceptual Differences to API| Evolution Techniques

In Section 3.4.3, we introduced the background of API evolution techniques. As seen with
AndroidCompass+, deprecated APIs can be interpreted as API misuses. Thus, we shortly
discuss the main differences of RuDetect to techniques from API evolution.

Most related are techniques for detecting the usage of deprecated API elements (i.e., API
elements that are marked as becoming outdated and, thus, potentially causing breaking
changes in subsequent API versions). Moreover, API migration techniques to support the
transformation of client code to comply with the latest API version (i.e., migrating between
APT versions) share similarities to our work. However, techniques supporting the detection
of deprecated APIs, as well as the migration of API elements, have a special focus on the
API evolution and leverage specific characteristics of breaking changes.

API Deprecation Regarding the detection of deprecated APIs, we observe that techniques
rely on the API library code. For instance, Deprecation Watcher, introduced by Zhou and
Walker [ZW16], is based on a set of deprecated API elements obtained from annotations in
the documentation and from missing API elements obtained from the code changes of the
library. Another technique, named APIScanner by Vadlamani et al. [VKC21], leverages

198

6.6. Conceptual Differences to Related Work

decorators, code warnings, and comments in the library code as indicators for deprecation.
In contrast, RuDetect does not require such an analysis of the library’s code and thus is
not restricted to API misuses based on deprecation.

API Migration On the other hand, API migration techniques between API versions aim
to find different kinds of migration mappings between API elements, such as one-to-one
(e.g., replacement of an API method by another), one-to-many (e.g., replacement of an
APIT method a set of methods), many-to-one (e.g., replacement of many API methods with
a single one), or many-to-many (e.g., replacement of a set of API methods by another
set) [RBK'13]. While such mappings are similar to change rules, in this form, they lack
the information of their dependencies (e.g., data- and control flow represented in AUGs,
and thus their change rules). Therefore, some techniques also provide edit scripts or mi-
gration rules, describing how a specific API usage has to be changed according to the
new version [RBK"13]. However, the goal of edit scripts is to update the code instead
of detecting potential misuses. Thus, RuDetect can be considered as an extension that
leverages migration rules for misuse detection. However, we observe that many migra-
tion techniques, similar to API deprecation detection techniques, require the API library
code for API mapping inference, for instance [SIMO8], LibSync by [NNW 10|, AURA
by [WGAKI10], HiMa by [MWZMI12], Mediator [XDM19], RepFinder by [HCP*21], A3
by [LSC22], AUGraft [WY22], or MELT by [RML"23].

Techniques learning migrations from client code are more likely to be found when mi-
grating between programming languages [NNPN17, CXLX21b, ZWX"23] or between li-
braries [TFB13, DND"25]. Such migrations, however, usually do not target to fix an
APT misuse and, if so, only with huge effort (i.e., replacing a whole library or even the
programming language).

6.6.3. Conceptual Differences to Code Change Datastructures

We applied the AUG as graph-based datastructure to obtain change rules. In the past,
many other — also graph-based — datastructures were suggested to represent code changes.
A frequently applied tool is GumTree using differences of Abstract Syntax Trees (ASTs)
originally using tree-edit distance to obtain edit scripts of ASTs [FMBT'14]. In its current
version, the authors applied a heuristic to increase efficiency [FM24]. For instance GumTree
is used forAPI code recommendations [NHC " 16]. However, it only infers structural differ-
ences, while AUGs represent control and data flow information.

Similarly, other graph-based structures representing code changes, such as the Source
Code Graph [NMR22] for bug prediction, a graph structure to infer typical change pat-
terns in VCS [JM22], or the graph datastructure to predict commit messages from code
changes [DLZ"22] are focused on structural differences.

In contrast, Nguyen et al. [NND"19] introduced the fine-grained program dependence
graph (fgPDG). This graph reuses elements from the Graph-based Object Usage Model
(Groum) and thus represents control and data flow as well. However, it also represents
details on different structural elements, such as a for -each versus a simple for loop.
Instead, the AUG by Amann et al. [ANNT19b] is constructed to abstract these features to
represent specific API usage with fewer nodes. This way, we expected our change rules to
consist of fewer nodes, and thus fewer entries in the respective Exas vectors to better serve
for API misuse detection. However, RuDetect is also applicable with other data structures
as long as we can compute similarities among them.

199

002

Table 6.15.: Conceptual Comparison of RuDetect to other Java-based and available API Misuse Detectors based on the Table 5.1.

=) z + _
= 5 £ £ < g = 3 5
2 T g 9 2 = S 3 2 z
° 2 % = N 8 E % = o
Q = =
q . z z 7 % 5 & : =
= = = o, £ = 2 = o %
o < O O O = = = 3 n
Type SES IS SES SES MES SES SES SES MES IS
S Cc,Car Cg¢ Cc,Ca Cg,CA E Cc Ce Ce Ce, Ca, C¢
D
C I,XO X A X A X0 - X0 I I, XA XA XA
I SCA SCA, SCA, SCA, manual SCA, SCA, SCA, SCA, SCA,
FPM, FPM FPM FPM FPM FPM FPM DL
AL
P X X v v X v v v v v

Type: Single usage, explicit specification (SES), multiple usage, explicit specification (MES), implicit specification (IS); Source Data for Specification Inference (S): client code
(C¢), API library code (C4), changes in client code (Ca), API documentation (D); other external sources (E); Collection Technique of Client Code (C): not applicable (—),
code from intra-project setting (I), code from cross-project setting (x) with API-specific information (e.g., class, method, or parameter type names) (X 4) or with other information
(X0©) ;Inference Technique (I): Static Code Analysis (SCA), Frequent Pattern Mining (FPM), Active Learning (AL), Deep Learning (DL); Post-processing (P)

0190939(T 9SNSIIN [V Poseg-ony a8uey) 9 1oder)

Chapter 6. Change Rule-Based API Misuse Detection

6.7. Summary Change Rule-Based API| Misuse Detection

Summary In this chapter, we introduced the concept of change rule-based API misuse
detection named RuDetect (i.e., RQ D-R) as an alternative approach to state-of-the-art
pattern-based API misuse detection discussed in Chapter 5.

RuDetect is based on change rules, representing the essential changes of an API misuse fix
obtained via a VCS. Change rules describe the transformation between AUGs (i.e., graph
representation of an API usage), namely in the form aug,, — augy. This way, it describes
how an AUG aug,, representing a misuse is transformed into an AUG representing its
corresponding fix augy. We introduced an automated technique, named ChaR2LI, to infer
changes rules automatically from commits with little manual effort from the developer (i.e.,
essentially locating the API misuse fix). ChaRLI is integrated into RuDetect. In detail,
ChaRLI infers change rules without and with context, the latter including non-changed code
context information (e.g., parameters or surrounding methods).

Having a set of change rules inferred by ChaRLI, RuDetect conducts an applicability
check. This check assesses whether a change rule is capable of deciding whether an API
usage is a misuse or not. We introduced and evaluated two possible variants for the ap-
plicability check, namely, a threshold-based (i.e., the misuse part of a rule is sufficiently
similar to the APT usage) and a control-group-based applicability check (i.e., the change rule
performs sufficiently well in comparison with a ground-truth control group of known misuse
and correct API usages). In case a change rule is applicable for the API usage, RuDetect
conducts a graph similarity-based misuse detection between the AUG of the tested API
usage and the applicable rule. Essentially, RuDetect denotes an API usage as misuse if it
is more similar to the misuse part of a rule (i.e., augy,) than to fix part (i.e., augy).

For this purpose, we applied heuristics to cope with the NP-hard problem of mapping
AUGs [ZTWT09], as well as tested different variants of graph similarities. We validated the
best-performing variant as well as compared it to the state-of-the-art pattern-based misuse
detector MUDetect [ANNT19b]. In detail, we evaluated precision and recall using different
experimental settings based on misuse datasets MUBench [ANNT16], AU500 [KL21], and
AndroidCompass+, an extension of our own dataset AndroidCompass [NBKO21b].

Contribution RQ D-R This chapter focused on the impact of applying change rules ob-
tained from code changes of previously fixed API misuses for API misuse detection.

In detail, we found that ChaRLI effectively automated the change rule generation based
on previous commits (i.e., 78.8% of change rules for MUBench were generated) accompanied
by minimal effort from a developer (cf. Insight D-12 ‘Applicable Automated Change Rule
Inference’ on page 162).

We further introduced the API misuse detector RuDetect and experimentally determined
its best setup regarding its precision. We found the best performance when using the
threshold-based applicability check with threshold = 0.6 and applying the Ezas vector-
based similarity measurement based on the work by Nguyen et al. [NNP"09a] with our
extensions to handle API usages (i.e., Indicator- or -Split- extensions) as shown in
Insight D-13 ‘Best setup for RuDetect” on page 173. Moreover, we found that choosing
the threshold value of the applicability check is crucial to obtain high precision (i.e., Insight
D-14 ‘Careful selection of the threshold value when using the threshold-based applicability
check for RuDetect’ on page 173).

In addition, we also observed that change rules with context achieve higher recall with-
out harming the precision (i.e., Insight D-15 ‘Small but positive effect of change rules

202

6.7. Summary

with context on the recall of RuDetect’ on page 178) and that the threshold-based ap-
plicability check is more effective regarding precision than the control-group based variant
(i.e., Insight D-16 ‘Positive effect of the threshold-based over the control-group-based
applicability check for RuDetect’ on page 184).

In comparison to the pattern-based API misuse detector MUDetect [ANN"19b], we found
that RuDetect performs better regarding the precision depending on the selected similarity
measurements (i.e., Insight D-17 ‘Dependency on Similarities and threshold for improved
Precision of RuDetect compared to MUDetect’ on page 187) and comparable regarding the
recall, when carefully selecting the training dataset (Insight D-18 ‘Dependency on the
training set for a larger recall of RuDetect compared to MUDetect” on page 192). Inter-
estingly, we observed a smaller impact of the training set on the precision than on the
recall (i.e., Insight D-19 ‘No strong dependency on the training set for larger precision of
RuDetect compared to MUDetect’ on page 192). We emphasized that RuDetect required
only a single example of an API misuse fiz as a change rule to detect similar kinds of mis-
uses. Taking the above-mentioned factors regarding RuDetect’s performance into account,
we found that the change rule-based API misuse detection performed significantly better
compared to MUDetect (i.e., Insight D-20 ‘RuDetect significantly performs better than
MUDetect’ on page 194).

Thus, we answer RQ D-R. as follows:

/RQ D-R What is the impact of applying change rules inferred from previous\

fixes of API misuses on API misuse detection?

We found that (1) change rules based on AUGSs were applicable in a developer-related
context, and our technique, ChaRLI, could automatically and effectively infer them.
Moreover, we found that applying these rules for misuse detection using our technique
RuDetect performed best regarding precision with a (2) threshold-based applicability
check with a carefully selected threshold and (3) using variants of Exas vector-based
graph similarities for a subsequent graph-based API misuse detection. In addition,
we observed an improved recall of RuDetect when (4) enhancing change rules with
code context and (5) carefully preparation of the training set. This way, (6) RuDetect
S performed better than a state-of-the-art pattern-based API misuse detector.

203

Towards API Misuse Repair

This chapter is based on publications from the author, partially together with other col-
leagues published and presented at the International Conference on Automated Software
Engineering (ASE) 2017 in the Doctoral Symposium track [Niel7] at the International
Workshop on Automated Program Repair (APR) 2024 [NBKOZ24].

In this chapter, we analyze the ability of previous Application Programming Interface
(API)-specific information from APT misuse detection to automatically repair misuses. API
misuse repair becomes necessary when the root causes of API misuse cannot be prevented,
as discussed in Chapter 4, and when automated techniques for detection, as discussed in
Chapters 5 and 6, find these misuses. For repair, we re-use patterns (cf. Chapter 5) and
change rules (cf. Chapter 6).

7.1. Methodology and Structure

RQ R Automated API Misuse Repair In thiS Chaptera we target RQ R
(" RQR-L Limitations) on whether the specific knowledge
of Automated from API misuse detection sup-

Program Repair for .
___API Misuses ports techniques for Automated
RQ R-P Pattern- RQ R-R Change- Program Repair (APR) to auto-
based API Misuse Rule-based API matically fix API misuses. First,

Repair Misuse Repair

we analyze the limitations of the
state-of-the-art APR techniques
regarding their ability to target
APT misuses (i.e., RQ R-L). Then, we suggest potential improvements and validate their
ability to support APR techniques by applying the previously introduced patterns (i.e., in
RQ R-P) and change rules (i.e., in RQ R-R).

Again, we answer the questions using elaborated scientific methodologies for software
engineering research introduced by Ralph et al. [RAB"20]'.

In detail, we answer RQ R-L by reviewing the literature on APR research in Section 7.2.
Note that due to the large activity in this research field with a number of existing surveys,
reviews, and studies [LGFW13, Mon18a, Mon18b, LGPR19, KMSH21, ZFM 23], we do
not conduct a separate Systematic Literature Review (SLR) as done in Chapters 4 and 5.
We rather use the knowledge from these studies to assess the degree of existing techniques
to target API misuses. This knowledge is sufficient since our goal is to assess the ability

YMttps://www2.sigsoft.org/EmpiricalStandards/ last accessed: 2025/03/07

205

https://www2.sigsoft.org/EmpiricalStandards/

Chapter 7. Towards API Misuse Repair

of API-specific knowledge to support APR, while a full-fledged technique for automated
repair of API misuse will be part of future work.

Nevertheless, we assess this ability of API-specific knowledge for APR in RQ R-P and
RQ R-R by applying engineering research [RABT20]. In detail, we suggest a concept
and a software artifact named API-Specific Automated Program Repair (ASAP-Repair)
in Section 7.3 that leverages artifacts from the previously introduced pattern-based (cf.
Chapter 5) and change rule-misuse detection (cf. Chapter 6). We present our empirical
evaluation of these techniques (cf. Section 7.4) and their results (cf. Section 7.5).

We conclude in Section 7.6 the current ability of our technique for APR for API misuses
as well as the next research steps to accomplish a full-fledged API-specific APR technique.

7.2. Limitations of State-of-the-Art AP| Misuse Repair

In this section, we address RQ R-L by first con-
sidering related work on APR (cf. Section 7.2.1)
and second, taking a closer look at how existing o
techniques are limited in automatically repair-
ing API misuse (cf. Section 7.2.2).

7.2.1. State-of-the-Art
on Automated Program Repair

Collecting the State-of-the-Art As men-
tioned before, we did not conduct a separate

literature review collection on APR but rather \ 4
rely on existing studies. For that purpose, we RQ”“"“‘“”'M'“me
of

analyzed a set of known articles and references
considering different aspects of APR. These ar-

f
Program Repair for
API Misuses

RQ R-P Pattern-

ticles were found by regularly observing the re- based AP! Misuse

RQ R-R Change-
Rule-based API
Misuse Repair

Repair

search progress in APR. In detail, we focused
on articles concerned with

e general terms and challenges on APR research [LGFW13, LGPR19];
e a collection of general APR techniques [Monl18a, Mon18b]

e a collection of APR techniques using so-called learning-based APR, especially apply-
ing machine learning [ZFM 23]

e an overview and challenges of benchmarks for APR research [RRWF25]
e a comparison study of APR techniques for APIT misuses [KMSH21]
Moreover, we also referred to the community web page https://program-repair.org/”

on automated program repair, including a regularly updated overview of published articles,
benchmarks, and software artifacts.

General Terms on and Challenges of APR APR denotes techniques to automatically find
and fix faults in software [LGFW13, LGPR19]. According to Le Goues et al. [LGPR19],
an APR technique typically consists of the following three steps:

%last accessed: 2025/03/07

206

https://program-repair.org/

7.2. Limitations of State-of-the-Art API Misuse Repair

1. Bug Detection, namely, the recognition of a faulty behavior and the location of re-
sponsible code snippets;

2. Patch Generation or Synthesis, namely, the modification of the software with the goal
to overcome the faulty behavior;

3. Patch Validation, namely, the process of checking whether the generated patch obtains
the goal of overcoming the faulty behavior and does not introduce new faults.

General Challenges: Since the detection and patch validation are undecidable prob-
lems, the same is true for general APR [LGPR19, NL22]. Nevertheless, for certain fault
types and with specific assumptions, APR is possible [LGPR19].

Le Goues et al. [LGFW13] discussed the main research challenges for APR based on
their scalability, namely, applying APR techniques to large-scale software products and
their generality, namely, to which degree APR techniques can be applied to different kinds
of software defects. Moreover, Le Goues et al. [LGFW13] emphasized the necessity to
reduce and navigate the typically huge search space of patch templates to improve the
patch quality as well as to introduce techniques to wvalidate generated patches.

Industrial Application: Despite these limitations, open-source and industrial devel-
opment applied APR, such as on the Linux kernel [KBK'17], or customized tools like
CLEVER at Ubisoft Entertainment SA [NHL18], Getafiz and SapFiz at Meta Platforms,
Inc. [BSPC19, MBC™19], or Fizie at Bloomberg L.P. [KWM"21].

APR Taxonomy There exist various different taxonomies on APR techniques.

State vs. Behavior: Monperrus [Monl8a] classified techniques into state-based and
behavioral-based. In detail, state-based repair denotes changing the state of a program, such
as memory or input data, while behavioral-based repair changes the behavior of a program
by changing its code.

A PI-specificity: We [Niel7] extended this classification by an orthogonal dimension on
API-specificity, namely, whether a technique leverages API-specific knowledge (i.e., API-
specific repair) or not (i.e., generic repair). We provide an updated classification of these
techniques in Figure 7.1 (cf. Section 7.2.2).

Heuristic vs. Constraints vs. Learning: Le Goues et al. [LGPR19] further classified
the APR technique Monperrus [Mon18a] denoted as behavioral-based repair regarding their
applied approaches for generation or synthesis of patches into

e heuristic-based, namely, techniques using a heuristic search on a search space of po-
tential code modifications and validating patches produced by them:;

e constraint-based, namely, techniques that infer a specification describing correct be-
havior and, based on that, synthesize a correct behavior;

e learning-based, namely, techniques learning correct behavior from previous patches
and transforming faulty code based on that knowledge.

Patterns: In their survey on learning-based APR, Zhang et al. [ZFM 23] distinguished
learning-based, which they focused on machine learning techniques from so-called pattern-
based APR. The latter they denote as techniques inferring templates of correct usage and
applying them for patch generation.

207

Chapter 7. Towards API Misuse Repair

Test-Based Detection and Patch Validation A large number of APR techniques require
automated tests for bug detection as well as patch validation steps [LGPR19].

Test-based Detection: In detail, for bug detection, APR techniques apply automated
test suites to localize the code snippet, which is likely responsible for the recognized
bug [LGPR19].

In this regard, a frequently applied technique is Spectrum-based fault localization (SBFL)
[SB22, ZFEMT23]. Its notion, according to Sarhan and Beszédes [SB22], is the assumption
of a set of passing and failing test cases from a test suite. Based on these cases, SBFL
determines the suspiciousness of certain code lines depending on whether they are executed
more frequently with failing than passing tests. A suspiciousness is computed by statistics
such as Tarantula [JHS02] or Ochiai [Och57]. Moreover, tools like GZoltar [CRPA12]
provide a set of different SBFL statistics and are applied by several APR techniques.
Despite its frequent usage, SBFL is considered critical for bug localization in large software
projects, for instance, since such projects do not have sufficient test cases to cover all
program behavior and thus do not correctly localize the root cause of the bug [KGH'17].

Patch Validation: Regarding patch validation, a majority of APR techniques validate
the plausibility of their generated patches by (re-)running the test suite. This way, they
assess whether the source code still compiles, the patch passes the previously failed tests,
and previously passing tests does not fail [QLAR15, ZFM*23].

However, assuming that many techniques already require a test suite for bug detection,
this usually requires an independent test suite. Otherwise, generated patches only satisfy
the automated tests used for detection but do not generalize, a problem known as test
overfitting [SBLGB15, LTLLG18, LGPR19, PMK™'24]. A technique to obtain such inde-
pendent test suites is, for instance, EvoSuite [FA11], which has been applied by Xin and
Reiss [XR17] to target overfitting.

Another issue of using test suites for validation is that many potential patch candi-
dates are generated, which require frequent, time-consuming re-compilation and execution
of the patched program [ZFMT'23]. There exist techniques to speed up the compilation
process, such as UniAPR, which applies direct byte-code manipulation in the Java virtual
machine [COZ21].

Due to these reasons, in industrial applications, the assessment of whether plausible

patches are valid is done manually, for instance, in a code review-like process [MBCT19,
KWM*21].

Insight R-1 (RQ R-L): Dependency of APR on test suites

Many state-of-the-art APR techniques are dependent on a sufficiently large test suite
for bug detection and patch validation, which also causes several issues, such as test
overfitting and patch validation efficiency, as well as subsequent efforts to mitigate
these effects.

APR Benchmarks It is assumed in APR research to validate their techniques on real-world
bugs to accomplish the goal of generality [LGFW13]. Thus, many datasets of different real-
world bugs for different kinds of bug types and programming languages were suggested in

3latest version available under https://gzoltar.com/ last accessed: 2025/03/06

208

https://gzoltar.com/

7.2. Limitations of State-of-the-Art API Misuse Repair

the past®. Prominently used datasets for Java are Defects/J® [JJE14], Bugs.jar® [SLL 18],
and Bears” [MUMNM19)].

These datasets were partially applied in the experiment by Kechagia et al. [KMSH21] in
the APIARTYy framework®. APIARTY contains 101 API misuses from these datasets and
different APR techniques for experimental comparison.

Renzullo et al. [RRWF25] discussed the problem that current datasets are typically
too small to be applicable for machine learning-based APR, techniques. Moreover, they
discussed issues regarding data bias and data leakage in these standard datasets. Data bias
means that APR techniques overfit to a single dataset, while data leakage denotes that,
for instance, a learning-based technique may contain the solution of a bug in their training
data and thus just memorize this solution.

Based on this observation, we currently find a lack of sufficiently large API misuse
datasets for program repair. On the community web page, we only found the small dataset
Droizbench? with 24 bugs targeting the Android framework. Thus, misuse datasets are
smaller in terms of bugs than Defects4J, Bugs.jar, and Bears (i.e., between 251 and 1,158).

Insight R-2 (RQ R-L): Few and too small APR benchmarks for API misuses

State-of-the-art APR research has few (i.e., two datasets) and typically too small
datasets (i.e., 24 up to 101 bugs) of API misuses.

7.2.2. Limitations of API-Specific Automated Program Repair

Selection of State-of-the-Art APR Techniques We updated our classification from our
previous work [Niel7] based on recent publications. Our focus was to find further APR
techniques targeting API misuses. The final classification is depicted in Figure 7.1.

In detail, we used the survey by Monperrus [Monl18a] as well as the frequently updated
living review [Monl8b] (i.e., version 6 with timestamp 12-09-2023). Moreover, we consid-
ered all APR techniques discussed in the comparative study by Kechagia et al. [IKMSH21]
as well as a survey on learning-based APR techniques by Zhang et al. [ZFM'23]. Finally,
we consulted the publications on the APR community page'’. Particularly, we reviewed
articles having the keyword API in their title or description.

In detail, we found by the living review by Monperrus [Mon18b] CDRep [MLLD16] and
APIFix [GRS'21] as API-specific, behavioral APR techniques. From the community page,
we classified TADAF [BOST22] as this APR class.

Limitations State-of-the-Art APR Techniques We present the limitations of the current
APR technique shown in Figure 7.1 to effectively repair API misuses.

Generic, State-Based APR: First, we discuss the group of generic, state-based APR
(cf. bottom, left quadrant in Figure 7.1). The techniques in this group attempt to overcome
all kinds of bugs at runtime by changing the state of the program. This state change

“cf. community web page https://program-repair.org/benchmarks.html last accessed: 2025/03/07

Shttps://github.com/rjust/defects4j last accessed: 2025/03/06

Shttps://github.com/bugs-dot-jar/bugs-dot-jar last accessed: 2025/03/06

"https://bears-bugs.github.io/bears-benchmark/ last accessed: 2025/03/06

8In detail, they used MUBench [ANN™16], which is partially based on Defects4J, and bugs from Bugs.jar
and Bears

“https://droix2017.github.io/ last accessed: 2025/03/07

Ohttps://program-repair.org/bibliography.html last accessed: 2025/02/28

209

https://program-repair.org/benchmarks.html
https://github.com/rjust/defects4j
https://github.com/bugs-dot-jar/bugs-dot-jar
https://bears-bugs.github.io/bears-benchmark/
https://droix2017.github.io/
https://program-repair.org/bibliography.html

Chapter 7. Towards API Misuse Repair

A\ API-specific

[APIFix][GenPatch][TADEF]
ARMOR [CDRep M QA;;aSh M ASAP-Repair (Ours)]

P »
<« »

Behavioral-based
Ares }

DieHard }[SOAP] L Arja j[DynaMothj[(é)e’\::fr][RSRepair][Angelix][DeepFix }

Assure Micro- [Avatar][(i)Gen-][Nopol }[SimFix }[CoCoNut][SPVF }
reboot Prog

[]L o] [e } [-] [o } [TUfaar;o "]

Figure 7.1.: Our updated classification of APR from previous work [Niel7] inspired by
Monperrus [Monl8a]. Gray techniques are validated by [KMSH21]. Our

technique ASAP-Repair is shown in |blue .

State-based

T
)

Cardumen

Generic W

may be the execution point (i.e., program counter), for instance, Assure [SLP09] and
Ares [GSM16] jump to present exception handling code, or Bolt [KMCR12] has strategies
to escape from infinite or long-running loops. DieHard [BZ06] provides redundancy in
heap space to target memory-related bugs. Another strategy is dynamically changing the
value of variables and parameters. For instance, SOAP [LGCT12] alters the input of a
program in case of a crash, or RC'V [LSDR14] replaces divide-by-zero or null accesses with
default values. Mircoreboot [CIKF'04] introduces a procedure to reboot single components
of software to avoid long-lasting system-wide reboots.

These techniques aim to overcome bugs during runtime, for instance, to avoid or mitigate
the downtime of server applications, namely serving a liveness criteria. This way, these
techniques provide temporal support. Moreover, they rely on typically simple and static
repair ideas, which do not cover the variance of API misuses. For instance, replacing
computation errors with default values may prevent the application from crashing but
can hide erroneous behavior (e.g., default values for random variables in cryptography
causing security issues). Thus, we conjecture that such techniques are only applicable for
API misuses if liveness is an important requirement and if the state change does not hide
another misbehavior of the software. On the other hand, these techniques help in case only
binaries of the software are available since they do not require access to the source code.

A PI-Specific, State-Based: Second, we consider API-specific, state-based APR (cf.
upper, left quadrant in Figure 7.1). Similarly to generic, state-based APR, these techniques
aim to change the state of the software, but they leverage API-specific information. We only
found ARMOR [CGM™13] as a representative. This technique leverages the redundancy in
program libraries, namely API methods with similar behavior. In case of an error in one
method call, ARMOR changes the execution trace by calling its respective similar method.

This technique, however, requires the presence of sufficient redundant functions, which is
usually considered as an anti-pattern [FBB " 14, p. 78]. Moreover, even though the behavior
is similar, it is not equal and thus may introduce unexpected changes. Thus, replacing calls
should be done with care and not silently to prevent unforeseen behavior.

210

7.2. Limitations of State-of-the-Art API Misuse Repair

/Insight R-3 (RQ R-L): Limitations of state-based APR techniques as a\
temporal solution with possible side-effects for API misuses

In general, we conjecture that state-based APR techniques have only limited value in

fixing API misuses since they mainly represent a means to temporarily overcome bugs to

satisfy the liveness criteria of software and typically provide simple and static solutions,
Kwhich may introduce unintended side effects. D

Generic, Behavioral-Based APR: Third, we consider techniques classified as generic,
behavioral-based APR (cf. lower, right quadrant in Figure 7.1). These techniques aim to
permanently change the behavior of the software by directly changing its code. We con-
sider more traditional techniques discussed by Kechagia et al. [KMSH21] and learning-based
techniques surveyed by Zhang et al. [ZFM™23].

Traditional APR: In the classification, we only depict those APR techniques vali-
dated by Kechagia et al. [KMSH21]. In their experiment, they analyzed how effectively
current generic, behavioral-based APR techniques can fix API misuses. Note that they
restrict the APR techniques to target the Java programming language since the dataset
in their APTARTYy framework is based on API misuses written in Java. Due to this re-
striction, they applied the respective Java implementation provided in ASTOR [MM16a]
for DynaMoth [DM16], for GenProg [LGDVEW12], for Kali [QLARI15], and for MutRe-
pair [DW10] (i.e., prefixed with a ‘j7). Moreover, they disregard learning-based APR tech-
niques since they require further external data, such as other code samples.

A classical approach is the generate-and-validate mechanism, meaning the APR technique
generates a set of possible patches as modifications of the code, and then check the patches’
validity by automated tests [QLAR15, LGPR19].

The variants of patch generation range from

e removing functionality (e.g., Kali [QLAR15]);

e randomly modifying either within a genetic algorithm framework (e.g., GenProg
[LGDVFW12], Arja [YB20]) or using full randomness (e.g., RSRepair [QML" 14]);

e based on previously determined modification patterns (e.g., MutRepair [DW10], NPE-
Fix [DCSM17], TBar [LKKB19a]);

e or learned patterns from external sources (e.g., Cardumen [MM18], Avatar [LIKKKB19b],
SimFix [JXZ" 18)).

Another strategy for patch generation is to use a constraint-based technique as intro-
duced in the Angeliz APR technique [MYR16]. This technique denotes the analysis of
the execution traces from failing tests of a program and replacing certain statements by
so-called angelic constraints or variables that would change the behavior of the program
(e.g., changing the if-condition to an angelic condition returning true so that the then-
clause is chosen instead of the else-clause). In case a passing execution trace is found,
a synthesis mechanism such as Satisfiability Modulo Theories (SMT) is applied to find a
matching surrogate statement constructed from a set of possible statements. In our set,
DynaMoth [DM16] and Nopol [XMD*17] apply this mechanism.

In their evaluation, Kechagia et al. [KMSH21] found that all existing techniques generate
patches for 28% of all tested misuses (i.e., they only tested 89 from those initially selected
101 misuses). From all generated patches — also multiple patches for single misuses — 65%
were considered valid. The authors also found that Nopol, Kali, and Arja produced the

211

Chapter 7. Towards API Misuse Repair

most patches (i.e., between 7.8 — 11.2% of all tested 89 misuses), while Avatar and TBar
produced the largest proportion of valid patches (i.e., > 60%). Moreover, they found an
overlap of generated patches. This overlap was also represented by the low number of valid
patches, namely, only nine (i.e., 10.1% from all tested 89 misuses) patches were considered
valid (cf. number of “semantically correct” patches in Table 8 in [KMSH21]).

Kechagia et al. also analyzed reasons why APR techniques fail and found that 51% failed
due to false fault localization, meaning the techniques fail to identify the location that
should be altered in order to overcome the bug. Regarding the kind of API misuses fixed
by valid patches, Kechagia et al. identified that mainly missing conditions, expressions,
null checks, and values could be targeted.

/Insight R-4 (RQ R-L): Non-sufficient solution for API-specific APR by\

traditional, generic, behavioral-based APR techniques

We determine that traditional, generic, behavioral-based APR techniques do not suf-
ficiently cover API misuses as undermined by the experiments by Kechagia et al.
[KMSH21], who observed a lack in the kind of misuses that could be target (i.e., only
missing API elements) and issues in effectively localizing API misuses.

o J

Learning-Based APR: Moreover, Zhang et al. [ZFM 23] surveyed various techniques
using learning-based A PR, particularly those applying Deep Learning (DL). In detail, they
found that many techniques interpreted the APR problem as a neural machine translation
task by ‘translating’ the buggy code into a respective fixed one. Thus, these techniques
typically use an encoder-decoder architecture. The general behavior of these techniques
is similar to the ordinary APR steps with fault localization, patch generation, and patch
validation. The patch generation is proceeded by a learning task, which leverages code
samples of bug-fix pairs (e.g., [TWB'19]), edits of previous fixes (e.g., CODIT [CDAR22])
as well as other specification kinds, such as natural language error descriptions (e.g.,
SPVF [ZBW™'22]). The trained model then uses a previously localized buggy code line,
partially together with other information like its context, for instance, surrounding lines
of code (e.g., CoCoNut [LPP"20]), and generates a set of patches. Subsequently, these
patches are ranked and validated. Zhang et al. [ZFM 23] observed that the last step was
conducted by executing test suites or measuring patch similarity to a ground truth fix.

While achieving promising results, a downside is the necessity of sufficient, high-quality
training data as well as the computational effort of the training [ZFM'23]. Moreover,
learning-based APR mostly relies on traditional test-based techniques for fault localization
and patch validation, even though some tools such as DeepFix [GPKS17], integrate both
steps into an end-to-end machine learning model. Thus, a majority of techniques can suffer
from similar issues as observed in traditional APR in test-based detection.

Further, Zhang et al. [ZFM 23] discussed the potential of applying pre-trained models
with subsequent fine-tuning to target specific kinds of bugs. For instance, they discussed
techniques tailored for security vulnerabilities (e.g., SPVF [ZBW " 22]). Nevertheless, Zhang
et al. suggested expanding these strategies to other bugs, such as API misuses. Moreover,
even though Zhang et al. discussed promising results of techniques using pre-trained mod-
els, the question remained whether these models were trained on their actual fixes of the
tested datasets, an issue known as data leakage [RRWE25]. For instance, the code-aware
model CodeBERT [FGT"20] denotes that source code is used from non-forked open-source
projects from GitHub and thus may contain the repositories of APR benchmarks such as

212

7.2. Limitations of State-of-the-Art API Misuse Repair

DefectsdJ [JJE14]. We checked the pre-training data from CodeBERT!!' and found that it
partially overlapped with projects used in the Defects4Jv2.0 dataset'?
that this can bias the obtained results.

. Thus, we conjecture

/Insight R-5 (RQ R-L): Promising but still limited applicability of learning—\
based, generic, behavioral-based APR techniques for API misuses

We determine that learning-based APR included in the category of generic, behavioral-
based APR techniques are still limited to target API misuses in spite of reported promis-
ing results since they (1) require a large effort for obtaining data and conducting the
training, (2) frequently apply test suites for fault localization and patch validation with
previously discussed downsides, (3) can suffer from data leakage, and (4) require further
Ke]ﬁ”ort, such as fine-tuning to target API-specific bugs. D

A PI-Specific, Behavioral-Based APR: Fourth, we discuss A Pl-specific, behavioral-
based APR techniques (cf. upper, right quadrant in Figure 7.1). These techniques target
API misuses either directly, through their repair mechanism, or their data source.

GenPatch [Weil6] leverages state machines representing specifications to detect execution
paths that contradict them (i.e., not accepted by the state machines). It patches the code
with an increasing number of change operations (i.e., add, delete, or update on statements).
In his paper, however, Weimer [Wei06] did not evaluate this approach.

BugMem [KPWO06] targets project-specific bugs, particularly by leveraging information
from the project’s Version Control System (VCS). In detail, they define bug memory as
buggy and related code blocks and match similar blocks to these memories. These blocks
serve as patch suggestions and thus transfer previous fixes with customized API usages to
future scenarios. However, it is limited to the project’s history.

Pachika [DZM09] obtains object behavior by inferring a model from test execution. Par-
ticularly, they extract preconditions from passing runs and transfer them to code snippets
that are correlated with failing tests. Its downside is that it requires sufficient test cases as
well as a larger compute time to build and run the tests.

QACrashFix [GZW™15] obtains patch candidates from related Q&A posts, extracts the
suggested fixes, and matches them to the buggy code. Thus, it can target API misuses as
well. However, they require an explicit crash or error message of the misuse and may suffer
from low-quality fix suggestions from Q&A posts [ZURT18].

Other techniques specialized in specific APIs, for instance, CDRep [MLLD16] focuses on
cryptographic libraries, and TADEF [BOST22] targets TensorFlow. Both apply manually
obtained fix patterns tailored to the API domain and thus are limited this way.

APIFiz [GRS'21] targets breaking changes by inferring so-called transformation rules
either from the updated test code of the library itself, from client applications that were
already updated, or from client code that applies the updated API version. These trans-
formation rules are equipped with guard conditions preventing them from being applied on
API usages, which do not represent the breaking API. While it does not require tests for
fault localization, it is limited to API misuses caused by changes in the library itself (i.e.,
breaking changes) and requires access to the repository and the source code of the library.

Havailable under https://drive.google.com/uc?id=1xgSR34X08xXZg4cZScDYj2eGerBE9iGo according to
https://github.com/microsoft/CodeBERT/tree/master/CodeBERT/codesearch both last accessed:
2025/03/12

12¢f, https://github.com/rjust/defectsdj/tree/v2.0.0 last accessed: 2025/03/12

213

https://drive.google.com/uc?id=1xgSR34XO8xXZg4cZScDYj2eGerBE9iGo
https://github.com/microsoft/CodeBERT/tree/master/CodeBERT/codesearch
https://github.com/rjust/defects4j/tree/v2.0.0

Chapter 7. Towards API Misuse Repair

/Insight R-6 (RQ R-L): Too narrow applicability of API-specific, behavioral\
APR for API misuses

While we found techniques targeting A PI misuse in particular, we conjecture that these
are limited since they (1) target only specific API misuses (e.g., intraproject, specific
domain), (2) require high-quality data (e.g., valid fixes from QEA pages), or (3) require
computational expensive fault localization (e.qg., test execution).

N %

7.3. ASAP-Repair: API-Specific Automated Program Repair

We targeted these limitations with our own technique, ASAP-Repair. ASAP-Repair is
not a full-fledged APR, and thus, we do not compare it with state-of-the-art APR on an
experimental level. However, we give a conceptual comparison to them in Section 7.5.2.
For orientation, we classified ASAP-Repair as API-specific, behavioral-based APR and,
depending on the classification granularity, as learning-based or patch-based APR.

7.3.1. General Steps of ASAP-Repair

Idea ASAP-Repair reuses the specification by which an API misuse has been detected.
Recall the two possible detection techniques, namely, pattern-based and rule-based detec-
tion, from Chapters 5 and 6. By using these two techniques, we do not require tests for
fault localization and thus target the issue on the dependency of test suites (i.e., Insight
R-1) and partially the limitations of generic and API-specific behavioral-based as well as
learning-based APR (i.e., Insight R-4, Insight R-5, and Insight R-6).

Thus, ASAP-Repair generates patches with two repair techniques using either patterns
or change rules. We refer to them as pattern-based and rule-based repair, depending on the
applied misuse detection and data structure for repair. Patterns are obtained via Frequent
Pattern Mining (FPM), while change rules are provided by previous API misuse fixes
marked manually by developers and inferred with our technique Change Rule Inference
(ChaRLI) (cf. Section 6.3.2). Especially, rule-based repair has significantly less effort for
training compared to learning-based APR using DL (i.e., issue in Insight R-5).

In our variant, we apply the fix to the intermediate representation of API Usage Graphs
(AUGSs) (cf. Section 3.2.2). This procedure means we edit the misuse AUG using the
respective pattern AUG or the change rule used for detection and produce a fixed AUG.
This way, we provide a permanent solution compared to state-based APR techniques (i.e.,
targeting the issue in Insight R-3). The edit denotes addition, deletion, or updates of
APT elements, and due to the generic structure of AUGs, ASAP-Repair has no restrictions
on the misuse type or the kind of fix targeting Insight R-4 and Insight R-6.

Recall that applying the fix to the AUG representation limits the practical application
while allowing a more focused scientific analysis of the ability of ASAP-Repair. We fur-
ther discuss these limitations and steps towards a practical API-specific APR technique in
Section 7.5.3.

Valid Fixes We denote a fired AUG as valid if it produces a syntactically correct AUG,
which matches a ground truth AUG or is semantically equal to it. Currently, for syntactical
correctness, we assume that the fixed AUG is still a directed acyclic graph. Note that
this can be further extended by constraints such as restricting certain edge types between

214

7.3. ASAP-Repair: API-Specific Automated Program Repair

particular node types. For walidity, we compare the fixed AUGs with the ground truth
AUGs of fixes given by the original developers. In a practical scenario, this may require
the execution of regression tests as well as code review processes to validate automatically
generated patches similar to industrial applications of APR techniques [NHL18, BSPC19,
MBC*19, KWM™*21].

Repair Steps Structure We depict the general concept of ASAP-Repair in Figure 7.2 in
a UML-like activity diagram. We refer to this figure by the letters @—@, subsequently.
In the following, we briefly recall the misuse detection for ASAP-Repair in the subsequent
Section 7.3.2 and discuss the unique steps of each repair variant in Sections 7.3.3 and
7.3.4, and the final transformation step, namely, how exactly an AUG is transformed in
Section 7.3.5.

7.3.2. Misuse Detection in ASAP-Repair

First, we start by transforming a potential API misuse into its respective AUG (cf. @)
After generation, the next step, which is similar to other APR techniques, is the detection
of API misuse, namely the recognition and the location. In detail, we apply the already
presented techniques of pattern-based (cf.) and change rule-based (cf. @) misuse detec-
tion discussed in Chapters 5 and 6. Note that this also requires the inference of patterns
by using techniques such as FPM and the inference of change rules using our suggested
technique, ChaRLI (cf. Section 6.3.2). Moreover, the applied misuse detection technique
defines on the applied repair technique, namely, pattern-based or rule-based.

7.3.3. Pattern-Based Steps of ASAP-Repair

By using pattern-based repair, we target RQ R-

P. In case a pattern finds a violation within

an AUG, this means a certain sub-graph of o
the misuse AUG contradicts the pattern AUG.
One way to fix the misuse is to adapt exactly
that sub-graph based on information from the
patterns. Thus, the latent assumption is that
the misuse is only caused by this local sub-
graph part and that no further transformations
in other parts of the misuse AUG are necessary 'I
to produce a valid fix. This assumption is nec-

essary since the pattern does not provide suf- RQRAutomatedAPlMisuseRepair'
ficient information on how the surroundings of R Liikatons
the patterns may look like. Furthermore, we re- Progrem Repelrfor
quire that the misuse AUG is equal or larger in

terms of the number of nodes than the pattern

AUG since, otherwise, the pattern is not fully

covered by the API usage.

Using these assumptions, we first have to identify the relevant part of the misuse AUG
to be transformed. We do this by identifying the external APIs, typically class names
with their related package prefix (e.g., java.util.List), used in the pattern (i.e.,
getAPIs-method (cf. @) We use these APIs as filters to identify those nodes from the

RQR-P Pattern-
based API Misuse
Repair

RQ R-R Change-
Rule-based API
Misuse Repair

215

Chapter 7. Towards API Misuse Repair

AUG Generation

\,‘

Potential API Misuse

Run Pattern-based Repair Run Rule-based Repair

ﬁern-based Repair \ / Rule-based Rem
f ° c)
API Usage Pattern Change Rule
Inference 1l Inference (ChaRLI)

Pattern Pattern-based Rule-based Change Rule
API Misuse Detection API Misuse Detection
@ No Misuse <k No Misuse @
Misuse Misuse
D

API Extraction

API,
getAPIs((g'_}__l):()
API,

Pattern

oe— E
API Filtering
APl
filter(| | (5= A)=
S|\
\ API Misuse API Misuse (Filtered)
i
 atchi . G
Matching F Matching
~ —
™ pattern Ot =] i
\\iMlsuse (Filtered) / \iMlsuse Change Rule /

Transform AUG

API Fix

Figure 7.2.: Concept of AUG-based ASAP-Repair including pattern-based and rule-based
repair

216

7.3. ASAP-Repair: API-Specific Automated Program Repair

misuse AUG that should not be transformed, particularly not deleted when transforming
the graph (cf. @) Thus, every node that does not relate to the APIs used in the pattern
will be kept in the original graph. In the next step, we match the pattern AUG with the
relevant sub-graph of the misuse AUG (cf. @) We apply the same matching heuristic
as discussed in the inference of API change rules in Section 6.3.2 since graph matching
or the subgraph isomorphism problem is known to be NP-complete [Epp99, AARRMI15].
In detail, we apply the Kuhn-Munkres algorithm [Mun57] using the same customized cost
function as used in the change-rule inference to find the minimal cost matching between
the nodes from the pattern AUG and nodes from the sub-graph of the misuse AUG. Recall
that we mark additions or deletions by special € nodes. In detail, we obtain the following
four cases based on the matching between the misuse AUG (i.e., aug,,) and the pattern
AUG (ie., augp):

1. Keep:

augm augp

)

A node (i.e., non-€) n, of the augy, is not matched to any node in aug,: Node n,, is
kept in aug,, since they do not relate to the pattern.

2. Add:

augm augp

Q match O
€ np

An € node of augy,, is matched to node n, (i.e., non-€) of aug,: This describes the
addition of node n, from aug, to aug,, together with its respective edges.

3. Remove:
augm augp

Q match Q
o, €

A node ny, (i.e., non-€) of augy,, is matched to an € node of aug,: This describes the
removal of the node n,, from the aug,, together with the respective edges.

4. Update:

augm augp

atel
@ match @

A node n,, from aug,, is matched to a node n, in aug, (i.e., both non-¢): This
describes the update of the node n,, from aug, to n, of aug, together with its

respective edges.

Based on this matching, we transform the respective misuse AUG (cf. Section 7.3.5).

217

Chapter 7. Towards API Misuse Repair

7.3.4. Change Rule-Based Steps of ASAP-Repair

In the second change rule-based repair, we as-

sume that a change rule detected an AUG as

misuse targeting RQ R-R. Recall that this —
means that the misuse part AUG of the change
rule is more similar to the misuse AUG than
to its fix part AUG (cf. Equation 6.3 in Sec-
tion 6.3.4). Similar to the pattern-based repair
step, we have to identify the part of the mis-
use AUG that has to be changed. However, as
described in the following, this is much simpler.
In detail, we match the nodes of the misuse part
AUG of the change rule with the nodes of the A 4

RQ R Automated API Misuse Repair

misuse AUG (cf. (G)). Note that we assume that RQRL [miations

of Automated

the misuse AUG is equal or larger than the mis- Program Repalrfor
use part AUG (i.e., in terms of number of nodes) > raRp e Ran s crange
and that the misuse can be fixed solely on the Repair Misuse Repair
information within the change rule. In contrast
to the pattern-based repair, we match the com-
plete misuse AUG. Since we expect that the misuse AUG is typically larger than the misuse
part AUG, some nodes of the misuse AUG are matched to e-nodes. These nodes will be
kept in the graph since they are not part of the described change. All other nodes are
mapped to nodes present in the misuse part AUG and thus will be transformed. When
combining this matching with the complete change rule as depicted in Figure 7.2, we obtain
a triple matching between the nodes of the misuse AUG (i.e., augy,), the misuse part AUG
(i.e., augrm), and the fix part AUG (i.e., aug,r). Based on this triple matching, we can

derive the following four transformation cases:

1. Keep:

augm augrm augrf

Q match Q
Nom €

A node n,, (i.e., non-€) of aug,, is mapped to an € node in aug,,: The node n,,
remains in the aug,, since it cannot be matched to the misuse situation described in
the change rule.

2. Add:
augm augrm augrf

transform
€ M Ty

An e node of aug,,, which is not matched to any node of augy,, is matched to a node
nyr (i.e., non-€) of aug,¢: This describes the addition of node n,s from aug,s to the
augm, together with the respective edges.

218

7.3. ASAP-Repair: API-Specific Automated Program Repair

3. Remove:

augm, augrm augy f

match /\ transform|

A node n,, (i.e., non-€) of augy,, is matched to a node n,,, (i.e., non-€) of augym,
which itself is matched to an € node of aug,;: This describes the deletion of node n,
in aug,, together with its respective edges.

4. Update:
augm augrm augyf

@ match /n;m\ transform \@
N f

A node n,, of aug,, is matched to a node n,,, of aug,,,, which itself is matched to a
node n, s of aug,s (i.e., all three non-€): This describes the update of the node n,, in
augm to the node n,s in aug,s together with its respective edges.

The exact transformation is described in the following section.

7.3.5. AUG Transformation of ASAP-Repair

The final repair step is the transformation of the misuse AUG based on the previously de-
rived transformation steps (cf. @) As discussed before, both repair variants (i.e., pattern-
and rule-based) have four cases of AUG node transformations, namely keep, add, remove,
and update. Thus, the respective transformations in the AUG are therefore similar for both
repair variants. We split the transformation into two phases: in the first one, we handle the
node transformations, and in the second one, we do the edge transformation of the AUG.

According to the first phase, we add, remove, and update nodes, where updating means
relabeling nodes if necessary. Since these node transformations in phase one are indepen-
dent of each other, the order of their execution is independent as well.

Regarding phase two, we first remove all edges connected to nodes removed in the previ-
ous step and add all edges introduced by added nodes (i.e., which are present in the pattern
or in the fix part AUG of the change rule, respectively). Note that by construction, all
respective counterpart nodes of the added edges will be present in this phase. Finally, we
update all edges of updated (i.e., relabeled) nodes. For that purpose, we first remove all
incoming edges of the updated node present in the misuse AUG. Note that we only have to
remove the incoming edges since outgoing edges, which have to be updated, will be handled
when the respective target node is transformed. This transformation will happen as this
node requires either a remove or an update operation due to the update of the edge. Then,
we add all edges present in the pattern AUG or fix part AUG of the change rule. Using
this approach, we safely remove all unnecessary edges while adding all edges required for
the patch.

219

Chapter 7. Towards API Misuse Repair

7.4. Experimental Data and Processing

In this section, we describe our datasets and the experimental settings of ASAP-Repair.

7.4.1. API| Misuse Datasets

MUBench Again, we applied the MUBench dataset [ANNT16] using the 116 entries as
discussed in Section 6.4.1 for an idealized check of ASAP-Repair. Note that we mentioned in
that section that three entries were not available anymore from their respective repositories.
These entries will be highlighted in the respective results. For all entries, we consider the
pre-fixed version as misuse and the post-fixed version as correct API usage.

AndroidCompass+ We also used the AndroidCompass+ dataset as presented in Sec-
tion 6.4.1. It consists of 36 clusters of API misuses clustered by methods from the Android
framework protected by a compatibility check in an if-condition. In sum, these 36 clusters
encompass 1,018 different method declarations, and thus, 1,018 different AUGs, containing
1,317 different protected methods, and thus 1,317 different single API misuses. Similar to
MUBench, this dataset contains the pre- and post-fixed, which we consider as misuse and
correct usage, respectively. This way, we obtain a larger dataset of misuses targeting the
issue of too small API misuse datasets (cf. Insight R-2).

Excluded Datasets We do not use the AU500 dataset [KKL.21] in this setting because we
observed non-promising results on misuse detection when inferring patterns and change
rules from MUBench and applying it on AU500 (cf. Section 6.5.5).

Additionally, we do not apply the dataset APIRepBench applied by Kechagia et al.
[KMSH21] consisting of 101 misuses and obtained from MUBench (i.e., 42 entries) as well
as the datasets Bears [MUMMI19] (i.e., 19 entries) and Bugs.jar [SLL 18] (i.e., 40 entries).
The reasons are that (1) we already use a significant part of APIRepBench by MUBench,
and (2) we require some training data, namely correct API usages and previous fixes to
infer change rules, which are not available for APTRepBench.

7.4.2. Comparing Patched AUGs with Ground Truth AUGs

To assess the quality of a generated patch previous APR techniques use automated tests to
check their validity (i.e., passed tests) [LGPR19], which was also applied in the APTARTY
framework [KMSH21]. However, test case-based validation does not apply to the current
form of ASAP-Repair, which does not produce patched source code but patched AUGS.

Therefore, we require a technique to compare a patched AUG with its ground truth AUG,
namely the AUG generated from the manually fixed source code. We do this comparison
by finding the minimal matching between the two AUGs. As previously discussed, minimal
graph matching is known to be an NP-complete problem [AARRMI15].

Thus, we applied a similar heuristic already presented for the inference of change rules
using ChaRLI (cf. Section 6.3.2, namely, in paragraph Efficient Change Rule Inference).
Recall that we construct a bipartite graph with each partition consisting of the nodes of
the two respective AUGs and connecting all nodes by edges labeled with their respective
costs representing the number of necessary edits (i.e., adding, deleting, updating the node
and its incoming and outgoing edges). In contrast to ChaRLI, we applied for each edit the
cost = 1 since we were only interested in the number of different nodes and edges. Then, we

220

7.4. Experimental Data and Processing

applied the Kuhn-Munkres algorithm [Mun57] to find a one-to-one matching with minimal
costs, as well as to determine and mark the differences between the two AUGs.

Based on this matching, we compute the node (i.e., simyoq.) and edge similarity (i.e.,
51Medge) Of the two AUGs to represent the similarity of the generated patch AUG aug; and
its ground truth aug,;. Formally'?, we assume a matched AUG:

AUGmatched = (Vm7 Ep, Eme EEma Sms b, lea lEm)

between two AUGs aug; and aug;, with

e V,, and FE,, representing the nodes and edges with their related costs w.l.o.g. to
transform aug; to aug;, including those nodes which would be removed;

e their related alphabets Xy, and Xg, ;
e their mapping functions of edges to start (i.e., s,,,) and target (i.e., t,,) nodes; and
o their labeling functions ly;, and lg,,

Further, we define the minimal costs as obtained by the minimal matching between the
nodes and edges of aug; and aug; via the Kuhn-Munkres algorithm as functions:

® costim,, g - Vm — No and

ode
® COStKM,q4,, E,, — Np.

Based on the matching AUG augmatched and the respective cost functions costg s and

node
COSK M, 4,.» We compute the similarity of the nodes and edges as follows:

[{nln € Vin A OStRcAt 0 (1) = 0}
Vo

simnode(augmatched) =

l{ele € B A COSLK M, 4. (n) =0}
| Em|
Essentially, these functions compute the ratio of shared nodes and edges that do not

require edits between the two AUGs aug; and aug;. We automated this comparison as an
AUG comparison technique.

SiMedge (QUGmatched) =

7.4.3. Experimental Settings

Idealized Check with MUBench We used the MUBench dataset [ANNT16] to assess the
repair ability of ASAP-Repair. For that purpose, we compared the pattern-based and the
change rule-based variants by conducting an idealized check. This setting meant we repair
the misuse entries of MUBench with their own fix.

For pattern-based repair, we applied the AUG generated from the fixed method decla-
ration of the respective misuse as a pattern. Regarding the change rule-based repair, we
inferred the change rule using the misuse itself and its fixed version.

This way, we assessed whether ASAP-Repair was able to produce patches or not and
whether the produced patches were valid. In detail, we denoted a patch to be valid if
81Mpode = 1 A 8iMeqge = 1 or if our manual assessment denoted that the differences to

13A detailed definition of AUCs is given in Section 3.2.2

221

Chapter 7. Towards API Misuse Repair

the ground truth AUG did not harm the validity of the patch. Note that by the manual
assessment, we also ensured that the graph comparison done by the heuristic Kuhn-Munkres
algorithm [Mun57] was correct, namely, we found no match, which was falsely denoted as
equal if it was not. In case ASAP-Repair did not produce a patch, we further examined
and documented the reason for non-production.

AndroidCompass+ In the second experiment, we used the AndroidCompass+ dataset.
First, we inferred patterns and change rules for each cluster of the protected method calls.

We applied the pattern mining from the MUDetect [ANN19b] with minimal relative
support minsypport € {0.1,0.2} and ensured the minimal absolute support was larger than
one (i.e., Mingypport > 1) to avoid the bias. Recall that this is similar to the experimental
setting discussed in Section 6.5.5.

We inferred the change rule with context by applying ChaRLI (cf. Section 6.3.2). For
the subsequent analysis, we discarded those results from ASAP-Repair with change rule-
based repair, which generated a patch by applying a change rule on a misuse present in the
method declaration of the same file. This way, we mitigated the influence of the bias of
the ground truth fix. Note that results using change rules from other method declaration
of the same file and even commit can still be present in the final set.

Conceptual Comparison Finally, since ASAP-Repair represents no full-fledged APR tech-
nique at the moment, we provide a conceptual comparison to state-of-the-art APR tech-
niques. In detail, we focus on the APR technique applied to API misuses by [KMSH21].

7.5. Validation of ASAP-Repair

In this section, we present the experimental and conceptual validation of ASAP-Repair.

7.5.1. Comparison of Pattern-Based and Change Rule-Based ASAP-Repair

In this section, we provide an experimental comparison of pattern-based and change rule-
based repair using ASAP-Repair. Thus, we analyze RQ R-P and RQ R-R.

[

4

4

RQ R Automated API Misuse Repair

RQ R-L Limitations
of Automated
Program Repair for
APl Misuses

RQ R-P Pattern-
based API Misuse
Repair

RQR-R Change-
Rule-based API
Misuse Repair

RQ R Automated API Misuse Repair

RQ R-P Pattern-
based API Misuse
Repair

RQ R-L Limitations
of Automated
Program Repair for
API Misuses

RQR-R Change-
Rule-based API
Misuse Repair

222

7.5. Validation

120+

1001

80 73 (62.9%)
g 88 (75.9%) B \Valid Fix
ﬁ 21 No Valid Fix
s [T No Fix - Repair Failed
s 601 No Fix - No Change Rule Generation
E Il No Fix - No AUG Generation
= B No Fix - No Source File

401

13 (11.2%)
0000000004 |
. booooocoooooq [11 (9-5%)
P20 SR 1 A e B e / o [e Lo o Xe Jo e Je ool N N —— -

— 19 (16.4%) — 19 (16.4%)

Repair Repair
by Pattern by Change Rule

Figure 7.3.: Results of ASAP-Repair on the idealized check using MUBench

Methodology For both experiments discussed in Section 7.4.3, namely, the idealized check
using MUBench [ANNT16] and the experimental comparison of the pattern- and rule-based
variant of ASAP-Repair using the AndroidCompass+ dataset, we prepared scripts to run
ASAP-Repair and to analyze its results. In detail, we downloaded all source files of the two
datasets, conducted the pattern mining and change rule inference, configured ASAP-Repair
to run the pattern- and change rule-based repair, applied the AUG comparison to compute
8iMpode and $iMegge, and stored and analyzed the results. For all steps, we provide a
replication package'*.

Note that we ran the idealized check on a laptop with the operating system Windows
11 Pro with 64GB RAM and an Intel® Core”™ i7-9750H CPU with 6x2.6Ghz. The
experiments on AndroidCompass+ were executed on an Ubuntu 20.04.6 LTS system with
an Intel® Core’™ i7-3930K with 6x3.20GHz. Both settings applied ASAP-Repair with a
timeout of two minutes for each single repair run.

Results Idealized Check MUBench: Figure 7.3 depicts the absolute number of ob-
tained patches within the idealized check on the 116 misuses from MUBench. We observed
that ASAP-Repair with pattern- and change rule-based repair produced a majority of valid
fixes while using patterns obtained more patches (i.e., 75.9% of all entries) than change
rules (i.e., 62.9% of all entries).

ASAP-Repair failed for 19 entries (i.e., 16.4% of all entries, below the dashed line in
Figure 7.3), three of them due to non-downloadable source files and 16 due to non-produced
AUGs (i.e., using the implementation from MUDetect [ANNT19b]). For those entries,

Mhttp://doi.org/10.5281/zenodo . 15594600

223

http://doi.org/10.5281/zenodo.15594600

Chapter 7. Towards API Misuse Repair

ASAP-Repair was not directly responsible for not producing a patch. However, since we
could not validate whether a fix would be produced if the AUG was generated, we denoted
these cases as no fix.

Pattern-based repair failed in
eight cases, all of them due to
timeouts of ASAP-Repair. For

change rules, we found eleven Repair N

. . \\
failed cases, ten of which were due by Pattern \‘\‘
to non-produced change rules and 79 '|} 1

one due to a timeout during patch ,'l'R)
generation. For pattern-based re- ,I,'l b; pa:;n ge Rule
pair, only a single produced patch !

(i.e., 0.9%) was not valid, while we

found that change rule-based re-

pair had 13 (i.e., 11.2% of all mis-

uses) non-valid patches.)))
Additionally, we also analyzed Figure 7.4.: Venn diagram of wvalid fixes of

whether the pattern- and change ASAP-Repair with patterns (left) and
rule-based variant of ASAP-Repair with change rules (right) on the idealized

found different sets of misuses. check using MUBench

Therefore, we depict the number of found patches for each variant in a Venn diagram
in Figure 7.4 . We observed that pattern-based repair produced patches for all but one
misuse entry compared to the change rule variant (i.e., the only non-valid patch). Thus,
we concluded that both techniques were applicable for real-world API misuse repair'®.

Insight R-7 (RQ R-P): Pattern-based ASAP-Repair is applicable in an ide-
alized scenario

We observed that in an idealized situation, as demonstrated in the MUBench ideal-
ized check using the fized version as a pattern, pattern-based ASAP-Repair worked as
intended, producing 75.9% of valid patches.

Insight R-8 (RQ R-R): Change rule-based ASAP-Repair is applicable in an
idealized scenario

We observed that in an idealized situation, as demonstrated in the MUBench idealized
check using the misuse and fixed version as change rule inference source, change rule-
based ASAP-Repair worked as intended, producing 62.9% of valid patches.

Ezxperiment on AndroidCompass+: In comparison to the idealized check, the results
on the AndroidCompass+ dataset did not use the ground truth fix but a realistic scenario
of previously inferring API usage patterns and change rules.

First, we compared the distribution of the node and edge similarity for all patches ob-
taining simpode > 0.9 A 8iMeqqe > 0.9 presented in Figure 7.5 and Figure 7.6. We observed
that the mean value among these distributions was larger for the change rule-based variant
of ASAP-Repair (i.e., simpode = 96.1% and simeqge ~ 98.9%) than for the pattern-based

5Note that these results differ from our previously reported ones [NBKO24], which were obtained by
handling depending nodes in the patched AUG

224

7.5. Validation

1.00

<

©

oo
)

<

©

=N
)

=
N
=

<

)

)
X

node similarity simypoqe (> 0.9)

0.90 = — = —
Repair Repair
by Pattern by Change Rule
MiNsupport = 0.1 MM sypport = 0.2

Figure 7.5.: Distribution of node similarity of patches from ASAP-Repair with patterns

(left) and change rules (right) using AndroidCompass+ with at least node and
edge similarity > 0.9

225

Chapter 7. Towards API Misuse Repair

1.00 i
—_ —_ I
I
I
I
—~ 0.98 1 !
3 I
o
2 T :
I
< 0.96 1 '
g o : §
CTD o (o] I o
> I o
5 .94 o |
E I o
o I
(&)
=1 o ! 8
© 0.921 !
I
I
I
I
0.90 - - - 1 :
Repair Repair
by Pattern by Change Rule
MM sypport = 0.1 MM support = 0.2

Figure 7.6.: Distribution of edge similarity of patches from ASAP-Repair with patterns
(left) and change rules (right) using AndroidCompass+ with at least node and
edge similarity > 0.9

one (i.e., siMpode = 92.5—92.7% and simeqge ~ 97.4—97.6%). Note that there existed only
little differences between the two variants of pattern-based repair using different support
values (i.e., mingypport = 0.1 and mingyppors = 0.2). All distributions did not stem from
the same population. In detail, for sim,eq. > 0.9, we found only 26 candidates produced
by pattern-based repair with minsupport = 0.1 and 34 candidates with minsupport = 0.2,
while the change rule-based had 285 candidates.

We further examined the absolute number of produced patches in Figure 7.7. Partic-
ularly, we depict the number of patches satisfying both similarities simyege and simeqdge
constraint (i.e., larger or equal to an increasing threshold) for each repair variant. We
concluded that in all considered cases, the change rule-based ASAP-Repair produced more
patches with larger similarity than the pattern-based variant.

Having simyode = $iMedge = 1 denoted a perfect match of the generated patched AUG
produced by ASAP-Repair in comparison to the ground truth and, thus, a wvalid patch.
Based on Figure 7.7, only change rule-based ASAP-Repair produced valid patches in 102
cases, while both pattern-based variants failed to find any valid patches at all.

For those patches found by the rule-based repair, we also checked whether our misuse de-
tector Change Rule-based API Misuse Detection (RuDetect) is able to detect these misuses
using the change rule applied for repair. In detail, based on our experiments presented in
Section 6.5.5 (cf. Comparison of RuDetect with state-of-the-art), we used the similarities
APIIndicatorExasVector and ExasVectorCosine with most restrictive threshold = 0.7
for applicability check (cf. Equation 6.1 in Section 6.3.3). For both variants, we found that
91 out of the 101 patched misuses are correctly detected as API misuse. Thus, in a full-

226

7.5. Validation

Repair

by Pattern
MM sypport = 0.2

by Pattern
MM sypport = 0.1

1 B by Change Rule

300 1 285

167

Number Patches

102

7
_7 3 0 0

> 0.9 > 0.95 —1
Node/Edge Similarity simupode/simedge

Figure 7.7.: Number of patches from ASAP-Repair with an simultaneously increasing
51Mpode and siMeqqe threshold to the ground truth fix using AndroidCom-
pass+

stacked implementation of ASAP-Repair with previous misuse detection using RuDetect
91 misuses would have been fixed.

Insight R-9 (RQ R-P): Pattern-based ASAP-Repair does not produce valid
patches in a realistic scenario

In a realistic scenario, as demonstrated in the AndroidCompass+ experiment, pattern-
based ASAP-Repair (1) did not produce valid patches, and (2) had only a small number
of similar patches compared to ground truth fizes.

/Insight R-10 (RQ R-R): Change rule-based ASAP-Repair produces valid\
patches in a realistic scenario

In a realistic scenario, as demonstrated in the AndroidCompass+ experiment, change

rule-based ASAP-Repair (1) produced 102 valid patches, 91 of them also found by our

misuse detector RuDetect, and (2) had a larger number of similar patches compared to

ground truth fixes and also a larger number of patches than the pattern-based variant
9 of ASAP-Repair.

J

No Fizxes for pattern-based ASAP-Repair: These results partially contradicted
the observation from the idealized check, in which pattern-based ASAP-Repair performs
better than the change rule-based variant. The reason was that the patterns used in the
idealized check are AUGs representing full method declarations almost perfectly matching

227

Chapter 7. Towards API Misuse Repair

Misuse

Build.
VERSION.
SDK_INT

atch match

N\

Change Rule

Misuse

Build.
VERSION.
SDK_INT

ransform transform

Build.
VERSION.
SDK_INT

Build.
VERSION_CODES.

’ UNKNOWN.setSystemUi Visibility() ‘

Figure 7.8.: Sample of a matching between misuse (left) and change rule (right) from a
successful patch

the misuse present. When mining patterns, we used the same set of patterns as found in
the AndroidCompass+ experiment discussed for API misuse detection (cf. Section 6.5.5).
From this experiment, we already knew that using RuDetect performd better than pattern-
based misuse detection using MUDetect (cf. Insight D-20). Recall that this was caused
since the patterns were less related to the checked misuses (i.e., Android compatibility
checks). Thus, it was not surprising that pattern-based repair could not produce any valid
patch.

Qualitative View on Change Rule-Based ASA P-Repair: We further investigated
the good performance of change rule-based ASAP-Repair by qualitatively analyzing the
patches together with their matching between the misuse AUG and the change rule. For
that purpose, analyzed the matching of a valid patch represented in Figure 7.8. We selected
this example since we found it representative of a set of found patches as well as sufficiently
succinct to be depicted in this thesis'®. Note that the <r> node denotes an action node
representing an if condition, which protects the action nodes connected via the dashed

160ther examples can be found in our replication package

228

7.5. Validation

control flow edges labeled with sel.

We tracked the origin of this misuse as well as the change rule depicted in this example.
In this case, misuse and rule shared the same commit but originated from two different
method declarations'”. In detail, this commit updated the compatibility check from SDK
level 18 to 19 (i.e., version KitKat), which enabled a new immersive mode for Android
apps, which could hide the navigation bar of the Android operating system (cf. Android
release note!'®). Previously to KitKat, this behavior was obtained by hiding and showing the
navigation bar using the setSystemUIVisibility method. This behavior, however,
was still supported in KitKat using the new immersive view.

Apart from the discussion of whether the sample in Figure 7.8 essentially represents an
API misuse and whether it is valid to apply change rules from the same commit, we focused
on a different aspect. When considering the change rule, it was too succinct since it only
represented the if-condition without its protected methods. This way, the matching, while
being correct, only worked by chance, namely, updating the object node representing the
SDK level (i.e., 18) to the correct one.

We observed this situation in other patches as well. This result implicated that while
change rule-based ASAP-Repair works correctly and as intended in this situation, it might
fail in other situations. For instance, assume a similar change rule as in Figure 7.8, which
updates the SDK level to 30, a level at which the method setSystemUIVisibility
was deprecated'’). Thus, at the current state, we assess change rule-based ASAP-Repair
due to such issues as a partially applicable and reliable technique in practice.

Insight R-11 (RQ R-R): Change rule-based ASAP-Repair is only a prelim-
inary technique for API-specific automated program repair

While producing valid patches, we observed in a qualitative review that change rules
could lack sufficient context. Thus, further research should strive to increase the re-
silience of change rules to foster the quality of generated patches.

Implications We found that, in principle, both variants of ASAP-Repair, namely pattern-
and change rule-based, were applicable. However, pattern-based ASAP-Repair failed more
often since it could not extract useful patterns compared to the inference of change rules.
We hypothesize that the correct selection of fixing commits for change rule inference is the
‘main ingredient’ to the success, as seen with RuDetect for API misuse detection as well as
in change rule-based ASAP-Repair. While currently, the selection of commits is meant to be
manual (cf. Section 6.3.1), further research may identify fixing commits automatically. This
mechanism may go beyond keyword-based techniques on commit messages for finding fixing
commits as part of the well-known SZZ algorithm by [SZ705] to identify error-introducing
commits. Qualitatively, we determined necessary improvements of change rules. Currently,
too small change rules may cause arbitrary correct results. Further research has to strive for
robust change rules and subsequent patches, which would represent a strong APR technique
for practical usage.

17ef, the related GitHub project https://github.com/raulhaag/MiMangaNu/commit/
86c09774914d7242a04427£1f95acff7a2a2e726 last accessed: 2025/02/24

Bhttps://developer.android.com/about/versions/kitkat#44-beautiful-apps last accessed:
2025/02/24

19¢f, Android documentation at https://developer.android.com/reference/android/view/View#
setSystemUiVisibility(int) last accessed: 2024/02/24

229

https://github.com/raulhaag/MiMangaNu/commit/86c09774914d7242a04427f1f95acff7a2a2e726
https://github.com/raulhaag/MiMangaNu/commit/86c09774914d7242a04427f1f95acff7a2a2e726
https://developer.android.com/about/versions/kitkat#44-beautiful-apps
https://developer.android.com/reference/android/view/View#setSystemUiVisibility(int)
https://developer.android.com/reference/android/view/View#setSystemUiVisibility(int)

Chapter 7. Towards API Misuse Repair

Table 7.1.: Conceptual Comparison of ASAP-Repair to API-specific, behavioral-based APR

techniques.

0

Sy

< £

8§ ¢ 8 : & 4 &

Q © X 9 2 E A &

A 2 g 2§ < % Lf

A ?—44 <o & 45 A <

s E 325398

=

<« 2 53 & £ 35 &
Available Software Artifact 0 00O e O
Test-free Fault Localization e 0 0060 O COo
Test-free Patch Validation ©C 000 OO © O
Generic Repair Patterns e 00 0 0C O O
Generic API Misuses Types ®e 00O 0O e e e O
Independence of External Sources OO0 @€ O @ O @

for Patch Generation

7.5.2. Conceptual Comparison of ASAP-Repair to State-of-the-Art APR

Classification of ASAP-Repair As previously shown in Figure 7.1 (cf. Section 7.2.2), we
denote it as an A Pl-specific, behavioral-based APR technique. In detail, it is behavioral-
based since it aims to change the source code and, thus, the behavior of the code. Moreover,
it is A Pl-specific since it specifically targets API misuse by applying API-specific patterns
representing frequent and likely correct API. Moreover, it can be considered as a learning-
or pattern-based APR since, for pattern-based repair, correct API usage is learned in the
form of frequent patterns.

Comparison to Other API-Specific, Behavioral-Based APR Due to its classification first,
we compared ASAP-Repair to all API-specific, behavioral-based techniques, namely those
shown in the upper right quadrant of Figure 7.1 in Section 7.2.2. We depict an overview
of this comparison in Table 7.1.

Available Software Artifact: We provide ASAP-Repair as an available artifact'*.
We found an available, linked artifact also for APIFix [GRS™21] and Pachika [DZM09]. For
QACrashFix [GZW"15], the authors provided a URL, but the link did not work anymore.
TADEF [BOST22] linked their experimental data, however, not the repair technique. For
BugMem [KPWO06] and CDRep [MLLD16], no artifact was linked, even though experiments
were conducted. GenPatch [WeiO6] only states the general notion of a repair technique
without providing a direct evaluation or a software artifact.

Test-Free Fault localization: We analyzed whether those APR techniques required
tests for fault localization (i.e., first row in Table 7.1) or patch validation (i.e., second row
in Table 7.1). We observed that ASAP-Repair aligns with most techniques that did not
require tests for fault localization. Particularly, APIFix [GRS'21] applied transformation

230

7.5. Validation

rules from breaking changes, BugMem [KPWO06] leveraged previous fixes from the project’s
VCS, CDRep [MLLD16] and TADEF [BOST22] used manually crafted repair templates,
and GenPatch [Wei06] similar to ASAP-Repair applied specifications mined from source
but in opposite to us they inferred state machines. While QACrashFix [GZW " 15] did not
directly define a dependency on tests, it was based on crash reports, which required the
execution of the program to determine the fault. Pachika [DZMO09] relied on test cases
for both fault localization and patch validation. Particularly, it inferred object behavior
differences from execution traces of passing and failing tests and checked the patch with
the same test suite.

Test-Free Patch Validation: Regarding the patch validation next to Pachika, TADEF
also denoted a test-based patch validation. However, since they targeted API misuses of
the DL framework TensorFlow, they also measured other factors, such as the training
performance of fixed models. For all other techniques, including ours no tests were used
for the evaluation. Nevertheless, we assumed that test-based validation was reasonable for
them and us in practice. For instance, CDRep, GenPatch, and QACrashFix assumed that
experts or developers validated the patches (e.g., in a code review-like process). APIFix,
BugMem, and our ASAP-Repair assessed the patch quality by measuring similarity to
the ground truth fix, which could not available in practice. Thus, both variants were
either too cumbersome or not possible at all. Regarding the industrial application of APR
(cf. [NHL18, BSPC19, MBCT19, KWMT"21]), we suggest test-based validation with a
subsequent manual validation.

Generic Repair Patterns: ASAP-Repair has no restriction to repair patterns similar
to APIFix, BugMem, GenPatch, and QACrashFix. Instead, CDRep and TADEF, as stated
before, relied on manually crafted repair templates and thus did not generalize. Pachika
added either preconditions to methods or deleted methods at all, which hardened update
operations.

Generic API Misuse Types: Moreover, ASAP-Repair does not have any restrictions
regarding API misuse types or domains, similar to GenPatch, Pachika, and QACrashFix.
In contrast, CDRep (i.e., targeting cryptographic APIs) and TADEF (i.e., targeting Ten-
sorFlow) focused on specific misuse patterns. While not limiting the domain, APIFix (i.e.,
focuses on breaking changes) and BugMem (i.e., only targets project-specific bugs) had
restrictions regarding the API misuse scope.

Independence of External Sources for Patch Generation: ASAP-Repair requires
external data, namely, other API usages or fixes to infer patterns or change rules. Similarly,
GenPatch required other API usages to infer state machines. APIFix relied on the source
code changes in a library, while QACrashFix used Q&A posts from StackOverflow. In
contrast, BugMem and Pachika relied on code features from the same project. CDRep and
TADEF had static patch templates and did not need any additional information.

Comparison to Other Generic, Behavioral-Based APR Based on the experiments by
Kechagia et al. [KMSH21], we know that, while limited, generic, behavioral APR is ap-
plicable for API misuses. However, all techniques executed by the APIARTy frame-
work [KMSH21] require a test-based fault localization, which has been found to be a major
issue for not producing patches. Note that Avatar [LKKBI19b], TBar [LKKB19a], and
SimFix [JXZ"18] were not directly executed in their experiment. However, their fault lo-
calization also requires tests. Even though not included in the experiment by Kechagia et
al. [KMSH21], the constraint-based patch generation introduced by Angelix [MYR16] also

231

Chapter 7. Towards API Misuse Repair

requires tests for fault localization.
Thus, next to its API specficity, ASAP-Repair requires no tests for fault localization
compared to these techniques.

Comparison to Other Learning-Based APR We, particularly, compare to learning-based
APR since they conduct a similar procedure to ASAP-Repair by using knowledge from
previous fixes and correct usages. However, learning-based techniques, particularly DL
ones, require large datasets as well as huge computational effort. Even if pre-trained models
are used, experimental evaluation becomes more complicated due to the data leakage issue,
particularly if training data is unknown and the trained model is used as a black box.

In contrast, ASAP-Repair, especially its rule-based repair, has a far simpler inference
technique. Even though it can suffer from data leakage (cf. Section 7.5.4) as well, the
training data is transparent, allowing previous filtering of ground truth fixes. Moreover,
as discussed by Zhang et al. [ZFM 23], many learning-based APR techniques also require
tests for fault localization.

Comparison to Other State-Based APR Compared to state-based APR techniques, our
technique ASAP-Repair does not target the liveness criteria. Thus, state-based APR
is meant for software operation, particularly for critical software components. Instead,
ASAP-Repair aims to support software developers to permanently fix API misuses.

/Insight R-12 (RQ R-P): Conceptual benefits of pattern-based ASAP-Repair
for API misuses to state-of-the-art APR

~

We found that pattern-based ASAP-Repair had conceptual benefits compared to state-
of-the-art APR for API-specific repair due to (1) specifically targeting API misuses, (2)
no dependency on tests for fault localization, and (3) producing a permanent solution.

= %

/Insight R-13 (RQ R-R): Additional conceptual benefits of change rule-based\
ASAP-Repair for API misuses comparison to state-of-the-art APR

In addition to the benefits of pattern-based ASA P-Repair, rule-based ASAP-Repair had
less computational effort compared to state-of-the-art APR, particularly learning-based
ktechm’ques using DL. D

7.5.3. Towards Code Patches from ASAP-Repair

Currently, we applied ASAP-Repair solely on AUGs to assess its repair ability by avoiding
parsing and compiling issues. As seen in our results, the patched AUGs generated by
ASAP-Repair could create many irrelevant patches, namely, in case of AndroidCompass+
a set of compatibility checks that are not linked to the protected method. Thus, a full-
fledged APR technique, creating patched source code, was not meaningful at the moment.

Nevertheless, in case its repair abilities can be improved, it requires a full-fledged tech-
nique to produce patched source code. Therefore, we briefly discuss two possible variants to
derive source code from patched AUGs together with their technical hurdles to overcome:

1. Inference of modifications of Abstract Syntax Trees (ASTs) based on AUG transfor-
mations obtained from ASAP-Repair;

2. Direct transformation of the patched AUG into source code.

232

7.5. Validation

Inference of AST Modifications The notion of the first variant is to extract AST modifi-
cation operations based on the obtained AUG transformation. In detail, this encompasses
steps to determine single AST modifications (e.g., adding an if AST-node), to align them
in an order to resolve dependencies among them (e.g., a new parameter of a method call
requires a previous initialization), as well as to include necessary modifications, for instance,
when moving a method call into a then block necessary data dependencies have to be re-
solved. The benefit of this procedure would be that one can directly modify the AST of
the buggy code, which has been obtained when generating the AUG. This modified AST
can be directly transformed into patched source code.

We tested this variant and found that for realistic code patches, we required a variety
of single AST modifications to create valid patches. For instance, assume that we use a
return value of a method call, which should be protected by an if-condition. In case we
add this condition, we also have to protect the subsequent usage of the return value or
add a default initialization of this value. In general, single code modifications can trigger
many subsequent data and control flow-related implications, which increases the number
and variance of required AST modifications.

Transformation from AUG to Source Code The second variant aims to use the patched
AUG and transform it directly into source code. A naive solution for this variant is a
topological sorting of AUG nodes, obtaining possibly multiple sequences of code statements.
This sorting is always possible since AUGs are directed acyclic graphs (cf. Szpilrajn [Szp30]
as cited by Knuth [Knu97, p. 268]). Based on the sequences, one can reconstruct the source
code elements, such as the handling of different cases (e.g., if-statements) or errors (e.g.,
try-catch-finally-blocks), as well as special code blocks (e.g., synchronized).
In the final step, undefined variables have to be added either as method parameters in
the respective declaration or as global variables, as well as missing dependencies (i.e.,
imports).

Currently, this approach is not efficient since there can exist many possible code variants
due to the abstraction in the AUG. This abstraction causes unknown parameter order
for method calls (i.e., due to unsorted para edges) or unclear branching in if-statements
(e.g., whether a method call is part of the then- or else-branch). Moreover, AUG gen-
eration can lack type information, thus generating UNKNOWN nodes in an AUG. Then, we
cannot generate syntactically correct source code. Note that AUGs relate to the method
declaration scope, and thus, the changes may interfere with code components beyond this
scope.

Therefore, we suggest a formalized transformation from ASTs to AUGs and vice versa
as a bijective function. However, currently, there exists only a single directed transforma-
tion from ASTs to AUGs, which is only implicitly determined in the MUDetect artifact
[ANNT19b]?°. Thus, further research has to formalize these steps and derive an efficient
transformation.

7.5.4. Threats to Validity

We finally consider the threats to validity of our experiments, which may limit the signif-
icance of our results. Again, we consider the internal and external validity according to
Siegmund et al. [SSA15].

20¢f. implementation at https://github.com/stg-tud/MUDetect last accessed: 2025/03/14

233

https://github.com/stg-tud/MUDetect

Chapter 7. Towards API Misuse Repair

Internal Validity We implemented our concept of ASAP-Repair as a prototypical im-
plementation, which might contain errors. This issue also concerned related tools and
libraries applied and extended for evaluation, for instance, MUDetect [ANNT19b] used for
AUG generation and API usage pattern mining. This issue might negatively affect results,
and thus, for replicability reasons, we published the source code of ASAP-Repair together
with related analysis scripts and datasets in our replication package'*.

Currently, ASAP-Repair does not create source code patches. Thus, we did not investi-
gate whether generated patches compiled or not. Therefore, the number of valid patches
might decrease.

Another issue was related to the dataset. For instance, the ground truth fixes in
MUBench and AndroidCompass+ to which we compared our generated patches could be
wrong or represented non-sufficient solutions. Thus, the reported number of valid fixes
might decrease as well.

We avoided in the experiment with AndroidCompass+ data leakage by using either larger
support for pattern-based repair or filtering out the ground truth change rules for rule-based
repair. However, due to forked projects within AndroidCompass+, still identical fixes might
exist. Moreover, our evaluation might suffer from temporal bias, namely, change rules and
patterns might not be available at the time of the misuse. This bias can cause some patches
to only be generated later or not at all in practical scenarios. Since we determined rule-
based repair of ASAP-Repair as a functional but still preliminary technique (cf. Insight
R-11), we abandoned techniques to cope with temporal bias for future analysis.

Similar to the issues described in Section 6.5.6, we applied FPM to obtain API usage
patterns using the complete source files with all method declarations. Since FPM required
a sufficiently large mingyppore (cf. Section 3.5) to obtain patterns efficiently (i.e., due to
memory- and time restrictions), certain patterns that were able to fix the misuse would not
have been detected. In contrast, change rules were inferred from single method declarations
and thus were more likely to contain a matching fix if it was present in our dataset. Thus,
rule-based repair might be positively biased towards better matching templates for repair.

External Validity Our datasets represent one threat to external validity. In detail, An-
droidCompass+ only contained if conditions of Android compatibility checks. For valida-
tion of whether ASAP-Repair is applicable to different kinds of misuses (e.g., false order or
redundant calls of API methods) and domains (e.g., cryptography, graphical user interface),
we require further and large datasets.

Moreover, we did not experimentally compare to state-of-the-art techniques due to the
lack of source code patches by ASAP-Repair. Thus, currently, we cannot determine the
beneficial effect in terms of real-world bug fixes compared to state-of-the-art APR. We
discussed in Section 7.5.3 two variants to obtain source code patches in case the fix quality
on AUGs is further improved.

Currently, AUGs are restricted to the Java language with object-oriented features and
intra-procedural API misuses (i.e., within a single method declaration). This way, changes
to the data structure of AUGs are necessary to cope with other programming languages
and paradigms as well as further techniques to cope with inter-procedural patches.

As seen in practical applications of APR, it requires further steps for quality assurance,
such as independent tests or code reviews [BSPC19, MBC™19], most likely since auto-
matically generated patches are not trusted by the developers. Thus, we suggest that the
practical application of ASAP-Repair requires further quality assurance steps as well.

234

Chapter 7. Towards API Misuse Repair

7.6. Summary API Misuse Repair

Summary In this chapter, we targeted RQ R on how API-specific information could
support its Automated Program Repair. For this purpose, we analyzed the limitations of
current APR techniques in RQ R-L. In detail, we reviewed the results of previous APR
survey articles and studies [Mon18a, Mon18b, KMSH21, ZFM*23] as well as a research
community webpage?! and summarized the limitations of APR techniques when repairing
API misuses.

Then, we introduced the concept of an API-specific APR technique named A PI-Specific
Automated Program Repair (ASAP-Repair). It operates in two variants, namely, pattern-
based (cf. RQ R-P) and rule-based repair (cf. RQ R-R).

Pattern-based repair leverages API usage patterns used by pattern-based misuse detec-
tors such as MUDetect [ANNT19b]. These patterns represent frequent sub-graphs of AUGs
(e.g., augp). The pattern-based repair assumes that the pattern aug, detected a misuse in
augy, (i.e., representing another API usage) as a violation of this pattern (e.g., using MUDe-
tect [ANNT19b]). Then, the pattern-based repair matches the nodes of the misuse AUG
aug, and the pattern aug,. Based on this match, ASAP-Repair extracts transformation
operations, which denote how to change aug, to construct a patched AUG aug,:.

For rule-based repair, we applied change rules already introduced in Chapter 6, represent-
ing the transformation of a previous API misuse fix as AUGs in the form of aug,, — augy.
The rule-based repair produces a match between the nodes of the misuse AUG (i.e., augy,)
and those of the misuse part of the rule (i.e., aug,,’). Based on this match, aug, is edited
according to the transformation described by the change rule (i.e., transforming nodes and
edges from aug,, to augs). By applying these transformations on aug,, the rule-based
repair produces a patched AUG aug,:.

We implemented a prototype of ASAP-Repair'® and evaluated its functionality by apply-
ing an idealized check using the MUBench dataset [ANN'16] and a more realistic scenario
with our own dataset AndroidCompass+, an extension of our previous dataset Android-
Compass [NBKO21b]. In detail, we assessed patches as valid if they match the ground truth
AUG provided by both datasets. Since ASAP-Repair currently works on an AUG level, we
provide a conceptual comparison of ASAP-Repair to state-of-the-art APR techniques.

Contribution RQ R-L We found that many state-of-the-art APR techniques relied on
test suites for fault localization, a mandatory step before patching a bug (cf. Insight R-1
‘Dependency of APR on test suites” on page 208). Moreover, research on APR relied on
too few and too small benchmarks of API misuses (cf. Insight R-2 ‘Few and too small
APR benchmarks for API misuses’ on page 209). Thus, we reused our AndroidCompass+
dataset already introduced in Chapter 6 (cf. Section 6.4.1) to target this limitation. Based
on the classification of APR, state-based APR (e.g., changing the memory state to overcome
bugs at runtime) only provides temporal solutions (cf. Insight R-3 ‘Limitations of state-
based APR techniques as a temporal solution with possible side-effects for API misuses’
on page 211) for bugs and API misuses in particular. Instead, behavioral APR changes the
buggy behavior permanently, typically by changing the source code. However, most generic
techniques in this class (i.e., those without particular focus on APIs) fail to generate patches
since their generic patch mechanism does not match the specific nature of API misuses or
they fail to localize the API misuse, which is typically done via tests (cf. Insight R-4

https://program-repair.org last accessed: 2025/03/17

236

https://program-repair.org

7.6. Summary

‘Non-sufficient solution for API-specific APR by traditional, generic, behavioral-based APR
techniques’ on page 212). While machine learning techniques were successfully applied for
APR tasks, we found that these required large datasets, encompassed a large effort for
training, or previous pre-trained could suffer from data leakage, namely, containing the
ground truth fixes of known APR benchmarks (cf. Insight R-5 ‘Promising but still limited
applicability of learning-based, generic, behavioral-based APR techniques for API misuses’
on page 213). Finally, we reviewed API-specific, behavioral APR and found that these
are limited regarding their application domain (e.g., cryptography or machine learning),
require high-quality input, and suffer from computational expensive fault localization (cf.
Insight R-6 ‘Too narrow applicability of API-specific, behavioral APR for API misuses’
on page 214).
Thus, we answer RQ R-L as follows:

/RQ R-LL What are the limitations of state-of-the-art APR techniques to\
repair API misuses?

We found that state-of-the-art APR techniques did not sufficiently target API misuses

due to (1) non-sufficiently large benchmarks of API misuses, (2) their dependency on

tests for fault localization, (3) their non-sufficient patch mechanism for API misuses,
Kcmd (4) their limitation to too specific APIs and their misuses.

j

Contribution RQ R-P Our technique ASAP-Repair with its pattern-based repair mecha-
nism repaired — in principle — APT misuses, namely, finding 75.9% patches in the idealized
check (cf. Insight R-7 ‘Pattern-based ASAP-Repair is applicable in an idealized scenario’
on page 224). However, we observed that in a more realistic scenario, no valid patches were
produced (cf. Insight R-9 ‘Pattern-based ASAP-Repair does not produce valid patches
in a realistic scenario’ on page 227). We found that this was mainly due to the inability of
the FPM to infer patterns able to repair a certain misuse. However, pattern-based repair
is a promising approach, particularly since it overcomes the limitation of the dependency
on test suites for fault localization (i.e., Insight R-1). Assuming further improvements
in pattern inference (e.g., in pattern-based API misuse detection), we consider it a strong
alternative to state-of-the-art APT APR (cf. Insight R-12 ‘Conceptual benefits of pattern-
based ASAP-Repair for API misuses to state-of-the-art APR’ on page 232). In comparison
to the rule-based variant (cf. presented in the next paragraph), it does not require a prior
fix of a misuse. Moreover, we provided further steps to obtain source code patches from
the patched AUGs, making it an alternative for state-of-the-art APR in Section 7.5.3.

Thus, we answer RQ R-P as follows:

/RQ R-P Do API usage patterns provide benefits for API-specific APR? R

We determined that API usage patterns are valuable information to improve API-
specific misuse repair since it is conceptually superior to traditional APR as it does
not require test-based fault localization and it specifically targets APls without domain
and bug type restrictions. While we demonstrated that our pattern-based ASAP-Repair
was able to patch API misuses, its current bottleneck is the lack of high-quality pattern
Kmference. Thus, currently, pattern-based repair is limited in its practical application. D

237

Chapter 7. Towards API Misuse Repair

Contribution RQ R-R In its second variant, ASAP-Repair applied rule-based repair, lever-
aging change rules, which could be used by our misuse detector RuDetect for detection (cf.
Chapter 6). We demonstrated its applicability in the idealized check with 62.9% of valid
patches (cf. Insight R-8 ‘Change rule-based ASAP-Repair is applicable in an idealized
scenario’ on page 224) as well as in the practical scenario with 102 valid patches, from which
91 were detectable by RuDetect (cf. Insight R-10 ‘Change rule-based ASAP-Repair pro-
duces valid patches in a realistic scenario’ on page 227). This way, it performed better than
its pattern-based counterpart. However, in a qualitative review of the patches of the realis-
tic scenario, we found that some change rules lack sufficient context and had the potential
to produce invalid fixes (cf. Insight R-11 ‘Change rule-based ASAP-Repair is only a pre-
liminary technique for API-specific automated program repair’ on page 229). Compared
to state-of-the-art APR rule-based ASAP-Repair specifically targets API misuses, requires
no tests for fault localization, produces a permanent solution, and due to its automated
change rule inference (cf. ChaRLI in Section 6.3.2) has less computational effort than,
for instance, other promising learning-based APR techniques using machine learning (cf.
Insight R-13 ‘Additional conceptual benefits of change rule-based ASAP-Repair for API
misuses comparison to state-of-the-art APR’ on page 232).
Thus, we answer RQ R-R as follows:

/RQ R-R Do change rules of previous API misuse fixes provide benefits for\

API-specific APR?

We found change rules to be a fruitful source to target API-specific APR, particularly
by conceptualizing and implementing rule-based repair within ASAP-Repair. This way,
it is not only conceptually superior to state-of-the-art APR (i.e., API specificity, no
test-based fault localization, less computational effort) but also outperforms its pattern-
based variant. While still limited in its practical applicability, we consider it a strong
Kcompetitive for API-specific program repair. D

238

Conclusion

In this chapter, we summarize the main chapters of this thesis, namely, chapters 4, 5, 6,
and 7 (cf. Section 8.1) and answer the main research questions by reviewing the main
results and contributions (cf. Section 8.2). Finally, we explore potential extensions and
future research directions based on this thesis in Section 8.3.

8.1. Summary of the Thesis

In this thesis, we targeted the general problem of Application Programming Interface (API)
misuses. API misuses denote deviant usages of an API than expected by the API developers
(i.e., those who developed a library and the API) by client developers (i.e., those who use
the library in their application code) causing a negative software behavior (e.g., crashes or
security vulnerabilities). After introducing the topic (cf. Chapter 1), the detailed research
questions (cf. Chapter 2), and the necessary fundamentals and background (cf. Chapter 3),
we presented our research contributions.

API Misuse Root Causes and Prevention (cf. Chapter 4) Based on this central topic,
we considered the root causes and potential prevention mechanisms for these causes.

In detail, we conducted two subsequent Systematic Literature Reviews (SLRs) mapping
empirical studies analyzing root causes (i.e., 65 studies) and prevention mechanisms (i.e.,
411 studies). By using qualitative research methods, we elicited root causes and mapped
them to the applied research methods of the surveyed studies. This way, we assessed the
scientific evidence and provided an overview of the research effort of different root causes.

Subsequently, we inferred prevention mechanisms and mapped them to previously ex-
tracted root causes together with their level of evaluation. Hence, we determined potential
research opportunities regarding studies on specific root causes as well as prevention mech-
anisms targeting these root causes.

Improving Pattern-Based AP| Misuse Detection (cf. Chapter 5) Then, we analyzed
pattern-based API misuse detection. This misuse detection use inference techniques, such
as Frequent Pattern Mining (FPM) on API usages from other client code, to obtain API
usage patterns. Then, the detectors assess violations of these patterns as API misuses.

First, we surveyed state-of-the-art API misuse detectors using an SLR and summa-
rized their techniques and results together with their limitations. For further analysis,
we selected the misuse detector MUDetect [ANNT19b] to evaluate our improvement tech-
niques. MUDetect represents API usages and its pattern as graphs denoted as API Usage
Graphs (AUGs).

239

Chapter 8. Conclusion

Based on the limitations of misuse detectors, we developed a technique leveraging change
information from commits editing API usage in client code. In detail, this technique, de-
noted as Relevant API Information Extractor (RAIX), automatically extracts API-related
keywords from such a commit and subsequent search and filter strategies. This way, we
found similar API usage examples by code search auxiliaries either in the same project
(i.e., internal) or in other code (i.e., external) and conducted different filter strategies.

We evaluated the effect of applying RAIX and the search and filter strategies with multi-
ple configurations (e.g., search locations and filtering techniques) together with the MUDe-
tect using two different misuse datasets, namely MUBench [ANNT16] and AU500 [KL21].

Change Rule-Based API| Misuse Detection (cf. Chapter 6) In Chapter 6, we introduced
the concept of change rules, describing the essential changes of an API misuse fix. These
rules denote two connected AUGs as augp, — augy representing the changes conducted
in the misuse graph aug,, to obtain the respective fix graph augy.

We introduced a technique named Change Rule Inference (ChaRLI), which — with mini-
mal manual effort — automatically extracts change rules from a commit. Moreover, we de-
veloped a new misuse detector named Change Rule-based API Misuse Detection (RuDetect)
that integrates ChaRLI. RuDetect applies change rules on potential misuses using an ap-
plicability check, and if a rule is denoted applicable, we use a similarity metric, sim, to
decide whether an API usage is a misuse. In detail, an aug, is a misuse according to the
change rule aug,, — augy, if aug, is more similar to the misuse part of a rule aug,, than
to the fix part augy, namely, sim(augy,, aug,) > sim(augs, augy).

We evaluated RuDetect with 16 different graph similarity metrics and two applicability
check variants based on three different misuse datasets (i.e., MUBench, AU500, and our

own dataset AndroidCompass+) and compared it with the pattern-based misuse detector
MUDetect.

Towards APl Misuse Repair (cf. Chapter 7) We further analyzed in Chapter 7 how
detected API misuses can be repaired automatically. For that purpose, we surveyed state-
of-the-art Automated Program Repair (APR) techniques and considered their limitations
when fixing API misuses.

We targeted these limitations by applying patterns and change rules from the previous
API misuse detection as repair templates. In detail, we implemented this idea as an artifact
named API-Specific Automated Program Repair (ASAP-Repair), a technique that repairs
API misuse as AUGs. In detail, ASAP-Repair operates in two variants: a pattern- and a
change rule-based repair. ASAP-Repair leverages patterns or the change rules to determine
edit operations for an AUG representing a misuse and to transform it into a corrected AUG.

We evaluated ASAP-Repair based on two datasets (i.e., MUBench and AndroidCom-
pass+) first, as an idealized check to demonstrate its principle applicability, and second,
as a comparison between the pattern- and rule-based variant. Since ASAP-Repair is an
intermediate approach towards a full-fledged API-specific APR technique, we discussed the
conceptual differences to existing APR techniques.

8.2. Main Results and Contributions

In this section, we summarize the main results to answer the three main research questions:

RQ C&P (cf. Section 8.2.1), RQ D (cf. Section 8.2.2), and RQ R (cf. Section 8.2.3).

240

8.2. Main Results and Contributions

Moreover, we present some additional contributions beyond the considered research ques-
tions (cf. Section 8.2.4) as well as the big picture of this thesis in Section 8.2.5.

8.2.1. RQ C&P API Misuse Causes & Prevention

RQ C&P API Misuse Causes & Prevention RQ C&P-C We found eleven
root causes with 44 different sub-
RQ C&P-C AP RQ C&P-P API root causes with their degree of re-
Misuse Causes Misuse Prevention search focus (i.e., number of pub-
Mechanisms ’

RQICEP:S lications per root cause). For in-

Prevention
ST stance, much research has focused

on issues with the APl documen-
tation or its usability. However,
only a few studies have targeted
the issues that API developers face in providing useful APIs or problems that client devel-
opers encounter in finding the correct resources to learn the API. Moreover, we recognized
interdependencies among these root causes, a research topic — to the best of our knowledge
— not targeted so far. This way, we provide a mean to verbalize hypotheses, named views,
on these interdependencies. These views serve as a basis for subsequent refinement through
empirical studies. Furthermore, we elicited the typical structure of root cause studies and
determined that a majority of root causes were evaluated with qualitative studies offering
research abilities towards quantitative studies.

RQ C&P-P We found that prevention mechanisms focus on recommendations and au-
tomated support, while the research on these mechanisms has some focus on certain root
causes. Therefore, subsequent research could focus on prevention mechanisms for non-
frequently targeted root causes. While studies presenting automated support typically
provide an evaluation, many recommendations lack empirical evidence. Thus, subsequent
research should critically review these recommendations.

RQ C&P-S When mapping prevention mechanisms to root causes, we found that only
a few validated recommendations targeted the root causes. Thus, the research focus was
heavily on validated automated support. Moreover, present prevention mechanisms did not
equally target all identified root causes. Thus, further research should target the under-
analyzed root causes to better understand and tailor prevention mechanisms.

Answering RQ C&P Our results provide — to the best of our knowledge — the most
comprehensive overview of the root causes and prevention mechanisms compared to state-
of-the-art surveys, particularly due to the mapping to research methodologies. We provide
all data and scripts via a replication package'. This way, researchers in software engineering
profit from our results and can replicate and build on them. Practitioners benefit from this
overview by identifying those prevention mechanisms that have been proven effective in
practice. We answer the main RQ C&P as follows:

"http://doi.org/10.5281/zenodo. 15594600

241

http://doi.org/10.5281/zenodo.15594600

Chapter 8. Conclusion

/RQ C&P Are root causes of API misuses sufficiently targeted by API mis-\
uses prevention mechanisms?

While there exist many prevention mechanisms, the current state of research has three
main issues: (1) Some root causes have gained too little research focus and thus require
additional empirical studies to obtain knowledge on how to prevent them. (2) The
interdependencies among root causes are not sufficiently analyzed, which can impact
the effectiveness of prevention mechanisms when applying mechanisms to single root
causes. (3) Research on prevention mechanisms is skewed towards single root causes
as well as towards automated support, while scientific evidence for recommendations,
which could be smoothly added to a developer process, is missing. Therefore, we denote
kthazf prevention mechanisms require further research efforts toward these three issues. D

8.2.2. RQ D Automated API| Misuse Detection

RQ D Automated API Misuse Detection RQ D_L We found various 1ssues
RQ DL imitations of and limitations with state-of-the-
State-of-the-Art art API misuse detectors. First,
AP| Misuse Detectors . .
v 4 researchers validated them with

RQ D-C Change-
based-driven API
Usage Collection for
Pattern-based
Misuse Detection

Rc;:';:;'teri"g of RQ D-R Change- different benchmarks, and the ma-
ges for Rule-based API S .
M‘fat‘er"'basef‘ VT e jority of detectors lack a sufficient
isuse Detection

replication package if any is avail-

able at all. Second, they are lim-

ited in the collection methodology
for donor code to support a practical scenario as well as computationally expensive in-
ference techniques. Therefore, many techniques suffer from low precision (i.e., large false
positive rate) and, thus, low practical applicability.

RQ D-C A first notion to tackle these issues is to improve donor code quality by deliber-
ately embedding the code sample search into the development process. We demonstrated
that commits from a Version Control System (VCS) have the potential to support this idea,
and we evaluated the effect of our lightweight artifact RAIX to extract and find relevant
code.

RQ D-F In a further experiment, we validated a set of filter techniques to improve donor
code quality. In detail, we found contradicting results to Amann et al. [Amal8, ANNT19b]
that internally and externally obtained source code improves pattern quality. An interesting
result was that information on the misused API had a negligible effect on finding donor
code. This way, we concluded that RAIX can sufficiently find matching code samples
based on the context of the API change. Finally, we suggested applying the more fine-
grained method- rather than file-filtering to exclude non-useful code examples. Even though
not statistically significant, we observed a small positive effect on pattern-based misuse
detection.

RQ D-R We determined that our change rule inference successfully creates change rules
for real-world API misuse and its fizes using ChaRLI. We tested various components of our
misuse detector RuDetect based on these change rules and found the largest precision by

242

8.2. Main Results and Contributions

using a threshold-based applicability check and a vector similarity metric based on the graph
vectorization named Ezxas vectors [NNPT09a]. This way, we demonstrated significantly
better precision than the pattern-based misuse detector MUDetect. A crucial factor for a
comparable recall, however, is the training data, namely, those fixes from which change
rules are inferred. Thus, further research should explore possibilities to improve training
data for RuDetect.

Answering RQ D We provided a comprehensive and updated overview of the research
conducted in API misuse detection and demonstrated their limitations. We targeted these
limitations with the common idea of leveraging change information from VCS. The first
variant improves pattern inference by finding more related donor code based on an API
usage change. The second variant derives change rules from previous fizes and obtains
better results than conventional pattern-based misuse detection.

Thus, our results provide evidence for software engineering research that change infor-
mation support pattern-based detection, and it enables a better misuse detection based
on previous fixes. Moreover, we provide different datasets, a replication package, and im-
plemented prototypes for replication and reuse. Practitioners benefit from the overview of
previous misuse detection results to decide on potential misuse detectors as well as on a
process to include pattern-based misuse detection into their development process (e.g., a
Continuous Integration (CI)-system). Thus, we answer RQ D as follows:

\

/RQ D How can we improve the precision of state-of-the-art API misuse
detectors within a realistic software development process?

We found and demonstrated a positive effect compared to state-of-the-art misuse de-

tectors, with two techniques leveraging change information from the VCS. (1) RAIX

and subsequent search and filter strategies improving the pattern inference for pattern-

based misuse detection. (2) RuDetect with integrated ChaR LI leveraging previous fixes
koutperforrm'ng previous pattern-based misuse detectors.

J

8.2.3. RQ R Automated API| Misuse Repair

RQ R Automated API Misuse Repair RQ R-L We found that state-
of-the-art APR techniques have
no sufficiently large benchmarks
for API misuse repair, particularly
RQR-R Change- when using Deep Learning (DL)
Rule-based API techniques. Moreover, we identi-
Misuse fepair fied that many techniques require
automated tests for fault localiza-
tion which is an issue for the suc-
cessful repair of APT misuses [KMSH21]. Additionally, we found that some techniques have
non-sufficient patch mechanisms for API misuses or too restrictive assumptions on the type
of APL.

RQ R-L Limitations
of Automated
Program Repair for
API Misuses

RQ R-P Pattern-

based API Misuse
Repair

RQ R-P We contributed the pattern-based variant of ASAP-Repair, which does not re-
quire tests for fault localization, but its concept applies state-of-the-art pattern-based mis-
use detectors. We demonstrated that it is, in principle, applicable to obtaining 75.9% of

243

Chapter 8. Conclusion

the patches in the idealized check. However, we found limitations when applying it in a
more realistic scenario (i.e., no valid patches), mainly due to ineffective pattern inference.

RQ R-R In a similar way, the rule-based variant of ASAP-Repair does not require tests
for fault localization as well. We demonstrated its applicability in an idealized check (i.e.,
62.9% valid patches) as well as in the more realistic scenario (i.e., 102 valid patches, from
which our misuse detector RuDetect detected 91). Thus, it outperforms the pattern-based
variant. Even though it is limited to repairing AUGs, it is a strong counterpart to state-
of-the-art APR for API misuses.

Answering RQ R We presented an overview of the limitations of APR techniques towards
API misuses. Due to these limitations, we suggested ASAP-Repair, an API-specific APR
technique. In contrast to the majority of state-of-the-art APR, ASAP-Repair does not
require automated tests for fault localization by leveraging patterns and change rules used
in previous API misuse detection. We demonstrated the principle applicability of both
variants, while rule-based repair obtains more valid fixes in a realistic scenario. We provide
ASAP-Repair together with the data and analysis scripts as a replication package'.

Currently, ASAP-Repair is an intermediate step towards a full-fledged API-specific APR
technique. Still, software engineering researchers benefit from our insights and artifacts to
explore new APR techniques. While these results are somewhat limited for practitioners,
repaired AUGs can serve as a template to manually derive valid fixes for API misuses.
Thus, we answer RQ R as follows:

/RQ R Does API-specific information support automated API misuse re-\

pair?

We found that current APR techniques did not fully facilitate API misuse repair. By

leveraging A PI-specific information in the form of API usage patterns and change rules

from API misuse detection, we found promising results for improved APl misuse repair.
KThese results serve as the basis for full-fledged API-specific APR techniques. D

8.2.4. Additional Results

Next to the three main research questions, we made some further contributions and obser-
vations, which are interesting for the software engineering research community:.

New API Misuse Datasets While some datasets with API usages and misuses exist (cf.
Section 5.2.2) [ANNT16, KI.21], these lack some generalizability due to their collection
process and contain some natural bias, for instance, many similar API misuses. We target
this issue by providing AndroidCompass [NBKO21b] as well as its extension AndroidCom-
pass+ (cf. Section 6.4.1), a dataset of Android compatibility checks. While in this thesis,
AndroidCompass—+ serves as an API misuse dataset, it is also applicable for research stud-
ies on API evolution and Android compatibility checks, in particular. Moreover, we also
shipped our crawling script, allowing the construction of updated or similar datasets.

Targeting Flaws in the Pattern Mining Process Pattern-based misuse detection suffers
from high false positive rates. One issue lies in how samples from, which patterns are
inferred, are collected. For better transparency from which code parts instances of pattern

244

8.2. Main Results and Contributions

originate, we developed an IDE plugin named SpecTackle [HNO19] to support API pattern
mining researchers. This plugin also allows the comparison of multiple different pattern
mining techniques and data structures.

Non-Reusable Replication Packages We found that the majority of misuse detectors
have no available replication packages (56.7% cf. Insight D-5 on page 107), and many
available replication packages are hardly reusable. Interestingly, Zhang et al. [ZFM™23]
found in the domain of learning-based APR that 16 out of 44 techniques (=~ 36.4%) with a
linked repository lack source code, a related dataset, or a trained model.

In general, we and others [HNKO20, HWS20, THLH21, WTH" 22, BEH 23] explored
this issue for the whole software engineering research domain and found non-availability and
non-reusability of software artifacts as a prevalent issue. This issue impedes the replicability
of research results not only for API misuses but software engineering as a whole domain.

8.2.5. Conclusive Results

We targeted the problem of API mis-
uses separated into its root causes &
prevention mechanisms as well as tech-
niques for detection and repair. e
We found that research on root
causes and their prevention is not suffi-
cient, and thus, new techniques for de- L Z
tection and repair are required. More- RQ D Automated API Misuse Detection
over, the analysis of root causes also RADIL tmystions of
improves the body of knowledge on 1 AP| Misuse Detectors
APT misuse, helping to foster better lo- “‘}\:'f,:;';f’f‘fff] [RQ.0-R change- }
calization techniques (e.g., finding mis- e bases Misuse Detector
use in resources such as Q&A pages).
Moreover, we showed a strong link
between API misuse detection and its

RQ C&P API Misuse Causes & Prevention
RQ C&P-C API RQ C&P-P API
Misuse Causes

Misuse Prevention
Mechanisms

RQ C&P-S
Prevention
Sufficienc

RQ D-C Change-
driven API Usage
Collection for
Pattern-based
Misuse Detection

RQ R Automated API Misuse Repair
RQ R-L Limitations

repair by reusing patterns and change of Automated
. Program Repair for
rules as repair templates. Due to the N { API Misuses {
similar idea to leverage change infor- [Rarepeatern- RQR-R Change-
. . based API Misuse Rule-based API 2
mation from VCS, these techniques Repair Misuse Repair

have the potential for embedding into
a practical CI process.
We formulate the conclusive result as follows:

~

/API Misuses: Causes, Prevention, Detection, and Repair

e We provide data that there exist a variety of API misuse causes & prevention
mechanisms, which, however, require further research;

o We present techniques to lift up state-of-the-art API misuse detectors to practical
use cases as well as a new technique for more precise API misuse detection;

o We demonstrate the ability with a prototypical technique that reuses information
rom misuse detection to automatically repair misuses.
L) detection t t ticall ir API mi)

245

Chapter 8. Conclusion

8.3. Further Research

Further Studies on Root Causes & Prevention Mechanisms for APl Misuses We dis-
cussed in RQ C&P the issues on the research of several root causes, which have been
rarely analyzed or could be approved or falsified by other research methodologies. Simi-
larly, we motivate more empirical studies on processes and recommendations for root cause
prevention. The implementation of small process steps could be more convenient and ac-
ceptable than automated techniques whose results could be mistrusted (e.g., due to high
false positive rates).

Extended API Usage Patterns The thesis only considered intraprocedural patterns rep-
resenting APT usages in single method declarations in client code. Upcoming studies should
determine the prevalence of interprocedural usages and misuses as well as the degree of in-
terprocedure distribution, for instance, among methods in a single class. Existing research
does not cover this sufficiently, such as by Zhong et al. [ZM19], who only analyzed API
usage at an intraprocedural level.

Regarding techniques to infer interprocedural patterns, a simple variant is to inline
method declarations and infer AUGs. Other techniques may expand AUGs towards a
system AUG similar to a system dependence graph. However, a statically obtained API
usage representation may become too complex and overapproximate the behavior (i.e., it
represents relationships among APIT elements that are not possible at execution). In con-
trast, dynamically obtained representations require valid input data to represent the full
behavior.

Moreover, we used locally available libraries, meaning we did not involve the misuse
of Web-APIs such as RESTfull APIs. Thus, upcoming research should analyze whether
existing misuse detectors apply to such APIs as well. Another extension denotes patterns
in which multiple APIs interact with each other [HNO18].

Fair Comparison to Full-Fledged API-Specific APR We already discussed in Section 7.5.3
potential extensions of ASAP-Repair for a full-fledged repair technique, namely, one editing
the source code. Moreover, even though we find a suitable way to apply ASAP-Repair on
source code, further research has to provide a fair experimental comparison to other APR
techniques.

A possible basis denotes the APIARTY framework by Kechagia et al. [KMSH21]. How-
ever, currently, this framework relies on a small API misuse dataset and thus should be
extended with a larger dataset, for instance, misuses from AU500 [KL21] or our Android-
Compass+ dataset (cf. Section 6.4.1).

Another issue of this framework is that correct behavior is checked via automated tests.
Automated tests require a runnable version of the program to repair, which can cause
issues, for instance, if certain dependencies for building the source code are not available
anymore. Moreover, tests do not represent the full spectrum of the source code behavior.
Therefore, we suggest that subsequent research should provide ground truth for those
API misuses, for instance, from the real programmers’ solutions. This way, validation of
APR techniques could be simplified by directly comparing the generated patch to the real-
world source code (e.g., by using code clone detection). Another benefit is that techniques
using tests for fault localization and patch validation do not suffer from the overfitting
phenomena of solutions, namely, solutions that only satisfy the given test cases but do not
generalize [LTLLG18, PMK™24].

246

8.3. Further Research

Another important feature is the training data for techniques inferring patches from
previous usages. Particularly, in light of advances in machine and deep learning [ZFM ™23,
RRWEF25], it is important to have a common training dataset among different techniques.
This training data could be constructed to contain potential solutions but also avoid issues
such as data leakage (i.e., data containing the ground truth) or temporal bias (i.e., fixing
code that was not available at the time of the misuse). These extensions could greatly
improve the replicability and comparability of API-specific APR techniques.

In addition, we also suggest a distinction between fault localization and patch generation
to clarify whether an APR fails due to a false localization or its inability to generate a
patch.

Empirical Studies for Automated Support We require empirical evidence on whether
the application of RAIX within a CI process is useful. For instance, if a live code search
for donor code lasts too long, an API misuse check would block the CI. In this case,
misuse detection may heuristically apply RAIX on certain suspicious commits [NHO18],
for instance, on certain branches or changes provided by inexperienced developers.

Similarly, having a full-fledged ASAP-Repair technique, its embedding into a practical use
case should be validated through empirical studies. As seen with existing APR techniques
applied in practice [KBK 17, NHL18, BSPC19, MBC*19, KWM™21], patches are typically
monitored and manually assessed before adding them to the productive code base. Thus,
subsequent work should validate these processes in practice using a full-fledged version of
ASAP-Repair.

Impact of Machine and Deep Learning There have undoubtedly been tremendous ad-
vances in the research and application of machine learning. Large Language Models
(LLMs), such as GPT (i.e., Generative Pre-trained Transformer), gained much attrac-
tion, and research successfully applied these models also for various software engineering
and, particularly, API-related tasks [FGH 23, ZFM 23, ZWX 123, YHWH24, WHH 24,
NMHT24].

Nevertheless, we also observe several issues, such as hallucinating effects [HYM"25] im-
pacting the correctness of solutions. Hidden data leakage and data bias have implications
on the reliability of scientific results [ZFM™*23]. Privacy, copyright, and ethical issues cause
practical and legal hurdles complicating their application [ZXL"24]. Other issues refer to
their efficient application regarding energy consumption impacting economical as well as
environmental costs in the light of the climate change [SDSE20, SGM20]. Therefore, we
suggest that machine learning should not be considered a ‘silver bullet’ to solve all tasks
around API misuses, particularly their root causes, prevention, detection, and repair. It
should rather be considered as a further technique that has to be critically validated and
balanced along the multiple costs and benefits it provides as well as in its context-specific
application.

We shortly discuss three possible applications (among many others) using machine learn-
ing for API misuses that we believe have great potential:

1. Particularly, LL.Ms are suitable to generate human-readable documentation customized
for client developers and, thus, can be applied for automated generation and update
of APT documentation [FGH"23, NMH"24]. This way, they target the commonly
discussed root cause of outdated API documentation and thus can avoid the false
application of deprecated APIs.

247

Chapter 8. Conclusion

2. DL can be used to obtain API embeddings, such as by Nguyen et al. [NNPN17], who

248

demonstrated this with the API2Vec embedding. This can target the issue of missing
or rarely available API usage examples due to the ability to relate API usage from mul-
tiple different programming languages. This way, we can target the issue of insufficient
training data, which then can improve the recall of pattern-based misuse detection,
our techniques RuDetect, and APR based on our technique ASAP-Repair [NHKO20b]

. Metric learning is a data-driven technique to derive a similarity metric [BHS15].

While our metric used for RuDetect is deduced from the graph vectorization based
on Exas vectors, we do not claim that it performs best. This way, we assume a
trained metric derived by metric learning can better discriminate correct usages, their
misuses, and completely different usages (e.g., different API or different context).
Thus, we expect improvements for RuDetect.

Appendix

A.1. Appendix APl Misuse Causes & Prevention

A.1.1. Discussion Detailed APl Misuse Root Causes

Regarding the most frequently found detailed root causes, the following causes with 10 or
publications were identified:

o (I-1): missing/insufficient documentation (20)
e (J-1): inconsistencies due to Application Programming Interface (API) changes (17)

e API is designed (A-1): too complex (16) and/or (A-2): too abstract (13)

client developers have (C-2): missing domain knowledge (14)

(E-5): API incompatibilities (11)

o (E-4): ambiguous/unclear usage (10)

A.1.2. API Misuse Root Causes Examples from Literature

For better illustration, we present a set of examples from the analyzed literature for the
detailed root causes in Table A.1.

Table A.1.: Determined codes of API misuse root causes with examples from the literature

general root detailed root causes example from the litera-

causes ture

complexity and structure of the API with
(A) abstraction (A-1) too complex hard to identify correct se-

issues quences [NKMB16]

continued subsequently

249

Appendix A. Appendix

Table A.1.: Determined codes of API misuse root causes with examples from the literature

(continued)

general root

detailed root cause

example from the litera-

cause ture
lack of understanding
s q (A-2) too abstract the implementation/con-
) ;(érsr;faecﬁzi an straints [NKMB16]
issue . . trade-off between “make hard
Ssues compromise design . 1 .
(A-3) issues things possible” and “keep
simple things easy” [ZHKG20]
eation i lack of understanding the
communication issues :
(B-1) between API and mental models of client de-
client developer velopers by API develop-
ers [ZHKG20]
unknown use cases of an API
h API B-2 1 i
(B) dg‘rfrel?;lp or iSSues (B-2) unclear usage scenarios and no templates [ZHKG20]
(B-3) missing education on only learning API design in
API design practice [MKA 18]
heterogene APT lsfmrger geograp.hlcal distribu-
(B-4) . tion of APIs increases error
client users CS14
proneness .
(C-1) developer process- time constraints and interrup-
) related issues tions during learning [Rob09]
. . conceptional misunder-
missing domain . .
(C-2) tanding of security con-
knowledge -+
human client cepts [NDT 17]
C ; i §
(C) developer issues non-helping developer n.o correlation be‘Fween expe
C-3) . rience and detecting security
experience ; ,
APT blindspots [OLR 18]
open personality correlated
(C-4) mindeset issues with better detection of API
blindspots [OLR 18]
irritating naming in com-
(D-1) naming issues parison to domain knowl-
edge [ZHKG20]
. not handling unknown scenar-
- API
(D-2) errors in ios in the APT [Afol5]
unclear APIT error/ unclear error messages in
API - .
(D) issues ode (D-3) warning messages cryptographic APIs [LYY 23]
insufficient defaults for
(D-4) insufficient defaults cryptographic algo-
rithms [LYY 23]
)) e problems when creating
D-5 insufficient initializa- biect thout +
(D-5) {ion of objects objects without construc-
tors [DER12]

250

continued subsequently

A.1. Appendix API Misuse Causes & Prevention

Table A.1.: Determined codes of API misuse root causes with examples from the literature

(continued)

general root
cause

detailed root cause

example from the litera-
ture

(D) APT code (D-6) insufficient error not properly reporting the er-
1ssues handling ror status [DER12]
B1) oo mny s 0 s 1
. missing code examples cause
E-2 k
(E-2) unknown entry points lack of entry points [MSS18]
(E-3) API customization problems to reuse outdated
i issues code examples [[KB23]
(E) API usability (E-4) ambiguous/unclear ambiguous parameter
issues usage types [PFM13]
. i qeas unknown relation between
(E-5) API incompatibilities data types [PFM13]
E6 inconsistent usage com- contradictions to known con-
(E-6) pared to similar APIs ventions [GPT12]
, unknown limitations of the
(E-7) unknown constraints APT [ARB20]
large proportion of
(F-1) outdated APIs code marked as depre-
cated [QLL16]
. using experimental
F-2 t 1 API
(F) flaélggeArPe)sIource (E-2) using inferna APIs [BSvdB15]
. non-trustful code for crypto-
(F-3) auto-generation issues graphic APTs [GALTF20]
(F-4) using insufficient code clones of too complex
) API samples APT examples [NHM " 19]
Andability issues of unknown framework sup-
finding features (G-1) present AyPI features port for certain functional-
(G) isones ity [NDT*17]
. unsupported use cases in the
- API
(G-2) missing features security domain [ABF"17]
(H-1) API configuration is- multiple possibly conflicting
(H) API installation sues configurations [MNY "18§]
188U€s (H-2) technical environment unclear usage environment of
/' issues the API [KMS14]
missing /insufficient negative effect on novices of

documentation
issues

documentation issues

an API without documenta-
tion [GPT12]

too verbose documenta-
tion

overwhelming information of
the API [TCK21]

continued subsequently

251

Appendix A. Appendix

Table A.1.: Determined codes of API misuse root causes with examples from the literature

(continued)

general root
cause

detailed root cause

example from the litera-
ture

effort to create

discussed large effort to cre-

(I-3) Jocumentation ate and maintain a documen-
tation [BCM22]
. . not using available informa-
I) documentation (I-4) not using tion when askin tions in
(issues i documentation Ol When asking questions
Q&A platforms [PHR19]
issues with examples in observed negative effect
(I-5) . without examples of REST
the documentation
API [SMARI17]
(J-1) inconsistencies due to breaking API changes in An-
APT changes droid ecosystem [MRK13]
APT evolution effort supporting allowmg too many previous
) issues and (J-2) old APIs versions causing installation
breaking issues [CZLF19]
changes significant amount of not
non-documented .
(J-3) APpr changes documented deprecation of
APIs [WLLC20]
domains with higher ratio
of false answers and mis-
(K-1) domain uses, namely databases,
cryptographic, 10, and
network [ZURT 18]
. .. possible restrictions to use an
h - (K-2) 1 .
(k) other context- (I-2) licensing issues API due to a license [MSS13]
s API corporate correlation ' of failure
(K-3) development proneness in corporate
projects [CS14]
. boilerplate API due to
K-4) issues due to oorammi laneatee Com
(programming language ~ PTOSIamIilNg langaug 1

straints [NHM™19]

A.1.3. APl Misuse Root Causes Study Methodologies

We present samples of the research methodologies applied when analyzing API misuse root

causes in Table A.2.

252

A.1. Appendix API Misuse Causes & Prevention

Table A.2.: Determined codes of API misuse root causes methodologies with examples from
the literature

general
method

detailed method

example from the litera-
ture

library/client code using open-source
(A-1) search and project projects [GWLT19]
selection
(A-2) API/client developer API developers recruited via
recruitment personal contacts [ZHKG20]
R analysis of evolution policies
(A) g{gﬁei?ggurce (A-3) guideline and other of Web APTs [EZG15]
newsgroup/forum analysis o tackOverflow
(A-4) g /f lysi f StackOverfl
discussion posts [ZUR 18]
issue-tracking/ analysis of Common
(A-5) Vulnerabilites and Exposures
11 t
DU Tequests (CVEs) [ZER11]
(A-6) version control data commit analysis [ANBL18]
. random sampling of
(B-1) sampling bugs [GWL*19]
Preparation of (B-2) keyword-based search Serapiis A n(j filtering - Q&A
(B) Resources and posts [MNY ' 18]
Studies (B-3) developer study task self-constructed programming
creation tasks [SMOg]
(B-4) developer study group using a control group without
splitting software artifact [DHO9D]
. . dynamic Android developer
(C-1) dynamic code analysis tools [CZLF19)
. . linking Android classes to
(C-2) static code analysis Q8A questions [LVBDP14]
automated detection of code
Code-related (C-3) engineering research constraints and whether they
(©) Studies are documented [SSD15]
. . applying API misuse detector
(C-4) API misuse detection on collected bugs [GWL*19]
.. analysis of stack trace data
(C-5) mining error stacks from Android [KMS14]
. analysis for usability
(C-6) manual code analysis
smells [LYY 23]
previous survey regard-
Developer- (D-1) pre-study ing security-related prob-
(D) related lems [ABF*16]
Studies (D-2) case study applied guideline on a own

API [MRARMB™18§]

continued subsequently

253

Appendix A. Appendix

Table A.2.: Determined codes of API misuse root causes methodologies with examples from
the literature (continued)

general detailed method example from the litera-
method ture
extending a learning model to
(D-3) exploratory study understand the learning pro-
cesses of APIs [GVIK20]
programming study tasks us-
(D-4) developer study ing APTs [DER12]
Developer- questionnaire on API learn-
(D) related (D-5) survey ing [MSS18]
Studies mailing interview with API
(D-6) interview developers on reasons for
breaking APIs [BXHV1§]
s . long observation of An-
longitudinal observation i . .
(D-7) study droid app incompatibili-
ties [CZLF19]
(E-1) meta analysis excluded
(E-2) theory inference Kls(l)rli,nojzllfeegegr;c% g}r;mr]obust
Other Studies
(E) Analysis / (E-3) literat . literature review on API us-
i Heratire teview ability measurement [SK15]
. n-gram analysis of Q&A
(E-4) document analysis \
posts [LS20]
recordine and observation and personal
(F-1) transcripgtion notes during development
task [SCO7]
Study-related ‘ ‘ internal follolwed. by an
(F) Processes (F-2) iterative process external qualitative analy-
sis [Afol5]
think-aloud of client develop-
(F-3) think-aloud technique ers during experimental pro-
gramming task [SMO08]
manual analysis of Q&A
(G-1) manual posts [GWL19]
API usability experts validat-
(G-2) expert assessment ing code based on a guide-
- line [GPT12]
Obtaining - —
(G) Results measuring cognitive u‘smg 'a cognitive loaq dues-
(G-3) load /dimension tionnaire after experimental
programming task [WA19]
applied self-developed API us-
(G-4) measuring usability ability measurement frame-

work [SK15]

254

continued subsequently

A.1. Appendix API Misuse Causes & Prevention

Table A.2.: Determined codes of API misuse root causes methodologies with examples from

the literature (continued)

general detailed method example from the litera-
method ture
(G-5) topic/taxonomy extrac- extending API misuse taxon-

tion

omy [HLXX23]

(G-6) (open/closed) coding
Obtaining

open coding of transcribed
developer interviews on Web
API documentation [BCM22]

Results
(G-7) other measurements

measuring scores on
task [NDTT17]

descriptive analysis/
statistical tests

analysis of survey results on
API learning using mathe-
matical statistic tests [RD11]

A.1.4. API Misuse Root Causes Mapping

We present a mapping of detailed root causes to detailed methodologies in Figure A.1.

A.1.5. API Misuse Prevention Mapping

We present a mapping of detailed root causes to different classes of prevention mechanisms
in Figure A.2. Moreover, Table A.3 depicts a qualitative overview of different prevention

mechanisms targeting the general root causes.

255

Appendix A. Appendix

(A-1): too complex - 2
(A-2): too abstract ~ 3,
(A-3): compromise design issues - 0

o]

(B-1): communication issues between APl and client developer - 0
(B-2): unclear usage scenarios - 0

(B-3): missing education on API design - 0

(B-4): heterogene API client users - 0

g
9o - |- I

o|lo o » ofo
w|lm = = ofo
rlo o N R|r

(C-1): developer process-related issues - 0
(C-2): missing domain knowledge - 0

Y- - o o olo o oo © 0 © r|o o|oc oo ©c 0 ©o|lco ©c ©o k © o olo o 0ok rloor oloor oloor

(C-3): non-helping developer experience - 1
(C-4): mindeset issues -

(D-1): naming issues -

(D-2): errors in API -

(D-3): unclear API error/warning messages -
(D-4): insufficient defaults -

(D-5): insufficient initalization of objects -
(D-6): insufficient error handling -

(E-1): too many features -
(E-2): unknown entry points -

(E-4): ambigious/unclear usage -

(E-5): API incompatibilities -

(E-6): inconsistent usage compared to similar APIs -
(E-7): unknown constraints -

(F-1): outdated APIs -

(F-2): using internal APIs -

(F-3): auto-generation issues -
(F-4): using insufficient APl samples -

(G-1): findability issues of present AP features -

mwmroroluolulle o rfoomwr oo

0
0
0
1
1
0
2
1
0
(E-3): API customization issues - 0
1
2
o
2
2
1
0
1
1
1

(G-2): missing API features -

(H-1): API configuration issues - 2

mE|- S - - |- B -S| - - SE - B - SEE - PEs| -

ol -BE - - -E - - - -EEEE - ElE - - - -

-Bl-EE- - -|-pEE- - -l -l - - |- B
BEl-E----rEEE - eEE- -l - -EeEEEe

N nNlorloroolorer rNNlErwNN O Bloo
~vwle nvfoomoln viE s - ofwe e v eBlo o

El-m--- o - - - 8-l -

(H-2): technical environment issues - 0

N B - |- B -EE- - - - - - |-

:

“_ o o o o|lo » o|lc © © © o|o o|r oflc ©c ©c o|lc ©c m © ©o © oo © © © © o|lo © © o|o © © ofc o o
w|lr Nl |lo oo k|lor ke orNlkooror|lor koleoNolorw

(I-1): missing/insufficient documentation issues - 3

:

-~ o o o|lr o N|o o oo ofloc olo ol ooo|loocoroooooooorooooloooofoor

:

woonNn wlwnwrnlorlrorkrlrorrorNkroorouwrranlrooolowr

(1-2): too verbose documentation - 0
(1-3): effort to create documentation - 0

- -
- off
-BXE

(I-4): not using documentation - 0

)
N - o Rk

(I-5): issues with examples in the documentation

wlw o » =~

:

V- o » o olo r ofn o » »

8-

(-1): inconsistencies due to API changes
(J-2): effort supporting old APIs - 1

(-3): non-documented AP changes - 1
(K-1): domain - 1

(K-2): licensing issues - 0

(K-3): API corporate development - 0

© o o o|lo o o|lr oor rlooloolrooolooooooolroooooooooloooo|looo

®_ o o o r|o o oflc © © © o|o ofo o[- ©c 0o o[~ © - ©c 0o © ok © ©c 0 © ofo © © o|o © © ofc o o

®_ o o o oflo » o|lo © 0 © o|lo o|r oflc ©c 0 oo 0o - 0 0 o oloc © 0 0o oo o o oloooolooo
40oo»—-oooocoooocoo»—-coo»—-o»—-oooo»—-ooocoooocooocooo
B colcoodecend oodseecsdseeessdessssdessdsssdssas

—ooocooooco»—‘oooooocoooocooocoooocoooooooocooo
% o coolooo|lrorrwrloo|lowrooooocooooroloooooo|loooo|looroloow

2?0 o o olor wloooownoolorooooooooooolroorooloooo|looooloonwn
® -5 o o oflo o olo 0 0 o r|oc olo olc 0 0o 0|l]o ©c ©c 0o 0o 0 ofloorkroofooooloooolorkr
-o o o o|loor|lror orlooloolooooloooookroooooor|oooolkrereroloor
-o o o o|lo o olk oor oo oloofloooolorkroooolrnNnroorloooooooolorw
-0 o o r|lr olalr o o rla|lo v[o v oo o|lveNo ko r[lkr N oolooNnkleNn ke rloown
“_. o0 o o olo o o|lr or onN|lo ofoolooooloroooroooooor|oooolooroloowr
-o oo oloonNlroor rloolorloooolorrroowrlorooowrloowrerlooooornwm

AHHcoo“,coocww‘.HocOHcOGHHHONHQOGHHQQHOHOHOONH
| . podE:- 500 el - -oEd B -BoE-bo -8 oo deoEdE B
Ao 550 - Pooe -8 B Bead B - Bd-os- gl - - aees e
oo cdbEE B-- 0--B bodpd: -B-d- - -5 - o - e -Bon
I codoodees - dods - - codeecssssdessscdes - dos - dee -
AOHOOHHHCOOOHOOOHOOHNOCHOHONHOOOHHOOOOHOOHOOO
Ao cdbon -ood B-- - -bodd- - Bd B- -d Pg BEoodos

* noroloow
% - BE - B
*_o o n o|lo o
% _ o o r oflo m
ANoocoo.c--oo
cor oloonr[ior
- oo o|lom
°_ - o~ olo o
com rm oofkr m

(K-4): issues due to programming language - 0
'

‘\ (S 02,
e\ac(x\) o a;‘,.\og \ev\;\\ ea‘%v c»\“%%\i"e&%v o \\4",,x\>“b°iu¢\o .,K“a‘e“ e“\ R Oce (\\%@&% Efv\\ c§\° RO
s e < WOt

o« N 6\?‘;\3 Q, NS SN ‘o\\vo e, x\‘ “a\\ﬂ e \e' « “;e,\ u(m& \\2 2‘5@@‘\9‘»
“diﬁe\o%\av\r\o‘ Sege” § Q 6*&1 m\ R »\w e a+e“Qe &S =
2T, P \'x\ OIENAIN

o0 % 0% X 7. o
SREAER e PICRERA
R oo

P SRS RS
N

e

Figure A.1.: Correlation of detailed root causes and applied research methodologies

256

A.1. Appendix API Misuse Causes & Prevention

(A-1): too complex IS 1 5 B 1 0
(A-2): too abstract - 7 1 0 1 0 0 30
(A-3): compromise design issues - 7 2 4 1 2 0
(B-1): communication issues between API and client developer - 5 1 3 3 6 0
(B-2): unclear usage scenarios - 3 1 2 3 2 0
(B-3): missing education on API design - 6 3 3 1 0 1
(B-4): heterogene API client users - 1 1 1 0 0 0
(C-1): developer process-related issues 3 3 3 4 2
(C-2): missing domain knowledge 15 2 3 6 13 25
(C-3): non-helping developer experience - 0 0 1 1 0 0
(C-4): mindeset issues - 4 0 } 0 0 0
(D-1): naming issues - 5 1 2 0 7 0
(D-2): errorsin APl 14 0 3 1 2 0
(D-3): unclear API error/warning messages - 8 0 3 0 1 3
(D-4): insufficient defaults - 4 0 1 0 2 1
(D-5): insufficient initalization of objects - 2 0 3 0 8 1 20
(D-6): insufficient error handling - 6 0 1 1 2 1
(E-1): too many features - 2 1 1 1 4 3
(E-2): unknown entry points - 1 0 1 3 19 16
(E-3): API customization issues - 7 1 2 6 24 21
(E-4): ambigious/unclear usage - 8 1 2 9 24 22
(E-5): APl incompatibilities - 1 0 0 0 2 0
(E-6): inconsistent usage compared to similar APIs - 1 0 1 1 0 0 15
(E-7): unknown constraints - 2] 1 6 ‘- 8
(F-1): outdated APIs - 0 0 0 0 1 0
(F-2): using internal APIs - 5 0 0 0 3 0
(F-3): auto-generation issues - 2 1 0 0 0 1
(F-4): using insufficient API samples - 6 0 0 0 10 11
(G-1): findability issues of present API features - 8 1 1 7 -l:- 13
(G-2): missing API features - 0 0 0 0 0 0 -10
(H-1): API configuration issues - 0 2 0 0 1 2
(H-2): technical environment issues - 0 1 0 0 0 2
(I-1): missing/insufficient documentation issues 5 6 6 11
(I-2): too verbose documentation - 2 0 1 2 12 13
(I-3): effort to create documentation - 4 0 0 4 9 10
(I-4): not using documentation - 1 0 1 1 3 5
(I-5): issues with examples in the documentation 3 8 m -5
(J-1): inconsistencies due to APl changes 16 6 4 7
(J-2): effort supporting old APIs - 2 1 0 0 1 1
(J-3): non-documented API changes - 4 0 0 2 1 2
(K-1): domain - 1 1 0 0 0 0
(K-2): licensing issues - 0 0 0 0 0 1
(K-3): API corporate development - 2 0 1 0 0 0
(K-4): issues due to programming language - 9 9 ? ? 9 ? -0
60‘\0“ 20° o° o o o QQ&‘
o o By 8 8% 33°
< « & X &
<@ < «° o O <O
@ & o ko 8
92 NS N 3 &F &€
N . A A A
o D N o i oV
\A“?‘ » <& Q P‘\t(\ e RIS

Figure A.2.: Correlation of detailed root causes and prevention mechanisms

257

84¢C

Table A.3.: Summary of prevention mechanisms based on the qualitative analysis with most relevant literature

Misuse Cause Type Detailed Prevention Mechanism References
adhering to API design principles (e.g., easy-to-learn) [ZWH19]
(A) complewity simplifying common client tasks [FMGK24]
and abstraction VR improving error handling [GALIF20, FMGK24]
issues simplified test modes [IKND16]
secure defaults [IKND16, FMGK24]
early integration for API test [MRARMB™18]
review process with client developers [WBK21]
(B) human API VR test processes of API usability [FWZ10]
developer issues feedback to up-to-dateness with repository badges [TZKV18]
VAS S.upport adherence to functional requirements and design deci- [SY21]
sions
no copy&paste for secure code [ABFT17]
VR priming of security requirements [NDT*17, DNRS21]
strict usage constraints with few exemptions [WBK21]
client developer training with examples and pair programming [SAKW21]
(C) human client support of the selection from Q&A pages [FXKT19, WJZ123, CPY*24]
developer issues automated in-code suggestions and generation [[HK17, KRW't23, MWD24,
NMH*24]
VAS API and library recommendation [LZPT23]
find expert client developers in issue trackers [SWT21]
support of finding and sharing common knowledge [LLS*18, HLH*22]
support of improved warnings [NWA+17, GIWT 18]
avoid linguistic anti-patterns and unusual terms [ANBL18, MRARMB™18]
(D) APT code code resilience against internal errors [MRARMB™18]
issues VR adhering to API design principles [ZWH19, FMGK24]
SCA with more precise messages [TVBW21]
constructors instead of factories [ESMO7]

continued subsequently

xipuaoddy, "y xipuoddy

69C

Table A.3.: Summary of prevention mechanisms based on the qualitative analysis with most relevant literature (continued)

Misuse Cause Type Detailed Prevention Mechanism References
(D) API code VR reporting build status in library repositories [TZKV18]
issues (cont.) VAS automated security advices and warnings INWAT17, GIW+18, LAH18]
no binding of API methods to helper classes [SMO0g]
strict usage constraints with few exemptions [WBK21]
VR using examples from unit tests [NM10]
priming for security task [DNRS21]
constructors instead of factories [ESMOT7]
find related or alternative code examples or API elements [HWMOG6, BDWK10, DRI1,

(E) API usability
1SSUES

KAS13, THK17, NKZ17, ZUR*18,
LHT+22]

summarizing code examples and discussion from Q& A platforms

[HAHH15, GZHK18, NGB21]

mining idiomatic code examples, constraints, and patterns

[MXBK05, DHO09a, SHAI4,
BSZ+20, LPM*21, NDRDS*22]

VAS automated code generation [KAB20, SWZt20, MWD24,
YHWH24]
customize online code examples [ZYLK19, TS21]
enhancing documentation with client data [SFYMO09, SXCT19]
improve discoverability of API element with annotations [SM17]
automated summary generation of API classes [LPM*19]
validating and add warnings to Q&A posts [FXK*T19, HWL21, MUR23]
provide code examples for Q& A posts [HAHH15, SWZ%20, YHWH24]
(F) false API VAS finding and summarizing Q&A posts [WPWZ19, LHT*22, LCCT23,
usage Tesources CPY*24]
customize online code examples [ZYLK19, TS21]
detect frauds of up-voting low quality Q&A posts [MUKS24]
(G) finding VR no API method placement in helper classes [SMO0g]
features issues VAS improve ordinary code search and example suggestions [EM21, KRW 23, BFH24]

continued subsequently

UOTUoADI 29 Sosne)) osnsin [y Xipueddy TV

092

Table A.3.: Summary of prevention mechanisms based on the qualitative analysis with most relevant literature (continued)

Misuse Cause Type

Detailed Prevention Mechanism

References

API element and library recommendation

[SPK14, HXX*'18, CXL19,

(G) finding LZP+23]
features issues VAS enhancing documentation [SFYMO09, UKR20, NMVH23]
(cont.) enhance the customization and summary of Q&A posts [GZHK18, ZYLK19]
extending APIs with annotation for better discoverability [SM17]
optimization system as domain specific language for Deep [WLY24]
(H) installation VAS Learning (DL) systems
155U€es automated privacy configurations [SAT20]
automated dependency issues configuration [LWL*22]
code examples in the documentation [WZFT12, SAKW21, BCMZ22,
GMWI22]
enhance documentation using crowd sourced information [DPCAAM16, TRJT21]
VR documentation constructed to support different human learners [MSS20]
of APIs
highlighting potential errors when using the API [UBvT22]
find additional code examples, templates, patterns of APl usage [MXBKO05, ~—HWMO06, DHO09b,
BW12, KLHK13, IHK17, NKZ17,
(1) API GZHK18, HGHHIS, ZYLK19,
documentation BSZ+20, SXP*21, ZJR*21,
resnes WBI*23, BFH24]
find additional information from crowd-sourced information [SFYM09, BDWK10, GFXT10,
AS TR16, CYYZ19, WPWZ19,

ZJRT21, WJZT23, BFH24]

improve search and orientation abilities in the documentation [RC15, LLSt18, WJZ*21,
HLH'22, NMVH23]

automated documentation generation [MM16b, UKR20, UKR21,
GMBG*23]

support for tutorials

[HIST20, GOSN22, NZS*23]

continued subsequently

xipuaoddy, "y xipuoddy

19¢

Table A.3.: Summary of prevention mechanisms based on the qualitative analysis with most relevant literature (continued)

Misuse Cause

Type

Detailed Prevention Mechanism

References

automated detection of inconsistencies between documentation
and code

[MLK19, ZWY *20]

(I) API — - : -
documentation VAS support of writing and updating documentation [LWCK21, HMM23]
issues (cont.) inte.ractive documentation or integration into the development [DH09a, NR25]
environment
quality assessment of documentations [BCH™23]
VR apply semantic versioning [RvV17]
automated API migration techniques [SPK14, GAQT18, LSC22,
, DND25]
gjzufspinedwlumn incompatibility checks for client applications caused by library [NDBB20, ZZW*23]
] VAS upgrades
breaking changes automated updates of the documentation [CWCK21, HMM23]
suggesting alternative libraries [CXL19]
create compatibility code [DNM.JO§]
static over dynamic types [MHR*12, EHRS14, PHR14]
(K) other context VR characteristics of secure development in the domain of smart [WXL"21]
related issues contracts
VAS automated fix of license issues in forked projects [HXCT24]

UOTUoADI 29 Sosne)) osnsin [y Xipueddy TV

Appendix A. Appendix

A.1.6. Detailed Comparison APl Misuse Research Effort Causes & Prevention

We present a comparison of the research effort (i.e., 7.y fort) of general prevention mecha-
nisms to detailed root causes (cf. Figure A.3), of recommendation to detailed root causes
(cf. Figure A.4), and of automated support to detailed root causes (cf. Figure A.5).

262

£€9¢

1.0 [root causes
I prevention mechanism
081 M
0.6
= -
0.4
0.2
0.0+
S S, \) S, - oK XS, XS, pP\S pPVS. cues S 0, O N WO S e
Lo g\a S'(_(;AC 5"3&8\0"?' a(%‘(dee\% “S:et\ o \ei% \ee“e‘ \ssue 55\1 553% s (a\lz o “6\\“(7’;0!“5 o sfi\el; ui"‘%‘o\\\“\a‘ A sm‘;ied I:\:“ P& sS‘\‘";amg\% ‘“\‘%e‘ﬂ‘uov \55:“3{ \s"::‘e“ \s?:" a?““’“xa“““’ xa?““’“xa‘fc“a“% AN \ AR oﬂ\\?\% 53\2\509“\?‘3\“%“3%
\‘o\.‘o 3es \et ag? Zon M \cg‘\a a\\< oS M v a& nCOZomP2s o QY G (x P N\ ? ey PO cﬂ¢ (\o‘«“doC" oP? ﬂ\“ dp\? Y\“ 5! de g
R S \9"&““ et Pttt \0'“ 0"‘ L\\ \wa‘;ﬁm % o\ % “*“"\v—“zg 3 amm‘i“g ﬁsxc‘)““%e COUTReE e us{sm o o 8 D
el 12 1S S\ 0 - C\ O o
GASERAREARE B B W g R RS T
. 5“ (\"ath) “5\5 Yy
T © “°° e-\ A oy & I\
e & N \3 :
o™
A ©
®

Figure A.3.: Detailed Comparison of relative research effort (rref fort) between research on root causes and prevention mechanisms in

general

UOTUoADI 29 Sosne)) osnsin [y Xipueddy TV

¥9¢

1.0

0.8

0.6 1
5
3
H

0.4

3 ro
" ot causes
c

U»Q ommendations

0.0

o et

Y, \P’L\ x"a\ﬁ““ S
\)(oﬁ\ e Ope
X \Pﬂ\oewe“ N‘ ar\f\ oot osag,e Cendly dei‘g
\m\ca&\cm eSue® \% T AC?, 2000 on P‘P\ AN “se
@ o A ‘SS\W’A\‘“?X& o\ e& \fe;x o sues > e
T S Seten
O & PY B e F
\eot R 0'2\ 3% WA %%%c\em\xsb o
\0—3\-_ e .‘“E a\\t OE ée “6\‘“% w‘e
&0—5\ \ ot \g x\ ";‘,_“‘ omts
E 'La“ oo
c\e’é\‘ \ﬁaf,
‘s L b\\\“ o8
E \ ?\ A a(e<3 W P ‘a\“‘s ‘
£ mcm\ss g °° \m\m \F A axed P?\s N’\s‘
: : \L “‘e‘“ a¥\°“ 20 !
eg\ “‘v%““‘ ?\ =_,amg\§eam‘ +
\?—A \“‘é‘ \es ‘ese e
(= \ \ oo\ @Z \55\ “ 3‘\0 \55“ o
& (G Q}_ ;é{?“ gie “‘: m‘si\““ Ty
\ RS x 80¢ \,05 F ‘aﬁ\o“ﬂ“"
\\“ K\ﬂ ‘oo (ea"e docﬂ e &a&\o
ﬁoﬁ o %doc\l xa&\o
(& K\"Q\ 0 o O <3°°“ IX? ‘“3‘\?’
eﬂ‘“o‘\s‘ L a0E Que mng 54 5 g N
; \)7—\3 “oﬁ <\ ent AP \kaX\?’ oﬂ\a
o & o e
\ co‘ \a“‘ﬁ“a e
%3\ % Pt e o™ 0%

Figu
re A4
4.: Detai
ailed C
om
parison
of rel
ative
resear
ch eff
o)
rt (r7effort) bet
etween
resear
ch on
root ¢
auses
and re
comim
endati
on

xipuodd
vV 'V xipuaddy

@Y

—

root
cau

Ses

1.0
0.8
0.6 =
0.4
02
0.0l -
G AV K TR
Ux ’l\ ‘osuac\ [
ot 000 55 &;‘oem ‘o‘(\\’\?ead Sgeze\o\)e automat
& ¢ e
&B 2): ‘\cée 2 usag e{\'ﬁ%o o d support
\ ’:“\ ?,S\
\\e& e\ c\\emu 5eX2.
\1 \Je\ove(mces e(\ ssues a6
1S A0 e
\‘, % e\le\ pe(\ence _
A\ \0 %%S& \;s\uo_; o
- W0 oS, ES
R M’
kﬁ_»\ \mc\e(\\ o&w ssa
\ \ \ s d (au\&s
\D/ sy mm\\ b\ecxs
\ﬁ\me (\d\\x\(g m
2. (es
’l‘ \m \r\ts
% ‘?\ c \‘La’u e
QW eax usa
\\3‘5\ KV\ TS
\E—()\‘. mco(\sr: %‘ed X0 s\m\\a(I
T1): e \F oS! “g\;{&d N’\
- 2 ef S,
\L \)s ma N
Y. au&vg ea&\m\ sV,
\‘? A«\ smg,\ o \sam NS
& \ ssues of xese e2 e
X \55\\ k\(%‘:(es
CO\'\ (\§ 2! ot \SS\)&S
\7.\ tec %e(\\mo‘\m t\ssues
\—\\ “\c,\ e r\&a sues
’L\ 100 ‘oose c\oc\m\ xatd
iorx ctea&e dor,um max\o
\\—A)“ tus\ g,c\ocu x\tat\o
\ 165 e«/\am\)\ sm docum xwo
oS! \eat\ \o
\)().\,5\ “oﬂ m‘\ d ‘M“%
\‘\ c\om
‘k - i er\smg 05
&(\3\ c,o(de\le\op
ues 9 g,(ax\g,uag,

co™

Fi
gure
A5
5. De
ta'll
ed C
om
paris
on
of r
clati
1ve
resea;
rch
effo
rt
(’I"Teffort) bet
ween
resea;
rch
on
T00t
caus
es a
nd
auto
ed
su
ppor
t

uont
[JTI9AD,
d 7

sosn
B oSnsIp\
N IV

XIpuo
L dd
Vv

Appendix A. Appendix

A.2. Appendix Improving Pattern-Based API| Misuse Detection

A.2.1. URLs to APl Misuse Detectors

In Table A.4, we provide all found URLs of the replication packages of the analyzed API
misuse detectors.

A.2.2. Additional Results Filtering Commits

We present further experimental results of filtering strategies tested as improvements in
finding the donor code for Frequent Pattern Mining (FPM), namely, API specification
mining. In detail, we present different with different satisfaction ratios (sr) by using all
and only misused API imports from internal (cf. Figure A.6) and external source code (cf.
Figure A.7).

266

A.2. Appendix Improving Pattern-Based API Misuse Detection

Table A.4.: Replication Packages of API isuse Detectors with available detectors highlighted

in gray.

Short Term

URL

Note

APDetect (wxq23

not available

APISan [yMsTt16]

APP-Miner pwrt24

https://github.com/sslab-gatech/apisan

https://github.com/JiangJias/APP-Miner

available - not provided but
found on GitHub
available

CAR-Miner [rxoon)

http://ase.csc.ncsu.edu/projects/
carminer/

URL is not working

A CL-Detector (zcsz21) https://github.com/subZHS/CL-Detector available but missing merg-
n ing concept (cf. https:
//github.com/subZHS/
CL-Detector/issues/1)
CPAM [rcpay) https://cpam2019.wixsite.com/mysite available but only mining
framework but missing static
detectors
DMMC sio) https://www.stg.tu-darmstadt.de/ URL is not working
research/core/
FuzzyCatch oo https://bitbucket.org/tamnguyenthe/ available
exassist_repo/src/master/
GrouMiner xnetoon] - not available
Jadet (wzro7) https://www.st.cs.uni-saarland.de/ available
models/jadet/JADET.zip
MUDetect (ann+19b] https://github.com/stg-tud/MUDetect available
PR-Miner [1.z05) - not available
SpecCheck i1 http://www.comp.nus.edu.sg/~anhcuong/ URL is not working
tools/speccheck.html
Tikanga (wzi1) https://www.st.cs.uni-saarland.de/ linked artifact is not available
models/tikanga/index.php3
Acharya/Xie (axog - not available
Alattin (rxooa) https://sites.google.com/site/asergrp/ no artifact available
projects/alattin/
APICAD (wz23) https://github.com/x2018/apicad_public available
CrySL (ksa+21) https://github.com/CROSSINGTUD/ available
A CryptoAnalysis https://github.com/
= CROSSINGTUD/Crypto-API-Rules
Doc2Spec [zzxnoo) - not available
EMDetect [cuis) https://github.com/ervina/emdetect repository is empty
Li et al. [zr+2q https://doi.org/10.6084/m9.figshare. available
24552193
OCD @s10 - not available
Pradel et al. piacio - not available
Pradel/Gross (rci2) - not available
Ren et al. ryx+20) - not available
ALP [(kr2y https://github.com/ALP-active-miner/ALP available
ARBITRAR [puvc+21 https://github.com/petablox/arbitrar available
2 F-LSTM/S-LSTM [ocky2q] - not available

Salento picii7

https://github.com/trishullab/salento

available

Standard Trans/ Target-Com-
Trans [YRW22]

not available

267

https://github.com/sslab-gatech/apisan
https://github.com/JiangJias/APP-Miner
http://ase.csc.ncsu.edu/projects/carminer/
http://ase.csc.ncsu.edu/projects/carminer/
https://github.com/subZHS/CL-Detector
https://github.com/subZHS/CL-Detector/issues/1
https://github.com/subZHS/CL-Detector/issues/1
https://github.com/subZHS/CL-Detector/issues/1
https://cpam2019.wixsite.com/mysite
https://www.stg.tu-darmstadt.de/research/core/
https://www.stg.tu-darmstadt.de/research/core/
https://bitbucket.org/tamnguyenthe/exassist_repo/src/master/
https://bitbucket.org/tamnguyenthe/exassist_repo/src/master/
https://www.st.cs.uni-saarland.de/models/jadet/JADET.zip
https://www.st.cs.uni-saarland.de/models/jadet/JADET.zip
https://github.com/stg-tud/MUDetect
http://www.comp.nus.edu.sg/~anhcuong/tools/speccheck.html
http://www.comp.nus.edu.sg/~anhcuong/tools/speccheck.html
https://www.st.cs.uni-saarland.de/models/tikanga/index.php3
https://www.st.cs.uni-saarland.de/models/tikanga/index.php3
https://sites.google.com/site/asergrp/projects/alattin/
https://sites.google.com/site/asergrp/projects/alattin/
https://github.com/x2018/apicad_public
https://github.com/CROSSINGTUD/CryptoAnalysis
https://github.com/CROSSINGTUD/CryptoAnalysis
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/ervina/emdetect
https://doi.org/10.6084/m9.figshare.24552193
https://doi.org/10.6084/m9.figshare.24552193
https://github.com/ALP-active-miner/ALP
https://github.com/petablox/arbitrar
https://github.com/trishullab/salento

Appendix A. Appendix

0.521
0.50 °
0.481
a // //
c
] _ ~
3 T P
g 0.14 o o ° o
L
g 0127 o o o o o
@ 0.104 0
(0]
2 o o
& 0.081 o
&
0.061
0.041
0.021 o . o X
X X X
0.00 e
0.0 0.25 0.5 0.75 1.0
filter e (sr)
(a) Internal/All Imports
0.521
0.50 °
0.48
k>)\ // //
c
] _ ~
=1 A ° A
g 0.141 ° o o o
L
‘g 0127 o o (3] o o
£ 0.10] o
(0]
2 0 o
k5 0.08 o
(]
& 0.06] °
0.041
0.021 % % > X
0.00 : g : s
' 0.0 0.25 0.5 0.75 1.0

filter e (sr)
(b) Internal/Misused Imports

Figure A.6.: Distribution of the relative pattern frequency using different file filter strategies
grouped by each API search strategy of internally found source code

268

0.144

0.124

0.10

Relative Pattern Frequency

0.081
0.061
0.041
002’ o o o g
[[[g .
0.00 X X | | X | et
' 0.0 0.25 0.5 0.75 1.0
filter pye (sr)
(a) External/All Imports
0.14
0.121
> o
c
5 0.10/
5
o
£ 0.081
ot
®
a
o 0.061
=
=
(]
& (.04
002’ o o
8
— | 0
000 [T O s
' 0.0 0.25 0.5 0.75 1.0

filter pye (s7)

(b) External/Misused Imports

A.2. Appendix Improving Pattern-Based API Misuse Detection

Figure A.7.: Distribution of the relative pattern frequency using different file filter strategies

grouped by each API search strategy of externally found source code

269

Appendix A. Appendix

A.3. Appendix Change Rule-Based API| Misuse Detection

A.3.1. Change Rule Inference

Formal Definition of the Cost Function mapping API Usage Graph (AUG) nodes We
denote two functions, V (aug) and E(aug), obtaining the set of nodes and edges of an AUG
aug, respectively, the node label functions ly,, and ly, as well as the edge label functions
lg,, and [, of the respective AUGs augy, and augy. Further, assume a node n,, € V (augm)
and a node ny € V(augys), both of which are the aforementioned partitions. The formal
definition of the cost function is as follows:

cost(ny, ny) = C0Stpo(Nm,nf) + costeq(Nm,ny)
0 if ly(nm) = l¢(ny)

coStyo(Nm, 1 f) = 2 if Ly (nm) # lp(ng) A (N = €V g =e)
4 else

coSted(Nm,) = min coSted—in(em,er)

Vem€Ein (nm,augm),
VesEEin(nys,augy)
+ min c08ted—out(€ms ef)
Vem € Ein (nm,augm),
VesEEin(ng,augy)

(Rt 71m2) 0 if I, ((nm1, nm2)) = e, ((nf1,np2))A
costed—in < i T2l > = W, (nm1) = by, (ng1)

(nf1,712) 1 else

(Rt 71m) 0 if I, ((nm1, nm2)) = e ((ng1,np2))A
COSted—out < mi Tm2) > = le (an) = lvf (an)

(nf1,712) 1 else
with
Ein(n,aug) = {(na,np)|(na,np) € E(aug) Angp =n}
Eout(n, aug) = {(na,nB)|(na,np) € E(aug) Ana=n}

Pseudocode Change Rule Inference (ChaRLI) We present the pseudocode of the change
rule generation implemented by ChaRLI based on our previous work [NBKO22] in Algo-
rithm 1. Note that the computation of minimal matching in line 7 is conducted in a first
iteration by ignoring differences in order-edges the cost function. In case this causes an
empty change rule, the computation starting in this line and hereafter will be repeated
with respecting differences in order-edges in the cost function.

A.3.2. Detailed Results Applicability Checks

We present a detailed comparison of both applicability checks (i.e., threshold-based and
control-group-based). In detail, we compare them among all similarity metrics and the
relative precision, the conservative precision, and the recall for the MUBench dataset (cf.
Figure A.8) and the AU500 dataset (cf. Figure A.9).

270

A.3. Appendix Change Rule-Based API Misuse Detection

Algorithm 1: Change Rule Generation based on our previous work [NBKO22]

I = 1 B NV R R

10

11
12
13
14
15
16
17

18
19
20
21
22

23

24

25

26

Input: augy,, augy
Result: Change Rule: (aug,, — augy)
/* Create bipartite graph and computing minimal matching. */
while |V (augm)| # |V (augy)| do
‘ add e-node to AUG with fewer nodes
end
bipartite < new WeightedDirectedGraph()
bipartite.nodes < V (augm) UV (augy)
bipartite.edges < {(nm, ns, weight : cost(nm,ng))| nm € V(augm)Any € V(augys)}
minMatch < kuhn_munkres(bipartite)
/* Construct basic change rule parts based on minimal matching. */
aug,, < sub graph from aug,, consisting of nodes n,, € V(aug,,) and their
connecting edges, where costs(n,,n¢) > 0 in minMatch
augy < sub graph from aug; consisting of nodes ny € V(augy) and their
connecting edges, where costs(nm,,n¢) > 0 in minMatch
/* Conduct Single Hop Addition. x/
single_hop_node_pairs < all action-node pairs represented in minMatch that are
connected with an incoming data- or finally-edge (in aug,, and augy,
respectively) to one of the nodes in aug,, or augs
foreach (sh_node,,, sh-nodey) € single_hop_node_pairs do
AUGy < augy with sh_node,, and its corresponding edges from aug,,
augys < augy with sh_nodey and its corresponding edges from augy
end
post_single_hop_node_pairs < ()
foreach (sh_node,,, sh-nodey) € single_hop_node_pairs do
post_single_hop_node_pairs < post_single_hop_node_pairs U all data-node
pairs represented in minMatch that are connected with an outgoing
data-edge (in aug,, and augy, respectively) to one of the nodes sh_node,, or
sh_node
end
foreach (psh_node,,, psh-nodey) € post_single_hop_node_pairs do
auGy aug,, with psh_node,, and its corresponding edges from aug.,
augy < augy with psh_nodey and its corresponding edges from augy to augy
end
/* Reduce the number of redundant order-edges by applying an adapted
version of Hsu’s algorithm removing only order-edges. */
augy < hsu(aug,,,{order_edge})
augy < hsu(augy,{order_edge})
/* Construct final change rule. */
(augms — augys) < augyy and augg connected with transform-edges between
nodes in aug,,’ and augy based on minMatch
return (aug, — augys)

271

Appendix A. Appendix

B threshold-based
| control-group-based

1.0
XX XK
x X

0.8 ° °

0.6 =1 8 ° X °
o L=

& g

] 8 >< X

g X . B

[° é °
> X
=1
o

£04

0.2

(]'Ofw‘“* N e o T N

R oM e vm\\m @ ﬁswgcw‘ 2 e e &6‘,\\& .,«sv\“o H\“‘*’"‘“ Ymgﬁ“m\ o ﬁsﬂ“d S‘m\\aﬂ‘
T e et et p\:\\nﬂ“‘v\\“&@w& BT e e e W o et

N N

similarity measurement
(a) relative precision

Figure A.8.: Comparison the assessment values between Change Rules using threshold-
based applicability check and control-group-based check on MUBench.

272

A
3. A
ppend.
11X Ch

an
ge R
ul
e-Based AP
T Mi
isuse
De

tecti
on

1.0
c
.o 0 o
@ °
S 6 .
0 o
& :
9]
2
=
2
9 a
£0
sV °
504 .
8 ° B
8
4 °
o X
W\ms\lecmcom X ° %
rx\’\b.as\lwmnﬂm
h?\?}as\lenv.oﬂ‘:p\m(,vsmg
I\\’\Eﬂs\lzcloév\v_\“dn\
m\\\&moxmsvmw
w\\“&cm as\|e<.\ul5v\w
o
Ws\lec\d(mme X
Eﬂs\‘ec‘»ar\.\“oﬂm X
similari e«aaznwsp\«cdsme %
rity m Eﬂs\‘gamﬁv\\‘_\“dm «
easure \'\ung,ananGED
1.0 (b) ment \'\u\\gﬂ\m\'\(‘: -
: \|\(§\L’oto‘ 25" ek
con 5 N
S o £ oS
er
vati Nabé'\\d\\u\wcpx
1ve pr
ecisio
n
]
18]
L
0.0
M’\uas\lm.mcosme
;\\’\eﬁas\lmmw.«
p?\(ms\lmﬂ%p\wcgs\m
P\?\Eﬂs\lec‘»dSv\wL\“dm
AP Ve
N’\\\\(\\cﬁ\o&ﬁﬂs\lk}o{sp\t\ o
muem
uaswm«c.ﬁm B v
wsﬂeaamﬂom o X
F}as\facldﬁv\\!&ﬁ\\\e
Eﬁs\lec"a(sg\\ll\“dn\ X
\'\u\\g,um\GE\)
\‘\u“y,a(\a\\N\CS
A e
\\\(\\cﬁ\oﬂ?}as\lzchp\a
“oéeS\m\\-n’\ﬂQw

similari
rity measure
ment
(c
) recall

Fi
gure A
- Com
bas pariso
ed a n th
pplica € as
bili SEeSS
ty c ment
heck an dvalues b
c et
Ontrol_gr‘ONeen Ch
up_ba ange
Sed Ch Rules
eck o usin
n M g th
UB resh
ench(old-
cont)

Appendix A. Appendix

B threshold-based
| control-group-based

1.0 » < »
« X X X
X
0.8
50.6
@
g
o
2
k]
€04
? a
0.2 - %
0.0

o ar >

(S ey
6‘,\‘@5 NI e Mw“ ,xsw @,coé N \lcoé v\\“‘“ e

0 (}m &\m Ngc\

s » ws\jec‘ o @; v m\wwo"
N o
e v\eﬁs\“ ‘:\Eﬁs\“’" A

e _
" mca“” e

similarity measurement
(a) relative precision

Figure A.9.: Comparison the assessment values between Change Rules using threshold-
based applicability check and control-group-based check on AU500

274

A.3. Appendix Change Rule-Based API Misuse Detection

1.0
S
5 0.6
O
[
o
o
L
2
5
2
& X x| <
0.4
o
o
'
§
0.2 §
X
X
: Gne it £O e 0 S
N cw‘““ o«sv\“m éw‘““ o&ﬂ“ o g C‘d(psm\lec‘ N msv‘“@m e mﬂ“““e o e A o S it
N:\w \,\gm e \ws\jgct kv\\““‘“ w“"u A e e w W e Ac‘,w Wod
similarity measurement
(b) conservative precision
0.6 ¢
©
3] .
(3
e .
g
.
X
X : X X ax X x] mX
0 O 9“ COC NI e Qfsv\ ﬂeﬁ oS Uw N6 MO e oﬁSP O™
ot P o o e X Lw dar r,v\\‘ i @ G e \m‘ e
h‘)\?}aﬁ o ?ﬂs\je \&@S\J m\vﬁ\‘& oP ?\\“‘\c o e g ™ ue o Wad ®® e e ec“d e BN (o

similarity measurement
(c) recall

Figure A.9.: Comparison the assessment values between Change Rules using threshold-
based applicability check and control- group-based check on AU500 (cont.).

275

A.4. Detailed Results of RuDetect

A.4. Detailed Results of RuDetect - Comparison of Similarity
Metrics on Misuse Detection

In Figures A.10 and A.11, we depict the differences in the performance in relative and con-
servative precision as well as recall for both test settings, namely, MUBench-on-MUBench
and MUBench-on-AU500 for all 16 similarity metrics. Moreover, we depict the single values
in Tables A.5 and A.6.

Further, we provide the differences in the assessment values using change rules with and
without context for the MUBench (cf. Figure A.12 and Table A.7) and the AU500 dataset
(cf. Figure A.13 and Table A.8).

277

Appendix A. Appendix

(a) Relative Precision (b) Conservative Precision

1.0 1.0

o
)
=
o)

<
>

<
N

relative precision
conservative precision

o
[\
o
[\

0.0 0.0 - = 2
0.0 01 02 03 04 05 06 07 08 0.9 1.0 0.0 01 02 03 04 05 06 07 0.8 0.9 1.0
> threshold > threshold
(¢) Recall
1.0
0.8
0.6

recall

0.0°
0.0 0.1 0.2 0.

3 04 05 06 07 08 09 1.0
> threshold

—o— APIExasVectorCosine —m—- AStarGED -+ HungarianGED

-~ API|ExasVectorL1Norm e+ ExasVectorCosine —+— HungarianMCS

—#—- APIExasVectorSplitCosine —— ExasVectorL1Norm -=+- |ndicatorExasVector
<+ AP|ExasVectorSplitLINorm --o-- ExasVectorSplitCosine —u— |ndicatorExasVectorSplit
—— APlIndicatorExasVector —e— ExasVectorSplitL1Norm --@--- NodeSimilarityOpt

--o-— APlIndicatorExasVectorSplit
Figure A.10.: Detailed view on the mean assessment values for the MUBench-on-MUBench

setting of RuDetect using different similarity measurements and thresholds
for the applicability check.

278

6.3

Table A.5.: Mean assessment values for the MUBench-on-MUBench setting of RuDetect using different similarity measurements and
thresholds for the applicability check depicted in Figure A.10.

-
s § . & s
¢ § i S 5 S & § &
$ s N § 2 & S ey S S § “
$ 5 N) ¢ & s & 9 S S S
$ ¥ g & & 3 5 & N $ 9 K R S
& $ K S L & & S S 3) & 2 e &
& & & & O © s g Q g S N e 2 &
X P . I & & S S & S S 5 IS b < N
& 5 ¥ & & § g & & & & i § $ S §
& & & & & S s & & z s S $ § $ &
< < < < < < % £ 3 & & S § S $ S
threshold < X ol X X Aol A S5 &) &) & & & S & =
0.0 0.531681 0.540565 0.483476 0.483042 0.763444 0.701397 0.638762 0.535198 0.534527 0.509838 0.514392 0.457487 0.456333 0.764182 0.724572 0.559382
0.1 0.538031 0.550941 0.502201 0.521955 0.769289 0.727540 0.801649 0.540969 0.541453 0.527727 0.535318 0.457487 0.455710 0.768989 0.749499 0.538044
_é 0.2 0.538031 0.553261 0.502201 0.523099 0.769289 0.727540 0.910239 0.540966 0.543654 0.527727 0.535852 0.457487 0.452408 0.768989 0.749499 0.788889
§ 0.3 0.538536 0.560437 0.502204 0.529654 0.769289 0.727540 0.984615 0.541503 0.550781 0.527727 0.536372 0.457487 0.479234 0.768989 0.749499 -
z 04 0.538494 0.559982 0.502247 0.529266 0.769289 0.727540 1.000000 0.541419 0.554416 0.527867 0.539080 0.457487 0.469774 0.768989 0.749499 -
g 05 0.531916 0.560780 0.502564 0.527203 0.769289 0.727540 - 0.535457 0.555496 0.528243 0.536861 0.456990 0.476898 0.768989 0.749499 -
'*:-; 0.6 0.647414 0.653509 0.521211 0.537069 0.966379 0.809760 - 0.644737 0.652047 0.555745 0.568048 0.452408 0.470667 0.969298 0.833783 -
E 0.7 0.634615 0.618333 0.515008 0.519977 0.990385 0.817145 - 0.634615 0.605442 0.552736 0.556358 0.469774 0.509804 0.990385 0.854844 -
0.8 0.597826 0.579545 0.501020 0.519931 1.000000 0.843594 - 0.588889 0.579545 0.544211 0.550958 0.470667 0.500000 1.000000 0.879771 -
0.9 1.000000 1.000000 0.589080 0.646465 1.000000 0.589080 - 1.000000 1.000000 0.566755 0.616550 0.500000 0.500000 1.000000 0.566755 -
1.0 - - 0.500000 0.568182 - 0.500000 - - - 0.484848 0.546832 - - - 0.484848 -
0.0 0.459993 0.461606 0.380262 0.379920 0.651930 0.551660 0.581345 0.469050 0.462456 0.406725 0.410357 0.030842 0.030764 0.661146 0.578030 0.490245
£ 01 0.465488 0.470467 0.389347 0.404661 0.656921 0.564048 0.531430 0.474108 0.468448 0.415066 0.421037 0.030842 0.030722 0.665305 0.589493 0.320408
é 0.2 0.465488 0.472448 0.389347 0.405549 0.656921 0.564048 0.582962 0.474105 0.470352 0.415066 0.421457 0.030842 0.030499 0.665305 0.589493 0.017728
f; 0.3 0.459873 0.478576 0.389350 0.410631 0.656921 0.564048 0.143820 0.468491 0.476519 0.415066 0.421866 0.030842 0.032308 0.665305 0.589493 0.000000
q: 0.4 0.459838 0.478187 0.389383 0.410330 0.656921 0.564048 0.011236 0.468419 0.479663 0.415177 0.423995 0.030842 0.026392 0.665305 0.589493 0.000000
‘{; 0.5 0.448244 0.478868 0.389629 0.408730 0.656921 0.564048 0.000000 0.457244 0.480597 0.415472 0.422250 0.030808 0.026792 0.665305 0.589493 0.000000
; 0.6 0.421910 0.418539 0.368947 0.368104 0.629775 0.573201 0.000000 0.412921 0.417603 0.399637 0.402101 0.030499 0.026442 0.620787 0.608943 0.000000
Z 07 0.370787 0.347378 0.347197 0.333019 0.578652 0.550884 0.000000 0.370787 0.333333 0.378842 0.362571 0.026392 0.017184 0.578652 0.585904 0.000000
g 08 0.308989 0.286517 0.298360 0.297938 0.516854 0.511843 0.000000 0.297753 0.286517 0.330195 0.321908 0.026442 0.016854 0.505618 0.543679 0.000000
0.9 0.078652 0.067416 0.079427 0.087164 0.089888 0.079427 0.000000 0.033708 0.022472 0.082784 0.090058 0.016854 0.005618 0.044944 0.082784 0.000000
1.0 0.000000 0.000000 0.056180 0.063841 0.000000 0.056180 0.000000 0.000000 0.000000 0.059925 0.067586 0.000000 0.000000 0.000000 0.059925 0.000000
0.0 0.251227 0.245337 0.218174 0.211847 0.251445 0.217956 0.302171 0.267372 0.254173 0.219374 0.211520 0.020399 0.018108 0.263990 0.217628 0.520672
0.1 0.251227 0.199302 0.218174 0.190466 0.251445 0.217956 0.162103 0.267372 0.217956 0.219374 0.192975 0.020399 0.015490 0.263990 0.217628 0.321370
0.2 0.251227 0.197666 0.218174 0.187520 0.251445 0.217956 0.072652 0.267263 0.214792 0.219374 0.190029 0.020399 0.012981 0.263990 0.217628 0.001200
0.3 0.251009 0.193302 0.218065 0.182284 0.251445 0.217956 0.002509 0.267045 0.206938 0.219374 0.184357 0.020399 0.010691 0.263990 0.217628 0.000000
?3 0.4 0.250245 0.190902 0.216974 0.181302 0.251445 0.217956 0.000109 0.264645 0.198320 0.218501 0.181957 0.020399 0.008836 0.263990 0.217628 0.000000
£ 05 0.243700 0.189266 0.215010 0.180430 0.251445 0.217956 0.000000 0.248391 0.194938 0.215010 0.180757 0.018763 0.007527 0.263990 0.217628 0.000000
0.6 0.149231 0.149122 0.167667 0.157849 0.149231 0.168212 0.000000 0.148686 0.148576 0.167885 0.158285 0.012981 0.003491 0.148686 0.168867 0.000000
0.7 0.147813 0.147158 0.163085 0.154031 0.147813 0.163303 0.000000 0.147813 0.146722 0.163958 0.154685 0.008836 0.002400 0.147813 0.164067 0.000000
0.8 0.146286 0.146067 0.158612 0.151740 0.146286 0.158940 0.000000 0.146177 0.146067 0.158940 0.152176 0.003491 0.001527 0.146177 0.159267 0.000000
0.9 0.000764 0.000655 0.011236 0.005563 0.000873 0.011236 0.000000 0.000327 0.000218 0.011127 0.005454 0.001527 0.000218 0.000436 0.011127 0.000000
1.0 0.000000 0.000000 0.010581 0.005127 0.000000 0.010581 0.000000 0.000000 0.000000 0.010691 0.005236 0.000000 0.000000 0.000000 0.010691 0.000000

10090qNY JO SHNSNY po[reod FY

Appendix A. Appendix

(a) Relative Precision (b) Conservative Precision
1.0 1.0
0.8 0.8
c
o
5 o
= O
.g().G gO.G
s g
) =
2 T
504 £0.4
e 2
8
0.2 0.21
0.0 0.0
00 01 02 03 04 05 06 07 08 09 1.0 00 0.1 02 03 04 05 06 07 08 09 1.0
> threshold > threshold
(¢) Recall
1.0
0.8
0.6
=
0.0° s
00 01 02 03 04 05 06 07 08 09 1.0
> threshold
—o— APIExasVectorCosine —m—- AStarGED -+ HungarianGED
-~ API|ExasVectorL1Norm e+ ExasVectorCosine —+— HungarianMCS
—#—- APIExasVectorSplitCosine —— ExasVectorL1Norm -=+- |ndicatorExasVector
<+ AP|ExasVectorSplitLINorm --o-- ExasVectorSplitCosine —u— |ndicatorExasVectorSplit
—— APlIndicatorExasVector —e—- ExasVectorSplitLINorm --@--- NodeSimilarityOpt

--o-— APlIndicatorExasVectorSplit
Figure A.11.: Detailed view on the mean assessment values for the MUBench-on-AU500

setting of RuDetect using different similarity measurements and thresholds
for the applicability check.

280

Table A.6.: Mean assessment values for the MUBench-on-AU500 setting of RuDetect using different similarity measurements and thresh-
olds for the applicability check depicted in Figure A.11.

18¢

=
s § . & S
¢ § i S 5 S & § &
F g N & & & 5 & IS & § -
$ 5 N) ¢ & s & 9 S S S
o Y g & ¥ 2 § oS S S 9 <& o8 9
& $ K S L & & S S 3) & 2 e &
& & & & N N S ¥ g £ ¢ & o S &
A = . A & & S S S $ S N I & &)
& 5 ¥ & & § g & & & & i § $ S §
2 & s S S & & E > &
& & & & 5 & & F = # 5 & & ¥ § 5
threshold < X ol X X Aol %’Q Q?‘ IS Q’;" & ~Z$/ Qg S & &0
0.0 0.602905 0.603061 0.659614 0.639983 0.611095 0658634 0.229609 0.606929 0.605730 0.633680 0.614801 0.130009 0.128642 0.610067 0.633078 0.241637
0.1 0.602905 0.594007 0.659614 0.638226 0.611095 0658634 0.199231 0.606929 0.601374 0.633680 0.614682 0.130009 0.132367 0.610067 0.633078 0.214802
5 02 0.602905 0.598483 0.659614 0.640516 0.611095 0.658634 0.166557 0.606967 0.604575 0.633680 0.615847 0.130009 0.131691 0.610067 0.633078 0.014387
£ 03 0.602891 0.597332 0.659719 0.643562 0.611095 0.658634 0.044635 0.606712 0.604028 0.633715 0.617665 0.130009 0.134490 0.610067 0.633078 -
z 04 0.602945 0.600906 0.659924 0.642253 0.611095 0.658634 0.225071 0.606288 0.605543 0.634124 0.614942 0.129504 0.160424 0.610067 0.633078 -
g 05 0.604640 0.602914 0.660810 0.639899 0.611095 0.658634 - 0.606963 0.607603 0.633845 0.615760 0.128932 0.161130 0.610067 0.633078 -
2 06 0.909420 0.876812 0.701984 0.714738 0921296 0.685641 - 0920630 0.914815 0.640971 0.650380 0.132852 0179535 0.920142 0.658886 -
ER 0.970833 0.962500 0.721263 0.726813 0.965116 0.726034 - 0963415 0.987179 0.714429 0.746175 0160424 0191464 0.962791 0.707620 -
0.8 0.500000 0.500000 0.206711 0.191392 0.750000 0.206918 - - - 0.180565 0179143 0179535 0.232812 1.000000 0.182354 -
0.9 - - 0.179160 0.182642 - 0.184619 - - - 0.187359 0.201740 0232812 0.231090 - 0.189088 -
1.0 - - 0.195448 0.183711 - 0.195448 - - - 0.184030 0.201740 - - - 0.184030 -
0.0 0501291 0.501422 0.481741 0.481785 0501235 0481025 0.227020 0504637 0.503641 0.484160 0483552 0010225 0.010118 0.507246 0483700 0.211772
£ 01 0.501291 0.493894 0.481741 0.480462 0.501235 0.481025 0.145506 0.504637 0.500019 0.484160 0.483458 0.010225 0.010411 0.507246 0.483700 0.127916
é 0.2 0.501291 0.497615 0.481741 0.482186 0.501235 0.481025 0.099186 0.504669 0.502681 0.484160 0.484374 0.010225 0.010358 0.507246 0.483700 0.006305
f; 0.3 0.501280 0.496658 0.481817 0.484479 0.501235 0.481025 0.025076 0.504458 0.502225 0.484187 0.485804 0.010225 0.010578 0.507246 0.483700 0.000000
q: 0.4 0.501325 0.499630 0.481967 0.483494 0.501235 0.481025 0.007587 0.504104 0.503486 0.484500 0.483663 0.010186 0.010815 0.507246 0.483700 0.000000
£ 05 0.502734 0.501300 0.482614 0.481722 0501235 0481025 0.000000 0504666 0505198 0.484286 0484306 0.010141 0.010863 0.507246 0483700 0.000000
£ 06 0.470037 0.453184 0.465360 0.465784 0.465824 0469934 0.000000 0470037 0.462547 0.468125 0.460381 0.010449 0.012103 0.506595 0481209 0.000000
2 07 0.436330 0.432584 0.453828 0.449154 0.466292 0456831 0.000000 0443820 0.432584 0.465583 0461119 0.010815 0.012908 0.465169 0469097 0.000000
g 08 0.005618 0.005618 0.032516 0.025806 0.016854 0.032549 0.000000 0.000000 0.000000 0.034490 0.030193 0012103 0.013079 0.011236 0034832 0.000000
0.9 0.000000 0.000000 0.024156 0.024626 0.000000 0024892 0.000000 0.000000 0.000000 0.020472 0.020468 0.013079 0.012983 0.000000 0.020744 0.000000
1.0 0.000000 0.000000 0.024156 0.024770 0.000000 0.024156 0.000000 0.000000 0.000000 0.028948 0.029468 0.000000 0.000000 0.000000 0.028948 0.000000
0.0 0.129715 0.125201 0.087445 0.080508 0.130618 0.087054 0.414355 0.160012 0.144663 0.092330 0.081681 0.027259 0.026426 0.155799 0.088324 0.528993
0.1 0.129715 0.059791 0.087445 0.052467 0.130618 0.087054 0.076121 0.160012 0.100722 0.092330 0.058720 0.027259 0.025488 0.155799 0.088324 0.277087
0.2 0.129715 0.057384 0.087445 0.050318 0.130618 0.087054 0.024053 0.160012 0.092396 0.092330 0.056277 0.027259 0.022986 0.155799 0088324 0.001605
0.3 0.129514 0.049157 0.087445 0.043674 0.130618 0.087054 0.005896 0.158608 0.067917 0.092330 0.048070 0.027259 0.021096 0.155799 0088324 0.000000
04 0.128110 0.045546 0.087250 0.040254 0.130618 0.087054 0.000974 0.151986 0.052167 0.092037 0.043283 0.027064 0.018598 0.155799 0088324 0.000000
g 05 0.118479 0.043439 0.084221 0.038398 0.130618 0.087054 0.000000 0.117275 0.048054 0.086468 0.041036 0.025501 0.015148 0.155799 0088324 0.000000
0.6 0.004715 0.004314 0.034294 0.022179 0.004715 0.035662 0.000000 0.008327 0.008026 0.034392 0.022179 0.022081 0.012335 0.008929 0036346 0.000000
0.7 0.004013 0.003913 0.022472 0.012408 0.004414 0.022960 0.000000 0.004013 0.003913 0.022179 0.012213 0.017587 0.009143 0.004414 0.022863 0.000000
0.8 0.000100 0.000100 0.010845 0.005862 0.000201 0.011236 0.000000 0.000000 0.000000 0.011041 0.005765 0.011724 0.005637 0.000100 0.011334 0.000000
0.9 0.000000 0.000000 0.008012 0.004983 0.000000 0.008500 0.000000 0.000000 0.000000 0.008403 0.004885 0.005374 0.001640 0.000000 0.008500 0.000000
1.0 0.000000 0.000000 0.008012 0.004983 0.000000 0.008012 0.000000 0.000000 0.000000 0.008012 0.004885 0.000000 0.000000 0.000000 0.008012 0.000000

10090qNY JO SHNSNY po[reod FY

Appendix A. Appendix

delta relative precision

—1.00°
0.0 01 02 03 04 05 06 07 08 09 1.0

(a) Difference Relative Precision

delta conservative precision

> threshold

delta recall

—0.25

—0.50

—0.75

—1.00

(b) Difference Conservative Precision
1.00

(c) Difference Recall

.00*
0.0 01 02 03 04 05 06 0.7 08 09 1.0

> threshold

0.0

APIExasVectorCosine
APIExasVectorL1Norm
APIExasVectorSplitCosine
APIExasVectorSplitLINorm
APlIndicatorExasVector
APlIndicatorExasVectorSplit

0.1 0.2 03 04 05 06 0.7 08
> threshold

—m—- AStarGED
e ExasVectorCosine
—+— ExasVectorL1Norm

--e-- ExasVectorSplitCosine
—e—- ExasVectorSplitL1INorm

09 1.0

-4 HungarianGED

—+— HungarianMCS

-—+- IndicatorExasVector
—#— |ndicatorExasVectorSplit
@ NodeSimilarityOpt

Figure A.12.: Detailed view on the mean assessment values for the MUBench-on-MUBench
setting of RuDetect between rules with context subtracted by rules without
context using different similarity measurements and thresholds for the appli-

282

cability check

€8¢

Table A.7.: Difference in the Mean assessment values for the MUBench-on-MUBench setting of RuDetect between rules with context
subtracted by rules without context using different similarity measurements and thresholds for the applicability check depicted
in Figure A.12.

$ § s
. 5 N
B g N 5 & 3 ¢ $ &
& 5 N N & & 5 & S $ S s
o S S N & & & § O & & o S
s s £ & S S N @ 19 & N g & <
N N N N § & s S S $ 5 5 & g §
& & & & ¥ § g & & & 5 F $ < 5
Q < S & N & § 5 5 5 > $ 3 N S &
< & & 4 < & s F 5 5 ¥ $ e ¥ § g
threshold % A ~ ~ ~ X ~ < 53 & & & & IS 5 <
0.0 -0.330890 -0.324271 -0.311483 -0.310622 -0.098024 -0.094992 -0.093932 -0.286416 -0.296399 -0.293877 -0.294150 0.003306 -0.132497 -0.059743 -0.078052 -0.010393
0.1 -0.327860 -0.329196 -0.310072 -0.304324 -0.095494 -0.085353 0.272987 -0.291512 -0.310000 -0.295164 -0.308643 0.003306 -0.132114 -0.065323 -0.071701 -0.044749
_5 0.2 -0.327860 -0.116628 -0.310072 -0.044533 -0.095494 -0.085353 0.210239 -0.291391 -0.076616 -0.295164 -0.102854 0.003306 -0.135725 -0.065323 -0.071701 0.256779
% 0.3 -0.327356 -0.106424 -0.310069 -0.042121 -0.095494 -0.085353 0.234615 -0.290855 -0.066178 -0.295164 -0.101977 0.003306 -0.005282 -0.065323 -0.071701 -
g 0.4 -0.327345 -0.110358 -0.310026 -0.038032 -0.095494 -0.085353 - -0.290814 -0.065498 -0.295024 -0.096889 0.003316 -0.017837 -0.065323 -0.071701 -
g 05 -0.334831 -0.099743 -0.309709 -0.033429 -0.095494 -0.085353 - -0.296614 -0.069974 -0.294648 -0.096131 0.002819 -0.009558 -0.065323 -0.071701 -
'*3 0.6 -0.331310 -0.213158 -0.322496 -0.022514 0.005386 -0.031122 - -0.344625 -0.247953 -0.312621 -0.066536 -0.000176 -0.013679 -0.009425 -0.039640 -
c 07 -0.365385 -0.381667 -0.057948 -0.015023 -0.009615 0.244189 - -0.365385 -0.394558 -0.127278 -0.101454 0.082712 0.027191 -0.009615 0.174830 -
0.8 -0.402174 -0.420455 0.001020 0.053264 0.000000 0.343594 - -0411111 -0.420455 -0.032712 0.012496 0.083190 0.024612 0.000000 0.302848 -
0.9 - - 0.179990 0.237374 - 0.179990 - - - -0.024154 0.025641 0.024612 -0.016667 - -0.024154 -
1.0 - - 0.000000 0.159091 - 0.000000 - - - -0.106061 -0.044077 - - - -0.106061 -
0.0 -0.111823 -0.101995 -0.200326 -0.181887 0.090523 -0.029972 -0.093721 -0.094079 -0.107055 -0.198319 -0.198320 0.005326 -0.002316 0.096434 -0.017175 0.093323
£ 01 -0.108530 -0.103106 -0.194760 -0.170948 0.093355 -0.020505 0.430450 -0.096469 -0.115132 -0.195167 -0.195339 0.005326 -0.002302 0.093473 -0.010259 -0.026649
g 0.2 -0.108530 0.314384 -0.194760 0.246101 0.093355 -0.020505 0.543636 -0.096387 0.303088 -0.195167 0.220515 0.005326 -0.002542 0.093473 -0.010259 -0.215444
g 0.3 -0.114145 0.321226 -0.194757 0.250020 0.093355 -0.020505 0.126966 -0.102001 0.310147 -0.195167 0.221037 0.005326 0.010532 0.093473 -0.010259 -0.227198
; 0.4 -0.114146 0.320017 -0.194724 0.250976 0.093355 -0.020505 0.011236 -0.101988 0.312496 -0.195057 0.223915 0.005327 0.004477 0.093473 -0.010259 -0.096308
42 0.5 -0.126341 0.330436 -0.194478 0.251249 0.093355 -0.020505 0.000000 -0.113051 0.311931 -0.194762 0.223107 0.005293 0.004929 0.093473 -0.010259 -0.084270
E 0.6 -0.094944 0.321161 -0.190364 0.242355 0.122285 0.015762 0.000000 -0.109551 0.316479 -0.166265 0.259498 0.005073 0.004674 0.103933 0.029932 -0.168539
Z 07 0.303371 0.279963 0.237756 0.242851 0.511236 0.441443 0.000000 0.325843 0.288390 0.241311 0.244312 0.004647 -0.004506 0.533708 0.448373 0.000000
S 08 0.264045 0.264045 0.214090 0.219286 0.471910 0.427574 0.000000 0.252809 0.264045 0.245926 0.243256 0.004674 -0.004512 0.460674 0.459409 0.000000
0.9 0.078652 0.067416 0.028865 0.036602 0.089888 0.028865 0.000000 0.033708 0.022472 0.009751 0.017024 -0.004512 -0.017603 0.044944 0.009751 0.000000
1.0 0.000000 0.000000 0.005618 0.013279 0.000000 0.005618 0.000000 0.000000 0.000000 -0.013109 -0.005448 0.000000 0.000000 0.000000 -0.013109 0.000000
0.0 0.083342 0.077779 0.043308 0.036326 0.083342 0.041453 0.095451 0.088688 0.076906 0.041235 0.033272 -0.013745 -0.015381 0.085742 0.037635 0.394022
0.1 0.083342 0.042762 0.043308 0.024108 0.083342 0.041453 0.153158 0.088688 0.053671 0.041235 0.024108 -0.013745 -0.017563 0.085742 0.037635 0.246646
0.2 0.083342 0.188066 0.043308 0.167558 0.083342 0.041453 0.071670 0.088688 0.197884 0.041235 0.167448 -0.013745 -0.018763 0.085742 0.037635 -0.045817
0.3 0.083124 0.185230 0.043198 0.165049 0.083342 0.041453 0.002182 0.088470 0.191557 0.041235 0.164612 -0.013745 -0.017999 0.085742 0.037635 -0.037199
?ﬁ) 0.4 0.082470 0.183593 0.042108 0.164394 0.083342 0.041453 0.000109 0.086288 0.183921 0.040471 0.162758 -0.013527 -0.017890 0.085742 0.037635 -0.006545
2 05 0.076906 0.182393 0.040362 0.163630 0.083342 0.041453 0.000000 0.071125 0.180866 0.037308 0.161667 -0.015163 -0.017345 0.085742 0.037635 -0.004909
0.6 0.002509 0.147922 0.008291 0.147158 0.002400 0.008618 0.000000 0.002073 0.147486 0.008400 0.147267 -0.018763 -0.012763 0.001854 0.009163 -0.003273
0.7 0.147158 0.146504 0.150213 0.144322 0.147158 0.150431 0.000000 0.147376 0.146286 0.150758 0.144649 -0.017890 -0.009381 0.147376 0.150867 0.000000
0.8 0.145849 0.145849 0.152394 0.147486 0.145849 0.152722 0.000000 0.145740 0.145849 0.152722 0.147922 -0.012763 -0.005782 0.145740 0.153049 0.000000
0.9 0.000764 0.000655 0.005345 0.001636 0.000873 0.005345 0.000000 0.000327 0.000218 0.005018 0.001309 -0.005782 -0.001964 0.000436 0.005018 0.000000
1.0 0.000000 0.000000 0.004691 0.001200 0.000000 0.004691 0.000000 0.000000 0.000000 0.004582 0.001091 0.000000 0.000000 0.000000 0.004582 0.000000

10090qNY JO SHNSNY po[reod FY

Appendix A. Appendix

(a) Difference Relative Precision (b) Difference Conservative Precision
1.00

0.75
=
o 050 S 0.50
S 2
Nl o
o 0.25 a 0.25
& 2
2 000k T 0.008
ke ‘ g
° 4
502 g —0.25
3 ' E
—0.50 \ 2 —0.50
\
—0.75 m —0.75
—1.00 —1.00
0.0 0.1 02 03 04 05 0.6 0.7 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 1.0
> threshold > threshold
(c) Difference Recall
1.00
0.75
0.50
— 025
O
g
= 0.00
o]
025
—0.50
—0.75
—1.00
0.0 0.1 02 03 04 05 0.6 0.7 08 09 1.0
> threshold
—o— APIExasVectorCosine —m—- AStarGED -4 HungarianGED
--*- APIExasVectorL1Norm -+ ExasVectorCosine —+— HungarianMCS
—4—- APIExasVectorSplitCosine —+— ExasVectorL1Norm -+~ |ndicatorExasVector
-« APIExasVectorSplitL1INorm --e-- ExasVectorSplitCosine —#— |ndicatorExasVectorSplit
—— APlIndicatorExasVector —e—- ExasVectorSplitL1INorm @ NodeSimilarityOpt

--o-- APlIndicatorExasVectorSplit

Figure A.13.: Detailed view on the mean assessment values for the MUBench-on-AU500
setting of RuDetect between rules with context subtracted by rules without
context using different similarity measurements and thresholds for the appli-
cability check.

284

Table A.8.: Difference in the mean assessment values for the MUBench-on-AU500 setting of RuDetect between rules with context sub-
tracted by rules without context using different similarity measurements and thresholds for the applicability check depicted
in Figure A.13.

G8¢C

5 s
. 5 £ B 2 s %
§ § & N g F § § &
$ & N g N & s & S S & v
o 5 R K & @ & § S & & & S
S S & & 154 < & S N N S & > = s
S S & & N &) ~ A & § \Cr) j .\}? &
¥ ¥ 5 & & & § $ $ & $ & s & o 5
& & & & T S & & & & & S & 9 g &
S S S & § S $ 7 % 5 7 5 & & F g
& & < LN < LN s 5 & & & § § ¥ § s
threshold % A X X A X A & &) & & & & &5 <& <
0.0 -0.147476 -0.147555 0.463522 0.443604 -0.140017 0462697 -0.110727 -0.113013 -0.116259 0.430254 0419334 -0.049763 -0.047371 -0.112988 0439009 0.023407
0.1 0.147476 -0.153361 0.463522 0.439692 -0.140017 0.462697 0.009160 -0.113013 -0.116163 0.430254 0421332 -0.049763 -0.044552 -0.112988 0439009 0.004338
5 02 -0.147476 -0.148571 0.463522 0.438419 -0.140017 0.462697 0.000221 -0.112975 -0.116180 0.430254 0420451 -0.049763 -0.027775 -0.112988 0439009 -0.193703
§ 0.3 -0.147516 -0.156098 0.463627 0.445389 -0.140017 0.462697 -0.163698 -0.112857 -0.124966 0.430289 0.423730 -0.049763 -0.019000 -0.112988 0.439009 -
z 04 -0.147710 -0.150917 0.463492 0.433021 -0.140017 0.462697 -0.774929 -0.113794 -0.123423 0.430400 0.410217 -0.044889 -0.008396 -0.112988 0.439009 -
g 05 0.144146 0151366 0.463784 0.435847 -0.140017 0.462697 - 0112252 -0.118043 0.429509 0414990 -0.045536 -0.011198 -0.112988 0.439009 -
Z 06 0.000302 -0.077035 0.493458 0.458712 0.013160 0.448563 - 0019569 -0.039031 0.508607 0486961 -0.027289 -0.010369 0.012006 0.471539 -
£ 07 0.029167 -0.037500 0.497376 0.511241 -0.034884 0.516140 - -0.036585 - 0.482218 0572799 -0.008396 0.010305 -0.037209 0.482953 -
0.8 -0.500000 - -0.005743 0.027106 -0.250000 -0.005536 - - - 0.045500 0.009143 -0.010369 0.034314 0.000000 -0.024789 -
0.9 - - 0.049290 0.018357 - 0.054749 - - - 0.052294 0.031740 0.034314 0.004775 - 0.054023 -
1.0 - - 0.065578 0.019425 - 0.065578 - - - 0.048965 0.031740 - - - 0.048965 -
0.0 0.054436 0.054426 0.431065 0.431036 0.053944 0430390 -0.109483 0.043551 0.041243 0.417875 0419860 -0.001894 -0.001748 0.044167 0420464 0054842
g 01 0.054436 0.048832 0.431065 0.429156 0.053944 0430300 0.094251 0.043551 0.040473 0.417875 0420456 -0.001894 -0.001516 0.044167 0420464 -0.002146
g 0.2 0.054436 0.052741 0.431065 0.429959 0.053944 0.430390 0.076758 0.043583 0.041074 0.417875 0.420706 -0.001894 -0.000393 0.044167 0.420464 -0.087219
% 0.3 0.054409 0.047986 0.431142 0.433266 0.053944 0.430390 0.011031 0.043610 0.035342 0.417902 0.422611 -0.001894 0.000230 0.044167 0.420464 -0.068436
o 04 0.054306 0.051915 0.431204 0.429423 0.053944 0430390 -0.003649 0.042928 0.036620 0418117 0416954 -0.001571 -0.000566 0.044167 0420464 -0.049358
£ 05 0.056828 0.052121 0.431697 0.428989 0.053944 0430300 -0.011236 0.044045 0.040458 0.417705 0.418886 -0.001621 -0.000755 0.044167 0420464 -0.082397
£ 06 0.050952 0.035206 0.420844 0.416880 0.047469 0413994 0.000000 0.050796 0.044569 0.438380 0429167 -0.000347 -0.000699 0.088240 0439109 0.000000
Z 07 0.425094 0.421348 0.416095 0.415244 0.455056 0.419097 0.000000 0.432584 0.432584 0.429055 0.437743 -0.000566 0.002730 0.453933 0.431231 0.000000
g 08 -0.005618 0.005618 0.001484 0.007347 0.005618 0.001516 0.000000 0.000000 0.000000 0.017796 0.011091 -0.000699 0.001928 0.000000 0.006902 0.000000
0.9 0.000000 0.000000 0.008105 0.006167 0.000000 0.008841 0.000000 0.000000 0.000000 0.012779 0.010367 0.001928 0.000268 0.000000 0013051 0.000000
10 0.000000 0.000000 0.008105 0.006311 0.000000 0.008105 0.000000 0.000000 0.000000 0.012255 0.010367 0.000000 0.000000 0.000000 0.012255 0.000000
0.0 0.092697 0.089687 0.049340 0.044358 0.093098 0.048363 0.244817 0.108246 0.097913 0.046800 0.040059 -0.006351 -0.007245 0.105237 0.043478 0.430578
0.1 0.092697 0.042536 0.049340 0.027064 0.093098 0.048363 0.060018 0.108246 0.077047 0.046800 0.029213 -0.006351 -0.007198 0.105237 0.043478 0.227729
0.2 0.092697 0.041031 0.049340 0.025696 0.093098 0.048363 0.021849 0.108246 0.070325 0.046800 0.027748 -0.006351 -0.007904 0.105237 0.043478 -0.022171
0.3 0.092496 0.033909 0.049340 0.023547 0.093098 0.048363 0.005371 0.107343 0.047552 0.046800 0.024231 -0.006351 -0.008898 0.105237 0.043478 -0.012239
3 04 0.091091 0.031100 0.049145 0.020713 0.093098 0.048363 0.000858 0.101124 0.033106 0.046605 0.020029 -0.006448 -0.010505 0.105237 0043478 -0.003812
2 05 0.083266 0.029294 0.046312 0.019150 0.093098 0.048363 -0.000116 0.069322 0.029896 0.041817 0.018271 -0.007914 -0.012877 0.105237 0.043478 -0.002207
0.6 0.000301 0.000502 0.016707 0.010259 0.000301 0.017782 0.000000 0.003913 0.004213 0.017587 0.011041 -0.008793 -0.013137 0.004514 0.019052 0.000000
0.7 0.003913 0.003812 0.005960 0.001466 0.004314 0.006448 0.000000 0.003913 0.003913 0.005765 0.001368 -0.011138 -0.012752 0.004314 0.006351 0.000000
0.8 0.000000 0.000100 0.008696 0.003908 0.000100 0.009086 0.000000 0.000000 0.000000 0.009086 0.003810 -0.013385 -0.010940 0.000000 0.009282 0.000000
0.9 0.000000 0.000000 0.006058 0.003029 0.000000 0.006546 0.000000 0.000000 0.000000 0.006448 0.002931 -0.010943 -0.007109 0.000000 0006546 0.000000
1.0 0.000000 0.000000 0.006058 0.003029 0.000000 0.006058 0.000000 0.000000 0.000000 0.006058 0.002931 0.000000 0.000000 0.000000 0.006058 0.000000

10090qNY JO SHNSNY po[reod FY

Appendix A. Appendix

Table A.9.: Results of MUDetect with MUBench-on-MUBench and MUBench-on-AU500

setting
Dataset Support #tp #fp #tn #fn Precision (%) Recall (%)
MUBench 6 73 42 71 40 63.5 64.6
MUBench 11 58 27 86 55 68.2 51.3
MUBench 21 56 20 93 57 73.7 49.6
MUBench 41 0 1 112 113 0.0 0.0
AU500 5 38 158 227 7 194 33.0
AU500 10 18 32 353 97 36.0 15.7
AU500 20 17 28 357 98 37.8 14.8
AU500 40 10 17 368 105 37.0 8.7

A.4.1. Further Comparison RuDetect and MUDetect

We provide two further comparisons between Change Rule-based API Misuse Detection
(RuDetect) and MUDetect by providing the detailed results with multiple support- (i.e., for
MUDetect) and threshold-values (i.e., for RuDetect) based on both datasets (i.e., MUBench
and AU500). Moreover, we present detailed results of RuDetect when applying change rules
without context.

Detailed Comparison Subsequently, we present the results of the comparison between
RuDetect and MUDetect with the absolute number of true positive (¢p), false positive
(fp), true negatives (tn), and false negatives (tn) for both datasets (i.e., MUBench and
AU500). In detail, Table A.9 describes all results obtained by MUDetect, Tables A.10 and
A 11 show the results of RuDetect on MUBench using threshold 0.6 and 0.7, respectively,
and Tables A.12 and A.13 present the same but for the AU500 dataset.

286

A.4. Detailed Results of RuDetect

Table A.10.: Results of selected change rules with threshold = 0.6 for misuse detection on
the MUBench-on-MUBench experiment

#Entries,; c #tp #fp #tn #fn Precision (%) Recall (%)
Similarity
APIExasVectorCosine 113 62 41 72 51 60.2 54.9
APIExasVectorL1Norm 113 60 39 74 53 60.6 53.1
APIExasVectorSplitCosine 113 23 20 93 90 53.5 20.4
APIExasVectorSplitL1Norm 113 20 15 98 93 57.1 17.7
APIIndicatorExasVector 113 62 4 109 51 93.9 54.9
APIIndicatorExasVectorSplit 113 23 21 92 90 52.3 204
AStarGED 113 0 0 113 113 - 0.0
ExasVectorCosine 113 60 41 72 53 59.4 53.1
ExasVectorL1Norm 113 59 40 73 54 59.6 52.2
ExasVectorSplitCosine 113 25 16 97 88 61.0 22.1
ExasVectorSplitL1Norm 113 23 16 97 90 59.0 20.4
HungarianGED 113 0 0 113 113 - 0.0
HungarianMCS 113 0 0 113 113 - 0.0
IndicatorExasVector 113 60 4 109 53 93.8 53.1
IndicatorExasVectorSplit 113 24 15 98 89 61.5 21.2
NodeSimilarityOpt 113 0 0 113 113 - 0.0

Table A.11.: Results of selected change rules with threshold = 0.7 for misuse detection on
the MUBench-on-MUBench experiment

#Entries #tp #fp #tn #fn Precision (%) Recall (%)
Similarity
APIExasVectorCosine 113 56 38 75 57 59.6 49.6
APIExasVectorL1Norm 113 51 38 75 62 57.3 45.1
APIExasVectorSplitCosine 113 13 14 99 100 48.1 11.5
APIExasVectorSplitL1Norm 113 8 7 106 105 53.3 7.1
APIIndicatorExasVector 113 56 1 112 57 98.2 49.6
APIIndicatorExasVectorSplit 113 13 15 98 100 46.4 11.5
AStarGED 113 0 0 113 113 - 0.0
ExasVectorCosine 113 56 38 75 57 59.6 49.6
ExasVectorL1Norm 113 49 38 75 64 56.3 43.4
ExasVectorSplitCosine 113 19 12 101 94 61.3 16.8
ExasVectorSplitL1Norm 113 14 9 104 99 60.9 12.4
HungarianGED 113 0 0 113 113 - 0.0
HungarianMCS 113 0 0 113 113 - 0.0
IndicatorExasVector 113 56 1 112 57 98.2 49.6
IndicatorExasVectorSplit 113 18 11 102 95 62.1 15.9
NodeSimilarityOpt 113 0 0 113 113 - 0.0

287

Appendix A. Appendix

Table A.12.: Results of selected change rules with threshold = 0.6 for misuse detection on
the MUBench-on-AU500 experiment
#Entires); #Entriesc #tp #fp #tn #fn Precision (%) Recall (%)

Similarity

APIExasVectorCosine 115 385 4 9 376 111 30.8 3.5
APIExasVectorL1Norm 115 385 4 7 378 111 36.4 3.5
APIExasVectorSplitCosine 115 385 19 89 296 96 17.6 16.5
APIExasVectorSplitL1Norm 115 385 17 74 311 98 18.7 14.8
APIIndicatorExasVector 115 385 3 16 369 112 15.8 2.6
APIIndicatorExasVectorSplit 115 385 20 85 300 95 19.0 17.4
AStarGED 115 385 0 0 38 115 - 0.0
ExasVectorCosine 115 385 5 8 377 110 38.5 4.3
ExasVectorL1Norm 115 385 5 6 379 110 45.5 4.3
ExasVectorSplitCosine 115 385 21 97 288 94 17.8 18.3
ExasVectorSplitL1Norm 115 385 20 86 299 95 18.9 17.4
HungarianGED 115 385 0 0 38 115 - 0.0
HungarianMCS 115 385 0 0 38 115 - 0.0
IndicatorExasVector 115 385 5 22 363 110 18.5 4.3
IndicatorExasVectorSplit 115 385 23 93 292 92 19.8 20.0
NodeSimilarityOpt 115 385 0 0 38 115 - 0.0

Table A.13.: Results of selected change rules with threshold = 0.7 for misuse detection on
the MUBench-on-AU500 experiment
#Entires),; #Entriesc #tp #fp #tn #fn Precision (%) Recall (%)

Similarity

APIExasVectorCosine 115 385 3 2 383 112 60.0 2.6
APIExasVectorL1Norm 115 385 2 2 383 113 50.0 1.7
APIExasVectorSplitCosine 115 385 15 60 325 100 20.0 13.0
APIExasVectorSplitL1Norm 115 385 10 43 342 105 18.9 8.7
APIIndicatorExasVector 115 385 3 3 382 112 50.0 2.6
APIIndicatorExasVectorSplit 115 385 17 60 325 98 22.1 14.8
AStarGED 115 385 0 0 38 115 - 0.0
ExasVectorCosine 115 385 3 1 384 112 75.0 2.6
ExasVectorL1Norm 115 385 2 1 384 113 66.7 1.7
ExasVectorSplitCosine 115 385 19 67 318 96 22.1 16.5
ExasVectorSplitL1Norm 115 385 14 48 337 101 22.6 12.2
HungarianGED 115 385 0 0 38 115 - 0.0
HungarianMCS 115 385 0 0 38 115 - 0.0
IndicatorExasVector 115 385 3 4 381 112 42.9 2.6
IndicatorExasVectorSplit 115 385 21 67 318 94 23.9 18.3
NodeSimilarityOpt 115 385 0 0 38 115 - 0.0

288

A.4. Detailed Results of RuDetect

Table A.14.: Results of selected change rules without context for misuse detection on the
MUBench-on-MUBench experiment
#Entries #tp #fp #tn #fn Precision (%) Recall (%)

Similarity

APIExasVectorCosine 113 49 3 110 64 94.2 43.4
APIExasVectorL1Norm 113 11 3 110 102 78.6 9.7
APIExasVectorSplitCosine 113 58 16 97 55 78.4 51.3
APIExasVectorSplitL1Norm 113 20 16 97 93 55.6 17.7
APIIndicatorExasVector 113 49 3 110 64 94.2 43.4
APIIndicatorExasVectorSplit 113 59 16 97 54 78.7 52.2
AStarGED 113 0 0 113 113 - 0.0
ExasVectorCosine 113 48 1 112 65 98.0 42.5
ExasVectorL1Norm 113 10 2 111 103 83.3 8.8
ExasVectorSplitCosine 113 59 13 100 54 81.9 52.2
ExasVectorSplitL1Norm 113 20 13 100 93 60.6 17.7
HungarianGED 113 0 0 113 113 - 0.0
HungarianMCS 113 0 0 113 113 - 0.0
IndicatorExasVector 113 49 2 111 64 96.1 43.4
IndicatorExasVectorSplit 113 61 13 100 52 82.4 54.0
NodeSimilarityOpt 113 2 0 113 111 100.0 1.8

Comparison Using Rules Without Context We considered the influence of using the
context (i.e., comparing rules inferred with and without single-hop-addition). We present
the results for the change rule-based misuse detection for both setting, namely MUBench-
on-MUBench and MUBench-on-AU500, in Table A.14 and Table A.15. In the MUBench-
on-MUBench settings (cf. Table A.14) we found that all but two Exas-vector similarity
(i.e., exceptions are the SplitLiNorm-variants) obtain better results in terms of precision
than MUDetect ranging from 78.4 — 98% with varying recall between 9.8 — 54.5%. Ad-
ditionally, NodeSimilarityOpt resulted in a perfect precision, however, it is accompanied
by a very low recall of 1.8%. All other non-Exas-vector variants have no positive re-
sults. While this result may indicate that using context in change rules hinders precise
misuse detection, we observe from the MUBench-on-AU500 setting (cf. Table A.15) an
opposite result. In this evaluation, we observe that all similarities perform worse than
MUDetect in terms of precision. Nevertheless, all but one -Split-variant (i.e., exception
by ExasVectorSplitLiNorm) obtains similar or better recall values than MUDetect with
support value 20, but worse compared to MUDetect at support value 5 with, however, a
partially lower precision. Therefore, we conclude the results as follows:

1. Usually, context enables change-rule-based misuse detection to obtain better results
in terms of precision in a cross-project setting.

2. Change-rule-based misuse detection with -Split- can benefit from not using the
context to obtain better precision and recall in the cross-project setting.

289

Appendix A. Appendix

Table A.15.: Results of selected change rules without context for misuse detection on the
MUBench-on-AU500 experiment
#Entires,; #Entriesc #tp #fp #tn #fn Precision (%) Recall (%)

Similarity

APIExasVectorCosine 115 385 5 37 348 110 11.9 4.3
APIExasVectorL1Norm 115 385 2 5 380 113 28.6 1.7
APIExasVectorSplitCosine 115 385 27 95 290 88 22.1 23.5
APIExasVectorSplitL1Norm 115 385 24 80 305 91 23.1 20.9
APIIndicatorExasVector 115 385 5 47 338 110 9.6 4.3
APIIndicatorExasVectorSplit 115 385 27 104 281 88 20.6 23.5
AStarGED 115 385 0 0 38 115 - 0.0
ExasVectorCosine 115 385 5 35 350 110 12.5 4.3
ExasVectorL1Norm 115 385 2 6 379 113 25.0 1.7
ExasVectorSplitCosine 115 385 20 88 297 95 18.5 17.4
ExasVectorSplitL1Norm 115 385 16 68 317 99 19.0 13.9
HungarianGED 115 385 0 0 38 115 - 0.0
HungarianMCS 115 385 0 0 38 115 - 0.0
IndicatorExasVector 115 385 5 47 338 110 9.6 4.3
IndicatorExasVectorSplit 115 385 22 93 292 93 19.1 19.1
NodeSimilarityOpt 115 385 0 0 38 115 - 0.0

290

[AARRM15]

[AAWX23]

[Abd07]

[ABF+16]

[ABF*17]

[ABH14]

[ABKLT16]

[Afol5]

[Aggl4]

Bibliography

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Mar-
tineau. An Exact Graph Edit Distance Algorithm for Solving Pattern
Recognition Problems. In Proceedings of the jth International Confer-
ence on Pattern Recognition Applications and Methods (ICPRAM), pages
271-278. SciTePress, 2015. doi:10.5220/0005209202710278. (Cited on
pages 154, 217, and 220.)

Hadeel Alhosaini, Sultan Alharbi, Xianzhi Wang, and Guandong Xu.
API Recommendation For Mashup Creation: A Comprehensive Survey.
The Computer Journal, 67(5):1920-1940, 11 2023. doi:10.1093/comjnl/
bxad112. (cited on pages 70 and 71.)

Hervé Abdi. Encyclopedia of Measurement and Statistics, volume 1,
chapter Bonferroni Test, pages 103-107. SAGE, 2007. doi:10.4135/
9781412952644 .1n60. (cited on pages 120, 163, 173, 186, and 194.)

Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L.
Mazurek, and Christian Stransky. You Get Where You’re Looking for:
The Impact of Information Sources on Code Security. In Proceedings of
the 37th IEEE Security & Privacy, pages 289-305. IEEE, 2016. doi:
10.1109/SP.2016.25. (cited on pages 54 and 253.)

Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon
Kim, Michelle L. Mazurek, and Christian Stransky. Comparing the Us-
ability of Cryptographic APIs. In Proceedings of the 38th IEEE Security
& Privacy, pages 154-171. IEEE, 2017. doi:10.1109/8P.2017.52. (cited
on pages 4, 54, 78, 251, and 258.)

Charu C. Aggarwal, Mansurul A. Bhuiyan, and Mohammad Al Hasan.
Frequent Pattern Mining Algorithms: A Survey, pages 19-64. Springer,
Cham, 2014. doi:10.1007/978-3-319-07821-2_2. (cited on pages 36, 37,
and 38.)

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.
AndroZoo: collecting millions of Android apps for the research com-
munity. In Proceedings of the 13th International Working Conference
on Mining Software Repositories (MSR), pages 468-471. ACM, 2016.
doi:10.1145/2901739.2903508. (cited on pages 97 and 105.)

Luiz Marques Afonso. Communicative Dimensions of Application Pro-
gramming Interfaces (APIs). PhD thesis, Pontificia Universidade Catdlica
Do Rio De Janeiro, Brazil, 2015. URL: http://www-di.inf.puc-rio.
br/~clarisse/docs/2015TeseDoutoradoLuizMarques.pdf. (cited on
pages 54, 59, 250, and 254.)

Charu C. Aggarwal. An Introduction to Frequent Pattern Mining, pages
1-17. Springer, Cham, 2014. doi:10.1007/978-3-319-07821-2_1. (cited
on pages 36 and 37.)

291

https://doi.org/10.5220/0005209202710278
https://doi.org/10.1093/comjnl/bxad112
https://doi.org/10.1093/comjnl/bxad112
https://doi.org/10.4135/9781412952644.n60
https://doi.org/10.4135/9781412952644.n60
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1007/978-3-319-07821-2_2
https://doi.org/10.1145/2901739.2903508
http://www-di.inf.puc-rio.br/~clarisse/docs/2015TeseDoutoradoLuizMarques.pdf
http://www-di.inf.puc-rio.br/~clarisse/docs/2015TeseDoutoradoLuizMarques.pdf
https://doi.org/10.1007/978-3-319-07821-2_1

BIBLIOGRAPHY

[Aggl5]

[AH14]

[ALL70]

[ALSU14]

[AM18]

[Amalg]

[ANBLI8]

[ANN*16]

[ANNT19a]

[ANN*+19b)

292

Charu C. Aggarwal. Data Preparation, pages 27—62. Springer, Cham,
2015. doi:10.1007/978-3-319-14142-8_2. (cited on pages 37 and 41.)

Charu C. Aggarwal and Jiawei Han, editors. Frequent Pattern Mining.
Springer, 1 edition, 2014. doi:10.1007/978-3-319-07821-2. (cited on
page 36.)

Frances E. Allen. Control Flow Analysis. In Proceedings of a Sympo-
sium on Compiler Optimization, pages 1-19. ACM, 1970. doi:10.1145/
800028.808479. (cited on page 28.)

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Pearson Education Limited, 2
edition, 2014. ISBN-13: 978-1-292-02434-9. (cited on pages 27 and 28.)

Amritanshu Agrawal and Tim Menzies. Is ”Better Data” Better Than
"Better Data Miners”?: On the Benefits of Tuning SMOTE for De-
fect Prediction. In Proceedings of the 40th International Conference
on Software Engineering (ICSE), pages 1050-1061. ACM, 2018. doi:
10.1145/3180155.3180197. (cited on page 1()9.)

Sven Amann. A Systematic Approach to Benchmark and Improve Au-
tomated Static Detection of Java-API Misuses. PhD thesis, Darmstadt
University of Technology, Germany, 2018. URL: http://tuprints.ulb.
tu-darmstadt.de/7422/. (cited on pages 28, 40, 42, 43, 103, 106, 107, 109,
114, 132, 136, 139, 141, and 242.)

E. Aghajani, C. Nagy, G. Bavota, and M. Lanza. A Large-Scale Empirical
Study on Linguistic Antipatterns Affecting APIs. In Proceedings of the
34th International Conference on Software Maintenance and FEvolution
(ICSME), pages 25-35. IEEE, 2018. doi:10.1109/ICSME.2018.00012.
(cited on pages 4, 54, 59, 78, 253, and 258.)

Sven Amann, Sarah Nadi, Hoan Anh Nguyen, Tien N. Nguyen, and Mira
Mezini. MUBench: A Benchmark for API-Misuse Detectors. In Proceed-
ings of the 13th International Working Conference on Mining Software
Repositories (MSR), pages 464-467. ACM, 2016. doi:10.1145/2901739.
2903506. (cited on pages 2, 26, 27, 97, 112, 114, 115, 117, 132, 137, 149, 157,
163, 179, 196, 197, 202, 209, 220, 221, 223, 236, 240, and 244.)

Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira
Mezini. A Systematic Evaluation of Static API-Misuse Detectors. IEEFE
Transactions on Software Engineering (TSE), 45(12):1170-1188, 2019.
doi:10.1109/TSE.2018.2827384. (cited on pages 2, 3, 5, 14, 26, 27, 28,
36, 40, 93, 108, 109, 112, 117, 140, 143, and 144.)

Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and
Mira Mezini. Investigating next Steps in Static API-Misuse Detection.
In Proceedings of the 16th International Working Conference on Min-
ing Software Repositories (MSR), pages 265-275. IEEE, 2019. doi:
10.1109/MSR.2019.00053. (cited on pages 5, 14, 17, 28, 42, 43, 93, 95, 97,

https://doi.org/10.1007/978-3-319-14142-8_2
https://doi.org/10.1007/978-3-319-07821-2
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/3180155.3180197
https://doi.org/10.1145/3180155.3180197
http://tuprints.ulb.tu-darmstadt.de/7422/
http://tuprints.ulb.tu-darmstadt.de/7422/
https://doi.org/10.1109/ICSME.2018.00012
https://doi.org/10.1145/2901739.2903506
https://doi.org/10.1145/2901739.2903506
https://doi.org/10.1109/TSE.2018.2827384
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/MSR.2019.00053

[APHT08]

[ARB20]

[Arv18]

[AS94]

[AS95]

[AS14]

[ATLJ20]

[AX09]

[Bay98|

BIBLIOGRAPHY

98, 99, 101, 106, 107, 132, 136, 137, 138, 140, 141, 144, 145, 161, 184, 185, 186,
197, 198, 199, 200, 202, 203, 222, 223, 233, 234, 236, 239, 242, and 267.)

Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgen-
thaler, and John Penix. Using Static Analysis to Find Bugs. IFEE Soft-
ware, 25(5):22-29, 2008. doi:10.1109/MS.2008.130. (cited on page 25.)

George Ajam, Carlos Rodriguez, and Boualem Benatallah. API Topics
Issues in Stack Overflow Q& As Posts: An Empirical Study. In Proceedings
of the 46th Latin American Computing Conference (CLEI), pages 147—
155. IEEE, 2020. doi:10.1109/CLEI52000.2020.00024. (cited on pages b4
and 251.)

Svante Arvedahl. Introducing debtgrep, a tool for fighting technical debt
in base station software. In Proceedings of the 1st International Conference
on Technical Debt (TechDebt), pages 51-52. ACM, 2018. doi:10.1145/
3194164.3194183. (cited on page 35.)

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. In Proceedings of the 20th Inter-
national Conference on Very Large Data Bases (VLDB), pages 487-499.
Morgan Kaufmann Publishers Inc., 1994. (cited on page 38.)

Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns.
In Proceedings of the 11th International Conference on Data Engineer-
ing (ICDE), pages 3-14. IEEE, 1995. doi:10.1109/ICDE.1995.380415.
(cited on page 39.)

Miltiadis Allamanis and Charles Sutton. Mining Idioms from Source
Code. In Proceedings of the 22nd International Symposium Founda-
tions of Software Engineering (FSE), pages 472-483. ACM, 2014. doi:
10.1145/2635868.2635901. (cited on page 109.)

Muhammad Hilmi Asyrofi, Ferdian Thung, David Lo, and Lingxiao Jiang.
AUSearch: Accurate API Usage Search in GitHub Repositories with Type
Resolution. In Proceedings of the 27th International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pages 637-641.
IEEE, 2020. doi:10.1109/SANER48275.2020.9054809. (cited on pages 32,
104, and 138.)

Mithun Acharya and Tao Xie. Mining API Error-Handling Specifications
from Source Code. In Proceedings of the 12th International Conference on
Fundamental Approaches to Software Engineering (FASE), volume 5503,
pages 370-384. Springer, 2009. doi:10.1007/978-3-642-00593-0_25.
(cited on pages 36, 96, 99, 100, 101, and 267.)

Roberto J. Bayardo. Efficiently Mining Long Patterns from Databases.
In Proceedings of the 25th ACM SIGMOD International Conference on
Management of Data (MOD), pages 85-93. ACM, 1998. doi:10.1145/
276304.276313. (cited on page 38.)

293

https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/CLEI52000.2020.00024
https://doi.org/10.1145/3194164.3194183
https://doi.org/10.1145/3194164.3194183
https://doi.org/10.1109/ICDE.1995.380415
https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1145/2635868.2635901
https://doi.org/10.1109/SANER48275.2020.9054809
https://doi.org/10.1007/978-3-642-00593-0_25
https://doi.org/10.1145/276304.276313
https://doi.org/10.1145/276304.276313

BIBLIOGRAPHY

[BB13]

[BBRO3]

[BBZJ14]

[BCH*23]

[BCHH10]

[BCM22]

[BDWK10]

[Bec02]

[BEH*23]

[BFH24|

294

Alberto Bacchelli and Christian Bird. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 35th International
Conference on Software Engineering (ICSE), pages 712-721. IEEE, 2013.
doi:10.1109/ICSE.2013.6606617. (Cited on page 4)

Jean-Francois Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-
Sets: A Condensed Representation of Boolean Data for the Approximation
of Frequency Queries. Springer Data Mining and Knowledge Discovery,
7(1):5-22, 2003. doi:10.1023/A:1021571501451. (cited on page 40.)

Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens.
Modern Code Reviews in Open-Source Projects: Which Problems Do
They Fix? In Proceedings of the 11th International Working Conference
on Mining Software Repositories (MSR), pages 202-211. ACM, 2014. doi:
10.1145/2597073.2597082. (cited on page 25.)

Avinash Bhat, Austin Coursey, Grace Hu, Sixian Li, Nadia Nahar,
Shurui Zhou, Christian Késtner, and Jin L.C. Guo. Aspirations and
Practice of ML Model Documentation: Moving the Needle with Nudg-
ing and Traceability. In Proceedings of the 41st Conference on Hu-
man Factors in Computing Systems (CHI), pages 1-17. ACM, 2023.
doi:10.1145/3544548.3581518. (cited on pages 79 and 261.)

Renée C. Bryce, Alison Cooley, Amy Hansen, and Nare Hayrapetyan. A
One Year Empirical Study of Student Programming Bugs. In 2010 IFEE
Frontiers in Education Conference (FIE), pages F1G-1-F1G-7. IEEE,
2010. doi:10.1109/FIE.2010.5673143. (cited on page 24.)

Gloria Bondel, Arif Cerit, and Florian Matthes. Challenges of API Docu-
mentation from a Provider Perspective and Best Practices for Examples in
Public Web API Documentation. In Proceedings of the 24th International
Conference on Enterprise Information Systems (ICEILS), pages 268-279.
SciTePress, 2022. doi:10.5220/0011089700003179. (cited on pages 54,
79, 252, 255, and 260.)

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klem-
mer. Example-Centric Programming: Integrating Web Search into the
Development Environment. In Proceedings of the 28th Conference on Hu-
man Factors in Computing Systems (CHI), pages 513-522. ACM, 2010.
doi:10.1145/1753326.1753402. (cited on pages 78, 79, 259, and 260.)

Kent Beck. Test Driven Development: By Fxample. Addison-Wesley,
2002. ISBN-13: 978-0321146533. (cited on page 4.)

Maria Teresa Baldassarre, Neil Ernst, Ben Hermann, Tim Menzies, and
Rahul Yedida. (re)use of research results (is rampant). Communications
of the ACM, 66(2):75-81, January 2023. doi:10.1145/3554976. (cited on
page 245.)

Nick C. Bradley, Thomas Fritz, and Reid Holmes. Supporting Web-Based
APIT Searches in the IDE Using Signatures. In Proceedings of the 46th

https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1023/A:1021571501451
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1145/3544548.3581518
https://doi.org/10.1109/FIE.2010.5673143
https://doi.org/10.5220/0011089700003179
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/3554976

[BFHM12]

[BFSK20]

[BGH04]

[BGH*06]

[BHS15]

[BHVRI16]

[BMG12]

BIBLIOGRAPHY

International Conference on Software Engineering (ICSE), pages 1-12.
ACM, 2024. doi:10.1145/3597503.3639089. (Cited on pages 78, 79, 259,
and 260.)

Chris Burns, Jennifer Ferreira, Theodore D. Hellmann, and Frank Maurer.
Usable results from the field of API usability: A systematic mapping and
further analysis. In Proceedings of the 29th IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 179-182.
IEEE, 2012. doi:10.1109/VLHCC.2012.6344511. (cited on pages 4, 46, 47,
70, and 71.)

Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi
Khatchadourian. Actor concurrency bugs: a comprehensive study on
symptoms, root causes, API usages, and differences. Proceedings of
the ACM on Programming Languages, 4(OOPSLA), November 2020.
doi:10.1145/3428282. (cited on pages 24 and 54.)

Vincent D. Blondel, Anahi Gajardo, Maureen Heymans, Pierre Senellart,
and Paul Van Dooren. A Measure of Similarity between Graph Vertices:
Applications to Synonym Extraction and Web Searching. SIAM Review,
46(4):647-666, April 2004. doi:10.1137/S0036144502415960. (cited on
page 154.)

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In Proceedings of the 21st Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages
169-190. ACM, 2006. doi:10.1145/1167473.1167488. (cited on page 97.)

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning.
Morgan & Claypool Publishers, February 2015. ISBN-13: 978-3-031-
00444-5. doi:10.1007/978-3-031-01572-4. (cited on page 248.)

Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. Do
Developers Deprecate APIs with Replacement Messages? A Large-Scale
Analysis on Java Systems. In Proceedings of the 23rd International Con-
ference on Software Analysis, Fvolution, and Reengineering (SANER),
volume 1, pages 360-369. IEEE, 2016. doi:10.1109/SANER.2016.99.
(cited on page 34.)

Mario Boley, Sandy Moens, and Thomas Gértner. Linear Space Direct
Pattern Sampling using Coupling From The Past. In Proceedings of the
18th International Conference on Knowledge Discovery and Data Mining
(KDD), pages 69-77. ACM, 2012. doi:10.1145/2339530.2339545. (cited
on page 40.)

295

https://doi.org/10.1145/3597503.3639089
https://doi.org/10.1109/VLHCC.2012.6344511
https://doi.org/10.1145/3428282
https://doi.org/10.1137/S0036144502415960
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1007/978-3-031-01572-4
https://doi.org/10.1109/SANER.2016.99
https://doi.org/10.1145/2339530.2339545

BIBLIOGRAPHY

[BOST22]

[BR22]

[BS98]

[BSPC19]

[BSvdB15]

[BSZH20]

[BVXH20]

[BW12]

[BXHV18]

296

Wilson Baker, Michael O’Connor, Seyed Reza Shahamiri, and Valerio
Terragni. Detect, Fix, and Verify TensorFlow API Misuses. In Proceed-
ings of the 29th International Conference on Software Analysis, Fvolu-
tion, and Reengineering (SANER), pages 925-929. IEEE, 2022. doi:
10.1109/SANER53432.2022.00110. (cited on pages 209, 213, 230, and 231.)

Leif Bonorden and Matthias Riebisch. API Deprecation: A Systematic
Mapping Study. In Proceedings of the 48th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pages 451-458.
IEEE, 2022. doi:10.1109/SEAA56994.2022.00076. (cited on pages 34, 46,
47, 70, and 102.)

Horst Bunke and Kim Shearer. A graph distance metric based on the max-
imal common subgraph. Elsevier Pattern Recognition Letters (PRLEDG),
19(3):255-259, 1998. doi:10.1016/S0167-8655(97)00179-7. (cited on
page 154.)

Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.
Getafix: Learning to Fix Bugs Automatically. Proceedings of the ACM
on Programming Languages, 3(OOPSLA), October 2019. doi:10.1145/
3360585. (cited on pages 18, 207, 215, 231, 234, and 247.)

John Businge, Alexander Serebrenik, and Mark G. J. van den Brand.
Eclipse API usage: the good and the bad. Software Quality Journal
(SQJ), 23(1):107-141, 2015. doi:10.1007/811219-013-9221-3. (cited
on pages 54 and 251.)

Celeste Barnaby, Koushik Sen, Tianyi Zhang, Elena Glassman, and Satish
Chandra. Exempla Gratis (E.G.): Code Examples for Free. In Proceed-
ings of the 28th Joint Meeting of the European Software Engineering Con-
ference/Foundations of Software Engineering (ESEC/FSE), pages 1353
1364. ACM, 2020. doi:10.1145/3368089.3417052. (cited on pages 78, 79,
259, and 260.)

Aline Brito, Marco Tilio Valente, Laerte Xavier, and André C. Hora.
You broke my code: understanding the motivations for breaking changes
in APIs. Springer Empirical Software Engineering (EMSE), 25(2):1458-
1492, November 2020. doi:10.1007/S10664-019-09756-7Z. (Cited on
pages 34 and 54.)

Raymond P. L. Buse and Westley Weimer. Synthesizing API Usage Ex-
amples. In Proceedings of the 3/th International Conference on Software
Engineering (ICSE), pages 782-792. IEEE, 2012. doi:10.1109/ICSE.
2012.6227140. (cited on pages 79 and 260.)

Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. Why
and how Java developers break APIs. In Proceedings of the 25th In-
ternational Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), pages 255-265. IEEE, 2018. doi:10.1109/SANER.2018.
8330214. (cited on pages 54 and 254.)

https://doi.org/10.1109/SANER53432.2022.00110
https://doi.org/10.1109/SANER53432.2022.00110
https://doi.org/10.1109/SEAA56994.2022.00076
https://doi.org/10.1016/S0167-8655(97)00179-7
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360585
https://doi.org/10.1007/S11219-013-9221-3
https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1007/S10664-019-09756-Z
https://doi.org/10.1109/ICSE.2012.6227140
https://doi.org/10.1109/ICSE.2012.6227140
https://doi.org/10.1109/SANER.2018.8330214
https://doi.org/10.1109/SANER.2018.8330214

[BZ06]

[Car98]

[CCL12]

[CDAR22]

[CFW24]

[CGM*13]

[CJCaK™00]

[CKF+04]

[CMO4]

BIBLIOGRAPHY

Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic Mem-
ory Safety for Unsafe Languages. In Proceedings of the 27th ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), pages 158-168. ACM, 2006. doi:10.1145/1133981.1134000.
(cited on page 210.)

D.N. Card. Learning from our mistakes with defect causal analysis. IEEE
Software, 15(1):56—63, 1998. doi:10.1109/52.646883. (cited on page 4.)

Wing-Kwan Chan, Hong Cheng, and David Lo. Searching Connected
API Subgraph via Text phrases. In Proceedings of the 20th Interna-
tional Symposium Foundations of Software Engineering (FSE). ACM,
2012. doi:10.1145/2393596.2393606. (cited on page 32.)

Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi
Ray. CODIT: Code Editing With Tree-Based Neural Models. IEEE
Transactions on Software Engineering (TSE), 48(4):1385-1399, 2022.
doi:10.1109/TSE.2020.3020502. (Cited on page 212.)

Adele E. Clarke, Carrie Friese, and Rachel Washburn. The SAGE Hand-
book of Qualitative Research, chapter Critical Situational Analysis After
the Interpretive Turn. SAGE, Los Angeles, 6 edition, 2024. edited by
Norman K. Denzin (University of Illinois Urbana-Champaign), Yvonna
S. Lincoln (Texas A&M University), Michael D. Giardina (Florida State
University), Gaile S. Cannella (Independent Scholar). (cited on pages 48
and 51.)

Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicold Perino,
and Mauro Pezze. Automatic Recovery from Runtime Failures. In Pro-
ceedings of the 35th International Conference on Software Engineering
(ICSE), pages 782-791. IEEE, 2013. doi:10.1109/ICSE.2013.6606624.
(cited on page 210.)

Pete Chapman, Randy Kerber Julian Clinton and, Thomas Khabaza,
Thomas Reinartz, Colin Shearer, and Riidiger Wirth. CRISP-DM 1.0
Step-by-step data mining guide, August 2000. CRISP-DM consortium:
NCR Systems Engineering Copenhagen (USA and Denmark), Daimler-
Chrysler AG (Germany), SPSS Inc. (USA), and OHRA Verzekeringen en
Bank Groep B.V (The Netherlands). (cited on pages 41 and 42.)

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman,
and Armando Fox. Microreboot—A Technique for Cheap Recov-
ery. In Proceedings of the 6th Symposium on Operating Systems
Design € Implementation (OSDI 04), pages 31-44. USENIX, De-
cember 2004. URL: http://usenix.org/publications/library/
proceedings/osdi04/tech/full_papers/candea/candea.pdf. (cited on
page 210.)

B. Chess and G. McGraw. Static Analysis for Security. IEEFE Security €
Privacy, 2(6):76-79, 2004. doi:10.1109/MSP.2004.111. (cited on pages 5
and 108.)

297

https://doi.org/10.1145/1133981.1134000
https://doi.org/10.1109/52.646883
https://doi.org/10.1145/2393596.2393606
https://doi.org/10.1109/TSE.2020.3020502
https://doi.org/10.1109/ICSE.2013.6606624
http://usenix.org/publications/library/proceedings/osdi04/tech/full_papers/candea/candea.pdf
http://usenix.org/publications/library/proceedings/osdi04/tech/full_papers/candea/candea.pdf
https://doi.org/10.1109/MSP.2004.111

BIBLIOGRAPHY

[CM18]

[CNSH14]

[Coh60]

[COZ21]

[CPS24]

[CPY*24]

[Crol6]

[CRPA12

[CS14]

[CS25]

298

Ervina Cergani and Mira Mezini. On the Impact of Order Information
in API Usage Patterns. In Proceedings of the 13th International Con-
ference on Software Technologies (ICSOFT), volume 1077, pages 79-103.
Springer, 2018. doi:10.1007/978-3-030-29157-0_4. (cited on pages 5,
93, 96, 97, 99, 101, 102, 109, and 267.)

Tse-Hsun Chen, Meiyappan Nagappan, Emad Shihab, and Ahmed E.
Hassan. An Empirical Study of Dormant Bugs. In Proceedings of the
11th International Working Conference on Mining Software Repositories
(MSR), pages 82-91. ACM, 2014. doi:10.1145/2597073.2597108. (cited
on page 24.)

Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Fduca-
tional and Psychological Measurement, 20(1):37-46, 1960. doi:10.1177/
001316446002000104. (cited on page 149.)

Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. Fast and Precise
On-the-Fly Patch Validation for All. In Proceedings of the 43rd Inter-
national Conference on Software Engineering (ICSE), pages 1123-1134.
IEEE, 2021. doi:10.1109/ICSE43902.2021.00104. (cited on page 208.)

Satish Chandra, Michael Pradel, and Kathryn T. Stolee. Code Search
(Dagstuhl Seminar 24172). Dagstuhl Reports, 14(4):108-123, 2024. doi:
10.4230/DagRep.14.4.108. (cited on page 32.)

Xiang Chen, Wenlong Pei, Shaoyu Yang, Yanlin Zhou, Zichen Zhang,
and Jiahua Pei. Automatic title completion for Stack Overflow posts
and GitHub issues. Springer Empirical Software Engineering (EMSE),
29(5):120, 2024. doi:10.1007/S10664-024-10513-0. (cited on pages 78,
258, and 259.)

David F. Crouse. On implementing 2d rectangular assignment algorithms.
IEEE Transactions on Aerospace and Electronic Systems, 52(4):1679—
1696, 2016. doi:10.1109/TAES.2016.140952. (cited on page 154.)

José Campos, André Riboira, Alexandre Perez, and Rui Abreu. GZoltar:
An Eclipse Plug-in for Testing and Debugging. In Proceedings of the 27th
International Conference on Automated Software Engineering (ASE),
pages 378-381. ACM, 2012. doi:10.1145/2351676.2351752. (cited on
page 208.)

Marcelo Cataldo and Cleidson R. B. De Souza. Exploring the Impact
of API Complexity on Failure-Proneness. In Proceedings of the 9th In-
ternational Conference on Global Software Engineering (ICGSE), pages
36-45. IEEE, 2014. doi:10.1109/ICGSE.2014.16. (cited on pages 54, 250,
and 252.)

Scott Chacon and Ben Straub. Pro Git. Number Version 2.1.447. Apress,
April 2025. 2025-04-10. URL: https://github.com/progit/progit2/
releases/tag/2.1.447. (cited on page 33.)

https://doi.org/10.1007/978-3-030-29157-0_4
https://doi.org/10.1145/2597073.2597108
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1109/ICSE43902.2021.00104
https://doi.org/10.4230/DagRep.14.4.108
https://doi.org/10.4230/DagRep.14.4.108
https://doi.org/10.1007/S10664-024-10513-0
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1145/2351676.2351752
https://doi.org/10.1109/ICGSE.2014.16
https://github.com/progit/progit2/releases/tag/2.1.447
https://github.com/progit/progit2/releases/tag/2.1.447

[CSS13]

[CVG19]

[CXL19]

[CXLX21a]

[CXLX21b]

[CYH14]

[CYYZ19]

[CZLF19)

[DCSM17]

BIBLIOGRAPHY

K.K. Chaturvedi, V.B. Sing, and Prashast Singh. Tools in Mining Soft-
ware Repositories. In Proceedings of the 13th International Conference
on Computational Science and Its Applications (ICCSA), pages 89-98.
IEEE, 2013. doi:10.1109/ICCSA.2013.22. (Cited on page 34)

Alex Cummaudo, Rajesh Vasa, and John Grundy. What should I docu-
ment? A preliminary systematic mapping study into API documentation
knowledge. In Proceedings of the 13th International Symposium on Empir-
ical Software Engineering and Measurement (ESEM), pages 1-6. IEEE,
2019. doi:10.1109/ESEM.2019.8870148. (cited on pages 46, 47, 65, 70,
and 71.)

Chunyang Chen, Zhenchang Xing, and Yang Liu. What’s Spain’s Paris?
Mining analogical libraries from Q&A discussions. Springer Empirical
Software Engineering (EMSE), 24(3):1155-1194, 2019. doi:10.1007/
S10664-018-9657-Y. (cited on pages 78, 79, 260, and 261.)

Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong.
Mining Likely Analogical APIs Across Third-Party Libraries via Large-
Scale Unsupervised API Semantics Embedding. IFEE Transactions on
Software Engineering (TSE), 47(3):432-447, 2021. doi:10.1109/TSE.
2019.2896123. (cited on page 32.)

Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong.
Mining Likely Analogical APIs Across Third-Party Libraries via Large-
Scale Unsupervised API Semantics Embedding. IEEFE Transactions on
Software Engineering (TSE), 47(3):432-447, 2021. doi:10.1109/TSE.
2019.2896123. (cited on pages 35 and 199.)

Hong Cheng, Xifeng Yan, and Jiawei Han. Mining Graph Patterns, pages
307-338. Springer, Cham, 2014. doi:10.1007/978-3-319-07821-2_13.
(cited on pages 36, 39, and 40.)

Cong Chen, Yulong Yang, Lin Yang, and Kang Zhang. A Human-as-
Sensors Approach to API Documentation Integration and Its Effects on
Novice Programmers. In Proceedings of the 26th International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pages 197—
206. IEEE, 2019. doi:10.1109/SANER.2019.8668026. (cited on pages 79
and 260.)

Haipeng Cai, Ziyi Zhang, Li Li, and Xiaoqin Fu. A large-scale study of
application incompatibilities in Android. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), pages 216-227. ACM, 2019. doi:10.1145/3293882.3330564.
(cited on pages 54, 252, 253, and 254.)

Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus.
Dynamic Patch Generation for Null Pointer Exceptions using Metapro-
gramming. In Proceedings of the 24th International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pages 349-358.
IEEE, 2017. doi:10.1109/SANER.2017.7884635. (cited on page 211.)

299

https://doi.org/10.1109/ICCSA.2013.22
https://doi.org/10.1109/ESEM.2019.8870148
https://doi.org/10.1007/S10664-018-9657-Y
https://doi.org/10.1007/S10664-018-9657-Y
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1007/978-3-319-07821-2_13
https://doi.org/10.1109/SANER.2019.8668026
https://doi.org/10.1145/3293882.3330564
https://doi.org/10.1109/SANER.2017.7884635

BIBLIOGRAPHY

[DER12]

[DGP23]

[DH09a]

[DHO9b]

[DJO5]

[DLMK10]

[DLZ*22]

[DM16]

[DND+25]

[DNM.JOS]

300

Ekwa Duala-Ekoko and Martin P. Robillard. Asking and answering ques-
tions about unfamiliar APIs: An exploratory study. In Proceedings
of the 34th International Conference on Software Engineering (ICSE),
pages 266-276. IEEE, 2012. doi:10.1109/ICSE.2012.6227187. (Cited on
pages 54, 250, 251, and 254.)

Luca Di Grazia and Michael Pradel. Code Search: A Survey of Techniques
for Finding Code. ~ACM Computing Surveys, 55(11), February 2023.
doi:10.1145/3565971. (cited on page 32.)

Uri Dekel and James D. Herbsleb. Improving API Documentation Us-
ability with Knowledge Pushing. In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pages 320-330. IEEE, 2009.
doi:10.1109/ICSE.2009.5070532. (cited on pages 78, 79, 259, and 261.)

Uri Dekel and James D. Herbsleb. Reading the documentation of invoked
API functions in program comprehension. In Proceedings of the 17th Inter-
national Conference on Program Comprehension (ICPC), pages 168-177.
IEEE, 2009. doi:10.1109/ICPC.2009.5090040. (cited on pages 54, 79,
253, and 260.)

Danny Dig and Ralph Johnson. The role of refactorings in API evolution.
In Proceedings of the 21st International Conference on Software Mainte-
nance (ICSM), pages 389-398. IEEE, 2005. doi:10.1109/ICSM.2005.90.
(cited on page 35.)

Tuan-Anh Doan, David Lo, Shahar Maoz, and Siau-Cheng Khoo. LM: A
Miner for Scenario-Based Specifications. In Proceedings of the 32nd In-
ternational Conference on Automated Software Engineering (ASE), pages
319-320. ACM, 2010. doi:10.1145/1810295.1810370. (cited on page 5.)

Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, Wenjie Zhang,
and Dan Hao. FIRA: Fine-Grained graph-Based Code Change Repre-
sentation for Automated Commit Message Generation. In Proceedings of
the 44th International Conference on Software Engineering (ICSE), pages
970-981. ACM, 2022. doi:10.1145/3510003.3510069. (cited on page 199.)

Thomas Durieux and Martin Monperrus. DynaMoth: Dynamic Code Syn-
thesis for Automatic Program Repair. In Proceedings of the 11th Inter-
national Workshop on Automation of Software Test (AST), pages 85-91.
ACM, 2016. doi:10.1145/2896921.2896931. (cited on page 211.)

Juri Di Rocco, Phuong T. Nguyen, Claudio Di Sipio, Riccardo Rubei,
Davide Di Ruscio, and Massimiliano Di Penta. DeepMig: A transformer-
based approach to support coupled library and code migrations. Flse-
vier Journal of Information and Software Technology (IST), 177(107588),
2025. doi:10.1016/j.infsof.2024.107588. (cited on pages 35, 79, 199,
and 261.)

Danny Dig, Stas Negara, Vibhu Mohindra, and Ralph Johnson. ReBA:
Refactoring-aware Binary Adaptation of Evolving Libraries. In Pro-
ceedings of the 30th International Conference on Software Engineering

https://doi.org/10.1109/ICSE.2012.6227187
https://doi.org/10.1145/3565971
https://doi.org/10.1109/ICSE.2009.5070532
https://doi.org/10.1109/ICPC.2009.5090040
https://doi.org/10.1109/ICSM.2005.90
https://doi.org/10.1145/1810295.1810370
https://doi.org/10.1145/3510003.3510069
https://doi.org/10.1145/2896921.2896931
https://doi.org/10.1016/j.infsof.2024.107588

[DNRN13]

[DNRS21]

[DPCAAM16]

[DPZ+22]

[DR11]

[DR14]

[DW10]

[DZMOY]

BIBLIOGRAPHY

(ICSE), pages 441-450. ACM, 2008. doi:10.1145/1368088.1368148.
(cited on pages 79 and 261.)

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen.
Boa: A Language and Infrastructure for Analyzing Ultra-large-scale
Software Repositories. In Proceedings of the 35th International Con-
ference on Software Engineering (ICSE), pages 422-431. IEEE, 2013.
doi:10.1109/ICSE.2013.6606588. (cited on pages 34, 104, 116, and 138.)

Anastasia Danilova, Alena Naiakshina, Anna Rasgauski, and Matthew
Smith. Code Reviewing as Methodology for Online Security Studies with
Developers - A Case Study with Freelancers on Password Storage. In Pro-
ceedings of the 17th Symposium on Usable Privacy and Security (SOUPS),
pages 397-416. USENIX, August 2021. URL: https://www.usenix.org/
conference/soups2021/presentation/danilova. (cited on pages 78, 258,
and 259.)

Fernanda Madeiral Delfim, Klérisson Vinicius Ribeiro Paixao, Damien
Cassou, and Marcelo de Almeida Maia. Redocumenting APIs with crowd
knowledge: a coverage analysis based on question types. Journal of
the Brazilian Computer Society, 22(1):9:1-9:34, 2016. doi:10.1186/
S13173-016-0049-0. (cited on pages 79 and 260.)

Stéphane Ducasse, Guillermo Polito, Oleksandr Zaitsev, Marcus Denker,
and Pablo Tesone. Deprewriter: On the fly rewriting method depreca-
tions. Journal of Object Technology, 21(1):1:1-23, 2022. doi:10.5381/
jot.2022.21.1.al. (cited on page 35.)

Ekwa Duala-Ekoko and Martin P. Robillard. Using Structure-Based Rec-
ommendations to Facilitate Discoverability in APIs. In Mira Mezini, edi-
tor, Proceedings of the 25th European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 6813 of Lecture Notes in Computer Science,
pages 79-104. Springer, 2011. doi:10.1007/978-3-642-22655-7_5.
(cited on pages 78 and 259.)

Barthélémy Dagenais and Martin P. Robillard. Using Traceability Links
to Recommend Adaptive Changes for Documentation Evolution. I[IEEFE
Transactions on Software Engineering (TSE), 40(11):1126-1146, 2014.
doi:10.1109/TSE.2014.2347969. (cited on page 35.)

Vidroha Debroy and W. Eric Wong. Using Mutation to Automati-
cally Suggest Fixes for Faulty Programs. In Proceedings of the 3rd In-
ternational Conference on Software Testing, Verification and Validation
(ICST), pages 65-74. IEEE, 2010. doi:10.1109/ICST.2010.66. (cited on
page 211.)

Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating
Fixes from Object Behavior Anomalies. In Proceedings of the 24th In-
ternational Conference on Automated Software Engineering (ASE), pages
550-554. IEEE, 2009. doi:10.1109/ASE.2009.15. (cited on pages 213, 230,
and 231.)

301

https://doi.org/10.1145/1368088.1368148
https://doi.org/10.1109/ICSE.2013.6606588
https://www.usenix.org/conference/soups2021/presentation/danilova
https://www.usenix.org/conference/soups2021/presentation/danilova
https://doi.org/10.1186/S13173-016-0049-0
https://doi.org/10.1186/S13173-016-0049-0
https://doi.org/10.5381/jot.2022.21.1.a1
https://doi.org/10.5381/jot.2022.21.1.a1
https://doi.org/10.1007/978-3-642-22655-7_5
https://doi.org/10.1109/TSE.2014.2347969
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1109/ASE.2009.15

BIBLIOGRAPHY

[EBFK13]

[ECCO1]

[EH23]

[EHJ*21]

[EHRS14]

[EM21]

[Epp99]

[ESMO7]

[EZG14]

[EZG15]

302

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An Empirical Study of Cryptographic Misuse in Android Ap-
plications. In Proceedings of the 20th ACM Conference on Computer
and Communications Security (CCS), pages 73-84. ACM, 2013. doi:
10.1145/2508859.2516693. (cited on page 100.)

Dawson R. Engler, David Yu Chen, and Andy Chou. Bugs as Deviant Be-
havior: A General Approach to Inferring Errors in Systems Code. In Keith
Marzullo and Mahadev Satyanarayanan, editors, Proceedings of thelS8th
ACM Symposium on Operating Systems Principles (SOSP), pages 57-72.
ACM, 2001. doi:10.1145/502034.502041. (cited on page 5.)

Christof Ebert and Lorin Hochstein. DevOps in Practice. IEEE Software,
40(1):29-36, 2023. doi:10.1109/MS.2022.3213285. (cited on page 4.)

Michael Emmi, Liana Hadarean, Ranjit Jhala, Lee Pike, Nicolas Rosner,
Martin Schaf, Aritra Sengupta, and Willem Visser. RAPID: Checking
APT usage for the Cloud in the Cloud. In Proceedings of the 29th Joint
Meeting of the European Software Engineering Conference/Foundations of
Software Engineering (ESEC/FSE), pages 1416-1426. ACM, 2021. doi:
10.1145/3468264.3473934. (cited on page 5.)

Stefan FEndrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik.
How do API Documentation and Static Typing Affect API Usability? In
Proceedings of the 36th International Conference on Software Engineering
(ICSE), pages 632-642. ACM, 2014. doi:10.1145/2568225.2568299.
(cited on pages 80 and 261.)

Zachary Eberhart and Collin McMillan. Dialogue Management for Inter-
active API Search. In Proceedings of the 37th International Conference
on Software Maintenance and Evolution (ICSME), pages 274-285. IEEE,
2021. doi:10.1109/ICSME52107.2021.00031. (cited on pages 78 and 259.)

David Eppstein. Subgraph Isomorphism in Planar Graphs and Related
Problems. Journal of Graph Algorithms and Applications, 3(3):1-27, Jan.
1999. doi:10.7155/jgaa.00014. (cited on pages 40, 43, 125, and 217.)

Brian Ellis, Jeffrey Stylos, and Brad Myers. The Factory Pattern in API
Design: A Usability Evaluation. In Proceedings of the 29th International
Conference on Software Engineering (ICSE), pages 302-312. IEEE, 2007.
doi:10.1109/ICSE.2007.85. (cited on pages 78, 258, and 259.)

Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web API
growing pains: Stories from client developers and their code. In Pro-
ceedings of the 1st Conference on Software Maintenance, Reengineer-
ing, and Reverse Engineering (CSMR-WCRE), pages 84-93. IEEE, 2014.
doi:10.1109/CSMR-WCRE.2014.6747228. (cited on page 34.)

Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web API grow-
ing pains: Loosely coupled yet strongly tied. FElsevier Journal of Systems
and Software (JSS), 100:27-43, 2015. doi:10.1016/j.jss.2014.10.014.
(cited on pages 54 and 253.)

https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/502034.502041
https://doi.org/10.1109/MS.2022.3213285
https://doi.org/10.1145/3468264.3473934
https://doi.org/10.1145/3468264.3473934
https://doi.org/10.1145/2568225.2568299
https://doi.org/10.1109/ICSME52107.2021.00031
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1109/ICSE.2007.85
https://doi.org/10.1109/CSMR-WCRE.2014.6747228
https://doi.org/10.1016/j.jss.2014.10.014

[FA11]

[FBB*14]

[FGH*23]

[FGO17]

[FGT+20]

[FHP+13]

[Fli14]

[FM24]

[FMB*14]

BIBLIOGRAPHY

Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 9th Joint
Meeting of the European Software Engineering Conference/Foundations
of Software Engineering (ESEC/FSE), pages 416-419. ACM, 2011. doi:
10.1145/2025113.2025179. (cited on pages 26 and 208.)

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code, volume 14.
Addison Wesley Longman, Inc., November 2014. ISBN-13: 978-0-201-
48567-7. (cited on pages 4 and 210.)

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho
Sengupta, Shin Yoo, and Jie M. Zhang. Large Language Models for
Software Engineering: Survey and Open Problems. In Proceedings of
the 45th International Conference on Software Engineering: Future of
Software Engineering (ICSE-FoSE), pages 31-53. IEEE, 2023. doi:
10.1109/ICSE-FoSE59343.2023.00008. (cited on page 247.)

Marco Filax, Tim Gonschorek, and Frank Ortmeier. Building Models We
Can Rely On: Requirements Traceability for Model-Based Verification
Techniques. In Proceedings of the 5th International Symposium on Model-
Based Safety and Assessment (IMBSA), pages 3-18. Springer, 2017. doi:
10.1007/978-3-319-64119-5_1. (cited on page 4.)

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. CodeBERT: A Pre-Trained Model for Programming and Natural
Languages. In Findings of the Association for Computational Linguis-
tics: Proceedings of the 25th Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1536-1547. ACL, November 2020.
doi:10.18653/v1/2020.findings-emnlp.139. (cited on page 212.)

Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and
Matthew Smith. Rethinking SSL development in an appified world. In
Proceedings of the 20th ACM Conference on Computer and Communica-
tions Security (CCS), pages 49-60. ACM, 2013. doi:10.1145/2508859.
2516655. (cited on page 54.)

Uwe Flick. An Introduction to Qualitative Research. Sage, Los Angeles,
Calif., 5 edition, 2014. ISBN-13: 978-1-4462-6778-3. (cited on pages 7, 12,
45, 48, 51, and 88.)

Jean-Remy Falleri and Matias Martinez. Fine-grained, Accurate and Scal-
able Source Code Differencing. In Proceedings of the 46th International
Conference on Software Engineering (ICSE), pages 1-12. ACM, 2024.
doi:10.1145/3597503.3639148. (cited on page 199.)

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and Accurate Source Code Differ-
encing. In Proceedings of the 29th International Conference on Auto-

303

https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1007/978-3-319-64119-5_1
https://doi.org/10.1007/978-3-319-64119-5_1
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/2508859.2516655
https://doi.org/10.1145/3597503.3639148

BIBLIOGRAPHY

[FMGK24]

[FWYT19]

[FWZ10]

[FXK*+19]

[GALIF20]

[GAQ*18]

[GDCS22]

304

mated Software Engineering (ASE), pages 313-324. ACM, 2014. doi:
10.1145/2642937.2642982. (Cited on page 199.)

Ehsan Firouzi, Ammar Mansuri, Mohammad Ghafari, and Maziar Kaveh.
From Struggle to Simplicity with a Usable and Secure API for Encryption
in Java. In Proceedings of the 18th International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 556-565. ACM,
2024. doi:10.1145/3674805.3695405. (cited on pages 77 and 258.)

Qiang Fan, Tao Wang, Cheng Yang, Gang Yin, Yue Yu, and Huai min
Wang. Why do they ask? An exploratory study of crowd discussions about
Android application programming interface in stack overflow. Journal of
Central South University, 26:2432-2446, October 2019. doi:10.1007/
s11771-019-4185-5. (cited on page 54.)

Umer Farooq, Leon Welicki, and Dieter Zirkler. API Usability Peer
Reviews: A Method for Evaluating the Usability of Application Pro-
gramming Interfaces. In Proceedings of the 28th Conference on Hu-
man Factors in Computing Systems (CHI), pages 2327-2336. ACM, 2010.
doi:10.1145/1753326.1753677. (cited on pages 78 and 258.)

Felix Fischer, Huang Xiao, Ching-Yu Kao, Yannick Stachelscheid, Ben-
jamin Johnson, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin
Bottinger, Paul Muntean, and Jens Grossklags. Stack Overflow Consid-
ered Helpful!l Deep Learning Security Nudges Towards Stronger Cryp-
tography. In Proceedings of the 28th USENIX Security Symposium,
pages 339-356. USENIX, August 2019. URL: https://wuw.usenix.
org/conference/usenixsecurityl19/presentation/fischer. (cited on
pages 78, 258, and 259.)

Peter Leo Gorski, Yasemin Acar, Luigi Lo Tacono, and Sascha Fahl. Listen
to Developers! A Participatory Design Study on Security Warnings for
Cryptographic APIs. In Proceedings of the 38th Conference on Human
Factors in Computing Systems (CHI), pages 1-13. ACM, 2020. doi:
10.1145/3313831.3376142. (cited on pages 4, 54, 251, and 258.)

Ioannis Gasparis, Azeem Aqil, Zhiyun Qian, Chengyu Song, Srikanth V.
Krishnamurthy, Rajiv Gupta, and Edward Colbert. Droid M+: Devel-
oper Support for Imbibing Android’s New Permission Model. In Pro-
ceedings of the 13th Symposium on Information, Computer and Com-
munications Security (ASIACCS), pages 765-776. ACM, 2018. doi:
10.1145/3196494.3196533. (cited on pages 79 and 261.)

Fatih Gurcan, Gonca Gokce Menekse Dalveren, Nergiz Ercil Cagiltay, and
Ahmet Soylu. Detecting Latent Topics and Trends in Software Engineer-
ing Research Since 1980 Using Probabilistic Topic Modeling. [EFEE Ac-
cess, 10:74638-74654, 2022. doi:10.1109/ACCESS.2022.3190632. (cited
on page 80.)

https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3674805.3695405
https://doi.org/10.1007/s11771-019-4185-5
https://doi.org/10.1007/s11771-019-4185-5
https://doi.org/10.1145/1753326.1753677
https://www.usenix.org/conference/usenixsecurity19/presentation/fischer
https://www.usenix.org/conference/usenixsecurity19/presentation/fischer
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1145/3196494.3196533
https://doi.org/10.1145/3196494.3196533
https://doi.org/10.1109/ACCESS.2022.3190632

[GFXT10]

[GGMO4]

[GHIV4]

[GIW18]

[GK22]

[GMBG+23]

[GMWI22]

[GOSN22]

[Goul3]

BIBLIOGRAPHY

Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshy-
vanyk, and Chad Cumby. A Search Engine For Finding Highly Rel-
evant Applications. In Proceedings of the 32nd International Confer-
ence on Software Engineering (ICSE), pages 475-484. ACM, 2010. doi:
10.1145/1806799.1806868. (cited on pages 79 and 260.)

Floris Geerts, Bart Goethals, and Taneli Mielikdinen. Tiling Databases.
In Einoshin Suzuki and Setsuo Arikawa, editors, Proceedings of the 7th
International Conference on Discovery Science (DS), volume 3245, pages
278-289. Springer, 2004. doi:10.1007/978-3-540-30214-8_22. (cited
on page 40.)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1994. ISBN-13: 978-0-201-63361-0. (cited on page 4.)

Peter Leo Gorski, Luigi Lo lacono, Dominik Wermke, Christian Stran-
sky, Sebastian Moller, Yasemin Acar, and Sascha Fahl. Developers De-
serve Security Warnings, Too: On the Effect of Integrated Security Ad-
vice on Cryptographic API Misuse. In Proceedings of the 14th Sympo-
situm on Usable Privacy and Security (SOUPS), pages 265-281. USENIX,
August 2018. URL: https://www.usenix.org/conference/soups2018/
presentation/gorski. (cited on pages 54, 78, 258, and 259.)

Nicolas E. Gold and Jens Krinke. Ethics in the mining of software repos-
itories. Springer Empirical Software Engineering (EMSE), 27(17), 2022.
doi:10.1007/310664-021-10057-7. (Cited on page 34.)

César Gonzalez-Mora, Cristina Barros, Irene Garrigds, Jose Zubcoff,
Elena Lloret, and Jose-Norberto Mazén. Improving open data web API
documentation through interactivity and natural language generation.
Computer Standards € Interfaces, 83(103657), 2023. doi:10.1016/j.
€s1.2022.103657. (cited on pages 79 and 260.)

Peter Leo Gorski, Sebastian Moller, Stephan Wiefling, and Luigi Lo Ia-
cono. “I just looked for the solution!”On Integrating Security-Relevant
Information in Non-Security API Documentation to Support Secure Cod-
ing Practices. IEEE Transactions on Software Engineering (TSE),
48(9):3467-3484, 2022. doi:10.1109/TSE.2021.3094171. (cited on
pages 79 and 260.)

Lisa Geierhaas, Anna-Marie Ortloff, Matthew Smith, and Alena Naiak-
shina. Let’s Hash: Helping Developers with Password Security. In Pro-
ceedings of the 18th Symposium on Usable Privacy and Security (SOUPS),
pages 503-522, Boston, MA, August 2022. USENIX. URL: https://www.
usenix.org/conference/soups2022/presentation/geierhaas. (cited
on page 260.)

Georgios Gousios. The GHTorrent Dataset and Tool Suite. In Proceedings
of the 10th International Working Conference on Mining Software Reposi-

305

https://doi.org/10.1145/1806799.1806868
https://doi.org/10.1145/1806799.1806868
https://doi.org/10.1007/978-3-540-30214-8_22
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1007/S10664-021-10057-7
https://doi.org/10.1016/j.csi.2022.103657
https://doi.org/10.1016/j.csi.2022.103657
https://doi.org/10.1109/TSE.2021.3094171
https://www.usenix.org/conference/soups2022/presentation/geierhaas
https://www.usenix.org/conference/soups2022/presentation/geierhaas

BIBLIOGRAPHY

[GPKS17]

[GPT12]

[GRS*121]

[GS10]

[GSM+16]

[GVES09]

[GVIK20]

[GVRO02]

306

tories (MSR), pages 233-236. IEEE, May 2013. doi:10.1109/MSR.2013.
6624034. (cited on page 116.)

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. DeepFix:
Fixing Common C Language Errors by Deep Learning. Proceedings of the
31st AAAI Conference on Artificial Intelligence (AAAI), 31(1), February
2017. doi:10.1609/aaai.v31i1.10742. (cited on page 212.)

Thomas Grill, Ondrej Polacek, and Manfred Tscheligi. Methods towards
API Usability: A Structural Analysis of Usability Problem Categories.
In Proceedings of the 4th International Conference on Human-Centered
Software Engineering (HCSE), pages 164-180. Springer, 2012. doi:10.
1007/978-3-642-34347-6_10. (cited on pages 54, 251, and 254.)

Xiang Gao, Arjun Radhakrishna, Gustavo Soares, Ridwan Shariffdeen,
Sumit Gulwani, and Abhik Roychoudhury. Apifix: Output-oriented pro-
gram synthesis for combating breaking changes in libraries. Proceedings
of the ACM on Programming Languages, 5(OOPSLA), October 2021.
doi:10.1145/3485538. (cited on pages 209, 213, and 230.)

Mark Gabel and Zhendong Su. Online inference and enforcement of tem-
poral properties. In Jeff Kramer, Judith Bishop, Premkumar T. De-
vanbu, and Sebastian Uchitel, editors, Proceedings of the 32nd Interna-
tional Conference on Software Engineering (ICSE), pages 15-24. ACM,
2010. doi:10.1145/1806799.1806806. (cited on pages 96, 99, 101, and 267.)

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Jian Lii, and Zhendong Su.
Automatic Runtime Recovery via Error Handler Synthesis. In Proceedings
of the 31st International Conference on Automated Software Engineer-
ing (ASE), pages 684-695. ACM, 2016. doi:10.1145/2970276.2970360.
(cited on page 210.)

Rosalva E. Gallardo-Valencia and Susan Elliott Sim. Internet-Scale
Code Search. In Proceedings of the 1st Workshop on Search-Driven
Development-Users, Infrastructure, Tools and Evaluation (SUITE), pages
49-52. TEEE, 2009. doi:10.1109/SUITE.2009.5070022. (cited on
page 32.)

Gao Gao, Finn Voichick, Michelle Ichinco, and Caitlin Kelleher. Explor-
ing Programmers’ API Learning Processes: Collecting Web Resources as
External Memory. In Proceedings of the 37th IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC), pages 1-10.
IEEE, 2020. doi:10.1109/VL/HCC50065.2020.9127274. (cited on pages 54
and 254.)

R.L. Glass, I. Vessey, and V. Ramesh. Research in software engineering:
an analysis of the literature. FElsevier Journal of Information and Software
Technology (IST), 44(8):491-506, 2002. doi:10.1016/30950-5849 (02)
00049-6. (cited on page 80.)

https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.1609/aaai.v31i1.10742
https://doi.org/10.1007/978-3-642-34347-6_10
https://doi.org/10.1007/978-3-642-34347-6_10
https://doi.org/10.1145/3485538
https://doi.org/10.1145/1806799.1806806
https://doi.org/10.1145/2970276.2970360
https://doi.org/10.1109/SUITE.2009.5070022
https://doi.org/10.1109/VL/HCC50065.2020.9127274
https://doi.org/10.1016/S0950-5849(02)00049-6
https://doi.org/10.1016/S0950-5849(02)00049-6

[GWL*19]

[GWZ10]

[GZHK18]

[GZK18]

[GZW+15]

[HAHH15]

[HCP+21]

[HDO5]

[HGHH18]

BIBLIOGRAPHY

Zuxing Gu, Jiecheng Wu, Jiaxiang Liu, Min Zhou, and Ming Gu. An
Empirical Study on API-Misuse Bugs in Open-Source C Programs. In
Proceedings of the 43rd Annual International Computer Software and
Applications Conference (COMPSAC), volume 1, pages 11-20. IEEE,
2019. doi:10.1109/COMPSAC.2019.00012. (cited on pages 27, 54, 97, 253,
and 254.)

Natalie Gruska, Andrzej Wasylkowski, and Andreas Zeller. Learning
from 6, 000 projects: lightweight cross-project anomaly detection. In
Proceedings of the 19th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pages 119-130. ACM, 2010.
doi:10.1145/1831708.1831723. (cited on pages 97 and 101.)

Elena L. Glassman, Tianyi Zhang, Bjorn Hartmann, and Miryung Kim.
Visualizing API Usage Examples at Scale. In Proceedings of the 36th
Conference on Human Factors in Computing Systems (CHI), pages 1-12.
ACM, 2018. doi:10.1145/3173574.3174154. (cited on pages 78, 79, 259,
and 260.)

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep Code Search. In
Proceedings of the 40th International Conference on Software Engineering
(ICSE), pages 933-944. ACM, 2018. doi:10.1145/3180155.3180167.
(cited on page 32.)

Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and
Hong Mei. Fixing Recurring Crash Bugs via Analyzing Q&A Sites. In
Proceedings of the 30th International Conference on Automated Software
Engineering (ASE), pages 307-318. IEEE/ACM, 2015. doi:10.1109/
ASE.2015.81. (cited on pages 213, 230, and 231.)

Andrew Head, Codanda Appachu, Marti A. Hearst, and Bjorn Hartmann.
Tutorons: Generating Context-Relevant, On-Demand Explanations and
Demonstrations of Online Code. In Proceedings of the 32nd IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 3—-12. IEEE, 2015. doi:10.1109/VLHCC.2015.7356972. (Cited on
pages 78 and 259.)

Kaifeng Huang, Bihuan Chen, Linghao Pan, Shuai Wu, and Xin Peng.
REPFINDER: Finding Replacements for Missing APIs in Library Up-
date. In Proceedings of the 36th International Conference on Auto-
mated Software Engineering (ASE), pages 266-278. IEEE, 2021. doi:
10.1109/ASE51524.2021.9678905. (cited on pages 35 and 199.)

Johannes Henkel and Amer Diwan. CatchUp! capturing and replaying
refactorings to support API evolution. In Proceedings of the 27th In-
ternational Conference on Software Engineering (ICSE), pages 274-283.
ACM, 2005. doi:10.1145/1062455.1062512. (cited on page 35.)

Andrew Head, Elena L. Glassman, Bjorn Hartmann, and Marti A. Hearst.
Interactive Extraction of Examples from Existing Code. In Proceed-
ings of the 36th Conference on Human Factors in Computing Systems

307

https://doi.org/10.1109/COMPSAC.2019.00012
https://doi.org/10.1145/1831708.1831723
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1109/ASE.2015.81
https://doi.org/10.1109/ASE.2015.81
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1109/ASE51524.2021.9678905
https://doi.org/10.1109/ASE51524.2021.9678905
https://doi.org/10.1145/1062455.1062512

BIBLIOGRAPHY

[HIS+20]

[HK99]

[HL11]

[HLH*22]

[HLW 18]

[HLXX23]

[HMO5]

[HMM23]

308

(CHI), pages 1-12. ACM, 2018. doi:10.1145/3173574.3173659. (cited
on pages 79 and 260.)

Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Bjorn
Hartmann. Composing Flexibly-Organized Step-by-Step Tutorials from
Linked Source Code, Snippets, and Outputs. In Proceedings of the 38th
Conference on Human Factors in Computing Systems (CHI), pages 1-12.
ACM, 2020. doi:10.1145/3313831.3376798. (cited on page 260.)

Kristine Y Hogarty and Jeffrey D Kromrey. Using SAS to
calculate tests of Cliff’s Delta. In Proceedings of the SAS
Users’ Group Int (SUGI), pages 1389-1393, 1999. URL:
https://citeseerx.ist.psu.edu/document?repid=repl&type=pdf&

doi=c8£0425b4ab5d37980£8bd4394006423c14ac641l. (Cited on pages 120,
163, 173, 186, and 194.)

Daqing Hou and Lin Li. Obstacles in Using Frameworks and APIs: An Ex-
ploratory Study of Programmers’ Newsgroup Discussions. In Proceedings
of the 19th International Conference on Program Comprehension (ICPC),
pages 91-100. IEEE, 2011. doi:10.1109/ICPC.2011.21. (cited on pages 4
and 54.)

Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shan-
non, Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad A Myers.
Understanding How Programmers Can Use Annotations on Documenta-
tion. In Proceedings of the 40th Conference on Human Factors in Com-
puting Systems (CHI), pages 1-16. ACM, 2022. doi:10.1145/3491102.
3502095. (cited on pages 78, 79, 258, and 260.)

Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling
Xue. Understanding and detecting evolution-induced compatibility issues
in Android apps. In Proceedings of the 33rd International Conference
on Automated Software Engineering (ASE), pages 167-177. ACM/IEEE,
2018. doi:10.1145/3238147.3238185. (cited on pages 35 and 158.)

Xincheng He, Xiaojin Liu, Lei Xu, and Baowen Xu. How Dynamic Fea-
tures Affect API Usages? An Empirical Study of API Misuses in Python
Programs. In Proceedings of the 30th International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pages 522-533.
IEEE, 2023. doi:10.1109/SANER56733.2023.00055. (Ched(nlpag6854
and 255.)

Reid Holmes and Gail C. Murphy. Using Structural Context to Recom-
mend Source Code Examples. In Proceedings of the 27th International
Conference on Software Engineering (ICSE), pages 117-125. ACM, 2005.
doi:10.1145/1062455.1062491. (cited on page 32.)

Amber Horvath, Andrew Macvean, and Brad A. Myers. Support for Long-
Form Documentation Authoring and Maintenance. In Proceedings of the

https://doi.org/10.1145/3173574.3173659
https://doi.org/10.1145/3313831.3376798
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c8f0425b4ab5d37980f8bd4394006423c14ac641
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c8f0425b4ab5d37980f8bd4394006423c14ac641
https://doi.org/10.1109/ICPC.2011.21
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1109/SANER56733.2023.00055
https://doi.org/10.1145/1062455.1062491

[HNKO20]

[HNO18]

[HNO19]

[HP14]

[HPM*00]

[HPY00]

[HRBYO]

[HSSA16]

[Hsu75]

BIBLIOGRAPHY

40th IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pages 109-114. IEEE, 2023. doi:10.1109/VL-HCC57772.
2023.00020. (cited on pages 79 and 261.)

Robert Heumiiller, Sebastian Nielebock, Jacob Kriiger, and Frank Ort-
meier. Publish or perish, but do not forget your software artifacts.
Springer Empirical Software Engineering (EMSE), pages 1-32, 2020.
doi:10.1007/s10664-020-09851-6. (Cited on pages 97, 98, and 24.5.)

Robert Heumiiller, Sebastian Nielebock, and Frank Ortmeier. Who Plays
with Whom? ... And How? Mining API Interaction Patterns from Source
Code. In Proceedings of the Tth International Workshop on Software Min-
ing, pages 8-11. ACM, 2018. doi:10.1145/3242887.3242888. (cited on
page 246.)

Robert Heumdiller, Sebastian Nielebock, and Frank Ortmeier. SpecTackle
- A Specification Mining Experimentation Platform. In Proceedings of
the 45th Furomicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 178-181. IEEE, 2019. doi:10.1109/SEAA.
2019.00036. (cited on page 245.)

Jiawei Han and Jian Pei. Pattern-Growth Methods, pages 65-81. Springer,
Cham, 2014. doi:10.1007/978-3-319-07821-2_3. (cited on pages 36
and 38.)

Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar
Dayal, and Meichun Hsu. FreeSpan: Frequent Pattern-projected Se-
quential Pattern Mining. In Raghu Ramakrishnan, Salvatore J. Stolfo,
Roberto J. Bayardo, and Ismail Parsa, editors, Proceedings of the 6th In-
ternational Conference on Knowledge Discovery and Data Mining (KDD),
pages 355-359. ACM, 2000. doi:10.1145/347090.347167. (cited on
page 39.)

Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without
Candidate Generation. ACM SIGMOD Record, 29(2):1-12, May 2000.
doi:10.1145/335191.335372. (cited on page 39.)

Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural Slic-
ing Using Dependence Graphs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(1):26-60, January 1990. doi:
10.1145/77606.77608. (Cited on page 28.)

Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified
Synthesis: Automatically Learning the x86-64 Instruction Set. In Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 237-250. ACM, 2016.
doi:10.1145/2908080.2908121. (cited on page 5)

Harry T. Hsu. An algorithm for finding a minimal equivalent graph of a
digraph. Journal of the ACM, 22(1):11-16, 1975. doi:10.1145/321864.
321866. (cited on page 150.)

309

https://doi.org/10.1109/VL-HCC57772.2023.00020
https://doi.org/10.1109/VL-HCC57772.2023.00020
https://doi.org/10.1007/s10664-020-09851-6
https://doi.org/10.1145/3242887.3242888
https://doi.org/10.1109/SEAA.2019.00036
https://doi.org/10.1109/SEAA.2019.00036
https://doi.org/10.1007/978-3-319-07821-2_3
https://doi.org/10.1145/347090.347167
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/77606.77608
https://doi.org/10.1145/77606.77608
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/321864.321866
https://doi.org/10.1145/321864.321866

BIBLIOGRAPHY

[HTL*21a]

[HTL*21b)

[HW18]

[HWL21]

[HWMOG6]

[HWS20]

[HXC+24]

[HXX*18]

310

Stefanus A. Haryono, Ferdian Thung, David Lo, Lingxiao Jiang, Ju-
lia Lawall, Hong Jin Kang, Lucas Serrano, and Gilles Muller. An-
droEvolve: Automated Update for Android Deprecated-API Usages. In
Proceedings of the 43rd Companion of the International Conference on
Software Engineering (ICSEC), pages 1-4. IEEE, 2021. doi:10.1109/
ICSE-Companion52605.2021.00021. (Cited on page 35.)

Stefanus A. Haryono, Ferdian Thung, David Lo, Julia Lawall, and
Lingxiao Jiang. Characterization and Automatic Updates of Deprecated
Machine-Learning API Usages. In Proceedings of the 37th International
Conference on Software Maintenance and FEvolution (ICSME), pages
137-147. IEEE, 2021. doi:10.1109/ICSME52107.2021.00019. (cited on
page 35.)

Foyzul Hassan and Xiaoyin Wang. HireBuild: An Automatic Approach
to History-Driven Repair of Build Scripts. In Proceedings of the 40th
International Conference on Software Engineering (ICSE), pages 1078
1089. ACM, 2018. doi:10.1145/3180155.3180181. (cited on pages 17, 19,
and 145.)

Hyunji Hong, Seunghoon Woo, and Heejo Lee. Dicos: Discovering Inse-
cure Code Snippets from Stack Overflow Posts by Leveraging User Discus-
sions. In Proceedings of the 37th Annual Computer Security Applications
Conference, pages 194-206. ACM, 2021. doi:10.1145/3485832.3488026.
(cited on pages 78 and 259.)

Reid Holmes, Robert J. Walker, and Gail C. Murphy. Approximate Struc-
tural Context Matching: An Approach to Recommend Relevant Exam-
ples. IEEFE Transactions on Software Engineering (TSE), 32(12):952-970,
2006. doi:10.1109/TSE.2006.117. (cited on pages 78, 79, 259, and 260.)

Ben Hermann, Stefan Winter, and Janet Siegmund. Community Expec-
tations for Research Artifacts and Evaluation Processes. In Proceedings
of the 28th Joint Meeting of the Furopean Software Engineering Confer-
ence/Foundations of Software Engineering (ESEC/FSE), pages 469-480.
ACM, 2020. doi:10.1145/3368089.3409767. (cited on page 245.)

Kaifeng Huang, Yingfeng Xia, Bihuan Chen, Siyang He, Huazheng Zeng,
Zhuotong Zhou, Jin Guo, and Xin Peng. Your “Notice” Is Missing: Detect-
ing and Fixing Violations of Modification Terms in Open Source Licenses
during Forking. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), pages 1022-1034.
ACM, 2024. doi:10.1145/3650212.3680339. (cited on pages 80 and 261.)

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang.
API Method Recommendation without Worrying about the Task-API
Knowledge Gap. In Proceedings of the 33rd International Conference
on Automated Software Engineering (ASE), pages 293-304. ACM, 2018.
doi:10.1145/3238147.3238191. (cited on pages 32, 78, and 260.)

https://doi.org/10.1109/ICSE-Companion52605.2021.00021
https://doi.org/10.1109/ICSE-Companion52605.2021.00021
https://doi.org/10.1109/ICSME52107.2021.00019
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3485832.3488026
https://doi.org/10.1109/TSE.2006.117
https://doi.org/10.1145/3368089.3409767
https://doi.org/10.1145/3650212.3680339
https://doi.org/10.1145/3238147.3238191

[HY16]

[HYM*25]

[Ife12]

[IHK17]

[IKND16]

[INPR19]

[Ish90]

[TWMO00]

[JBR99)

[JHS02]

BIBLIOGRAPHY

Xue Han and Tingting Yu. An Empirical Study on Performance Bugs for
Highly Configurable Software Systems. In Proceedings of the 10th Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1-10. ACM, 2016. doi:10.1145/2961111.2962602. (Cited
on page 24.)

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng,
Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing
Qin, and Ting Liu. A Survey on Hallucination in Large Language Mod-
els: Principles, Taxonomy, Challenges, and Open Questions. ACM
Transactions on Information Systems (TOIS), 43(2), January 2025. doi:
10.1145/3703155. (cited on page 247.)

Dirk Ifenthaler. Measures of Similarity, pages 2147-2150. Springer, 2012.
doi:10.1007/978-1-4419-1428-6_503. (cited on page 152.)

Michelle Ichinco, Wint Yee Hnin, and Caitlin L. Kelleher. Suggesting API
Usage to Novice Programmers with the Example Guru. In Proceedings of
the 35th Conference on Human Factors in Computing Systems (CHI),
pages 1105-1117. ACM, 2017. doi:10.1145/3025453.3025827. (cited on
pages 78, 79, 258, 259, and 260.)

Soumya Indela, Mukul Kulkarni, Kartik Nayak, and Tudor Dumitras.
Helping Johnny Encrypt: Toward Semantic Interfaces for Cryptographic
Frameworks. In Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware, pages 180-196. ACM, 2016. doi:10.1145/2986012.2986024. (cited
on pages 77 and 258.)

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A
comprehensive study on deep learning bug characteristics. In Proceedings
of the 27th Joint Meeting of the European Software Engineering Confer-
ence/Foundations of Software Engineering (ESEC/FSE), pages 510-520.
ACM, 2019. doi:10.1145/3338906.3338955. (cited on pages 24 and 54.)

Kaoru Ishikawa. Introduction to Quality Control. JUSE Press Ltd., 1990.
ISBN-13: 978-94-011-7690-3. (cited on page 4.)

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An Apriori-Based
Algorithm for Mining Frequent Substructures from Graph Data. In Pro-
ceedings of the 4th European Symposium on Principles of Data Mining
and Knowledge Discovery (PKDD), volume 1910, pages 13—23. Springer,
2000. doi:10.1007/3-540-45372-5_2. (Cited on page 4().)

Ivar Jacobson, Grady Booch, and James Rumbaugh. Unified Software
Development Process. The Addison-Wesley object technology series.
Addison-Wesley, Reading, Mass., 1. printing edition, 1999. ISBN-13: 978-
0201571691. (cited on page 4.)

James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of
Test Information to Assist Fault Localization. In Proceedings of the 24th

311

https://doi.org/10.1145/2961111.2962602
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1007/978-1-4419-1428-6_503
https://doi.org/10.1145/3025453.3025827
https://doi.org/10.1145/2986012.2986024
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1007/3-540-45372-5_2

BIBLIOGRAPHY

[JJE14]

[TM22]

[7504]

[JSMHB13]

[JWLT24]

[JXZ+18]

[JZW+20]

[KAB20]

312

International Conference on Software Engineering (ICSE), pages 467-477.
ACM, 2002. doi:10.1145/581339.581397. (cited on page 208.)

René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs.
In Proceedings of the 23rd ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pages 437-440. ACM, 2014. doi:
10.1145/2610384.2628055. (cited on pages 209 and 213.)

Mario Janke and Patrick Mader. Graph Based Mining of Code Change
Patterns From Version Control Commits. IEEE Transactions on Soft-
ware Engineering (TSE), 48(3):848-863, 2022. doi:10.1109/TSE.2020.
3004892. (cited on page 199.)

Szymon Jaroszewicz and Dan A. Simovici. Interestingness of Frequent
Itemsets using Bayesian Networks as Background Knowledge. In Won
Kim, Ron Kohavi, Johannes Gehrke, and William DuMouchel, editors,
Proceedings of the 10th International Conference on Knowledge Discovery
and Data Mining (KDD), pages 178-186. ACM, 2004. doi:10.1145/
1014052.1014074. (cited on page 41.)

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bow-
didge. Why don’t software developers use static analysis tools to find
bugs? In Proceedings of the 35th International Conference on Software
Engineering (ICSE), pages 672-681. IEEE, 2013. doi:10.1109/ICSE.
2013.6606613. (cited on pages 5, 25, 108, and 109.)

Jiasheng Jiang, Jingzheng Wu, Xiang Ling, Tianyue Luo, Sheng Qu, and
Yanjun Wu. APP-Miner: Detecting API Misuses via Automatically Min-
ing API Path Patterns. In Proceedings of the 45th IEEE Security € Pri-
vacy, pages 4034—4052. IEEE, 2024. doi:10.1109/SP54263.2024.00043.
(cited on pages 28, 95, 98, 100, 101, 103, 109, and 267.)

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun
Chen. Shaping Program Repair Space with Existing Patches and Similar
Code. In Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA), pages 298-309. ACM,
2018. doi:10.1145/3213846.3213871. (cited on pages 6, 211, and 231.)

Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu.
An Empirical Study on Bugs Inside TensorFlow. In Proceedings of the 25th
International Conference on Database Systems for Advanced Applications
(DASFAA), volume 12112, pages 604-620. Springer, 2020. doi:10.1007/
978-3-030-59410-7_40. (cited on pages 24 and 54.)

Stefan Kriiger, Karim Ali, and Eric Bodden. CogniCryptGEN: generating
code for the secure usage of crypto APIs. In Proceedings of the 18th
International Symposium on Code Generation and Optimization (CGO),
pages 185-198. ACM, 2020. doi:10.1145/3368826.3377905. (cited on
pages 78 and 259.)

https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/TSE.2020.3004892
https://doi.org/10.1109/TSE.2020.3004892
https://doi.org/10.1145/1014052.1014074
https://doi.org/10.1145/1014052.1014074
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/SP54263.2024.00043
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1007/978-3-030-59410-7_40
https://doi.org/10.1007/978-3-030-59410-7_40
https://doi.org/10.1145/3368826.3377905

[Kan06]

[KAS13]

[KB23]

[KBK*17]

[KCO7]

[KCJ22]

[KCMO7]

[KCT12]

[KFLS18]

BIBLIOGRAPHY

Gopal K. Kanji. 100 Statistical Tests. SAGE, 3 edition, 2006. ISBN-13:
978-1847878267. (cited on pages 120, 125, 163, 173, 186, and 194.)

Vasanth Krishnamoorthy, Bharatwaj Appasamy, and Christopher Scaf-
fidi. Using Intelligent Tutors to Teach Students How APIs Are Used
for Software Engineering in Practice. IEEE Transactions on Education,
56(3):355-363, 2013. doi:10.1109/TE.2013.2238543. (cited on pages 78
and 259.)

Caitlin Kelleher and Michelle Brachman. A sensemaking analysis of
API learning using React. Journal of Computer Languages (COLA),
74(101189), 2023. doi:10.1016/j.cola.2022.101189. (cited on pages 54
and 251.)

Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. Impact of Tool Support in Patch
Construction. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), pages 237-248.
ACM, 2017. doi:10.1145/3092703.3092713. (cited on pages 207 and 247.)

Babara Ann Kitchenham and Stuart Charters. Guidelines for Performing
Systematic Literature Reviews in Software Engineering. Technical
Report 2.3, Software Engineering Group, Keele University; Department
of Computer Science, University of Durham, July 2007. EBSE 2007-001,
Joint Report. URL: https://www.researchgate.net/publication/
302924724 _Guidelines_for_performing_Systematic_Literature_
Reviews_in_Software_Engineering. (cited on pages 7, 12, 15, 45, 48, 49,
69, 88, 91, 93, and 107.)

Chia Hung Kao, Cheng-Ying Chang, and Hewijin Christine Jiau. Towards
cost-effective API deprecation: A win—win strategy for API developers
and API users. Elsevier Journal of Information and Software Technology
(IST), 142:106746, 2022. doi:10.1016/j.infsof.2021.106746. (cited on
page 35.)

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and
taxonomy of approaches for mining software repositories in the context
of software evolution. Journal of Software Maintenance and Evolution:
Research and Practice, 19(2):77-131, 2007. doi:10.1002/smr.344. (cited
on pages 33 and 34.)

Marcos Kalinowski, David N. Card, and Guilherme H. Travassos.
Evidence-Based Guidelines to Defect Causal Analysis. IEEE Software,
29(4):16-18, 2012. doi:10.1109/MS.2012.72. (cited on page 4.)

Maria Kechagia, Marios Fragkoulis, Panos Louridas, and Diomidis Spinel-
lis. The exception handling riddle: An empirical study on the Android
APIL. Elsevier Journal of Systems and Software (JSS), 142:248-270, 2018.
doi:10.1016/j.jss.2018.04.034.(cﬁed(nlpag654)

313

https://doi.org/10.1109/TE.2013.2238543
https://doi.org/10.1016/j.cola.2022.101189
https://doi.org/10.1145/3092703.3092713
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://doi.org/10.1016/j.infsof.2021.106746
https://doi.org/10.1002/smr.344
https://doi.org/10.1109/MS.2012.72
https://doi.org/10.1016/j.jss.2018.04.034

BIBLIOGRAPHY

[KGH*17]

[KKO1]

[KL21]

[K1e98]

[KLHK13]

[KLvN+20]

[KMB*17]

[KMCR12]

[KMS14]

314

Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van
Hoorn, and David Lo. A Critical Evaluation of Spectrum-Based Fault
Localization Techniques on a Large-Scale Software System. In Proceedings
of the 17th International Conference on Software Quality, Reliability and
Security (QRS), pages 114-125. IEEE, 2017. doi:10.1109/QRS.2017.22.
(cited on page 208.)

Michihiro Kuramochi and George Karypis. Frequent Subgraph Discov-
ery. In Proceedings of the 1st International Conference on Data Mining
(ICDM), pages 313-320. IEEE, 2001. doi:10.1109/ICDM.2001.989534.
(cited on page 40.)

Hong Jin Kang and David Lo. Active Learning of Discriminative Subgraph
Patterns for API Misuse Detection. IEEE Transactions on Software
Engineering (TSE), pages 1-1, 2021. doi:10.1109/TSE.2021.3069978.
(cited on pages 5, 27, 31, 96, 97, 99, 101, 103, 104, 115, 133, 136, 137, 139, 157,
163, 173, 179, 196, 197, 198, 200, 202, 220, 240, 244, 246, and 267.)

Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 668-677. STAM, 1998. URL: https://cse.
msu.edu/~cse960/Papers/LinkAnalysis/auth.pdf. (cited on page 154.)

Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun Kim. En-
riching Documents with Examples: A Corpus Mining Approach. Trans-
actions on Information Systems, 31(1), January 2013. doi:10.1145/
2414782.2414783. (cited on pages 79 and 260.)

Jacob Kriiger, Christian Lausberger, Ivonne von Nostitz-Wallwitz, Gunter
Saake, and Thomas Leich. Search. Review. Repeat? An empiri-
cal study of threats to replicating SLR searches. Springer Empiri-
cal Software Engineering (EMSE), 25(1):627-677, 2020. doi:10.1007/
S510664-019-09763-0. (cited on pages 48, 49, 68, 71, 85, 93, and 107.)

Barbara A Kitchenham, Lech Madeyski, David Budgen, Jacky Keung,
Pearl Brereton, Stuart M Charters, Shirley Gibbs, and Amnart Pohthong.
Robust Statistical Methods for Empirical Software Engineering. Springer
Empirical Software Engineering (EMSE), 22(2):579-630, 2017. doi:10.
1007/510664-016-9437-5. (cited on pages 120, 163, 173, 186, and 194.)

Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard. Bolt:
On-Demand Infinite Loop Escape in Unmodified Binaries. In Proceed-
ings of the 27th Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 431-450. ACM, 2012.
doi:10.1145/2384616.2384648. (cited on page 210.)

Maria Kechagia, Dimitris Mitropoulos, and Diomidis Spinellis. Charting
the API minefield using software telemetry data. Springer Empirical
Software Engineering (EMSE), 20(6):1785-1830, December 2014. doi:
10.1007/S10664-014-9343-7. (cited on pages 54, 251, and 253.)

https://doi.org/10.1109/QRS.2017.22
https://doi.org/10.1109/ICDM.2001.989534
https://doi.org/10.1109/TSE.2021.3069978
https://cse.msu.edu/~cse960/Papers/LinkAnalysis/auth.pdf
https://cse.msu.edu/~cse960/Papers/LinkAnalysis/auth.pdf
https://doi.org/10.1145/2414782.2414783
https://doi.org/10.1145/2414782.2414783
https://doi.org/10.1007/S10664-019-09763-0
https://doi.org/10.1007/S10664-019-09763-0
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1145/2384616.2384648
https://doi.org/10.1007/S10664-014-9343-7
https://doi.org/10.1007/S10664-014-9343-7

[KMSH21]

[Knu97]

[KPWO06]

[KRW 23]

[KSA*21]

[KSK*24]

[KWM+21]

[LAH18]

[LBWK18]

BIBLIOGRAPHY

Maria Kechagia, Sergey Mechtaev, Federica Sarro, and Mark Harman.
Evaluating Automatic Program Repair Capabilities to Repair API Mis-
uses. [EEE Transactions on Software Engineering (TSE), pages 1-1,
2021. doi:10.1109/TSE.2021.3067156. (cited on pages 3, 6, 18, 139, 205,
206, 209, 210, 211, 212, 220, 222, 231, 236, 243, and 246.)

Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamen-
tal Algorithms, volume 1. Addison-Wesley, Reading, Mass., third edition,
1997. ISBN-13: 978-0-201-89683-1. (cited on page 233.)

Sunghun Kim, Kai Pan, and E. E. James Whitehead. Memories of Bug
Fixes. In Proceedings of the 5th Joint Meeting of the European Soft-
ware Engineering Conference/Foundations of Software Engineering (ES-
EC/FSE), pages 35-45. ACM, 2006. doi:10.1145/1181775.1181781.
(cited on pages 145, 213, 230, and 231.)

Stefan Kriiger, Michael Reif, Anna-Katharina Wickert, Sarah Nadi, Karim
Ali, Eric Bodden, Yasemin Acar, Mira Mezini, and Sascha Fahl. Securing
Your Crypto-API Usage Through Tool Support - A Usability Study. In
2023 IEEE Secure Development Conference (SecDev), pages 14-25. IEEE,
2023. doi:10.1109/SecDev56634.2023.00015. (Cited on pages 78, 79, 258,
and 259.)

Stefan Kriiger, Johannes Spéath, Karim Ali, Eric Bodden, and Mira
Mezini. CrySL: An Extensible Approach to Validating the Correct Us-
age of Cryptographic APIs. IEFEE Transactions on Software Engineering
(TSE), 47(11):2382-2400, 2021. doi:10.1109/TSE.2019.2948910. (cited
on pages 2, 5, 96, 98, 99, 100, 101, 105, 198, 200, and 267.)

Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus
Schmidt, Linghui Luo, and Dongjie He. SootUp: A Redesign of the Soot
Static Analysis Framework. In Bernd Finkbeiner and Laura Kovacs, ed-
itors, Proceedings of the 30th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS), pages
229-247, Cham, 2024. Springer. doi:10.1007/978-3-031-57246-3_13.
(cited on page 25.)

Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew
Pagano, Rafal Szalanski, Vesna Nowack, Emily Rowan Winter, Steve
Counsell, David Bowes, Tracy Hall, Saemundur Haraldsson, and John
Woodward. On The Introduction of Automatic Program Repair in
Bloomberg. IEEE Software, 38(4):43-51, 2021. doi:10.1109/MS.2021.
3071086. (cited on pages 18, 207, 208, 215, 231, and 247.)

Tianshi Li, Yuvraj Agarwal, and Jason I. Hong. Coconut: An ide plugin
for developing privacy-friendly apps. Proceedings of the ACM on Interac-
tive, Mobile, Wearable and Ubiquitous Technologies, 2(4), December 2018.
doi:10.1145/3287056. (cited on pages 78 and 259.)

Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. CiD:
Automating the detection of API-related compatibility issues in android

315

https://doi.org/10.1109/TSE.2021.3067156
https://doi.org/10.1145/1181775.1181781
https://doi.org/10.1109/SecDev56634.2023.00015
https://doi.org/10.1109/TSE.2019.2948910
https://doi.org/10.1007/978-3-031-57246-3_13
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1145/3287056

BIBLIOGRAPHY

[LCC+23)

[LCP+21]

[Leu09]

[LGCt12]

[LGDVFW12]

[LGFW13]

[LGPR19]

[LGS21]

[LHT+22]

316

apps. In Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), pages 153-163. ACM, 2018.
doi:10.1145/3213846.3213857. (cited on page 158.)

Ke Liu, Xiang Chen, Chunyang Chen, Xiaofei Xie, and Zhanqgi Cui.
Automated Question Title Reformulation by Mining Modification Logs
From Stack Overflow. IEEE Transactions on Software Engineering
(TSE), 49(9):4390-4410, 2023. doi:10.1109/TSE.2023.3292399. (cited
on pages 78 and 259.)

Wenjian Liu, Bihuan Chen, Xin Peng, Qinghao Sun, and Wenyun
Zhao. Identifying change patterns of API misuses from code changes.
Science China Information Sciences, 64(3), 2021. doi:10.1007/
$11432-019-2745-5. (cited on pages 5, 95, 98, 99, 100, 101, 102, 105, 198,
200, and 267.)

Carson Kai-Sang Leung. Anti-monotone Constraints, pages 98-98.
Springer, 2009. doi:10.1007/978-0-387-39940-9_5046. (cited on
page 38.)

Fan Long, Vijay Ganesh, Michael Carbin, Stelios Sidiroglou, and Martin
Rinard. Automatic Input Rectification. In Proceedings of the 34th Inter-
national Conference on Software Engineering (ICSE), pages 80-90. IEEE,
2012. doi:10.1109/ICSE.2012.6227204. (Cited on page 210.)

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A Systematic Study of Automated Program Repair: Fixing 55
out of 105 Bugs for $8 each. In Proceedings of the 34th International
Conference on Software Engineering (ICSE), pages 3-13. IEEE, 2012.
doi:10.1109/ICSE.2012.6227211. (cited on page 211.)

Claire Le Goues, Stephanie Forrest, and Westley Weimer. Current chal-
lenges in Automatic Software Repair. Software Quality Journal, 21:421—
443, 2013. doi:10.1007/s11219-013-9208-0. (cited on pages 6, 205, 206,
207, and 208.)

Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated
Program Repair. Communications of the ACM, 62(12):56-65, November
2019. doi:10.1145/3318162. (cited on pages 3, 6, 18, 24, 114, 205, 206, 207,
208, 211, and 220.)

Maxime Lamothe, Yann-Gaél Guéhéneuc, and Weiyi Shang. A System-
atic Review of API Evolution Literature. ACM Computing Surveys,
54(8), October 2021. doi:10.1145/3470133. (cited on pages 34, 46, 47, 70,
and 102.)

Kien Luong, Mohammad Hadi, Ferdian Thung, Fatemeh Fard, and David
Lo. ARSeek: Identifying API Resource using Code and Discussion on
Stack Overflow. In Proceedings of the 30th International Conference on
Program Comprehension (ICPC), pages 331-342. ACM, 2022. doi:10.
1145/3524610.3527918. (cited on pages 78 and 259.)

https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1109/TSE.2023.3292399
https://doi.org/10.1007/S11432-019-2745-5
https://doi.org/10.1007/S11432-019-2745-5
https://doi.org/10.1007/978-0-387-39940-9_5046
https://doi.org/10.1109/ICSE.2012.6227204
https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3470133
https://doi.org/10.1145/3524610.3527918
https://doi.org/10.1145/3524610.3527918

[LHX*16]

[Lin15]

[LIB+21]

[LK77]

[LKKB19a]

[LKKB19b)]

[LL15]

[LLLG16]

[LLST18§]

BIBLIOGRAPHY

Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, Grigore Rosu, and
Darko Marinov. How Good Are the Specs? A Study of the Bug-Finding
Effectiveness of Existing Java API Specifications. In Proceedings of the
31st International Conference on Automated Software Engineering (ASE),
pages 602-613. ACM, 2016. doi:10.1145/2970276.2970356. (cited on
pages 5 and 143.)

Christian Lindig. Mining Patterns and Violations Using Concept Analysis.
In Christian Bird, Tim Menzies, and Thomas Zimmermann, editors, The
Art and Science of Analyzing Software Data, pages 17-38. Morgan Kauf-
mann / Elsevier, 2015. doi:10.1016/B978-0-12-411519-4.00002-1.
(cited on page 2.)

Xia Li, Jiajun Jiang, Samuel Benton, Yingfei Xiong, and Lingming Zhang.
A Large-scale Study on API Misuses in the Wild. In Proceedings of the
14th International Conference on Software Testing, Verification and Val-
idation (ICST), pages 241-252. IEEE, 2021. doi:10.1109/ICST49551.
2021.00034. (cited on pages 26 and 27.)

J. Richard Landis and Gary G. Koch. The Measurement of Observer
Agreement for Categorical Data. Biometrics, 33(1):159-174, 1977. doi:
10.2307/2529310. (cited on page 149.)

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé.
TBar: Revisiting Template-Based Automated Program Repair. In Pro-
ceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 31-42. ACM, 2019. doi:
10.1145/3293882.3330577. (cited on pages 211 and 231.)

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawende F. Bissyande.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Vi-
olations. In Proceedings of the 26th International Conference on Software
Analysis, FEvolution, and Reengineering (SANER), pages 1-12. IEEE,
2019. doi:10.1109/SANER.2019.8667970. (cited on pages 211 and 231.)

Tien-Duy B. Le and David Lo. Beyond Support and Confidence: Ex-
ploring Interestingness Measures for Rule-Based Specification Mining.
In Proceedings of the 22nd International Conference on Software Analy-
sis, Ewvolution, and Reengineering (SANER), pages 331-340. IEEE, 2015.
doi:10.1109/SANER.2015.7081843. (cited on pages 36, 40, and 109.)

Xuan Bach D Le, David Lo, and Claire Le Goues. History Driven Program
Repair. In Proceedings of the 23rd International Conference on Software
Analysis, Fvolution, and Reengineering (SANER), volume 1, pages 213-
224. IEEE, 2016. doi:10.1109/SANER.2016.76. (cited on pages 6, 17, 19,
and 145.)

Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei
Liu, and Xuejiao Zhao. Improving API Caveats Accessibility by Mining
API Caveats Knowledge Graph. In Proceedings of the 34th International

317

https://doi.org/10.1145/2970276.2970356
https://doi.org/10.1016/B978-0-12-411519-4.00002-1
https://doi.org/10.1109/ICST49551.2021.00034
https://doi.org/10.1109/ICST49551.2021.00034
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1109/SANER.2019.8667970
https://doi.org/10.1109/SANER.2015.7081843
https://doi.org/10.1109/SANER.2016.76

BIBLIOGRAPHY

[LMC+21]

[LP17]

[LPM*19]

[LPM*21]

[LPP+20]

[LRK*19]

[LS18]

[LS20]

318

Conference on Software Maintenance and Evolution (ICSME), pages 183—
193. IEEE, 2018. doi:10.1109/ICSME.2018.00028. (Cited on pages 78, 79,
258, and 260.)

Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and
Le Song. ARBITRAR: User-Guided API Misuse Detection. In Proceedings
of the 42nd IEEE Security & Privacy, pages 1400-1415. IEEE, 2021. doi:
10.1109/SP40001.2021.00090. (cited on pages 2, 96, 99, 100, 101, 103,
and 267.)

Frank Li and Vern Paxson. A Large-Scale Empirical Study of Security
Patches. In Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), pages 2201-2215. ACM, 2017. doi:
10.1145/3133956.3134072. (cited on page 24.)

Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie,
Shuangshuang Xing, and Yang Liu. Generating Query-Specific Class API
Summaries. In Proceedings of the 27th Joint Meeting of the Furopean Soft-
ware Engineering Conference/Foundations of Software Engineering (ES-
EC/FSE), pages 120-130. ACM, 2019. doi:10.1145/3338906.3338971.

(cited on page 259.)

Mingwei Liu, Xin Peng, Andrian Marcus, Christoph Treude, Xuefang Bai,
Gang Lyu, Jiazhan Xie, and Xiaoxin Zhang. Learning-Based Extraction
of First-Order Logic Representations of API Directives. In Proceedings
of the 29th Joint Meeting of the Furopean Software Engineering Confer-
ence/Foundations of Software Engineering (ESEC/FSE), pages 491-502.
ACM, 2021. doi:10.1145/3468264.3468618. (cited on pages 78 and 259.)

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi
Wei, and Lin Tan. CoCoNuT: Combining Context-Aware Neural Trans-
lation Models using Ensemble for Program Repair. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pages 101-114. ACM, 2020. doi:10.1145/3395363.
3397369. (cited on page 212.)

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo
Meirelles. A Survey of DevOps Concepts and Challenges. ACM Com-
puting Surveys, 52(6), November 2019. doi:10.1145/3359981. (cited on

page 4.)

Maxime Lamothe and Weiyi Shang. Exploring the use of automated
API migrating techniques in practice: an experience report on An-
droid. In Proceedings of the 15th International Working Conference
on Mining Software Repositories (MSR), pages 503-514. ACM, 2018.
doi:10.1145/3196398.3196420. (cited on pages 17 and 35.)

Maxime Lamothe and Weiyi Shang. When APIs Are Intentionally By-
passed: An Exploratory Study of API Workarounds. In Proceedings of
the 42nd International Conference on Software Engineering (ICSE), pages

https://doi.org/10.1109/ICSME.2018.00028
https://doi.org/10.1109/SP40001.2021.00090
https://doi.org/10.1109/SP40001.2021.00090
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1145/3133956.3134072
https://doi.org/10.1145/3338906.3338971
https://doi.org/10.1145/3468264.3468618
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3196398.3196420

[LSC22]

[LSDR14]

[LTLLG18]

[LTW06]

[LVBDP+14]

[LW09)

[LW12]

[LWCK21]

BIBLIOGRAPHY

912-924. ACM, 2020. doi:10.1145/3377811.3380433. (cited on pages 4,
54, and 254.)

Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. A3: Assisting
Android API Migrations Using Code Examples. [IEEE Transactions on
Software Engineering (TSE), 48(2):417-431, 2022. doi:10.1109/TSE.
2020.2988396. (cited on pages 35, 79, 199, and 261.)

Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic
Runtime Error Repair and Containment via Recovery Shepherding. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 227-238. ACM, 2014.
doi:10.1145/2594291.2594337. (cited on page 210.)

Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. Over-
fitting in Semantics-based Automated Program Repair. In Proceedings of
the 40th International Conference on Software Engineering (ICSE), page
163. ACM, 2018. doi:10.1145/3180155.3182536. (Cited on pages 208
and 246.)

Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have Things Changed Now? - An Empirical Study
of Bug Characteristics in Modern Open Source Software. In Proceedings
of the 1st Workshop on Architectural and System Support for Improving
Software Dependability (ASID), pages 25-33. ACM, 2006. doi:10.1145/
1181309.1181314. (cited on page 24.)

Mario Linares-Vasquez, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Denys Poshyvanyk. How do API changes trigger stack over-
flow discussions? a study on the Android SDK. In Proceedings of the
22nd International Conference on Program Comprehension (ICPC), pages
83-94. ACM, 2014. doi:10.1145/2597008.2597155. (cited on pages 54
and 253.)

Claire Le Goues and Westley Weimer. Specification Mining with Few
False Positives. In Proceedings of the 15th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 5505 of Lecture Notes in Computer Science, pages
292-306. Springer, 2009. doi:10.1007/978-3-642-00768-2_26. (Cited
on pages 2, 3, 36, and 103.)

Claire Le Goues and Westley Weimer. Measuring Code Quality to Im-
prove Specification Mining. IEEE Transactions on Software Engineering
(TSE), 38(1):175-190, 2012. doi:10.1109/TSE.2011.5. (cited on pages 14
and 109.)

Seonah Lee, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang. Au-
tomatic Detection and Update Suggestion for Outdated API Names in
Documentation. IEEE Transactions on Software Engineering (TSE),
47(4):653-675, 2021. doi:10.1109/TSE.2019.2901459. (cited on pages 79
and 261.)

319

https://doi.org/10.1145/3377811.3380433
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1109/TSE.2020.2988396
https://doi.org/10.1145/2594291.2594337
https://doi.org/10.1145/3180155.3182536
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1145/2597008.2597155
https://doi.org/10.1007/978-3-642-00768-2_26
https://doi.org/10.1109/TSE.2011.5
https://doi.org/10.1109/TSE.2019.2901459

BIBLIOGRAPHY

[LWL*22]

[LXL*21]

[LYY+23]

[LZ05]

[LZL*15]

[LZP+23]

[LZT+24]

[Mar03]

[Mar13|

320

Zhenming Li, Ying Wang, Zeqi Lin, Shing-Chi Cheung, and Jian-Guang
Lou. Nufix: Escape From NuGet Dependency Maze. In Proceedings
of the 44th International Conference on Software Engineering (ICSE),
pages 1545-1557. ACM, 2022. doi:10.1145/3510003.3510118. (Cited on
pages 79 and 260.)

Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John
Grundy. Opportunities and Challenges in Code Search Tools. ACM
Computing Surveys, 54(9), October 2021. doi:10.1145/3480027. (cited
on page 32.)

Junwei Luo, Xuechao Yang, Xun Yi, Fengling Han, Igbal Gondal, and
Guang-Bin Huang. A Comparative Study on Design and Usability of
Cryptographic Libraries. In Proceedings of the 9th Australasian Com-
puter Science Week (ACSW), pages 102-111. ACM, 2023. doi:10.1145/
3579375.3579388. (cited on pages 54, 250, and 253.)

Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting im-
plicit programming rules and detecting violations in large software code.
In Proceedings of the 4th Joint Meeting of the Furopean Software Engi-
neering Conference/Foundations of Software Engineering (ESEC/FSE),
pages 306-315. ACM, 2005. doi:10.1145/1081706.1081755. (Cited on
pages 5, 28, 95, 101, 109, and 267.)

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang,
and Jianjun Zhao. CodeHow: Effective Code Search Based on API Un-
derstanding and Extended Boolean Model. In Proceedings of the 30th In-
ternational Conference on Automated Software Engineering (ASE), pages
260-270. IEEE, 2015. doi:10.1109/ASE.2015.42. (cited on page 32.)

Mingwei Liu, Chengyuan Zhao, Xin Peng, Simin Yu, Haofen Wang, and
Chaofeng Sha. Task-Oriented ML/DL Library Recommendation Based
on a Knowledge Graph. [IEEFE Transactions on Software Engineering
(TSE), 49(8):4081-4096, 2023. doi:10.1109/TSE.2023.3285280. (cited
on pages 32, 78, 258, and 260.)

Can Li, Jingxuan Zhang, Yixuan Tang, Zhuhang Li, and Tianyue Sun.
Boosting API Misuse Detection via Integrating API Constraints from
Multiple Sources. In Proceedings of the 21st International Working Con-
ference on Mining Software Repositories (MSR), pages 14—26. ACM, 2024.
doi:10.1145/3643991.3644904. (cited on pages 96, 98, 99, 101, 106, 198,
200, and 267.)

Robert Cecil Martin. Agile Software Development: Principles, Patterns,
and Practices. Prentice Hall PTR, 2003. ISBN-13: 978-0135974445. (cited
on page 4.)

Robert C. Martin. Clean Code: A Handbook of Agile Software Crafts-
manship, volume 12. Pearson Education Inc., 2013. ISBN-13: 978-0-13-
235088-4. (cited on page 4.)

https://doi.org/10.1145/3510003.3510118
https://doi.org/10.1145/3480027
https://doi.org/10.1145/3579375.3579388
https://doi.org/10.1145/3579375.3579388
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1109/ASE.2015.42
https://doi.org/10.1109/TSE.2023.3285280
https://doi.org/10.1145/3643991.3644904

[MBC+19]

[MBDP*15]

[MBM10]

[MBP+17]

[MBS*19]

[McG23]

[MCJ17]

[MCP9g]

BIBLIOGRAPHY

Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman,
Yue Jia, Ke Mao, Alexander Mols, and Andrew Scott. SapFix: Automated
End-to-End Repair at Scale. In Proceedings of the 41st International
Conference on Software Engineering - Software Engineering in Practice
(ICSE-SEIP), pages 269-278. IEEE, 2019. doi:10.1109/ICSE-SEIP.
2019.00039. (cited on pages 207, 208, 215, 231, 234, and 247.)

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Andrian Marcus. How Can I Use This Method? In Proceedings
of the 37th International Conference on Software Engineering (ICSE),
volume 1, pages 880-890. IEEE, 2015. doi:10.1109/ICSE.2015.98. (cited
on page 32.)

Martin Monperrus, Marcel Bruch, and Mira Mezini. Detecting Missing
Method Calls in Object-Oriented Software. In Proceedings of the 24th Eu-
ropean Conference on Object-Oriented Programming (ECOOP), volume
6183, pages 2-25. Springer, 2010. doi:10.1007/978-3-642-14107-2_2.
(cited on pages 2, 93, 95, 99, 101, 102, and 267.)

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Andrian Marcus, and Gerardo Canfora. ARENA: An Approach for the
Automated Generation of Release Notes. [IEEFE Transactions on Soft-
ware Engineering (TSE), 43(2):106-127, 2017. doi:10.1109/TSE.2016.
2591536. (cited on page 35.)

Ariana Mirian, Nikunj Bhagat, Caitlin Sadowski, Adrienne Porter Felt,
Stefan Savage, and Geoffrey M. Voelker. Web Feature Deprecation: A
Case Study for Chrome. In Proceedings of the 41st International Confer-
ence on Software Engineering - Software Engineering in Practice (ICSE-
SEIP), pages 302-311. IEEE, 2019. doi:10.1109/ICSE-SEIP.2019.
00044. (cited on page 34.)

Leon McGregor. Games and interactions to motivate the secure and
analytical mindsets of developers. PhD thesis, Heriot-Watt University,
School of Mathematical and Computer Sciences, 2023. URL: http:
//hdl.handle.net/10399/4975. (cited on pages 46, 47, 70, and 71.)

Vijayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine. Bayesian
specification learning for finding api usage errors. In Proceedings of the
11th Joint Meeting of the European Software Engineering Conference/-
Foundations of Software Engineering (ESEC/FSE), pages 151-162. ACM,
2017. doi:10.1145/3106237.3106284. (cited on pages 2, 5, 96, 98, 100, 101,
107, 198, 200, and 267.)

Florent Masseglia, Fabienne Cathala, and Pascal Poncelet. The PSP
Approach for Mining Sequential Patterns. In Jan M. Zytkow and Mo-
hamed Quafafou, editors, Proceedings of the 2nd FEuropean Symposium
on Principles of Data Mining and Knowledge Discovery (PKDD), volume
1510, pages 176-184. Springer, 1998. doi:10.1007/BFb0094818. (cited on
page 39.)

321

https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICSE-SEIP.2019.00039
https://doi.org/10.1109/ICSE.2015.98
https://doi.org/10.1007/978-3-642-14107-2_2
https://doi.org/10.1109/TSE.2016.2591536
https://doi.org/10.1109/TSE.2016.2591536
https://doi.org/10.1109/ICSE-SEIP.2019.00044
https://doi.org/10.1109/ICSE-SEIP.2019.00044
http://hdl.handle.net/10399/4975
http://hdl.handle.net/10399/4975
https://doi.org/10.1145/3106237.3106284
https://doi.org/10.1007/BFb0094818

BIBLIOGRAPHY

[METM12]

[MGP+11]

[MHR*12]

[MJHS90]

[MKA+18]

[ML23]

[MLK19]

[MLLD16]

[MM16a)]

322

Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini.
What should developers be aware of? an empirical study on the direc-
tives of API documentation. Springer Empirical Software Engineering
(EMSE), 17(6):703-737, 2012. doi:10.1007/S10664-011-9186-4. (cited
on page 26.)

Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and
Chen Fu. Portfolio: Finding Relevant Functions and Their Usage. In
Proceedings of the 33rd International Conference on Software Engineer-
ing (ICSE), pages 111-120. ACM, 2011. doi:10.1145/1985793.1985809.
(cited on page 32.)

Clemens Mayer, Stefan Hanenberg, Romain Robbes, Eric Tanter, and
Andreas Stefik. An Empirical Study of the Influence of Static Type
Systems on the Usability of Undocumented Software. In Proceedings
of the 27th Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 683-702. ACM, 2012. doi:
10.1145/2384616.2384666. (cited on pages 80 and 261.)

R. G. Mays, C. L. Jones, G. J. Holloway, and D. P. Studinski. Experiences
with Defect Prevention. IBM Systems Journal, 29(1):4-32, 1990. doi:
10.1147/s3.291.0004. (cited on pages 3 and 14.)

Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu, Andrew Macvean,
and Brad A. Myers. API Designers in the Field: Design Practices
and Challenges for Creating Usable APIs. In Proceedings of the 35th
IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pages 249-258. IEEE, 2018. doi:10.1109/VLHCC.2018.
8506523. (cited on pages 2, 4, 54, 59, and 250.)

Sahar Mehrpour and Thomas D. LaToza. Can static analysis tools find
more defects? Springer Empirical Software Engineering (EMSE), 28(5),
2023. doi:10.1007/810664-022-10232-4. (cited on page 25.)

Sahar Mehrpour, Thomas D. LaToza, and Rahul K. Kindi. Active Doc-
umentation: Helping Developers Follow Design Decisions. In Proceedings
of the 36th IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 87-96. IEEE, 2019. doi:10.1109/VLHCC.
2019.8818816. (cited on pages 79 and 261.)

Sigqi Ma, David Lo, Teng Li, and Robert H. Deng. CDRep: Automatic
Repair of Cryptographic Misuses in Android Applications. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications
Security, pages 711-722. ACM, 2016. doi:10.1145/2897845.2897896.
(cited on pages 209, 213, 230, and 231.)

Matias Martinez and Martin Monperrus. ASTOR: A Program Repair
Library for Java (Demo). In Proceedings of the 25th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA), pages
441-444. ACM, 2016. doi:10.1145/2931037.2948705. (Cited on page 211.)

https://doi.org/10.1007/S10664-011-9186-4
https://doi.org/10.1145/1985793.1985809
https://doi.org/10.1145/2384616.2384666
https://doi.org/10.1145/2384616.2384666
https://doi.org/10.1147/sj.291.0004
https://doi.org/10.1147/sj.291.0004
https://doi.org/10.1109/VLHCC.2018.8506523
https://doi.org/10.1109/VLHCC.2018.8506523
https://doi.org/10.1007/S10664-022-10232-4
https://doi.org/10.1109/VLHCC.2019.8818816
https://doi.org/10.1109/VLHCC.2019.8818816
https://doi.org/10.1145/2897845.2897896
https://doi.org/10.1145/2931037.2948705

[MM16b)]

[MM18]

[MNY*18]

[Mon18a

[Mon18b]

[MPCOF*21]

[MRARMB™18]

[MRF19]

[MRK13]

BIBLIOGRAPHY

Paul W. McBurney and Collin McMillan. Automatic Source Code Sum-
marization of Context for Java Methods. IEEFE Transactions on Soft-
ware Engineering (TSE), 42(2):103-119, 2016. doi:10.1109/TSE.2015.
2465386. (cited on pages 79 and 260.)

Matias Martinez and Martin Monperrus. Ultra-Large Repair Search Space
with Automatically Mined Templates: The Cardumen Mode of Astor. In
Proceedings of the 10th International ymposium on Search-Based Software
Engineering SSBSFE, volume 11036, pages 65-86. Springer, 2018. doi:
10.1007/978-3-319-99241-9_3. (cited on page 211.)

Na Meng, Stefan Nagy, Danfeng (Daphne) Yao, Wenjie Zhuang, and
Gustavo Arango Argoty. Secure Coding Practices in Java: Challenges
and Vulnerabilities. In Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE), pages 372-383. ACM, 2018. doi:
10.1145/3180155.3180201. (cited on pages 54, 100, 251, and 253.)

Martin Monperrus. Automatic Software Repair: A Bibliography. ACM
Computing Surveys, 51(1):17:1-24, 2018. doi:10.1145/3105906. (cited
on pages 3, 6, 18, 205, 206, 207, 209, 210, and 236.)

Martin Monperrus. The Living Review on Automated Program Re-
pair. Technical Report hal-01956501, HAL Archives Ouvertes, 2018.
URL: https://hal.science/hal-01956501. (cited on pages 205, 206, 209,
and 236.)

Fernando Martinez-Plumed, Lidia Contreras-Ochando, Cesar Ferri, José
Hernandez-Orallo, Meelis Kull, Nicolas Lachiche, Maria José Ramirez-
Quintana, and Peter Flach. CRISP-DM Twenty Years Later: From Data
Mining Processes to Data Science Trajectories. IEEE Transactions on
Knowledge and Data Engineering, 33(8):3048-3061, 2021. doi:10.1109/
TKDE.2019.2962680. (cited on pages 41 and 42.)

Eduardo Mosqueira-Rey, David Alonso-Rios, Vicente Moret-Bonillo, Isaac
Fernédndez-Varela, and Diego Alvarez Estévez. A systematic approach to
API usability: Taxonomy-derived criteria and a case study. Flsevier
Journal of Information and Software Technology (IST), 97:46-63, 2018.
doi:10.1016/j.infsof.2017.12.010. (cited on pages 54, 78, 253, and 258.)

Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual
Falcao. A Systematic Literature Review on Teaching and Learning In-
troductory Programming in Higher Education. IEEE Transactions on
Education, 62(2):77-90, 2019. doi:10.1109/TE.2018.2864133. (cited on

page 4.)

Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An Empirical Study
of API Stability and Adoption in the Android Ecosystem. In Proceedings
of the 29th International Conference on Software Maintenance (ICSM),
pages 70-79. IEEE, 2013. doi:10.1109/ICSM.2013.18. (cited on pages 54
and 252.)

323

https://doi.org/10.1109/TSE.2015.2465386
https://doi.org/10.1109/TSE.2015.2465386
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3180155.3180201
https://doi.org/10.1145/3105906
https://hal.science/hal-01956501
https://doi.org/10.1109/TKDE.2019.2962680
https://doi.org/10.1109/TKDE.2019.2962680
https://doi.org/10.1016/j.infsof.2017.12.010
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1109/ICSM.2013.18

BIBLIOGRAPHY

[MSS18]

[MSS20]

[MT97]

[MTV94]

[MUKS24]

[MUMM19]

[Mun57]

[MUR23]

[MWD24]

324

Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Applica-
tion Programming Interface Documentation: What Do Software Develop-
ers Want? Journal of Technical Writing and Communication (JTWC),
48(3):295-330, 2018. doi:10.1177/0047281617721853. (cited on pages 4,
54, 251, 252, and 254.)

Michael Meng, Stephanie M. Steinhardt, and Andreas Schubert. Opti-
mizing API Documentation: Some Guidelines and Effects. In Proceedings
of the 38th International Conference on Design of Communication (SIG-
DOC), pages 1-11. ACM, 2020. doi:10.1145/3380851.3416759. (cited
on pages 79 and 260.)

Heikki Mannila and Hannu Toivonen. Levelwise Search and Borders of
Theories in Knowledge Discovery. Springer Data Mining and Knowledge
Discovery, 1(3):241-258, 1997. doi:10.1023/A:1009796218281. (cited on
page 37.)

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient Algo-
rithms for Discovering Association Rules. In Proceedings of the 3rd Inter-
national Conference on Knowledge Discovery and Data Mining (KDD),
pages 181-192. AAAI, 1994. URL: https://cdn.aaai.org/Workshops/
1994/WS-94-03/WS94-03-016.pdf. (cited on page 38.)

Iren Mazloomzadeh, Gias Uddin, Foutse Khomh, and Ashkan Sami. Rep-
utation Gaming in Crowd Technical Knowledge Sharing. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 34(1), De-
cember 2024. doi:10.1145/3691627. (cited on pages 78 and 259.)

Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus.
BEARS: An Extensible Java Bug Benchmark for Automatic Program
Repair Studies. In Proceedings of the 26th International Conference on
Software Analysis, Evolution, and Reengineering (SANER), pages 468
478. IEEE, 2019. doi:10.1109/SANER.2019.8667991. (cited on pages 209
and 220.)

James Munkres. Algorithms for the Assignment and Transportation Prob-
lems. Journal of the Society for Industrial and Applied Mathematics,
5(1), 1957. URL: https://www.jstor.org/stable/2098689. (cited on
pages 149, 154, 217, 221, and 222.)

Saikat Mondal, Gias Uddin, and Chanchal K. Roy. Automatic prediction
of rejected edits in Stack Overflow. Springer Empirical Software Engi-
neering (EMSE), 28(9), 2023. doi:10.1007/S10664-022-10242-2. (cited
on page 259.)

May Mahmoud, Robert J. Walker, and Jorg Denzinger. API usage tem-
plates via structural generalization. FElsevier Journal of Systems and
Software (JSS), 210(111974), 2024. doi:10.1016/j.jss.2024.111974.
(cited on pages 78, 258, and 259.)

https://doi.org/10.1177/0047281617721853
https://doi.org/10.1145/3380851.3416759
https://doi.org/10.1023/A:1009796218281
https://cdn.aaai.org/Workshops/1994/WS-94-03/WS94-03-016.pdf
https://cdn.aaai.org/Workshops/1994/WS-94-03/WS94-03-016.pdf
https://doi.org/10.1145/3691627
https://doi.org/10.1109/SANER.2019.8667991
https://www.jstor.org/stable/2098689
https://doi.org/10.1007/S10664-022-10242-2
https://doi.org/10.1016/j.jss.2024.111974

[MWZM12]

[MXBKO05]

[MYR16]

[NAP18]

[NBKO21a]

[NBKO21b]

[NBKO22]

[NBKO24]

[NDBB20]

BIBLIOGRAPHY

Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based
matching approach to identification of framework evolution. In Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE), pages 353-363. IEEE, 2012. doi:10.1109/ICSE.2012.6227179.
(cited on pages 17, 35, and 199.)

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. Jungloid
Mining: Helping to Navigate the API Jungle. In Proceedings of the 26th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), pages 48—61. ACM, 2005. doi:10.1145/1065010.
1065018. (cited on pages 32, 78, 79, 259, and 260.)

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scal-
able Multiline Program Patch Synthesis via Symbolic Analysis. In Pro-
ceedings of the 38th International Conference on Software Engineering
(ICSE), pages 691-701. ACM, 2016. doi:10.1145/2884781.2884807.
(cited on pages 211 and 231.)

Kristian Nybom, Adnan Ashraf, and Ivan Porres. A Systematic Mapping
Study on API Documentation Generation Approaches. In Proceedings of
the 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 462-469. IEEE, 2018. doi:10.1109/SEAA.
2018.00081. (cited on pages 4, 46, 47, 70, and 71.)

Sebastian Nielebock, Paul Blockhaus, Jacob Kriiger, and Frank Ortmeier.
An Experimental Analysis of Graph-Distance Algorithms for Comparing
API Usages. In Proceedings of the 21st International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM), pages 214-225.
IEEE, 2021. doi:10.1109/SCAM52516.2021.00034. (cited on pages 15, 17,
143, 149, 152, 154, 155, and 156.)

Sebastian Nielebock, Paul Blockhaus, Jacob Kriiger, and Frank Ortmeier.
AndroidCompass: A Dataset of Android Compatibility Checks in Code
Repositories. In Proceedings of the 18th International Working Conference
on Mining Software Repositories (MSR), pages 535-539. IEEE, 2021. doi:
10.1109/MSR52588.2021.00069. (cited on pages 139, 157, 158, 196, 197, 202,
236, and 244.)

Sebastian Nielebock, Paul Blockhaus, Jacob Kriiger, and Frank Ortmeier.
Automated Change Rule Inference for Distance-Based API Misuse Detec-
tion, 2022. doi:10.48550/ARXIV.2207.06665. (cited on pages 15, 17, 91,
143, 149, 155, 156, 270, and 271.)

Sebastian Nielebock, Paul Blockhaus, Jacob Kriiger, and Frank Ortmeier.
ASAP-Repair: API-Specific Automated Program Repair Based on API
Usage Graphs. In Proceedings of the 5th International Workshop on
Automated Program Repair (APR), pages 1-4. ACM, 2024. doi:10.1145/
3643788.3648011. (cited on pages 205 and 224.)

Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel. Up2Dep:
Android Tool Support to Fix Insecure Code Dependencies. In Proceedings

325

https://doi.org/10.1109/ICSE.2012.6227179
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1109/SEAA.2018.00081
https://doi.org/10.1109/SEAA.2018.00081
https://doi.org/10.1109/SCAM52516.2021.00034
https://doi.org/10.1109/MSR52588.2021.00069
https://doi.org/10.1109/MSR52588.2021.00069
https://doi.org/10.48550/ARXIV.2207.06665
https://doi.org/10.1145/3643788.3648011
https://doi.org/10.1145/3643788.3648011

BIBLIOGRAPHY

[NDRDS22]

[NDT*17]

[NGB21]

[NHC*16]

[NHKO20a]

[NHKO20b)]

[NHL18]

[NHM*19]

326

of the 36th Annual Computer Security Applications Conference (ACSAC),
pages 263-276. ACM, 2020. doi:10.1145/3427228.3427658. (cited on
pages 79 and 261.)

Phuong T. Nguyen, Juri Di Rocco, Claudio Di Sipio, Davide Di Rus-
cio, and Massimiliano Di Penta. Recommending API Function Calls
and Code Snippets to Support Software Development. [IEEE Trans-
actions on Software Engineering (TSE), 48(7):2417-2438, 2022. doi:
10.1109/TSE.2021.3059907. (cited on pages 78 and 259.)

Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Her-
zog, Sergej Dechand, and Matthew Smith. Why Do Developers Get Pass-
word Storage Wrong? A Qualitative Usability Study. In Proceedings
of the 24th ACM Conference on Computer and Communications Secu-
rity (CCS), pages 311-328. ACM, 2017. doi:10.1145/3133956.3134082.
(cited on pages 54, 59, 78, 250, 251, 255, and 258.)

AmirHossein Naghshzan, Latifa Guerrouj, and Olga Baysal. Leveraging
Unsupervised Learning to Summarize APIs Discussed in Stack Overflow.
In Proceedings of the 21st International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 142-152. IEEE, 2021.
doi:10.1109/SCAM52516.2021.00026. (cited on pages 78 and 259.)

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen,
Lily Mast, Eli Rademacher, Tien N. Nguyen, and Danny Dig. API Code
Recommendation using Statistical Learning from Fine-Grained Changes.
In Proceedings of the 24th Joint Meeting of the Furopean Software Engi-
neering Conference/Foundations of Software Engineering (ESEC/FSE),
pages 511-522. ACM, 2016. doi:10.1145/2950290.2950333. (cited on
page 199.)

Sebastian Nielebock, Robert Heumiiller, Jacob Kriiger, and Frank Ort-
meier. Cooperative API Misuse Detection Using Correction Rules. In
Proceedings of the 42nd International Conference on Software Engineer-
ing (ICSE) - New Ideas and Emerging Results Track, pages 73-76. ACM,
2020. doi:10.1145/3377816.3381735. (cited on pages 15, 17, and 143.)

Sebastian Nielebock, Robert Heumiiller, Jacob Kriiger, and Frank Ort-
meier. Using API-Embedding for API-Misuse Repair. In Proceedings of the
1st International Workshop on Automated Program Repair (APR), pages
1-2. ACM, 2020. doi:10.1145/3387940.339217. (cited on page 248.)

Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. CLEVER: Combin-
ing Code Metrics with Clone Detection for Just-in-Time Fault Prevention
and Resolution in Large Industrial Projects. In Proceedings of the 15th In-
ternational Working Conference on Mining Software Repositories (MSR),
pages 153-164. ACM, 2018. doi:10.1145/3196398.3196438. (cited on
pages 18, 207, 215, 231, and 247.)

Daye Nam, Amber Horvath, Andrew Macvean, Brad Myers, and Bog-
dan Vasilescu. MARBLE: Mining for Boilerplate Code to Identify API

https://doi.org/10.1145/3427228.3427658
https://doi.org/10.1109/TSE.2021.3059907
https://doi.org/10.1109/TSE.2021.3059907
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1109/SCAM52516.2021.00026
https://doi.org/10.1145/2950290.2950333
https://doi.org/10.1145/3377816.3381735
https://doi.org/10.1145/3387940.339217
https://doi.org/10.1145/3196398.3196438

[NHO18]

INHSO21]

[Niel7]

INK11]

[NKMB16]

[NKZ17]

INL22|

[NM10]

BIBLIOGRAPHY

Usability Problems. In Proceedings of the 34th International Conference
on Automated Software Engineering (ASE), pages 615-627. IEEE, 2019.
doi:10.1109/ASE.2019.00063. (cited on pages 54, 251, and 252.)

Sebastian Nielebock, Robert Heumiiller, and Frank Ortmeier. Commits as
a Basis for API Misuse Detection. In Proceedings of the 7th International
Workshop on Software Mining, pages 20-23. ACM, 2018. doi:10.1145/
3242887 .3242890. (cited on pages 14, 16, 91, 108, 111, and 247.)

Sebastian Nielebock, Robert Heumiiller, Kevin Michael Schott, and Frank
Ortmeier. Guided Pattern Mining for API Misuse Detection by Change-
Based Code Analysis. Springer Automated Software Engineering, 28(15),
August 2021. doi:10.1007/s10515-021-00294-x. (cited on pages 14, 16,
91, 108, 109, 110, 111, 113, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130,
132, 134, 135, and 137.)

Sebastian Nielebock. Towards API-Specific Automatic Program Repair.
In Proceedings of the 32nd International Conference on Automated Soft-
ware Engineering (ASE) - Doctoral Symposium, pages 1010-1013. IEEE,
2017. doi:10.1109/ASE.2017.8115721. (cited on pages 6, 19, 205, 207, 209,
and 210.)

Anh Cuong Nguyen and Siau-Cheng Khoo. Extracting Significant
Specifications from Mining through Mutation Testing. In Proceedings
of the 13th International Conference on Formal Engineering Methods
(ICFEM), volume 6991, pages 472-488. Springer, 2011. doi:10.1007/
978-3-642-24559-6_32. (cited on pages 2, 5, 95, 101, and 267.)

Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bodden. Jumping
through Hoops: Why Do Java Developers Struggle with Cryptography
APIs? 1In Proceedings of the 38th International Conference on Software
Engineering (ICSE), pages 935-946. ACM, 2016. doi:10.1145/2884781.
2884790. (cited on pages 4, 54, 249, and 250.)

Haoran Niu, Iman Keivanloo, and Ying Zou. Learning to rank code ex-
amples for code search engines. Springer Empirical Software Engineering
(EMSE), 22(1):259-291, 2017. doi:10.1007/S10664-015-9421-5. (cited
on pages 78, 79, 259, and 260.)

Amirfarhad Nilizadeh and Gary T. Leavens. Be Realistic: Automated
Program Repair is a Combination of Undecidable Problems. In Proceed-
ings of the 3rd International Workshop on Automated Program Repair
(APR), pages 31-32. ACM, 2022. doi:10.1145/3524459.3527346. (cited
on pages 6, 18, and 207.)

Seyed Mehdi Nasehi and Frank Maurer. Unit tests as API usage ex-
amples. In Proceedings of the 26th International Conference on Software
Maintenance (ICSM), pages 1-10. IEEE, 2010. doi:10.1109/ICSM.2010.
5609553. (cited on page 259.)

327

https://doi.org/10.1109/ASE.2019.00063
https://doi.org/10.1145/3242887.3242890
https://doi.org/10.1145/3242887.3242890
https://doi.org/10.1007/s10515-021-00294-x
https://doi.org/10.1109/ASE.2017.8115721
https://doi.org/10.1007/978-3-642-24559-6_32
https://doi.org/10.1007/978-3-642-24559-6_32
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1007/S10664-015-9421-5
https://doi.org/10.1145/3524459.3527346
https://doi.org/10.1109/ICSM.2010.5609553
https://doi.org/10.1109/ICSM.2010.5609553

BIBLIOGRAPHY

[NMH*24]

[NMR22]

[NMVH23]

[NND*19]

[NNP*09a]

[NNP+09b)]

[NNPN17]

[NNW*10]

[NR25]

328

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu,
and Brad Myers. Using an LLM to Help With Code Understanding. In
Proceedings of the 46th International Conference on Software Engineering
(ICSE). ACM, 2024. doi:10.1145/3597503.3639187. (cited on pages 78,
79, 247, and 258.)

Md. Nadim, Debajyoti Mondal, and Chanchal K. Roy. Leveraging
structural properties of source code graphs for just-in-time bug predic-
tion. Springer Automated Software Engineering, 29(1):27, 2022. doi:
10.1007/810515-022-00326-0. (cited on page 199.)

Daye Nam, Brad Myers, Bogdan Vasilescu, and Vincent Hellendoorn.
Improving API Knowledge Discovery with ML: A Case Study of Com-
parable API Methods. In Proceedings of the 45th International Con-
ference on Software Engineering (ICSE), pages 1890-1906. IEEE, 2023.
doi:10.1109/ICSE48619.2023.00161. (Cited on pages 79 and 260.)

Hoan Anh Nguyen, Tien N. Nguyen, Danny Dig, Son Nguyen, Hieu Tran,
and Michael Hilton. Graph-Based Mining of In-the-Wild, Fine-Grained,
Semantic Code Change Patterns. In Proceedings of the 41st International
Conference on Software Engineering (ICSE), pages 819-830, 2019. doi:
10.1109/ICSE.2019.00089. (Cited on page 199.)

Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Accurate and Efficient Structural Char-
acteristic Feature Extraction for Clone Detection. In Proceedings of
the 12th International Conference on Fundamental Approaches to Soft-
ware Engineering (FASE), pages 440-455. Springer, 2009. doi:10.1007/
978-3-642-00593-0_31. (cited on pages 43, 106, 155, 202, and 243.)

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Graph-based Mining of Multiple Object Us-
age Patterns. In Proceedings of the 7th Joint Meeting of the European Soft-
ware Engineering Conference/Foundations of Software Engineering (ES-
EC/FSE), pages 383-392. ACM, 2009. doi:10.1145/1595696.1595767.
(cited on pages 2, 5, 28, 93, 95, 101, 102, 105, and 267.)

Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N
Nguyen. Exploring API Embedding for API Usages and Applications. In
Proceedings of the 39th International Conference on Software Engineering
(ICSE), pages 438-449. IEEE, 2017. doi:10.1109/ICSE.2017.47. (cited
on pages 32, 35, 199, and 248.)

Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Anh Tuan
Nguyen, Miryung Kim, and Tien N. Nguyen. A graph-based approach
to API usage adaptation. SIGPLAN Not., 45(10):302-321, October 2010.
doi:10.1145/1932682.1869486. (cited on pages 35 and 199.)

Mathieu Nassif and Martin P. Robillard. Non-Linear Software Doc-
umentation with Interactive Code Examples. ACM Transactions on

https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1007/S10515-022-00326-0
https://doi.org/10.1007/S10515-022-00326-0
https://doi.org/10.1109/ICSE48619.2023.00161
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1007/978-3-642-00593-0_31
https://doi.org/10.1007/978-3-642-00593-0_31
https://doi.org/10.1145/1595696.1595767
https://doi.org/10.1109/ICSE.2017.47
https://doi.org/10.1145/1932682.1869486

[NVN19]

[INVN20]

[NWA*17]

[NZST23]

[Och57]

[OGKY?20]

[OHG*25]

[OLR*18]

BIBLIOGRAPHY

Software Engineering and Methodology (TOSEM), 34(2), January 2025.
doi:10.1145/3702976. (cited on pages 79 and 261.)

Tam The Nguyen, Phong Minh Vu, and Tung Thanh Nguyen. An Empir-
ical Study of Exception Handling Bugs and Fixes. In Proceedings of the
2019 ACM Southeast Conference (ACSME), pages 257-260. ACM, 2019.
doi:10.1145/3299815.3314472. (cited on page 24.)

Tam Nguyen, Phong Vu, and Tung Nguyen. Code Recommendation for
Exception Handling. In Proceedings of the 28th Joint Meeting of the Furo-
pean Software Engineering Conference/Foundations of Software Engineer-
ing (ESEC/FSE), pages 1027-1038. ACM, 2020. doi:10.1145/3368089.
3409690. (cited on pages 5, 95, 100, 101, 102, 105, 198, 200, and 267.)

Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes,
Charles Weir, and Sascha Fahl. A Stitch in Time: Supporting Android
Developers in Writing Secure Code. In Proceedings of the 24th ACM Con-
ference on Computer and Communications Security (CCS), pages 1065—
1077. ACM, 2017. doi:10.1145/3133956.3133977. (cited on pages 78,
258, and 259.)

Dip Kiran Pradhan Newar, Rui Zhao, Harvey Siy, Leen-Kiat Soh, and
Myoungkyu Song. SSDTutor: A feedback-driven intelligent tutoring sys-
tem for secure software development. Science of Computer Program-
ming, 227(102933), 2023. doi:10.1016/j.scico.2023.102933. (cited
on page 260.)

Akira Ochiai. Zoogeographical Studies on the Soleoid Fishes Found in
Japan and its Neighhouring Regions-11. Bulletin of the Japanese Society of
Scientific Fisheries, 22(9):526-530, 1957. doi:10.2331/suisan.22.526.
(cited on page 208.)

Shuyin OuYang, Fan Ge, Li Kuang, and Yuyu Yin. API Misuse De-
tection Based on Stacked LSTM. In Proceedings of the 16th Interna-
tional Conference on Collaborative Computing: Networking, Applications
and Worksharing (EAI), volume 349, pages 421-438. Springer, 2020.
doi:10.1007/978-3-030-67537-0_26. (cited on pages 96, 97, 100, 101,
and 267.)

Lina Ochoa, Muhammad Hammad, Gérkem Giray, Onder Babur, and
Kwabena Bennin. Characterising harmful API uses and repair techniques:
Insights from a systematic review. Computer Science Review, 57(100732),
2025. doi:10.1016/j.cosrev.2025.100732. (cited on pages 46, 47,
and 48.)

Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad
Akefirad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong,
Justin Cappos, and Yuriy Brun. API Blindspots: Why Experienced
Developers Write Vulnerable Code. In Proceedings of the 14th Sympo-
situm on Usable Privacy and Security (SOUPS), pages 315-328. USENIX,

329

https://doi.org/10.1145/3702976
https://doi.org/10.1145/3299815.3314472
https://doi.org/10.1145/3368089.3409690
https://doi.org/10.1145/3368089.3409690
https://doi.org/10.1145/3133956.3133977
https://doi.org/10.1016/j.scico.2023.102933
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.1007/978-3-030-67537-0_26
https://doi.org/10.1016/j.cosrev.2025.100732

BIBLIOGRAPHY

[0084]

[0S07]

[PBTL99a]

[PBTL99b)]

[PCY95]

[PDHR23]

[PEO7]

[PFM13]

[PGOY]

330

August 2018. URL: https://www.usenix.org/conference/soups2018/
presentation/oliveira. (cited on pages 54, 102, and 250.)

Karl J. Ottenstein and Linda M. Ottenstein. The Program Dependence
Graph in a Software Development Environment. In Proceedings of the 1st
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, pages 177-184. ACM, 1984.
doi:10.1145/800020.808263. (cited on page 28.)

Frank Ortmeier and Gerhard Schellhorn. Formal Fault Tree Analysis
- Practical Experiences. FElectronic Notes in Theoretical Computer Sci-
ence, 185:139-151, 2007. doi:10.1016/j.entcs.2007.05.034. (cited on

page 4.)

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discover-
ing Frequent Closed Itemsets for Association Rules. In Proceedings of the
7th International Conference on Database Theory (ICDT), pages 398-416.
Springer, 1999. doi:10.1007/3-540-49257-7_25. (cited on page 33.)

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient
mining of association rules using closed itemset lattices. Information Sys-
tems, 24(1):25746, 1999. doi:10.1016/S0306-4379(99)00003-4. (cited
on page 38.)

Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An Effective Hash-
Based Algorithm for Mining Association Rules. In Proceedings of the
22nd ACM SIGMOD International Conference on Management of Data
(MOD), pages 175-186. ACM, 1995. doi:10.1145/223784.223813. (cited
on page 38.)

Nikhil Patnaik, Andrew Dwyer, Joseph Hallett, and Awais Rashid. SLR:
From Saltzer and Schroeder to 2021...47 Years of Research on the Devel-
opment and Validation of Security API Recommendations. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 32(3), April
2023. doi:10.1145/3561383. (cited on pages 4, 46, 47, 70, and 71.)

Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-Directed Ran-
dom Testing for Java. In Proceedings of the 22nd Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pages 815-816. ACM, 2007. doi : 10.1145/1297846.1297902. (cited
on page 99.)

Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. An Empirical Study
of API Usability. In Proceedings of the 7th International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 5—14.
IEEE, 2013. doi:10.1109/ESEM.2013.14. (cited on pages 54, 59, and 251.)

Michael Pradel and Thomas R. Gross. Automatic Generation of Ob-
ject Usage Specifications from Large Method Traces. In Proceedings of
the 24th International Conference on Automated Software Engineering
(ASE), pages 371-382. IEEE, 2009. doi:10.1109/ASE.2009.60. (cited
on pages 2, 5, and 99.)

https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://doi.org/10.1145/800020.808263
https://doi.org/10.1016/j.entcs.2007.05.034
https://doi.org/10.1007/3-540-49257-7_25
https://doi.org/10.1016/S0306-4379(99)00003-4
https://doi.org/10.1145/223784.223813
https://doi.org/10.1145/3561383
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ESEM.2013.14
https://doi.org/10.1109/ASE.2009.60

[PG12]

[PHMOO]

[PHM*01]

[PHR14]

[PHR19]

[PJAG12]

[PMK*24]

[PP94]

BIBLIOGRAPHY

Michael Pradel and Thomas R. Gross. Leveraging test generation and
specification mining for automated bug detection without false positives.
In Proceedings of the 34th International Conference on Software Engi-
neering (ICSE), pages 288-298. IEEE, 2012. doi:10.1109/ICSE.2012.
6227185. (cited on pages 5, 96, 99, 100, 101, and 2(37.)

Jian Pei, Jiawei Han, and Runying Mao. CLOSET: an efficient algorithm
for mining frequent closed itemsets. In Proceedings of the 5th Workshop on
Research Issues in Data Mining and Knowledge Discovery (DMKD), pages
21-30. ACM, 2000. URL: https://cs.rhodes.edu/~welshc/COMP465_
S15/Papers/closet-pei.pdf. (cited on page 38.)

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Meichun Hsu. PrefixSpan: Mining Sequential Pat-
terns by Prefix-Projected Growth. In Proceedings of the 17th Interna-
tional Conference on Data Engineering (ICDE), pages 215-224. IEEE,
2001. doi:10.1109/ICDE.2001.914830. (cited on page 39.)

Pujan Petersen, Stefan Hanenberg, and Romain Robbes. An Empirical
Comparison of Static and Dynamic Type Systems on API Usage in the
Presence of an IDE: Java vs. Groovy with Eclipse. In Proceedings of the
22nd International Conference on Program Comprehension (ICPC), pages
212-222. ACM, 2014. doi:10.1145/2597008.2597152. (cited on pages 80
and 261.)

Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Usability Smells: An
Analysis of Developers’ Struggle With Crypto Libraries. In Proceed-
ings of the 15th Symposium on Usable Privacy and Security (SOUPS),
pages 245-257. USENIX, August 2019. URL: https://www.usenix.org/
conference/soups2019/presentation/patnaik. (cited on pages 4, 54,
and 252.)

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross.
Statically checking API protocol conformance with mined multi-object
specifications. In Proceedings of the 34th International Conference on
Software Engineering (ICSE), pages 925-935. IEEE, 2012. doi:10.1109/
ICSE.2012.6227127. (cited on pages 96, 99, 101, and 267.)

Justyna Petke, Matias Martinez, Maria Kechagia, Aldeida Aleti, and Fed-
erica Sarro. The Patch Overfitting Problem in Automated Program Re-
pair: Practical Magnitude and a Baseline for Realistic Benchmarking. In
Proceedings of the 32nd Joint Meeting of the European Software Engineer-
ing Conference/Foundations of Software Engineering (ESEC/FSE), pages
452-456. ACM, 2024. doi:10.1145/3663529.3663776. (cited on pages 208
and 246.)

S. Paul and A. Prakash. A Framework for Source Code Search Using
Program Patterns. IEEE Transactions on Software Engineering (TSE),
20(6):463-475, 1994. doi:10.1109/32.295894. (cited on page 32.)

331

https://doi.org/10.1109/ICSE.2012.6227185
https://doi.org/10.1109/ICSE.2012.6227185
https://cs.rhodes.edu/~welshc/COMP465_S15/Papers/closet-pei.pdf
https://cs.rhodes.edu/~welshc/COMP465_S15/Papers/closet-pei.pdf
https://doi.org/10.1109/ICDE.2001.914830
https://doi.org/10.1145/2597008.2597152
https://www.usenix.org/conference/soups2019/presentation/patnaik
https://www.usenix.org/conference/soups2019/presentation/patnaik
https://doi.org/10.1109/ICSE.2012.6227127
https://doi.org/10.1109/ICSE.2012.6227127
https://doi.org/10.1145/3663529.3663776
https://doi.org/10.1109/32.295894

BIBLIOGRAPHY

[PSM*07]

[QLAR15]

[QLL16]

[QML*14]

(QZW19]

[RAB*20]

[RAT*06]

[RBK*13]

332

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth
Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A Survey
of Literature on the Teaching of Introductory Programming. In Working
Group Reports on ITiCSE on Innovation and Technology in Computer
Science Education, pages 204-223. ACM, 2007. doi:10.1145/1345443.
1345441, (cited on page 4.)

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An Analysis
of Patch Plausibility and Correctness for Generate-and-Validate Patch
Generation Systems. In Proceedings of the 24/th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA), pages
24-36. ACM, 2015. doi:10.1145/2771783.2771791. (cited on pages 208
and 211.)

Dong Qiu, Bixin Li, and Hareton Leung. Understanding the API usage
in Java. Elsevier Journal of Information and Software Technology (IST),
73:81-100, 2016. doi:10.1016/j.infsof.2016.01.011. (cited on pages 4,
54, and 251.)

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang.
The Strength of Random Search on Automated Program Repair. In Pro-
ceedings of the 36th International Conference on Software Engineering
(ICSE), pages 254-265. ACM, 2014. doi:10.1145/2568225.2568254.
(cited on page 211.)

Xue Qin, Hao Zhong, and Xiaoyin Wang. TestMig: migrating GUI test
cases from iOS to Android. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA), pages
284-295. ACM, 2019. doi:10.1145/3293882.3330575. (Cited on page 35.)

Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jes-
sica Diaz, Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt,
Antonio Filieri, Breno Bernard Nicolau de Franca, Carlo Alberto Furia,
Greg Gay, Nicolas Gold, Daniel Graziotin, Pinjia He, Rashina Hoda, Na-
talia Juristo, Barbara Kitchenham, Valentina Lenarduzzi, Jorge Martinez,
Jorge Melegati, Daniel Mendez, Tim Menzies, Jefferson Molleri, Dietmar
Pfahl, Romain Robbes, Daniel Russo, Nyyti Saarimaki, Federica Sarro,
Davide Taibi, Janet Siegmund, Diomidis Spinellis, Miroslaw Staron, Klaas
Stol, Margaret-Anne Storey, Davide Taibi, Damian Tamburri, Marco
Torchiano, Christoph Treude, Burak Turhan, Xiaofeng Wang, and Sira
Vegas. Empirical standards for software engineering research, 2020.
doi:10.48550/ARXIV.2010.03525. (cited on pages 16, 17, 19, 45, 63, 73,
91, 92, 143, 205, and 206.)

P. Runeson, C. Andersson, T. Thelin, A. Andrews, and T. Berling. What
do we know about defect detection methods? IEEE Software, 23(3):82-90,
2006. doi:10.1109/MS.2006.89. (cited on pages 5 and 25.)

Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and
Tristan Ratchford. Automated API Property Inference Techniques. IEEFE

https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1016/j.infsof.2016.01.011
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/3293882.3330575
https://doi.org/10.48550/ARXIV.2010.03525
https://doi.org/10.1109/MS.2006.89

[RC15]

[RD11]

[RHR*+25]

[RKST21]

[RLC20]

[RML*23]

[Rob09]

[RRL16]

[RRS23]

BIBLIOGRAPHY

Transactions on Software Engineering (TSE), 39(5):613-637, 2013. doi:
10.1109/TSE.2012.63. (cited on pages 5, 15, 35, 36, 39, 70, 71, 93, 98, 103,
108, 140, and 199.)

Martin P. Robillard and Yam B. Chhetri. Recommending reference
API documentation. Springer Empirical Software Engineering (EMSE),
20(6):1558-1586, 2015. doi:10.1007/S10664-014-9323-Y. (cited on
pages 79 and 260.)

Martin P Robillard and Robert DeLine. A field Study of API Learning
Obstacles. Springer Empirical Software Engineering (EMSE), 16(6):703—
732, 2011. doi:10.1007/s10664-010-9150-8. (cited on pages 54 and 255.)

Arjun Ramesh, Tianshu Huang, Jaspreet Riar, Ben L. Titzer, and An-
thony Rowe. Unveiling Heisenbugs with Diversified Execution. Proceed-
ings of the ACM on Programming Languages, 9(OOPSLA1), April 2025.
doi:10.1145/3720428. (cited on page 139.)

Mikko Raatikainen, Elina Kettunen, Ari Salonen, Marko Komssi, Tommi
Mikkonen, and Timo Lehtonen. State of the Practice in Application Pro-
gramming Interfaces (APIs): A Case Study. In Proceedings of the 15th
European Conference on Software Architecture (ECSA), volume 12857,
pages 191-206. Springer, 2021. doi:10.1007/978-3-030-86044-8_14.
(cited on page 54.)

Hao Ren, Yanhui Li, and Lin Chen. An Empirical Study on Criti-
cal Blocking Bugs. In Proceedings of the 28th International Confer-
ence on Program Comprehension (ICPC), pages 72-82. ACM, 2020.
doi:10.1145/3387904.3389267. (cited on page 24.)

Daniel Ramos, Hailie Mitchell, Inés Lynce, Vasco Manquinho, Ruben
Martins, and Claire Le Goues. MELT: Mining Effective Lightweight
Transformations from Pull Requests. In Proceedings of the 38th Inter-
national Conference on Automated Software Engineering (ASE), pages
1516-1528. TEEE, 2023. doi:10.1109/ASE56229.2023.00117. (cited on
pages 35 and 199.)

Martin P. Robillard. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software, 26(6):27-34, 2009. doi:10.1109/MS.2009.
193. (cited on pages 4, 54, and 250.)

Mohammad Masudur Rahman, Chanchal K. Roy, and David Lo. RACK:
Automatic API Recommendation Using Crowdsourced Knowledge. In
Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), volume 1, pages 349-359. IEEE,
2016. doi:10.1109/SANER.2016.80. (cited on page 32.)

Ita Ryan, Utz Roedig, and Klaas-Jan Stol. Unhelpful Assumptions in Soft-
ware Security Research. In Proceedings of the 30th ACM Conference on
Computer and Communications Security (CCS), pages 3460-3474. ACM,
2023. doi:10.1145/3576915.3623122. (Cited on pages 2, 70, and 71.)

333

https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1007/S10664-014-9323-Y
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1145/3720428
https://doi.org/10.1007/978-3-030-86044-8_14
https://doi.org/10.1145/3387904.3389267
https://doi.org/10.1109/ASE56229.2023.00117
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1109/SANER.2016.80
https://doi.org/10.1145/3576915.3623122

BIBLIOGRAPHY

[RRWF25]

[RTP19]

[RvV17]

[RXA+19]

[RYX20]

[SA96]

[SAB1S]

[SAE*1§]

[SAI20]

334

Joseph Renzullo, Pemma Reiter, Westley Weimer, and Stephanie Forrest.
Automated Program Repair: Emerging Trends Pose and Expose Prob-
lems for Benchmarks. ACM Computing Surveys, February 2025. Just
Accepted. doi:10.1145/3704997. (cited on pages 206, 209, 212, and 247.)

Irum Rauf, Elena Troubitsyna, and Ivan Porres. A systematic mapping
study of API usability evaluation methods. Computer Science Review,
33:49-68, 2019. doi:10.1016/j.cosrev.2019.05.001. (cited on pages 4,
46, 47, 70, and 71.)

S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning and
impact of breaking changes in the Maven repository. FElsevier Journal
of Systems and Software (JSS), 129:140-158, 2017. doi:10.1016/j.jss.
2016.04.008. (cited on pages 35, 79, and 261.)

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian,
Miles Frantz, Murat Kantarcioglu, and Danfeng (Daphne) Yao. Cryp-
toGuard: High Precision Detection of Cryptographic Vulnerabilities in
Massive-sized Java Projects. In Proceedings of the 26th ACM Confer-
ence on Computer and Communications Security (CCS), pages 2455—
2472. ACM, 2019. doi:10.1145/3319535.3345659. (cited on page 100.)

Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming
Zhu, and Jianling Sun. API-Misuse Detection Driven by Fine-Grained
API-Constraint Knowledge Graph. In Proceedings of the 35th Interna-
tional Conference on Automated Software Engineering (ASE), pages 461—
472. IEEE, 2020. doi:10.1145/3324884.3416551. (cited on pages 96, 98,
99, 101, and 267.)

Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proceedings of the
5th International Conference on Extending Database Technology (EDBT),
volume 1057, pages 3-17. Springer, 1996. doi:10.1007/BFb0014140.
(cited on page 39.)

Davide Spadini, Mauricio Aniche, and Alberto Bacchelli. PyDriller:
Python framework for mining software repositories. In Proceedings of the
26th Joint Meeting of the European Software Engineering Conference/-
Foundations of Software Engineering (ESEC/FSE), pages 908-911. ACM,
2018. doi:10.1145/3236024.3264598. (cited on page 34.)

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon,
and Ciera Jaspan. Lessons from Building Static Analysis Tools at Google.
Communications of the ACM, 61(4):58-66, March 2018. doi:10.1145/
3188720. (cited on pages 5 and 108.)

Gian Luca Scoccia, Marco Autili, and Paola Inverardi. A self-configuring
and adaptive privacy-aware permission system for Android apps. In
Proceedings of the 1st International Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS), pages 38-47. IEEE, 2020.
doi:10.1109/ACS0S49614.2020.00024. (Cited on pages 79 and 260.)

https://doi.org/10.1145/3704997
https://doi.org/10.1016/j.cosrev.2019.05.001
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/3324884.3416551
https://doi.org/10.1007/BFb0014140
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3188720
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ACSOS49614.2020.00024

[SAKW21]

[SAvDBI1S]

[SB22]

[SBLGB15]

[SBLV+20]

[SCO6]

[SC07]

[Sch24]

[SDSE20]

[Seal7]

BIBLIOGRAPHY

Jonathan Sharman, Claudia Acemyan, Philip Kortum, and Dan Wallach.
Bad Tools Hurt: Lessons for teaching computer security skills to un-
dergraduates. International Journal of Computer Science Education in
Schools, 5(2):74-92, December 2021. doi:10.21585/ijcses.v5i2.131.
(cited on pages 78, 79, 258, and 260.)

Anand Ashok Sawant, Mauricio Aniche, Arie van Deursen, and Alberto
Bacchelli. Understanding developers’ needs on deprecation as a language
feature. In Proceedings of the 40th International Conference on Software
Engineering (ICSE), pages 561-571. ACM, 2018. doi:10.1145/3180155.
3180170. (cited on page 34.)

Qusay Idrees Sarhan and Arpad Beszédes. A Survey of Challenges in
Spectrum-Based Software Fault Localization. IEEE Access, 10:10618—
10639, 2022. doi:10.1109/ACCESS.2022.3144079. (cited on page 208.)

Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. Is the
Cure Worse Than the Disease? Overfitting in Automated Program Repair.
In Proceedings of the 10th Joint Meeting of the European Software Engi-
neering Conference/Foundations of Software Engineering (ESEC/FSE),
pages 532-543. ACM, 2015. doi:10.1145/2786805.2786825. (cited on
page 208.)

Simone Scalabrino, Gabriele Bavota, Mario Linares-Vasquez, Valentina
Piantadosi, Michele Lanza, and Rocco Oliveto. API Compatibility Is-
sues in Android: Causes and Effectiveness of Data-driven Detection Tech-
niques. Springer Empirical Software Engineering (EMSE), 25(6):5006—
5046, 2020. doi:10.1007/s10664-020-09877-w. (cited on page 158.)

Naiyana Sahavechaphan and Kajal Claypool. XSnippet: mining For Sam-
ple Code. In Proceedings of the 21st Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages 413
430. ACM, 2006. doi:10.1145/1167473.1167508. (Cited on page 32.)

Jeffrey Stylos and Steven Clarke. Usability Implications of Requiring
Parameters in Objects’ Constructors. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE), pages 529-539. IEEE,
2007. doi:10.1109/ICSE.2007.92. (cited on pages 54 and 254.)

Samuel David Schwartz. FEmpirical Quantitative Analyses of Research
Software Engineering Projects in Scientific Computing. PhD thesis, Col-
lege of Arts and Sciences, University of Oregon, 6 2024. URL: https:
//www . cs.uoregon.edu/Reports/PHD-202406-Schwartz.pdf. (cited on
pages 33 and 34.)

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green
AL Communications of the ACM, 63(12):54-63, November 2020. doi:
10.1145/3381831. (cited on page 247.)

Micheél O Searcéid. Metric Spaces, chapter Metrics, pages 1-20. Springer,
2007. doi:10.1007/978-1-84628-627-8_1. (Cited on page 152.)

335

https://doi.org/10.21585/ijcses.v5i2.131
https://doi.org/10.1145/3180155.3180170
https://doi.org/10.1145/3180155.3180170
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1007/s10664-020-09877-w
https://doi.org/10.1145/1167473.1167508
https://doi.org/10.1109/ICSE.2007.92
https://www.cs.uoregon.edu/Reports/PHD-202406-Schwartz.pdf
https://www.cs.uoregon.edu/Reports/PHD-202406-Schwartz.pdf
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.1007/978-1-84628-627-8_1

BIBLIOGRAPHY

[SED14]

[Ser19]

[SF83]

[SFDBO7]

[SFYMOY]

[SGM20]

[SHA14]

[SIMOS]

[SJIR*15]

336

Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. Solving the
Search for Source Code. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(3), June 2014. doi:10.1145/2581377.
(cited on page 32.)

Francesc Serratosa. Graph edit distance: Restrictions to be a metric.
Elsevier Pattern Recognition, 90, 06 2019. doi:10.1016/j.patcog.2019.
01.043. (cited on page 153.)

Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed
relational graphs for pattern recognition. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-13(3):353-362, 1983. doi:10.1109/TSMC.
1983.6313167. (cited on pages 148 and 153.)

Zachary M. Saul, Vladimir Filkov, Premkumar Devanbu, and Christian
Bird. Recommending Random Walks. In Proceedings of the 6th Joint
Meeting of the European Software Engineering Conference/Foundations
of Software Engineering (ESEC/FSE), pages 15-24. ACM, 2007. doi:
10.1145/1287624.1287629. (cited on page 32.)

Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and Brad A. Myers. Im-
proving API Documentation Using API Usage Information. In Proceedings
of the 26th IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 119-126. IEEE, 2009. doi:10.1109/VLHCC.
2009.5295283. (cited on pages 79, 259, and 260.)

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Pol-
icy Considerations for Modern Deep Learning Research. Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI), 34(09):13693—
13696, April 2020. doi:10.1609/aaai.v34i09.7123. (cited on page 247.)

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich. Structuring
Documentation to Support State Search: A Laboratory Experiment about
Protocol Programming. In Proceedings of the 28th Furopean Conference
on Object-Oriented Programming (ECOOP), volume 8586, pages 157—-181.
Springer, 2014. doi:10.1007/978-3-662-44202-9_7. (cited on pages 78
and 259.)

Thorsten Schéfer, Jan Jonas, and Mira Mezini. Mining framework usage
changes from instantiation code. In Proceedings of the 30th International
Conference on Software Engineering (ICSE), pages 471-480. ACM, 2008.
doi:10.1145/1368088.1368153. (Cited on pages 35 and 199.)

Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil
McMinn, and Andrea Arcuri. Do Automatically Generated Unit Tests
Find Real Faults? An Empirical Study of Effectiveness and Challenges.
In Proceedings of the 30th International Conference on Automated Soft-
ware Engineering (ASE), pages 201-211. IEEE, 2015. doi:10.1109/ASE.
2015.86. (cited on page 26.)

https://doi.org/10.1145/2581377
https://doi.org/10.1016/j.patcog.2019.01.043
https://doi.org/10.1016/j.patcog.2019.01.043
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1145/1287624.1287629
https://doi.org/10.1145/1287624.1287629
https://doi.org/10.1109/VLHCC.2009.5295283
https://doi.org/10.1109/VLHCC.2009.5295283
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1007/978-3-662-44202-9_7
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86

[SJST11]

[SK12]

[SK13]

[SK15]

[SKG21]

[SKP14]

[SLL*+18]

[SLP*09]

[SMOS]

BIBLIOGRAPHY

Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. A
General Software Defect-Proneness Prediction Framework. IEEE Trans-
actions on Software Engineering (TSE), 37(3):356-370, 2011. doi:10.
1109/TSE.2010.90. (cited on page 25.)

Thomas Scheller and Eva Eva Kiihn. Influencing Factors on the Usability
of API Classes and Methods. In Proceedings of the 19th International
Conference on Engineering of Computer-Based Systems (ECBS), pages
232-241. IEEE, 2012. doi:10.1109/ECBS.2012.27. (cited on page 54)

Thomas Scheller and Eva Kiihn. Usability Evaluation of Configuration-
Based API Design Concepts. In Proceedings of the 1st Interna-
tional Conference on Human Factors in Computing and Informatics
(SouthCHI), volume 7946, pages 54-73. Springer, 2013. doi:10.1007/
978-3-642-39062-3_4. (cited on page 54.)

Thomas Scheller and Eva Kithn. Automated measurement of API usabil-
ity: The API Concepts Framework. Elsevier Journal of Information and
Software Technology (IST), 61:145-162, 2015. doi:10.1016/j.infsof.
2015.01.009. (cited on pages 54 and 254.)

Christoph Schréer, Felix Kruse, and Jorge Marx Gdémez. A System-
atic Literature Review on Applying CRISP-DM Process Model. Pro-
cedia Computer Science, 181:526-534, 2021. CENTERIS 2020 - Inter-
national Conference on ENTERprise Information Systems / ProjMAN
2020 - International Conference on Project MANagement / HCist 2020
- International Conference on Health and Social Care Information Sys-
tems and Technologies 2020, CENTERIS/ProjMAN/HCist 2020. doi:
10.1016/j.procs.2021.01.199. (cited on pages 41 and 42.)

Ripon K. Saha, Sarfraz Khurshid, and Dewayne E. Perry. An Empiri-
cal Study of Long Lived Bugs. In Proceedings of the 1st Conference on
Software Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), pages 144-153. IEEE, 2014. doi:10.1109/CSMR-WCRE.2014.
6747164. (cited on page 24.)

Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R.
Prasad. Bugs.jar: A Large-scale, Diverse Dataset of Real-world Java
Bugs. In Proceedings of the 15th International Working Conference on
Mining Software Repositories (MSR), pages 10-13. ACM, 2018. doi:
10.1145/3196398.3196473. (cited on pages 209 and 220.)

Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason
Nieh, and Angelos D. Keromytis. ASSURE: Automatic Software Self-
healing Using REscue points. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 37-48. ACM, 2009. doi:10.1145/
1508244 .1508250. (cited on page 210.)

Jeffrey Stylos and Brad A. Myers. The Implications of Method Place-
ment on API Learnability. In Proceedings of the 16th Joint Meeting of

337

https://doi.org/10.1109/TSE.2010.90
https://doi.org/10.1109/TSE.2010.90
https://doi.org/10.1109/ECBS.2012.27
https://doi.org/10.1007/978-3-642-39062-3_4
https://doi.org/10.1007/978-3-642-39062-3_4
https://doi.org/10.1016/j.infsof.2015.01.009
https://doi.org/10.1016/j.infsof.2015.01.009
https://doi.org/10.1016/j.procs.2021.01.199
https://doi.org/10.1016/j.procs.2021.01.199
https://doi.org/10.1109/CSMR-WCRE.2014.6747164
https://doi.org/10.1109/CSMR-WCRE.2014.6747164
https://doi.org/10.1145/3196398.3196473
https://doi.org/10.1145/3196398.3196473
https://doi.org/10.1145/1508244.1508250
https://doi.org/10.1145/1508244.1508250

BIBLIOGRAPHY

[SM17]

[SMAR17]

[Som18]

[SPK14]

[SRB19)

[SSA15]

[SSC*18]

[SSD15]

[SSE15]

338

the European Software Engineering Conference/Foundations of Software
Engineering (ESEC/FSE), pages 105-112. ACM, 2008. doi:10.1145/
1453101.1453117. (cited on pages 4, 54, 78, 253, 254, and 259.)

André L. Santos and Brad A. Myers. Design annotations to improve
API discoverability. Elsevier Journal of Systems and Software (JSS),
126:17-33, 2017. doi:10.1016/j.jss.2016.12.036. (cited on pages 79,
259, and 260.)

S M Sohan, Frank Maurer, Craig Anslow, and Martin P. Robillard. A
Study of the Effectiveness of Usage Examples in REST API Documenta-
tion. In Proceedings of the 34th IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 53—61. IEEE, 2017.
doi:10.1109/VLHCC.2017.8103450. (cited on pages 4, 54, and 252.)

Ian Sommerville. Software Engineering, volume 10. Pearson Deutschland
GmbH, 2018. ISBN-13: 978-3-86894-344-3. (cited on pages 1, 4, 14, 25, 26,
27, and 33.)

Anirudh Santhiar, Omesh Pandita, and Aditya Kanade. Mining Unit
Tests for Discovery and Migration of Math APIs. ACM Transactions on
Software Engineering and Methodology (TOSEM), 24(1), October 2014.
doi:10.1145/2629506. (cited on pages 78, 79, 260, and 261.)

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. To re-
act, or not to react: Patterns of reaction to API deprecation. Springer
Empirical Software Engineering (EMSE), 24(6):3824-3870, 2019. doi:
10.1007/S10664-019-09713-W. (cited on page 35.)

Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on Internal
and External Validity in Empirical Software Engineering. In Proceedings
of the 37th International Conference on Software Engineering (ICSE),
volume 1, pages 9-19. IEEE, May 2015. doi:10.1109/ICSE.2015.24.
(cited on pages 92 and 233.)

Caitlin Sadowski, Emma Soderberg, Luke Church, Michal Sipko, and Al-
berto Bacchelli. Modern Code Review: A Case Study at Google. In
Proceedings of the 40th International Conference on Software Engineering
- Software Engineering in Practice (ICSE-SEIP), pages 181-190. ACM,
2018. doi:10.1145/3183519.3183525. (cited on page 4.)

Mohamed Aymen Saied, Houari Sahraoui, and Bruno Dufour. An ob-
servational study on API usage constraints and their documentation.
In Proceedings of the 22nd International Conference on Software Anal-
ysis, FEvolution, and Reengineering (SANER), pages 33-42. IEEE, 2015.
doi:10.1109/SANER.2015.7081813. (cited on pages 54 and 253.)

Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. How De-
velopers Search for Code: A Case Study. In Proceedings of the 10th
Joint Meeting of the European Software Engineering Conference/Founda-
tions of Software Engineering (ESEC/FSE), pages 191-201. ACM, 2015.
doi:10.1145/2786805.2786855. (Cited on page 32.)

https://doi.org/10.1145/1453101.1453117
https://doi.org/10.1145/1453101.1453117
https://doi.org/10.1016/j.jss.2016.12.036
https://doi.org/10.1109/VLHCC.2017.8103450
https://doi.org/10.1145/2629506
https://doi.org/10.1007/S10664-019-09713-W
https://doi.org/10.1007/S10664-019-09713-W
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/SANER.2015.7081813
https://doi.org/10.1145/2786805.2786855

[SSNB22]

[STFR17]

[SWH14]

[SWT*21]

[SWZ+20]

[SXCT19]

[SXP+21]

[SY21]

[Szp30]

[SZZ05)

BIBLIOGRAPHY

Michael Schlichtig, Steffen Sassalla, Krishna Narasimhan, and Eric Bod-
den. FUM - A Framework for API Usage constraint and Misuse Classifi-
cation. In Proceedings of the 29th International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pages 673-684. IEEE,
2022. doi:10.1109/SANER53432.2022.00085. (cited on pages 2 and 26.)

Michael Stauffer, Thomas Tschachtli, Andreas Fischer, and Kaspar
Riesen. A Survey on Applications of Bipartite Graph Edit Distance. In
Proceedings of the 10th International Workshop on Graph-Based Repre-
sentations in Pattern Recognition, volume 10310. Springer, 2017. doi:
10.1007/978-3-319-58961-9_22. (cited on page 153.)

Wei Shen, Jianyong Wang, and Jiawei Han. Sequential Pattern
Mining, pages 261-282. Springer, Cham, 2014. doi:10.1007/
978-3-319-07821-2_11. (cited on pages 36 and 39.)

Fabio Santos, Igor Wiese, Bianca Trinkenreich, Igor Steinmacher, Anita
Sarma, and Marco A. Gerosa. Can I Solve It? Identifying APIs Required
to Complete OSS Tasks. In Proceedings of the 18th International Work-
ing Conference on Mining Software Repositories (MSR), pages 346-357.
IEEE, 2021. doi:10.1109/MSR52588.2021.00047. (Cited on page 258.)

Qi Shen, Shijun Wu, Yanzhen Zou, Zixiao Zhu, and Bing Xie. From API to
NLI: A new interface for library reuse. Flsevier Journal of Systems and
Software (JSS), 169(110728), 2020. doi:10.1016/7.jss.2020.110728.
(cited on pages 78 and 259.)

Jiamou Sun, Zhenchang Xing, Rui Chu, Heilai Bai, Jinshui Wang, and
Xin Peng. Know-How in Programming Tasks: From Textual Tutorials to
Task-Oriented Knowledge Graph. In Proceedings of the 35th International
Conference on Software Maintenance and Evolution (ICSME), pages 257—
268. IEEE, 2019. doi:10.1109/ICSME.2019.00039. (cited on page 259.)

Jiamou Sun, Zhenchang Xing, Xin Peng, Xiwei Xu, and Liming Zhu. Task-
Oriented API Usage Examples Prompting Powered By Programming Task
Knowledge Graph. In Proceedings of the 37th International Conference
on Software Maintenance and Evolution (ICSME), pages 448-459. IEEE,
2021. doi:10.1109/ICSME52107.2021.00046. (cited on pages 79 and 260.)

Mahsa Hasani Sadi and Eric Yu. RAPID: a knowledge-based assistant
for designing web apis. Requirements Engineering, 26(2):185-236, 2021.
doi:10.1007/S00766-020-00342-0. (cited on pages 78 and 258.)

Edward Szpilrajn. Sur I'extension de I'ordre partiel. Fundamenta Math-
ematicae, 16(1):386-389, 1930. URL: http://eudml.org/doc/212499.
(cited on page 233.)

Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When Do
Changes Induce Fixes? In Proceedings of the 2nd International Working
Conference on Mining Software Repositories (MSR), pages 1-5. ACM,
2005. doi:10.1145/1082983.1083147. (Cited on pages 33, 116, and 229.)

339

https://doi.org/10.1109/SANER53432.2022.00085
https://doi.org/10.1007/978-3-319-58961-9_22
https://doi.org/10.1007/978-3-319-58961-9_22
https://doi.org/10.1007/978-3-319-07821-2_11
https://doi.org/10.1007/978-3-319-07821-2_11
https://doi.org/10.1109/MSR52588.2021.00047
https://doi.org/10.1016/j.jss.2020.110728
https://doi.org/10.1109/ICSME.2019.00039
https://doi.org/10.1109/ICSME52107.2021.00046
https://doi.org/10.1007/S00766-020-00342-0
http://eudml.org/doc/212499
https://doi.org/10.1145/1082983.1083147

BIBLIOGRAPHY

[TCG*09)

[TCK21]

[TFB13]

[THLH21]

[TLL13]

[TM10]

[TMC14]

[TR16]

[TRJ*21]

[TS21]

340

Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter
Kriegel, Alex Smola, Le Song, Philip S. Yu, Xifeng Yan, and Karsten
Borgwardt. Near-optimal supervised feature selection among frequent
subgraphs. In Proceedings of the 9th SIAM International Conference on
Data Mining (SDM), pages 1076-1087. STAM, 2009. doi:10.1137/1.
9781611972795.92. (cited on page 104.)

Kyle Thayer, Sarah E. Chasins, and Amy J. Ko. A Theory of Robust
API Knowledge. ACM Transactions on Computing Education (TOCE),
21(1), January 2021. doi:10.1145/3444945. (cited on pages 4, 54, 251,
and 254.)

Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. Automatic discov-
ery of function mappings between similar libraries. In Proceedings of the
20th Working Conference on Reverse Engineering (WCRE), pages 192—
201. IEEE, 2013. doi:10.1109/WCRE.2013.6671294. (Cited on pages 35
and 199.)

Christopher Steven Timperley, Lauren Herckis, Claire Le Goues, and
Michael Hilton. Understanding and improving artifact sharing in software
engineering research. Springer Empirical Software Engineering (EMSE),
26(6), 2021. doi:10.1007/510664-021-09973-5. (cited on page 245.)

Ferdian Thung, David Lo, and Julia Lawall. Automated Library Recom-
mendation. In Proceedings of the 20th Working Conference on Reverse
Engineering (WCRE), pages 182-191. IEEE, 2013. doi:10.1109/WCRE.
2013.6671293. (cited on page 32.)

Nikolaj Tatti and Michael Mampaey. Using background knowledge to rank
itemsets. Springer Data Mining and Knowledge Discovery, 21(2):293-309,
2010. doi:10.1007/s10618-010-0188-4. (cited on page 41.)

Nikolaj Tatti, Fabian Moerchen, and Toon Calders. Finding robust
itemsets under subsampling. ACM Transactions on Database Sys-
tems (TODS), 39(3):20:1-20:27, 2014. doi:10.1145/2656261. (cited on
page 40.)

Christoph Treude and Martin P. Robillard. Augmenting API Documen-
tation with Insights from Stack Overflow. In Proceedings of the 38th In-
ternational Conference on Software Engineering (ICSE), pages 392—-403.
ACM, 2016. doi:10.1145/2884781.2884800. (cited on pages 79 and 260.)

Yixuan Tang, Zhilei Ren, He Jiang, Xiao-Chen Li, and Weigiang Kong.
An Empirical Comparison Between Tutorials and Crowd Documentation
of Application Programming Interface. Journal of Computer Science
and Technology, 36(4):856-876, 2021. doi:10.1007/S11390-020-0042-0.
(cited on pages 79 and 260.)

Valerio Terragni and Pasquale Salza. APIzation: Generating Reusable
APIs from StackOverflow Code Snippets. In Proceedings of the 36th In-
ternational Conference on Automated Software Engineering (ASE), pages

https://doi.org/10.1137/1.9781611972795.92
https://doi.org/10.1137/1.9781611972795.92
https://doi.org/10.1145/3444945
https://doi.org/10.1109/WCRE.2013.6671294
https://doi.org/10.1007/S10664-021-09973-5
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1007/s10618-010-0188-4
https://doi.org/10.1145/2656261
https://doi.org/10.1145/2884781.2884800
https://doi.org/10.1007/S11390-020-0042-0

[TSM18]

[TVBW21]

[TWB*19]

[TWLL13]

[TX09a]

[TX09b]

[TZKV18]

[UBv*22]

BIBLIOGRAPHY

542-554. IEEE, 2021. doi:10.1109/ASE51524.2021.9678576. (cited on
pages 78 and 259.)

Swapna Thorve, Chandani Sreshtha, and Na Meng. An Empirical Study
of Flaky Tests in Android Apps. In Proceedings of the 34th International
Conference on Software Maintenance and Evolution (ICSME), pages 534—
538. IEEE, 2018. doi:10.1109/ICSME.2018.00062. (cited on page 24.)

Mohammad Tahaei, Kami Vaniea, Konstantin (Kosta) Beznosov, and
Maria K Wolters. Security Notifications in Static Analysis Tools: De-
velopers’ Attitudes, Comprehension, and Ability to Act on Them. In
Proceedings of the 39th Conference on Human Factors in Computing Sys-
tems (CHI), pages 1-17. ACM, 2021. doi:10.1145/3411764.3445616.
(cited on pages 78 and 258.)

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. An Empirical Study on Learning
Bug-Fixing Patches in the Wild via Neural Machine Translation. ACM
Transactions on Software Engineering and Methodology (TOSEM), 28(4),
September 2019. doi:10.1145/3340544. (cited on page 212.)

Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. Automatic
Recommendation of API Methods from Feature Requests. In Proceedings
of the 28th International Conference on Automated Software Engineering
(ASE), pages 290-300. IEEE, 2013. doi:10.1109/ASE.2013.6693088.
(cited on page 32.)

Suresh Thummalapenta and Tao Xie. Alattin: Mining Alternative Pat-
terns for Detecting Neglected Conditions. In Proceedings of the 24th In-
ternational Conference on Automated Software Engineering (ASE), pages
283-294. IEEE, 2009. doi:10.1109/ASE.2009.72. (cited on pages 5, 96,
99, 100, 101, 109, and 267.)

Suresh Thummalapenta and Tao Xie. Mining exception-handling rules as
sequence association rules. In Proceedings of the 31st International Con-
ference on Software Engineering (ICSE), pages 496-506. IEEE, 2009. doi :
10.1109/ICSE.2009.5070548. (cited on pages 95, 100, 101, 109, and 267.)

Asher Trockman, Shurui Zhou, Christian Késtner, and Bogdan Vasilescu.
Adding Sparkle to Social Coding: An Empirical Study of Repository
Badges in the npm Ecosystem. In Proceedings of the 40th International
Conference on Software Engineering (ICSE), pages 511-522. ACM, 2018.
doi:10.1145/3180155.3180209. (Cited on pages 78, 258, and 259.)

Martin Ukrop, Michaela Baldzové, Pavol Z4cik, Eric Vincent Valéik, and
Vashek Matyas. Assessing Real-World Applicability of Redesigned De-
veloper Documentation for Certificate Validation Errors. In Proceedings
of the Tth European Symposium on Usable Security (EuroUSEC), pages
131-144. ACM, 2022. doi:10.1145/3549015.3554296. (cited on pages 79
and 260.)

341

https://doi.org/10.1109/ASE51524.2021.9678576
https://doi.org/10.1109/ICSME.2018.00062
https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1145/3340544
https://doi.org/10.1109/ASE.2013.6693088
https://doi.org/10.1109/ASE.2009.72
https://doi.org/10.1109/ICSE.2009.5070548
https://doi.org/10.1109/ICSE.2009.5070548
https://doi.org/10.1145/3180155.3180209
https://doi.org/10.1145/3549015.3554296

BIBLIOGRAPHY

[UKR20]

[UKR21]

[UR15]

[VEM15]

[Vid22]

[VKC21]

[VL16a]

[VL16b]

[VT14]

[WA19]

[Wag13]

342

Gias Uddin, Foutse Khomh, and Chanchal K Roy. Mining API usage
scenarios from stack overflow. Elsevier Journal of Information and
Software Technology (IST), 122(106277), 2020. doi:10.1016/j.infsof.
2020.106277. (cited on pages 79 and 260.)

Gias Uddin, Foutse Khomh, and Chanchal K. Roy. Automatic API Usage
Scenario Documentation from Technical Q&A Sites. ACM Transactions
on Software Engineering and Methodology (TOSEM), 30(3), April 2021.
doi:10.1145/3439769. (cited on pages 79 and 260.)

Gias Uddin and Martin P. Robillard. How API Documentation Fails.
IEEE Software, 32(4):68-75, 2015. doi:10.1109/MS.2014.80. (cited on
page 54.)

Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. An Empirical
Study of Bugs in Test Code. In Proceedings of the 31st International
Conference on Software Maintenance and Evolution (ICSME), pages 101—
110. IEEE, 2015. doi:10.1109/ICSM.2015.7332456. (cited on page 24.)

Melina Vidoni. A systematic process for Mining Software Reposito-
ries: Results from a systematic literature review. FElsevier Journal of
Information and Software Technology (IST), 144(106791), 2022. doi:
10.1016/j.infsof.2021.106791. (cited on pages 33 and 34.)

Aparna Vadlamani, Rishitha Kalicheti, and Sridhar Chimalakonda. APIS-
canner - Towards Automated Detection of Deprecated APIs in Python
Libraries. In Proceedings of the 43rd Companion of the International Con-
ference on Software Engineering (ICSEC), pages 5-8. IEEE/ACM, 2021.
doi:10.1109/ICSE-Companion52605.2021.00022. (cited on pages 35
and 198.)

Sebastian Ventura and José Maria Luna. Introduction to Pattern Mining,
pages 1-26. Springer, Cham, 2016. doi:10.1007/978-3-319-33858-3_1.
(cited on page 36.)

Sebastian Ventura and José Maria Luna. Pattern Mining with Ge-
netic Algorithms, pages 63-85. Springer, Cham, 2016. doi:10.1007/
978-3-319-33858-3_4. (cited on page 37.)

Jilles Vreeken and Nikolaj Tatti. Interesting Patterns, pages 105-134.
Springer, Cham, 2014. doi:10.1007/978-3-319-07821-2_5. (cited on
pages 36, 37, and 40.)

Chamila Wijayarathna and Nalin Asanka Gamagedara Arachchilage. Why
Johnny can’t develop a secure application? A usability analysis of Java

Secure Socket Extension API. Computer € Security (CS), 80:54-73, 2019.
doi:10.1016/j.cose.2018.09.007. (cited on pages 54 and 254.)

Stefan Wagner. Software Product Quality Control. Springer, 2013. ISBN-
13: 978-3-642-38570-4. doi:10.1007/978-3-642-38571-1. (Cited on
page 25.)

https://doi.org/10.1016/j.infsof.2020.106277
https://doi.org/10.1016/j.infsof.2020.106277
https://doi.org/10.1145/3439769
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/ICSM.2015.7332456
https://doi.org/10.1016/j.infsof.2021.106791
https://doi.org/10.1016/j.infsof.2021.106791
https://doi.org/10.1109/ICSE-Companion52605.2021.00022
https://doi.org/10.1007/978-3-319-33858-3_1
https://doi.org/10.1007/978-3-319-33858-3_4
https://doi.org/10.1007/978-3-319-33858-3_4
https://doi.org/10.1007/978-3-319-07821-2_5
https://doi.org/10.1016/j.cose.2018.09.007
https://doi.org/10.1007/978-3-642-38571-1

[WBI+23]

[WBJS20]

[WBK21]

[WCH+20]

[Wei06]

[(WG24]

[WGAK10]

[WGL™16]

[WGMC15]

BIBLIOGRAPHY

Wengran Wang, John Bacher, Amy Isvik, Ally Limke, Sandeep Sthapit,
Yang Shi, Benyamin T. Tabarsi, Keith Tran, Veronica Cateté, Tiffany
Barnes, Chris Martens, and Thomas Price. Investigating the Impact
of On-Demand Code Examples on Novices’ Open-Ended Programming
Experience. In Proceedings of the 19th International Computing Edu-
cation Research Conference (ICER), pages 464-475. ACM, 2023. doi:
10.1145/3568813.3600141. (cited on pages 79 and 260.)

Peipei Wang, Chris Brown, Jamie A. Jennings, and Kathryn T. Stolee.
An Empirical Study on Regular Expression Bugs. In Proceedings of the
17th International Working Conference on Mining Software Repositories
(MSR), pages 103-113. ACM, 2020. doi:10.1145/3379597.3387464.
(cited on page 24.)

Pei Wang, Julian Bangert, and Christoph Kern. If It’s Not Secure, It
Should Not Compile: Preventing DOM-Based XSS in Large-Scale Web
Development with API Hardening. In Proceedings of the 43rd Inter-
national Conference on Software Engineering (ICSE), pages 1360-1372.
IEEE, 2021. doi:10.1109/ICSE43902.2021.00123. (cited on pages 78,
258, and 259.)

Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin
Peng, Yijian Wu, and Yang Liu. An Empirical Study of Usages, Updates
and Risks of Third-Party Libraries in Java Projects. In Proceedings of the
36th International Conference on Software Maintenance and Fvolution
(ICSME), pages 35-45. IEEE, 2020. doi:10.1109/ICSME46990.2020.
00014. (cited on pages 1 and 14.)

Westley Weimer. Patches as Better Bug Reports. In Proceedings of the
oth International Conference on Generative Programming and Compo-
nent Engineering (GPCE), pages 181-190. ACM, 2006. doi:10.1145/
1173706.1173734. (cited on pages 213, 230, and 231.)

David Gray Widder and Claire Le Goues. What Is a ‘Bug’? Communi-
cations of the ACM, 67(11):32-34, October 2024. doi:10.1145/3662730.
(cited on page 23.)

Wei Wu, Yann-Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim.
AURA: a hybrid approach to identify framework evolution. In Proceedings
of the 32nd International Conference on Software Engineering (ICSE),
pages 325-334. ACM, 2010. doi:10.1145/1806799.1806848. (cited on
pages 35 and 199.)

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
A Survey on Software Fault Localization. IEEFE Transactions on Soft-
ware Engineering (TSE), 42(8):707-740, 2016. doi:10.1109/TSE.2016.
2521368. (cited on pages 4 and 25.)

Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. WuKong: A
Scalable and Accurate Two-Phase Approach to Android App Clone De-
tection. In Proceedings of the 24th ACM SIGSOFT International Sym-

343

https://doi.org/10.1145/3568813.3600141
https://doi.org/10.1145/3568813.3600141
https://doi.org/10.1145/3379597.3387464
https://doi.org/10.1109/ICSE43902.2021.00123
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1145/1173706.1173734
https://doi.org/10.1145/1173706.1173734
https://doi.org/10.1145/3662730
https://doi.org/10.1145/1806799.1806848
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368

BIBLIOGRAPHY

[WHO4]

[WHH*24]

[WHW22]

[WJZ21]

[(WJIZ+23]

[WKAT16]

[WLC16]

[WLC19]

344

posium on Software Testing and Analysis (ISSTA), pages 71-82. ACM,
2015. doi:10.1145/2771783.2771795. (Cited on pages 1 and 14.)

Jianyong Wang and Jiawei Han. BIDE: Efficient Mining of Frequent
Closed Sequences. In Proceedings of the 20th International Conference
on Data Engineering (ICDE), pages 79-90. IEEE, 2004. doi:10.1109/
ICDE.2004.1319986. (cited on page 39)

Moshi Wei, Nima Shiri Harzevili, Yuekai Huang, Jingiu Yang, Jun-
jie Wang, and Song Wang. Demystifying and Detecting Misuses of
Deep Learning APIs. In Proceedings of the 46th International Confer-
ence on Software Engineering (ICSE), pages 1-12. ACM, 2024. doi:
10.1145/3597503.3639177. (cited on pages 4 and 247.)

Moshi Wei, Yuchao Huang, Junjie Wang, Jiho Shin, Nima Shiri Harzevili,
and Song Wang. API Recommendation for Machine Learning Libraries:
How Far Are We? In Proceedings of the 30th Joint Meeting of the Euro-
pean Software Engineering Conference/Foundations of Software Engineer-
ing (ESEC/FSE), pages 370-381. ACM, 2022. doi:10.1145/3540250.
3549124. (cited on page 32.)

Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Bing Li, Yu Xie, and Baowen
Xu. Generating API tags for tutorial fragments from Stack Overflow.
Springer Empirical Software Engineering (EMSE), 26(66), 2021. doi:
10.1007/S10664-021-09962-8. (cited on pages 79 and 260.)

Di Wu, Xiao-Yuan Jing, Hongyu Zhang, Yang Feng, Haowen Chen, Yum-
ing Zhou, and Baowen Xu. Retrieving API Knowledge from Tutorials and
Stack Overflow Based on Natural Language Queries. ACM Transactions
on Software Engineering and Methodology (TOSEM), 32(5), July 2023.
doi:10.1145/3565799. (cited on pages 78, 79, 258, and 260.)

Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaél Guéhéneuc, and Giu-
liano Antoniol. An exploratory study of api changes and usages based on
apache and eclipse ecosystems. Springer Empirical Software Engineer-
ing (EMSE), 21(6):2366-2412, 2016. doi:10.1007/s10664-015-9411-7.
(cited on page 54.)

Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming Android frag-
mentation: Characterizing and detecting compatibility issues for An-
droid apps. In Proceedings of the 31st International Conference on Au-
tomated Software Engineering (ASE), pages 226-237. IEEE/ACM, 2016.
doi:10.1145/2970276.2970312. (cited on page 158.)

L. Wei, Y. Liu, and S. Cheung. PIVOT: Learning API-device correla-
tions to facilitate android compatibility issue detection. In Proceedings of
the 41st International Conference on Software Engineering (ICSE), pages
878-888. IEEE/ACM, 2019. doi:10.1109/ICSE.2019.00094. (cited on
page 158.)

https://doi.org/10.1145/2771783.2771795
https://doi.org/10.1109/ICDE.2004.1319986
https://doi.org/10.1109/ICDE.2004.1319986
https://doi.org/10.1145/3597503.3639177
https://doi.org/10.1145/3597503.3639177
https://doi.org/10.1145/3540250.3549124
https://doi.org/10.1145/3540250.3549124
https://doi.org/10.1007/S10664-021-09962-8
https://doi.org/10.1007/S10664-021-09962-8
https://doi.org/10.1145/3565799
https://doi.org/10.1007/s10664-015-9411-7
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1109/ICSE.2019.00094

[WLC*20]

[WLLC20]

[WLY+24]

[WNOS5]

[Woh14]

[WPWZ19]

[WTH"22]

[WTH"24]

BIBLIOGRAPHY

Lili Wei, Yepang Liu, Shing-Chi Cheung, Huaxun Huang, Xuan Lu, and
Liu Xuanzhe. Understanding and Detecting Fragmentation-Induced Com-
patibility Issues for Android Apps. IEEFE Transactions on Software
Engineering (TSE), 46(11):1176-1199, 2020. doi:10.1109/TSE.2018.
2876439. (cited on page 158.)

Jiawei Wang, Li Li, Kui Liu, and Haipeng Cai. Exploring how deprecated
Python library APIs are (not) handled. In Proceedings of the 28th Joint
Meeting of the European Software Engineering Conference/Foundations
of Software Engineering (ESEC/FSE), pages 233-244. ACM, 2020. doi:
10.1145/3368089.3409735. (cited on pages 35, 54, and 252.)

Ruixin Wang, Minghai Lu, Cody Hao Yu, Yi-Hsiang Lai, and Tianyi
Zhang. Automated Deep Learning Optimization via DSL-Based Source
Code Transformation. In Proceedings of the 33rd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA), pages
479-490. ACM, 2024. doi:10.1145/3650212.3652143. (cited on pages 79
and 260.)

Westley Weimer and George C. Necula. Mining Temporal Specifications
for Error Detection. In Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 3440, pages 461-476. Springer, 2005. doi:10.1007/
978-3-540-31980-1_30. (cited on pages 2, 5, and 36.)

Claes Wohlin. Guidelines for Snowballing in Systematic Literature Stud-
ies and a Replication in Software Engineering. In Proceedings of the
18th International Conference on Evaluation and Assessment in Software
Engineering (EASE), pages 1-10. ACM, 2014. doi:10.1145/2601248.
2601268. (cited on pages 7, 45, 48, 49, 50, 71, and 88.)

Shaohua Wang, NhatHai Phan, Yan Wang, and Yong Zhao. Extract-
ing API Tips from Developer Question and Answer Websites. In Pro-
ceedings of the 16th International Working Conference on Mining Soft-
ware Repositories (MSR), pages 321-332. IEEE, 2019. doi:10.1109/
MSR.2019.00058. (Cited on pages 78, 79, 259, and 260.)

Stefan Winter, Christopher S. Timperley, Ben Hermann, Jiirgen Cito,
Jonathan Bell, Michael Hilton, and Dirk Beyer. A Retrospective Study
of One Decade of Artifact Evaluations. In Proceedings of the 30th Joint
Meeting of the European Software Engineering Conference/Foundations
of Software Engineering (ESEC/FSE), pages 145-156. ACM, 2022. doi:
10.1145/3540250.3549172. (cited on page 245.)

Hironori Washizaki, Yatheendranath TJ, Rich Hilliard, Kenneth Nidiffer,
Pete Brink, V.S. Mani, Hari Prasad Devarapalli, Annette Reilly, Naren-
dra S Chowdhury, Dharanipragada Janakiram, Juan Garbajosa, Maria
Isabel Sanchez Segura, Peter Leather, Andy Chen, and Steve Schwarm.
Guide to the Software Engineering Body of Knowledge V.0, volume 4.
IEEE, 2024. URL: http://www.swebok.org. (cited on pages 1, 3, 4, 5, 14,
and 25.)

345

https://doi.org/10.1109/TSE.2018.2876439
https://doi.org/10.1109/TSE.2018.2876439
https://doi.org/10.1145/3368089.3409735
https://doi.org/10.1145/3368089.3409735
https://doi.org/10.1145/3650212.3652143
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1007/978-3-540-31980-1_30
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/MSR.2019.00058
https://doi.org/10.1109/MSR.2019.00058
https://doi.org/10.1145/3540250.3549172
https://doi.org/10.1145/3540250.3549172
http://www.swebok.org

BIBLIOGRAPHY

[WXL*21]

[WXQ23]

[WY22]

[WZ11]

[(WZ23)

[WZF+12]

[WZL07]

[XBL*+17]

[XDM19]

346

Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu
Yang. Smart Contract Security: A Practitioners’ Perspective. In Pro-
ceedings of the 43rd International Conference on Software Engineering
(ICSE), pages 1410-1422. IEEE, 2021. doi:10.1109/ICSE43902.2021.
00127. (cited on pages 80 and 261.)

Yulin Wu, Zhiwu Xu, and Shengchao Qin. Detecting API-Misuse Based
on Pattern Mining via API Usage Graph with Parameters. In Proceed-
ings of the 17th International Symposium on Theoretical Aspects of Soft-
ware Engineering (TASE), volume 13931, pages 344-363. Springer, 2023.
doi:10.1007/978-3-031-35257-7_21. (cited on pages 5, 95, 97, 99, 101,
and 267.)

Kai Wang and Ping Yu. AUGraft: Graft New API Usage into Old Code. In
Proceedings of the 13th Asia-Pacific Symposium on Internetware, pages
55-64. ACM, 2022. doi:10.1145/3545258.3545279. (cited on pages 35
and 199.)

Andrzej Wasylkowski and Andreas Zeller. Mining temporal specifications
from object usage. Springer Automated Software Engineering, 18(3-
4):263-292, 2011. doi:10.1007/S10515-011-0084~-1. (cited on pages 5,
93, 95, 99, 101, 102, and 267.)

Xiaoke Wang and Lei Zhao. APICAD: Augmenting API Misuse Detec-
tion through Specifications from Code and Documents. In Proceedings of
the 45th International Conference on Software Engineering (ICSE), pages
245-256. IEEE, 2023. doi:10.1109/ICSE48619.2023.00032. (Cited on
pages 2, 5, 96, 98, 99, 101, 103, 109, and 267.)

Lijie Wang, Yanzhen Zou, Lu Fang, Bing Xie, and Fuqing Yang. An Ex-
ploratory Study of API Usage Examples on the Web. In Proceedings of the
19th Asia-Pacific Software Engineering Conference (APSEC), volume 1,
pages 396-405. IEEE, 2012. doi:10.1109/APSEC.2012.122. (cited on
pages 79 and 260.)

Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting ob-
ject usage anomalies. In Proceedings of the 6th Joint Meeting of the Fu-
ropean Software Engineering Conference/Foundations of Software Engi-
neering (ESEC/FSE), pages 35-44. ACM, 2007. doi:10.1145/1287624.
1287632. (cited on pages 2, 5, 93, 95, 99, 101, 102, 105, 198, 200, and 267.)

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E.
Hassan, and Zhenchang Xing. What do developers search for on the web?
Springer Empirical Software Engineering (EMSE), 22(6):3149-3185, 2017.
doi:10.1007/S10664-017-9514-4. (cited on page 32.)

Shengzhe Xu, Zigi Dong, and Na Meng. Meditor: Inference and Appli-
cation of API Migration Edits. In Proceedings of the 27th International
Conference on Program Comprehension (ICPC), pages 335-346. IEEE,
2019. doi:10.1109/ICPC.2019.00052. (Cited on pages 35 and 199.)

https://doi.org/10.1109/ICSE43902.2021.00127
https://doi.org/10.1109/ICSE43902.2021.00127
https://doi.org/10.1007/978-3-031-35257-7_21
https://doi.org/10.1145/3545258.3545279
https://doi.org/10.1007/S10515-011-0084-1
https://doi.org/10.1109/ICSE48619.2023.00032
https://doi.org/10.1109/APSEC.2012.122
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1145/1287624.1287632
https://doi.org/10.1007/S10664-017-9514-4
https://doi.org/10.1109/ICPC.2019.00052

[XGW24]

[XMD*+17]

[XR17]

[XS06]

[XXS+23]

[Yat34]

[YB20]

[YEB*06]

[YH02]

[YHO3]

BIBLIOGRAPHY

Qingxin Xu, Yu Gao, and Jun Wei. An Empirical Study on Kubernetes
Operator Bugs. In Proceedings of the 38rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), page 1746-1758.
ACM, 2024. doi:10.1145/3650212.3680396. (Cited on page 24.)

Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clément, Sebas-
tian Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin
Monperrus. Nopol: Automatic Repair of Conditional Statement Bugs
in Java Programs. [EEE Transactions on Software Engineering (TSE),
43(1):34-55, 2017. doi:10.1109/TSE.2016.2560811. (cited on page 211.)

Qi Xin and Steven P. Reiss. Identifying Test-Suite-Overfitted Patches
through Test Case Generation. In Proceedings of the 26th ACM SIG-
SOFT International Symposium on Software Testing and Analysis (IS-
STA), pages 226-236. ACM, 2017. doi:10.1145/3092703.3092718. (cited
on page 208.)

Zhenchang Xing and Eleni Stroulia. Refactoring Practice: How it is and
How it Should be Supported - An Eclipse Case Study. In Proceedings of the
22nd International Conference on Software Maintenance (ICSM), pages
458-468. IEEE, 2006. doi:10.1109/ICSM.2006.52. (cited on page 35.)

Yiheng Xiong, Menggian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen,
Geguang Pu, Jifeng He, and Zhendong Su. An Empirical Study of Func-
tional Bugs in Android Apps. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing and Analysis (IS-
STA), pages 1319-1331. ACM, 2023. doi:10.1145/3597926.3598138.
(cited on page 24.)

Frank Yates. Contingency Tables Involving Small Numbers and the chi2
Test. Supplement to the Journal of the Royal Statistical Society, 1(2):217—
235, 1934. doi:10.2307/2983604. (cited on page 136.)

Yuan Yuan and Wolfgang Banzhaf. ARJA: Automated Repair of Java
Programs via Multi-Objective Genetic Programming. IEEE Transactions
on Software Engineering (TSE), 46(10):1040-1067, 2020. doi:10.1109/
TSE.2018.2874648. (cited on page 211.)

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and
Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect
Traces. In Proceedings of the 28th International Conference on Software
Engineering (ICSE), pages 282-291. ACM, 2006. doi:10.1145/1134285.
1134325. (cited on page 109.)

Xifeng Yan and Jiawei Han. gSpan: Graph-Based Substructure Pat-
tern Mining. In Proceedings of the 2nd International Conference on Data
Mining (ICDM), pages 721-724. IEEE, 2002. doi:10.1109/ICDM.2002.
1184038. (cited on pages 40 and 104.)

Xifeng Yan and Jiawei Han. CloseGraph: Mining Closed Frequent Graph
Patterns. In Proceedings of the 9th International Conference on Knowledge

347

https://doi.org/10.1145/3650212.3680396
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1109/ICSM.2006.52
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.2307/2983604
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1145/1134285.1134325
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1109/ICDM.2002.1184038

BIBLIOGRAPHY

[YHAO03]

[YHWH24|

[YHXF22]

[YMS*16]

[YRW22]

[ZBW+22]

[ZCC 18]

[ZCSZ21]

348

Discovery and Data Mining (KDD), pages 286-295. ACM, 2003. doi:
10.1145/956750.956784. (Cited on page 40.)

Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining Closed
Sequential Patterns in Large Datasets. In Proceedings of the 3rd SIAM
International Conference on Data Mining (SDM), pages 166-177. STAM,
2003. doi:10.1137/1.9781611972733.15. (cited on page 39.)

Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. Ivie:
Lightweight Anchored Explanations of Just-Generated Code. In Proceed-
ings of the 42nd Conference on Human Factors in Computing Systems
(CHI), pages 1-15. ACM, 2024. doi:10.1145/3613904.3642239. (cited
on pages 78, 247, and 259.)

Yilin Yang, Tianxing He, Zhilong Xia, and Yang Feng. A comprehensive
empirical study on bug characteristics of deep learning frameworks. FElse-
vier Journal of Information and Software Technology (IST), 151(107004),
2022. doi:10.1016/j.infsof.2022.107004. (cited on pages 24 and 54.)

Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and
Mayur Naik. APISan: Sanitizing API Usages through Semantic Cross-
Checking. In Proceedings of the 25th USENIX Security Symposium, pages
363-378. USENIX, 2016. URL: https://www.usenix.org/conference/
usenixsecurityl6/technical-sessions/presentation/yun. (cited on
pages 95, 103, 109, and 267.)

Jingbo Yang, Jian Ren, and Wenjun Wu. API Misuse Detection Method
Based on Transformer. In Proceedings of the 22nd International Confer-
ence on Software Quality, Reliability and Security (QRS), pages 958-969.
IEEE, 2022. doi:10.1109/QRS57517.2022.00100. (cited on pages 2, 96,
100, 101, and 267.)

Zhou Zhou, Lili Bo, Xiaoxue Wu, Xiaobing Sun, Tao Zhang, Bin Li, Jiale
Zhang, and Sicong Cao. SPVF: security property assisted vulnerability
fixing via attention-based models. Springer Empirical Software Engineer-
ing (EMSE), 27(171), 2022. doi:10.1007/S10664-022-10216-4. (cited
on page 212.)

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and
Lu Zhang. An empirical study on TensorFlow program bugs. In Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 129-140. ACM, 2018. doi:
10.1145/3213846.3213866. (cited on pages 24 and 54.)

Hushuang Zeng, Jingxin Chen, Beijun Shen, and Hao Zhong. Mining API
Constraints from Library and Client to Detect API Misuses. In Proceed-
ings of the 28th Asia-Pacific Software Engineering Conference (APSEC),
pages 161-170. IEEE, 2021. doi:10.1109/APSEC53868.2021.00024.
(cited on pages 5, 95, 98, 101, 104, 109, 198, 200, and 267.)

https://doi.org/10.1145/956750.956784
https://doi.org/10.1145/956750.956784
https://doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1145/3613904.3642239
https://doi.org/10.1016/j.infsof.2022.107004
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/yun
https://doi.org/10.1109/QRS57517.2022.00100
https://doi.org/10.1007/S10664-022-10216-4
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1109/APSEC53868.2021.00024

[ZDAT?22]

[Zel06]

[ZER11]

[ZFM+23]

[ZHKG20]

[Zib08]

[ZJR'21]

[ZM19]

[ZS15]

[ZTW+09]

BIBLIOGRAPHY

Oleksandr Zaitsev, Stéphane Ducasse, Nicolas Anquetil, and Arnaud
Thiefaine. DepMiner: Automatic Recommendation of Transformation
Rules for Method Deprecation. In Reuse and Software Quality, pages
22-37. Springer, 2022. doi:10.1007/978-3-031-08129-3_2. (Cited on
page 35.)

Andreas Zeller. CHAPTER 1 - How Failures Come to Be. In An-
dreas Zeller, editor, Why Programs Fail, pages 1-26. Morgan Kaufmann,
Boston, first edition edition, 2006. doi:10.1016/B978-0-12-374515-6.
00001-0. (cited on pages 3, 4, 14, 25, and 26.)

Minhaz F. Zibran, Farjana Z. Eishita, and Chanchal K. Roy. Useful,
But Usable? Factors Affecting the Usability of APIs. In Proceedings of
the 18th Working Conference on Reverse Engineering (WCRE), pages
151-155. IEEE, 2011. doi:10.1109/WCRE.2011.26. (cited on pages 4, 54,
and 253.)

Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu
Chen. A Survey of Learning-based Automated Program Repair. ACM
Transactions on Software Engineering and Methodology (TOSEM), 33(2),
December 2023. doi:10.1145/3631974. (cited on pages 205, 206, 207, 208,
209, 211, 212, 232, 236, 245, and 247.)

Tianyi Zhang, Bjorn Hartmann, Miryung Kim, and Elena L. Glassman.
Enabling Data-Driven API Design with Community Usage Data: A Need-
Finding Study. In Proceedings of the 38th Conference on Human Factors
in Computing Systems (CHI), pages 1-13. ACM, 2020. doi:10.1145/
3313831.3376382. (cited on pages 4, 54, 250, and 253.)

Minhaz Fahim Zibran. What Makes APIs Difficult to Use? Inter-
national Journal of Computer Science and Network Security (IJCSNS),
8(4):255-261, 2008. URL: http://paper.ijcsns.org/07_book/200804/
20080436 .pdf. (cited on pages 46, 47, 70, and 71.)

Jingxuan Zhang, He Jiang, Zhilei Ren, Tao Zhang, and Zhiqiu Huang.
Enriching API Documentation with Code Samples and Usage Scenarios
from Crowd Knowledge. IEFEE Transactions on Software Engineering
(TSE), 47(6):1299-1314, 2021. doi:10.1109/TSE.2019.2919304. (cited
on pages 79 and 260.)

Hao Zhong and Hong Mei. An Empirical Study on API Usages. IEEFE
Transactions on Software Engineering (TSE), 45(4):319-334, 2019. doi:
10.1109/TSE.2017.2782280. (cited on pages 1 and 246.)

Hao Zhong and Zhendong Su. An Empirical Study on Real Bug Fixes. In
Proceedings of the 37th International Conference on Software Engineering

(ICSE), pages 913-923. IEEE, 2015. doi:10.1109/ICSE.2015.101. (Cited
on pages 2, 24, and 27.)

Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and
Lizhu Zhou. Comparing Stars: On Approximating Graph Edit Distance.

349

https://doi.org/10.1007/978-3-031-08129-3_2
https://doi.org/10.1016/B978-0-12-374515-6.00001-0
https://doi.org/10.1016/B978-0-12-374515-6.00001-0
https://doi.org/10.1109/WCRE.2011.26
https://doi.org/10.1145/3631974
https://doi.org/10.1145/3313831.3376382
https://doi.org/10.1145/3313831.3376382
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
https://doi.org/10.1109/TSE.2019.2919304
https://doi.org/10.1109/TSE.2017.2782280
https://doi.org/10.1109/TSE.2017.2782280
https://doi.org/10.1109/ICSE.2015.101

BIBLIOGRAPHY

[ZTX+10]

[ZURT18]

[ZW16]

[ZWCX22]

[ZWH19]

[ZWL 23]

[ZWX+23]

[ZWY*20]

[ZXL*24]

350

Proceedings of the VLDB Endowment (PVLDB), 2(1):25-36, 2009. doi:
10.14778/1687627.1687631. (cited on pages 148, 154, and 202.)

Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang.
Mining API mapping for language migration. In Proceedings of the 32nd
International Conference on Software Engineering (ICSE), pages 195-204.
ACM, 2010. doi:10.1145/1806799.1806831. (cited on page 35.)

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Ra-
jan, and Miryung Kim. Are Code Examples on an Online Q&A Forum
Reliable?: A Study of API Misuse on Stack Overflow. In Proceedings of
the 40th International Conference on Software Engineering (ICSE), pages
886-896. ACM, 2018. doi:10.1145/3180155.3180260. (cited on pages 1,
2, 54, 78, 102, 213, 252, 253, and 259.)

Jing Zhou and Robert J. Walker. API deprecation: a retrospective anal-
ysis and detection method for code examples on the web. In Proceedings
of the 24th Joint Meeting of the Furopean Software Engineering Confer-
ence/Foundations of Software Engineering (ESEC/FSE), pages 266-277.
ACM, 2016. doi:10.1145/2950290.2950298. (cited on pages 35 and 198.)

Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
A Survey for Roadmap. ACM Computing Surveys, 54(11s), September
2022. doi:10.1145/3512345. (cited on page 26.)

Alexander Zeier, Alexander Wiesmaier, and Andreas Heinemann. API
Usability of Stateful Signature Schemes. In Advances in Information
and Computer Security, pages 221-240. Springer, 2019. doi:10.1007/
978-3-030-26834-3_13. (cited on pages 77 and 258.)

Pengzhan Zhao, Xiongfei Wu, Junjie Luo, Zhuo Li, and Jianjun Zhao. An
Empirical Study of Bugs in Quantum Machine Learning Frameworks. In
Proceedings of the 2nd IEEE International Conference on Quantum Soft-
ware (QSW), pages 68-75. IEEE, 2023. doi:10.1109/QSW59989.2023.
00018. (cited on pages 24 and 54.)

Bingzhe Zhou, Xinying Wang, Shengbin Xu, Yuan Yao, Minxue Pan,
Feng Xu, and Xiaoxing Ma. Hybrid API Migration: A Marriage of Small
API Mapping Models and Large Language Models. In Proceedings of the
14th Asia-Pacific Symposium on Internetware, pages 12-21. ACM, 2023.
doi:10.1145/3609437.3609466. (cited on pages 35, 199, and 247.)

Yu Zhou, Changzhi Wang, Xin Yan, Taolue Chen, Sebastiano Panichella,
and Harald Gall. Automatic Detection and Repair Recommendation of
Directive Defects in Java API Documentation. [IEFE Transactions on
Software Engineering (TSE), 46(9):1004-1023, 2020. doi:10.1109/TSE.
2018.2872971. (cited on pages 79 and 261.)

Dawen Zhang, Boming Xia, Yue Liu, Xiwei Xu, Thong Hoang, Zhen-
chang Xing, Mark Staples, Qinghua Lu, and Liming Zhu. Privacy and

https://doi.org/10.14778/1687627.1687631
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.1145/1806799.1806831
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1145/2950290.2950298
https://doi.org/10.1145/3512345
https://doi.org/10.1007/978-3-030-26834-3_13
https://doi.org/10.1007/978-3-030-26834-3_13
https://doi.org/10.1109/QSW59989.2023.00018
https://doi.org/10.1109/QSW59989.2023.00018
https://doi.org/10.1145/3609437.3609466
https://doi.org/10.1109/TSE.2018.2872971
https://doi.org/10.1109/TSE.2018.2872971

[ZXZ109)

[ZYLK19]

[ZZW+23]

[ZZXMO09)

BIBLIOGRAPHY

Copyright Protection in Generative AI: A Lifecycle Perspective. In Pro-
ceedings of the 8rd International Conference on AI Engineering - Soft-
ware Engineering for AI (CAIN), pages 92—97. ACM, 2024. doi:
10.1145/3644815.3644952. (Cited on page 247.)

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Min-
ing and Recommending API Usage Patterns. In Proceedings of the 23rd
European Conference on Object-Oriented Programming (ECOOP), pages
318-343. Springer, 2009. doi:10.1007/978-3-642-03013-0_15. (Cited
on pages 5, 109, 112, and 136.)

Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kim. Analyzing
and Supporting Adaptation of Online Code Examples. In Proceedings of
the 41st International Conference on Software Engineering (ICSE), pages
316-327. IEEE, 2019. doi:10.1109/ICSE.2019.00046. (cited on pages 78,
79, 259, and 260.)

Chenguang Zhu, Mengshi Zhang, Xiuheng Wu, Xiufeng Xu, and Yi Li.
Client-Specific Upgrade Compatibility Checking via Knowledge-Guided
Discovery. ACM Transactions on Software Engineering and Methodology
(TOSEM), 32(4), May 2023. doi:10.1145/3582569. (cited on pages 79
and 261.)

Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring Resource Spec-
ifications from Natural Language API Documentation. In Proceedings
of the 24th International Conference on Automated Software Engineering
(ASE), pages 307-318. IEEE, 2009. doi:10.1109/ASE.2009.94. (cited
on pages 93, 96, 99, 101, and 267.)

351

https://doi.org/10.1145/3644815.3644952
https://doi.org/10.1145/3644815.3644952
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1109/ICSE.2019.00046
https://doi.org/10.1145/3582569
https://doi.org/10.1109/ASE.2009.94

Erklarung uber verwendete Hilfsmittel

Fiir die Erstellung dieser Dissertation wurden folgende, technische Hilfsmittel basierend
auf sogenannter kiinstlicher Intelligenz (KI) verwendet:

Grammarly Pro (https://www.grammarly.com/pro) der Firma Grammarly, Inc.:
Grammarly Pro wurde fiir die Uberpriifung der Grammatik und des Ausdrucks fiir den
gesamten textuellen Teil der vorliegenden Arbeit angewendet. Dabei wurden alle Vorschlage
von Grammarly Pro héndisch durch den Autor gepriift und nur vereinzelt ibernommen
bzw. angepasst. Es wurden keinerlei Inhalte oder wissenschaftliche Beitrage dieser Disser-
tation durch Grammarly Pro erzeugt.

ChatGPT (https://chatgpt.com/) der Firma Open Al, Inc.: ChatGPT wurde bei
der Adaption des Designs und der Formatierung dieser Arbeit mit IATEX und zugehdrigen
Bibliotheken sowie fiir die Erstellung von Grafiken dieser Arbeit mittels Python und Juyper
Notebook und zugehorigen Bibliotheken als Lern- und Konfigurationsunterstiitzung einzel-
ner Bibliotheken verwendet. Die Vorschlage seitens ChatGPT wurden dabei handisch durch
den Autor gepriift und vereinzelt iibernommen bzw. angepasst. Zudem diente es zum
Finden und Wiederauffinden wissenschaftlicher Literatur. Im Konkreten wurde eine Ar-
beit, die sich mit den unterschiedlichen Lerntypen von APIs beschéftigt gefunden bzw.
Literatur flir den Beweis der NP-Vollstandigkeit des Subgraph-Isomorphismus-Problems
ermittelt. Die so gefundene Literatur wurde selbststdndig durch den Autor im Original gele-
sen und auf Validitat gepriift. Es wurden keinerlei Inhalte oder wissenschaftliche Beitrage
dieser Dissertation durch ChatGPT erzeugt.

Es wurde die Richtlinie Empfehlung zur Nutzung generativer KI in Dissertationen an
der Fakultét fiir Informatik der Otto-von-Guericke-Universitdt Magdeburg (Beschluss des
Fakultétsrates 07.2024 — 015/24) beachtet.

Magdeburg, den 06.10.2025

Sebastian Nielebock

353

https://www.grammarly.com/pro
https://chatgpt.com/

Ehrenerkldarung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzuldssige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen fiir Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

- Ergebnisse erfunden oder widerspriichliche Ergebnisse verschwiegen,

- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,

- fremde Ergebnisse oder Veroffentlichungen plagiiert,

- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass VerstoRe gegen das Urheberrecht Unterlassungs- und
Schadensersatzanspriiche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehérden begriinden kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder dhnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veroffentlicht.

Magdeburg, den 06.10.2025

Sebastian Nielebock

	Abstract
	List of Figures
	List of Tables
	Code Listing
	List of Acronyms
	1 Introduction
	1.1 API Usage and Its Problems
	1.2 Research Questions on API Misuses
	1.2.1 Research Question C&P - API Misuse Causes & Prevention
	1.2.2 Research Question D - Automated API Misuse Detection
	1.2.3 Research Question R - Automated API Misuse Repair

	1.3 Contributions of the Thesis
	1.3.1 Contributions for RQ C&P - Causes & Prevention
	1.3.2 Contributions for RQ D - Detection
	1.3.3 Contributions for RQ R - Repair

	1.4 Structure of the Thesis

	2 Problem Analysis of API Misuses
	2.1 RQ C&P API Misuse Causes & Prevention
	2.2 RQ D Automated API Misuse Detection
	2.3 RQ R Automated API Misuse Repair
	2.4 Detailed Structure of the Research Questions in Thesis

	3 Fundamentals and Background
	3.1 Software Defects and API Misuses
	3.1.1 Studies of Software Defects
	3.1.2 Software Defect Detection
	3.1.3 Taxonomy and Prevalence of API Misuses

	3.2 Code Representation for Code Analysis
	3.2.1 General Code Representations
	3.2.2 API-Specific Code Representations

	3.3 Finding Relevant Source Code Samples
	3.3.1 General Code Search
	3.3.2 API Code Search

	3.4 Source Code Changes
	3.4.1 Version Control Systems
	3.4.2 Software Repository Mining
	3.4.3 API Evolution

	3.5 Frequent Pattern Mining
	3.5.1 Problem Statement of Frequent Pattern Mining
	3.5.2 Mining Algorithms
	3.5.3 Interesting Patterns
	3.5.4 Databases for Mining
	3.5.5 API-Specific Usage Pattern Mining

	4 API Misuse Root Causes & Prevention
	4.1 Methodology and Structure
	4.2 API Misuse Causes
	4.2.1 State-of-the-Art Meta-Analyses on API Misuses Causes
	4.2.2 Meta-Analysis of API Misuse Causes
	4.2.3 Threats to Validity

	4.3 API Misuse Cause Prevention
	4.3.1 State-of-the-Art of Meta-Analysis of API Misuse Prevention
	4.3.2 Meta-Analysis API Misuse Prevention for Misuse Causes
	4.3.3 Recommendations for Research of API Misuse Prevention
	4.3.4 Threats to Validity

	4.4 Summary

	5 Improving Pattern-Based API Misuse Detection
	5.1 Methodology and Structure
	5.2 Limitations of State-of-the-Art API Misuse Detection
	5.2.1 General Terms on API Misuse Detection
	5.2.2 State-of-the-Art API Misuse Detectors
	5.2.3 Limitations of Collecting Client Code for API Misuse Detectors
	5.2.4 Selection of Comparable API Misuse Detectors
	5.2.5 Threats to Validity

	5.3 Improving Data Collection for API Pattern Inference
	5.3.1 Insufficient Data Selection for API Specification Mining
	5.3.2 Concept of Change-Based Information to Collect API Usages

	5.4 Experimental Data and Processing
	5.4.1 API Misuse Datasets
	5.4.2 API Misuse-Introducing Commits
	5.4.3 Similar Source Files
	5.4.4 API Usage Graphs as Intermediate Representation

	5.5 Validation
	5.5.1 Validation of Commit Sizes
	5.5.2 Impact of Search and Filter Strategies on Mining Input
	5.5.3 Impact of Change-Based Inference on API Misuse Detection
	5.5.4 Threats to Validity

	5.6 Summary

	6 Change Rule-Based API Misuse Detection
	6.1 Methodology and Structure
	6.2 Imprecise API Misuse Detection
	6.3 RuDetect
	6.3.1 Overall Process
	6.3.2 ChaRLI: Change Rule Inference
	6.3.3 Applicability Check
	6.3.4 Graph Similarity-Based API Misuse Detection
	6.3.5 Measuring Graph Similarity

	6.4 Experimental Data and Processing
	6.4.1 API Misuse Datasets
	6.4.2 Experimental Settings

	6.5 Validation
	6.5.1 Validation of the Applicability of ChaRLI
	6.5.2 API Misuse Detection Using Similarity Variants
	6.5.3 Impact of the Context of the Change Rules on Misuse Detection
	6.5.4 Impact of the Applicability Check on Misuse Detection
	6.5.5 Comparison to the State-of-the-Art
	6.5.6 Threats to Validity

	6.6 Conceptual Differences to Related Work
	6.6.1 Conceptual Differences to Other API Misuse Detectors
	6.6.2 Conceptual Differences to API Evolution Techniques
	6.6.3 Conceptual Differences to Code Change Datastructures

	6.7 Summary

	7 Towards API Misuse Repair
	7.1 Methodology and Structure
	7.2 Limitations of State-of-the-Art API Misuse Repair
	7.2.1 State-of-the-Art on Automated Program Repair
	7.2.2 Limitations of API-Specific Automated Program Repair

	7.3 ASAP-Repair: API-Specific Automated Program Repair
	7.3.1 General Steps of ASAP-Repair
	7.3.2 Misuse Detection in ASAP-Repair
	7.3.3 Pattern-Based Steps of ASAP-Repair
	7.3.4 Change Rule-Based Steps of ASAP-Repair
	7.3.5 AUG Transformation of ASAP-Repair

	7.4 Experimental Data and Processing
	7.4.1 API Misuse Datasets
	7.4.2 Comparing Patched AUGs with Ground TruthAUGs
	7.4.3 Experimental Settings

	7.5 Validation
	7.5.1 Comparison Pattern- and Rule-Based ASAP-Repair
	7.5.2 Conceptual Comparison
	7.5.3 Towards Code Patches from ASAP-Repair
	7.5.4 Threats to Validity

	7.6 Summary

	8 Conclusion
	8.1 Summary of the Thesis
	8.2 Main Results and Contributions
	8.2.1 RQ C&P API Misuse Causes & Prevention
	8.2.2 RQ D Automated API Misuse Detection
	8.2.3 RQ R Automated API Misuse Repair
	8.2.4 Additional Results
	8.2.5 Conclusive Results

	8.3 Further Research

	A Appendix
	A.1 Appendix API Misuse Causes & Prevention
	A.1.1 Discussion Detailed API Misuse Root Causes
	A.1.2 API Misuse Root Causes Examples from Literature
	A.1.3 API Misuse Root Causes Study Methodologies
	A.1.4 API Misuse Root Causes Mapping
	A.1.5 API Misuse Prevention Mapping
	A.1.6 Detailed Comparison API Misuse Research Effort

	A.2 Appendix Improving Pattern-Based API Misuse Detection
	A.2.1 URLs to API Misuse Detectors
	A.2.2 Additional Results Filtering Commits

	A.3 Appendix Change Rule-Based API Misuse Detection
	A.3.1 Change Rule Inference
	A.3.2 Detailed Results Applicability Checks

	A.4 Detailed Results of RuDetect
	A.4.1 Further Comparison RuDetect and MUDetect

	Bibliography

